
Oracle® Cloud
Developing Applications with Oracle Mobile
Cloud Enterprise

Release 18.2.3
E95440-03
August 2018

Oracle Cloud Developing Applications with Oracle Mobile Cloud Enterprise, Release 18.2.3

E95440-03

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Patrick Keegan, John Bassett, Chris Kutler, Jennifer Shipman, Susan Post

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxii

Documentation Accessibility xxii

Conventions xxii

1 A Developer’s View of Oracle Mobile Cloud Enterprise

Client SDKs 1-1

Features for Your Apps 1-2

Custom APIs 1-2

Backends 1-2

Security 1-3

2 Android Apps

Getting the SDK 2-1

Creating a Backend 2-1

Adding the SDK 2-1

Configuring SDK Properties 2-2

Authentication Properties 2-4

OAuth 2-4

HTTP Basic 2-5

Token Exchange 2-5

Facebook Login 2-5

Configuring Your Android Manifest File 2-6

Calling Mobile APIs 2-7

Loading the Backend's Configuration 2-7

Authenticating and Logging In 2-7

Calling Platform APIs 2-12

Calling Custom APIs 2-13

Libraries and Dependencies 2-14

Next Steps 2-14

iii

3 iOS Applications

Getting the SDK 3-1

Creating a Backend 3-1

Adding the SDK 3-1

Configuring SDK Properties 3-2

Authentication Properties 3-4

OAuth 3-4

HTTP Basic 3-5

Token Exchange 3-5

Calling Mobile APIs 3-6

Loading the Backend's Configuration 3-6

Authenticating and Logging In 3-6

Calling Platform APIs 3-8

Calling Custom APIs 3-9

Libraries and Dependencies 3-10

Next Steps 3-11

4 Cordova Applications

Getting the SDK 4-1

Creating a Backend 4-1

Adding the SDK 4-1

Adding Support for Push Notifications 4-2

Configuring SDK Properties 4-3

Authentication Properties 4-5

OAuth 4-5

HTTP Basic 4-6

Token Exchange 4-6

Facebook Login 4-6

Calling Mobile APIs 4-7

Loading the Backend's Configuration 4-7

Authenticating and Logging In 4-8

Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 4-9

Calling Platform APIs 4-9

Calling Custom APIs 4-9

Using TypeScript 4-10

Libraries 4-13

Next Steps 4-13

iv

5 JavaScript Applications

Getting the SDK 5-1

Creating a Backend 5-1

Adding the SDK 5-1

Configuring SDK Properties 5-2

Authentication Properties 5-3

OAuth 5-4

HTTP Basic 5-4

Token Exchange 5-5

Facebook Login 5-5

Calling Mobile APIs 5-6

Loading the Backend's Configuration 5-6

Authenticating and Logging In 5-6

Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 5-7

Calling Platform APIs 5-7

Calling Custom APIs 5-8

Using TypeScript 5-8

Libraries 5-11

Next Steps 5-12

6 Notifications

What Can I Do with Notifications? 6-1

Setting Up a Mobile App for Notifications 6-1

Setting Up the Device Handshake for Notifications 6-3

Setting Up a Device Handshake for Android (FCM) 6-3

Setting Up a Device Handshake for iOS 6-5

Setting Up a Device Handshake for Windows 6-7

Sending Notifications to and from Your App 6-7

Testing Notifications from the UI 6-7

Cancelling a Scheduled Notification from the UI 6-8

Sending Notifications Using the Notifications API 6-8

REST 6-10

Registering a Device ID 6-10

Sending a Text Message Notification 6-12

Sending a Notification Using a Unified Payload 6-12

Sending a Notification Using a Payload Template 6-13

Cancelling Scheduled Notifications 6-15

How Are Notifications Sent and Received? 6-15

What is the Device ID or Notification Token? 6-16

Troubleshooting Notifications 6-16

v

Checking Notification Status in the UI 6-17

Checking Notification Status with the Notifications REST API 6-18

7 My Profile

User Types 7-1

Getting User Profile Information 7-1

8 Storage

What Can I Do with Storage? 8-1

Android 8-1

Adding an Object to a Collection 8-1

Fetching an Object 8-1

Getting Multiple Objects from a Collection 8-2

Getting a Shared Collection 8-2

Retrieving an Object 8-2

Updating an Object 8-3

Uploading a New Object to a Collection 8-3

iOS 8-3

Adding an Object to a Collection 8-3

Deleting an Object 8-4

Downloading Data to a Collection 8-4

Getting a User Isolated Collection 8-5

Getting Multiple Objects from a Collection 8-5

Getting Object Data as a Stream 8-5

Retrieving a Storage Object 8-6

Updating an Object 8-6

Uploading Data to a Collection 8-6

Cordova, JavaScript, and TypeScript 8-7

Adding an Object to a Collection 8-7

Deleting an Object 8-8

Fetching an Object 8-8

Getting a Collection 8-8

Getting an Object from a User Isolated Collection 8-9

Getting Multiple Objects from a Collection 8-9

Updating an Object 8-9

Custom Code 8-10

Retrieving and Storing Collections and Objects 8-10

REST API 8-10

Storage API Endpoints 8-10

vi

Getting a Single Collection 8-10

Getting All Collections Associated with a Mobile Backend 8-11

Storing an Object 8-11

Specifying the Object Identifier 8-11

Creating an Object (If One Doesn't Already Exist) 8-11

Generating an Object Identifier 8-12

What Happens When an Object is Created? 8-12

Updating an Object 8-12

What Happens When an Object Is Updated? 8-12

Optimistic Locking 8-12

Retrieving a List of Objects 8-13

Paging Through a List of Objects 8-13

Ordering 8-14

Querying 8-14

Retrieving an Object 8-14

Deleting an Object 8-15

Optimizing Performance 8-15

Check If Exists 8-15

Get If Newer 8-16

Reading Part of an Object (Chunking Data) 8-16

Testing Runtime Operations Using the Endpoints Page 8-17

Managing Collections 8-17

Shared and User Isolated Collections 8-17

Storage Configuration 8-20

Defining a Collection 8-21

Collection Metadata 8-22

Adding Access Permissions to a Collection 8-22

Adding Objects to a Collection 8-24

Object Metadata 8-24

Updating the Collection 8-25

Offline Data Storage 8-25

Associating a Collection with a Backend 8-26

Removing a Collection from a Backend 8-27

9 Data Offline and Sync

Building Apps that Work Offline Using Sync Express 9-2

Building Apps that Work Offline Using the Synchronization Library 9-6

What Can I Do with the Synchronization Library? 9-6

Synchronization Library Process Flow 9-9

Video: Overview of the Data Offline & Synchronization API 9-9

vii

Android Synchronization Library 9-9

Setting Up Your Mobile App for the Android Synchronization Library 9-10

Fetching Resources 9-10

Fetching Filtered Resources 9-13

Specifying Which Resources to Synchronize First 9-17

Setting a Resource’s Synchronization Policies Programmatically 9-17

Detecting and Handling Conflicts 9-18

Reviewing and Discarding Offline Edits 9-21

iOS Synchronization Library 9-25

Setting Up Your Mobile App for the iOS Synchronization Library 9-25

Fetching Resources 9-25

Fetching Filtered Resources 9-27

Specifying Which Resources To Synchronize First 9-29

Setting a Resource’s Synchronization Policies Programmatically 9-30

Detecting and Handling Conflicts 9-31

Reviewing and Discarding Offline Edits 9-34

Making Custom APIs Synchronizable 9-37

Synchronization Policies 9-38

Video: Introduction to the Data Offline & Sync Policies 9-40

Synchronization Policy Options 9-40

Video: Deep-Dive into the Data Offline & Sync Policies 9-43

Synchronization Policy Levels and Precedence 9-43

Defining Synchronization Policies Using a Configuration File 9-44

Defining Synchronization Policies and Cache Settings in a Response
Header 9-50

Tracking Cache Hits with the Synchronization Library 9-51

How Synchronization Works with the Storage APIs 9-51

10

Location

What Can I Do With Location? 10-1

A Few Important Location Terms 10-1

Android 10-2

Querying for Location Objects 10-2

Retrieving a Location Object 10-3

iOS 10-5

Querying for Location Objects 10-5

Retrieving a Location Object 10-6

Retrieving iBeacon Identifiers 10-7

Defining a Geofence 10-8

Retrieving Custom Attributes 10-9

REST API - Location 10-10

viii

Querying for Location Devices, Places and Assets 10-10

Querying for Location Devices 10-10

Querying for Places 10-14

Querying for Assets 10-18

Retrieving Location Objects and Properties 10-20

Setting Up Location Devices, Places and Assets 10-21

Defining Places 10-21

Uploading Places Using a CSV File 10-21

Defining Location Assets 10-22

Uploading Assets Using a CSV File 10-23

Registering Location Devices 10-24

Uploading Location Devices Using a CSV File 10-25

11

Database

What Can I Do with Database APIs? 11-1

Database Access API 11-1

Calling the Database Access API from Custom Code 11-1

Creating and Restructuring Database Tables 11-3

Adding and Updating Table Rows 11-5

Retrieving Table Rows 11-6

Deleting Table Rows 11-8

Executing SQL on a Table 11-9

Passing Parameters to the SQL Statement 11-10

Labeling Calculated Columns in Select Statements 11-12

Preserving Case in SQL Statements 11-12

Preventing SQL Injection 11-13

Database Management API 11-14

Creating a Table Explicitly 11-14

12

Analytics

What Can I Do with Analytics? 12-1

How Does Create Analytics Reports? 12-1

API Call Analytics 12-2

API Calls Count and Response Time 12-2

Adding Locations in China 12-2

13

App Policies

What Are App Policies and What Can I Do With Them? 13-1

Setting an App Policy 13-1

ix

Android 13-2

Retrieving App Policies 13-2

iOS 13-3

Retrieving App Policies 13-3

REST 13-4

Retrieving App Policies 13-4

Cordova 13-4

Retrieving App Policies 13-4

JavaScript 13-5

Retrieving App Policies 13-5

Updating an App Policy Value in a Published Mobile Backend 13-5

14

Backends

What Are Backends and How Can I Use Them? 14-1

What's the Backend Development Process? 14-1

Creating and Populating Backends 14-1

Creating a Backend 14-2

Backend Authentication and Connection Info 14-2

Role-Based Backends 14-3

Associating APIs with a Backend 14-3

Associating Storage Collections with a Backend 14-4

Notification Profiles and Client Apps 14-4

How Notification Profiles Work 14-4

How App Clients Work 14-4

Getting Network Credentials for Notifications 14-5

Android: Google API Key 14-5

iOS: Apple Secure Certificates 14-6

Windows: WNS Credentials 14-7

Syniverse: SMS Credentials 14-7

Creating a Notifications Profile 14-9

Registering an App Client 14-10

What Can I Change in a Backend? 14-11

Connecting Your App to a Backend 14-11

Analytics Apps 14-12

Registering an Analytics App 14-12

Associating an Analytics App with a Backend 14-13

15

Mobile Users and Roles

Navigate to Your Oracle Identity Cloud Service Application 15-1

x

Adding Users and Groups in Oracle Identity Cloud Service 15-1

Creating and Managing Mobile Roles 15-2

Permissions Required for Platform APIs 15-3

16

Authentication in OMCe

OAuth Consumer Authentication in OMCe 16-1

HTTP Basic Authentication in OMCe 16-2

Enterprise Single Sign-On in OMCe 16-2

Third-Party SAML and JWT Tokens 16-3

SAML Tokens and Virtual Users 16-3

JWT Tokens and Virtual Users 16-7

Mapping Users from a Third-Party IdP to IDCS Users 16-24

Browser-Based SSO through OMCe 16-25

Testing APIs in a Backend with SSO Login 16-25

Token Expiration for SSO Login 16-26

Facebook Login in OMCe 16-26

Registering an App for Login Through Facebook 16-27

Enabling Facebook Login in a Mobile Backend 16-27

Configuring an App to Use Facebook Login 16-27

Adding APIs to a Mobile Backend with Facebook Login 16-28

Getting a Facebook User Access Token Manually 16-28

Headers Needed for API Calls with Facebook Authentication 16-29

Authenticating in Direct REST Calls 16-29

Authenticating with OAuth in Direct REST Calls 16-29

Authenticating with HTTP Basic in Direct REST Calls 16-31

Securing Cross-Site Requests to OMCe APIs 16-31

17

Creating APIs Fast with the Express API Designer

What are Resources? 17-1

Creating An API 17-1

Completing Your Resources 17-3

Adding Additional Fields 17-4

Shaping the Payload for Your Resource 17-4

Adding More Sample Data 17-5

Referenced Resources 17-6

Fields 17-8

Methods 17-9

Shaping Payloads 17-10

Read-Only Fields 17-12

xi

Sample Data 17-12

Using the Express API Designer with MAX 17-15

How Do I Surface My API in MAX? 17-15

Who Uses MAX? 17-15

Enabling Uploadable Images 17-16

Tips for User-Friendly Business Objects in MAX 17-17

Video: An Introduction to Mobile Application Accelerator (MAX) 17-27

Creating Resources with JSON Schemas 17-27

Defining Fields in a Schema 17-28

Defining Field Types, Formats, and Enums 17-29

Defining Child Objects 17-31

Defining Fields for List, Details, Create, and Update Screens 17-32

Collection Actions 17-34

Create Actions 17-37

Update Actions 17-39

Delete Actions 17-40

Custom Actions 17-40

Creating Mock Data 17-40

Which API Designer Should I Use? 17-41

18

Custom API Design

API Design Process 18-1

Generating Custom APIs for Connectors 18-3

How Do I Generate a Custom API from a Connector 18-4

Completing the Custom API 18-6

Working with the Implementation 18-6

The API Designer 18-9

Spec Out a Custom API 18-9

Creating a Complete Custom API 18-14

Setting Up Your API 18-14

Defining Endpoints 18-15

Adding Methods to Your Resources 18-17

Defining a Request for the Method 18-18

Defining a Response for the Method 18-19

Testing API Endpoints Using Mock Data 18-21

Providing a Schema 18-22

Security in Custom APIs 18-23

Setting Access to the API 18-24

Testing Your Custom API 18-26

Creating Resource Types 18-28

xii

Creating Resource Traits 18-30

Providing API Documentation 18-31

How Do I Write in Markdown? 18-33

Getting Diagnostic Information 18-34

API Design Considerations 18-34

Valid URLs 18-34

API Timeouts 18-36

API Resources 18-36

URI Parameters 18-37

Endpoint Requirements for Sync Compatibility 18-38

Schemas 18-39

RAML 18-40

Editing a Custom API 18-43

Video: End-to-End Custom API Demo 18-44

Troubleshooting Custom APIs 18-44

19

Implementing Custom APIs

What Can I Do with Custom Code? 19-1

How Does Custom Code Work? 19-2

What's the Foundation for the Custom Code Service? 19-2

Video: Node.js Technology Primer 19-4

Setting Up Tooling for Custom Code 19-4

Steps to Implement a Custom API 19-4

Downloading a JavaScript Scaffold for a Custom API 19-5

Writing Custom Code 19-5

Key JavaScript Constructs in Custom Code 19-5

Accessing the Body of the Request 19-9

Inserting Logging Into Custom Code 19-9

Storing Data Locally 19-11

Video: Working with Node - Common Code 19-11

Implementing Synchronization-Compatible APIs 19-11

Video: Working with Custom APIs via Data Offline & Sync 19-12

Requirements for a Synchronization-Compatible Custom API 19-12

Returning Cacheable Data 19-17

Specifying Synchronization and Cache Policies 19-19

Calling Web Services and APIs from Custom Code 19-20

Packaging Custom Code into a Module 19-21

Required Artifacts for an API Implementation 19-21

package.json Contents 19-22

Declaring the API Implementation Version 19-23

xiii

Declaring the Node Version 19-24

Packaging Additional Libraries with Your Implementation 19-24

Uploading the Custom Code Module 19-25

Testing and Debugging Custom Code 19-25

Testing with Mock Data 19-25

Testing Custom Code from the UI 19-26

Offline Debugging with the OMCe Custom Code Test Tools 19-26

Tools for Testing Custom Code Outside the UI 19-27

Accessing Logging Messages for Custom Code 19-27

Troubleshooting Custom API Implementations 19-30

Diagnosing Syntax Errors 19-31

Common Custom Code Errors 19-32

What Happens When a Custom API Is Called? 19-34

20

Calling APIs from Custom Code

How to Send Requests to Platform, Connector, and Custom APIs 20-1

API Request Pattern 20-1

Common options Argument Properties 20-2

API Response Patterns 20-4

Handling a Stream 20-4

Handling a Promise 20-5

Accessing Mobile Backend Information from Custom Code 20-12

mbe.getMBE() 20-13

Calling Platform APIs from Custom Code 20-13

Accessing the Analytics Collector API from Custom Code 20-14

analytics.postEvent(events, options, httpOptions) 20-14

Accessing the App Policies API from Custom Code 20-17

appConfig.getProperties(httpOptions) 20-18

Accessing the Database Access API from Custom Code 20-18

database.delete(table, keys, options, httpOptions) 20-19

database.get(table, keys, options, httpOptions) 20-20

database.getAll(table, options, httpOptions) 20-22

database.insert(table, object, options, httpOptions) 20-24

database.merge(table, object, options, httpOptions) 20-29

database.sql(sql, args, options, httpOptions) 20-34

Accessing the Location API from Custom Code 20-36

location.assets.getAsset(id, httpOptions) 20-37

location.assets.query(queryObject, httpOptions) 20-39

location.devices.getDevice(id, httpOptions) 20-42

location.devices.query(queryObject, httpOptions) 20-44

xiv

location.places.getPlace(id, httpOptions) 20-46

location.places.query(queryObject, httpOptions) 20-47

Accessing the Location Management API from Custom Code 20-51

location.assets.register(assets, context, httpOptions) 20-52

location.assets.remove(id, context, httpOptions) 20-53

location.assets.update(id, asset, context, httpOptions) 20-54

location.devices.register(devices, context, httpOptions) 20-56

location.devices.remove(id, context, httpOptions) 20-58

location.devices.update(id, device, context, httpOptions) 20-58

location.places.register(places, context, httpOptions) 20-61

location.places.remove(id, context, httpOptions) 20-62

location.places.update(id, place, context, httpOptions) 20-63

Accessing the Mobile Devices API from Custom Code 20-65

devices.deregister(device, httpOptions) 20-65

devices.register(device, httpOptions) 20-66

Accessing the My Profile API from Custom Code 20-67

ums.getMe(httpOptions) 20-67

ums.getUser(options, httpOptions) 20-70

ums.getUserExtended(options, httpOptions) 20-72

ums.updateUser(fields, options, httpOptions) 20-75

Accessing the Notifications API from Custom Code 20-76

notification.getAll(context, options, httpOptions) 20-76

notification.getById(id, context, options, httpOptions) 20-80

notification.post(notification, context, options, httpOptions) 20-81

notification.remove(id, context, options, httpOptions) 20-82

Accessing the Storage API from Custom Code 20-83

storage.doesCollectionExist(collectionId, options, httpOptions) 20-83

storage.doesExist(collectionId, objectId, options, httpOptions) 20-85

storage.getAll(collectionId, options, httpOptions) 20-87

storage.getById(collectionId, objectId, options, httpOptions) 20-92

storage.getCollection(collectionId, options, httpOptions) 20-96

storage.getCollections(options, httpOptions) 20-97

storage.remove(collectionId, objectId, options, httpOptions) 20-100

storage.store(collectionId, object, options, httpOptions) 20-102

storage.storeById(collectionId, objectId, object, options, httpOptions) 20-105

Calling Connector APIs from Custom Code 20-108

Calling a Connector to a REST Web Service 20-111

Calling a Connector to a SOAP Service 20-112

Calling Connectors that Require Form Data 20-114

Passing Headers to the Target Service 20-115

Overriding SSL Settings for Connectors 20-117

xv

Calling Custom APIs from Custom Code 20-117

Specifying the API Version in Calls to Custom and Connector APIs 20-120

Using Generic REST Methods to Access APIs 20-121

optionsList Argument 20-122

Learning About Platform, Custom, and Connector APIs 20-123

21

Connectors

What Is a Connector API? 21-1

REST Connector APIs 21-1

How REST Connector APIs Work 21-1

Why Use Connectors Instead of Direct Calls to External Resources? 21-1

Creating a REST Connector API 21-2

Basic Connector Setup 21-2

Rules 21-4

Security Policies and Overriding Properties 21-5

Testing in Advanced Mode 21-7

Security and REST Connector APIs 21-10

Security Policy Types for REST Connector APIs 21-11

CSF Keys and Web Service Certificates 21-12

Query and Header Parameters 21-13

Setting Query Parameters in Remote URLs 21-14

Editing a REST Connector API 21-15

Using Your REST Connector API in an App 21-15

Troubleshooting REST Connector APIs 21-16

SOAP Connector APIs 21-16

How SOAP Connector APIs Work 21-16

Why Use SOAP Connectors Instead of Direct Calls to External Resources? 21-17

Creating a SOAP Connector API 21-17

Setting the Basic Information for Your SOAP Connector API 21-18

Selecting a Port 21-21

Setting Security Policies and Overriding Properties for SOAP Connector
APIs 21-22

Testing a SOAP Connector API 21-24

SOAP Connector API Design Tips 21-27

How Does XML Get Translated into JSON? 21-28

Using XML Instead of JSON 21-29

Security Policy Types for SOAP Connector APIs 21-30

CSF Keys and Web Service Certificates 21-31

Editing a SOAP Connector API 21-32

Using Your Connector API in an App 21-32

Troubleshooting SOAP Connector APIs 21-33

xvi

ICS Connector APIs 21-34

How ICS Connector APIs Work 21-34

ICS Connector API Flow 21-35

How Do I Create an ICS Connector API? 21-36

Setting the Basic Information for Your ICS Connector API 21-37

Connecting to an Integration Cloud Service Instance 21-39

Selecting or Creating an ICS Instance Connection 21-39

Selecting an Active Integration 21-40

Editing the ICS Connector API 21-41

Setting Runtime Security for the ICS Connector API 21-42

Creating a New CSF Key 21-43

Testing the ICS Connector API 21-43

Security and ICS Connector APIs 21-47

CSF Keys 21-47

Using Your Connector API in an App 21-48

Troubleshooting ICS Connector APIs 21-48

Fusion Applications Connector APIs 21-49

How Fusion Applications Connector APIs Work 21-49

Fusion Applications Connector API Flow 21-50

How Do I Create a Fusion Applications Connector API? 21-51

Setting the Basic Information for Your Fusion Applications Connector API 21-52

Connecting to a Fusion Applications Instance 21-54

Creating a Fusion Applications Instance Connection 21-54

Selecting Fusion Applications Resources 21-55

Setting Resource Attributes 21-57

Editing the Fusion Applications Connector API 21-58

Setting Runtime Security for the Fusion Applications Connector API 21-59

Testing the Fusion Applications Connector API 21-61

Security Policy Types for Fusion Applications Connector APIs 21-63

CSF Keys and Web Service Certificates 21-64

Using Your Fusion Application Connector API in an App 21-65

Troubleshooting Fusion Applications Connector APIs 21-66

22

SOAP Connector APIs

How SOAP Connector APIs Work 22-1

SOAP Connector API Design Process 22-1

Why Do I Want to Use a SOAP Connector API? 22-2

Why Use SOAP Connectors Instead of Direct Calls to External Resources? 22-3

Creating a SOAP Connector API 22-4

Setting the Basic Information for Your SOAP Connector API 22-4

xvii

Selecting a Port 22-7

Setting Security Policies and Overriding Properties for SOAP Connector APIs 22-8

Setting a CSF Key 22-9

Setting a Web Service Certificate 22-10

Testing a SOAP Connector API 22-10

Testing Your Connector 22-10

Getting the Test Results 22-12

Getting Diagnostic Information 22-13

SOAP Connector API Design Tips 22-14

How Does XML Get Translated into JSON? 22-14

Using XML Instead of JSON 22-15

Security Policy Types for SOAP Connector APIs 22-16

CSF Keys and Web Service Certificates 22-17

Editing a SOAP Connector API 22-18

Using Your Connector API in an App 22-19

Troubleshooting SOAP Connector APIs 22-19

23

ICS Connector APIs

How ICS Connector APIs Work 23-1

ICS Connector API Flow 23-1

How Do I Create an ICS Connector API? 23-3

Setting the Basic Information for Your ICS Connector API 23-4

Connecting to an Integration Cloud Service Instance 23-6

Selecting or Creating an ICS Instance Connection 23-7

Selecting an Active Integration 23-8

Editing the ICS Connector API 23-9

Setting Runtime Security for the ICS Connector API 23-9

Creating a New CSF Key 23-10

Testing the ICS Connector API 23-11

Getting the Test Results 23-13

Getting Diagnostic Information 23-14

Security and ICS Connector APIs 23-14

CSF Keys 23-15

Using Your Connector API in an App 23-15

Troubleshooting ICS Connector APIs 23-16

24

Fusion Applications Connector APIs

How Fusion Applications Connector APIs Work 24-1

Fusion Applications Connector API Flow 24-1

xviii

How Do I Create a Fusion Applications Connector API? 24-3

Setting the Basic Information for Your Fusion Applications Connector API 24-4

Connecting to a Fusion Applications Instance 24-6

Creating a Fusion Applications Instance Connection 24-6

Selecting Fusion Applications Resources 24-7

Setting Resource Attributes 24-9

Editing the Fusion Applications Connector API 24-10

Setting Runtime Security for the Fusion Applications Connector API 24-11

Providing a CSF Key 24-12

Creating a New CSF Key 24-12

Setting a Web Service Certificate 24-13

Testing the Fusion Applications Connector API 24-13

Getting the Test Results 24-15

Security Policy Types for Fusion Applications Connector APIs 24-15

CSF Keys and Web Service Certificates 24-16

Using Your Fusion Application Connector API in an App 24-17

Troubleshooting Fusion Applications Connector APIs 24-18

25

Diagnostics

What Can I Do with Diagnostics? 25-1

Viewing Environment Health 25-1

Viewing Server Load 25-2

Viewing Errors 25-2

Viewing Underperforming Requests 25-3

Viewing Log Messages Related to a Request 25-3

Viewing Storage Usage 25-3

Monitoring a Selected Backend 25-4

Viewing API Performance 25-5

Adjusting the Performance Threshold Configurations 25-5

Viewing Status Codes for API Calls and Outbound Connector Calls 25-5

Relating Log Messages 25-7

How Client SDK Headers Enable Device and Session Diagnostics 25-8

Viewing Log Messages 25-9

Viewing Message Details 25-11

Taking a Look at Exported Messages 25-12

Configuring the Logging Level for Custom Code 25-19

Diagnosing Custom Code 25-19

Use Case: Using Correlation to Diagnose Custom Code 25-20

Use Case: Using Correlation to Diagnose Connector Issues 25-22

xix

26

Packages

What’s a Package? 26-1

Why Do I Want a Package? 26-1

Exporting a Package 26-2

Adding Artifacts to the Package 26-2

Reviewing Dependencies During Export 26-3

Setting Environment Policies During Export 26-4

Completing the Export 26-6

Re-exporting a Package 26-7

Importing a Package 26-7

Uploading the Package 26-7

Examining the Contents of the Import Package 26-8

Setting Environment Policies During Import 26-9

What Happens When You Import a Package? 26-11

Import Results 26-11

Exporting Updated Artifacts 26-12

Examining a Package 26-12

Moving a Package to the Trash 26-13

Environment Policy Settings for Packaged Artifacts 26-14

A HTTP Headers

API Headers A-1

SDK Headers A-2

B Oracle Mobile Cloud Enterprise Policies

OMCe Policies and Values B-1

C Security Policies for Connector APIs

Security Policies for REST Connector APIs C-1

Security Policies for SOAP Connector APIs C-3

Security Policies for ICS Connector APIs C-11

Security Policies for Fusion Applications Connector APIs C-11

Security Policy Properties C-12

D Writing Swift Applications Using the iOS Client SDK

Adding the Bridging Header File D-1

Adding the SDK Headers and Libraries to a Swift App D-2

xx

Using SDK Objects in Swift Apps D-3

E Legacy Analytics API

Enabling Your Mobile Apps to Report Event Data E-1

Adding Location Properties to the context Event E-4

Integrating Analytics into a Mobile App Using the Client SDK E-5

F Supported Browsers and Languages

Supported Browsers F-1

Supported Languages F-1

G Identity Provider Integration

Use Case: Configuring OKTA to Obtain a SAML Token G-1

Use Case: Configuring AD FS to Obtain a SAML Token G-2

xxi

Preface

Welcome to Oracle Mobile Cloud Enterprise.

Audience
This guide is intended for developers who use Oracle Mobile Cloud Enterprise (OMCe)
to develop mobile applications, mobile APIs, and intelligent chatbots.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
A Developer’s View of Oracle Mobile Cloud
Enterprise

Welcome to Oracle Mobile Cloud Enterprise! OMCe is a cloud-based service that
provides a unified hub for developing, deploying, maintaining, monitoring, and
analyzing your mobile apps, intelligent bots, and the resources that they rely on. As a
developer, you can use this guide to help you incorporate OMCe’s features into your
apps.

This guide covers what you need to know to:

• Add support for authentication, notifications, geo-location, sync, storage, and other
features to your apps.

• Create custom APIs that your apps and bots can use to connect to your enterprise
systems.

This guide doesn’t cover development of bots themselves. For that, see Creating
Intelligent Bots with Oracle Mobile Cloud, Enterprise.

There is also a separate guide for using OMCe’s Mobile Application Accelerator (MAX)
to rapidly develop cross-platform mobile apps. See Building No-Code Applications with
Oracle Mobile Cloud, Enterprise.

Client SDKs
As an app developer, the first thing you’ll want to do is get the OMCe client SDK for
your mobile platform. The client SDKs help you use OMCe features and custom APIs
that you develop through OMCe in your apps.

You can get the SDKs from the Oracle Technology Network’s Oracle Mobile Cloud
Enterprise download page.

For specific info on each SDK, see the following topics:

• Android Apps

• iOS Applications

• Cordova Applications

• JavaScript Applications

Note:

For information on using the REST APIs directly, see the platform's REST
API reference docs.

1-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Features for Your Apps
OMCe comes with a set of platform APIs that you can use in your apps. You can call
these APIs directly from your app code (via client SDK or REST call) and/or from the
implementation code of custom APIs.

The available platform APIs include the following:

• Notifications for writing code to send notifications to your mobile apps.

• My Profile to retrieve the current app user’s profile.

• Storage to work with collections and objects (such as images and documents) that
you associate with your backend.

• Data Offline and Sync to build applications that cache REST resources for offline
use and then synchronize all offline changes with the server when the device goes
online again.

• Location to define location devices and places and query for them from your
mobile apps.

• Database Access and Database Management to access the database
associated with your OMCe instance.

• App Policies to retrieve application configuration properties that you have set in
the backend.

Custom APIs
You can create your own custom APIs in OMCe to serve the needs of your apps and
bots.

You design the API using one or both of the following tools:

• Express API Designer: Enables you to quickly create APIs based on CRUD
resources.

• API Designer: Enables you to create or modify an API using the full set of RAML
capabilities.

You implement the API with Node.js-based custom code. From your implementation
code, you can:

• Call OMCe platform APIs for features such as notifications, object storage,
database access, location, and sync.

• Access enterprise services (whether cloud-based on premises) via connectors
APIs. You can create connector APIs based on connector types for REST, SOAP,
Oracle Integration Cloud Service, and Fusion Applications.

Backends
You’ll use backends to group the APIs and other resources that your apps and bots
need.

A backend is a logical grouping of custom APIs, storage collections, and other
resources that serves as a cloud-based companion to one or more related mobile

Chapter 1
Features for Your Apps

1-2

apps or bots. The backend provides the security context, meaning that the user has to
authenticate through the backend to access those services.

At development time, here are some of the things you do with a backend:

• Add APIs and test their endpoints with mock data.

• Add object storage collections and enable offline data caching.

• Specify roles that users must have to access the applications associated with the
backend.

• Set up notifications for your apps using the services provided by the platform
vendors (such as Apple Push Notifications Service (APNS) for iOS and Firebase
Cloud Messaging (FCM) for Android). If you set up notifications for multiple
platforms, you can initiate a single notification and have it delivered to apps on
multiple platforms.

Later, at deployment time, the backend serves as a deployment unit with dependency
management for all of the artifacts you need to support the set of mobile apps and
bots that use it.

Security
For each backend that you create, you set up how to authenticate with that backend.
You can choose from these mechanisms:

• OAuth, where Oracle Identity Cloud Service (IDCS) is the identity provider, and
you use credentials generated by the backend.

• HTTP Basic, where IDCS is the identity provider, and you use credentials
generated by the backend.

• SAML and JWT tokens from third-party identity providers.

• Browser-based SSO, where IDCS is the identity provider and the app uses
OAuth 2.0’s authorization code grant to get an authorization token.

• Facebook Login.

Further, you can restrict access to resources by defining roles in OMCe and applying
them to backends, APIs, and/or storage collections.

Chapter 1
Security

1-3

2
Android Apps

Oracle Mobile Cloud Enterprise (OMCe) provides an SDK for Android that makes it
easy to use OMCe’s features.

Getting the SDK
To get the OMCe client SDK for Android, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend
You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Adding the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the Android client SDK to an app

1. If you haven’t already done so, unzip the Android client SDK zip.

2. Copy the SDK jars into the libs folder in your app's project. If this folder doesn't
exist, create it at the same level in your hierarchy as your src and build folders.

3. Import the IDMMobileSDK.jar into the project. (In Android Studio, select File >
New > New Module, click Import .JAR/.AAR Package, click Next, select
IDMMobileSDK.jar and click Next.)

4. In the source tree for the application, create a folder called assets (at the same
level as the java and res folders).

5. In the SDK bundle, locate the oracle_mobile_cloud_config.xml file and copy it to
the assets folder.

2-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

6. In your app's build.gradle file, make sure the following are among the
dependencies registered so that the SDK libraries are available to the app.

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.squareup.okhttp3:okhttp:3.9.0'
 compile 'org.slf4j:slf4j-jdk14:1.7.13'
 //to enable the app to receive notifications, include the following:
 compile 'com.google.firebase:firebase-messaging:11.0.2'
}

7. Open assets/oracle_mobile_cloud_config.xml and fill in the environment
details for the mobile backend that the app will be using.

Configuring SDK Properties
To use the client SDK in an Android app, you need to add a
oracle_mobile_cloud_config.xml configuration file to the app and fill it in with
environment details for your backend in OMCe. In turn, the SDK classes use this
information to construct HTTP headers for REST calls made to OMCe.

You package the configuration file in your app’s main bundle in the assets folder at the
same level as the java and res folders. For example, in the sample GettingStarted
app, it’s in /GettingStarted/src/main/assets.

The file is essentially divided into the following parts:

• The mobileBackend element and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Elements that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These elements generally, but don’t have to, appear at the
top of the file.

The following code sample shows the structure of a
oracle_mobile_cloud_config.xml file.

<config>

 <!--This value is required if you are using OAuth to authenticate
against the mobile backend-->
 <oAuthTokenEndPoint>YOUR_OAUTH_TOKEN_END_POINT<oAuthTokenEndPoint>
 <!--Set to true if you want to get logging information-->
 <enableLogger>true</enableLogger>
 <logLevel>DEBUG</logLevel>
 <!--Whether to log HTTP call request and response bodies and headers-->
 <logHTTP>true</logHTTP>

 <!-- Include the mobileBackend element and its sub-elements if you are
going
 to be using a backend to access custom and platform APIs.-->
 <mobileBackend>
 <name>MBE_NAME</name>

Chapter 2
Configuring SDK Properties

2-2

 <baseUrl>BASE_URL</baseUrl>
 <enableAnalytics>true</enableAnalytics>
 <authentication>
 <!--possible values for type are [oauth, basic, facebook,
tokenExchange]-->
 <type>AUTH_TYPE</type>
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 <enableOffline>true</enableOffline>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 <enableOffline></enableOffline>
 </basic>
 <facebook>
 <appId>FACEBOOK_APP_ID</appId>

<scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 </facebook>
 <tokenExchange>
 <! tokenExchange can contain an 'oauth' sub-element or a 'basic'
sub-element.
 <oauth>
 <clientId>CLIENT_ID</clientId>
 <clientSecret>CLIENT_SECRET</clientSecret>
 </oauth>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <tokenExchange>
 </authentication>
 <!-- additional properties go here -->
 </mobileBackend>

</config>

The values that you need to fill in for a given backend can be found on the Settings
and App Profile pages for that mobile backend.

Here are some more notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page.

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is ERROR. Other possible values (in increasing level of detail) are
WARNING, INFO, and DEBUG. It is also possible to specify NONE.

Chapter 2
Configuring SDK Properties

2-3

• enableAnalytics — When set to true, analytics are collected for system and
custom events that were defined with the legacy Mobile Cloud Service analytics
features. This option has no impact on the current analytics features.

• enableLogger — When set to true, logging is included in your app.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in
requests and responses.

• mobileBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of oauth, basic, facebook, and
tokenExchange.

– One or more sub-elements for authentication types, each containing
authentication credentials.

You can also add the offlineEnabled key and set its value to true.

See Authentication Properties for examples of each authentication type.

• enableOffline — If set to true, offline login will be allowed. This applies only to
the Basic and OAuth login types. For this to work, you also need to add the
following to the app’s AndroidManifest.xml file:

<receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

Authentication Properties
The contents and sub-elements of authentication depend on what kind of
authentication the app will be using.

OAuth
• Set the value of the <type> element to oauth.

• Fill in the clientID and clientSecret credentials provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
element and set it to false.

• At the top level of the file, supply the oAuthTokenEndPoint value.

The resulting authentication element might look something like this:

<oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>

Chapter 2
Configuring SDK Properties

2-4

<authentication>
 <type>oauth</type>
 <oauth>
 <clientId>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</clientId>
 <clientSecret>vZMRkgniIbhNUiPnSRT2</clientSecret>
 <enableOffline>false</enableOffline>
 </oauth>
</authentication>

HTTP Basic
• Set the value of the type element to basic.

• Fill in the mobileBackendID and anonymousKey that are provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-element and set it to false.

The resulting authentication element might look something like this:

<authentication>
 <type>basic</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 <enableOffline>false</enableOffline>
 </basic>
</authentication>

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the <type> element to tokenExchange.

• Create a <basic> sub-element and fill in the OAuth Consumer credentials
provided by the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>tokenExchange</type>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</
mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
 <tokenExchange>
</authentication>

Facebook Login
For Facebook login:

Chapter 2
Configuring SDK Properties

2-5

• Set the value of the <type> property to facebook.

• Create a <facebook> sub-element.

• Fill in the <appID> for the Facebook app.

• Fill in <scopes> with any relevant Facebook permissions (optional).

• Within <facebook>, created a <basic> element and fill in the HTTP Basic
credentials provided by the backend.

The resulting authentication element might look something like this:

<authentication>
 <type>facebook</type>
 <facebook>
 <basic>
 <mobileBackendId>MOBILE_BACKEND_ID</mobileBackendId>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 <appID>123456789012345</appId>
 <scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 </facebook>
<authentication>

Configuring Your Android Manifest File
Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in your application's manifest file,
AndroidManifest.xml. These permissions are required:

• permission.INTERNET — Allows your app to access open network sockets.

• permission.ACCESS_NETWORK_STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, there are a number of permissions
necessary for the app to be able to receive notifications. For a rundown on the
available permissions, see Android Manifest Permissions in the Google
documentation.

Add the permissions at the top of your AndroidManifest.xml file, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="oracle.cloud.mobile.sample" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />

Chapter 2
Configuring Your Android Manifest File

2-6

http://developer.android.com/reference/android/Manifest.permission.html

 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <application>
 <receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>

 (.....)
 </application>
</manifest>

Adding the client SDK to your application may require you to configure your
AndroidManifest.xml file to add new permissions or activities. For example, if you
add the Notifications individual SDK library, you may also need to add a new
broadcast receiver. For more information, see Setting Up a Mobile App for
Notifications.

Calling Mobile APIs
In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your Android app:

1. Add the client SDK to your app.

2. Fill in the oracle_mobile_cloud_config.xml with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration
For any calls to OMCe APIs using the Android client SDK to successfully complete,
you need to have the backend’s configuration loaded from the app’s
oracle_mobile_cloud_config.xml file. You do this using the MobileManager class:

MobileManager.getManager().getMobileBackend(this)

Authenticating and Logging In
Here is some sample code that you can use for authentication through OMCe in your
Android apps.

Chapter 2
Calling Mobile APIs

2-7

OAuth Consumer

First you initialize the authorization agent and set the authentication type to OAUTH:

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.OAUTH);

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process:

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();
String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token",
exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }
 }
 }

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

Chapter 2
Calling Mobile APIs

2-8

Context mCtx = getApplicationContext();

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENEXCHANGE);

Then you use the authenticateUsingTokenExchange method to attempt
authentication.

mAuthorization.authenticateUsingTokenExchange(mCtx, token, false,
mLoginCallback);

Here’s the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 if (exception == null) {
 //redirect to another Activity after login
 Intent intent = new Intent(mCtx, ContentActivity.class);
 startActivity(intent);

 } else {
 Log.e(TAG, "Exception during token exchange:", exception);
 finish();
 }
 }
};

Note:

The default expiration time for storing a third-party token in OMCe is 6 hours.
You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy. See Modifying Policies in
Administering Oracle Mobile Cloud, Enterprise.

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the above example, the authenticateUsingTokenExchange() method is called with
the third parameter (storeToken) set to false. If you set this parameter to true and
the token exchange is successful, the MCS token is stored in a secure store and the
user remains logged in until the token expires.

Chapter 2
Calling Mobile APIs

2-9

You can then use the loadSSOTokenExchange method on the Authorization object to
load the stored token. If a token can’t be retrieved from the secure store, the method
returns false.

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

try {
 mAuthorization =
MobileManager.getManager().getMobileBackend(this).getAuthorization();
 if (!mAuthorization.loadSSOTokenExchange(mCtx)) {
 //user not logged in, so need to initiate login
 mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);
 }

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token and re-authenticate.

mAuthorization.clearSSOTokenExchange(mCtx);
mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

First you initialize the authorization agent and set the authentication type to
BASIC_AUTH:

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.BASIC_AUTH)

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();

Chapter 2
Calling Mobile APIs

2-10

String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token", exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }
 }
 }

Facebook

For Facebook login, you use classes in the oracle_mobile_android_social library.

First you initialize the authorization agent and set the authentication type to Facebook:

SocialAuthorizationAgent mAuthorization;
SocialMobileBackend socialMobileBackend;
try {
 socialMobileBackend =
SocialMobileBackendManager.getManager().getMobileBackend(mCtx);
} catch(ServiceProxyException e){
 e.printStackTrace();
}
mAuthorization = socialMobileBackend.getSocialAuthorization();
mAuthorization.setAuthType(AuthType.FACEBOOK);

Using a CallbackManager object from Facebook’s SDK, initiate authentication.

private CallbackManager callbackManager;
mAuthorization.setup(getApplicationContext(), callback);
callbackManager = mAuthorization.getCallBackManager();
mAuthorization.authenticateSocial(mCtx);

Here’s code you can use for the callback that is passed above:

private FacebookCallback<LoginResult> callback = new
FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {
 Log.e(TAG, "facebook login successful.");
 }
 @Override
 public void onCancel() {

Chapter 2
Calling Mobile APIs

2-11

 }
 @Override
 public void onError(FacebookException e) {
 }
};

Override the onActivityResult() method to use the callback:

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data)
{
 super.onActivityResult(requestCode, resultCode, data);
 callbackManager.onActivityResult(requestCode, resultCode, data);

Calling Platform APIs
Once the mobile backend’s configuration info is loaded into the app, you can make
calls to client SDK classes.

The root object in the Android SDK is MobileManager. The MobileManager object
manages MobileBackend objects.

The MobileBackend object manages connectivity, authentication, and other
transactions between your application and its associated backend, including calls to
platform APIs and any custom APIs you have defined. It manages calls to platform
APIs through instances of ServiceProxy such as Storage and Location.

Here’s an example of how you would use these classes to upload an image using the
Storage API:

try {
 Storage storage =
MobileManager.getManager().getMobileBackend(this).getServiceProxy(Storage.c
lass);
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject imageToUpload = new StorageObject(null, imageBytes,
"image/jpeg");
 StorageObject uploadedImage = imagesCollection.post(imageToUpload);
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

The ServiceProxy instance created there manages calls to the Storage platform API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API.

And here’s how you could retrieve an image using the Storage API:

try {
 Storage storage =
MobileManager.getManager().getMobileBackend(this).getServiceProxy(Storage.c
lass);
 StorageCollection imagesCollection =

Chapter 2
Calling Mobile APIs

2-12

storage.getStorageCollection("FIF_Images");
 StorageObject image = imagesCollection.get("3x4mp1e-st0r4g3-0bj3ct-
k3y");byte[] imageBytes = image.getPayloadBytes();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

Calling Custom APIs
The client SDK provides the CustomHttpResponse class, the
GenericCustomCodeClientCallBack interface, and the invokeCustomCodeJSONRequest
method in the authorization classes to simplify the calling of custom APIs in OMCe.
You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where
the request payload is JSON or empty and the response payload is JSON or empty.

You use GenericCustomCodeClientCallBack to create a handler for the response
(which is returned in the form of a CustomHttpResponse object.)

Then, to call the custom API, you call
invokeCustomCodeJSONRequest(GenericCustomCodeClientCallBack
restClientCallback, JSONObject data, String functionName,
RestClient.HttpMethod httpMethod) on your Authorization object.

To make a call to a custom API endpoint, you could use something like this:

import org.json.JSONObject;
import oracle.cloud.mobile.customcode.CustomHttpResponse;
import oracle.cloud.mobile.customcode.GenericCustomCodeClientCallBack;
import oracle.cloud.mobile.mobilebackend.MobileManager;
.......

final GenericCustomCodeClientCallBack genericCustomCodeClientCallBack =
new GenericCustomCodeClientCallBack() {
 @Override
 public void requestCompleted(CustomHttpResponse response, JSONObject
data, Exception e) {
 boolean getResponse = (response.getHttpStatus() >=200 &&
response.getHttpStatus() <300);

 // write any logic based on above response
 }
};
AuthorizationAgent authorization =
MobileManager.getManager().getMobileBackend(this).getAuthorization();

authorization.authenticate(mActivity, "user1", "pass1", successCallback);

........
// after the user successfully authenticates, make a call to the custom
API endpoint
authorization.invokeCustomCodeJSONRequest(genericCustomCodeClientCallBack,
null, "TaskApi/tasks", RestClient.HttpMethod.GET);

Chapter 2
Calling Mobile APIs

2-13

Libraries and Dependencies
Libraries

The following SDK libraries (JAR files) are included in the Android client SDK:

• omce-android-sdk-shared-<version-number>.jar - The base library for the SDK,
including functionality required by the other libraries as well as utility classes for
accessing and authenticating with mobile backends.

• IDMMobileSDK.jar - The identity management library used by all applications.

• omce-android-sdk-location-<version-number> - The Location library, which lets
you access details about location devices that have been registered in OMCe and
the places and assets they are associated with.

• omce-android-sdk-notifications-<version-number>.jar - The Notifications
library, which lets you set up your application to receive notifications sent from
your mobile backend.

• omce-android-sdk-social-<version-number> - The Social Login library, which
allows you to set up your app to use Facebook login.

• omce-android-sdk-storage-<version-number>.jar - The Storage library, which
lets you write code to access storage collections that are set up with your mobile
backend.

• omce-android-sdk-sync-<version-number> - The Sync Client library, which
allows you to cache application data when the device running your app is
disconnected from the network, then sync up the data when the network
connection is reestablished.

Dependencies

The SDK is modular, so you can package just the libraries that your app needs. Just
be aware of the following dependencies:

• Every Android application developed for OMCe must have the shared (oracle-
mobile_android_shared-<version-number>.jar) and IDMMobileSDK.jar libraries.

• If the Storage library is installed, the Sync Client library must also be installed.

Next Steps
Once you have the Android SDK set up, you can start using it to add OMCe features
to your app.

• Authentication in OMCe

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

Chapter 2
Libraries and Dependencies

2-14

• App Policies

Chapter 2
Next Steps

2-15

3
iOS Applications

If you are an iOS app developer, you can use the client SDK that Oracle Mobile Cloud
Enterprise (OMCe) provides for iOS. This SDK simplifies authentication with OMCe
and provides Objective-C wrapper classes for OMCe platform APIs.

Getting the SDK
To get the OMCe client SDK for iOS, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend
You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Adding the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the iOS client SDK to an app.

1. Unzip the download file, omce-ios-sdk-{n}.zip (where {n} is the version number
of the SDK) into some directory on your machine.

2. From the extracted contents of the zip, drag and drop the oracle_mobile_ios_sdk
directory to the Xcode project navigator.

• Select Copy items if needed.

• Select Create Groups.

• Click Finish.

Once the .a file for a specific library has been copied into your application’s
development tree in Xcode, the corresponding platform API is available to your
app through SDK calls. At this point, all of the SDK’s static libraries are available to
your app.

3. Select the target for your project, select the Build Phases tab, expand Link
Binary with Libraries, click the + button, and add the following libraries:

3-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

• CoreData.framework

• CoreLocation.framework

• libsqlite3.0.tbd

• Security.framework

• SystemConfiguration.framework

4. In the Build Settings section for the project, double-click Other Linker Flags
(under Linking) and add -ObjC.

5. Also in Build Settings, expand Search Paths and:

a. Add oracle_mobile_ios_sdk/release-iphoneos to Library Search Paths.

b. Add oracle_mobile_ios_sdk/release-iphoneos/include to User Header
Search Paths.

6. Expand the Documentation folder of the unpacked zip, copy the OMC.plist file,
and place it in the root of your app’s main application bundle.

7. Edit the just-copied OMC.plist file. See Configuring SDK Properties.

8. Starting with Xcode 7, you need to account for the Application Transport Security
(ATS) policy, which enforces remote communications to be over HTTPS.

For development purposes only, add the following key in app’s Info.plist file to
turn off the ATS policy for the app.

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

Note:

You shouldn't use this setting in production. To make sure you provide
optimal security for your app, study Apple's documentation for
NSAppTransportSecurity and follow Apple's recommendations for
disabling ATS for specific domains and applying proper security
reductions for those domains.

Configuring SDK Properties
To use the client SDK in an iOS app, you need to add the OMC.plist configuration file
to the app and fill it in with environment details for your backend in OMCe, as well as
other configuration information. In turn, the SDK classes use this information to help
manage authorization, logging, event tracking, data synchronization, and other
features.

You package the configuration file in the root of your app’s main bundle.

The file is essentially divided into the following parts:

• The mobileBackend key and its contents.

Chapter 3
Configuring SDK Properties

3-2

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Keys that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of
the file.

Here’s the same file in text form:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd"
<plist version="1.0">
<dict>
 <key>logLevel</key>
 <string>debug</string>
 <key>logHTTP</key>
 <true/>
 <key>oAuthTokenEndPoint</key>
 <string>https://MY_TOKEN_ENDPOINT</string>
 <key>mobileBackend</key>
 <dict>
 <key>name</key>
 <string>EasyShoppingMBE</string>
 <key>baseURL</key>
 <string>https://MY_CLOUD_DOMAIN.oracle.com</string>
 <key>authentication</key>
 <dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 <key>enableOffline</key>
 <true/>
 </dict>
 </dict>
 </dict>
</dict>
</plist>

And here is a description of some of the more important entries in the OMC.plist file.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is error. Other possible values (in increasing level of detail) are
warning, info, and debug. It is also possible to set the value to none.

Chapter 3
Configuring SDK Properties

3-3

• logHTTP — When set to true, the SDK logs the headers and bodies of all HTTP
requests and responses.

• mobileBackend — A dictionary entry containing authentication details for your
backend and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains a dictionary with the following
elements:

– The type sub-key, with possible (string) values of oauth, basic, facebook,
and tokenExchange.

– One or more sub-keys for authentication types, containing a dictionary with the
authentication credentials.

Within sub-keys for basic and oauth, you can also add the enableOffline
key. By default, this property is set to true.

See Authentication Properties for examples of each authentication type.

Authentication Properties
The contents and sub-elements of the mobileBackend/authentication key depend on
what kind of authentication the app will be using.

OAuth
• Set the value of the type key to oauth.

• Create an oauth sub-key and fill in the clientID and clientSecret credentials
provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied
but without the oauth2/v1/token that is appended on the backend’s Settings
page.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-key and set it to false.

The resulting authorization property might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>oauth</string>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>11dac238ffaa4b029e78e982114642ab</string>
 <key>clientSecret</key>
 <string>5624cbdd-a7c5-4c10-a758-6019a5ab8da8</string>
 </dict>

Chapter 3
Configuring SDK Properties

3-4

 <key>basic</key>
</dict>

HTTP Basic
• Set the value of the type key to basic.

• Create a basic sub-key and fill in the HTTP Basic credentials (mobileBackendID
and anonymousKey) provided by the backend.

• Optionally, if you want to disable offline authentication, add the enableOffline
sub-key and set it to false.

The resulting authentication entry might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>basic</string>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>a8c6a34f-61bb-4bee-948c-d43dd2c077d7</string>
 <key>anonymousKey</key>
 <string>dXNlcmlkOnBhc3N3b3Jk</string>
 </dict>
</dict>

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type key to tokenExchange.

• Create a tokenExchange sub-key and fill in the OAuth Consumer credentials
provided by the backend.

The resulting authentication section might look something like this:

<key>authentication</key>
<dict>
 <key>type</key>
 <string>tokenExchange</string>
 <key>tokenExchange</key>
 <dict>
 <key>oauth</key>
 <dict>
 <key>clientID</key>
 <string>b39ba08d30d54e24970332fcdffec3a7</string>
 <key>clientSecret</key>
 <string>23953fe8-76ed-4c89-a5cb-6042db10cfaf</string>
 </dict>
 <key>basic</key>
 <dict>
 <key>mobileBackendID</key>
 <string>8d3744b8-cab2-479c-998b-ebba2c31560f</string>

Chapter 3
Configuring SDK Properties

3-5

 <key>anonymousKey</key>
 <string>ZFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</string>
 </dict>
 </dict>
</dict>

Calling Mobile APIs
In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your iOS app:

1. Add the client SDK to your app.

2. Fill in the OMC.plist with environment and authentication details for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration
For any calls to OMCe APIs using the iOS client SDK to successfully complete, you
need to have the mobile backend’s configuration loaded from the app’s OMC.plist file.
You do this using the OMCMobileBackend class:

/**
 * Returns the mobile backend that is configured in OMC.plist file
 */
OMCMobileBackend* mbe = [[OMCMobileManager sharedManager] mobileBackend];

Authenticating and Logging In
Here is some sample code that you can use for authentication through OMCe in your
iOS apps. Each sample is based on the OMCAuthorization.h class and relies on the
following imports:

#import "OMCCore/OMCAuthorization.h"
#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCMobileManager.h"

OAuth Consumer and HTTP Basic

You can use the following method to handle a user logging in with a user name and
password:

- (void) authenticate:(NSString *)userName
 password:(NSString *)password
 completionBlock: (nullable OMCErrorCompletionBlock) completionBlock;

Chapter 3
Calling Mobile APIs

3-6

This method terminates the connection to OMCe and clears the user name and
password from the iOS keychain:

-(void) logout: (nullable OMCErrorCompletionBlock) completionBlock;

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Once you have the token, use it to authenticate. The code in this example checks to
seeif the token is already stored in OMCe before logging in again:

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Note:

The default expiration time for storing a third-party token in OMCe is 6 hours.
You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy. See Modifying Policies in
Administering Oracle Mobile Cloud, Enterprise.

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the authenticateSSOTokenExchange method, if storeAccessToken is set to YES, the
token is stored in secure store and the user remains logged in until the token expires.

You can use the loadSSOTokenExchange() method in the app launch sequence to load
the token from the keychain. (If a token can’t be retrieved, the method returns NO).

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

OMCAuthorization* auth;
if ([auth loadSSOTokenExchange]){
 NSLog(@"## Token already found, login skipped.");
 ...
}
else{
 [auth authenticateSSOTokenExchange:thirdPartyToken
 storeAccessToken:YES
 completionBlock:^(NSError * _Nullable error) {

 if(error){
 //Show error popup

Chapter 3
Calling Mobile APIs

3-7

 }
 else{
 // Login success.
 ...
 }
 }];
}

When you have the token stored in the secure store, it remains associated with the
backend that the app originally used. Therefore, if the app is updated to use a different
mobile backend (or mobile backend version), you need to clear the saved token (using
clearSSOTokenExchange) and re-authenticate.

Calling Platform APIs
Once the backend’s configuration info is loaded into the app, you can make calls to
client SDK classes based on the iOS Core library classes.

The iOS Core library (libOMCCore.a) provides the following key interfaces:

• OMCMobileManager

• OMCMobileBackend (a sub-class of OMCMobileComponent)

• OMCServiceProxy

The root object in the SDK is the OMCMobileManager. The OMCMobileManager manages
the OMCMobileBackend objects.

The OMCMobileBackend object is used to manage connectivity, authentication, and
other transactions between your application and its associated mobile backend,
including calls to platform APIs and any custom APIs you have defined. It manages
calls to platform APIs via subclasses of OMCServiceProxy such as OMCLocation and
OMCStorage.

Here’s an example of using SDK classes to call the Storage API:

#import "OMCMobileBackend.h"
#import "OMCMobileManager.h"
#import "OMCAuthorization.h"
#import "OMCStorage.h"
#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCSynchronization.h"

- (NSData*)dataFromStorageObjectWithID:(NSString*)objectID collectionID:
(NSString*)collectionID {

 // Get mobile backend
 OMCMobileBackend* mbe = [[OMCMobileManager sharedManager] mobileBackend];

 // Get storage object
 OMCStorage* storage = [mbe storage];

 // Get your collection
 OMCStorageCollection* collection = [storage getCollection:collectionID];

Chapter 3
Calling Mobile APIs

3-8

 // Get your object from your collection
 OMCStorageObject* object = [collection get:objectID];

 // Get the data from payload of your object
 NSData* data = [object getPayloadData];

 return data; }

}

Note:

Methods written in Objective-C that are used in the OMCe SDK for iOS can
also be mapped to Swift. For more information, see Writing Swift
Applications Using the iOS Client SDK.

Calling Custom APIs
The client SDK provides the OMCCustomCodeClient class to simplify the calling of
custom APIs in OMCe.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the request
invocation is complete (meaning that the handler runs asynchronously).

If the completion handler is set, it will be invoked in the UI (main) thread upon
completion of the method invocation, allowing update of UI items. The completion
block will contain the format-specific data for a JSON object, namely an NSDictionary
or NSArray. Use the completion block for any returned data or errors, HTTP or system.

All of the required OMCe headers, such as Authorization (assuming the user has
authenticated), will automatically be inserted into the request.

Use of OMCCustomCodeClient might look something like this:

#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCCustomCodeClient.h"
...

// A GET, PUT, POST, or DELETE method may be specified here - sent or
returned JSON data object may be nil as appropriate.
OMCMobileBackend *backend = [[OMCMobileManager sharedManager]
mobileBackend];
OMCCustomCodeClient *ccClient = backend.customCodeClient;
NSDictionary *jsonPayload = @{@"myKey": @"myValue"};
[ccClient invokeCustomRequest: @"API2/endpoint2"
 method: "@PUT"
 data: jsonPayload,
 completion: ^(NSError* error,
 NSHTTPURLResponse *response,

Chapter 3
Calling Mobile APIs

3-9

 id responseData) {
 // error will be nil if no problems occurred, otherwise it will
contain the error object
 // response will be complete HTTP response
 // response data will be Map or Array for JSON object if success
or nil if error
 }];

Libraries and Dependencies
Libraries

The iOS client SDK contains the following items:

• Documentation - Contains web-browser based documentation (html.zip) and a
docset for browsing and accessing context-sensitive help from Xcode
(oracle.mobile.cloud.Oracle-Mobile-Cloud-Enterprise-iOS-SDK.docset.zip).
To use html.zip, unzip the file and browse the main page from index.html. To
use the docset, unzip the file into the usual location for Xcode docsets, typically
something like ~/Library/Developer/Shared/Documentation/DocSets, where ~ is
your home directory.

This folder also contains a sample copy of the OMC.plist file that you’ll need to
add to your app and populate with the configuration details for your mobile
backend.

• oracle_mobile_ios_sdk/release-iphoneos - Release versions of the static
libraries and header files. Also contains SyncStore initialization data. The static
libraries are Universal (fat) binaries that contain armv7* code and support both the
iPhone Simulator and real devices. The following static libraries are included:

– libOMCCore.a - The Core static library file shared by all iOS applications.
Contains the common libraries required by all other libraries.

– libOMCAnalytics.a - The Analytics library, which lets you insert custom
events into your code that can then be collected and analyzed from the
Analytics console. This library has been deprecated.

– libOMCLocation.a - The Location library, which lets you access details about
location devices that have been registered in OMCe and the places and
assets they are associated with.

– libOMCNotifications.a - The Notifications static library file, which allows you
to set up your application to receive notifications sent from your mobile
backend.

– libOMCStorage.a - The Storage static library file, which allows you to write
code to access storage collections that are set up with your mobile backend.

– libOMCSynchronization.a - The Data Offline static library file, which allows
you to cache application data when the device running your app is
disconnected from the network, then synchronize the data when the network
connection is reestablished.

Dependencies

The client SDK is modular, so you can package just the libraries that your app needs.
Just be aware of the following dependencies:

Chapter 3
Libraries and Dependencies

3-10

• Every app must have the libOMCCore.a static library file.

• If your app uses libOMCStorage.a, you must also include
lilbOMCSynchronization.a.

• If your app uses lilbOMCSynchronization.a, you must also include the
SyncStore.momd folder, which contains initialization data.

Next Steps
Once you have the iOS SDK set up, you can start using it to add OMCe features to
your app.

• Authentication in OMCe

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 3
Next Steps

3-11

4
Cordova Applications

If you develop hybrid apps based on the Apache Cordova framework, you can use the
client SDK that Oracle Mobile Cloud Enterprise (OMCe) provides for Cordova. This
SDK simplifies authentication with OMCe and provides Cordova wrapper classes for
OMCe platform APIs as well as libraries for Data Offline and Sync and Sync Express.

If you are new to Cordova itself and still need to set it up on your system, you can
follow the Getting Started with JET Hybrid Apps tutorial for an end-to-end look at
creating a Cordova app and connecting it with a mobile backend.

Note:

This SDK supports Cordova apps for the iOS and Android platforms. Apps
for Microsoft Windows are not supported.

Getting the SDK
To get the OMCe client SDK for Cordova, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend
You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Adding the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the Cordova client SDK to an app:

1. If you haven’t already done so, unzip the Cordova SDK zip.

2. Copy mcs.js (and/or mcs.min.js), and oracle_mobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fill in your backend details in oracle_mobile_cloud_config.js.

4-1

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:16851,1
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

4. Add script tags for the SDK and the configuration file in your app’s index.html file:

<script src="lib/mcs/mcs.js"</script>
<script src="app/oracle_mobile_cloud_config.js"</script>

5. If you will be using notifications in your apps, install the oracle-mcs-
notifications-cordova-plugin plugin:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

6. (Optional) For RequireJS environments, load mcs.js in your app using RequireJS.

Note:

If your app uses Sync Express, mcs.sync.min.js must be fetched and
executed as the first script in the main page of your app, before any
other script. For detailed instructions on adding Sync Express to your
app, see Building Apps that Work Offline Using Sync Express.

Adding Support for Push Notifications
If you want to use push notifications in an app, these additional steps are required.

1. (For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

2. (For Android) Download the generated Firebase configuration file and put it in the
root of your project.

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

5. Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

6. In your app code, register for notifications:

...
document.addEventListener("deviceready", handleDeviceReady, false);

Chapter 4
Adding the SDK

4-2

https://firebase.google.com/docs/cloud-messaging/android/client

...
function handleDeviceReady(){
 MCSNotificationsCordovaPlugin.onTokenRefresh(handleTokenRefresh,
handleError);
}
...
function handleTokenRefresh(token){
 console.log('NotificationsService Token refreshed', token);
 mcs.mobileBackend.notifications.registerForNotifications(token,
packageName, appVersion, 'FCM')
 .then(handleRegisterForNotifications)
 .catch(handleError);
}

function handleRegisterForNotifications(response){
 console.log('NotificationsService, device registered for
notifications');
}
function handleError(error){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
function handleDeviceReady(){

MCSNotificationsCordovaPlugin.onMessageReceived(handleMessageReceived,
handleError);
}
...
function handleMessageReceived(data){
 console.log('NotificationsService Message received', data);
}

function handleError(error){
 console.error('NotificationsService Error', error);
}

Configuring SDK Properties
To use the client SDK in a Cordova app, add the oracle_mobile_cloud_config.js
configuration file to the app and fill it in with environment details for your backend in
OMCe. In turn, the SDK classes use this information to construct HTTP headers for
REST calls made to OMCe.

Note:

If any of your apps will be browser-based, you need to manage cross-origin
resource sharing (CORS) for access to OMCe APIs. See Securing Browser-
Based Apps Against Cross-Site Request Forgery Attacks.

Chapter 4
Configuring SDK Properties

4-3

Package the configuration file in the same folder as the mcs.min.js file.

The file is essentially divided into the following parts:

• Properties that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of
the file.

• The mobileBackend property and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.NONE,
 "logHTTP": true,
 "oAuthTokenEndPoint": "OAUTH_BASE_URL",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 },
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/firstApi/tasks/:id(\\d+)?',
 },
 {
 "path": '/mobile/custom/secondApi/tasks/:id(\\d+)?',
 }
]
 }
};

Here are some notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is mcs.LOG_LEVEL.INFO (only important events are logged).
Other possible values are mcs.LOG_LEVEL.NONE, mcs.LOG_LEVEL.ERROR (only errors
are logged) or mcs.LOG_LEVEL.VERBOSE.

Chapter 4
Configuring SDK Properties

4-4

• enableLogger — When set to true, logging is included in your app.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in
requests and responses.

• mobileBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of
mcs.AUTHENTICATION_TYPES.oauth, basic, facebook, or token.

– One or more sub-elements containing authentication credentials.

– (Optional) You can add the offlineEnabled key and set its value to true.

See Authentication Properties for details and examples of each authentication
type.

For details on sync elements, see Building Apps that Work Offline Using Sync
Express.

Authentication Properties
The contents and sub-elements of authentication depend on what kind of
authentication the app will be using.

OAuth
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.oauth.

• At the same level as the type property, create a property called oauth and fill in
the clientID and clientSecret credentials provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied
but without the oauth2/v1/token that is appended on the backend’s Settings
page.

The resulting authentication element might look something like this:

var mcs_config = {
...
 "oAuthTokenEndPoint": "BASE_OAUTH_URL_WITH_oauth2/v1/token_REMOVED",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }

Chapter 4
Configuring SDK Properties

4-5

 }
};

HTTP Basic
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.basic.

• At the same level as the type property, create a property called basic and fill in
the mobileBackendID and anonymousKey that are provided by the backend.

The resulting entries might look something like this:

var mcs_config = {
 ...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.basic,
 "basic": {
 "mobileBackendId": "MOBILE_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type property to mcs.AUTHENTICATION_TYPES.token.

• Fill in the mobileBackendId and anonymousKey that are provided by the backend.

The resulting properties might look something like this:

var mcs_config = {
...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.token,
 "token":{
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Facebook Login
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.facebook.

Chapter 4
Configuring SDK Properties

4-6

• Fill in the HTTP Basic auth credentials and/or the OAuth credentials provided by
the backend.

• Fill in the appID for the Facebook app.

• Fill in the relevant scopes.

The resulting authentication entry might look something like this:

var mcs_config = {

 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.facebook,
 "facebook":{
 "appId": "YOUR_FACEBOOK_APP_ID",
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "YOUR_ANONYMOUS_KEY",
 "scopes":
"public_profile,user_friends,email,user_location,user_birthday"
 }
 }
 }
};

Calling Mobile APIs
In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your Cordova app:

1. Add the client SDK to your app.

2. Fill in the oracle_mobile_cloud_config.js with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration
Before you can make calls to OMCe APIs using the Cordova client SDK, you need to
load the configuration for the backend you are going to use. In the following snippet,
mcs_config is the name of the configuration that is defined in the
oracle_mobile_cloud_config.js file that you have added to your app.

mcs.init(mcs_config);

Chapter 4
Calling Mobile APIs

4-7

Authenticating and Logging In
Here are some examples of using the Cordova client SDK’s Authorization class.
These examples assume you already configured the SDK config file for the type of
authentication you’re using, as described in Configuring SDK Properties.

OAuth and HTTP Basic

Set the authentication type for the backend to oauth (or basic):

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.oauth);

Then add a function that calls Authorization.authenticate on the backend, passes it
a user name and specifies callbacks for success and failure:

mcs.mobileBackend.authorization.authenticate(username,
password).then(callback).catch(errorCallback);

If you want to use anonymous authentication, the method to call is
authenticateAnonymous:

mcs.mobileBackend.authorization.authenticateAnonymous().then(callback).catc
h(errorCallback);

SSO with a Third-Party Token

To use SSO with a third-party token, your app first needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in OMCe,
see Third-Party SAML and JWT Tokens.

Set the authentication type for the backend to token and then pass the token in the
authorization call:

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Facebook

Set the authentication type for the backend to facebook and then call authenticate():

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.facebook);
mcs.mobileBackend.authorization.authenticate().then(callback).catch(errorCa
llback);

Chapter 4
Calling Mobile APIs

4-8

Securing Browser-Based Apps Against Cross-Site Request Forgery
Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to OMCe APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_AllowOrigin environment to
either disallow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to OMCe APIs.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Calling Platform APIs
Once you include the Cordova client SDK libraries in your application, and adjust
configuration settings, you’re ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

mcs.mobileBackend.storage.getCollection(<collection id>)
.then(function(collection){
 return collection.getObject(<object id>, ‘blob’);
})
.then(function(object){
 console.log(object);
})
.catch(function(response){
 console.error(response);
})

Calling Custom APIs
The Cordova client SDK provides the CustomCode class to simplify the calling of
custom APIs. You can call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs.mobileBackend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/
100" , "GET" , null).then(function(response){
 //The response parameter returns the status code and HTTP payload from
the HTTP REST Call.
 console.log(response);

Chapter 4
Calling Mobile APIs

4-9

 // Example: { statusCode: 200, data: {} }
 //Depends on the response format defined in the API.
 }).catch(function(response){
 //The response parameter returns the status code and HTTP payload, if
available, or an error message, from the HTTP REST Call.
 console.log(response);
 /*
 Example:
 { statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API cordovaJSApi2 in Mobile Backend
CordovaJSBackend(1.0). Check that this Mobile Backend is associated with
the API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/cordovaJSApi2/
tasks" } }
 */
 //Depends on the response format defined in the API.
 });

Using TypeScript
It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the Ionic framework (though you can also use
TypeScript without it).

Setting Up the SDK

1. Install the SDK in your project by running this command in your project folder:

npm install {path to unzipped SDK location}

2. Add import statements to your service to import SDK types:

import {IMCS} from 'mcs'

3. Create the configuration file for the app:

import {IMCS,
 IOracleMobileCloudConfig,
 IMobileBackendConfig,
 IAuthenticationConfig,
 IBasicAuthConfig,
 IOAuthConfig,
 import * as mcssdk from 'mcs'
const mcs: IMCS = mcssdk;

export const mcsConfig: IOracleMobileCloudConfig = {

Chapter 4
Using TypeScript

4-10

 logLevel: mcs.LOG_LEVEL.NONE,
 logHTTP: true,
 oAuthTokenEndPoint: 'OAUTH_URL',
 mobileBackend: <IMobileBackendConfig>{
 name: 'NAME',
 baseUrl: 'BASE_URL',
 authentication: <IAuthenticationConfig>{
 type: mcs.AUTHENTICATION_TYPES.basic,
 basic: <IBasicAuthConfig>{
 mobileBackendId: 'MOBILE_BACKEND_ID',
 anonymousKey: 'ANONYMOUS_KEY'
 }
 }
 }
};

4. Import the configuration into the app. If the above file is called mcs-config.ts, the
import would look like :

import { mcsConfig } from "../mcs-config";

Calling Mobile APIs

1. Add these import statements to your service or component:

import {IMCS} from 'mcs';
import * as mcssdk from 'mcs'; And in your class add declaration
statement:

2. Add the declaration statement in your class:

export class ComponentClass{
 mcs: IMCS = mcssdk;
}

3. Initialize the SDK library with a configuration:

this.mcs.init(mcsConfig);

4. Call backend functionality:

this.mcs.mobileBackend.setAuthenticationType(this.mcs.AUTHENTICATION_TYP
ES.basic);
this.mcs.mobileBackend.authorization.authenticate(username, password);

Adding Support for Location Services (Ionic Only)

ionic cordova plugin add cordova-plugin-geolocation

Chapter 4
Using TypeScript

4-11

Adding Support for Push Notifications (Ionic only)

1. (For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

2. (For Android) Download the generated Firebase configuration file and put it in the
root of your project.

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

5. Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

6. In your app code, register for notifications:

...
MCSNotificationsCordovaPlugin.onTokenRefresh(this.handleTokenRefresh.bin
d(this), this.handleError.bind(this));
...
handleTokenRefresh(token: string){
 console.log('NotificationsService Token refreshed', token);

this.mcs.mobileBackend.notifications.registerForNotifications(token,
packageName, appVersion, 'FCM')
 .then(this.handleRegisterForNotifications.bind(this))
 .catch(this.handleError.bind(this));
}

handleRegisterForNotifications(response: INetworkResponse){
 console.log('NotificationsService, device registered for
notifications');
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
MCSNotificationsCordovaPlugin.onMessageReceived(this.handleMessageReceiv
ed.bind(this), this.handleError.bind(this));

Chapter 4
Using TypeScript

4-12

https://firebase.google.com/docs/cloud-messaging/android/client

...
handleMessageReceived(data: any){
 console.log('NotificationsService Message received', data);
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

Libraries
The Cordova client SDK includes the following items:

• jsdocs.zip — The compiled documentation for the library.

• loki-cordova-fs-adapter — A plugin used for Sync Express feature for Cordova
to extend amount of available storage.

• mcs.js — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

• mcs.sync.js — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

• mcs.min.js — The compressed version of the SDK. Use this version when you
deploy the completed app.

• mcs.sync.min.js — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

• oracle-mcs-notifications-cordova-plugin — A Cordova plugin that enables
iOS and Android notifications.

• oracle_mobile_cloud_config.js — An OMCe configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

• types — Contains TypeScript definitions for the SDK’s modules and plugins.

Next Steps
Once you have the Cordova SDK set up, you can start using it to add OMCe features
to your app.

• Authentication in OMCe

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 4
Libraries

4-13

5
JavaScript Applications

If you develop JavaScript-based mobile apps, you can use the client SDK that Oracle
Mobile Cloud Enterprise (OMCe) provides for JavaScript. This SDK simplifies
authentication with OMCe and provides JavaScript wrapper classes for OMCe
platform APIs.

This SDK is primarily geared toward browser-based apps but can also be used for
hybrid frameworks. If you develop Cordova-based apps, use the Cordova SDK. See
Cordova Applications.

Getting the SDK
To get the OMCe client SDK for JavaScript, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend
You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Adding the SDK
Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the JavaScript client SDK to an app:

1. If you haven’t already done so, unzip the SDK zip.

2. Copy mcs.min.js (and/or mcs.js) and oracle_mobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fill in your mobile backend details in oracle_mobile_cloud_config.js.

4. Add script tags for the SDK and the configuration file in your app’s index.html file:

<script src="lib/mcs/mcs.js"</script>
<script src="app/oracle_mobile_cloud_config.js"</script>

5. (Optional) For RequireJS environments, load mcs.js in your app using RequireJS.

5-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Note:

In addition to mcs.min.js, if your app uses Sync Express,
mcs.sync.min.js must be fetched and executed as the first script in the
main page of your app, before any other script, including RequireJS. For
detailed instructions on adding Sync Express to your app, see Building
Apps that Work Offline Using Sync Express.

Configuring SDK Properties
To use the client SDK in a JavaScript app, add the oracle_mobile_cloud_config.js
configuration file to the app and fill it in with environment details for your backend in
OMCe. In turn, the SDK classes use this information to construct HTTP headers for
REST calls made to OMCe.

Note:

For browser-based apps, you need to manage cross-origin resource sharing
(CORS) for access to OMCe APIs. See Securing Browser-Based Apps
Against Cross-Site Request Forgery Attacks.

Package the configuration file in the same folder as the mcs.min.js file.

The file is essentially divided into the following parts:

• The mobileBackend property and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

• Properties that apply to the configuration as a whole, such as logLevel and
oAuthTokenEndpoint. These keys generally, but don’t have to, appear at the top of
the file.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.NONE,
 "logHTTP": true,
 "oAuthTokenEndPoint": "OAUTH_URL",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }

Chapter 5
Configuring SDK Properties

5-2

 };
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/firstApi/tasks/:id(\\d+)?',
 },
 {
 "path": '/mobile/custom/secondApi/tasks/:id(\\d+)?',
 }
]
 }
};

Here are some notes on the file’s elements.

• oAuthTokenEndPoint — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form https://host.domain:port).

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is mcs.LOG_LEVEL.INFO (where only important events are
logged). Other possible values are mcs.LOG_LEVEL.ERROR (only errors are logged)
and mcs.LOG_LEVEL.VERBOSE.

• enableLogger — When set to true, logging is included in your app.

• logHTTP — When set to true, the SDK logs the HTTP and HTTPS headers in
requests and responses.

• mobileBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

• mobileBackend/baseUrl — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

• mobileBackend/authentication — Contains the following sub-elements:

– The type sub-element, with possible values of oauth, basic, facebook, and
token.

– One or more sub-elements for authentication types, each containing
authentication credentials.

You can also add the offlineEnabled key and set its value to true.

See Authentication Properties for examples of each authentication type.

For details on sync elements, see Building Apps that Work Offline Using Sync
Express.

Authentication Properties
The contents and sub-elements of authentication depend on what kind of
authentication the app will be using.

Chapter 5
Configuring SDK Properties

5-3

OAuth
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.oauth.

• At the same level as the type property, create a property called oauth and fill in
the clientID and clientSecret credentials provided by the backend.

• At the top level of the file, supply the oAuthTokenEndPoint value that is supplied
but without the oauth2/v1/token that is appended on the backend’s Settings
page.

The resulting authentication element might look something like this:

var mcs_config = {
...
 "oAuthTokenEndPoint": "BASE_OAUTH_URL_WITH_oauth2/v1/token_REMOVED",
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.oauth,
 "oauth": {
 "clientId": "CLIENT_ID",
 "clientSecret": "CLIENT_SECRET"
 }
 }
 }
};

HTTP Basic
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.basic.

• At the same level as the type property, create a property called basic and fill in
the mobileBackendID and anonymousKey that are provided by the backend.

The resulting entries might look something like this:

var mcs_config = {
 ...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.basic,
 "basic": {
 "mobileBackendId": "MOBILE_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Chapter 5
Configuring SDK Properties

5-4

Token Exchange
If you are authenticating using a third-party token, do the following:

• Set the value of the type property to mcs.AUTHENTICATION_TYPES.token.

• Fill in the mobileBackendId and anonymousKey that are provided by the backend.

The resulting properties might look something like this:

var mcs_config = {
...
 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.token,
 "token":{
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "ANONYMOUS_KEY"
 }
 }
 }
};

Facebook Login
• Set the value of the type property to mcs.AUTHENTICATION_TYPES.facebook.

• Fill in the HTTP Basic auth credentials and/or the OAuth credentials provided by
the backend.

• Fill in the appID for the Facebook app.

• Fill in the relevant scopes.

The resulting authentication entry might look something like this:

var mcs_config = {

 "mobileBackend": {
 "name": "NAME",
 "baseUrl": "BASE_URL",
 "authentication": {
 "type": mcs.AUTHENTICATION_TYPES.facebook,
 "facebook":{
 "appId": "YOUR_FACEBOOK_APP_ID",
 "mobileBackendId": "YOUR_BACKEND_ID",
 "anonymousKey": "YOUR_ANONYMOUS_KEY",
 "scopes":
"public_profile,user_friends,email,user_location,user_birthday"
 }
 }
 }
};

Chapter 5
Configuring SDK Properties

5-5

Calling Mobile APIs
In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your JavaScript app:

1. Add the client SDK to your app.

2. Fill in the oracle_mobile_cloud_config.js with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.

4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration
Before you can make calls to OMCe APIs using the JavaScript client SDK, you need
to load the configuration for the backend you are going to use. In the following snippet,
mcs_config is the name of the configuration that is defined in the
oracle_mobile_cloud_config.js file that you have added to your app.

mcs.init(mcs_config);

Authenticating and Logging In
Here are some examples of how to use the Authorization class of the JavaScript
client SDK in your code. These examples assume you already configured the SDK
config file for the type of authentication you’re using, as described in Configuring SDK
Properties.

OAuth and HTTP Basic

Set the authentication type for the backend to oauth (or basic):

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.oauth);

Then add a function that calls Authorization.authenticate on the backend, passes it
a user name and password, and specifies callbacks for success and failure:

mcs.mobileBackend.authorization.authenticate(username,
password).then(callback).catch(errorCallback);

If you want to use anonymous authentication, the method to call is
authenticateAnonymous:

mcs.mobileBackend.authorization.authenticateAnonymous().then(callback).catc
h(errorCallback);

Chapter 5
Calling Mobile APIs

5-6

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Set the authentication type for the backend to token and then pass the token in the
authorization call:

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Facebook

Set the authentication type for the backend to facebook and then call authenticate():

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.facebook);
mcs.mobileBackend.authorization.authenticate().then(callback).catch(errorCa
llback);

Securing Browser-Based Apps Against Cross-Site Request Forgery
Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to OMCe APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_AllowOrigin environment to
either disallow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to OMCe APIs.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Calling Platform APIs
Once you include the client SDK libraries in your application, and adjust configuration
settings, you’re ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

mcs.mobileBackend.storage.getCollection(<collection id>)
.then(function(collection){
 return collection.getObject(<object id>, ‘blob’);

Chapter 5
Calling Mobile APIs

5-7

})
.then(function(object){
 console.log(object);
})
.catch(function(response){
 console.error(response);
})

Calling Custom APIs
The JavaScript client SDK provides the CustomCode class to simplify the calling of
custom APIs. You can call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs.mobileBackend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/
100" , "GET" , null).then(function(response){
 //The response parameter returns the status code and HTTP payload from
the HTTP REST Call.
 console.log(response);
 // Example: { statusCode: 200, data: {} }
 //Depends on the response format defined in the API.
 }).catch(function(response){
 //The response parameter returns the status code and HTTP payload, if
available, or an error message, from the HTTP REST Call.
 console.log(response);
 /*
 Example:
 { statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API cordovaJSApi2 in Mobile Backend
CordovaJSBackend(1.0). Check that this Mobile Backend is associated with
the API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/cordovaJSApi2/
tasks" } }
 */
 //Depends on the response format defined in the API.
 });

Using TypeScript
It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the Ionic framework (though you can also use
TypeScript without it).

Chapter 5
Using TypeScript

5-8

Setting Up the SDK

1. Install the SDK in your project by running this command in your project folder:

npm install {path to unzipped SDK location}

2. Add import statements to your service to import SDK types:

import {IMCS} from 'mcs'

3. Create the configuration file for the app:

import {IMCS,
 IOracleMobileCloudConfig,
 IMobileBackendConfig,
 IAuthenticationConfig,
 IBasicAuthConfig,
 IOAuthConfig,
 import * as mcssdk from 'mcs'
const mcs: IMCS = mcssdk;

export const mcsConfig: IOracleMobileCloudConfig = {
 logLevel: mcs.LOG_LEVEL.NONE,
 logHTTP: true,
 oAuthTokenEndPoint: 'OAUTH_URL',
 mobileBackend: <IMobileBackendConfig>{
 name: 'NAME',
 baseUrl: 'BASE_URL',
 authentication: <IAuthenticationConfig>{
 type: mcs.AUTHENTICATION_TYPES.basic,
 basic: <IBasicAuthConfig>{
 mobileBackendId: 'MOBILE_BACKEND_ID',
 anonymousKey: 'ANONYMOUS_KEY'
 }
 }
 }
};

4. Import the configuration into the app. If the above file is called mcs-config.ts, the
import would look like :

import { mcsConfig } from "../mcs-config";

Calling Mobile APIs

1. Add these import statements to your service or component:

import {IMCS} from 'mcs';
import * as mcssdk from 'mcs'; And in your class add declaration
statement:

Chapter 5
Using TypeScript

5-9

2. Add the declaration statement in your class:

export class ComponentClass{
 mcs: IMCS = mcssdk;
}

3. Initialize the SDK library with a configuration:

this.mcs.init(mcsConfig);

4. Call backend functionality:

this.mcs.mobileBackend.setAuthenticationType(this.mcs.AUTHENTICATION_TYP
ES.basic);
this.mcs.mobileBackend.authorization.authenticate(username, password);

Adding Support for Location Services (Ionic Only)

ionic cordova plugin add cordova-plugin-geolocation

Adding Support for Push Notifications (Ionic only)

1. (For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

2. (For Android) Download the generated Firebase configuration file and put it in the
root of your project.

3. (For Android) If you haven’t already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH_TO_UNZIPPED_SDK/oracle-mcs-notifications-
cordova-plugin

4. (For iOS) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

5. Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

6. In your app code, register for notifications:

...
MCSNotificationsCordovaPlugin.onTokenRefresh(this.handleTokenRefresh.bin
d(this), this.handleError.bind(this));
...
handleTokenRefresh(token: string){

Chapter 5
Using TypeScript

5-10

https://firebase.google.com/docs/cloud-messaging/android/client

 console.log('NotificationsService Token refreshed', token);

this.mcs.mobileBackend.notifications.registerForNotifications(token,
packageName, appVersion, 'FCM')
 .then(this.handleRegisterForNotifications.bind(this))
 .catch(this.handleError.bind(this));
}

handleRegisterForNotifications(response: INetworkResponse){
 console.log('NotificationsService, device registered for
notifications');
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

7. In your app code, subscribe to notifications events:

...
MCSNotificationsCordovaPlugin.onMessageReceived(this.handleMessageReceiv
ed.bind(this), this.handleError.bind(this));
...
handleMessageReceived(data: any){
 console.log('NotificationsService Message received', data);
}
handleError(error: any){
 console.error('NotificationsService Error', error);
}

Libraries
The JavaScript client SDK contains the following items:

• jsdocs.zip — The compiled documentation for the library.

• mcs.js — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

• mcs.sync.js — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

• mcs.min.js — The compressed version of the SDK. Use this version when you
deploy the completed app.

• mcs.sync.min.js — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

• oracle_mobile_cloud_config.js — An OMCe configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

• types — Contains TypeScript definitions for the SDK’s modules and plugins.

Chapter 5
Libraries

5-11

Next Steps
Once you have the JavaScript SDK set up, you can start using it to add OMCe
features to your app.

• Authentication in OMCe

• Notifications

• My Profile

• Storage

• Data Offline and Sync

• Location

• Database

• App Policies

Chapter 5
Next Steps

5-12

6
Notifications

Oracle Mobile Cloud Enterprise (OMCe) provides a Notifications API to simplify
sending notifications to devices running your mobile apps. As a mobile app developer,
you can set up your mobile applications for notifications and use the Notifications API
to send notifications. As a service developer, you can add implementation code to your
custom APIs to trigger notifications.

What Can I Do with Notifications?
Notifications can provide the timely awareness of information and events that mobile
users seek. Notifications are short, specific, targeted messages sent to a mobile
application. The purpose of a notification is usually to tell users that there is new
information available. For example, a user who is running a shopping app might get
information about an upcoming sale.

You can send these targeted messages either on demand or on a predefined schedule
to:

• a specific device ID or a collection of device IDs (mostly useful for testing)

• a specific user or a collection of users

• all users and devices associated with a specific mobile backend

• devices or users for a given operating system (iOS, Android or Windows)

Note:

Push notifications should not be used to send critical or emergency
information, because network delays and other issues can make deliveries
untimely. However, for everyday uses like sports scores and upcoming sales,
notifications are great.

Setting Up a Mobile App for Notifications
To make notifications work in your mobile apps, there are several key steps.

1. Install the client SDK for your platform.

2. Get credentials from notification providers to establish your mobile app as a known
item on the network. For detailed instructions, see Getting Network Credentials for
Notifications.

3. Create notifications profiles to hold the credentials, described in Creating a
Notifications Profile.

Next, you need to register an app client and add the notifications profile to it:

6-1

1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for
Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

2. Click to open the side menu and select Mobile Apps > App Profiles.

3. Click Clients.

4. Click New Client.

5. In the New Client dialog:

• Fill in the Client Display Name and Client Name.

These can be whatever names that will help you identify the client. The former
can have spaces and the latter can’t.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

• Select the Platform (iOS, Android, Windows, or Web).

• Fill in the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

• Fill in the fully-qualified app ID. You get this from the platform vendor.

For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

9. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication, described below.

Chapter 6
Setting Up a Mobile App for Notifications

6-2

Now that you have registered the app client in OMCe, you have a few options for
sending notifications to your app, as shown in Sending Notifications to and from Your
App.

Setting Up the Device Handshake for Notifications
To allow notifications to be delivered to your mobile app through the network, every
platform requires some form of “device handshake” to register and establish the
protocol for communication.

Setting Up a Device Handshake for Android (FCM)
This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

For FCM Notifications, an Android app needs to extend FirebaseMessagingService to
define a service for receiving Notifications. By overriding the onMessageReceived
method, you can perform actions based on the incoming message. For more
information on handling notifications in Android, see Receive Messages on Google
FCM Developers.

In your app’s src/main/AndroidManifest.xml file, just before the closing </
application> tag, register for the Notifications service, as shown below.

<application> ...
<service

android:name="oracle.cloud.mobile.fcmnotifications.MCSFirebaseMessagingServ
ice">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>
</application>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <application> entry).

<uses-permission
android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<application>

Chapter 6
Setting Up a Mobile App for Notifications

6-3

https://firebase.google.com/docs/cloud-messaging/android/receive

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the client SDK:

...
import oracle.cloud.mobile.exception.ServiceProxyException;
import oracle.cloud.mobile.fcmnotifications.Notifications;
import oracle.cloud.mobile.mobilebackend.MobileManager;

public class MainActivity extends Activity {
 private Notifications mNotification;

 @Override protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 this.registerNotificationClient();
}
//method that initializes and returns the Notifications client
private void registerNotificationClient(){
try {
 mNotification =
MobileManager.getManager().getMobileBackend(this).getServiceProxy(Notificat
ions.class);
 mNotification.initialize(this);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}
}

Getting a FCM Registration Token

You also need the Sender ID to register your app with FCM to get a registration token.
The registration token is passed to OMCe, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network. Google provides the Instance ID API to handle registration tokens. See Set
Up a Firebase Cloud Messaging Client App on Android on Google Developers.

To set up a callback on successful registration, you could add code like the example
below:

public void onClick(View view) {
 try {
 //Registration process callback
 BroadcastReceiver mRegistrationBroadcastReceiver = new
BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 SharedPreferences sharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(context);
boolean sentToken = sharedPreferences
 .getBoolean(NotificationsConfig.SENT_TOKEN_TO_SERVER,
false);
if (sentToken){

Chapter 6
Setting Up a Mobile App for Notifications

6-4

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

 Logger.debug(TAG, "Token retrieved and sent to server! App can use
FCM");
}else{
 Logger.debug(TAG, "An error occurred while registering the
device");
 }
 }
};
//Call on successful registration
LocalBroadcastManager.getInstance(getApplicationContext()).registerReceive
r(
 mRegistrationBroadcastReceiver,
 new IntentFilter(NotificationsConfig.REGISTRATION_COMPLETE));

//Initialization of notifications service
Notifications notifications =
MobileBackendManager.getManager().getDefaultMobileBackend(getApplicationCon
text()).getServiceProxy(Notifications.class);
boolean result = notifications.initialize(view.getContext());

After you’ve set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.
De-Registering a Device
To de-register a device for notifications, here’s what the code might look like in an
Android app, using the client SDK:

//Initialization of notifications service
Notifications notifications =
MobileManager.getManager().getDefaultMobileBackend(getApplicationContext())
.getServiceProxy(Notifications.class);
boolean result = notifications.deregisterDevice(view.getContext());

Logger.debug(TAG, "unregister " + result);

Setting Up a Device Handshake for iOS
As an iOS developer, to make a device handshake happen you need to add this code
to your Xcode project to get a device token, get a notifications object, and register your
app for notifications:

Note that the registration code should be called each time the app starts.

1. Get a device token from Apple.

if([application
respondsToSelector:@selector(registerUserNotificationSettings:)]){
 //use registerUserNotificationSettings for iOS 8 and later
 UIUserNotificationSettings *settings=[UIUserNotificationSettings
settingsForType:(UIUserNotificationTypeBadge
 |UIUserNotificationTypeSound
 |UIUserNotificationTypeAlert) categories:nil];
 [application registerUserNotificationSettings:settings];
} else {
 //We expect deprecation warnings here - this is for iOS 7.1 or

Chapter 6
Setting Up a Mobile App for Notifications

6-5

before
 [[UIApplication sharedApplication]
registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound |
UIRemoteNotificationTypeAlert)];
}

After calling the above lines of code, the Apple Push Notification Service (APNS)
will call one of the delegate methods based on the success or failure to retrieve
the device token. If successful, one of the following methods is called:
didRegisterUserNotificationSettings: (iOS 8 or later) or
didRegisterForRemoteNotificationsWithDeviceToken: (iOS 7.1). In case of an
error, the didFailToRegisterForRemoteNotificationsWithEffor: method is
called.

2. Get the Notifications SDK object.

(OMCNotifications *) getOMCNotifications{
 OMCAuthorization *auth = [[[OMCMobileManager sharedManager]
mobileBackend] mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>].authorization;
 OMCNotifications* omcNOtifications=nil;
 NSError* err = [auth authenticate:<Username> password:<Password>];
 if (!err){
 omcNotifications = [[[OMCMobileManager sharedManager]
mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>] notifications];
 }
 return omcNotifications;
}

3. Register for notifications using the Notifications SDK object.

-(void) registerForMCSNotifications:(id) sender {
 // Get notifications object from your mobile backend object.
 OMCNotifications* notifications = [mbe notifications];

 // Call the register api and pass your iOS device's device token
data.
 [notifications registerForNotifications:[self getDeviceTokenData]
 onSuccess:^(NSHTTPURLResponse *response) {
 NSLog(@"Device registered successfully.");
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI if-needed.
 }) ;
 } onError:^(NSError *error) {
 NSLog(@"Error registering your device.");
 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI if-needed.
 }) ;
 }];
}

Next, register your mobile app with the associated backend, and enable notifications.
SeeBackends.

Chapter 6
Setting Up a Mobile App for Notifications

6-6

After you’ve registered your app, it can receive notifications from a range of sources.
For details and sample code, see Sending Notifications to and from Your App.

Setting Up a Device Handshake for Windows
This section assumes you have already registered your mobile app with WNS,
described in Windows: WNS Credentials.

For details on requesting a channel URI and constructing the notification payload, see
Windows Push Notification Services (WNS) overview.

Next, register your mobile app with the associated backend, and enable notifications.
For detailed instructions, see the Backends chapter.

After you’ve registered your app, it can receive notifications from a range of sources.
For details, see Sending Notifications to and from Your App.

Sending Notifications to and from Your App
Once you’ve set up and registered your mobile app, you can start sending notifications
and SMS messages.

• Send notifications and cancel scheduled notifications from the UI, which can be
useful for development.

• Use the Notifications API to send notifications to and from apps and devices all
over the place.

You can also check the status of your notifications in the UI or using the Notifications
API. For details, see Troubleshooting Notifications.

Testing Notifications from the UI
OMCe provides a notifications testing UI that allows you to send scheduled
notifications to a defined set of recipients.

1. Click to open the side menu and select Mobile Apps > Backends.

2. On the Backends page, select the backend that includes your mobile app and click
Open.

3. Click Notifications.

4. On the Notifications page, click the Send icon.

5. If your device isn’t registered yet, you can access the Device Registry by clicking
Manage Devices.

To register a device for SMS through the UI, you must have consent management
disabled in the associated notifications profile as described in Creating a
Notifications Profile. If you register a device for SMS through the UI and it fails, it’s
probably a problem with your Syniverse Developer Community setup. Make sure
you completed all the steps described in Syniverse: SMS Credentials.

6. Enter the notification message you want to send in plain text or a JSON payload. If
you enter JSON, it must conform to the notification provider’s requirements. If it is
not valid JSON, it will be sent as a plain text message.

7. Choose when to send the message.

Chapter 6
Sending Notifications to and from Your App

6-7

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

• To send the notification immediately, leave the default Now.

• To schedule the notification for a later date and time, choose Later and select
the date and time for the notification to be sent.

8. Choose who to send the message to.

• To send the notification to everyone in the mobile backend, leave the default
All notifications-enabled mobile apps that use this backend. A single
backend may contain more than one version of a mobile application, with
implementations for different devices and networks. This option sends to all
notification-enabled clients, regardless of the network or device.

• To define a filter by user name, platform type, device ID, Facebook ID, or any
combination, choose Filtered set of recipients. Under Match all of the
following, select the filter type from the dropdown list:

– Device ID: Send a notification to a single device ID or to multiple device
IDs at the same time. The device ID is a unique number assigned to a
mobile device during the device handshake. For SMS, the device ID is a
phone number. In general, sending a notification to a device ID is useful
for testing your application but not practical in bulk.

– Platform: Send to all recipients running on iOS, Android, Windows or
Web.

– Provider: Send to all recipients receiving APNS, FCM, WNS or SMS
notifications.

– User: Send a notification to a single user or to a list of users.

– Facebook Unique ID: Send a notification to a Facebook user, by ID.

If the list of recipients gets too long, click the + button to add another filter and
continue your entries there. Filters can be mixed and matched for additional
selectivity.

9. Click Send.

Once you click Send, you can monitor the status of your notifications in the History
pane. For details, see Troubleshooting Notifications.

Cancelling a Scheduled Notification from the UI
The only notifications that can be cancelled are those that are scheduled for a future
time.

To cancel a scheduled notification, go to the Scheduled tab in the History pane and
click the X in the corner of the entry you want to remove. You will be prompted to
confirm the cancellation.

Sending Notifications Using the Notifications API
You can send notifications to mobile devices from your apps using the Notifications
API. Notifications have a maximum limit of 1,000 devices per call.
You can call Notifications REST API endpoints directly or use custom code in your
mobile app. This section details the REST endpoints. For information on using custom
code including examples and sample code, see Accessing the Notifications API from
Custom Code in the Calling APIs from Custom Code chapter.

Chapter 6
Sending Notifications to and from Your App

6-8

To register a device ID for notifications, you can use the UI or the Notifications Device
Registration API as described in Registering a Device ID.

The /mobile/system/notifications/notifications endpoint allows you to send
notifications, cancel scheduled notifications, and check the status of sent notifications.

Note:

Calls to this endpoint must include these headers:

• Authorization: This header should include the name and password for
a team member with either the Administrator or Developer role.

• Oracle-Mobile-Backend-ID: If you’re using basic authentication, you
must include this header. The mobile backend ID is listed on the Settings
tab for the mobile backend. For OAuth, this information is included in the
access token.

When you send a notification, you can specify any combination of the following for the
payload:

• {"payload":""} A unified payload that includes well-formed JSON for each
supported notification provider (Google, Apple, Windows and Syniverse). For
details, see Sending a Notification Using a Unified Payload.

• {"template":""} A reusable payload template with defined parameters, used to
create payloads for each supported notification provider. The payload template
includes the following optional parameters: title, body, badge, sound and custom.
For details, see Sending a Notification Using a Payload Template.

• {"message":""} A plain-text message string. For details, see Sending a Text
Message Notification.

The unified payload is used if it exists, then the template, then the message, in that
order.

To send notifications to specific recipients, add an argument after the content of the
payload:

• To send to a user or a list of users, add the users argument. A user can be
defined by firstname:lastname or email address. Multiple users are listed as
tokens in an array, and there’s no limit on the number. For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "users":
["bob@acme.com", "sjones@xyz.net", "banana@peelme.com"]}'

• To send to everyone on the same mobile platform, add the platform (IOS,
ANDROID, WINDOWS or WEB). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "platform":
"IOS"}'

Chapter 6
Sending Notifications to and from Your App

6-9

• To send to a specific notification provider, add the provider (APNS, FCM, WNS or
SYNIVERSE). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "provider":
"APNS"}'

• To send to a specific device ID or a list of device IDs, add the
notificationTokens argument. Multiple IDs are listed as tokens in an array, and
there’s no limit on the number. For example:

-d '{"message": "Test of notifications feature.", "notificationTokens":
["2DD2D2-D2DDG44GD-GDGSDFZS3-3-3DFZSDFDS"]}'

To schedule a notification for a future date and time, add the sendOn argument. For
example:

-d '{"message": "Come to our discount sale today!", "sendOn":
"2015-06-15T6:00Z"}'

For further details, including HTTP response status codes and full schemas for the
request and response bodies, see the REST APIs for Oracle Mobile Cloud, Enterprise.

REST

Registering a Device ID
The Notifications Device Registration API lets you register the device ID of your mobile
app, which can then be used as a recipient address for sending notifications. This API
can also associate a user with the device ID, so the user name can also be used as a
target for notifications.

You can register a device ID (notificationToken) directly and send notifications
directly to that ID. You can also use this API to associate any user with the device ID.

The Notifications Device Registration API includes the following endpoints:

• POST /mobile/platform/devices/register

• POST /mobile/platform/devices/deregister

When you register a device, include these parameters:

• The mobileClient parameter identifies the client in the backend with three
properties:

– id: The Application ID assigned by the Google or Apple app store. (This is
different from the "App-Key".)

– version: The version of the mobile client that will receive the notifications,
currently 1.0.

– platform: "IOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

• The notificationProvider parameter defines the service the notificationToken
is used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

• The notificationToken parameter defines the token needed by the notification
service for sending calls. This token uniquely identifies the specific instance of a

Chapter 6
Sending Notifications to and from Your App

6-10

mobile app associated with a specific device, and is used to ensure that
notifications are sent to the correct recipient. Encode in hexadecimal if necessary.

• The optional user parameter associates the device ID with the user name
provided. If the user parameter isn’t included, the device ID is associated with the
user who is logged in during the registration call.

Note:

To specify a different user name, the logged in user must be a team
member with either the Administrator or Developer role. Keep in mind
that registering a user name this way doesn’t validate the entry in the
Device Registry. If this results in duplicate user names, notifications
could be sent to multiple users. It’s up to the app to ensure that user
names are unique if that’s a requirement.

This example registers a device with the device ID MyAppToken:

curl -v
 -H "Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthString="

 -H "Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59"
 -H "Content-Type:application/json"
 -d '{"mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version": "1.0","platform":
"IOS"},"notificationProvider":"APNS","notificationToken":"03767dea-29ac-444
0-b4f6-75a755845ade","user":"JoeSmith"}'
 http://www.fixitfast.com:8080/mobile/platform/devices/register

If the REST operation to register the device is successful, you can expect to get a
response something like this:

Connected to fixitfast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/platform/devices/register/
Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthString=
User-Agent: curl/7.33.0
Host: fixitfast.com:8080
Accept: application/json
Content-Type: application/json
Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59
Content-Length: 32
upload completely sent off: 32 out of 32 bytes
HTTP/1.1 201 Created

The response includes a JSON payload that contains the device ID for the registered
device.

{
 "id": "7cf06198-053e-4311-8186-cae145900d59",

Chapter 6
Sending Notifications to and from Your App

6-11

 "user": "JoeSmith",
 "notificationProvider":"APNS",
 "notificationToken":"03767dea-29ac-4440-b4f6-75a755845ade",
 "mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version": "1.0","platform":
"IOS"},
 "modifiedOn": "2016-05-25T14:58:16.373Z"
}

Sending a Text Message Notification
The example below uses the Notifications REST API to send a simple notification to
everyone in the mobile backend. As noted above, the name and password sent in the
Authorization header must be a team member with the necessary permissions.

curl -X POST
 -H "Authorization: basic bWNzOldlbGNvbWUxKg=="
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -d '{"message": "Hi! Our storewide sale is tomorrow."}'
 http://www.FixItFast.com:8080/mobile/system/notifications/
notifications/

If the notification is sent successfully, the response might look like the example below.
The body will be the JSON for the created notification.

Connected to FixItFast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/system/notifications/notifications/ HTTP/1.1
Authorization: Basic bWNzOldlbGNvbWUxKg==
User-Agent: curl/7.33.0
Host: newclothes.com:8080
Accept: application/json
Content-Type: application/json; charset=UTF-8
Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d
HTTP/1.1 201 Created

You could also get a status code of 400 (bad request) or 401 (unauthorized).

Sending a Notification Using a Unified Payload
A unified payload allows you to specify a different payload for each supported
notification provider using Notifications REST API. One or more of the following can be
defined under the services property:

• The apns payload must conform to APNS requirements.

• The fcm payload can contain arbitrary JSON properties.

• The wns payload property must contain a well-formed WNS payload.

• The syniverse payload property should contain the string to send as a SMS
message.

Chapter 6
Sending Notifications to and from Your App

6-12

Note:

The payload template allows you to send provider-specific payloads without
defining the code. For details, see Sending a Notification Using a Payload
Template.

The following are simple examples that define payloads for FCM. An FCM object can
contain either a notification object or a data object. A notification object has a
predefined set of user-visible keys described in the FCM documentation. A data object
has custom key-value pairs.

Notification object:

{"notificationTokens": ["xxxxx"],"payload": {"services": {"fcm":
{"notification": {"title": "Sale On Now!","body": "50% off until Saturday"
 }
 }
 }
 }
}

Data object:

 "notificationTokens": ["xxxxxx"],"payload": {"services": {"fcm":
{"data": {"acme1": "value1","acme2": "value2"
 }
 }
 }
 }
}

Sending a Notification Using a Payload Template
When you use a payload template with the Notifications REST API, the content you
enter is used to create a driver-specific payload for each supported notification
provider. The default payload template includes the following optional parameters.

Parameter Description Data Type Example

title The alert title. If a title
is specified, the body
parameter is also
required.

string "Sale On Now!"

body The alert body.
If only a body is
specified, the content
is used as the value
for the alert property
in the APNS and FCM
payloads.

string "50% off until
Saturday"

Chapter 6
Sending Notifications to and from Your App

6-13

Parameter Description Data Type Example

badge A number to badge
the notification with.
Android applications
don’t support badging,
so the number is not
passed in the payload.
If there is a
requirement to pass
the "badge" value, it
can be passed as part
of a custom data
payload.

number 43

sound The sound file to play
with the notification.
Only .wav format is
supported by APNS ,
WNS, and FCM.
• For APNS, the file

must be in the
app bundle.

• For WNS, the file
must be in the
app package (the
"ms-appx:///"
prefix is added
automatically).

• For FCM, the file
can be anywhere.

string "alert.wav"

custom Any required custom
data.

object
{
 "acme1":
"value1",
 "acme2":
["value2",
"value3"]
}

The example below shows a notification sent using FCM that includes all five
parameters and the resulting payload. An FCM object can contain either a notification
object or a data object. A notification object has a predefined set of user-visible keys
described in the FCM documentation. A data object has custom key-value pairs.

This specifies the default template:

{
 "template": {
 "name" : "#default",
 "parameters": {
 "title":"this is the title",
 "body":"this is the body",
 "sound":"alert.wav",
 "badge": 5,
 "custom":

Chapter 6
Sending Notifications to and from Your App

6-14

{ "key1": "value1", "key2": "value2", "key3": ["value3.1", "value3.2"] }
}
 },

This payload is delivered in the same way as the following unified payload. As noted
above, Android apps don’t support badging, so your app can use the badge value in
other ways. Note that in this example, value is a string, so the value for key3 is
converted to a string.

FCM driver payload:

"fcm": {
 "notification":
{ "title": "this is the title", "body": "this is the body", "sound":
"alert.wav" }
"data":
{ "key1": "value1", "key2": "value2", "key3": "[\"value3.1\",
\"value3.2\"]" }
}

Cancelling Scheduled Notifications
To cancel a scheduled notification, send DELETE to /mobile/system/notifications/
notifications/{id} with the ID assigned to the notification you want to cancel. For
this example, the notification ID is 113455.

curl -X DELETE
 -H "Authorization: Basic bWNzOldlbGNvbWUxKg=="
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 http://www.fixitfast.com:8080/mobile/system/notifications/
notifications/113455

How Are Notifications Sent and Received?
As a mobile application developer, you configure your mobile app to receive
notifications over the network. Once your mobile app is configured and installed on a
device, it connects to its backend to receive notifications. The steps below summarize
the path that a notification takes.

1. You compose a notification, for example, "Hi! Our storewide sale is tomorrow," and
define a recipient for it. You can send the notification to a specific user or device or
set of users or devices, to everyone in the backend, or to a specific device type
(Android, iOS or Windows). You can send the notification immediately or schedule
it to be sent at a later date and time. When you POST a notification, an ID is
created for the message. You can use this ID to cancel a message if it hasn’t been
sent yet.

2. The notification is addressed to the associated device IDs and distributed to the
appropriate push networks for delivery.

3. The notification is received by the mobile application, and the owner of the device
gets it.

Chapter 6
How Are Notifications Sent and Received?

6-15

The notification service providers and their payload limits are:

• WNS: 5K

• FCM: 4K

• APNS: 4K

• SMS: 1000 bytes

What is the Device ID or Notification Token?
The device ID, also known as the notification token, uniquely identifies the specific
instance of a mobile application associated with a specific device. This ID is used to
ensure that notifications are sent to the correct recipient.

A unique device ID is assigned when a mobile app registers a device during the device
handshake. After that point, the ID can be used to identify that specific recipient.
Multiple instances of the same mobile app on the same device have different device
IDs. The device ID changes periodically, but this is handled internally and is
transparent to the mobile app.

You can look up the device IDs registered with a mobile app in the Device Registry,
from the Notifications page for the associated backend in the UI. To register a specific
device ID to be used as a recipient address for notifications, you can use the REST
API. Keep in mind that sending a notification directly to a device ID is only useful for
testing. There are more efficient ways to send notifications to a specific group of users.
For details and examples, see Sending Notifications to and from Your App.

Troubleshooting Notifications
Sending a notification is an asynchronous process. Once you send a notification, it can
sit for minutes, hours, or maybe even days on an Apple, Google or Microsoft server
before it gets delivered to the mobile device. Even if a notification can’t be delivered,
there might be no error message returned. You have no control over a notification
once it gets sent, but these are some common notification problems:

• A secure certificate is missing, expired, or not located in the right place.

• The network credentials for the device don't match the credentials registered.

• A security identifier used in your code doesn’t match the identifier registered with
Google, Apple or Windows, or match what’s defined in your Android manifest or
iOS Xcode project.

Chapter 6
Troubleshooting Notifications

6-16

• The wrong identifier has been entered into a form. For example, when you register
for notifications in a backend and it asks you for an API Key, you entered the
application key instead.

• An APNS mismatch between production/development flag and certificate, for
example uploading a production certificate but configuring the client saying it's a
development certificate.

• In FCM, the wrong API key or Project Number/Sender ID means the user might
have disabled notifications on their device.

OMCe will automatically unregister the device if a notification is sent to it and the
notification provider reports the device ID as being bad. This can happen in a few
ways:

• The most likely is that the token has expired. A device token lasts between 30 and
90 days depending on the provider. A mobile app should reregister the
notifications token every time the app starts up with both OMCe and the
notifications provider to refresh it.

• The user deleted the app from their device

• The API key or certificate in OMCe has gone bad by either expiring, or a new API
key or certificate was requested from Google/Apple and not uploaded.

• The user has reinstalled/updated their OS and hasn’t run the app since reloading
the OS.

• The token was mangled somehow during registration.

Checking Notification Status in the UI
Check the History pane, accessible from the Notifications page for your mobile
backend, to find out if your notifications were successfully sent.

Scheduled notifications are displayed in the Scheduled tab. To see a list of sent
notifications, click the Sent tab. If you don’t see the notifications you expect, click
Check for Updates.

The status you see in the History pane reflects the success rate of the notifications
that have been sent. You can quickly tell the status of each notification in the History
pane by the color in the left column:

• Green means that more than 70% of individual notifications in the batch were
accepted by the Apple and/or Google networks.

• Yellow means that less than 70% of individual notifications in the batch were
accepted.

• Red means that the batch failed to send successfully. In most cases, there is a
configuration error that needs to be fixed. See Troubleshooting Notifications.

• Blue means a batch of notifications is currently being sent. In most cases, a Blue
indicator appears for only a few moments.

Given the large the number of recipients sent to a popular mobile application, there will
never be 100% success. For example, if a notification is directed to a user that has
recently lost her phone, the Apple or Google network won’t accept the notification for
delivery to the device. The default warning threshold is 70%, but you can change it in
the Notifications_DeviceCountWarningThreshold environment policy.

Chapter 6
Troubleshooting Notifications

6-17

The Device Manager, also accessible from the Notifications page for your mobile
backend, lists all registered devices for the mobile backend with their device IDs/
notification tokens. If you don’t see your device, the network provider might have
specified that the device ID/notification token is invalid and should be deregistered.
Also, if a device hasn’t been reregistered in 60 days, it will be removed from the
registry. You can click Clear Registry to remove all registered devices from a mobile
backend to facilitate troubleshooting.

You can always look at the logs to see if more information about a notification or batch

of notifications is available. Click to open the side menu and select
Administration > Logs. For details on the diagnostics tools available, see
Diagnostics.

Checking Notification Status with the Notifications REST API
You can use the Notifications API to check the status of notifications.

Send GET to mobile/system/notifications/notifications with the ID of the
notification or using the status= query parameter. You can check for any notification
status: New, Scheduled, Sending, Error, Warning, or Sent. (The notification must have
been successfully sent.)

The example below checks for scheduled notifications.

curl -i
-X GET
-u team.user@example.com:Welcome1!
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce"
http://fif.cloud.oracle.com/mobile/system/notifications/notifications/?
status=Scheduled

If the query is successful, the response will be JSON listing the first 1000 notifications
found. You can specify a range using limit and offset parameters, for example,
limit=100&offset=400 would return notifications 400-499.

{
 "items": [
 {
 "id": 1234,
 "tag": "Marketing",
 "message": "This is the alert message.",
 "status": "Sent",
 "notificationTokens": ["APNSdeviceToken"],
 "createdOn": "2014-04-02T12:34:56.789Z",
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "links": [
 {
 "rel": "canonical",

Chapter 6
Troubleshooting Notifications

6-18

 "href": "/notifications/1234"
 },
 {
 "rel": "self",
 "href": "/notifications/1234"
 }
]
 },
 {
 "id": 1235,
 "tag": "System",
 "message": "Update required.",
 "status": "Sent",
 "processedOn": "2014-04-01T12:34:56.789Z",
 "notificationTokens": ["APNSdeviceToken"],
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "createdOn": "2014-04-03T58:24:12.345Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications/1235"
 },
 {
 "rel": "self",
 "href": "/notifications/1235"
 }
]
 }
],
 "hasMore": false
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications?offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/notifications?offset=0&limit=1000"
 }
]
}

Chapter 6
Troubleshooting Notifications

6-19

7
My Profile

As a mobile app developer, you use the My Profile API to access details about the
currently authorized user.

Note:

This API only retrieves user information. To add or update users
programmatically, see REST API for Oracle Identity Cloud Service.

User Types
The information that the API returns depends on what type of user you are inquiring
about. Here are the types of users:

• IDCS users: These users have accounts that are managed by the domain’s
Oracle Identity Cloud Service (IDCS) as described in Mobile Users and Roles.

• Virtual users: These users pass a third-party token for authorization as described
in Enterprise Single Sign-On in OMCe.

• Social users: These users have logged into the app from Facebook, as described
in Facebook Login in OMCe.

Getting User Profile Information
If your app needs user information, such as full names and roles, you can call the User
Profile API to get that information from their profile.

You have two options for getting a user’s profile:

• You can make a direct REST call as described in this topic and detailed in Oracle
Mobile Cloud Enterprise REST API Reference.

• You can call the ums.getMe(httpOptions) method from a custom API
implementation.

To get the currently authorized user’s profile via a direct REST call, send a GET request
to /mobile/platform/users/me. Here’s an example of using cURL to send the
request:

curl -i \
-X GET \
-u joe.doe@example.com:mypass \
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/users/me

The contents of the response body depends on the user type:

7-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/identity-cloud&id=idcsa_restapi
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

• When the user is an IDCS user, the response contains the IDCS user information,
including roles.

• When the user is a virtual user, the response contains the user name and roles.

• When the user is a social user, the response contains the user's mobile ID.

Here’s an example of a response for an IDCS user:

{
 "idcsCreatedBy":{
 "type":"User",
 "display":"admin opc",
 "value":"ABCD6996a13b1641eca66fbf4c75af42",
 "$ref":"https://my.idcs.com:443/admin/v1/Apps/
ABCD6996a13b1641eca66fbf4c75af42"},
 "id":"ABCD5f2a5eb5e1664cbc94fc651a8562",
 "active":true,
 "displayName":"Doe Joe",
 "idcsLastModifiedBy":{
 "value":"ABCD5316fb6146d1bb3b60b75363",
 "display":"idcssso",
 "type":"App",
 "$ref":"https://my.idcs.com:443/admin/v1/Apps/
ABCD5316fb6146d1bb3b60b75363"},
 "userName":"jdoe",
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "isFederatedUser":false,
 "grants":[
 {
 "appId":"c6a3a4174e8a4975b688f43e8aaace18",
 "grantMechanism":"ADMINISTRATOR_TO_USER",
 "value":"273979318ee2482bba40a44142a6c90a",
 "$ref":"https://my.idcs.com:443/admin/v1/Grants/
273979318ee2482bba40a44142a6c90a"}
],
 "appRoles":[
 {
 "value":"ABCD278fbf50244c0ab13f16a117b7da7",
 "adminRole":false,

"legacyGroupName":"ABCD29F71D52E41B49EBD6F895FDA.ServiceBusinessUser",
 "appId":"ABCD220aeebc14937b4b82df71671",
 "appName":"ABCD2F71D52E41B49EBD6F895FDA_APPID",
 "display":"MyMobileAppUser",
 "$ref":"https://my.idcs.com:443/admin/v1/AppRoles/
ABCD278fbf50244c0ab13f16a117b"}
],
 "accounts":[
 {
 "value":"125daaab1e7e47b995232f51516544c6",
 "appId":"c6a3a4174e8a4975b688f43e8aaace18",
 "$ref":"https://my.idcs.com:443/admin/v1/AccountMgmtInfos/
125daaab1e7e47b995232f51516544c6"}
]},
 "emails":[

Chapter 7
Getting User Profile Information

7-2

 {
 "type":"recovery",
 "primary":false,
 "value":"jdoe@example.com",
 "verified":false},
 {
 "type":"work",
 "primary":true,
 "value":"jdoe@example.com",
 "verified":false}
],
 "name":{
 "givenName":"Joe",
 "familyName":"Doe",
 "formatted":"Joe Doe"},
 "schemas":["urn:ietf:params:scim:schemas:core:2.0:User"
]}

Here’s an example of a response for a virtual user:

{
 "userName":"jdoe",
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "appRoles":[
 {
 "display":"FIF_TECHNICIAN"}
]
 }
}

Here’s an example of a response for a social (Facebook) user:

{
 "userName": "1 :623:165"
}

Chapter 7
Getting User Profile Information

7-3

8
Storage

Oracle Mobile Cloud Enterprise provides a Storage API for storing media in the cloud.
As a mobile app developer, you can use this API in your mobile app to store and
retrieve objects, such as files, text, images, and JSON objects.

What Can I Do with Storage?
The Storage API enables your mobile app to store, update, retrieve, and delete media,
such as JSON objects, text files, and images, in collections in your OMCe instance.
The media are stored as opaque objects, which means that each object is stored and
retrieved from the collection by a user- or system-generated GUID (globally unique
ID). You use mobile user roles to control who can read and write the objects in the
collection.

Note that this API isn’t intended to act as a database-as-a-service (DBaaS) solution by
storing business data used by external systems, or to host HTML 5 applications like a
content management system (CMS).

Android

Adding an Object to a Collection

String text = "This is sample text file";
String name = "sampleText.txt";
StorageObject storageObject = new StorageObject(null, text.getBytes(),
"text/plain");
storageObject.setDisplayName(name);

Fetching an Object
This fetches the storage object from a collection and reads its contents in a stream:

int i=0;
for (StorageObject storageObject: storageObjects) {
 i++;
 InputStream payload = storageObject.getPayloadStream();
 int n;
 char[] buffer = new char[1024 * 4];
 InputStreamReader reader = null;
 try {
 reader = new InputStreamReader(payload, "UTF8");
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 StringWriter writer = new StringWriter();

8-1

 assert reader != null;

 try {
 while (-1 != (n = reader.read(buffer))) {
 writer.write(buffer, 0, n);
 }
 }catch (IOException e){
 e.printStackTrace();
 }
 Logger.debug(TAG, "Storage Object "+i+" "+writer.toString());
}

Getting Multiple Objects from a Collection

List<storageObject> storageObjects = null;
try {
 Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageObjects = storageCollection.get(0,10,true);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Getting a Shared Collection
This gets a specific shared collection called sharedCollection:

StorageCollection storageCollection= null;
try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection = storage.getStorageCollection("sharedCollection");
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Retrieving an Object

private Storage mStorage;
private String collectionID = "YOUR_COLLECTION_ID";
private String objectID = "YOUR_OBJECT_ID";

...

try {
 //Initialize and obtain the storage client
 mStorage =
MobileManager.getManager().getDefaultMobileBackend(this).getServiceProxy(St
orage.class);
 //Fetch the collection
 StorageCollection collection =
mStorage.getStorageCollection(collectionID);
 //Fetch the object

Chapter 8
Android

8-2

 StorageObject object = collection.get(objectID);
 //Get the payload
 InputStream payload = object.getPayloadStream();
 //Display the image
 ImageView imageView = (ImageView) findViewById(R.id.imageView);
 imageView.setImageBitmap(BitmapFactory.decodeStream(payload));

} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Updating an Object

StorageObject storageObject = null;
try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
storageObject = storageCollection.get("26651715-9259-4676-a035-
df47ef3e7e79");
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

String text = "This is modified text in a text file";

storageObject.setPayload(text.getBytes(), "text/plain");

try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection.put(storageObject);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Uploading a New Object to a Collection

try {
Storage storage = mobileBackend.getServiceProxy(Storage.class);
 storageCollection.post(storageObject);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

iOS

Adding an Object to a Collection

- (void) uploadData{

 NSString* collection_Id = @"myCollection";
 NSString* payload = @"This is a simple text object";

Chapter 8
iOS

8-3

 NSString* contentType = @"text/plain";

 if (payload == nil || [payload isEqualToString:@""])
 {
 NSLog(@"There is nothing to upload");
 }
 else{

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get collection where you want to upload new data.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create new data from payload (in case your payload is not
already in NSData format)
 NSData* payloadData = [payload
dataUsingEncoding:NSUTF8StringEncoding];
 OMCStorageObject* aObject = [[OMCStorageObject alloc]
setPayloadFromData:payloadData

 withContentType:contentType];

 // Post data.
 [aCollection post:aObject];

 NSLog(@"Upload finished");
 }
}

Deleting an Object

 NSString* collection_Id = @"";
 // Get your collection
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create/Update an object with the same objectID.
 NSString* objectID = @"object2";
 BOOL isDeleteSuccessful = [aCollection deleteWithKey:objectID];

Downloading Data to a Collection
This downloads data from any storage collection where:

collectionID is the id for the target collection.

objectID is the id for the target object.

-(void) downloadData{

 NSString* collection_Id = @"";

Chapter 8
iOS

8-4

 NSString* object_Id = @"";

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get your collection
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Get your object from your collection.
 OMCStorageObject* anObject = [aCollection get:object_Id];

 // Get the data from payload of your object.
 NSData* data = [anObject getPayloadData];
 NSLog(@"Download finished");
}

Getting a User Isolated Collection

NSString* collection_Id = @"";

 NSString* user_Id = @"";

 // Get user isolated collection.
 OMCStorageCollection* aCollection = [storage getCollection:collection_Id
forUserId:user_Id];

Getting Multiple Objects from a Collection

NSString* collection_Id = @"";

 // Get your collection.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 NSUInteger offset = 0; NSUInteger limit = 10;
 NSArray<OMCStorageObject*>* objects = [collection get:offset
withLimit:limit getAllObjects:NO];

Getting Object Data as a Stream

 NSString* collection_Id = @"";

 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 NSString* object_Id = @"";

 OMCStorageObject* anObject = [aCollection get:object_Id];

Chapter 8
iOS

8-5

 NSInputStream* inStream = [anObject getPayloadStream];

Retrieving a Storage Object

- (void) downloadData{

 //Fill in IDs for collection and object.
 NSString* collection_Id = @"";
 NSString* object_Id = @"";

 // Get storage object.
 OMCStorage* storage = [mbe storage];

 // Get your collection.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Get your object from your collection.
 OMCStorageObject* aObject = [aCollection get:object_Id];

 // Get the data from your object's payload.
 NSData* data = [aObject getPayloadData];
 NSLog(@"Download finished");
}

Updating an Object

NSString* collection_Id = @"";

 // Get your collection.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create/Update object with the same objectID.
 NSString* objectID = @"";
 NSData* payload = [@"This is updated object" dataUsingEncoding:
NSUTF8StringEncoding];
 OMCStorageObject* object = [[OMCStorageObject alloc]
initPayload:objectID

withData:payload

andContentType:@"plain/text"];
 OMCStorageObject* returnedObject = [aCollection put:object];

Uploading Data to a Collection

-(void) uploadData{
 NSString* collection_Id = @"";
 NSString* payload = @"";

Chapter 8
iOS

8-6

 NSString* contentType = @"";

 if (payload == nil || [payload isEqualToString:@""])
 {
 NSLog(@"There is nothing to upload");
 }
 else{

 // Get the storage object from your MobileBackend object.
 OMCStorage* storage = [mbe storage];

 // Get the collection where you want to upload new data.
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create new data from payload (in case your payload is not
already in NSData format).
 NSData* payloadData = [payload
dataUsingEncoding:NSUTF8StringEncoding];
 OMCStorageObject* anObject = [[OMCStorageObject alloc]
setPayloadFromData:payloadData

withContentType:contentType];

 // Post data to the collection.
 [aCollection post:anObject];

 NSLog(@"Upload finished");
 }
}

Cordova, JavaScript, and TypeScript

Adding an Object to a Collection

var obj = new mcs.StorageObject(collection);
obj.setDisplayName("XYZ.pdf");
obj.loadPayload("Hello World from Oracle Autonomous Mobile Cloud
Enterprise Cordova SDK", "text/plain");

collection.postObject(obj).then(onSuccess, onFailure);
function onSuccess(collection) {
 console.log(collection);
 return collection;
}

function onFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Chapter 8
Cordova, JavaScript, and TypeScript

8-7

Deleting an Object

collection.deleteObject(objectId)
.then(onDeleteObjectSuccess)
.catch(onDeleteObjectFailure);
function onDeleteObjectSuccess(response) {
 console.log(response);
return response;
}

function onDeleteObjectFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Fetching an Object
This fetches the storage object from a collection and reads its contents in a stream:

collection.getObject(objectId, 'json')
.then(onGetObjectSuccess)
.catch(onGetObjectFailed);

function onGetObjectSuccess(object)
{ console.log(object);
 return object;
}

function onGetObjectFailed(error)
{ console.error(error);
 return Promise.reject(error);
}

Getting a Collection

var backend = mcs.mobileBackend;
backend.storage.getCollection(collectionName)
.then(onGetCollectionSuccess)
.catch(onGetCollectionFailed);

function onGetCollectionSuccess(collection){
 console.log(collection);
 return collection;
}

function onGetCollectionFailed(error) {
 console.error(error);
 return Promise.reject(error);
}

Chapter 8
Cordova, JavaScript, and TypeScript

8-8

Getting an Object from a User Isolated Collection
This gets an object from a user isolated collection belonging to another user:

let backend = mcs.mobileBackend;
backend.storage.getCollection(collectionName, userId)
.then(onGetCollectionSuccess)
.catch(onGetCollectionFailed);

function onGetCollectionSuccess(collection) {
 console.log(collection);
 return collection;
}

function onGetCollectionFailed(error){
 console.error(error);
 return Promise.reject(error);
}

Getting Multiple Objects from a Collection
Gets a collection, then uses that collection to get multiple objects:

collection.getObjects(2, 3, false)
.then(onSuccess)
.catch(onFailure);

function onSuccess(collection) {
 console.log(collection);
 return collection;
}

function onFailure(error) {
 console.error(error);
 return Promise.reject(error);
}

Updating an Object

 collection.getObject(objectId)
.then(onGetObjectSuccess)
.then(onSaveObjectSuccess)
.catch(onGetObjectFail);

function onGetObjectSuccess(response){
 response.name = 'NewName';
 return collection.putObject(response);
}

function onSaveObjectSuccess(response){
 console.log(response);

Chapter 8
Cordova, JavaScript, and TypeScript

8-9

 return response;
}

function onGetObjectFail(error){
 console.error(error);
 return Promise.reject(error);
}

Custom Code

Retrieving and Storing Collections and Objects
For information on how custom code can retrieve collection information and store and
retrieve objects, see Accessing the Storage API from Custom Code.

REST API

Storage API Endpoints
The Storage API has endpoints for retrieving, paginating, and ordering collections and
also for retrieving, updating, and removing objects.

Here, we give a brief overview of the Storage API endpoints. For detailed information,
see Oracle Mobile Cloud Enterprise REST API Reference.

Getting a Single Collection
To get the metadata about a collection, such as ID, description, and whether it is user
isolated, call the GET operation on the {collection} endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections/{collection}

For example, for a collection named images:

GET {baseUri}/mobile/platform/storage/collections/images

Chapter 8
Custom Code

8-10

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Getting All Collections Associated with a Mobile Backend
To get a list of the collections that are associated with a mobile backend, call the GET
operation on the collections endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections

Storing an Object
The Storage API has two operations for creating objects. The operation that you use
depends on if you want to specify the object’s ID or you want the ID to be generated
automatically.

• To specify the ID, use PUT, and put the ID in the URI as described in Specifying
the Object Identifier. Note that you can use the If-None-Match header to ensure
that you don’t overwrite an object that has the same ID, as described in Creating
an Object (If One Doesn't Already Exist).

• To generate an ID, use POST as described in Generating an Object Identifier.

When you create an object using your own ID, remember that, for shared collections,
the ID must be unique to the collection. For user isolated collections, the ID must be
unique to the user’s space.

Always include the Content-Type header to specify the media type of the object being
stored. This property also specifies the media type to return when the object is
requested. If you don’t include this header, then the content type defaults to
application/octet-stream.

Note that Storage doesn’t transform or encode an object. Storage stores the exact
bytes that you send in the request. For example, you can’t send a Base-64 encoded
image and store it as a binary image by including a Content-Type header set to
image/jpeg and a Content-Encoding header set to base64. You can use a custom API
to perform the transformation for you, as shown in the code examples in
storage.store(collectionId, object, options, httpOptions).

Specifying the Object Identifier
When performing a PUT operation, the identifier of the object corresponds to the last
value specified in the URI. For example, to store an object with an ID called part1524:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Creating an Object (If One Doesn't Already Exist)
Put the wildcard (*) character in the request's If-None-Match header to force the PUT
operation to create the object with the specified object ID only if no other object exists
with that ID. Specifying the wildcard causes the call to fail if another object already
exists with the same ID. For example:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1542

Chapter 8
REST API

8-11

Headers:
 If-None-Match: *

Generating an Object Identifier
To generate the identifier for an object and then store the object, use the POST
operation. Unlike the PUT operation, there’s no identifier specified at the end of the URI
for a POST operation. For example:

POST {baseUri}/mobile/platform/storage/collections/images/objects

The URI that accesses the newly created object is returned through the Location
header in the response, and the ID attribute is included in the response body.

What Happens When an Object is Created?
When an object is created:

• The content is stored.

• The value of the Content-Type field in the request is stored. (This becomes the
Content-Type field definition returned when the object is requested using a GET
operation.)

• An entity tag (ETag) value is assigned.

• The createdBy value is set to the user ID of the user who performed the create
operation.

• The createdOn value is set to the time the object was stored on the server.

Updating an Object
Objects are updated using the PUT operation. For the PUT call, specify the same
identifier that was specified or generated when the object was created. Because
objects are opaque, updating an object completely replaces the previous contents.

What Happens When an Object Is Updated?
When a PUT is performed on an object, the following occurs:

• The content is completely replaced.

• The value of the ETag changes.

• The modifiedBy value is set to the user ID for whom the mobile app performed the
PUT operation.

• The modifiedOn value is set to the time the object was stored on the server.

Optimistic Locking
Optimistic locking is a strategy to use when you want to update an object only if object
was not updated by someone else after you originally retrieved it. To implement this
strategy, do one of the following:

Chapter 8
REST API

8-12

• Put the timestamp of when you last retrieved the object in the If-Unmodified-
Since header.

• Put the object’s ETag in the If-None-Match header.

For example, if the ETag value from the previous call is 2, then the PUT operation in the
following example is performed only when the If-None-Match value of "2" matches
the ETag of the object (part1524). If the versions don’t match, then the call’s PUT
operation isn’t performed and part1524 remains unchanged.

PUT{baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

You can get a similar result using If-Unmodified-Since:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-Unmodified-Since: Mon,30 Jun 2014 19:43:31 GMT

Retrieving a List of Objects
To get the metadata about a set of objects in a collection, use the GET operation on
the /collections/{collection}/objects endpoint. This metadata includes the
object’s ID, its name, and size. The metadata also includes the canonical link and self
links. For a full list of properties, see Taking a Look at Object Metadata.

In this example, images is the name of a shared collection.

GET {baseURI}/mobile/platform/storage/collections/images/objects

If the collection is user isolated and you have READ_ALL or READ_WRITE_ALL access,
then you must include the user query parameter and specify which user's objects you
want listed, even if you want to see your own objects (use * to list all user’s objects).
Note that you provide the user’s ID, not the user name. For example:

GET {baseURI}/mobile/platform/storage/collections/images/objects?
user=0cea04ee-9e26-4de3-ad6b-00a66c8d3b96

Paging Through a List of Objects
If you don’t want to see all the results, or if you want to get the results in small blocks,
use the limit and offset query parameters to request a subset of items.

Use the limit parameter to restrict the number of items returned. The default is 100.
Define offset as the zero-based starting point for the returned items. The returned
JSON body contains links for retrieving both the next and previous sets of items.

Chapter 8
REST API

8-13

The following example gets the metadata for 50 objects, starting with the 201st object.

Get {baseUri}/mobile/platform/storage/collections/images/objects?
offset=200&limit=50

Ordering
Use the orderBy parameter to control the order of the returned items. You can specify
which property to order on and specify whether to put the items in ascending (asc) or
descending (desc) order:

Get {baseUri}/mobile/platform/storage/collections/images/objects?
orderBy=contentLength:desc

You can sort by the name, modifiedBy, modifiedOn, createdBy, createdOn, or
contentLength property.

Note:

You can order by one property only (either asc or desc).

Querying
Use the q query parameter to restrict the list of returned objects to the value specified
for the id, name, createdBy, or modifiedBy attributes.

Get {baseUri}/mobile/platform/storage/collections/images/objects?q=part

The objects returned are based on a case-sensitive, partial match of the id, name,
createdBy, and modifiedBy attributes. With this example, the results might include an
item with an ID of part1524 and an item modified by bonapart.

Retrieving an Object
Use the GET operation to retrieve the entire object. When performing the GET operation,
the identifier (such as part1524 in the following example) is specified at the end of the
URI.

Storage always returns the exact bytes that were stored. If the Accepts header doesn’t
match the Content-Type that the object was stored with, then it returns a 406 status
code.

In this example, the object is returned only if the Etag does not match. You can use
this strategy prevent re-fetching an object if it hasn’t changed.

Get {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

Chapter 8
REST API

8-14

Deleting an Object
To remove an object from a collection, call the DELETE operation. Deleting an object is
permanent. There’s no way to restore an object after you call this operation.

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/
part1524

To safely remove an object, use the If-None-Match header with the object’s ETag, or
the If-Unmodified-Since header with the timestamp of when you last retrieved the
object:

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/
part1524

Headers:
 If-None-Match: \"2\"

As described in Updating an Object, you can use these headers to prevent overriding
a change that another user made after you originally retrieved the object.

Optimizing Performance
You can use these strategies to optimize performance when you retrieve an object:

• Check If Exists

• Get If Newer

• Reading Part of an Object (Chunking Data)

Check If Exists
To check if an object exists, use the HEAD operation instead of a GET operation. The
HEAD operation returns the same information except for the actual object value.

Put If Absent
You can use the If-None-Match header with a wildcard (*) value in a PUT operation to
store an object only when (or if) it isn’t already included in the collection.

When you use this strategy, the call executes only when the ETag is absent, which is
true only if the object does not exist.

PUT {baseUri}/mobile/platform/storage/collections/profiles/objects/uprofile

Headers:
 If-None-Match: *

In this example, if the uprofile object doesn’t have an ETag, then myProfile.txt is
stored as the uprofile object.

Chapter 8
REST API

8-15

Get If Newer
If you have already retrieved an object, and you want to re-fetch it only if it has
changed, use the GET operation with the If-None-Match or If-Modified-Since header
to retrieve the object only if there has been a change since the last time the object was
fetched.

• If-None-Match

This example re-fetches the object only if the ETag is not 2.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-None-Match: \"2\"

• If-Modified-Since

This example re-fetches the object only if it was modified after the date and time
specified. Otherwise, the response status is 304 not modified.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-Modified-Since: Mon, 30 Jun 2014 19:43:31 GMT

Reading Part of an Object (Chunking Data)
If the mobile app needs to get a large object like a video file, you can use the Range
header to retrieve a subset of the object. This field lets the mobile app retrieve the data
in chunks, rather than all at once, by requesting a subset of bytes. Using this strategy,
you can start streaming a video, or start displaying the contents of a long list before
you fetch the whole object.

Here are examples of byte-range specifier values:

• First 100 bytes: bytes=0-99

• Second 100 bytes: bytes=100-199

• Last 100 bytes: bytes=-100

• First 100 and last 100 bytes: bytes=0-99,-100

This example gets the first 100 and last 100 bytes of a profile to display a preview of
the object’s contents:

GET {baseUri}mobile/platform/storage/collections/profiles/objects/uprofile

Headers:
 Range: bytes=0-99,-100

Chapter 8
REST API

8-16

Testing Runtime Operations Using the Endpoints Page
You can test client REST calls for collections manually through a command line tool or
utility, from a mobile app running on a device or simulator, or you can use the
Endpoints page to test various operations.

Using the Endpoints page for the Storage API, you can try out basic collection calls,
which would typically be exercised by a mobile app. These endpoints would be called
directly by calling REST APIs, indirectly (by calling the client SDK), or through custom
code. Instead of configuring a device or simulator, or entering the command manually,
you can test the API by first entering mobile app user credentials and parameters
appropriate to the call and then by clicking Test Endpoint. The page displays the
payload and the status code.

You can access the Endpoints page by clicking Storage in Platform APIs section that
is located at the bottom of the APIs page for a mobile backend. You can also open the
page by clicking Storage in the Platform APIs section at the bottom of the APIs page.

(You open this page by clicking to open the side menu. You then click Mobile
Apps and then APIs).

Managing Collections
Mobile apps can only use collections that are associated with a backend. You can
make this association by adding existing collections to the backend when you create it.
You can also create new collections as part of this process.

You can also use the Storage configuration pages in the OMCe UI to associate a
collection with a backend, as well as create and configure a collection, and define
whether the collection is shared or user isolated.

Shared and User Isolated Collections
A collection is either shared or user isolated.

When a collection is shared, no one owns the collection or an object, and the objects
are kept in a shared space. Those with certain mobile user roles, permissions, and
access to the backend, or anonymous access to the backend associated with the
collection, can update an object. Note that in both shared and user isolated collections,
each object has an ID that is unique to the collection.

When a collection is user isolated, users who have Read-Only (All Users) access
can read objects in other users’ spaces. Users with Read-Write (All Users) access
can both read and write objects in other users’ spaces. Anonymous access is not
permitted in user isolated collections.

Let's look at some examples of this behavior using the following scenarios:

Chapter 8
Testing Runtime Operations Using the Endpoints Page

8-17

Shared Collection

An online magazine is leveraging the Storage API as a way for authors to submit,
change, or read, articles. They’ve provisioned a shared collection called articles, as
shown in the figure below.

• Ben has contributed articles on bugs and bats, while Art has written about cows
and dogs.

• The dogs article is shared, allowing both Ben and Art to collaborate on it.

• Art and Ben are able to modify any article regardless of who originally submitted it.

• Dee can read all the articles, but she can't make changes.

However, if this shared collection is added to the
Security_CollectionsAnonymousAccess environment policy, then Ben, Art, Dee or
anyone who has access to the backend can submit, change, or read articles.

User Isolated Collection

An online magazine has provisioned a user isolated collection called Articles, as
shown in the following figure.

• Ben and Art can read and edit their articles, and upload new articles as well. They
can’t read or write each other's files.

• Dee can read only her article. Because her role is InactiveAuthor, which gives
her Read-Only permission, she can't upload any new articles.

• Eva, the editor, can make changes to any file and return it to the author's isolated
space.

• Raj, the publisher, can view all the articles, but he can't make changes.

• Because users are isolated, the authors don't have to worry about naming conflicts
with others. Objects in different isolation spaces can have the same name (as is
the case for the “dogs” articles by Dee and Art).

Chapter 8
Managing Collections

8-18

• Eva and Raj can access Ben, Art, and Dee’s objects only by specifying a user
qualification parameter. When Eva wants to make changes to Art’s article, the call
that enables her to write to Art’s user space must include Art’s ID.

Anonymous users don’t have access to user isolated collections. If a user isolated
collection is added to the Security_CollectionsAnonymousAccess environment policy,
it’s just ignored.

Permissions in Shared and User Isolated Collections

You can designate who can access and update objects in a collection by attaching
access permissions to mobile user roles, or for anonymous access, by adding the
shared collection name to the Security_CollectionsAnonymousAccess environment
policy. For example, if the collection does not, or cannot permit anonymous access:

• Art and Ben’s Author mobile user role is associated with the Read-Write
permission.

– In the shared collection, they can read and update any article within the
shared collection.

– In the user isolated collection, they can read and update their own articles.

• In contrast, Dee has the InactiveAuthor mobile user role, which gives her Read-
Only permission.

– In the shared collection, Dee can read Art’s article about dogs, as well as
various articles from either Art or Ben about bugs, cows, and bats. Unlike Ben
or Art, she can’t delete articles or add new ones.

– In the user isolated collection, she can read her own article about dogs, but
she can’t read Art’s article about dogs.

• For user isolated collections, mobile user roles that are associated with the Read-
Only (All Users) permission can view any object. The Read-Write (All Users)
permission allows users to view and update objects in other users’ spaces.
Because her role as Editor has a Read-Write (All Users) permission, Eva can
read and edit various authors’ files, such as those authored by Ben and Art.

Chapter 8
Managing Collections

8-19

Note:

Although different mobile user roles can grant access to the same objects in
a collection, such as Eva (Editor), Ben (Author), and Art (also Author), in
the user isolated collection, the objects remain in their respective isolated
spaces.
When anonymous access is allowed on a shared collection, access and the
ability to update an object is granted to any authenticated user as well,
regardless of role. This means adding a collection name to the
Security_CollectionsAnonymousAccess environment policy overrides
permissions given through roles. Take care when allowing anonymous
access to a collection. Security is more limited than with role-based
permissions.

Storage Configuration
The Storage configuration pages in the UI can help you with a variety of tasks, such as
creating and editing collections, and associating backends with collections.

Using the Storage Configuration Pages

There are two Storage configuration pages you can use: Manage all collections in your

instance from the > Mobile Apps >Storage page. Manage collections for a
specific backend from the Storage tab on the backend page.

Storage Configuration for All Collections

To open the Storage page for all collections, click > Mobile Apps >Storage.

Using this page, you can create collections, edit existing ones, associate them with
mobile backends, and publish them.

You can find out when the collections listed were created or updated and which
backends are using them by first selecting a collection and then expanding Used By
and History.

Storage Configuration for a Specific Backend

To manage collections for a specific backend, click > Mobile Apps >Backends >
Storage. This page shows which collections are associated with the backend and
allows you to create and update associated collections.

Chapter 8
Managing Collections

8-20

Defining a Collection
The New Collection dialog lets you name a collection so that it can be identified in
REST calls and designate it as shared or user isolated.

1. Open the Storage page either from a mobile backend or by clicking Storage in the
side menu, and click New Collection.

2. Complete the New Collection dialog:

a. Enter a name for your collection. This name is used to form the Universal
Resource Identifier (URI) for the collection. Within the context of the API call,
the collection name is referred to as the collection ID:

{baseUri}/mobile/platform/storage/collections/{collection ID}

For example, for a collection named FiF_UploadedImages (cloud storage of
images uploaded from mobile apps), the URI call would look like this:

{baseUri}/mobile/platform/storage/collections/FiF_UploadedImages

For a closer look at Storage API syntax, see Storage API Endpoints.

b. Choose the collection type: Shared or User Isolated. You can’t change
the scope of the collection after you’ve set it. For details and examples, see
Shared and User Isolated Collections.

c. If needed, enter a short description for the purpose of the collection, to be
displayed in the list of collections.

3. Click Create.

Chapter 8
Managing Collections

8-21

Note:

When you initially create a collection, it’s in a draft state, in version 1.0.

• You can modify the collection name, access permissions, and its
contents. Remember, you can’t change the collection type after it’s
created.

• You can version a collection. You might want to increment a collection’s
major and minor version numbers when you publish it or when you add
new objects.

• While in the draft state, a collection can be moved to the trash from the
More menu.

Collection Metadata
In addition to the basic properties like size (in bytes), and description, the collection
metadata includes the collection name that identifies it for REST calls.

When you create a collection, the Storage API defines it using the following metadata:

Property Value Type Description

description string The short description. This is an optional
value.

id string The collection name, which is used in the
uniform resource identifier (URI). For example:

{baseURI}/mobile/platform/storage/
collections/{collection}

The collection name is case-sensitive,
meaning that mycollection and
Mycollection are two different collections.

Adding Access Permissions to a Collection
Collection access is granted through anonymous user settings in the policy file, or
managed by mobile user roles. Once a mobile user role is defined, you can also grant
which roles can read and write objects in the collection. To see what mobile user roles
are available, go to the My Profile UI and click Roles. To learn more about roles and
mobile users, see Mobile Users and Roles.

Anonymous Access to Collections

Anonymous access is often given to users who just want to check information on an
app without having to log in or needing a defined role. Weather apps, where a user
can check their local weather, are a good example of this.

Likewise, you can grant anonymous access to a shared collection. Once a shared
collection is created, the administrator adds its name to the
Security_CollectionsAnonymousAccess policy. You can then access the shared
collection via the REST API or the client SDK for your mobile platform. Also, if you
want to access this anonymous shared collection from the UI, a workaround is to grant
Read-Write permission to any role on the properties page.

Chapter 8
Managing Collections

8-22

Keep in mind that when you add a shared collection to the policy, both anonymous
and named users have access and read/write privileges to the collection.

Role-based Access to Collections

1. In the Storage page, select a collection and then click Open.

2. In the Properties page, specify one or more mobile user roles for each permission
type.

• Read-Only and Read-Write access apply to all collections (shared or user
isolated).

• You can specify Read-Only (All Users) and Read-Write (All Users)
permissions only if the collection type is user-isolated.

Permission Shared User Isolated

Read-Only Read-only access to all of
the objects in a collection.
For example, both a field
technician and a
customer can read
promotional material like
coupons, but they can’t
update them.

Read-only access to a user
isolated collection. When the
Read-Only permission is applied
to user isolated collections, for
example, a customer can view
images (like a coupon), but he
can’t update them, or submit
additional ones (only a user with
Read-Write (All Users)
privileges can add an object to the
customer’s user space). Because
this is a user isolated collection,
the customer can view only his
images (or other customer-specific
objects that are intended only for
him). The Read-Only permission
also prevents him from adding
additional work orders or deleting
them.

Read-Write A user can override any
object in the collection.

A user can override the objects in
his isolated space. For example, a
customer can update the images of
broken appliances that he’s
submitted. Because this is a user
isolated collection, the images that
he can add (and update) are
intended only for him. Because
these images exist in his isolated
space, he can update these
objects, but no one else’s.
Likewise, he can add or delete
images, but can’t do this in anyone
else’s isolated space.

Read-Only (All Users) NA A user can read objects in all
spaces. For example, a field
technician can see the images
updated by any customer, but she
can’t update them, delete them, or
add new ones.

Chapter 8
Managing Collections

8-23

Permission Shared User Isolated

Read-Write (All Users) NA A user can override objects in all
spaces. If a field technician has
Read-Write (All Users)
permission, then she can update
work orders submitted by any
customer.

Note:

By default, mobile users can’t access a collection until they’ve been
assigned mobile user roles that are associated with the Read-Write,
Read-Only, Read-Write (All Users) or Read-Only (All Users)
permissions.

Adding Objects to a Collection
You can populate a collection with objects.

These steps show how to add an object using the UI. When you add an object from
the UI, the ID is generated automatically. If you want to assign a specific ID to an
object, use the Storage API, the custom code SDK, or the client SDK for your mobile
platform. For details, see Storing an Object.

1. On the Storage page, select a collection and click Open.

• If this collection has no objects, click Upload Files and then browse to and
retrieve the object. Click Open.

• If this collection already has objects, click Upload in the Content page. Browse
to and retrieve the object. Click Open.

2. If the collection is shared, click Add. If you have the identity domain administrator
role, you can also upload to user isolated collections. Add the user realm and user
name to the User Name Required dialog, and click Ok. You can only select from
users whose roles have been granted permission to the collection. (Assign these
roles in the Properties page.)

3. To view the object data, select it from the list.

Tip:

To permanently remove an object from a collection, select it and click Delete.

Object Metadata
When you upload an object, the Content page displays basic metadata, such as size,
content type, version information, and who uploaded it. Using this page, you can also
delete unneeded objects, or filter them. Some functions in user isolated collections are
only available if you have the identity domain administrator role.

Chapter 8
Managing Collections

8-24

Property Value Type Description/Usage

ID string The object name, which is used for operations on a
single object. It is the last value specified in the
URI.

Content Length integer The size, in bytes.

Content Type media type The media type for the data, such as image/jpeg
for a JPEG image, or application/json for
JSON.

ETag string (an integer
in quotes, for
example, "17")

A value that represents the version of the object.
It's used with the If-Match and If-None-Match
HTTP request headers.

Created By user name The name of the user who uploaded the data.

Created On time stamp (In
ISO 8601)

The time that the object was most recently stored
on the server. Time stamps are stored in UTC.

Modify By user name The name of the user who modified the object.

Modified On time stamp (in
ISO 8601)

The time when the server received a request for an
object. Time stamps are stored in UTC.

User ID string For a user isolated collection, the ID of the user
whose space the object is in.

Updating the Collection
You can update the name, description and access to a collection. You can’t however,
change the collection type.

1. On the Storage page, select a collection and then click Open.

2. Click Properties. (The Properties page opens by default when you first create a
collection. On subsequent visits, the Content page opens by default.)

3. Change the name, description or access as needed.

4. Click Save.

Offline Data Storage
The client SDK’s Sync Client library, in conjunction with the Storage library, enables
mobile apps to cache a collection’s objects for offline use and performance
improvement. The apps can then use the cached objects instead of re-retrieving them
from Storage, as described in How Synchronization Works with the Storage APIs. If a
collection’s content changes infrequently, then consider enabling those mobile apps to
cache the collection’s objects by selecting Enable the mobile client SDK to cache
collection data locally for offline use.

When Enable the mobile client SDK to cache collection data locally for offline
use is selected, the objects that a mobile app retrieves can remain in the cache for the
period set in the Sync_CollectionTimeToLive policy. This value is conveyed to the
app through the Oracle-Mobile-Sync-Expires response header. By default, the
timeout period is set for 24 hours (86,400 seconds).

Chapter 8
Managing Collections

8-25

Don’t select this option for time-critical data, where a cached value might be
misleading. For example, if the collection contains current stock prices, you shouldn’t
select this option, because users expect the latest value (or no value at all).

If your mobile app isn’t using the client SDK’s Storage library, and your app is caching
Storage objects, then you can take advantage of the following request and response
headers:

Type Header Description

Request Oracle-Mobile-Sync-
Agent

When this header is set to
true in the request, then the
response includes either
Oracle-Mobile-Sync-
Expires or Oracle-Mobile-
Sync-No-Store.

Response Oracle-Mobile-Sync-
Expires

Specifies when the returned
resource must be marked as
expired. Uses RFC 1123
format, for example EEE, dd
MMM yyyyy HH:mm:ss z for
SimpleDateFormat. This
value is determined by the
Sync_CollectionTimeToLi
ve policy.

Response Oracle-Mobile-Sync-No-
Store

When set to true, the client
mustn’t cache the returned
resource.

To learn more about data caching, see Data Offline and Sync.

Associating a Collection with a Backend
Associating a collection makes its contents available to a specific backend. The
associated collection is a dependency.

1. In the Storage page, select a collection.

2. Click More and then select Associate Backends.

3. In the Associate Backends dialog, select one or more backends from the list.

Chapter 8
Managing Collections

8-26

4. Click Add.

In the details pane, you can see any associated backends by expanding Used By.

You can also associate a collection with a backend this way:

1. Open the backend.

2. Click the Storage tab and then choose Select Collections.

3. Choose one or more collections from the Select Collections dialog, and then click
Select.

Removing a Collection from a Backend
You might want to disassociate a collection from a backend so that you can change
the backend's state without affecting the collection. Or you might want to disassociate
the collection and associate a different one.

1. In the Storage page, select a collection.

2. In the Details section on the right, view the Used By list.

3. To delete the association, click the X that follows the backend version number.

4. You’ll be prompted to remove the dependency. Click Remove.

To remove a collection from a backend:

1. Open the backend.

2. Open the Storage page.

3. Click the X adjacent to the collection that you want to remove.

4. In the Confirm Remove Dependency dialog, click Remove.

Chapter 8
Managing Collections

8-27

9
Data Offline and Sync

Mobile app developers can use the Data Offline and Sync features to build a client app
that enables the users to perform critical tasks when offline.

You can use the following APIs to build applications that cache REST resources for
offline use and then synchronize all offline changes with the server when the device
goes online again.

API Platforms Features

Sync Express • Cordova
• JavaScript

• Basic synchronization.
• Easy to use.
• Works with any REST API

where the resource name
alternates between plural
nouns and singular
resource identifiers (rid),
such as /items/{rid}/
subitems/{rid}.

• Requires minimal
changes to existing code.

• Works with any
JavaScript framework.

• When device reconnects,
sends change requests
one resource object at a
time.

• Always overwrites the
server version of the
object.

9-1

API Platforms Features

Synchronization • Android
• iOS

• Robust synchronization.
• Works with

synchronization-compliant
custom APIs.

• When device reconnects,
sends all changes in one
request.

• Provides choices for what
to do if the server version
of an object changes
while edits were made
offline (server wins, client
wins, preserve conflict).

• Provides choices for how
long to store resource
objects on the device,
when to refresh data from
the server, and which
resources can be edited
when offline.

• Automatically
synchronizes with the
Storage platform.

Building Apps that Work Offline Using Sync Express
The Javascript and Cordova client SDKs feature Sync Express, which enables you to
easily and quickly make your application work offline using your existing REST
requests. You can use this library for REST APIs where the resource name alternates
between plural nouns and singular resource identifiers (rid), such as /items/{rid}/
subitems/{rid}.

Adding Sync Express to Your App

To use Sync Express in your app, you must complete the following tasks.

• Copy both mcs.sync.min.js and mcs.min.js from the SDK into the directory
where you keep your JavaScript libraries.

• Use a script element to load mcs.sync.min.js. This must be the first script that
the app fetches and loads unless you add loki-cordova-fs-adapters.js, which
is explained next.

• Use either RequireJS or a script element to load mcs.min.js.

• From the command line, enter the following to add the cordova-plugin-network-
information plugin. This plugin enables Sync Express to detect if the device is
online or offline.

cordova plugin add cordova-plugin-network-information

When an application attempts to store more REST resources than the device’s cache
size allows, Sync Express throws a QUOTA_EXCEEDED_ERR exception. With Cordova
apps, you can install the cordova-plugin-file to increase the device’s cache size. This
plugin isn’t available for JavaScript web apps.

Chapter 9
Building Apps that Work Offline Using Sync Express

9-2

1. To install and use the cordova-plugin-file.

cordova plugin add cordova-plugin-file

2. Copy loki-cordova-fs-adapters.js from the SDK into the directory where you
keep your JavaScript libraries.

3. Add a script element to load loki-cordova-fs-adapter.js. This must be the first
script that the app fetches and loads. Then the app can load mcs.sync.min.js and
mcs.min.js as described above.

Configuring Your App to Use Sync Express

To enable Sync Express, add a syncExpress entry to
oracle_mobile_cloud_config.js, and use path elements in the policies array to
identify the endpoints that you want to activate Sync Express for. The name that you
use for a path parameter must exactly match the name of the property that uniquely
identifies a returned object. Use a colon to identify the path parameter, such
as :deptId.

Note:

The configuration file can have a syncExpress entry for Sync Express or a
sync entry for the Synchronization library, but it can’t have both.

Let’s say, for example, that you want to activate Sync Express for all calls to these
endpoints:

• /departments

• /departments/{deptId}

The department database object has these properties:

deptId: number
name: string

The response object for a department collection looks like this:

[
 {
 "deptId": 1,
 "name": "Department 1"
 },
 {
 "deptId": 2,
 "name": "Department 2"
 }
]

Chapter 9
Building Apps that Work Offline Using Sync Express

9-3

The corresponding syncExpress entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for both endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",
 ...
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Now let’s say, for example, that you want to include calls to endpoints with
subcollections (nested entities), such as an employees within a department:

• /departments

• /departments/{deptId}

• /departments/{deptId}/employees

• /departments/{deptId}/employees/{empId}

The employee database object has these properties:

deptId: number
empId: number
name: string

The response object for an employee collection looks like this:

[
 {
 "empId": 1,
 "name": "John Doe"
 },
 {
 "empId": 2,
 "name": "Jane Doe"
 }
]

The corresponding syncExpress entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for all the endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",

Chapter 9
Building Apps that Work Offline Using Sync Express

9-4

 ...
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d
+)/:_employees?/:empId(\\d+)?'
 }
]
 }
};

Sync Express provides some regular expressions for formulating the path
specification:

• Use a colon (:) plus the property name to indicate either a path parameter or the
name of the property that uniquely identifies each returned object (or both). For
example, for the /departments endpoint, you must include :deptId(\\d+) in the
path specification to indicate the unique identifier for a department resource, even
if the API didn’t have a /mobile/custom/myAPI/departments/{deptId} endpoint.

• Use a question mark (?) to indicate that the path parameter is optional.

• When a path segment represents a collection of children resources (a
subcollection), then you must precede the parameter name with a colon and an
underscore (:_) so that Sync Express stores the response objects in the client
cache as children objects that are associated with the parent object.

• By default, Sync Express assumes that the path parameter is a string. Use (\\d+)
to indicate that the path parameter must be a numeric value.

For example, given the /mobile/custom/myApi/departments/:deptId(\\d
+)/:_employees?/:empId(\\d+)? path specification:

• :deptId specifies a path parameter and also provides the name of the property in
the department object that uniquely identifies a department.

• The ? after :deptId(\\d+) indicates that this and subsequent parameters are not
required. Thus, the path specification applies to these endpoints:

– /mobile/custom/myApi/departments

– /mobile/custom/myApi/departments/{deptId}

– /mobile/custom/myApi/departments/{deptId}/employees

– /mobile/custom/myApi/departments/{deptId}/employees/{empId}

• (\\d+) indicates that the path parameter value must be numeric. If the object’s
deptId property is a string, then you’d use /mobile/custom/myApi/
departments/:deptId? instead.

• (:_employees) identifies a subcollection and indicates that all response objects
must be stored in the client cache as children of the specified deptId.

Chapter 9
Building Apps that Work Offline Using Sync Express

9-5

Configuring Your App to Handle items Arrays

If any response bodies wrap a collection in an items property, such as "items":
[{"id:":33},{"id:":34}], then you must add the Oracle REST handler to the
syncExpress entry in the configuration file, as shown in the following example:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackend": {
 "name": "myBackend",
 ...
 }
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Making Your App Synchronize Offline Changes Automatically

To make an app synchronize offline changes with the server automatically, add code
to refresh the user interface when the device re-connects (goes online) by making
explicit REST calls, which then flush pending changes automatically.

Building Apps that Work Offline Using the Synchronization
Library

Use the Synchronization library from Android and iOS mobile apps to enable the app
users to continue to use the app when offline.

What Can I Do with the Synchronization Library?
When developing Android and iOS client apps, you, as a mobile app developer, might
often take these goals into consideration:

• Enable updates to app data on mobile devices when connectivity is intermittent or
non-existent.

• Improve performance by minimizing the amount of calls and data transported over
the wire.

The client SDK’s Synchronization library, with its data caching, support for offline
operations, and automated synchronization, enables you to achieve these goals when
you access custom API resources. In addition, through declarative policies, you can
design caching and synchronization policies for your custom APIs that you can apply
across your apps, and adjust without having to modify code.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-6

Using the Synchronization Library to Enable Edits to App Data When the Mobile
Device Is Offline

As an example of how you can use the Synchronization library to enable app users to
read, create, update, and delete data when the mobile device is offline, consider some
apps that are designed for the Fix it Fast (FiF) company, which maintains in-house
appliances. The mobile app developer wants to ensure that the apps continue to work
even when there is no internet connection. For example:

• A customer uses an FiF mobile app to fill out the details for an incident report
regarding a basement furnace. She then goes to the basement to take a picture of
the furnace's barcode, attaches it to the report, and taps Send. Even though
there’s no internet connection in the basement, the app should enable the
customer to access, change, and send the incident report. As soon as the device
reconnects to the internet, the app should transmit the report and the attached
photo to the server.

• During the day, a technician reviews her job list, sorts the jobs by priority, driving
distance, and issue type, and adjusts the priorities as needed. As she completes a
job, she attaches notes to the incident report, and she updates the job status. She
expects to be able to do all these tasks even when she doesn't have access to the
internet. When her device is connected, she expects the app to synchronize her
offline modifications with the server, first synchronizing the essential information,
such as job status, and then synchronizing the less essential information, such as
her notes.

• After an unexpectedly long repair, the technician lowers the priority for customer
that is the furthest away, John Doe. Because she is offline, her modifications are
stored in the offline edits in the local cache. During the time she was offline, John
Doe called the office to report that his water heater was now leaking, and the office
changed his priority to high. When the technician goes back on line, the app
synchronizes the updates, and sees that there is a conflict. The app pops up a
notice about the conflict and asks the technician if she still wants to lower the
priority.

To implement these data offline requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
update, and conflict resolution policies in the configuration file.

• To ensure that incident reports from the /incidents resource are always
available, that they can be modified while offline, and that the server is updated
with queued offline modifications as soon as the device resumes access, the
mobile app developer sets the following policies for the resource:

– Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Update policy: Queue updates if offline and synchronize automatically when
the client app is back online (QUEUE_IF_OFFLINE)).

• To ensure that two technicians don't inadvertently update the same status or
priority for an /incidentstatus resource due to queued offline updates, the
mobile app developer sets the following policy:

– Conflict resolution policy: Don’t overwrite the server’s version with the local
version if there’s a conflict. The edited local version is kept in the offline edits

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-7

in the local cache, and the mobile app handles the conflict
(PRESERVE_CONFLICT).

Note:

This assumes that the code for this custom API returns the correct
information, such as the ETag that is used to detect conflicts, as
described in Returning Cacheable Data.

To learn about all the data offline policy options, see Synchronization Policies.

Using the Synchronization Library to Improve Performance

As an example of how you can use the Synchronization library to improve
performance, consider the FiF apps that we discussed previously.

• Before leaving the office every morning, the technicians start an FiF app on their
tablets, and pull a list of their jobs for the day. Because the customer information
such as name, phone, and address is static, the app can cache that data upon
startup and not re-retrieve it during the day to improve performance. Other
information, such as incident status and priority, must be kept current.

• Expired data needs to be cleared whenever the app is restarted.

• The finance department designed an API that supplies a customer's default credit
card information. Because the information is fairly static, mobile apps might
consider caching that information to improve performance. However, the finance
department wants to ensure that mobile apps never cache that information.

To implement these performance requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
expiration, and eviction policies in the configuration file.

• To cache the information from the /customer resource so that it's retrieved from
the server on startup, and, after that from the local cache only, the mobile app
developer sets the following policies:

– Expiration policy: Mark resources as expired when the client application
restarts (EXPIRE_ON_RESTART).

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Fetch policy: Fetch resource from the server only if it isn’t in the local cache or
is expired (FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY).

• To ensure that the priority and status from the /incidentstatus resource is
always available, but stays as current as possible:

– Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Expiration policy: Mark a resource as expired when the client application
restarts. Update the local cache with the latest version from the server the next
time the client application calls the resource (EXPIRE_ON_RESTART).

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-8

• To ensure that none of the information from the /creditcards resource is cached,
the custom code that implements this API makes sure that all HTTP responses
include the Oracle-Mobile-Sync-No-Store header set to true.

To learn about all the data caching policy options, see Synchronization Policies. To
learn about the synchronization headers, see Defining Synchronization Policies and
Cache Settings in a Response Header.

Synchronization Library Process Flow
To help you understand how the parts fit together, here’s an explanation of how the
Synchronization library does the following:

• Manages objects in the local cache

• Uses synchronization policies to retrieve resources from either the local cache or
the server

• Handles object updates

When the mobile app makes a request through the Synchronization library to get data
from a custom API, the Synchronization library looks at the fetch policy setting to
determine whether to get the objects from the server or the local cache. Whenever the
Synchronization library fetches objects from the server, it refreshes the local cache
with the newly fetched objects.

Depending on the policy settings, the Synchronization library might also periodically
refresh expired items in the local cache using a background process.

When the user edits an object, the following occurs depending on whether the mobile
device is online or offline:

• Online edit: An update request is sent to the server.

• Offline edit: The edited object is stored in the offline edits in the local cache. When
the app goes online, a background process sends a request to update the
resource on the server.

If the conflict resolution policy is CLIENT_WINS, the update request includes an If-
Match header of * so that the server updates the resource without conflict. Otherwise
the request includes an If-Match header that is set to the ETag that was last returned
by the server.

To learn more about the synchronization policy types and options and how to set
them, see Synchronization Policies.

Video: Overview of the Data Offline & Synchronization API
To learn more about how the Synchronization library uses caching to enable a client
app to work offline as well as improve performance, take a look at this video:

Video

Android Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-9

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13339

For detailed information about the library, see Oracle Mobile Cloud, Enterprise Android
SDK Reference.

Tip:

The client SDK download page contains an examples zip, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the Android Synchronization Library
1. Ensure that the AndroidManifest.xml file contains the following entries.

WRITE_EXTERNAL_STORAGE lets the Synchronization library maintain the local cache.
ACCESS_NETWORK_STATE lets the Synchronization library determine the connection
status.

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

2. Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

3. As with all mobile apps, instantiate MobileManager, and then instantiate
MobileBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

4. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

try {
 Synchronization synchronization =
 MobileManager.getManager().
 getMobileBackend(this).
 getServiceProxy(Synchronization.class);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Fetching Resources
After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-10

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssda-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssda-index

1. To access an endpoint, instantiate MobileEndpoint for that endpoint. This
example instantiates an endpoint for /mobile/custom/incidentreport/
incidents.

// open Endpoint
MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. (Optional) Add objects or files to the collection. This example adds an object.

MobileObject newObject = endpoint.createObject();
JSONObject payload = new JSONObject();
// Set properties
try {
 payload.put("title", "incident 213");
 ...
} catch (JSONException e) {
 ...
}
newObject.initialize(null, endpoint, payload);
// Add incident
newObject.saveResource(new MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 }
});

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• FetchObjectBuilder

• FetchCollectionBuilder

• FetchFileBuilder

Here’s an example of creating a fetch builder for a collection.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();

In this example, we want to filter all the incidents for the signed-in technician
(which is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

fetchCollectionBuilder =
fetchCollectionBuilder.withQueryParameter("technician", username);

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-11

Tip:

You can call withQueryParameter as many times as you need to specify
all the query parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Oracle-Mobile-Diagnostic-
Session-ID header. The mDiagLogFilterTag string variable has been set to a
value that uniquely identifies requests that are made using this fetch builder.

fetchCollectionBuilder.withHeader("Oracle-Mobile-Diagnostic-Session-
ID", mDiagLogFilterTag);

5. Use the builder to execute the fetch.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource;
 }
});

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the JsonObject property.
Use this property to set the appropriate values.

List objectsList = collection.getObjectsList();
MobileObject incidentMobileObject = (MobileObject)
objectsList.get(index);
JSONObject json = incidentMobileObject.getJsonObject();
// This updates incidentMobileObject
json.put("status", "completed");

7. Use one of the MobileObject save methods to save the changes on the server.

incident.saveResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-12

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
Synchronization library sends the changes to the server automatically when the
device reconnects with the internet.

8. Use one of the MobileObject delete methods to delete an object.

incident.deleteResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

If the client is offline, then the library deletes the object in the local cache. It
deletes the object on the server when the client is online again.

Fetching Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as mobileResource objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the mobileResource objects in the local cache because the objects are just blobs
of data. The solution is to use a custom MobileObject. When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We’ll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom MobileObject class, you can use the
fetch builder’s queryFor method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn’t affect the way
that the Synchronization library retrieves results from the server. Whenever you
execute the fetch builder, the library first looks at the fetch policy setting to determine
whether to refresh the local cache. If the policy specifies that it must refresh the local
cache from the server, then it retrieves all the objects, regardless of the filter that you
specify using the queryFor method. Regardless of the fetch policy and whether it
refreshed the local cache, the library then uses the queryFor method to filter the data
in the local cache, and return the filtered results. That is, regardless of whether the
device is online or offline, and regardless of whether the library fetches data from the
server or uses the local cache, the queryFor method filters the results based on the
query property and value.

1. Create a class that extends MobileObject. Add a property for every field that you’ll
use in the app. Then override onDataLoad() and getPropertyNames() and create
getters and setters for the fields. Here’s an example of creating an
IncidentCustomMobileObject class.

public class IncidentCustomMobileObject extends MobileObject {
 private int id;
 private String title;
 private String technician;
 private String customer;

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-13

 private String status;
 private String priority;
 private String createdBy;
 private String createdOn;
 private String modifiedBy;
 private String modifiedOn;

 // This method tells the Synchronization library how to get the
values from the JSON object.
 @Override
 protected void onDataLoad(){
 try{
 if(jsonObject != null){
 title = jsonObject.has("title") ?
jsonObject.getString("title") : "";
 technician = jsonObject.has("technician") ?
jsonObject.getString("technician") : "";
 customer = jsonObject.has("customer") ?
jsonObject.getString("customer") : "";
 status = jsonObject.has("status") ?
jsonObject.getString("status") : "";
 createdBy = jsonObject.has("createdBy") ?
jsonObject.getString("createdBy") : "";
 createdOn = jsonObject.has("createdOn") ?
jsonObject.getString("createdOn") : "";
 modifiedBy = jsonObject.has("modifiedBy") ?
jsonObject.getString("modifiedBy") : "";
 modifiedOn = jsonObject.has("modifiedOn") ?
jsonObject.getString("modifiedOn") : "";
 priority = jsonObject.has("priority") ?
jsonObject.getString("priority") : "";
 }
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 // The Synchronization library uses this method to determine the
column names and data
 // types for the database table for the local cache.
 @Override
 public void getPropertyNames(Map<String,PropertyType> properties,
List<List<String>> indexes){
 properties.put("title", PropertyType.String);
 properties.put("technician", PropertyType.String);
 properties.put("customer", PropertyType.String);
 properties.put("status", PropertyType.String);
 properties.put("createdBy", PropertyType.String);
 properties.put("createdOn", PropertyType.String);
 properties.put("modifiedBy", PropertyType.String);
 properties.put("modifiedOn", PropertyType.String);
 properties.put("priority", PropertyType.String);
 }

 //Getters and Setters

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-14

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getTechnician() {
 return technician;
 }

 public void setTechnician(String technician) {
 this.technician = technician;
 }

 public String getCustomer() {
 return customer;
 }

 public void setCustomer(String customer) {
 this.customer = customer;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

 public String getPriority() {
 return priority;
 }

 public void setPriority(String priority) {
 this.priority = priority;
 }

 public String getCreatedBy() {
 return createdBy;
 }

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-15

 }

 public String getCreatedOn() {
 return createdOn;
 }

 public void setCreatedOn(String createdOn) {
 this.createdOn = createdOn;
 }

 public String getModifiedBy() {
 return modifiedBy;
 }

 public void setModifiedBy(String modifiedBy) {
 this.modifiedBy = modifiedBy;
 }

 public String getModifiedOn() {
 return modifiedOn;
 }

 public void setModifiedOn(String modifiedOn) {
 this.modifiedOn = modifiedOn;
 }

}

2. Open the endpoint for the custom class.

MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 IncidentCustomMobileObject.class);

3. When you create the fetch builder, use the queryFor method to add a query to
filter the results by status.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();
fetchCollectionBuilder = fetchCollectionBuilder.queryFor(
 "status",
 Comparison.Equals,
 "pending");

4. Fetch the data.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource){
 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-16

 }
})

5. The raw downloaded JSON object is exposed through the JsonObject property.
Use this property to access the appropriate values.

Incident incident = (Incident) collection.getObjectsList().get(index);
JSONObject json = incident.getJsonObject();
json.put("status", "completed");

6. Save and delete objects the same way you save and delete OMCMobileObject
objects.

//Save the object
incident.saveResource (new MobileEndpointCallback(){
});
...
// Delete the object
incident.deleteResource (new MobileEndpointCallback(){
});

Specifying Which Resources to Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the MobileResource class’ pinResource method
to set a resource’s priority (MobileFile, MobileObject, and MobileObjectCollection
inherit from this class).

builder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 mobileResource.pinResource(PinPriority.High);
 }
});

Setting a Resource’s Synchronization Policies Programmatically
When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Setting a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-17

1. Create the fetch builder.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();

2. Create a SyncPolicy object and set the policies to override. This example
overrides all the policies:

SyncPolicy policy = new SyncPolicy();
policy.setFetchPolicy(SyncPolicy.FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLI
NE);
policy.setExpirationPolicy(SyncPolicy.EXPIRATION_POLICY_EXPIRE_ON_RESTAR
T);
policy.setEvictionPolicy(SyncPolicy.EVICTION_POLICY_EVICT_ON_EXPIRY_AT_S
TARTUP);
policy.setUpdatePolicy(SyncPolicy.UPDATE_POLICY_QUEUE_IF_OFFLINE);
policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY
_CLIENT_WINS);
policy.setNoCache(false);

3. Set the builder’s synchronization policy.

fetchCollectionBuilder = fetchCollectionBuilder.withPolicy(policy);

Changing a Resource Object’s Synchronization Policy

Sometimes, you’ll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object.

SyncPolicy policy = mIncidentMobileObject.getCurrentSyncPolicy();

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.
All other policies remain as is.

policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY
_CLIENT_WINS);

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResource (to perform an add or update). For a delete, you
must call reloadResource for the policy change to take affect before you call
deleteResource.

mIncidentMobileObject.setSyncPolicy(policy);

Detecting and Handling Conflicts
In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLICT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-18

Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the Synchronization library
automatically sends Mary’s offline edit to the server. The server responds with a 412
Precondition Failed status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
it makes available both the modified object (from the offline edits in the local cache),
and the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

• To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the offlineResourceSynchronized method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

• To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResourceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the UI with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the Synchronization offlineResourceSynchronized
method to detect conflicts after the Synchronization library has finished synchronizing
the cache. In this example, the only mobile endpoint that the mobile app accesses is
the incidents endpoint. This example shows how to handle both custom and generic
MobileObject objects.

synchronization.offlineResourceSynchronized(new
SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("offlineResourceSync", "Resource for " + uri +
 "deleted from cache after offline synchronization");

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-19

 return;
 }

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("offlineResourceSync", "Offline edits for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Incident has been synchronized with the service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 } else {

 // Process has finished.
 // MobileObject/MobileFile has been synchronized with the
service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }
});

Detecting Conflicts When the Library Updates the Cache

Here’s an example of using the Synchronization cachedResourceChanged method to
detect conflicts whenever a cached resource is updated either from new data from the
service or an update or delete from the mobile app. In this example, the only mobile
endpoint that the mobile app accesses is the incidents endpoint. This example shows
how to handle both custom and generic MobileObject objects.

synchronization.cachedResourceChanged(new SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("cachedResourceChanged", "Resource for " + uri +

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-20

"deleted from cache");
 return;
 }

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("cachedResourceChanged", "Cache changes for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Custom object changed in local cache. You can show a pop up
 // or reload the resources in the UI, such as in the main
thread.
 } else {

 Log.i("cachedResourceChanged", "Cache changes finished with
result :" + result);

 // OMCMobileObject, OMCMobileFile, or OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }
});

Reviewing and Discarding Offline Edits
You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-21

• Discard a resource’s offline edits.

The Synchronization class provides the methods for reviewing and discarding offline
edits. As shown in the following steps, you use its getNetworkStatus and
setOfflineMode methods, along with the SyncNetworkStatus enumeration to switch
the work-offline mode on and off. You use its loadOfflineResources method to get all
the offline edits that haven’t been synchronized with the server, and its
discardOfflineUpdates method to discard all offline edits.

1. At application start-up, instantiate Synchronization and open the mobile endpoint.

try {
 synchronization =

MobileManager.getManager().getMobileBackend(this).getServiceProxy(Synchr
onization.class);
 } catch(ServiceProxyException e) {
 e.printStackTrace();
 }
incidentsEndpoint = synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. Add a Switch component to the layout.

<Switch
 android:id="@+id/workOfflineSwitch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 ...
 android:onClick="changeWorkOfflineMode"
 android:text="Work Offline" />

3. Add the changeWorkOfflineMode function, which is called when
workOfflineSwitch is clicked. This method uses the Synchronization
getNetworkStatus method to determine the current network status, and the
setOfflineMode method to switch the work-offline mode on and off. When it calls
setOfflineMode, the library synchronizes all offline edits with the server
automatically. Note that calling setOfflineMode(true) when the device isn’t
connected to the internet has no effect.

public void changeWorkOfflineMode(View view) {
 SyncNetworkStatus syncNetworkStatus =
synchronization.getNetworkStatus();
 try {
 if (syncNetworkStatus == SyncNetworkStatus.SyncOffline) {
 // Because setOfflineMode() is a no-op when the device
 // is offline, don't allow user to switch modes when
offline.
 Toast.makeText(MainActivity.this,
 "No internet connection. " +
 "You can't switch the Work Offline mode on
or off when " +

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-22

 "there isn't an internet connection.",
 Toast.LENGTH_SHORT).show();
 } else {
 // Device is not in "real" offline mode.
 // Switch from work online to work offline, or switch from
work offline to work online
 // setOfflineMode(true) sets SyncNetworkStatus to
SyncOfflineTest
 // setOfflineMode(false) sets SyncNetworkStatus to
SyncOnline
 // (if the device is actually online)
 synchronization.setOfflineMode(syncNetworkStatus ==
SyncNetworkStatus.SyncOnline);
 }
 } catch (Exception e) {
 // Handle error
 }
}

4. Add code to the onCreate method to set the switch according to the current mode.

Switch workOfflineSwitch = (Switch)
findViewById(R.id.workOfflineSwitch);

workOfflineSwitch.setChecked(
 synchronization.getNetworkStatus() ==
SyncNetworkStatus.SyncOfflineTest);

5. Add code to display a list of the offline edits. You use the Synchronization
loadOfflineResources method to get the list. In this example, the mobile app
accesses only the incidents endpoint, and all the items in the offline edits list are of
type MobileObject.

//Display a list of offline edits
synchronization.loadOfflineResources(new SyncLocalLoadingCallback() {
 @Override
 public void onSuccess(List<MobileResource> resources) {
 // This list contains all the MobileResource objects in the
local edit cache
 // In this app, the only mobile endpoint is for incidents
 // So, only MobileObjects are in the edit cache
 for (MobileResource resource : resources) {
 // Put your code to add the incident to the display list
here
 }
 }

 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
});

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-23

6. Add a button to discard all offline edits. Use code like the following to discard the
edits.

final Button mDiscardEdits = (Button)
findViewById(R.id.buttonDiscardOfflineEdits);

mDiscardEdits.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Discard all offline edits:
 //Deletes all resources in the edit cache,
 //but keeps all resources in the local cache as is
 synchronization.discardOfflineUpdates(new
SyncDiscardOfflineResourceCallback() {
 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
 });
 }

});

7. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's reloadResource
method with the discardOfflineUpdates parameter set to true and the
reloadFromService parameter set to false.

In the following code example, arraySelectedResourcesToDiscardOfflineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

try {
 for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.length; index++) {

 MobileResource mobileResource =
arraySelectedResourcesToDiscardOfflineEdits[index];
 mobileResource.reloadResource(true, false, new
MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 if (exception != null) {
 // handle exception here
 } else {
 // handle success here
 }
 }
 });

 }
} catch (Exception ex) {
 // handle exception here
}

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-24

iOS Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud, Enterprise iOS
SDK Reference.

Tip:

The client SDK download page contains an examples zip, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the iOS Synchronization Library
1. Ensure that the correct policies are in place for the mobile backend and API

endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

2. As with all mobile apps, instantiate OMCMobileManager, and then instantiate
OMCMobileBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

3. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

OMCSynchronization* synchronization = [mbe synchronization];
[synchronization initialize];

Fetching Resources
After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1. To access an endpoint, instantiate OMCMobileEndpoint for that endpoint. This
example instantiates an endpoint for /mobile/custom/incidentreport/
incidents.

// open Endpoint
OMCMobileEndpoint* endpoint = [
 synchronization openEndpoint:OMCMobileObject.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-25

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index

2. (Optional) Add objects or files to the collection. This example adds an object.

OMCMobileObject* newObject = [mobileEndpoint createObject];
 // Set properties
 [newObject addOrUpdateJsonProperty:@"title"
propertyValue:@"incident 213"];

 [newObject saveResourceOnSuccess:^(id mobileObject) {

 } OnError:^(NSError *error) {

 }];

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• OMCFetchObjectBuilder

• OMCFetchObjectCollectionBuilder

• OMCFetchFileBuilder

Here’s an example of creating a fetch builder for a collection.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

In this example, we want to get all the incidents for the signed-in technician (which
is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

[builder withParamName:@"technician" paramValue:username];

You can call withParamName as many times as you need to specify all the query
parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Oracle-Mobile-Diagnostic-
Session-ID header. The diagLogFilterTag string variable has been set to a value
that uniquely identifies requests that are made using this fetch builder.

[builder setRequestHeaders:[NSDictionary dictionaryWithObjectsAndKeys:
diagLogFilterTag, @"Oracle-Mobile-Diagnostic-Session-ID", nil]];

5. Use the builder to execute the fetch.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-26

 // This function is called when the request finishes with an error
}];

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or use
addOrUpdateJsonProperty.

OMCMobileObject* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or use the addOrUpdateJsonProperty method
[incident addOrUpdateJsonProperty:@"status" propertyValue:@"completed"];

7. Use one of the OMCMobileObject save methods to save the changes on the
server.

[incident saveResourceOnSuccess:^(id object){
 // Block that is called after the request finishes successfully
 ...
}OnError:^(NSError *error){
 // Block that is called after the request finishes with an error
 ...
}];

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

8. Use one of the OMCMobileObject delete methods to delete an object.

[incident deleteResourceOnError:^(NSError *error) {

}];

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Fetching Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as mobileResource objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the mobileResource objects in the local cache because the objects are just blobs
of data. The solution is to use a custom MobileObject. When you do this, the local

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-27

cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We’ll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom MobileObject class, you can use the
fetch builder’s queryForProperty method to specify the filter to use in the local cache.
Note that this method is for filtering JSON objects from the local cache. It doesn’t
affect the way that the Synchronization library retrieves results from the server.
Whenever you execute the fetch builder, the library first looks at the fetch policy setting
to determine whether to refresh the local cache. If the policy specifies that it must
refresh the local cache from the server, then it retrieves all the objects, regardless of
the filter that you specify using the queryForProperty method. Regardless of the fetch
policy and whether it refreshed the local cache, the library then uses the
queryForProperty method to filter the data in the local cache, and return the filtered
results. That is, regardless of whether the device is online or offline, and regardless of
whether the library fetches data from the server or uses the local cache, the
queryForProperty method filters the results based on the query property and value.

1. Create a custom mobile object class that extends OMCMobileObject, define all the
properties that you need for your custom mobile object, and synthesize those
properties. Here’s an example of the incident.h header file for an Incident class.

#import <Foundation/Foundation.h>
#import "OMCMobileObject.h"

@interface Incident : OMCMobileObject {

}

// Properties
@property (nonatomic, retain) NSNumber* id
@property (nonatomic, retain) NSString* title;
@property (nonatomic, retain) NSString* customer;
@property (nonatomic, retain) NSString* status;
@property (nonatomic, retain) NSString* priority;
@end

2. When you initialize the mobile backend's synchronization service, use the
initializeWithMobileObjectEntities method to create database entities for the
Incident custom class.

NSArray* entities = [NSArray arrayWithObjects:[Incident class], nil];
[synchronization initializeWithMobileObjectEntities:entities];

You can include more than one custom object in the initialization.

3. Open the endpoint for the custom class.

OMMobileEndpoint* endpoint = [
 synchronization openEndpoint:Incident.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-28

4. When you create the fetch builder, use the queryForProperty method to add a
query to filter the results by status.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

[builder queryForProperty:@"status"
 comparision:Equals
 compareWith:@"pending"];

5. Fetch the data.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or you can access the
properties directly.

Incident* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or you can access the property directly
incident.status = @"completed";

7. Save and delete objects the same way you save and delete OMCMobileObject
objects.

//Save the object
[incident saveResourceOnSuccess:^(id object){

}OnError:^(NSError *error) {

}];
...
// Delete the object
[incident deleteResourceOnError:^(NSError *error) {

}];

Specifying Which Resources To Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-29

others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the OMCMobileResource class’ pinResource
method to set a resource’s priority (OMCMobileFile, OMCMobileObject, and
OMCMobileObjectCollection inherit from this class).

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 [mobileObjectCollection pinResource:High];
 // Get all the objects from the collection
 NSArray* objects = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

Setting a Resource’s Synchronization Policies Programmatically
When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Changing a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

2. Create an OMCSyncPolicy object, and then set the policies that you want to
override. This example overrides all the policies:

OMCSyncPolicy* policy = [[OMCSyncPolicy alloc] init];
policy.fetch_Policy = FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLINE;
policy.expiration_Policy = EXPIRATION_POLICY_EXPIRE_ON_RESTART;
policy.eviction_Policy = EVICTION_POLICY_EVICT_ON_EXPIRY_AT_STARTUP;
policy.update_Policy = UPDATE_POLICY_QUEUE_IF_OFFLINE;
policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;
policy.no_cache = false;

3. Set the builder’s synchronization policy.

[builder setSyncPolicy:policy];

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-30

Changing a Resource Object’s Synchronization Policy

Sometimes, you’ll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object. In this example,
anIncident is an OMCMobileObject.

OMCSyncPolicy* policy = [anIncident getCurrentSyncPolicy];

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.
All other policies remain as is.

policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResource (to perform an add or update). For a delete, you
must call reloadResource for the policy change to take affect before you call
deleteResource.

[anIncident setSyncPolicy:policy];

Detecting and Handling Conflicts
In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLICT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the library automatically sends
Mary’s offline edit to the server. The server responds with a 412 Precondition Failed
status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
the library makes available both the modified object (from the offline edits in the local
cache), and the current server version to enable you to handle the conflict in your
code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-31

• To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the offlineResourceSynchronized method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

• To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResourceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the UI with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the OMCSynchronization offlineResourceSynchronized
method to detect conflicts after the library has finished synchronizing the cache. In this
example, the only mobile endpoint that the mobile app accesses is the incidents
endpoint. This example shows how to handle both custom and generic MobileObject
objects.

 [sync offlineResourceSynchronized:^(NSString *uri, id mobileResource) {

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache after offline
synchronization ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

 Incident* anIncident = mobileResource;

 NSLog(@"Offline edits for %@ finished %@.", anIncident.title,
result);

 // Incident has been synchronized with the service object.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-32

 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 // When mobileResource is a custom MobileObject class,
 // and hasConflicts is true,
 // then both the MobileObject class and its jsonObject
property
 // contain the local edited copy and the
 // jsonObjectPersistentState property contains the server copy
 }
 else {

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Offline edits for resource %@ finished %@",
 aMobileResource.uri, result)

 // OMCMobileObject or OMCMobileFile has been synchronized
 // with the service object.

 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 // When mobileResource is an OMCMobileObject,
 // and hasConflicts is true,
 // then its jsonObject property contains the local edited copy
and
 // its jsonObjectPersistentState property contains the server
copy
 }
 }];

Detecting Conflicts When the Library Updates the Cache

Here’s an example of using the OMCSynchronization cachedResourceChanged method
to detect conflicts whenever a cached resource is updated either from new data from
the service or an update or delete from the mobile app. In this example, the only
mobile endpoint that the mobile app accesses is the incidents endpoint. This
example shows how to handle both custom and generic MobileObject objects.

 [sync cachedResourceChanged:^(NSString *uri, id mobileResource) {

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineUpdates) {
 result = @"with offline update";
 }
 else if (((OMCMobileResource*)

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-33

mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

 Incident* anIncident = mobileResource;

 NSLog(@"Cache changes for %@ finished %@.", anIncident.title,
result);

 // Custom object changed in local cache. You can show a pop up
 // or reload the resources in the UI, such as in the main
thread.
 }
 else {

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Cache changes for %@ finished %@.",
 aMobileResource.uri, result);
 // OMCMobileObject, OMCMobileFile, or
OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }];

Reviewing and Discarding Offline Edits
You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

• Discard a resource’s offline edits.

The OMCSynchronization class provides the methods for working offline, and for
reviewing and discarding offline edits. As shown in the following steps, you use its
GetNetworkStatus and setOfflineMode methods, along with the SyncNetworkStatus
constants to switch the work-offline mode on and off. You use its
loadOfflineResourcesOnSuccess method to get all the offline edits that haven’t been
synchronized with the server, and its discardOfflineUpdatesOnError method to

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-34

discard all offline edits. You also can discard a specific resource’s offline updates by
calling the resource’s reloadResource method.

1. Add a button to switch between work-online mode and work-offline mode. Use
code like the following to switch modes when the user clicks the button. You use
the OMCSynchronization GetNetworkStatus method to determine the current
network status, and the setOfflineMode method to switch the work-offline mode
on and off. When you call setOfflineMode(false), the library synchronizes all
offline edits with the server automatically. Note that calling setOfflineMode when
the device isn’t connected to the internet has no effect.

- (IBAction) switchOfflineMode:(id)sender {

 // Get current status
 SyncNetworkStatus networkStatus = [synchronization
getNetworkStatus];

 if (networkStatus == SyncOffline) {

 UIAlertController *myAlertController = [UIAlertController
alertControllerWithTitle:@"Sorry!"
 message:@"You can't switch to Work Offline mode when there
isn't an internet connection."
 preferredStyle:UIAlertControllerStyleAlert];
 UIAlertAction* okBtn = [UIAlertAction
 actionWithTitle:@"OK"
 style:UIAlertActionStyleDefault
 handler:^(UIAlertAction * action)
 {
 [myAlertController
dismissViewControllerAnimated:YES

 completion:nil];
 }];
 [myAlertController addAction: okBtn];
 [self presentViewController:myAlertController
 animated:YES
 completion:nil];
 }
 else {

 [omcSynchronization setOfflineMode:(networkStatus ==
SyncOnline)];

 // Get updated status
 networkStatus = [omcSynchronization getNetworkStatus];

 if (networkStatus == SyncOfflineTest) {

 lblNetworkStatus.text = @"Working offline.";

 }
 else {

 lblNetworkStatus.text = @"";

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-35

 }
 }
}

2. Add code to display a list of the offline edits. You use the OMCSynchronization
LoadOfflineResourcesAsync() method to get the list. In this example, the mobile
app accesses only the incidents endpoint and all items in the offline edits list are of
type MobileObject.

[omcSynchronization loadOfflineResourcesOnSuccess:^(NSArray
*mobileResources) {

 for (OMCMobileResource* aResource in mobileResources) {
 // Put your code to add the incident to the display list
here
 }

} onError:^(NSError *error) {

 // Handle error here.

}];

3. Add a button to discard all offline edits. Use code like the following to discard the
edits.

// Discard all offline edits only.
// Resources remain in the cache with their persistent state (that is,
the server version).
[omcSynchronization discardOfflineUpdatesOnError:^(NSError *error) {
 // Handle error here
}

4. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's reloadResource
method with the discardOfflineUpdates parameter set to YES and the
reloadFromService parameter set to NO.

In the following code example, arraySelectedResourcesToDiscardOfflineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.count; index++) {

 OMCMobileResource* aResource =
[arraySelectedResourcesToDiscardOfflineEdits objectAtIndex:index];

 [aResource reloadResource:YES
 reloadFromService:NO
 onSuccess:^(id mobileResource) {

 // Offline edits succesfully discarded from a
resource.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-36

 }];
}

Making Custom APIs Synchronizable
If your mobile app uses the Synchronization library to access a custom API offline,
then that API should follow the sync-compatibility guidelines and should return data in
a sync-compatible format. You also need to consider whether to configure
synchronization policies for some or all of its resources.

Designing a Synchronization-Compatible API

As described in API Design Considerations, the custom API should follow these
guidelines to be synchronization compatible:

• The resource name should alternate between plural nouns and singular resource
identifiers (rid). For example: /items/{rid}/subitems/{rid}/.

• For pagination, use the limit and offset query parameters so that the
Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, then you don’t need to specify these parameters.

• Use the orderBy query parameter to specify sorting. For example:
orderBy=propA,propB:desc,propC:asc.

• The API must contain all the necessary endpoints to support data synchronization.
For example, if you have an endpoint that returns a collection, then you must also
have an endpoint that returns a specific item in the collection. See Endpoint
Requirements for Sync Compatibility.

Implementing a Sync-Compatible API

As detailed in Implementing Synchronization-Compatible APIs, the custom API
implementation should follow these guidelines:

• For GET requests, use the custom code SDK’s setItem and addItem methods in
your API’s custom code to return data in a format that enables the Synchronization
library to more easily cache and synchronize the data in the client’s local cache.
Responses must include the Oracle-Mobile-Sync-Resource-Type header, and,
for single items, the ETag header.

• For PUT and DELETE requests, your code must honor the If-Match header as
follows:

– If the header contains an ETag value, and that value doesn’t match the ETag
on the server, then the code must not update or delete the item and must

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-37

return a 412 HTTP response status (precondition failed) to indicate that the
ETag does not match the server-side object’s ETag.

– If the header contains a value of * (asterisk), then the server-side's object
must be replaced by the request object (or deleted for a DELETE request).

• For PUT requests, responses must include the Oracle-Mobile-Sync-Resource-
Type and ETag headers. If the item was added, then it must include the Location
header. For example Location: /mobile/custom/incidentreport/incidents/1.

• For POST requests, responses must include the Oracle-Mobile-Sync-Resource-
Type, Location, and ETag headers.

• When you need to control data caching from the server side, use the Oracle-
Mobile-Sync-Evict, Oracle-Mobile-Sync-Expires, and Oracle-Mobile-Sync-No-
Store headers to override client side configuration.

Configuring Synchronization Policies for a Custom API

As described in Defining Synchronization Policies Using a Configuration File, you use
the configuration file to set the synchronization policies for each mobile backend that
your mobile app accesses. In addition to setting the overall (default) synchronization
policies for each mobile backend, consider the custom API’s resources that you’ll
access, and determine which, if any, need special synchronization policy configuration.
Say, for example, that your default fetch policy is
FETCH_FROM_SERVICE_ON_CACHE_MISS. The custom API might have a resource for
which the mobile app always needs the most current data. In that case, you can use
the configuration file to specify the FETCH_FROM_SERVICE_IF_ONLINE fetch policy for
that specific resource. To learn about configuring synchronization policies on a
resource basis, see the Resource-Level Configuration section in Synchronization
Configuration File Structure. Note that you can define synchronization policies at the
default level and the resource level, and that you can override these programmatically,
To learn more, see Synchronization Policy Levels and Precedence.

Synchronization Policies

The Synchronization library uses several types of synchronization policies:

• Conflict Resolution Policies define how to handle offline edits if the server’s
version changed after the initial data was fetched from the server. For example, if
another client updated a resource, you might want the app’s updates to overwrite
the other client’s update.

• Eviction Policies designate when to delete expired resources in the local cache.
For example, you might want the app to delete all expired resources when the app
starts. Expiration and eviction policies work together to keep stale resources from
cluttering the cache. You can also use them to prevent users seeing out-of-date
data and, by inference, potentially harmful data. Note that these policies apply only
to resources in the local cache, not to server-side resources.

• Expiration Policies define how and when the Synchronization library marks
resources stored in the local cache as out-dated or stale. For example, you might
want all the resources to expire when the app is restarted so that the app fetches
the latest version of a resource from the server the first time the app uses it in that
session. The expiration policy only marks data, allowing you the option to display
stale data if the app is offline. To delete data, use the eviction policy.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-38

• Fetch Policies define how the Synchronization library determines whether to
retrieve resources from the local cache or from the server. For example, if the
resource changes frequently, you might choose to always retrieve it from the
server unless the client is offline.

• Update Policies define what to do if the app modifies resources when the device is
offline. For example, you might want the app to put all changes that are made
while the device is offline in a queue and then synchronize the changes with the
server when the device goes online again.

In addition to configuring the synchronization policies, you also can configure the
cache settings for a mobile backend. You can configure the maximum size of the
cache and you can specify when and how to perform background cache refreshes.
See Synchronization Configuration File Structure.

You can specify synchronization policies for custom API resources at several levels:

• In the app’s configuration file, you can specify default synchronization policies for
all custom API endpoints that the library accesses through a specific mobile
backend.

• In the app’s configuration file, you can specify synchronization policies for specific
custom API endpoints.

• In the custom API implementation, you can specify a resource’s synchronization
policies in a response header.

• In the app, you can specify a resource’s synchronization policies when you fetch
the data.

• In the app, you can specify a resource’s synchronization policies when you add,
update, or delete the resource.

When the Synchronization library fetches a resource from the server, it sets the
resource's synchronization policies according to your configuration, and then saves
those policies with the resource. When you configure a policy at more than one level,
the library uses precedence rules to determine which policy level to use. For example,
a response-header policy setting takes precedence over a fetch builder’s policy
setting. If a policy isn’t set at the response header or fetch builder level, then the library
uses the policy’s setting from the configuration file. First, the library looks for the policy
setting for the path that matches the fetch builder's endpoint. When there isn’t a policy
for the endpoint, then it uses the configuration file’s default policy. If a policy isn’t
specified at any level, then the Synchronization library’s hard-coded default policy is
used. The actual rules are somewhat more complex than summarized here. For
complete details see Synchronization Policy Levels and Precedence.

When the library does an automatic refresh, it always uses the
FETCH_POLICY_FETCH_FROM_SERVICE fetch policy. For all other policies, the refresh
process honors the response header values, if present, and, when not present, it uses
the policies that were saved with the resource.

When you fetch a resource and the library uses the resource from the cache instead of
from the server, then the resource's policies are not necessarily the policies that you
configured for the object's endpoint. For example, if the resource was fetched using a
fetch collection builder, then the resource's policies are the collection endpoint’s
policies and not the object’s endpoint policies. Thus, you can't be sure what the
resource's policies are. A cached resource’s policies depend on whether it was
originally fetched from the server as part of a collection, as an object, or as part of a
refresh.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-39

Defining Synchronization Policies Using a Configuration File shows how to configure
default policies for the mobile backend and for endpoints (paths). Defining
Synchronization Policies and Cache Settings in a Response Header shows how a
custom API can use headers to control whether the response is cached, when it
should expire in the local cache, and when it should be evicted. The following platform-
specific topics show how to get and change a fetch builder’s policies and get and
change a mobile resource’s policies programmatically:

• Android: Setting a Resource’s Synchronization Policies Programmatically

• iOS: Setting a Resource’s Synchronization Policies Programmatically

Video: Introduction to the Data Offline & Sync Policies
If you want a high-level understanding of how to use synchronization policies to drive
data offline and synchronization capabilities, take a look at this video:

Video

Synchronization Policy Options
Here are the Synchronization library’s policy options for each policy type.

Conflict Resolution Policies
Conflict resolution policies define what to do if, when updating a resource, it’s
discovered that the server version was updated after it was last requested. Say, for
example, that the client app retrieved a resource on startup. Soon after, someone else
updated the resource on the server. If the resource is then updated on the client app,
you might want the client updates to overwrite the updates made by someone else.

Policy Description

CLIENT_WINS Instructs the Synchronization library to
overwrite the server’s version with the local
version regardless of whether there is a
conflict.

PRESERVE_CONFLICT Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is kept in the offline edits in the local cache,
and the mobile app is responsible for handling
the conflict, such as programmatically merging
the two versions.

SERVER_WINS Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is removed from the offline edits in the local
cache.

Eviction Policies
Eviction policies designate when expired resources in the local cache will be deleted.
For example, you could set the eviction policy to EVICT_ON_EXPIRY_AT_STARTUP so
expired items are deleted when the app starts. Keep in mind that if a user didn’t use

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-40

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13340

the app for several days and it’s offline when it starts, the local cache could get
cleared.

These policies apply to resources in the local cache only, not to server-side resources.

Policy Description

EVICT_ON_EXPIRY_AT_STARTUP Instructs the Synchronization library to delete
expired resources from the local cache when
the client application restarts, and update the
local cache with the server copy the next time
it's called by the client application. This can
result in an empty cache, but this is
appropriate if the latest resource is required.

MANUAL_EVICTION Instructs the Synchronization library that
resources can’t be deleted from the local
cache automatically. To evict resources
manually, use an API.

Expiration Policies
Expiration policies define how and when the Synchronization library marks resources
stored in the local cache as out-dated or stale. For example, if your resources change
frequently, then you can set the policy to EXPIRE_ON_RESTART to ensure that the local
cache gets cleared periodically, and thus does not become too large.

Policy Description

EXPIRE_ON_RESTART Instructs the Synchronization library to mark a
resource as expired when the client
application restarts. The Synchronization
library updates the local cache with the latest
version from the server the next time it's called
by the client application.

EXPIRE_AFTER Instructs the Synchronization library to mark
resources as expired after the specified time
(in seconds) set for the expireAfter
parameter. When you use the EXPIRE_AFTER
policy, you must set a value for the
expireAfter property.

NEVER_EXPIRE Instructs the Synchronization library that
resources in the local cache can’t be marked
as expired.

Fetch Policies
Fetch policies define how the Synchronization library determines whether to retrieve
resources from the local cache or from the server. For example:

• If your data doesn’t change often, like a contact’s photo, then a good choice for the
fetch policy is FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY with an
EXPIRE_AFTER expiration policy set to a suitable timeout.

• If data will change very frequently and you always want the most current data, but
cached data is acceptable if the user is offline, then use
FETCH_FROM_SERVICE_IF_ONLINE.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-41

Note that setting the noCache property to true in the configuration file, as described in
Synchronization Configuration File Structure, tells the Synchronization library to ignore
fetch policies and to not add data to the local cache.

Policy Description

FETCH_FROM_CACHE Instructs the Synchronization library to fetch
resources from the local cache only, not from
the server. Because the Synchronization
library retrieves resources directly from the
cache, this policy can be carried out whether
the client application is online or offline.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_FROM_SERVICE Instructs the Synchronization library to always
fetch resources directly from the server, not
from the local cache. The library can only
apply this policy when the client application is
online.

If the app is offline, the Synchronization library
returns null.

FETCH_FROM_SERVICE_IF_ONLINE Instructs the Synchronization library to fetch
resources from the server when the client
application is online, and to fetch them from
the local cache when the app is offline.

FETCH_FROM_SERVICE_ON_CACHE_MISS Instructs the Synchronization library to fetch
resources from the local cache if it is present.

If a collection is empty, or if the requested
object isn’t in the local cache, then the
Synchronization library fetches it from the
server. If the app is offline, then the
Synchronization library returns null.

FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_
EXPIRY

Instructs the Synchronization library to fetch
resources from the local cache if they are
present and not expired. Make sure to set
expireAfter parameter to a suitable time
period.

If a collection is empty or has expired, or if the
resource isn’t in the local cache or has
expired, then the Synchronization library
fetches it from the server. If the app is offline,
then it returns null.

FETCH_FROM_CACHE_SCHEDULE_REFRESH Instructs the Synchronization library to fetch
resources from the local cache and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache, then the
Synchronization library returns null.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-42

Policy Description

FETCH_WITH_REFRESH Instructs the Synchronization library to fetch
resources from the local cache if they exist
and are not expired, and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache or has
expired, then the Synchronization library
fetches it directly from the server. If the app is
offline, then it returns null.

Update Policies
Update policies define what the app should do if a resource is updated when the client
app is offline.

Policy Description

UPDATE_IF_ONLINE If the client app is offline when the update
request is sent, then the Synchronization
library returns an error.

QUEUE_IF_OFFLINE If the client app is offline when the update
request is sent, then the Synchronization
library queues the operation and updates the
local cache when the client app is back online.

Video: Deep-Dive into the Data Offline & Sync Policies
If you want an overview of the ways you can configure synchronization policies, which
methods take precedence, and the outcomes of the various policies, take a look at this
video:

Video

Synchronization Policy Levels and Precedence
As described in Synchronization Policy Options, there are several policy types that you
can configure for custom APIs. You can configure these at the following levels, which
are listed in order of precedence, from highest to lowest. Note that the order of
precedence applies to both fetch and save calls to a mobile endpoint and
requestWithURI calls to a synchronization object.

• Response-level policies: The server can use HTTP response headers to transmit
expiration and eviction policies, as described in Defining Synchronization Policies
and Cache Settings in a Response Header. The server also can use a header to
instruct the client to not cache a response. These policies take precedence over
policies set for all other levels.

• Request-level policies: For requests made through an OMCMobileEndpoint, you
can call the fetch builder’s setPolicy method to set a policy at the request level.
For requests made using the requestWithURI method, you can use the
SyncPolicy object to set policies. Request-level policies take precedence over
policies set at the resource and mobile-backend levels.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-43

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13341

• Resource-level policies: In the configuration file, you can define a set of policies
and associate the set with a resource path (URL). You can associate the set with a
specific endpoint, or you can use wildcard characters to associate the set with a
resource hierarchy (/* applies to all resources at the same level, and /** applies
to all resources at the same level and any nested levels), as described later in this
section. These policies take precedence over policies that are set at the mobile-
backend level.

When a policy type is defined for more than one resource level, then the
precedence is:

– A synchronization policy type that is defined for a specific endpoint takes
precedence over the same policy type setting for a path that has wildcard
characters. For example, if the URL is www.baseuri.com/mobile/custom/
incidentreport/incidents, and an eviction policy is set for both /mobile/
custom/incidentreport/incidents and /mobile/custom/incidentreport/
incidents/*, then the eviction policy for /mobile/custom/incidentreport/
incidents takes precedence.

– Policies that are defined for a path that has the /* wildcard take precedence
over policies for a path with the /** wildcard. For example, if the URL is /
mobile/custom/incidentreport/incidents/1, and an eviction policy is set
for both /mobile/custom/incidentreport/incidents/* and /mobile/custom/
incidentreport/incidents/**, then the eviction policy for /mobile/custom/
incidentreport/incidents/* takes precedence.

For information about setting resource-level policies, see Synchronization
Configuration File Structure.

• Mobile backend-level default policies. You can override the default policies at the
request, response, and resource levels. These settings take precedence over the
Synchronization library default settings. For information about setting mobile
backend-level default policies, see Synchronization Configuration File Structure.

• Synchronization library default settings: For custom APIs, if a policy is not set at
the request, resource, or mobile-backend level, then the Synchronization library
default setting is used.

Here are the default policy settings:

Setting Synchronization Library Default Value

conflictResolutionPolicy PRESERVE_CONFLICT

evictionPolicy MANUAL_EVICTION

expirationPolicy EXPIRE_ON_RESTART

expireAfter Maximum integer value

fetchPolicy FETCH_FROM_SERVICE_IF_ONLINE

noCache false

updatePolicy QUEUE_IF_OFFLINE

Defining Synchronization Policies Using a Configuration File
You can define the synchronization policies for a custom API’s resource
programmatically, and you can use a configuration file to define the synchronization

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-44

policies for a mobile backend and the custom API resources that it uses. You typically
define the policies in the configuration file for the following reasons:

• You can change a policy without needing to change code.

• You can view all your policies in one place.

• If you access the same resource from several places in your code, you can ensure
that all accesses use the same policies.

The name of the configuration file differs by platform:

• Android: /assets/oracle_mobile_cloud_config.xml

• iOS: OMC.plist

Synchronization Configuration File Structure
To configure the Synchronization library for the custom API resources that are
accessed by a mobile backend, add the elements described in this section to its
synchronization element in the configuration file.

The following illustration shows the synchronization section from an OMC.plist file for
iOS.

Cache Settings

To configure the cache settings for the mobile backend, add these elements in any
order directly under the mobile backend’s synchronization element. These settings
affect both custom API and storage resources.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-45

Key Description Default

maxStoreSize The maximum size of the local
cache in megabytes. The
Synchronization library stops
storing resources when it
reaches this limit.

100

periodicRefreshPolicy Names the policy that instructs
the Synchronization library
when to refresh cached
resources. Use this attribute
for background refreshes. You
can set this to one of the
following options:

• PERIODIC_REFRESH_POL
ICY_REFRESH_NONE

• PERIODIC_REFRESH_POL
ICY_REFRESH_EXPIRED_
ITEM_ON_STARTUP

• PERIODIC_REFRESH_POL
ICY_PERIODICALLY_REF
RESH_EXPIRED_ITEMS

PERIODIC_REFRESH_POLICY
_REFRESH_NONE

periodicRefreshInterval Sets the interval, in seconds,
for refreshing cached
resources in the background.
The interval should be
appropriate to the policy
named by the
periodicRefreshPolicy
attribute.

When the
periodicRefreshPolicy is
PERIODIC_REFRESH_POLICY
_PERIODICALLY_REFRESH_E
XPIRED_ITEMS, then the
default is 120.

Here’s an example of adding cache settings to an OMC.plist file.

<key>synchronization</key>
<dict>
 <key>maxStoreSize</key>
 <integer>100</integer>
 <key>periodicRefreshPolicy</key>
 <string>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_ITEMS</
string>
 <key>periodicRefreshInterval</key>
 <integer>120</integer>

Synchronization Policy Settings

You can add the following settings at the resource and mobile-backend default levels.
These are explained in Synchronization Policy Options.

• conflictResolutionPolicy

• expirationPolicy

• expireAfter

• evictionPolicy

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-46

• fetchPolicy

• noCache

Resource-Level Configuration

To configure resource-level synchronization policies for custom APIs, first add a
policies node to the sychronization element.

Next, configure the policies for the specific resources:

• IOS: Add dictionary items to the policies array.

• Android: Add policy elements under policies.

You use the path element to identify the resource to associate the policy set with. You
can use the path to specify a policy set for a specific endpoint, or you can use wildcard
characters to associate the policy set with a hierarchy of resources:

Note:

You can begin your path with or without the forward slash (/).

• If there are no wildcard characters, then the request URL must match the string
exactly. For example, if <path> is set to /mobile/custom/incidentreport/
incident then www.baseuri.com/mobile/custom/incidentreport/incident
matches, but www.baseuri.com/mobile/custom/incidentreport/incidents does
not.

• /* matches 0 or more characters after the value in <Path> but does not include
lower resources in the hierarchy in the wildcard matching. For example, if <Path>
is set to /mobile/custom/incidentreport/incidents/* then both
www.baseuri.com/mobile/custom/incidentreport/incidents/report and
www.baseuri.com/mobile/custom/incidentreport/incidents/id match, but
www.baseuri.com/incidentreport/incidents/id/attachments does not.

• /** matches 0 or more characters after the value in <Path> including resources
lower in the hierarchy. For example, if <Path> is set to /mobile/custom/
incidentreport/incidents/**, then the following match:

– www.baseuri.com/mobile/custom/incidentreport/incidents

– www.baseuri.com/mobile/custom/incidentreport/incidents/id

– www.baseuri.com/mobile/custom/incidentreport/incidents/id/
attachments

Here’s an example of setting resource-level policies in an OMC.plist file.

<key>synchronization</key>
<dict>
 ...
 <key>policies</key>
 <array>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</string>
 <key>fetchPolicy</key>

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-47

 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 ...
</dict>

Mobile Backend-Level Configuration

To define mobile backend-level synchronization policies, add a defaultPolicy
element. Then, for each type you want to configure, add a dictionary item for iOS, and
add a child element for Android.

The next sections show examples for each platform.

Android Example Configuration File

The following example for Android is an excerpt from the
oracle_mobile_cloud_config.xml file.

<mobileBackends>
 <mobileBackend>
 ...
 <synchronization>
 <maxStoreSize>100</maxStoreSize>

<periodicRefreshPolicy>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED
_ITEMS</periodicRefreshPolicy>
 <periodicRefreshInterval>120</periodicRefreshInterval>
 <policies>
 <policy>
 <path>/mobile/custom/incidentreport/technicians/**</path>
 <fetchPolicy>FETCH_FROM_SERVICE_IF_ONLINE</fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>MANUAL_EVICTION</evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 </policy>
 <policy>
 <path>/mobile/custom/incidentreport/incidents</path>
 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</
fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</
evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 <updatePolicy>QUEUE_IF_OFFLINE</updatePolicy>
 <expireAfter>300</expireAfter>
 </policy>
 </policies>

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-48

 <defaultPolicy>
 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS</fetchPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</evictionPolicy>
 <expirationPolicy>EXPIRE_AFTER</expirationPolicy>
 <expireAfter>600</expireAfter>
 <conflictResolutionPolicy>CLIENT_WINS</
conflictResolutionPolicy>
 <noCache>false</noCache>
 </defaultPolicy>
 </synchronization>
 </mobileBackend>
</mobileBackends>

iOS Example Configuration File

The following example XML for iOS is an excerpt from the OMC.plist file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>mobileBackends</key>
 <dict>
 <key>myBackend/1.0</key>
 <dict>
 <key>synchronization</key>
 <dict>
 <key>maxStoreSize</key>
 <integer>100</integer>
 <key>periodicRefreshPolicy</key>

<string>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_ITEMS</string>
 <key>periodicRefreshInterval</key>
 <integer>120</integer>
 <key>policies</key>
 <array>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/incidents</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</string>
 <key>expirationPolicy</key>

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-49

 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>conflictResolutionPolicy</key>
 <string>PRESERVE_CONFLICT</string>
 <key>updatePolicy</key>
 <string>QUEUE_IF_OFFLINE</string>
 </dict>
 </array>
 <key>defaultPolicy</key>
 <dict>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_AFTER</string>
 <key>expireAfter</key>
 <integer>600</integer>
 <key>conflictResolutionPolicy</key>
 <string>CLIENT_WINS</string>
 <key>updatePolicy</key>
 <false/>
 </dict>
 </dict>
 ...
</dict>
</plist>

Defining Synchronization Policies and Cache Settings in a Response Header
When you implement a custom API, you can fine tune caching for a response by
defining synchronization policies or basic cache settings in response headers.

To specify the basic synchronization and cache settings for a REST resource use the
following optional HTTP Headers:

Header Description

Oracle-Mobile-Sync-
No-Store

If set to true, the client does not cache the returned resource.

Oracle-Mobile-Sync-
Evict

Specifies the date and time after which the expired resource
should be deleted from the local cache. Uses RFC 1123 format,
for example EEE, dd MMM yyyyy HH:mm:ss z for
SimpleDateFormat.

The following synchronization policies are set for the resource
object that is created from the response:

• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP
• Expiration policy: EXPIRE_AFTER with the expireAfter

property set to date and time provided in the header value

.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

9-50

Header Description

Oracle-Mobile-Sync-
Expires

Specifies when the returned resource will be marked as expired.
Uses RFC 1123 format, for example EEE, dd MMM yyyyy
HH:mm:ss z for SimpleDateFormat.

Tracking Cache Hits with the Synchronization Library
The Synchronization library tracks cache hits and detects if the returned result came
from the cache. Use these OMCSynchronization methods to get data about cache hits
and misses:

• cacheHitCount: Returns the number of cache hits.

• cacheMissCount: Returns the number of cache misses.

How Synchronization Works with the Storage APIs
When your mobile app accesses the Storage APIs, the client SDK automatically works
with the Storage library to refresh and synchronize the storage objects in the local
cache. You don’t need to add any code to enable synchronization with storage.

The client SDK enforces the following synchronization policies for the Storage APIs:

• Conflict resolution policy: SERVER_WINS

• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP

• Expiration policy: EXPIRE_AFTER 86400 seconds (24 hours).

You can use the Sync_CollectionTimeToLive environment policy to override the
number of seconds after which a Storage object expires. This value is conveyed to
the Storage library through the Oracle-Mobile-Sync-Expires response header.
See Offline Data Storage.

• Fetch policy: FETCH_FROM_SERVICE_IF_ONLINE

• Update policy: QUEUE_IF_OFFLINE

See Synchronization Policy Options for detailed descriptions of these synchronization
policies.

Just as with the custom API resources, you can use the configuration file to override
the default cache settings for storage resources on a mobile backend basis.

The default cache settings are:

• Maximum storage size in the local cache: 100 MB

• Periodic refresh policy: Don’t automatically refresh cached resources periodically

To learn how to configure the cache settings, see the Cache Settings section in
Synchronization Configuration File Structure.

Chapter 9
How Synchronization Works with the Storage APIs

9-51

10
Location

Use the Location API to access details about location devices, places, and assets that
have been registered in OMCe.

What Can I Do With Location?
Users today expect information to be presented based on their current situation and
individual needs and preferences. One of the most important contextual data points is
location. The impact of location-aware mobile apps on users and businesses is
growing faster every day.

• Everyone uses navigation apps for location data, including getting directions to
restaurants, airports, hospitals, and just about anything else needed in a
geographic area.

• You can implement location-based functionality in a wide range of apps, like
focused queries and location-aware history.

• Your apps can use location data to send notifications targeted to mobile devices in
a geographic area or a certain mobile user or asset only in a specific geographic
area.

• Location-aware applications can also contribute a lot to business intelligence and
analytics, including customer profiling and demographics, competitive analysis and
supply chain tracking.

A Few Important Location Terms
Location devices, places and assets provide the tools you need to create location-
aware mobile apps.

• A location device is any device that provides location services, like a Bluetooth
proximity beacon. Location devices transmit an ID within a defined space, so
mobile apps can use these signals to trigger notifications and other actions. The
following location protocols are currently supported:

– AltBeacon is an open source protocol for Bluetooth proximity beacons. For
more information and the full specification, see altbeacon.org and https://
github.com/AltBeacon/spec.

– Eddystone is Google’s open protocol for Bluetooth proximity beacons. For
details, see https://github.com/google/eddystone.

– iBeacon is the Apple protocol for Bluetooth proximity beacons. For details, see
https://developer.apple.com/ibeacon/.

• A place is a physical location associated with one or more location devices.

• An asset is a mobile physical object that’s associated with one or more location
devices.

10-1

Android

Querying for Location Objects
The LocationQuery class in the Android SDK allows you to construct queries for
location devices, places and assets.

Below is an example of using the Android SDK to query for a place by name:

Location location =
MobileManager.getManager().getDefaultMobileBackend(mActivity).getServicePro
xy(Location.class);
Object lock = new Object();

String searchString = "store";
final AtomicReference<String> searchString = "store";
final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<ServiceProxyException> mError = new
AtomicReference<ServiceProxyException>();

// search by name
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDeviceCo
ntainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.LocationO
bjectQueryFormatTypeShort);

do{
 query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result,
ServiceProxyException exception){
 mError.set(exception);
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
 });

 synchronized(lock) {
 lock.wait();
 }

 if(mError.get() != null){
 //handle error
 }

Chapter 10
Android

10-2

 else{
 for(LocationObject object : mResult.get().getItems()){
 LocationPlace place = (LocationPlace) object;
 // process each place...
 }
 }

 query = mResult().get().getNextQuery();

} while(mResult.get() != null && mResult.get().hasMore());

For more information on place queries, see Querying for Places.

Retrieving a Location Object
Here’s how to use a place ID to retrieve the properties for the place:

Location location =
MobileManager.getManager().getDefaultMobileBackend(mActivity).getServicePro
xy(Location.class);
Object lock = new Object();

final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<LocationPlace> mError = new
AtomicReference<LocationPlace>();

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDeviceCo
ntainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.LocationO
bjectQueryFormatTypeShort);

query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result,
ServiceProxyException exception){
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}

Chapter 10
Android

10-3

// take the first item from the results
// it will be in "short" format...
LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, fetch the "entire" place directly
location.fetchPlace(place.getID(), new LocationObjectQueryCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException exception)
{
 LocationPlace detailedPlace = (LocationPlace) object;
 mPlace.set(detailedPlace);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + mPlace.get().getName());

If you’ve already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

...
// take the first item from the results
// it will be in "short" format...
LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, refresh the place
place.refresh(new LocationObjectFetchCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException exception)
{
 if(exception != null)
 //handle error

 synchronized(lock) {
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + place.getName());

Chapter 10
Android

10-4

iOS

Querying for Location Objects
The OMCLocationQuery class in the iOS SDK allows you to construct queries for
location devices, places and assets.

Below is an example of using the iOS SDK to query for a place by name.

OMCLocation* location = [[OMCMobileManager sharedManager] location];

NSString* searchString = @"store";

// search by name
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.name = searchString;
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result;
do {
 result = nil;
 __block NSError* error = nil;
 __block BOOL executing = YES;
 [query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
 }];

 while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
 }

 if (error) {
 // handle error...
 } else {
 for (OMCLocationPlace* place in result.items) {
 // process each place...
 NSLog(@"place name: %@", place.name);
 }
 }
 query = result.nextQuery;
} while ((result != nil) && result.hasMore);

For more information on place queries, see Querying for Places.

Chapter 10
iOS

10-5

Retrieving a Location Object
This example uses the place ID to retrieve the properties for the place:

OMCLocation* location = [[OMCMobileManager sharedManager] location];

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* shortPlace = result.items.firstObject;

// ...now, fetch the "entire" place directly
__block OMCLocationPlace* place = nil;
error = nil;
executing = YES;
[location placeWithID: shortPlace.id_
completionHandler:^(OMCLocationPlace* place_, NSError* error_) {
 place = place_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

Chapter 10
iOS

10-6

If you’ve already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

...
// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* place = result.items.firstObject;

// ...now, refresh the place
error = nil;
executing = YES;
[place refreshWithCompletionHandler:^(NSError* error_) {
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

Retrieving iBeacon Identifiers
The first step to monitoring a place that uses beacons is to retrieve the beacon
identifiers, as shown in this example:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager]
location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * _Nullable queryError)
{
 OMCLocationPlace *place = queryResult.items.firstObject;

 [place devicesWithCompletionHandler:^(NSArray<OMCLocationDevice *>
*locationDevices, NSError * error) {
 // Following code assumes 1 device for place

Chapter 10
iOS

10-7

 OMCLocationDevice *device = [locationDevices firstObject];
 OMCLocationIBeacon *beacon = (OMCLocationIBeacon*)device.beacon;
 NSUUID *beaconUuid = beacon.uuid;
 CLBeaconMajorValue beaconMajor =
(CLBeaconMajorValue)beacon.major.integerValue;
 CLBeaconMinorValue beaconMinor =
(CLBeaconMinorValue)beacon.minor.integerValue;

 CLBeaconRegion *beaconRegion = [[CLBeaconRegion
alloc]initWithProximityUUID:beaconUuid major:beaconMajor minor:beaconMinor
identifier:@"MyBeaconRegion"];
 beaconRegion.notifyOnEntry = YES;
 beaconRegion.notifyOnExit = YES;

 beaconRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle beacon events

 [locationManager startMonitoringForRegion:beaconRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion
 [locationManager startRangingBeaconsInRegion:beaconRegion]; //
Invokes CLLocationManagerDelegate inRegion
 }];
}];

Defining a Geofence
You can use a geofence to define a monitoring area as a place, as shown here:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager]
location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 OMCLocationGeoCircle *geocircle = (OMCLocationGeoCircle *)[place
address];
 OMCLocationGeoPoint *geopoint = [geocircle center];

 CLLocationDegrees latitude = [[geopoint latitude]doubleValue];
 CLLocationDegrees longitude = [[geopoint longitude]doubleValue];
 CLLocationDistance radius = [[geocircle radius]doubleValue];

Chapter 10
iOS

10-8

 CLLocationCoordinate2D coordinate =
CLLocationCoordinate2DMake(latitude, longitude);

 CLCircularRegion *circularRegion = [[CLCircularRegion
alloc]initWithCenter:coordinate radius:radius
identifier:@"MyGeofenceRegion"];
 circularRegion.notifyOnEntry = YES;
 circularRegion.notifyOnExit = YES;

 circularRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle events

 [locationManager startMonitoringForRegion:circularRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion
 }];
}];

Retrieving Custom Attributes
Many location objects use custom attributes. The iOS SDK makes it easy to access
these properties, as shown in the examples below.

Retrieving a Custom Attribute for a Place

The iOS SDK example below retrieves a custom attribute for a place:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileManager sharedManager]
location];
OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];
queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 NSString *myCustomProperty = [place
attributeForKey:@"MyCustomProperty"];
 NSLog(@"My Custom Property = %@", myCustomProperty);
}];

Chapter 10
iOS

10-9

Retrieving a Custom Attribute for a Location Device

The iOS SDK example below is very similar to the one above, but uses
OMCLocationDevice to retrieve a custom attribute for a beacon:

OMCLocation* location = [[OMCMobileManager sharedManager] location];
// Query iBeacon
OMCLocationDeviceQuery *queryDevice = [location buildDeviceQuery];
NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:@"0AC59CA4-
DFA6-442C-8C65-22247851344C"];
NSNumber *major = @4;
NSNumber *minor = @200;
queryDevice.beacon = [OMCLocationIBeacon iBeaconWithUUID:uuid major:major
minor:minor];

[queryDevice
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationDevi
ceQuery *,OMCLocationDevice *>* queryResult, NSError * queryError) {
 OMCLocationDevice *device = queryResult.items.firstObject;

 // Retrieve device/beacon custom property
 NSString *customProperty = (NSString *) [device
attributeForKey:@"MyCustomProperty"];
}];

REST API - Location
This section shows how to use the Location REST API to perform some common
tasks. If you don’t find what you need here, see the complete reference docs at REST
APIs for Oracle Mobile Cloud, Enterprise.

Querying for Location Devices, Places and Assets
The Location API allows you to write complex queries for location devices, places and
assets. You can call the REST endpoint directly or use one of the SDKs to construct a
query.

The available query parameters depend on the object type.

Querying for Location Devices
Query for location devices using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/devices?name={name} to query by
the device name.

• POST {baseUri}/mobile/platform/location/devices/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Chapter 10
REST API - Location

10-10

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Parameter Description

name Filters results by a partial match of this string
with the name defined for the device in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the device in
the UI. Not case sensitive.

search Filters results by a partial match of this string
with the name or description defined for the
device in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the device in the UI.

protocol Filters results by device protocol type(s):
• iBeacon
• altBeacon
• eddystone

associatedAssetId The asset ID to search for. (Returns location
devices associated with the specified asset.)

listOfDevices An array of device IDs to search for.

iBeacon_uuid The UUID of the iBeacon device(s) to search
for.

iBeacon_major The major version of the iBeacon device to
search for.

iBeacon_minor The minor version of the iBeacon device to
search for.

altBeacon_id1 ID1 of the altBeacon to search for.

altBeacon_id2 ID2 of the altBeacon to search for.

altBeacon_id3 ID3 of the altBeacon to search for.

eddystone_namespace The namespace of the Eddystone device to
search for.

eddystone_instance The instance of the Eddystone device to
search for.

eddystone_url The URL of the Eddystone device to search
for.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

Chapter 10
REST API - Location

10-11

Parameter Description

format By default, the response is in long format and
results include the device id, name,
description, attributes, createdOn and
createdBy, as well as the place ID and
identifying details about the device. Specify
short to return only the device id, name,
description and protocol.

iBeacon

{
 "protocol":"iBeacon",
 "iBeacon_major": "2.0",
 "iBeacon_minor": "2.2",
 "iBeacon_uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"
}

If the query is successful, the response will be 200, and the body will include the
matching location device and its associated place or asset if it has one. For example:

{
 "items": [
 {
 "id": 15,
 "createdOn": "2015-11-11T21:15:34.341+0000",
 "createdBy": "thomas.smith@fif.com",
 "modifiedOn": "2015-11-11T21:15:34.341+0000",
 "modifiedBy": "thomas.smith@fif.com",
 "name": "RC_WH_01_F01_B003",
 "description": "Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "place": {
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "EquipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/internal-tools/1.0/envs/dev/location/places/9876"
 },
 {
 "rel": "self",
 "href": "/internal-tools/1.0/envs/dev/location/places/9876"

Chapter 10
REST API - Location

10-12

 }
]
 },
 "beacon": {
 "iBeacon": {
 "major": "2.0",
 "minor": "2.2",
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Gimbal",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 },
 "totalResults": 1,
 "offset": 0,
 "limit": 20,
 "count": 1,
 "hasMore": false
}

The example below queries for altBeacon devices with “Warehouse” in the name or
description and specifies the short response format, ordered by name, with a limit of 5
items.

{
 "protocol":"altBeacon",
 "orderBy":"name",
 "limit":"5",
 "format":"short",
 "search":"Warehouse"
}

If the query is successful, the response is 200 and the body contains just the id, name,
description and protocol for the 5 returned devices.

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"

Chapter 10
REST API - Location

10-13

 },
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor in Fix*tFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor in FixitFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor in FixitFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 }
],
 "totalResults":5,
 "offset":0,
 "limit":5,
 "count":5,
 "hasMore":false
}

Querying for Places
Query for places with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/places?name={name} to query by the
place name.

• POST {baseUri}/mobile/platform/location/places/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the place in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the place in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the place in the UI. Not case sensitive.

Chapter 10
REST API - Location

10-14

Parameter Description

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the place in the UI.

label Filters results by a partial match of this string
with the label specified for the place in the UI.
Not case sensitive.

listOfPlaces An array of place IDs to search for.

descendantOf Specify a place ID to search for direct
descendants.

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest place. This parameter can’t
be combined with other query parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all places within that
geofence.

descendantDevices Set to true to include the
descendantDevices property in the results,
which lists the devices associated with this
place and all its child places. These results are
always in short format.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the place id, name, description,
attributes, label, creation and modification
data, as well as the place address, and a list of
the devices within the place and the place’s
parent. Specify short to return only the place
id, name, description and label.

{
 "label":"block 1",
 "inGeoFence": {
 "gpsCircle": {
 "latitude": 37.488179,
 "longitude": -122.229011,
 "radius": 32186
 }
 },

Chapter 10
REST API - Location

10-15

 "orderBy":"name:asc",
 "limit":100
}

If the query is successful, the response will be 200, and the body will include an array
of matching places. In this example, only two places matched the query:

{
 "items": [
 {
 "id": 16,
 "createdOn": "2016-03-08T22:09:19.968+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:19.968+0000",
 "modifiedBy": "joe",
 "name": "l1b1",
 "label": "lot 1 block 1",
 "parentPlace": 15,
 "description": "Lot 1 block 1 New City",
 "hasChildren": false,
 "address": {
 "gpsCircle": {
 "longitude": -120.87449998,
 "latitude": 37.98560003,
 "radius": 29999.99999997
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/16"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/16"
 }
]
 },
 {
 "id": 17,
 "createdOn": "2016-03-08T22:09:20.065+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:20.065+0000",
 "modifiedBy": "joe",
 "name": "l2b1",
 "label": "lot2 block 1",
 "parentPlace": 15,
 "description": "Lot 2 block 1 New City",
 "hasChildren": false,
 "address": {
 "gpsPolygon": {
 "vertices": [
 {
 "longitude": -121.7845,

Chapter 10
REST API - Location

10-16

 "latitude": 37.8453
 },
 {
 "longitude": -120.9853,
 "latitude": 37.1248
 },
 {
 "longitude": -121.7758,
 "latitude": 37.6983
 }
]
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/17"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/17"
 }
]
 }
],
 "totalResults": 2,
 "offset": 0,
 "limit": 100,
 "count": 2,
 "hasMore": false
}

{
 "includeDescendantsInResult": "direct",
 "orderBy" : "name",
 "offset" : 0,
 "limit" : 10,
 "format" : "short"
}

If the query is successful, the response will be 200, and the body will include only the
first level descendants. In this example, only three descendants matched the query:

{
 "places": [
 {
 "id": 3331,
 "name": "FixitFast Redwood City HQ Campus",
 "label": "campus",
 "description": "1st Floor in FixitFast Warehouse in Redwood
City"
 "children": [
 {

Chapter 10
REST API - Location

10-17

 "id": 3334,
 "name": "Building #1 FixitFast Redwood City HQ Campus",
 "description": "Building #1 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3335,
 "name": "Building #2 FixitFast Redwood City HQ Campus",
 "description": "Building #2 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3336,
 "name": "Building #3 FixitFast Redwood City HQ Campus",
 "description": "Building #3 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 }
 }
]
}

Querying for Assets
Query for assets with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/assets?name={name} to query by the
asset name.

• POST {baseUri}/mobile/platform/location/assets/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the asset in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the asset in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the asset in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the asset in the UI.

label Filters results by a partial match of this string
with the label specified for the asset in the UI.

listOfAssets An array of asset IDs to search for.

Chapter 10
REST API - Location

10-18

Parameter Description

associatedDeviceId A device ID to search for. Returns the asset
associated with this device ID. When you use
this query parameter, don't combine it with
other parameters.

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest asset. Can’t be combined
with other parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all assets within that
geofence.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the asset id, name, description,
attributes, label, creation and modification
data, as well as the associated place, and the
IDs of associated devices. Specify short to
return only the asset id, name, description and
label.

{
 "label":"bed",
 "attributes":{
 "EquipmentManufacturer":"Example Company"
 },
 "orderBy":"createdOn:asc",
 "format":"long"
}

If the query is successful, the response will be 200, and the body will include an array
of matching assets:

{
 "items":[
 {
 "id":333,
 "createdBy":"jdoe",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",

Chapter 10
REST API - Location

10-19

 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 3409
],
 "attributes":{
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 },
 {
 "id":888,
 "createdBy":"jdoe",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":360
 },
 "devices":[
 658
],
 "attributes":{
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 }
],
 "totalResults":2,
 "offset":0,
 "limit":100,
 "count":2,
 "hasMore":false
}

Retrieving Location Objects and Properties
Use the Location API to retrieve location devices, places and assets and their
associated properties.

The following REST endpoints allow you to retrieve location objects:

• Location devices: GET {baseUri}/mobile/platform/location/devices

• Assets: GET {baseUri}/mobile/platform/location/assets

• Places: GET {baseUri}/mobile/platform/location/places

You can retrieve an object by ID or by name:

Chapter 10
REST API - Location

10-20

• To retrieve an object by ID, include the ID in the path, for example: GET
{baseUri}/mobile/platform/location/devices/12345.

• To retrieve an object by name, pass the name of an existing object to the endpoint
in the name query parameter, for example GET {baseUri}/mobile/platform/
location/devices?name=RC_WH_01_F01_B001.

Setting Up Location Devices, Places and Assets
To set up a location in OMCe, define the related places and/or assets and register the
associated location devices in the UI under Mobile Apps > Location. You can also
use the Location Management API to create, update and delete location devices,
places and assets from custom code. For details, see Accessing the Location
Management API from Custom Code.

Defining Places
A place is a physical location associated with one or more location devices. You can
define places through the UI individually or by uploading a CSV file. You can also use
the Location Management API to create, update and delete places from custom code.
For details, see Accessing the Location Management API from Custom Code.

1. Click to open the side menu and select Mobile Apps > Location.

2. From the Places tab, click New Place to define a place using the UI. This tab
shows all the places defined. To edit an existing place, select it in the list and click
Edit .

3. If you are creating a new place, enter a name, and an optional label and
description. If you enter a new label, it will be saved and can be used to categorize
other places, location devices and assets. Click Create.

4. On the Overview tab of the new Location Place Editor, enter the GPS coordinates
for the place. You can also define a geofence by radius or polygon. To associate
the place with another existing place, select that place from the Parent dropdown.

5. Click the Attributes tab to define custom attributes for the place. Create new
attributes or copy them from an existing place. You can use attributes to associate
a content URI with the place, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
queries that use the Location Platform API.

6. Click the Devices tab to associate location devices with the place. You can
register a new device from this page (Registering Location Devices) or select from
location devices already registered. A device can be associated with a single place
or asset, not both. By default, only the devices for the current place are displayed,
but you can expand the list by checking the box Show all devices associated with
children of this place.

7. When you are done configuring the place, click Save.

If a place has descendants, click > at the end of the table row to navigate to them.

Uploading Places Using a CSV File
You can upload multiple places using a CSV file.

Chapter 10
Setting Up Location Devices, Places and Assets

10-21

1. From the Location : Places page, click Upload Places.

2. Browse to the .csv file and click Upload.

The CSV file for uploading places must follow this format:

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes
name,label,description,lat:lon,lat:lon:radius,lat1:lon1;lat2:lon2;lat3:l
on3,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one type of place:

• For specific GPS coordinates (GPSPoint), include the latitude and longitude.

• For a circle geofence (GPSCircle), include the latitude and longitude of the
center point, and the radius. In Oracle Spatial, GPS circles are converted to
polygons, which might cause the radius to be recalculated.

• For a polygon geofence (GPSPolygon), include the latitude and longitude for
each corner of the polygon.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below defines a GPSPoint.

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes
FixitFast Redwood City Warehouse,Warehouse,FixitFast Warehouse in
Redwood City,37.8453:-121.7845,,,key1=val1,prop2=val2,prop3=val3

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Defining Location Assets
An asset is a physical object that’s associated with one or more location devices,
typically something mobile and valuable like a forklift or hospital bed. You can define
location assets through the UI individually or by uploading a CSV file. You can also
use the Location Management API to create, update and delete location assets from
custom code. For details, see Accessing the Location Management API from Custom
Code.

1. Click to open the side menu and select Mobile Apps > Location.

Chapter 10
Setting Up Location Devices, Places and Assets

10-22

2. From the Assets tab, click New Asset to define a location asset using the UI. This
tab shows all the assets defined. To edit an existing asset, select it in the list and
click Edit Asset.

3. If you are creating a new asset, enter a name, and a label and description if you
choose. Labels will be saved and can be used to categorize other location assets.
If the device(s) you want to associate with the asset are already registered, you
can select them on this page. (A device can be associated with a single place or
asset, not both.) Click Create.

4. On the Overview tab of the Location Asset Editor, you can update your entries.

5. Click the Attributes tab to define custom attributes for the asset. Create new
attributes or copy them from an existing asset. You can use attributes to associate
a content URI with the asset, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
queries that use the Location Platform API.

6. When you are done configuring the asset, click Save.

Uploading Assets Using a CSV File
You can upload multiple assets using a CSV file.

1. From the Location : Assets page, click Upload asset file.

2. Browse to the .csv file and click Upload.

The CSV file for uploading assets must follow the following format:

#version=1.0
#name,#description,#label,#list of Attributes
Name,Description,label,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3, as shown in the example below. Make sure to include
commas for any empty properties to define the entry correctly.

#version=1.0
#name,#description,#label,#list of Attributes
RC_WH_01_F01_B023,Beacon #23 in the FixItFast Warehouse in Redwood
City,beacon,
FiF Warehouse Forklift #6,MyMed DA332
forklift,forklift,EquipmentManufacturer=MyMed,MyMed serial
number=OU812-9845873
Hospital Bed #233,MyMed model 1225 hospital bed,hospital
bed,EquipmentManufacturer=MedBed,SJId=6754843090

Chapter 10
Setting Up Location Devices, Places and Assets

10-23

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Registering Location Devices
A location device is any device that provides location services, like a Bluetooth
proximity beacon. You can define location devices through the UI or by uploading a
CSV file.

1. Click to open the side menu and select Mobile Apps >Location.

2. From the Devices tab, click New Device to register a location device using the UI.
This tab shows all the location devices defined. To edit an existing device, select it
in the list and click Edit. (You can also register devices from the Devices tab in the
Location Places Editor.)

3. If you are creating a new location device, enter a name and a description. Select
the Protocol:

• altBeacon

• Eddystone

• iBeacon

Note:

The protocol can’t be changed after a device is registered.

Click Create.

4. On the Overview tab of the Location Device Editor, enter the identifying
information for the location device. The required values depend on the selected
protocol:

• For iBeacon, enter the UUID, Minor and Major values.

• For altBeacon, enter ID1, ID2 and ID3.

• For Eddystone, enter the Namespace, Instance and URL.

If the place and/or asset you want to associate with the device is already defined,
select it from the dropdown list. A device can be associated with a single place or
asset, not both.

5. Click the Attributes tab to define custom properties for the device. Create new
attributes or copy them from an existing device. You can use attributes to
associate a content URI with the device, for example a coupon or flier that a
mobile app downloads when the user is nearby. Attributes can also be used to
filter results in queries that use the Location Platform API.

6. When you are done configuring the device, click Save.

Chapter 10
Setting Up Location Devices, Places and Assets

10-24

Uploading Location Devices Using a CSV File
You can upload multiple location devices using a CSV file.

1. From the Location > Devices page, click Upload Devices.

2. Browse to the .csv file and click Upload.

The CSV file for uploading devices must follow the following format:

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#instan
ce,#url,#list of Attributes
Name,Description,uuid,major,minor,id1,id2,id3,namespace,instance,url,key
1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one protocol type.
The required properties depend on the protocol type:

• For iBeacon, include uuid, major and minor properties.

• For altBeacon, include id1, id2 and id3 properties.

• For Eddystone, include the namespace, instance and URL.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below registers an iBeacon location device by
defining values for the uuid, major and minor properties.

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#instan
ce,#url,#list of Attributes
RC_WH_01_F01_B001,Beacon on 1st Floor in FixitFast Warehouse in Redwood
City,B9407F30-F5F8-466E-AFF9-25556B57FE6D,
1.0,1.1,,,,,,,key1=val1,key2=val2,key3=val3

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Chapter 10
Setting Up Location Devices, Places and Assets

10-25

11
Database

Database APIs help you create and manage database tables for use in mobile apps.
As a service developer, you can call the Database Access API from custom API
implementations to create and access database tables, and use the Database
Management API to manage and view table metadata.

What Can I Do with Database APIs?
As noted above, there are two database APIs:

• The Database Access API, which is available only from custom code
implementations using the custom code SDK, lets you to create and access
database tables. For security reasons, you can’t call this API from client apps. To
try out calls to this API, open a custom API, go to the Custom Catalog, and then
click Database Access.

• The Database Management API can be accessed through custom code
implementations and HTTP REST calls to manage table metadata and deploy

tables. To try out calls to this API from the UI, click to open the side menu, and
click Mobile Apps > APIs. In the Platform APIs section at the bottom of the APIs
page, click Database Management.

This chapter discusses how to use these Database APIs to perform common tasks.
For more details on using the platform APIs, see REST APIs for Oracle Mobile Cloud,
Enterprise.

Database Access API
All your mobile apps’ interactions with the Database Access API are made through
custom API implementations. You can’t access this API directly from client apps. This
section covers how to use the custom code SDK in a custom API implementation to
interact with the database. To learn about designing APIs, see Custom API Design. To
learn about implementing a custom API, see Implementing Custom APIs.

Calling the Database Access API from Custom Code
Before we delve into how to implement a custom API to perform database tasks, let’s
go over a simplified description of how to call the Database Access API from custom
code. Here we talk about some API operations that you learn about later. While they
may not make sense now, these steps should give you some context for how you use
the operations that you will learn about.

To call the Database Access API from custom code, you add endpoints (resources)
and operations (methods) to the custom API, and then you add route definitions to
your custom code implementation for the custom API. We are going to talk about how
to implement the route definitions in the custom code.

To call the API from your custom code:

11-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

1. Add the route definition to the custom code.

You implement a route definition by calling the service method for the API’s
endpoint operation. Say, for example, that your API has a GET operation for the /
mobile/custom/FIF_Incidents/incidents endpoint. To implement this from your
custom code, you call service.get(). The service method’s arguments are the
URI and a function that takes both the request object and the response object as
arguments. For example:

service.get(
'/mobile/custom/FIF_Incidents/incidents', function (req, res) {
 // your code goes here
});

2. From the route definition, call the appropriate req.oracleMobile.database
method to send your request to the Database Access API, such as get(),
getAll(), or insert(). Accessing the Database Access API from Custom Code
describes the available methods and the arguments that each method takes, and
provides example code.

Here’s a complete route definition. This route definition calls the getAll() method,
which, in turn, calls the Database Access API’s GET /mobile/platform/database/
objects/{table} operation. When the getAll() method receives a response from
the API, it calls either the result function or the error function, depending on
whether an error occurred.
Notice that the first argument is the name of the table, and that the second
argument is a JSON object that contains a fields property. This instructs the
getAll() method to return only the customer and status fields.

/**
 * GET CUSTOMER AND STATUS FOR ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
 }
);
 });

The response to this call would look like this:

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },
 {

Chapter 11
Database Access API

11-2

 "status":"Completed",
 "customer":"John Doe"
 }
]
}

Creating and Restructuring Database Tables
You might think that before you can access a database table, you need to first add it to
the schema. However, you can create a new table simply by adding a row to the table.
This action is referred to as a implicit table creation.

You use the following methods to insert rows into a table:

• insert(): Add one or more rows.

• merge(): Add or update one or more rows.

When you call these methods for a table that doesn’t exist, a new table with the row(s)
is created by deriving the table specifications from information in the object and
options arguments.

To specify the table structure:

• Call either insert() or merge(), both of which require table and object
arguments. In the object argument, which is a JSON object, include all the
columns that you want in the table, and provide mock or real data for each column.
The column type and size are based on the content. For example, if the value is
100 then the column will be NUMBER(3,0). Don’t worry about the size being too
small. If you later post 3.25, the column is resized to NUMBER(5,2), which is large
enough for both 100 and 3.25. Also don’t worry about adding all the columns that
you need. If you later decide you want more columns, then add the new columns
to a JSON object and send it in an insert() or merge() call. The table will be
restructured automatically to add the new columns.

Note:

The maximum size for a string column is 4000 characters. If you need to
store a larger string, then you can use the Storage API to store the
object.

Here’s an example of the JSON object:

{
 "incidentReport": 1,
 "title": "Water heater is leaking",
 "customer": "Lynn Smith",
 "address": "200 Oracle Parkway Redwood City, CA 94065",
 "phone": "(555) 212-4567",
 "technician": "jwhite",
 "status": "Open",
 "notes": "lynnf|Initial incident report description",
 "priority": 1,

Chapter 11
Database Access API

11-3

 "imageLink": "http://link.to.storage"
}

• By default, a set of predefined columns are added and populated automatically
whenever you add or update a record using insert() or merge().

If you don’t want all these columns in your table, then use the extraFields
property in the optional options argument to specify which columns to include,
such as createdOn,createdBy (be sure to include id if you aren’t specifying a
primary key). If you later decide you want to add more predefined columns, you
can just add them to the extraFields property the next time you add a row.
If you don’t want any of these columns, then set the extraFields property to none.
However, if you don’t add any predefined columns when you create the table, then
you can’t add any later.

The predefined fields are:

– id: The row key. This column is added only if both the primaryKeys and
extraFields properties are absent. The id is an integer set and incremented
automatically.

– createdBy: Who created it.

– createdOn: When it was created.

– modifiedBy: When it was last modified.

– modifiedOn: Who modified it last.

The dates are in W3C date-time format, and include hours, minutes, seconds, and
a decimal fraction of a second (YYYY-MM-DDThh:mm.ss.SSSZ).

• If you want a primary key, use the primaryKeys property in the options argument
to specify which columns to use for the primary key. For example,
incidentReport,technician. Note that the order that you list the fields is the
order that you use when you retrieve or update a row. Because you can’t retrieve
the primary key order from the table metadata, make sure that you document the
order of the primary fields.

You can see code examples for these two methods in the next section.

The following table summarizes what aspects of a table can be changed implicitly:

Object Can It Change?

Table Name No. The name is set when the table is first created.

Primary Key No. The primary key is defined when the table is created.

Predefined Columns Yes. You can allow predefined columns in the table when it’s
created by the call. However, you can’t add these predefined
columns at a later point if the table was not originally intended
to use them. If predefined columns are allowed, then any of
them (other than id, that is) can be added by subsequent
calls.

Columns Yes. Although columns are created with the table, subsequent
calls can add columns. These calls can also alter the column
size. However, you can’t change the column type after the
table has been created.

Chapter 11
Database Access API

11-4

Note:

You can also disable implicit table creation. If the
Database_CreateTablesPolicy environment policy is neither allow (the
default setting) nor implicitOnly, adding a row to a non-existent table will
fail.

Adding and Updating Table Rows
You use the insert() and merge()methods to add and update rows:

• insert() adds one or more rows.

• merge() adds or updates one or more rows. Whether an add or update is
performed depends on whether the table uses id or primary key fields to uniquely
identify rows.

– id field: If you include an id property in the object, then the matching row is
updated if it exists. Otherwise a new row is added.

– Primary key fields: If the table uses primary key fields, the matching row is
updated if it exists. Otherwise, a new row is added.

Note:

If you submit a batch of rows, then all the rows must have the same set of
columns.

To call either of these methods:

• Pass the table name in the first argument.

• If the table doesn’t exist, and you want to limit which predefined columns to
include, set the extraFields property in the options argument. For example:

options =
 {'extraFields' : 'createdOn,createdBy'}

If you want all the predefined columns, omit this property. If you don’t want any
predefined columns, set it to none. It doesn’t hurt to include it in subsequent adds,
but make sure you include it in your first add if you don’t want the full set of
predefined columns.

• If the table doesn’t exist, and you want to specify a primary key, make sure you set
the primaryKeys property in the options argument. For example:

options =
 { 'primaryKeys' : 'incidentReport,technician' }

The primary key list must be URL encoded.

• Put the row data in the request body in JSON format. The JSON object can
contain data for one row or several rows.

Chapter 11
Database Access API

11-5

Here is an example of data for one row:

{
 "status" : "Open",
 "code" : "3"
}

Here is an example of data for multiple rows:

[
 {
 "status":"Open",
 "code":3},
 {
 "status":"Completed",
 "code":9}
]

Here’s an example of using the insert() method to add two rows to the FIF_Status
table. The first argument is the table name, and the second argument is the object
argument, which contains the rows to add to the table. The third argument is the
options argument, which specifies to not add any extra (predefined) fields, and to
create a primary key based on the code field.

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 "status": "Closed",
 "code": "0"},
 {
 "status": "Completed",
 "code": "9"}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
});

Retrieving Table Rows
You can retrieve a single table row by its primary key or ID, and you can retrieve a set
of table rows.

To retrieve a row by its primary key or ID, call the get() method. You use the keys
argument to identify the row that you want.

Chapter 11
Database Access API

11-6

• If the table uses the id column for the row key, then set keys to the row’s ID.

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Here’s an example of using the get() method to retrieve a row from the FIF_Incidents
table. The first argument is the table name, and the second argument is the keys
argument:

/**
 * GET INCIDENT BY ID
 */
service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{
 "items":[
 {
 "id":168,
 "title":"Oven not working",
 "technician":"jwhite",
 "status":"Open",
 "customer":"John Doe",
 "incidentReport":"5690",
 "createdBy":"jdoe",
 "createdOn":"2015-11-16T23:42:18.281823+00:00"
 }
]
}

To get a set of rows from a table, call the getAll() method.

• To filter the rows, add the columns to search on and the values to match to the qs
property in the optional httpOptions argument. For example, this requests all the
incident reports for the technician J. White:

httpOptions.qs = {technician : 'jwhite'};

Chapter 11
Database Access API

11-7

• To specify which columns to return, use the fields property in the options
argument.

For example, to get a quick phone list:

options={'fields' : 'customer,phone'}

Here’s an example of using getAll() to retrieve the customer and status fields for all
rows in the FIF_Incidents table that match the query string that’s specified in
httpOptions.qs.

/**
 * GET ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}, httpOptions).then(
 function (result) {
 rres.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{"items":[
 {"title":"Water heater is leaking",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...
 "incidentReport":25
 "createdOn":"2015-03-05T12:10:15.171284-07:00"},
 {"title":"Dryer doesn't dry",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...
 "incidentReport":67
 "createdOn":"2015-08-07T14:22:37.171284-07:00"}
]}

Deleting Table Rows
To delete a row, you call the delete() method.

You use the keys argument to identify the row that you want to delete.

• If the table uses the id column for the row key, then set keys to the row’s ID.

Chapter 11
Database Access API

11-8

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Here’s an example of deleting a row from the FIF_Incidents table. The first argument
to the delete() method is the table name, and the second argument is the keys
argument.

/**
 * DELETE INCIDENT BY ID
 */
service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

If the table has a primary key, then the response body looks like this:

{ "rowCount" : 1 }

If the id is the key value for the table, then the response body looks like this:

{"items":[{"id":42}]}

Executing SQL on a Table
If neither delete(), get(), getAll(), insert(), nor merge() let you perform the
database operation that you need to do, then use the databaseSQL() method.

The databaseSQL() method lets you execute SQL statements such as insert(),
update(), merge(), delete(), or select(). You can use this method for complex
actions, such as when you need to join tables, use aggregate functions like count()
and sum(), or use a where clause to delete a set of rows.

Note that you can’t use the databaseSQL() method to create a table or add columns to
it. You must either use the insert() or merge() methods to create and restructure the
table implicitly, or use the Database Management API to create and re-recreate it
explicitly, as described in Database Management API. In addition, the predefined fields
are not populated automatically when you use databaseSQL().

To use the the databaseSQL() method:

Chapter 11
Database Access API

11-9

• Set the required sql argument to the SQL statement that you want to execute. For
example:

SELECT COUNT("incidentReport") "reportCount"
FROM "FIF_Incidents" WHERE "status" = :status

See Preventing SQL Injection to learn about precautions that you should take
when you write the SQL statement.

• If your SQL statement takes parameters, then you need to pass them in the
required bindings argument, which is a JSON object. For example, if you use the
SQL statement shown for the sql argument, then you would set bindings to
{status:'Open'}. If the SQL statement doesn’t use parameters, then use null or
{}.

Here’s an example of executing a SQL statement. In this example, the sql argument is
set to a SQL statement that counts the number of rows in the FIF_Incidents table with
a status of Open.

/**
 * Get Count of Open Incidents
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.SQL(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = :status',
 {status: 'Open'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Passing Parameters to the SQL Statement
You might want to let users specify some of the values in the SQL statement. For
example, you might want your custom API to have a GET /incidents/count operation,
which counts the number of incidents for a given status, and let the user specify which
status to count by passing it as a request parameter. You use the bindings argument
to pass the parameter to the executeSQL() method.

There are two ways to reference parameters in the SQL statement:

• Use the :name syntax to reference parameters by name. This is the preferred
method. For example:

Select SELECT COUNT("incidentReport") "reportCount"
 FROM "FIF_Incidents" WHERE "status" = :status

Chapter 11
Database Access API

11-10

To pass the named parameter, you use a JSON object like this:

bindings = {status:'Open'}

• Use the ? syntax to reference parameters by the generic names arg1, arg2, arg3,
and so on. This is called an anonymous parameter. For example:

Select SELECT COUNT("incidentReport") "reportCount"
 FROM "FIF_Incidents" WHERE "status" = ?

To pass the anonymous parameter, you use a JSON object like this:

bindings = {arg1:'Open'}

Note that unlike anonymous parameters, named parameters can be bound at multiple
places in a SQL statement. In the following example, the named parameters :TITLE
and :TOTAL_GROSS are bound twice: once if there’s an UPDATE and once if there’s an
INSERT.

MERGE INTO "Movies" t0
 USING
 (SELECT :TITLE "TITLE" FROM DUAL) t1
 ON
 (t0."TITLE" = t1."TITLE")
 WHEN MATCHED THEN
 UPDATE SET t0."TOTAL_GROSS" = :TOTAL_GROSS
 WHEN NOT MATCHED THEN
 INSERT (t0."TITLE", t0."TOTAL_GROSS") VALUES (:TITLE, :TOTAL_GROSS)

If you use anonymous parameters, then you must use a different generic parameter
for each occurrence. For example, with the following SQL statement, you must pass in
4 parameters: arg1 and arg3 provide the title, and arg2 and arg4 provide the total
gross:

MERGE INTO "Movies" t0
 USING
 (SELECT ? "TITLE" FROM DUAL) t1
 ON
 (t0."TITLE" = t1."TITLE")
 WHEN MATCHED THEN
 UPDATE SET t0."TOTAL_GROSS" = ?
 WHEN NOT MATCHED THEN
 INSERT (t0."TITLE", t0."TOTAL_GROSS") VALUES (?, ?)

Here’s an example of how to execute a SQL statement that has a parameter.

/**
 * Get Count of Incidents for a Given Status
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.executeSQL(

Chapter 11
Database Access API

11-11

 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = :status',
 {status: 'Open'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Labeling Calculated Columns in Select Statements
As with all response bodies for this endpoint, the response body for a SELECT
statement is in JSON format. To make it easier to extract a calculated value from the
JSON object, always label the functions. Take, for example, the following SQL
statement:

SELECT SUM("incidentReport") FROM "FIF_Incidents"

The JSON response looks like this:

{ "SUM(\"incidentReport\")" : 678 }

In this example, the function is labeled reportCount:

SELECT SUM("incidentReport") "reportCount" FROM "FIF_Incidents"

The JSON response looks like this:

{ "reportCount" : 678 }

Preserving Case in SQL Statements
By default, Oracle Database is case-insensitive. However, the tables and columns that
you create using the Database Access API are case-sensitive. Therefore, you must
enclose the table name, columns, and labels in SQL statements in double quotation
marks ("..."). Otherwise, the call might not return any rows.

Say, for example, that your SQL statement is:

Select incidentReport from FIF_Incidents

Because the table and column names are not protected by double quotation marks,
the SQL statement will not work as expected. You might get a status of 400 with a
message that the table or view does not exist or that there is an invalid identifier.

Instead, use:

Select "incidentReport" from "FIF_Incidents"

Chapter 11
Database Access API

11-12

Preventing SQL Injection
SQL injection is an attack technique that allows hackers access to databases by co-
opting user input with a SQL block that can be interpreted by a backend database. To
prevent this type of attack, you must ensure that SQL statements are never passed to
the custom code from a mobile app. The SQL statements allowed by the Database
Access API must reside in the custom code.

Here are some common SQL injection considerations:

• Passing SQL as User Input

• Preventing SQL Injection with Bind Parameters

Preventing Passing SQL to the Execute SQL Operation
Don’t let users pass SQL into your custom code for use in the executeSQL() method
or the POST /mobile/platform/database/sql operation.

For example, don’t write code like the following example, which lets users put a SQL
statement in the SQL header, and then pass that SQL statement to be executed.
Instead, hard-code the SQL statement, and use parameters when necessary.

/**
 * Example of Code that Lets
 * Users Inject SQL
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.executeSQL(
 req.headers.sql
).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Preventing SQL Injection with Bind Parameters
In this example, a hacker can pass an escaped SQL block in the status field of an
input entry form:

/**
 * Example of Code that Lets
 * Users Inject SQL
 */
service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.executeSQL(
 'SELECT COUNT("incidentReport") "reportCount" ' +

Chapter 11
Database Access API

11-13

 'FROM "FIF_Incidents" WHERE "status" = ' +
 req.body.status
).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

To prevent this type of attack, use parameters as shown in this example:

service.get('/mobile/custom/incidentreport/openReportCount',
 function (req, res) {
 req.oracleMobile.database.executeSQL(
 'SELECT COUNT("incidentReport") "reportCount" ' +
 'FROM "FIF_Incidents" WHERE "status" = ' +
 :status,
 {status: 'Open'}
).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

Database Management API
In addition to the Database Access API, there’s also a Database Management API,
which lets you manage the tables that you created through the Database Access API.
This API lets you view table metadata, create, drop, and re-create tables.

You can access the Database Management API through custom API implementations

and HTTP REST calls. To try out calls to the API, click to open the side menu.
Next, click Mobile Apps then APIs. In the Platform APIs section located at the bottom
of the page, click Database Management . For further details about each API
operation, see Here, we give a brief overview of the Storage API endpoints. For
detailed information, see Oracle Mobile Cloud Enterprise REST API Reference..

Creating a Table Explicitly
You can create a table from a JSON object using the POST method for the /mobile/
system/databaseManagement/tables endpoint. To restructure a table, use the PUT
method for the same endpoint. The PUT method drops the existing table and re-creates
it.

To create a table explicitly:

Chapter 11
Database Management API

11-14

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

1. If you want to include predefined columns in the table, set the Oracle-Mobile-
Extra-Fields header to a comma-separated list of the columns to include from
amongst id, createdBy, createdOn, modifiedBy, and modifiedOn. If you don’t
want any of these columns, specify none. The id column, which is a row key, is
added to the table only if no primary key is specified.

2. Create the JSON object for the request body. The JSON attributes are:

• name: The table name.

• columns: An array of the table columns. For each column, specify:

– name: The column name.

– type: The data type. The binary data type is not supported.

– size: (Optional) The size or precision of the column.

– subSize: (Optional) For decimal columns, the scale of the column,
meaning the number of places after the decimal point.

• primaryKeys: An array of column names.

• requiredColumns: An array of column names.

3. Call the POST method for the /mobile/system/databaseManagement/tables
endpoint.

Here’s an example of a JSON object for creating a table. When used in a POST
request, a table called Movies is created with the specified columns and primary key.

{ "name" : "Movies",
 "columns": [
 {"name": "title", "type": "string", "size": 50},
 {"name": "synopsis", "type": "string"},
 {"name": "inTheaters", "type": "boolean"},
 {"name": "releaseDate", "type": "dateTime"},
 {"name": "runningTime", "type": "integer", "size": 3},
 {"name": "totalGross", "type": "decimal", "size": 10, "subSize": 2}],
 "primaryKeys" : ["title"],
 "requiredColumns": ["title", "releaseDate"]
}

The Database Management API creates and executes the following SQL statement
based on this request. In this case, the Oracle-Mobile-Extra-Fields request header
was set to none, so the table does not have any predefined fields.

CREATE TABLE "Movies" (
 "title" VARCHAR2(50) NOT NULL,
 "synopsis" VARCHAR2(4000),
 "inTheaters" CHAR(1),
 "releaseDate" TIMESTAMP NOT NULL,
 "runningTime" NUMBER(3,0),
 "totalGross" NUMBER(10,2),
 CONSTRAINT "Movies_PK" PRIMARY KEY ("title"))

This example also illustrates some of the data types allowed by the Database
Management API and the Database Access API:

Chapter 11
Database Management API

11-15

Type Description Size / Subsize Database Type

string A JSON string Maximum of 4000
bytes

VARCHAR2

dateTime An ISO- or date-
formatted JSON string

TIMESTAMP

boolean A JSON boolean CHAR(1) “1” true,
“0” false

decimal A JSON number Precision (the total
number of digits).
Optional. / Scale
(number of decimal
digits). Optional.

• NUMBER
• NUMBER(size)
• NUMBER(*,subsi

ze)

integer A JSON number with
no decimal digits

NUMBER(size,0) and
NUMBER(*0)

The size and subSize attributes are optional. Don’t provide them for columns of type
dateTime and boolean. As a best practice, unless you have a valid business
constraint, don't provide size or subSize for integers and decimals because doing so
limits what values are acceptable and makes it harder to resize the column. When
possible, allow the database to size and store the value as efficiently as possible.
However, you should provide the size attribute for string columns. The maximum size
for a string column is 4000 characters. If you need to store a larger string, then you
can use the Storage platform to store the object.

Chapter 11
Database Management API

11-16

12
Analytics

Oracle Mobile Cloud Enterprise provides an Analytics API to help you measure
patterns in app performance and usage. As a business development manager or
mobile program manager, you can use analytics to find out how to improve your apps.

What Can I Do with Analytics?
Use analytics to gain insight into how (and how often) users use a mobile app at any
given time. The analytics reports generated by Oracle Mobile Cloud Enterprise enable
you to see an application's adoption rate, and find out which functions are used the
most (or the least). SeeLegacy Analytics API for information on how to define sessions
and events in your app code.

How Does Create Analytics Reports?
creates analytics reports from events, which describe how users interact with the
mobile app.

A mobile app developer can track the mobile app’s entire usage by raising events in
the mobile app code. For example, a mobile app for repair technicians might track
events like Work Order Dispatched, Work Order Accepted, Work Order Resolved, and
Work Order on Hold. To add further detail to an event, you can define properties that
describe an event’s characteristics. For the Work Order on Hold event, for example,
you might add properties for Customer Not Home or Parts on Order.

Tip:

Mobile program managers should decide which aspects of an app to track by
events early in the app development process.

Mobile backends receive events from the REST calls made from mobile apps. A
mobile app makes a single call, which includes a JSON payload that describes the
events along with such contextual information like a user’s location, the start and end
of a user session, and details about the user’s mobile device. You can craft the
payload yourself if you use straight REST calls, or use the mobile client SDK to
construct one for you. The SDK defines the user session and automatically applies the
user and system context that allows to generate reports that describe the number of
users of the app, and how (and from where) they’re using it.

12-1

Note:

While the SDK enables Analytics to automatically generate reports that tell
you how many users your app has, or how much time they’re spending on it,
you must define events in the mobile app’s code if you want to see these
reports.

API Call Analytics
OMCe provides API call analytics to help you measure patterns in app usage and
performance. As a developer, you can use these analytics to find out how to improve
your app design and performance.

API call analytics are raw code-centric metrics that give you insight into how your app
is functioning. These are distinct from the “customer experience” analytics that are
based on user events that you track by instrumenting your app. Information on using
the latter type of analytics is covered in Analyzing Customer Data with Oracle Mobile
Cloud, Enterprise.

Note:

There may be a lag in the reported data. When you enter a date range that
includes the current day, that day’s data may not appear.

API Calls Count and Response Time
You can use the API Calls page to generate reports to show the following type of data:

• Traffic for one or more APIs.

These reports include both successful and failed calls. You can filter the reports by
backend, APIs, and API endpoints.

• Response time for API calls.

OMCe measures the response time (in milliseconds) for an API call as starting
when the server receives the request and ending when the call returns the data to
the mobile app. The response time includes the time dispatching the call.

You can compare the response time for one (or all), APIs for a selected period of
time. The bar graph compares the response time against the number of calls.

To access the API Calls page:

• Click to open the side menu and select Analytics > Operations.

Adding Locations in China
If you want to add locations in China to your analytics you have to use Baidu Maps, a
service provider for maps of China. This lets you to track where your app users are,
and allow other map related functions like browsing for specific locations.

Chapter 12
API Call Analytics

12-2

Before you add Baidu Maps, make sure your application ID is set. This is the app key
that is generated when you create an analytics app.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Open your backend and click Settings to get the application ID.

To add Baidu Maps:

1. Click to open the side menu and select Settings > Credentials > Keys >
New CSF Key.

Enter a descriptive key name you want to use to store the Baidu Map application
key. For example, CsfKeyName_For_BaidumapAK.

2. In a text editor, create a policy file policies.properties that sets
Analytics_BaiduMapCsfKeyName to the CSF file you just created.

For example, here is how you would set the Analytics_BaiduMapCsfKeyName
policy to CsfKeyName_For_BaidumapAK and apply it to version 1.0 of the
MyTestBackend backend:

MyTestBackend(1.0).*.Analytics_BaiduMapCsfKeyName=CsfKeyName_For_Baiduma
pAK

3. Import the policy by selecting Settings > Policies > Import a policies file.

Make sure the checkbox Delete all policies before import is not selected before you
import the policies file, unless you want to delete all policies.

Chapter 12
Adding Locations in China

12-3

13
App Policies

As a mobile app developer, you can use the App Policies API to create read-only
custom properties in a mobile backend and access them in your application with REST
calls.

What Are App Policies and What Can I Do With Them?
App policies are custom properties that you can define and adjust in a mobile backend
and then reference from your apps through a simple REST call. Once you have
defined an app policy, you can update its value anytime, even after you have
published the mobile backend. This lets you make changes to the appearance and
behavior of a deployed app without having to update the app itself.

Here are some of the things that you might use app policies for:

• Determining when a given feature is enabled in the app. For example, an app for a
retailer might have a feature to display a section for holiday sales that should only
be displayed when there is a current sale.

• Fonts, colors, names of images to use, and other things that are typically stored as
part of an app’s configuration.

• Timeout values for network calls. Having an app policy for this can allow your
mobile cloud administrator to tune app responsiveness based on prevailing
network performance.

Setting an App Policy
1. Click to open the side menu and select Mobile Apps > Backends.

2. Open the backend. (Select it and click Open.)

3. Click the App Policies tab.

4. Click New Policy, fill in the property name, type, value, and description, and then
click Create.

The new app policy appears in a table on the page.
You can later use the Edit and Delete buttons in the table to edit the policy or remove
it entirely. After the mobile backend has been published, you can still change a policy’s
value, but you can not add, delete, or rename policies or change the policy type.

Note:

You can only set app policies and change their values from within the OMCe
user interface. You can’t do this programmatically from app code.

13-1

Android

Retrieving App Policies
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies for your Android apps for the first time, you use the
MobileBackend object’s getAppConfig() method to return all app policies as a
JSONObject:

JSONObject appPolicies = oracle.cloud.mobile.mobilebackend.MobileManager
 .getManager().getMobileBackend().getAppConfig();

Once you have fetched the app policies, you can query the app config for the values of
individual properties.

To return the value of a specific app policy of type String, where myPolicyName is the
name of the policy and “No policy configured” is the string returned if myPolicyName
doesn’t exist:

String myPolicyValue =
oracle.cloud.mobile.mobilebackend.MobileManager.getManager()
 .getMobileBackend().getAppConfig().getString(myPolic
yName, "No policy configured");

To load a new app policy asynchronously and make a network call:

mobileBackend.loadAppConfig(new AppConfigCallback() {
 @Override
 public void onResult(McsError error, AppConfig config) {

To return the value of a specific app policy of type string where test_string is the
name of the policy if exists and returns the value of null if test string doesn’t exist:

 String testString = config.getString("test_string", null);

To return the value of a specific app policy of type Integer, where test_int is the
name of the policy and 0 is the value returned if Test_int doesn’t exist:

 int testInt = config.getInt("test_int", 0);

To return the value of a specific app policy of type Boolean, where test_bool is the
name of the policy and false is the value returned if test_bool doesn’t exist:

Boolean testBool = config.getBoolean("test_bool", false);

Chapter 13
Android

13-2

To return the value of a specific app policy of type Double, where test_double is the
name of the policy and 0.0 is the value returned if test_double doesn’t exist:

 double testDouble = config.getDouble("test_double", 0.0);

To return the value of a specific app policy of type Number, where test_number is the
name of the policy and 0.0 is the double value returned if test_number doesn’t exist.
Works for both double and single integer values. Returns exact value with which it is
initialized:

Number testNumber = config.getNumber("test_number", 0.0);

To return a local copy of the app policy, and returns an empty app policy object if the
app policy doesn't exist:

AppConfig config = mobileBackend.getAppConfig();

iOS

Retrieving App Policies
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies for your iOS apps for the first time, you use an ansynchronous
callback. Here’s some code that will fetch the app config from the mobile backend and
loop until the network call returns with either the app config or an error:

OMCMobileBackend* mbe = [[OMCMobileManager sharedManager] mobileBackend];

__block OMCAppConfig* appConfig = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[_mbe appConfigWithCompletionHandler:^(OMCAppConfig* appConfig_, NSError*
error_) {
 appConfig = appConfig_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

if (error != nil) {
 return;
}

Chapter 13
iOS

13-3

Once you have fetched the app policies, you can query the app config for the values of
individual properties. You can also insert an optional parameter to return a value if the
policy is not found.

NSString* welcome = [appConfig stringForProperty:@"welcome"
default:@"bogus"];
int timeout = [appConfig integerForProperty:@"TIMEOUT" default:42];
boolean enabled = [appConfig booleanForProperty:@"enableLocation"
default:NO];

REST

Retrieving App Policies
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

Using the following call, you can retrieve all of the app policies associated with a
mobile backend.

GET {BaseURL}/mobile/platform/appconfig/client

The response body is a JSON object containing all of the app policies configured for
that mobile backend. For example, if the mobile backend contains fifTechReqTimeout,
fifTechWelcomeMsg, and fifTechBgImage policies, the response might look something
like this:

{
 "fifTechReqTimeout":100000,
 "fifTechWelcomeMsg":"Hello",
 "fifTechBgImage":"/mobile/platform/storage/collections/appObjects/
objects/bgImage42"
}

From there, you can process them in your app code.

Cordova

Retrieving App Policies
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

Chapter 13
REST

13-4

To fetch app policies for your Cordova apps, call loadAppConfig() on your mobile
backend object, e.g.

mcs.mobileBackend.loadAppConfig(success, error);

JavaScript

Retrieving App Policies
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies , call loadAppConfig() on your mobile backend object:

mcs.mobileBackend.loadAppConfig(success, error);

Updating an App Policy Value in a Published Mobile
Backend

Even after a mobile backend has been published, you can still change the value of an
app policy. However, you can not change its name or type.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Open the mobile backend. (Select it and click Open.)

3. Click the App Policies tab.

4. In the table of app policies, select the policy and click Edit.

5. Edit the value and click Save.

Chapter 13
JavaScript

13-5

14
Backends

Oracle Mobile Cloud Enterprise (OMCe) is built around the concept of mobile
backends, which enable you to develop and deploy groupings of APIs that are
designed to support a specific set of mobile apps or bots. You can then associate one
or more apps or bots with the mobile backend to access those APIs.

What Are Backends and How Can I Use Them?
In OMCe, a backend is a secure grouping of APIs and other resources for a set of
apps. Within a backend, you select the APIs that you want available for those apps.
For any apps that you want to receive notifications, you can also register the
appropriate credentials for the given network (e.g. APNS or FCM) in the backend.

You can have multiple backends, each serving a set of applications. In addition, you
can have APIs that are used by multiple backends.

When an app accesses APIs through OMCe, it is always in the context of a backend.
The app authenticates with credentials (OAuth Consumer or HTTP Basic
Authentication) specific to the backend or through an identity provider (or social login
provider) that is mediated by your backend.

What's the Backend Development Process?
Generally speaking, using OMCe to develop apps involves these steps:

• Getting the OMCe client SDK for your target platform to simplify the use of
platform features such notifications, storage, sync, and location.

• Developing any custom APIs that your app or bot may need.

• Creating a backend and populating it with any APIs and other resources that the
app or bot will need.

• Configuring apps and/or bots to connect to the backend.

The development model is flexible, allowing you to largely work in parallel on APIs,
backends, apps, and bots.

Creating and Populating Backends
You create and populate backends directly in OMCe. Once you have created a
backend, you can:

• Assign roles that can be used to access the backend.

• Associate APIs and Storage collections with the backend.

• Set up profiles for the apps that will use the backend.

14-1

Creating a Backend
You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You’ll need to configure your app with some of this information.

Backend Authentication and Connection Info
The following authentication and connection details are generated when you create a
backend and are displayed on the backend’s Settings page:

• Access Keys

You can use these to control access to the backend. They are unique for each
backend.

– OAuth Consumer keys are generated in the form of a client ID and a client
secret.

– HTTP Basic Authentication keys are generated for you in the form of a
backend ID and an anonymous key.

If you suspect that these credentials have been compromised (such as by an
application handling them insecurely), click Refresh to replace the credentials with
new ones, or click Revoke to cancel the existing credentials without generating
replacements.

Note:

Think twice before refreshing or revoking credentials, since these actions
will block any calls that any existing apps make through the backend. To
get the apps working properly again after credentials have been revoked
or refreshed, you need to rebuild the apps with the new credentials and
redeploy them.

• Environment URLs

– The Base URL is needed for all API calls. This URL is unique for each
instance that you have provisioned.

– The OAuth Token Endpoint is the URL that your app needs to make OAuth
token requests.

– The OAuth Authorize Endpoint is the URL that your app can use to get an
authorization code to exchange for an OAuth access token.

Chapter 14
Creating and Populating Backends

14-2

For details on using these and other authentication methods, see Authentication in
OMCe.

To make it easier to incorporate these details in your apps, use the client SDKs for
your app platforms. See Client SDKs.

Role-Based Backends
You provide an additional layer of security for a backend (and, by extension, the
resources it represents) by making it role-based and then designating user roles that
enable access.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Open the backend that you want to make role-based.

3. In the left navigation for the backend, click Security.

4. Set the Role-based Access switch to the ON position.

5. In the Roles field, select any roles that you want to associate with the backend.

See Mobile Users and Roles for info on how roles work.

Note:

If your app uses Facebook login, Role-based Access needs to be turned
OFF.

Associating APIs with a Backend
Once you have a backend, you can use the API Catalog to select the custom APIs you
want to access through that backend. The API Catalog provides detail on each API
endpoint and its documentation, as well as an opportunity to test the endpoint with
mock data to see what it does.

1. Click to open the side menu and select Mobile Apps > Backends.

2. Select your backend and click Open.

3. In the left navbar, click APIs.

4. Click Select APIs.

5. Optionally, click an API’s name to view its endpoints.

At this stage, you can click Test Endpoint to see how the API works with mock
data.

For custom APIs, you can also specify that the API can be accessed without a
user login. See Testing Your Custom API for more details.

6. Click the + (Add) icon for each API that you want to include.

Chapter 14
Creating and Populating Backends

14-3

Note:

Platform APIs (for Storage, Notifications, Location, etc.) are automatically
available in your backends.

Associating Storage Collections with a Backend
You can associate a backend with collections so that your apps can work with data in
those collections using the Storage API.

To associate your backend with an existing collection:

1. Click to open the side menu and select Mobile Apps > Backends.

2. Select your backend and click Open.

3. In the left navbar of the backend, click Storage.

4. Click Select Collections.

5. Start typing the name of the collection that you want to add, select the collection
from the drop-down list, and click Select.

For more on collections, including creating them, see Storage.

Notification Profiles and Client Apps
If you are using notifications in an app, you can create a notifications profile to manage
the network credentials. You can then register the client app in OMCe and associate it
with the notifications profile and a given backend.

Setting up a notifications profile and registering the client app accomplishes the
following things:

• Enables you to store the ID that is needed for the app store.

• Enables the app to receive notifications via OMCe.

• Simplifies lifecycle management of the app and its associated backend and related
artifacts.

How Notification Profiles Work
You use notifications profiles to store credentials for notification services that you use
in your apps. After you create a notification profile, you can associate it with a client
that you have registered for an app and associated with a backend.

How App Clients Work
Here are the principles behind app clients:

• A client represents a single version of a single app binary.

For example, if you have both iOS and Android versions of an app, you would
register a client for each. Similarly, if you provide an upgraded version of the app,
you would register a new client to hold its metadata.

Chapter 14
Notification Profiles and Client Apps

14-4

• When you register a client, you specify metadata such as the application ID that is
required by the platform vendor’s app store, the app version number, and a profile
that contains notifications credentials.

• A client can only be associated with one version of a mobile backend.

This means that when you create a new version of a mobile backend, that mobile
backend doesn’t inherit any clients that you associated with the previous version of
the mobile backend. So, as you create new versions of your mobile apps that use
a new version of a mobile backend, you should create corresponding clients.

• A client can be published and deployed in a way similar to other artifacts. When a
client is deployed, its backend and other dependencies are deployed with it.

For a rundown on publishing, deploying, and versioning app profiles, see App
Profile Lifecycle in Administering Oracle Mobile Cloud, Enterprise.

Getting Network Credentials for Notifications
To enable your app to send and receive notifications via OMCe, you create an app
profile and configure an associated notifications profile with the appropriate network
credentials. Here's how to get the network credentials for the different platforms.

Android: Google API Key
Configuring an Android mobile app for notifications requires getting a Google API Key
through Firebase Cloud Messaging (FCM).

1. Set up your Android mobile application in FCM according to the instructions at Set
Up a Firebase Cloud Messaging Client App on Android on Google’s developer
site.

This page includes detailed instructions and a link to generate the required
configuration file for your project, as well as information on using the Instance ID
API to create and update registration tokens.

Note:

When you generate the configuration file for your app, make sure you
choose to enable the Cloud Messaging service.

2. In the Android app’s AndroidManifest.xml file, within the <application> node, add
the following entries:

<service
android:name="oracle.cloud.mobile.notifications.McsRegistrationIntentSer
vice" android:exported="false" />
<service
android:name="oracle.cloud.mobile.notifications.GcmTokenRefreshListenerS
ervice" android:exported="false">
<intent-filter>
<action android:name="com.google.android.gms.iid.InstanceID" />
</intent-filter>
</service>

Chapter 14
Notification Profiles and Client Apps

14-5

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Google Play Services must be added as a dependent library in the application's
build file, or these services will be flagged in error.

When generation is complete, the Project Number (aka Sender ID) and API Key are
displayed. You need these credentials to register the mobile app for notifications in
OMCe. They are unique to the mobile app and can’t be used to send notifications to
any other app. You also need these values to get a registration token from FCM and
set up the connection with OMCe.

Note:

It is still possible to use Google Cloud Messaging (GCM), but you should
configure new apps with FCM. See Migrate a GCM Client App for Android to
Firebase Cloud Messaging on Google Developers.

iOS: Apple Secure Certificates
Notifications make special use of Apple's network, so Apple wants extra security
protections. In addition to the certificate used to set up your account, you need one of
the following secure certificates:

• Apple Push Notification service SSL (Sandbox) certificate for developing and
testing your application with notifications while you do development. Sandbox
certificates are intended for automated QA environments where devices don’t
change often. In most cases, spam filters should be disabled.

• Apple Push Notification service SSL (Production) certificate for releasing your
application to Apple’s App Store. Apple requires this certificate before you can ship
your app to the public, but you can wait until your app is finished to get it.

You need your certificate to register the mobile app for notifications in OMCe. It is
unique to the mobile app and can’t be used to send notifications to any other app.
Once you have configured these extra certificates, you can get a device token from
Apple and set up communication with OMCe, described in Setting Up a Device
Handshake for iOS.

The steps for getting a Sandbox or Production certificate are very similar to the steps
you used to get the first secure certificate when you set up your app. This section
assumes that you already set up your Apple developer account, got the required
secure certificate, and set up an Application ID and a Provisioning Profile. For further
details on using notifications in iOS, see the Local and Remote Notification
Programming Guide on http://developer.apple.com.

1. If you didn’t enable notifications in your provisioning profile when you created your
App ID, go back and enable it now.

2. Get your certificate(s) from the Apple Developer Center. Use the App ID you set
up when you created your app.

Chapter 14
Notification Profiles and Client Apps

14-6

https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
http://developer.apple.com/

Note:

Follow Apple’s direction to create a Certificate Signing Request (CSR)
file, then export it to a .p12 file to upload it to OMCe. Do not password
protect the .p12 secure certificate. (Leave the password field blank when
you save the .p12 file.)

Windows: WNS Credentials
Configuring a Windows mobile app for notifications requires a unique set of credentials
for Windows Push Notification Service (WNS). This section assumes you have a
Microsoft Developer account.

The following credentials are required to authenticate with WNS:

• Client ID (also called the Package SID)

• Client Secret (also called a secret key)

To get these credentials, register your mobile app in the Windows Store Dashboard,
accessible from the Windows Dev Center. For details on WNS, see WNS Overview on
MSDN.

You need these credentials to register the mobile app for notifications in OMCe. They
are unique to the mobile app and can’t be used to send notifications to any other app.

Syniverse: SMS Credentials
To send Short Message Service (SMS) messages using the Syniverse Messaging
Service, the first step is to establish a profile on the Syniverse Developer Community,
where you subscribe to the service, register your app, and get credentials.

Creating a Profile on the Syniverse Developer Community

1. Go to the Syniverse Developer Community (developer.syniverse.com).

2. Click Sign Up in the top right corner of the site and enter the requested
information.

3. If you have an invitation code from a company in the Syniverse Developer
Community enter that into "Company invite code" field. If not, ignore this step.

4. Read and accept the Terms of Service.

5. Check the Captcha box and answer the challenges to prove you aren’t a robot.

6. Click Create profile.

7. When the confirmation email arrives, click the link in the email and verify your user
credentials.

Subscribing to the Syniverse Messaging Service

To use SMS in your apps using the SMS short code you got from Syniverse, you need
to subscribe to the Syniverse Messaging Service.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click your user name in the top right corner and select Company. Verify that your
accounts have a billing address associated with them.

Chapter 14
Notification Profiles and Client Apps

14-7

https://developer.microsoft.com/en-us/windows
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx
https://developer.syniverse.com/
https://developer.syniverse.com/

3. Navigate to Service Offerings > Messaging Offering and click Subscriptions.

4. Click Subscribe and select “Initial account for [Your username]”

a. Read and accept the Terms of Service.

b. Select Confirm.

c. Verify that your account is listed in Subscriptions.

5. If you’re using a Syniverse-provisioned public channel to test messages, you also
need to add test phone numbers to the associated whitelist. (Whitelisting is only
necessary when testing SMS to U.S. or Canada phone numbers and isn’t required
for production apps.)

a. Click your user name in the top right corner and select Company.

b. On the Company page, click the Whitelist tab.

c. Click Add phone number and enter your phone number in the ITU-T E.164
format (i.e., +11234567890).

d. Click Send confirmation code to send a randomly generated number to the
phone number in a text message.

e. Retrieve the confirmation code from the text message and enter it in the
Confirmation code field. Click Add to confirm the phone number whitelist.

f. Verify that your phone number is included in the whitelist table with "Validated"
status.

Register Your App and Get Credentials

Before messages can be sent through the Syniverse Messaging Service, there must
be an application configured in the SDC platform. Once your app is registered, you
can generate the required credentials.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click Applications.

3. Click New application.

In the dialog:

a. Give your application a name and description and click Save.

b. Click the gear icon next to your app name and select Edit.

c. Click SDC Self Service and make sure all the options are selected.

d. Click Account & APIs and select the "Initial account for [Your username]"
from the Account dropdown.

Turn on the following services: Messaging, SDC Gateway Services, Event
Subscription Services, Voice & Messaging and Whitelisting Services.

e. Click Save.

4. Generate the required credentials:

a. From the Applications page, click the gear icon next to your app name and
select Edit.

b. Click Application permissions.

c. Make sure Require user token validation is unchecked.

Chapter 14
Notification Profiles and Client Apps

14-8

https://developer.syniverse.com/

d. Click the first check box next to your app name to give your application full
entitlements.

e. Click Auth Keys to generate the credentials.

f. Copy and store the keys to a safe place on your computer.

g. Click Save.

Creating a Notifications Profile
You create notifications profiles to hold notification credentials that your apps need.

To create a notifications profile:

1. Click to open the side menu and select Mobile Apps > App Profiles.

2. Click Profiles.

3. In the New Profile dialog:

• Fill in the Name. This can be whatever name that will help you identify the
profile most easily.

• Select the Notification Service.

• Fill in the rest of the dialog with the information required by the notification
service. For details on getting credentials from your notification provider,
including any additional setup steps, see Setting Up a Mobile App for
Notifications.

For Apple Push Notification Services (APNS), you need to register a certificate
obtained from the Apple Developer portal.

For Firebase Cloud Messaging (FCM), you must register server credentials
obtained from the Developers Console for an Android application. (However,
providing the package name is optional, because credentials may or may not
be scoped to a specific app.)

For Windows Notification Service (WNS), you register your app in the
Windows Store Dashboard to get the credentials required to authenticate with
the Windows Notification Service.

For Syniverse (SMS), fill in the required fields:

– Channel ID or sender address. A channel represents a collection of
sender addresses, for example, a set of SMS short codes that can be
used to send text-based messages. A sender address can be any long
code, short code or alphanumeric ID that applications can send SMS
messages from. You can use your own sender address or purchase a
sender address owned by Syniverse. When sending messages via a
channel, the Syniverse Messaging API service chooses the most
appropriate sender address for each message and recipient. To get a
Syniverse-provisioned test channel ID for testing SMS in the U.S. or
Canada, go to your Syniverse Dashboard > Service Offerings >
Messaging Accounts > Public Channels (U.S. apps must use the “US MT
Test Channel”). To test in the U.S. or Canada, you also need to whitelist
test phone numbers as described in Setting Up a Mobile App for
Notifications.

– The authentication keys you got from Syniverse: Consumer Key,
Consumer Secret and Access Token.

Chapter 14
Notification Profiles and Client Apps

14-9

– By default, consent management is handled by Syniverse, but if you want
your app to handle consent management or you want to register devices
through the UI, deselect Consent Management Enabled.

4. Click Create.

Once a notifications profile is created, you can add it to a client by opening the client,
selecting its Profiles tab, and clicking Select Profile.

You can add a profile to any client whose platform is valid for the profile's notification
service and whose application ID matches that of the profile. If an FCM or GCM profile
does not specify a package name, the profile may be used with any Android client.

Registering an App Client
1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for

Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

2. Click to open the side menu and select Mobile Apps > App Profiles.

3. Click Clients.

4. Click New Client.

5. In the New Client dialog:

• Fill in the Client Display Name and Client Name.

These can be whatever names that will help you identify the client most easily.
The former can have spaces and the latter can’t.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

• Select the Platform (iOS, Android, Windows, or Web).

• Fill in the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

• Fill in the fully-qualified app ID. You get this from the platform vendor.

For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

Chapter 14
Notification Profiles and Client Apps

14-10

Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

After you have registered the app client in OMCe, you have a few options for sending
notifications to your app, as shown in Sending Notifications to and from Your App.

What Can I Change in a Backend?
If you haven’t yet published your backend, you can change the following parts of the
backend at any time:

• Notification profiles

• Custom APIs (and their implementations)

• Any connector APIs that are called from custom API implementations

• Storage collections

• App policies

Once you have published a backend, its content is frozen. At that point, you would
need to create a new version of the backend to make any changes.

Note:

Though you can’t change the list of app policies in a published backend, you
can change their values.

Connecting Your App to a Backend
Once you have a backend set up and an app registered with that backend, you need
to configure your app code to access the backend.

Connecting your app to a backend involves these basic steps:

• Adding the client SDK libraries to your app. (This step is optional, but highly
recommended.)

• Adding a configuration file to your app to hold environment information that your
app needs to access the backend. The SDK classes that you use to make calls to
the backend use the values in this file so that you don’t have to manually include
them in each of your calls.

• Adding calls to OMCe APIs in your app.

The APIs available include OMCe platform APIs and any custom APIs that you or
other members of your team have developed in OMCe.

• Testing your app.

Chapter 14
What Can I Change in a Backend?

14-11

Analytics Apps
In order for a business analyst on your team to be able to track analytics for an app,
you need to register the app in OMCe and then use the client SDK to instrument the
app.

See Analytics for details on instrumenting your apps.

To see how a business analyst would access and use that data in OMCe, see
Analyzing Customer Data with Oracle Mobile Cloud, Enterprise.

Registering an Analytics App
So that OMCe can collect and display analytics for an app, you need to register that
app in OMCe.

1. In OMCe, click the application picker and then click New Application.

The dropdown arrow appears to the right of the title for the currently open
application that appears in the top left of the window.

2. In the New Application dialog, type a name for the app, select the appropriate time
zone, and click Create.

The app name can be anything that you want and should be named so that you
can easily identify the app (and possibly its version and platform).

3. Click to open the side menu and select Settings > Application to display the
environment details and credentials that your app will need for sending analytics
data to OMCe.

Chapter 14
Analytics Apps

14-12

You will copy these details into the configuration file provided by the client SDK for
your platform.

Associating an Analytics App with a Backend
If you have set up a backend for your apps, you can associate your analytics app with
that backend. This association is useful if you are monitoring API call analytics and
want to filter them by backend.

To create the association:

1. Click to open the side menu and select Mobile Apps > Backends.

2. Select the backend you want to use and click Open.

3. Click the backend’s Settings tab.

4. In the Application ID field, enter the analytics app key that was generated when
you created the analytics app.

You can find this key by opening the analytics app and selecting Settings >
Application.

Chapter 14
Analytics Apps

14-13

15
Mobile Users and Roles

You can set up users for your apps in one of these ways:

• In Oracle Identity Cloud Service (IDCS).

• Through a third-party identity provider (IdP).

• By using Facebook Login.

For users provisioned in IDCS or a third-party identity provider (IdP), you can set up
role-based security by doing the following:

1. Creating user roles in OMCe.

2. Applying roles to backends and APIs.

3. Assigning the roles to the users.

For details on integrating with a third-party IdP or Facebook, see Authentication in
OMCe.

Navigate to Your Oracle Identity Cloud Service
Application

Oracle Identity Cloud Service is provided as part of your mobile service stack, and you
use it to add and edit users, groups, and roles. For each mobile instance, you have an
Oracle Identity Cloud Service application.

To navigate to the Oracle Identity Cloud Service application for an instance:

1. Sign in to your Oracle Cloud account.

2. From the Infrastructure Console , click the navigation menu in the top left
corner, expand Identity, then click Federation.

3. In the Instance Overview that appears, click the Oracle Identity Cloud Service
Console link.

Adding Users and Groups in Oracle Identity Cloud Service
Unless you are using a 3rd-party IdP or Facebook as your identity store, you add
users by creating user accounts with Oracle Identity Cloud Service. You can create
groups to organize users and assign roles.

Note:

You must have an identity domain administrator role in Oracle Identity Cloud
Service to add mobile users. If you don’t have this role, ask your service
administrator for help.

15-1

To add a single user, follow the steps below. Oracle Identity Cloud Service also
provides a REST API for creating and managing users and groups, described in REST
API for Oracle Identity Cloud Service.

1. From Oracle Identity Cloud Service, click and select Users.

2. Click Add.

3. Enter the first name and last name of the user in the corresponding fields.

• If the user is going to log in with a user name, enter the user name in the User
Name field and enter the user’s email address in the Email field.
Be sure to clear the Use the email address as the user name option, which
makes the user name the same as the user’s email address.

• If the user is going to log in using an email address, make sure the Use the
email address as the user name option is checked and enter the email
address for the user account in the User Name/Email field.

4. Click Next if you want to assign the user to a group or click Finish.
To assign a group, just select the groups that you want to assign to this user
account and click Finish.

5. From the Details page displayed for the new user, click the Access tab.

6. Search for your mobile core application and click Assign.
Repeat this step for each application the user should have access to.

Creating and Managing Mobile Roles
Mobile user roles allow you to define permissions for your backends and APIs. You
can define as many roles as you need, and you can assign multiple roles to the same
user.

To create mobile user roles:

1. In OMCe, click to open the side menu and select Mobile Apps > Roles.

2. Click + New Role to add a role.

Once you’ve defined roles, use them to:

• Restrict access to a backend as explained in Role-Based Backends.

• Restrict access to custom APIs as described in Setting Access to the API.

Roles for Users That Are Set Up in IDCS

For mobile users that are set up in IDCS, you assign roles (to individual users or
groups of users) through IDCS:

1. From Oracle Identity Cloud Service, click the navigation menu and select
Identity > Federation.

2. Select the IDCS provider and click Create IDCS User.

3. Select your OMCe mobile core application, then select the Application Roles tab.

4. For each role, click Action > Assign Users. Select one or more users from the
Role window and click Assign.

Chapter 15
Creating and Managing Mobile Roles

15-2

For more details on OMCe roles in IDCS, including how to identify your OMCe mobile
core application, see Assigning Cloud Account Roles to a User in Getting Started with
Oracle Cloud.

Roles for Users That Are Set Up in a 3rd-Party IdP

There are several ways to assigns roles to users who provisioned in 3rd-party IdP.
See Associating Roles with a SAML Token and Associating Roles with a JWT Token.

Permissions Required for Platform APIs
The types of users that can access a platform API, the way they can access it, and the
roles they need to access it vary by API. Here’s a quick rundown:

API Access and Required Permissions

Analytics • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

App Policies • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Database Access • Accessible to IDCS, virtual, and social
users. For security reasons, you can call
these operations only from custom API
implementations by using the custom
code SDK. You can't make direct requests
from client applications.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Database Management • Accessible to team members with either
the Administrator or Developer role.

Location • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Location Management • Accessible to team members with the
Administrator role.

Chapter 15
Permissions Required for Platform APIs

15-3

API Access and Required Permissions

My Profile • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Notifications (device registration) • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Notifications (create, delete, and return) • Accessible to team members with either
the Administrator or Developer role.

Storage • Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

• For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

• Access depends on whether the given
collection is shared or isolated, whether
it's listed in the
Security_CollectionsAnonymousAcc
ess environment policy, and whether you
need READ or READ_WRITE access.

Chapter 15
Permissions Required for Platform APIs

15-4

16
Authentication in OMCe

In Oracle Mobile Cloud Enterprise (OMCe), all resources are secured and can only be
accessed via API calls made by authenticated users that are authorized to access
those resources. As a mobile app developer, you enable one or more authentication
methods for a mobile backend, associate the APIs that you want to use with that
backend, and then write app code using one of those authentication methods.

The authentication methods available are:

• OAuth Consumer

• HTTP Basic

• Enterprise Single Sign-On (SSO)

This method includes variants for browser-based SSO and use of third-party
tokens.

• Facebook Login

Before getting into the specifics of each authentication method, let’s go over how
authentication relates to authorization:

• Authentication is the process of ensuring a user is who he or she claims to be,
usually based on a user name and password, and often in combination with other
credentials.

• Authorization is the process of determining whether a user has access to given
backends and APIs, based on permissions granted to the user via roles.

OAuth Consumer Authentication in OMCe
The ability to use OAuth 2.0 as your authentication mechanism is built in to all
backends and enabled by default. Whenever you create a backend, the OAuth
Consumer keys are generated for you.

For details on the access keys and backend details provided, see Backend
Authentication and Connection Info.

16-1

Once you have these keys, you can use them in your apps. When using Client SDKs
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the backend. If you are coding the REST calls manually, see
Authenticating with OAuth in Direct REST Calls.

OAuth authentication in OMCe is handled by Oracle Identity Cloud Service (IDCS),
which supports the standard OAuth grant types: authorization code, implicit, resource
owner password credentials, and client credentials.

HTTP Basic Authentication in OMCe
The ability to use HTTP Basic as your authentication mechanism is built in to all
backends and enabled by default.

To enable or disable HTTP Basic as an authentication method:

1. Open the backend and select the Settings page.

2. Under Access Keys, set the HTTP Basic switch to ON or OFF.

When switched to ON, the access keys that you need are displayed.

Once you have these keys, you can use them in your apps. When using Client SDKs
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with HTTP Basic in Direct REST Calls.

For details on the access keys and environment details provided, see Backend
Authentication and Connection Info.

Enterprise Single Sign-On in OMCe
If you want to use your own identity provider (IdP) for users of your apps, you can use
OMCe’s single sign-on (SSO) support to create a trust relationship with that IdP in
OMCe so that those users from that IdP can log in to those apps. This is particularly
useful if you’re rolling out apps for your company’s employees and you want them to
be able to sign into the apps using their existing employee login credentials. Similarly,
this could work for consumer applications where the customers already have user
accounts for corresponding web applications.

You can set up SSO to work through the following mechanisms:

• SAML or JWT tokens from a 3rd-party IdP. The app obtains a token from a 3rd-
party IdP that is registered in OMCe as a trusted token issuer, makes an API call
to the OMCe token exchange endpoint, and receives back an OMCe-issued token,
which you include as a bearer token on each subsequent OMCe API call. The
client SDKs support this token exchange.

In the case of JWT tokens, OMCe uses the OpenID Connect discovery protocol.

• Browser-based SSO using IDCS as the IdP. Oracle Identity Cloud Service is the
IdP. The app uses OAuth 2.0’s authorization code grant to get an authorization
token. The client SDKs currently do not provide support for this grant type.

Chapter 16
HTTP Basic Authentication in OMCe

16-2

Third-Party SAML and JWT Tokens
OMCe supports the use of SAML and JWT tokens in the following ways:

• With zero footprint SSO, where no user accounts are stored in Oracle Cloud.
Instead, all of the information for the user, including user roles, is derived from the
third-party token. Such users are referred to as virtual users.

• With a token that identifies a user that has been provisioned in both Oracle Identity
Cloud Service (IDCS) and the third-party IdP. Roles are associated for the user
based on information provided in IDCS.

SAML Tokens and Virtual Users
If you have users set up in a third-party IdP that supports the SAML 2.0 spec, you can
authenticate those users in OMCe via SAML tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1. You configure your backend to use HTTP Basic authentication. (This is required
for you to be able to get the token.)

You do this by selecting the backend in OMCe, selecting the backend’s Settings
page, and setting the switch for HTTP Basic Authentication to ON.

2. Your administrator configures the IdP to generate a SAML token when the user
logs in.

3. Your administrator registers the third-party token issuer and one or more token
certificates in OMCe.

As part of this process, she can also associate OMCe roles with tokens in one of
the following ways.

• By designating OMCe roles to be associated with all tokens based on a given
certificate.

• By deriving role names (that match existing OMCe roles) from given token
attributes.

• By mapping given token attribute values to existing OMCe roles (where the
attribute values don’t already match the OMCe names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an OMCe token exchange endpoint to get an OMCe-issued
token in return.

c. Use the OMCe token for all subsequent API calls to OMCe.

Configuring SAML Tokens for Virtual Users
To enable the authentication of virtual users via SAML tokens, you need to create a
SAML app in your IdP. This is a special app that mediates the creating and passing of
the SAML tokens.

Though the workflow varies by IdP, you generally need to do the following key tasks:

Chapter 16
Enterprise Single Sign-On in OMCe

16-3

1. Create a SAML 2.0 app.

2. Configure the SAML 2.0 app by specifying the following:

a. Redirect URL.

You’ll configure your app to use the redirect URL to obtain the token. How the
token is obtained depends on the operating system you use (iOS or Android) .
Avoid entering an address to an actual live site. Use a fictitious address URL
request, for example,
http://hostname/mobile/platform/sso/redirect

Be sure the redirect URL you provide is formed correctly, that is it should
match the expected redirect URL value.

b. Audience.

SAML tokens have the concept of an audience. An audience is the intended
recipient of the SAML response (the token). It restricts the set of URLs against
which the token can be used. You configure the audience to the URL for the
OMCe SSO token endpoint.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by
opening any mobile backend in OMCe, clicking its Settings tab, and looking in
the Environment URLs section.

c. An assertion that lists the applicable roles for the user.

For concrete examples, see Use Case: Configuring OKTA to Obtain a SAML Token
and Use Case: Configuring AD FS to Obtain a SAML Token.

Registering the Token Issuer in OMCe
Before your apps can use tokens issued by a third-party IdP to authenticate with a
backend, an administrator needs to register the IdP as a token issuer in OMCe. Here
are the steps:

1. In OMCe, click and select Settings > Credentials from the side menu.

2. Click Certificates.

3. Click New Certificate to clear the Certificate Details and provide the following
information:

• In the Alias field, enter a unique identifiable name for the certificate.

• In the Certificate field, paste the definition of the token certificate that was
provided by the identity provider.

4. Click Save.

5. Wait for the token certificate to be propagated in the system. This should take no
longer than 10 minutes.

6. Click the Token Issuers tab.

7. Click New Token Issuer.

8. Enter the name of the token issuer in the Name field under Issuer Details.

9. Click Add Certificate Subject Name (+) .

10. From the Select Certificate Subject Names dialog, select at least one name and
click Save.

Chapter 16
Enterprise Single Sign-On in OMCe

16-4

Typically the name is the subject name of the token certificate you added
previously.

11. Back on the Token Issuers tab, select Enable Virtual User.

12. In the Username Attribute field, type the name of the token’s attribute that
identifies the user.

13. Optionally, designate user roles and mappings. The next topic has more
information on how this works.

14. Click Save.

Associating Roles with a SAML Token
If you want to set up role-based access for users that authenticate with SAML tokens,
you can do so when registering the token issuer in OMCe. You have the following
possibilities:

• Use roles already defined in the token that match the names of OMCe roles.

You do this by typing a comma-separated list of token attribute names in the Role
Attribute field. The roles are then derived from the values of these attributes.

• If the role names defined in the token don’t match role names defined in OMCe,
provide a mapping between the two.

You do this by:

1. In the Role Attribute field, typing a comma-separated list of token attributes
that contain the role names.

2. Clicking Add Role Mapping Setting (+) to create a mapping between a role
derived from the token with one or more OMCe user roles.

You can create multiple mappings.

• Apply one or more OMCe roles to all tokens issued with a given certificate (unless
roles were applied via the role attribute or Role mapping mechanisms).

You do this by selecting one or more OMCe user roles in the Default Roles field.

Extracting the SAML Assertion
After you’ve obtained a SAML token from an IdP, you need to decode it to extract the
SAML assertion from its response. You then GZIP compress that assertion and
base64 encode it again before submitting it to the OMCe token exchange to receive an
OMCe token.

One way to extract the assertion is to follow these steps:

1. Open a browser and enter the address for the identity provider:

For example, if you configured a SAML token with AD FS: https://
domain_name/adfs/ls/idpinitiatedsignon

You’re taken to the Test Local Federation page.

2. Enter the user name and password credentials for the user you created and click
Sign In.

3. After the page refreshes, select the SAML app you created and click Sign in
again.

Chapter 16
Enterprise Single Sign-On in OMCe

16-5

You are redirected to the endpoint URL and the SAML token is displayed in the
browser URL field.

4. Copy the response beginning with SAML Response=.

5. Since you’ll need to base64 decode and inflate the SAML response, go to a SAML
decoder tool such as SAML Decoder at https://www.samltool.com/decode.php.

6. Go to the base64 Decode and Inflate page and paste the response into the
Decode and Inflate XML field.

7. Click DECODE AND INFLATE XML.

8. Extract the SAML assertion from the XML field.

9. Gzip compress the extracted assertion.

10. Base64 encode the assertion.

Now you can call the token exchange, pass the assertion, and receive the OMCe
token.

Using a SAML Token to Authenticate with OMCe
Once you have obtained a valid SAML token, you can use it to authenticate with
OMCe. You do so by passing the token to OMCe’s token exchange endpoint. In
exchange, you get an OAuth token issued by OMCe that can be used for subsequent
API calls during the session.

OMCe’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Chapter 16
Enterprise Single Sign-On in OMCe

16-6

https://www.samltool.com/decode.php

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Coding the SAML Token Exchange Manually
If you are not using a client SDK, you need to manually code your app to exchange
that token for an OMCe token, with which you then authenticate.

1. In the app’s login sequence, call the OMCe token exchange endpoint to exchange
the third-party token for an OMCe-issued OAuth token:

• The token exchange request is a simple GET request with no parameters.

• It must include an Authorization header of the form:

Authorization: Bearer external-token

• It must also include the oracle-mobile-backend-id header with the value of
the Basic Auth mobile backend ID for the mobile backend that you’re using.

The token exchange endpoint is formed by starting with the base URL for your
environment (which you can get from the Settings page of a mobile backend) and
appending /mobile/platform/sso/exchange-token.

2. In all REST calls to OMCe APIs, include the given token in the Authorization
header.

The header takes the form Bearer access-token.

The access-token value includes the mobile backend ID from the original request
so you don’t have to include the ID in a separate header.

JWT Tokens and Virtual Users
If you have users set up in a third-party IdP that supports JWT, you can authenticate
those users in OMCe via JWT tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1. You configure your backend to use HTTP Basic authentication. (This is required
for you to be able to get the token.)

You can do this by selecting the backend in OMCe, selecting the backend’s
Settings page, and setting the switch for HTTP Basic Authentication to ON.

2. Your administrator configures the IdP to generate a JWT token when the user logs
in.

3. Your administrator registers the third-party token issuer via a policy in OMCe.

As part of this process, she can also associate OMCe roles with tokens in one of
the following ways.

• By designating OMCe roles to be associated with all tokens based on a given
certificate.

Chapter 16
Enterprise Single Sign-On in OMCe

16-7

• By deriving role names (that match existing OMCe roles) from given token
attributes.

• By mapping given token attribute values to existing OMCe roles (where the
attribute values don’t already match the OMCe names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an OMCe token exchange endpoint to get an OMCe-issued
token in return.

c. Use the OMCe token for all subsequent API calls to OMCe.

Note:

This mode of integrating with an IdP is based on enhanced features that are
specific to working with JWT tokens (such as JWKS support) and includes
other features, such as the ability to configure allowed audience values and
username attribute. You can also use the process that is used for integrating
with SAML-based IdPs, though this provides you with less flexibility. See
SAML Tokens and Virtual Users.

Registering a JWT Token Issuer in OMCe
Before your apps can use JWT tokens issued by a third-party IdP to authenticate with
a backend, an administrator needs to register the IdP as a token issuer in OMCe.
Here’s how it works:

1. You create a configuration that holds information that is needed to integrate with
the token issuer. This integration takes the form of a JSON object.

2. You flatten the configuration into a single line.

3. You insert the configuration as the value of the
Security_AuthTokenConfiguration policy.

See Modifying Policies in Administering Oracle Mobile Cloud, Enterprise.

The following several topics provide some examples of creating the configuration file
for a token issuer.

Minimal IdP Configuration
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using OMCe’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

• User roles are specified in a token attribute named roles.

Chapter 16
Enterprise Single Sign-On in OMCe

16-8

• The token’s audience (aud) claim is set to the JWT auth token endpoint for your
OMCe instance (OMCe-BASE-URL/mobile/platform/auth/token) so there is no
need to override the default audience validation behavior.

{
 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

IdP Configuration with Audience
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using OMCe’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match OMCe’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

Chapter 16
Enterprise Single Sign-On in OMCe

16-9

IdP Configuration with Audience and Username Attribute
Here is an example of a configuration file that covers a basic use case, where:

• The username is specified in the unique_name claim (rather than the sub claim).

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using OMCe’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match OMCe’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "BASE-TOKEN-ISSUER-URL",
 "usernameAttribute": "unique_name",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "BASE-TOKEN-ISSUER-URL/.well-known/openid-
configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

Associating Roles with a JWT Token
If you want to set up role-based access for users that authenticate with JWT tokens,
you do so when registering the token issuer in OMCe via the
Security_AuthTokenConfiguration policy. You have the following possibilities:

• Use roles already defined in the token that match the names of OMCe roles.

You do this by creating a roleAttributes array for the issuer and populate it with
claims in the token that you want to derive roles from.

• If the role names defined in the token don’t match role names defined in OMCe,
provide a mapping between the two.

You do this by:

1. Creating a roleAttributes array for the issuer and populate it with claims in
the token that you want to derive roles from.

Chapter 16
Enterprise Single Sign-On in OMCe

16-10

2. Creating a roleMappings array rule to create a mapping between a role
derived from the token (via the roleAttributes array) with one or more OMCe
user roles.

You can create multiple mappings.

• Apply one or more OMCe roles to all tokens issued with a given certificate (unless
roles were already applied via roleAttributes or roleMappings).

You do this by creating a defaultRoles array.

• Apply one or more OMCe roles to all tokens issued with a given certificate
(whether or not roles were already applied via roleAttributes or roleMappings).

You do this by creating an issuerRoles array.

See JWT Configuration Reference for details on the syntax of the configuration file.

Converting a JSON Object to One Line
You might find it useful to have some tools to convert JSON objects from multi-line
objects to single-line objects and vice versa. Here are some examples of Python
commands that you can use for that purpose,

To output the JSON content in file /scratch/jsmith/authTokenConfig.json as a
single line:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj);'

To output the JSON content in file /scratch/jsmith/authTokenConfig.json in “pretty
print" form:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj, indent=4,
sort_keys=False);'

JWT Configuration Reference
Here are the fields that can be used in the JSON object that serves as the
configuration for a JWT identity provider.

Root Fields

• issuers — Required. A JSON array of trusted issuers objects. Each trusted issuer
is defined as a JSON object, with a combination of the following fields.

• policyMinReloadInterval — Optional. If a token exchange request is received,
and the specified issuer is not found in the configuration cache, the configuration
cache will automatically be reloaded from the stored policy in order to check for
changes, unless the amount of time since the last configuration cache reload is
less than the policyMinReloadInterval. The default value for this interval is 10
seconds. The policyMinReloadInterval configuration field can be used to
override the default value with a specified integer value in seconds.

• policyMaxReloadInterval — Optional. If a token exchange request is received, if
the elapsed time since the last time the configuration cache was reloaded is in
excess of policyMaxReloadInterval, the configuration cache will automatically be

Chapter 16
Enterprise Single Sign-On in OMCe

16-11

reloaded from the stored policy in order to check for changes. The default value for
this interval is 120 seconds. The policyMaxReloadInterval configuration field can
be used to override the default value with a specified integer value in seconds.

• certificatesMinReloadInterval — Optional. If a token exchange request is
received, and a required certificate is not found in the certificates cache, the
certificates cache will automatically be reloaded from Oracle Keystore Service
(KSS) in order to check for changes, unless the amount of time since the last
certificates cache reload is less than the certificatesMinReloadInterval. The
default value for this interval is 10 seconds. The certificatesMinReloadInterval
configuration field can be used to override the default value with a specified
integer value in seconds.

• certificatesMaxReloadInterval — Optional. If a token exchange request is
received, if the elapsed time since the last time the certificates cache was
reloaded is in excess of certificatesMaxReloadInterval, the certificates cache
will automatically be reloaded from KSS in order to check for changes. The default
value for this interval is 300 seconds. The certificatesMaxReloadInterval
configuration field can be used to override the default value with a specified
integer value in seconds.

Issuer Fields

• issuerName — Required. A JSON string which specifies the issuer name. This
value must match the value of the iss claim in tokens from the associated token
issuer.

• enabled — Optional. A JSON boolean which can be used to enable or disable the
token issuer. If the token issuer is disabled, any attempt to exchange a token from
that issuer will fail. The default value is true.

• audience — Optional. A JSON array of string values, specifying valid audience
values for the external token. If the external token contains an aud claim and none
of the associated values exactly matches one of the values in the specified list,
then the external token will be treated as invalid.

The default behavior if this field is not specified (or contains an empty list) is to
compare the aud values in the external token to the following values:

– base-URL

– base-URL/

– base-URL/mobile

– base-URL/mobile/

– base-URL/mobile/platform

– base-URL/mobile/platform/

– base-URL/mobile/platform/auth

– base-URL/mobile/platform/auth/

– base-URL/mobile/platform/auth/token

– base-URL/mobile/platform/auth/token/

If none of the aud values in the external token match any of the above values, the
external token will be treated as invalid.

Chapter 16
Enterprise Single Sign-On in OMCe

16-12

• virtualUserEnabled — Optional. If true the virtual user (zero footprint) feature is
enabled for this issuer, meaning your users can authenticate with third-party
tokens without having corresponding user accounts in Oracle Cloud. The default
value is false.

• usernameAttribute — Optional. A JSON string specifying the name of a JWT
token claim from which a username is extracted. If no value is provided, the value
of the sub claim will be used as the username.

• requireClientAuth — Optional. A JSON boolean which can be used to configure
whether client authentication is required for this token issuer.

– If the value is true, full client authentication is required.

– If the value is false, a token exchange request can contain a client-id value
in the POST body, with no client_secret value provided. This is intended
only for cases where devices are not able to protect the client_secret.

The default value is true.

• clientIdAttribute — Optional. A JSON string specifying the name of a JWT
token claim which contains the client ID of the OAuth client on the external token
issuer which was used to obtain the external token. If a clientIdAttribute value
is specified, the specified attribute is present in a token, and its value matches the
username associated with the token, then the token exchange request will be
rejected, because client tokens shouldn’t be exchanged for OMCe user tokens.

If no clientIdAttribute value is provided, this check will not be performed.

• tokenTimeoutSeconds — Optional. A JSON integer specifying the token lifetime
(i.e. from iat to exp) in seconds for OMCe tokens issued in exchange for tokens
from this issuer. If this field is not specified, the token lifetime will be governed by
the Security_TokenExchangeTimeoutSecs policy. If the
Security_TokenExchangeTimeoutSecs policy has not been defined, the default
token lifetime is 28800 seconds (i.e. 8 hours).

The token lifetime is also governed by the tokenTimeoutPolicy.

• tokenTimeoutPolicy — Optional. A JSON string specifying the policy used to
control the token lifetime (i.e. from iat to exp) for OMCe tokens issued in
exchange for tokens from this issuer. Three policy values are supported:

– FromTimeoutSecs — The token lifetime is governed by the
tokenTimeoutSeconds value.

– FromExternalToken — The OMCe-issued token will expire at the same time
the external token being exchanged will expire (i.e. tokenTimeoutSeconds is
ignored).

– FromExternalTokenLimitedByTimeoutSecs — The OMCe-issued token will
expire at the same time the external token being exchanged or after the token
timeout value, whichever comes first.

If this field is not specified, the token timeout policy lifetime will be governed by the
Security_TokenExchangeTimeoutPolicy policy. If
the Security_TokenExchangeTimeoutPolicy policy has not been defined, the
default token timeout policy is FromTimeoutSecs.

• jwks— Optional. A JSON object which specifies the URI(s) and other configuration
options associated with loading keys and/or certificates from the external token
issuer on the fly.

Chapter 16
Enterprise Single Sign-On in OMCe

16-13

Use this object if you are using a discovery URI to load keys and/or certificates
(and you are not using a certificateSubjectNames object).

See jwks Fields for the options.

• certificateSubjectNames — Optional. A JSON array of strings containing a list of
the certificate subject names of certificates that have been uploaded into OMCe
through the Settings tab’s Credentials page. (See Registering the Token Issuer in
OMCe.)

Use this object if you are not using a discovery URI to load keys and/or certificates
(and therefore are not using a jwks object).

• filters — Optional. A JSON array of filter objects. Each filter is defined as a
JSON object, with a combination of these fields:

– name — Required. A JSON string specifying the name of an attribute or claim
to which the filter will be applied.

– type — Optional. A JSON string specifying whether the filter is an include
filter or an exclude filter.

An include filter is satisfied if the token contains a value which matches one or
more of the specified filter values (i.e. presence of a "match" causes the filter
to be satisfied). An exclude filter is satisfied if the token does not contains a
value which matches any of the specified filter values (i.e. absence of a
"match" causes the filter to be satisfied).

The default value is include.

– values — Required. A JSON array of string values which will be compared to
the value of the attribute or claim in the external token as identified by the name
field.

Filter values may contain the * character as a wildcard for matching purposes.

Each filter in the array must be satisfied in order for the external token to be
considered valid.

Note:

If a filter is specified incorrectly or incompletely (e.g. missing name,
invalid type, missing or empty values array) the filter will always be
considered to be not satisfied. The rationale is that the admin who
configured the filter was trying to filter out something, and if we cannot
figure out what that something is, it is better to err on the side of caution,
and reject the external token.

• allowedMbes — Optional. A JSON array of JSON objects which identify mobile
backends can be used with this token issuer.

You can specify a mobile backend including the name and version, or by including
just clientId.

If this field isn’t specified, the issuer can be used with any mobile backend.

Here are the possible entries:

– name — Optional. A JSON string specifying the name of a mobile backend. If
you include this field, you must also include version.

Chapter 16
Enterprise Single Sign-On in OMCe

16-14

– version — Optional. A JSON string specifying the mobile backend version. If
you include this field, you must also include name.

– clientId — Optional. A JSON string specifying the OAuth client ID of a
mobile backend.

• userMappingAttribute — Optional. A JSON string identifying the user attribute
used to search for an Oracle Cloud user to be associated with the token
exchange.

This attribute is ignored if virtualUserEnabled is set to true.

The string can have one of the following values:

– uid — Search for an Oracle Cloud user whose username matches the
username extracted from the external token.

– mail — Search for an Oracle Cloud user whose primary email address
matches the username extracted from the external token.

The default value is uid.

Note:

If a usernameAttribute hasn’t been configured, the username extracted
from the external token will be the value of the sub claim. If a
usernameAttribute has been configured, the username extracted from
the external token will be the value of the whatever claim is identified by
the usernameAttribute value.

• defaultRoles — Optional. A JSON array of strings, where each string is the name
of an OMCe role which should be granted to a virtual user in the case where no
roleAttributes value has been configured or where a roleAttributes value is
configured but the specified attributes are either absent from the external token or
are empty.

• issuerRoles — Optional. A JSON array of strings, where each string is the name
of an OMCe role which should be always granted to a virtual user when a token
from this external issuer is exchanged. The difference between default roles and
issuer roles is that default roles are granted only when no roles have been found
during processing of role attributes, while issuer roles are always granted.

• roleAttributes — Optional. A JSON array of strings where each string is the
name of a token attribute (i.e. claim) which should be searched for role values. If a
specified token attribute is not present in the external token, no roles will be added
for that attribute. Otherwise, the token attribute value will be processed as follows:

– If the token attribute value contains a JSON string, the string value will be
granted as a role, subject to role mapping (see theroleMappings field).

– If the token attribute value contains a JSON array of JSON string values, each
of the string values will be granted as a role, subject to role mapping.

If no roleAttributes array is provided, the external token will not be searched for
roles, and the roles to be granted to the user will be based on defaultRoles
and/or issuerRoles configuration, where provided.

• roleMappings — Optional. A JSON array of role mapping objects, each of which
specifies a mapping from a token role value (i.e. a value obtained from

Chapter 16
Enterprise Single Sign-On in OMCe

16-15

roleAttributes) and one or more OMCe roles. Use this field when the values
derived from role attributes do not match OMCe role names.

Here are the fields for a role mapping object:

– tokenRole — Required. A JSON string specifying a token role name.

– mappedRoles — Required. A JSON array of string values. Each string value
should match an OMCe role name.

.

jwks Fields

• discoveryUri — Optional. A JSON string specifying the URI from which the token
issuer's discovery information can be loaded. The discovery information provided
by the external token issuer must be in accordance with the following specification:

http://openid.net/specs/openid-connect-discovery-1_0.html

The discovery URI for a token issuer will typically be of the form base-url/.well-
known/openid-configuration, but OMCe does not require this to be the case.

If a discoveryUri is configured for a token issuer, the OMCe token exchange
service will make a GET request to that URL to obtain the discovery information as
needed. Once the discovery information has been obtained, OMCe will typically
use the jwks_uri value specified in the discovery information to obtain the issuer's
current keys and/or certificates.

If no discoveryUri is configured, then a jwksUri value must be configured.

• jwksUri — Optional. A JSON string specifying the URI from which the token
issuer's JWKS information can be loaded. The information provided by the
external token issuer must be in accordance with the following specification:

https://tools.ietf.org/html/rfc7517

If a jwksUri is configured for a token issuer, the OMCe token exchange service
will make a GET request to that URL to obtain the current keys and/or certificates
for that issuer as needed.

If both a discoveryUri and a jwksUri are specified in the configuration, the
configured jwksUri value will be used, overriding the value in the issuer's
discovery information.

• allowHttp — Optional. A JSON boolean indicating that HTTP discoveryUri and
jwksUri values should be allowed.

For security reasons, discoveryUri and jwksUri values for external token issuers
in production should always use HTTPS URLs, so that the server providing the
information can be verified using its SSL certificate. However, in certain non-
production test scenarios, it may be helpful to allow HTTP URIs to be used.

The default value is false.

• minReloadInterval — Optional. If a token exchange request is received, and the
key and/or certificate needed to validate the external token cannot be found,
OMCe will automatically reload the discovery and JWKS information in order to
check for changes (e.g. key rotation), unless the amount of time since the
discovery/JWKS reload is less than this value (in seconds, expressed as an
integer).

The default value is 60.

Chapter 16
Enterprise Single Sign-On in OMCe

16-16

http://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc7517

• maxReloadInterval — Optional. If a token exchange request is received and if the
elapsed time since the last time the discovery and JWKS information was reloaded
is in excess of this value (in seconds, expressed as an integer), the discovery and
JWKS information will automatically be reloaded from the external token issuer in
order to check for changes.

The default value is 28800 (i.e. 8 hours).

• connectTimeout — Optional. A JSON integer specifying the default connect
timeout for discovery and/or JWKS requests. The default is 30 seconds.

• readTimeout — Optional. A JSON integer specifying the default read timeout for
discovery and/or JWKS requests. The default is 60 seconds

• tlsVersions — Optional. A JSON array of string values, listing the SSL/TLS which
will be allowed when connecting to the external token issuer for Discovery and/or
JWKS requests. Valid version names are:

– SSL

– SSLv2

– SSLv3

– TLS

– TLSv1

– TLSv1.1

– TLSv1.2

The default value is ["TLSv1.1", "TLSv1.2"].

Note:

Older SSL/TLS versions are considered insecure, and should be
avoided.

• authorizationHeader — Optional. A JSON string specifying an Authorization
header value which should be included in discovery and/or JWKS requests. In
most cases, discovery and JWKS web pages are public and no authorization is
required. This property is intended primarily for test purposes (e.g. when setting up
a custom service to act as a discovery and/or JWKS endpoint).

Obtaining a JWT Token Using an Embedded Browser
If you use an embedded browser to obtain JWT tokens, you’ll need to perform the
following actions:

1. Create a delegate object (for iOS) or client (for Android) to intercept the web
request that contains the token. The delegate (or client) implements a method that
allows your app to preview any web requests. For iOS, create a
UIWebViewDelegate object. For Android, create a WebViewClient object.

2. Register the delegate or client object with the embedded browser.

3. Modify the method to look for a redirect URL or a form post URL, depending on
how the IdP is configured to deliver it.

Chapter 16
Enterprise Single Sign-On in OMCe

16-17

When the specified request is located, the method should extract the token from
the query string (or post body) and indicate to the browser to stop the request and
close or hide the browser.

For either iOS or Android, you’ll need a web view class, a delegate (or client) class,
and the delegate (or client) implementation method name.

For iOS, use the UIWebView object and the UIWebViewDelegate method:

#pragma mark - UIWebViewDelegate

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:
(NSURLRequest *)
request navigationType:(UIWebVeiwNavigationType)navigationType

For Android, use the WebView client and the WebVewClient method:

public class MainActivity extends Activity {
 private Activity mCtx;
 private static final String TAG = "TokenExchange";
 private String remoteIDPURL = "https://hostname/mobile/platform/sso/
redirect/saml";
 private WebView myWebView = null;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 mCtx = MainActivity.this;
 myWebView = (WebView) findViewById(R.id.webview);
 initWebView();
 }
private class MyBrowser extends WebViewClient {
 @Override
 public void onReceivedSslError(WebView view, SslErrorHandler
handler,
SslError error){
 handler.proceed();
 }
@Override
 public void onPageStarted(WebView view, String url, Bitmap
favicon) {
 super.onPageStarted(view, url, favicon);
 if(url.contains("http://localhost:port")) {
 // get value of SAMLResponse form field
 myWebView.loadUrl("javascript:window.HtmlViewer.showHTML" +
"('<html>'+document.getElementsByName('SAMLResponse')[0].value+'</
html>');");
 }
 }
 }
class MyJavaScriptInterface
 {
 @JavascriptInterface
 @SuppressWarnings("unused")
 public void showHTML(String html){

Chapter 16
Enterprise Single Sign-On in OMCe

16-18

 Log.i(TAG, "===== html is "+html);
 String samlToken = html.substring(html.indexOf("<html>") + 6,
html.indexOf("</html>"));
 Log.i(TAG, "SAML Token = " + samlToken);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 myWebView.stopLoading();
 myWebView.setVisibility(View.INVISIBLE);
 myWebView.destroy();
 finish();
 }
 });
 }
 }
private void initWebView(){
 myWebView.setWebViewClient(new MyBrowser());
 myWebView.getSettings().setJavaScriptEnabled(true);
 myWebView.addJavascriptInterface(new MyJavaScriptInterface(),
"HtmlViewer");
 myWebView.getSettings().setLoadWithOverviewMode(true);
 myWebView.getSettings().setUseWideViewPort(false);
 myWebView.loadUrl(remoteIDPURL);
 }
private void showMessage(final String message){
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(mCtx, message, Toast.LENGTH_LONG).show();
 }
 });
 }
}

When the app is launched, it's directed to the remoteIDPURL (the redirect URL). When
you enter your login credentials, the page is redirected. The onPageStarted method
intercepts the response and the showHTML method retrieves the token

Obtaining a JWT Token Using a System Browser
If you use a system browser to obtain the token, your app must relinquish control to
the system browser app. When the login process is complete, you’ll need to return
control to your app. You can return control via a redirect to a custom app scheme for
which your app has registered.

For either iOS or Android, you’ll need to perform the following actions:

1. Register the custom scheme for your app as dictated by the operating system. The
custom scheme URL tells the mobile OS that requests to the given scheme should
be sent to your app.

2. Edit your app to handle the redirection. You’ll need to implement a method to
handle the incoming redirect, which contains the token.

Chapter 16
Enterprise Single Sign-On in OMCe

16-19

Coding Your Android App to Obtain a JWT Token

For Android apps, you need to register a custom URL scheme and then code the app
to handle requests associated with that scheme. You do this by editing the
AndroidManifest.xml file:

<activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:scheme="http"
 android:host="mytest.com"
 android:pathPrefix="/"/>
 </intent-filter>
</activity>

The following example shows how to extract the token from the custom URL scheme
in the Android activity class:

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 Uri uri = getIntent().getData();
 if(uri != null) {
 String token = uri.getQueryParameter("token");
 Logger.debug(TAG, "token is : " + token);
 }
}

When you open the link to mytest.com, you'll have the option to open the link with the
app. This will launch the Android activity from where the JWT token is retrieved.

Coding Your iOS App to Obtain a JWT Token

To obtain a third-party token via a system browser for an iOS app, you need to
perform the following actions:

1. Declare a custom URL scheme by editing the app’s Info.plist configuration file.

The scheme tells the mobile operating system to route to your app the request that
contains the token.

2. Edit your app to implement the method to handle requests associated with that
scheme.

To register a custom URL scheme with your iOS app, you must include the
CFBundleURLTypes in your app’s Info.plist file. CFBundleURLTypes is an array of
dictionaries. Each dictionary defines a URL scheme that the app supports.
CFBundleURLTypes contains the following keys:

• CFBundleURLName - a string that contains the abstract name of the URL scheme.
This name should be unique. To ensure the name is unique, specify it as a reverse
DNS style of identifier, such as com.company.myscheme.

Chapter 16
Enterprise Single Sign-On in OMCe

16-20

This string is also used as a key in your app’s InfoPlist.strings file. The value
of the key is the human-readable scheme name.

• CFBundleURLSchemes - An array of string s that contain the URL scheme names.
For example: http, mailto, tel, and sms.

Note:

If multiple third-party apps register to handle the same URL scheme,
there’s no way to determine which app is given the scheme.

Here’s an example of how to implement support for the custom URL scheme:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLName</key>
 <string>oracle.cloud.mobile.URLDemo</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>urldemo</string>
 </array>
 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
</array>

This stipulates that any URL specifying the scheme, urlScheme, is redirected to your
app.

When the iOS system browser encounters a URL with this custom scheme, it launches
your app, if necessary, and passes the URL to your app delegate. To handle incoming
URLs, your app delegate must implement the application:openURL:options:
method. For example:

- (BOOL)application:(UIApplication*)application
 openURL:(NSURL*)url
 options:
(NSDictionary<UIApplicationOpenURLOptionsKey,id>*)options
{
 NSLog(@"Open URL: %@", url.absoluteString);
 NSLog(@"Open URL options: %@", options);
 if ([url.scheme isEqualToString:@"urldemo"]) {
 [self viewController].incomingURL = url;
 return YES;
 }
 return NO;
}

This implementation parses the incoming URL and extracts a ‘token’ query argument
and stores it in an instance variable for later use. The implementation assumes the
token is passed via the URL’s query string. Your implementation might differ and the

Chapter 16
Enterprise Single Sign-On in OMCe

16-21

token could be stored somewhere else in the URL. After your app extracts the token
from the URL, the token can be exchanged for an OMCe-issued token.

If you’re not familiar with creating URL schemes or implementing them in your app,
see Apple’s documentation, specifically Using URL Schemes to Communicate with
Apps.

Using a JWT Token to Authenticate with OMCe
Once you have obtained a valid JWT token, you can use it to authenticate with OMCe.
You do so by passing the token to OMCe’s token exchange endpoint. In exchange,
you get an OAuth token issued by OMCe that can be used for subsequent API calls
during the session.

OMCe’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Coding the JWT Token Exchange Manually
Once your mobile administrator has registered an IdP as a token issuer in your
instance and you have code in your app to acquire a 3rd-party token, you can use the
OMCe client SDK for your platform to handle the complete login sequence.

If you are not using a client SDK, you need to code your app to exchange that token
for an OMCe token, with which you then authenticate.

Chapter 16
Enterprise Single Sign-On in OMCe

16-22

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

In the app’s login sequence, you call the OMCe token exchange endpoint to exchange
the third-party token for an OMCe-issued OAuth token.

The token exchange request is an HTTP POST request, with an application/x/www-
form-urlencoded request body, to the token exchange URL: base-URL/mobile/
platform/auth/token.

The token exchange request must provide:

• The external token (a.k.a. "user assertion") being exchanged in the form
assertion=external-token.

• Client authentication for the OMCe mobile backend for which a new token is being
requested, to prove that it is a valid user of that mobile backend.

Client authentication can be provided in any of the following ways:

• Encode the client_id and client_secret in basic auth form in the Authorization
header.

In this case, the following headers are required:

Content-Type: application/x/www-form-urlencoded
Authorization: Bearer Base64(client_id:client_secret)

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token

• Encode the client_id and client_secret as application/x/www-form-
urlencoded form values in the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_id=client-id
client_secret=client-secret

If this option is used, the client_secret can be omitted if the requireClientAuth
value in the configuration is set to false for the given issuer. This option is
provided for clients that are unable to securely protect a client secret value. Even if
the client_secret is omitted, the client_id value must still be provided, in order
to identify the OMCe mobile backend for which a token is being requested.

• Provide a valid client assertion as an application/x/www-form-urlencoded form
value in the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

Chapter 16
Enterprise Single Sign-On in OMCe

16-23

And the body of the POST must contain these values, where client-token is
client token obtained from Oracle Cloud for the OAuth client associated with the
OMCe mobile backend for which a user token is being requested.

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-
bearer
client_assertion=client-token

If the token exchange is successful, the response will have a 200 status, and will
include an application/json body similar to this:

{

"access_token":"123456789iJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.abcdefiOiJqb2UiLA0
KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk",
 "token_type":"Bearer",
 "id_token":null,
 "expires_in":28800 }

Mapping Users from a Third-Party IdP to IDCS Users
It is also possible to have enable authentication with 3rd-party tokens where there are
matching records for the users in Oracle Identity Cloud Service (IDCS). This enables
you to apply roles to users directly in IDCS.

For this matching to work, the following conditions apply:

• When registering the token issuer in OMCe, your mobile administrator didn’t select
the Enable Virtual User option.

• In SAML tokens, the subject must identify the user’s username as defined in IDCS.

• In JWT tokens, the sub or prn attributes must identify either the user’s username
or email address as defined in IDCS.

User roles can be applied in any of these ways:

• Within IDCS, your administrator can assign such users the roles that are needed
to access the backend and/or APIs.

• In the process of registering the IdP as a token issuer in OMCe, your administrator
can specify one or more mobile roles to give to users authenticated with this IdP
(via the default role rule).

• In the process of registering the IdP as a token issuer in OMCe, your administrator
can create rules to map information extracted from the token (such as role names)
to OMCe mobile roles (via role attribute rules).

If the role names defined in the IdP don’t match the role names defined in OMCe,
your administrator can configure role apping rules to map the token role names to
the OMCe role names.

See Mobile Users and Roles if you need info on setting up user accounts in IDCS.

Chapter 16
Enterprise Single Sign-On in OMCe

16-24

Browser-Based SSO through OMCe
To enable browser-based single sign-on (SSO) with a third-party identity provider in
OMCe, you need to first set up that identity provider in Oracle Identity Cloud Service
(IDCS). To do so, you need to have an identity domain administrator role in IDCS.

See Managing Oracle Identity Cloud Service Identity Providers in Administering Oracle
Identity Cloud Service.

To get your apps to work with browser-based SSO:

1. In OMCe, click to open the side menu and select Mobile Apps > Backends.

2. Open the backend you want the app to use and click its Settings tab.

3. Copy the OAuth Authorize Endpoint and OAuth Token Endpoint values.

4. Code your app to:

a. Open the OAuth authorize endpoint in a browser, redirect to the login screen
of the third-party identity provider.

b. Upon user login, return the authorization code to the redirect URL you have
specified in the identity provider.

c. Post the returned authorization code to the OAuth token endpoint.

The app should then receive an OAuth token in return.

Testing APIs in a Backend with SSO Login
Once you add an API to a mobile backend with SSO login enabled, you can use the
API’s Test page with SSO as the authentication method. This helps you ensure that
the API call works end to end. You can test with the OMCe-issued SSO token or a
token from a third-party provider.

To test a custom API with SSO login:

1. Click and select Mobile Apps > Backends from the side menu.

2. Select your mobile backend and click Open.

3. In the left navbar of the mobile backend, select APIs.

4. Click the API that you want to test.

5. If the user that you plan to authenticate in the test has not yet been assigned the
role that is needed to access the API, click the Security navigation link and switch
Login Required to OFF.

6. Click the Endpoints navigation link and scroll to the endpoint that you want to test.

7. From the Authentication Method dropdown, select Single Sign-On or Bearer
Token.

8. Obtain a valid SSO token for the mobile backend.

9. In the Single Sign-On Token, text field, paste the SSO token.

10. Click Test Endpoint.

Chapter 16
Enterprise Single Sign-On in OMCe

16-25

If successful, a test response will appear with an appropriate HTTP code, such as
200.

Token Expiration for SSO Login
When you use SSO as your login mode, the token expires after six hours by default,
meaning that the app user will need to log in again after that time. The length of the
timeout is governed by the Security_TokenExchangeTimeoutSecs policy, which is
given in seconds. See Modifying Policies in Administering Oracle Mobile Cloud,
Enterprise for information on changing the policy.

Facebook Login in OMCe
You can configure mobile backends to enable users to log in through Facebook. This
mode of authentication is particularly useful for apps targeting consumers (as opposed
to employees of your business).

When you enable users to log in to an app through Facebook, you can do the following
things in the app:

• Call any custom APIs that allow access with a social identity login.

• In the implementation code of such custom APIs, use the custom code SDK to call
OMCe platform APIs (with the exception of any APIs that are role-based).

• Register for notifications.

The main steps for setting up an app to use Facebook for login are:

1. Registering the app itself with Facebook.

2. Configuring Facebook login in the mobile backend that the app will be using.

Note:

This mobile backend can only be used for Facebook login. If you wish to
have apps access the mobile backend using different authentication
methods, you must create a separate mobile backend for that purpose.

3. Configuring the app itself to use Facebook for logging in.

4. In the mobile backend, adding custom APIs that allow access through Facebook
login.

Chapter 16
Facebook Login in OMCe

16-26

Registering an App for Login Through Facebook
Before you can enable login through Facebook, you need to register your app with
Facebook using the Facebook SDK for your platform. From the registration process
Facebook will give you a Facebook app ID and secret which you will next configure in
OMCe.

For details, see Facebook’s documentation at https://developers.facebook.com/docs/
apps/register.

Enabling Facebook Login in a Mobile Backend
Once you have registered your app with Facebook, you can enable Facebook login in
a mobile backend.

1. In OMCe, open the mobile backend and select the Settings page.

2. Under Social Login, switch on Facebook.

3. In the Facebook Settings dialog, enter the app ID and app secret that you
obtained when registering the app with Facebook.

4. On the same page, make sure that HTTP Basic authentication is enabled.

(HTTP Basic authentication is needed for the first part of the authentication
process when the app requests the Facebook access token.)

5. Click the backend’s Security tab and make sure that role-based access is not
enabled. (Facebook login only works with anonymous access.)

Note:

If you also want to make an app accessible through any other authentication
method, create a separate mobile backend for which Facebook Login is not
enabled. Then, in the configuration file provided by the OMCe client SDK for
the given platform (e.g. OMC.plist for iOS and
oracle_mobile_cloud_config.xml for Android), add the details for that
mobile backend. The app can then use both mobile backends, depending on
how the user authenticates.

Configuring an App to Use Facebook Login
Once you have registered your app with Facebook and have configured a mobile
backend to work with Facebook login, you can configure your app to log users in with
their Facebook identities. You need to:

• Specify that Facebook is the identity provider.

• Provide the Facebook App ID.

• Provide the mobile backend ID and HTTP Basic anonymous key.

The easiest way to get this working is by using the client SDK, which enables you to
specify all of the credentials in a single configuration file. See Client SDKs.

Chapter 16
Facebook Login in OMCe

16-27

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

Adding APIs to a Mobile Backend with Facebook Login
You can add the following types of APIs to a mobile backend configured for Facebook
login.

• Custom APIs that have the Login Required switch set to OFF.

• Custom APIs that have the Login Required switch set to ON and the Social
Login switch set to ON.

• Any OMCe platform APIs endpoints that allow anonymous access. The Analytics
Collector, App Policies, Devices, OMCe, and Location APIs all have endpoints that
can be accessed anonymously. The Database Access API and Notifications API
can be accessed from any custom API, including custom APIs that allow
anonymous access.

To add an API to a mobile backend with Facebook login:

1. Make sure that the API allows social login. For custom APIs, you can check by
following these steps:

a. Click and select Mobile Apps > APIs from the side menu.

b. Select the API that you want to add and click Open.

c. In the API Designer, select the Security tab and check the settings.

Note:

APIs that you design for use with Facebook login can not be used
with other authentication types. If you want an API’s functionality to
be available for apps with Facebook login and apps that are based
on other types of authentication (such as OAuth, enterprise SSO, or
HTTP Basic anonymous access), you need separate variants of the
API, each with the appropriate security settings. For more
information on API security, see Security in Custom APIs.

2. Add the API to the mobile backend:

a. Click and select Mobile Apps > Backends from the side menu.

b. Select your mobile backend and click Open.

c. In the left navbar of the mobile backend, select APIs.

d. Click Select APIs.

e. Click the + (Add) icon for the API.

Getting a Facebook User Access Token Manually
For an app to authenticate through Facebook, it needs to get a user access token from
Facebook. Using the OMCe client SDK for your platform simplifies this process.

However, if you are testing an API with the API tester or another tool (such as cURL or
Postman) or making the REST calls directly from your app, you need to get the user
access token yourself. If you are the person who registered the app with Facebook,
you can do this by following these steps:

Chapter 16
Facebook Login in OMCe

16-28

1. Log into your Facebook account (the one with which you registered the mobile
app).

2. Navigate to https://developers.facebook.com/tools/accesstoken/ and find your app.

3. Click the You need to grant permissions to your app to get an access token
link to generate the token. A token is generated for you on the next page.

Note:

If you anticipate testing the app over a period of several weeks, you might
find it convenient to extend the validity of your access token. You can do so
by clicking Extend Access Token.

For more information, see Facebook’s documentation on user access tokens at https://
developers.facebook.com/docs/facebook-login/access-tokens#usertokens.

Headers Needed for API Calls with Facebook Authentication
When you call custom APIs from apps that use Facebook login, headers need to be
passed to handle authentication. If you are using Client SDKs for your platform, these
headers are constructed for you based on values that you have entered into the SDK’s
configuration file.

If you are making REST calls to the APIs directly from your app (or from a separate
tool, such as cURL), you need to add the following headers in your calls manually:

• Authorization: Basic {anonymousKey}

• Oracle-Mobile-Backend-ID: {mobileBackendID}

• Oracle-Mobile-Social-Identity-Provider : facebook

• Oracle-Mobile-Social-Access-Token : {YOUR_FACEBOOK_USER_ACCESS_TOKEN}

Authenticating in Direct REST Calls
When your app uses the OMCe client SDK, you store the authentication credentials in
one place so that you don’t need to manually insert them into each call. In addition, the
SDK handles the encoding of the username and password. However, if you are
making the REST calls directly from your app (or you are testing API calls using
another tool, such as cURL or Postman), you need to handle the authentication in
each call. The value you send in the Authorization header depends on the type of
authentication.

Authenticating with OAuth in Direct REST Calls
When you have OAuth enabled as an authentication mechanism for a mobile backend,
an app can authenticate itself by sending the mobile backend’s OAuth credentials
(client ID and client secret) plus a user name and password to get an OAuth access
token. If the API that is being called does not require a logged-in user, then the user
name and password are not needed. The app then uses the OAuth token to make
REST calls to APIs in the mobile backend.

You need the following information from the Settings page for the mobile backend:

Chapter 16
Authenticating in Direct REST Calls

16-29

https://developers.facebook.com/tools/accesstoken/
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens

• OAuth token endpoint

• Client ID

• Client secret

• Base URL

If the API is configured to require login, you also need the user name and password for
a mobile user.

To construct a REST call to authenticate via OAuth:

1. Send the request to retrieve an access token:

a. Base64 encode the clientID:clientSecret string.

b. Set the Authorization header to Basic client id:client secret-Base64-
encoded-string.

c. Set the Content-Type to application/x-www-form-urlencoded;
charset=utf-8.

d. Set the request body to the appropriate grant type and include scope:

• For access without a logged-in user, use:
grant_type=client_credentials&scope=baseURLurn:opc:resource:con
sumer::all

• For access with a logged-in user, use:
grant_type=password&username=username&password=password&scope=b
aseURLurn:opc:resource:consumer::all. The user name and password
must be URL encoded.

e. POST the request to the OAuth token endpoint. For example, in cURL:

curl -i
-H "Authorization: Basic clientId:clientSecret–encoded-string"
-H "Content-Type: application/x-www-form-urlencoded; charset=utf-8"
-d
"grant_type=client_credentials&scope=baseURLurn:opc:resource:consume
r::all"
--request POST oauthTokenEndpoint

2. In the response, find the access_token property, as shown below (the value is
truncated in this example).

{"oracle_client_assertion_type":"urn:ietf:params:oauth:client-assertion-
type:jwt-bearer",
"expires_in":604800,
"token_type":"Bearer",
"oracle_tk_context":"client_assertion",
"access_token":"eyJhbGciOiJ...FIqFiA"}

3. Copy the access_token property’s value into the value of the Authorization
header.

The header takes the form Bearer access_token.

Chapter 16
Authenticating in Direct REST Calls

16-30

Authenticating with HTTP Basic in Direct REST Calls
When you have HTTP Basic enabled as an authentication mechanism for a mobile
backend, an app can authenticate itself by sending the mobile backend ID, a user
name, and a password. You pass the username and password as a Base64–encoded
string. If the API that is being called is set to allow anonymous access, then you pass
an anonymous access key instead of a user name and password.

Remember, if your app uses the OMCe client SDK, the authentication credentials are
stored in one place so you don’t need to manually insert them.

To authenticate with OMCe using HTTP Basic, you send a method to any platform
endpoint with these headers:

• Oracle-Mobile-Backend-ID: The mobile backend ID is listed on the Settings tab
for the mobile backend.

• Authorization: Basic: For basic authentication this header should include the
mobile user’s name and password encoded in Base64 or the anonymous key. If
the anonymous key is available, it will also be displayed on the Settings tab for the
mobile backend.

For example:

curl -X GET
 -H "Authorization: Basic {Base64 of
mobileUsername:mobileUserPassword} or {anonymousKey}"
 -H "Oracle-Mobile-Backend-ID: {mobileBackendID}"
 {baseUri}/mobile/platform/users/~

For this call, the response would be one of the following:

• In the case of 200: Success, the payload returned from OMCe contains a JSON
object with the user information.

• In case of an error, a JSON error message is returned.

For more information about Base64 encoding, see Base64 Decode and Encode.

Securing Cross-Site Requests to OMCe APIs
In addition to setting authentication methods, it’s very important that you manage
cross-origin resource sharing (CORS) for access to OMCe APIs. You do so through
the Security_AllowOrigin environment policy.

See Oracle Mobile Cloud Enterprise Policies for a rundown of environment policies
and how to use them.

For browser-based applications, particularly those that use Single-Sign On (SSO)
authentication, you should either not allow cross-site access at all or restrict access
only to trusted origins where authorized applications are known to be hosted to
mitigate vulnerability to Cross-Site Request Forgery (CSRF) attacks. If you're not using
browser-based applications, it’s best to use the default value, disallow, for
Security_AllowOrigin.

Control cross-site access by setting the Security_AllowOrigin environment policy
value to either disallow (the default value) or to a comma separated list of URL

Chapter 16
Securing Cross-Site Requests to OMCe APIs

16-31

https://www.base64encode.org/

patterns, which specifies a whitelist of trusted URLs from which cross-site requests
can be made. If the origin of a cross-site request matches at least one of the patterns
in the whitelist, the request is allowed.

For example, the URL value for Security_AllowOrigin might look like this:

https://myexample.com, https://*.example.com, https://*.example2.com

When specifying a URL, note the following:

• You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern http://www.example.com matches the URL
http://www.example.com or the URL http://www.example.com:80, but not
http://www.example.com:8080.

• When specifying values for Security_AllowOrigin, don’t include path parts and
don’t include a trailing forward slash, ‘/’, character. For example, the pattern
http://www.example.com/ won’t match http://www.example.com.

• You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (:) characters.

For example, if the URL is https://example.example.com:8080, the following
patterns match:

– https://*.example.com:8080

– https://*.example.com:*

– https://ex*.example.com:*

These patterns, however, won’t match:

– https://*.example.com*

– https://example*.oracle.com:*

These restrictions are designed to prevent matching unintended sites.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Chapter 16
Securing Cross-Site Requests to OMCe APIs

16-32

17
Creating APIs Fast with the Express API
Designer

What is the Express API Designer?

The Express API Designer enables you to create an API using sample data. This data-
first approach lets you build an API quickly and with a minimum of effort. This designer
is an alternative to the API Designer, where less is generated but you have more
control of the API definition. See Which API Designer Should I Use? for a more
detailed comparison.

How Do You Get Started?

Using the Express API Designer, you get a set of generated endpoints when you paste
in a set of sample data that's formatted as a JSON instance. Within the context of the
API Designer, this collection of endpoints is known as a resource. Resources are the
building blocks of the API.

How Do You Use the API?

With your methods sketched in, you can then start using the API as part of your
development effort by testing its endpoints and taking a look at mock data that it
returns. Your service developers can implement a service for this API using JavaScript
and Node. For more design and customization options, use the API Designer instead.
See Custom API Design.

What are Resources?
A resource represents a real world object and the operations that can be performed
upon it. In other words, the GET, POST, and PUT operations on the /incidents
endpoint would simply be known as an “incident”.

Creating An API
1. Click the side menu (), choose Mobile Apps and then APIs.

2. Click New API and then choose Express API.

17-1

3. Complete the New Express API dialog by adding the API’s name, its display
name, and the description for the Service Catalog in the MAX Designer. When
you’re done, click Create.

By completing this dialog, you open the Express API Designer. The Express API
Designer defaults to its General page, where you can the change the API name or
description. Now you’re ready to add a resource.

4. Click Resources in the left navbar, then click New Resource to open the Create
Resource wizard.

Note:

When you click New Resource you create a top-level resource. This
resource can’t be selected as a child resource.

5. Describe your resource by adding a name, a display name, and a brief description.
Enter a display name in plural form for the collection.

Tip:

The name and description that you enter here display in the Data Palette
in MAX.

When you add a resource to your API, OMCe creates a set of CRUD methods on
these endpoints and constructs the JSON request and response schemas for you
as well. To find out more about creating these schemas on your own, see Creating
Resources with JSON Schemas, but if you want to see the ones that OMCe
creates for you, click Export RAML () to download a a RAML file, or toggle
between the designer and the RAML document by selecting Enter RAML Source
Display Mode ().

Resources typically have two GET methods: one that returns a single item of an
object, and one that returns multiple items (a collection). If you select Also expose
a collection of these resources, OMCe creates both GET methods and labels
them Find and List, respectively. If your API supports create actions (POSTs), you
need to add a collection.

Not all resources require both GET methods (or other methods that OMCe creates
for you, like POST, PATCH, and DELETE). You can remove any methods you
don’t want from the Express API Designer after you’ve finished creating the
current resource.

6. Click Next and then add JSON arrays or instances of sample data in the Sample
Data page. This is the mock data that helps you test the API. Within MAX, the
mock data helps users visualize their app.

Chapter 17
Creating An API

17-2

7. If you don’t want to add sample data now, click Finish to exit the Create Resource
wizard and go back to the Express API Designer. You can add fields and sample
data from here later on. Otherwise, click Next to review the fields created from the
sample data.

Click the Sample Data tab to review the sample date you previously entered.
Don’t worry if field names or labels aren’t exactly what you want. You can edit all
these fields from the Express API Designer after you’re done creating the
resource.

8. Click Endpoints and review all the methods created for you. When you return to
the API Designer, you can select the methods that you want your resource to use.

9. Click Finish when you’re done.

After you’ve created your resource, the Express API Designer opens so you can select
the fields and methods you want to use to complete your resource. You can also
shape request and response payloads for your methods. See Completing Your
Resources.

To configure security for your API, export the RAML and then import it into the API
Designer.

Completing Your Resources
When you click Resources from the Express API Designer navbar (or when you click
Finish from the Create Resource wizard), you end up on the Overview tab in the
Express API Designer, where you refine your resources by doing the following:

• Changing the resource’s display name(s) and description.

• Creating reference or child relationships. You can learn more about peer and child
relationships in Referenced Resources.

Chapter 17
Creating An API

17-3

• Toggle the Include Resource Collection option to allow (or prevent) the return of
multiple items from a collection. When you select this option, the General tab
displays the methods available to a collection: List (GET /items) and Create (a
POST call on a collection).

These methods display as hyperlinks that open pages for editing the method’s
requests and responses. Shaping Payloads tells you more about editing methods.

Adding Additional Fields
1. Click the Fields tab.

For each resource, OMCe creates a field called id. You can’t delete this field,
whose role is described in Fields.

2. If your resource needs more fields, click New Field and then complete the dialog
by defining the field name along with the display name and description. If you use
this API in MAX, the field names and descriptions that you enter here display in
the Service Catalog.

In addition to these display-related values, you also use this dialog to specify the
format (string, integer, geolocation coordinates, and so on) expected by this field. By
choosing the Reference field type, you can allow the field to reference the fields
defined for a peer or child resource that’s selected from the Reference Resource list.
You can find out more in Fields.

Shaping the Payload for Your Resource
Once you’ve defined the fields for your resource, you’re ready to select which fields
are sent to, and returned from, the service. This is known as shaping the request and
response payloads, which you can do as part of editing the methods.

1. Click a link in the Methods tab to open the Edit Method page.

2. Choose the request or a response type along with media type.

Chapter 17
Creating An API

17-4

3. Click the Shaped option and move the fields you don't want to include in the
payload from the Selected Fields window to the Available Fields window.

By default, all of the fields are included in the payload. See Methods to learn about
custom methods and payloads.

4. Click OK to save your changes.

See Shaping Payloads to find out about shaping data for different types of methods.

Adding More Sample Data
Use the Sample Data tab to add the mock data that helps you test your API. Mock
data also guides MAX users as they map field data to their UI components. While
OMCe includes a row of sample data in the RAML document when you create fields
manually for your resource, it may not reflect the data returned by your service. You
can take a look at this sample data by toggling the RAML display mode option (). An
array of -generated sample data might look like this:

[
 {
 "id": "id0",
 "amount": "amount0",
 "name": "name0",
 "date": "date0"
 },
 {
 "id": "id1",
 "amount": "amount1",
 "name": "name1",
 "date": "date1"
 },
 {
 "id": "id2",
 "amount": "amount2",
 "name": "name2",

Chapter 17
Creating An API

17-5

 "date": "date2"
 }
]

To get started populating your resource with sample data:

1. Click New Row.

2. Complete the Create Sample Data dialog.

Because this template lets you enter sample values for all of the fields that you’ve
defined for the resource, your sample data stays in step with the field schema
definition.

Referenced Resources
Your resources can reference each other as peers; that is, they occupy the same
level. Suppose your API includes two resources that complement each other but are
distinct. For example, an API that returns CRM (Customer Relationship Management)
data might have two such resources: Accounts and Opportunities. The Accounts
resource includes a set of fields that describe different facets of an account, like the
company name and location. The information returned for these fields may relate to,
but doesn’t overlap, the information returned by Opportunities resource, whose fields
return data that allow status meters to measure the opportunity’s win percent. Your
API might include resources that reference each other in a different way, as a parent-
child relationship. The Accounts resource might have a subsidiary resource called
Account Notes, which is wholly dependent on the Accounts resource. If you deleted
the Accounts resource, you’d delete the Account Notes resource along with it.

You can include the fields from a referenced resource in the payloads. When the
Opportunities resource references the Accounts resource, for example, its payload for
the Find Opportunities’ 200 response includes account.id and other fields defined for
the Accounts resource.

Chapter 17
Creating An API

17-6

Referencing Resources
To reference a resource:

1. Click Resources.

2. Click a resource.

3. Click Add () and then choose a child or a parent resource.

To reference a child resource, first click Add and then complete the Create
Resource dialog. OMCe will create a set of method definitions for the child
resource. Next, choose the child resource from the Resource Name list.

4. Click the Fields tab. OMCe lists the resource with the fields. You can choose this
resource (or other peer or child resources that you’ve reference in the API) for
reference fields.

Chapter 17
Creating An API

17-7

5. Click the Methods tab and then click one of the links to open the Edit Method
page. By clicking Response–200 in the Edit Method page, you can take a look at
the referenced fields. Shaping Payloads describes these referenced fields, which
are noted as resource.field name (like accounts.region, for example).

The payloads for the POST and PATCH requests include the reference object
itself, not its individual fields. There are no fields (referenced or otherwise) for
either GET request because they don’t include payloads.

6. Click Save.

After you’ve made your API available to MAX by publishing it, take a look at the MAX
Designer’s Service Catalog to see the various relationships between your resources.

Fields
Fields describe the different aspects of a resource. They are like properties: they
describe the data they hold by type (like a string, number, or reference) and format
(date-time, URI, and so on). Fields can behave differently depending on context (or
more specifically, on the payload definition).

Chapter 17
Creating An API

17-8

Note:

The fields that populate list views in MAX are read-only, while the ones used
in form-based create and update screens can accept user input.

The Fields tab lets you take inventory of the fields for a selected object. It’s where you
can create a complete (or canonical) resource by defining all of the possible fields.
After you’ve completed the resource, you can decide which methods can accept and
return a subset of these fields by shaping the payloads in the Methods tab.

OMCe adds the id field for you when you create a resource. Because of its role as a
UUID (universally unique identifier), this field acts as the primary key. You can’t delete
this field, change its field type from a string, or change it from being a primary key, but
by clicking Edit (), you can use the field editor to change its display name and
description to reflect the resource.

Methods
OMCe creates a set of CRUD (Create, Read, Update, and Delete) methods for you
when you create a resource. Using the Methods tab, you can select from among these
methods, add new ones, and shape the request and response payloads.

Chapter 17
Creating An API

17-9

Selecting Methods

While all of the methods are selected by default, they may not all apply to your
resource. You can select the CREATE, POST, or PATCH methods as needed, but
because each resource needs at least one GET endpoint (or two if it’s exposed as a
collection), you can’t remove the GET methods.

Custom Methods

Custom methods (which are always POST methods) allow your resource to perform a
task or server-side action that falls outside of the functions enabled by the default set
of CRUD methods. For example, you can define a custom method that enables an
upload action on an Image component. Using the Fix-It-Fast app as an example, you
could define an action to close an incident that’s triggered by a swipe tile. Clicking
New Custom Method opens the Create Custom Method dialog that lets you define a
custom method on a nested resource (which OMCe adds for you). After you’ve
created the method, you can use the Edit Method page to shape the payload of its
request body and add its responses for the 200 status code and the 500 status code.
See Shaping Payloads.

You can delete a custom method, but you can’t delete any of the default set of
methods that OMCe creates for you.

Shaping Payloads
The Edit Methods page not only lets you change the method’s display name and
description, but also allows you to shape its request and response bodies by including,
or excluding, the fields that filter the returned data and populate the create, update, list
and detail screens. You can open this page by clicking the method links in the
Overview or Methods tabs for a selected resource, or from the read-only list of all the
methods defined for the APIs that display in the Endpoints tab.

Chapter 17
Creating An API

17-10

GET Payloads

There are no request bodies for GET methods; there are only response bodies. The
Edit Methods page lets you select filtering criteria for the data returned for a list or a
detail. In MAX, these surface as query parameters.

For each 200 response, OMCe adds all of the fields that you created for the resource
per the default option, Complete. While you can choose this option for detail screens,
you might want to pare down the payload for a list screen by clicking the Shaped
option. You can then shuttle the fields that you don’t want from the Selected window to
the Available window. When the subset of fields in the Selected window suits your
needs, click OK.

POST and PATCH Payloads

For POST and PATCH requests, you shape the payload with the fields that are sent to
these methods to create or update an item.

Chapter 17
Creating An API

17-11

Media Types for Request and Response Bodies

As part of the payload configuration, you can set the content type as application/json,
application/octet-stream, or image/*. For binary streams, choose application/octet-
stream. See Enabling Uploadable Images .

Read-Only Fields
For POST and PATCH fields, you can create read-only fields by shaping the request
and response bodies. By including a field in both the request and response payloads,
you allow it to accept user input. By including it in the response body only, you confine
the field to read-only display.

By default, OMCe adds the ID field to the response body because this field typically
holds a server-generated value that users shouldn’t edit. Other than the ID field, there
may be other cases where your request and response bodies don’t align. For example,
to ensure that users can’t inadvertently compromise the integrity of your data by
updating the date field in an edit screen, you’d first add the field to the response
payload’s Selected window and then update the request payload by shuttling the date
field from the Selected window to the Available window.

Sample Data
The Sample Data tab displays all of the data used by a resource for any purpose. In
other words, the data is not specific to any method. As noted in Creating An API, you

Chapter 17
Creating An API

17-12

can add this data manually, or derive it from the instances and arrays of sample data
that OMCe uses to generate the both the resource’s fields and the resource itself.

By adding a single JSON instance similar to the following, you can complete the
resource by defining key-value pairs.

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000"
 }

Tip:

Because OMCe creates the id field for each resource, you don’t need to
include it your JSON.

OMCe does more than just create fields from the JSON: it infers their data types as
well. From the “revenue”: 550000, key-value pair in the above sample, for example,
OMCe can interpret the field type as an integer rather than as a string.

You can create your top-level resources using this data-first approach. By nesting
instances, you can create multiple top-level resources and establish reference
relationships for them. The following example shows how nesting an instance creates
a peer resource called Account:

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000",
 "account":{"name":"Acme Corporation",
 "website":"http://www.acme.com",
 "region":"IN",

Chapter 17
Creating An API

17-13

 "address":"100 Main St",
 "city":"San Carlos",
 "state":"CA",
 "country":"USA",
 "formattedAddress": "100 Main St, San
Francisco, CA, USA"
 }
 }

Using arrays, you can create top-level resources along with multiple rows of sample
data:

[
 {
 "desc": "Anvils",
 "region": "NA",
 "winpercent": 30,
 "salesstage": "appointment",
 "revenue": "35000",
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Acme"
 }
 },
 {
 "desc": "Horns",
 "region": "SA",
 "winpercent": 90,
 "salesstage": "closing",
 "revenue": 25000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Road Runner"
 }
 },
 {
 "desc": "Bank Vaults",
 "region": "EU",
 "winpercent": 25,
 "salesstage": "prospect",
 "revenue": 15000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Coyote"
 }
 }
]

Chapter 17
Creating An API

17-14

Note:

You can only create top-level resources with sample data, so you can’t add a
child resource by nesting an array. Referenced Resources tells you how to
add child resources.

As noted in Completing Your Resources, you can add or remove fields, or change the
field display name and data type using the field editor. Because you need to define a
value for each key, your resource’s GET methods will always return a full set of data.
In cases where this may not reflect real-world scenarios, you can edit your data using
the Sample Data tab. To find out more, see Adding More Sample Data.

Using the Express API Designer with MAX
While the Express API Designer can help you jump-start your API development, it’s
also the quickest way for you to develop APIs for use with Mobile Application
Accelerator (MAX).

MAX is a web-based development environment for mobile apps that caters to business
users. Resources developed in the Express API designer can be treated as business
objects that can be easily incorporated into MAX apps.

Tip:

You can learn more about the MAX App along with information on building,
testing, and distributing apps in Designing Your App. If you want hands-on
experience with using business objects to build a mobile app, follow the
Create a Mobile App in Record Time with MAX! tutorial.

How Do I Surface My API in MAX?
After you’ve defined the resources, you can make your API available to MAX by
publishing it. Any API that you publish for use in MAX must include resources, not
endpoint definitions. Because MAX has no concept of endpoints, it can’t discover them
and therefore can’t surface your API for MAX users. To allow mobile apps running on
smartphones (via the MAX App) to access the API, you need to publish both the API
and its implementation. If there are multiple environments, you must deploy the API
and its implementation prior to publishing them.

Note:

Take a look at Exploring Services to find out about more about the role of
business objects in the MAX Designer.

Who Uses MAX?
There are two types of MAX users:

Chapter 17
Using the Express API Designer with MAX

17-15

https://apex.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:17437

• Mobile Cloud developers (mobile app developers and service developers), who
use MAX as part of their testing

• Business users, who create line-of-business (LoB) apps.

To create these apps, MAX users don’t need to know platform-specific languages, nor
do they even need to know anything about OMCe in particular: a business user may
be completely unaware that a mobile backend manages the app that he’s building, or
that a custom code API enables his app to use enterprise data.

These users access MAX in different ways: developers access MAX from within
OMCe by clicking MAX Apps in the left navbar. Because they focus on building apps
(rather than the backend services that these apps consume), business users access
MAX directly after they log into OMCe. Unlike Mobile Cloud developers, business
users are MAX-only users: they’re granted the BusinessUser role, so they never see
OMCe (and can't log into it).

Enabling Uploadable Images
Users of MAX apps can upload images when the Image component is mapped to a
business object that includes an upload action. You can add this action by creating a
custom function for your business component, which is a POST method on a nested
resource. To create this action:

1. Click Add New Custom Method. The path for this custom method points to a
backend action. For example, the path for the POST might be something like/
opportunity/{id}/uploadpicture.

2. Because you’re sending binary streams through this API, you need to select
application/octet-stream as the media type for this method’s request in the Edit
Method page. This media type signals MAX that this action supports binary
streams.

3. In MAX’s Data Mapper, populate the Image component’s Source field with the
appropriate business object field.

4. To enable the action on the mapped field, clear the Read Only option in the Image
component’s Properties page. When you clear this property, MAX superimposes

Chapter 17
Using the Express API Designer with MAX

17-16

an edit overlay () on the image component in the Preview. It allows MAX to
populate the Data tab’s Image Update Action menu with actions that support
binary streams.

Tips for User-Friendly Business Objects in MAX
You can help business users pick services and map data by adding metadata in
OMCe.

Chapter 17
Using the Express API Designer with MAX

17-17

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The API metadata entered in the General Page of the
API Designer:
• API Display Name
• Short Description
• icon

The service name and description in the Service
Catalog:

Chapter 17
Using the Express API Designer with MAX

17-18

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The endpoint description and display name for top-level
resources entered in the Endpoints page of the API
Designer:

• Business object name and description in the Data
Palette:

• The Data Source page of the Add Data QuickStart
and the Data Mapper:

Chapter 17
Using the Express API Designer with MAX

17-19

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The property members of the schema definition
(including the description key) that are defined for the
GET response:

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {
 "id": {
 "type": "string",
 "description": "Unique incident
ticket number"
 },
 "problem": {
 "type": "string",
 "description": "Short description of
the incident"

• The field names and descriptions in the Fields tab
of the Data Palette

• The Data page of the Add Data QuickStart and the
Data Mapper:

Chapter 17
Using the Express API Designer with MAX

17-20

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The display name and description for endpoint methods
entered in the Endpoints page of the API Designer:

The Actions tab of the Data Palette:

The title key in the schema:

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "patch-incident",
 "title": "Update Incident",
 "type": "object",

...

 }

The Configure Action page of the Properties Inspector:

Chapter 17
Using the Express API Designer with MAX

17-21

The metadata that you enter in OMCe... ...Is surfaced here in MAX

GET method Query definitions for the request
parameters entered in the Endpoints page of the API
Designer:

The Query page of the Add Data QuickStart and the
Data Mapper:

Chapter 17
Using the Express API Designer with MAX

17-22

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The $ref definition that point to other top-level
resources in the GET response schema definition.

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {
 ...

 "customer": {
 "$ref": "incident-customer",
 "title": "Details of customer who
logged the incident."
 },
 "location": {
 "$ref": "IncidentLocation",
 "title": "Location where the incident
occurred"
 }

• The Fields tab of the Data Palette. Reference

objects are identified with a chain link ().

• The Data page of the Add Data QuickStart and the
Data Mapper

Chapter 17
Using the Express API Designer with MAX

17-23

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The display name and description for endpoint methods
entered in the Endpoints page of the API Designer:

The Related Objects tab of the Data Palette (under
Reference Objects):

The display name and description for nested resources
that are entered in the Endpoints page of the API
Designer:

The Related Objects tab of the Data Palette (under Child
Objects):

Chapter 17
Using the Express API Designer with MAX

17-24

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The property members of the schema definition
(including the title key) that are defined for the GET
response for a nested object.

{
 "$schema": "http://json-schema.org/
draft-04/schema#",
 "id": "incident-activity",
 "title": "Incident Activity",
 "type": "object",
 "description": "A single activity
reported on an incident.",
 "properties": {
 "incidentId": {
 "type": "string",
 "description": "Incident Identifier
that this activity record belongs to"
 },
 "firstName": {
 "type": "string",
 "description": "The first name of
the person who created the activity"
 },
 "lastName": {
 "type": "string",
 "description": "The person's last
name"
 },

The Data Source page Data pages of the Data Mapper
and the Add Data QuickStart for a detail screen.

Chapter 17
Using the Express API Designer with MAX

17-25

The metadata that you enter in OMCe... ...Is surfaced here in MAX

Mock data defined for requests and responses in the
API Designer:

{
 "id": "inc-201",
 "problem": "Incident New",
 "description": "I learned that beneath my
goody two shoes lie some very dark socks.",
 "createdOn": "2015-08-18",
 "lastUpdatedOn": "2015-08-20",
 "picture": "/builtin/images/broken-water-
heater.png",
 "status": "open",
 "priority": "medium",
 "customer": {
 "id": "cus-101",
 "username": "julie.simpson",
 "firstName": "Julie",
 "lastName": "Simpson",
 "mobile": "6505067000",
 "home": "5105552121",
 "email": "julie.simpson@springtime.com"
 }

• The Live Data view for both the Data Mapper and
the Add Data QuickStart:

• The Preview:

Chapter 17
Using the Express API Designer with MAX

17-26

The metadata that you enter in OMCe... ...Is surfaced here in MAX

Video: An Introduction to Mobile Application Accelerator (MAX)
To see how you can build, test, and publish mobile apps using MAX, take a look at this
video:

Video

Creating Resources with JSON Schemas
As an alternative to the Express API Designer, you can build an API with resources
using the API Designer.

If you use the API Designer instead of the Express API Designer, you need to enable
your API to surface in the MAX Designer by creating JSON schema definitions on its
endpoints. These schema define the resources, their fields, and their methods. You
can build these schemas from scratch, or you can import a RAML file (even the one
generated by the Express API Designer). To get a comprehensive view of creating an
API for MAX including adding JSON schemas, go through the tutorial, Shaping MCS
APIs for MAX .

Chapter 17
Creating Resources with JSON Schemas

17-27

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:16865
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html

Tip:

Before you read on, take a look at the JSON schema specification.

Defining Fields in a Schema
To create fields, you need to define JSON schemas for the endpoint requests and
responses.

These schemas define the fields as property members, like name and website in the
following example:

{
"$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
…
}

They also designate the kind of data that the fields can hold and the kind of user input
and actions that they allow.

Chapter 17
Creating Resources with JSON Schemas

17-28

http://json-schema.org/documentation.html

Defining Field Types, Formats, and Enums
Define the kind of data that your field holds by using combinations of the JSON
schema type, format, and enum keywords.

Some things to keep in mind:

• Define enumerated values (enums) in the schema so that business users won’t
have to enter them as fixed values in the MAX Designer. For example:

"region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]

• When defining the field format for a date, we recommend UTC (Coordinated
Universal Time):

"properties": {
 "lastUpdatedOn": {
 "type": "string",
 "format": "date-time",
 "description": "When the incident was last updated"
 },

Field Formats

You can add constraints on the values that users enter by adding validators like
required, minlengnth, maxLength, minimum, and maximum to the property:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postOpportunity",
 "type": "object",
 "allOf": [
 {"$ref": "opportunity"}
],
 "required": [
 "desc",

Chapter 17
Creating Resources with JSON Schemas

17-29

 "region"
]
}

For fields that require input in a special format like a phone number, use the pattern
keyword and then define a regular expression:

"pattern": "^(\\([0-9]{3}\\))?[0-9]{3}-[0-9]{4}$"

Example 17-1 Taking a Look at Properties in the JSON Schema

In the following example, a schema called account that defines of the base fields for a
business object. Notice the type keyword defines the kind of data allowed in each field
(string).

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

Chapter 17
Creating Resources with JSON Schemas

17-30

For a base object, the properties don’t include an ID (defined as aid in the following
example). IDs aren’t present when POST calls create records. Instead, the ID is
assigned by the server. The following schema defines a field for the account ID called
aid, which allows data to be returned by a GET call. In addition to the account ID, this
schema allows all of fields defined for the account schema as well, because it includes
the allOf keyword and assigns account as the pointer to the ref keyword.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

Defining Child Objects
By defining a schema for a nested resource, you can create a child object. Unlike a
reference (or peer) resource, a child object can’t exist on its own. It only has meaning
within the context of its parent resource.

The following schema defines a child object for the nested resource, /accounts/
{aid}/opportunities. In this example, the canonical (or base) link returns the child
object’s resource (opportunities). The links keyword gives the location for the child
resource, opportunities.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccountOpportunities",
 "type": "array",
 "items": {
 "$ref": "getOpportunities"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/opportunities?aid={aid}"
 }]
}

Tip:

You can have different links defined in an array.

Chapter 17
Creating Resources with JSON Schemas

17-31

This example shows a schema on another nested resource, /opportunities/{oid}/
notes to return the notes for a specific opportunity. In this case, the nested resources
defines a grandchild object using the ID (oid) as part of the canonical link:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getOpportunityNotes",
 "type": "array",
 "items": {
 "$ref": "getNotes"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/custom/CRM/notes?oid={oid}"
 }]
}

Defining Fields for List, Details, Create, and Update Screens
Field behaviors can be described as summary, creatable, and updatable, that is,
whether fields can accept user input, like those in a create or update screen, or appear
as a read-only field in a list component.

These behaviors – and their related collection, create, read, update, and delete actions
– are based on endpoints. By defining schemas for an endpoint’s request and
response, you tell MAX how it can use these fields to populate the different types of
screens created by the QuickStarts.

Every business object needs at least one endpoint. Some might require more than
one. For example, you can define GET and POST methods on a top-level resource
(like /employees). Its GET method allows users to return all of the fields defined in the
schema for the response. The schema defined for the POST method’s request defines
the fields that can be used to create an item. To return a specific item, define a GET
method on a nested resource (/items/{id}).

Note:

In MAX, POST methods are always used for fields used for create actions.
Read actions are always GET methods.

Chapter 17
Creating Resources with JSON Schemas

17-32

Field Behavior Description Used in These
MAX
Components

Method Tips

Collection Returns multiple
items (or records)
of the
object. Calls GET
 on the collection
resource (/
items) to return
all fields. See
Collection
Actions.

• List
Components

• DVT
Components

GET Specify the fields
that you want to
include in the
schema for a
collection
endpoint. Add
mock data field
values for the
request and the
response.

Read Gets a single
item of the
object. Calls GET
 on the item
resource (/
items/{id}) to
return the
properties for an
item. An object
can be a
singleton, in
which case this
calls GET on the
item resource (/
item). See
Collection
Actions.

Detail Screen
(read-only fields
in a Form
component)

GET

Create Creates a single
item of the
object. Calls POS
T on the
collection
resource (/
items) with a
request body that
contains all of the
creatable fields
(which can be
either required or
optional), along
with the user-
provided values.
This returns the
new object with
its new unique ID
(which can be
used
subsequently in a
read action). See
Create Actions.

Create Screen
(form fields)

POST Specify the fields
that should be
included in
Create screens in
the schema. Add
mock data field
values in the
request and
response.

Chapter 17
Creating Resources with JSON Schemas

17-33

Field Behavior Description Used in These
MAX
Components

Method Tips

Update Updates a single
item of the
object. Calls PAT
CH on the item
resource (/
items/
{id}) with one or
more updatable p
roperties. See
Update Actions.

Edit Screen (form
fields)

PATCH (and
sometimes, PUT)

Specify the fields
that users can
update in the
schema. Provide
mock data for the
field values for
the request and
response. You
should consider
using the PATCH
method because
it updates the
server with only
the fields that
have been
modified. See
Using the PUT
Method for
Update Actions.

Delete Deletes a single
item of the
object. Calls DEL
ETE on the item
resource (/
items/{id}).
See Delete
Actions.

DELETE

Collection Actions
Typically, collection actions are based on two different GET methods.

One endpoint returns a list of multiple items of the object using the top-level resource.
The other returns a particular item and uses a nested resource. Together, these two
endpoint definitions represent a single resource that supports both the collection and
read actions.

Chapter 17
Creating Resources with JSON Schemas

17-34

This example shows a schema for the response for collection action. In this case it’s a
GET method on the top-level resource, /accounts.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccounts",
 "type": "array",
 "items": {
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 },
 "name": {
 "id": "name",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
 }
}

This example shows the schema for the response of a read action, defined for a GET
action on a nested resource (/accounts/{aid}):

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }

Chapter 17
Creating Resources with JSON Schemas

17-35

 }
}

Defining a Collection Using a Single Resource

You can create a resource that returns a list of items using a GET endpoint on a single
resource. In this case (which is more the exception than the rule), there isn’t an
additional endpoint for retrieving an individual item. In the following example, the
Analytics resource has a collection action that returns a list of metrics (GET /stats).
However, it does not use an endpoint that points to a specific resource (like GET /
stats/{sequence}) to return an individual metric. The JSON response can be an array
or an object. Objects include information about the data set, such as the number of
items in the set, a token for the next set of items, and so on.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "stats",
 "title": "Analytics",
 "type": "object",
 "properties": {
 "metrics": {
 "type": "array",
 "description": "Metrics are individual measurements related to
incident activity, techncian performance",
 "items": {
 "type": "object",
 "properties": {
 "month": {
 "type": "string",
 "description": "Date Dimension for which a data point is
provided"
 },
 "technician": {
 "type": "string",
 "description": "Technician for whom the data is provided."
 },
 "radius": {
 "type": "number",
 "description": "radius in miles from the technician location,
where incidents were reported."
 },
 "incidentsAssigned": {
 "type": "number",
 "description": "Incidents Assigned to Technician"
 },
 "incidentsClosed": {
 "type": "number",
 "description": "Incidents Closed by Technician"
 }
 }
 }
 }
 }
}

Chapter 17
Creating Resources with JSON Schemas

17-36

Note:

MAX can only detect objects that have one top-level array. MAX can't detect
the primary collection when an object has more than one top-level array like
metrics2 in the following snippet. In cases like this, the MAX can't make this
collection available for data mapping.

{
 "count": 2,
 "metrics1": [
 {...}
],
 "metrics2": [
 {...}
]
}

Create Actions
You can add a create action by defining a POST method.

You can define the creatable fields in the JSON schemas for both the POST request
and response.

The following example shows a schema for the POST request called postAccount that
defines creatable fields from the referenced account schema. Some of the fields
returned from the account schema are optional, but in this schema, the name and
region are designated as required fields; app users can’t create a new item without
defining them.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

In addition to these required fields, the allOf keyword allows app users to add values
into any of the fields defined in the account schema (shown below) to create new
items. While the name and region fields (which are also defined in the account
schema) are required, the other fields are optional.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",

Chapter 17
Creating Resources with JSON Schemas

17-37

 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

Note:

In MAX, the POST method is the only way to enable create actions. Having a
POST method enables MAX to populate create screens with fields that allow
user input (creatable fields). If a business object doesn’t have a POST
method, then app users won’t be able to create items.

Read Only Fields

To create read-only fields in a form, define fields in the JSON schema for the POST
response that have no counterparts in the POST request schema. In the following
table, the getAccount schema, which is defined for the POST response, includes the
aid field, which holds the server-generated ID for an account. Because this is a read-
only value, one which app users shouldn’t update, it’s not included in the field
definitions of the POST request schema, postAccount, or the account schema that it
references.

Chapter 17
Creating Resources with JSON Schemas

17-38

Response Schema Request Schema

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

Content Types for Creatable Fields

At runtime, mobile apps return the content types specified in the POST endpoint,
which can be application/json or application/x-www-form-urlencoded. You can
specify application/x-www-form-urlencoded as the content type for a creatable field
in the POST request, but also specify application/json as the content type for the
read only fields returned by the response.

Update Actions
You can allow users to update a field's value by defining a JSON schema on a PATCH
endpoint.

Schemas for PATCH endpoints enable MAX to populate edit screens (and other
forms) with updatable fields. When forms are modified using PATCH, only the fields
that users have updated are sent to the server, not the entire object.

Note:

When you define your PATCH endpoint, always specify the content in the
request body as type as application/json instead of the JSON patch
format (application/json-patch+json).

Using the PUT Method for Update Actions
In addition to the PATCH method, you can make fields editable by defining a JSON
schemas for the requests and responses of a PUT method.

Although you can use both PUT and PATCH for update actions, keep in mind that the
PUT method replaces all of the fields defined for a schema object (even if none of
them have been modified). That means that the request payload must include the
entire object. The request payload for the PATCH method, on the other hand, includes

Chapter 17
Creating Resources with JSON Schemas

17-39

only the fields that have changed. Because of this, we recommend using PATCH (if
the service supports it, that is).

Delete Actions
The delete action is defined for an object. It enables users to remove an entire record,
not just a field.

You can define a DELETE method on a nested resource like /accounts/{aid}, for
example.

Custom Actions
In addition to the CRUD actions, resources can also have custom actions that require
custom code, transactional semantics, or unique processing on the objects.

In general, custom actions don’t return a payload. Instead, they perform server-side
tasks and return success and failure responses.

Keep the following in mind when you create a custom action:

• Use POST methods for custom actions.

• Create the POST method for a nested resource like /incidents/{id}/
closeIncident.

• If needed, define a request body for the POST method.

• Use a JSON hyper-schema links property to define the sub-resource. For
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {...},
 "links": [
 {
 "rel": "self",
 "title": "Incident",
 "href": "/incidents/{id}",
 "method": "GET",
 "targetSchema": {"$ref": "incident"}
 },

Creating Mock Data
Creating mock data for the fields defined in your JSON schemas helps you test the
API. When you define these values, be sure that they align with the fields that you’ve
defined in your schema.

Chapter 17
Creating Resources with JSON Schemas

17-40

Note:

Take care when you define your mock data, because OMCe doesn’t verify
mock data against a schema.

Which API Designer Should I Use?
When creating your APIs, you can use either the API Designer or the Express API
Designer. Which you choose boils down to a few important factors:

• If you want full control of the development process, choose the API Designer.

• If you’d rather get going fast with no coding, or you need to develop APIs to use
with the Mobile Application Accelerator (MAX), the Express API Designer is your
best bet.

This table highlights some of the key differences:

Category API Designer Express API Designer

Overview Enables you to define custom
APIs in a visual editor that
gives you control over
endpoint definition and
security. You can also define a
schema, resource types, and
traits. You implement the API
by writing a Node.js module.

Enables you to use sample
data to quickly create APIs
without writing any code.
Based on the sample data you
provide, the designer
generates resources with
GET, POST, PATCH,
CREATE, and DELETE
methods.

Chapter 17
Which API Designer Should I Use?

17-41

Category API Designer Express API Designer

Who’s it best for? • Developers who want to
craft, or explicitly design,
a custom API.

• Developers who prefer
working with the details,
such as defining the
method requests and
responses, configuring a
schema, and setting
security

The focus is on flexibility and
control of the development
process.

• Developers needing an
API with only the basic
CRUD operations (create,
read, update or delete),
who want to get up and
running quickly.

• Developers who want to
jump-start their API
designs before switching
to the API Designer for
fine-tuning.

• Developers creating APIs
for use with Mobile
Application Accelerator
(MAX).

The focus is on speed,
creating a spec to export to
the API Designer for further
development, and creating
APIs to use with MAX.

Can use to set secure
access?

Yes. You can add user
authentication and role-based
access to resources.

No. However, you can export
the RAML to the API Designer
and add role-based security
settings with the tools there.

MAX Friendly? Yes. But you must shape the
API to surface in the MAX
Designer by defining the
JSON schema (one built from
scratch, or a RAML file
generated by the Express API
Designer).

Yes. You create an API with
an object-centric focus. This
kind of API can be used out-
of-the-box to build mobile
apps with MAX.

Coding needed? Yes. After you define the
custom API’s REST endpoints
with the API Designer, you
then need to implement
internal logic through Node.js.

No, though you can modify the
generated implementation.

Chapter 17
Which API Designer Should I Use?

17-42

18
Custom API Design

In Oracle Mobile Cloud Enterprise (OMCe), you can create custom REST APIs that
can be used by your mobile apps. If you’re a mobile app developer, use the API
Designer to sketch out and test the endpoints that you define and then have a service
developer fill out the details of the API (add resource types or traits, provide a schema,
and set the access to the API and its endpoints), and implement it in JavaScript. If
you’re a service developer, use the API Designer to explicitly configure a complete API
that you can test with mock data. Alternatively, you can generate custom APIs from a
REST or Fusion Applications connectors without writing any code.

Unlike the OMCe platform APIs, which provide a core set of known services, custom
APIs let you use Node.js to code any service your mobile app needs, published
through a REST interface. You can relay data by using an OMCe connector to a
backend service, which transforms complex data into mobile-friendly payloads. By
using custom APIs to build a catalog of reusable services, you can save lots of time
that might otherwise be spent periodically re-creating and maintaining implementation
details in your mobile apps.

If you want to create an API quickly by providing sample data and letting OMCe define
a set of endpoints for you, use the Express API Designer.

API Design Process
The API Designer guides you through the process of creating a custom API.

You can quickly create a draft version of the API in just a few steps:

1. Add the basics (name of the API, the message media type, and a brief
description).

2. Define an endpoint by setting a resource and at least one method for it.

3. Set access security.

18-1

4. Test your endpoint after you've defined at least one resource.

You can create mock data to quickly test and validate an endpoint even when you
haven’t completely finished configuring your API. When you define your message
body, you can provide placeholder values to verify that the correct data is being sent
or returned. See Testing API Endpoints Using Mock Data.

Completing Your Custom API

To fully complete your API, use the API Designer to help you add the essential
components for a robust API:

• Provide the API metadata (that is, the basic attributes of the API, which are the
API display name, API name, and short description) or, if you already have a
RAML document that contains the configuration of your API, then you can upload
it to the API Designer. All the information (metadata, resources, methods, and the
schema for the message body) is extracted from the RAML document and loaded
into the API Designer, letting you quickly proceed to testing your endpoints or
editing your API configuration. To provide a valid RAML file, see RAML.

• Add one or more root and nested resources.

• Add methods to act on the resources.

• Create a schema to describe the body of data.

• Test your endpoints during design time with sample data and make any changes
as needed.

• Allow anonymous access to your API or specify which roles can access it.

• Add documentation for your custom API

Chapter 18
API Design Process

18-2

Later on, as you create more APIs, you might find that you are repeatedly defining the
same methods, using the same parameters, etc. You can reduce the redundancy by
creating resource types and traits. If your API is still in the draft state, then you can go
back into your configuration and add the resource types and traits that you’ve defined.

Generating Custom APIs for Connectors
Oracle Mobile Cloud Enterprise (OMCe) can generate custom code from connectors to
connect to external services. As a service developer, you can select a Fusion
Applications connector or a REST connector that has been created with a valid
descriptor, generate the custom API, and use the generated API to make it easier to
call these services from the implementations of your custom APIs, or directly from a
mobile app.

A connector is a means of enabling a mobile backend to communicate with an external
service such as enterprise system or third-party APIs, which in turn, allows a mobile
app to interact with the functions of that service. A connector API is a configuration for
communicating with a specific external service to send and receive data.

As a service developer, you can generate a custom API that exposes the methods of a
connector API and provides a default implementation, without writing code.

The custom API is generated with an endpoint for each resource in the connector API,
and it is opened in the API Designer for you to continue to specify details of the API,
such as roles. The default implementation, passes through all the requests coming
from the generated custom API to the target connector API, is also generated and
assigned to the generated API. As soon as you have assigned roles to the API if they
are required for security on the connector you can use the implementation to test the
API. You can download and modify the implementation and then upload it.

Creating a Generated Custom API for a Connector

Being able to create a custom API for a connector means that it is much easier to
create a prototype which you use to test a connector. As you find things you want to
change, you can quickly make a change to the connector, and generate a new custom
API and implementation. Once you are satisfied you can generate a final version of the
custom API and implementation.

• First, you develop a REST connector or Fusion Applications connector that is
defined using a descriptor.

• Generate the custom API from the connector. It opens in the API Designer, where
you can define one or more roles or specify the authentication required by the API.

• You can immediately call the generated API from the mobile device. The default
implementation passes through all the requests coming from the generated API to
the target connector API.

• You will probably want to download the implementation and modify it to shape the
data returned.

• You may want to revisit the connector and make changes to the connector
resources or descriptor. If you do you must generate a new custom API and
implementation. If you make changes to the generated custom API, these changes
are not reflected in the connector. You should make the appropriate changes in
the connector and then generate the custom API and implementation again.

Chapter 18
Generating Custom APIs for Connectors

18-3

Limitations of Generated Custom APIs for Connectors

You can only generate a custom API for a REST or Fusion Applications connector
which is defined using a descriptor. You cannot generate a custom API for another
type of connector, or where the REST or Fusion Applications connector does not have
a descriptor.

If you want to send multipart form data or use the http options object, you might need
to replace the callConnector method in the implementation with your own code. See
Calling Connector APIs from Custom Code.

How Do I Generate a Custom API from a Connector
Before you can generate your custom API, you must have created the connector that
the API will be configured for. If the connector isn’t valid you’ll see a popup explaining
that you can only generate custom connector API code for:

• REST connectors that use a descriptor URL

• Fusion Applications connectors

Note:

Make sure that you have the descriptor defined for the connector, and that
you have selected the resources and methods you want to generate code
for. The connector should be as complete as possible

1. Click and select Mobile Apps > APIs from the side menu.

The Connectors page appears. Select the connector API you want to generate
custom code for. You can filter the list to see only the connector APIs that you're
interested in or click Sort to reorder the list.

2. Click More and from the drop-down list, select Generate Custom API.

The Generate Custom API dialog appears.

Chapter 18
Generating Custom APIs for Connectors

18-4

3. Provide the following information for the generated custom API:

a. Title: Enter a descriptive name (an API with an easy-to-read name that clearly
identifies the API makes it much easier to locate in the list of custom APIs).

For example, myCustomAPI.

Note:

The names you give to a custom API (the value you enter in the API
name field) must be unique among custom APIs.

b. Version: Enter a version number.

If you enter a version number that already exists, you'll get a message letting
you know that number is already in use.

c. Name: The title you entered is automatically entered here as the name. You
can change it if you want. This name is used a unique name for your custom
API.

By default, this name is appended to the relative base URI as the resource
name for the custom API. You can see the base URI below the Name field.

Note:

The custom API name must consist only of alphanumeric characters.
It can’t include special characters, wildcards, slashes /, or braces {}.

If you edit the name for the API here, the base URI is automatically updated.

Other than a new version of this custom connector API, no other custom
connector API can have the same resource name.

d. Description: You can accept the default description, or provide a brief
description, including the purpose of this API.

Chapter 18
Generating Custom APIs for Connectors

18-5

After you've filled in all the required fields, click Generate.

The draft API is generated and displayed in the General page of the API Designer
(see The API Designer) where you can continue to edit it.

You can find the new custom connector API listed under Mobile Apps > APIs.

Completing the Custom API
The generated API opens in the API Designer.

• An endpoint exists for all the resources selected in the connector, along with an
implementation that you can use to test the API.

• By default, security is set that login is required and security is enterprise level so
you need to add the roles that can access the API. See Security in Custom APIs

As soon as you assign appropriate roles, you can test the custom API.

Working with the Implementation
The default generated implementation passed through all requests. You can edit the
implementation to shape the data returned, which is useful if there is a lot of data.

1. Click and select Mobile Apps > APIs from the side menu.

The APIs page appears. Select the custom API that you have generated. You can
filter the list to see only the custom APIs that you're interested in or click Sort to
reorder the list.

2. Click the Implementations navigation link, select the implementation which will
have the same name as the custom API, and click Download.

3. The download is a zip file with the default name <custom-api><version>.zip.
Expand it to a suitable location. The implementation files are:

• callConnector.js, passes the client’s request to the connector, and sends
back the connector’s response.

• <custom_api>.js , provides the main body of the scaffolding of the custom
API implementation. You can uncomment lines in this to shape the data
returned from the connector.

• <custom_api>.raml, the RAML definition of the custom API.

• package.json, the package descriptor file.

• ReadMe.md, has a description of the implementation files.

• samples.txt, code samples.

• swagger.json, the Swagger definition of the custom API.

• toolsConfig.json, used by the OMCe command-line development tools.

4. In an appropriate editor, open <custom_api>.js, which is the only file in the
generated implementation which you should edit.

Chapter 18
Generating Custom APIs for Connectors

18-6

To shape the response from the connector, uncomment the relevant lines and if
necessary change the type and limit. See the service.use examples in the
sample of <custom_api>.js below.

service.use(bodyParser.raw({type: 'application/octet-stream', limit:
'100mb'}));

and

service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

This is the first few lines of the <custom_api>.js generated implementation file.

// no need to add body-parser as a dependency in package.json - it's
provided by custom code container
var bodyParser = require('body-parser');

// passes client's request to the connector, sends back connector's
response
var callConnector = require('./callConnector.js');

/**
 * Mobile Cloud custom code service entry point.
 * @param {external:ExpressApplicationObject}
 * service
 * @see {@link http://expressjs.com/en/4x/api.html}
 */
module.exports = function(service) {

// uncomment if using customizer to customize binary request with
content-type 'application/octet-stream' - it will be parsed into a
Buffer and assigned to req.body. Otherwise these requests streamed
through (recommended approach if no customization is required).
//service.use(bodyParser.raw({type: 'application/octet-stream', limit:
'100mb'}));
// uncomment if using customizer to customize text request with text
content-type - it will be parsed into a string and assigned to
req.body. Otherwise these requests streamed through (recommended
approach if no customization is required).
//service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

// In the product UI, in Diagnostics -> Logs tab, ServerSetting button
allows to set backend log level: set your mbe log level to FINE (FINER,
FINEST) to see the generated custom code sdk calls.

 service.post('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response
 callConnector(req, res/*,customizer*/);
 });

 service.get('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response

Chapter 18
Generating Custom APIs for Connectors

18-7

 callConnector(req, res/*,customizer*/);
 });

...

There is a sample customizer in the same generated implementation file. You can edit
it and pass it as a last parameter to callConnector to override the request sent to the
connector and/or the connectors response. See the comments in the code for
examples of what you can do.

// Edit this sample customizer and pass it as a last parameter to
callConnector to override request sent to connector and/or connector's
response.
// Without customizer callConnector streams request to connector, then
connector's response is streamed back to client - recommended approach in
case no customization is required.
var customizer = {
 // allows to customize request sent to connector. If omitted then the
request streamed to the connector - recommended approach in case no
request customization is required.
 request: {
 // used - with post and put only - to customize request body
 // If not specified then request body is streamed directly to the
connector - no need to define this function unless you need to override
the payload.
 body: function(req) {
 console.log('customizer.request.body: req.body = ', req.body);
 var body = req.body;
 // OVERRIDE request body here - substitute this sample code:
 if (typeof body == 'string'){
 // to enable string parsing uncomment
service.use(bodyParser.text... - otherwise req.body would never be a string
 body += ' customized request';
 } else if (typeof body == 'object'){
 if (Buffer.isBuffer(body)){
 // to enable binary parsing uncomment
service.use(bodyParser.raw... - otherwise req.body would never be a Buffer
 body = Buffer.concat([Buffer.alloc(8, '00000000'),
body]);
 } else {
 // json parsing is enabled by default
 body['customized-request'] = true;
 }
 }
 console.log('customizer.request.body ->', body);
 return body;
 }/*,
 // advanced: uncomment to add options to connector request, see
https://github.com/request/request#requestoptions-callback
 options: function(req) {
 var options = {headers: {myHeader: 'myHeaderValue'}};
 console.log('customizer.request.options ->', options);
 return options;

Chapter 18
Generating Custom APIs for Connectors

18-8

 }*/
 },

The API Designer
The API Designer helps you configure a custom API with task-specific tabs that you
use to name your API, define its endpoints, set security, add API documentation, add
a schema, define resource types and traits, and test the API.

While you’re configuring the API, you can switch between the Design view and the
Source view. In the Design view (the default view), you enter values in fields. In the
Source view, you manually define the API’s properties in a source code editor. Click
Enter RAML Source Editor Mode to toggle between the Design and Source views.

If you already have a RAML document, then you can import it and edit it in the API
Designer. Click Upload a RAML Document or drag and drop your RAML document in
the New API dialog to download your API definition.

Note:

If you came to the API Designer by clicking the APIs navigation link from a
mobile backend, the feature to upload a RAML document is not available.

OMCe APIs are based on the RESTful API Modeling Language (RAML) standard.
Once you’ve begun to configure your API, OMCe generates a RAML document of the
configuration. See RAML to learn more about it.

If you want to work on the RAML document outside of OMCe, you can export it by

clicking Export RAML document at the top of the page.

Spec Out a Custom API
As a mobile developer, you might want to quickly spec out an API for your backend
then configure it later, or hand it to someone like the service developer to complete.
You can construct a functioning API with just a few steps: name your API, define an
endpoint, and test the endpoint. These next steps use a simplified FixItFast example. It
doesn’t show you how to add method parameters, or schemas, or resource types and
traits.

1. Click and select Mobile Apps > Mobile Backends from the side menu.

2. Select the mobile backend that you want to associate the API with from the list of
backends and click Open.

3. Click the APIs navigation link.

4. Select New API > API.

The New API dialog opens. Here’s where you enter the basic information for your
API:

Chapter 18
The API Designer

18-9

Select API to craft a custom API with the API Designer. Or choose Express API to
open the Express API Designer to quickly create a no-code API using sample data
you provide. See Which API Designer Should I Use? to learn about the difference
between the two designers.

a. Enter a name in the API Display Name field that is easy to read and
describes your API. For example, FixItFast Incident Reports. This name
appears in the API Catalog, which other developers can see.

The name you give to a custom API (the values you enter in the API Display
Name and the API Name fields) must be unique. No two custom APIs can
have the same name.

b. Enter a name in the API Name field for the internal name of the API. It’s part
of the metadata of the API, that is, it appears in the custom API URI. It won’t
appear in the API Catalog, so you can use a more concise form of the display
name if you choose. For example, incidentreports.

c. Add a brief description that tells others what the API does.

5. Click Create.

The General page of the API Designer is displayed. If you want to change the
name of your API or its description, then you can do it here.

6. Select the default media type, that is, the content type of the message body. REST
APIs commonly use the application/json or the application/xml media type.

That’s all you need to do to set the basic information for your API. If you’d like, you
can choose a different icon to associate with the API display name or just go with
the default and select a different icon later.

7. Click Endpoints in the navigation bar to define endpoints for the API.

a. Click New Resource and enter the resource name and the display name of
the resource (the field next to the resource name field). For instance, you
could have contacts as the resource name and Customer contacts as the
display name. Resources are listed by their display names on the left side of
the API Test page. Enter a brief description of the resource so others can
understand what the resource does.

Chapter 18
Spec Out a Custom API

18-10

Tip: This image shows a “P” under the Methods link. When a method is
defined for an endpoint, an icon for the method appears below the Methods
link. The icons are a shortcut you can use later to quickly see what methods
are defined for the resource and you can go directly to the method definition
by clicking on an icon.

If you want to add another top-level resource, then click New Resource again
and enter names and descriptions.

b. (Optional) If you want to add a nested resource (a child resource of contacts),
click Add (+) next to the Resource name field. Enter a name, a display name,
and a description of the nested resource. Click Add (+) again to add more
nested resources if you need them.

Endpoints are what really define an API. They are the resources and the
methods that act on those resources.
If you want to know more about resources, see API Resources.

8. Click Methods next to the resource display name and define a method for the
resource.

For each method, you need to define a request and a response. You can add
parameters to filter the information for the request and response message bodies
if you need them.

a. Click Add Method, select an operation and, optionally, add a description of
the method in the Description field.

For example, you could select a POST method to create a customer and add
“Creates a customer” as the description. Notice that a POST icon appears
next to Add Method. All methods defined for a resource have icons displayed
at the top of the page. When you want to view or edit a specific method, just
click the icon for it.

Chapter 18
Spec Out a Custom API

18-11

b. Click Add Media Type and select the format of the request message body,
which is usually JSON or XML.

c. Add a schema (a template of the message body) or an example of the
message body using mock data. Click Example or click Schema to paste the
message body.

Here’s an example body you could use for the FixtItFast example:

{
 "AddressLine":"1 Main Street',
 "City":"Anytown",
 "UserName":"user",
 "FirstName":"Jim",
 "LastName":"Smith",
 "PostalCode":"12345"
}

d. Add a response body by clicking Add Response and selecting a response
code. Don’t forget to add a description for the response body.

Using the example, you would select 201 — Created for the POST method and
enter the following description: Request fulfilled, new customer added.
You can add parameters to filter information for the response body. You can
also enter a response message body. If you’re using the FixItFast example,
then a response body isn’t needed for the POST method.

e. Save your method definitions by going to the top of the Methods page and
clicking Save.

9. Set security access for your API by clicking Endpoints to get back to the
Endpoints page. From there, click the Security navigation link.

10. Switch Login Required to OFF so you don’t have to provide mobile user
credentials or access tokens for authentication and click Save.

See Security in Custom APIs to learn more about securing access to the API. Now
you’re ready to test your endpoint.

11. Click Test to go to the API testing page.

The endpoints defined for the API are listed on the left side of the page. Click an
endpoint to load it. You can see each method’s request and response
configurations for each resource.

Chapter 18
Spec Out a Custom API

18-12

You can check the definition of each method and if you want to modify a
parameter name or an example, enter the change in the box to the right of the
field. If you click Use Example by a message body, then the current body is
copied into the text editor and you can make any changes.

12. In the Authentication section, select the mobile backend that this API is associated
with and the mobile backend’s version number.

Because you set Login Required to OFF, you don’t need to specify the
authentication method or provide credentials.

If you defined more than one endpoint, then set the default test credentials so you
won’t have to fill out the Authentication field for each method. Click Default API
Designer Test Credentials at the top of the page and select the associated

mobile backend and its version number. When you click Save (), the values are
applied to the Authentication fields of each method.

13. Click Test Endpoint.

Chapter 18
Spec Out a Custom API

18-13

You can view the request and response status and data of the test under the
Response Status section. If you used the FixItFast example and your test was
successful, then you should see a 201 status.

That’s all you need to do to spec out your custom API. As long as the API is in a draft
state, you or a teammate can edit the API configuration as needed. For steps on how
to fully configure a custom API, see Creating a Complete Custom API.

Creating a Complete Custom API
Previously, you learned how to spec out an API using the API Designer. You gave a
name to the API, added at least one resource and method and tested your endpoint.
At this point you have a draft version of the API but it isn’t quite complete. In this
section, you’ll fill in more details (such as defining the method requests and response,
adding a schema, and setting secure access) to make a more robust API. Just in case
you’re starting from scratch though or want more details about setting the basics, the
complete set of steps to creating a custom API are presented.

Click and select Mobile Apps > APIs from the side menu. If an API has already
been created (whether in a Draft or a Published state), you'll see a list of APIs. If no
custom APIs exist, then you'll see a page with the New API button. Click the API you
spec’d out already or click New API to get started.

Setting Up Your API
Let’s use the FixItFast example to create a custom API. In this example, you work for
the FixItFast appliance repair company. You need to find a way to track the repair calls
and responses. It would also be helpful to know which technicians are assigned to the
repair jobs. You want to create an API that lists the customer service calls based on
the customer who called to report the problem, the customer location, and the
technician assigned to the job. You’ll create the following API with the following
properties:

• An API called FIFIncidentReports

• A base URI: https://fif.mcs.cloud.oracle.com/mobile/custom/fif-
incidentreport/

• An application/json media type

• An icon to associate with the API display name (a PNG file that we selected)

When you click Create, a Draft state of the API is created and added to the list of
custom APIs.

First, set the basic characteristics for your API by going to the General page.

1. Click and select Mobile Apps > APIs from the side menu.

2. Select New API > API.

You select API to craft custom APIs with the API Designer. Express API enables
you to create API quickly without having to write any code as long as you have
sample data to provide. See Creating An API to learn about the Express API
Designer. If you’re developing mobile apps with the Mobile Application Accelerator
(MAX), the Express API designer is the quickest way to develop APIs for use with
MAX. See Creating APIs Fast with the Express API Designer for information about
MAX.

Chapter 18
Creating a Complete Custom API

18-14

3. Enter a name for the API in the API Display Name field that will appear in the list
of APIs (required).

The display name can contain alphanumeric characters and special characters
(! ? & @ () _ - . ‘ “). The name can’t begin with a space and can’t exceed
100 characters.
The name you give to a custom API (the values you enter in the API Display Name
and the API Name fields) must be unique among custom APIs. For example, if a
custom API exists with the API name My API, then you can’t create another
custom API with the same name.

4. Enter a name for the API in the API Name field that will appear in the API
configuration (required).

This name is appended to the relative base URI as the resource name for the API.
The API name must begin with a letter (A - Z) and can contain numbers (0 - 9) and
underscores (_). The name can’t exceed 100 characters. A validation error
message is displayed if you enter a name that’s already in use.

If you edit the name of the API here, then the change will be made automatically to
the resource name in the local URI.

5. Add a brief description of your API and click Create.

You’re taken to the API Designer page where you can complete the basic
information for your API:

• Default media type for the payload (application/json is selected by default,
click the drop-down list to select another type).

• API Catalog Properties to make it easier for you and other developers to
locate the API. Provide a brief description of your API and select an icon to
associate with your API.

If you want to use your own icon, then you can upload an icon (it must be in a
PNG format) or if you’re creative, then you can download Photoshop
QuickStart to use an icon template to create an icon. You should be familiar
with using Photoshop to create an icon. Follow the icon guidelines for sizing
and color information. For sizing information, see the Full Palette Icon section
of the ALTA ICON STYLE chapter in the Oracle Alta Web Design Guide. You’ll
need a 48x48 icon image within a 70x70 canvas. For color guidelines, see the
Icon Palette section of the ALTA COLORS chapter of the same guide.

Now that you’ve provided the basic information, it’s time to define endpoints for your
API.

Defining Endpoints
You create resources to define the endpoints of your API. A resource is the crux of an
API. It has a type, some data associated with it, a relationship to other resources, and
contains one or more methods that act on it. A resource can be nearly anything: an
image, a text file, a collection of other resources, a logical transaction, a procedure,
etc. See API Resources.

1. Click the Endpoints navigation link to begin.

2. Click New Resource and add some basic information.

Chapter 18
Creating a Complete Custom API

18-15

http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Icon-Style/Full-Palette-Icons.html
http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Colors/Icon-Palette.html

Each time you click New Resource, you create a top-level (root) resource. If you
want to add a child (nested) resource, then click Add (+) next to the top-level
resource. Click X to delete a resource.

Note:

See the icons under the Methods links? Each time you define a method
for a resource, an icon for it appears under the Methods link. Use them
as a shortcut to see what methods have already been define for a
resource. Click on an icon to go directly to its definition on the Methods
page.

3. Provide the resource path, which is the URI (relative to the base URI). For
example, if the base URI is /mobile/custom/fif-incidentreport, then you could
add the resource, incidents, that is /mobile/custom/fif-incidentreport/
incidents.

4. Provide the display name, which is a name for the resource that makes it easy to
identify in the API documentation.

Resources are listed by their display names on the left side of the API Test page.

5. Provide a brief description of the resource.

After you enter a description, the URI is displayed below the description field.

6. (Optional) Provide a RAML resource type, which is the resource type
(resourcesType:). You don't need to specify a resource type. If you want to use a
resource type but you don't have one defined, then click the Types link and define
one. See Creating Resource Types.

When you create a method for a resource, a symbol for that method appears below
the Methods link. You can immediately see what methods have defined for a resource
if you need to examine a resource definition. Click on an icon to go directly to that
method definition.

Chapter 18
Creating a Complete Custom API

18-16

You can clear the clutter to locate a resource more quickly by switching to Compact
Mode (it's to the right of New Resource). The compact display hides the resource
description, resource type, and path.

Adding Methods to Your Resources
Methods are actions that can be performed on a resource. The Methods page shows
you one method at a time. After at least two methods are defined, you can click on the
icon for a method at the top of the page to see its details.

1. Add some methods to the resource by clicking Methods.

If the resource you're defining methods for has path parameters, then they are
displayed above Add Method.

a. (Optional) Click Required if you want the path parameters to be passed with
each method.

The parameter name is displayed.

b. Provide a display name for the parameter and example code.

c. From the drop-down list, select the valid value type for the parameter.

2. Click Add Method and select the method that you want:

Method Description

GET Retrieve or read a resource

POST Create a new resource

PUT Update a resource

DELETE Remove a resource

HEAD Read the HTTPS metadata

PATCH Perform a partial update of a resource

OPTIONS Request information, such as the options or requirements of the
resource

After you've selected a method, it’s no longer listed in the method list because you
use a method only once per resource (e.g., you can't define two DELETE methods
for a single resource). An icon for each method that you define is displayed at the
top of the page. Click on a method icon to go directly to its definition.

3. (Optional) You can enter a brief description of the method in the Description field.

4. (Optional) You can enter a display name for the method.

5. (Optional) Provide any traits to apply to the method.

If you don't have any resource traits defined, click <Endpoints to go back to the
main Resources page and click the Traits link to define one. Traits let you define a
collection of similar operations. See Creating Resource Traits.

After you’ve defined methods for the resource, you can define the requests and
responses for those methods. See Defining a Request for the Method and Defining a
Response for the Method.

Chapter 18
Creating a Complete Custom API

18-17

Defining a Request for the Method
Now that you've selected a method, define the request you're making of the service
that you want to connect to. For instance, if you selected a POST method, then now you
can define what to create. You do this by adding parameters and a request body,
which contains the description of the data to send to the service.

1. Click Request to define a request.

2. Click Add Parameter and select a parameter type: Query or Header. Select
Required if the parameter is required for the method.

a. Give the parameter a name and a display name.

b. Select a valid value type: String, Number, Integer, Date, or Boolean.

c. (Optional) Provide a description of the parameter and an example you can use
when you test the validity of the endpoint. For example, you could have a
resource, incidents, and add a query parameter, contact that takes a
number value, and another parameter, gps that takes a string value:

/incidents:
 get:
 description: |
 Retrieves all incident reports for the filters below.
 queryParameters:
 contact:
 displayName: Contact ID
 description: |
 filter reports by contact
 type: string
 example: |
 lynn@gmail.com

 required: false
 technician:
 displayName: Technician ID
 description: |
 filter reports by technician
 example: "joethetechnician"
 gps:
 displayName: gps
 description: |
 location of contact or technician
 example: "39.355589 -120.652492"

In this example, a GET method is defined with the query parameters, contact,
technician, and location.

d. (Optional) Click More Properties to add nested properties to the parameter.
Click Repeat to add multiples of the current parameter.

e. Click Add Parameter to add another top-level parameter for the method.

3. Depending on the method you selected, click Add Media Type and define the
method body. The body contains the data that you're sending to the server. For
instance if you’re defining a POST method, you’ll need to define the item you’re

Chapter 18
Creating a Complete Custom API

18-18

creating, such as a new customer listing or service request. If you’re defining a GET
method, you don’t need to send a method body so you don’t need to specify a
media type.

a. Select the media type for your method body, that is the format of the message
that you're sending, such as text, images, or web forms.

Depending on the type (for instance, you wouldn't enter a schema for an
image type), you have the option of adding a schema or an example, or both.
When defining a schema, add only the data necessary for the purpose of the
resource. That is, don’t add unnecessary data that will only slow down the
transmission and potentially increase the potential for errors.

b. (Optional) Click Schema and enter a schema (in JSON format) in the editor
pane. A schema is like a template for the body. It's what you use to define the
contents of the message.

For an example of a schema, see Providing a Schema.

c. (Optional) Click Example and enter an example (in JSON format) in the editor
pane, which is used by the mock implementation as a mock response for the
method. Using mock data can help you verify the behavior of your methods.
See Testing API Endpoints Using Mock Data. The example shows mock
values for the data being sent in the message body as defined in the POST
method of the incidents resource:

body:
 application/json:
 example: |
 {
 "Title": "Leaking Water Heater",
 "Username": "joh1017",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d7431d77/objects/6cdaa3a8-097e-49f7-9bd2-88966c45668f?
user=lynn1014",
 "Notes": "my water heater is broken"
 }

4. Click Add Media Type to add additional media types. If you decide that you don't
want the method, then click X in the banner to delete it.

Defining a Response for the Method
Depending on the request, you may or may not need a response. A response
describes the process for returning results from the service. You might want to define
a response that verifies that the data you requested was returned or you might want a
response that just acknowledges whether or not the request was received. Defining a
response is similar to defining a request. The main difference is that you'll need to
select a status code to let you know the result of the connection.

1. Click Response to define one or more responses.

2. Click Add Response and select the status code that you want returned.

A status code of 200 is provided by default but if that isn’t the code you want, then
select one from the drop-down list.

• 2xx indicates a successful connection

Chapter 18
Creating a Complete Custom API

18-19

• 3xx indicates a redirection occurred

• 4xx indicates a user error occurred

• 5xx indicates a server error occurred

To help whoever uses the API to understand the reason for a potential error in the
API you’re configuring, use an HTTP status code to return code that best matches
the error situation.

3. Provide a description of what the code designates.

4. Click Add Header, select a response Header or Query, provide the name of the
header or query and a display name for the header, and the valid value type for
the header.

5. Click Add Media Type and select the format of the response. Depending on the
media type you select, you can add parameters, schemas, or examples just as
you did for the Request body.

a. For text-based media type (e.g., application/json or text/xml), click
Schema to enter a schema (in JSON format) for the body.

As with the request body, add only pertinent data to the response body. Don’t
include more data than you actually need for the operation.

b. Click Example to add mock data (in JSON format) for your response body.
Use mock data to verify the behavior of your methods before testing with real
data. See Testing API Endpoints Using Mock Data.

c. For form-based media type (e.g., multipart/form-data), click Add
Parameter and select Required if the parameter is mandatory. Then provide
a name and select a value type. Optionally, you can give your parameter a
name.

d. For image-based media type (e.g., image/png), you don’t have to do anything
because there are no schemas or attributes to provide.

The following example shows that a response for the POST method of the incidents
resource was created with a status code of 201 indicating a new resource was
successfully created. The example also shows a return response format of
application/json, a Location header that was added, and the message body
containing mock data:

responses:
 201:
 description: |
 The request has been fulfilled and resulted in a new resource
 being created. The newly created resource can be referenced
 by the URI(s)returned in the entity of the response, with the
 most specific URI for the resource given by a Location header
 field.

 headers:
 Location:
 displayName: Location
 description: |
 Identifies the location of the newly created resource.

 type: string
 example: |

Chapter 18
Creating a Complete Custom API

18-20

 /20934

 required: true

 body:
 application/json:
 example: |
 {
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "a1a1a1",
 "username": "johnbeta"
 },
 "status": "New",
 "driveTime": 30,
 "priority": "high",
 "notes": "My notes",
 "createdon": "2014-01-20 23:15:03 EDT",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d74331d77/objects/6cdaa3a8-097e-49f7--9bd2-88966c45668f?user=lynn1014"
 }

When you've defined your response, you can decide to test your endpoints (see
Testing API Endpoints Using Mock Data) or click <Endpoints in the navigation bar to
return to the main Resources page. From there, you can proceed to another page in
the API Designer to create a root, resource types or traits, or add API documentation.

If you decide you don't want the method, then click X in the banner to delete it.

Testing API Endpoints Using Mock Data
You can provide mock data in your request and response message bodies during the
design phase of your API configuration. This lets you examine the context of each call
without having to use real time data or interact with a real time service. For example,
to test whether your code correctly handles an invalid ID, you can add an example in
your request body with mock data containing an invalid ID. When you finish the test,
you can replace the example with other code to test some other aspect of the method.

In the FixItFast example, the mock data in the response body lets you verify if the
correct customer information is being returned. Here’s an example of mock data that
the service developer could create for the response body of the POST operation of the
contact resource in the FixItFast example:

{
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "ala1a1"

Chapter 18
Creating a Complete Custom API

18-21

 "username":"johneta"
 }
 "status": "new",
 "driveTime": 30,
 "priority": "high",
 "createdon": "2015-04-23 18:12:03 EDT"
}

When you create a custom API, a mock implementation is created automatically. The
mock implementation lets you invoke the API from your mobile application before
you’ve implemented the custom code. This lets you develop and test the mobile
applications and the custom code simultaneously. If you’re satisfied with the
configuration, you can add a real implementation.

Until you create your first implementation, the default implementation is the mock
implementation. After you create a real implementation, it becomes the default
implementation for the API.

Click the Implementations navigation link to upload an implementation or to see any
existing implementations. You can change the default implementation on the
Implementations page. After you upload an implementation, you see a list of existing
implementations, which includes the mock implementation.

See Testing with Mock Data to learn more about testing an API with a mock
implementation. See Implementing Custom APIs to create a real API implementation.

For details on testing fully-implemented custom APIs, see Testing Your Custom API.

Providing a Schema
You have the option of adding a JSON schema, which describes the structure of your
data and is written in JSON. If you want to add a schema, go to the Schema page and
click New Schema. After you've defined at least one schema, you can select one from
the list.

To define a schema, provide:

• The schema name

• The schema definition (in JSON format) in the editor pane, which you can
manually enter or copy and paste into the editor

For example, a schema called schema# is defined as follows:

schemas:
- reports: |
 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },

Chapter 18
Creating a Complete Custom API

18-22

 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information of customer
filing the report",
 "type": "object",
 "properties": {
 "id" : { "description": "Unique id for the
customer",
 "type" : "string" },
 "name" : { "description": "First and last
name of contact",
 "type" : "string" },
 "street": { "description": "Street address of
contact",
 "type" : "string"},
 "city" : { "description": "City of contact",
 "type" : "string"},
 "postalcode" : { "description" : "Postalcdoe
of contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of the
incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

Add more schemas to define by clicking New Schema. Click X to delete a schema.
See Schemas for details about the structure of a JSON schema.

Note:

You can define multiple schemas for use with the given API. Schemas are
specific to the API and aren’t shared across other APIs.

Security in Custom APIs
In OMCe, an API is protected through its association with a mobile backend to allow
only authorized users and devices to access the API and its endpoints.

Chapter 18
Creating a Complete Custom API

18-23

For enterprise applications, you can use HTTP Basic Authentication, OAuth, or SSO
OAuth Token credentials to control user authentication and authorization of access to
resources:

• With OAuth, when you create a mobile backend or register with an existing mobile
backend, a set of OAuth consumer keys (that is, client credentials) consisting of a
client ID and client secret are generated for you. The values of these keys are
unique to the mobile backend (for information about authenticating with OAuth,
see Authenticating with OAuth in Direct REST Calls). You authenticate yourself to
the OAuth server by providing your client credentials and receive an access token
that is passed in each API call via a header. Only a user with a valid token can
access the API.

Alternatively, you can provide a Single Sign-On OAuth token provided by a remote
identity provider. For information on how to enable single sign-on for a mobile
backend, see Authentication in OMCe.

• With HTTP Basic Authentication, when a mobile backend is created, a mobile
backend ID and an anonymous access key are generated for it. You authenticate
yourself to OMCe by providing these items, which are passed in each API call via
a header. You must provide this information to access the API. You can obtain the
mobile backend ID and anonymous access key from the mobile backend landing
page. Select the mobile backend associated with the API and expand the Keys
section. To learn more about authenticating with HTTP Basic, see Authenticating
with HTTP Basic in Direct REST Calls.

• With Social Identity, when you register an app with a social identity provider (for
example, Facebook), an access token is generated by the provider. You
authenticate yourself to OMCe by specifying the social identity provider and
providing the access token.

To find out how to get an access token, see Getting a Facebook User Access
Token Manually.

To learn about authentication in OMCe, see Enterprise Single Sign-On in OMCe.

Setting Access to the API
You have the option of requiring developers to login and provide authentication
credentials to access the API.

• Set Login Required to OFF to allow access to the API from a mobile app as an
anonymous user. Also, you won’t need to use authentication credentials on the
API's Test page.

Chapter 18
Creating a Complete Custom API

18-24

This setting is particularly useful when you’re in the early phases of configuring
your API and you just want to validate some endpoints or when the data being
requested or received is from a service that doesn’t require security.

• Set Login Required to ON to require authenticated access to the API:

– Select Enterprise to set access for mobile users who login with their OMCe
username and password or who have configured Single Sign-On
authentication providers.

When you set Login Required to ON and select Enterprise, the API Access
and Endpoint Access fields are exposed and you must select at least one role
to access the API. This ensures that only those mobile users that have the
selected role or roles can access the API endpoints. Click in the Roles field to
select one or more roles.

Optionally, you can further refine access to the API by selecting roles for
specific endpoints. Only mobile users having the role selected for a specific
endpoint can access it. For example, you can allow only users with a Mobile
Develop role to access the DELETE method. Click in the field for each endpoint
and select one or more roles.

See Mobile Users and Roles for information on how roles can be defined.

– Select Social Identity to set access for mobile users who want to use their
social media accounts for authentication.

If you choose this setting, you can save your API configuration and move on to
the Test page. In addition to specifying the mobile backend and its version,
you’ll be asked to select the social authentication provider and provide the
access token generated for you by the selected provider.

Chapter 18
Creating a Complete Custom API

18-25

Note:

You can obtain information about the current mobile and social users via
the /users/me REST call or the ums.getMe() method in the custom code for
the API. See Accessing the My Profile API from Custom Code.

Testing Your Custom API
To validate your API endpoints, the Test page lets you test with sample response data.
You’ll see a list of all the resources that you’ve defined on the left side of the page.
Use the Filter endpoints field to display only the resources that you want to test. You
test only one endpoint at a time.

Note:

A few things before you start testing your API:

• If Login Required is turned ON and Enterprise is selected, you must
have a role assigned that allows access to the API.

• If Login Required is turned ON and Enterprise or Social Identity is
selected, you must provide values for all fields in the Authentication
section of each method to test it.

• If Login Required is turned OFF, providing authentication credentials is
optional.

• Save your configuration before you test. If you haven’t, then you can
check the Always save before testing option in the Save Before
Testing confirmation dialog that appears when you click Test. That way,
any changes that you make to the API configuration are automatically
saved.

1. If you are in the design phase and just want to see if your endpoints are valid, or if
you want to test multiple endpoints during the session, then set the default API test
credentials.

a. Click Default API Designer Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. Select one the authentication method to use for testing:. Current User, HTTP
Basic, OAuth Consumer, Social, or Single-Sign On or Bearer Token.

d. If Enterprise is selected on the Security page, mobile users must enter their
mobile user credentials (username and password).

Credentials for social identity or for single-sign on are not required.

e. Click Save ().

The mobile user credentials that you enter will be used as the default
credentials for all test calls made within OMCe.

Chapter 18
Creating a Complete Custom API

18-26

If you need to test only a few methods, skip Step 1 and fill out the fields in the
Authentication section for each method (see Step 5).

2. Select the method that you want to test from the list of endpoints on the left side of
the test page.

When you select an endpoint, the method banner for it is displayed with the base
URI is displayed below the operation name. If you provided an alternate name for
the operation, then that name appears, otherwise the default operation name is
shown. Only one method per endpoint is displayed at a time for testing.

3. Click Request.

4. Expand Parameters to view the query or header parameters that you provided.

a. (Optional) Click Example to view the example body, if you provided one. Enter
an alternate example to test with by clicking Use Example. The provided
example body is copied into the text box. You can edit the example as
needed.

b. (Optional) Click Schema to view the request body schema if you provided
one.

5. Click Response.

6. Expand the status code area and click Example or Schema to review the example
or schema for the response body, if you provided one.

7. Click Request again to enter Authentication information.

8. If Login Required is OFF, click Test Endpoint. Otherwise, skip this step and go to
the next step.

9. Expand Authentication and, if Login Required is ON, select the mobile backend
and its version that are associated with this API and enter your authentication
credentials:

Chapter 18
Creating a Complete Custom API

18-27

• If Enterprise is selected, select the authentication method you want to use for
testing and provide your mobile user credentials.

• If Enterprise is selected and Single Sign-On is enabled for the associated
mobile backend, select Single Sign-On or Bearer Token as the
authentication method and enter either the OMCe-issued SSO OAuth token
(hover over the ? icon and follow the instructions) or the third-party issued
SSO token that you obtained from your trusted remote identity provider.

For information on configuring a Single Sign-On provider, see Enterprise
Single Sign-On in OMCe.

• If Social Identity is selected, select a social authentication provider and enter
the access token that you got from your provider.

Note:

OMCe automatically URI encodes the username and password that you
enter. An error can result if the username and password entries contain
special characters (that is, you’ve entered pre-URI encoded values). If
you enter values for these fields that are already encoded, another layer
of encoding is added. During authentication, these values are decoded
once, and the original encoded values are revealed, which will fail
authentication so don’t enter URI-encoded values for username and
password.

10. Click Test Endpoint.

Click Request to see the metadata for the transaction, such as header information
and the body of the request. Click Response to see the details of the response
returned. The response code tells you whether or not the connection was
successful.

Test each of your operations and modify them as needed to validate your endpoints.
When your custom API is completed, you can go to the APIs page and check out the
Implementations, Deployments, Used By, and History fields to find out how often the
API is being called, what mobile backends are using it, and more. See Managing an
API in Managing Oracle Mobile Cloud, Enterprise.
To learn how to get a Single Sign-On OAuth token, see Enterprise Single Sign-On in
OMCe.

To find out how to get an access token from a social authentication provider, see
Getting a Facebook User Access Token Manually.

Creating Resource Types
A resource type is a partial resource definition that specifies a description and
methods and their properties. Resources that use a resource type inherit its properties,
such as its methods. You don't have to use a resource type, but if you find that you're
defining resources with the same methods, you can increase efficiency by defining
resource types to reduce the redundancy.
Using the incident report example, you might want to get reports from several
departments (billing, service technicians, and clerks). For each department, you want
to get a list of employees involved with a particular incident and you want the name,
ID, and extension number for each employee. You can define a resource type,
employee_contact that defines a GET method that retrieves all the personnel

Chapter 18
Creating a Complete Custom API

18-28

information that you need. Instead of defining an employee_contact for each branch of
the company, you can apply the employee_contact resource type to each incident
report resource.

Note:

Resource types can’t be used with nested resources.

You can define multiple resource types for use with the given API. Resource
types are specific to the API and aren’t shared across other APIs.

Adding a resource type through the API Designer is simple:

1. Click Types and then click New Resource Type.

The Types page is displayed:

2. Enter a name for the resource type.

For example, a resource type called orderinfo could be used each time appliance
parts are ordered.
Valid resource type names are character strings and can include underscore (_)
and hyphens (-). Camel case is allowed (for example, employeeContact). Don’t
include special characters, such as slashes, asterisks (*), and exclamation points
(!).

3. (Optional) Add a description of the type.

4. Enter a brief sentence that describes the purpose of the type in the Usage field,
then enter a description of the type in the Description field.

For example, a resource type called orderinfo , the usage might be: Defines a
standard parts order. The description might be: Always get model’s serial
number and part number.

5. Click Definition to define the resource type in the source editor.

6. Click Save when you’re done defining the type.

7. (Optional) Click Test to test your resource type.

Edit your definition as needed. When you’re finished, return to the Types page to
add another type or navigate to another page in the wizard.

The resource type is added to the list of available resource types for use with the given
API. To learn more about resource types, see Resource Types and Traits in the RAML
specification.

Chapter 18
Creating a Complete Custom API

18-29

http://raml.org/spec.html
http://raml.org/spec.html

Creating Resource Traits
A trait is a partial method definition that provides method-level properties such as a
description, headers, query string parameters, and responses. Define traits for
obtaining descriptive information like version numbers or vendor information. Methods
that use one or more traits inherit those traits' properties. As with resource types, if
you’re defining methods with the same attributes multiple times, then define a trait to
prepopulate a method with certain attributes. You don't have to use resource traits, but
they’re useful if you have several methods with the same operational structure.

Note:

You can define multiple resource traits for use with the given API. Resource
traits are specific to the API and aren’t shared across other APIs.

Here's how to define a resource trait:

1. In the API Designer, click the Traits navigation link and click New Trait.

The Traits page is displayed:

2. Enter a name for the trait.

For example, a resource trait called parts-inventory could define a standard
method of looking up the availability and location of specific parts.
Valid resource trait names are character strings and can include underscores (_)
and hyphens (-). Camel case is allowed (for example, applianceModel). Do not
include special characters, such as slashes, asterisks (*), and exclamation points
(!).

3. Enter a brief sentence that describes the purpose of the trait in the Usage field,
then enter a description of the trait in the Description field.

For example, if you have a trait called parts-inventory, the usage might be:
Apply to GET methods for all part requests. The description might be:
Always determine if parts are in stock and list warehouse locations.

4. Click Definition to define the resource trait in the source editor.

5. Click Save so you don't lose your work.

The resource trait is added to the list of available resource traits for use with the given
API. To learn more about resource traits, see Resource Types and Traits in the RAML
specification.

Chapter 18
Creating a Complete Custom API

18-30

http://raml.org/spec.html
http://raml.org/spec.html

Providing API Documentation
A good, even great API is useless without documentation describing it so others can
use the API too. While the API Designer can't write that documentation for you, you
can upload it through the API Designer so that the next time you or someone else
selects this API from the API Catalog, a full description of the API is available (its
purpose, its resources and schemas, the security policies that it uses, and helpful code
comments).

1. In the API Designer, click the Documentation navigation link and click
Documentation.

2. Enter a title for your API document.

3. You can either manually write your API documentation using Markdown syntax in
the source editor or copy and paste your documentation into the editor.

Click Markdown Reference to see how to use Markdown. It lets you write an
easy-to-read plain text that can easily be converted to structurally valid XHTML for
viewing in a browser. See How Do I Write in Markdown?

Here’s an example of part of the API documentation for the FIFIncidentReports
API:

Chapter 18
Creating a Complete Custom API

18-31

4. Click Save so you don't lose your work.

You can add more documentation by clicking New Title and adding content in the
editor field for that document. You can replace the default title provided by entering
text in the title field. Each time you click New Title, the title field and editor for the
most recent document is appended below the previous document. When you click
Save, only the current document is displayed. Click a title tab to view that
particular document.
To see the API documentation for a specific API, select the API from the API
Catalog, click Test, and then on the Test page, click the Overview tab.

Chapter 18
Creating a Complete Custom API

18-32

How Do I Write in Markdown?
Markdown is a simple set of syntax that you can use to produce basic formatting
structures such as section heads, paragraphs, ordered and itemized lists, block
quotes, and links.

Construct Markdown Output

Header:

Use hash marks (#) to denote
headers

#First-Level Heading

Second-Level Heading

Third-Level Heading

First-Level Heading

Second-Level Heading

Third-Level Heading

Paragraph:

Separate paragraphs with one or
more blank lines.

This is a paragraph.

This is a second paragraph.

This is a paragraph

This is a second paragraph.

Simple List:

Use +, -, or * followed by a space
to denote list items.

List markers are interchangeable.

- list item 1

+ list item 2

* list item 3

- list item 1

- list item 2

- list item 3

Nested List:

Use +, -, or * followed by a space
to denote list items and indent
nested list item by exactly four
spaces.

-list item 1

+ list item 1a

+ list item 1b

-list item 2

- list item1

- list item 1a

- list item 1b

- list item 2

Ordered List:

Precede each item with a
number in a consecutive
sequence followed by a space.

1. list item 1

2. list item 2

* list item 2a

* list item 2b

3. list item 3

1. list item 1

2. list item 2

2a. list item 2a

2b. list item 2b

3. list item 3

Emphasis Italics:

Wrap text with an asterisk (*) or
single underscore.

text

more text

text

more text

Emphasis Bold:

Wrap text with two asterisks (*)
or double underscores.

text

__more text__

text

more text

Inline code:

Use back quotes (`) around the
text.

This is an `inline code` example. This is an inline code example.

Code Block:

Indent each line by four spaces

Format a block of preformatted
code:

This is a code line.

Format a block of preformatted code:

This is a code line.

Links:

Put the link text in brackets,
followed immediately by the URL
in parentheses.

This is an [example link](http://
example.com).

This is an example link.

If you want to find out more about Markdown, see What is Markdown?

Chapter 18
Creating a Complete Custom API

18-33

http://whatismarkdown.com/

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean that the test failed. If
the operation was supposed to return a null response, then the response should show
a 4xx code.

For every message you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page, allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To learn more about getting and understanding diagnostics, see Monitoring
Performance and Troubleshooting .

After you've configured your custom API, you can provide an API implementation, that
is, create your own custom code and add it to your mobile backend to access the API.
See Implementing Custom APIs.

API Design Considerations
When you configure your custom API, there are some things you can do to ensure you
have a well-formed API, including making sure that URLs and resources are well-
formed, that reasonable read and connect timeouts have been set, and, if you’re
providing a RAML file, that it’s correctly configured.

Here are some things to consider when you configure your API and some detailed
descriptions of more advanced constructs that you can use to refine your API.

Valid URLs
In creating your RESTful API, it's important that you define a valid URL. You can see
the URL for your API as you define it from the API name that you provide and the
resources and methods that you add. To ensure that you have a valid URL, it must
adhere to the following best practice guidelines:

• Provide a relevant and easily identifiable resource name. Using identifiers in your
URLs make for a more understandable resource than using a query string. Which
makes more sense to you, the resource name /customers/2223 or /customers/
api?type=customerid=2223?

• Resources can be grouped into a collection, so make the collection resource name
consistent with the attribute names used to refer to the collection.

Chapter 18
API Design Considerations

18-34

For example, if an attribute is a collection of favorite bookmarks, be obvious and
name the collection favoriteBookmarks instead of favoriteLinks.

• Always make the resource names plural nouns and alternate between plural
nouns and singular resource identifiers (rid): /services/1.0/items/{rid}/
subitems/{rid}/

For example: /customers/2223/orders/555

To ensure that the API is sync-compatible, always put the identifier immediately
after its related resource name as shown in the previous example, where 2223 is
the designation of a specific customer and 555 is the designation of a specific
order. A poorly formed URL to indicate a specific customer could look like this: /
customers/orders/2223/555 or /customers/orders/locations/2223.

• Use lowercase for resource names and use camel case for attribute names.

For example: /services/1.0/items?limit=10&totalResults=true

• Keep resource identifiers down to 32 characters or fewer due to the limitations of
some browsers.

• Keep URLs as short as possible. A long rambling URL is difficult to read and all
the more difficult to debug.

• When defining the URL, you can be as concrete or abstract as desired, but you
should use the curly brace {} notation to indicate URI parameters. This makes the
corresponding RAML more detailed and easier to test.

• Ensure that all date formats are in the form: YYYY-MM_DD[THH:mm:ss.sss]Z.

For example: 2014-10-07T18:35:50.123Z

• For pagination, use the limit and offset query parameters so that the
Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, you don’t need to specify these parameters.

• To ensure sync compatibility, use the orderBy query parameter to specify sorting.
For example: “orderBy=propA,propB:desc,propC:asc”. In this example, the
default sort order is by ascending value.

For details on designing sync-compatible custom APIs, see Making Custom APIs
Synchronizable.

• Provide values for query parameters as a URL-encoded JSON string. For
example:

[
 {
 "property":"propertyName",
 //Supports Equals, NotEquals, LessThan, GreaterThan,
LessThanOrEqual,GreaterThanOrEqual
 "comparison":"Equals",
 "value":"Must be a string",
 },
 {
 "property":"Another clause, only support ANDS not ORs",
 ...
 }
]

Chapter 18
API Design Considerations

18-35

API Timeouts
Sometimes when an API fails, it’s due to a stream or connection timeout. Stream
timeouts happen when, after a successful connection to the server, data is being
transmitted and the network time outs before all the data can be sent or received.
Connection timeouts happen when the network connection is never made.

To ensure that connectors have sufficient time to make a connection and that data can
be transmitted, the HTTP read and connection timeouts should have smaller values
than the API timeout.

The Network_HttpRequestTimeout value determines the amount of time spent
transmitting an HTTP request before the operation times out. The default value is
40,000 ms. The value of this policy can affect your API timeout values, which should
be less than the value of the policy. Note that policy values are specific to a particular
environment. The value for this policy in a development environment can be different
from its value in a runtime environment. Your mobile cloud administrator can increase
or decrease the timeout value from the Administration tab.

If you have mobile cloud administrator privileges, then you can select an environment
in the Administration view and export the policies.properties file to see a list of the
current environment policies and their values. For information about API environment
policies and policy settings, see OMCe Policies and Values. For information about
environment policies in general, see Policies in Managing Oracle Mobile Cloud,
Enterprise.

API Resources
A key element of an API is the resource. A resource is the conceptual mapping to an
entity or to a set of entities and is identified by its relative base URI. In other words, a
resource is a thing (noun) that’s located at an address to which you want to transmit
information or receive information. It has at least one method (verb) that operates on it.
A method is what you use to retrieve, create, update, or delete a representation of a
resource. For example, GET incidents.

A top-level resource is a resource defined at the root level (also referred to as the root
resource). A resource that’s defined as a child of another resource is a nested
resource. Nested resources let you specify aspects of the parent resource. A nested
resource is identified by its URI relative to the parent resource URI. For example, let’s
say you have a root resource defined as .../incidents, and you have a nested
resource, {id}. The API definition in RAML looks like:

title: FIFIncidentReports
version: 1.0
baseURI: /mobile/custom/fif-incidentreport
protocols: [HTTPS]
mediatType: "application/json"
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
.
.

Chapter 18
API Design Considerations

18-36

.
/{id}:
 uriParameters:
 id:
 displayName: id
 description: |
 The unique id of the incident report.

A resource is always preceded with a slash (/), whether it’s a root or nested resource.
For information about constructing a valid RAML document, see RAML.

If you think of a resource as a collection of objects and a nested resource as an item in
that collection, then your resource path shows the parent resource in plural form and a
nested resource in singular form. For example:

.../mobile/custom/fif-incidentreport/incidents/{id}

The root resource is incidents and the instance of an incident is {id}. You can give
the resource an easy-to-read display name on the Endpoints page. If you don't provide
a display name, then the resource URI is used as the name.

A common practice when designing a resource is to have PUT and POST methods
return the same objects that are sent in the request.

URI Parameters
If you want to allow API calls that change or restrict the value of the relative base URI,
then you can override it by setting a base URI parameter. The URI of a resource can
contain parameters, which are variable elements, for example {id}.

Like resources, parameters have a name. The RAML generated for our fif-
incdentreport shows the resource parameter named id, a display name (id,
although the display name doesn't have to be the same as the parameter name), and
a value type (in this example, the value type is integer):

 /{id}:
 uriParameters:
 id: displayName: id
 description: |
 the unique id of the incident report

 type: integer
 required: true
 get:
 description: |
 Retrieves the incident report with the specified id.

You place the path parameter after the resource name. Use a semicolon to separate
multiple parameters. For parameters that can have multiple values, separate the
values with commas.

Chapter 18
API Design Considerations

18-37

In the example, the URI parameter /{id} is a variable that identifies a specific incident
report by its ID number. The parameter contains the properties displayName and type.
The URI would look like this:

.../fif-incidentreport/incidents/{id}

If the parameter, id, has a value of 1234, then the resulting URI would look like this:

.../fif-incidentreport/incidents/1234

Parameters can be added as part of the URI path as a child (nested) resource or
added as a query. There are no hard and fast rules to adding parameters to the URI
path versus adding parameters as a query. One possible consideration is whether the
parameter is essential to the request. For example, to get data for a specific report,
you would use an identifier (id) of the resource in the URI path as shown in the
previous fif-incidentreport URI example.

However, if you’re using the parameter as a filter to narrow down the data, then add it
in the query. For example, you would use technician as a query parameter .../
fif-incidentreport/incidents?technician=joe to filter reports only by a
particular technician.

Endpoint Requirements for Sync Compatibility
To ensure optimal synchronization of data when a custom API is used by the
Synchronization library on a client, the custom API must include a specific set of
server-side endpoints.

For example, let's say a custom API endpoint is defined that returns a collection of
Department records and is consumed by a client that uses the Synchronization library.
Records are retrieved from the collection endpoint, /Departments, and stored in the
client’s local cache by the library. Later on, the library identifies two records in the
cache that require updating because they’ve expired (/Departments/Finance and /
Departments/HR).

In this case, to get the most up-to-date data, the Synchronization library retrieves only
the records that need to be updated, and not the entire collection.

On the server side, via the associated Synchronization library, these endpoints are
called individually on behalf of the client. The data is returned to the client in a single
payload and response, saving multiple round trips for each required object.

To support this, the Synchronization library requires that the custom API includes GET
methods for both the collection resource (GET /{collection}) and the object resource
(GET /{collection}/{objectId}). That is, in our Department example, the following
endpoints are needed:

• GET /Departments

• GET /Departments/{DeptId}

To go a step further, if the offline API collection objects that were retrieved can be
modified, say by the addition, update, or deletion of an object, the Synchronization
library calls the appropriate custom code APIs to enact the change on the objects on
the server side. To support creating, updating, or deleting the object requires that the
following types of endpoints are implemented on the server-side custom API:

Chapter 18
API Design Considerations

18-38

• GET /{collection}

• GET /{collection}/{objectId}

• PUT /{collection}/{objectId}

• POST /{collection}

• DELETE /{collection}/{objectId}

The inclusion of the PUT, POST, and DELETE operations are optional. If, for example,
your application never deletes an object in a collection, you don’t need to implement
the DELETE operation.

Note:

The Synchronization library doesn’t support the PATCH operation.

See Making Custom APIs Synchronizable to learn more about configuring a sync-
compatible custom API.

Schemas
A JSON schema defines the structure of your API in a JSON-based data format. The
JSON schema can be used to validate JSON data. You can define a schema from the
Schema page. Let's look at the schema from the IncidentReports example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },
 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information for customer
filing the report",
 "type": "object",
 "properties": {
 "id" : { "description": "Unique id for the
customer",
 "type" : "string" },
 "name" : { "description": "First and last
name of contact",
 "type" : "string" },
 "street": { "description": "Street address of
contact",
 "type" : "string"},
 "city" : { "description": "City of contact",
 "type" : "string"},

Chapter 18
API Design Considerations

18-39

 "postalcode" : { "description" : "Postalcdoe
of contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of the
incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

This schema contains the following keywords:

• $schema: denotes that this schema is based on the draft v4 specification. It must
be located at the root of the JSON schema. You should always include this
keyword in your JSON schema.

• type: defines a JSON constraint, so the data must be an array.

• description: describes the contents of the schema.

• items: define the items in the array. In an incident report, we want to assign
attributes to each report. In this example, all items are of type object and each
object has a set of properties, such as report ID, title, contact info, status, priority
level, etc.

For a complete list of keywords to use in your JSON schema, see http://json-
schema.org/.

To add a schema for your API, see Providing a Schema.

RAML
When you create an API using the OMCe interface, the API definition is stored as a
RAML document. RAML is a simple efficient way to describe RESTful APIs. REST
stands for Representational State Transfer (REST) and is a way to perform basic
operations (create, read, update or delete) information on a server using simple HTTP
calls.

You can also upload a RAML document that you create from scratch into the API
Designer. The API Designer takes the input that you provide and creates a RAML file
that documents the contents of the custom API. Note that the RAML defines only the
API itself, not the implementation of the API. You must create custom code using
JavaScript to implement the API. For information on how to implement an API, see
Implementing Custom APIs.

Chapter 18
API Design Considerations

18-40

http://json-schema.org/
http://json-schema.org/

Note:

The feature to upload a RAML document isn’t available if you came to the
API page by clicking APIs from the navigation list of a mobile backend.

If you upload a RAML file, then the values for the required Name fields are extracted
from the RAML file. You still have to add the short description. At a minimum, your
RAML file must include the API name, a base URI (/mobile/custom/apiname), and a
version number.

For your RAML file to be valid, it must specify a media type, base URI, the HTTPS
protocol, and a version number:

#%RAML 0.8

title: api_title
version: 1.0
protocols: [HTTPS]
baseURI: /mobile/custom/api_name
mediaType: application/json

Note:

OMCe requires the HTTPS protocol for custom APIs. If you upload a RAML
document that configures the API using the HTTP protocol, then it’s
automatically edited to use HTTPS.

For new a API, a default version of 1.0 is automatically applied when you save the
configuration (unless the mobile cloud administrator has changed the value of the
Asset_DefaultInitialVersion environment policy). However, if you upload an API
configuration, then the version value displayed is taken from the file.

Note:

The version value uses a specific format. Versions are specified with an
integer. For example, in your RAML file specifying version: 2.0 is valid
while version: v2.0 isn’t.

RAML lets you define resource types and traits for describing resources and methods,
which results in a more succinct RESTful API by reducing repetition in the design. The
principle components of a RAML (.raml) document are:

• Basic API information consisting of:

– API Display Name: the easy—to—read name of the API, which appears in the
API list (for example, FIFIncident Reports)

– Base URI: The address of the resource (/mobile/custom for custom APIs)

Chapter 18
API Design Considerations

18-41

– API Name: name of the API (fif-incidentreport) in the configuration

– Short description: Brief description of your API

• Resource types and traits, which allow you to characterize resources to avoid
unnecessary repetition in the API definition

• Resources (the conceptual mappings to one or more entities), resource methods,
and schema

To ensure that your RAML document is correctly configured, follow these tips:

• Although RAML allows both HTTP and HTTPS protocols, OMCe requires the
HTTPS protocol for custom APIs. If you upload a RAML document that configures
the API using the HTTP protocol, then it’s automatically edited to use HTTPS.

• If you define a top-level resource with an empty relative URI (that is, /:), then you
can’t add a subresource to it.

An error message will alert you that the structure is invalid. For example, the
following resource definitions will fail:

/:
 /reports:

You need to make reports a top-level resource:

/:
/reports:

• Top-level resources shouldn’t contain empty relative URI subresources, for
example:

/books:
 /:

• Avoid creating duplicate paths, for example:

/reports/{id}:
/reports:
 /{id}:

Multiple subresources in the resource name are valid. For example:

/reports:
 /county/branchid/reportissue:

• Add comments only in a property’s description: field. Adding a comment using a
comment line (for example, #report issue by technician) is not supported by
the RAML source editor. Comments added in a comment line are stripped out by
the parser.

For a thorough discussion about RAML, see http://raml.org/.

Chapter 18
API Design Considerations

18-42

http://raml.org/

Editing a Custom API
You can always edit an API as long as it’s in the Draft state. A published API can’t be
changed.

To edit a custom API:

1. Click and select Mobile Apps > APIs from the side menu.

Now that at least one custom API exists, the APIs page is displayed.

2. Select the draft API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

3. Edit the fields for general information, resource, schemas, traits, types, and
security policies as needed.

Each time you create a method for a resource, an icon for the method appears at
the top of the Methods page. Click on one of these icons to go directly to the
method definition:

On the Resources page, icons for the methods defined for the resource are
displayed below the Methods navigation link. You can quickly see what types of
methods have been defined for a resource. Click on an icon to go the method
definition:

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

4. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

Chapter 18
Editing a Custom API

18-43

5. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your custom
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your custom API. See Publishing a Custom API in Managing Oracle Mobile Cloud,
Enterprise. If you need to make a change to a published API, you’ll have to create a
new version of it.

Video: End-to-End Custom API Demo
To see the process of designing and developing a custom API, including how it fits in
with a mobile backend and a connector, take a look at this video:

Video

Troubleshooting Custom APIs
When an incorrect value is entered in a field, a message window displays the error
and, depending on the field, the correct syntax or value type to use. In some cases
(such as when a malformed schema or RAML is uploaded), the error message
includes a Show Details link that displays a description of the error. See Viewing Log
Messages.

To learn more about common errors that can occur when you configure custom code,
see Common Custom Code Errors.

Chapter 18
Video: End-to-End Custom API Demo

18-44

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13057

19
Implementing Custom APIs

As a service developer, you use the custom code service to implement the custom
APIs that your team creates for its mobile apps.

What Can I Do with Custom Code?
Using JavaScript, Node, and the custom code SDK, you can implement the APIs that
have been designed in the API Designer (or by means of a RAML document). Say, for
example, that your mobile app developer has designed the following API, which has
one resource (/incidents), and two endpoints (GET /incidents, and POST /
incidents).

#%RAML 0.8
title: IncidentReport
version: 2.0
baseUri: /mobile/custom/incidentreport
...
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
...
 post:
 description: |
 Creates a new incident report.

You, as the service developer, implement all the endpoints in the API. That is, you
write code to return incident reports for the first endpoint and to store incident reports
for the second endpoint.

Your custom API implementation can call platform APIs (such as Storage and
Notifications), other custom APIs, and external REST and SOAP web services. And it
can access the external web services either directly or through connectors.

Note:

To use your implementation (custom code) in a mobile backend, you must
first define the custom API as described in Custom API Design. The
implementation is then accessed by your apps through calls to the API's
endpoints.

19-1

How Does Custom Code Work?
Using the custom code service, you write JavaScript code to implement a custom API.
The coding model is based on Node, which is a JavaScript framework that enables
you to write server-side code and that provides a runtime environment for it. For each
API endpoint, which is the resource (URI) plus the HTTP method such as GET or POST,
you need a route definition that specifies how to respond to a client request to that
endpoint. In other words, for each URI and HTTP method combination in your API, you
need to add a JavaScript method to your custom code that handles the request. Route
definitions follow the coding style promoted by Express, which is a module that runs in
Node. We’ll show you how to write these methods.

After you’ve written your custom code, you package it as a Node module, and then
upload it.

For more information about route definitions, see Key JavaScript Constructs in Custom
Code. For information about the Express coding style, see http://expressjs.com/
starter/basic-routing.html. For information about Node, see www.nodejs.org. If
you’re interested in how the custom code service handles custom API requests and
responses, then see What Happens When a Custom API Is Called?

Note:

Note: The purpose of the examples in this chapter is to illustrate how to
interface with the custom code service. The examples are not intended to
teach best practices for writing Node.js REST API implementations.

What's the Foundation for the Custom Code Service?
The custom code SDK is available to custom API implementations and is what you
use to call platform APIs, connectors, and other custom APIs, as described in Calling
APIs from Custom Code. In addition, the custom code service is backed by the
following JavaScript libraries, which you can use when you implement your custom
API.

Chapter 19
How Does Custom Code Work?

19-2

http://expressjs.com/starter/basic-routing.html
http://expressjs.com/starter/basic-routing.html
http://www.nodejs.org

JavaScript
Library

Description

Node Node provides the backbone for the custom code service. When you implement
a custom API, you create a Node.js module.

Behind the scenes, a router module takes care of creating an HTTP server for a
Node instance and routing the HTTP calls that come from the service to the
custom API’s implementation that runs inside the instance. You don’t need to
write code for this.

Request Request is framework for Node that simplifies the making of HTTP calls. The
service wraps Request calls with additional code that’s necessary for the
custom code service.

Express Express is a lightweight web application framework for Node. The custom code
service uses it to expose API endpoints. To implement your custom API, you
write route definitions similar to how you would use Express to write routes for a
web app.

Bluebird The custom code service uses the Bluebird promises library to implement the
promises that the custom code SDK methods return.

Body-parser The custom code service uses this library to parse incoming request bodies.

Http-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTP proxy server.

Https-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTPS proxy server.

Express-
method-
override.

The custom code uses this library to override the method of a request based on
an X-HTTP-Method-Override header, a custom query parameter, or a post
parameter.

Agentkeepali
ve

This library is an implementation of http.Agent that keeps connections alive for
some time to reduce the number of times that TCP connections are closed,
which thus saves resources.

As shown in the following table, the default library versions depend on whether your
environment was provisioned from the current release or upgraded from an earlier
release.

JavaScript Library Environment Provisioned
from Current Release

Environment Upgraded
from Prior Release

Node 8.9.4 6.10.0

Request 2.83.0 2.74.0

Express 4.16.2 4.14.0

Bluebird 3.5.1 3.4.6

Agentkeepalive 3.3.0 3.1.0

Body-parser 1.18.2 1.15.2

HTTP-proxy-agent 2.0.0 1.0.0

HTTPS-proxy-agent 2.1.0 1.0.0

Method-override 2.3.10 2.3.6

If a custom API implementation isn't compatible with the default library versions for
your environment, use one of the following processes to change the Node version for
that implementation. See CCC_DefaultNodeConfiguration in OMCe Policies and
Values for the available Node versions.

Chapter 19
How Does Custom Code Work?

19-3

• Add a node property to the configuration section in the custom API
implementation's package.json file as described in Declaring the Node Version.

• Ask your mobile cloud administrator to change the node version that is specified
by the appropriate CCC_DefaultNode environment policy. You can set this policy at
different scopes, such as environment scope, mobile backend scope, and API
scope. Whenever you change a CCC_DefaultNode environment policy, any custom
API implementation that uses that default configuration will change to the new
version no later than its second REST request after the version change.

Note:

The default maximum body size for all configurations is 1MB. To learn how to
increase the maximum body size, see Common Custom Code Errors.

Video: Node.js Technology Primer
If you don’t have experience with Node.js or you’d simply like to better understand how
it works with the custom code service, take a look at this video:

Video

Setting Up Tooling for Custom Code
The custom code service is based on Node. You don’t need to install Node on your
system to create custom API implementations, but you’ll need the tooling that it
provides, such as the Node package manager (npm). Having Node on your system
also makes it easier for you to write the code.

The nodejs.org website provides installers that contain the library and some
command-line tools, such as npm. You may wish to also install an integrated
development environment (IDE) with Node support for features such as syntax
highlighting and code completion. One free option is to install Eclipse (eclipse.org)
and then add the Nodeclipse plug-in (http://www.nodeclipse.org/).

Steps to Implement a Custom API
The main steps for defining and implementing a custom API are the following:

1. Define a custom API as described in Custom APIs.

2. Download a JavaScript scaffold for the API. This scaffold contains stub
implementations for your endpoints.

3. Within the scaffold, fill in the appropriate JavaScript code for each function that
corresponds with a given REST endpoint.

4. Package the finished JavaScript module.

5. Upload the module to the API Designer.

Chapter 19
Setting Up Tooling for Custom Code

19-4

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13058
http://nodejs.org
http://eclipse.org
http://www.nodeclipse.org/

Downloading a JavaScript Scaffold for a Custom API
After you create your custom API, you can download a scaffold that is based on your
API's RAML document, and then use the scaffold as a quick start for implementing
your custom API.

The scaffold comes in the form of a Node module, the key components of which are
the main JavaScript file that contains stub methods for each endpoint (resource plus
HTTP method), and a package.json file, which serves as the manifest for the module.

To download the scaffold:

1. Click to open the side menu, click Mobile Apps, and then click APIs.

2. Open the API that you want to download.

3. In the left navigation area of the API Designer, click Implementations.

4. Click JavaScript Scaffold to download the zip file.

5. On your system, unzip the downloaded file.

Note:

If you later change the API, then you can download a new scaffold based on
the updated endpoints. However, any coding that you may have done and
uploaded previously won’t be reflected in the new scaffold.

Writing Custom Code
The following sections show the constructs that are available to you and how to use
them in your code.

Key JavaScript Constructs in Custom Code
The scaffold zip that you download from the API Designer includes a main JavaScript
file, which contains the key constructs that you need to implement the custom API.
Here’s an example of a main JavaScript file for a custom API, which has these
resources (URIs):

• /incidents, which supports the GET and POST HTTP methods

• /incidents/:id, which supports the GET HTTP method

Chapter 19
Downloading a JavaScript Scaffold for a Custom API

19-5

• /incidents/:id/uniquecode, which supports the GET HTTP method

// A
module.exports = function(service) {

 //B
 service.post('/mobile/custom/incidentreport/incidents',
function(req,res) {
 var result = {};
 var statusCode = 201;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents',
function(req,res) {
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents/:id',
function(req,res) {
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

This example illustrates these main constructs:

• (A) module.exports = function (service) {implementation}

The module.exports statement is required at the beginning of all custom API
implementations. It’s used to export an anonymous function with a parameter
(service) through which the custom code service passes the object that’s used to
expose your endpoints. The service parameter is an instance of an Express
application object, and all the object’s functionality is available. Note that in
Express example code, this parameter is often called app. The anonymous
function contains all the API’s route definitions.

• (B) Route definitions

A route definition is an Express route method that associates an anonymous
callback function with an endpoint (resource plus HTTP method). Its signature
takes the following form:

service.HttpMethod('URI', function (req, res)

– service is the variable for the custom code service instance (or, in Express
terminology, the application instance), which was defined in the
module.exports = function (service) statement.

– HttpMethod is one of the following methods corresponding to standard REST
methods:

* get

* delete

Chapter 19
Writing Custom Code

19-6

* head

* options

* patch

* post

* put

– URI refers to resource defined in the API. Notice that while braces identify a
parameter in the API design for the resource, you use a colon to identify a
parameter in the uri. For example, if the resource is /incidentreport/
incidents/{id}, then you use '/mobile/custom/incidentreport/
incidents/:id' for the URI.

– function (req, res) is a callback through which HTTP request and HTTP
response objects are passed. It defines how the API responds to client
requests to that endpoint. The req variable provides access to the data in the
request and you can use the res variable to build the result. Node and
Express provide properties and functions for those two variables, which enable
you to retrieve information about their values and work with them. We talk
about some of these next.

For more information about the req and res objects, see http://
expressjs.com/4x/api.html#request and http://expressjs.com/4x/
api.html#response.

The following example is a route definition for the endpoint GET /incidentreport/
incidents/{id}/uniquecode, which generates a unique code.

service.get(
 '/mobile/custom/incidentreport/incidents/:id/uniquecode',
 function (req, res) {
 console.info('get /incidentreport/incidents/' +
 req.params.id + '/uniquecode');
 res.type('application/json');
 // status defaults to 200
 res.send({'code': req.params.id + '-' + new Date().valueOf()});
 });

Notice that the code example uses req.params.id to get the :id value from the
URI. Here are some of the request properties that you typically use in your code:

Property Description

req.body If the request’s content type is
application/JSON or application/x-
www-form-urlencoded then this property
contains the data that was submitted in the
request body in the form of a JavaScript
object. For information about accessing
other types of request bodies, see
Accessing the Body of the Request.

req.headers A map of header names and values. The
names are lower case. Often used to
transport extra information in the request,
such as an external identifier.

Chapter 19
Writing Custom Code

19-7

http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#response
http://expressjs.com/4x/api.html#response

Property Description

req.params An object that contains properties that map
to parameters in the endpoint’s URI. For
example, if the endpoint is
attachments/:collection/
objects/:objectid, then you use
req.params.collection and
req.params.objectid to get the
parameter values.
When you use the req.params object to
retrieve a parameter value, you must use
the same case as the parameter in the
endpoint. For example, if the endpoint
parameter is {id}, then you must use
req.params.id to get the value, and not
req.params.Id.

req.query The query string parameters that are passed
in the URI. For example, if the request is
GET /incidents?q=joe&order=desc
then you use req.query.q and
req.query.order to get the query
parameters.

Here are some methods that you typically use to inquire about the request:

Method Description

req.get(field) and
req.header(field)

Both these methods return the value for the
header named by field. For example,
req.header('content-type'). The
match is case-insensitive.
Note that req.header is an alias for
req.get.

req.is(mimeType) Boolean method that you can use to find out
if the request’s Content-Type header
matches the mimeType. For example,
req.is('json').

Note:

The custom code service essentially creates Express application objects
and then configures them with service-specific functionality (such as
identity propagation and consolidated logging) before it passes them to
the custom API implementation logic for further configuration. You get
preconfigured Express application objects to which you add route-
specific business logic.

Here we discussed only the basic usage of Express features necessary to implement
the API by using routing methods to set up callbacks. However, the entirety of the
Express features are available for use in custom code. Consult the Express
documentation at http://expressjs.com/ to learn about the details, such as how to

Chapter 19
Writing Custom Code

19-8

http://expressjs.com/

implement URI parameter parsing, set up multiple callback handlers, and use third-
party middleware.

Accessing the Body of the Request
When requests that are received by the custom code have a content type of
application/x-www-form-urlencoded or application/json, the payload is converted
to a JavaScript object, which is then stored in req.body. For all other types, such as
image/jpeg or text/html, req.body is undefined. Examples of when this occurs is
when the body is a text file or an image. In those cases, when you need to access the
body from the incoming request’s handler, use the data event listener and end event
listener to save the body to a buffer.

The following example shows how to access the body for different content types:

if (req.is('json') || req.is('application/x-www-form-urlencoded'))
 {
 console.info('Request Body: ' + JSON.stringify(req.body));
 } else {
 var data = [];
 // Process a chunk of data. This may be called multiple times.
 req.on('data', function(chunk) {
 // Append to buffer
 data.push(chunk);
 }).on('end', function() {
 // process full message here
 var buffer = Buffer.concat(data);
 // Convert to base64, if required
 // var base64 = buffer.toString('base64');
 });
 }

To learn more about Node.js events and listeners, see https://nodejs.org/api/
events.html#events_events.

Inserting Logging Into Custom Code
You can use the Node console object to add logging messages to custom code, as
shown in this example:

console.info(i + ' Request to get ' + url);

These messages appear in the diagnostic logs.

The custom code service wraps the console object to enable finer-grained logging.
The following methods are available for logging messages at different levels:

• console.severe

• console.warning

• console.info

• console.config

• console.fine

Chapter 19
Writing Custom Code

19-9

https://nodejs.org/api/events.html#events_events
https://nodejs.org/api/events.html#events_events

• console.finer

• console.finest

By carefully applying log levels to the messages in your code, you can simplify how
you debug and administer the app. This allows you to add good debug messages, and
then log them only as necessary, such as during development or when diagnosing a
problem. For example, you might want to add the following log messages at the
suggested log levels:

Log Message Log Level

Function entry and exit Finest

Input, such as parameters that are sent with
the request

Fine

Caught exceptions Severe

Uncaught exceptions Fine

To set the level at which logging is enabled for a backend, from either the mobile
backend’s diagnostics page or the Diagnostics main menu, click Logs, and then click
Server Settings.

To learn how to view the logs, see Accessing Logging Messages for Custom Code.

Note:

Node.js has a less granular set of native methods for logging, which are also
possible to use. The logging level of the native Node.js methods
console.log and console.dir is equivalent to console.info. The Node.js
method console.warn is equivalent to the custom-code method
console.warning. The Node.js method console.error is equivalent to the
custom-code method console.severe.

When you use console messages to locate problem code, know that the service’s
console calls are nonblocking. That is, there’s no guarantee that logging completes
before the next statement is executed. In the case of a problem that’s caused by an
infinite loop, you will most likely see only the first console message that’s in the block
of code before the infinite loop. Consider the following code, for example:

console.info("Log 1");
var myVar="any string";
console.info("Log 2");
myVar="a different string";
console.info("Log 3");
functionWithInfiniteLoop();

When this code is executed, it’s possible that only Log 1 appears in the diagnostic
logs. Therefore, to locate an infinite loop, you must have just one console message,
and you must put that message where you think it will flag the problem. If it doesn’t
flag the problem, then move the message and run another test until you identify the
problem code.

When you suspect an infinite loop, follow these steps:

Chapter 19
Writing Custom Code

19-10

1. Remove or comment out all console messages.

2. Add a logging statement as the last line before the return.

3. Ensure that the log level for your backend is set to the same level as your logging
statement, such as INFO for a console.info() message.

4. Test the endpoint.

5. Look in the diagnostic logs for your logging statement.

6. If you don’t see the message, move the logging statement up one line and test the
endpoint again.

7. Repeat the previous step until the message appears in the log.

At this point, you know that the problem statement is just below the logging
statement.

Tip:

If you have several lines of code, then you can reduce the number of tests by
putting the logging statement in the middle of the code block and then testing
the endpoint. If you don’t get the log message, then put the logging
statement in the middle of the top half. Otherwise, put the logging message
in the middle of the bottom half. Test the endpoint. Repeat the test by
dissecting the code blocks until you have narrowed the test to just two lines
of code.

Storing Data Locally
Don’t use the file system that’s associated with the virtual machine running the Node.js
instance to store data, even temporarily. The virtual machines that run Node.js
instances might fluctuate in number, meaning that data written to one instance's file
system might be lost when individual instances are started and stopped.

To store data from custom code, you can use the Database Access API, which is
described in Accessing the Database Access API from Custom Code, or the Storage
API, which is described in Accessing the Storage API from Custom Code.

Video: Working with Node - Common Code
For a demonstration of writing Node code to implement custom APIs, take a look at
the Oracle Mobile Platform video series on custom code, starting with this video:

Video

Implementing Synchronization-Compatible APIs
If your mobile app uses the Synchronization library to enable offline use, as described
in Data Offline and Sync, then here’s some information about how to make your
implementation compatible with the library.

Chapter 19
Implementing Synchronization-Compatible APIs

19-11

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13059

Note:

To learn how to design your API so that it is compatible with the
Synchronization library, see Endpoint Requirements for Sync Compatibility
and API Design Considerations.

Video: Working with Custom APIs via Data Offline & Sync
If you want an overview of how to build your custom API to have synchronization-
compliant REST endpoints and data, take a look at this video:

Video

Requirements for a Synchronization-Compatible Custom API
To ensure that the Synchronization library can synchronize with your custom API’s
data, as described in Building Apps that Work Offline Using the Synchronization
Library, follow these rules:

Chapter 19
Implementing Synchronization-Compatible APIs

19-12

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13342

Method Response Body Response Headers Response HTTP
Status Codes

GET • To return a single
item, use
setItem() to put
the item in the
response, as
described in
Returning
Cacheable Data.
Note that this
method adds the
Oracle-Mobile-
Sync-Resource-
Type header to
the response and
sets it to item.

• To return a
collection, use
addItem() to
add the items to
the collection, as
described in
Returning
Cacheable Data.
Note that this
method
associates each
item with its
required URI and
ETag and sets
the Oracle-
Mobile-Sync-
Resource-Type
header to
collection.

If there’re no
items in the
collection, then
you must return a
body with empty
items, uris, and
etags arrays. For
example:

{
 items:[],
 uris:[],
 etags:[]
}

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single item, or
collection for
an array of items.
The setItem()
and addItem()
methods set this
header
automatically for
items and
collections. If the
response body is
a file, you
optionally can set
this header to
file.

• ETag: If the
Oracle-Mobile-
Sync-Resource-
Type header is
set to item or
file, then this
header must be
set to the item’s
ETag (in quotes).

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

No special
requirements

Chapter 19
Implementing Synchronization-Compatible APIs

19-13

Method Response Body Response Headers Response HTTP
Status Codes

PUT If the item stored on
the server is different
from the item in the
request body, such as
having a different ID in
the case of an add or
containing
automatically
calculated fields like
modifiedOn, then
return the stored item
in the response body.
Otherwise, returning
the item in the
response body is
optional.

• Location: If the
item was added,
then you must
include this
header, which
contains the
item’s URI.
Otherwise, this
header is
optional.

• ETag: Must
contain the item’s
ETag in quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single object. The
addItem()
method sets this
header
automatically. If
the response
body is a file, you
optionally can set
this header to
file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

Note that the value in
the If-Match header
value dictates the
actions to take and the
response code to
send. The
Synchronization
library sends * in the
If-Match header
when the conflict
resolution policy is
CLIENT_WINS. For all
other conflict
resolution policy
configurations (that is,
SERVER_WINS and
PRESERVE_CONFLICT)
, it sends the item’s
ETag. If the header
isn’t present or is null,
then assume *.

• If there’s an If-
Match header
and its value isn’t
*, then, if the
item’s ETag
doesn’t match the
header’s value,
return 412
Precondition
Failed.

• If the item to be
updated no longer
exists, then do
one of the
following:
– If the If-

Match
header is *,
then add the
item and
return 201
CREATED

– If there’s an
If-Match
header and
its value isn’t
*, then return
404 NOT
FOUND.

• If the item was
successfully
updated, then

Chapter 19
Implementing Synchronization-Compatible APIs

19-14

Method Response Body Response Headers Response HTTP
Status Codes

return one of the
standard PUT
codes, such as
200 OK or 204
No Content.

POST If the item stored in
the server is different
from the item in the
request body, then
include the stored item
in the response body.
Otherwise, returning
the item in the
response body is
optional. For example,
if the server adds
calculated fields such
as createdOn, then
return the stored item
in the response body.

• Location: Must
contain the item’s
URI.

• ETag: Must
contain the item’s
ETag in quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single object. The
addItem()
method sets this
header
automatically. If
the response
body is a file, you
optionally can set
this header to
file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

No special
requirements

Chapter 19
Implementing Synchronization-Compatible APIs

19-15

Method Response Body Response Headers Response HTTP
Status Codes

DELETE No special
requirements

No special
requirements

• If there’s an If-
Match request
header and its
value isn’t *, then
if the ETag of the
item to be deleted
doesn’t match the
header’s value,
return 412
Precondition
Failed.

Note that the
Synchronization
library sends * in
the If-Match
header when the
conflict resolution
policy is
CLIENT_WINS.
For all other
conflict resolution
policy
configurations, it
sends the item’s
ETag.

• If the item doesn’t
exist, then you
can return either
a 404 Not
Found or a 204
No Content. The
Synchronization
library process is
the same for both
codes.

• If the item was
successfully
deleted, then
return one of the
standard DELETE
codes, such as
200 OK, 202
Accepted, or 204
No Content.

If you want to learn more about how the Synchronization library uses the 412
Precondition Failed HTTP response status code and the If-Match header to
implement conflict resolution policies, see Synchronization Library Process Flow.
Basically, if the conflict resolution policy is CLIENT_WINS, then the If-Match header is
set to * to indicate that the server must update or delete the resource without conflict.
Otherwise, the If-Match header is set to the item’s ETag, and the custom code is
expected to return 412 Precondition Failed if the ETags don’t match.

Chapter 19
Implementing Synchronization-Compatible APIs

19-16

Tip:

Most methods require an ETag header in the response, and many methods
require that you compare the server version’s ETag with the value in the
request’s If-Match header. There are several node libraries that you can
use to create ETags. For example, the NPM etag library that is available
from https://www.npmjs.com/package/etag.

Returning Cacheable Data
The custom code SDK provides the following methods to format your data for use by
the Synchronization library. Using these methods enables the library to optimize
synchronization.

oracleMobile.sync Method Description

setItem(response, item) Set the response body to the item.

addItem(response, item, uri, etag) Add the item to a collection, which will be
returned in the response body in a cacheable
format.

clear(response) Undoes all calls to setItem and addItem .

For a response with a single JSON object, you use setItem to format the data, as
shown in this example, and you return the ETag value in the ETag header:

var etag = require('etag');
...
service.get('/mobile/custom/incidentreport/incidents/:id/syncUniquecode',
 function (req, res) {
 var item = {'code': req.params.id + '-' + new Date().valueOf()};
 res.setHeader('Etag', etag(JSON.stringify(item)));
 req.oracleMobile.sync.setItem(res,item);
 res.end();
});

For a JSON object that contains an array of items, you use addItem to add each item
to the response, as shown in the next example. Note that addItem attaches a URI and
an ETag value to each item in the response body. The URI must uniquely identify each
item.

var etag = require('etag');
...
service.get(
 '/mobile/custom/incidentreport/statusCodes',
 function (req, res) {
 var payload = {'inroute': 'Technician is on the way'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/inroute',
 etag(JSON.stringify(payload))

Chapter 19
Implementing Synchronization-Compatible APIs

19-17

https://www.npmjs.com/package/etag

);
 payload = {'arrived': 'Technician is on premises'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/arrived',
 etag(JSON.stringify(payload))
);
 payload = {'completed': 'Technician has left premises'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/completed',
 etag(JSON.stringify(payload))
);
 res.end();
 });

The response body for the addItem example looks like this:

{
 "items": [
 {
 "inroute": "Technician is on the way"
 },
 {
 "arrived": "Technician is on premises"
 },
 {
 "completed": "Technician has left premises"
 }
],
 "uris": [
 "/mobile/custom/incidentreport/statusCodes/inroute",
 "/mobile/custom/incidentreport/statusCodes/arrived",
 "/mobile/custom/incidentreport/statusCodes/completed"
],
 "etags": [
 "\"26-5vTpRVIO9SakJoLYEQrQ0Q\"",
 "\"27-+lktOY9aA46ySRE0O/y5Aw\"",
 "\"2c-PSRg8Cxr2rYp/9BftCmDag\""
]
}

When you use setItem and addItem, the response also includes this header:

Chapter 19
Implementing Synchronization-Compatible APIs

19-18

Header Description Type

Oracle-Mobile-Sync-
Resource-Type

If the response body is JSON,
then the value is item if the
JSON object includes a single
item. The value is
collection if the JSON
object contains an array of
items. Note that when the
response is a file, you
optionally can set the value to
file. When this header isn’t
included in the response, the
Synchronization library
assumes that the type is file.
That is, when this header is
not set, then the
MobileResource that the
Synchronization library
fetchObjectBuilder and
fetchCollectionBuilder
methods return is of type
MobileFile.

String

Specifying Synchronization and Cache Policies
For the mobile apps that use the Synchronization library, you might want to override
their settings for whether to cache the data that you return and when to expire and
delete the data. For example, if the data contains private information, you might want
to prevent a mobile app from caching that data. This table shows the Oracle-Mobile-
Sync HTTP headers to override these settings.

Chapter 19
Implementing Synchronization-Compatible APIs

19-19

Header Description Type

Oracle-Mobile-Sync-
Evict

Specifies the date and time
after which the expired
resource should be deleted
from the app’s local cache.
Uses RFC 1123 format, for
example EEE, dd MMM
yyyyy HH:mm:ss z for
SimpleDateFormat.

The following synchronization
policies are set for the
resource object that is created
from the response:

• Eviction policy:
EVICT_ON_EXPIRY_AT_S
TARTUP

• Expiration policy:
EXPIRE_AFTER with the
expireAfter property
set to date and time
provided in the header
value

.

Number

Oracle-Mobile-Sync-
Expires

Specifies when to mark the
returned resource as expired.
Uses RFC 1123 format, for
example EEE, dd MMM
yyyyy HH:mm:ss z for
SimpleDateFormat.

Number

Oracle-Mobile-Sync-No-
Store

When set to true, instructs
the client to not cache the
resource.

Boolean

Calling Web Services and APIs from Custom Code
Your custom code will most likely need to access one or more of the following types of
APIs and services:

• Platform APIs: Your custom code can connect with platform services, such as
Storage, Notifications, and Location, through their APIs.

• Custom APIs: Your custom code can interact with all the other custom APIs that
are in your environment.

• Connector APIs: Your custom code can serve as wrappers for connector APIs.

• External web services: Typically, you create connector APIs with which to interact
with external services, but you also can connect with remote web services directly
from custom code.

Calling APIs from Custom Code discusses how to access platform, custom, and
connector APIs from custom code.

If you need to make a third-party web service call that doesn’t require you to shape the
data, and you don’t need integrated diagnostics, tracking, or analytics for that call, then

Chapter 19
Calling Web Services and APIs from Custom Code

19-20

you might choose to call the service directly instead of setting up a connector. You can
call a web service directly from your custom code using Node APIs such as the HTTP
API. For information about the Node HTTP API, see nodejs.org/api/http.html.

Note that HTTP and HTTPS are the only supported protocols for making calls to the
Internet from custom code.

Note:

If the third-party web service changes its API, then a connector requires just
one change, whereas with direct calls, you must make sure you find and
change all the direct calls. Also, consider that if you’re testing against a test
web service, you’ll have to modify the URLs for the direct calls when you
switch to the production service.

Packaging Custom Code into a Module
After you’ve written custom code to implement an API, and before you upload and
deploy it, follow these steps to package the implementation:

1. Declare the implementation version in the package.json manifest file.

2. Optionally declare the Node version in the package.json file.

3. Declare in the package.json file the API dependencies on other modules.

4. Run the Node.js package manager (npm) to download the dependencies.

5. Put all the implementation files in a zip file.

Required Artifacts for an API Implementation
An API implementation is packaged as a zip archive containing, at minimum, the
following artifacts:

• A root directory that has the name of the custom code module.

• The package.json file. Within this file, you specify in JSON format the name of the
module and any dependencies that your custom code has, such as any connector
APIs. See package.json Contents for information on the contents and syntax on
the package.json file.

Chapter 19
Packaging Custom Code into a Module

19-21

http://nodejs.org/api/http.html

Note:

By Node convention, this file must be within the root directory.

• At least one JavaScript file that contains the implementation code.

• If there are any additional modules that you are using (in addition to Express and
the base Node features), then a node_modules directory containing those modules.
See Packaging Additional Libraries with Your Implementation.

package.json Contents
Like all npm packages, custom API implementations require that you identify the
project and its dependencies in a package manifest named package.json. Here’s an
example of the syntax and the properties of a package.json file for a custom API
implementation:

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "dependencies": {
 "async": "0.9.0"
 },
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/employees" : "3.5.1"},
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

The key attributes are the following:

name
A descriptive name for the implementation. The name can contain only characters
that can be used in a URI. It may not start with a period (.) or underscore (_). The
value of this attribute in combination with the value of the version attribute must be
unique among all API implementations.

version
The version of the implementation. If you provide a new version of an implementation,
then this attribute should be incremented and the name value should stay the same.

description
An optional description of the implementation.

main
The name of the main JavaScript file that implements the API. If this file isn’t in the
same folder as the package.json file, then use a path name that’s relative to the
package.json folder.

Chapter 19
Packaging Custom Code into a Module

19-22

dependencies
The specification of dependencies to other Node modules required for the
implementation. When you have such dependencies, use npm to install those modules
in this directory. See Packaging Additional Libraries with Your Implementation.

oracleMobile / dependencies / api
The specification of the version for a custom API or a connector API that you
reference in your custom code.

Declaring the API Implementation Version
Use the version attribute in the package.json file for the custom code module to
specify the implementation version, as shown in the following example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : { },
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

If you have previously uploaded an implementation and that implementation is still in
Draft state, then you can continue to upload modified implementations without
incrementing the version number. After you publish a version, that version is final. If
you want to make changes to a published implementation, then you must increment
the version number.

You can publish implementations independently of APIs, and you can increment their
version numbers separately as well. This lets you make changes to a published
implementation, such as minor modifications or bug fixes, without requiring the API
itself to be updated.

To create another version of an API implementation, change the version attribute,
such as "version": "1.0.1", and then upload a zip file of the modified
implementation. When you upload a new version of an implementation, it becomes the
default version (active implementation) for that API. You can change the default
version in the API’s Implementations page.

If the new version is backward-compatible, then use a minor incremental increase. For
example, if the previous version is 1.3, then the updated version number could be 1.4
or 1.7. If the new version isn’t backward-compatible, then use a major incremental
increase. For example, if the previous version is 1.3, then the updated version number
could be 2.0 or 2.1.

Chapter 19
Packaging Custom Code into a Module

19-23

Declaring the Node Version
To use a version of the Node library other than the instance’s default version, add a
node property to the configuration section as shown in the following example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "configuration" : {
 "node" : "6.10" }
 }
}

To learn about the default Node version and the available node versions, see
CCC_DefaultNodeConfiguration in OMCe Policies and Values.

Packaging Additional Libraries with Your Implementation
If your API implementation depends on other JavaScript modules, such as Async, then
you must add them to your custom code zip file. The additional modules aren’t shared
across APIs. For example, you must include the Async module in every
implementation package that uses it. Your implementation can't use any modules that
depend on installing a binary (executable) on the server.

1. In the package.json file for the implementation module, declare the modules that
the implementation module depends on. Specify both the module name and the
version number in the following format:

"dependencies": {
 "Module1Name":"VersionNumber",
 "Module2Name":"VersionNumber",
},

2. In the directory containing the package.json file for the custom code module, run:

npm install

This command downloads the stated dependencies from the public npm repository
and places them in the node_modules subdirectory.

Note:

If the module on which you’re creating the dependency is in a folder on
your file system instead of in the public npm repository, add the path to
the folder as an argument to the command:

npm install folder-name

Chapter 19
Packaging Custom Code into a Module

19-24

For more information on using the npm package manager, see https://
docs.npmjs.com/cli/install.

3. Package the whole folder containing the package.json file in a zip archive.

Uploading the Custom Code Module
1. On your system, prepare the required artifacts for the implementation, as

described in Required Artifacts for an API Implementation.

2. From the API Catalog, open the custom API that the custom code implements.

3. In the left navigation bar, click Implementations.

4. At the bottom of the API Implementation page, click Upload an implementation
archive, and then go to the implementation zip file on your system.

Note:

You also can upload an implementation from the command line. See Offline
Debugging with the OMCe Custom Code Test Tools.

Testing and Debugging Custom Code
You can test and debug your custom code directly within the UI. It’s also possible to
test your custom code outside of the UI.

Testing with Mock Data
When you create a custom API, you get a mock implementation, which application
developers can use to test their mobile applications while you are implementing the
custom code. When you call an endpoint for a mock implementation, it returns the
request example, if one has been provided.

The mock implementation is the default implementation until you upload an
implementation. Whenever you upload an implementation, it is automatically deployed
as the default implementation. You can always change this, including reverting to the
mock implementation, for testing purposes. To change the default implementation,
select it on the Implementations page and click Set as Default.

You can create example (mock) data to provide default request and response bodies
for the test UI. You can use either the API Designer or the RAML to add example
(mock) data. To provide an example for an endpoint from the API Designer, from the
Endpoints page, go to the desired method, click either the Requests tab or the
Responses tab, select the appropriate media type, and then enter the mock data in
the Example tab.

Here is an example of providing mock data in the RAML.

/status:
 get:
 description: |
 Gets status of specified report.
 responses:

Chapter 19
Uploading the Custom Code Module

19-25

https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install

 200:
 description: |
 OK.
 body:
 application/json:
 example: |
 { "code": "New",
 "notes": "My hot water tank's model is AB234"
 }

Testing Custom Code from the UI
As soon as you upload your custom API implementation, you can test it.

1. Click Test in the API Designer.

The test page displays all the operations.

2. From the endpoints list, click the operation that you want to test.

3. If the endpoint has parameters, then enter the required parameters and any
optional parameters that you want to test.

4. If the endpoint accepts a request body, then provide the body or click Use
Example.

5. Select a backend.

6. Optionally, select an API version.

7. Select the authentication method. If you select Current User, then the
authentication method is OAuth Consumer.

8. If you aren’t using anonymous access, then you must provide a user name and the
password. This user must have been assigned one of the roles that can access
the endpoint. If the endpoint doesn’t have any roles configured for it, then the user
must belong to a role that’s associated with the API. In addition, the user must
have one of the roles that is associated with the backend that you use to test the
endpoint. You can see these roles in the backend’s Security page.

9. Click Test Endpoint.

The Response Status section displays the status and the response. Click Request
to see the request URI and headers.

You also can test an API from the API Catalog and from a backend.

Offline Debugging with the OMCe Custom Code Test Tools
OMCe offers a set of custom code test tools that you can use to iteratively debug your
custom code. You can download the tools from the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

The core of the tools is an npm module that enables you to run an offline custom code
container, run tests on the code, and package and deploy an implementation back to
OMCe.

Detailed instructions on using the tools are located in the README.MD file that is
packaged within the omce-tools.zip.

Chapter 19
Testing and Debugging Custom Code

19-26

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Tools for Testing Custom Code Outside the UI
You can use tools that were designed for testing web services to test custom code,
such as cURL.

The way you remotely access an API endpoint depends on the type of authentication
that you want to use. See:

• Authenticating with HTTP Basic in Direct REST Calls

• Authenticating with OAuth in Direct REST Calls

• Getting a Facebook User Access Token Manually

• Headers Needed for API Calls with Facebook Authentication

When you create a custom API, a mock implementation is created automatically. You
can use this mock implementation for testing before you implement the custom code.
You also can use the mock implementation to configure a response for a mobile
application test case. After you have uploaded an implementation, you can switch to
the mock implementation for testing purposes by making it the default. For more
information, see Testing with Mock Data.

If your request is in a test suite, then you can put the name of the test suite in the
Oracle-Mobile-Diagnostic-Session-ID header. The name appears as the app
session ID in the log messages. This lets you filter the log data on the Logs page by
entering the test suite name in the Search text box. Also, when you are viewing a
message’s details, you can click the app session ID in the message to view all the
messages with that ID. For more information about using the Oracle-Mobile-
Diagnostic-Session-ID header, see How Client SDK Headers Enable Device and
Session Diagnostics.

Note:

The API must either allow anonymous access or be associated with at least
one role. If neither of these is true, then you will get an unauthenticated error.

Accessing Logging Messages for Custom Code
When your API implementation doesn’t return the expected results, use the diagnostic
logs to troubleshoot the problem.

To pinpoint where the error occurred, click to open the side menu. Next, click the
Diagnostics menu, and then click Request History. Next, to find the request, click

View related log entries in the Related column, and then select Log Messages
Related by API Request. To see a message’s details, click the time stamp. From the
Message Details dialog, you can click the up and down arrows to see all the related
log messages.

You can get to the Request History page from either the Diagnostics menu or a
mobile backend’s Diagnostics page. Note that if there isn’t sufficient information in a
request to enable the service to determine the associated backend, then the related
log messages appear only in the Logs page that is available from the Diagnostics
menu.

Chapter 19
Testing and Debugging Custom Code

19-27

Every message is tagged with a request correlation ID that associates all messages
for a request. When you view a message’s details, you can click the request
correlation ID to see the other messages for the same request.

If you don’t see any messages that help identify the source of the problem, then you
can change to a finer level for logging messages. From the Logs page, click Server
Settings, change the log level for the mobile backend, and then rerun the test.

To learn about the different types of log messages and how to filter and correlate
messages, see Viewing Log Messages. For use cases for diagnosing custom code
and connector issues, see Diagnosing Custom Code.

Let's use the following endpoint to see how to custom code logging works. In this
code, the database.insert method makes a PUT request to /mobile/platform/
database/objects/FIF_Incidents.

service.post('/mobile/custom/incidentreport/incidents', function (req,
res) {
 req.oracleMobile.database.insert('FIF_Incidents', req.body).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(result.statusCode).send(error.error);
 }
);
});

The service always logs a message whenever a call ends, regardless of the log level
setting. In the following figure, the bottom (earliest) message was logged when the
POST request to /platform/database/objects/{table} ended. The top (later)
message was logged when the service.post call to /mobile/custom/
incidentreport/incidents ended.

Logging Request and Response Messages

If you would like to see the bodies of the requests and responses, then ask your
mobile cloud administrator to change the CCC_LogBody environment policy to true.
When you do this, the service logs a CCC message whenever a body is passed in a
request or a response as shown here:

Chapter 19
Testing and Debugging Custom Code

19-28

When you set the log level to Info, the service logs the request bodies with a
message type of INFO. Response bodies are logged with a message type that
corresponds to the response status. For example, if the response status is 401, then
the log message that contains the response body has a message type of WARNING.

Note that setting the CCC_LogBody environment policy to true might have a negative
effect on performance.

Note:

By default, the body is truncated after 512 characters. Use the
CCC_LogBodyMaxLength environment policy to change the maximum body
length. To always include the full message, no matter how long it is, set
CCC_LogBodyMaxLength to -1.

Getting More Details

To get the maximum amount of log messages, set the log level to FINEST. With this
level, the service logs the following messages:

• A FINEST message, which contains the HTTP verb and URI, whenever a request is
received by any of the custom API’s endpoints

• A FINEST message, which contains the HTTP verb, URI, and status code,
whenever a response is sent by any of the custom API’s endpoints

• A FINEST message, which contains the HTTP verb and URI, whenever a request is
sent to another platform or custom API.

• A FINEST message, which contains the HTTP verb, URI, and status code,
whenever a response is received from a call to another platform or custom API.

If the CCC_LogBody environment policy is set to true and the log level is FINEST, then
the following occurs:

• If a request body exists, then the FINEST message that contains the request’s
HTTP verb and URI also shows the body.

• If a response body exists and the response status code is less than 400, then the
FINEST message that contains the HTTP verb, URI, and status code for the
response also shows the body.

• If a response body exists and the response status code is 400 or higher, then the
response body is logged in a separate message. Immediately after, it logs the
FINEST message for the response. The message type is either WARNING or SEVERE,
depending on the status code.

Chapter 19
Testing and Debugging Custom Code

19-29

Note that setting the log level to FINEST might have a negative effect on performance.

Minimizing the Performance Cost of Logging Bodies

If you are concerned about the performance cost of logging bodies, but you want to
see the request and response bodies for exceptional cases, set the CCC_LogBody
environment policy to true, and set the logging level to WARNING or SEVERE. With these
settings, whenever there is a status code of 400 or higher, a message is logged for
both the request and the response. Both messages are logged at the time that the
response is received. The message type is WARNING or SEVERE, depending on the
status code. The message shows the body, if there is one.

Creating Custom Log Messages

To help with debugging, you can use the console object in your code to generate your
own messages, as described in Inserting Logging Into Custom Code, and then view
them from the logs.

Troubleshooting Custom API Implementations
When a test fails for a request, examine the response’s HTTP status code and the
returned data to identify the issue. Status codes in the 200 range indicate success.
Status codes in the 400 range indicate a client error where the calling client has done
something the server doesn't expect or won’t allow. Depending on the 4XX error, this
may require fixing custom code, giving a user the necessary privileges, or
reconfiguring the server to allow requests of that type, for example. Status codes in the
500 range indicate that the server encountered a problem that it couldn't resolve. For
example, the error might require reconfiguring server settings. Here are some common
standard HTTP error codes and their meanings:

Status Code Description

400 BAD REQUEST General error when fulfilling the request would cause an
invalid state, such as missing data or a validation error.

401 UNAUTHORIZED Error due to a missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the
resource is unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT ALLOWED Error that although the requested URL exists, the HTTP
method isn’t applicable.

Chapter 19
Troubleshooting Custom API Implementations

19-30

Status Code Description

500 INTERNAL SERVER ERROR General error when an exception is thrown on the server
side.

You can use the request’s log entries to pinpoint where the error occurred as
described in Accessing Logging Messages for Custom Code. To learn how to identify
custom code syntax errors from the log, see Diagnosing Syntax Errors.

If you don’t see any messages that identify the source of the problem, then you can
change to a finer level for logging messages. From the Logs page, click Server
Settings, change the log level for the mobile backend, and then rerun the test. If
you’re troubleshooting custom code, then you can add your own log messages to the
custom code to help identify the code that’s causing the problem. See Inserting
Logging Into Custom Code.

Tip:

If, in a request, you set the Oracle-Mobile-Diagnostic-Session-ID header
to an identifier for the suite, that value is displayed in the message detail as
the app session ID. If you click the app session ID in a message detail, then
you can then click the up and down arrows to view all the messages for that
ID. You can also enter the ID in the Search field to display only the log
messages with that ID. For more information about using the Oracle-
Mobile-Diagnostic-Session-ID header, see How Client SDK Headers
Enable Device and Session Diagnostics.

Diagnosing Syntax Errors
If a request failure is caused by a syntax error, then the Message Detail dialog box for
the associated log message displays the module and line number where the error
occurs, as shown here:

Chapter 19
Troubleshooting Custom API Implementations

19-31

To learn about accessing log messages, see Viewing Log Messages.

If you’d like to see the stack traces for custom code syntax errors in request
responses, then ask your mobile cloud administrator to change the
CCC_SendStackTraceWithError environment policy to true. When you do this, you’ll
see a request response like the following example whenever a request results in a
syntax error in the custom code. The stack trace shows the line number where the
error occurred.

{"message": "Custom Code Problem: ReferenceError: nonExist is not defined
\n at /scratch/aime/mobile/mobile_ccc/custom_code_modules/
ccc2455344468806884059/incidentreports/incidentreports.js:354:17\n at
callbacks (/scratch/aime/mobile/mobile_ccc/mcs-node-router/node_modules/
express/lib/router/index.js:164:37)\n ..."
}

Common Custom Code Errors
The following topics discuss common errors, possible causes, and solutions.

Custom Code Problem parsing JSON: Error: request entity too large

This error is typically caused by a request body that’s larger than the JSON body
parser’s default maximum input, which is 1MB.

To change the JSON body parser limit for Node 6.10 and later, add this code to the
implementation’s main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {

Chapter 19
Troubleshooting Custom API Implementations

19-32

 service._router.stack[3].handle = bodyParser.json({limit: '2mb'})
};

To change the JSON body parser limit for Node 0.10, add this code to the
implementation’s main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {
 service.stack[3] = { route: "", handle: express.json({limit: '2mb'})
};

Custom Code Problem in oracleMobile.rest callback: Argument error,
options.body

When you use a generic REST method from the custom code SDK, the common
cause for this error is assigning a JavaScript object to optionsList.body, where
optionsList is the first parameter in a call to
req.oracleMobile.rest.post(optionsList, handler).

The solution is to do one of the following:

• Store the object in optionsList.json, instead of optionsList.body. This
solution automatically converts the object to a JSON string and sets relevant parts
of the request, such as the content type and length. For example:

optionsList.json = {first: 'John', last: 'Doe'};

• Use JSON.stringify to convert the object to a JSON string before setting the
optionsList.body value. For example:

optionsList.body = JSON.stringify(first: 'John', last: 'Doe'};
optionsList.headers = {'Content-Type': 'application/json');

Your custom code container is in the process of recovering from an unhandled
error in a earlier request

This issue occurs when a previous request results in an uncaught exception. When
you receive this response, rerun the current request. It should succeed as soon as the
system has recovered from the uncaught exception for the previous request.

You should examine the logs for the previous requests to see if you can find the cause
of the uncaught exception.

Connection fails due to untrusted URL

To protect client apps, the service passes all external URLs through McAfee Web
Gateway v7.x/6.9.x (Cloud), which requires that all external URLs are trusted. This
requirement applies to external service URLs for connector APIs as well as those that
you access directly from custom code.

Attempting to connect with an untrusted connector endpoint results in a 403 error,
which might be wrapped in a 500 error.

To resolve the issue, add the untrusted URL to the list of trusted URLS for McAfee
Web Gateway v7.x/6.9.x (Cloud) at http://trustedsource.org/. Note that the
process can take from three to five business days.

Chapter 19
Troubleshooting Custom API Implementations

19-33

http://trustedsource.org/

database.getAll(table, options, httpOptions) doesn’t return all the rows in a table

This issue occurs when there are more rows in the table than the Database_MaxRows
environment policy allows the service to return. The default value is 1000.

Ask your mobile cloud administrator to increase the Database_MaxRows value.

This mobile user doesn't have the necessary permissions to call this endpoint

In the UI, open the API and click Security. If Login Required is turned on and
Enterprise is selected, then look at the roles that have been configured. If no roles are
configured, then no one has permission to log in to the mobile backend. If one or more
roles are configured, ensure that the user has a necessary role.

What Happens When a Custom API Is Called?
You might be curious about how the service handles calls to a custom API. Here is a
high-level summary. When the service receives a custom API request, it sends the
request to the custom code service. The custom code service then directs the request
to one of the following:

• Custom code container for the API implementation: A container is a Node
instance. This container wraps the custom API implementation with JavaScript that
handles tasks such as server startup, authentication, authorization, and logging.
There is one container for each deployed version of an implementation for each
associated mobile backend version.

• Custom code agent: The agent controls the creation and destruction of custom
code containers, controls server startup, and exposes the REST endpoints for
creating and destroying a container.

Basically, a custom API implementation is launched on demand in a container that is
instantiated by the custom code agent. This container, which runs in Node, handles
the requests and returns the responses.

When the custom code calls a platform API or a connector API, it makes the call back
through the service, and then the service routes the call to that API. If the call is to a
different custom API, then the service routes the call to that API’s container if it exists,
or it creates the container and then routes the call to it.

Chapter 19
What Happens When a Custom API Is Called?

19-34

20
Calling APIs from Custom Code

As a service developer, you might want to access platform APIs, connector APIs, and
other custom APIs from your custom code. The custom code SDK provides methods
that simplify making requests to these APIs.

How to Send Requests to Platform, Connector, and Custom
APIs

You use custom code SDK methods to send requests to platform, custom, and
connector APIs. When you call one of these methods, that method makes a RESTful
HTTP call to the API. This SDK makes the HTTP calls mostly transparent to you, but
you’ll see that a method's arguments and its return value are similar to what you would
see with a RESTful HTTP request and response.

These methods and their arguments conform to a common pattern. This section
describes this pattern, and the following sections provide the details that are specific to
the API’s methods:

• Calling Platform APIs from Custom Code

• Calling Custom APIs from Custom Code

• Calling Connector APIs from Custom Code

Note:

Note: The purpose of the examples in this chapter is to illustrate how to
interface with the custom code service. The examples are not intended to
teach best practices for writing Node.js REST API implementations.

API Request Pattern
The custom code SDK methods that make requests to custom, platform, and
connector APIs follow this pattern:

req.oracleMobile.<service>.<method>(required arguments, options,
httpOptions)

The <service> identifies the API that you want to call.

• For platform APIs, this is the name of the platform, such as storage, ums, or
notification.

• For connector APIs, this can be either connectors or connectors.<api>. Later, we
discuss how to choose which one to use.

20-1

• For custom APIs, this can be either custom or custom.<api>. Later, we discuss
how to choose which one to use.

You use options to specify optional API-specific properties. The next section
discusses the options properties that are shared by many of these methods. Each
method description in the subsequent sections discusses additional options
properties that apply to that method, if any.

The httpOptions argument is like the Node.js http.request(options) argument. You
use this argument to pass properties not covered by required arguments and options.
For example, if you need to pass the timeout property to specify the number of
milliseconds to wait for a request to respond before terminating the request, then you
would pass it in httpOptions. Another example of when you use httpOptions is to
pass query parameters to a connector. To learn more about http.request(options),
go to the API documentation at https://github.com/mikeal/request and scroll down to
the section entitled "request(options, callback)".

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code
handles multibyte characters.

You can omit the options and httpOptions arguments. When you do so, they are
treated as null values. Any value that you provide in options that affects a parameter
in httpOptions overrides the httpOptions parameter. The methods ignore any
property in the options and httpOptions arguments that they do not support.

Note:

You might notice that you don’t need to worry about authentication when you
send requests to custom, platform, and custom APIs from custom code. The
service re-uses the access token that’s passed into the custom code and
takes care of authentication for you. With connectors, if you need to use
different credentials for the external service, you can use
options.externalAuthorization to pass the value to be used in the
Authorization header for the external service.

To learn how to send direct requests to third-party web services without going through
a connector, see Calling Web Services and APIs from Custom Code.

Common options Argument Properties
Several custom code SDK methods that access APIs accept an optional options
argument, which is a JSON object. Here are the options properties:

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-2

https://github.com/mikeal/request

Property Description Type Default Value

accept The value for the
Accept header. Use
this property to list the
media types that you
prefer for the
response body. Note
that for most methods,
the media type for a
response body is
application/json.

String Empty, which
indicates no
preference for
response type.

contentType The value for the
Content-Type
header. This property
specifies the content
type of the request
body. For most
methods, this is
application/json.

String Empty. Note that if the
inType is json, then
the service sets the
Content-Type
header to
application/json.

inType For Storage,
connector API, and
custom API SDK
functions that take a
request body, use this
option to specify
whether the request
body is json or
stream.
If json, then the
method sets the
Content-Type
header to
application/json
automatically.

You typically set this
property when the
custom code builds
the request body that
you are sending to the
API.

String Undefined. If this
property isn’t set, then
the method passes
the request body as is.
The request is
serviced by the Node
Request module,
which accepts a string
or a buffer.

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-3

Property Description Type Default Value

outType The response body
type. The value can
be one of the
following:
• json: Convert the

response body to
a JSON object.
Note that if there
are JSON parse
errors, then the
response body
remains a string.

• stream: Return
the response
body in a
readable stream
that can be piped.

• binary: Do not
convert the
response body to
a string.

• encoding:
Convert the
response body to
a string using the
specified
encoding.

This property is
supported only by the
Storage API and the
connector and custom
APIs. All other APIs
use the default
response behavior.

String Undefined. The
response body is
converted to a string
using the UTF8
encoding.

API Response Patterns
The return value for a custom code SDK call to an API depends on the value of the
options.outType property.

• If the outType is stream, then, if there’s no error, the return value is a stream that
you can pipe, as shown in Handling a Stream.

• If the outType is undefined or any value other than stream, then the return value is
a promise object. To learn more about the promise object, see Handling a
Promise.

Handling a Stream
When the response is a stream, then, if there’s no error, the return value is a stream
that you can pipe. Otherwise, you can process the error as shown in this example:

 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-4

 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.status).send(error.message);
 })
 .on('response', function (response) {
 console.info('HEADERS received from response:', response.headers);
 })
 .pipe(res);

For more information about streaming, see https://github.com/request/request.

Handling a Promise
A promise provides access to the result of an asynchronous request. At the time a
promise is returned, the request may or may not have completed. Most custom code
SDK methods return promises. In the following examples, <promiseFunction>
represents a custom code SDK method that returns a promise, such as
req.oracleMobile.storage.getCollections.

When you call a promise function, you typically use the then function to handle the
success or failure as shown here:

<promiseFunction>.then(successFunction, errorFunction)

• <promiseFunction> is the call that returns a promise, such as
req.oracleMobile.storage.getCollections in the next code example.

• successFunction is a user-defined function that is called if the prior promise
function resolves successfully. This occurs when the request completes with a
response status code less than 400. The successFunction takes a single
argument, which is what the prior <promiseFunction> returned on success. With
custom code SDK methods, this is a JSON object with the following properties:

– result: The body of the result.

– statusCode: The HTTP status code.

– headers: A JSON object that contains all the HTTP response headers, such as
{accept-charset:'UTF-8',content-type:'application/json'}.

– contentType: The value of the Content-Type header if that header was
included in the response.

– contentLength: The value of the Content-Length header if that header was
included in the response.

• errorFunction is a user-defined function that is called if and when promise
function doesn’t resolve successfully. This is when the response status is equal to
or greater than 400, or if there is a severe error. The errorFunction takes a single
argument, which is what the <promiseFunction> returned on error. With custom
code SDK methods, this is a JSON object with the following properties:

– statusCode: The HTTP status code.

– error: The body of the error or the error message.

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-5

https://github.com/request/request

– headers: All the response HTTP headers.

Note:

The then function takes an optional progressFunction argument. However,
the custom code SDK doesn’t use this argument, and you can omit it from
the call.

Here’s an example of how to call a custom code SDK method to access a custom,
platform, or connector API and use then to handle the promise that it returns. In this
example:

• In this example, the <promiseFunction> is
req.oracleMobile.storage.getCollections. This is a function from the storage
component of the custom code SDK, which either resolves with a successful
promise or rejects with an error promise.

• If getCollections completes successfully, then it passes the successful promise
to the first argument for then, which is function(result).

• If getCollections results in an error, then it passes the error promise to the
second argument, which is function(error).

// Get metadata about the backend's collections.
service.get('/mobile/custom/incidentreport/collections',
 function (req, res) {
 req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

A promise and its result can be assigned to a variable. This means that the result can
live longer than the function call alone, allowing you to chain multiple success and
failure functions calls against the result. For example, you can write code like this:

var collections = req.oracleMobile.storage.getCollections({sync: true});

collections.then(successFunction1, errorFunction1);
...
collections.then(successFunction2, errorFunction2);

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-6

Note:

Because the custom code SDK uses the Bluebird promises library, we
recommend that you use this library to process these promises. If you only
use the then() function from the promises library, then you don’t need to
include Bluebird in your package.
There are several promises libraries that you can choose from for your
custom code implementation, but the extent to which they will work with the
custom code SDK promises is not known. To learn more about Bluebird
promises, go to https://github.com/petkaantonov/bluebird.

The next sections show some common examples of ways in which you can handle
promises.

Chaining Calls
When you need to invoke a series of calls in a synchronous manner, waiting for one
operation to complete before starting the next one, then you can take advantage of the
fact that most custom code SDK methods return a promise. A promise handles some
of the complexity of making synchronous calls in an asynchronous environment like
Node, and provides a simple way to handle both success and failure cases through
callback methods.

As we discussed in API Response Patterns, the simplest way to extract the result of a
promise is to use the then function. In your custom code, you can provide two
arguments to the then function.

• A function to invoke on success, which takes a single argument – the success
promise.

• A function to invoke on error, which takes a single argument – the error promise.

Here’s an example of using the then function to handle the result of a promise
function. As you can see, it has two arguments:

• function(result), which sends the getById result.

• function(error), which sends the error message.

service.get('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.getById('attachments', req.params.id, {sync:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-7

https://github.com/petkaantonov/bluebird

When you need to call more than one API operation from a route definition, you can
use then to chain the calls, so that one call completes successfully before the next one
is called. In this example, the route definition:

1. Posts an incident to the database and returns the result.

2. If the post completes successfully, gets the user info.

3. If the user info is retrieved successfully, posts an analytics event.

Notice that none of the then functions take a second argument (the error function). If
an error (rejected) promise is passed to a then function that doesn’t have a second
argument, then the code skips to the first then function with a second argument. In this
example, because there aren’t any, all errors trickle to the catch function.

service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {
 res.status(successResult.statusCode).send(successResult.result);
 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.status(errorResult.statusCode).send(errorResult.error);
 throw errorResult;
 }
);
 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-8

 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session
 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(
 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});
 };
});

Joining Calls
Promise.join lets you make several asynchronous calls and then use the results after
all calls are complete. The promise that the join returns is an array of the results.

For example, the following code makes three calls to the incidentreport custom API
to get information for the result body. After all calls complete successfully, the then
function’s success handler extracts the necessary information to compile the result,
and then sends it.

Note that the join functions aren’t necessarily called in the order in which they occur
in the code. The only guarantee is that all the join functions successfully complete
before a success promise is returned.

/* Promise.join example
 *
 * Promise.join takes multiple promises as arguments.
 * If all promises succeed, then it returns a promise

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-9

 * that holds an array of the results of the promises.
 */
var Promise = require("bluebird");
module.exports = function(service) {
 ...
 service.get('/mobile/custom/incidentreport/
join/:custId/:incidentId/:techId', function (req, res) {
 // Three functions that return promises.
 var customer = req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'});
 var incident = req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'});
 var technician = req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'});

 Promise.join(customer, incident, technician).then(
 function (joinResult) {
 // Anonymous handler that's called if all 3 promises succeeded.
 // Harvest a piece of data from each promise result.
 var report = {
 customerContact: joinResult[0].result.email,
 description: joinResult[1].result.title,
 technicianContact: joinResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 // Anonymous handler to handle errors
 console.info(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })
 ...
}

Waiting for a Dynamic Set of Calls to Complete
Use Promise.all when you have a dynamic set of calls and you must wait until all
calls complete before you take some action. If any of the promises in the array don’t
succeed, then the returned promise is rejected with the reason for rejection.

/* Promise.all example
 *
 * Promise.all takes an array of promises as an argument (promiseArray).
 * If all promises succeed, then it returns a promise that holds
 * an array of the results from the promiseArray's promises.
 */

var Promise = require("bluebird");
module.exports = function(service) {
...
 service.get('/mobile/custom/incidentreport/
all/:custId/:incidentId/:techId', function (req, res) {

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-10

 // Put the functions that return promises in the array
 promiseArray = [];
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'}));
 // Call Promise.all with the array
 Promise.all(promiseArray).then(
 function (allResult) {
 var report = {
 customerContact: allResult[0].result.email,
 description: allResult[1].result.title,
 technicianContact: allResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })
 ...
}

Creating a Function that Returns a Promise
Here are some examples of creating and using functions that return a promise. The
first example shows how to return a resolved promise and a rejected promise.

// Simple function that returns a resolved promise.
// Note the object passed to Promise.resolve is the
// object the promise is resolved with.
function resolve() {
 return Promise.resolve({status: "resolved"});
}

// Simple function that returns a rejected promise.
// The object passed to Promise.reject describes the error.
function reject() {
 return Promise.reject({error: "rejected"});
}

In this example, the compareEtags function takes a successful (resolved) promise as
its argument. It rejects the promise if the request had an ETag header and the ETag
for the result doesn’t match the ETag passed in the header.

var Promise = require("bluebird");
var etag = require('etag');
module.exports = function(service) {
...

Chapter 20
How to Send Requests to Platform, Connector, and Custom APIs

20-11

 service.get('/mobile/custom/incidentreport/incidents/:id/ifmatch',
function (req, res) {
 function compareEtags(result) {
 thisEtag = result.headers.etag;
 if (req.header('if-match') &&
 thisEtag != req.header('if-match')) {
 return Promise.reject({
 statusCode: 412,
 error: "Precondition Failed" +". If-Match ETag: " +
req.header('if-match') + ", this Etag: " + thisEtag
 })
 } else {
 // result is already a resolved promise
 return result;
 }
 }
 // The custom code SDK get method returns a promise,
 // which is then passed to the custom function compareEtags.
 // On success, compareEtags passes the result from the get.
 // If there's an ETag header, then the function rejects the
 // promise if the result's ETag doesn't match.
 //
 // All rejections are caught by the last then.
 req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.id, {outType: 'json'})
 .then(compareEtags)
 .then(
 function (result) {
 // res.setHeader('Etag', etag(JSON.stringify(result.result)));
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });
...
}

Accessing Mobile Backend Information from Custom Code
The MBE API lets you inquire about the mobile backend that the request is coming
from.

This API has one method.

Chapter 20
Accessing Mobile Backend Information from Custom Code

20-12

mbe.getMBE()
This method retrieves information about the backend that made the request. Note that
this method is synchronous and doesn't return a promise.

Arguments

This method doesn’t have any required arguments and doesn’t take the options and
httpOptions arguments.

Response

The response body is a JSON object that contains the name, version, and id
properties.

Examples

Here’s an example of the JSON object that the method returns:

{
 name: 'myMBE',
 version: '1.0',
 id: 'ab72abb7-b337-4673-8584-ca5163df5d24'
}

Calling Platform APIs from Custom Code
You can use the req.oracleMobile.<service> methods to call a platform API, where
<service> identifies the platform that you want to call.

These subsections provide the details for each platform:

• Accessing the Analytics Collector API from Custom Code

• Accessing the App Policies API from Custom Code

• Accessing the Database Access API from Custom Code

• Accessing the Location API from Custom Code

• Accessing the Location Management API from Custom Code

• Accessing the Mobile Devices API from Custom Code

• Accessing the My Profile API from Custom Code

• Accessing the Notifications API from Custom Code

• Accessing the Storage API from Custom Code

Further details, such as the HTTP response status codes and the schema for the
request and response bodies, can be found in Oracle Mobile Cloud Enterprise REST
API Reference.

Chapter 20
Calling Platform APIs from Custom Code

20-13

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Accessing the Analytics Collector API from Custom Code
The Analytics API lets you log runtime events, such as a user submitting an inquiry or
placing an item into a shopping cart, so that you can observe performance and usage
patterns.

This API has one method.

analytics.postEvent(events, options, httpOptions)
This method accepts a batch of events and validates them. If they are valid, they are
sent to the analytics app that’s associated with the backend. If any event in a batch
isn’t valid, then no events are sent to the analytics app.

To learn how to associate an analytics app with a backend, see Associating an
Analytics App with a Backend.

When adding events to the batch, keep the following in mind:

• There are two types of events — custom and system. Use the custom events to
record the events that you want to analyze. Use the system events to group your
custom events. Note that if you don't specify the event type, then the event
defaults to custom.

• Events are JSON objects. All events must have a name and a timestamp. The
component and properties are optional.

• With custom events, you can add your own custom properties to properties. For
example:

{
 name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: 'Lynn White'}
}

• You can group events by session. For example, a session can mark the beginning
and ending of a function within a mobile app or when an app starts and stops. You
start a session by adding a system event with the name sessionStart. You use a
sessionEnd event to end the session.

You use a user-defined session ID to associate events with a session. You have
two ways to specify a session ID for an event. You can add a sessionId property
to an event, and you can set the options.sessionId property. Here’s examples of
starting and stopping a session. In these examples, the session ID is set explicitly,
but you can also set it using options.sessionId.

{
 name: 'sessionStart',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}
{

Chapter 20
Calling Platform APIs from Custom Code

20-14

 name: 'sessionEnd',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}

• If you want to provide context to a session, then precede the sessionStart event
with a system event named context. You can also intersperse context events with
custom events to indicate changes in context, such as a location change. Here’s
an example of a context event:

{
 name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {
 userName: 'joe',
 model: 'iPhone5,1',
 longitude: '-122.11663',
 latitude: '37.35687',
 manufacturer: 'Apple',
 osName: 'iPhone OS',
 osVersion: '7.1',
 osBuild: '13E28',
 carrier: 'ATT'
}

Arguments

events: Required. This is an array of event objects. To learn about the event
properties, see the POST /mobile/platform/analytics/events operation in Oracle
Mobile Cloud Enterprise REST API Reference.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

applicationKey Deprecated. String None

deviceId Identifies the device.
This is the ID that is
returned when you
register the device
with the Mobile
Devices API.

String None

sessionId Specifies a default
session ID. Use a
session ID to group all
events by a user-
defined session.
When present, the
sessionID value in
the event object
overrides this value.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-15

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Response

The response body is a JSON object with a message attribute. For example,
{"message":"1 events accepted for processing."}

Example

Here’s an example that records events when incidents are created. After it
successfully saves an incident in the database, it gets the user name for the context
event, and then it records the event. This example uses the promises then() function
to insure that each API call completes successfully before invoking the next, as
described in Chaining Calls.

In this example, the request body looks like this:

{
 title:'Water heater is leaking',
 technician:'jwhite',
 customer:'Lynn Smith'
}

This code expects the request to include the session ID in the Oracle-Mobile-
Analytics-Session-ID header. It sets the options.sessionId property to this value.

service.post('/mobile/custom/incidentreport/incidents/log',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {
 res.status(successResult.statusCode).send(successResult.result);
 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.status(errorResult.statusCode).send(errorResult.error);
 throw errorResult;
 }
);

Chapter 20
Calling Platform APIs from Custom Code

20-16

 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();
 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session
 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(
 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});
 };
});

Accessing the App Policies API from Custom Code
The App Policies API lets you retrieve the app policies that have been set for the
current mobile backend. For example, a mobile backend might have app policies for

Chapter 20
Calling Platform APIs from Custom Code

20-17

the string that appears in an app’s welcome message, the background color, and a
timeout value.

This API has one method.

appConfig.getProperties(httpOptions)
This method retrieves the app policies that have been set for a mobile backend. These
are the policies that you create from the mobile backend’s App Policies page.

See App Policies.

Arguments

This method doesn’t have any required arguments and doesn’t take the options
argument.

Response

The response body is a JSON object where the name/value pairs represent the app
policies.

Examples

Here’s an example of calling this method:

service.get(
 '/mobile/custom/incidentreport/appPolicies',
 function (req, res) {
 req.oracleMobile.appConfig.getProperties().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "fifBgColor": "blue",
 "fifWelcomeMessage": "Hello",
 "fifShowArg": true
}

Accessing the Database Access API from Custom Code
You can use the Database Access API to retrieve, add, update, and delete rows in a
database table, as well as execute SQL statements.

This API has the following methods:

• database.delete(table, keys, options, httpOptions): Deletes a row.

Chapter 20
Calling Platform APIs from Custom Code

20-18

• database.get(table, keys, options, httpOptions): Retrieves a row from a table.

• database.getAll(table, options, httpOptions): Retrieves specified fields from all
rows in a table.

• database.insert(table, object, options, httpOptions): Adds rows to a table.

• database.merge(table, object, options, httpOptions): Adds or updates rows in a
table.

• database.sql(sql, args, options, httpOptions): Executes an SQL statement.

database.delete(table, keys, options, httpOptions)
This method lets you delete a row from the table.

Arguments

table: Required. String. The name of the database table to delete the row from.

keys: Required. String. If the table’s row key is id, then provide the id value.
Otherwise, provide the primary key values in the order in which the primary keys were
specified when the first row was added to the table (which resulted in the creation of
the table). Use an array for a composite key. For example, if the options.primaryKeys
property was set to incidentReport,technician when the table was created, then the
values must be listed in that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

Response

The response body is a JSON object. If the table’s row key is id, then the response is
an array that contains the deleted row’s id value. Otherwise, the response is the
rowCount indicating if 0 or 1 row was deleted.

Examples

Here’s an example of calling the method to delete a record with the id specified in the
request URI:

service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 20
Calling Platform APIs from Custom Code

20-19

 }
);
 });

Here’s an example of the response for this request.

{"items":[{"id":42}]}

Note that if you have defined primary keys for the table (instead of using the system-
defined id column for the row key), then the response shows the rowCount of the
deleted rows. For example:

{
 "rowCount": 1
}

database.get(table, keys, options, httpOptions)
This method lets you retrieve a row from a table.

Arguments

table: Required. String. The name of the database table to retrieve the row from.

keys: Required. String. If the table’s row key is id, then provide the id value.
Otherwise, provide the primary key values in the order in which the primary keys were
specified when the first row was added to the table (which resulted in the creation of
the table). Use an array for a composite key. For example, if the options.primaryKeys
property was set to incidentReport,technician when the table was created, then the
values must be listed in that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

expectSingleResul
t

Set to true to return
an object instead of an
array and to return
404 (not found) if the
row for the specified
keys doesn’t exist.

Boolean false

Response

By default, the response body is a JSON object containing an items array with just
one item, which contains the column names and corresponding values. To return a
single object, include options.expectSingleResult in the request and set it to true.

Chapter 20
Calling Platform APIs from Custom Code

20-20

Examples

Here’s an example of calling the method to retrieve the row with the id specified in the
request URI. Because the expectSingleResult option is omitted, the response body
will contain an array, and the response status will always be 200.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "id":2,
 "createdBy":"jdoe",
 "createdOn":"2018-01-31T20:14:24.4948+00:00",
 "modifiedBy":"jdoe",
 "modifiedOn":"2018-01-31T20:14:24.4948+00:00",
 "title":"Water heater is leaking",
 "technician":"jwhite",
 "status":"Open",
 "customer":"Lynn Smith",
 "incidentReport":"7890"
 }
]
}

Here’s an example of including the expectSingleResult option with a value of true.
The response body will contain an object, and the response status will be 404 if the
row doesn’t exist.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id, {expectSingleResult:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }

Chapter 20
Calling Platform APIs from Custom Code

20-21

);
 });

Here’s an example of the response for this request.

{
 "id": 2,
 "createdBy": "jdoe",
 "createdOn": "2018-01-31T20:14:24.4948+00:00",
 "modifiedBy": "jdoe",
 "modifiedOn": "2018-01-31T20:14:24.4948+00:00",
 "title": "Water heater is leaking",
 "technician": "jwhite",
 "status": "Open",
 "customer": "Lynn Smith",
 "incidentReport": "7890"
}

database.getAll(table, options, httpOptions)
This method lets you retrieve the specified fields from all the rows in a table.

Note:

The Database_MaxRows environment policy restricts the number of rows that
the service returns for this call. The default value is 1000. Ensure that this
value is sufficient for your needs. If your request doesn’t return all the rows
that you expected, ask your mobile cloud administrator to increase the
Database_MaxRows value.

Arguments

table: Required. String. The name of the tables to retrieve the rows from.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
fields values. This
option can be useful
for multibyte values.

Boolean false

fields A comma separated
list of the fields to
return. For example,
customer, status.

String If you omit this
argument, then the
method returns all
fields.

Chapter 20
Calling Platform APIs from Custom Code

20-22

Response

The response body is a JSON object containing an items array, where each item
represents a row, and contains the column names and corresponding values.

Examples

Here’s an example of calling the method to retrieve the customer and status fields
from the FIF_Incidents table:

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },
 {
 "status":"Completed",
 "customer":"John Doe"
 }
]
}

The /database/objects/{table} resource supports a query parameter to filter by
column values which rows to retrieve. This example uses the httpOptions argument
to pass a request query string that filters the results for a matching technician.

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {}, httpOptions).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 20
Calling Platform APIs from Custom Code

20-23

 }
);
 });

database.insert(table, object, options, httpOptions)
This method lets you add one or more rows to a table.

When the Database_CreateTablesPolicy environment policy is allow, then the
following actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy
environment policy setting.

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row,
then you can use this format:

{
 status : 'Open',
 code : '3'
}

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:3},
 {
 status:'Completed',
 code:9}
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

Chapter 20
Calling Platform APIs from Custom Code

20-24

Property Description Type Default

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table
from amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,created
By.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns,
do not include this
property. Note that the
id column is added to
the table automatically
if both the
primaryKeys and
extraFields
properties are absent.

Chapter 20
Calling Platform APIs from Custom Code

20-25

Property Description Type Default

primaryKeys For an implicit table
creation, provide a
URL-encoded,
comma-separated list
specifying which
attributes of the JSON
object in the request
body constitute the
table's primary key.
For example,
lastName,firstNam
e.

N

o

t

e

:

B
e
c
a
u
s
e
y
o
u
c
a
n
’t
r
e
t
r
i
e
v
e
t
h
e
p
r
i
m
a
r
y

String If you do not specify a
primary key, then the
service adds an id
column to the table,
and generates the
column's values
automatically, as long
as you don’t also
include extraFields
without id in the list.

Chapter 20
Calling Platform APIs from Custom Code

20-26

Property Description Type Default

k
e
y
o
r
d
e
r
f
r
o
m
t
h
e
t
a
b
l
e
m
e
t
a
d
a
t
a
,
m
a
k
e
s
u
r
e
t
h
a
t
y
o
u
d
o
c
u
m
e
n
t
t
h
e

Chapter 20
Calling Platform APIs from Custom Code

20-27

Property Description Type Default

o
r
d
e
r
o
f
t
h
e
p
r
i
m
a
r
y
f
i
e
l
d
s
.

Response

The response body is a JSON object. If the table is indexed on id, then the response
is an array of the new rows’ id values. Otherwise, the response is the rowCount of the
records added.

Examples

Here’s an example of calling the method to add two rows. If the table doesn’t exist,
then the service creates it. This table doesn’t have extra fields, and its primary key is
code:

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);

Chapter 20
Calling Platform APIs from Custom Code

20-28

 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

database.merge(table, object, options, httpOptions)
This method lets you add or update rows in a table. Whether the operation performs
an add or update depends on whether the table uses id or primary key fields to
uniquely identify rows.

• id field: If you include an id property in the table data in the object argument,
then the operation performs an update. Otherwise it adds the row.

• Primary key fields: If the table uses primary key fields, then the operation performs
an update if a row exists with matching primary key values. Otherwise, it adds the
row.

Note that if you submit a batch of rows, all the rows must have the same set of
columns.

When the Database_CreateTablesPolicy environment policy is allow, then the
following actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy
environment policy setting.

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row,
then you can use this format:

{
 status : 'Open',

Chapter 20
Calling Platform APIs from Custom Code

20-29

 code : '3'
}

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:'3'},
 {
 status:'Completed',
 code:'9'}
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table
from amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,created
By.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns,
do not include this
property. Note that the
id column is added to
the table automatically
if both the
primaryKeys and
extraFields
properties are absent.

Chapter 20
Calling Platform APIs from Custom Code

20-30

Property Description Type Default

primaryKeys For an implicit table
creation, provide a
URL-encoded,
comma-separated list
specifying which
attributes of the JSON
object in the request
body constitute the
table's primary key.
For example,
lastName,firstNam
e.

N

o

t

e

:

B
e
c
a
u
s
e
y
o
u
c
a
n
’t
r
e
t
r
i
e
v
e
t
h
e
p
r
i
m
a
r
y

String If you do not specify a
primary key, then the
operation adds an id
column to the table,
and generates the
column's values
automatically, as long
as you don’t also
include extraFields
without id in the list.

Chapter 20
Calling Platform APIs from Custom Code

20-31

Property Description Type Default

k
e
y
o
r
d
e
r
f
r
o
m
t
h
e
t
a
b
l
e
m
e
t
a
d
a
t
a
,
m
a
k
e
s
u
r
e
t
h
a
t
y
o
u
d
o
c
u
m
e
n
t
t
h
e

Chapter 20
Calling Platform APIs from Custom Code

20-32

Property Description Type Default

o
r
d
e
r
o
f
t
h
e
p
r
i
m
a
r
y
f
i
e
l
d
s
.

Response

The response body is a JSON object. If the table is indexed on id, then the response
is an array of the new rows’ id values. Otherwise, the response is the rowCount.

Examples

Here’s an example of calling the method to add or update two rows. If the table doesn’t
exist, then the operation creates it. This table doesn’t have extra fields, and its primary
key is code:

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.merge(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 20
Calling Platform APIs from Custom Code

20-33

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

database.sql(sql, args, options, httpOptions)
This method lets you execute an SQL statement, such as INSERT, UPDATE,
MERGE, DELETE, or SELECT. You can use this method for complex actions, such as
when you need to join tables, use aggregate functions like COUNT() and SUM(), or
use a WHERE clause to delete a set of rows.

Unlike the other database methods, this operation doesn’t alter your schema
automatically. For example:

• If the table doesn't exist, then it isn’t created.

• If a column doesn’t exist, then the table isn’t altered to include it.

• If the value is larger than the column size, then the column isn’t resized.

Note:

The Database_MaxRows environment policy restricts the number of rows that
the service returns for this call. The default value is 1000. Ensure that this
value is sufficient for your needs. If your request doesn’t return all the rows
that you expected, ask your mobile cloud administrator to increase the
Database_MaxRows value.

Arguments

sql: Required. String. The SQL statement to execute. Examples:

INSERT into Statuses (status, code) values (:status, :code)

SELECT SUM("totalGross") "salesByGenre", "genre" FROM "Movies" GROUP BY
"genre"

SELECT COUNT("incidentReport") "reportCount" FROM "FIF_Incidents" WHERE
"status" = :status

Chapter 20
Calling Platform APIs from Custom Code

20-34

args: Optional. If your SQL statement takes parameters, then pass them in this JSON
object.

To execute the SQL statement once with a single set of parameters, use this format
for the args argument:

{
 status : 'Open',
 code : '3'
}

To execute the SQL statement multiple times, use this format for the args argument:

[
 {
 status:'Open',
 code:3},
 {
 status:'Completed',
 code:9
 }
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the SQL
statement. This option
can be useful for
multibyte values.

Boolean false

Response

The response body is a JSON object. The structure of the JSON object depends on
the SQL verb and whether the table has a primary key. For example, here’s a
response body for a SELECT statement:

{"items":[{ "code" : 3}] }

Here’s an example of a response body for an INSERT, DELETE, UPDATE, OR
MERGE where the table has a primary key:

{ "rowCount" : 2 }

Here’s an example of a response body for an INSERT, DELETE, UPDATE, OR
MERGE where the row key is the id column:

{"items":[{"id":42},{"id":43}]}

Chapter 20
Calling Platform APIs from Custom Code

20-35

Examples

Here’s an example of calling the method to insert rows:

service.post('/mobile/custom/incidentreport/status', function (req, res) {
 req.oracleMobile.database.sql(
 'insert into Statuses (status, code) values (:status, :code)',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
]).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

Accessing the Location API from Custom Code
The Location API lets you query about location devices, their assets, and the places
where they’re located.

This API has the following methods:

• location.assets.getAsset(id, httpOptions): Retrieves the asset that matches the ID
or name.

• location.assets.query(queryObject, httpOptions): Retrieves the assets that match
the query parameters that you specify in the request body.

• location.devices.getDevice(id, httpOptions): Retrieves the device that matches the
ID or name.

• location.devices.query(queryObject, httpOptions): Retrieves the devices that
match the query parameters that you specify in the request body.

Chapter 20
Calling Platform APIs from Custom Code

20-36

• location.places.getPlace(id, httpOptions): Retrieves the place that matches the ID
or name.

• location.places.query(queryObject, httpOptions): Retrieves the places that match
the query parameters that you specify in the request body.

You can learn about location devices, assets, and places in Location.

See Accessing the Location Management API from Custom Code for the methods to
add, delete, and update assets, devices, and places.

location.assets.getAsset(id, httpOptions)
Call this method to retrieve the asset that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the asset to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the asset with the matching name.

Response

The response body is a JSON object that follows the Asset schema that is shown for
the GET /mobile/platform/location/assets and GET /mobile/platform/location/
assets/{id} operations in Oracle Mobile Cloud Enterprise REST API Reference

Examples

Here’s an example of calling this method to retrieve an asset by ID.

service.get(
 '/mobile/custom/incidentreport/assets/:id',
 function (req, res) {
 req.oracleMobile.location.assets.getAsset(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve an asset by name.

service.get(
 '/mobile/custom/incidentreport/assets/:name',
 function (req, res) {
 req.oracleMobile.location.assets.getAsset({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 20
Calling Platform APIs from Custom Code

20-37

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id":111,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "name":"RC_WH_01_F01_B023",
 "label":"forklift",
 "description":"Forklift in the FixItFast Warehouse in Redwood City",
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 {
 "id":345,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "modifiedBy":"tsmith",
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon in FixitFast Warehouse in Redwood City",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/345"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/345"
 }

Chapter 20
Calling Platform APIs from Custom Code

20-38

]
 }
],
 "attributes":{
 "EquipmentManufacturer":"Abc Company",
 "beaconID":"AE2924505-66045"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/111"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/111"
 }
]
}

location.assets.query(queryObject, httpOptions)
Call this method to retrieve the assets that match the query parameters that you
specify in queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/assets/
query operation in Oracle Mobile Cloud Enterprise REST API Reference. If you don’t
have any query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Asset schema that is shown for the POST /mobile/platform/location/assets/query
operation in Oracle Mobile Cloud Enterprise REST API Reference. The result also
contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all assets that have the string 1225
in the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/assets,
 function (req, res) {
 req.oracleMobile.location.assets.query({"search":"1225"}).then(
 function (result) {

Chapter 20
Calling Platform APIs from Custom Code

20-39

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[
 {
 "id":3401,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
3401"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
3401"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":244},
 "id":333,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",

Chapter 20
Calling Platform APIs from Custom Code

20-40

 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/333"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/333"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"},
 {
 "devices":[
 {
 "id":648,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
648"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/648"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":360},
 "id":888,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "links":[
 {

Chapter 20
Calling Platform APIs from Custom Code

20-41

 "rel":"canonical",
 "href":"/mobile/platform/location/assets/888"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/888"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"}
],
 "totalResults":2,
 "offset":0,
 "count":2,
 "hasMore":false
}

location.devices.getDevice(id, httpOptions)
Call this method to retrieve the device that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the device to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the device with the matching name.

Response

The response body is a JSON object that follows the Location device schema that is
shown for the GET /mobile/platform/location/devices and GET /mobile/
platform/location/devices/{id} operations in Oracle Mobile Cloud Enterprise
REST API Reference.

Examples

Here’s an example of calling this method to retrieve a device by ID.

service.get(
 '/mobile/custom/incidentreport/devices/:id',
 function (req, res) {
 req.oracleMobile.location.devices.getDevice(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 20
Calling Platform APIs from Custom Code

20-42

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Here’s an example of calling this method to retrieve a device by name.

service.get(
 '/mobile/custom/incidentreport/devices/:name',
 function (req, res) {

req.oracleMobile.location.devices.getDevice({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id": 12345,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-08T07:22:44.654Z",
 "modifiedBy": "tsmith",
 "name": "RC_WH_01_F01_B001",
 "description": "Beacon on 1st Floor in FixitFast Warehouse in Redwood
City",
 "place":
 {
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",

Chapter 20
Calling Platform APIs from Custom Code

20-43

 "href": "/mobile/platform/location/places/111"
 }
]
 },
 "beacon": {
 "iBeacon" : {
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major": "1.0",
 "minor": "1.1"
 }
 },
 "attributes" : {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D"
 "status": "Active",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/12345"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/12345"
 }
]
}

location.devices.query(queryObject, httpOptions)
Call this method to retrieve the devices that match the query parameters that you
specify in queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/devices/
query operation in Oracle Mobile Cloud Enterprise REST API Reference. If you don’t
have any query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Location device schema that is shown for the POST /mobile/platform/location/
devices/query operation in Oracle Mobile Cloud Enterprise REST API Reference The
result also contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Chapter 20
Calling Platform APIs from Custom Code

20-44

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Examples

Here’s an example of calling this method. It returns the devices that have the string
warehouse in either the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/devices,
 function (req, res) {
 req.oracleMobile.location.devices.query({{ "search":
"Warehouse"}}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor NW in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor SE in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor SW in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor NW in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor NW in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"}

Chapter 20
Calling Platform APIs from Custom Code

20-45

],
 "totalResults":5,
 "offset":0,
 "count":5,
 "hasMore":false
}

location.places.getPlace(id, httpOptions)
Call this method to retrieve the place that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the place to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the place with the matching name.

Response

The response body is a JSON object that follows the Place schema that is shown for
the GET /mobile/platform/location/places and GET /mobile/platform/location/
places/{id} operations in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method to retrieve a place by ID.

service.get(
 '/mobile/custom/incidentreport/places/:id',
 function (req, res) {
 req.oracleMobile.location.places.getPlace(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve a place by name.

service.get(
 '/mobile/custom/incidentreport/places/:name',
 function (req, res) {
 req.oracleMobile.location.places.getPlace({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 20
Calling Platform APIs from Custom Code

20-46

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 }
);
 });

Here’s an example of the response body:

{
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/111"
 }
]
}

location.places.query(queryObject, httpOptions)
Call this method to retrieve the places and, optionally, the associated devices that
match the query properties that you specify in the queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/places/
query operation in Oracle Mobile Cloud Enterprise REST API Reference. If you don’t
have any query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Place schema that is shown for the POST /mobile/platform/location/places/query

Chapter 20
Calling Platform APIs from Custom Code

20-47

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

operation in Oracle Mobile Cloud Enterprise REST API Reference. The result also
contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all places that have the string
warehouse in the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/places',
 function (req, res) {
 req.oracleMobile.location.places.query({"search":"warehouse"}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[
 {
 "id":12345,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
12345"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
12345"}

Chapter 20
Calling Platform APIs from Custom Code

20-48

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"FixItFast Warehouse",
 "id":112,
 "createdBy":"jdoe",
 "name":"FixItFast Redwood City Warehouse",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37}},
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/places/112"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/112"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City"},
 {
 "devices":[
 {
 "id":111,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
111"},
 {
 "rel":"self",

Chapter 20
Calling Platform APIs from Custom Code

20-49

 "href":"/mobile/platform/location/devices/111"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"},
 {
 "id":222,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B996",
 "createdOn":"2015-08-08T18:37:59.424Z",
 "modifiedOn":"2015-08-12T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-
AFF9-25552345908234DD0",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
222"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/222"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 2nd Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"FixItFast Warehouse",
 "id":325,
 "createdBy":"jdoe",
 "name":"FixItFast Palo Alto Warehouse",
 "createdOn":"2015-08-06T19:27:59.424Z",
 "modifiedOn":"2015-08-06T19:27:59.424Z",
 "address":{
 "gpsCircle":{
 "latitude":123,
 "longitude":37,
 "radius":300}},
 "modifiedBy":"jdoe",
 "links":[
 {

Chapter 20
Calling Platform APIs from Custom Code

20-50

 "rel":"canonical",
 "href":"/mobile/platform/location/places/325"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/325"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,
 "parentPlace":42,
 "description":"FixItFast Warehouse in Palo Alto"}
],
 "totalResults":2,
 "offset":0,
 "count":2,
 "hasMore":false
}

Accessing the Location Management API from Custom Code
The Location Management API lets you create, update, and delete location devices,
places, and assets.

You can learn about location devices, assets, and places in Location.

This API has the following methods:

• location.assets.register(assets, context, httpOptions): Creates one or more assets.

• location.assets.remove(id, context, httpOptions): Deletes the asset that matches
the ID.

• location.assets.update(id, asset, context, httpOptions): Updates a single asset.

• location.devices.register(devices, context, httpOptions): Creates one or more
location devices.

• location.devices.remove(id, context, httpOptions): Deletes the location device that
matches the ID.

• location.devices.update(id, device, context, httpOptions): Updates a single location
device.

• location.places.register(places, context, httpOptions): Creates one or more places.

• location.places.remove(id, context, httpOptions): Deletes the place that matches
the ID.

• location.places.update(id, place, context, httpOptions): Updates a single place.

For methods to query and retrieve information about assets, devices, and places, see
Accessing the Location API from Custom Code.

Chapter 20
Calling Platform APIs from Custom Code

20-51

location.assets.register(assets, context, httpOptions)
This method lets you create one or more assets.

Arguments

assets: Required. JSON object that follows the request root schema (Assets Array)
that is shown for the POST /mobile/system/locationManagement/assets operation in
Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "items":[
 {
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 1111
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"
 }
 }
]
}

context: This argument is ignored.

Response

The response body, which shows the stored assets, is a JSON object that follows the
response root schema (Assets Array) that is shown for the POST /mobile/system/
locationManagement/assets operation in Oracle Mobile Cloud Enterprise REST API
Reference.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/assets', function (req, res) {
 req.oracleMobile.location.assets.register(req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }

Chapter 20
Calling Platform APIs from Custom Code

20-52

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 12,
 "createdOn": "2016-11-05T02:33:36.154Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-05T02:33:36.154Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": null,
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/12"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/12"
 }
]
 }
]
}

location.assets.remove(id, context, httpOptions)
Use this method to delete assets.

Arguments

id: Required. The ID of the asset. This ID must be an existing asset ID.

context: This argument is ignored.

Examples

service.delete('/mobile/custom/incidentreport/assets/:id', function (req,
res) {
 req.oracleMobile.location.assets.remove(
 req.params.id
).then(
 function (result) {
 res.type('application/json');

Chapter 20
Calling Platform APIs from Custom Code

20-53

 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

location.assets.update(id, asset, context, httpOptions)
This method lets you update an asset.

Arguments

id: Required. The ID of the asset. This ID must be an existing asset ID.

asset: Required. JSON object that follows the request root schema (Asset) that is
shown for the PUT /mobile/system/locationManagement/assets/{id} operation in
Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 11
]
}

context: This argument is ignored.

Response

The response body, which shows the updated asset, is a JSON object that follows the
response root schema (Asset) that is shown for the PUT /mobile/system/
locationManagement/assets/{id} operation in Oracle Mobile Cloud Enterprise REST
API Reference.

Examples

Here’s an example of calling this method.

service.put('/mobile/custom/incidentreport/assets/:id', function (req,
res) {
 req.oracleMobile.location.assets.update(
 req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {

Chapter 20
Calling Platform APIs from Custom Code

20-54

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {
 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T18:01:18.531Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"

Chapter 20
Calling Platform APIs from Custom Code

20-55

 }
]
 }
],
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
}

location.devices.register(devices, context, httpOptions)
This method lets you create one or more devices.

Arguments

devices: Required. JSON object that follows the request root schema (Devices Array)
that is shown for the POST /mobile/system/locationManagement/devices operation
in Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "items":[
 {
 "name":"RC_WH_01_F01_B006",
 "description":"Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "asset":333,
 "beacon":{
 "altBeacon":{
 "id1":"B9407F30-F5F8-466E",
 "id2":"AFF9",
 "id3":"25556B57FE6D"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 }
 }
]
}

Chapter 20
Calling Platform APIs from Custom Code

20-56

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

context: This argument is ignored.

Response

The response body, which shows the stored devices, is a JSON object that follows the
response root schema (Devices Array) that is shown for the POST /mobile/system/
locationManagement/devices operation in Oracle Mobile Cloud Enterprise REST API
Reference.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/devices, function (req, res) {
 req.oracleMobile.location.devices.register(
 req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 10,
 "createdOn": "2016-11-08T15:54:51.603Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T15:54:51.603Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B006",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status": "Active",
 "visibility": "Public"
 },
 "links": [
 {

Chapter 20
Calling Platform APIs from Custom Code

20-57

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "rel": "canonical",
 "href": "/mobile/platform/location/devices/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/10"
 }
]
 }
]
}

location.devices.remove(id, context, httpOptions)
Use this method to delete devices.

Arguments

id: Required. The ID of the device. This ID must be an existing device ID.

context: This argument is ignored.

Examples

service.delete('/mobile/custom/incidentreport/devices/:id', function (req,
res) {
 req.oracleMobile.location.devices.remove(
 req.params.id
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

location.devices.update(id, device, context, httpOptions)
This method lets you update a device.

Arguments

id: Required. The ID of the device. This ID must be an existing device ID.

device: Required. JSON object that follows the request root schema (Device) that is
shown for the PUT /mobile/system/locationManagement/device/{id} operation in
Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "attributes":{

Chapter 20
Calling Platform APIs from Custom Code

20-58

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "status":"Inactive",
 "visibility":"Private"
 }
}

context: This argument is ignored.

Response

The response body, which shows the updated device, is a JSON object that follows
the response root schema (Device) that is shown for the PUT /mobile/system/
locationManagement/devices/{id} operation in Oracle Mobile Cloud Enterprise
REST API Reference.

Examples

Here’s an example of using this method.

service.put('/mobile/custom/incidentreport/device/:id', function (req,
res) {
 req.oracleMobile.location.device.update(req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in Redwood
City",
 "asset": {
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {

Chapter 20
Calling Platform APIs from Custom Code

20-59

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
 },
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Private"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
}

Chapter 20
Calling Platform APIs from Custom Code

20-60

location.places.register(places, context, httpOptions)
This method lets you create one or more places.

Arguments

places: Required. JSON object that follows the request root schema (Places Array)
that is shown for the POST /mobile/system/locationManagement/places operation in
Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "items":[
 {
 "name":"FixItFast Redwood City Warehouse",
 "label":"FixItFast Warehouse",
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City",
 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37
 }
 },
 "devices":[
 12345
],
 "attributes":{
 "hours":"9am-6pm"
 }
 }
]
}

context: This argument is ignored.

Response

The response body, which shows the stored places, is a JSON object that follows the
response root schema (Places Array) that is shown for the POST /mobile/system/
locationManagement/places operation in Oracle Mobile Cloud Enterprise REST API
Reference.

Examples

Here’s an example of calling this method.

service.post('/mobile/custom/incidentreport/places', function (req, res) {
 req.oracleMobile.location.places.register(req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);

Chapter 20
Calling Platform APIs from Custom Code

20-61

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 10,
 "createdOn": "2016-11-08T17:55:21.816Z",
 "createdBy": "john.doe",
 "modifiedOn": "2016-11-08T17:55:21.816Z",
 "modifiedBy": "john.doe",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,
 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/10"
 }
]
 }
]
}

location.places.remove(id, context, httpOptions)
Use this method to delete places.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

context: This argument is ignored.

Chapter 20
Calling Platform APIs from Custom Code

20-62

Examples

service.delete('/mobile/custom/incidentreport/places/:id', function (req,
res) {
 req.oracleMobile.location.places.remove(
 req.params.id
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

location.places.update(id, place, context, httpOptions)
This method lets you update a place.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

place: Required. JSON object that follows the request root schema (Place) that is
shown for the PUT /mobile/system/locationManagement/place/{id} operation in
Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 "address":{
 "gpsPoint":{
 "latitude":-121.1566,
 "longitude":37.5548
 }
 },
 "devices":[
 1111
]
}

context: This argument is ignored.

Response

The response body, which shows the updated place, is a JSON object that follows the
response root schema (Place) that is shown for the PUT /mobile/system/
locationManagement/places/{id} operation in Oracle Mobile Cloud Enterprise REST
API Reference.

Chapter 20
Calling Platform APIs from Custom Code

20-63

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Examples

Here’s an example of calling this method.

service.put('/mobile/custom/incidentreport/place/:id', function (req, res)
{
 req.oracleMobile.location.place.update(req.params.id, req.body).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T23:36:55.371Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T23:37:45.576Z",
 "modifiedBy": "anAdministrator",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,
 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {

Chapter 20
Calling Platform APIs from Custom Code

20-64

 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Private"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
 }
],
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/11"
 }
]
}

Accessing the Mobile Devices API from Custom Code
Use this API to configure which devices that are running a mobile app can receive
notifications.

This API has the following methods:

• devices.deregister(device, httpOptions): Deregister a mobile client instance that no
longer needs to receive notifications..

• devices.register(device, httpOptions): Register a mobile client instance that
receives notifications.

devices.deregister(device, httpOptions)
Call this method to deregister a a mobile client instance that no longer needs to
receive notifications.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request
schema that’s shown for the POST /mobile/platform/devices/deregister operation
in Oracle Mobile Cloud Enterprise REST API Reference.

Chapter 20
Calling Platform APIs from Custom Code

20-65

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Examples

Here’s an example of calling this method to deregister a device.

service.post(
 '/mobile/custom/incidentreport/devices/deregister',
 function (req, res) {
 req.oracleMobile.devices.deregister(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

devices.register(device, httpOptions)
Call this method to register a new device.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request
schema that’s shown for the POST /mobile/platform/devices/register operation in
Oracle Mobile Cloud Enterprise REST API Reference.

Response

The response body is a JSON object that follows the root (mobile client instance)
response schema that’s shown for the POST /mobile/platform/devices/register
operation in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method to register a device.

service.post(
 '/mobile/custom/incidentreport/devices/register',
 function (req, res) {
 req.oracleMobile.devices.register(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {

Chapter 20
Calling Platform APIs from Custom Code

20-66

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "id": "my.app.id",
 "version": "1.0",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id": "27fee547-bdd0-4688-9497-475ec5ed0dfd",
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "user": "joe",
 "version": "1.0",
 "platform": "IOS"
 },
 "modifiedOn": "2015-06-17T18:37:59.424Z"
}

Accessing the My Profile API from Custom Code
The My Profile API let you get information about the current mobile, virtual, or social
user.

This API has the following methods:

• ums.getMe(httpOptions): Retrieves information about the current user. For mobile
and virtual users, it retrieves the user’s roles.

• ums.getUser(options, httpOptions): (Deprecated) Retrieves information about the
current user. This operation doesn’t retrieve roles. For mobile users, it retrieves
only the ID, user name, last name, and email address.

• ums.getUserExtended(options, httpOptions): (Deprecated) Retrieves the same
information as ums.getUser(options, httpOptions). In addition, for mobile and
virtual users, it retrieves the user’s roles.

• ums.updateUser(fields, options, httpOptions): (Deprecated) Updates the current
mobile user’s last name, first name, or email address, or a combination thereof.

ums.getMe(httpOptions)
This method lets you retrieve the information about the currently authorized user.

Chapter 20
Calling Platform APIs from Custom Code

20-67

• When the user is a mobile user, this operation retrieves the user’s information from
Oracle Identity Cloud Service.

• When the user is a virtual user, this operation retrieves the user name and roles.
To learn about virtual users, see Configuring SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID. To learn about social users and social identity,
see Facebook Login in OMCe.

Response

If the current user is a social user, then the response body includes the generated
userName, as shown in this example. To learn more about social identity see Facebook
Login in OMCe.

{
 "userName": "1 :623:165"
}

If the current user is a virtual user, then the response body includes the username and
appRoles, as shown in this example.

{
 "userName":"jdoe",
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "appRoles":[
 {
 "display":"FIF_TECHNICIAN"
 }
]
 }
}

In all other cases, the response body contains the same response as provided by
Oracle Identity Cloud Service. For example:

{
 "idcsCreatedBy":{
 "type":"App",
 "display":"instance1",
 "value":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },
 "id":"7e56fd80",
 "active":true,
 "displayName":"Joe Doe",
 "idcsLastModifiedBy":{
 "value":"346373e8aa",
 "display":"instance1",
 "type":"App",
 "$ref":"https://myIdentity.example.com/admin/v1/Apps/
3463731bd0cc43c7ba1b79a9c6e25e8a"
 },

Chapter 20
Calling Platform APIs from Custom Code

20-68

 "userName":"jdoe",
 "emails":[
 {
 "primary":true,
 "value":"jdoe@example.invalid",
 "type":"work"
 }
],
 "name":{
 "familyName":"Doe",
 "givenName":"Joe",
 "formatted":"Joe Doe"
 },
 "urn:ietf:params:scim:schemas:oracle:idcs:extension:user:User":{
 "grants":[
 {
 "value":"89d8b111",
 "grantMechanism":"ADMINISTRATOR_TO_USER",
 "appId":"346373e8a",
 "$ref":"https://myIdentity.example.com/admin/v1/Grants/
89d80073ae7f48838798cc864031b111"
 }
],
 "appRoles":[
 {
 "value":"a31245f1dd",
 "adminRole":false,
 "legacyGroupName":"instance1.ReadWriteRole",
 "appId":"346373e8a",
 "appName":"instance1_app_name",
 "display":"ReadWriteRole",
 "$ref":"https://myIdentity.example.com/admin/v1/AppRoles/
a31245ce4ed94d2a8563d39cd888f1dd"
 }
],
 "accounts":[
 {
 "appId":"346373e8a",
 "value":"3819e1be",
 "active":true,
 "$ref":"https://myIdentity.example.com/admin/v1/AccountMgmtInfos/
3819dd966cf34aa593df61809d62e1be"
 }
]
 },
 "schemas":[
 "urn:ietf:params:scim:schemas:core:2.0:User"
]
}

Chapter 20
Calling Platform APIs from Custom Code

20-69

Examples

Here’s an example of calling this method:

req.oracleMobile.ums.getMe().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

ums.getUser(options, httpOptions)
Deprecated. This method lets you retrieve the information about the currently
authorized user.

• When the user is a mobile user, this operation retrieves the user’s ID, user name,
first name, last name, and email address.

• When the user is a virtual user, this operation retrieves the user name. To learn
about virtual users, see Configuring SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID, identity provider, and access token. To learn
about social users and social identity, see Facebook Login in OMCe.

Arguments

options: Optional. JSON object. For mobile users, this object can have the following
property in addition to those listed in Common options Argument Properties:

Property Description Type Default

fields Specifies which user
properties to get. For
example, you can set
options.fields to
firstName,lastNam
e to retrieve just those
two values. This
property is ignored if
the current user
signed in using virtual
or social identity.

String None

Response

If the current user is a social user, then the response body includes the generated
username as well as the mobileExtended.identityProvider properties, as shown in
this example. To learn more about social identity see Facebook Login in OMCe.

 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {

Chapter 20
Calling Platform APIs from Custom Code

20-70

 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }

If the current user is a virtual user, then the response body includes the username, as
shown in this example.

 "username": "a24x"

In all other cases, the response body is a JSON object that contains one or more of
the following properties, depending on the value of the request’s options.fields
property.

• id

• email

• firstName

• lastName

• username

The response body also contains links to the API endpoint for the resource.

Examples

Here’s an example of calling this method to get the user’s first and last name. In this
example, the user is a mobile user:

req.oracleMobile.ums.getUser({fields: 'firstName,lastName'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

This example shows the response that you get when you set the options.fields
property to firstname,lastname:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Here’s an example of calling this method to get all the fields for a mobile user:

req.oracleMobile.ums.getUser().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 20
Calling Platform APIs from Custom Code

20-71

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body for this request:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",
 "lastName":"Doe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/users/joe"
 }
]
}

ums.getUserExtended(options, httpOptions)
Deprecated. This method lets you retrieve the information about the currently
authorized user, including the user's roles.

• When the user is a mobile user, this operation retrieves the user’s ID, user name,
first name, last name, roles, and email address.

• When the user is a virtual user, this operation retrieves the user name and roles.
To learn about virtual users, see Configuring SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID, identity provider, and access token. To learn
about social users and social identity, see Facebook Login in OMCe.

Arguments

options: Optional. JSON object. For mobile users, this object can have the following
property in addition to those listed in Common options Argument Properties:

Chapter 20
Calling Platform APIs from Custom Code

20-72

Property Description Type Default

fields Specifies which user
properties to get. For
example, you can set
options.fields to
firstName,lastNam
e to retrieve just those
two values. This
property is ignored if
the current user
signed in using virtual
or social identity.

String None

Response

If the current user is a social user, then the response body includes the generated
username as well as the mobileExtended.identityProvider properties, as shown in
this example.

 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {
 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }

If the current user is a virtual user, then the response body includes the username and
roles properties, as shown in this example.

 "username": "a24x",
 "roles": [
 "Customer", "Trial"
]

In all other cases, the response body is a JSON object that contains one or more of
the following properties, depending on the value of the request’s options.fields
property.

• id

• email

• firstName

• lastName

• username

• roles (array)

The response body also contains links to the API endpoint for the resource.

Chapter 20
Calling Platform APIs from Custom Code

20-73

Examples

Here’s an example of calling this method to get a mobile user’s first and last name:

req.oracleMobile.ums.getUserExtended({fields: 'firstName,lastName'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

This example shows the response that you get when you set the options.fields
property to firstname,lastname:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Here’s an example of calling this method to get all the fields for a mobile user.

req.oracleMobile.ums.getUserExtended().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body for this request:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",
 "lastName":"Doe",
 "roles": [
 "Customer", "Trial"
],
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/users/joe"
 }

Chapter 20
Calling Platform APIs from Custom Code

20-74

]
}

ums.updateUser(fields, options, httpOptions)
This operation is deprecated. To update user information, see REST API for Oracle
Identity Cloud Service.

Arguments

fields: Required. A JSON object that contains the fields to update. For example:
{lastName: 'Doe'}.

options: Optional. A JSON object as described in Common options Argument
Properties.

Response

The response body is a JSON object that follows the root response schema that’s
shown for the PUT /mobile/platform/users/{username} operation in Oracle Mobile
Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method to update the user’s last name. In this
example, the request body would look like this: {lastName: 'Doe'}.

service.put(
 '/mobile/custom/incidentreport/customer',
 function (req, res) {
 req.oracleMobile.ums.updateUser({lastName: req.body.lastName}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",
 "lastName":"Doe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",

Chapter 20
Calling Platform APIs from Custom Code

20-75

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/identity-cloud&id=idcsa_restapi
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/identity-cloud&id=idcsa_restapi
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "href": "/mobile/platform/users/joe"
 }
]
}

Accessing the Notifications API from Custom Code
You can use the Notifications API to send a message to the mobile app users, such as
an alert about an upcoming event or news that the user might be interested in. You
can specify a target for the message such as a device, user, or operating system, and
you can schedule the message. You can also inquire about notifications, and delete
scheduled notifications that haven’t been sent.

For more information about the ways in which you can use notifications, see
Notifications.

This API has the following methods:

• notification.getAll(context, options, httpOptions): Retrieves all notifications.

• notification.getById(id, context, options, httpOptions): Retrieves a notification for a
specific notification ID.

• notification.post(notification, context, options, httpOptions): Creates a notification.

• notification.remove(id, context, options, httpOptions): Deletes a notification.

Tip:

When you access the Notifications API endpoints directly through REST
requests, the user that you specify in the Authorization header must be a
team member (not a mobile user) who has the Administrator or Developer
role. However, this restriction doesn't apply when you use these
notification methods in your custom implementation.

notification.getAll(context, options, httpOptions)
This method lets you retrieve the notifications that match your criteria. Only the
notifications that match ALL the criteria are returned.

Arguments

context: This argument is ignored.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

createdOnOrAfter Criteria: Filter by
createdOn on or after
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

Chapter 20
Calling Platform APIs from Custom Code

20-76

Property Description Type Default

createdOnOrBefore Criteria: Filter by
createdOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer None

orderBy Specifies the ordering
for the query
operations. The
default sort order is
ascending by ID. The
format is: "orderBy"
"=" 1#(attr [":" "asc" |
"desc"]), where the
attr parameter may
be id, status, tag,
platform, sendOn,
createdOn, or
processedOn.

String None

processedOnOrAfte
r

Criteria: Filter by
processedOn on or
after the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

processedOnOrBefo
re

Criteria: Filter by
processedOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

q Filter results based on
a case-insensitive
partial match of this
string with the tag. For
example, q=market
returns notifications
with tag equal to
Marketing,
marketing, and
markets.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-77

Property Description Type Default

sendOnOrAfter Criteria: Filter by
sendOn on or after the
given UTC date/time
(in YYYY-DD-
MM[Thh:mm]Z format).

String None

sendOnOrBefore Criteria: Filter by
sendOn on or before
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

status Criteria: Filter by
status

String None

tag Criteria: Filter by tag String None

Response

The response body is a JSON object that follows the notificationPaging schema
that is shown for the GET /mobile/system/notifications/notifications operation
in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method:

service.get('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 req.oracleMobile.notification.getAll()
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "items": [
 {
 "id": 2,
 "message": "Incident Updated: Broken Dryer",
 "users": [
 "J Doe"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:04.465Z",

Chapter 20
Calling Platform APIs from Custom Code

20-78

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/2"
 }
]
 },
 {
 "id": 3,
 "message": "Incident Updated: Malfunctioning Air Conditioner",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:07.413Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/3"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/3"
 }
]
 }
],
 "hasMore": false,
 "limit": 2,
 "count": 2,
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/?
offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/"
 }
]
}

Chapter 20
Calling Platform APIs from Custom Code

20-79

notification.getById(id, context, options, httpOptions)
This method lets you retrieve a specific notification by its ID.

Arguments

id: Required. String or integer. The generated notification ID.

context: This argument is ignored.

options: Optional. JSON object as described in Common options Argument
Properties.

Response

The response body is a JSON object that follows the notification schema that is
shown for the GET /mobile/system/notifications/notifications/{id} operation in
Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling the method to get a notification:

service.get('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.getById(req.params.id)
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },
 {
 "rel": "self",

Chapter 20
Calling Platform APIs from Custom Code

20-80

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

notification.post(notification, context, options, httpOptions)
This method lets you create a notification.

Arguments

notification: Required. JSON object that follows the notificationCreate schema
that is shown for the POST /mobile/system/notifications/notifications operation
in Oracle Mobile Cloud Enterprise REST API Reference. Here’s an example:

{
 message:'This is the alert message.',
 tag:'Marketing',
 notificationTokens:['APNSdeviceToken']
}

context: This argument is ignored.

options: Optional. JSON object as described in Common options Argument
Properties.

Response

The return value includes this header:

Header Description Type

Location Canonical resource URI for
the notification.

String

The response body, which shows the stored notification, is a JSON object that follows
the notification schema that is shown for the POST /mobile/system/
notifications/notifications operation in Oracle Mobile Cloud Enterprise REST
API Reference.

Examples

In this example of posting a notification, the request body would look like this:
{incidentName: 'Leaky Faucet', customerName: 'Lynn Smith'}.

service.post('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 var notification = {
 sendOn: '2016-06-25T6:00Z',
 message: 'Incident Updated: ' +
 req.body.incidentName,
 users: [req.body.customerName]
 };
 req.oracleMobile.notification.post(notification)
 .then(

Chapter 20
Calling Platform APIs from Custom Code

20-81

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "sendOn": "2016-06-25T06:00Z",
 "status": "New",
 "createdOn": "2015-06-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

notification.remove(id, context, options, httpOptions)
This method lets you delete a notification. You can delete a notification only if its status
is Scheduled.

Arguments

id: Required. String or integer. The generated notification ID.

context: This argument is ignored.

options: Optional. JSON object as described in Common options Argument
Properties.

Example

Here’s an example of calling this method:

service.delete('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.remove(req.params.id)

Chapter 20
Calling Platform APIs from Custom Code

20-82

 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Accessing the Storage API from Custom Code
The Storage API lets you store mobile application objects in the cloud. An object can
be text, JSON, or a binary object such as an image. These objects are grouped by
collection. To learn about collections and objects, see Storage.

This API has the following methods:

• storage.doesCollectionExist(collectionId, options, httpOptions): Indicates if a
collection exists, and, optionally, whether its ETag matches.

• storage.doesExist(collectionId, objectId, options, httpOptions): Indicates if an
object exists, and, optionally, whether its ETag matches.

• storage.getAll(collectionId, options, httpOptions): Returns the metadata for every
object in a collection.

• storage.getById(collectionId, objectId, options, httpOptions): Retrieves an object
and its metadata.

• storage.getCollection(collectionId, options, httpOptions): Retrieves metadata about
a collection.

• storage.getCollections(options, httpOptions): Returns metadata about each
collection that is available through the mobile backend.

• storage.remove(collectionId, objectId, options, httpOptions): Removes an object
from a collection.

• storage.store(collectionId, object, options, httpOptions): Adds an object and
automatically assigns an ID for it.

• storage.storeById(collectionId, objectId, object, options, httpOptions): Adds or
updates an object based on an ID that you specify.

storage.doesCollectionExist(collectionId, options, httpOptions)
You can use this method to determine whether a collection exists. You can also use it
to see if the collection matches (or does not match) an ETag.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Chapter 20
Calling Platform APIs from Custom Code

20-83

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call returns true
only if the ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call returns true
only if the ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

Response

This method returns a Boolean value.

Example

The following example uses this method to verify that the collection exists before it
stores an object in it.

req.oracleMobile.storage.doesCollectionExist('attachments').then(
 function(result){
 if (result) {
 req.oracleMobile.storage.store('attachments', {id: 'incident412-
pic'}, {inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 } else {
 res.status(404).send('Storage has not been configured for this app.
Please contact your admin.');
 };
 },
 function(error){
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 20
Calling Platform APIs from Custom Code

20-84

storage.doesExist(collectionId, objectId, options, httpOptions)
You can use this method to determine whether an object exists. You can also use it to
see if the object matches (or does not match) an ETag, or if it was modified after a
specified date.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using
the storage.storeById() method, then this is the ID that was provided as the id
argument, and, if the object was stored using the storage.store() method, then the
ID was generated. When looking at the object metadata, this argument value
corresponds to the metadata’s id attribute.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

contentDispositio
n

This property lets you
specify the value of
the Content-
Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-85

Property Description Type Default

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in this
property. You can use
this property to reduce
the amount of data
that is transported by
not re-retrieving data if
it hasn’t changed.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property. You
can use this property
to reduce the amount
of data that is
transported by not re-
retrieving data if it
hasn’t changed.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property.

Date None

Chapter 20
Calling Platform APIs from Custom Code

20-86

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire
about objects in
another user’s space.

Response

This method returns a Boolean value.

Example

In this example, the code calls doesExist to see if the stored object still has the same
ETag as when it was last retrieved ("1").

req.oracleMobile.storage.doesExist('attachments', 'incident412-pic',
{ifMatch: '\"' + 1 + '\"'}).then(
 function (result) {
 res.status(200).send('Object has not changed.');
 },
 function (error) {
 res.status(412).send('Object was modified by someone else.');
 }
)

storage.getAll(collectionId, options, httpOptions)
This method returns the metadata for every object in a collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Chapter 20
Calling Platform APIs from Custom Code

20-87

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
orderBy, and user
values. This option
can be useful for
multibyte values.

Boolean false

limit The maximum number
of items to be
returned. If the
requested limit is
greater than 100, then
100 is used instead.

Integer None

offset The zero-based index
of the first item to
return.

Integer None

orderBy Use this property to
sort the results by
name, modifiedBy,
modifiedOn,
createdBy,
createdOn, or
contentLength. You
can append :asc
or :desc to specify
whether to sort in
ascending or
descending order. For
example,
modifiedOn:desc.

String None

q The items that are
returned are based on
a case-insensitive
partial match of the
id, name, createdBy
or modifiedBy
property of an item.
For example, if you
set this property to
sam, it could return an
object with an id of
axsam3 and an object
with a createdBy of
SAMANTHA.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-88

Property Description Type Default

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

totalResults When this property is
present with a value of
true, then the
response body
contains the
totalResults
attribute with a value
that represents the
total number of items
in the collection. By
default, the response
does not contain this
value.

Boolean false

user This is the ID (not the
user name) of a user.
Use * (wildcard) to get
all users. This query
parameter allows a
user with READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire
about objects in
another user’s space.

Response

The return value includes these headers:

Chapter 20
Calling Platform APIs from Custom Code

20-89

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library
uses this header.

String

The response body is a JSON object that follows the response body schema that is
shown for the GET /mobile/platform/storage/collections/{collection}/objects
operation in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method. The response lists the objects by modified
date, in descending order. Because the sync property is set to true, the client app can
cache the response.

// Get metadata about the objects in the attachments collection.
// List most recently modified first.
service.get('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 req.oracleMobile.storage.getAll('attachments',
 {orderBy: 'modifiedOn:desc', sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body:

{
 "items":[
 {
 "eTag":"\"2\"",
 "id":"incident412-pic",
 "createdBy":"jdoe",
 "name":"Incident Picture",
 "createdOn":"2014-11-20T19:57:04Z",
 "modifiedOn":"2014-11-20T19:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments/objects/profile-pic"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/

Chapter 20
Calling Platform APIs from Custom Code

20-90

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

attachments/objects/profile-pic"
 }
],
 "contentType":"image/png",
 "contentLength":937647
 },
 {
 "eTag":"\"1\"",
 "id":"incident131-pic",
 "createdBy":"jsmith",
 "name":"Incident Picture",
 "createdOn":"2014-11-20T18:27:02Z",
 "modifiedOn":"2014-11-20T18:27:02Z",
 "modifiedBy":"jsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 }
],
 "contentType":"image/jpeg",
 "contentLength":5266432
 }
],
 "hasMore":true,
 "limit":2,
 "offset":4,
 "count":2,
 "totalResults":7,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=4&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"prev",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=2&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"next",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=6&limit=2&orderBy=name:asc&totalResults=true"

Chapter 20
Calling Platform APIs from Custom Code

20-91

 }
]
}

storage.getById(collectionId, objectId, options, httpOptions)
This method retrieves an object and its metadata from a collection based on the object
identifier.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using
the storage.storeById() method, then this is the ID that was provided as the id
argument, and, if the object was stored using the storage.store() method, then the
ID was generated. When looking at the object metadata, this argument value
corresponds to the metadata’s id attribute.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

contentDispositio
n

This property lets you
specify the value of
the Content-
Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-92

Property Description Type Default

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in this
property. You can use
this property to reduce
the amount of data
that is transported by
not re-retrieving data if
it hasn’t changed.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property. You
can use this property
to reduce the amount
of data that is
transported by not re-
retrieving data if it
hasn’t changed.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property.

Date None

range This property lets you
request a subset of
bytes. For example,
bytes=0–99 gets the
first 100 bytes.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-93

Property Description Type Default

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to get an
object from another
user’s space.

Response

The return value includes these headers:

Header Description Type

Accept-Ranges This header indicates that byte
ranges may be provided when
requesting an object resource.

String

Cache-Control Describes how the result may
be cached.

String

Content-Disposition This response header is
returned if the options
argument included the
contentDisposition
property. The value for the
response header is the same
as the value for the property.

String

Chapter 20
Calling Platform APIs from Custom Code

20-94

Header Description Type

Content-Length The size of the object in bytes. Number

Content-Type The media type of the object,
such as image/jpeg.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and
ending quotation marks (for
example, "2").

String

Last-Modified The date and time when the
resource was last modified.
This date is in RFC-1123
format. For example, Fri, 29
Aug 2014 12:34:56 GMT.

Date

Oracle-Mobile-
Canonical-Link

A relative URI that you can
use to uniquely reference this
object.

String

Oracle-Mobile-Created-
By

The user name of the user
who created the object.

String

Oracle-Mobile-Created-
On

The date and time, in ISO
8601 format (for example,
2014-06-30T01:02:03Z),
when the object was created.

String

Oracle-Mobile-Modified-
By

The user name of the user
who last modified the object.

String

Oracle-Mobile-Modified-
On

The date and time, in ISO
8601 format (for example,
2014-06-30T01:02:03Z),
when the object was last
modified.

String

Oracle-Mobile-Name The display name for the
object.

String

Oracle-Mobile-Self-Link A relative URI that you can
use to uniquely reference this
object within the specified
isolation level.

String

Oracle-Mobile-Sync-
Expires

This header is used by the
Synchronization library.

String

Oracle-Mobile-Sync-No-
Store

This header is used by the
Synchronization library.

Boolean

The response body is the stored object.

Example

Here is an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getById('attachments', 'incident412-notes',
{sync: true}).then(
 function (result) {

Chapter 20
Calling Platform APIs from Custom Code

20-95

 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

storage.getCollection(collectionId, options, httpOptions)
This method returns metadata about a particular collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

Chapter 20
Calling Platform APIs from Custom Code

20-96

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and
ending quotation marks (for
example, "2").

String

The response body is a JSON object that follows the Collection schema that is
shown for the GET /mobile/platform/storage/collections/{collection} operation
in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

Here’s an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getCollection('attachments', {sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body:

{
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments"}
]}

storage.getCollections(options, httpOptions)
This method returns metadata about each collection that is available through the
mobile backend.

Chapter 20
Calling Platform APIs from Custom Code

20-97

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Arguments

options: Optional. JSON Object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer 0 (zero)

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

totalResults When this property is
present with a value of
true, then the then
the response body
contains the
totalResults
property with a value
that represents the
total number of items
in the collection. By
default, this property is
not returned.

Boolean false

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library
uses this header.

String

Chapter 20
Calling Platform APIs from Custom Code

20-98

The response body is an array of items in JSON format that follows the Collection
Array schema that is shown for the GET /mobile/platform/storage/collections
operation in Oracle Mobile Cloud Enterprise REST API Reference.

Example

Here is an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body:

{
 "items":[
 {
 "id":"logs",
 "description":"Application logs.",
 "contentLength":0,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/logs"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/logs"}
]},
 {
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments"}
]}
],
 "hasMore":false,
 "limit":100,
 "offset":0,

Chapter 20
Calling Platform APIs from Custom Code

20-99

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 "count":2,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections?
offset=0&limit=100"}
]}

storage.remove(collectionId, objectId, options, httpOptions)
This method removes an object from a collection based on the object identifier.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The ID of the object to remove.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last
requested it.

String None

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in property.

Date None

Chapter 20
Calling Platform APIs from Custom Code

20-100

Property Description Type Default

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property. You can use
this property to ensure
that the operation
succeeds only if no
one modified the
object after that time.

Date None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are removing an
object in a shared
collection, there is no
default.
If you removing an
object in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to remove
objects from another
user’s space.

Example

This example removes an object from the attachments collection:

service.delete('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.remove('attachments', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 20
Calling Platform APIs from Custom Code

20-101

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

storage.store(collectionId, object, options, httpOptions)
This method lets you store an object and have an identifier automatically assigned to
it.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

object: Required. Text, JSON object, file, or binary object. The object to store.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties. Note that the
contentType property plays an important role for Storage, because that also specifies
the mediat type to when the object is requested. If you don't include the content, then
the content-type defaults to application/octet-stream.

Property Description Type Default

contentLength The size of the object
in bytes.

Number If the object is a string
or a buffer, then the
default is
object.length.
Otherwise, the default
is the sum of its
members’ lengths.

contentType The media type of
object being stored.
This property also
specifies the media
type to return when
the object is
requested.

String If the inType is json,
then the Content-
Type header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

encodeURI Set to true to URI-
encode the
collectionId,
mobileName, and
user values. This
option can be useful
for multibyte values.

Boolean false

mobileName The display name for
the object. If you don't
include the display
name, the name is set
to the object identifier
that this method
generates
automatically.

String None

Chapter 20
Calling Platform APIs from Custom Code

20-102

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store
objects in another
user’s space.

Response

The return value includes this header:

Header Description Type

Location The URI that corresponds to
the newly created object.

String

The response body is a JSON object that follows the schema shown for the response
body for the POST /mobile/platform/storage/collections/{collection}/objects
operation in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

In this example, requests can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.post('/mobile/custom/incidentreport/attachments',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.store('attachments', req.body,
 {
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {

Chapter 20
Calling Platform APIs from Custom Code

20-103

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

In this example, the request body contains a Base-64 encoded image. The code
converts it to a binary image before storing it. The request body would look like this:

{
 imageName: 'brokenWaterHose',
 base74EncodedImage: '/9j/4AAQSkZJRg...AFFFFAH/2Q=='
}

// Base 64
service.post('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 // convert Base-64 encoded image to binary image
 image = new Buffer(req.body.base64EncodedImage);
 req.oracleMobile.storage.store('attachments', image,
 {
 contentType: 'image/jpeg',
 mobileName: req.body.imageName
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
)
 })

Here’s an example of a response body:

{
 "eTag":"\"1\"",
 "id":"a95edb6f-539d-4bac-9ffa-78ff16b20516",
 "createdBy":"jdoe",
 "name":"Technician Notes",

Chapter 20
Calling Platform APIs from Custom Code

20-104

 "createdOn":"2014-11-20T15:53:05Z",
 "modifiedOn":"2014-11-20T15:53:05Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 }
],
 "contentType":"application/json",
 "contentLength":9377
}

storage.storeById(collectionId, objectId, object, options, httpOptions)
This method stores an object based on an ID that you specify. You can use it to add
an object using your own ID instead of one that is generated automatically, or to
update an existing object.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. If you are adding an object, this is the ID to store the
object under. If you are updating an object, this is the ID of the object you are
replacing.

object: Required. Text, JSON object, file, or binary object. This is the object to store.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties.

Property Description Type Default

contentLength The size of the object
in bytes.

Number If the object is a string
or a buffer, then the
default is
object.length.
Otherwise, the default
is the sum of its
members’ lengths.

contentType The media type of
object being stored.
This property also
specifies the media
type to return when
the object is
requested.

String If the inType is json,
then the Content-
Type header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

Chapter 20
Calling Platform APIs from Custom Code

20-105

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId,
mobileName, and
user values. This
option can be useful
for multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last
requested it.

String None

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in property.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property. You can use
this property to ensure
that the operation
succeeds only if no
one modified the
object after that time.

Date None

Chapter 20
Calling Platform APIs from Custom Code

20-106

Property Description Type Default

mobileName The display name for
the object. If you don't
include the display
name, the name is set
to the object identifier.

String None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store
objects in another
user’s space.

Response

The response body is a JSON object that follows the schema shown for the response
body for the PUT /mobile/platform/storage/collections/{collection}/objects/
{object} operation in Oracle Mobile Cloud Enterprise REST API Reference.

Examples

In this example, the request can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.put('/mobile/custom/incidentreport/attachments/:id',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.storeById('attachments', req.params.id,
req.body,
 {
 contentLength: req.body.length,
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {

Chapter 20
Calling Platform APIs from Custom Code

20-107

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.storeById('attachments', req.params.id, req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

Here’s an example of a response body:

{
 "eTag":"\"2\"",
 "id":"incident412-notes",
 "createdBy":"jdoe",
 "name":"Technician Notes",
 "createdOn":"2014-11-20T15:57:04Z",
 "modifiedOn":"2014-11-20T15:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"}
],
 "contentType":"application/json",
 "contentLength":9377
}

Calling Connector APIs from Custom Code
To use a connector, you must create a custom API and implement code that calls the
SDK’s connector methods. Here’s information about how to call a connector from
custom code.

Chapter 20
Calling Connector APIs from Custom Code

20-108

Tip:

If your connector is a REST API that you created using a valid descriptor,
then you can create the custom API and its implementation automatically, as
described in How Do I Generate a Custom API from a Connector. If you use
the automatic-generation feature, you typically don’t need to know how to
use the SDK’s connector methods described here unless you are using the
customizer method that is in the generated code. For example, you might
need to use a customizer to pass options.externalAuthorization .
Sometimes, you might need to replace a call to the callConnector method
with your own code, such as when you need to send multipart form data or
the http options object.

The custom code SDK provides two namespaces for sending requests to connectors:

• oracleMobile.connectors.<connector>: To use the methods in this namespace,
you must explicitly declare in package.json a dependency on the connector. The
automatically generated implementations use this namespace.

• oracleMobile.connectors: To use the methods in this namespace, you don’t
need to explicitly declare in package.json a dependency on the connector.

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. To learn how to declare a dependency in
package.json and the advantages for doing so, see Specifying the API Version in
Calls to Custom and Connector APIs.

The optional options argument can have these properties in addition to those listed in
Common options Argument Properties.

Property Description Typ
e

Default

externalAuthorizati
on

If you haven’t configured a security
policy for the connector, then put the
Authorization value for the
external service in the
options.externalAuthorization
property. When this property is
present, the connector sets the
outgoing Authorization header
with the value in
options.externalAuthorization
property before it sends the request
to the external service.

Strin
g

None

Chapter 20
Calling Connector APIs from Custom Code

20-109

Property Description Typ
e

Default

versionToInvoke The version of the connector.
When you use the
oracleMobile.connectors
namespace, you must include this
option if the API version is not
declared in package.json.

When you use the
oracleMobile.connectors.<conn
ector> namespace, the API version
must be declared in package.json,
and you optionally can use this
property to override that version.

Strin
g

The version that is
declared in the
package.json file.
When you use the
oracleMobile.conn
ectors.<connector
> namespace, the
API version must be
declared in
package.json.

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Method oracleMobile.connectors
Signature

oracleMobile.connectors.<conne
ctor> Signature

GET get(connector,
resourceName, options,
httpOptions)

get(resourceName, options,
httpOptions)

PUT put(connector,
resourceName, object,
options, httpOptions)

put(resourceName, object,
options, httpOptions)

POST post(connector,
resourceName, object,
options, httpOptions)

post(resourceName, object,
options, httpOptions)

DELETE del(connector,
resourceName, options,
httpOptions)

del(resourceName, options,
httpOptions)

HEAD head(connector,
resourceName, options,
httpOptions)

head(resourceName, options,
httpOptions)

OPTIONS options(connector,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

PATCH patch(connector,
resourceName, object,
options, httpOptions)

patch(resourceName, object,
options, httpOptions)

Here’s an example of calling the /mobile/connector/globalweather connector using
the oracleMobile.connectors namespace:

req.oracleMobile.connectors.post('globalweather', 'GetWeather', body,
{inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 console.info("result is: " + result.statusCode);
 res.status(result.statusCode).send(result.result);
 },

Chapter 20
Calling Connector APIs from Custom Code

20-110

 function (error) {
 console.info("error is: " + error.statusCode);
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of calling the /mobile/connector/globalweather connector using
the oracleMobile.connectors.<connector> namespace.

req.oracleMobile.connectors.globalweather.post('GetWeather', body,
{inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Calling a Connector to a REST Web Service
You need the connector name and the resource name to call a REST API connector.
You form the resource name by removing the base URI from the endpoint. Say, for
example, that your git connector maps to https://example.com. To call https://
example.com/{owner}/{repo}/contents/{path}, set the resourceName to {owner}/
{repo}/contents/{path}.

You also need to pass the authorization in either options.externalAuthorization or
httpOptions.headers['oracle-mobile-external-authorization'] .

Here’s an example of sending a PUT request to a REST connector:

service.put('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.put(
 'repos/' + req.params.owner + '/' + req.params.repo + '/contents/' +
req.params.path,
 req.body,
 {externalAuthorization: req.header('external-authorization'),
inType: 'json'},
 null).then(
 function (result) {
 // include the target service's response headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 20
Calling Connector APIs from Custom Code

20-111

You use the httpOptions object to pass headers and query parameters to a
connector.

Note:

A connector to a REST web service can have rules that set default query
parameters. If you specify values for those same parameters, then your
values take precedence and override the default parameters in the connector
rules.

Here’s an example of passing query parameters and headers in the httpOptions
object:

service.get('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.get(
 'repos/' + req.params.owner + '/' + req.params.repo + '/contents/' +
req.params.path,
 {externalAuthorization: req.header('external-authorization')},
 {qs: {"branch": req.query.branch}, headers: {"accept":
req.header('accept')}}
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code
handles multibyte characters.

To learn how to create a connector to a REST service, see REST Connector APIs.

Calling a Connector to a SOAP Service
The body for a message that you send to a SOAP connector must be in either the
XML or JSON form of a SOAP envelope, with an optional Header, a required Body, and
an optional Fault.

JSON requests are translated automatically to XML, and XML responses are
translated to JSON. This means that you can interact with SOAP services without
having to work with XML. See How Does XML Get Translated into JSON? for
conditions that you should be aware of when the translation occurs.

Chapter 20
Calling Connector APIs from Custom Code

20-112

If you choose to provide the message in XML, then remember to do the following:

• To request that the response body is in XML format, set options.accept to
application/xml.

• When the request body is in XML format, set options.contentType to
application/xml; charset=utf-8.

• The XML in a request body must be wrapped in a SOAP envelope, which must
include any necessary SOAP headers, as shown in this example. If you configured
a security policy on a connector that requires a SOAP header to be sent in the
message, That header is added automatically so you don’t need to include it in
your message.

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

To see a sample message for a connector’s operation, go to the Test page for the
connector, select the operation, and then click Examples.

Note that with SOAP connectors, if your options.contentType property doesn’t
specify the character set, then UTF-8 is assumed.

Here’s an example of calling a connector to a SOAP service. In this example, the
request body is in JSON format:

service.get('/mobile/custom/incidentreport/connectors/
numberConvert/:number/words',
function (req, res) {
 var body = {
 Header: null,
 Body: {
 "NumberToWords": {
 "ubiNum": req.params.number
 }
 }
 };
 req.oracleMobile.connectors.post('numberConvert', 'words', body,
 {inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 20
Calling Connector APIs from Custom Code

20-113

});

To learn how to create a connector to a SOAP service, see SOAP Connector APIs.

Calling Connectors that Require Form Data
If a connector’s operation requires a content type of multipart/form-data, use Multer
to pass the form data to the connector. Multer is a library for Node.js that handles
multipart form data.

To call a connector with a request body of type multipart/form-data:

1. Add multer as a dependency in package.json, as shown in the following
example, and then run npm install.

{
 "name": "sendformdata",
 "version": "1.0.0",
 "description": "Sends form data to a connector API.",
 "main": "sendformdata.js",
 "dependencies": {
 "multer": "latest"
 },
 ...
}

2. In the custom code, add the following statements:

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

Multer adds the following objects to the incoming request body when it is of type
multipart/form-data:

• body: Contains the text fields that are in the form.

• files: Contains the files that are uploaded using the form.

3. In the method for the operation, pass upload.array as the second argument and
provide the name of the form’s file parameter and the maximum number of
uploaded files. For example:

service.post('/mobile/custom/SendFormData/upload',
upload.array("avatar", 12), function (req, res)

4. Extract the content from the body and files objects and pass it to the connector
via the httpOptions.formData object. Note that you must make the file object look
like a stream.

Here’s an example. In this example, the POST /mobile/custom/SendFormData/upload
operation requires the following form parameters:

• username, which is of type text.

Chapter 20
Calling Connector APIs from Custom Code

20-114

• avatar, which is of type file.

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

module.exports = function (service) {

 service.post('/mobile/custom/SendFormData/upload',
upload.array("avatar", 12), function (req, res) {

 // Because the uploaded file is a buffer in memory, you must modify it
 // to look like a stream before you send it to the connector.
 var uploadedFile = {
 value: req.files[0].buffer,
 options: {
 filename: req.files[0].originalname,
 contentType: req.files[0].mimetype
 }
 };

 var formData = {
 username: req.body.username,
 avatar: uploadedFile
 };

 // FormData is the name of the connector.
 // The formData object is passed in the httpOptions argument.
 // The options.contentType is set to multipart/form-data automatically.
 req.oracleMobile.connectors.FormData.post("upload", null, null, {
 formData: formData
 }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 });
 });
};

For information about Multer, see https://www.npmjs.com/package/multer.

Passing Headers to the Target Service
With the exception of the following headers, you must use httpOptions.headers to
pass headers and their values:

• Authorization: If the connector doesn’t have a connector Authorization header
rule, or if you don’t want to use the rule’s default value, then you must pass the
authorization information in either the options.externalAuthorization property
or the httpOptions.headers['oracle-mobile-external-authorization']
property, as shown here. See Security and REST Connector APIs.

• Connection: Don’t set this header.

Chapter 20
Calling Connector APIs from Custom Code

20-115

https://www.npmjs.com/package/multer

• Content-Length: Don’t set this header.

• Host: Don’t set this header.

• User-Agent: Don’t set this header.

Note:

The original request’s Accept value isn’t passed to the target service. To
pass the value to the target service, use either the
httpOptions.headers.accept property or the options.accept property.

The headers that you pass in your request override any related default values that are
set by connector rules.

Here’s an example that passes headers to the target service:

 var httpOptions={'headers':{}};
 // You must pass the Accept header if you don't want to use the target
server's default.
 if (req.header('accept')) {
 // You can pass the accept value using options.accept or
httpOptions.header, as shown here:
 httpOptions.headers.accept = req.header('accept');
 };
 // If the connector doesn't have an Authorization rule,
 // or if you don't want to use the rule's default,
 // pass the authorization information using
options.externalAuthorization or
 // httpOptions.headers.oracle-mobile-external-authorization.
 // Note the ['']syntax to prevent the hyphen from being interpreted as a
minus.
 if (req.header('external-authorization')) {
 httpOptions.headers['oracle-mobile-external-authorization'] =
 req.header('external-authorization');
 };
 // Pass any custom headers
 if (req.header('if-none-match')) {
 httpOptions.headers['if-none-match'] = req.header('if-none-match');
 };
 req.oracleMobile.connectors.git.get('repos/fixItFast/incidentreport/
contents/README.md',
 null,
 httpOptions).then(
 function (result) {
 // include the target service's headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 20
Calling Connector APIs from Custom Code

20-116

Overriding SSL Settings for Connectors
You might encounter issues with external services, such as the service has an invalid
SSL certificate or it redirects the request but it doesn't preserve the cookies over the
redirect.

To resolve these issues, you use the options argument to customize the outgoing
HTTP requests, which go through a proxy. You can get the proxy from
req.oracleMobile.proxy.httpProxy. Here’s an example of how to override the
strictSSL setting in order to ignore SSL validation issues.

var res = {};
var options = {
 uri: req.body.externalURI,
 strictSSL: false,
 proxy: 'http://' + req.oracleMobile.proxy.httpProxy
}
req(options).pipe(res);

To learn more about request options, see https://github.com/request/
request#requestoptions-callback.

Calling Custom APIs from Custom Code
The custom code SDK provides two namespaces for sending requests to other custom
APIs:

• oracleMobile.custom.<apiName>: To use the methods in this namespace, you
must explicitly declare in package.json a dependency on the custom API.

• oracleMobile.custom: To use the methods in this namespace, you don’t need to
explicitly declare in package.json a dependency on the custom API.

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. To learn how to declare a dependency in
package.json and the advantages for doing so, see Specifying the API Version in
Calls to Custom and Connector APIs.

The optional options argument can have this property in addition to those listed in
Common options Argument Properties.

Chapter 20
Calling Custom APIs from Custom Code

20-117

https://github.com/request/request#requestoptions-callback
https://github.com/request/request#requestoptions-callback

Property Description Type Default

versionToInvoke The version of the
custom API.
When you use the
oracleMobile.cust
om namespace, you
must include this
option if the API
version is not declared
in package.json.

When you use the
oracleMobile.cust
om.<apiName>
namespace, the API
version must be
declared in
package.json, and
you optionally can use
this property to
override that version.

String The version that is
declared in the
package.json file.

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Operation oracleMobile.custom
Method

oracleMobile.custom.<apiNa
me> Method

GET get(apiName,
resourceName, options,
httpOptions)

get(resourceName,
options, httpOptions)

PUT put(apiName,
resourceName,
object, options,
httpOptions)

put(resourceName,
object, options,
httpOptions)

POST post(apiName,
resourceName,
object, options,
httpOptions)

post(resourceName,
object, options,
httpOptions)

DELETE del(apiName,
resourceName, options,
httpOptions)

del(resourceName,
options, httpOptions)

HEAD head(apiName,
resourceName, options,
httpOptions)

head(resourceName,
options, httpOptions)

OPTIONS options(apiName,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

PATCH patch(apiName,
resourceName,
object, options,
httpOptions)

patch(resourceName,
object, options,
httpOptions)

Chapter 20
Calling Custom APIs from Custom Code

20-118

Here are examples of how to call another custom API from custom code using both
namespaces . These examples call the motd custom API, and send a POST request to
its years/{year}/months/{month}/days resource.

 /**
 * oracle.Mobile.custom.<apiName> namespace example:
 *
 * <namespace>.post(<resource>, <body>, <options>)
 *
 * Note: Because it uses the
 * oracleMobile.custom.<apiName> namespace,
 * the dependency on the motd API must
 * be specified in package.json.
 * options.versionToInvoke isn't required. You can use
 * it to override the version that is declared in
 * package.json.
 */
 req.oracleMobile.custom.motd.post(
 'years/2018/months/1/days',
 req.body,
 {inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

 /**
 * oracle.Mobile.custom namespace example:
 *
 * post(<namespace>, <resource>, <body>, <options>)
 *
 * You must include the versionToInvoke option if
 * the API isn't declared in package.json.
 */
 req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 20
Calling Custom APIs from Custom Code

20-119

Specifying the API Version in Calls to Custom and
Connector APIs

When you call connector APIs or other custom APIs, you must always specify the API
version. You can specify the API version in one of the following ways:

• Explicitly state the version dependency in the implementation’s package.json file,
as shown here. You must do this if you are using methods in the
oracleMobile.connectors.<connector> or oracleMobile.custom.<apiName>
namespace.

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/motd" : "1.0"},
 "connectors" : {"/mobile/connector/geocoder": "1.0"}
 }
 }
}

In this example, a call to any method in the oracleMobile.custom.motd
namespace uses version 1.0 by default.

For more information, see package.json Contents.

• Include the options.versionToInvoke property in the request and set it to the
version that you want to use (represented as a string). If you specify the version
number this way, then it overrides what you may have specified in the
package.json file.

req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 20
Specifying the API Version in Calls to Custom and Connector APIs

20-120

Note:

If you are using a method from the generic oracleMobile.rest
namespace, then put the version in the Oracle-Mobile-API-Version
header instead of the options.versionToInvoke property.

When you declare dependencies using the package.json file, then it’s easier to keep
track of those dependencies than when you use the options.versionToInvoke
property to declare dependencies. When you use package.json for this purpose, the
API Designer displays the dependencies in a table below the list of implementations.
When you prepare to publish your API, you’re prompted to publish any unpublished
dependent APIs.

However, if you use the options.versionToInvoke property to declare the version of a
dependent API, the API Designer won’t be aware of that dependency and won’t
prompt you with information when you publish the calling API. In this case, you’ll need
to remember to publish the dependent API yourself.

Using Generic REST Methods to Access APIs
Earlier versions of the custom code SDK used oracleMobile.rest methods to access
custom, platform, and connector APIs. To ensure backwards compatibility, these
methods continue to be available.

The legacy methods take two options: optionsList, which you use to pass request
details, and handler, which is an optional function to be executed by the method. If
you don’t include the handler argument, then the method returns a promise. A
promise represents the result of an asynchronous request. At the time it is issued, the
request may or may not have completed. You typically use a promise with the then
function.

If the handler function makes calls to other custom, platform, or connector APIs, then
you must follow Request.js conventions as described at https://github.com/request/
request.

This API has legacy and asynchronous methods for each HTTP operation, as shown
in the next table. The difference between the legacy and asynchronous methods is
that asynchronous methods don’t have a handler argument. They always return a
promise.

HTTP Operation oracleMobile.rest Methods

GET get(optionsList, handler)
getAsync(optionsList)

PUT put(optionsList, handler)
putAsync(optionsList)

POST post(optionsList, handler)
postAsync(optionsList)

DELETE del(optionsList, handler)
delAsync(optionsList)

HEAD head(optionsList, handler)
headAsync(optionsList)

Chapter 20
Using Generic REST Methods to Access APIs

20-121

https://github.com/request/request
https://github.com/request/request

HTTP Operation oracleMobile.rest Methods

OPTIONS options(optionsList, handler)
optionsAsync(optionsList)

PATCH patch(optionsList, handler)
patchAsync(optionsList)

Here’s an example of using an oracleMobile.rest method to access the Database
Service API. Notice how it uses optionsList to pass in the URI and query string, and
to convert the request body to JSON.

// The request body looks like this
// {title:'Water heater is leaking', technician:'jwhite',customer:'Lynn
Smith'}
service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 var optionsList = {
 uri: '/mobile/platform/database/objects/FIF_Incidents',
 qs: req.query,
 json: req.body,
 headers: {
 'Oracle-Mobile-Extra-Fields': 'createdBy,createdOn'
 }
 };

 req.oracleMobile.rest.post(optionsList, function (error, response, body)
{
 var message = error ? error.message : body;
 res.status(response.statusCode).send(message);
 });
});

optionsList Argument
You use the optionsList argument to pass request details in oracleMobile.rest
calls, such as the URI, the body, and the headers. Here are some examples of the
options that you can configure:

body
This option contains the body for a patch, post, or put request. The value must be a
Buffer or a String unless OptionsList.json is set to true. If OptionsList.json is
true, then the body must be a JSON-serializable object. See also the json option in
this list.

headers
This option contains a list of HTTP headers. For example:

optionsList.headers=
{Content-Type : 'application/json;charset=UTF-8'};

Chapter 20
Using Generic REST Methods to Access APIs

20-122

Note:

When you use the json option, you do not need to provide the Content-Type
header. For all other cases, when the request has a body, include this
header and specify the charset.

json
This option can be used in two ways:

• To hold a JavaScript object. In this case, when the request is sent, the object is
converted to JSON and put in the HTTP body, and the Content-Type:
application/json header is added automatically.

• To indicate, by setting the value to true, that the optionsList.body value is a
JavaScript object. In this case, when the request is sent, the optionsList.body
value is converted to JSON and put in the HTTP body, and the Content-Type:
application/json;charset=UTF-8 header is added automatically.

timeout
This option specifies the number of milliseconds to wait for a request to respond
before terminating the request. If you don’t provide this option, then the timeout value
defaults to the time out that’s specified by the Network_HttpRequestTimeout
environment policy.
The value shouldn’t be greater than the Network_HttpRequestTimeout environment
policy for the environment that the implementation is deployed to. Ask your cloud
administrator for the value of this policy setting.
If the target URI is a connector, then the value should be greater than the
Network_HttpConnectTimeout and Network_HttpReadTimeout policies for the
connector. These values are displayed on the connector’s configuration page.

uri
This required option contains the URL fragment that uniquely identifies the API to call.
For example:

/mobile/platform/storage/collections/coll1/objects

In addition to the options listed here, you can provide any of the options that are
specified by the Request.js API. Go to the API documentation at https://
github.com/mikeal/request and scroll down to the section entitled
"request(options, callback)".

Learning About Platform, Custom, and Connector APIs
You can use the API catalog to learn about the platform, custom, and connector APIs.

To access the API catalog, click to open the side menu and then select APIs.

• To see the endpoints for a platform API, scroll to the bottom of the API Catalog,
and then select the API.

• To see the endpoints for a custom API or connector API, open a custom API, click
Implementations, and then click Custom Code API Catalog. From the Show list,
select Connector APIs or select Mobile APIs depending on the API type, and
then select the API to view its endpoints.

Chapter 20
Learning About Platform, Custom, and Connector APIs

20-123

https://github.com/mikeal/request
https://github.com/mikeal/request

In addition to the API Catalog, Oracle Mobile Cloud Enterprise REST API Reference
provides information about the platform APIs. For example, it provides cURL examples
as well as details about request and response bodies and headers.

Chapter 20
Learning About Platform, Custom, and Connector APIs

20-124

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

21
Connectors

In Oracle Mobile Cloud Enterprise (OMCe), you use connectors to simplify calls to
external services, such as enterprise systems and third-party APIs.

OMCe provides connector types for REST, SOAP, Oracle Integration Cloud Service
(ICS), and Oracle Fusion Applications.

What Is a Connector API?
A connector API is an interface for connecting to an external service. Connectors APIs
give you a standard way to connect to external services and at the same time benefit
from OMCe’s built-in security, diagnostics, and analytics features.

Each connector is based on a configuration where you define any connection details,
security policies, and rules for things such as default parameter values and proxy path.

You can call a connector API with a simple REST call from the implementation code of
a custom API.

REST Connector APIs
You can create connector APIs to connect to external REST services. You can then
call these connector APIs from the implementations of your custom APIs.

How REST Connector APIs Work
A REST connector API is an intermediary API for calling REST endpoints in enterprise
systems or third-part APIs. The connector API takes the form of a configuration that
gives your apps a standard way to connect to these REST services and take
advantage of the security, diagnostics, and other features provided by OMCe.

The connector communicates and passes information between the client and the
server using the HTTPS protocol. The information passed can be in the form of XML
or JSON (but only in JSON for services based on Swagger descriptors).

The REST Connector API wizard walks you through creating REST Connector APIs,
from specifying a remote service and setting security policies to testing your endpoints.

Why Use Connectors Instead of Direct Calls to External Resources?
Using a REST Connector API provides you with the following benefits over making
direct calls from your app code to external resources:

• Allows for simplified declarative connection and policy configuration.

• With a Swagger descriptor, determines the available resources and creates
endpoints for you.

21-1

• Provides you with extensive diagnostic information as its tightly integrated with the
OMCe diagnostics framework. Any outbound REST calls made through connector
APIs are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Creating a REST Connector API
Use the REST Connector API wizard to create, configure, and test your connector API.

To get a basic working connector API, you can provide as little as a name for the
connector API and a URL to the external service.

From there, you can:

• Define rules to form specific requests or responses for the data that you want to
access.

• Configure client-side security policies for the service that you’re accessing.

• Test the connection and test the results of calls made to the connection.

You must create a custom API and implementation to enable your apps to call the
connector APIs. To generate the API and implementation automatically, see
Generating Custom APIs for Connectors. If you want to do this manually, create a
custom API with the appropriate resources, and then implement the custom code as
described at Calling Connector APIs from Custom Code.

Basic Connector Setup
You can create a functioning connector by completing the first two pages in the REST
Connector API wizard.

1. Click and select Mobile Apps > APIs from the side menu.

2. Click REST (if this is the first connector API to be created) or New Connector and
from the drop-down list, select REST.

3. Identify your new REST Connector API by providing the following:

a. API Display Name: The name as it will appear in the list of connector APIs.

b. API Name: The unique name for your connector API.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Other than a new version of this connector API, no other connector API can
have the same resource name.

Chapter 21
REST Connector APIs

21-2

c. Short Description: This description will be displayed on the Connectors page
when this API is selected.

4. Click Create.

5. In the General page of the REST Connector API dialog, set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the
Network_HttpRequestTimeout policy, which has a default value of 40,000 ms.
To learn more about policies, see Oracle Mobile Cloud Enterprise Policies.

Note:

If you have a mobile cloud administrator role in addition to your
service developer role, you can open the policies.properties
file to see the value for the network policies for the current
environment from the Administrator view. Otherwise, ask your mobile
cloud administrator for the values.

6. Click Descriptor and enter the connection info for the service.

If you provide a Swagger descriptor URL, the available resources are identified
and displayed, and you can select which ones you want.

Note:

Only standard internet access ports 80 and 443 are supported.
Connection to a service can't be made using a custom port.

7. Click Save.

8. Optionally, click Test, select authentication credentials, and make test calls to the
service.

From there, you can further configure the connector in the following ways:

• (If you have provided a descriptor on the Descriptor page) navigate to the
Resources page and select the methods for the exposed resources.

• Define rules.

• Set security policies.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. That is, you should also
test the custom API (with its implementation) that uses this connector API. See Testing
and Debugging Custom Code. Essentially, if you’re ready to publish the connector
API, you should also be ready to publish the custom API that calls it.

Chapter 21
REST Connector APIs

21-3

If you’ve already published the connector API and then find that you need to change it,
you must create a new version of it. See Creating a New Version of a Connector in
Managing Oracle Mobile Cloud, Enterprise.

Rules
You set rules to define the interactions between your mobile app and a service. Rules
provide a way for you to add default parameter values for all calls to resources on the
service, calls to a specific proxy path, and calls for certain types of operations (verbs).
This helps enforce consistent syntax of the URL string, saves the custom code
developer from having to insert these values, and makes it possible to track the
different calls through analytics.

You can create one or more rules. Each rule can have one or more parameters of type
Query and Header.

If no rules are applied, all calls are passed through the proxy to the existing service.

1. (If the connector is not already open) click and select Mobile Apps > APIs
from the side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Roles.

4. Click New Rule.

5. Click Add Parameter and select a Query or Header parameter type and enter the
query or header name, and its value.

Note:

Although you can define rules to set certain headers by default, the rules
aren’t applied if the client that called the connector directly through
custom code or indirectly, such as from a web browser or mobile app,
has already set the same headers.

In particular, setting the format of the request body is usually done in the
custom code with the Content-Type header, not as a REST Connector
rule. Similarly, setting the format of the response body is also done in the
custom code with the Accept header, not as a REST Connector rule.

You can add as many parameters to a rule as you want but it's better not to
overload a rule with too many operations. A simpler rule construct is easier to
troubleshoot.

6. Expand Resources and edit the remote URL to provide a resource for the rule to
be applied to. The base URL value is what you entered in the setting basic
information step and it can’t be edited.

7. Select Do not apply to lower level resources if you want the rules applied only
to the resource level specified in the Remote URL.

Chapter 21
REST Connector APIs

21-4

8. (Optional) Unselect the HTTP methods that you don’t want applied to rules that
you just defined. By default, all methods are selected.

9. (Optional) Click New Rule to create another rule.

Note:

If you define a rule that conflicts with another rule, the first rule applied
takes precedence and the conflicting rule is ignored.

When you're done, click Save and then Next (>) to go to the next step in
configuring your connector API.

The description of the rule that you just defined is shown in the Rule banner just above
the Default Parameters section. For example, let's say the following values have been
provided:

• Remote URL = https://maps.googleapis.com/maps/api/directions/json?
origin=los+angeles&destination=seattle

• Local URI = myMapAPI

• Rule with the following parameter: Query:key:A3FAEAJ903022

• GET and PUT HTTP methods

The rule description would read as follows:

For GET to https://maps.googleapis.com/maps/api/directions/json?origin=los
+angeles&destination=seattle available at myMapAPI/directions, Include
Query:key=A3FAEAJ903022.

If no rules were created, the description would simply read:

For ALL METHODS to https://maps.googleapis.com/maps/api/directions
available at myMapAPI, No default parameters will be applied.

Now you have a base URI that maps to the existing service. Using our example:

mobile/connector/myMapAPI/directions/json?origin=los
+angeles&destination=seattle maps to https://maps.googleapis.com/maps/api/
directions/json?origin=los+angeles&destination=seattle

Security Policies and Overriding Properties
Before you finalize your connector API, you should consider how to handle its security.
You can use either security policies or authorization headers. Selecting a security
policy that describes the authentication scheme of the service to which you’re
connecting to is the recommended approach.
If you want to use headers, see Security and REST Connector APIs.

Every security policy has properties, called overrides, which you can configure. One
reason to override a policy configuration property is to limit the number of policies that
you have to maintain: rather than creating multiple policies with slightly varied
configurations, you can use the same generic policy and override specific values to
meet your requirements.

To select a security policy and set the policy overrides:

Chapter 21
REST Connector APIs

21-5

1. (If the connector is not already open) click and select Mobile Apps > APIs
from the side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Security.

4. Select the security policy from the list of available policies and click the right arrow
to move it to the Selected Policies list.

Select only a single policy for your connector API. A description of a selected
policy is displayed below the list. To find out more about the supported security
policy types for the REST Connector API, see Security Policy Types for REST
Connector APIs.

5. Specify overrides, if applicable, to the selected policy if you don't want to use the
default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Setting a CSF Key. To
learn about credential keys and certificates, see CSF Keys and Web Service
Certificates.

6. Click Save to save your work or Save and Close to save your work and exit the
REST Connector API wizard.

7. Click Next (>) to go to the next step, testing the connector, Testing in Advanced
Mode.

Setting a CSF Key
If you want to authenticate the user, you must set the csf-key property. You must set
the csf-key property if you’ve selected http_basic_auth_over_ssl_client_policy,
http_samle20_token_bearer_client_policy, or
http_samle20_token_bearer__over_ssl_client_policy.

Chapter 21
REST Connector APIs

21-6

Note:

If you set the csf-key and the security policy has a subject.precedence
property, that property should be set to false. If you need to set
subject.precedence to true, you must also set the
propagate.identity.context property. In the latter case, don’t set csf-key.

Click Keys in the csf-key field in the Security Overrides section to open the Select
or Create a New API Key dialog.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new basic (CSF) credentials key.

To create a new CSF key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and password (the user credentials) for the service to which
you are connecting.

Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list.

The key name value will appear as the override value on the Security page.

If you want to edit some aspect of an existing CSF key, select it from the Available
Keys list and modify the fields as needed. To learn more about CSF keys, see CSF
Keys and Web Service Certificates.

Testing in Advanced Mode
The advanced test page lets you manually set path parameters, add headers, and the
request and response payloads.

To manually configure a connector test:

1. Click the Test navigation link.

2. If you provided a descriptor, turn Test in Advanced Mode to On.

The advanced test page displays automatically if you provided a remote service
url.

3. Select the HTTP method that you want to test from the drop-down list.

Chapter 21
REST Connector APIs

21-7

4. Specify any resource path parameters in the Local URI field as needed for testing
purposes. For example:

directions/json?origin=los+angeles&destination=seattle

The field is automatically prefixed with the local URI that you defined when you
entered an API name. Following our example, the full contents of the field would
look like this:

myMapAPI /directions/json?origin=los+angeles&destination=seattle

Notice that if you defined any rules, the Rules Applied field (below the Body field)
displays numbers that correspond to the rules that are applicable for the selected
operation. The Remote URL field shows the exact string that will be passed to the
service for the test.

5. Add one or more request or response HTTP headers as needed.

These headers are for testing purposes only and won't be added to your REST
Connector API configuration.

6. Click in the HTTP Body field to create your message body (the payload) in the
source editor.

For example:

{
 "status":"ZERO_RESULTS",
 "routes":[]
}

Keep the content of the message body relevant to the purpose of the connector,
that is, don’t bloat the message by adding extraneous data. Including only
pertinent data in the message body facilitates quick transmission of the request or
response.

7. If the service that you're connecting to requires authentication, open the
Authentication section and enter your mobile user credentials for each method
you test. If you’re using default test credentials, you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation that you’ve defined, you may have to enter specific credentials for
each operation or you might be able to use one set of credentials for all the
methods to authenticate your connector with the service.

8. Click Save as current mobile backend default credentials to save the user
name and password that you provide as the default.

9. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current OMCe session.

Chapter 21
REST Connector APIs

21-8

10. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and modify the test parameters.

11. Click Done when you’ve finished testing your endpoints.

Getting the Test Results
Test results are displayed at the bottom of the Test REST API page. The result
indicator is the response status:

• 2xx: indicates a successful connection

• 3xx: indicates a redirection occurred

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

201 CREATED Successful creation through either a PUT or POST operation.

204 NO CONTENT Successful connection but no response body (used for DELETE
and UPDATE operations).

400 BAD REQUEST General error when fulfilling the request, causing an invalid
state, such as missing data or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT
ALLOWED

Error that although the requested URL exists, the HTTP method
isn’t applicable.

409 CONFLICT Error due to potential resource conflict caused, for example, by
duplicate entries

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned.

Test each of your operations and modify them as needed to validate your endpoints.

After your connector API is tested and published, you can go to the Connectors page
to see analytical information about it, such as how often the connector is being called
and what apps are using the connector. See Managing a Connector in Managing
Oracle Mobile Cloud, Enterprise.

Chapter 21
REST Connector APIs

21-9

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

By examining multiple messages, you can more easily determine where issues occur.
For every message that you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. Click Logs on the Administration page to view
logging data. You can also retrieve records from Oracle Fusion Middleware Logging
using the call's ECID.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page, allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Security and REST Connector APIs
OMCe gives you the flexibility to configure a secure connection to external services
through the use of security policies or authorization headers.

Here are the different ways that you can configure a REST Connector API to
communicate with a secured service:

• Configure a security policy.

On the Security tab of the REST Connector UI, decide which policies describe how
the external service that you’re communicating with is secured, and configure it as
necessary. Configuring a security policy is the recommended practice and takes
precedence over setting or configuring authorization headers.

• Set the Oracle-Mobile-External-Authorization header on each request.

If you decide not to configure a security policy, then the next best course of action
is to set the Oracle-Mobile-External-Authorization header for every request
that the connector makes. When calling a connector API through custom code, an
OMCe-specific authorization header is automatically set as the Authorization
header. This original Authorization header that’s set on the connector API
request is used to pass only OMCe authorization and is never passed through to
the external service call. If you set Oracle-Mobile-External-Authorization on
the request, the value of this header will be set as Authorization on the request
to the external service. Set an Oracle-Mobile-External-Authorization header
only when the service that you’re connecting to is secured in a way that isn’t
described by an existing security policy. It won't take effect if one is configured.
Passing the Oracle-Mobile-External-Authorization header in the connector
request takes precedence over an Authorization header rule.

Chapter 21
REST Connector APIs

21-10

When setting this header, include BASIC to denote HTTP Basic Authorization or
BEARER to denote OAuth. For OAuth, setting this header is applicable in cases
where the OAuth token is passed by way of the Authorization header, such as in
the following cases:

– A REST connector is used to call another Oracle Cloud service. The same
access token that was used to authenticate with OMCe is reused to
authenticate with the other service.

– An access token generated by a service is passed to an OMCe custom code
call and set on a REST connector call to obtain the information about the
individual who received the access token as part of an enterprise mashup.

– A person logs on to Facebook and obtains a Facebook access token. The
token is passed to an OMCe custom code call and set on a REST connector
call to retrieve the person’s friends list.

• Configure a rule for the Authorization header.

Lastly, when the Authorization header isn't already being set by other means,
you can create a rule to apply a default Authorization header. On the Rules tab
of the REST Connector UI, create a rule of type Header for Authorization and
provide a value. This approach isn’t recommended as usually the Authorization
header is dynamic or contains sensitive information (passwords). All sensitive
information should be stored in a CSF key, which is why you should configure a
security policy when possible.

Security Policy Types for REST Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector. When
determining what policies to set, consider whether the connection to the service
involves transmitting proprietary or sensitive information. Adding a security policy
ensures the authentication and authorization of the data transmitted.

From the Security page, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including OAuth2, SAML, and HTTP Basic
Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow OMCe supports OAuth2, a system where an
Authentication server acts as a broker
between a resource owner and the client who
wants to access that resources. Of the
different flows (security protocols) offered by
OAuth2, the Client Credentials Grant Flow is
used in OMCe to secure REST connections.
This flow is used when the client owns the
resources (that is, the client is the resource
owner).

Chapter 21
REST Connector APIs

21-11

Security Policy Type Description

HTTP Basic Authentication HTTP Basic authentication allows an HTTP
user agent to pass a user name and password
with a request. It's often used with stateless
clients, which pass their credentials on each
request. It isn't the strongest form of security
though as basic authentication transmits the
password as plain text so it should only be
used over an encrypted transport layer such
as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of
authentication and authorization credentials
among a client, an identity provider, and a
service provider. The client makes a request of
the service provider. The service provider
verifies the identity of the client from the
identity provider. The identity provider obtains
credentials from the client and passes an
authentication token to the client, which the
client then passes to the service provider. The
identity provider verifies the validity of the
token for the service provider and the service
provider responds to the client.

Ask yourself the following questions to determine what kinds of security policies you
need:

• What are the basic requirements of your security policy? Do you need to only
authenticate or authorize users, or do you need both?

• If you need only authentication, do you need a specific type of token and where
will the token be inserted?

For a list of the security policies supported for REST Connector APIs, see Security
Policies for REST Connector APIs. For descriptions of security policy properties that
can be overridden, see Security Policy Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In OMCe, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Setting a CSF Key.

Chapter 21
REST Connector APIs

21-12

A Web Service Certificate allows the app to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. You override a
certificate key by selecting an alias from the drop-down list. The certificate key
available in some security policies for a REST Connector API is the
keystore.sig.csf.key, which is the alias for this property that’s mapped to the alias
of the key used for signing.

Important:

For security policies for REST Connector APIs, don’t override the default
value for the keystore.sig.csf.key property. Currently, orakey is the only
valid value for all certificate keys.

Not all security policies contain the same properties. When you select a policy, you
can see which properties are listed in the Policy Overrides. For example, if you
selected http_basic_auth_over_ssl_client_policy, then you’ll see that the policy
contains the csf-key property but none of the certificate keys. However, if you
selected http_saml20_token_bearer_over_ssl_client_policy, then you’ll see both
the csf-key and the keystore.sig.csf.key certificate key.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It’s also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Query and Header Parameters
A Query parameter is the most common type of parameter. Use it to filter, sort, and
search for information. Add a question mark (?) to the end of the URL followed by a
name-value pair. For example:

/directions/distance?origin=Los+Angeles&destination=Seattle

The query specifies that the information wanted is the distance from one location
(origin=Los+Angeles) to another (destination=Seattle).

Chapter 21
REST Connector APIs

21-13

You can see in the example above that the space in the query parameter, Los
Angeles, is encoded by a plus sign, (+). The
Url_PercentEncodeQueryParameterSpaces policy determines how spaces in query
parameters are encoded. If set to true, a space is encoded as a percent sign, (%). If
set to false (the default value), a space is encoded as a plus sign (+).

For example, if Url_PercentEncodeQueryParameterSpaces is set to true , the
outbound URL would be .../distance?origin=Los%Angeles&destination=Seattle.

Note:

If you specify a parameter in the custom code and you also specify that
same parameter in a REST connector rule, the parameter in the custom
code takes precedence and overrides the parameter’s value defined in the
rule.

Query parameters are usually set in rules, however, you can have query parameters in
the remote URL. In such cases, there’s a precedence order for how the parameters
are combined at runtime. See Setting Query Parameters in Remote URLs.

Use a Header parameter for outgoing requests. REST headers are a means of
providing HTTP metadata. For example, the header, Expires, can be used to specify
the amount of time after which a response is considered stale.

Setting Query Parameters in Remote URLs
You can add query parameters to the remote URL. If the remote URL contains a query
parameter and you’re adding query parameters to the runtime resource through rules,
then there is a precedence order of how the parameters are combined:

1. If you're adding a remote URL that has a query parameter U?qp=a to a runtime
resource /r, the query parameter should come after the runtime resource.

For example, if you have the remote URL directions?origin=Pasadena and want to
specify the runtime resource /zones, the full URL should be directions/zones?
origin=Pasadena. Note that a simple concatenation of the URL isn’t done.

2. If you're combining a remote URL with a query parameter U?qp=a with a default rule
qp=b , both query parameters should come after the URL.

For example, if you have a remote URL directions/zones?origin=Pasadena and you
want to add the default rule destination=Anaheim, the resulting URL should be
directions/zones?origin=Pasadena&destination=Anaheim. It’s orthogonal to rules.

3. If you're combining a remote URL U?qp=a with a runtime request /r?qp=c, the
request parameter is appended to the URL.

For example, if you add the request /r?date=2015–04_07T14:30:00.000Z to the
remote URL directions/zones?origin=Pasadena, the result isdirections/zones?
origin=Pasadena&date=2015–04_07T14:30:00.000Z.

Adding Parameters

Parameters can be added as part of the URI path as a child (nested) resource or
added as a query. There are no hard and fast rules as to whether to add parameters to

Chapter 21
REST Connector APIs

21-14

the URI path or to add the parameters in a query. One possible consideration is
whether the parameter is essential to the request. For example, you could use an
identifier, id, to the directions resource in the URI path to get data for a specific
area. If you’re using the parameter as a filter to narrow down the data, then add it in
the query. For example, you could define office as a query parameter, .../
directions/zones?office=Inglewood, to filter locations of offices only in the
Inglewood area.

Besides the remote URL, you can set parameters in the following ways:

• Setting a rule

• Defining a request body

• Defining a test endpoint

• Creating custom code

The parameters are considered to be URL-encoded. If a parameter isn’t already URL-
encoded, it will be encoded when sent to the external service.

Editing a REST Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed. You’ll have to create a
new version of a published connector and make your changes to the new version.

To edit a REST Connector API:

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the draft connector API that you want to edit and click Open.

3. Click Refresh () if you’re using the same descriptor and just want to get the
latest resources.

4. Click Save to test your changes immediately or click Save and Close to save your
current changes and finish the rest of your changes later.

5. Test your changes.

Using Your REST Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

You have two options for creating such a custom API for a REST connector API:

• Generate a custom API for the connector, as described in Generating Custom
APIs for Connectors.

This only works for connector APIs that are based on a descriptor URL.

• Design a custom API and add calls to the connector in the custom API’s
implementation code as described in Calling Connector APIs from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Chapter 21
REST Connector APIs

21-15

Troubleshooting REST Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to Administration in the
side menu and click Logs to see any system error messages or click Request History
to view the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and
the outbound connector calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can
add the URL to the list of trusted URLs at trustedsource.org. To learn more about
what happens when you use an untrusted service URL and other common errors that
can occur when configuring your connector API, see Common Custom Code Errors.

Issues can also arise when connecting to an external service such as when the
service has an invalid SSL certificate or the request is redirected but the cookies aren’t
preserved over the redirect. You can resolve these issues by using the options
argument in custom code to customize the outgoing HTTP requests. See Overriding
SSL Settings for Connectors for details.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See OMCe Policies and Values for a description of the
policy and the supported values. Be aware that this policy must be manually added to
a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

SOAP Connector APIs
You can create connector APIs to connect to SOAP services. You can call these
connector APIs from the implementations of your custom APIs.

How SOAP Connector APIs Work
A SOAP connector API is an intermediary API for calling SOAP endpoints. The
connector API takes the form of a configuration that gives your apps a standard way to
connect to these SOAP endpoints and take advantage of the security, diagnostics, and
other features provided by OMCe.

The key steps to creating a SOAP connector API are establishing a connection to an
external system, examining and selecting a set of possible interactions, and then
modeling them into a reusable API.

Chapter 21
SOAP Connector APIs

21-16

http://trustedsource.org/

The SOAP Connector API wizard walks you through creating SOAP connector APIs,
from specifying the WSDL location of a remote service, setting a port, setting security
policies, to testing your endpoints.

Why Use SOAP Connectors Instead of Direct Calls to External
Resources?

• Allows for simplified declarative connection and policy configuration.

• Allows calls to an external service, along with security policy setup and
credentials, to be encapsulated and used consistently across the mobile API.

• Provides automatic translation of JSON requests to XML and XML responses to
JSON, enabling you to interact with SOAP services without having to work
expressly with XML. In addition, it provides you with the ability to provide the
SOAP envelope itself, giving you the choice of using XML or JSON.

• Lets you dynamically modify HTTP timeout properties via the user interface
without having to bring down the service. This feature is particularly beneficial
when the external SOAP service or network connectivity suffers a slowdown.

• Provides you with extensive diagnostic information as its tightly integrated with the
OMCe diagnostics framework. Any outbound calls made through connector APIs
are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Creating a SOAP Connector API
Use the SOAP Connector API wizard to quickly configure your connector API by
providing a name and description, specifying a port, setting security policies, and
testing it.

Creating a connection to an existing SOAP service can be a simple two-step
operation:

1. Name your connector API.

2. Provide the WSDL of the external service.

Chapter 21
SOAP Connector APIs

21-17

Note:

A timeout can occur when downloading a large WSDL file or when
connecting to a WSDL over high latency networks, which prevents the
creation of the SOAP Connector API. To ensure the WSDL is downloaded,
set the following environment policies before you create the API:

• *.*.Network_HttpConnectTimeout

• *.*.Network_HttpReadTimeout

Set these policies in the development environment in which you’re creating
the SOAP Connector API. A mobile cloud administrator can export the
policies file from the Administration view, edit these values, and import the
modified file back to the development environment.

These policies affect only the connector APIs during design time. The
timeout values that you set while configuring a connector API take effect
during runtime.

For more information on policies, see Oracle Mobile Cloud Enterprise
Policies.

You also have the ability to configure client-side security policies for the service that
you’re accessing and testing and checking the results of your connection.

As soon as it’s created, your connector API appears in the list of connector APIs.
When at least one connector API exists, you’re taken directly to the Connector API
landing page when you click Connectors from the side menu. From there, you can
select the connector API you want and edit it, publish it, create a new version or
update an existing version, or move it to the trash.

To call a connector API, you can create a custom API and configure the API’s
implementation to call the connector. See Calling Connector APIs from Custom Code.

Setting the Basic Information for Your SOAP Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, the address to the remote service, and a
brief description:

1. Click and selectMobile Apps > APIs from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for each of the connector APIs that you can create. If at least one
connector API exists, you'll see the a list of all the connector APIs. You can filter
the list to see only the connector APIs that you're interested in or click Sort to
reorder the list.

2. Click SOAP or New Connector and select SOAP from the drop-down list.

Each time you create a SOAP Connector API, the New SOAP Connector API
dialog appears. This is where you enter the basic information for your new
connector API.

Chapter 21
SOAP Connector APIs

21-18

3. Identify your new SOAP Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myOrderApi.

Note:

The names you give to a connector API (the value you enter in the
API name field) must be unique among connector APIs.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API.

For example, myorderapi.

By default, this name is appended to the base URI as the resource name for
the connector API. You can see the base URI below the API Name field.

The connector API name must consist only of lowercase alphanumeric
characters. It can’t include special characters, wildcards, slashes /, or curly
braces {}. A validation error message is displayed if you enter a name that’s
already in use.

If you enter a different name for the API here, the change will automatically be
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. WSDL Location: Enter the address of the existing SOAP service that this
connector API will call. For example: http://example.com/incidentreport/
reports.wsdl

You can also copy and paste a WSDL address into this field. To ensure the
WSDL you’re using is valid within the scope supported by OMCe, see
Troubleshooting SOAP Connector APIs.

Chapter 21
SOAP Connector APIs

21-19

Note:

When specifying a port in the URL, only standard internet access
ports 80 and 443 are supported. Connection to a service can't be
made using a custom port.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured
correctly, the connection will fail. See Common Custom Code Errors.

d. Short Description: Provide a brief description, including the purpose of this
API.

The character count below this field lets you know many characters you can
add.

After you've filled in all the required fields, click Create, which displays the
General page of the SOAP Connector API dialog.

4. Set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the
Network_HttpRequestTimeout policy, which has a default value of 40,000 ms.
To learn about policies, see Oracle Mobile Cloud Enterprise Policies.

Note:

If you have a mobile cloud administrator role in addition to your
service developer role, you can open the policies.properties file
to see the value for the network policies for the current environment
from the Administrator view. Otherwise, ask your mobile cloud
administrator for the values.

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, the click Save
and Close. You can always click Cancel at the top of the General, Port, and
Security wizard pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

Chapter 21
SOAP Connector APIs

21-20

http://trustedsource.org/

After the basic information is provided, you can specify the interaction details for
your connector.

You can always edit your configuration when it's in a Draft state; however, after
you publish your connector API, no changes can be made to it. You can make
changes by creating a new version of an existing connector API.

Selecting a Port
The services and their associated ports that are available for the WSDL that you
provided are listed on the Port page. A port is a set of actions that define the
collaboration and interaction with a web service. A service defines the operations and
structures of the WSDL and exposes those operations as explicit endpoints. Although
a WSDL can contain multiple ports, the SOAP Connector API can only use a single
port at a time. If you need to expose more than one port, you must create one SOAP
Connector API for each port.

On the Port page, you select a single port that lists the available operations for that
service. Optionally, you can provide alternate names for those operations to make
them more meaningful or easier to read.

1. Click the Port navigation link at the top of the SOAP Connector API wizard.

2. Select a port from the service you want in the list.

You can select only one port. Filter the list by entering a string in the Filter field
and click the magnifying glass .

The endpoint field is populated with the service and port endpoint (URL) that are
extracted from the WSDL. By default, the original operation name of the SOAP
service is used to form the REST resource at which the functionality of the
operation would be exposed by the SOAP Connector API.

For example, an operation, CreateIncident, of the service, IncidentReport and
port, ReportPort, can be mapped to the REST resource: /mobile/connector/
myIncidentReportAPI/CreateIncident.

This is the resource path to which custom code would send requests to. You could
expose it differently if you wanted to, for example as the REST resource: /mobile/
connector/myIncidentReportAPI/Create.

Note:

If you save the connector configuration without explicitly selecting a port,
the first available port for the WSDL is selected for you by default. This
action ensures your connector configuration is complete and valid for
testing purposes. You can always change the port as long as the
connector is in Draft state.

3. (Optional) Rename one or more operations to make them more meaningful.

All the operations available in the selected port are listed.

Each operation is mapped to the relative base URI that you entered. For example: the
operation Create maps to Create resource.

Click Next (>) to go to the next step in configuring your connector API.

Chapter 21
SOAP Connector APIs

21-21

Setting Security Policies and Overriding Properties for SOAP Connector APIs
Select one or more security policies that describe the authentication scheme of the
service to which you’re connecting. The security policies have properties, called
overrides, which you can configure. One reason to override policy configuration
properties is to limit the number of policies that you have to maintain: rather than
creating multiple policies with slightly varied configurations, you can use the same
generic policy and override specific values to meet your requirements.

You don’t need to set all the overrides for a policy; however, you should be familiar
enough with a security policy to know which overrides to set.

1. Click the Security navigation link at the top of the SOAP Connector API wizard.

2. Select one or more security policies from the list of available policies and click the
right arrow to move them to the Selected Policies list.

For example, you might want to have wss10_message_protection_client_policy
for message protection and wss_username_token_client_policy for
authentication. Although you can move all the policies to the Selected Policies list,
it’s unlikely that all policies are required for your connector API.
To learn about supported security policy types for SOAP Connector APIs, see
Security Policy Types for SOAP Connector APIs .

3. Select a policy to read its description.

4. Specify any other overrides, if applicable, to the selected policy if you don't want to
use the default values.

To override a policy property, enter or select a value other than the default. For
descriptions of policy properties, see Security Policy Properties.
To set or create a csf-key property, see Setting a CSF Key. To learn about
credential keys and certificates, see CSF Keys and Web Service Certificates.

5. Click Save to save your work or Save and Close to save your work and exit the
SOAP Connector API wizard.

Before you can test your connection, you must save your configuration. If you
proceed to the testing page without saving the API configuration, you'll see a
dialog asking you to save it. You can check the Always save before testing

Chapter 21
SOAP Connector APIs

21-22

option to automatically perform a save operation for you every time you go to the
Testing page.

6. Click Next (>) to go to the next step, testing the connector API.

Setting a CSF Key

Click Keys in the csf-key field in the Security Overrides section to open the Select
or Create a New API Key dialog.

Provide an CSF key in one of the following ways:

• Select an existing key from the Available Keys list (a description of the selected
key is displayed below the list). The list displays only the basic credentials keys
supported by the given policy property.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new CSF credentials key.

To create a new key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and the password (the user credentials) for the service to
which you are connecting. Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list. You can create another key by
clicking New Key or edit an existing one. Save toggles to Select allowing you to
select a key in the list. Click Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note
that the value of the key that you create pertains only to the environment in which
it’s set.

If you want to edit some aspect of an existing credentials (CSF) key, select it from the
Available Keys list and modify the fields as needed.

Chapter 21
SOAP Connector APIs

21-23

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key and
keystore.enc.csf.key because orakey is the only valid value for all of these
certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias. Only mobile cloud administrators can create a new Web Service
Certificate. If you don’t know the alias for the certificate you want, ask your mobile
cloud administrator for the alias.

Testing a SOAP Connector API
Now that you've defined your connector API, you might want to verify your endpoints
and ensure that you’re able to receive the expected results from the web service.
Testing a connection is also an optional step but can save you time by identifying and
fixing problems with your endpoints using the mock JSON body provided before you
finalize the connector API.

Testing Your Connector
Now its time to validate your connector. The Test page lets you test the connection to
a service using sample response data. You’ll see a list of all the operations that you
defined for the port.

1. Click the Test navigation link.

2. Select the operation that you want to test.

The base URI is displayed below the operation name. If you provided an alternate
name for the operation, that name appears, otherwise the default operation name
is shown.

3. Click Examples to see Request, Response, and Fault payload examples (in JSON
format).

These examples are generated based on the request and response definitions in
the WSDL file and can’t be edited. The request and response examples display a
message body. Fault examples may show one or more faults depending on the
operation. They display the error messages returned.

For example, here is what a sample GET request looks like:

{
 "Header": null,
 "Body": {
 "GetIncidentById" : {
 "IncidentId" : 2
 }
 }

Chapter 21
SOAP Connector APIs

21-24

 }
}

Here is the request in XML:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Header/>
 <soapenv:Body>
 <beta:GetIncidentById>
 <beta:IncidentId>2</beta:IncidentId>
 </beta:GetIncidentById>
 </soapenv:Body>
</soapenv:Envelope>

4. (Optional) Click Add HTTP Header to add one or more HTTP headers to apply to
the operation.

You can select a predefined header or a custom header. For each header, select a
header name and provide a value.

These headers are for testing purposes only and won't be added to your SOAP
Connector API configuration.

The default format for the request body and the response body is JSON. You can
set the format of one or both to XML if you prefer. See Using XML Instead of
JSON.

5. Use the sample JSON body provided to test your connector or create your XML
body in the source editor. A JSON sample body that you can edit is generated for
you from the operation that you’ve defined. For example:

 "Body" : {
 "CreateIncident" : {
 "Title" : "new title",
 "EmailAddress" : "jack@oracle.com",
 "ImageLink" : "http://example.com/something"
 }
 }

For comparison, here's what the body looks like in XML:

 <soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Body>
 <beta:CreateIncident>
 <beta:Title>new title</beta:Title>
 <beta:EmailAddress>jack@oracle.com</beta:EmailAddress>
 <beta:ImageLink>something</beta:ImageLink>
 </beta:CreateIncident>
 </soapenv:Body>
 </soapenv:Envelope>

Chapter 21
SOAP Connector APIs

21-25

Click in the editor and enter your own body (in JSON or XML format) if you prefer.
To learn about JSON conventions and the mapping between JSON and XML, see
How Does XML Get Translated into JSON?

6. If you’ve selected a SAML-based security policy, open the Authentication section
and enter your mobile user credentials for each method that you test. If you’re
using default test credentials (Step 7), you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation you’ve defined, you may have to enter specific credentials for each
operation or you might be able to use these credentials for all the methods to
authenticate your connector with the service.

7. Click Save as current mobile backend default credentials to save the user
name and password you provide as the default.

8. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current OMCe session.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and to change the header types and values and test
body.

10. Repeat Steps 1 through 4 for each method.

11. Click Done when you’ve finished testing your endpoints.

You’re returned to the Connector APIs page.

Getting the Test Results
After the test is run, the results are displayed at the bottom of the Test SOAP
Connector API page. The result indicator is the response status:

• 2xx - indicates a successful connection

• 3xx - indicates a redirection occurred

• 4xx - indicates a user error occurred

• 500 - indicates an internal server error

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

Chapter 21
SOAP Connector APIs

21-26

Code Description

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side or
when the service returns a SOAP fault response.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether the connection was successful.

Test each of your operations and modify them as needed to validate your endpoints.
After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector in Managing Oracle Mobile Cloud, Enterprise.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

By examining multiple messages, you can more easily determine where issues occur.
For every message that you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID include an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

SOAP Connector API Design Tips
When you configure your SOAP Connector API, you want to ensure that you have a
well-formed API. You want to make a valid SOAP Connector API but you should
create an API that can be used and understood by others as well.

Here are some design recommendations to consider when you define a SOAP
Connector API:

• Most important, test your connector using the Test page after it’s created and at
every update.

Chapter 21
SOAP Connector APIs

21-27

• When setting the read and connection timeouts for the connector API, you should
set them for a shorter duration than the API timeout. See API Timeouts.

• Provide an HTTPS endpoint wherever possible.

• When calling SOAP services protected with HTTP Basic Authentication, you
should configure the appropriate security policies on the Security page and store
credentials in a CSF key instead of providing the credentials from custom code.

• While writing custom code to call SOAP Connector APIs, make use of the sample
request and response payloads available in the Test page of the SOAP Connector
API wizard. See Calling Connector APIs from Custom Code.

• Keep the payload content relevant to the purpose of the connector, that is, don’t
bloat the payloads by adding extraneous data. Include only pertinent data in the
message body to facilitate quick transmission of the request or response.

• When you're working with complex WSDLs, refer to How Does XML Get
Translated into JSON? for a discussion of JSON translator limitations.

• Date formats should follow the ISO-8601 International Standard for date and time:
YYYY-MM_DD[THH:mm:ss.sss]Z. For example: 2014-10-07T18:35:50.123Z (see
Date and Time Formats for a description of the standard).

How Does XML Get Translated into JSON?
The WSDL file, which describes the service that you want to access, is an XML-based
protocol. The WSDL contains the XML schemas that define the structure of the SOAP
XML requests and responses.

While XML is a standard means of defining SOAP messages, it’s cumbersome and not
well-suited to data-interchange. JSON is the preferred format because it’s a lightweight
and easy-to-read and write data interchange format (compared to XML). It’s much
easier to handle JSON in (Node.js-based) custom code than XML. Here’s a
comparison of XML and JSON features:

XML JSON

Human readable Easier to read and write for developers and machines

Provides a structure to data
making it more informative

Same as XML

Easily processed due to
simplicity of data structure

Even simpler structure making it even easier to process

Structure of the data must be
translated into a document
structure

Structure is based on arrays and records

To make the transmission of data via SOAP Connector APIs possible, OMCe uses a
JSON translator. The JSON translator uses a set of mapping conventions when
converting a JSON request into XML prior to passing the information to a remote
service and translates the XML response back into JSON to be passed on to the
mobile app.

OMCe provides sample JSON messages that you can use as a template to construct
JSON requests and process JSON responses. A sample payload (body), which gets
created for you based on the information in the WSDL, is also translated into JSON.

Chapter 21
SOAP Connector APIs

21-28

http://www.w3.org/TR/NOTE-datetime

If you choose to provide your own XML sample payload, then you should adhere to the
mapping conventions of XML to JSON to ensure a successful translation. The next
section demonstrates those mapping conventions.

Using XML Instead of JSON
Using JSON isn’t required. You might prefer to use XML instead or you might
encounter XML schema constructs that aren’t supported by the translator. You can still
interact with the connector using XML requests and responses.

The response format is determined by the Accept header in custom code, which has a
default value of application/json. To set the format of the request body, add the
XML request body and set the contentType header in the custom code to
application/xml; charset=utf-8. If you want the response in XML format, change
the accept header value to application/xml. For example,

/**
 * The following example calls the 'CreateIncident' resource
 * on a SOAP connector named '/mobile/connector/RightNow'.
 * The request and response are in XML and not JSON.
 *
 */
var options = {
 contentType: 'appplication/xml;charset=UTF-8',
 accept: 'application/xml'
};

//Here we suppose an XML message has been
//stored in the XML variable
var body = xml;

req.oracleMobile.connectors.RightNow.post('CreateIncident', body,
options).then(
 function(result){
 //result.result contains the response XML
 res.status(result.statusCode, result.result);
 },
 function(error){
 res.status(500, error.error);
 }
);

Remember to wrap your XML in a SOAP envelope. Your XML request must contain
the entire SOAP envelope (including any SOAP headers):

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>

Chapter 21
SOAP Connector APIs

21-29

 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you configured a security policy on the connector that requires a SOAP header to be
sent in the message, that header is added automatically to the envelope you provide
so you don’t need to include it in your message. You can see an example of an XML
request wrapped in a SOAP envelope in Testing Your Connector.

Security Policy Types for SOAP Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector.

When determining what policies to set, consider whether connection to the service
involves transmitting proprietary or sensitive information. A few reasons for adding
security policies are:

• Ensuring confidentiality by encrypting messages

• Ensuring the integrity of the data transmitted by using digital signatures

• Authenticating the source or destination

From the Security section, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including SAML, Username Token, and HTTP Basic
Authentication. Oracle WSM supports a wide range of security standards, including
Authentication Policies and Authorization.

Security Policy Type Description

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user agent to pass
a user name and password with a request. It's often used with
stateless clients, which pass their credentials on each request. It
isn't the strongest form of security though because basic
authentication transmits the password as plain text so it should
be used only over an encrypted transport layer such as HTTPS.

Security Assertion Markup
Language (SAML)

SAML is an XML-based open standard data format that allows
the exchange of authentication and authorization credentials
among a client, an identity provider, and a service provider. The
client makes a request of the service provider. The service
provider verifies the identity of the client from the identity
provider. The identity provider obtains credentials from the client
and passes an authentication token to the client, which the
client then passes to the service provider. The identity provider
verifies the validity of the token for the service provider and the
service provider responds to the client.

Username Token A username token is supplied by a web services client as a
means of identifying the requestor by using a user name, and
optionally by using a password or password-equivalent to the
web services provider.

Ask yourself the following questions to determine what kinds of security policies you
need:

Chapter 21
SOAP Connector APIs

21-30

• What are the basic requirements of your security policy? Do you need to
authenticate or authorize users? Do you require only message protection, do you
need both?

• If you need only authentication, do you need a specific type of token and where
will the token be inserted?

• If you need both authentication and message protection, will message protection
be handled in the transport layer?

For a list of supported security policies, see Security Policies for SOAP Connector
APIs.

For descriptions of security policy properties that you can override, see Security Policy
Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In OMCe, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Setting a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the following properties:

• keystore.recipient.alias: The alias for this property is used to identify the
certificate in the keystore.

• keystore.sig.csf.key: The alias for this property is mapped to the alias of the
key used for signing. If no value is selected, the default value, orakey, is used (for
this release, the only valid value for this property is orakey).

• keystore.enc.csf.key: The alias for this property is mapped to the alias of the
private key used for decryption. If no value is selected, the default value, orakey,
is used (for this release, the only valid value for this property is orakey).

Not all security policies contain all three properties. When you select a policy, you can
see which properties are listed in the Policy Overrides. For example, if you selected
wss11_username_token_with_message_protection_client_policy, you’ll see that
you need to set only keystore.recipient.alias . However, if you selected
wss10_username_token_with_message_protection_client_policy, you’ll need to set
all three properties.

Chapter 21
SOAP Connector APIs

21-31

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Editing a SOAP Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed.

To edit a SOAP Connector API:

1. Click and selectMobile Apps > Connectors from the side menu.

Since at least one connector API exists, the Connectors page is displayed.

2. Select the draft SOAP Connector API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

3. Edit the fields for general information, ports, and security policies as needed.

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

4. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

5. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your connector
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your connector API. A published connector API can’t be changed. If you need to make
changes, you can create a new version of the connector API.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

Chapter 21
SOAP Connector APIs

21-32

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting SOAP Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to Administration in the
side menu and click Logs to see any system error messages or click Request History
to view the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and
the outbound connector calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can
add the URL to the list of trusted URLs at trustedsource.org. To learn more about
what happens if you provide an untrusted URL and other common errors that can
occur when configuring your connector API, see OMCe Policies and Values.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See OMCe Policies and Values for a description of the
policy and the supported values. Be aware that this policy must be manually added to
a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

Chapter 21
SOAP Connector APIs

21-33

http://trustedsource.org/

SOAP Connector API Scope

To be sure you’re creating a valid SOAP Connector API in OMCe, keep in mind the
following WSDL constraints:

• Only SOAP version 1.1 and WSDL version 1.2 are supported.

• Only the WS-Security standard is supported. Other WS-* standards, such as WS-
RM or WS-AT, aren’t supported.

• Only document style and literal encoding are supported.

• Attachments aren’t supported.

• Of the possible combinations of input and output message operations, only input-
output operations and input-only operations are supported. These operations are
described in the Web Services Description Language (WSDL) Version 1.2
specification.

ICS Connector APIs
Oracle Mobile Cloud Enterprise (OMCe) enables you to create Integration Cloud
Service (ICS) connector APIs to access on-premises and cloud services through ICS.
You can then call these connector APIs from the implementations of your custom
APIs.

You can also use SOAP connector APIs to connect to enterprise services. However,
using ICS together with ICS connector APIs has the following advantages:

• You write far less code.

• You connect to services more because the integrations are done for you.

• You let the connector API handle the details of interacting with Oracle Integration
Cloud Service.

ICS also makes it easy to map business objects from one application to another. For
example, a service can be created that synchronizes data from a purchase order
between Oracle Sales Cloud to an Oracle CPQ (Configure, Price, and Quote) Cloud
application.

How ICS Connector APIs Work
ICS connector APIS enable you to access services that you have exposed in
Integration Cloud Service (ICS).

ICS itself is a service designed to simplify connectivity between your services and
applications, both cloud-based and on premises. When you work with ICS, you work
with integrations that connect applications and map data between them.

You create an ICS connector API with the ICS Connector wizard, in which you enter
the SOAP proxy for the integration. Once you have done so, you are shown a list of
integrations that correspond with that proxy and can select one. For each ICS
integration, there is a single operation per endpoint. After you select the integration,
you can proceed to test the endpoint.

Once you have created an ICS connector API, you can call it from the implementation
of a custom API.

Chapter 21
ICS Connector APIs

21-34

https://www.w3.org/TR/2002/WD-wsdl12-20020709/

Note:

Only SOAP-based integrations are supported.

ICS Connector API Flow
Here’s the process for designing an ICS connector API:

1. Create ICS Connector API. You create an unbound ICS connector API with the
Integration Cloud Service Connector API wizard.

2. Authenticate with ICS Instance (Design Time Credentials). You pass design
time credentials to connect to the ICS instance. These credentials are the
username and password received when you subscribe to the Oracle Integration
Cloud Service.

3. Connect to the ICS Instance. OMCe locates the ICS instance via the service
URL provided.

4. Discover the Integrations. When authentication is confirmed, a list of active
integrations in the ICS instance is displayed.

5. Select an Integration. You select an integration instance from a list of the
integrations.

6. Access the Integration (Runtime Credentials). You pass credentials to allow
access to the runtime instance of the integration. Runtime credentials are the
username and password you received from the ICS administrator that allow you to
run the integration.

7. Test the ICS Connector API. You test the endpoint using mobile user credentials.

Here’s how the connector API works at runtime:

Chapter 21
ICS Connector APIs

21-35

1. The custom code implementation of one of your custom APIs calls the connector
API. Information is then passed to the connector implementation, and the
implementation extracts the payload from the request.

2. A connection is made to the ICS service via the service URL. The service verifies
the design-time credentials passed to it and the active integrations are exposed.

3. Runtime credentials are passed from ICS to either the on-premises agent or to a
single cloud service to access the selected service integration.

4. Information is passed back through the integration (and, for on-premises
applications, via the on-premises agent) to the connector API and back to the
custom API.

How Do I Create an ICS Connector API?
Creating an ICS Connector API consists of four stages:

1. Creation: You’ve named the API and provided a description. Once created the
API exists in a Draft state.

2. Connection: You’ve provided the URL to the ICS service and your design time
credentials, which give you access to the ICS service.

Note:

The design time credentials can be saved so you only need to do it once
per ICS instance. It’s important to note that you can only use the
credentials that you saved. That is, if other developers want to access
this instance, they’ll have to enter their own credentials at least once
themselves.

Chapter 21
ICS Connector APIs

21-36

3. Discovery: OMCe locates the ICS service and obtains instances of the active
integrations available from the service.

4. Configure: You’ve selected (or created) a CSF key for the security policy and
provided your runtime credentials.

5. Test: Now you can test your endpoint to validate the connection to the service.

Setting the Basic Information for Your ICS Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and connection timeout
settings.

1. Click and select Mobile Apps > APIs.

The Connectors page appears. If no connector APIs have been created yet, you'll
see a REST Connector icon, a SOAP Connector icon, and an ICS Connector icon.
If at least one connector API exists, you'll see a list of all the connector APIs. You
can filter the list to see only the connector APIs that you're interested in or click
Sort to reorder the list.

2. Click ICS (if this is the first connector API to be created) or New Connector and
from the drop-down list, select ICS.

Each time you create an ICS Connector API, the New ICS Connector API dialog
appears. This is where you enter the basic information for your new connector
API.

3. Identify your new ICS Connector API by providing the following:

• API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myICSService.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

Chapter 21
ICS Connector APIs

21-37

• API Name: Enter a unique name for your connector API. The default value is
a simplified form of the value that you entered for the API Display Name.

For example, myICSService.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

• Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

4. Click Create.

Tthe General page of the ICS Connector API wizard is displayed.

5. Set the timeout values if needed.

Connecting to the ICS instance can take several minutes. You can increase the
timeout values to reduce the chances of a connection time out but be aware that
the values that you apply at design time are also applied at runtime when the
connector calls on the instance. If you do set timeout values, be sure to save your
edits to the General page before proceeding to the next step of the wizard.

Note:

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value for the network policies for the
environment that you’re working in from the Administrator page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Oracle Mobile Cloud Enterprise Policies.

Chapter 21
ICS Connector APIs

21-38

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0 mms means an infinite timeout is permitted.

6. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always click Cancel at the top of the General, Integration, and
Runtime Security pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

7. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for
your connector API.

You can always edit your configuration when it's in a Draft state. You can make
changes to a connector API that's in the Published state by creating a new version of
it. For information on creating a new version, see Creating a New Version of a
Connector.

Connecting to an Integration Cloud Service Instance
This is where you select the Integration Cloud Service (ICS) instance that you want or
create a connection to an ICS instance. If this is the first time that you’re creating an
ICS connector API, the Select Connection drop-down list won’t be available and you’ll
have to create a connection to the instance.

Making a connection consists of the following phases:

• Selecting or creating an ICS instance and authentication

• Connecting to the server hosting the active integrations

• Selecting the active integration

You perform or observe these operations on the Integrations page of the Integration
Cloud Service Connector API wizard.

Selecting or Creating an ICS Instance Connection
1. If at least one integration instance exists, select an integration instance from the

Select Connection drop-down list; otherwise, go to Step 2 to create an instance.

Chapter 21
ICS Connector APIs

21-39

2. Enter a name to identify this Integration Cloud Service instance in the Connection
Name field.

This name will be added to the list of integration instances.

3. Enter the address of the server that hosts the integrations in the Service URL
field.

You get the URL of the service from the service administrator of the Oracle Cloud
Integration Service. The URL takes the form hostname/ics.
You can save time by verifying that the URL you’re providing is trusted at
trustedsource.orgs, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

4. Enter your user name and password that you were given to access the integration.

These are the design time credentials that enable you to access the Oracle
Integration Cloud Service. These are the user name and password you received
when you subscribed to the service.

5. Select Remember My Credentials so that the next time you select or create an
integration instance, your credentials are already preloaded.

These credentials are specific to the individual OMCe user and aren’t provided if
another OMCe user tries to access the same integration instance.

6. Click Connect.

After you’ve created an integration instance, you’ll be able to select it from the Select
Connection drop-down list the next time you come back to the wizard.

Selecting an Active Integration
When the connection to the server hosting the integrations is made, the Integrations
page of the wizard displays all the active integrations where a single cloud service or
on-premises solution is exposed as an integration-friendly API. Non-active integrations
or integrations that push events from one cloud service or on-premises solution to
another aren’t listed. Each integration is displayed with its name, version, and
description.

1. Filter the list by entering part of its name, description, or integration type.

Chapter 21
ICS Connector APIs

21-40

http://trustedsource.org/

You can sort the list in either ascending or descending order based on name,
creation date, last update, or type.

2. Select the integration you want.

Click the information icon to see details about the integration including a link to the
WSDL for the integration.

Note:

Remember, that currently, only SOAP-based integrations are supported.

3. Click Save.

4. Click Next (>) to go to the next step in configuring your connector API.

Editing the ICS Connector API
If you go to the RunTime Security page and change your mind about the integration
you selected, you can go back and select a different integration. The list of integrations
you see might not be the latest available though. If you do go back, be sure to refresh
the page before selecting another integration. Also, you’ll have to re-authenticate
yourself to access the list of integrations if you didn’t save your credentials previously.

Chapter 21
ICS Connector APIs

21-41

Note:

Once you’ve moved on to the Test page, you won’t be able to go back to the
Integrations page to select a different integration. If you return to the
Integrations page from the Test page, you’ll see only the integration that
you’ve selected.

1. Click Integrations in the navigation links at the top of the wizard.

The page displays only the integration you originally selected.

2. Click Refresh on the Integration page of the wizard.

3. Confirm the refresh action.

The Integrations page is displayed at the authentication phase. The connection
name and service URL you provided previously are shown as information only.

4. If you previously selected the Remember My Credentials option, click Connect.

If you didn’t select that option, enter your design time user credentials and click
Connect.
Credentials are saved securely in the OMCe backend. You only need to save
them once for that user’s devices and browsers. Note that no sensitive information
is stored locally.

5. Select the active integration you want from the list after the connection is
completed.

6. Click Save.

7. Click Next (>) to go to the next step in configuring your connector API.

Setting Runtime Security for the ICS Connector API
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Chapter 21
ICS Connector APIs

21-42

Provide a CSF Key in one of the following ways:

• Click Select Existing and select an existing key from the Available Keys list in the
Select or Create a New API Key dialog. A description of the selected key is
displayed below the list. The list displays only the keys supported by the client
policy, which could be http_basic_auth_over_ssl_client_policy,
wss_http_token_over_ssl_client_policy,or
wss_username_token_over_ssl_client_policy.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new basic (CSF) credentials key directly on the Security page.

For the steps on creating a key, see Creating a New CSF Key. Alternatively, you
can click Select Existing and create the key in the Select or Create a New API
Key dialog.

Regardless of which security policy is used, the ICS adapter API determines the
correct authentication mode. Once you’ve configured the ICS Connector API for a
given ICS instance, the runtime credentials that you provided for that instance are
remembered the next time you configure an ICS Connector API.

To learn about security policies for the ICS Connector, see Security and ICS
Connector APIs.

Creating a New CSF Key
1. Click the Security navigation link.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter your runtime credentials for the service to which you are connecting.

Contact your ICS administrator to obtain the credentials used to call the Oracle
Integration Cloud Service at runtime. Most likely, you’ll only need to do this once
per ICS instance (all integrations are called with the same app credentials).

5. Repeat the password in the confirmation field.

6. Click Save to continue working in the dialog.

Click Save and Close to save your actions and return to the Security page. Click
Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s set.
If you want to edit some aspect of an existing CSF key, select it from the Available
Keys list and modify the fields as needed.

If you’ve already selected a key but then decide to create a new key, click Clear
Selected to clear all the fields.

To learn about CSF Keys, see CSF Keys.

Testing the ICS Connector API
When you’ve finished configuring your ICS Connector API, test the endpoint:

Chapter 21
ICS Connector APIs

21-43

1. Click the Test navigation link.

There is only one endpoint per integration. The resource banner displays the
method, the resource name, and the URI of service.

2. Expand Examples to see examples of a request, response, and fault payloads
that were obtained from the WSDL.

When you select a connection, all the fields on the page are populated with data
for that connection with the exception of credentials.

If this is the first time a connection is being created, skip this step and go to Step
3.

3. Add one or more request or response HTTP headers as needed.

4. Click in the HTTP Body field to create your message body (the payload) in the
source editor. For example:

{
 "$schema":"http://json-schema.org/draft-04/schema#",

Chapter 21
ICS Connector APIs

21-44

 "title":"Object",
 "description":"An object for this service",
 "type":"object"
}

5. Provide your runtime credentials for testing this endpoint:

a. Enter the name of the mobile backend associated with this connector API.

b. Enter the version of the mobile backend.

c. (Optional) Enter your mobile user credentials, that is, your runtime credentials.

6. (Optional) Click Save as current mobile backend default credentials to allow
the ICS Connection API to remember your credentials. Only your credentials will
be stored. These credentials are applied when you test another ICS Connector
API, REST or SOAP Connector API, or a custom API.

7. Click Test Endpoint.

Test Endpoint toggles to Cancel Test. If you want to stop the test for any reason,
click Cancel Test.

8. Click Done when you’ve finished testing your endpoint.

You’re returned to the Connectors APIs page.

If you want to make changes to the testing parameters, click Reset to clear all the
fields.

Getting the Test Results
Test results are displayed at the bottom of the Test ICS API page. The result indicator
is the response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

Chapter 21
ICS Connector APIs

21-45

• 5xx: indicates a server error occurred

The following table lists the most common status messages you’ll see:

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

403 FORBIDDEN Error due to user not having authorization or if
the resource is unavailable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether or not the connection was successful.

After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

For every message that you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Chapter 21
ICS Connector APIs

21-46

Security and ICS Connector APIs
HTTP Basic Authentication is used for runtime security. Basic authentication allows an
HTTP user agent to pass a user name and password with a request and is often used
with stateless clients, which pass their credentials on each request.

ICS Connector APIs use one of the following security policies:

• http_basic_auth_over_ssl_client_policy. It includes the username and
password credentials in the HTTP header for outbound client requests. This policy
verifies that the transport protocol is HTTPS.

• wss_http_token_over_ssl_client_policy. The username and password
credentials are included in the HTTP header for outbound client requests. Also a
timestamp is sent to the SOAP security header. If the connector detects that the
ICS integration that’s being connected to is protected by the
wss_http_token_over_ssl_service_policy, the connector uses the
corresponding client policy. This policy verifies that the transport protocol is
HTTPS.

• wss_username_token_over_ssl_client_policy. The username and password
credentials are passed as SOAP headers and are added automatically by the
connector. If the security policy is defined in the WSDL for a SOAP-based
integration, this is the policy that’s used. This policy verifies that the transport
protocol is HTTPS.

Although you can set the Oracle-Mobile-External-Authorization header in custom
code to configure a secure connection, it isn’t necessary since authorization to connect
to a service is set when configuring the ICS Connector API.

CSF Keys
In OMCe, the Oracle Credential Store Framework (CSF) is used to manage
credentials in a secure form. A credential store is a repository of security data
(credentials stored as keys) that certify the authority of users and system components.
CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps.

A CSF key is a credentials key. It uses simple authentication (composed of the user
name and the password for the system to which you’re connecting) to generate a
unique key value. You can select an existing CSF key or create one through the Select
or Create a New API Key dialog. To select or create a CSF key, see Creating a New
CSF Key.

CSF keys and their values are specific to the environment in which they’re defined.
That is, if the Development environment is selected, then only the CSF keys and
certificates for the security policies in use by artifacts in that environment are listed in
the CSF Keys dialog. A different set of keys and certificates will be displayed in
another environment, such as Staging. It’s also possible for keys with the same key
name but with different values to exist in multiple environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Chapter 21
ICS Connector APIs

21-47

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting ICS Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to the Administration view
and click Logs to see any system error messages or click Request History to view
the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

Here are some areas of particular interest when troubleshooting:

• Security Errors are Occurring

Take a look at the integration WSDL and see if you can determine what security
policy is being used. Use the SOAP connector directly to create a connector API
and test with different security policies.

• An Integration Isn’t Showing Up

Go to Oracle Integration Cloud Service and look at your integrations there. The
status must be activated, and the source connection type should be SOAP.

• Constructing a Valid ICS Instance URI

Your instance URI must begin with https:// and should end in /ics. Look for the
Email that you received when your user account was provisioned for the ICS
instance. From there, you can find the URI to reach the ICS UI. The same URI
should be used to create the connection in OMCe.

• Identifying Where the Failure Is Occurring

Chapter 21
ICS Connector APIs

21-48

As with other connectors generally finding where a fault was thrown can be
difficult. A 401 or 404 for instance could be returned by the test endpoint, OMCe
itself, the ICS instance that OMCe is connecting to, or the system to which ICS is
connecting.

401 and 404 errors are difficult because they return no message body that might
indicate where the error occurred. However, the headers associated with a 401
and 404 error can sometimes act as a signature to indicate where it originated
from. Likewise, trace the end-to-end flow by searching for corresponding log
entries at each step in the flow.

• Can’t Make a Connection Using Default Protocols

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound
connections. If you need to use an older version of a SSL protocol to connect to an
external system that doesn't support the latest versions of SSL, you can specify
the SSL protocol to use for the connector by setting the
Security_TransportSecurityProtocols environment policy. The policy takes a
comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1,
TLSv1.2. Any extra space around the protocol names is ignored. You can use the
SSLv2Hello protocol to debug connectivity issues with legacy systems that don't
support any TLS protocol. Note that this policy can’t be used to enable SSLv3
endpoints. See OMCe Policies and Values for a description of the policy and the
supported values. Be aware that this policy must be manually added to a
policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

Fusion Applications Connector APIs
Oracle Mobile Cloud Enterprise (OMCe) enables you to create Fusion Applications
(FA) Connector APIs to connect to Oracle Fusion Applications. As a service developer,
you can create connector APIs to make it easier to call these external services from
the implementations of your custom APIs.

A Fusion Applications Connector API enables a mobile backend to use and expose
data from one or more resources available from an Oracle Fusion Applications
instance.

How Fusion Applications Connector APIs Work
A Fusion Applications Connector API enables a mobile backend to use and expose
data from resources available from Fusion-based software-as-a-service (SaaS)
instances, such as Oracle Human Capital Management Solution (HCM), Oracle
Supply Chain Management (SCM), and Oracle Customer Relationship Management
Solution (CRM). These suites of modular services help you with customer and
employee management, sales and supply chain management, and more.

Use the Fusion Applications Connector API wizard to quickly and easily create a
connector API with a customized selection of resources from a Fusion Applications
service or Fusion-based service.

Chapter 21
Fusion Applications Connector APIs

21-49

Here are the some of the advantages to using a Fusion Applications Connector API:

• Makes it easier for customer to explore Fusion-based services through resource
discovery.

• Makes it easier for you to see all the resources, child resources, and resource
attributes available in a given resource instance.

• Lets you provide easy to identify and comprehend user-friendly names and
descriptions for the resources and their attributes in the connector.

• Provides a rich test client that lets you test with Fusion Applications query
parameters.

Fusion Applications Connector API Flow
Here’s how the design-time flow for a Fusion Applications Connector API design-time
goes:

1. Connector Creation phase. An unbound Fusion Applications Connector API is
created with the Fusion Applications Connector API wizard.

2. Connection phase. Design time credentials are passed and a connection to the
Fusion Applications instance is made. The design time credentials are saved in
the Credentials Store Framework (CSF) in OMCe. The Fusion Applications service
description, the Fusion Applications Describe, is retrieved from the external
service.

3. Resource Discovery phase. OMCe locates the Fusion Applications instance via
the Describe URL provided. When authentication is confirmed, OMCe downloads
and parses the Describe resource and displays the list of resources exposed by
the Fusion Applications service. The resources list is examined and the desired
resources to access from the custom code are enabled.

In addition, descriptions for each attribute may be provided. Attribute values are
available only at runtime and can’t be changed during design time.

Chapter 21
Fusion Applications Connector APIs

21-50

Whenever you enable or disable resources or refresh the list of available
resources, the changes are time stamped and tracked in a work area. Each
instance of the connector API has one work area and the contents of that work
area are saved as part of the configuration when the connector API is saved.

4. Attribute Setting phase. Attributes are selected or de-selected based on the
requirements for the connector. Values for resource attributes are modified as
needed.

5. Runtime Security phase. The Oracle Web Services Manager (Oracle WSM)
security policy to be used at runtime is configured.

6. Testing phase. The configuration is saved. The enabled resources are displayed
on the Test page and tested. Mobile user credentials are provided to test the
connector API.

Here’s how the runtime flow goes:

1. Custom code calls the Fusion Applications Connector API. Information is then
passed to the connector implementation. The implementation extracts the payload
from the request.

2. The connector implementation checks whether or not the resource is enabled. If
the endpoint is a GET request, a fields query parameter is added to the request so
that the attributes returned by the Fusion Applications service are limited to only
those attributes that were enabled for the resource at design time.

3. Runtime credentials (which are based on the security policies selected during
design time) are added to the request and the request is sent to the Fusion
Applications service.

4. Information is passed back from the Fusion Applications service to the connector
API and finally back to the custom code.

How Do I Create a Fusion Applications Connector API?
The Fusion Applications Connector API wizard will walk you through the following
stages of creating the connector API:

1. Setting Up the Basics. Name the API and provide a description. When you click
Create, the API exists in a Draft state.

Chapter 21
Fusion Applications Connector APIs

21-51

2. Connecting To and Selecting Resources. Locate the Fusion Applications
service through the Describe URL that you provide and select the resources
available from the service.

3. Selecting Attributes. Choose the attributes for each resource and child resource.

4. Setting the Runtime Security. Select the runtime security policies you need to
connect to the runtime Fusion Applications instance.

5. Testing the Connector API. Test your endpoint to validate the connection to the
service.

Setting the Basic Information for Your Fusion Applications Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and a local URI (from
which the connector API will available to the custom code):

1. Click and selectMobile Apps > Connectors from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for REST, SOAP, ICS, and Fusion Applications. When at least one
connector API exists, you'll see the connector landing page where existing
connector APIs are listed. You can filter the list to see only the connector APIs that
you're interested in or click Sort to reorder the list.

2. Click Fusion Applications if this is the first connector API to be created or New
Connector and select Fusion Applications.

Each time you create a Fusion Applications Connector API, the New Fusion
Applications Connector API dialog appears. This is where you enter the basic
information for your new connector API.

3. Identify your new Fusion Applications Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

Chapter 21
Fusion Applications Connector APIs

21-52

For example, myFAServiceAPI.
For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API. The default value is a
simplified form of the value that you entered for the API Display Name.

For example, myFAServiceAPI.
By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

After you've filled in all the required fields, click Create.The connector API is
created and the General page of the Fusion Applications Connector API wizard is
displayed.

4. Set the timeout values if needed.

Connecting to the Fusion Applications instance can take several minutes. You can
increase the timeout values to reduce the chances of a connection time out but be
aware that the values that you apply at design time are also applied at runtime
when the connector calls on the instance. If you do set timeout values, be sure to
save your edits to the General page before proceeding to the next step of the
wizard.

Note:

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value of the network policies for the
environment that you’re working in from the Administration page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Policies in Managing Oracle Mobile
Cloud, Enterprise.

Chapter 21
Fusion Applications Connector APIs

21-53

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, then the default value
(20 seconds) of the environment-level HTTP Read Timeout policy is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always edit your configuration when it's in a Draft state. You can
always click Cancel at the top of the General, Rules, and Security wizard pages to
cancel that particular configuration operation. You’ll be taken back to the
Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

Connecting to a Fusion Applications Instance
This is where you specify the Oracle Fusion Applications instance that you want to
create a connection to via the Describe resource.

Making a connection consists of the following actions:

• Providing the Describe URL to access the metadata of the Fusion Applications
instance that you want

• Providing access authentication (that is, your design time credentials)

• Connecting to the server hosting the resources

You perform these operations on the Resources page of the Fusion Applications
Connector API wizard.

Creating a Fusion Applications Instance Connection
1. Click the Resources navigation link.

2. In the Describe URL field, enter the address of the describe resource where the
Oracle Fusion Applications instance can be accessed.

Chapter 21
Fusion Applications Connector APIs

21-54

Use the describe resource to retrieve the metadata of a resource, which includes
the fields and attribute values in the resource, the resource operations, and any
child resources.
You get the Describe URL from the administrator of the Oracle Fusion
Applications.

The URL takes the form http://host:port/api-name/resources/version/
resource-path/describe.

For example: https://myhost:8080/CommonAPI/resources/1.1/incidents/
describe.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

3. Enter the user name and password that you were given to access the resource.

These are the design time credentials that enable you to access the Oracle Fusion
Applications instance. You should’ve received these credentials when you
registered with Oracle Fusion Applications.

4. Click Connect.

The resources in the Fusion Applications instance are retrieved. Making the
connection can take a few minutes. You can stop the connection by clicking Abort
in the Connecting dialog to stop the process. You’ll be returned to the Resources
page.

After the connection is made, the Describe URL and your design time credentials are
preserved for this connector API.

Selecting Fusion Applications Resources
When the connection to the server hosting the resources is made, the Resources page
of the wizard displays a list of all the resources in the given Oracle Fusion Applications
resource instance. You create a custom configuration by selecting a combination of
top-level resources and child resources. You can see the address of the server hosting
the fusion application services (http://host:port/api-name/resources/version) in the
Service Root field along with the design time credentials user name above the
resources.
A list of resources is displayed on one side of the Resources page. All the resources
are unselected by default. Select at least one resource to include it in your Fusion
Applications Connector API configuration. When you select a resources, its
description, resource paths, and any child resources are displayed in the right panel.

1. Select a resource to enable it and add it to the connector API configuration.

If the list is long, enter a resource name or its description in the Search field to
locate a resource.

When you perform a search and the resource is a child of another resource, it’s
displayed at the same level as the parent resource in the list. Child resources are
displayed in the form <parent_resource>/<child_resource>.

If you change your mind about a selection, you can disable a resource to exclude
it by selecting it again. If the resource has child resources, the parent resource and
all of its child resources are removed

2. Select a resource to see its details, including any child (nested) resources in the
right panel of the page.

Chapter 21
Fusion Applications Connector APIs

21-55

http://trustedsource.org/

The details panel always shows the top-level resource and all of its child resources
even if the resource you currently have selected in the resources list is not a top-
level resource.

Click Refresh to get the most up-to-date list of resources. When you click
Refresh, the current list of resources is discarded. To get the latest set of
resources, OMCe must make a connection to the Describe resource again. You’ll
get a confirmation dialog asking you to confirm that you want to discard the current
set of resources. If you click Confirm, you’ll be taken back to the initial display of
the Resources page where you’ll have to re-enter the Describe URL and your
design time credentials.

3. (Optional) Provide a friendly name for the resource or a description in the Name
field in the Details section.

Friendly names for resources are displayed on the following Attributes page.

The Collection and Single Item paths for the top-level resource, which you can see
just above the child objects are the relative paths at which the resource collection
and the single item resource are available. These paths are relative to the service
root shown at the top of the page.

4. (Optional) Select individual child resources to include in your configuration.

Click Child Objects to include all the child resources of the selected top-level
resource in your configuration

All child resources are displayed at the same level. That is, nested child resources
are not visibly distinct in the list.

Each child resource is listed in the form of a relative path of the collection
containing the child resource.

Click Remove in the dialog box to continue or Cancel to stop the removal.

Chapter 21
Fusion Applications Connector APIs

21-56

5. (Optional) Provide a friendly (identifiable) name for the child resource in the Name
field.

6. Click Next (>) to go to the next step in configuring your connector API.

Setting Resource Attributes
On the Attributes page, you can select the optional attributes you want for each of your
selected resources. Any required attributes are automatically added to the
configuration. Select a resource from the Resources list, view the available attributes
for the resource in the next column, and then select the specific attributes you want to
include in the connector configuration:

1. Click the Attributes navigation link.

On the Attributes page, you’ll see three columns. The first column, Resources, is
the list of resources you previously selected. The second column, Attributes, lists
all the attributes that you can select for a particular resource. The last column,
Selected Attributes, lists required and optional attributes that are pre-selected for
you. When you select an attribute in the second column, it’s added to the list of
selected attribute.

2. Select a resource from the Resources list.

3. Add an attribute for the selected resource in the Attributes to your configuration by
clicking Select Attribute:

Chapter 21
Fusion Applications Connector APIs

21-57

Use your browser’s search function to locate specific attributes.

Click Select All to move all the attributes to the Selected Attributes list.

4. (Optional) Click an attribute in the Selected Attributes list and provide a friendly
name and description for it:

Click Remove All to clear all attributes except the required ones from the list.

5. Click Save to save your configuration.

If you change your mind about the attributes your want, remove the ones you don’t
want (don’t worry, they’ll be added back to the Attributes list) and make new
selections.

6. Click Next (>) to go to the step in configuring your connector API.

Editing the Fusion Applications Connector API
If you know that the resources available through the describe resource have changed,
you can refresh it to see the most up-to-date list of resources.

Note:

As long as the Fusion Applications connector API is in Draft state, you can
edit the connector configuration

1. Click the Resources navigation link.

The page displays only the resources you originally selected.

2. Click Refresh.

When you click Refresh on the Resources page, you’ll be told that the current
resources will be discarded. If you click Confirm in the dialog, you’ll be taken back
to the initial view of the Resources page, where you’ll have to re-enter the
Describe URL and your design time credentials. The URL is re-queried and the
latest resources are then displayed. The refresh action doesn’t change any of the
resource selections, friendly names, or descriptions that you’ve already provided.
However, if you connect to a different service by entering a different Describe
URL, you’ll see a completely new set of resources and you’ll have to provide
friendly names for the ones you select.

Chapter 21
Fusion Applications Connector APIs

21-58

3. Confirm the refresh action.

The Resources page is displayed at the authentication phase. The Describe URL
and the design time credentials you provided previously are shown.

4. Click Connect to reconnect to the Fusion Applications service or enter a new
Describe URL and your design time credentials if you want to change to a different
Fusion Applications service.

5. Change the enabled settings for the resources as needed.

If you reconnected to the same service, your previous selections are kept.

6. Click Save.

7. Click Next (>) to go to the step in configuring your connector API.

Setting Runtime Security for the Fusion Applications Connector API
The Fusion Applications service determines the security policies used by the service.
You have the option of selecting the corresponding client policies for the connector
API from the Runtime Security page.

The Fusion Applications Connector API supports OAuth Authentication, HTTP Basic
Authentication, and Security Assertion Markup Language (SAML). To learn more
about these policies, see Security Policy Types for Fusion Applications Connector
APIs.

1. Click the Runtime Security navigation link.

Chapter 21
Fusion Applications Connector APIs

21-59

2. Select one or more security policies and move them to the Selected Policies
column.

When you select a policy, you can see its description below the Available Policies
panel.

3. Specify values for the policy overrides for each policy (if applicable) if you don’t
want to use the default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Providing a CSF Key.

4. Click Save to save your work or Save and Close to save your work and exit the
Fusion Applications Connector API wizard.

5. Click Next (>) to go to the next step, testing the connector.

.

Providing a CSF Key
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list in the Select or Create a New
API Key dialog. A description of the selected key is displayed below the list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Click New Key in the dialog and create a new basic (CSF) credentials key as
described in Create a New CSF Key.

To learn about CSF keys, see CSF Keys and Web Service Certificates.

Creating a New CSF Key
1. Click the keys icon in the csf-key field.

2. Click New Key in the Select or Create a New API KEy dialog box.

3. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

4. Enter a brief description of the key's purpose.

5. Enter your runtime credentials for the service to which you are connecting.

Contact your Fusion Applications administrator to obtain the credentials used to
call the Oracle Fusion Applications service at runtime. Most likely, you’ll only need
to do this once for each Fusion Applications instance (all services are called with
the same app credentials).

6. Repeat the password in the confirmation field.

7. Click Save to continue working in the dialog.

The key name value appears as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s
set.

Chapter 21
Fusion Applications Connector APIs

21-60

If you want to edit some aspect of an existing CSF key, then select it from the
Available Keys list and modify the fields as needed. To learn about CSF Keys, see
CSF Keys and Web Service Certificates.

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key because orakey is the
only valid value for all of these certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias.

Only mobile cloud administrators can create a new Web Service Certificate. If you
don’t know the alias for the certificate you want, ask your mobile cloud administrator
for the alias. To set CSF keys and certificates from the Administration page, see
Credentials (CSF Keys and Certificates) in Managing Oracle Mobile Cloud, Enterprise.

Testing the Fusion Applications Connector API
When you’ve finished configuring your Fusion Applications Connector API, test the
endpoints. You test one endpoint at a time.

1. Click the Test navigation link.

2. Select the endpoint you want to test.

Endpoints are listed on the left side of the page. Enter a partial resource name in
the filter field to narrow the list to make it easier to find the endpoint you want.
When you select an endpoint, the method, the resource name, and the URI of
service is displayed on right side of the page.

3. Set the default test credentials if you’re in the design phase and just want to see if
your endpoints are valid, or if you want to test multiple endpoints during the
session. Otherwise, skip this step and fill out the fields in the Authentication
section for each method you test.

a. Click Default Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. If both OAuth and HTTP Basic Authentication are enabled for the mobile
backend, select one in the Authentication Method field to use for testing.

d. Click Save to apply the credentials.

4. Click Request and expand Parameters.

When you select a GET method, all the available query parameters are displayed
on the Request tab.

a. For a GET method, enter a parameter value.

You can enter a value in the empty field next to the parameter description to
test with or use the value, if any, provided in the example.

Chapter 21
Fusion Applications Connector APIs

21-61

Ordinarily, when invoking Fusion Application services, you could use the
expand parameter to include the data for a child resource in a response when
querying the parent resource. However, in the Fusion Applications connector,
field parameters are implicitly added to the requests sent to the Fusion
Application service.

Note that the service is unable to handle the field parameters in the request
and the expand parameter when both are used together.

To ensure that data for both the parent and child resources are included in the
response, you must add field parameters that explicitly list the attributes for
both parent and child. For example, let’s say you had a parent resource,
employee, with the attributes FirstName and LastName and the child resources,
directReports, assignments, and photo with the respective attributes,
PersondId, AssignmentName, and Image. You’d add a field parameter with the
following values:

fields=FirstName, LastName; directReports:PersonId;
assignments:AssignmentName; photo:Image

If you do use the field parameter, be aware that the values that you provide
in the parameter override the selections you made on the Attributes page.

b. (Optional) Click Example to view the example body, if one was provided. For
methods other than GET, enter an alternate example to test with by clicking
Use Example. The provided example body is copied into the text box. You
can edit the example as needed.

c. (Optional) Click Schema to view the request body schema if one was
provided.

5. Expand HTTP Headers and click Add HTTP Header to add a header.

Select the header that you want to include for testing purposes and provide a
value in the text field.

6. Expand Authentication, select the mobile backend and its version that are
associated with this API, and enter your mobile user credentials. If both OAuth and

Chapter 21
Fusion Applications Connector APIs

21-62

Http Basic Authentication are enabled for the mobile backend, select one in the
Authentication Method field to use for testing.

7. Click Response.

8. Expand the status code and click Example or Schema to review the example or
schema for the response body, if you provided one.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, then click Cancel Test.
If you want to make changes to the testing parameters, click Reset to clear all the
fields.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. You should also test the
custom API (with its implementation) that uses this connector API. Essentially, if you’re
ready to publish the connector API, then you should also be ready to publish the
custom API that calls it.
If you need to make changes to a connector API that's in the Published state, create a
new version of it. For information on creating a new version, see Creating a New
Version of a Connector in Managing Oracle Mobile Cloud, Enterprise.

Getting the Test Results
Test results are displayed at the bottom of the Test page. The result indicator is the
response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

404 NOT FOUND Error due to an invalid connector ID. An
associated connector with the given ID
couldn’t be found.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Security Policy Types for Fusion Applications Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive. When determining what policies to set, consider whether the connection to the
service involves transmitting proprietary or sensitive information. Adding a security
policy ensures the authentication and authorization of the data transmitted.

From the Security page, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including OAuth2, SAML, and HTTP Basic
Authentication.

Chapter 21
Fusion Applications Connector APIs

21-63

Security Policy Type Description

OAuth2 and the Client Credential Flow OMCe supports OAuth2, a system where an
Authentication server acts as a broker
between a resource owner and the client who
wants to access that resources. Of the
different flows (security protocols) offered by
OAuth2, the Client Credentials Grant Flow is
used in OMCe to secure connections. This
flow is used when the client owns the
resources (that is, the client is the resource
owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP
user agent to pass a user name and password
with a request. It's often used with stateless
clients, which pass their credentials on each
request. It isn't the strongest form of security
though as basic authentication transmits the
password as plain text so it should only be
used over an encrypted transport layer such
as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of
authentication and authorization credentials
among a client, an identity provider, and a
service provider. The client makes a request of
the service provider. The service provider
verifies the identity of the client from the
identity provider. The identity provider obtains
credentials from the client and passes an
authentication token to the client, which the
client then passes to the service provider. The
identity provider verifies the validity of the
token for the service provider and the service
provider responds to the client.

For a list of the security policies supported for Fusion Applications Connector APIs,
see Security Policies for Fusion Applications Connector APIs. For descriptions of
security policy properties that can be overridden, see Security Policy Properties.

CSF Keys and Web Service Certificates
In OMCe, the Oracle Credential Store Framework (CSF) is used to manage
credentials in a secure form. A credential store is a repository of security data
(credentials stored as keys) that certify the authority of users and system components.
A credential can hold user name and password combinations, tickets, or public key
certificates. This data is used during authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Providing a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)

Chapter 21
Fusion Applications Connector APIs

21-64

or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the property, keystore.sig.csf.key. The alias for
this property is mapped to the alias of the key used for signing. If no value is selected,
the default value, orakey, is used (for this release, the only valid value for this property
is orakey).

When you select a policy, you can see which properties are listed in the Policy
Overrides.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

To set CSF keys and certificates from the Administration page, see Credentials (CSF
Keys and Certificates) in Managing Oracle Mobile Cloud, Enterprise.

Using Your Fusion Application Connector API in an App
To use a connector in a mobile app, you first have to wrap calls to the connector API in
a custom API and deploy that API. Such a custom API could also contain additional
logic to process the data returned from the call to the connector.

This allows the app to access the connector's functionality by calling the custom API.
The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

Alternatively, you can do this automatically. See Generating Custom APIs for
Connectors.

You make calls to connector APIs using JavaScript code in the custom API's
implementation. When you implement a custom API, you can view the available
connectors and their details in a special version of the API Catalog that’s available to
custom APIs. (The API Catalog that’s available to client apps doesn’t contain
connector APIs.)

Chapter 21
Fusion Applications Connector APIs

21-65

Troubleshooting Fusion Applications Connector APIs
A great source of debugging information are the system message logs. Depending on
your role, you or your mobile cloud administrator can go to the Administration view and
click Logs to see any system error messages or click Request History to view the
client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See OMCe Policies and Values for a description of the
policy and the supported values. Be aware that this policy must be manually added to
a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

You won't be able to test a Fusion Applications connector that hasn't been modified
since June 2017 unless you save the connector first. Saving the connector
regenerates the RAML from the descriptor. You can see when the connector was last
modified by selecting it on the Connectors page and expanding the History panel.

Chapter 21
Fusion Applications Connector APIs

21-66

22
SOAP Connector APIs

You can create connector APIs to connect to SOAP services. You can call these
connector APIs from the implementations of your custom APIs.

How SOAP Connector APIs Work
A SOAP connector API is an intermediary API for calling SOAP endpoints. The
connector API takes the form of a configuration that gives your apps a standard way to
connect to these SOAP endpoints and take advantage of the security, diagnostics, and
other features provided by OMCe.

The key steps to creating a SOAP connector API are establishing a connection to an
external system, examining and selecting a set of possible interactions, and then
modeling them into a reusable API.

The SOAP Connector API wizard walks you through creating SOAP connector APIs,
from specifying the WSDL location of a remote service, setting a port, setting security
policies, to testing your endpoints.

SOAP Connector API Design Process
Here’s the process for designing a SOAP connector API:

1. A SOAP Connector API is created in OMCe using the SOAP Connector API
wizard and is passed to the Asset catalog (the Asset catalog is a repository in
OMCe where API information is stored). The connector API is added to the list of
connector APIs (using the API display name) on the Connectors Manage page on
the Development tab.

2. The WSDL location is passed to the WSDL Parser. The WSDL file describes how
the service is called, what the expected parameters are, and what data structures
are returned. From the data in the WSDL file a sample body is generated.

3. The WSDL Parser goes to the provided WSDL location to obtain the WSDL file.

4. All the available ports for the connector are extracted by the parser and returned to
the Asset catalog, after which, the port can be selected and the connector API
configurations, such as the endpoint URI and custom operation names, are
provided.

5. The Asset Catalog stores the security policies and the request and response
schemas.

Here’s how the runtime flow goes:

22-1

1. Custom code calls the SOAP Connector API. Information is then passed to the
connector implementation. The implementation extracts the JSON payload from
the request.

2. The schemas, security policies, and API configuration are passed to the Asset
catalog.

3. The implementation sends the JSON payload to the JSON translator to translate it
to XML using the schemas that are stored as part of the API configuration.

4. The JSON translator returns the payload in XML format.

5. A SOAP message is constructed from the XML, some HTTP headers (like
context-id) and security-related headers are added and the request is sent to the
external service.

6. An XML response is sent by the service back to the connector API. Step 3 and
Step 4 are repeated. The response is sent to the JSON translator by the connector
implementation to translate the XML response to JSON. The translated response
is sent to the connector API.

7. The connector API sends the JSON response back to the custom code.

Why Do I Want to Use a SOAP Connector API?
Using OMCe connectors in your mobile API gives you advantages over making direct
calls to external services.

Using a SOAP Connector API provides you with the following benefits:

• Allows for simplified declarative connection and policy configuration.

• Allows calls to an external service, along with security policy setup and
credentials, to be encapsulated and used consistently across the mobile API.

• Provides automatic translation of JSON requests to XML and XML responses to
JSON, enabling you to interact with SOAP services without having to work
expressly with XML. In addition, it provides you with the ability to provide the
SOAP envelope itself, giving you the choice of using XML or JSON.

Chapter 22
Why Do I Want to Use a SOAP Connector API?

22-2

• Lets you dynamically modify HTTP timeout properties via the user interface
without having to bring down the service. This feature is particularly beneficial
when the external SOAP service or network connectivity suffers a slowdown.

• Is tightly integrated with the OMCe diagnostics framework, which provides you
with extensive diagnostic information. This is especially useful when debugging,
for example, any outbound SOAP call that’s logged in a connector history log that
you can view.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time so that the terms of that
interaction aren’t dependent on user input at runtime. This protects both the end
system and your mobile backend from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external systems.

• With any change in the interface for a service, lets you handle any necessary
updates, testing, and migration in one place.

Why Use SOAP Connectors Instead of Direct Calls to
External Resources?

• Allows for simplified declarative connection and policy configuration.

• Allows calls to an external service, along with security policy setup and
credentials, to be encapsulated and used consistently across the mobile API.

• Provides automatic translation of JSON requests to XML and XML responses to
JSON, enabling you to interact with SOAP services without having to work
expressly with XML. In addition, it provides you with the ability to provide the
SOAP envelope itself, giving you the choice of using XML or JSON.

• Lets you dynamically modify HTTP timeout properties via the user interface
without having to bring down the service. This feature is particularly beneficial
when the external SOAP service or network connectivity suffers a slowdown.

• Provides you with extensive diagnostic information as its tightly integrated with the
OMCe diagnostics framework. Any outbound calls made through connector APIs
are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Chapter 22
Why Use SOAP Connectors Instead of Direct Calls to External Resources?

22-3

Creating a SOAP Connector API
Use the SOAP Connector API wizard to quickly configure your connector API by
providing a name and description, specifying a port, setting security policies, and
testing it.

Creating a connection to an existing SOAP service can be a simple two-step
operation:

1. Name your connector API.

2. Provide the WSDL of the external service.

Note:

A timeout can occur when downloading a large WSDL file or when
connecting to a WSDL over high latency networks, which prevents the
creation of the SOAP Connector API. To ensure the WSDL is downloaded,
set the following environment policies before you create the API:

• *.*.Network_HttpConnectTimeout

• *.*.Network_HttpReadTimeout

Set these policies in the development environment in which you’re creating
the SOAP Connector API. A mobile cloud administrator can export the
policies file from the Administration view, edit these values, and import the
modified file back to the development environment.

These policies affect only the connector APIs during design time. The
timeout values that you set while configuring a connector API take effect
during runtime.

For more information on policies, see Oracle Mobile Cloud Enterprise
Policies.

You also have the ability to configure client-side security policies for the service that
you’re accessing and testing and checking the results of your connection.

As soon as it’s created, your connector API appears in the list of connector APIs.
When at least one connector API exists, you’re taken directly to the Connector API
landing page when you click Connectors from the side menu. From there, you can
select the connector API you want and edit it, publish it, create a new version or
update an existing version, or move it to the trash.

To call a connector API, you can create a custom API and configure the API’s
implementation to call the connector. See Calling Connector APIs from Custom Code.

Setting the Basic Information for Your SOAP Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, the address to the remote service, and a
brief description:

Chapter 22
Creating a SOAP Connector API

22-4

1. Click and selectMobile Apps > APIs from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for each of the connector APIs that you can create. If at least one
connector API exists, you'll see the a list of all the connector APIs. You can filter
the list to see only the connector APIs that you're interested in or click Sort to
reorder the list.

2. Click SOAP or New Connector and select SOAP from the drop-down list.

Each time you create a SOAP Connector API, the New SOAP Connector API
dialog appears. This is where you enter the basic information for your new
connector API.

3. Identify your new SOAP Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myOrderApi.

Note:

The names you give to a connector API (the value you enter in the
API name field) must be unique among connector APIs.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API.

For example, myorderapi.

By default, this name is appended to the base URI as the resource name for
the connector API. You can see the base URI below the API Name field.

The connector API name must consist only of lowercase alphanumeric
characters. It can’t include special characters, wildcards, slashes /, or curly
braces {}. A validation error message is displayed if you enter a name that’s
already in use.

If you enter a different name for the API here, the change will automatically be
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

Chapter 22
Creating a SOAP Connector API

22-5

c. WSDL Location: Enter the address of the existing SOAP service that this
connector API will call. For example: http://example.com/incidentreport/
reports.wsdl

You can also copy and paste a WSDL address into this field. To ensure the
WSDL you’re using is valid within the scope supported by OMCe, see
Troubleshooting SOAP Connector APIs.

Note:

When specifying a port in the URL, only standard internet access
ports 80 and 443 are supported. Connection to a service can't be
made using a custom port.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured
correctly, the connection will fail. See Common Custom Code Errors.

d. Short Description: Provide a brief description, including the purpose of this
API.

The character count below this field lets you know many characters you can
add.

After you've filled in all the required fields, click Create, which displays the
General page of the SOAP Connector API dialog.

4. Set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the
Network_HttpRequestTimeout policy, which has a default value of 40,000 ms.
To learn about policies, see Oracle Mobile Cloud Enterprise Policies.

Note:

If you have a mobile cloud administrator role in addition to your
service developer role, you can open the policies.properties file
to see the value for the network policies for the current environment
from the Administrator view. Otherwise, ask your mobile cloud
administrator for the values.

Chapter 22
Creating a SOAP Connector API

22-6

http://trustedsource.org/

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, the click Save
and Close. You can always click Cancel at the top of the General, Port, and
Security wizard pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for
your connector.

You can always edit your configuration when it's in a Draft state; however, after
you publish your connector API, no changes can be made to it. You can make
changes by creating a new version of an existing connector API.

Selecting a Port
The services and their associated ports that are available for the WSDL that you
provided are listed on the Port page. A port is a set of actions that define the
collaboration and interaction with a web service. A service defines the operations and
structures of the WSDL and exposes those operations as explicit endpoints. Although
a WSDL can contain multiple ports, the SOAP Connector API can only use a single
port at a time. If you need to expose more than one port, you must create one SOAP
Connector API for each port.

On the Port page, you select a single port that lists the available operations for that
service. Optionally, you can provide alternate names for those operations to make
them more meaningful or easier to read.

1. Click the Port navigation link at the top of the SOAP Connector API wizard.

2. Select a port from the service you want in the list.

You can select only one port. Filter the list by entering a string in the Filter field
and click the magnifying glass .

The endpoint field is populated with the service and port endpoint (URL) that are
extracted from the WSDL. By default, the original operation name of the SOAP
service is used to form the REST resource at which the functionality of the
operation would be exposed by the SOAP Connector API.

For example, an operation, CreateIncident, of the service, IncidentReport and
port, ReportPort, can be mapped to the REST resource: /mobile/connector/
myIncidentReportAPI/CreateIncident.

This is the resource path to which custom code would send requests to. You could
expose it differently if you wanted to, for example as the REST resource: /mobile/
connector/myIncidentReportAPI/Create.

Note:

If you save the connector configuration without explicitly selecting a port,
the first available port for the WSDL is selected for you by default. This
action ensures your connector configuration is complete and valid for
testing purposes. You can always change the port as long as the
connector is in Draft state.

Chapter 22
Creating a SOAP Connector API

22-7

3. (Optional) Rename one or more operations to make them more meaningful.

All the operations available in the selected port are listed.

Each operation is mapped to the relative base URI that you entered. For example: the
operation Create maps to Create resource.

Click Next (>) to go to the next step in configuring your connector API.

Setting Security Policies and Overriding Properties for SOAP
Connector APIs

Select one or more security policies that describe the authentication scheme of the
service to which you’re connecting. The security policies have properties, called
overrides, which you can configure. One reason to override policy configuration
properties is to limit the number of policies that you have to maintain: rather than
creating multiple policies with slightly varied configurations, you can use the same
generic policy and override specific values to meet your requirements.

You don’t need to set all the overrides for a policy; however, you should be familiar
enough with a security policy to know which overrides to set.

1. Click the Security navigation link at the top of the SOAP Connector API wizard.

2. Select one or more security policies from the list of available policies and click the
right arrow to move them to the Selected Policies list.

For example, you might want to have wss10_message_protection_client_policy
for message protection and wss_username_token_client_policy for
authentication. Although you can move all the policies to the Selected Policies list,
it’s unlikely that all policies are required for your connector API.
To learn about supported security policy types for SOAP Connector APIs, see
Security Policy Types for SOAP Connector APIs .

3. Select a policy to read its description.

4. Specify any other overrides, if applicable, to the selected policy if you don't want to
use the default values.

To override a policy property, enter or select a value other than the default. For
descriptions of policy properties, see Security Policy Properties.

Chapter 22
Creating a SOAP Connector API

22-8

To set or create a csf-key property, see Setting a CSF Key. To learn about
credential keys and certificates, see CSF Keys and Web Service Certificates.

5. Click Save to save your work or Save and Close to save your work and exit the
SOAP Connector API wizard.

Before you can test your connection, you must save your configuration. If you
proceed to the testing page without saving the API configuration, you'll see a
dialog asking you to save it. You can check the Always save before testing
option to automatically perform a save operation for you every time you go to the
Testing page.

6. Click Next (>) to go to the next step, testing the connector API.

Setting a CSF Key

Click Keys in the csf-key field in the Security Overrides section to open the Select
or Create a New API Key dialog.

Provide an CSF key in one of the following ways:

• Select an existing key from the Available Keys list (a description of the selected
key is displayed below the list). The list displays only the basic credentials keys
supported by the given policy property.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new CSF credentials key.

To create a new key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and the password (the user credentials) for the service to
which you are connecting. Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list. You can create another key by
clicking New Key or edit an existing one. Save toggles to Select allowing you to
select a key in the list. Click Cancel to quit the task.

Chapter 22
Creating a SOAP Connector API

22-9

The key name value will appear as the override value on the Security page. Note
that the value of the key that you create pertains only to the environment in which
it’s set.

If you want to edit some aspect of an existing credentials (CSF) key, select it from the
Available Keys list and modify the fields as needed.

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key and
keystore.enc.csf.key because orakey is the only valid value for all of these
certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias. Only mobile cloud administrators can create a new Web Service
Certificate. If you don’t know the alias for the certificate you want, ask your mobile
cloud administrator for the alias.

Testing a SOAP Connector API
Now that you've defined your connector API, you might want to verify your endpoints
and ensure that you’re able to receive the expected results from the web service.
Testing a connection is also an optional step but can save you time by identifying and
fixing problems with your endpoints using the mock JSON body provided before you
finalize the connector API.

Testing Your Connector
Now its time to validate your connector. The Test page lets you test the connection to
a service using sample response data. You’ll see a list of all the operations that you
defined for the port.

1. Click the Test navigation link.

2. Select the operation that you want to test.

The base URI is displayed below the operation name. If you provided an alternate
name for the operation, that name appears, otherwise the default operation name
is shown.

3. Click Examples to see Request, Response, and Fault payload examples (in JSON
format).

These examples are generated based on the request and response definitions in
the WSDL file and can’t be edited. The request and response examples display a
message body. Fault examples may show one or more faults depending on the
operation. They display the error messages returned.

Chapter 22
Creating a SOAP Connector API

22-10

For example, here is what a sample GET request looks like:

{
 "Header": null,
 "Body": {
 "GetIncidentById" : {
 "IncidentId" : 2
 }
 }
 }
}

Here is the request in XML:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Header/>
 <soapenv:Body>
 <beta:GetIncidentById>
 <beta:IncidentId>2</beta:IncidentId>
 </beta:GetIncidentById>
 </soapenv:Body>
</soapenv:Envelope>

4. (Optional) Click Add HTTP Header to add one or more HTTP headers to apply to
the operation.

You can select a predefined header or a custom header. For each header, select a
header name and provide a value.

These headers are for testing purposes only and won't be added to your SOAP
Connector API configuration.

The default format for the request body and the response body is JSON. You can
set the format of one or both to XML if you prefer. See Using XML Instead of
JSON.

5. Use the sample JSON body provided to test your connector or create your XML
body in the source editor. A JSON sample body that you can edit is generated for
you from the operation that you’ve defined. For example:

 "Body" : {
 "CreateIncident" : {
 "Title" : "new title",
 "EmailAddress" : "jack@oracle.com",
 "ImageLink" : "http://example.com/something"
 }
 }

For comparison, here's what the body looks like in XML:

 <soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:beta="http://xmlns.fixitfast.com/fif/beta">

Chapter 22
Creating a SOAP Connector API

22-11

 <soapenv:Body>
 <beta:CreateIncident>
 <beta:Title>new title</beta:Title>
 <beta:EmailAddress>jack@oracle.com</beta:EmailAddress>
 <beta:ImageLink>something</beta:ImageLink>
 </beta:CreateIncident>
 </soapenv:Body>
 </soapenv:Envelope>

Click in the editor and enter your own body (in JSON or XML format) if you prefer.
To learn about JSON conventions and the mapping between JSON and XML, see
How Does XML Get Translated into JSON?

6. If you’ve selected a SAML-based security policy, open the Authentication section
and enter your mobile user credentials for each method that you test. If you’re
using default test credentials (Step 7), you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation you’ve defined, you may have to enter specific credentials for each
operation or you might be able to use these credentials for all the methods to
authenticate your connector with the service.

7. Click Save as current mobile backend default credentials to save the user
name and password you provide as the default.

8. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current OMCe session.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and to change the header types and values and test
body.

10. Repeat Steps 1 through 4 for each method.

11. Click Done when you’ve finished testing your endpoints.

You’re returned to the Connector APIs page.

Getting the Test Results
After the test is run, the results are displayed at the bottom of the Test SOAP
Connector API page. The result indicator is the response status:

• 2xx - indicates a successful connection

• 3xx - indicates a redirection occurred

• 4xx - indicates a user error occurred

• 500 - indicates an internal server error

Chapter 22
Creating a SOAP Connector API

22-12

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side or
when the service returns a SOAP fault response.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether the connection was successful.

Test each of your operations and modify them as needed to validate your endpoints.
After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector in Managing Oracle Mobile Cloud, Enterprise.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

By examining multiple messages, you can more easily determine where issues occur.
For every message that you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID include an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Chapter 22
Creating a SOAP Connector API

22-13

SOAP Connector API Design Tips
When you configure your SOAP Connector API, you want to ensure that you have a
well-formed API. You want to make a valid SOAP Connector API but you should
create an API that can be used and understood by others as well.

Here are some design recommendations to consider when you define a SOAP
Connector API:

• Most important, test your connector using the Test page after it’s created and at
every update.

• When setting the read and connection timeouts for the connector API, you should
set them for a shorter duration than the API timeout. See API Timeouts.

• Provide an HTTPS endpoint wherever possible.

• When calling SOAP services protected with HTTP Basic Authentication, you
should configure the appropriate security policies on the Security page and store
credentials in a CSF key instead of providing the credentials from custom code.

• While writing custom code to call SOAP Connector APIs, make use of the sample
request and response payloads available in the Test page of the SOAP Connector
API wizard. See Calling Connector APIs from Custom Code.

• Keep the payload content relevant to the purpose of the connector, that is, don’t
bloat the payloads by adding extraneous data. Include only pertinent data in the
message body to facilitate quick transmission of the request or response.

• When you're working with complex WSDLs, refer to How Does XML Get
Translated into JSON? for a discussion of JSON translator limitations.

• Date formats should follow the ISO-8601 International Standard for date and time:
YYYY-MM_DD[THH:mm:ss.sss]Z. For example: 2014-10-07T18:35:50.123Z (see
Date and Time Formats for a description of the standard).

How Does XML Get Translated into JSON?
The WSDL file, which describes the service that you want to access, is an XML-based
protocol. The WSDL contains the XML schemas that define the structure of the SOAP
XML requests and responses.

While XML is a standard means of defining SOAP messages, it’s cumbersome and not
well-suited to data-interchange. JSON is the preferred format because it’s a lightweight
and easy-to-read and write data interchange format (compared to XML). It’s much
easier to handle JSON in (Node.js-based) custom code than XML. Here’s a
comparison of XML and JSON features:

XML JSON

Human readable Easier to read and write for developers and machines

Provides a structure to data
making it more informative

Same as XML

Easily processed due to
simplicity of data structure

Even simpler structure making it even easier to process

Chapter 22
SOAP Connector API Design Tips

22-14

http://www.w3.org/TR/NOTE-datetime

XML JSON

Structure of the data must be
translated into a document
structure

Structure is based on arrays and records

To make the transmission of data via SOAP Connector APIs possible, OMCe uses a
JSON translator. The JSON translator uses a set of mapping conventions when
converting a JSON request into XML prior to passing the information to a remote
service and translates the XML response back into JSON to be passed on to the
mobile app.

OMCe provides sample JSON messages that you can use as a template to construct
JSON requests and process JSON responses. A sample payload (body), which gets
created for you based on the information in the WSDL, is also translated into JSON.

If you choose to provide your own XML sample payload, then you should adhere to the
mapping conventions of XML to JSON to ensure a successful translation. The next
section demonstrates those mapping conventions.

Using XML Instead of JSON
Using JSON isn’t required. You might prefer to use XML instead or you might
encounter XML schema constructs that aren’t supported by the translator. You can still
interact with the connector using XML requests and responses.

The response format is determined by the Accept header in custom code, which has a
default value of application/json. To set the format of the request body, add the
XML request body and set the contentType header in the custom code to
application/xml; charset=utf-8. If you want the response in XML format, change
the accept header value to application/xml. For example,

/**
 * The following example calls the 'CreateIncident' resource
 * on a SOAP connector named '/mobile/connector/RightNow'.
 * The request and response are in XML and not JSON.
 *
 */
var options = {
 contentType: 'appplication/xml;charset=UTF-8',
 accept: 'application/xml'
};

//Here we suppose an XML message has been
//stored in the XML variable
var body = xml;

req.oracleMobile.connectors.RightNow.post('CreateIncident', body,
options).then(
 function(result){
 //result.result contains the response XML
 res.status(result.statusCode, result.result);
 },
 function(error){

Chapter 22
Using XML Instead of JSON

22-15

 res.status(500, error.error);
 }
);

Remember to wrap your XML in a SOAP envelope. Your XML request must contain
the entire SOAP envelope (including any SOAP headers):

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you configured a security policy on the connector that requires a SOAP header to be
sent in the message, that header is added automatically to the envelope you provide
so you don’t need to include it in your message. You can see an example of an XML
request wrapped in a SOAP envelope in Testing Your Connector.

Security Policy Types for SOAP Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector.

When determining what policies to set, consider whether connection to the service
involves transmitting proprietary or sensitive information. A few reasons for adding
security policies are:

• Ensuring confidentiality by encrypting messages

• Ensuring the integrity of the data transmitted by using digital signatures

• Authenticating the source or destination

From the Security section, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including SAML, Username Token, and HTTP Basic
Authentication. Oracle WSM supports a wide range of security standards, including
Authentication Policies and Authorization.

Security Policy Type Description

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user agent to pass
a user name and password with a request. It's often used with
stateless clients, which pass their credentials on each request. It
isn't the strongest form of security though because basic
authentication transmits the password as plain text so it should
be used only over an encrypted transport layer such as HTTPS.

Chapter 22
Security Policy Types for SOAP Connector APIs

22-16

Security Policy Type Description

Security Assertion Markup
Language (SAML)

SAML is an XML-based open standard data format that allows
the exchange of authentication and authorization credentials
among a client, an identity provider, and a service provider. The
client makes a request of the service provider. The service
provider verifies the identity of the client from the identity
provider. The identity provider obtains credentials from the client
and passes an authentication token to the client, which the
client then passes to the service provider. The identity provider
verifies the validity of the token for the service provider and the
service provider responds to the client.

Username Token A username token is supplied by a web services client as a
means of identifying the requestor by using a user name, and
optionally by using a password or password-equivalent to the
web services provider.

Ask yourself the following questions to determine what kinds of security policies you
need:

• What are the basic requirements of your security policy? Do you need to
authenticate or authorize users? Do you require only message protection, do you
need both?

• If you need only authentication, do you need a specific type of token and where
will the token be inserted?

• If you need both authentication and message protection, will message protection
be handled in the transport layer?

For a list of supported security policies, see Security Policies for SOAP Connector
APIs.

For descriptions of security policy properties that you can override, see Security Policy
Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In OMCe, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Setting a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service

Chapter 22
CSF Keys and Web Service Certificates

22-17

Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the following properties:

• keystore.recipient.alias: The alias for this property is used to identify the
certificate in the keystore.

• keystore.sig.csf.key: The alias for this property is mapped to the alias of the
key used for signing. If no value is selected, the default value, orakey, is used (for
this release, the only valid value for this property is orakey).

• keystore.enc.csf.key: The alias for this property is mapped to the alias of the
private key used for decryption. If no value is selected, the default value, orakey,
is used (for this release, the only valid value for this property is orakey).

Not all security policies contain all three properties. When you select a policy, you can
see which properties are listed in the Policy Overrides. For example, if you selected
wss11_username_token_with_message_protection_client_policy, you’ll see that
you need to set only keystore.recipient.alias . However, if you selected
wss10_username_token_with_message_protection_client_policy, you’ll need to set
all three properties.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Editing a SOAP Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed.

To edit a SOAP Connector API:

1. Click and selectMobile Apps > Connectors from the side menu.

Since at least one connector API exists, the Connectors page is displayed.

2. Select the draft SOAP Connector API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

Chapter 22
Editing a SOAP Connector API

22-18

3. Edit the fields for general information, ports, and security policies as needed.

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

4. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

5. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your connector
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your connector API. A published connector API can’t be changed. If you need to make
changes, you can create a new version of the connector API.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting SOAP Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to Administration in the
side menu and click Logs to see any system error messages or click Request History
to view the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and
the outbound connector calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can
add the URL to the list of trusted URLs at trustedsource.org. To learn more about
what happens if you provide an untrusted URL and other common errors that can
occur when configuring your connector API, see OMCe Policies and Values.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system

Chapter 22
Using Your Connector API in an App

22-19

http://trustedsource.org/

that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See OMCe Policies and Values for a description of the
policy and the supported values. Be aware that this policy must be manually added to
a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

SOAP Connector API Scope

To be sure you’re creating a valid SOAP Connector API in OMCe, keep in mind the
following WSDL constraints:

• Only SOAP version 1.1 and WSDL version 1.2 are supported.

• Only the WS-Security standard is supported. Other WS-* standards, such as WS-
RM or WS-AT, aren’t supported.

• Only document style and literal encoding are supported.

• Attachments aren’t supported.

• Of the possible combinations of input and output message operations, only input-
output operations and input-only operations are supported. These operations are
described in the Web Services Description Language (WSDL) Version 1.2
specification.

Chapter 22
Troubleshooting SOAP Connector APIs

22-20

https://www.w3.org/TR/2002/WD-wsdl12-20020709/

23
ICS Connector APIs

Oracle Mobile Cloud Enterprise (OMCe) enables you to create Integration Cloud
Service (ICS) connector APIs to access on-premises and cloud services through ICS.
You can then call these connector APIs from the implementations of your custom
APIs.

You can also use SOAP connector APIs to connect to enterprise services. However,
using ICS together with ICS connector APIs has the following advantages:

• You write far less code.

• You connect to services more because the integrations are done for you.

• You let the connector API handle the details of interacting with Oracle Integration
Cloud Service.

ICS also makes it easy to map business objects from one application to another. For
example, a service can be created that synchronizes data from a purchase order
between Oracle Sales Cloud to an Oracle CPQ (Configure, Price, and Quote) Cloud
application.

How ICS Connector APIs Work
ICS connector APIS enable you to access services that you have exposed in
Integration Cloud Service (ICS).

ICS itself is a service designed to simplify connectivity between your services and
applications, both cloud-based and on premises. When you work with ICS, you work
with integrations that connect applications and map data between them.

You create an ICS connector API with the ICS Connector wizard, in which you enter
the SOAP proxy for the integration. Once you have done so, you are shown a list of
integrations that correspond with that proxy and can select one. For each ICS
integration, there is a single operation per endpoint. After you select the integration,
you can proceed to test the endpoint.

Once you have created an ICS connector API, you can call it from the implementation
of a custom API.

Note:

Only SOAP-based integrations are supported.

ICS Connector API Flow
Here’s the process for designing an ICS connector API:

23-1

1. Create ICS Connector API. You create an unbound ICS connector API with the
Integration Cloud Service Connector API wizard.

2. Authenticate with ICS Instance (Design Time Credentials). You pass design
time credentials to connect to the ICS instance. These credentials are the
username and password received when you subscribe to the Oracle Integration
Cloud Service.

3. Connect to the ICS Instance. OMCe locates the ICS instance via the service
URL provided.

4. Discover the Integrations. When authentication is confirmed, a list of active
integrations in the ICS instance is displayed.

5. Select an Integration. You select an integration instance from a list of the
integrations.

6. Access the Integration (Runtime Credentials). You pass credentials to allow
access to the runtime instance of the integration. Runtime credentials are the
username and password you received from the ICS administrator that allow you to
run the integration.

7. Test the ICS Connector API. You test the endpoint using mobile user credentials.

Here’s how the connector API works at runtime:

Chapter 23
ICS Connector API Flow

23-2

1. The custom code implementation of one of your custom APIs calls the connector
API. Information is then passed to the connector implementation, and the
implementation extracts the payload from the request.

2. A connection is made to the ICS service via the service URL. The service verifies
the design-time credentials passed to it and the active integrations are exposed.

3. Runtime credentials are passed from ICS to either the on-premises agent or to a
single cloud service to access the selected service integration.

4. Information is passed back through the integration (and, for on-premises
applications, via the on-premises agent) to the connector API and back to the
custom API.

How Do I Create an ICS Connector API?
Creating an ICS Connector API consists of four stages:

1. Creation: You’ve named the API and provided a description. Once created the
API exists in a Draft state.

2. Connection: You’ve provided the URL to the ICS service and your design time
credentials, which give you access to the ICS service.

Chapter 23
How Do I Create an ICS Connector API?

23-3

Note:

The design time credentials can be saved so you only need to do it once
per ICS instance. It’s important to note that you can only use the
credentials that you saved. That is, if other developers want to access
this instance, they’ll have to enter their own credentials at least once
themselves.

3. Discovery: OMCe locates the ICS service and obtains instances of the active
integrations available from the service.

4. Configure: You’ve selected (or created) a CSF key for the security policy and
provided your runtime credentials.

5. Test: Now you can test your endpoint to validate the connection to the service.

Setting the Basic Information for Your ICS Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and connection timeout
settings.

1. Click and select Mobile Apps > APIs.

The Connectors page appears. If no connector APIs have been created yet, you'll
see a REST Connector icon, a SOAP Connector icon, and an ICS Connector icon.
If at least one connector API exists, you'll see a list of all the connector APIs. You
can filter the list to see only the connector APIs that you're interested in or click
Sort to reorder the list.

2. Click ICS (if this is the first connector API to be created) or New Connector and
from the drop-down list, select ICS.

Each time you create an ICS Connector API, the New ICS Connector API dialog
appears. This is where you enter the basic information for your new connector
API.

Chapter 23
How Do I Create an ICS Connector API?

23-4

3. Identify your new ICS Connector API by providing the following:

• API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myICSService.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

• API Name: Enter a unique name for your connector API. The default value is
a simplified form of the value that you entered for the API Display Name.

For example, myICSService.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

• Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

4. Click Create.

Tthe General page of the ICS Connector API wizard is displayed.

5. Set the timeout values if needed.

Connecting to the ICS instance can take several minutes. You can increase the
timeout values to reduce the chances of a connection time out but be aware that
the values that you apply at design time are also applied at runtime when the
connector calls on the instance. If you do set timeout values, be sure to save your
edits to the General page before proceeding to the next step of the wizard.

Chapter 23
How Do I Create an ICS Connector API?

23-5

Note:

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value for the network policies for the
environment that you’re working in from the Administrator page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Oracle Mobile Cloud Enterprise Policies.

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0 mms means an infinite timeout is permitted.

6. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always click Cancel at the top of the General, Integration, and
Runtime Security pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

7. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for
your connector API.

You can always edit your configuration when it's in a Draft state. You can make
changes to a connector API that's in the Published state by creating a new version of
it. For information on creating a new version, see Creating a New Version of a
Connector.

Connecting to an Integration Cloud Service Instance
This is where you select the Integration Cloud Service (ICS) instance that you want or
create a connection to an ICS instance. If this is the first time that you’re creating an
ICS connector API, the Select Connection drop-down list won’t be available and you’ll
have to create a connection to the instance.

Making a connection consists of the following phases:

• Selecting or creating an ICS instance and authentication

• Connecting to the server hosting the active integrations

• Selecting the active integration

Chapter 23
How Do I Create an ICS Connector API?

23-6

You perform or observe these operations on the Integrations page of the Integration
Cloud Service Connector API wizard.

Selecting or Creating an ICS Instance Connection
1. If at least one integration instance exists, select an integration instance from the

Select Connection drop-down list; otherwise, go to Step 2 to create an instance.

2. Enter a name to identify this Integration Cloud Service instance in the Connection
Name field.

This name will be added to the list of integration instances.

3. Enter the address of the server that hosts the integrations in the Service URL
field.

You get the URL of the service from the service administrator of the Oracle Cloud
Integration Service. The URL takes the form hostname/ics.
You can save time by verifying that the URL you’re providing is trusted at
trustedsource.orgs, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

4. Enter your user name and password that you were given to access the integration.

These are the design time credentials that enable you to access the Oracle
Integration Cloud Service. These are the user name and password you received
when you subscribed to the service.

5. Select Remember My Credentials so that the next time you select or create an
integration instance, your credentials are already preloaded.

These credentials are specific to the individual OMCe user and aren’t provided if
another OMCe user tries to access the same integration instance.

6. Click Connect.

After you’ve created an integration instance, you’ll be able to select it from the Select
Connection drop-down list the next time you come back to the wizard.

Chapter 23
How Do I Create an ICS Connector API?

23-7

http://trustedsource.org/

Selecting an Active Integration
When the connection to the server hosting the integrations is made, the Integrations
page of the wizard displays all the active integrations where a single cloud service or
on-premises solution is exposed as an integration-friendly API. Non-active integrations
or integrations that push events from one cloud service or on-premises solution to
another aren’t listed. Each integration is displayed with its name, version, and
description.

1. Filter the list by entering part of its name, description, or integration type.

You can sort the list in either ascending or descending order based on name,
creation date, last update, or type.

2. Select the integration you want.

Click the information icon to see details about the integration including a link to the
WSDL for the integration.

Note:

Remember, that currently, only SOAP-based integrations are supported.

Chapter 23
How Do I Create an ICS Connector API?

23-8

3. Click Save.

4. Click Next (>) to go to the next step in configuring your connector API.

Editing the ICS Connector API
If you go to the RunTime Security page and change your mind about the integration
you selected, you can go back and select a different integration. The list of integrations
you see might not be the latest available though. If you do go back, be sure to refresh
the page before selecting another integration. Also, you’ll have to re-authenticate
yourself to access the list of integrations if you didn’t save your credentials previously.

Note:

Once you’ve moved on to the Test page, you won’t be able to go back to the
Integrations page to select a different integration. If you return to the
Integrations page from the Test page, you’ll see only the integration that
you’ve selected.

1. Click Integrations in the navigation links at the top of the wizard.

The page displays only the integration you originally selected.

2. Click Refresh on the Integration page of the wizard.

3. Confirm the refresh action.

The Integrations page is displayed at the authentication phase. The connection
name and service URL you provided previously are shown as information only.

4. If you previously selected the Remember My Credentials option, click Connect.

If you didn’t select that option, enter your design time user credentials and click
Connect.
Credentials are saved securely in the OMCe backend. You only need to save
them once for that user’s devices and browsers. Note that no sensitive information
is stored locally.

5. Select the active integration you want from the list after the connection is
completed.

6. Click Save.

7. Click Next (>) to go to the next step in configuring your connector API.

Setting Runtime Security for the ICS Connector API
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Chapter 23
How Do I Create an ICS Connector API?

23-9

Provide a CSF Key in one of the following ways:

• Click Select Existing and select an existing key from the Available Keys list in the
Select or Create a New API Key dialog. A description of the selected key is
displayed below the list. The list displays only the keys supported by the client
policy, which could be http_basic_auth_over_ssl_client_policy,
wss_http_token_over_ssl_client_policy,or
wss_username_token_over_ssl_client_policy.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new basic (CSF) credentials key directly on the Security page.

For the steps on creating a key, see Creating a New CSF Key. Alternatively, you
can click Select Existing and create the key in the Select or Create a New API
Key dialog.

Regardless of which security policy is used, the ICS adapter API determines the
correct authentication mode. Once you’ve configured the ICS Connector API for a
given ICS instance, the runtime credentials that you provided for that instance are
remembered the next time you configure an ICS Connector API.

To learn about security policies for the ICS Connector, see Security and ICS
Connector APIs.

Creating a New CSF Key
1. Click the Security navigation link.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter your runtime credentials for the service to which you are connecting.

Chapter 23
How Do I Create an ICS Connector API?

23-10

Contact your ICS administrator to obtain the credentials used to call the Oracle
Integration Cloud Service at runtime. Most likely, you’ll only need to do this once
per ICS instance (all integrations are called with the same app credentials).

5. Repeat the password in the confirmation field.

6. Click Save to continue working in the dialog.

Click Save and Close to save your actions and return to the Security page. Click
Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s set.
If you want to edit some aspect of an existing CSF key, select it from the Available
Keys list and modify the fields as needed.

If you’ve already selected a key but then decide to create a new key, click Clear
Selected to clear all the fields.

To learn about CSF Keys, see CSF Keys.

Testing the ICS Connector API
When you’ve finished configuring your ICS Connector API, test the endpoint:

1. Click the Test navigation link.

There is only one endpoint per integration. The resource banner displays the
method, the resource name, and the URI of service.

2. Expand Examples to see examples of a request, response, and fault payloads
that were obtained from the WSDL.

When you select a connection, all the fields on the page are populated with data
for that connection with the exception of credentials.

Chapter 23
How Do I Create an ICS Connector API?

23-11

If this is the first time a connection is being created, skip this step and go to Step
3.

3. Add one or more request or response HTTP headers as needed.

4. Click in the HTTP Body field to create your message body (the payload) in the
source editor. For example:

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Object",
 "description":"An object for this service",
 "type":"object"
}

5. Provide your runtime credentials for testing this endpoint:

a. Enter the name of the mobile backend associated with this connector API.

b. Enter the version of the mobile backend.

c. (Optional) Enter your mobile user credentials, that is, your runtime credentials.

6. (Optional) Click Save as current mobile backend default credentials to allow
the ICS Connection API to remember your credentials. Only your credentials will
be stored. These credentials are applied when you test another ICS Connector
API, REST or SOAP Connector API, or a custom API.

7. Click Test Endpoint.

Chapter 23
How Do I Create an ICS Connector API?

23-12

Test Endpoint toggles to Cancel Test. If you want to stop the test for any reason,
click Cancel Test.

8. Click Done when you’ve finished testing your endpoint.

You’re returned to the Connectors APIs page.

If you want to make changes to the testing parameters, click Reset to clear all the
fields.

Getting the Test Results
Test results are displayed at the bottom of the Test ICS API page. The result indicator
is the response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

The following table lists the most common status messages you’ll see:

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

403 FORBIDDEN Error due to user not having authorization or if
the resource is unavailable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Chapter 23
How Do I Create an ICS Connector API?

23-13

Click Response to see the details of the response returned. The response code tells
you whether or not the connection was successful.

After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

For every message that you send, OMCe tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your OMCe access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Security and ICS Connector APIs
HTTP Basic Authentication is used for runtime security. Basic authentication allows an
HTTP user agent to pass a user name and password with a request and is often used
with stateless clients, which pass their credentials on each request.

ICS Connector APIs use one of the following security policies:

• http_basic_auth_over_ssl_client_policy. It includes the username and
password credentials in the HTTP header for outbound client requests. This policy
verifies that the transport protocol is HTTPS.

• wss_http_token_over_ssl_client_policy. The username and password
credentials are included in the HTTP header for outbound client requests. Also a
timestamp is sent to the SOAP security header. If the connector detects that the
ICS integration that’s being connected to is protected by the
wss_http_token_over_ssl_service_policy, the connector uses the
corresponding client policy. This policy verifies that the transport protocol is
HTTPS.

• wss_username_token_over_ssl_client_policy. The username and password
credentials are passed as SOAP headers and are added automatically by the
connector. If the security policy is defined in the WSDL for a SOAP-based

Chapter 23
Security and ICS Connector APIs

23-14

integration, this is the policy that’s used. This policy verifies that the transport
protocol is HTTPS.

Although you can set the Oracle-Mobile-External-Authorization header in custom
code to configure a secure connection, it isn’t necessary since authorization to connect
to a service is set when configuring the ICS Connector API.

CSF Keys
In OMCe, the Oracle Credential Store Framework (CSF) is used to manage
credentials in a secure form. A credential store is a repository of security data
(credentials stored as keys) that certify the authority of users and system components.
CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps.

A CSF key is a credentials key. It uses simple authentication (composed of the user
name and the password for the system to which you’re connecting) to generate a
unique key value. You can select an existing CSF key or create one through the Select
or Create a New API Key dialog. To select or create a CSF key, see Creating a New
CSF Key.

CSF keys and their values are specific to the environment in which they’re defined.
That is, if the Development environment is selected, then only the CSF keys and
certificates for the security policies in use by artifacts in that environment are listed in
the CSF Keys dialog. A different set of keys and certificates will be displayed in
another environment, such as Staging. It’s also possible for keys with the same key
name but with different values to exist in multiple environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

Chapter 23
CSF Keys

23-15

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting ICS Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to the Administration view
and click Logs to see any system error messages or click Request History to view
the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

Here are some areas of particular interest when troubleshooting:

• Security Errors are Occurring

Take a look at the integration WSDL and see if you can determine what security
policy is being used. Use the SOAP connector directly to create a connector API
and test with different security policies.

• An Integration Isn’t Showing Up

Go to Oracle Integration Cloud Service and look at your integrations there. The
status must be activated, and the source connection type should be SOAP.

• Constructing a Valid ICS Instance URI

Your instance URI must begin with https:// and should end in /ics. Look for the
Email that you received when your user account was provisioned for the ICS
instance. From there, you can find the URI to reach the ICS UI. The same URI
should be used to create the connection in OMCe.

• Identifying Where the Failure Is Occurring

As with other connectors generally finding where a fault was thrown can be
difficult. A 401 or 404 for instance could be returned by the test endpoint, OMCe
itself, the ICS instance that OMCe is connecting to, or the system to which ICS is
connecting.

401 and 404 errors are difficult because they return no message body that might
indicate where the error occurred. However, the headers associated with a 401
and 404 error can sometimes act as a signature to indicate where it originated
from. Likewise, trace the end-to-end flow by searching for corresponding log
entries at each step in the flow.

• Can’t Make a Connection Using Default Protocols

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound
connections. If you need to use an older version of a SSL protocol to connect to an
external system that doesn't support the latest versions of SSL, you can specify
the SSL protocol to use for the connector by setting the
Security_TransportSecurityProtocols environment policy. The policy takes a
comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1,
TLSv1.2. Any extra space around the protocol names is ignored. You can use the
SSLv2Hello protocol to debug connectivity issues with legacy systems that don't
support any TLS protocol. Note that this policy can’t be used to enable SSLv3
endpoints. See OMCe Policies and Values for a description of the policy and the
supported values. Be aware that this policy must be manually added to a
policies.properties file that you intend to export.

Chapter 23
Troubleshooting ICS Connector APIs

23-16

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

Chapter 23
Troubleshooting ICS Connector APIs

23-17

24
Fusion Applications Connector APIs

Oracle Mobile Cloud Enterprise (OMCe) enables you to create Fusion Applications
(FA) Connector APIs to connect to Oracle Fusion Applications. As a service developer,
you can create connector APIs to make it easier to call these external services from
the implementations of your custom APIs.

A Fusion Applications Connector API enables a mobile backend to use and expose
data from one or more resources available from an Oracle Fusion Applications
instance.

How Fusion Applications Connector APIs Work
A Fusion Applications Connector API enables a mobile backend to use and expose
data from resources available from Fusion-based software-as-a-service (SaaS)
instances, such as Oracle Human Capital Management Solution (HCM), Oracle
Supply Chain Management (SCM), and Oracle Customer Relationship Management
Solution (CRM). These suites of modular services help you with customer and
employee management, sales and supply chain management, and more.

Use the Fusion Applications Connector API wizard to quickly and easily create a
connector API with a customized selection of resources from a Fusion Applications
service or Fusion-based service.

Here are the some of the advantages to using a Fusion Applications Connector API:

• Makes it easier for customer to explore Fusion-based services through resource
discovery.

• Makes it easier for you to see all the resources, child resources, and resource
attributes available in a given resource instance.

• Lets you provide easy to identify and comprehend user-friendly names and
descriptions for the resources and their attributes in the connector.

• Provides a rich test client that lets you test with Fusion Applications query
parameters.

Fusion Applications Connector API Flow
Here’s how the design-time flow for a Fusion Applications Connector API design-time
goes:

24-1

1. Connector Creation phase. An unbound Fusion Applications Connector API is
created with the Fusion Applications Connector API wizard.

2. Connection phase. Design time credentials are passed and a connection to the
Fusion Applications instance is made. The design time credentials are saved in
the Credentials Store Framework (CSF) in OMCe. The Fusion Applications service
description, the Fusion Applications Describe, is retrieved from the external
service.

3. Resource Discovery phase. OMCe locates the Fusion Applications instance via
the Describe URL provided. When authentication is confirmed, OMCe downloads
and parses the Describe resource and displays the list of resources exposed by
the Fusion Applications service. The resources list is examined and the desired
resources to access from the custom code are enabled.

In addition, descriptions for each attribute may be provided. Attribute values are
available only at runtime and can’t be changed during design time.

Whenever you enable or disable resources or refresh the list of available
resources, the changes are time stamped and tracked in a work area. Each
instance of the connector API has one work area and the contents of that work
area are saved as part of the configuration when the connector API is saved.

4. Attribute Setting phase. Attributes are selected or de-selected based on the
requirements for the connector. Values for resource attributes are modified as
needed.

5. Runtime Security phase. The Oracle Web Services Manager (Oracle WSM)
security policy to be used at runtime is configured.

6. Testing phase. The configuration is saved. The enabled resources are displayed
on the Test page and tested. Mobile user credentials are provided to test the
connector API.

Here’s how the runtime flow goes:

Chapter 24
Fusion Applications Connector API Flow

24-2

1. Custom code calls the Fusion Applications Connector API. Information is then
passed to the connector implementation. The implementation extracts the payload
from the request.

2. The connector implementation checks whether or not the resource is enabled. If
the endpoint is a GET request, a fields query parameter is added to the request so
that the attributes returned by the Fusion Applications service are limited to only
those attributes that were enabled for the resource at design time.

3. Runtime credentials (which are based on the security policies selected during
design time) are added to the request and the request is sent to the Fusion
Applications service.

4. Information is passed back from the Fusion Applications service to the connector
API and finally back to the custom code.

How Do I Create a Fusion Applications Connector API?
The Fusion Applications Connector API wizard will walk you through the following
stages of creating the connector API:

1. Setting Up the Basics. Name the API and provide a description. When you click
Create, the API exists in a Draft state.

2. Connecting To and Selecting Resources. Locate the Fusion Applications
service through the Describe URL that you provide and select the resources
available from the service.

3. Selecting Attributes. Choose the attributes for each resource and child resource.

4. Setting the Runtime Security. Select the runtime security policies you need to
connect to the runtime Fusion Applications instance.

5. Testing the Connector API. Test your endpoint to validate the connection to the
service.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-3

Setting the Basic Information for Your Fusion Applications Connector
API

Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and a local URI (from
which the connector API will available to the custom code):

1. Click and selectMobile Apps > Connectors from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for REST, SOAP, ICS, and Fusion Applications. When at least one
connector API exists, you'll see the connector landing page where existing
connector APIs are listed. You can filter the list to see only the connector APIs that
you're interested in or click Sort to reorder the list.

2. Click Fusion Applications if this is the first connector API to be created or New
Connector and select Fusion Applications.

Each time you create a Fusion Applications Connector API, the New Fusion
Applications Connector API dialog appears. This is where you enter the basic
information for your new connector API.

3. Identify your new Fusion Applications Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myFAServiceAPI.
For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API. The default value is a
simplified form of the value that you entered for the API Display Name.

For example, myFAServiceAPI.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-4

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

After you've filled in all the required fields, click Create.The connector API is
created and the General page of the Fusion Applications Connector API wizard is
displayed.

4. Set the timeout values if needed.

Connecting to the Fusion Applications instance can take several minutes. You can
increase the timeout values to reduce the chances of a connection time out but be
aware that the values that you apply at design time are also applied at runtime
when the connector calls on the instance. If you do set timeout values, be sure to
save your edits to the General page before proceeding to the next step of the
wizard.

Note:

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value of the network policies for the
environment that you’re working in from the Administration page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Policies in Managing Oracle Mobile
Cloud, Enterprise.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-5

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, then the default value
(20 seconds) of the environment-level HTTP Read Timeout policy is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

5. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always edit your configuration when it's in a Draft state. You can
always click Cancel at the top of the General, Rules, and Security wizard pages to
cancel that particular configuration operation. You’ll be taken back to the
Connector APIs page.

6. Click Next (>) to go to the next step in configuring your connector API.

Connecting to a Fusion Applications Instance
This is where you specify the Oracle Fusion Applications instance that you want to
create a connection to via the Describe resource.

Making a connection consists of the following actions:

• Providing the Describe URL to access the metadata of the Fusion Applications
instance that you want

• Providing access authentication (that is, your design time credentials)

• Connecting to the server hosting the resources

You perform these operations on the Resources page of the Fusion Applications
Connector API wizard.

Creating a Fusion Applications Instance Connection
1. Click the Resources navigation link.

2. In the Describe URL field, enter the address of the describe resource where the
Oracle Fusion Applications instance can be accessed.

Use the describe resource to retrieve the metadata of a resource, which includes
the fields and attribute values in the resource, the resource operations, and any
child resources.
You get the Describe URL from the administrator of the Oracle Fusion
Applications.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-6

The URL takes the form http://host:port/api-name/resources/version/
resource-path/describe.

For example: https://myhost:8080/CommonAPI/resources/1.1/incidents/
describe.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

3. Enter the user name and password that you were given to access the resource.

These are the design time credentials that enable you to access the Oracle Fusion
Applications instance. You should’ve received these credentials when you
registered with Oracle Fusion Applications.

4. Click Connect.

The resources in the Fusion Applications instance are retrieved. Making the
connection can take a few minutes. You can stop the connection by clicking Abort
in the Connecting dialog to stop the process. You’ll be returned to the Resources
page.

After the connection is made, the Describe URL and your design time credentials are
preserved for this connector API.

Selecting Fusion Applications Resources
When the connection to the server hosting the resources is made, the Resources page
of the wizard displays a list of all the resources in the given Oracle Fusion Applications
resource instance. You create a custom configuration by selecting a combination of
top-level resources and child resources. You can see the address of the server hosting
the fusion application services (http://host:port/api-name/resources/version) in the
Service Root field along with the design time credentials user name above the
resources.
A list of resources is displayed on one side of the Resources page. All the resources
are unselected by default. Select at least one resource to include it in your Fusion
Applications Connector API configuration. When you select a resources, its
description, resource paths, and any child resources are displayed in the right panel.

1. Select a resource to enable it and add it to the connector API configuration.

If the list is long, enter a resource name or its description in the Search field to
locate a resource.

When you perform a search and the resource is a child of another resource, it’s
displayed at the same level as the parent resource in the list. Child resources are
displayed in the form <parent_resource>/<child_resource>.

If you change your mind about a selection, you can disable a resource to exclude
it by selecting it again. If the resource has child resources, the parent resource and
all of its child resources are removed

2. Select a resource to see its details, including any child (nested) resources in the
right panel of the page.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-7

http://trustedsource.org/

The details panel always shows the top-level resource and all of its child resources
even if the resource you currently have selected in the resources list is not a top-
level resource.

Click Refresh to get the most up-to-date list of resources. When you click
Refresh, the current list of resources is discarded. To get the latest set of
resources, OMCe must make a connection to the Describe resource again. You’ll
get a confirmation dialog asking you to confirm that you want to discard the current
set of resources. If you click Confirm, you’ll be taken back to the initial display of
the Resources page where you’ll have to re-enter the Describe URL and your
design time credentials.

3. (Optional) Provide a friendly name for the resource or a description in the Name
field in the Details section.

Friendly names for resources are displayed on the following Attributes page.

The Collection and Single Item paths for the top-level resource, which you can see
just above the child objects are the relative paths at which the resource collection
and the single item resource are available. These paths are relative to the service
root shown at the top of the page.

4. (Optional) Select individual child resources to include in your configuration.

Click Child Objects to include all the child resources of the selected top-level
resource in your configuration

All child resources are displayed at the same level. That is, nested child resources
are not visibly distinct in the list.

Each child resource is listed in the form of a relative path of the collection
containing the child resource.

Click Remove in the dialog box to continue or Cancel to stop the removal.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-8

5. (Optional) Provide a friendly (identifiable) name for the child resource in the Name
field.

6. Click Next (>) to go to the next step in configuring your connector API.

Setting Resource Attributes
On the Attributes page, you can select the optional attributes you want for each of your
selected resources. Any required attributes are automatically added to the
configuration. Select a resource from the Resources list, view the available attributes
for the resource in the next column, and then select the specific attributes you want to
include in the connector configuration:

1. Click the Attributes navigation link.

On the Attributes page, you’ll see three columns. The first column, Resources, is
the list of resources you previously selected. The second column, Attributes, lists
all the attributes that you can select for a particular resource. The last column,
Selected Attributes, lists required and optional attributes that are pre-selected for
you. When you select an attribute in the second column, it’s added to the list of
selected attribute.

2. Select a resource from the Resources list.

3. Add an attribute for the selected resource in the Attributes to your configuration by
clicking Select Attribute:

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-9

Use your browser’s search function to locate specific attributes.

Click Select All to move all the attributes to the Selected Attributes list.

4. (Optional) Click an attribute in the Selected Attributes list and provide a friendly
name and description for it:

Click Remove All to clear all attributes except the required ones from the list.

5. Click Save to save your configuration.

If you change your mind about the attributes your want, remove the ones you don’t
want (don’t worry, they’ll be added back to the Attributes list) and make new
selections.

6. Click Next (>) to go to the step in configuring your connector API.

Editing the Fusion Applications Connector API
If you know that the resources available through the describe resource have changed,
you can refresh it to see the most up-to-date list of resources.

Note:

As long as the Fusion Applications connector API is in Draft state, you can
edit the connector configuration

1. Click the Resources navigation link.

The page displays only the resources you originally selected.

2. Click Refresh.

When you click Refresh on the Resources page, you’ll be told that the current
resources will be discarded. If you click Confirm in the dialog, you’ll be taken back
to the initial view of the Resources page, where you’ll have to re-enter the
Describe URL and your design time credentials. The URL is re-queried and the
latest resources are then displayed. The refresh action doesn’t change any of the
resource selections, friendly names, or descriptions that you’ve already provided.
However, if you connect to a different service by entering a different Describe
URL, you’ll see a completely new set of resources and you’ll have to provide
friendly names for the ones you select.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-10

3. Confirm the refresh action.

The Resources page is displayed at the authentication phase. The Describe URL
and the design time credentials you provided previously are shown.

4. Click Connect to reconnect to the Fusion Applications service or enter a new
Describe URL and your design time credentials if you want to change to a different
Fusion Applications service.

5. Change the enabled settings for the resources as needed.

If you reconnected to the same service, your previous selections are kept.

6. Click Save.

7. Click Next (>) to go to the step in configuring your connector API.

Setting Runtime Security for the Fusion Applications Connector API
The Fusion Applications service determines the security policies used by the service.
You have the option of selecting the corresponding client policies for the connector
API from the Runtime Security page.

The Fusion Applications Connector API supports OAuth Authentication, HTTP Basic
Authentication, and Security Assertion Markup Language (SAML). To learn more
about these policies, see Security Policy Types for Fusion Applications Connector
APIs.

1. Click the Runtime Security navigation link.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-11

2. Select one or more security policies and move them to the Selected Policies
column.

When you select a policy, you can see its description below the Available Policies
panel.

3. Specify values for the policy overrides for each policy (if applicable) if you don’t
want to use the default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Providing a CSF Key.

4. Click Save to save your work or Save and Close to save your work and exit the
Fusion Applications Connector API wizard.

5. Click Next (>) to go to the next step, testing the connector.

.

Providing a CSF Key
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list in the Select or Create a New
API Key dialog. A description of the selected key is displayed below the list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Click New Key in the dialog and create a new basic (CSF) credentials key as
described in Create a New CSF Key.

To learn about CSF keys, see CSF Keys and Web Service Certificates.

Creating a New CSF Key
1. Click the keys icon in the csf-key field.

2. Click New Key in the Select or Create a New API KEy dialog box.

3. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

4. Enter a brief description of the key's purpose.

5. Enter your runtime credentials for the service to which you are connecting.

Contact your Fusion Applications administrator to obtain the credentials used to
call the Oracle Fusion Applications service at runtime. Most likely, you’ll only need
to do this once for each Fusion Applications instance (all services are called with
the same app credentials).

6. Repeat the password in the confirmation field.

7. Click Save to continue working in the dialog.

The key name value appears as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s
set.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-12

If you want to edit some aspect of an existing CSF key, then select it from the
Available Keys list and modify the fields as needed. To learn about CSF Keys, see
CSF Keys and Web Service Certificates.

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key because orakey is the
only valid value for all of these certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias.

Only mobile cloud administrators can create a new Web Service Certificate. If you
don’t know the alias for the certificate you want, ask your mobile cloud administrator
for the alias. To set CSF keys and certificates from the Administration page, see
Credentials (CSF Keys and Certificates) in Managing Oracle Mobile Cloud, Enterprise.

Testing the Fusion Applications Connector API
When you’ve finished configuring your Fusion Applications Connector API, test the
endpoints. You test one endpoint at a time.

1. Click the Test navigation link.

2. Select the endpoint you want to test.

Endpoints are listed on the left side of the page. Enter a partial resource name in
the filter field to narrow the list to make it easier to find the endpoint you want.
When you select an endpoint, the method, the resource name, and the URI of
service is displayed on right side of the page.

3. Set the default test credentials if you’re in the design phase and just want to see if
your endpoints are valid, or if you want to test multiple endpoints during the
session. Otherwise, skip this step and fill out the fields in the Authentication
section for each method you test.

a. Click Default Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. If both OAuth and HTTP Basic Authentication are enabled for the mobile
backend, select one in the Authentication Method field to use for testing.

d. Click Save to apply the credentials.

4. Click Request and expand Parameters.

When you select a GET method, all the available query parameters are displayed
on the Request tab.

a. For a GET method, enter a parameter value.

You can enter a value in the empty field next to the parameter description to
test with or use the value, if any, provided in the example.

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-13

Ordinarily, when invoking Fusion Application services, you could use the
expand parameter to include the data for a child resource in a response when
querying the parent resource. However, in the Fusion Applications connector,
field parameters are implicitly added to the requests sent to the Fusion
Application service.

Note that the service is unable to handle the field parameters in the request
and the expand parameter when both are used together.

To ensure that data for both the parent and child resources are included in the
response, you must add field parameters that explicitly list the attributes for
both parent and child. For example, let’s say you had a parent resource,
employee, with the attributes FirstName and LastName and the child resources,
directReports, assignments, and photo with the respective attributes,
PersondId, AssignmentName, and Image. You’d add a field parameter with the
following values:

fields=FirstName, LastName; directReports:PersonId;
assignments:AssignmentName; photo:Image

If you do use the field parameter, be aware that the values that you provide
in the parameter override the selections you made on the Attributes page.

b. (Optional) Click Example to view the example body, if one was provided. For
methods other than GET, enter an alternate example to test with by clicking
Use Example. The provided example body is copied into the text box. You
can edit the example as needed.

c. (Optional) Click Schema to view the request body schema if one was
provided.

5. Expand HTTP Headers and click Add HTTP Header to add a header.

Select the header that you want to include for testing purposes and provide a
value in the text field.

6. Expand Authentication, select the mobile backend and its version that are
associated with this API, and enter your mobile user credentials. If both OAuth and

Chapter 24
How Do I Create a Fusion Applications Connector API?

24-14

Http Basic Authentication are enabled for the mobile backend, select one in the
Authentication Method field to use for testing.

7. Click Response.

8. Expand the status code and click Example or Schema to review the example or
schema for the response body, if you provided one.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, then click Cancel Test.
If you want to make changes to the testing parameters, click Reset to clear all the
fields.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. You should also test the
custom API (with its implementation) that uses this connector API. Essentially, if you’re
ready to publish the connector API, then you should also be ready to publish the
custom API that calls it.
If you need to make changes to a connector API that's in the Published state, create a
new version of it. For information on creating a new version, see Creating a New
Version of a Connector in Managing Oracle Mobile Cloud, Enterprise.

Getting the Test Results
Test results are displayed at the bottom of the Test page. The result indicator is the
response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

404 NOT FOUND Error due to an invalid connector ID. An
associated connector with the given ID
couldn’t be found.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Security Policy Types for Fusion Applications Connector
APIs

You'll need to set a security policy to protect the information you want to send or
receive. When determining what policies to set, consider whether the connection to the
service involves transmitting proprietary or sensitive information. Adding a security
policy ensures the authentication and authorization of the data transmitted.

Chapter 24
Security Policy Types for Fusion Applications Connector APIs

24-15

From the Security page, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including OAuth2, SAML, and HTTP Basic
Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow OMCe supports OAuth2, a system where an
Authentication server acts as a broker
between a resource owner and the client who
wants to access that resources. Of the
different flows (security protocols) offered by
OAuth2, the Client Credentials Grant Flow is
used in OMCe to secure connections. This
flow is used when the client owns the
resources (that is, the client is the resource
owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP
user agent to pass a user name and password
with a request. It's often used with stateless
clients, which pass their credentials on each
request. It isn't the strongest form of security
though as basic authentication transmits the
password as plain text so it should only be
used over an encrypted transport layer such
as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of
authentication and authorization credentials
among a client, an identity provider, and a
service provider. The client makes a request of
the service provider. The service provider
verifies the identity of the client from the
identity provider. The identity provider obtains
credentials from the client and passes an
authentication token to the client, which the
client then passes to the service provider. The
identity provider verifies the validity of the
token for the service provider and the service
provider responds to the client.

For a list of the security policies supported for Fusion Applications Connector APIs,
see Security Policies for Fusion Applications Connector APIs. For descriptions of
security policy properties that can be overridden, see Security Policy Properties.

CSF Keys and Web Service Certificates
In OMCe, the Oracle Credential Store Framework (CSF) is used to manage
credentials in a secure form. A credential store is a repository of security data
(credentials stored as keys) that certify the authority of users and system components.
A credential can hold user name and password combinations, tickets, or public key
certificates. This data is used during authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or

Chapter 24
CSF Keys and Web Service Certificates

24-16

create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Providing a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the property, keystore.sig.csf.key. The alias for
this property is mapped to the alias of the key used for signing. If no value is selected,
the default value, orakey, is used (for this release, the only valid value for this property
is orakey).

When you select a policy, you can see which properties are listed in the Policy
Overrides.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

To set CSF keys and certificates from the Administration page, see Credentials (CSF
Keys and Certificates) in Managing Oracle Mobile Cloud, Enterprise.

Using Your Fusion Application Connector API in an App
To use a connector in a mobile app, you first have to wrap calls to the connector API in
a custom API and deploy that API. Such a custom API could also contain additional
logic to process the data returned from the call to the connector.

This allows the app to access the connector's functionality by calling the custom API.
The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

Alternatively, you can do this automatically. See Generating Custom APIs for
Connectors.

You make calls to connector APIs using JavaScript code in the custom API's
implementation. When you implement a custom API, you can view the available
connectors and their details in a special version of the API Catalog that’s available to

Chapter 24
Using Your Fusion Application Connector API in an App

24-17

custom APIs. (The API Catalog that’s available to client apps doesn’t contain
connector APIs.)

Troubleshooting Fusion Applications Connector APIs
A great source of debugging information are the system message logs. Depending on
your role, you or your mobile cloud administrator can go to the Administration view and
click Logs to see any system error messages or click Request History to view the
client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See OMCe Policies and Values for a description of the
policy and the supported values. Be aware that this policy must be manually added to
a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

You won't be able to test a Fusion Applications connector that hasn't been modified
since June 2017 unless you save the connector first. Saving the connector
regenerates the RAML from the descriptor. You can see when the connector was last
modified by selecting it on the Connectors page and expanding the History panel.

Chapter 24
Troubleshooting Fusion Applications Connector APIs

24-18

25
Diagnostics

The Diagnostics features of OMCe provide live performance data and quick access to
detailed log messages for each API and connector request. If you are an
administrator, you can use these features to monitor performance and error rates and
to debug any problems that arise. If you are a developer, these features help you
debug your code.

What Can I Do with Diagnostics?
Whether you’re a developer tracing errors in custom code, or an administrator who
notices a flurry of 5xx responses, Diagnostics lets you easily find out what’s going on
by providing you with increasingly detailed levels of logging messages.

The Diagnostics landing page provides a high-level view that includes a traffic-light
indicator that conveys overall environmental health, a timeline that plots requests and
responses, and also counters to tally the failing requests resulting in HTTP 4xx and
HTTP 5xx errors. This page provides the entry point to more detailed levels of
analysis, because you can drill down from an indicator or an error counter to identify
which requests are failing and view log records that are associated with them. To see
specific logs, check out Viewing Underperforming Requests.

Although admins and developers can both benefit from diagnostics, each uses it
differently. As pointed out in Monitoring Environments for a Selected Mobile Backend,
developers typically use a backend’s diagnostics as the starting point in their
debugging efforts. To get an idea how developers go through their paces see Use
Case: Using Correlation to Diagnose Custom Code. While developers focus on a
backend, administrators instead monitor the big picture for a system. For an example
of how an administrator goes from this page to access logging data, see Use Case:
Using Correlation to Diagnose Connector Issues.

Viewing Environment Health
The green, amber, and red traffic light indicators on the Diagnostics page depict the
overall health of an environment for the last hour, or other selected time period.

25-1

OMCe bases this at-a-glance view on the fine-grained health metrics for that
environment. When the percentage of error responses exceed configured thresholds
for the selected time period, the traffic light indicator changes from green (normal) to
amber (warning) or red (severe).

The time period for analysis can be changed using the menu, with additional choices
for 2, 6, 12, or 24 hours.

Viewing Server Load
As part of the overall portrait of health at any given moment, the Diagnostics page
includes a timeline that plots a recent history of the number of requests and response
times.

Viewing Errors
The Diagnostics page notes the number of client (4xx) and server (5xx) errors that
have occurred within the last hour or other selected time period. See Viewing Status
Codes for API Calls and Outbound Connector Calls.

Chapter 25
What Can I Do with Diagnostics?

25-2

Viewing Underperforming Requests
The high-level data shown on the Diagnostics page is the entry point for increasingly
detailed levels of analysis. When you hover over an indicator, the traffic light indicator
shows the percentage of failed requests. This data is derived from the last hour or
other selected time period of the system's behavior and highlights the severity of an
issue by color, from green (healthy) to red (severe). From here, you can evaluate the
root cause by clicking the traffic light to investigate problematic requests or APIs, and
by viewing the API history log data to get a breakdown of the requests and any child
requests. See also Viewing Log Messages Related to a Request.

Viewing Log Messages Related to a Request
Rather than using various grep commands to find log records between time stamps in
the logs, OMCe uses correlation to associate log messages to a specific API request
to help you locate the pertinent records from the API request history. If you're
troubleshooting, correlation lets you quickly find the root cause by presenting detailed
information, such as invalid JavaScript code or an unavailable resource called by a
connector. See Relating Log Messages. For more information about the various logs
generated by Diagnostics (such as the API History, Connector History, Custom Code,
and System logs), see Viewing Log Messages.

Viewing Storage Usage
In addition to showing API request data, the Diagnostics page shows you how much
database storage, shown in gigabytes, the environment is currently using. You can
see this information in the top right corner of the page.

Chapter 25
What Can I Do with Diagnostics?

25-3

Monitoring a Selected Backend

The backend’s summary page gives you a snapshot of the current health of its
environment. You can take a deeper look at request and response processing and
error handling by selecting the backend and then clicking Open.

The Diagnostics page displays the number of the requests and responses, plots them
on a timeline, and notes the number of client and server (4xx and 5xx) errors. Because
this page gives you a snapshot of the overall health of a backend, you can focus your
attention where it's needed: on specific performance issues or problems with the API
implementations and connectors used by the backend.

While you can drill down through the Overview page to specific endpoint data, you can
also view detailed API request and error information using the Health, Request
History, and Logs pages.

Chapter 25
Monitoring a Selected Backend

25-4

Viewing API Performance
You can find out how the performance of a specific API contributes to the overall
health of a backend or to an entire environment. For each API, OMCe records the
same error and request handling metrics that it applies to a backend. You can drill
down to see how the API endpoints behave in terms of these performance metrics.

From Diagnostics, click Health to view the APIs for a backend . You can also open this
page by clicking the traffic light indicator on the Diagnostics page. If the traffic light
indicator is amber or red, then you can quickly investigate the cause of the problem by
using the Health page.

Adjusting the Performance Threshold Configurations
The default thresholds may not apply at all phases of the backend's lifecycle and may
not always reflect your interpretation of a healthy environment. To adjust the
thresholds, administrators can get the policies file that contains the default
configurations by clicking Export. After they adjust the thresholds, they can import the
file by dragging it into the Policies pane.

For more information on policies, see Oracle Mobile Cloud Enterprise Policies.

Viewing Status Codes for API Calls and Outbound
Connector Calls

When you open the Request History page, its 4xx and 5xx status code buttons are
selected by default, displaying the client (4xx) and server (5xx) HTTP status codes for

Chapter 25
Viewing API Performance

25-5

the API's endpoints and the outbound connector calls made within a single backend (if
you're a developer) or across all backends (if you're an administrator). This page gives
you a glimpse into the context of the status code, letting you trace the causes for
various status codes.

The Request History page displays a time stamp that indicates when the connector or
API request was made and the resulting status code.

Tips:

• Clicking the time stamp opens the message itself.

See Viewing Message Details

You can learn more about the API call or outbound connector request by looking at the
page's Call and Path columns, which show you a description of the targeted resource
as well as the action and object of the request.

The table that lists the calls displays the sizes of the request and response in bytes as
well as the response time. If a slow response time might indicate a problem, then you
can troubleshoot the issue using correlation. See Viewing Log Messages Related to a
Request.

Chapter 25
Viewing Status Codes for API Calls and Outbound Connector Calls

25-6

Request Type Content Displayed in the
Call Column

Content Displayed in the
Path Column

API requests that are returned
200 (Success)

The backend name, version >
API name and version. For
example:

FiFTechnician 1.1 >
FiFReports 1.1

The HTTP method with the
resource path. For example:

GET /reports/{report}

API requests that are returned
5xx (Unserviceable Requests)
status codes

The backend name, version >
API name and version (if
available); otherwise this
column is blank.

FiFCustomer 1.0 >
incidentreports

The HTTP method and
information about the
resource path. For example:

POST /contacts

Outbound Call from a SOAP
Connector

The endpoint URL, such as:

http://
myhost.us.example.com:
7002/mobilesvc/
IncidentService

The operation name. For
example:

GET /incidents/{id}

Outbound Call from a REST
Connector

The host, such
as:maps.somecompanyapis.
com

The method with the resource
path.

You can filter the display of error messages using any combination of the page's status
code buttons and sort them in chronological or reverse-chronological order. While the
default 4xx and 5xx buttons are toggled by default to display error codes, you can also
view messages for informational (1xx), success (2xx) and redirection (3xx) codes.
Common 4xx and 5xx codes include:

• 400 - Bad Request

• 404 - Not Found

• 408 - Request Time Out

• 500 - Internal Server Error

• 501 - Not Implemented

• 503 - Service Unavailable

For a complete list of HTTP status code definitions, see http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html.

Relating Log Messages
For each request, you can use correlation to get the logging data to a request by using
the options in the Related Logs column. You can correlate log records by app session,
mobile device, user, and API request.

Chapter 25
Viewing Status Codes for API Calls and Outbound Connector Calls

25-7

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

To query a list of log records that are tagged with the correlation ID for the request,
select Log Messages Related by API Requests. After you select this option, the
Filters field is populated by the request's correlation ID. The messages displayed in
the Logs page were generated during the servicing of the request.

Tip:

You can also generate a list of request-related messages by clicking the
funnel next to Request Correlation ID in the Message Details page. See
Viewing Message Details.

This ID provides additional correlation when you use the Oracle stack. For example, if
you run systems on Oracle Fusion Middleware and use connectors to communicate
with those systems, then all of the requests made will use the same correlation ID and
can therefore be correlated with requests to the OMCe server. See Diagnosing
Custom Code.

How Client SDK Headers Enable Device and Session Diagnostics
When you use the client SDK for your mobile platform in your apps, the SDK injects
the mobile diagnostic session ID (M_DSID) into request headers. Because the client
SDK is optional, app developers can override this behavior by setting their own
headers.

The Oracle-Mobile-DEVICE-ID and Oracle-Mobile-SESSION-ID headers, described in
SDK Headers, enable Diagnostics to correlate records when you select the Log
Messages by Mobile Device and Log Records by Mobile App Session options.
While the server automatically generates the correlation ID for each request, the
mobile app adds diagnostic capabilities by providing the session and device IDs. App
developers can define how sessions are expressed. For example, they can group
requests as a single session. App developers can also define the device ID to
distinguish requests. A device ID isn’t the device manufacturer ID, but rather an ID
assigned by the developer to the user’s device.

Chapter 25
Viewing Status Codes for API Calls and Outbound Connector Calls

25-8

Note:

A single user can operate multiple devices that run the same app. The app
may exhibit problems on only one of the devices.

Administrators can use this ID to differentiate a request message that’s specific to an
app user’s device amid thousands of other messages. Without this header,
administrators can still correlate records by a user because users are established
through authenticated requests.

Viewing Log Messages
You can access this page by selecting from the logging options in the Related column
in the Request History page, or by clicking Logs on the top-level health page.

If you're an administrator, then view the logging data by either drilling down from the
Related column in the Errors page or by clicking Logs in Diagnostics. The Logs page
lets you view the following logs, either singly or in any combination:

• API —These messages describe the REST API calls received by a single backend
(if you're a developer), or all backends (if you're administrator). These messages
are logged in the API History log. See Taking a Look at Exported Messages.

• Connector—These messages describe the outbound calls made by the
connectors to SOAP or REST endpoints. These messages help you to
troubleshoot problems arising from incorrect connector and endpoint
configurations as well as those related to the downstream resource itself
(connection timeouts, service unavailable, or other situations that result in 5xx
status code messages). See Connector Message Details.

• System log—These messages can describe a general problem encountered by
OMCe (for example, it can't send notifications to providers like Apple Push
Notification Service or Google Cloud Messaging) as well as the cause of the
problem (such as an incorrect configuration that prevents a mobile app from
sending notifications).

• Custom Code—These messages describe the issues logged through the custom
code service container. These messages include the ones that are generated by
the custom code service itself about the starting and stopping of the Node.js
instance and messages created by service developers using the Node.js' console
object.

In addition to the log buttons, you can view the log messages by date using either the
presets or the date editor.

Chapter 25
Viewing Log Messages

25-9

You can also apply filters, so that you can view messages by message type, backend,
backend version, and API name. You can add filters by selecting from the drop down
list, or by entering some criteria in the Filters field. For example, if you're interested in
a particular backend, then enter its name in the Filters field.

Tip:

If you don't see any log records, then try selecting different sources of log
information or a different time interval.

The Logs page lists the log messages by time stamp. Just as you could on the
Request History page, you can view the log message by clicking the time stamp.

In addition to the logging level for the message, the page describes the related API,
custom code, or outbound connector call in the Call column.

You can retrieve specific error messages by entering terms in the Message Text field,
then clicking Search.

The Logs page displays up to 500 records. If your query returns more than 500
records, click Export

to transfer all of the logging data to a local file that’s formatted in CSV, JSON, text, or

Chapter 25
Viewing Log Messages

25-10

XML. The export is restricted to 10,000 log records. See Taking a Look at Exported
Messages.

Viewing Message Details
To find out more about a request, review the API history message by clicking the time
stamp.

The API history message has two tabs: Overview and Headers. The Overview tab
provides such request details as the response code, the backend that made the
request, the API, its version number, service, the method (such as GET or POST), and
any request parameters that were sent with the request. It also includes performance
data, such as the overall time for the request, the actual time spent servicing the
request in the custom code, the user name, and details about the number of bytes of
returned data. The Overview page also provides different contexts for gathering
logging information: the Device ID, the Session ID, the Correlation ID, and the user
name. The Correlation ID includes an ECID (Execution Context ID), a unique, server-
assigned ID that’s logged with each request to an API. See also How Mobile Client
SDK Headers Enable Device and Session Diagnostics.

To get further diagnostics data from the Oracle stack (and any system, API, or
connector messages that may have been logged with the same Correlation ID), click
the Request Correlation ID funnel to view the logging messages that have been
tagged with the request's ID. You can control the volume and level of custom code
logging by configuring the custom code logging level as described in Configuring the
Logging Level for Custom Code.

Clicking the Headers tab gives you information about request and response headers.

Chapter 25
Viewing Log Messages

25-11

Taking a Look at Exported Messages
Exporting log files to a local file provides a set of logging data in addition to the
information displayed in the Details pages.

API Request Messages
Along with a brief description, each request message has the following attributes:

Chapter 25
Viewing Log Messages

25-12

Attribute Name Description

Time The time corresponding to the REST API event.

Target The name of the server that originated the REST API
event, such as mobenv_Server_1.

Message Level The message log level, such as NOTIFICATION.

Message ID An ID for the message, or corresponding event type. For
example, MOBILE-38594.

userId The user identifier. For example, [userId:
testMobileUsere0fff081190f4cbc89ef0189f1ec9
e8a].

Module ID The ID of the module that logged the message, such as
oracle.cloud.mobile.APIHistory.

Thread ID The Java thread in which the request is dispatched by
the OMCe core runtime. For example, tid:61.

ECID The execution context in which the request has been
dispatched by the OMCe core runtime.

RID The Relationship ID of the execution context. The RID
tracks any subrequests called by the OMCe services.

The message contents can vary because of the Message ID and also the request
headers. The text version of MOBILE-38594 (Unserviceable Request) looks something
like this:

[2015-01-20T22:35:37.848+00:00] [mobenv_Server_1] [WARNING] [MOBILE-38594]
[oracle.cloud.mobile.ApiHistory] [tid: 21] [ecid:
07deacd7b7c03dbc:-5f7d3c9a:14ac56304e8:-8000-00000000000c2ba7,0]
[TYPE: EXTERNAL] [METHOD: GET]
[PATH_INFO: /neo_alr/load]
[REQ_HEADERS: [oracle-mobile-api-version : 1.1], [Host : us.example.com:
7001], [Accept-Encoding : gzip], [User-Agent : Java1.7.0_51],
[Connection : Keep-Alive], [Accept : text/html, image/gif, image/jpeg,
/; q=.2]]
[REQ_PARAMS: [x : /home/paasusr/intercept.sh 50581 127.0.0.1 50580 2>&1
> /tmp/i.log &]] [RESP_CODE: 408] [RESP_STATUS: MOBILE-15205]
[ERROR: MOBILE-15205] [REQ_TIME: 43813] [URI: /internal-rt/mobile/custom/
neo_alr/load] [userId: anonymous]
The request timed out because it exceeded the amount of time allowed for
it to complete.
[[Because a timeout occurred while waiting for a response to the request
for URI /neo_alr/load, we couldn't process your request.
You can find more details in the system log.]]

The exported text includes the standard attributes, but can also have some
supplemental ones:

Chapter 25
Viewing Log Messages

25-13

Attribute Name Description

TYPE The type of the request, which is either EXTERNAL or
INTERNAL. Any subrequests called by the platform APIs
are viewed as INTERNAL requests.

ENV_NAME The environment name of the REST API.

METHOD HTTP request method: GET, PUT, UPDATE, DELETE.

MB_NAME The name of mobile backend. For example, [MB_NAME:
FixItFast-Technician].

MB_VERSION The version of the mobile backend. For example,
[MB_VER: 1.0].

REQ_PARAMS The HTTP request parameters. This is a name-value
pair, such as REQ_PARAMS: [name : test].

API_NAME The name of the API.

API_VER The version of the API.

RES_PATHSPEC The resource path spec associated with the API. For
example, [RES_PATHSPEC: /collections/
{collection}].

SVC_NAME The name of the OMCe service consumed by the API.
For example, [SVC_NAME: storage].

SVC_TYPE The OMCe service type.

SVC_VER The version of the OMCe service consumed by the API.

SVC_PARAM The service parameters of the OMCe service consumed
by the API.

REQ_HEADERS The HTTP request headers. For example,
[Authorization-Token : FixItFast-
Technician/1.0],[Host : localhost:7001].

M_DEVICE_ID The mobile device ID, which correlates the REST API
requests sent to OMCe with the physical device that
makes the request. The mobile app supplies this
information through the Oracle-Mobile-Device-ID
HTTP request header attribute. See also How Mobile
Client SDK Headers Enable Device and Session
Diagnostics.

M_DSID The mobile diagnostic session ID. This attribute maps
an app session on a specific device. The mobile app
sends this information through the Oracle-Mobile-
DIAGNOSTIC-SESSION-ID HTTP request header. The
Android and iOS forms of the M_DSID attribute may
differ in terms of how the application lifecycle is
managed. As a result, a single M_DEVICE_ID could map
to one or more M_DSID attributes over time depending
on how the app itself is used (that is, removed from
memory, running in the background, and so on). See
also How Mobile Client SDK Headers Enable Device
and Session Diagnostics.

Chapter 25
Viewing Log Messages

25-14

Attribute Name Description

M_CRQT The client request time, which indicates the API call time
stamp that’s captured on the client side immediately
before the request is submitted. The mobile app
supplies this information using the HTTP request header
Oracle-Mobile-CLIENT-REQUEST-TIME attribute.

START_TIME The start of request time stamp.

RESP_CODE The HTTP response code of the API call.

RESP_STATUS The HTTP response code, such as 200(OK).

RESP_HEADERS The HTTP response headers.

RESP_ERROR Any error or exception that occurs during the API call.

REQ_TIME The total time (in milliseconds) that the OMCe server
spent processing the request. This includes dispatching
time and service time.

SVC_TIME The total time (in milliseconds) that the OMCe service
spent in processing the request. This excludes any
routing or dispatching time. This attribute reflects only
the time spent within the service.

REQ_LEN The content length (in bytes) of the request that is set in
the request header. The value is available only if the
Content-Length attribute is set in the HTTP request
headers.

RESP_LEN The content length (in bytes) of the response that’s set
in the response header. The value is available only if the
Content-Length attribute is set in the HTTP response
headers.

PATH_INFO The servlet request path.

REQ_PARAMS The HTTP request parameters.

ERROR The OMCe error message ID, which is supplied by the
OMCe request dispatcher to indicate why the request
can’t be dispatched.

Message Text A brief message.

Connector Message Details
Each connector message contains a brief description of the issue along with a set of
connector-specific attributes:

[2015-02-04T03:40:42.961-08:00] [mobenv11_server_1] [NOTIFICATION]
[MOBILE-38595]
[oracle.cloud.mobile.ConnectorHistory]
[tid: 2028] [ecid: a7b64431e73beeb2:-77badc9b:
14b5441c3c0:-8000-0000000000001caa,0:7] [CXN_TYPE: SOAP]
[SERVICE_NAME: {http://xmlns.oracle.com/mcs/test}OrderProcessorService]
[SERVICE_PORT:
{http://xmlns.oracle.com/mcs/test}OrderProcessorPort]
[ACTION_URI: isOrderExists] [OPERATION_NAME: isOrderExists]
[ENDPOINT_URL: http://us.example.com:7001/McsSoapWsApp-SimpleSoapWs-

Chapter 25
Viewing Log Messages

25-15

context-root/OrderProcessorPort]
[CONNECT_TIMEOUT: 60000] [READ_TIMEOUT: 60000] [RESP_CODE: 200] [REQ_TIME:
206] [TIMED-OUT: false]
[START_TIME: 2015-02-04T03:40:42.755-08:00] [MB_NAME: FiF_Customer]
[MB_VER: 1.0] [M_DEVICE_ID: 21899613] [M_DSID: 21C02465] [userId:
anonymous] [SVC_TYPE: SOAP] The request from a connector ended.

The connector attributes include:

Attribute Description Example

TARGET The name of the server where the
connector resides.

mobenv11_server_1

Message ID The message or the corresponding
event types.

MOBILE-38595

Module ID The ID of the Oracle Fusion
Middleware component that logs the
message.

oracle.cloud.mobile.ConnectorH
istory

Thread ID The identification of the Java thread in
which the connector outbound request
is made.

10

ECID The execution context in which the
outbound request from the connector
has been made.

6ded6be4a583ed..00068

RID The Relation ID of the execution
context. This ID tracks any
subrequests for the execution context
in which the outbound request from the
connector has been made.

0:1

MB_NAME The name of the mobile backend. FiF_Customer

MB_VER The version of the mobile backend. 1.0

M_DEVICE_ID The mobile device ID, which correlates
the REST API requests sent to OMCe
with the physical device that makes the
request. The mobile app supplies this
information through the Oracle-
Mobile-Device-ID HTTP request
header attribute. See also How Client
SDK Headers Enable Device and
Session Diagnostics.

21899613

Chapter 25
Viewing Log Messages

25-16

Attribute Description Example

M_DSID The mobile diagnostic session ID. This
attribute maps an app session on a
specific device. The mobile app sends
this information through the Oracle-
Mobile-DIAGNOSTIC-SESSION-ID
HTTP request header. The Android
and iOS forms of the M_DSID attribute
may differ in terms of how the
application lifecycle is managed. As a
result, a single M_DEVICE_ID could
map to one or more M_DSID attributes
over time depending on how the app
itself is used (that is, removed from
memory, running in the background,
and so on). See also How Client SDK
Headers Enable Device and Session
Diagnostics.

21C02465

Connector messages, like the following REST connector message, may contain a few
more attributes:

[2016-05-12T07:17:51.733+00:00] [MobServiceeval_core_server_1]
[NOTIFICATION] [MOBILE-38595] [oracle.cloud.mobile.ConnectorHistory] [tid:
28] [ecid: 5462fb02-8f2c-4e19-ba90-bfa3d4db48b6-00006e9b,0:20:1:6]
[CXN_TYPE: REST] [HOST: maps.googleapis.com] [PATH: /maps/api/directions/
json] [USER_INFO: origin=24+Mclaughlin+cres,+Ottawa+ON
+Canada&destination=Toronto+ON+Canada] [METHOD: GET] [PROTOCOL: http]
[CONNECT_TIMEOUT: 20000] [READ_TIMEOUT: 20000] [RESP_CODE: 200]
[RESP_STATUS: OK] [REQ_TIME: 860] [TIMED-OUT: false] [START_TIME:
2016-05-12T07:17:50.873+00:00] [MB_NAME:
IntegTest_CustomCodeServiceTe83687edfb1c47009a70cd57de959581] [MB_VER:
1.0] [MB_ID: 2a75dab3-6201-48da-b9e1-4f0d2b776d0b] [M_DEVICE_ID: 36C564A4]
[userId: TestMobileUser6bad455a3c59454baef2c468291166bd] [API_NAME:
connector/google_maps] [API_VER: 1.0] [SVC_TYPE: REST] The request from a
connector ended.

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

API_NAME The name of the API. Yes Yes connector/SOAPApi,
connector/google_maps

API_VER The version of the API. Yes Yes 1.0

CXN_TYPE The connection type of
outbound request.

Yes Yes SOAP

START_TIME The time stamp marking
the beginning of the
outbound request.

Yes Yes 2014–07–
014T12:12:31.173–
07:00

RESP_CODE The HTTP status code of
the connector’s outbound
request.

Yes Yes 200

Chapter 25
Viewing Log Messages

25-17

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

RESP_STATUS The response status
message sent by the
endpoint of the connector
request.

Yes Yes OK

ERROR Any errors (or exceptions)
that occur during the
connector outbound
request.

Yes Yes SOAPFaultException,
MOBILE-38595

REQ_TIME The total time (in
milliseconds) that the
connector spent making
the outbound request.

Yes No 971

RESP_LEN The content length (in
bytes) of the response that
is set in the response
header. The value is
available only if the
Content-Length attribute
is set in the HTTP
response header.

Yes No 196

HOST The host name. Yes No xyz.us.example.com

SVC_NAME The connector service
type.

Yes Yes REST, SOAP, ICS_REST,
ICS_SOAP and FA

PORT The port number. Yes No 9022

PROTOCOL The transport protocol. No Yes PROTOCL:https

PATH The URI path information. Yes No /wspath

QUERY The query string. Yes No query

USER_INFO The user information URI. Yes No sensor=false&origin=O
ttawa&destination=Tor
onto

SERVICE_NAME The name of the SOAP
service.

Yes No http://
myhost.us.example.com
:7002/mobilesvc/
IncidentService

SERVICE_PORT The name of the SOAP
service port.

Yes No http://
mobilesvc/}IncidentSe
rvicePort

ACTION_URI The SOAP action URI. Yes No http://example.com/
RightNow/
GetIncidentById

OPERATION_NAME The SOAP operation
name.

Yes No GetIncidentById

Chapter 25
Viewing Log Messages

25-18

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

ENDPONT_URL The endpoint URL of the
SOAP request.

Yes No http://
us.example.com:/7001/
mobilesvc/
IncidentService

CONNECT_TIMEOUT The SOAP connection
timeout.

Yes No 10000

READ_TIMEOUT The SOAP read timeout (in
milliseconds).

Yes No 10000

Message Text A brief message. Yes Yes End of Connector
Request

Timed-out A Boolean value that when
true, indicates that a
timeout has occurred.
Otherwise, the value is
false.

Yes Yes TIMED-OUT:false

Configuring the Logging Level for Custom Code
To set the logging level, click Server Settings in the upper-right side of the page and
then select the desired log level.

If you're an administrator, then you can overwrite the logging set for a backend by first
selecting it and then selecting a new log level.

Diagnosing Custom Code
As an app developer who's debugging backend code, or as an administrator
investigating a sudden increase of 5xx status codes, you can use correlated logging to
identify flaws in code or changes in backend services that adversely affect the user
experience.

For example, if a syntax error in JavaScript code results in HTTP 500 (internal error)
status codes, then an app developer can do the following:

1. Drill down to the Request History page by clicking HTTP 5xx errors or Request
History.

2. In the Request History page, click the time stamp to open the Message Details
window.

3. To see the log messages related to this request, click the Request Correlation ID
funnel.

4. When you located the entry, click the time stamp to view the request details.

Tip:

Adjust the logging level if you don't see any messages.

Chapter 25
Diagnosing Custom Code

25-19

5. Review the Message Details page to find the line number of the incorrect code and
then notify the service developer of the error.

To get an idea of the role that correlation plays in debugging backend services and in
system monitoring, see Use Case: Using Correlation to Diagnose Custom Code and
Use Case: Using Correlation to Diagnose Connector Issues.

Use Case: Using Correlation to Diagnose Custom Code
Developers for apps and backend services can use the backend-level diagnostics logs
to pinpoint errors in the server-side JavaScript code. In this scenario, an app
developer opens a backend called FiF_Customer and notices that the Diagnostics
page shows that the environment has progressed to an adverse (amber) state
because of an HTTP 5xx error.

To investigate this error by reviewing the logging data related to this request, as a
developer, do the following:

1. Click HTTP 5xx Errors to open the Request History page.

2. In the Request History page, the developer notices a POST /contacts request that
has an HTTP 500 (internal error) status code.

3. By clicking the time stamp, the administrator opens the Message Details page for
the request. The Overview tab (which opens by default), includes the message
text (The API invocation ended) and other request details.

Chapter 25
Diagnosing Custom Code

25-20

4. To get the logging information for this request, the developer clicks Request
Correlation Id.

The log viewer includes an entry for a custom code problem, which is ranked as
SEVERE.

5. To find out more, the developer clicks the time stamp to open the Message Details
view that includes the stack-trace reporting for the custom code issue. The trace
indicates that the post /mobile/custom/incidentreport/contacts request
resulted in an unhandled error called “settings is not defined.”

Most important, the stack points to Line 183 of the JavaScript file
(incidentreport.js) as the source for the unhandled error.

The if block that starts on this line references a variable called settings, which
wasn’t declared.

Chapter 25
Diagnosing Custom Code

25-21

6. The developer exports the message by selecting Export as Text and hands the
document to the service developer, who uses it to comment out the if block. The
service developer then refreshes the implementation (.impl) file for the custom
code API with the updated incidentreport.js file. Soon thereafter, the calls
return an HTTP 200 (OK) status code.

Tip:

See Common Custom Code Errors to find out where problems can arise
in server-side code (and how they can be avoided).

Use Case: Using Correlation to Diagnose Connector Issues
Like app developers, administrators also use correlation. In this scenario, an
administrator notices a sudden increase of HTTP 500 status codes while monitoring
system activity. The health status for the environment has changed to adverse (red).

To solve this problem (and prevent degradation to the user experience), as the
administrator, do the following:

1. Click HTTP 5xx Errors on the Diagnostics page to open the Request History
page.

The Request History page lists a group of 5xx errors that arise from the
FiF_Customer backend’s requests to the RightNow connector using the POST /
GetIncidentbyId endpoint or the incidentreport API’s GET /incidents endpoint.

2. Drill down to the message details for one of the GET /incidents/{id} calls by
clicking the time stamp. The message details page for the request provides the

Chapter 25
Diagnosing Custom Code

25-22

message text for the error (The API invocation has ended) along with
performance information.

3. To find out more, the administrator clicks the Request Correlation Id to view the
logging data.

Because the APIs are correlated to the connector calls, the Logs page shows
SEVERE messages for both the incidentreport API and the RightNow Connector.

4. Open the Message Detail page for the RightNow connector by clicking the time
stamp.

The message details page identifies the error as a problem with the SOAP service
(per error message MOBILE 16006) and provides the service name
(incidentService) and port (7002) along with a tip: Check the validity of the
SOAP connector configuration.

5. Confer with the RightNow service provider. After finding out that the service’s port
number is now 7001, the administrator updates the RightNow connectors Endpoint
with the correct port number.

Chapter 25
Diagnosing Custom Code

25-23

6. Test the GET /Incidents/{id} endpoint for the incidentreport API.

After seeing the 200 (OK) response, the administrator confirms that the connector
configuration is now correct.

Chapter 25
Diagnosing Custom Code

25-24

26
Packages

Oracle Mobile Cloud Enterprise (OMCe) lets you share and move bundles of related
artifacts built in OMCe to another instance of OMCe. You do this by exporting artifacts
along with their dependencies, which creates a package, and importing that package
to other instances of OMCe.

The export process creates a package file (package-name.zip) containing a copy of
the artifact, its dependencies, and their local policies. You can also use the package
file as an archive for a set of related artifacts and store it outside of OMCe. If artifacts
in the current instance of OMCe are changed or accidentally deleted, you can retrieve
their original state from the package.

If you’re a mobile or service developer, you can export artifacts such as mobile
backends, collections, APIs and API implementations. You or another developer can
then import the artifacts into the target environment.

What’s a Package?
A package is a container for one or more artifacts. If an artifact has dependencies,
they’re also included in the package. For example, when you export a mobile backend,
a package is created that contains the mobile backend and its dependencies, such as
an API and its implementation, the connectors that the implementation calls, and
collections. If the artifact you export is an API that has only one dependency, its
implementation, then the package would contain just the API and its implementation.

Note:

While you can’t explicitly add roles to a package, if an artifact has roles
associated with it, they’ll be included in the package

Artifacts can be in Draft or Published states. When an artifact is imported, it retains the
state it had when the package was created (the source environment). That is, when an
artifact in Draft state is imported, it’s still in the Draft state in the new instance. The
same is true for artifacts in the Published state.

For information on exporting a package, see Adding Artifacts to the Package. For
information on importing a package, see Uploading the Package.

Why Do I Want a Package?
With packages, you can easily share artifacts across different instances of OMCe. For
example, you might find that you can use the same set of configured artifacts for
different apps. Instead of having to recreate the same set of artifacts with the same
configurations in another instance of OMCe, you can export the artifacts (that is,
create a package) in the current instance and import them into the target instance of
OMCe where work on the other app is being done.

26-1

Lets say Jeff, the service developer for Fix It Fast, has created a mobile backend that
lets a technician look up the latest service requests and find the location and contact
details for each customer. Fix It Fast has a subsidiary business called Restore It Fast,
which provides restoration services to customers with fire or water damage. It would
be helpful if the team at Restore It Fast could use that same mobile backend.

Jeff exports the mobile backend and all of its dependencies. He then notifies Jane, the
service developer at Restore It Fast, that the package is ready to import. Jane locates
and imports the package. She edits the environment policies for her OMCe
environment. She saves significant time by having the essentials of the mobile
backend completed. She can begin testing right away and have the app ready to use
by Restore It Fast technicians.

Exporting a Package
Use the Export Package wizard to easily create a packaged set of artifacts that you
can export to other instances of OMCe. The wizard shows you the dependencies
associated with artifacts and includes those dependencies in the package for you. In
addition to adding artifacts to the package, you’ll have the opportunity to modify local
environment policies.

The Export Package wizard walks you through the following steps to export a
package:

• Adding Artifacts to the Package

• Reviewing Dependencies During Export

• Setting Environment Policies During Export

• Completing the Export

Adding Artifacts to the Package

1. Click and select Applications > Packages from the side menu.

If there are existing import and export packages, you’ll see a list of packages.

Chapter 26
Exporting a Package

26-2

Uup arrow icons denote export packages. Down arrow icons denote import
packages.

Alternatively, you can go to an artifact’s landing page, select an artifact and
choose More > Export. That artifact is automatically added to the list of selected
artifacts. You can add more artifacts on the Content page of the Export wizard.

2. Click New Export.

3. On the Contents page of the Export wizard, click in the artifact Search field and
select an artifact from drop-down list to add it to the package.

You can also enter a name in the field. All artifacts with that character string are
displayed in the Selected Artifacts list. Click X to remove an artifact that you don’t
want included in the package.

4. Select an artifact to see its dependencies in the right panel.

Note:

If you’re exporting a client, the mobile backend that it references and any
dependencies of the mobile backend are automatically added. However,
if you export a mobile backend, the client that references it isn’t
automatically added. Because a mobile backend can be referenced by
multiple clients, you’ll have to manually add the client you want by
entering its name in the Search and selecting it.
Also be aware that notification profiles associated with the client are not
included in the export or import package. You’ll have to manually create
the profiles in the target environment and associate them with the client.

5. Click Next (>) to go to the next step.

Reviewing Dependencies During Export
Here’s where you can examine everything that’s included in the export package. You
can expand the view of each artifact type to see all the artifacts and their status.

Chapter 26
Exporting a Package

26-3

All artifacts are displayed under their respective types and top-level (root) artifacts are
not distinguished. That is, a custom API that’s listed could be a dependency of a
mobile backend or a top-level artifact itself.

1. Click Dependencies in the navigation links.

If the call to the mobile backend that’s being exported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being exported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and won’t be
automatically exported. You must manually export the target mobile backend to
the target environment if it doesn’t exist there already.

2. If you’re exporting APIs, expand API to see the associated API implementation for
each custom API.

3. Click Expand All or Collapse All to see the full list of artifacts or just the artifact
types.

4. Click Next (>) to go to the next step.

The Draft or Published state of the artifact and its dependencies are retained when the
package is imported to the target environment.

Setting Environment Policies During Export
Setting or changing policy values is an optional step during export. You don’t have to
change policy values here. Policies can be modified during import or from the
Administration page afterwards.
You can save some time by setting values now if you know what values will be
required. For example, if a connector API is in the package, you may want to change
the security policy. If a mobile backend is being exported, you may want to reset the
Sync_CollectionTimeoutToLive policy. Another example is if the call to the mobile
backend that’s being exported is rerouted to another mobile backend and you want to
ensure the rerouting occurs, you should set the Routing_RouteToBackend policy here

Chapter 26
Exporting a Package

26-4

and specify the name and version of the original and target mobile backends. You’ll
also want to check if the intended target mobile backend exists; otherwise, you’ll need
to export it.

Note:

If a policy in the export package doesn’t already exist in the target, it will be
added during the import.

1. Click Policies in the navigation links and review the current policy values for the
artifacts in the package.

Policies values with a cloud icon indicate the value is taken from source
environment. Pencil icons denote custom values.

2. (Optional) Select a policy and edit its value in one of the following ways:

• Click Edit above the policy table. In the Edit Policy dialog, you can select the
value that the policy currently has (Package file value) or enter a custom
value (Custom value). Click Null to set the custom value to null. Click Save to
enact the change.

• Right-click a policy in the table and select Set custom value to null or Edit to
enter a value in the Custom value field in the Edit Policy dialog.

Click Reset to revert back to the original value for that policy.

If you change your mind or make a mistake after modifying the policy values, click
Reset All to revert back to the original policy values.

3. Click Next (>) to go to the next step.

For descriptions of policies, see OMCe Policies and Values.

Chapter 26
Exporting a Package

26-5

Completing the Export
Now that you’ve selected all the artifacts you want to export (and optionally, set any
environment policies), it’s time to create the package.

Note:

When you click Export, artifacts are added to the package in their current
state at that time. For example, if someone publishes an artifact while you’re
creating the export package, the package will contain the published instance
of that artifact.

1. Click Finish in the navigation links.

2. Enter a name for your package.

The default name is the name of the top-level artifact. The package name and
version must be a unique combination. No other package name can have the
same name and version number.

3. Enter a version number.

For example, enter 1.0 to designate it as the first version of this package.

4. Enter documentation about this package.

Add documentation that informs whoever is importing the package about what it
contains and what tasks need to be performed before and after the package is
imported. The Export wizard automatically enters information about which roles
must exist in the target environment before the package can be imported.

You can manually write documentation for your export package using Markdown
syntax in the Documentation field or copy and paste your documentation into the
field. Markdown syntax lets you write an easy to-read plain text that can easily be
converted to structurally valid XHTML for viewing in a browser. See How Do I
Write in Markdown?

Click Preview below the field to see the formatted output.

5. Click Export.

6. Select the location to place the package from the file chooser.

You can edit the name of the package here. The file name has the format
package-name.zip.

Chapter 26
Exporting a Package

26-6

Re-exporting a Package
Re-exporting lets you create a new package based on an existing package. Select a
package and select Re-export, which takes you through the Export Package wizard
where you can select more artifacts to include or remove some of the current artifacts.

1. Click and select Applications > Packages from the side menu.

2. Select an export package and click Re-export.

3. Follow the steps for exporting a package: selecting artifacts, reviewing
dependencies, optionally setting environment polices, naming the package and
providing documentation about the package. For steps on creating an export
package, see Exporting a Package.

Note:

Remember that the new package must have a unique package name
and version combination. That is, if the original package is MyPackage
1.0, the new package must have either a different name or version
number.

Importing a Package
Importing a package puts copies of the artifacts from the source environment into the
target environment. Before you proceed with the import, make sure the package name
and version are unique in the target environment. You won’t be able to import it if a
package with the same name and version already exists. During the import, you’ll be
able to verify the contents of the package, read the package documentation, and you’ll
also be able to set the values for policies being added to the target environment or
modify existing policies.

The Import Package wizard walks you through the following steps for importing a
package:

• Uploading the Package

• Examining the Contents of the Import Package

• Setting Environment Policies During Import

Uploading the Package
When you upload the package, the contents of the package are immediately installed
in the target environment unless a conflict or some other error occurs during the
import. You can view the contents of the package and whether or not all of the
contents were successfully imported on the next page of the Import wizard.

1. Go to the environment where you want to import the package.

2. Click and select Applications > Packages from the side menu.

Chapter 26
Re-exporting a Package

26-7

If there are existing packages, you’ll see them listed here. Packages with a green
up arrow denote export packages. Packages with a blue down arrow denote
import packages.

3. Click New Import.

4. Copy and paste (or drag) the package to the Upload page of the Import wizard.

After the package is uploaded, you can see the package name, version, and
information about the package. If you’ve uploaded the wrong package, click
Cancel to exit the import operation.

5. Click Next (>) to go to the next step.

Examining the Contents of the Import Package
On the confirmation page, you can see a list of the artifacts being imported and which
artifacts already exist in the target environment. You can also see what dependencies
are also being imported.

Note:

The notification profiles associated with a client are not included in the import
package. If you’re importing a client, you’ll have to re-create the notification
profiles in the target environment and associate them with the client. See
Notification Profiles and Client Apps.

1. Click Confirm in the navigation links.

2. Review artifacts the list of artifacts to be installed. Remember if there are roles in
the package that will be created in the target environment, you must have Oracle
Cloud identity domain administrator permissions to do the import. Only team
members with Oracle Cloud identity domain administrator permissions can create
roles.

If you don’t want the listed artifacts imported to the target environment, click
Cancel now. No changes will be made to the target environment.
If the call to the mobile backend that’s being imported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being imported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and isn’t included in
the package. You must manually import the target mobile backend to the target
environment if it doesn’t exist there already.

Chapter 26
Importing a Package

26-8

3. Click Next.

The process of installing the contents of the package in the target environment
begins.

A conflict occurs when an artifact with the same name and version (but with a
different Universally Unique Identifier (UUID) value) exists in both the import
package and in the target environment. The import process can’t proceed if an
error occurs. Close the import wizard and resolve the issue by moving the existing
artifact in the target environment to the trash, changing its name or version, and
then try importing the package again. Alternatively, you can import the package to
a different instance of OMCe.

The Import Results page shows the artifacts that have been installed.

When an artifact in the package has the same name, version, and UUID value as
one in the target environment, the artifact is marked as EXISTS on the results
page and is not imported.

Setting Environment Policies During Import
Here is where you can set or modify the environment policies in the target environment
for the packaged artifacts. Although the mobile cloud administrator can modify these
policies later, to ensure that operations can be performed correctly in the target
environment, you should update the policies here.
Even if you don’t modify values for existing environment policies, any policies
associated with the artifacts in the package that are new to the target environment are
added for you when you update.

Check the documentation included in the package to see if any recommended values
or policies are described. For descriptions of policies, see OMCe Policies and Values.

1. Click the Policies navigation link.

Chapter 26
Importing a Package

26-9

If you really don’t want to modify environment policies, click Skip. Be aware
though that the import operation completes without updating any policy values or
adding any policies to the target environment.

2. Filter the policies displayed by selecting Mobile Backends or API/
Implementations from the selection list, or enter a policy name in the Search
field.

Select All Policies (the default value) to list all the environment policies
associated with the artifacts.

3. (Optional) Select a policy and edit its value in one of the following ways:

• Click Edit above the policy table. In the Edit Policy dialog, select Package file
value, Target system, or Custom value. If you want to set the value to null,
click Null next to the Custom value field.

Click Save to enact the change.

• Right-click a policy in the table and select Use value from target system, Set
custom value to null or Edit to enter a value in the Custom value field in the
Edit Policy dialog.

Click Reset to revert back to the original policy value.

If you change your mind or make a mistake, click Reset above the table to revert
all the policies to their original values. A package icon indicates the policy takes
the value it has in the package, a pencil icon indicates the policy has a custom
value, and a target icon indicates the policy takes its value from the target
environment.

4. Click Update to apply the changes to the policies and add any new policies to the
target environment.

Any policies in the policies list that don’t already exist in the target environment are
added. If you need to change any of the policy values after the import, your mobile
cloud administrator can change them through the Administration view.

Chapter 26
Importing a Package

26-10

A blue dot by a policy name indicates that it has been modified. Icons in the Update
Value column indicate if the value is taken from the package or if it was manually
changed. You can the values of existing policies in the Current Value column.

What Happens When You Import a Package?
Similar to deploying an artifact from one environment to another, when importing
artifacts from one instance of OMCe to another, conflicts or errors can occur.

Some situations in which you can have a successful import:

• If all the artifacts being imported to the target environment in the new instance of
OMCe are unique in name and version from any existing artifacts in that
environment, the import will be successful.

For example, a package contains the MyIncidentReports 1.1 API. The target
environment has a MyIncidentReports 1.5 API. There is no conflict because the
two APIs are different and MyIncidentReports 1.1 is successfully imported.

• Another successful import occurs even if some of the artifacts in the package
already exist in the target environment. That is, duplicate artifacts are in the target
environment.

For example, a package contains RightNow 1.1 connector. During the import
process, it’s determined that a duplicate connector already exists in the target
environment. It has the same name, version, and UUID values. The connector is
skipped and the rest of the artifacts are successfully imported

Here are instances where potential problems can occur:

• If a role associated with the artifacts in the package doesn’t exist in the target
environment, then it is added when the package is imported, but to do so requires
that you are a team member with Oracle Cloud identity domain administrator
permissions. If you don’t have Oracle Cloud identity domain administrator
permissions, the import will fail.

• If some of the artifacts in the package are similar to existing artifacts in the target
environment, that is they have the same name, version, but different UUID values,
the import process can’t complete.

For example, the package contains the published RightNow 2.0 connector and the
target environment also has a published RightNow 2.0 connector. They both have
the same name, version, but have different UUID values. You see a CONFLICT
message by the artifact and the import operation fails. When an import fails, all
changes made to the target environment are rolled back. All artifact attributes and
policy values are returned to their original values prior to the import.

You have two choices. You can create a new version of the connector in the
source environment, resolve any dependency issues, export the connector, and
then import it to the target environment. Otherwise, you can move the RightNow
2.0 connector that’s in the target environment to the trash and then proceed with
the import.

For descriptions of the possible results of importing a package, see Import Results.

Import Results
The import results that can occur are described here:

Chapter 26
What Happens When You Import a Package?

26-11

Import State Descriptions

Imported The artifact didn’t exist in the target
environment and was imported successfully.

Not Imported The artifact wasn’t imported because of
conflict occurred or a missing artifact was
detected.

The import process was stopped and any
changes made prior to the error were rolled
back. The target environment is back to its
original state before the import.

Exists A duplicate artifact already exists in the target
environment, therefore, the artifact in the
package was skipped.

Privileges A required role or realm didn’t exist in the
target environment and the current user
doesn’t have Oracle Cloud identity domain
administrator permissions to create the role or
realm automatically during import.

Conflict A similar artifact (same name and version but
different UUID) exists in the target
environment.

The import process was stopped and any
changes made prior to the conflict were rolled
back. The target environment is back to its
original state before the import.

Exporting Updated Artifacts
What happens if you make upgrades to artifacts in your instance of OMCe and you
want those upgrades in another instance of OMCe? Lets say Jeff, at Fix it Fast, makes
some changes to MyIncidentReports1.1 API, which is in Draft state. Samir, who
works at Restore It Fast, would like to get the improved API.

When you import updated artifacts, you need to take steps to prevent a conflict. The
actions you take depend on the Draft or Published state of the artifacts. That could
mean you’ll have to move existing artifacts to the trash in the target environment or
create a new version of the artifact to export and then resolve any resulting
dependency issues with the new version of the artifact.

Following our example, Jeff exports MyIncidentReports1.1 API and its
implementation. However, before Samir can import the package, he moves his Draft
instance of MyIncidentReports1.1 to the trash to avoid a conflict during import.

Examining a Package
You can view the contents of a package from the Packages page. You can also re-
export a package, create a new version of an existing package, or move an export
package to the trash or the contents of an import.

1. Click and select Applications > Packages from the side menu.

2. Select a package and click View.

Chapter 26
Exporting Updated Artifacts

26-12

From the View page, you can look at the details, contents, and policies of a
package. You can also see the package details and content information on the
packages landing page.

3. Click Details to see the package metadata. the contents, policy settings, and the
version of OMCe that contains the package.

Note:

You can only view the policy settings. You can’t change them.

4. Click Contents to see the package contents.

5. Click Policies to view the environment policies and associated with the package
contents and the policy values.

6. On the packages landing page, click History to see who created the selected
package and when.

Moving a Package to the Trash
When you move an export package to the trash, you’re moving just the record of the
package, to the trash. The artifacts remain in the source environment.
However, when you move an import package to the trash, what you’re actually doing is
moving the package (that is, the record of the package) and all the artifacts in the
package to the trash. Even artifacts in the Published state are moved to the trash. You
can manually restore each artifact if you need them.

1. Click and select Applications > Packages from the side menu.

2. Select a package and then select More > Move to Trash.

Note:

Roles can’t be deleted. Any roles associated with artifacts in the package
are revoked and remain in the target system.

3. Review the information in the confirmation dialog.

If an artifact is a dependency of several other artifacts, click More in the dialog to
see the full list.
You won’t be able to deploy any artifacts that have dependencies on an artifact in
the package that was moved to the trash.

Also if an artifact that’s in the package is a dependency of a published artifact
that’s not in the package, the move to the trash operation will fail.

4. Click Yes to move the package to the trash.

If you decide you need some or all of the artifacts that you’ve moved to the trash, you
can restore them as needed. Just go to the artifact’s landing page (for example, to

restore a mobile backend, go to the Mobile Backends page), click on Trash () and
select the item you want to restore. Select Restore from the Trash menu. Your mobile
cloud administrator can also restore these items from the Administration view.

Chapter 26
Moving a Package to the Trash

26-13

Environment Policy Settings for Packaged Artifacts
When you export artifacts, you save their configurations in a portable file (the package)
that can be sent to various instances. Only local policies are included in the package.
That is, only policies scoped for an artifact are available for editing and exporting. For
example, if you’re exporting a mobile backend called FIF_Technician 1.0 and an
environment policy has been defined for it that’s called
FIF_Technician(1.0).*.Logging_Level. That policy will be available for editing.
Environment-wide policies are not included in the package file. For example, if the
mobile backend uses *.*.Logging_Level, that policy won’t appear on the Policies
page. The mobile backend will be subject to the Logging_Level policy in the target
environment.

The environment policy settings for the artifacts are the values they have in the current
instance. Because environment policies are specific to each environment in each
instance, you might need to edit some of the policies before they can be used in their
new location.

During export and import, you’ll have the option to edit these values for the target
environment. If someone other than you is performing the import, you should
document which policies might need to be modified, and which might be overwritten,
and which might need to be added. You might also want to alert them to any roles or
realms that are required. To ensure the required policies are added to the target
environment.

If a policy that you set during export or import doesn’t exist in the target environment,
it’s added when you import the package.

Any required roles or realms that don’t exist in the target environment are
automatically created during the import but only if the person performing the import
operation is a team member that has been granted an Oracle Cloud identity domain
administrator role.

For descriptions of policies, see OMCe Policies and Values.

Chapter 26
Environment Policy Settings for Packaged Artifacts

26-14

A
HTTP Headers

You use headers to provide information (metadata) about the request or response or
about the data contained in the message body. Oracle Mobile Cloud Enterprise
(OMCe) provides custom request and response headers that you can use with the
connector APIs and in custom code. The HTTP headers, their descriptions, and the
services that use them are described in this chapter.

For detailed descriptions of standard HTTP headers, see Header Field Definitions.

API Headers
The following table lists the custom HTTP headers listed used by Oracle Mobile Cloud
Enterprise (OMCe) custom APIs and connector APIs.

Header Description API

Oracle-Mobile-API-Version The version of the connector or
custom API that is called from a
custom API implementation.

Use this header when the
dependency isn't declared in
package.json or when you
need to override the
dependency declared in
package.json. See
package.json Contents.

Custom API

REST and SOAP
Connector APIs

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by OMCe, which enables
a mobile application to access
APIs associated with that
mobile backend.

This header is required when
you are using the HTTP Basic
Authentication. The value of the
ID (for the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Custom API

A-1

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Header Description API

Oracle-Mobile-External-
Authorization

The request header used when
a security policy isn’t configured
for the connector. When this
header is set, the value of the
header is set as Authorization
on the request to the external
service.

Set the Oracle-Mobile-
External-Authorization
header only when the service
you’re connecting to is secured
in a way that isn’t described by
an existing security policy. The
header won't take effect if a
security policy is configured.
Setting this header takes
precedence over setting an
Authorization header and
creating a rule for it.

REST Connector API

SDK Headers
The public HTTP headers listed in the following table are used in the iOS and Android
SDKs to write calls in your app to mobile backend services.

Header names are case-insensitive and used the same way on both platforms. If you
choose to write custom headers, then they must begin with Oracle-Mobile-.

Header Description Service

Authorization For OAuth and SSO, contains
the OAuth token downloaded
from the OAuth Server.

For HTTP Basic and Facebook,
contains the Base64 encoding
of the user name and password.

Security

Oracle-Mobile-Analytics-
Session-ID

The current session to track
events.

Analytics

Oracle-Mobile-
Application-Key

The Application ID that’s used
to differentiate various
applications.

Analytics and Others

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by OMCe, which enables
a mobile application to access
APIs associated with that
mobile backend.

This header is required when
you’re using the HTTP Basic
authentication or Facebook
login. The value of the ID (for
the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Security

Appendix A
SDK Headers

A-2

Header Description Service

Oracle-Mobile-Canonical-
Link

The canonical link for the object. Storage

Oracle-Mobile-Client-
Request-Time

The client timestamp at which
the request is made. The
timestamp is in UTC in the
format yyyy'-'MM'-'dd'-
T'HH':'mm':'ss':SSS'Z.

Diagnostics

Oracle-Mobile-Content-
Disposition

Arequest for the value of the
Content-Disposition HTTP
response header.

Storage

Oracle-Mobile-Created-By The user who initially created
the object. Corresponds to the
createdBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Created-On The dateTime when the object
was initially created.
Corresponds to the createdOn
property in the JSON
representation of an object.

Storage

Oracle-Mobile-Device-ID The Device ID that’s used to
differentiate various mobile
devices.

Storage and Others

Oracle-Mobile-Diagnostic-
Session-ID

A unique ID to represent a user
app session. This is different
from an Analytics session in
terms of lifetime.

The SDK uses the process ID
(OS PID) for the header value.

Diagnostics

Oracle-Mobile-Extra-
Fields

Addition of a set of predefined
columns like createdBy,
createdOn, and modifiedBy,
which you can use to audit
mobile users’ interactions with
the database. See Creating a
Table Explicitly.

Database

Oracle-Mobile-Modified-By The user who last modified the
object. Corresponds to the
modifiedBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Modified-On The dateTime when the object
was last modified. Corresponds
to the modifiedOn property in
the JSON representation of an
object.

Storage

Oracle-Mobile-Name The display name for the object.
Corresponds to the name
property in the JSON
representation of an object.

Storage

Appendix A
SDK Headers

A-3

Header Description Service

Oracle-Mobile-Primary-
Keys

Addition of a primary key to
implicitly created schema.

Database

Oracle-Mobile-Self-Link The self link for the object. Storage

Oracle-Mobile-Social-
Access-Token

For Facebook login, contains
the Facebook access token.

Security

Oracle-Mobile-Social-
Identity-Provider

For Facebook login, contains
the value facebook.

Security

Oracle-Mobile-Sync-Evict Optional. The specification of
when a returned resource
should be evicted from the
cache, if set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-
Expires

Optional. The specification of
when a returned resource
should expire in the cache, if
set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-No-
Store

If set to true, the device
doesn’t cache the returned
resource.

Synchronization

Oracle-Mobile-Sync-
Resource-Type

An item for items or a
collection for collections;
omitted for files. When set to
item or collection, the
Content-Type header must be
application/json.

For collections, the JSON must
conform to the collection
envelope structure. This is the
custom header defined by the
Synchronization service.

See Defining Synchronization
Policies and Cache Settings in a
Response Header for details.

Synchronization

Oracle-Mobile-Sync-Agent Optional. Informs a sync-
compatible service (like
Storage) to generate compatible
collection formats. The value of
the header is not critical but the
client will set it to true.

Synchronization

Appendix A
SDK Headers

A-4

B
Oracle Mobile Cloud Enterprise Policies

This chapter lists the policies that you can configure in Oracle Mobile Cloud Enterprise
(OMCe). Policies control a variety of things, including logging level, password
expiration times, means for restricting user access, and proxies. Policies can affect all
artifacts of a specific type, or they can affect an individual artifact.

Note:

The scope value shown is the narrowest level at which the property can be
set.

OMCe Policies and Values
Policies determine the behavior of various aspects of OMCe. As OMCe administrator,
you can view and modify the policies in the policies.properties file by exporting the
file from the Administration page.

Policy Type / Description Default Value Scope / Affects

Analytics_Application
Guid

String. Stores an
association between the
backend and the Analytics
application. The value is
the Application ID.

There is no
default value
for this policy.

Scope: Backend

Affects: Backend

Analytics_BaiduMapCsf
KeyName

String. Stores the name of
the CSF key that stores
the Baidu application key
(ak).

There is no
default value
for this policy.

Scope: Backend

Affects: Backend

Asset_AllowPurge String. Controls whether or
not Draft and Published
artifacts in the trash can
be purged (deleted
permanently).

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

B-1

Policy Type / Description Default Value Scope / Affects

Asset_AllowTrash String. Controls whether or
not Draft and Published
artifacts can be moved to
the trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowUntrash String. Controls whether or
not Draft and Published
artifacts can be restored
from the trash.

Valid values are:
• All
• None
• Draft
• Published

All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_DefaultInitialV
ersion

String. Sets the default
version for all newly
created artifacts.

1.0

Note:
Generally, the
default value
should be
used.

Scope: Instance

Affects: All artifacts
that have versions

CCC_DefaultNodeConfig
uration

String. Sets the default
node.js configuration used
by the API implementation
(custom code). The
custom code
implementation can
override the default node
configuration in its
package.json.

Valid values are:
• 8.9: The service uses

node.js 8.9.4.
• 6.10: The service

uses node.js 6.10.10.
• 0.10: The service

uses node.js 0.10.25.

For the related JavaScript
library versions, see
What's the Foundation for
the Custom Code Service?

For instances
of OMCe
provisioned
before 18.3.3,
the default
node.js
configuration
by default is
6.10. For
instances
provisioned as
18.3.3 or
above, the
default node.js
configuration
by default is
8.9.4.

Scope: Instance

Affects: Custom
Code

Appendix B
OMCe Policies and Values

B-2

Policy Type / Description Default Value Scope / Affects

CCC_LogBody Boolean. Determines
whether to log the body of
a request in custom code.
Bodies will be logged in
the following
circumstances:

• Logging level ==
FINEST or there is an
uncaught exception.

• This property is set to
true.

false Scope: Backend

Affects: Custom
Code

CCC_LogBodyMaxLength Integer. Sets the maximum
number of characters to
log if the custom code is
logging the request body.

512 Scope: Backend

Affects: Custom
Code

CCC_SendStackTraceWit
hError

Boolean. Determines
whether or not to send the
stack trace from node.js
with the REST response
from the custom code
container indicating that
there is a code problem.

false Scope: Backend

Affects: Custom
Code

Connectors_Endpoint String. Stores the endpoint
URL of the particular
connector instance.

Set this policy by
uncommenting the policy.

There is no
default value
for this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Connector_Ics_Connect
ions

String. Identifies the JSON
document representing
connections to each
configured ICS instance.

null Scope: Instance

Affects: ICS
Connector

Appendix B
OMCe Policies and Values

B-3

Policy Type / Description Default Value Scope / Affects

Database_CreateTables
Policy

String. Controls whether
the Database API can
create, alter, or drop tables
from custom code or SQL.
The default value (allow)
enables calls from custom
code that perform implicit
operations and also
explicit query operations
from raw SQL.

Setting this policy to
implicitOnly enables
these operations and
JSON from custom code
calls, and prohibits SQL
operations. Setting the
policy to explicitOnly
enables these operations
using the Database
Management Service API,
and prohibits non-SQL
operations from custom
code. Setting the policy to
none curtails implicit and
explicit table creation,
deletion, and updates.

allow Scope: Instance

Affects: Database
Service

Database_MaxRows Integer. Sets the maximum
number of rows that can
be returned by a single
database query.

1000 Scope: Instance

Affects: Database
Service

Database_QueryTimeout Integer. Sets the number
of seconds to wait for a
database query to return
before canceling it.

20 Scope: Instance

Affects: Database
Service

Diagnostics_ExcludedH
ttpHeadersInLogs

String. Creates a list of
headers that shouldn’t be
logged with each API
request in the API History
log file.

Authorization
header, cookie
name

Scope: Instance

Affects:
Administration

Diagnostics_RequestPe
rcentageErrorThreshol
d

Double. Sets the
percentage of requests
returning error codes
compared with total
request above which the
service will report an error
condition.

Set this value higher than
the one set for the
Diagnostics_RequestP
ercentageWarningThre
shold policy, which sets
the adverse level of
system health.

10 Scope: Instance

Affects:
Administration

Appendix B
OMCe Policies and Values

B-4

Policy Type / Description Default Value Scope / Affects

Diagnostics_RequestPe
rcentageWarningThresh
old

Double. Sets the
percentage of requests
returning error codes
compared with total
request above which the
service will report a
warning condition.

1 Scope: Instance

Affects:
Administration

Logging_Level Integer. Sets the logging
level.

800 Scope: Backend

Affects: Custom
APIs, Storage

Network_HttpConnectTi
meout

Integer. Sets the amount
of time spent in
milliseconds (ms)
connecting to the remote
URL.

The value should be less
than the value of
Network_HttpRequestT
imeout.

There is no
default value
for this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

Network_HttpReadTimeo
ut

Integer. Sets the maximum
time (in milliseconds)
spent waiting to read data.

The value should be less
than the value of
Network_HttpRequestT
imeout.

There is no
default value
for this policy.

The initial value
is set when the
connector is
created.

Scope: Instance,
Backend, Connector,
Fully-Qualified
Connector

Affects: Connectors

Network_HttpRequestTi
meout

Integer. Sets the amount
of time in milliseconds
(ms) on an HTTP request
before it times out.

40,000 ms Scope: Instance

Affects: Custom
APIs

Notifications_DeviceC
ountWarningThreshold

Double. Defines the
threshold level
(percentage) of messages
sent successfully without
returning an error.

If the proportion of
messages accepted by the
service provider is below
the threshold, then a
warning is displayed. The
default value is 70.0
(70%).

Set this policy as needed.

70.0

Note: For
testing
purposes only,
consider
setting this
value to 100.0
(100%).

Scope: Instance

Affects: Notifications

Routing_BindAPIToImpl String. Determines which
core service to use to
resolve the API request.

There is no
default value
for this policy.

Scope: API

Affects: Custom
APIs, Connectors

Routing_BindAPIToMock Boolean. Resolves the API
request to a mock service
instead of the
implementation that’s
bound to the API.

false

Note: Do not
modify this
policy.

Scope: Fully-
Qualified API

Affects: Backend,
Custom APIs

Appendix B
OMCe Policies and Values

B-5

Policy Type / Description Default Value Scope / Affects

Routing_DefaultImplem
entation

String. Specifies the
default implementation for
the initially created API
(that is, the mock service).

MockService/1.
0

Note: Do not
modify this
policy.

Scope: Instance

Affects: Custom
APIs

Routing_RouteToBacken
d

String. Reroutes mobile
API calls made to a
backend to the target
backend specified.

There is no
default value
for this policy.

Scope: Backend

Affects: Dispatcher

Security_AllowOrigin String. Enables Cross
Origin Resource Sharing
(CORS) from HTML5
clients on an external
domain.

Supported values are:
• disallow
• url1, url2, url3 -

specifies a whitelist of
URLs from which
cross-site requests to
APIs can be made. If
the origin of the cross-
site request matches
one of the patterns in
the whitelist, the
request is allowed.
Otherwise, access is
restricted.

The wildcard
character, *, can be
used when providing
URL values but
doesn't apply across
dot (.), forward slash
(/), or colon (:)
characters.

disallow

Note: When
dealing with
browser-based
applications,
it’s highly
recommended
that cross-site
access to APIs
either be
restricted
completely, or
be restricted to
trusted origins
where
legitimate
applications
are known to
be hosted to
prevent
vulnerability to
cross-site
attacks (e.g.,
Cross-Site
Request
Forgery).

Scope: Instance

Affects: All cross
origin calls to a given
instance

Security_AuthTokenCon
figuration

JSON Object. Provides a
configuration to integrate
with third-party identity
providers that support
JWT, which mobile app
users can use to
authenticate.

Scope: Environment

Affects: Security

Appendix B
OMCe Policies and Values

B-6

Policy Type / Description Default Value Scope / Affects

Security_CollectionsA
nonymousAccess

A comma-separated list of
storage collections
following this pattern:

<collection1_name>[(
<version>|*)]
[,<collection2_name
>[(<version>|*)]]
[, ...]

Sets a storage collection
to allow anonymous
access. For each storage
collection listed in the
policy, anonymous read
and write access will be
allowed, provided that the
correct anonymous access
key is defined in the
request headers.
Specifying '*' as the
version allows anonymous
access to all versions of
the collection.

No default
value

Scope: Storage
Collections

Affects: Only the
listed Collections

Security_ExposeHeader
s

String. Provides a means
for browsers to access the
server whitelist headers.
By default, Cross Origin
Resource Sharing (CORS)
disallows accessing
returned headers by the
browser.

Applies to HTML5 clients
accessing a given
resource from an external
domain.

""

Indicates that
no response
headers are to
be exposed to
the browser.

Scope: Instance

Affects: All cross
origin calls to a given
instance

Security_IdentityProv
iders

String. Stores identity
providers configuration.

Facebook
identity
provider
configuration

Scope: Instance

Affects: Security

Security_IgnoreHostna
meVerification

Boolean. Disables the SSL
host name verification.

To be applied to
connectors (in
development) that call
outbound services using
SSL certificates with an
invalid or incomplete
hostname.

false Scope: Instance

Affects: REST,
SOAP, ICS, and
Fusion Applications
Connectors

Appendix B
OMCe Policies and Values

B-7

Policy Type / Description Default Value Scope / Affects

Security_OwsmPolicy Object. Sets the security
policy used for outbound
security.

There is no
default value
for this policy.

The initial value
is set when the
connector is
created.

Scope: Connector

Affects: Connectors

Security_SsoRedirectW
hitelist

String. Lists the URL
patterns for the SSO
redirect_uri parameter
values that are permitted.

disallow Scope: Instance,
Backend

Affects: SSO Token
Relay

Security_TokenExchang
eTimeoutPolicy

String. Defines the policy
that governs the expiration
time for tokens generated
and issued as a result of
token exchange.

Valid values are:

• FromTimeoutSecs -
token expiry time is
governed by the
Security_TokenExc
hangeTimeoutSecs
policy.

• FromExternalToken -
token expiry time is
set to the same time
as the external token
expiry time.

• FromExternalTokenLi
mitedByTimeoutSecs
- token expiry time is
set to the value
determined from the
Security_TokenExc
hangeTimeoutSecs
policy or the external
token expiry time,
whichever comes first.

FromTimeoutS
ecs

Scope: Instance

Affects: SSO Token
Exchange

Security_TokenExchang
eTimeoutSecs

Integer. Sets the token
expiration time for SSO
login.

216000 s Scope: Instance

Affects: SSO Token
Relay

Appendix B
OMCe Policies and Values

B-8

Policy Type / Description Default Value Scope / Affects

Security_TransportSec
urityProtocols

String. Specifies a list of
the TLS/SSL protocols that
should be used for the
outbound connection for
the specific connector. By
default, only TLSv1.2
protocols are used for
outbound connections.
This property can be used
to override the system
defaults so that
connections can be
established to legacy
systems that don't support
new versions of TLS/SSL.

Caution: Use this property
carefully as older protocols
are more vulnerable to
security exploits.

Valid value is a comma
separated list of the
TLS/SSL protocols. Note
that extra spaces around
the protocol names are
ignored. For example,
TLSv1, TLSv1.1, TLSv1.2.

Supported protocols are:
SSLv2Hello, TLSv1,
TLSv1.1, TLSv1.2.

No default
value

Scope: Connectors,
Fully-qualified
Connectors

Affects: All
Connectors

Sync_CollectionTimeTo
Live

Integer. Sets the default
amount of time that data
requested by a mobile app
from a storage collection
remains in the local cache
that’s used by the
Synchronization library.

86400 s

Set this policy
as needed.

Scope: Instance

Affects: Storage

Url_PercentEncodeQuer
yParameterSpaces

Boolean. Controls how
spaces in query
parameters of a URL are
encoded. If set to true
encodes spaces as %20;
and encodes them as +
otherwise. Spaces in other
parts of the URL are
always encoded as %20.

false Scope: Connector

Affects: REST
Connector

Appendix B
OMCe Policies and Values

B-9

C
Security Policies for Connector APIs

Connecting to external services usually requires some degree of authentication and
authorization. When you configure a connector API, you have the option of specifying
the security policies to use when communicating with an external service (except for
ICS Connector APIs where the security policy is determined by the WSDL for SOAP-
based integrations).

Descriptions of the supported Oracle Web Services Manager (Oracle WSM) security
policies for the REST, SOAP, ICS, and Fusion Applications Connector APIs are
provided here. Additionally, the policy properties that you can override are also
described along with a mapping of policy properties to the policies that contain them.

Note that for connector APIs, only client policies are valid.

Security Policies for REST Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for
REST Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes user name and password in an HTTP
Basic Authorization header.

http_jwt_token_client_policy Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust
and a shared identity realm. The JWT token is
create automatically. The issuer name and
subject name are provided either
programmatically or declaratively through the
policy. You can specify the audience
restriction condition for this policy.

http_jwt_token_identity_switch_clien
t_policy

Includes JWT token in the HTTP header.
Similar to http_jwt_token_client_policy
but this policy also performs dynamic identity
switching by propagating a different identity
than the one based on authenticated Subject
(mobile user).

C-1

Security Policy Description

http_jwt_token_over_ssl_client_polic
y

Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust
and a shared identity realm. The JWT token is
created automatically. The issuer name and
subject name are provided either
programmatically or declaratively through the
policy. You can specify the audience
restriction condition for this policy. This version
of the policy enforces that connections are
made over https.

http_saml20_token_bearer_client_poli
cy

Includes SAML 2.0 tokens in the HTTP
header. SAML provides single sign-on in that
multiple services can redirect a user to a
single identity provider, which supplies signed
assertion tokens. The SAML token with
confirmation method Bearer is created
automatically.

http_saml20_token_bearer_over_ssl_cl
ient_policy

Includes SAML 2.0 tokens in the HTTP
header. SAML provides single sign-on in that
multiple services can redirect a user to a
single identity provider, which supplies signed
assertion tokens. The SAML token with
confirmation method Bearer is created
automatically. This version of the policy
enforces that connections are made over
https.

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy
together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_po
licy

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources.

You must set both this policy and oracle/
oauth2_config_client_policy together.
This version of the policy enforces that
connections are made over https.

Appendix C
Security Policies for REST Connector APIs

C-2

Security Policies for SOAP Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security polices for
SOAP connectors are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss_saml_token_bearer_client_policy Includes the SAML Bearer token in outbound
SOAP request messages. The SAML token is
automatically created and is by default signed
with an enveloped signature. The issuer name
and subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

Appendix C
Security Policies for SOAP Connector APIs

C-3

Security Policy Description

wss_saml20_token_bearer_over_ssl_cli
ent_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_saml20_token_bearer_over_ssl_not
imestamp_client_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. The SOAP header contains no
timestamp. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_saml20_token_over_ssl_client_pol
icy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_username_token_client_policy Includes credentials in the WS-Security
UsernameToken header for all outbound
SOAP request messages. Only the plain text
mechanism is supported. The credentials can
be provided either programmatically, through
the Java Authentication and Authorization
Service (JAAS), or by a reference in the policy
to the configured credential store. This policy
can be attached to any SOAP-based client.

Appendix C
Security Policies for SOAP Connector APIs

C-4

Security Policy Description

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss10_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

wss10_saml_hok_token_with_message_pr
otection_client_policy

Provides message-level protection and a
SAML holder of key based authentication for
outbound SOAP messages in accordance with
the WS-Security 1.0 standard. It uses WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouchers
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss10_saml_token_client_policy Includes SAML tokens in outbound SOAP
request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

Appendix C
Security Policies for SOAP Connector APIs

C-5

Security Policy Description

wss10_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 128
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-128 bit
encryption. The keystore on the client is
configured either on a per-request basis or
through the security configuration. A SAML
token, included in the SOAP message, is used
in SAML-based authentication with sender
vouchers confirmation. These credentials are
provided either programmatically or through
the security configuration.

wss10_saml20_token_client_policy Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction can be specified.

wss10_saml20_token_with_message_prot
ection_client_policy

Provides message-level protection and SAML
V2.0 based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 and SAML Token profile 1.1 standards. It
uses WS-Security's Basic 128 suite of
asymmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML V2.0 token, included in
the SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

Appendix C
Security Policies for SOAP Connector APIs

C-6

Security Policy Description

wss10_x509_token_with_message_protec
tion_client_policy

Provides message-level protection and
certificate credential population for outbound
SOAP requests in accordance with the WS-
Security 1.0 standard. It uses WS-Security's
Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Authentication credentials are
included in the SOAP message through the
WS-Security binary security token. These
credentials are provided either
programmatically or through the security
configuration

wss10_saml_token_with_message_protec
tion_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit
encryption. This policy uses the Subject Key
Identifier (ski) reference mechanism for an
encryption key in the request and for both
signature and encryption keys in the response.
The keystore on the client is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

Appendix C
Security Policies for SOAP Connector APIs

C-7

Security Policy Description

wss10_username_id_propagation_with_m
sg_protection_client_policy

Enables message-level protection (that is,
integrity and confidentiality) and identity
propagation for outbound SOAP requests
using mechanisms described in WS-Security
1.0. Message protection is provided using WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for confidentiality, SHA-1 hashing
algorithm for integrity and AES-128 bit
encryption. The keystore on the client side is
configured either on a per request basis or
through the security configuration. Credentials
(only user name) are included in outbound
SOAP request messages via a WS-Security
UsernameToken header. No password is
included. The user name included can be
provided either programmatically, via the
current JAAS Subject or by a reference in the
policy itself to the configured credential store.
This policy can be applied to any SOAP-based
client.

wss10_username_token_with_message_pr
otection_client_policy

Provides message-level protection (message
integrity and confidentiality) and authentication
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header in the
outbound SOAP message. Only plain text
mechanism is supported. Credentials can be
provided either programmatically through the
current Java Authentication and Authorization
Service (JAAS) subject, or by a reference in
the policy to the configured credential store.
This policy can be attached to any SOAP-
based client.

Appendix C
Security Policies for SOAP Connector APIs

C-8

Security Policy Description

wss10_username_token_with_message_pr
otection_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit
encryption. This policy uses the Subject Key
Identifier (ski) reference mechanism for
encryption key in the request and for both
signature and encryption keys in the response.
The keystore on the client is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss11_x509_username_token_with_messa
ge_protection_client_policy

Provides message-level protection and
certificate-based authentication for outbound
SOAP requests in accordance with the WS-
Security 1.1 standard. Messages are protected
using WS-Security's Basic 128 suite of
symmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security binary security token of the
SOAP message. These credentials are
provided either programmatically or through
the security configuration.

wss11_saml_token_identity_switch_wit
h_message_protection_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy performs dynamic
identity switching by propagating a different
identity than the one based on an
authenticated Subject. This policy can be
attached to any SOAP-based client.

Appendix C
Security Policies for SOAP Connector APIs

C-9

Security Policy Description

wss11_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security 1.1 standard. It uses
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

wss11_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy can be attached to
any SOAP-based client.

wss11_username_token_with_message_pr
otection_client_policy

Provides message-level protection and
authentication for outbound SOAP requests in
accordance with the WS-Security 1.1
standard. Messages are protected using WS-
Security's Basic 128 suite of symmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header of
outbound SOAP request messages. Only the
plain text mechanism is supported. Credentials
are provided either programmatically through
the current Java Authentication and
Authorization Service (JAAS) subject or by a
reference in the policy to the configured
credential store. This policy can be attached to
any SOAP-based client.

Appendix C
Security Policies for SOAP Connector APIs

C-10

Security Policies for ICS Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for ICS
Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

Security Policies for Fusion Applications Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for
REST Connector APIs are described in the following table:

Security Policy Description

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

Appendix C
Security Policies for ICS Connector APIs

C-11

Security Policy Description

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy
together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_po
licy

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources.

You must set both this policy and oracle/
oauth2_config_client_policy together.
This version of the policy enforces that
connections are made over https.

Security Policy Properties
Every security policy has a set of attributes that defines it. Some of these attributes
can be overridden (see Setting Security Policies and Policy Overrides for REST
Connector APIs and Setting Security Policies and Policy Overrides for SOAP
Connector APIs). The following table lists the attributes that you can modify and their
descriptions:

Property Description

attesting.mapping.structure The mapping attribute used to represent the
attesting entity. Only the DN (distinguished name)
is currently supported. This attribute is applicable
only to sender vouches and then only to message
protection use cases. It isn’t applicable to SAML
over SSL policies.

Appendix C
Security Policy Properties

C-12

Property Description

audience.uri Audience restriction. The following conditions are
supported:

• If not set, the service URL is used as the
audience URI

• If set to NONE (case insensitive), the audience
URI is set to null

• If set to a value other than NONE, the
audience URI is set to this value

authz.code The previously obtained OAuth2 authorization
code.

csf.key Credential Store key that maps to a user name and
password in the Oracle Platform Security Services
identity store.

csf.map Oracle WSM map in the credential store that
contains the CSF aliases.

federated.client.token The federated identity that enables you to
consolidate the multiple local identities that you’ve
configured among multiple service providers.
Allows you to log on at one service provider site
without having to re-authenticate or re-establish
your identity.

include.certificate The signer's certificate.

issuer.name Name of the JWT issuer. The default value is
www.oracle.com

keystore.enc.csf.key The alias and password used for storing the
decryption key password in the keystore. If you set
this value, then you can override it. If you do
override this value, then the key for the new value
must be in the keystore. That is, overriding the
value doesn’t free you from the requirement of
configuring the key in the keystore.

keystore.recipient.alias Keystore alias associated with the peer certificate.
The security runtime uses this alias to extract the
peer certificate from the configured keystore and to
encrypt messages to the peer. Valid value is
orakey.

keystore.sig.csf.key The alias and password used for storing the
signature key password in the keystore. This
property allows you to specify the signature key on
a per-attachment level instead of at the domain
level.

oauth2.client.csf.key The Credential Store Framework key to the OAuth2
client username and password. The client
credentials are the same on every request.

propagate.identity.context Propagation of the identity context from the web
service client to the web service, and then makes it
available ("publishes it") to other components for
authentication and authorization purposes. This is
applicable to both SAML and OAuth, but not to
HTTP Basic Authentication.

Appendix C
Security Policy Properties

C-13

Property Description

redirect.uri The redirect URI specified when obtaining the
authorization code (set this property if setting
authz.code).

role SOAP role

saml.assertion.filename Name of the SAML token file.

saml.audience.uri Representation of the relying party, as a comma-
separated URI. This field accepts the following
wildcards:

• * in any location
• /* at the end of the URI
• .* at the end of the URI

saml.enveloped.signature.require
d

Flag that specifies whether the Bearer token is
signed using the domain signature key. You can
override the domain signature key using the private
signature key configured using
keystore.sig.csf.key. Set this flag to false (in
both the client and service policy) to have the
Bearer token be unsigned.

saml.issuer.name Name identifier for the issuer of the SAML token.

scope Ability for a user to grant the client application
access to specific resources rather than a blanket
authorization. .Passed to the OAuth2 server token
request

subject.precedence Identification of the authenticated principal. If set to
false, then allows use of a client-specific user name
rather than the authenticated subject. If set to true,
then the user name to create the SAML assertion is
obtained only from the Subject. Similarly, if set to
false, the user name to create the SAML assertion
is obtained only from the csf-key user name
property.

token.uri The OAuth2 server's token endpoint URI, which
issues the access tokens.

user.attributes User attributes related to the principal of the SAML
token. Attributes are added as a comma-separated
list. The attribute names that you specify must
exactly match valid attributes in the configured
identity store. The Oracle WSM runtime reads the
values for these attributes from the configured
identity store, and then includes the attributes and
their values in the SAML assertion.

user.roles.include (SOAP) Flag that specifies whether to include
SOAP roles.

(REST) User roles to be included in the token. If set
to true, then the authenticated user roles are
included in the token as private claims. The default
is false.

user.tenant.name Reserved for use with Oracle Cloud.

The following table shows which security policies have these attributes:

Appendix C
Security Policy Properties

C-14

Property Security Policies Containing the Property

attesting.mapping.structure SOAP security policies:

wss10_saml20_token_with_message_protection_clien
t_policy

wss11_saml20_token_with_message_protection_clien
t_policy

audience.uri REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

authz.code REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-15

Property Security Policies Containing the Property

csf.key REST security policies:

http_basic_auth_over_ssl_client_policy

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

http_basic_auth_over_ssl_client_policy

wss_http_token_client_policy

wss_http_token_over_ssl_client_policy

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20__token_with_message_protection_clie
nt_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

Fusion Applications security policies:

wss_http_token_client_policy

wss_saml_token_bearer_over_ssl_client_policy

ICS security policies:

http_basic_auth_over_ssl_client_policy

Appendix C
Security Policy Properties

C-16

Property Security Policies Containing the Property

ICS security policies:

http_basic_auth_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

wss_saml_token_bearer_over_ssl_client_policy

csf.map REST security policy:

http_jwt_token_identity_switch_client_policy

federated.client.token REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

include.certificate REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

issuer.name REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-17

Property Security Policies Containing the Property

keystore.enc.csf.key SOAP security policies:

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_message_protection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-18

Property Security Policies Containing the Property

keystore.recipient.alias SOAP security policies:

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_message_protection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-19

Property Security Policies Containing the Property

keystore.sig.csf.key REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_bearer_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-20

Property Security Policies Containing the Property

oauth2.client.csf.key REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

propagate.identity.context REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-21

Property Security Policies Containing the Property

redirect.uri REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

role REST security policy:

oauth2_config_client_policy

SOAP security policies:

wss_http_token_client_policy

wss_http_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_message_protection_client_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_message_protection_client_policy

ICS security policies:

wss_username_token_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

http_oauth2_config_client_policy

saml.assertion.filename SOAP security policy:

wss10_saml_hok_token_with_message_protection_cli
ent_policy

Appendix C
Security Policy Properties

C-22

Property Security Policies Containing the Property

saml.audience.uri REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

saml.enveloped.signature.required REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-23

Property Security Policies Containing the Property

saml.issuer.name REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

scope REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Appendix C
Security Policy Properties

C-24

Property Security Policies Containing the Property

subject.precedence REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

token.uri REST security policy:

oauth2_config_client_policy

Fusion Applications security policies:

http_oauth2_config_client_policy

Appendix C
Security Policy Properties

C-25

Property Security Policies Containing the Property

user.attributes REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-26

Property Security Policies Containing the Property

user.roles.include REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-27

Property Security Policies Containing the Property

user.tenant.name REST security policies:

http_basic_auth_over_ssl_client_policy

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

http_basic_auth_over_ssl_client_policy

wss_http_token_client_policy

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

ICS security policies:

http_basic_auth_token_over_ssl_client_policy

http_username_token_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

Appendix C
Security Policy Properties

C-28

Property Security Policies Containing the Property

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

Appendix C
Security Policy Properties

C-29

D
Writing Swift Applications Using the iOS
Client SDK

You can also use the Oracle Mobile Cloud Enterprise iOS client SDK with Swift
applications.

Here are the general steps you take to work with Swift and the client SDK, using
Xcode as your IDE:

1. Add the bridging header files.

2. Add the SDK header files and libraries.

3. Add the Objective-C linker flag.

4. Compile and link your app using the iOS client SDK as you would any other iOS
project in Xcode.

Note:

Using the SDK with Swift has all the same dependencies as using the SDK
with Objective-C. For the list of dependencies, see Libraries and
Dependencies.

For more information on how to work effectively with Swift and Objective-C, see
Apple’s documentation: https://developer.apple.com/library/content/documentation/
Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html.

Adding the Bridging Header File
You need to use a bridging header file to import the header files of the Objective-C
public classes that your Swift app calls. All of the available public classes in the OMCe
client SDK can be found in the SDK’s include folder.

To create a bridging header file in Xcode:

1. Select File > New... > File... and then from iOS/Source choose Header file using
the .h icon. You can give the bridging header file any name you choose.

Depending on the SDK classes that your app uses, the contents should look
something like the following:

#ifndef GettingStartedSwift_Bridging_Header_h
#define GettingStartedSwift_Bridging_Header_h

#import "OMCCore.h"
#import "OMCAuthorization.h"
#import "OMCMobileBackend.h"
#import "OMCMobileManager.h"

D-1

https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html

#import "OMCServiceProxy.h"
#import "OMCUser.h"

#import "OMCStorage.h"
#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCStorageCollection.h"
#import "OMCStorageObject.h"

#import "OMCSynchronization.h"
#import "OMCMobileBackend+OMC_Synchronization.h"
#import "OMCFetchObjectCollectionBuilder.h"
#import "OMCMobileResource.h"
#import "OMCSyncGlobals.h"

#import "OMCAnalytics.h"
#import "OMCMobileBackend+OMC_Analytics.h"

#import "OMCNotifications.h"
#import "OMCMobileBackend+OMC_Notifications.h"

#import "OMCLocation.h"
#import "OMCMobileBackend+OMC_Location.h"

#endif /* GettingStartedSwift_Bridging_Header_h */

2. After you have created the header file, note the location of the file in the Build
Settings for the Objective-C Bridging Header setting.

It’s best to keep the header location specified relative to the project, rather than as
an absolute path, in case the project is shared.

Adding the SDK Headers and Libraries to a Swift App
The set of headers and libraries you add depends upon which of the client SDK’s
static libraries you include in your app. At a minimum, you need the libOMCCore.a and
libIDMMobileSDK.a libraries.

To add the SDK headers and libraries:

1. Download and unzip the SDK, as described in iOS Applications.

2. From the location where you’ve unzipped the SDK files, drag the libraries and
header files you want into your Swift project in Xcode.

Note:

The contents of the SDK libraries are hierarchically arranged by
category, so you’ll need to drag over entire folders to preserve the
includes of other headers.

3. Under the Build Phases settings, add the static libraries plus the iOS frameworks
required by the IDM library to the Link with Binary Libraries phase.

Appendix D
Adding the SDK Headers and Libraries to a Swift App

D-2

4. Add the header files to your search path. Under the project settings, configure the
Header Search Paths to include the location of the parent directory of the SDK
folders, that is, the parent directory of libOMCCore.a, libIDMMobileSDK.a, and so
on. Be sure to use a relative path to the project.

5. Edit the bridging header file to include the header files you’ll actually need for your
code.

This means that you'll also need to add headers that are used by the class you
wish to use.

For example, to make sure that all the methods of OMCAuthorization.h are
accessible, you’d also need to add OMAuthView.h, OMCUser.h
and OMDefinitions.h. Without these files in the bridging header file, some
methods and properties of OMCAuthorization won’t be visible, and the compiler
won’t warn you with errors.

Using SDK Objects in Swift Apps
The rules for converting from Objective-C to Swift are well described in the Apple
documentation. For general information on the relationship and usage of these two
languages together, be sure you look there.

Watch out for the following:

• The auto-complete feature of the Code Editor in Xcode generally works well
enough to get you the mappings. However, sometimes it puts the a label in the
first parameter that isn’t supposed to be there. Watch for it if you’re using auto-
complete.

• When Objective-C init methods come over to Swift, they take on native Swift
initializer syntax. This means the init prefix is sliced off and becomes a keyword
to indicate that the method is an initializer. See the Apple documentation for
complete details.

• Pay special attention to the ! and ? optional parameter specifications, as well as
any parametrized types in the declarations. The optional types are auto-
determined by the compiler when mapping Objective-C to Swift.

You should be able to compile and run your mobile app using Swift and the OMCe
client SDK on both the Xcode Simulator and an actual device.

Here’s an example of Objective-C and the comparable Swift code that uses the OMCe
client SDK.

The following Objective-C code to register a device token for Push notifications:

// Get notifications sdk object
OMCNotifications* notifications = [[appDelegate myMobileBackend]
notifications];

// Register device token with MCS server using notifications sdk
[notifications registerForNotifications:[appDelegate getDeviceTokenData]

 onSuccess:^(NSHTTPURLResponse *response) {

 NSLog(@"Device token registered successfully on MCS
server");

Appendix D
Using SDK Objects in Swift Apps

D-3

 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI here
 }) ;
 }

 onError:^(NSError *error) {

 NSLog(@"Error: %@", error.localizedDescription);

 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI here
 }) ;
 }];

might be written in the following way in Swift:

@IBAction func registerForPushNotifications() {

 // Get notifications sdk object
 let notifications = appDelegate.myMobileBackend().notifications();

 // Get device token first, and assign it here
 let deviceTokenData:NSData! = nil;

 // Register device token with MCS server using notifications sdk
 notifications.registerForNotifications(deviceTokenData, onSuccess:
{ (response:NSHTTPURLResponse!) in

 NSLog("Device token registered successfully on MCS server");

 dispatch_async(dispatch_get_main_queue()) {
 // Update UI here
 }

 }) { (error) in

 print("Error: %@", error.localizedDescription);
 };
}

Appendix D
Using SDK Objects in Swift Apps

D-4

E
Legacy Analytics API

This chapter provides documentation for the legacy Analytics API.

Enabling Your Mobile Apps to Report Event Data
With the legacy analytics features, OMCe creates analytics reports from information
conveyed in JSON payloads. The calls that deliver the JSON payload to the Analytics
API, which records event data, can be either straight REST calls or REST calls made
through the client SDK for your mobile platform. In either case, OMCe uploads and
stores the JSON payload and then graphs it in a report.

Describing Analytics Events in JSON

The JSON payload describes the context for mobile app users in terms of both their
mobile devices and the events that track user interactions. These types of events are
known as custom events. A JSON payload has one or more of these custom events,
and is also constructed from a context event that provides user and system details, a
start session event, and end session event. The custom events are grouped within the
session events to describe an analytic session.

Within the mobile app code, developers can determine the point at which the app
flushes the custom events that have accumulated on the mobile device to the OMCe
server. OMCe considers this content as a session that it can log. Theoretically, an
analytic session can remain open for longer than a single batch update to the OMCe
server. In other words, sessions can vary in length according to your event logging use
case: a session might be created to track event data for a single action or a set of
actions that comprise a task. You can also use a session to log the entire span of user
interactions within a user session. That said, the length of an analytic session
generally does not, and should not, equal that of a user session. Instead, create
analytic sessions that are short and concise. By keeping these sessions crisp, you’ll
maintain system performance and accurate event reporting.

Note:

The client SDK tracks analytic sessions on a file system, which means that a
file grows as you add more events to a session. The MAF MCS Utility, which
allows mobile apps built using Oracle Mobile Application Framework (MAF)
to access OMCe, enables sessions to be saved in memory. However, saving
sessions in memory might degrade memory consumption when there are a
large number of custom events (say, more than 1000). Consequently, you
might lose some event logging, because the mobile app may crash before it
can post events to OMCe. See MAF MCS Utility Developer Guide.

Taking a Look at the JSON Payload

Within a JSON payload, events have the following properties:

E-1

http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf

• A name of fewer than 100 characters.

• A unique string defined for the sessionID property, which associates an event with
a particular session. If you create your own JSON, you must assign a unique string
to this property. The SDK ensures uniqueness by adding a text string punctuated
by hyphens known as a Universally Unique Identifier (UUID).

• A time stamp: Events are ordered by time stamp (though not strictly, because
events can share the same time stamp). The client SDK generates the time stamp
automatically.

A JSON payload posted to OMCe may look something like this:

[
 {
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:20:54.345Z",
 "properties":{
 "userName":"jimSmith",
 "model":"iPhone5,1",
 "longitude":"-122.11663",
 "latitude":"37.35687",
 "timezone":"-14400",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28",
 "carrier":"AT&T"
 }
 },
 {
 "name":"sessionStart",
 "type":"system",
 "timestamp":"2013-04-12T23:20:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 },
 {
 "name":"PurchaseFailed",
 "type":"custom",
 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "properties":{
 "cartContent":"WIDGET",
 "cartPrice":"$50,000"
 }

 {
 "name":"sessionEnd",
 "type":"system",
 "timestamp":"2013-04-12T23:25:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 }

]

Appendix E
Enabling Your Mobile Apps to Report Event Data

E-2

Every JSON payload must begin with a context event. In the preceding example, this
event is indicated by "name":"context" and includes properties that describe the
current context of the mobile app, such as user name and the longitude and latitude.
The context event is associated with each event that follows it, such as the session
start and end events that demarcate a session. It is also associated with events raised
in the mobile app code, such as PurchaseFailed in the preceding example.

Note:

Although you can add this context to events using straight REST calls, the
client SDK adds both session and device context information to the payload
automatically.

Creating Your Own JSON Payload

If you don’t use the client SDK, keep these tips in mind when composing the JSON
payload:

• Start each payload with a context event (indicated by "name":"context").

• Add a context event whenever the device's context changes — typically when the
longitude, latitude, or username properties need to change.

• You can randomly add the events within the payloads, but you must associate
every event raised in the mobile app code with sessionStart and sessionEnd
events just like PurchaseFailed in the preceding example, as noted by
“type”:”custom”.

Note:

Ensure that these events share the same sessionID value. When events
have the same sessionID value, the OMCe server can approximate the
session even if part of the payload (like the endSession definition) isn’t
recorded by the database.

OMCe responds with a 202 status code (Accepted) when it receives a complete and
syntactically correct REST call. Otherwise, it returns 400 (Bad Request) or 405
(Method not Allowed) responses.

How the Client SDK Fits In

You can enable analytics for an app through OMCe’s client SDK for the app’s platform.
Each client SDK has a configuration file where you can enable analytics either for the
mobile backend that the app is using for the OMCe analytics app that it specifies.

The client SDK:

• Automatically defines the start and end of sessions and manages them using the
UUIDs that it assigns to the sessionID property.

• Adds the context event at the beginning of each payload.

• Adds such device properties as the username, latitude, and longitude for
context events.

Appendix E
Enabling Your Mobile Apps to Report Event Data

E-3

Note:

On the server, the longitude and latitude values are translated into
city, country, postal code, and street.

• Marks events raised in mobile app code as custom or system for session or
context events. It also adds a timeStamp to each event.

For specifics on each platform, see:

• Configuring SDK Properties — Android

• Configuring SDK Properties — iOS

• Configuring SDK Properties — Cordova

• Configuring SDK Properties — JavaScript

Adding Location Properties to the context Event
The Oracle eLocation Service (maps.oracle.com) derives location from the longitude
and latitude properties in the JSON request body. These properties only work if your
mobile apps are used in countries where Oracle eLocation Service is available. For
countries where Oracle eLocation Services is unavailable, you can still enable OMCe
to record the location data that allows countries to display in the Dashboard map by
adding location-related properties to the context event.

To enable requests to support country data, add any combination for the following
properties to the context event:

• locality — The mobile device's locality, such as city, township, or village.

• region — The mobile device's region, such as state, canton, or province.

• postalCode — The mobile device’s postal code.

• country — The mobile device’s GPS country. For some countries in the Asia-
Pacific region, you can use a two-letter identifier, such as JP (Japan), CN (China),
or KR (South Korea).

Note:

Do not include longitude and latitude in the context event if you define
any of these properties.

For example:

{
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:23:34.345Z",
 "properties":{
 "userName":"GDoe321",
 "locality":"Aomi",
 "region":"Kanto",
 "postalCode":"135-0064",

Appendix E
Enabling Your Mobile Apps to Report Event Data

E-4

 "country":"JP",
 "timezone":"-14400",
 "carrier":"AT&T",
 "model":"iPhone5,1",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28"
 }

Integrating Analytics into a Mobile App Using the Client SDK
The client SDKs that OMCe provides for each mobile platform enable mobile apps
deployed on those platforms to post events to the Analytics API.

Appendix E
Integrating Analytics into a Mobile App Using the Client SDK

E-5

F
Supported Browsers and Languages

Supported Browsers
This table describes the minimum requirements for web browsers that Oracle Mobile
Cloud Enterprise supports.

Web Browser Version

Microsoft Internet Explorer 11

Google Chrome 43

Mozilla Firefox 37, 38

Apple Safari 8.0

Supported Languages
Oracle Mobile Cloud Enterprise supports the following languages in its web interface:

• German (de)

• English (en)

• Spanish (es)

• French (fr)

• Italian (it)

• Japanese (ja)

• Korean (ko)

• Portuguese (pt)

• Chinese - Simplified (zh_CN)

• Chinese - Traditional (zh_TW)

F-1

G
Identity Provider Integration

Here are the steps you need to follow to integrate various third-party identity providers
with OMCe.

Use Case: Configuring OKTA to Obtain a SAML Token
Here are the required fields that you must fill-in if you’re configuring a SAML 2.0 app
from OKTA.

Assuming that you have a user role with administrator privileges in OKTA:

1. Log in to OKTA.

2. Click Admin.

3. Go to the Directory tab and specify the users to have access privileges to the
application:

• Select People to specify individual users.

• Select Group to specify a group of users.

By setting a group, you can later map a group of individuals to specific OMCe
roles by setting Role Attribute rules in the Keys and Certificates dialog.

• Select Directory Integration, then Add Active Directory to include all the
users in the directory server or, alternatively, select LDAP to include all the
users in an LDAP directory server

4. Go to the Applications tab and click Add Application to create a new SAML 2.0
application.

5. On the General Settings page, configure the SAML application.

You’ll see several fields to fill in. For the token to be viable with OMCe, you must
fill-in the following fields:

• Single Sign-On URL. This is the redirect URL where the response from the
third-party IdP is sent. For example:

https://hostname:####/saml

• Audience URI. This is the intended audience of the SAML assertion and
ensures that you can exchange an externally-issued SAML token that you
need to call OMCe APIs. Set this value to the OMCe SSO token exchange
endpoint.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by
opening any mobile backend in OMCe, clicking its Settings tab, and looking in
the Environment URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

G-1

• Group Statement. This is where you can add additional group attributes to
the token. In this field, you can filter which groups to add. There are different
types of filtering options that you can choose from. For instance, if you used a
naming convention for your group names, you can set an option (Regex or
Start with) to filter groups that begin with a specific prefix.

For example, say you defined several group of users, two groups for FixItFast
employees, FIF-group1 and FIF-group2, and a group for RepairItFast
employees, RIF-group1. If you enter FIF* as a value, only the users in the
FixItFast group are added to the token.

6. Once you’ve configured the app, go to the Single Sign-On page.

This is where you’ll get the token issuer name that you’ll enter into the Token
Issuer panel of the token issuer in Settings > Credentials in OMCe. See Adding a
Token Issuer in Administering Oracle Mobile Cloud, Enterprise.

You’ll also want to get token certificate contents from this page and paste them in
the Certificate panel for the certificate in Settings > Credentials. See Configuring
a Web Service or Token Certificate in the same guide.

Use Case: Configuring AD FS to Obtain a SAML Token
Configuring Active Directory Federation Services (AD FS) to obtain a SAML token
involves providing similar information as you would for configuring another identity
provider to obtain the token. You’ll configure an audience, provide a redirect URL to
obtain the token, and configure some rules.

In addition to having access to the AD FS server, you’ll need the following items:

• A defined set of users and groups.

• A Certificate Authority (CA) root certificate and a Signing Certificate from a valid
certificate authority. You’ll import these certificates into your AD FS instance.

These are the token certificates and corresponding private key that are imported
into AD FS so that it can generate and sign SAML tokens. These certificates must
also be added to the Token Certificates panel of the CSF Keys and Certificate
dialog in OMCe so that OMCe can validate the token. These are the token
certificates that will be associated with the token issuer in OMCe.

For testing purposes, you can create a root certificate and a self-signing certificate as
shown in the following examples but don’t use them in a production environment.

Here’s an example of how to create a root certificate:

$ openssl req -x509 -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/
O=SampleCA/OU=Self-Signed/CN=ca.test.local" -newkey rsa:2048 -keyout
testCARootPrivateKey.key -out testCARootCertificate.crt

Here’s an example of how to create a new key pair and the corresponding certificate:

$ openssl req -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/O=SampleCA/
OU=Self-Signed/CN=sts-signing.test.local" -newkey rsa:2048 -keyout
testSigningPrivateKey.key -out testSigningCertificate.csr

$ openssl x509 -req -days 3650 -in testSigningCertificate.csr -CA ../ca/
testCARootCertificate.crt -CAkey ../ca/testCARootPrivateKey.key -

Appendix G
Use Case: Configuring AD FS to Obtain a SAML Token

G-2

CAcreateserial -out testSigningCertificate.crt

$ openssl pkcs12 -export -out testSigningCertificate.pfx -inkey
testSigningPrivateKey.key -in testSigningCertificate.crt

Creating Users and Groups in AD FS

You need to create users and assign them to groups in AD FS. In OMCe, these user
groups are mapped to existing OMCe roles. This assumes that you have the AD FS
server installed.

Start AD and add users:

1. Select Tools > Active Directory Users and Computers.

2. Open the Active Directory and Users and Computers folder.

This is the directory where you’ll add users and groups.

3. Right-click the Users folder and select New > User.

4. In the New Object - User dialog, provide a first and last name for each user you
add and the user logon name. The logon name must match the user email
address for that user in OMCe.

For example, if the user is John Smith, and his address is jsmith@local.domain,
the address must match the email address for user John Smith in OMCe.

5. Click Next and then OK to add the user.

Repeat these steps for each user you want to add.

To add a group and assign a user to it:

1. Right-click the Users folder in the Active Directory and Users and Computers
directory and select New > Group.

2. In the New Object - Group dialog, enter a name for the group.

3. Leave the default settings of Global and Security, for Group Scope and Group
Type and click OK.

4. Right-click on the user name in the Active Directory and Users and Computers
directory and select Add to a group....

5. In the Select Group dialog, click Advanced.

6. In the advanced version of the Select Groups dialog, click Find Now.

7. Locate the group name from the Search results list, select it, and click OK.

8. Click OK in the Select Group dialog to complete the group assignment.

To verify that you’ve added the user to the correct group:

1. Click on the group name in the Active Directory and Users and Computers
directory to open the group’s properties dialog.

2. In the properties dialog, click Members and look to see if the user you added is
listed.

A group should have a corresponding role in OMCe. The user assigned to the group
would then be assigned to the corresponding OMCe role.

Appendix G
Use Case: Configuring AD FS to Obtain a SAML Token

G-3

Configuring the SAML App in AD FS

After you’ve added your users and groups and have a valid root certificate and signing
certificate, you can configure the SAML token. You’ll begin by adding and configuring
a relying party trust. The relying party defines the way in which AD FS recognizes the
relying party application and issues claims to it.

1. From the Server Manager, select Tools > AD FS Management.

2. In the AD FS window, select Action > Add Relying Party Trust....

3. Click Start in the Add Relying Trust wizard.

4. On the Select Data Source panel, select Enter data about the relying party
trust manually option.

5. Click Next to go to the Specify Display Name panel.

6. Enter the name of your SAML app in the Display Name field.

This app name will be listed in the Trust Relationships > Relying Party Trust
directory after you add it.

7. Click Next to go to the Choose Profile panel.

8. Select AD FS profile (the default value).

This is the profile type that supports the SAML 2.0 protocol.

9. Click Next and Next again to go to the Configure URL panel.

You can upload the signing certificate on the Configure Certificate panel now or
upload it later. You don’t need to upload an encryption certificate unless you want
the SAML assertion encrypted as well as signed. Having an encrypted SAML
assertion can be useful in cases where sensitive data is added to the SAML
assertion claims.

10. Select Enable support for the SAML 2.0 Web SSO protocol and enter the
redirect URL in the Relying party SAML 2.0 SSO service URL field.

The redirect URL is the address where you want the request to post back to so
you can intercept the token.

11. Click Next to go to the Configure Identifiers panel.

12. Enter the SSO token endpoint in the Relying party trust identifier field and click
Add.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by opening
any mobile backend in OMCe, clicking its Settings tab, and looking in the
Environment URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

This is how you specify the audience for the SAML assertion.

13. Click Next to go to the Configure Multi-factor Authentication Now panel.

Use the default setting, I do not want to configure multi-factor authentication
settings for this relying party trust.

14. Click Next to go to the Choose Issuance Authorization Rules panel.

Appendix G
Use Case: Configuring AD FS to Obtain a SAML Token

G-4

Use the default setting, Permit all users to access this relying party.

15. Click Next to go to the Ready to Add Trust panel, click Next again.

16. Click Finish.

Leave the default setting, Open the Edit Claim Rules dialog for this relying
party trust to continue configuring your SAML app.

17. Click Close to exit the wizard.

The Edit Claim Rules dialog opens when you exit the wizard.

Configuring Claim Rules in AD FS

The next step to configure your SAML app is setting the claim rules. The claim rule
specifies how the values for LDAP attributes are mapped to the outgoing claim type.
You’ll use the Add Transform Claim Rule wizard available from the Edit Claim Rules
dialog to add AD claims and transform NameID transform rule which specify the claims
that are sent to the relying party.

1. Open the Relying Party Trust folder under the Trust Relationships directory
and right-click your app name. Then select Edit Claim Rules.

If you’re continuing on from the previous section, the Edit Claim Rules dialog
opens automatically when you exit the Add Relying Trust wizard.

2. Make sure the Issuance Transform Rules tab is open and click Add Rule to
open the Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select the Send LDAP Attributes as Claims
template from the drop-down list.

4. Click Next to go to the Configure Claim Rule tab.

5. Enter a claim rule name. For example, AD Claims.

6. Select Active Directory as the Attribute store.

In the next set of steps, you’ll map the LDAP attributes to the outgoing claim types:

LDAP Attributes Outgoing Claim Type

E-Mail Addresses E-Mail Address

Token-Groups-Unqualified Name Group

User-Principal-Name Common Name

7. Open the LDAP Attributes list and select E-Mail Addresses.

8. Open the Outgoing Claim Type list and select E-Mail Address.

9. Repeat steps 7 and 8 to map Token-Groups-Unqualified Name to Group and to
map User-Principal-Name to Common Name.

10. Click Finish.

Configuring Transform Rules in AD FS

You set transform rules to map incoming claim types to outgoing claim types and
specify the action that determines what output should occur based on the values from
the incoming claim.

1. Open the Edit Claim Rules dialog and open the Issuance Transform Rules tab.

Appendix G
Use Case: Configuring AD FS to Obtain a SAML Token

G-5

2. Click Add Rule to open the Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select Transform an Incoming Claim.

4. Click Next to go to the Configure Claim Rule tab.

5. Perform the following actions on this tab:

• Enter Transform NameID for the transform claim rule.

• Select EMAIL ADDRESS for the incoming claim type.

• Select Name ID for the outgoing claim type.

• Leave as unspecified the ingoing and outgoing nameID formats.

• Select the Pass through all claim values option.

6. Click Finish.

7. Click Apply and OK in the Edit Claim Rules dialog.

Specifying the Signature Verification Certificate in AD FS

You must specify the signature verification certificates for requests from the relying
party trust.

1. Open the Relying Party Trusts folder, right-click your app name, and select
Properties.

2. In the properties dialog for your app, select Signature and click Add.

3. In the Select a Request Signature Verification Certificate dialog, navigate to
the directory where you stored (or created) the signing certificate and select the
certificate.

4. Click Open.

5. (Optional) Click the Endpoints tab in the app properties dialog and review the
SAML assertion endpoints.

Click the endpoint URL to view its details in the Edit Endpoint dialog. The
endpoint type should be SAML Assertion Consume. Set the Binding field for the
type of SAML response to receive:

• If the client expects a POST, set Binding to POST.

• If the client expects to receive the SAML Response as a GET parameter, set
Binding to Redirect.

Note:

There can be issues using a redirect in the case of long assertions
because some browsers have limits to the length of the URL.

Appendix G
Use Case: Configuring AD FS to Obtain a SAML Token

G-6

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 A Developer’s View of Oracle Mobile Cloud Enterprise
	Client SDKs
	Features for Your Apps
	Custom APIs
	Backends
	Security

	2 Android Apps
	Getting the SDK
	Creating a Backend
	Adding the SDK
	Configuring SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Configuring Your Android Manifest File
	Calling Mobile APIs
	Loading the Backend's Configuration
	Authenticating and Logging In
	Calling Platform APIs
	Calling Custom APIs

	Libraries and Dependencies
	Next Steps

	3 iOS Applications
	Getting the SDK
	Creating a Backend
	Adding the SDK
	Configuring SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange

	Calling Mobile APIs
	Loading the Backend's Configuration
	Authenticating and Logging In
	Calling Platform APIs
	Calling Custom APIs

	Libraries and Dependencies
	Next Steps

	4 Cordova Applications
	Getting the SDK
	Creating a Backend
	Adding the SDK
	Adding Support for Push Notifications

	Configuring SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Calling Mobile APIs
	Loading the Backend's Configuration
	Authenticating and Logging In
	Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Calling Platform APIs
	Calling Custom APIs

	Using TypeScript
	Libraries
	Next Steps

	5 JavaScript Applications
	Getting the SDK
	Creating a Backend
	Adding the SDK
	Configuring SDK Properties
	Authentication Properties
	OAuth
	HTTP Basic
	Token Exchange
	Facebook Login

	Calling Mobile APIs
	Loading the Backend's Configuration
	Authenticating and Logging In
	Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Calling Platform APIs
	Calling Custom APIs

	Using TypeScript
	Libraries
	Next Steps

	6 Notifications
	What Can I Do with Notifications?
	Setting Up a Mobile App for Notifications
	Setting Up the Device Handshake for Notifications
	Setting Up a Device Handshake for Android (FCM)
	Setting Up a Device Handshake for iOS
	Setting Up a Device Handshake for Windows

	Sending Notifications to and from Your App
	Testing Notifications from the UI
	Cancelling a Scheduled Notification from the UI

	Sending Notifications Using the Notifications API
	REST
	Registering a Device ID
	Sending a Text Message Notification
	Sending a Notification Using a Unified Payload
	Sending a Notification Using a Payload Template
	Cancelling Scheduled Notifications

	How Are Notifications Sent and Received?
	What is the Device ID or Notification Token?

	Troubleshooting Notifications
	Checking Notification Status in the UI
	Checking Notification Status with the Notifications REST API

	7 My Profile
	User Types
	Getting User Profile Information

	8 Storage
	What Can I Do with Storage?
	Android
	Adding an Object to a Collection
	Fetching an Object
	Getting Multiple Objects from a Collection
	Getting a Shared Collection
	Retrieving an Object
	Updating an Object
	Uploading a New Object to a Collection

	iOS
	Adding an Object to a Collection
	Deleting an Object
	Downloading Data to a Collection
	Getting a User Isolated Collection
	Getting Multiple Objects from a Collection
	Getting Object Data as a Stream
	Retrieving a Storage Object
	Updating an Object
	Uploading Data to a Collection

	Cordova, JavaScript, and TypeScript
	Adding an Object to a Collection
	Deleting an Object
	Fetching an Object
	Getting a Collection
	Getting an Object from a User Isolated Collection
	Getting Multiple Objects from a Collection
	Updating an Object

	Custom Code
	Retrieving and Storing Collections and Objects

	REST API
	Storage API Endpoints
	Getting a Single Collection
	Getting All Collections Associated with a Mobile Backend
	Storing an Object
	Specifying the Object Identifier
	Creating an Object (If One Doesn't Already Exist)
	Generating an Object Identifier
	What Happens When an Object is Created?

	Updating an Object
	What Happens When an Object Is Updated?
	Optimistic Locking

	Retrieving a List of Objects
	Paging Through a List of Objects
	Ordering
	Querying

	Retrieving an Object
	Deleting an Object
	Optimizing Performance
	Check If Exists
	Put If Absent

	Get If Newer
	Reading Part of an Object (Chunking Data)

	Testing Runtime Operations Using the Endpoints Page
	Managing Collections
	Shared and User Isolated Collections
	Storage Configuration
	Defining a Collection
	Collection Metadata
	Adding Access Permissions to a Collection

	Adding Objects to a Collection
	Object Metadata

	Updating the Collection
	Offline Data Storage
	Associating a Collection with a Backend
	Removing a Collection from a Backend

	9 Data Offline and Sync
	Building Apps that Work Offline Using Sync Express
	Building Apps that Work Offline Using the Synchronization Library
	What Can I Do with the Synchronization Library?
	Synchronization Library Process Flow
	Video: Overview of the Data Offline & Synchronization API
	Android Synchronization Library
	Setting Up Your Mobile App for the Android Synchronization Library
	Fetching Resources
	Fetching Filtered Resources
	Specifying Which Resources to Synchronize First
	Setting a Resource’s Synchronization Policies Programmatically
	Detecting and Handling Conflicts
	Reviewing and Discarding Offline Edits

	iOS Synchronization Library
	Setting Up Your Mobile App for the iOS Synchronization Library
	Fetching Resources
	Fetching Filtered Resources
	Specifying Which Resources To Synchronize First
	Setting a Resource’s Synchronization Policies Programmatically
	Detecting and Handling Conflicts
	Reviewing and Discarding Offline Edits

	Making Custom APIs Synchronizable
	Synchronization Policies
	Video: Introduction to the Data Offline & Sync Policies
	Synchronization Policy Options
	Conflict Resolution Policies
	Eviction Policies
	Expiration Policies
	Fetch Policies
	Update Policies

	Video: Deep-Dive into the Data Offline & Sync Policies
	Synchronization Policy Levels and Precedence
	Defining Synchronization Policies Using a Configuration File
	Synchronization Configuration File Structure

	Defining Synchronization Policies and Cache Settings in a Response Header

	Tracking Cache Hits with the Synchronization Library

	How Synchronization Works with the Storage APIs

	10 Location
	What Can I Do With Location?
	A Few Important Location Terms

	Android
	Querying for Location Objects
	Retrieving a Location Object

	iOS
	Querying for Location Objects
	Retrieving a Location Object
	Retrieving iBeacon Identifiers
	Defining a Geofence
	Retrieving Custom Attributes

	REST API - Location
	Querying for Location Devices, Places and Assets
	Querying for Location Devices
	Querying for Places
	Querying for Assets

	Retrieving Location Objects and Properties

	Setting Up Location Devices, Places and Assets
	Defining Places
	Uploading Places Using a CSV File

	Defining Location Assets
	Uploading Assets Using a CSV File

	Registering Location Devices
	Uploading Location Devices Using a CSV File

	11 Database
	What Can I Do with Database APIs?
	Database Access API
	Calling the Database Access API from Custom Code
	Creating and Restructuring Database Tables
	Adding and Updating Table Rows
	Retrieving Table Rows
	Deleting Table Rows

	Executing SQL on a Table
	Passing Parameters to the SQL Statement
	Labeling Calculated Columns in Select Statements
	Preserving Case in SQL Statements
	Preventing SQL Injection
	Preventing Passing SQL to the Execute SQL Operation
	Preventing SQL Injection with Bind Parameters

	Database Management API
	Creating a Table Explicitly

	12 Analytics
	What Can I Do with Analytics?
	How Does Create Analytics Reports?
	API Call Analytics
	API Calls Count and Response Time

	Adding Locations in China

	13 App Policies
	What Are App Policies and What Can I Do With Them?
	Setting an App Policy
	Android
	Retrieving App Policies

	iOS
	Retrieving App Policies

	REST
	Retrieving App Policies

	Cordova
	Retrieving App Policies

	JavaScript
	Retrieving App Policies

	Updating an App Policy Value in a Published Mobile Backend

	14 Backends
	What Are Backends and How Can I Use Them?
	What's the Backend Development Process?
	Creating and Populating Backends
	Creating a Backend
	Backend Authentication and Connection Info
	Role-Based Backends
	Associating APIs with a Backend
	Associating Storage Collections with a Backend

	Notification Profiles and Client Apps
	How Notification Profiles Work
	How App Clients Work
	Getting Network Credentials for Notifications
	Android: Google API Key
	iOS: Apple Secure Certificates
	Windows: WNS Credentials
	Syniverse: SMS Credentials

	Creating a Notifications Profile
	Registering an App Client

	What Can I Change in a Backend?
	Connecting Your App to a Backend
	Analytics Apps
	Registering an Analytics App
	Associating an Analytics App with a Backend

	15 Mobile Users and Roles
	Navigate to Your Oracle Identity Cloud Service Application
	Adding Users and Groups in Oracle Identity Cloud Service
	Creating and Managing Mobile Roles
	Permissions Required for Platform APIs

	16 Authentication in OMCe
	OAuth Consumer Authentication in OMCe
	HTTP Basic Authentication in OMCe
	Enterprise Single Sign-On in OMCe
	Third-Party SAML and JWT Tokens
	SAML Tokens and Virtual Users
	Configuring SAML Tokens for Virtual Users
	Registering the Token Issuer in OMCe
	Associating Roles with a SAML Token
	Extracting the SAML Assertion
	Using a SAML Token to Authenticate with OMCe
	Coding the SAML Token Exchange Manually

	JWT Tokens and Virtual Users
	Registering a JWT Token Issuer in OMCe
	Minimal IdP Configuration
	IdP Configuration with Audience
	IdP Configuration with Audience and Username Attribute
	Associating Roles with a JWT Token
	Converting a JSON Object to One Line
	JWT Configuration Reference
	Obtaining a JWT Token Using an Embedded Browser
	Obtaining a JWT Token Using a System Browser
	Coding Your Android App to Obtain a JWT Token
	Coding Your iOS App to Obtain a JWT Token

	Using a JWT Token to Authenticate with OMCe
	Coding the JWT Token Exchange Manually

	Mapping Users from a Third-Party IdP to IDCS Users

	Browser-Based SSO through OMCe
	Testing APIs in a Backend with SSO Login
	Token Expiration for SSO Login

	Facebook Login in OMCe
	Registering an App for Login Through Facebook
	Enabling Facebook Login in a Mobile Backend
	Configuring an App to Use Facebook Login
	Adding APIs to a Mobile Backend with Facebook Login
	Getting a Facebook User Access Token Manually
	Headers Needed for API Calls with Facebook Authentication

	Authenticating in Direct REST Calls
	Authenticating with OAuth in Direct REST Calls
	Authenticating with HTTP Basic in Direct REST Calls

	Securing Cross-Site Requests to OMCe APIs

	17 Creating APIs Fast with the Express API Designer
	What are Resources?
	Creating An API
	Completing Your Resources
	Adding Additional Fields
	Shaping the Payload for Your Resource
	Adding More Sample Data
	Referenced Resources
	Referencing Resources

	Fields
	Methods
	Shaping Payloads
	Read-Only Fields
	Sample Data

	Using the Express API Designer with MAX
	How Do I Surface My API in MAX?
	Who Uses MAX?
	Enabling Uploadable Images
	Tips for User-Friendly Business Objects in MAX
	Video: An Introduction to Mobile Application Accelerator (MAX)

	Creating Resources with JSON Schemas
	Defining Fields in a Schema
	Defining Field Types, Formats, and Enums

	Defining Child Objects
	Defining Fields for List, Details, Create, and Update Screens
	Collection Actions
	Create Actions
	Update Actions
	Using the PUT Method for Update Actions

	Delete Actions
	Custom Actions

	Creating Mock Data

	Which API Designer Should I Use?

	18 Custom API Design
	API Design Process
	Generating Custom APIs for Connectors
	How Do I Generate a Custom API from a Connector
	Completing the Custom API
	Working with the Implementation

	The API Designer
	Spec Out a Custom API
	Creating a Complete Custom API
	Setting Up Your API
	Defining Endpoints
	Adding Methods to Your Resources
	Defining a Request for the Method
	Defining a Response for the Method
	Testing API Endpoints Using Mock Data
	Providing a Schema
	Security in Custom APIs
	Setting Access to the API

	Testing Your Custom API
	Creating Resource Types
	Creating Resource Traits
	Providing API Documentation
	How Do I Write in Markdown?

	Getting Diagnostic Information

	API Design Considerations
	Valid URLs
	API Timeouts
	API Resources
	URI Parameters

	Endpoint Requirements for Sync Compatibility
	Schemas
	RAML

	Editing a Custom API
	Video: End-to-End Custom API Demo
	Troubleshooting Custom APIs

	19 Implementing Custom APIs
	What Can I Do with Custom Code?
	How Does Custom Code Work?
	What's the Foundation for the Custom Code Service?
	Video: Node.js Technology Primer

	Setting Up Tooling for Custom Code
	Steps to Implement a Custom API
	Downloading a JavaScript Scaffold for a Custom API
	Writing Custom Code
	Key JavaScript Constructs in Custom Code
	Accessing the Body of the Request
	Inserting Logging Into Custom Code
	Storing Data Locally
	Video: Working with Node - Common Code

	Implementing Synchronization-Compatible APIs
	Video: Working with Custom APIs via Data Offline & Sync
	Requirements for a Synchronization-Compatible Custom API
	Returning Cacheable Data
	Specifying Synchronization and Cache Policies

	Calling Web Services and APIs from Custom Code
	Packaging Custom Code into a Module
	Required Artifacts for an API Implementation
	package.json Contents

	Declaring the API Implementation Version
	Declaring the Node Version
	Packaging Additional Libraries with Your Implementation

	Uploading the Custom Code Module
	Testing and Debugging Custom Code
	Testing with Mock Data
	Testing Custom Code from the UI
	Offline Debugging with the OMCe Custom Code Test Tools
	Tools for Testing Custom Code Outside the UI
	Accessing Logging Messages for Custom Code

	Troubleshooting Custom API Implementations
	Diagnosing Syntax Errors
	Common Custom Code Errors

	What Happens When a Custom API Is Called?

	20 Calling APIs from Custom Code
	How to Send Requests to Platform, Connector, and Custom APIs
	API Request Pattern
	Common options Argument Properties
	API Response Patterns
	Handling a Stream
	Handling a Promise
	Chaining Calls
	Joining Calls
	Waiting for a Dynamic Set of Calls to Complete
	Creating a Function that Returns a Promise

	Accessing Mobile Backend Information from Custom Code
	mbe.getMBE()

	Calling Platform APIs from Custom Code
	Accessing the Analytics Collector API from Custom Code
	analytics.postEvent(events, options, httpOptions)

	Accessing the App Policies API from Custom Code
	appConfig.getProperties(httpOptions)

	Accessing the Database Access API from Custom Code
	database.delete(table, keys, options, httpOptions)
	database.get(table, keys, options, httpOptions)
	database.getAll(table, options, httpOptions)
	database.insert(table, object, options, httpOptions)
	database.merge(table, object, options, httpOptions)
	database.sql(sql, args, options, httpOptions)

	Accessing the Location API from Custom Code
	location.assets.getAsset(id, httpOptions)
	location.assets.query(queryObject, httpOptions)
	location.devices.getDevice(id, httpOptions)
	location.devices.query(queryObject, httpOptions)
	location.places.getPlace(id, httpOptions)
	location.places.query(queryObject, httpOptions)

	Accessing the Location Management API from Custom Code
	location.assets.register(assets, context, httpOptions)
	location.assets.remove(id, context, httpOptions)
	location.assets.update(id, asset, context, httpOptions)
	location.devices.register(devices, context, httpOptions)
	location.devices.remove(id, context, httpOptions)
	location.devices.update(id, device, context, httpOptions)
	location.places.register(places, context, httpOptions)
	location.places.remove(id, context, httpOptions)
	location.places.update(id, place, context, httpOptions)

	Accessing the Mobile Devices API from Custom Code
	devices.deregister(device, httpOptions)
	devices.register(device, httpOptions)

	Accessing the My Profile API from Custom Code
	ums.getMe(httpOptions)
	ums.getUser(options, httpOptions)
	ums.getUserExtended(options, httpOptions)
	ums.updateUser(fields, options, httpOptions)

	Accessing the Notifications API from Custom Code
	notification.getAll(context, options, httpOptions)
	notification.getById(id, context, options, httpOptions)
	notification.post(notification, context, options, httpOptions)
	notification.remove(id, context, options, httpOptions)

	Accessing the Storage API from Custom Code
	storage.doesCollectionExist(collectionId, options, httpOptions)
	storage.doesExist(collectionId, objectId, options, httpOptions)
	storage.getAll(collectionId, options, httpOptions)
	storage.getById(collectionId, objectId, options, httpOptions)
	storage.getCollection(collectionId, options, httpOptions)
	storage.getCollections(options, httpOptions)
	storage.remove(collectionId, objectId, options, httpOptions)
	storage.store(collectionId, object, options, httpOptions)
	storage.storeById(collectionId, objectId, object, options, httpOptions)

	Calling Connector APIs from Custom Code
	Calling a Connector to a REST Web Service
	Calling a Connector to a SOAP Service
	Calling Connectors that Require Form Data
	Passing Headers to the Target Service
	Overriding SSL Settings for Connectors

	Calling Custom APIs from Custom Code
	Specifying the API Version in Calls to Custom and Connector APIs
	Using Generic REST Methods to Access APIs
	optionsList Argument

	Learning About Platform, Custom, and Connector APIs

	21 Connectors
	What Is a Connector API?
	REST Connector APIs
	How REST Connector APIs Work
	Why Use Connectors Instead of Direct Calls to External Resources?
	Creating a REST Connector API
	Basic Connector Setup
	Rules
	Security Policies and Overriding Properties
	Setting a CSF Key

	Testing in Advanced Mode
	Getting the Test Results
	Getting Diagnostic Information

	Security and REST Connector APIs
	Security Policy Types for REST Connector APIs
	CSF Keys and Web Service Certificates
	Query and Header Parameters
	Setting Query Parameters in Remote URLs

	Editing a REST Connector API
	Using Your REST Connector API in an App
	Troubleshooting REST Connector APIs

	SOAP Connector APIs
	How SOAP Connector APIs Work
	Why Use SOAP Connectors Instead of Direct Calls to External Resources?
	Creating a SOAP Connector API
	Setting the Basic Information for Your SOAP Connector API
	Selecting a Port
	Setting Security Policies and Overriding Properties for SOAP Connector APIs
	Setting a CSF Key
	Setting a Web Service Certificate

	Testing a SOAP Connector API
	Testing Your Connector
	Getting the Test Results
	Getting Diagnostic Information

	SOAP Connector API Design Tips
	How Does XML Get Translated into JSON?
	Using XML Instead of JSON
	Security Policy Types for SOAP Connector APIs
	CSF Keys and Web Service Certificates
	Editing a SOAP Connector API
	Using Your Connector API in an App
	Troubleshooting SOAP Connector APIs

	ICS Connector APIs
	How ICS Connector APIs Work
	ICS Connector API Flow
	How Do I Create an ICS Connector API?
	Setting the Basic Information for Your ICS Connector API
	Connecting to an Integration Cloud Service Instance
	Selecting or Creating an ICS Instance Connection
	Selecting an Active Integration
	Editing the ICS Connector API
	Setting Runtime Security for the ICS Connector API
	Creating a New CSF Key
	Testing the ICS Connector API
	Getting the Test Results
	Getting Diagnostic Information

	Security and ICS Connector APIs
	CSF Keys
	Using Your Connector API in an App
	Troubleshooting ICS Connector APIs

	Fusion Applications Connector APIs
	How Fusion Applications Connector APIs Work
	Fusion Applications Connector API Flow
	How Do I Create a Fusion Applications Connector API?
	Setting the Basic Information for Your Fusion Applications Connector API
	Connecting to a Fusion Applications Instance
	Creating a Fusion Applications Instance Connection
	Selecting Fusion Applications Resources
	Setting Resource Attributes
	Editing the Fusion Applications Connector API
	Setting Runtime Security for the Fusion Applications Connector API
	Providing a CSF Key
	Creating a New CSF Key
	Setting a Web Service Certificate

	Testing the Fusion Applications Connector API
	Getting the Test Results

	Security Policy Types for Fusion Applications Connector APIs
	CSF Keys and Web Service Certificates
	Using Your Fusion Application Connector API in an App
	Troubleshooting Fusion Applications Connector APIs

	22 SOAP Connector APIs
	How SOAP Connector APIs Work
	SOAP Connector API Design Process

	Why Do I Want to Use a SOAP Connector API?
	Why Use SOAP Connectors Instead of Direct Calls to External Resources?
	Creating a SOAP Connector API
	Setting the Basic Information for Your SOAP Connector API
	Selecting a Port
	Setting Security Policies and Overriding Properties for SOAP Connector APIs
	Setting a CSF Key
	Setting a Web Service Certificate

	Testing a SOAP Connector API
	Testing Your Connector
	Getting the Test Results
	Getting Diagnostic Information

	SOAP Connector API Design Tips
	How Does XML Get Translated into JSON?
	Using XML Instead of JSON
	Security Policy Types for SOAP Connector APIs
	CSF Keys and Web Service Certificates
	Editing a SOAP Connector API
	Using Your Connector API in an App
	Troubleshooting SOAP Connector APIs

	23 ICS Connector APIs
	How ICS Connector APIs Work
	ICS Connector API Flow
	How Do I Create an ICS Connector API?
	Setting the Basic Information for Your ICS Connector API
	Connecting to an Integration Cloud Service Instance
	Selecting or Creating an ICS Instance Connection
	Selecting an Active Integration
	Editing the ICS Connector API
	Setting Runtime Security for the ICS Connector API
	Creating a New CSF Key
	Testing the ICS Connector API
	Getting the Test Results
	Getting Diagnostic Information

	Security and ICS Connector APIs
	CSF Keys
	Using Your Connector API in an App
	Troubleshooting ICS Connector APIs

	24 Fusion Applications Connector APIs
	How Fusion Applications Connector APIs Work
	Fusion Applications Connector API Flow
	How Do I Create a Fusion Applications Connector API?
	Setting the Basic Information for Your Fusion Applications Connector API
	Connecting to a Fusion Applications Instance
	Creating a Fusion Applications Instance Connection
	Selecting Fusion Applications Resources
	Setting Resource Attributes
	Editing the Fusion Applications Connector API
	Setting Runtime Security for the Fusion Applications Connector API
	Providing a CSF Key
	Creating a New CSF Key
	Setting a Web Service Certificate

	Testing the Fusion Applications Connector API
	Getting the Test Results

	Security Policy Types for Fusion Applications Connector APIs
	CSF Keys and Web Service Certificates
	Using Your Fusion Application Connector API in an App
	Troubleshooting Fusion Applications Connector APIs

	25 Diagnostics
	What Can I Do with Diagnostics?
	Viewing Environment Health
	Viewing Server Load
	Viewing Errors

	Viewing Underperforming Requests
	Viewing Log Messages Related to a Request
	Viewing Storage Usage

	Monitoring a Selected Backend
	Viewing API Performance
	Adjusting the Performance Threshold Configurations
	Viewing Status Codes for API Calls and Outbound Connector Calls
	Relating Log Messages
	How Client SDK Headers Enable Device and Session Diagnostics

	Viewing Log Messages
	Viewing Message Details
	Taking a Look at Exported Messages
	API Request Messages
	Connector Message Details

	Configuring the Logging Level for Custom Code

	Diagnosing Custom Code
	Use Case: Using Correlation to Diagnose Custom Code
	Use Case: Using Correlation to Diagnose Connector Issues

	26 Packages
	What’s a Package?
	Why Do I Want a Package?
	Exporting a Package
	Adding Artifacts to the Package
	Reviewing Dependencies During Export
	Setting Environment Policies During Export
	Completing the Export

	Re-exporting a Package
	Importing a Package
	Uploading the Package
	Examining the Contents of the Import Package
	Setting Environment Policies During Import

	What Happens When You Import a Package?
	Import Results
	Exporting Updated Artifacts
	Examining a Package
	Moving a Package to the Trash
	Environment Policy Settings for Packaged Artifacts

	A HTTP Headers
	API Headers
	SDK Headers

	B Oracle Mobile Cloud Enterprise Policies
	OMCe Policies and Values

	C Security Policies for Connector APIs
	Security Policies for REST Connector APIs
	Security Policies for SOAP Connector APIs
	Security Policies for ICS Connector APIs
	Security Policies for Fusion Applications Connector APIs
	Security Policy Properties

	D Writing Swift Applications Using the iOS Client SDK
	Adding the Bridging Header File
	Adding the SDK Headers and Libraries to a Swift App
	Using SDK Objects in Swift Apps

	E Legacy Analytics API
	Enabling Your Mobile Apps to Report Event Data
	Adding Location Properties to the context Event

	Integrating Analytics into a Mobile App Using the Client SDK

	F Supported Browsers and Languages
	Supported Browsers
	Supported Languages

	G Identity Provider Integration
	Use Case: Configuring OKTA to Obtain a SAML Token
	Use Case: Configuring AD FS to Obtain a SAML Token

