Oracle® Cloud

Developing Applications with Oracle Mobile
Cloud Enterprise

Release 18.2.3
E95440-03
August 2018

ORACLE"

Oracle Cloud Developing Applications with Oracle Mobile Cloud Enterprise, Release 18.2.3
E95440-03

Copyright © 2017, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Patrick Keegan, John Bassett, Chris Kutler, Jennifer Shipman, Susan Post

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXii
Documentation Accessibility XXii
Conventions XXii

1 A Developer’'s View of Oracle Mobile Cloud Enterprise

Client SDKs 1-1
Features for Your Apps 1-2
Custom APIs 1-2
Backends 1-2
Security 1-3

2 Android Apps

Getting the SDK 2-1
Creating a Backend 2-1
Adding the SDK 2-1
Configuring SDK Properties 2-2
Authentication Properties 2-4
OAuth 2-4

HTTP Basic 2-5

Token Exchange 2-5
Facebook Login 2-5
Configuring Your Android Manifest File 2-6
Calling Mobile APIs 2-7
Loading the Backend's Configuration 2-7
Authenticating and Logging In 2-7
Calling Platform APIs 2-12
Calling Custom APIs 2-13
Libraries and Dependencies 2-14
Next Steps 2-14

ORACLE iii

3 IOS Applications

Getting the SDK 3-1
Creating a Backend 3-1
Adding the SDK 3-1
Configuring SDK Properties 3-2
Authentication Properties 3-4
OAuth 3-4

HTTP Basic 3-5

Token Exchange 3-5

Calling Mobile APIs 3-6
Loading the Backend's Configuration 3-6
Authenticating and Logging In 3-6
Calling Platform APIs 3-8
Calling Custom APIs 3-9
Libraries and Dependencies 3-10
Next Steps 3-11

4 Cordova Applications

Getting the SDK 4-1
Creating a Backend 4-1
Adding the SDK 4-1
Adding Support for Push Notifications 4-2
Configuring SDK Properties 4-3
Authentication Properties 4-5
OAuth 4-5

HTTP Basic 4-6

Token Exchange 4-6
Facebook Login 4-6

Calling Mobile APIs 4-7
Loading the Backend's Configuration 4-7
Authenticating and Logging In 4-8
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 4-9
Calling Platform APIs 4-9
Calling Custom APIs 4-9
Using TypeScript 4-10
Libraries 4-13
Next Steps 4-13

ORACLE iv

5 JavaScript Applications

Getting the SDK 5-1
Creating a Backend 5-1
Adding the SDK 5-1
Configuring SDK Properties 5-2
Authentication Properties 5-3
OAuth 5-4

HTTP Basic 5-4

Token Exchange 5-5
Facebook Login 5-5

Calling Mobile APIs 5-6
Loading the Backend's Configuration 5-6
Authenticating and Logging In 5-6
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 5-7
Calling Platform APIs 5-7
Calling Custom APIs 5-8
Using TypeScript 5-8
Libraries 5-11
Next Steps 5-12

6 Notifications

What Can | Do with Notifications? 6-1
Setting Up a Mobile App for Notifications 6-1
Setting Up the Device Handshake for Notifications 6-3
Setting Up a Device Handshake for Android (FCM) 6-3

Setting Up a Device Handshake for iOS 6-5

Setting Up a Device Handshake for Windows 6-7
Sending Notifications to and from Your App 6-7
Testing Notifications from the Ul 6-7
Cancelling a Scheduled Notification from the Ul 6-8
Sending Notifications Using the Notifications API 6-8
REST 6-10
Registering a Device ID 6-10
Sending a Text Message Notification 6-12
Sending a Notification Using a Unified Payload 6-12
Sending a Notification Using a Payload Template 6-13
Cancelling Scheduled Notifications 6-15

How Are Notifications Sent and Received? 6-15
What is the Device ID or Notification Token? 6-16
Troubleshooting Notifications 6-16

ORACLE Y

8 Storage

Checking Notification Status in the Ul 6-17
Checking Notification Status with the Notifications REST API 6-18
7 My Profile
User Types 7-1
Getting User Profile Information 7-1
What Can | Do with Storage? 8-1
Android 8-1
Adding an Object to a Collection 8-1
Fetching an Object 8-1
Getting Multiple Objects from a Collection 8-2
Getting a Shared Collection 8-2
Retrieving an Object 8-2
Updating an Object 8-3
Uploading a New Object to a Collection 8-3
i0S 8-3
Adding an Object to a Collection 8-3
Deleting an Object 8-4
Downloading Data to a Collection 8-4
Getting a User Isolated Collection 8-5
Getting Multiple Objects from a Collection 8-5
Getting Object Data as a Stream 8-5
Retrieving a Storage Object 8-6
Updating an Object 8-6
Uploading Data to a Collection 8-6
Cordova, JavaScript, and TypeScript 8-7
Adding an Object to a Collection 8-7
Deleting an Object 8-8
Fetching an Object 8-8
Getting a Collection 8-8
Getting an Object from a User Isolated Collection 8-9
Getting Multiple Objects from a Collection 8-9
Updating an Object 8-9
Custom Code 8-10
Retrieving and Storing Collections and Objects 8-10
REST API 8-10
Storage API Endpoints 8-10

ORACLE

Vi

Getting a Single Collection 8-10
Getting All Collections Associated with a Mobile Backend 8-11
Storing an Object 8-11
Specifying the Object Identifier 8-11
Creating an Object (If One Doesn't Already Exist) 8-11
Generating an Object Identifier 8-12

What Happens When an Object is Created? 8-12
Updating an Object 8-12
What Happens When an Object Is Updated? 8-12
Optimistic Locking 8-12
Retrieving a List of Objects 8-13
Paging Through a List of Objects 8-13
Ordering 8-14
Querying 8-14
Retrieving an Object 8-14
Deleting an Object 8-15
Optimizing Performance 8-15
Check If Exists 8-15

Get If Newer 8-16
Reading Part of an Object (Chunking Data) 8-16
Testing Runtime Operations Using the Endpoints Page 8-17
Managing Collections 8-17
Shared and User Isolated Collections 8-17
Storage Configuration 8-20
Defining a Collection 8-21
Collection Metadata 8-22

Adding Access Permissions to a Collection 8-22

Adding Objects to a Collection 8-24
Object Metadata 8-24
Updating the Collection 8-25
Offline Data Storage 8-25
Associating a Collection with a Backend 8-26
Removing a Collection from a Backend 8-27

O Data Offline and Sync

Building Apps that Work Offline Using Sync Express 9-2
Building Apps that Work Offline Using the Synchronization Library 9-6
What Can | Do with the Synchronization Library? 9-6
Synchronization Library Process Flow 9-9
Video: Overview of the Data Offline & Synchronization API 9-9

ORACLE

Vii

Android Synchronization Library 9-9

Setting Up Your Mobile App for the Android Synchronization Library 9-10
Fetching Resources 9-10
Fetching Filtered Resources 9-13
Specifying Which Resources to Synchronize First 9-17
Setting a Resource’s Synchronization Policies Programmatically 9-17
Detecting and Handling Conflicts 9-18
Reviewing and Discarding Offline Edits 9-21
iOS Synchronization Library 9-25
Setting Up Your Mobile App for the iOS Synchronization Library 9-25
Fetching Resources 9-25
Fetching Filtered Resources 9-27
Specifying Which Resources To Synchronize First 9-29
Setting a Resource’s Synchronization Policies Programmatically 9-30
Detecting and Handling Conflicts 9-31
Reviewing and Discarding Offline Edits 9-34
Making Custom APIs Synchronizable 9-37
Synchronization Policies 9-38
Video: Introduction to the Data Offline & Sync Policies 9-40
Synchronization Policy Options 9-40
Video: Deep-Dive into the Data Offline & Sync Policies 9-43
Synchronization Policy Levels and Precedence 9-43
Defining Synchronization Policies Using a Configuration File 9-44
Defining Synchronization Policies and Cache Settings in a Response
Header 9-50
Tracking Cache Hits with the Synchronization Library 9-51
How Synchronization Works with the Storage APIs 9-51
10 Location
What Can | Do With Location? 10-1
A Few Important Location Terms 10-1
Android 10-2
Querying for Location Objects 10-2
Retrieving a Location Object 10-3
i0S 10-5
Querying for Location Objects 10-5
Retrieving a Location Object 10-6
Retrieving iBeacon Identifiers 10-7
Defining a Geofence 10-8
Retrieving Custom Attributes 10-9
REST API - Location 10-10

ORACLE viii

12 Analytics

Querying for Location Devices, Places and Assets 10-10
Querying for Location Devices 10-10
Querying for Places 10-14
Querying for Assets 10-18

Retrieving Location Objects and Properties 10-20

Setting Up Location Devices, Places and Assets 10-21

Defining Places 10-21
Uploading Places Using a CSV File 10-21

Defining Location Assets 10-22
Uploading Assets Using a CSV File 10-23

Registering Location Devices 10-24
Uploading Location Devices Using a CSV File 10-25

11 Database
What Can | Do with Database APIs? 11-1
Database Access API 11-1

Calling the Database Access API from Custom Code 11-1

Creating and Restructuring Database Tables 11-3
Adding and Updating Table Rows 11-5
Retrieving Table Rows 11-6
Deleting Table Rows 11-8

Executing SQL on a Table 11-9
Passing Parameters to the SQL Statement 11-10
Labeling Calculated Columns in Select Statements 11-12
Preserving Case in SQL Statements 11-12
Preventing SQL Injection 11-13

Database Management API 11-14
Creating a Table Explicitly 11-14
What Can | Do with Analytics? 12-1
How Does Create Analytics Reports? 12-1
API Call Analytics 12-2

API Calls Count and Response Time 12-2
Adding Locations in China 12-2

13 App Policies

What Are App Policies and What Can | Do With Them? 13-1
Setting an App Policy 13-1

ORACLE

Android 13-2

Retrieving App Policies 13-2
i0S 13-3
Retrieving App Policies 13-3
REST 13-4
Retrieving App Policies 13-4
Cordova 13-4
Retrieving App Policies 13-4
JavaScript 13-5
Retrieving App Policies 13-5
Updating an App Policy Value in a Published Mobile Backend 13-5

14 Backends

What Are Backends and How Can | Use Them? 14-1
What's the Backend Development Process? 14-1
Creating and Populating Backends 14-1
Creating a Backend 14-2
Backend Authentication and Connection Info 14-2
Role-Based Backends 14-3
Associating APIs with a Backend 14-3
Associating Storage Collections with a Backend 14-4
Notification Profiles and Client Apps 14-4
How Notification Profiles Work 14-4
How App Clients Work 14-4
Getting Network Credentials for Notifications 14-5
Android: Google API Key 14-5

iOS: Apple Secure Certificates 14-6
Windows: WNS Credentials 14-7
Syniverse: SMS Credentials 14-7
Creating a Notifications Profile 14-9
Registering an App Client 14-10
What Can | Change in a Backend? 14-11
Connecting Your App to a Backend 14-11
Analytics Apps 14-12
Registering an Analytics App 14-12
Associating an Analytics App with a Backend 14-13

15 Mobile Users and Roles

Navigate to Your Oracle Identity Cloud Service Application 15-1

ORACLE X

Adding Users and Groups in Oracle Identity Cloud Service 15-1
Creating and Managing Mobile Roles 15-2
Permissions Required for Platform APIs 15-3
16 Authentication in OMCe

OAuth Consumer Authentication in OMCe 16-1
HTTP Basic Authentication in OMCe 16-2
Enterprise Single Sign-On in OMCe 16-2
Third-Party SAML and JWT Tokens 16-3
SAML Tokens and Virtual Users 16-3

JWT Tokens and Virtual Users 16-7
Mapping Users from a Third-Party I1dP to IDCS Users 16-24
Browser-Based SSO through OMCe 16-25
Testing APIs in a Backend with SSO Login 16-25
Token Expiration for SSO Login 16-26
Facebook Login in OMCe 16-26
Registering an App for Login Through Facebook 16-27
Enabling Facebook Login in a Mobile Backend 16-27
Configuring an App to Use Facebook Login 16-27
Adding APIs to a Mobile Backend with Facebook Login 16-28
Getting a Facebook User Access Token Manually 16-28
Headers Needed for API Calls with Facebook Authentication 16-29
Authenticating in Direct REST Calls 16-29
Authenticating with OAuth in Direct REST Calls 16-29
Authenticating with HTTP Basic in Direct REST Calls 16-31
Securing Cross-Site Requests to OMCe APIs 16-31

17 Creating APIs Fast with the Express API Designer

What are Resources? 17-1
Creating An API 17-1
Completing Your Resources 17-3
Adding Additional Fields 17-4
Shaping the Payload for Your Resource 17-4

Adding More Sample Data 17-5
Referenced Resources 17-6

Fields 17-8
Methods 17-9
Shaping Payloads 17-10
Read-Only Fields 17-12

ORACLE

Xi

Sample Data 17-12

Using the Express API Designer with MAX 17-15
How Do | Surface My APl in MAX? 17-15
Who Uses MAX? 17-15
Enabling Uploadable Images 17-16
Tips for User-Friendly Business Objects in MAX 17-17
Video: An Introduction to Mobile Application Accelerator (MAX) 17-27
Creating Resources with JISON Schemas 17-27
Defining Fields in a Schema 17-28
Defining Field Types, Formats, and Enums 17-29
Defining Child Objects 17-31
Defining Fields for List, Details, Create, and Update Screens 17-32
Collection Actions 17-34

Create Actions 17-37

Update Actions 17-39

Delete Actions 17-40
Custom Actions 17-40
Creating Mock Data 17-40
Which API Designer Should | Use? 17-41

18 Custom API Design

API Design Process 18-1
Generating Custom APIs for Connectors 18-3
How Do | Generate a Custom API from a Connector 18-4
Completing the Custom API 18-6
Working with the Implementation 18-6
The API Designer 18-9
Spec Out a Custom API 18-9
Creating a Complete Custom API 18-14
Setting Up Your API 18-14
Defining Endpoints 18-15
Adding Methods to Your Resources 18-17
Defining a Request for the Method 18-18
Defining a Response for the Method 18-19
Testing API Endpoints Using Mock Data 18-21
Providing a Schema 18-22
Security in Custom APIs 18-23
Setting Access to the API 18-24

Testing Your Custom API 18-26
Creating Resource Types 18-28

ORACLE

Xii

Creating Resource Traits 18-30
Providing APl Documentation 18-31
How Do | Write in Markdown? 18-33
Getting Diagnostic Information 18-34
API Design Considerations 18-34
Valid URLs 18-34
API Timeouts 18-36
API Resources 18-36
URI Parameters 18-37
Endpoint Requirements for Sync Compatibility 18-38
Schemas 18-39
RAML 18-40
Editing a Custom API 18-43
Video: End-to-End Custom APl Demo 18-44
Troubleshooting Custom APIs 18-44
19 Implementing Custom APIs
What Can | Do with Custom Code? 19-1
How Does Custom Code Work? 19-2
What's the Foundation for the Custom Code Service? 19-2
Video: Node.js Technology Primer 19-4
Setting Up Tooling for Custom Code 19-4
Steps to Implement a Custom API 19-4
Downloading a JavaScript Scaffold for a Custom API 19-5
Writing Custom Code 19-5
Key JavaScript Constructs in Custom Code 19-5
Accessing the Body of the Request 19-9
Inserting Logging Into Custom Code 19-9
Storing Data Locally 19-11
Video: Working with Node - Common Code 19-11
Implementing Synchronization-Compatible APIs 19-11
Video: Working with Custom APIs via Data Offline & Sync 19-12
Requirements for a Synchronization-Compatible Custom API 19-12
Returning Cacheable Data 19-17
Specifying Synchronization and Cache Policies 19-19
Calling Web Services and APIs from Custom Code 19-20
Packaging Custom Code into a Module 19-21
Required Artifacts for an API Implementation 19-21
package.json Contents 19-22
Declaring the API Implementation Version 19-23
ORACLE Xiii

Declaring the Node Version 19-24

Packaging Additional Libraries with Your Implementation 19-24
Uploading the Custom Code Module 19-25
Testing and Debugging Custom Code 19-25

Testing with Mock Data 19-25

Testing Custom Code from the Ul 19-26

Offline Debugging with the OMCe Custom Code Test Tools 19-26

Tools for Testing Custom Code Outside the Ul 19-27

Accessing Logging Messages for Custom Code 19-27
Troubleshooting Custom API Implementations 19-30

Diagnosing Syntax Errors 19-31

Common Custom Code Errors 19-32
What Happens When a Custom API Is Called? 19-34

20 Calling APIs from Custom Code

How to Send Requests to Platform, Connector, and Custom APIs 20-1
API Request Pattern 20-1
Common options Argument Properties 20-2
API Response Patterns 20-4

Handling a Stream 20-4
Handling a Promise 20-5

Accessing Mobile Backend Information from Custom Code 20-12
mbe.getMBE() 20-13

Calling Platform APIs from Custom Code 20-13
Accessing the Analytics Collector API from Custom Code 20-14

analytics.postEvent(events, options, httpOptions) 20-14
Accessing the App Policies API from Custom Code 20-17
appConfig.getProperties(httpOptions) 20-18
Accessing the Database Access API from Custom Code 20-18
database.delete(table, keys, options, httpOptions) 20-19
database.get(table, keys, options, httpOptions) 20-20
database.getAll(table, options, httpOptions) 20-22
database.insert(table, object, options, httpOptions) 20-24
database.merge(table, object, options, httpOptions) 20-29
database.sql(sql, args, options, httpOptions) 20-34
Accessing the Location API from Custom Code 20-36
location.assets.getAsset(id, httpOptions) 20-37
location.assets.query(queryObiject, httpOptions) 20-39
location.devices.getDevice(id, httpOptions) 20-42
location.devices.query(queryObject, httpOptions) 20-44

ORACLE Xiv

location.places.getPlace(id, httpOptions)
location.places.query(queryObiject, httpOptions)

Accessing the Location Management API from Custom Code

location.assets.register(assets, context, httpOptions)
location.assets.remove(id, context, httpOptions)
location.assets.update(id, asset, context, httpOptions)
location.devices.register(devices, context, httpOptions)
location.devices.remove(id, context, httpOptions)
location.devices.update(id, device, context, httpOptions)
location.places.register(places, context, httpOptions)
location.places.remove(id, context, httpOptions)
location.places.update(id, place, context, httpOptions)

Accessing the Mobile Devices API from Custom Code

devices.deregister(device, httpOptions)
devices.register(device, httpOptions)

Accessing the My Profile API from Custom Code

ums.getMe(httpOptions)
ums.getUser(options, httpOptions)
ums.getUserExtended(options, httpOptions)
ums.updateUser(fields, options, httpOptions)

Accessing the Notifications API from Custom Code

notification.getAll(context, options, httpOptions)
notification.getByld(id, context, options, httpOptions)
notification.post(natification, context, options, httpOptions)
notification.remove(id, context, options, httpOptions)

Accessing the Storage API from Custom Code

storage.doesCollectionExist(collectionld, options, httpOptions)
storage.doesExist(collectionld, objectld, options, httpOptions)
storage.getAll(collectionld, options, httpOptions)
storage.getByld(collectionld, objectld, options, httpOptions)
storage.getCollection(collectionld, options, httpOptions)
storage.getCollections(options, httpOptions)
storage.remove(collectionld, objectld, options, httpOptions)
storage.store(collectionld, object, options, httpOptions)
storage.storeByld(collectionld, objectld, object, options, httpOptions)

Calling Connector APIs from Custom Code

Calling a Connector to a REST Web Service

Calling a Connector to a SOAP Service

Calling Connectors that Require Form Data

Passing Headers to the Target Service

Overriding SSL Settings for Connectors

ORACLE

20-46
20-47
20-51
20-52
20-53
20-54
20-56
20-58
20-58
20-61
20-62
20-63
20-65
20-65
20-66
20-67
20-67
20-70
20-72
20-75
20-76
20-76
20-80
20-81
20-82
20-83
20-83
20-85
20-87
20-92
20-96
20-97
20-100
20-102
20-105
20-108
20-111
20-112
20-114
20-115
20-117

XV

Calling Custom APIs from Custom Code 20-117
Specifying the API Version in Calls to Custom and Connector APIs 20-120
Using Generic REST Methods to Access APIs 20-121
optionsList Argument 20-122
Learning About Platform, Custom, and Connector APIs 20-123
271 Connectors

What Is a Connector API? 21-1
REST Connector APIs 21-1
How REST Connector APIs Work 21-1
Why Use Connectors Instead of Direct Calls to External Resources? 21-1
Creating a REST Connector API 21-2
Basic Connector Setup 21-2
Rules 21-4
Security Policies and Overriding Properties 21-5
Testing in Advanced Mode 21-7
Security and REST Connector APIs 21-10
Security Policy Types for REST Connector APIs 21-11
CSF Keys and Web Service Certificates 21-12
Query and Header Parameters 21-13
Setting Query Parameters in Remote URLs 21-14
Editing a REST Connector API 21-15
Using Your REST Connector APl in an App 21-15
Troubleshooting REST Connector APIs 21-16
SOAP Connector APIs 21-16
How SOAP Connector APIs Work 21-16
Why Use SOAP Connectors Instead of Direct Calls to External Resources? 21-17
Creating a SOAP Connector API 21-17
Setting the Basic Information for Your SOAP Connector API 21-18
Selecting a Port 21-21

Setting Security Policies and Overriding Properties for SOAP Connector
APls 21-22
Testing a SOAP Connector API 21-24
SOAP Connector API Design Tips 21-27
How Does XML Get Translated into JSON? 21-28
Using XML Instead of JSON 21-29
Security Policy Types for SOAP Connector APIs 21-30
CSF Keys and Web Service Certificates 21-31
Editing a SOAP Connector API 21-32
Using Your Connector API in an App 21-32
Troubleshooting SOAP Connector APIs 21-33

ORACLE

XVi

ICS Connector APIs

21-34

How ICS Connector APIs Work 21-34
ICS Connector API Flow 21-35
How Do | Create an ICS Connector API? 21-36
Setting the Basic Information for Your ICS Connector API 21-37
Connecting to an Integration Cloud Service Instance 21-39
Selecting or Creating an ICS Instance Connection 21-39
Selecting an Active Integration 21-40

Editing the ICS Connector API 21-41

Setting Runtime Security for the ICS Connector API 21-42
Creating a New CSF Key 21-43
Testing the ICS Connector API 21-43
Security and ICS Connector APIs 21-47
CSF Keys 21-47
Using Your Connector APl in an App 21-48
Troubleshooting ICS Connector APIs 21-48
Fusion Applications Connector APIs 21-49
How Fusion Applications Connector APIs Work 21-49
Fusion Applications Connector API Flow 21-50
How Do | Create a Fusion Applications Connector API? 21-51
Setting the Basic Information for Your Fusion Applications Connector API 21-52
Connecting to a Fusion Applications Instance 21-54
Creating a Fusion Applications Instance Connection 21-54
Selecting Fusion Applications Resources 21-55

Setting Resource Attributes 21-57

Editing the Fusion Applications Connector API 21-58

Setting Runtime Security for the Fusion Applications Connector API 21-59

Testing the Fusion Applications Connector API 21-61
Security Policy Types for Fusion Applications Connector APIs 21-63
CSF Keys and Web Service Certificates 21-64
Using Your Fusion Application Connector API in an App 21-65
Troubleshooting Fusion Applications Connector APIs 21-66

27 SOAP Connector APIs

How SOAP Connector APIs Work 22-1
SOAP Connector API Design Process 22-1
Why Do | Want to Use a SOAP Connector API? 22-2
Why Use SOAP Connectors Instead of Direct Calls to External Resources? 22-3
Creating a SOAP Connector API 22-4
Setting the Basic Information for Your SOAP Connector API 22-4

ORACLE

XVii

Selecting a Port 22-7

Setting Security Policies and Overriding Properties for SOAP Connector APIs 22-8
Setting a CSF Key 22-9

Setting a Web Service Certificate 22-10

Testing a SOAP Connector API 22-10
Testing Your Connector 22-10

Getting the Test Results 22-12

Getting Diagnostic Information 22-13

SOAP Connector API Design Tips 22-14
How Does XML Get Translated into JSON? 22-14
Using XML Instead of JSON 22-15
Security Policy Types for SOAP Connector APIs 22-16
CSF Keys and Web Service Certificates 22-17
Editing a SOAP Connector API 22-18
Using Your Connector API in an App 22-19
Troubleshooting SOAP Connector APIs 22-19

23 ICS Connector APIs

How ICS Connector APIs Work 23-1
ICS Connector API Flow 23-1
How Do | Create an ICS Connector API? 23-3
Setting the Basic Information for Your ICS Connector API 23-4
Connecting to an Integration Cloud Service Instance 23-6
Selecting or Creating an ICS Instance Connection 23-7
Selecting an Active Integration 23-8
Editing the ICS Connector API 23-9
Setting Runtime Security for the ICS Connector API 23-9
Creating a New CSF Key 23-10
Testing the ICS Connector API 23-11
Getting the Test Results 23-13

Getting Diagnostic Information 23-14
Security and ICS Connector APIs 23-14
CSF Keys 23-15
Using Your Connector API in an App 23-15
Troubleshooting ICS Connector APIs 23-16

24 Fusion Applications Connector APIs

How Fusion Applications Connector APIs Work 24-1
Fusion Applications Connector AP| Flow 24-1

ORACLE Xviii

25

How Do | Create a Fusion Applications Connector API?

24-3

Setting the Basic Information for Your Fusion Applications Connector API 24-4
Connecting to a Fusion Applications Instance 24-6
Creating a Fusion Applications Instance Connection 24-6
Selecting Fusion Applications Resources 24-7
Setting Resource Attributes 24-9
Editing the Fusion Applications Connector API 24-10
Setting Runtime Security for the Fusion Applications Connector API 24-11
Providing a CSF Key 24-12
Creating a New CSF Key 24-12
Setting a Web Service Certificate 24-13
Testing the Fusion Applications Connector API 24-13
Getting the Test Results 24-15
Security Policy Types for Fusion Applications Connector APIs 24-15
CSF Keys and Web Service Certificates 24-16
Using Your Fusion Application Connector API in an App 24-17
Troubleshooting Fusion Applications Connector APIs 24-18
Diagnostics
What Can | Do with Diagnostics? 25-1
Viewing Environment Health 25-1
Viewing Server Load 25-2
Viewing Errors 25-2
Viewing Underperforming Requests 25-3
Viewing Log Messages Related to a Request 25-3
Viewing Storage Usage 25-3
Monitoring a Selected Backend 25-4
Viewing API Performance 25-5
Adjusting the Performance Threshold Configurations 25-5
Viewing Status Codes for API Calls and Outbound Connector Calls 25-5
Relating Log Messages 25-7
How Client SDK Headers Enable Device and Session Diagnostics 25-8
Viewing Log Messages 25-9
Viewing Message Details 25-11
Taking a Look at Exported Messages 25-12
Configuring the Logging Level for Custom Code 25-19
Diagnosing Custom Code 25-19
Use Case: Using Correlation to Diagnose Custom Code 25-20
Use Case: Using Correlation to Diagnose Connector Issues 25-22

ORACLE

XiX

26 Packages
What's a Package? 26-1
Why Do | Want a Package? 26-1
Exporting a Package 26-2
Adding Artifacts to the Package 26-2
Reviewing Dependencies During Export 26-3
Setting Environment Policies During Export 26-4
Completing the Export 26-6
Re-exporting a Package 26-7
Importing a Package 26-7
Uploading the Package 26-7
Examining the Contents of the Import Package 26-8
Setting Environment Policies During Import 26-9
What Happens When You Import a Package? 26-11
Import Results 26-11
Exporting Updated Artifacts 26-12
Examining a Package 26-12
Moving a Package to the Trash 26-13
Environment Policy Settings for Packaged Artifacts 26-14
A HTTP Headers
API Headers A-1
SDK Headers A-2
B Oracle Mobile Cloud Enterprise Policies
OMCe Palicies and Values B-1
C Security Policies for Connector APIs
Security Policies for REST Connector APIs C-1
Security Policies for SOAP Connector APIs C-3
Security Policies for ICS Connector APIs C-11
Security Policies for Fusion Applications Connector APIs C-11
Security Policy Properties C-12
D Writing Swift Applications Using the iOS Client SDK
Adding the Bridging Header File D-1
Adding the SDK Headers and Libraries to a Swift App D-2
ORACLE XX

Using SDK Objects in Swift Apps D-3

Legacy Analytics API

Enabling Your Mobile Apps to Report Event Data E-1
Adding Location Properties to the context Event E-4

Integrating Analytics into a Mobile App Using the Client SDK E-5

Supported Browsers and Languages

Supported Browsers F-1

Supported Languages F-1

Identity Provider Integration

Use Case: Configuring OKTA to Obtain a SAML Token G-1

Use Case: Configuring AD FS to Obtain a SAML Token G-2

ORACLE"

XXi

Preface

Preface

Welcome to Oracle Mobile Cloud Enterprise.

Audience

This guide is intended for developers who use Oracle Mobile Cloud Enterprise (OMCe)
to develop mobile applications, mobile APls, and intelligent chatbots.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

nonospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE XXii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

A Developer’s View of Oracle Mobile Cloud
Enterprise

Welcome to Oracle Mobile Cloud Enterprise! OMCe is a cloud-based service that
provides a unified hub for developing, deploying, maintaining, monitoring, and
analyzing your mobile apps, intelligent bots, and the resources that they rely on. As a
developer, you can use this guide to help you incorporate OMCe’s features into your

apps.
This guide covers what you need to know to:

* Add support for authentication, notifications, geo-location, sync, storage, and other
features to your apps.

* Create custom APIs that your apps and bots can use to connect to your enterprise
systems.

This guide doesn’t cover development of bots themselves. For that, see Creating
Intelligent Bots with Oracle Mobile Cloud, Enterprise.

There is also a separate guide for using OMCe’s Mobile Application Accelerator (MAX)
to rapidly develop cross-platform mobile apps. See Building No-Code Applications with
Oracle Mobile Cloud, Enterprise.

Client SDKs

ORACLE

As an app developer, the first thing you'll want to do is get the OMCe client SDK for
your mobile platform. The client SDKs help you use OMCe features and custom APIs
that you develop through OMCe in your apps.

You can get the SDKs from the Oracle Technology Network’s Oracle Mobile Cloud
Enterprise download page.

For specific info on each SDK, see the following topics:

e Android Apps
* i0S Applications
» Cordova Applications

» JavaScript Applications

Note:

For information on using the REST APIs directly, see the platform's REST
API reference docs.

1-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Chapter 1
Features for Your Apps

Features for Your Apps

OMCe comes with a set of platform APIs that you can use in your apps. You can call
these APIs directly from your app code (via client SDK or REST call) and/or from the
implementation code of custom APIs.

The available platform APIs include the following:

e Notifications for writing code to send notifications to your mobile apps.
e My Profile to retrieve the current app user’s profile.

» Storage to work with collections and objects (such as images and documents) that
you associate with your backend.

- Data Offline and Sync to build applications that cache REST resources for offline
use and then synchronize all offline changes with the server when the device goes
online again.

e Location to define location devices and places and query for them from your
mobile apps.

- Database Access and Database Management to access the database
associated with your OMCe instance.

e App Policies to retrieve application configuration properties that you have set in
the backend.

Custom APlIs

Backends

ORACLE

You can create your own custom APIs in OMCe to serve the needs of your apps and
bots.

You design the API using one or both of the following tools:

» Express API Designer: Enables you to quickly create APIs based on CRUD
resources.

» API Designer: Enables you to create or modify an API using the full set of RAML
capabilities.

You implement the API with Node.js-based custom code. From your implementation
code, you can:

e Call OMCe platform APIs for features such as natifications, object storage,
database access, location, and sync.

e Access enterprise services (whether cloud-based on premises) via connectors
APIs. You can create connector APIs based on connector types for REST, SOAP,
Oracle Integration Cloud Service, and Fusion Applications.

You'll use backends to group the APIs and other resources that your apps and bots
need.

A backend is a logical grouping of custom APIs, storage collections, and other
resources that serves as a cloud-based companion to one or more related mobile

1-2

Security

ORACLE

Chapter 1
Security

apps or bots. The backend provides the security context, meaning that the user has to
authenticate through the backend to access those services.

At development time, here are some of the things you do with a backend:

Add APIs and test their endpoints with mock data.
Add object storage collections and enable offline data caching.

Specify roles that users must have to access the applications associated with the
backend.

Set up notifications for your apps using the services provided by the platform
vendors (such as Apple Push Notifications Service (APNS) for iOS and Firebase
Cloud Messaging (FCM) for Android). If you set up notifications for multiple
platforms, you can initiate a single notification and have it delivered to apps on
multiple platforms.

Later, at deployment time, the backend serves as a deployment unit with dependency
management for all of the artifacts you need to support the set of mobile apps and
bots that use it.

For each backend that you create, you set up how to authenticate with that backend.
You can choose from these mechanisms:

OAuth, where Oracle Identity Cloud Service (IDCS) is the identity provider, and
you use credentials generated by the backend.

HTTP Basic, where IDCS is the identity provider, and you use credentials
generated by the backend.

SAML and JWT tokens from third-party identity providers.

Browser-based SSO, where IDCS is the identity provider and the app uses
OAuth 2.0’s authorization code grant to get an authorization token.

Facebook Login.

Further, you can restrict access to resources by defining roles in OMCe and applying
them to backends, APIs, and/or storage collections.

1-3

Android Apps

Oracle Mobile Cloud Enterprise (OMCe) provides an SDK for Android that makes it
easy to use OMCe'’s features.

Getting the SDK

To get the OMCe client SDK for Android, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend

You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click === to open the side menu and select Mobile Apps > Backends.
2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You'll need to configure your app with some of this information.

Adding the SDK

Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the Android client SDK to an app

1. If you haven't already done so, unzip the Android client SDK zip.

2. Copy the SDK jars into the | i bs folder in your app's project. If this folder doesn't
exist, create it at the same level in your hierarchy as your src¢ and bui | d folders.

3. Import the | DMVbbi | eSDK. j ar into the project. (In Android Studio, select File >
New > New Module, click Import .JARI.AAR Package, click Next, select
| DMVbbi | eSDK. j ar and click Next.)

4. In the source tree for the application, create a folder called asset s (at the same
level as the j ava and r es folders).

5. Inthe SDK bundle, locate the oracl e_mobi | e_cl oud_confi g. xnl file and copy it to
the asset s folder.

ORACLE 2-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Chapter 2
Configuring SDK Properties

6. Inyour app's buil d. gradl e file, make sure the following are among the
dependencies registered so that the SDK libraries are available to the app.

dependenci es {
conpile fileTree(dir: "libs', include: ['*.jar'])
conpi | e ' com squar eup. okhttp3: okhttp:3.9.0
conpile "org.slf4j:slf4j-jdkl4:1.7.13
//to enable the app to receive notifications, include the follow ng:
conpi l e ' com googl e. firebase: firebase-nmessagi ng: 11. 0. 2

}

7. Open assets/oracl e_nobile_cloud_config.xn and fill in the environment
details for the mobile backend that the app will be using.

Configuring SDK Properties

ORACLE

To use the client SDK in an Android app, you need to add a

oracl e _mobi |l e_cl oud_config. xm configuration file to the app and fill it in with
environment details for your backend in OMCe. In turn, the SDK classes use this
information to construct HTTP headers for REST calls made to OMCe.

You package the configuration file in your app’s main bundle in the asset s folder at the
same level as the j ava and r es folders. For example, in the sample GettingStarted
app, it'sin/ GettingStarted/ src/ main/assets.

The file is essentially divided into the following parts:

« The nobi | eBackend element and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

* Elements that apply to the configuration as a whole, such as | ogLevel and
oAut hTokenEndpoi nt . These elements generally, but don’'t have to, appear at the
top of the file.

The following code sample shows the structure of a
oracle_nobile_cloud_config.xm file.

<confi g>

<I--This value is required if you are using QAuth to authenticate
agai nst the nobile backend-->
<oAut hTokenEndPoi nt >YOUR_QAUTH TOKEN_END PO NT<oAut hTokenEndPoi nt >
<I--Set to true if you want to get logging infornation-->
<enabl eLogger >t r ue</ enabl eLogger >
<l ogLevel >DEBUG</ | ogLevel >
<I--Vhether to log HTTP call request and response bodi es and headers-->
<| ogHTTP>t r ue</ | ogHTTP>

<I-- Include the nobileBackend element and its sub-elenents if you are
goi ng
to be using a backend to access customand platformAPIs. -->
<nobi | eBackend>
<name>MBE_NAME</ name>

2-2

Chapter 2
Configuring SDK Properties

<baseUr| >BASE URL</ baseUr| >
<enabl eAnal yti cs>true</ enabl eAnal ytics>
<aut henti cation>
<!--possible values for type are [oauth, basic, facebook
t okenExchange]-->
<t ype>AUTH TYPE</type>
<oaut h>
<clientld>CLIENT ID</clientld>
<client Secret>CLI ENT_SECRET</ cl i ent Secr et >
<enabl ef f | i ne>t rue</ enabl e fli ne>
</ oaut h>
<basi c>
<nobi | eBackendl d>MOBI LE_BACKEND | D</ nobi | eBackend| D>
<anonymousKey>ANONYMOUS_KEY</ anonymousKey>
<enabl e fli ne></ enabl eCf fli ne>
</ basi c>
<facebook>
<appl d>FACEBOOK_APP_I D</ appl d>

<scopes>public_profile,user_friends, email,user_|ocation,user_birthday</
scopes>
<basi c>
<nobi | eBackend! d>MOBI LE_BACKEND | D</ nobi | eBackend| D>
<anonymousKey>ANONYMOUS_KEY</ anonynousKey>
</ basi c>
</ facebook>
<t okenExchange>
<! tokenExchange can contain an 'oauth' sub-element or a 'basic
sub- el enent
<oaut h>
<clientl1d>CLIENT ID</clientld>
<cl i ent Secret>CLI ENT_SECRET</ cl i ent Secr et >
</ oaut h>
<basi c>
<nobi | eBackend! d>MOBI LE_BACKEND | D</ nobi | eBackend| D>
<anonymousKey>ANONYMOUS_KEY</ anonynmousKey>
</ basi c>
<t okenExchange>
</ aut henti cati on>
<I-- additional properties go here -->
</ nobi | eBackend>

</ config>

The values that you need to fill in for a given backend can be found on the Settings
and App Profile pages for that mobile backend.

Here are some more notes on the file’s elements.

e 0oAut hTokenEndPoi nt — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page.

* |loglLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is ERROR. Other possible values (in increasing level of detail) are
WARNI NG, | NFO, and DEBUG. It is also possible to specify NONE.

ORACLE 2-3

Chapter 2
Configuring SDK Properties

enabl eAnal yti cs — When set to t r ue, analytics are collected for system and
custom events that were defined with the legacy Mobile Cloud Service analytics
features. This option has no impact on the current analytics features.

enabl eLogger — When set to t r ue, logging is included in your app.

| ogHTTP — When set to t r ue, the SDK logs the HTTP and HTTPS headers in
requests and responses.

nobi | eBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend'’s Settings page.

mobi | eBackend/ baseUr| — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

mobi | eBackend/ aut hent i cati on — Contains the following sub-elements:

— The type sub-element, with possible values of oaut h, basi c, f acebook, and
t okenExchange.

— One or more sub-elements for authentication types, each containing
authentication credentials.

You can also add the of f | i neEnabl ed key and set its value to t r ue.
See Authentication Properties for examples of each authentication type.

enabl e fline — If set to t rue, offline login will be allowed. This applies only to
the Basic and OAuth login types. For this to work, you also need to add the
following to the app’s Andr oi dMani f est . xm file:

<recei ver androi d: name="or acl e. cl oud. nobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action androi d: name="andr oi d. net. conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>

Authentication Properties

The contents and sub-elements of aut hent i cat i on depend on what kind of
authentication the app will be using.

OAuth

ORACLE

Set the value of the <t ype> element to oaut h.
Fillinthe clientl Dand client Secret credentials provided by the backend.

Optionally, if you want to disable offline authentication, add the enabl e f | i ne
element and set it to f al se.

At the top level of the file, supply the oAut hTokenEndPoi nt value.

The resulting aut hent i cati on element might look something like this:

<oAut hTokenEndPoi nt >htt p: // oam ser ver . or acl e. com’ oanf oaut h2/ t okens</
oAut hTokenEndPoi nt >

2-4

HTTP Basic

Chapter 2
Configuring SDK Properties

<aut hentication>
<t ype>oaut h</type>
<oaut h>
<clientld>f 2d3ca5c- 7e6f - 4d1c- aabc- a2f 3caf 7ecde</client | d>
<cl i ent Secr et >vZMRkgni | bhNUi PnSRT2</ cl i ent Secr et >
<enabl e f| i ne>fal se</ enabl e fli ne>
</ oaut h>
</ aut henti cation>

e Set the value of the t ype element to basi c.
* Fillin the mobi | eBackendl D and anonynousKey that are provided by the backend.

e Optionally, if you want to disable offline authentication, add the enabl e f | i ne
sub-element and set it to f al se.

The resulting aut henti cati on element might look something like this:

<aut hentication>
<type>basi c</type>
<basi c¢>
<nobi | eBackendl D>6d3744h8- cab2- 479c- 998h- ebba2¢31560f </ nobi | eBackendl D>
<anonymousKey>UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonymousKey>
<enabl e f| i ne>f al se</ enabl effli ne>
</ basi c>
</ aut hentication>

Token Exchange

If you are authenticating using a third-party token, do the following:

e Set the value of the <t ype> element to t okenExchange.

e Create a <basi ¢> sub-element and fill in the OAuth Consumer credentials
provided by the backend.

The resulting aut hent i cati on element might look something like this:

<aut hentication>
<t ype>t okenExchange</type>
<basi c>
<nobi | eBackendl D>6d3744b8- cab2- 479c- 998h- ebba2¢31560f </
mobi | eBackendl D>
<anonymousKey>UFJJ TUVFf REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonynousKey>
</ basi c>
<t okenExchange>
</ authentication>

Facebook Login

ORACLE

For Facebook login:

2-5

Chapter 2
Configuring Your Android Manifest File

e Set the value of the <t ype> property to f acebook.

* Create a <f acebook> sub-element.

* Fill'in the <appl D> for the Facebook app.

e Fillin <scopes> with any relevant Facebook permissions (optional).

e Within <f acebook>, created a <basi ¢c> element and fill in the HTTP Basic
credentials provided by the backend.

The resulting aut henti cati on element might look something like this:

<aut henti cation>
<t ype>f acebook</t ype>
<facebook>
<basi c>
<nobi | eBackendl d>MOBI LE_BACKEND | D</ nobi | eBackendl d>
<anonynmousKey>ANONYMOUS_KEY</ anonynousKey>
</ basi c>
<appl D>123456789012345</ appl d>
<scopes>public_profile,user_friends, email,user_|ocation,user_birthday</
scopes>
</ facebook>
<aut henti cation>

Configuring Your Android Manifest File

ORACLE

Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in your application's manifest file,
Andr oi dMani f est. xm . These permissions are required:

e permission. | NTERNET — Allows your app to access open network sockets.

e perm ssion. ACCESS NETWORK STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, there are a number of permissions
necessary for the app to be able to receive notifications. For a rundown on the
available permissions, see Android Manifest Permissions in the Google
documentation.

Add the permissions at the top of your Andr oi dMani f est. xnl file, as shown in the
following example:

<?xm version="1.0" encodi ng="UTF-8"?>

<mani f est xm ns: androi d="http://schenas. androi d. coni apk/ r es/ andr oi d"

package="oracl e. cl oud. mobi | e. sanpl " >
<uses- permi ssion androi d: nanme="andr oi d. per ni ssi on. | NTERNET" />
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. ACCESS_NETWORK_STATE" />
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. WRI TE_| NTERNAL_STORAGE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. WRl TE_EXTERNAL_STORAGE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. ACCESS_FI NE_LOCATI ON" />

2-6

http://developer.android.com/reference/android/Manifest.permission.html

Chapter 2
Calling Mobile APIs

<uses- perm ssion
andr oi d: nane="andr oi d. per nm ssi on. ACCESS_CQOARSE_LOCATI ON' />

<appl i cati on>
<receiver android: nane="oracl e. cl oud. mobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action androi d: name="andr oi d. net. conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>

(.....)
</ application>
</ mani f est >

Adding the client SDK to your application may require you to configure your

Andr oi dMani fest . xni file to add new permissions or activities. For example, if you
add the Notifications individual SDK library, you may also need to add a new
broadcast receiver. For more information, see Setting Up a Mobile App for
Notifications.

Calling Mobile APIs

In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your Android app:

1. Add the client SDK to your app.

2. Fillin the oracl e_nobi | e_cl oud_confi g. xm with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.
4. Add an SDK call to your app to handle authentication.
5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration

For any calls to OMCe APIs using the Android client SDK to successfully complete,
you need to have the backend’s configuration loaded from the app’s
oracle_mobil e_cl oud_config.xm file. You do this using the Mobi | eManager class:

Mobi | eManager . get Manager () . get Mobi | eBackend(t hi s)

Authenticating and Logging In

Here is some sample code that you can use for authentication through OMCe in your
Android apps.

ORACLE .

ORACLE

Chapter 2
Calling Mobile APIs

OAuth Consumer

First you initialize the authorization agent and set the authentication type to CAUTH:

private AuthorizationAgent mAut horization;
private Mobil eBackend mobil eBackend,;

try {
mobi | eBackend = Mbbi | eManager . get Manager () . get Mobi | eBackend(t hi s);

} catch (ServiceProxyException e) {
e.printStackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zat i on(Aut hType. CAUTH) ;

Then you use the aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process:

Text Vi ew user name, password;
username = (TextView) findViewByld
password = (TextView) findViewByld
String userName = usernane. get Text().toString();

String passWrd = password. get Text().toString();

mAut hori zati on. aut henti cat e(mt x, userName, passWrd, nLoginCall back);

R id. usernane);
R id. password);

PP ——y

Here's the definition for the callback:

Aut hori zationCal | back mlogi nCal | back = new Aut hori zationCal | back() {
@wverride
public void onConpl eti on(Servi ceProxyException exception) {
Log. d(TAG "OnConpl etion Auth Call back");
if (exception !=null) {
Log. e(TAG "Exception while receiving the Access Token",
exception);
} else {
Log. e(TAG "Authorization successful");
}

}
}

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

private AuthorizationAgent mAuthorization;
private MbileBackend nobil eBackend;

2-8

ORACLE

Chapter 2
Calling Mobile APIs

Context nmCtx = get ApplicationContext();

try {
mobi | eBackend = Mbbi | eManager . get Manager () . get Mobi | eBackend(t hi s);

} catch (ServiceProxyException e) {
e.print StackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zat i on(Aut hType. TOKENEXCHANGE) ;

Then you use the aut hent i cat eUsi ngTokenExchange method to attempt
authentication.

mAut hori zati on. aut henti cat eUsi ngTokenExchange(nCt x, token, fal se,
m_ogi nCal | back) ;

Here’s the callback:

Aut hori zationCal | back mlogi nCal | back = new Aut hori zationCal | back() {
@verride
public void onConpl eti on(Servi ceProxyException exception) {
if (exception == null) {
[lredirect to another Activity after |ogin
Intent intent = new Intent(mttx, ContentActivity.class);
startActivity(intent);

} else {
Log. e(TAG "Exception during token exchange:", exception);
finish();
}
}
b
" Note:

The default expiration time for storing a third-party token in OMCe is 6 hours.
You can adjust this time by changing the

Security_TokenExchangeTi meout Secs policy. See Modifying Policies in
Administering Oracle Mobile Cloud, Enterprise.

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the above example, the aut hent i cat eUsi ngTokenExchange() method is called with
the third parameter (st or eToken) set to f al se. If you set this parameter to t r ue and
the token exchange is successful, the MCS token is stored in a secure store and the
user remains logged in until the token expires.

2-9

ORACLE

Chapter 2
Calling Mobile APIs

You can then use the | 0adSSOTokenExchange method on the Aut hori zat i on object to
load the stored token. If a token can't be retrieved from the secure store, the method
returns f al se.

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

try {
mAut hori zation =

Mobi | eManager . get Manager () . get Mobi | eBackend(t hi s). get Aut hori zation();
if (!mAuthorization. | oadSSOTokenExchange(nx)) {
/luser not logged in, so need to initiate login
mAut hori zati on. aut hent i cat eUsi ngTokenExchange(mt x, token, true,
mLogi nCal | back) ;

}

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token and re-authenticate.

mAut hori zati on. cl ear SSOTokenExchange(nt x) ;
mAut hori zati on. aut henti cat eUsi ngTokenExchange(mCt x, token, true,
m_ogi nCal | back) ;

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

First you initialize the authorization agent and set the authentication type to
BASI C_AUTH:

private AuthorizationAgent mAut horization;
private MobileBackend mobil eBackend;

try {
mobi | eBackend = Mbbi | eManager . get Manager (). get Mobi | eBackend(t hi s);

} catch (ServiceProxyException e) {
e.printStackTrace();
}

mAut hori zation = nobi | eBackend. get Aut hori zat i on(Aut hType. BASI C_AUTH)

Then you use the aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

Text Vi ew user name, password;

username = (TextView) findVviewByld(R id.usernane);
password = (TextView) findviewByld(R id.password);
String userName = usernane. get Text().toString();

2-10

ORACLE

Chapter 2
Calling Mobile APIs

String passWrd = password. get Text().toString();
mAut hori zati on. aut henti cat e(nmt x, userName, passWrd, nlLoginCall back);

Here's the definition for the callback:

Aut hori zationCal | back nlogi nCal | back = new Aut hori zationCal | back() {
@verride
public void onConpl eti on(Servi ceProxyException exception) {
Log. d(TAG "OnConpl etion Auth Cal | back");
if (exception !=null) {
Log. e(TAG "Exception while receiving the Access Token", exception);
} else {
Log. e(TAG "Authorization successful");
}
}
1

Facebook
For Facebook login, you use classes in the oracl e_nobi | e_androi d_soci al library.

First you initialize the authorization agent and set the authentication type to Facebook:

Soci al Aut hori zati onAgent mAut hori zati on;
Soci al Mobi | eBackend soci al Mobi | eBackend;
try {

soci al Mobi | eBackend =
Soci al Mobi | eBackendManager . get Manager () . get Mobi | eBackend(nt x) ;
} catch(ServiceProxyException e){

e.printStackTrace();

}
mAut hori zation = soci al Mobi | eBackend. get Soci al Aut hori zation();
mAut hori zati on. set Aut hType(Aut hType. FACEBOK) ;

Using a Cal | backManager object from Facebook’s SDK, initiate authentication.

private Call backManager cal | backManager;

mAut hori zation. set up(get ApplicationContext(), callback);
cal I backManager = mAut hori zati on. get Cal | BackManager () ;
mAut hori zati on. aut henti cat eSoci al (mt x) ;

Here’s code you can use for the cal | back that is passed above:

private FacebookCal | back<Logi nResul t> cal | back = new
FacebookCal | back<Logi nResul t >() {

@verride

publ i ¢ void onSuccess(Logi nResult |oginResult) {

Log. e(TAG "facebook |ogin successful.");

}

@verride

public void onCancel () {

2-11

Chapter 2
Calling Mobile APIs

}
@verride
publ i ¢ voi d onError(FacebookException e) {
}
b

Override the onActi vi t yResul t () method to use the callback:

@verride
public void onActivityResult(int requestCode, int resultCode, Intent data)

{
super. onAct i vi t yResul t (request Code, resultCode, data);

cal I backManager . onAct i vi t yResul t (request Code, resultCode, data);

Calling Platform APIs

ORACLE

Once the mobile backend’s configuration info is loaded into the app, you can make
calls to client SDK classes.

The root object in the Android SDK is Mobi | eManager . The Mbi | eManager object
manages Mbi | eBackend objects.

The Mbi | eBackend object manages connectivity, authentication, and other
transactions between your application and its associated backend, including calls to
platform APIs and any custom APIs you have defined. It manages calls to platform
APIs through instances of Ser vi cePr oxy such as St or age and Locat i on.

Here’s an example of how you would use these classes to upload an image using the
Storage API:

try {
Storage storage =

Mobi | eManager . get Manager () . get Mobi | eBackend(t hi s). get Servi ceProxy(St orage. c
| ass);

StorageCol | ection imagesCol | ection =
storage. get StorageCol | ection("FI F_I mages");

St orageoj ect i mageToUpl oad = new St orageQbj ect (nul |, imageBytes,
"imgelj peg");

St orageoj ect upl oadedl mage = i magesCol | ecti on. post (i mageToUpl oad) ;
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

}

The Ser vi cePr oxy instance created there manages calls to the Storage platform API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API.

And here’s how you could retrieve an image using the Storage API:

try {
Storage storage =

Mobi | eManager . get Manager () . get Mobi | eBackend(t hi s). get Servi ceProxy(St or age. ¢
| ass);
St orageCol | ection i magesCol | ection =

2-12

Chapter 2
Calling Mobile APIs

storage. get St orageCol | ecti on("FI F_I nages");

St oragehj ect image = i magesCol | ection. get (" 3x4nmple- st Or 4g3- Obj 3ct -
k3y");byte[] inmageBytes = image. get Payl oadBytes();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

}...

Calling Custom APlIs

ORACLE

The client SDK provides the Cust onHt t pResponse class, the

Ceneri cCust onCoded i ent Cal | Back interface, and the i nvokeCust onCodeJ SONRequest
method in the authorization classes to simplify the calling of custom APIs in OMCe.
You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where
the request payload is JSON or empty and the response payload is JSON or empty.

You use CGeneri cCust onmCodeC i ent Cal | Back to create a handler for the response
(which is returned in the form of a Cust ontt t pResponse object.)

Then, to call the custom API, you call

i nvokeCust onmCodeJSONRequest (Gener i cCust onCoded i ent Cal | Back
restCientCal | back, JSONObject data, String functionNaneg,
RestClient. Htt pMet hod httpMethod) on your Aut hori zati on object.

To make a call to a custom API endpoint, you could use something like this:

i nport org.json. JSONObj ect ;

i nport oracle. cloud. nobi | e. cust ontode. Cust ontHt t pResponse;

i nport oracle. cloud. nobi | e. cust ontode. Generi cCust onCoded i ent Cal | Back;
i nport oracle. cloud. nobi | e. nobi | ebackend. Mobi | eManager ;

final GenericCustonCodeCd ientCallBack genericCustonCoded ientCallBack =
new CGeneri cCust onCodeC i ent Cal | Back() {
@wverride
public void request Conpl et ed(Cust ontHt t pResponse response, JSONChj ect
data, Exception e) {
bool ean get Response = (response. get HtpStatus() >=200 &&
response. get H t pStat us() <300);

Il wite any logic based on above response
}
b
Aut hori zati onAgent authorization =
Mobi | eManager . get Manager () . get Mobi | eBackend(t hi s). get Aut hori zation();

aut hori zation. authenticate(mActivity, "userl", "passl", successCallback);

/1 after the user successfully authenticates, make a call to the custom
APl endpoi nt

aut hori zati on. i nvokeCust onCodeJSONRequest (generi cCust onCodeC i ent Cal | Back,
nul I, "TaskApi/tasks", RestCient.HttpMethod. GET);

2-13

Chapter 2
Libraries and Dependencies

Libraries and Dependencies

Libraries
The following SDK libraries (JAR files) are included in the Android client SDK:

e onte-androi d- sdk- shar ed- <ver si on- nurber >. j ar - The base library for the SDK,
including functionality required by the other libraries as well as utility classes for
accessing and authenticating with mobile backends.

e | DM\bbi | eSDK. j ar - The identity management library used by all applications.

e oncte-androi d- sdk-1 ocati on- <ver si on- nunber > - The Location library, which lets
you access details about location devices that have been registered in OMCe and
the places and assets they are associated with.

e once-androi d-sdk-notifications-<version-nunber>.jar - The Notifications
library, which lets you set up your application to receive notifications sent from
your mobile backend.

e oncte-androi d- sdk-soci al - <ver si on- nunber > - The Social Login library, which
allows you to set up your app to use Facebook login.

e once-androi d- sdk- st or age- <ver si on- nunber >. j ar - The Storage library, which
lets you write code to access storage collections that are set up with your mobile
backend.

e oncte-androi d- sdk- sync- <ver si on- nunber > - The Sync Client library, which
allows you to cache application data when the device running your app is
disconnected from the network, then sync up the data when the network
connection is reestablished.

Dependencies

The SDK is modular, so you can package just the libraries that your app needs. Just
be aware of the following dependencies:

e Every Android application developed for OMCe must have the shared (or acl e-
mobi | e_andr oi d_shar ed- <ver si on- nunber >. j ar) and | DM\bbi | eSDK. j ar libraries.

e If the Storage library is installed, the Sync Client library must also be installed.

Next Steps

ORACLE

Once you have the Android SDK set up, you can start using it to add OMCe features
to your app.

* Authentication in OMCe
* Natifications

* My Profile

e Storage

» Data Offline and Sync

* Location

 Database

2-14

Chapter 2
Next Steps

* App Policies

ORACLE" 2-15

I0OS Applications

If you are an iOS app developer, you can use the client SDK that Oracle Mobile Cloud
Enterprise (OMCe) provides for iOS. This SDK simplifies authentication with OMCe
and provides Obijective-C wrapper classes for OMCe platform APIs.

Getting the SDK

To get the OMCe client SDK for iOS, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend

You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click === to open the side menu and select Mobile Apps > Backends.
2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You'll need to configure your app with some of this information.

Adding the SDK

Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the iOS client SDK to an app.

1. Unzip the download file, onte-i 0s- sdk-{n}. zi p (where {n} is the version number
of the SDK) into some directory on your machine.

2. From the extracted contents of the zip, drag and drop the oracl e_nobi | e_i os_sdk
directory to the Xcode project navigator.

e Select Copy items if needed.
* Select Create Groups.
e Click Finish.

Once the . a file for a specific library has been copied into your application’s
development tree in Xcode, the corresponding platform API is available to your
app through SDK calls. At this point, all of the SDK’s static libraries are available to
your app.

3. Select the target for your project, select the Build Phases tab, expand Link
Binary with Libraries, click the + button, and add the following libraries:

ORACLE 3-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Chapter 3
Configuring SDK Properties

e CorebData. framework

e Corelocation. franmework
 libsglite3.0.thd

e Security.framework

e SystenConfiguration. franmework

In the Build Settings section for the project, double-click Other Linker Flags
(under Linking) and add - Obj C.

Also in Build Settings, expand Search Paths and:
a. Addoracle nobile ios_sdk/rel ease-i phoneos to Library Search Paths.

b. Add oracl e_nobile_ios_sdk/rel ease-i phoneos/ i ncl ude to User Header
Search Paths.

Expand the Docunent at i on folder of the unpacked zip, copy the OVC. pl i st file,
and place it in the root of your app’s main application bundle.

Edit the just-copied OMC. pl i st file. See Configuring SDK Properties.

Starting with Xcode 7, you need to account for the Application Transport Security
(ATS) policy, which enforces remote communications to be over HTTPS.

For development purposes only, add the following key in app’s I nf 0. pl i st file to
turn off the ATS policy for the app.

<key>NSAppTr ansport Securit y</ key>
<di ct>
<key>NSAl | owsAr bi t raryLoads</ key>
<true/>
</dict>

< Note:

You shouldn't use this setting in production. To make sure you provide
optimal security for your app, study Apple's documentation for
NSAppTransportSecurity and follow Apple's recommendations for
disabling ATS for specific domains and applying proper security
reductions for those domains.

Configuring SDK Properties

ORACLE

To use the client SDK in an iOS app, you need to add the OMC. pl i st configuration file
to the app and fill it in with environment details for your backend in OMCe, as well as
other configuration information. In turn, the SDK classes use this information to help
manage authorization, logging, event tracking, data synchronization, and other
features.

You package the configuration file in the root of your app’s main bundle.

The file is essentially divided into the following parts:

The nobi | eBackend key and its contents.

3-2

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

ORACLE

Chapter 3
Configuring SDK Properties

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

» Keys that apply to the configuration as a whole, such as | ogLevel and
oAut hTokenEndpoi nt . These keys generally, but don’t have to, appear at the top of
the file.

Here's the same file in text form:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://ww. appl e. con
DTDs/ PropertyList-1.0.dtd"
<plist version="1.0">
<di ct>
<key>l| ogLevel </ key>
<string>debug</string>
<key>| ogHTTP</ key>
<true/>
<key>0Aut hTokenEndPoi nt </ key>
<string>https://M_TOKEN _ENDPQO NT</stri ng>
<key>nobi | eBackend</ key>
<di ct >
<key>nane</ key>
<string>EasyShoppi ngMBE</ stri ng>
<key>baseURL</ key>
<string>https://M_CLOUD DOVAI N. or acl e. conx/ string>
<key>aut henti cati on</ key>
<di ct>
<key>t ype</ key>
<string>oaut h</string>
<key>oaut h</ key>
<di ct>
<key>client | D</ key>
<string>1ldac238ffaa4h029e78e982114642ab</ string>
<key>cl i ent Secr et </ key>
<string>5624chdd- a7c5-4¢10- a758- 6019a5ab8da8</ string>
<key>enabl eCf f | i ne</ key>
<true/>
</dict>
</dict>
</dict>
</dict>
</plist>

And here is a description of some of the more important entries in the OVC. pl i st file.

* 0Aut hTokenEndPoi nt — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form htt ps: //host. domai n: port).

e | ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is err or . Other possible values (in increasing level of detail) are
war ni ng, i nf o, and debug. It is also possible to set the value to none.

3-3

Chapter 3
Configuring SDK Properties

* | ogHTTP — When set to t r ue, the SDK logs the headers and bodies of all HTTP
requests and responses.

e nobi | eBackend — A dictionary entry containing authentication details for your
backend and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend'’s Settings page.

* nobi | eBackend/ baseUr| — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

* nmobi | eBackend/ aut henti cati on — Contains a dictionary with the following
elements:

— The type sub-key, with possible (st ri ng) values of oaut h, basi c, f acebook,
and t okenExchange.

— One or more sub-keys for authentication types, containing a dictionary with the
authentication credentials.

Within sub-keys for basi ¢ and oaut h, you can also add the enabl e f | i ne
key. By default, this property is set to t r ue.

See Authentication Properties for examples of each authentication type.

Authentication Properties

OAuth

ORACLE

The contents and sub-elements of the nobi | eBackend/ aut henti cati on key depend on
what kind of authentication the app will be using.

e Set the value of the t ype key to oaut h.

» Create an oaut h sub-key and fill in the cl i ent1 Dand cl i ent Secret credentials
provided by the backend.

« Atthe top level of the file, supply the oAut hTokenEndPoi nt value that is supplied
but without the oaut h2/ v1/t oken that is appended on the backend’s Settings

page.

e Optionally, if you want to disable offline authentication, add the enabl e f | i ne
sub-key and set it to f al se.

The resulting aut hori zat i on property might look something like this:

<key>aut hent i cati on</ key>
<di ct>
<key>t ype</ key>
<string>oaut h</string>
<key>oaut h</ key>
<di ct >
<key>cl i ent | D</ key>
<string>11ldac238ffaa4b029e78e982114642abh</string>
<key>cl i ent Secr et </ key>
<string>5624cbdd- a7c5-4c10- a758- 6019a5ab8da8</ string>
</dict>

3-4

HTTP Basic

Chapter 3
Configuring SDK Properties

<key>basi c</ key>
</dict>

e Set the value of the t ype key to basi c.

* Create a basi ¢ sub-key and fill in the HTTP Basic credentials (mobi | eBackendl D
and anonynousKey) provided by the backend.

* Optionally, if you want to disable offline authentication, add the enabl e f | i ne
sub-key and set it to f al se.

The resulting aut hent i cat i on entry might look something like this:

<key>aut henti cati on</ key>
<di ct >
<key>t ype</ key>
<string>basi c</string>
<key>basi c</ key>
<di ct >
<key>mobi | eBackend| D</ key>
<string>a8c6a34f - 61bb- 4bee- 948c- d43dd2c077d7</ string>
<key>anonymousKey</ key>
<string>dXN cm kOnBhc3N3b3Jk</ stri ng>
</dict>
</dict>

Token Exchange

ORACLE

If you are authenticating using a third-party token, do the following:

* Set the value of the t ype key to t okenExchange.

e Create at okenExchange sub-key and fill in the OAuth Consumer credentials
provided by the backend.

The resulting aut hent i cati on section might look something like this:

<key>aut hent i cati on</ key>
<di ct>
<key>t ype</ key>
<string>t okenExchange</string>
<key>t okenExchange</ key>
<di ct >
<key>oaut h</ key>
<di ct>
<key>cl i ent | D</ key>
<string>b39ba08d30d54e24970332f cdf f ec3a7</string>
<key>cl i ent Secr et </ key>
<string>23953f e8- 76ed- 4c89- a5ch- 6042db10cf af </ string>
</dict>
<key>basi c</ key>
<di ct>
<key>nobi | eBackendl D</ key>
<string>8d3744b8- cab2- 479c- 998b- ebba2c31560f </ stri ng>

3-5

Chapter 3
Calling Mobile APIs

<key>anonymousKey</ key>
<st ri ng>ZFJJTUVE REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ st ri ng>
</dict>
</dict>
</dict>

Calling Mobile APIs

In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your iOS app:

Add the client SDK to your app.

Fill in the OVC. pl i st with environment and authentication details for the backend.
Add an SDK call to your app to load the configuration info.

Add an SDK call to your app to handle authentication.

g A w NP

Add any other SDK calls that you want to use.

Loading the Backend's Configuration

For any calls to OMCe APIs using the iOS client SDK to successfully complete, you
need to have the mobile backend’s configuration loaded from the app’s OVC. pl i st file.
You do this using the OMCMobi | eBackend class:

/**
* Returns the mobile backend that is configured in OMC.plist file
*/
OMCMbbi | eBackend* nbe = [[OMCMobi | eManager sharedManager] nobi | eBackend];

Authenticating and Logging In

ORACLE

Here is some sample code that you can use for authentication through OMCe in your
iOS apps. Each sample is based on the OMCAut hori zat i on. h class and relies on the
following imports:

#i nport " OMCCor e/ OMCAut hori zati on. h"
#i nport " OMCCor e/ OMCMbbi | eBackend. h"
#i nport " OMCCor e/ OMCMDbI | eManager . h"

OAuth Consumer and HTTP Basic
You can use the following method to handle a user logging in with a user name and
password:

- (void) authenticate: (NSString *)userName
password: (NSString *)password
conpl etionBl ock: (nullable OMCErrorConpl etionBl ock) conpletionBl ock;

3-6

Chapter 3
Calling Mobile APIs

This method terminates the connection to OMCe and clears the user name and
password from the iOS keychain:

-(void) logout: (nullable OMCErrorConpletionBl ock) conpletionBl ock;

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Once you have the token, use it to authenticate. The code in this example checks to
seeif the token is already stored in OMCe before logging in again:

-(voi d) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCError Conpl eti onBl ock)
conpl eti onBl ock;

Note:

The default expiration time for storing a third-party token in OMCe is 6 hours.
You can adjust this time by changing the

Security_TokenExchangeTi meout Secs policy. See Modifying Policies in
Administering Oracle Mobile Cloud, Enterprise.

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the aut hent i cat eSSOTokenExchange method, if st or eAccessToken is set to YES, the
token is stored in secure store and the user remains logged in until the token expires.

You can use the | 0adSSOTokenExchange() method in the app launch sequence to load
the token from the keychain. (If a token can't be retrieved, the method returns NO).

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

OMCAut hori zati on* aut h;
if ([auth |oadSSOTokenExchange]){
NSLog(@ ## Token already found, |ogin skipped.");

}

el sef
[auth aut henti cat eSSOTokenExchange: t hi r dPartyToken
st oreAccessToken: YES
conpl etionBl ock: ~(NSError * Nullable error) {

if(error){
[/ Show error popup

ORACLE .

Chapter 3
Calling Mobile APIs

}

el se{
/1 Login success.

}
H

When you have the token stored in the secure store, it remains associated with the
backend that the app originally used. Therefore, if the app is updated to use a different
mobile backend (or mobile backend version), you need to clear the saved token (using
cl ear SSOTokenExchange) and re-authenticate.

Calling Platform APIs

ORACLE

Once the backend'’s configuration info is loaded into the app, you can make calls to
client SDK classes based on the iOS Core library classes.

The iOS Core library (I i bOMCCor e. a) provides the following key interfaces:

e OMCMbbi | eManager
* OMCMbbi | eBackend (a sub-class of OMCMbbi | eConponent)
e OMCServi ceProxy

The root object in the SDK is the OMCMbbi | eManager . The OMCMbbi | eManager manages
the OMC\Mbbi | eBackend objects.

The OMCMobi | eBackend object is used to manage connectivity, authentication, and
other transactions between your application and its associated mobile backend,
including calls to platform APIs and any custom APIs you have defined. It manages
calls to platform APIs via subclasses of OMCSer vi cePr oxy such as OMCLocat i on and
OMCSt or age.

Here’s an example of using SDK classes to call the Storage API:

#i nport " OMCMobi | eBackend. h"

#i nport " OMCMobi | eManager . h"

#i nport " OMCAut hori zation. h"

#i nport "OMCStorage. h"

#i nport " OMCMobi | eBackend+QOMC_St or age. h"
#i nport " OMCSynchroni zati on. h"

- (NSDat a*) dat aFr onSt or ageChj ect Wt hl D: (NSSt ri ng*) obj ect I D col | ectionl D:
(NSString*)collectionlD {

[l Get nobile backend
OMCMobi | eBackend* nmhe = [[OMCMbhi | eManager shar edManager] nobi | eBackend];

Il Get storage object
OMCSt or age* storage = [nbe storage];

Il Get your collection
OMCSt orageCol | ection* collection = [storage getCollection:collectionlD;

3-8

Chapter 3
Calling Mobile APIs

Il Get your object fromyour collection
OMCSt or agehj ect * object = [collection get:objectlD];

Il Get the data from payl oad of your object
NSDat a* data = [object getPayl oadDat a];

return data; }

Note:

Methods written in Objective-C that are used in the OMCe SDK for iOS can
also be mapped to Swift. For more information, see Writing Swift
Applications Using the iOS Client SDK.

Calling Custom APlIs

ORACLE

The client SDK provides the OMCCust onCoded i ent class to simplify the calling of
custom APIs in OMCe.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the request
invocation is complete (meaning that the handler runs asynchronously).

If the completion handler is set, it will be invoked in the Ul (main) thread upon
completion of the method invocation, allowing update of Ul items. The completion
block will contain the format-specific data for a JSON object, namely an NSDi ct i onary
or NSArr ay. Use the completion block for any returned data or errors, HTTP or system.

All of the required OMCe headers, such as Aut hori zat i on (assuming the user has
authenticated), will automatically be inserted into the request.

Use of OMCCust onCodeCl i ent might look something like this:

#i nport " OMCCor e/ OMCMbbi | eBackend. h"
#i nport " OMCCor e/ OMCCust onCodeC i ent . h"

/I A GET, PUT, POST, or DELETE nethod may be specified here - sent or
returned JSON data object may be nil as appropriate.
OMCMbbi | eBackend *backend = [[OMCMbbi | eManager shar edManager]
mobi | eBackend] ;
OMCCust onmCodeCl i ent *ccC ient = backend. cust onCoded i ent;
NSDi ctionary *jsonPayload = @ @ nyKey": @nyVal ue"};
[ccCient invokeCustonRequest: @ API2/endpoint2"
net hod: " @UT"
data: jsonPayl oad,
conpl etion: ~(NSError* error,
NSHTTPURLResponse *response,

3-9

Chapter 3
Libraries and Dependencies

id responseData) {
Il error will be nil if no problems occurred, otherwise it wll
contain the error object
Il response will be conplete HTTP response
I'l response data will be Map or Array for JSON object if success
or nil if error

s

Libraries and Dependencies

Libraries
The iOS client SDK contains the following items:

e Docunentation - Contains web-browser based documentation (ht ni . zi p) and a
docset for browsing and accessing context-sensitive help from Xcode
(oracl e. mobi | e. cl oud. Or acl e- Mobi | e- Gl oud- Ent er pri se-i OS- SDK. docset . zi p).
To use htnl . zi p, unzip the file and browse the main page from i ndex. htm . To
use the docset, unzip the file into the usual location for Xcode docsets, typically
something like ~/ Li br ary/ Devel oper/ Shar ed/ Docunent ati on/ DocSet s, where ~ is
your home directory.

This folder also contains a sample copy of the OMC. pl i st file that you'll need to
add to your app and populate with the configuration details for your mobile
backend.

e oracle_nobile_ios_sdk/rel ease-i phoneos - Release versions of the static
libraries and header files. Also contains SyncStore initialization data. The static
libraries are Universal (fat) binaries that contain ar m/7* code and support both the
iPhone Simulator and real devices. The following static libraries are included:

— |ibOMCCore. a - The Core static library file shared by all iOS applications.
Contains the common libraries required by all other libraries.

— |ibOMCAnal ytics. a - The Analytics library, which lets you insert custom
events into your code that can then be collected and analyzed from the
Analytics console. This library has been deprecated.

— |ibOMCLocati on. a - The Location library, which lets you access details about
location devices that have been registered in OMCe and the places and
assets they are associated with.

— |ibOMCNotifications.a- The Notifications static library file, which allows you
to set up your application to receive notifications sent from your mobile
backend.

— | i bOMCSt or age. a - The Storage static library file, which allows you to write
code to access storage collections that are set up with your mobile backend.

— |ibOMCSynchroni zati on. a - The Data Offline static library file, which allows
you to cache application data when the device running your app is
disconnected from the network, then synchronize the data when the network
connection is reestablished.

Dependencies

The client SDK is modular, so you can package just the libraries that your app needs.
Just be aware of the following dependencies:

ORACLE 3-10

Chapter 3
Next Steps

* Every app must have the | i bOMCCor e. a static library file.

e If your app uses | i bOMCSt or age. a, you must also include
['i | bOMCSynchr oni zati on. a.

e If your app uses | i | bOMCSynchroni zati on. a, you must also include the
SyncSt or e. mond folder, which contains initialization data.

Next Steps

ORACLE

Once you have the iOS SDK set up, you can start using it to add OMCe features to
your app.

* Authentication in OMCe
* Natifications

* My Profile

e Storage

» Data Offline and Sync

* Location

o Database

* App Policies

3-11

Cordova Applications

If you develop hybrid apps based on the Apache Cordova framework, you can use the
client SDK that Oracle Mobile Cloud Enterprise (OMCe) provides for Cordova. This
SDK simplifies authentication with OMCe and provides Cordova wrapper classes for
OMCe platform APIs as well as libraries for Data Offline and Sync and Sync Express.

If you are new to Cordova itself and still need to set it up on your system, you can
follow the Getting Started with JET Hybrid Apps tutorial for an end-to-end look at
creating a Cordova app and connecting it with a mobile backend.

Note:

This SDK supports Cordova apps for the iOS and Android platforms. Apps
for Microsoft Windows are not supported.

Getting the SDK

To get the OMCe client SDK for Cordova, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend

You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click === to open the side menu and select Mobile Apps > Backends.
2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You'll need to configure your app with some of this information.

Adding the SDK

ORACLE

Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the Cordova client SDK to an app:

1. If you haven't already done so, unzip the Cordova SDK zip.

2. Copy nts.js (and/ornts. nin.js), and oracl e_nobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fillin your backend details in oracl e_nobil e_cl oud_config.]js.

4-1

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:16851,1
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Chapter 4
Adding the SDK

Add script tags for the SDK and the configuration file in your app’s i ndex. ht ml file:

<script src="lib/nts/ncs.js"</script>
<script src="app/oracle_nobile_cloud_config.js"</script>

If you will be using notifications in your apps, install the or acl e- nts-
notifications-cordova-pl ugi n plugin:

cordova plugin add PATH TO UNZI PPED_SDK/ or acl e- nts-noti fi cati ons-
cordova- pl ugin

(Optional) For RequireJS environments, load nts. j s in your app using RequireJS.

Note:

If your app uses Sync Express, nts. sync. nin. j s must be fetched and
executed as the first script in the main page of your app, before any
other script. For detailed instructions on adding Sync Express to your
app, see Building Apps that Work Offline Using Sync Express.

Adding Support for Push Notifications

If you want to use push notifications in an app, these additional steps are required.

ORACLE

1.

(For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

(For Android) Download the generated Firebase configuration file and put it in the
root of your project.

(For Android) If you haven't already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH TO UNZI PPED_SDK/ or acl e- nts-noti fi cati ons-
cordova- plugin

(For i0S) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

In your app code, register for naotifications:

docunent . addEvent Li st ener (" devi ceready", handl eDevi ceReady, fal se);

4-2

https://firebase.google.com/docs/cloud-messaging/android/client

Chapter 4
Configuring SDK Properties

function handl eDevi ceReady() {
MCSNot i fi cati onsCor dovaPl ugi n. onTokenRef r esh(handl eTokenRef r esh,
handl eError);

}

function handl eTokenRef resh(token){
consol e.l og(' NotificationsService Token refreshed , token);
ncs. mobi | eBackend. noti fications.registerForNotifications(token,
packageNane, appVersion, 'FCM)
.then(handl eRegi st er For Not i fi cati ons)
.catch(handl eError);

}

function handl eRegi st er For Noti fi cations(response){
consol e.l og(' NotificationsService, device registered for
notifications');
}
function handl eError(error){
console.error (' NotificationsService Error', error);

}

7. Inyour app code, subscribe to notifications events:

function handl eDevi ceReady() {

MCSNot i fi cati onsCor dovaPl ugi n. onMessageRecei ved(handl eMessageRecei ved,
handl eError);

}

function handl eMessageRecei ved(dat a) {
consol e. l og(' NotificationsService Message received', data);
}

function handl eError(error){
consol e.error (' NotificationsService Error', error);

}

Configuring SDK Properties

ORACLE

To use the client SDK in a Cordova app, add the oracl e_mobil e_cl oud config.js
configuration file to the app and fill it in with environment details for your backend in
OMCe. In turn, the SDK classes use this information to construct HTTP headers for
REST calls made to OMCe.

¢ Note:

If any of your apps will be browser-based, you need to manage cross-origin
resource sharing (CORS) for access to OMCe APIs. See Securing Browser-
Based Apps Against Cross-Site Request Forgery Attacks.

4-3

ORACLE

Chapter 4
Configuring SDK Properties

Package the configuration file in the same folder as the nts. mi n. j s file.

The file is essentially divided into the following parts:

Properties that apply to the configuration as a whole, such as | ogLevel and
oAut hTokenEndpoi nt . These keys generally, but don't have to, appear at the top of
the file.

The nmobi | eBackend property and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

The following example shows the structure of a generic
oracl e_mobil e_cl oud_config.js file:

var ncs_config = {

};

"l ogLevel ": nts.LOG LEVEL. NONE,
"l ogHTTP": true,
" 0Aut hTokenEndPoi nt": " CAUTH_BASE_URL",
"nobi | eBackend": {
"name": "NAME',
"baseUr|": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. oaut h,
"oauth": {
“clientld": "CLIENT_ID",
“clientSecret": "CLIENT_SECRET"

}
}
¥
"syncExpress": {
“handl er": "Oracl eRest Handl er",

"policies": [
{
"path": '/nobile/custonm firstApi/tasks/:id(\\d+)?",
}1
{
"path": '/nobile/custonm secondApi/tasks/:id(\\d+)?",
}

J
}

Here are some notes on the file’s elements.

oAut hTokenEndPoi nt — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form ht t ps:// host . domai n: port).

| ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is nts. LOG_LEVEL. | NFO (only important events are logged).
Other possible values are nts. LOG_LEVEL. NONE, nts. LOG_LEVEL. ERROR (only errors
are logged) or nts. LOG_LEVEL. VERBCSE.

4-4

Chapter 4
Configuring SDK Properties

enabl eLogger — When set to t r ue, logging is included in your app.

| ogHTTP — When set to t r ue, the SDK logs the HTTP and HTTPS headers in
requests and responses.

mobi | eBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

nobi | eBackend/ baseUr| — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

mobi | eBackend/ aut hent i cati on — Contains the following sub-elements:

— The type sub-element, with possible values of
nmcs. AUTHENTI CATI ON_TYPES. oaut h, basi ¢, f acebook, or t oken.

— One or more sub-elements containing authentication credentials.
— (Optional) You can add the of f | i neEnabl ed key and set its value to t r ue.

See Authentication Properties for details and examples of each authentication
type.

For details on sync elements, see Building Apps that Work Offline Using Sync
Express.

Authentication Properties

OAuth

ORACLE

The contents and sub-elements of aut hent i cati on depend on what kind of
authentication the app will be using.

Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. oaut h.

At the same level as the t ype property, create a property called oaut h and fill in
theclientlDand client Secret credentials provided by the backend.

At the top level of the file, supply the oAut hTokenEndPoi nt value that is supplied
but without the oaut h2/ v1/t oken that is appended on the backend’s Settings

page.

The resulting aut hent i cat i on element might look something like this:

var nts_config = {

"0Aut hTokenEndPoi nt": " BASE_OAUTH URL_W TH oaut h2/ v1/t oken_REMOVED",

“mobi | eBackend": {
"nane": "NAME",
"baseUr|": "BASE URL",
"authentication": {
"type": nts. AUTHENTI CATI ON_TYPES. oaut h,
"oauth": {
“clientld": "CLIENT_ID",
"clientSecret": "CLIENT_SECRET"

}

4-5

Chapter 4
Configuring SDK Properties

HTTP Basic

e Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. basi c.

* Atthe same level as the t ype property, create a property called basi ¢ and fill in
the nobi | eBackendl D and anonynousKey that are provided by the backend.

The resulting entries might look something like this:

var nts_config = {

“mobi | eBackend": {
“name": "NAME',
“baseUr|": "BASE URL",
"authentication": {
"type": nts. AUTHENTI CATI ON TYPES. basi c,
"basic": {
"nobi | eBackendl d": "MOBI LE_BACKEND | D',
"anonymousKey": " ANONYMOUS_KEY"
}
}
}
b

Token Exchange

If you are authenticating using a third-party token, do the following:
* Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. t oken.
e Fillin the nobi | eBackendl d and anonynousKey that are provided by the backend.

The resulting properties might look something like this:

var ncs_config = {

"nobi | eBackend": {
“nane": "NAME",
"baseUr|": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. t oken,
"token":{
“mobi | eBackendl d": "YOUR _BACKEND | D',
"anonymousKey": " ANONYMOUS_KEY"

}
}
}
b
Facebook Login
* Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. f acebook.

ORACLE 4-6

Chapter 4
Calling Mobile APIs

* Fillin the HTTP Basic auth credentials and/or the OAuth credentials provided by
the backend.

* Fill in the appl! D for the Facebook app.
e Fill in the relevant scopes.

The resulting aut hent i cat i on entry might look something like this:

var ncs_config = {

"mobi | eBackend": {
"nanme": "NAME",
"baseUr|": "BASE URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. f acebook,
"facebook": {
"appld": "YOUR FACEBOOK APP | D',
“nobi | eBackendl d": "YOUR BACKEND | D',
"anonymousKey": " YOUR_ANONYMOUS_KEY",
"scopes":
"public_profile,user_friends,email,user_location,user_birthday"
}
}
}
b

Calling Mobile APIs

In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your Cordova app:

1. Add the client SDK to your app.

2. Fillinthe oracl e_nobil e_cl oud_confi g.] s with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.
4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration

Before you can make calls to OMCe APIs using the Cordova client SDK, you need to
load the configuration for the backend you are going to use. In the following snippet,
ncs_confi g is the name of the configuration that is defined in the

oracl e_mobi |l e_cl oud_confi g.j s file that you have added to your app.

mes.init(mcs_config);

ORACLE 47

Chapter 4
Calling Mobile APIs

Authenticating and Logging In

Here are some examples of using the Cordova client SDK’s Aut hori zat i on class.
These examples assume you already configured the SDK config file for the type of
authentication you're using, as described in Configuring SDK Properties.

OAuth and HTTP Basic

Set the authentication type for the backend to oaut h (or basi c):

mcs. mobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. oaut h) ;

Then add a function that calls Aut hori zati on. aut hent i cat e on the backend, passes it
a user name and specifies callbacks for success and failure:

mcs. nobi | eBackend. aut hori zati on. aut henti cat e(user nang,
password) . then(cal | back). catch(errorCall back);

If you want to use anonymous authentication, the method to call is
aut hent i cat eAnonynous:

mcs. mobi | eBackend. aut hori zati on. aut henti cat eAnonynous() . t hen(cal | back). catc
h(errorCal | back);

SSO with a Third-Party Token

To use SSO with a third-party token, your app first needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in OMCe,
see Third-Party SAML and JWT Tokens.

Set the authentication type for the backend to t oken and then pass the token in the
authorization call:

mcs. mobi | eBackend. set Aut henti cati onType(nts. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. mobi | eBackend. aut hori zati on. aut henti cat e(t oken). t hen(cal | back) . cat ch(er
ror Cal | back);

Facebook
Set the authentication type for the backend to f acebook and then call aut henti cate():

mcs. mobi | eBackend. set Aut henti cati onType(nts. AUTHENTI CATI ON_TYPES. f acebook) ;
mcs. mobi | eBackend. aut hori zati on. aut henticate().then(call back).catch(errorCa
Il back);

ORACLE 4-8

Chapter 4
Calling Mobile APIs

Securing Browser-Based Apps Against Cross-Site Request Forgery

Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to OMCe APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_ Al | owOri gi n environment to
either di sal | ow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to OMCe APIs.

" Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://local host:[port], but be sure to update
the value in production.

Calling Platform APIs

Once you include the Cordova client SDK libraries in your application, and adjust
configuration settings, you're ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

ncs. nobi | eBackend. st or age. get Col | ection(<col |l ection id>)
.then(function(collection){
return collection. getChject(<object id> ‘blob’);
})
.then(function(object){
consol e. | og(obj ect);
})
.catch(function(response){
consol e. error(response);

})

Calling Custom APlIs

ORACLE

The Cordova client SDK provides the Cust onCode class to simplify the calling of
custom APIs. You can call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs. mobi | eBackend. Cust onCode. i nvokeCust omCodeJ SONRequest (" TaskApi 1/t asks/
100" , "GET" , null).then(function(response){

[/ The response paranmeter returns the status code and HTTP payl oad from
the HTTP REST Call.

consol e. | og(response);

4-9

Chapter 4
Using TypeScript

/] Exanple: { statusCode: 200, data: {} }
[/ Depends on the response format defined in the API.
}) . catch(function(response){
/1 The response paraneter returns the status code and HTTP payl oad, if
available, or an error message, fromthe HTTP REST Call.
consol e. | og(response);

/*
Exanpl e:
{ statusCode: 404,
data: {

"type":"http://ww. w3.org/Protocol s/rfc2616/rfc2616-

secl0. ht m #sec10. 4. 1",

"status":404,"title":"APl not found",

"detail":"We cannot find the APl cordovaJSApi 2 in Mbile Backend
Cor dovaJSBackend(1.0). Check that this Mbile Backend is associated with
the API.",

"0: ecid":"005Bojj hp2j 2FSHLI ug8yf 00052t 000Jao, 0:2",
"0: errorCode": " MBI LE-57926", "o:errorPath":"/mobil e/ cust on cordovalSApi 2/

tasks" } }
*/
/| Depends on the response format defined in the API.
b

Using TypeScript

ORACLE

It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the lonic framework (though you can also use
TypeScript without it).

Setting Up the SDK

1. Install the SDK in your project by running this command in your project folder:
npminstall {path to unzipped SDK | ocati on}

2. Add import statements to your service to import SDK types:
import {IMCS} from'ncs'

3. Create the configuration file for the app:

i mport {IMCS,

| Oracl eMbbi | eCl oudConfi g,

| Mobi | eBackendConfi g,

| Aut henti cationConfi g,

| Basi cAut hConfi g,

| QAut hConfi g,

inport * as ncssdk from'ncs'
const nts: |MCS = nrssdk;

export const ntsConfig: | O acleMbileC oudConfig = {

4-10

Chapter 4
Using TypeScript

[ogLevel : nts.LOG LEVEL. NONE,
[ogHTTP: true,
oAut hTokenEndPoi nt: ' QAUTH _URL',
mobi | eBackend: <I Mobi | eBackendConfi g>{
nane: ' NAMVE ,
baseUrl: 'BASE URL',
aut hentication: <l AuthenticationConfig>{
type: nts. AUTHENTI CATI ON_TYPES. basi c,
basi c: <l Basi cAut hConfi g>{
mobi | eBackendl d: ' MOBI LE BACKEND | D',
anonynousKey: ' ANONYMOUS_KEY'
}
}
}
b

4. Import the configuration into the app. If the above file is called nts-config.ts, the
import would look like :

inport { ncsConfig } from™"../nts-config";
Calling Mobile APIs
1. Add these import statements to your service or component:
inport {IMCS} from'nts';
inport * as nctssdk from'ncs'; And in your class add declaration

stat ement :

2. Add the declaration statement in your class:
export class Component O ass{

mcs: | MCS = ntssdk;
}

3. Initialize the SDK library with a configuration:

this.ncs.init(nmcsConfig);

4. Call backend functionality:

t his. nts. nobi | eBackend. set Aut henti cati onType(this. ncs. AUTHENTI CATI ON_TYP
ES. basi ¢) ;
t hi s. ncs. nobi | eBackend. aut hori zati on. aut henti cat e(usernane, password);

Adding Support for Location Services (lonic Only)

i oni ¢ cordova plugin add cordova- pl ugi n-geol ocation

ORACLE 4-11

ORACLE

Chapter 4
Using TypeScript

Adding Support for Push Notifications (lonic only)

1.

(For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and APl Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

(For Android) Download the generated Firebase configuration file and put it in the
root of your project.

(For Android) If you haven't already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH TO UNZI PPED_SDK/ oracl e- nts-noti ficati ons-
cor dova- pl ugin

(For i0S) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

In your app code, register for notifications:

MCSNot i fi cati onsCor dovaPl ugi n. onTokenRef resh(t hi s. handl eTokenRef resh. bin
d(this), this.handl eError.bind(this));

handl eTokenRef resh(t oken: string){
consol e. l og(' NotificationsService Token refreshed', token);

thi s. ncs. nobi | eBackend. notifications.registerForNotifications(token,
packageNane, appVersion, 'FCM)
.then(this.handl eRegi sterForNotifications.bind(this))
.catch(this.handl eError.bind(this));

}

handl eRegi st er For Not i fi cati ons(response: | Networ kResponse) {
consol e. | og(' NotificationsService, device registered for
notifications');
}
handl eError(error: any){
console.error (' NotificationsService Error', error);
}

In your app code, subscribe to notifications events:

MCSNot i fi cati onsCor dovaPl ugi n. onMessageRecei ved(t hi s. handl eMessageRecei v
ed. bind(this), this.handleError.bind(this));

4-12

https://firebase.google.com/docs/cloud-messaging/android/client

Libraries

Next Steps

ORACLE

Chapter 4
Libraries

handl eMessageRecei ved(data: any){

consol e.l og(' NotificationsService Message received', data);
}
handl eError(error: any){

console.error (' NotificationsService Error', error);

}

The Cordova client SDK includes the following items:

j sdocs. zi p — The compiled documentation for the library.

| oki - cor dova- f s- adapt er — A plugin used for Sync Express feature for Cordova
to extend amount of available storage.

ncts. j s — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

ncs. sync. j s — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

ncs. mn. j s — The compressed version of the SDK. Use this version when you
deploy the completed app.

mcs. sync. nin. j s — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

oracl e-ncs-notifications-cordova-pl ugi n — A Cordova plugin that enables
iOS and Android notifications.

oracle_mobi |l e_cloud_config.js — An OMCe configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

t ypes — Contains TypeScript definitions for the SDK’s modules and plugins.

Once you have the Cordova SDK set up, you can start using it to add OMCe features
to your app.

Authentication in OMCe
Notifications

My Profile

Storage

Data Offline and Sync
Location

Database

App Policies

4-13

JavaScript Applications

If you develop JavaScript-based mobile apps, you can use the client SDK that Oracle
Mobile Cloud Enterprise (OMCe) provides for JavaScript. This SDK simplifies
authentication with OMCe and provides JavaScript wrapper classes for OMCe
platform APIs.

This SDK is primarily geared toward browser-based apps but can also be used for
hybrid frameworks. If you develop Cordova-based apps, use the Cordova SDK. See
Cordova Applications.

Getting the SDK

To get the OMCe client SDK for JavaScript, go to the Oracle Mobile Cloud Enterprise
Downloads page on OTN.

Creating a Backend

You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

1. Click === to open the side menu and select Mobile Apps > Backends.
2. Click New Backend.

3. Once you complete the dialog and the backend is created, keep the Settings page
open.

You'll need to configure your app with some of this information.

Adding the SDK

ORACLE

Assuming a basic app setup, without intervening frameworks, here’s what you would
do to add the JavaScript client SDK to an app:

1. If you haven't already done so, unzip the SDK zip.

2. Copynts.nin.js (and/ornts.js)and oracl e_nobile_cloud_config.js into the
directory where you keep your JavaScript libraries.

3. Fill in your mobile backend details in oracl e_nobil e _cloud_config.js.

4. Add script tags for the SDK and the configuration file in your app’s i ndex. htm file:

<script src="lib/nts/ncs.js"</script>
<script src="app/oracle_nobile_cloud config.js"</script>

5. (Optional) For RequireJS environments, load nts. j s in your app using RequireJS.

5-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Chapter 5
Configuring SDK Properties

< Note:

In addition to nts. mi n. j s, if your app uses Sync Express,

ncs. sync. min. j s must be fetched and executed as the first script in the
main page of your app, before any other script, including RequireJS. For
detailed instructions on adding Sync Express to your app, see Building
Apps that Work Offline Using Sync Express.

Configuring SDK Properties

To use the client SDK in a JavaScript app, add the oracl e_nobil e _cloud _config.js
configuration file to the app and fill it in with environment details for your backend in
OMCe. In turn, the SDK classes use this information to construct HTTP headers for
REST calls made to OMCe.

ORACLE

¢ Note:

For browser-based apps, you need to manage cross-origin resource sharing
(CORS) for access to OMCe APIs. See Securing Browser-Based Apps
Against Cross-Site Request Forgery Attacks.

Package the configuration file in the same folder as the nts. min. | s file.

The file is essentially divided into the following parts:

The nobi | eBackend property and its contents.

You include this part if you are using a backend with the app. The SDK classes
use the environment and authentication details you specify there to access the
backend and construct HTTP headers for REST calls made to APIs.

Properties that apply to the configuration as a whole, such as | ogLevel and
oAut hTokenEndpoi nt . These keys generally, but don’t have to, appear at the top of
the file.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var ncs_config = {

"l ogLevel ": nts. LOG LEVEL. NONE,
"l ogHTTP": true,
"0Aut hTokenEndPoi nt": "QAUTH URL",
"nobi | eBackend": {
“nane": "NAME",
"baseUr|": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. oaut h,
"oauth": {
“clientld": "CLIENT_ID',
"clientSecret": "CLIENT_SECRET"

}
}

5-2

Chapter 5
Configuring SDK Properties

¥
"syncExpress": {
"handl er": "Oracl eRest Handl er",

"policies": [
{
"path": '/nobile/custom firstApi/tasks/:id(\\d+)?",
}1
{
"path": '/nobile/custom secondApi/tasks/:id(\\d+)?",
}

]
}
};

Here are some notes on the file's elements.

* 0Aut hTokenEndPoi nt — The URL of the OAuth server from where your application
gets its authentication token. This key needs to be provided for all apps that rely
on OAuth to authenticate. You get this from the backend’s Settings page. The
endpoint should be only the base URL (in the form htt ps: //host. domai n: port).

e |ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is nts. LOG_LEVEL. | NFO (where only important events are
logged). Other possible values are nts. LOG_LEVEL. ERRCR (only errors are logged)
and nts. LOG_LEVEL. VERBCSE.

* enabl eLogger — When set to tr ue, logging is included in your app.

* | ogHTTP — When set to t r ue, the SDK logs the HTTP and HTTPS headers in
requests and responses.

* nobi | eBackend — An element containing authentication details for your backend
and other optional details, such as synchronization properties.

You get the authentication details, such as the OAuth and HTTP credentials, from
the backend’s Settings page.

e nobi |l eBackend/ baseUr| — The base URL for all APIs that you call through the
backend. You get this from the backend’s Settings page.

* nobi | eBackend/ aut henti cati on — Contains the following sub-elements:

— The type sub-element, with possible values of oaut h, basi c, f acebook, and
t oken.

— One or more sub-elements for authentication types, each containing
authentication credentials.

You can also add the of f | i neEnabl ed key and set its value to t r ue.
See Authentication Properties for examples of each authentication type.

For details on sync elements, see Building Apps that Work Offline Using Sync
Express.

Authentication Properties

The contents and sub-elements of aut hent i cat i on depend on what kind of
authentication the app will be using.

ORACLE 5-3

Chapter 5
Configuring SDK Properties

OAuth

e Set the value of the t ype property to ncs. AUTHENTI CATI ON_TYPES. oaut h.

e Atthe same level as the t ype property, create a property called oaut h and fill in
theclientlDand client Secret credentials provided by the backend.

* Atthe top level of the file, supply the oAut hTokenEndPoi nt value that is supplied
but without the oaut h2/ v1/t oken that is appended on the backend’s Settings

page.
The resulting aut hent i cati on element might look something like this:

var ncs_config = {

"0Aut hTokenEndPoi nt": "BASE_QAUTH URL_W TH oaut h2/ v1/t oken_REMOVED',
"nobi | eBackend": {
"name": "NAME',
"baseUrl": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. oaut h,
"oauth": {
“clientld": "CLIENT_ID",
“clientSecret": "CLIENT_SECRET"

HTTP Basic

» Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. basi c.

* Atthe same level as the t ype property, create a property called basi ¢ and fill in
the mobi | eBackendl D and anonynousKey that are provided by the backend.

The resulting entries might look something like this:

var nts_config = {

“mobi | eBackend": {
"nane": "NAME",
“baseUr|": "BASE URL",
"authentication": {
"type": nts. AUTHENTI CATI ON_TYPES. basi c,
"basic": {
"nobi | eBackendl d": "MOBI LE_BACKEND | D',
"anonymousKey": " ANONYMOUS_KEY"

ORACLE 5-4

Chapter 5
Configuring SDK Properties

Token Exchange
If you are authenticating using a third-party token, do the following:

» Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. t oken.
* Fillin the mobi | eBackendl d and anonynousKey that are provided by the backend.

The resulting properties might look something like this:

var ncs_config = {

"nobi | eBackend": {
"nanme": "NAME",
"baseUr|": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. t oken,
"token":{
"mobi | eBackendl d": "YOUR_BACKEND_| D",
"anonynmousKey": " ANONYMOUS_KEY"

}
}
}
};

Facebook Login

* Set the value of the t ype property to nts. AUTHENTI CATI ON_TYPES. f acebook.

e Fillin the HTTP Basic auth credentials and/or the OAuth credentials provided by
the backend.

e Fillin the appl D for the Facebook app.
e Fillin the relevant scopes.

The resulting aut hent i cati on entry might look something like this:

var ncs_config = {

"nobi | eBackend": {
"nanme": "NAME",
"baseUr|": "BASE_URL",
"aut hentication": {
"type": nts. AUTHENTI CATI ON_TYPES. f acebook,
"facebook": {
"appld": "YOUR_FACEBOOK_APP_| D",
"mobi | eBackendl d": "YOUR_BACKEND_| D',
"anonynousKey": " YOUR_ANONYMOUS_KEY",
"scopes":
"public_profile,user_friends, email,user_location,user_birthday"
}
}
}
b

ORACLE 5-5

Chapter 5
Calling Mobile APIs

Calling Mobile APIs

In OMCe, a backend is a logical grouping of custom APIs, storage collections, and
other resources that you can use in your apps. The backend also provides the security
context for accessing those resources.

Here are the general steps for using a backend in your JavaScript app:

1. Add the client SDK to your app.

2. Fillinthe oracl e_nobile _cloud config.js with environment and authentication
details for the backend.

3. Add an SDK call to your app to load the configuration info.
4. Add an SDK call to your app to handle authentication.

5. Add any other SDK calls that you want to use.

Loading the Backend's Configuration

Before you can make calls to OMCe APIs using the JavaScript client SDK, you need
to load the configuration for the backend you are going to use. In the following snippet,
nmcs_confi g is the name of the configuration that is defined in the

oracl e_mobi | e_cl oud_confi g.j s file that you have added to your app.

mes.init(mes_config);

Authenticating and Logging In

ORACLE

Here are some examples of how to use the Aut hori zati on class of the JavaScript
client SDK in your code. These examples assume you already configured the SDK
config file for the type of authentication you're using, as described in Configuring SDK
Properties.

OAuth and HTTP Basic

Set the authentication type for the backend to oaut h (or basi c):

ncs. nobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. oaut h) ;

Then add a function that calls Aut hori zati on. aut hent i cat e on the backend, passes it
a user name and password, and specifies callbacks for success and failure:

ncs. nobi | eBackend. aut hori zati on. aut henti cat e(user nane,
password) . then(cal | back). catch(errorCall back);

If you want to use anonymous authentication, the method to call is
aut henti cat eAnonynous:

mcs. mobi | eBackend. aut hori zati on. aut henti cat eAnonynous() . t hen(cal | back). catc
h(errorCal | back);

5-6

Chapter 5
Calling Mobile APIs

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in OMCe, see Third-Party SAML and JWT
Tokens.

Set the authentication type for the backend to t oken and then pass the token in the
authorization call:

mcs. nobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. nobi | eBackend. aut hori zati on. aut henti cat e(token).then(cal | back). catch(er
ror Cal | back);

Facebook
Set the authentication type for the backend to f acebook and then call aut henti cat e():
mcs. nobi | eBackend. set Aut henti cati onType(nts. AUTHENTI CATI ON_TYPES. f acebook) ;

mcs. mobi | eBackend. aut hori zati on. aut henticate().then(call back).catch(errorCa
Il back);

Securing Browser-Based Apps Against Cross-Site Request Forgery

Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to OMCe APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_ Al | owOri gi n environment to
either di sal | ow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to OMCe APIs.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://local host:[port], but be sure to update
the value in production.

Calling Platform APIs

ORACLE

Once you include the client SDK libraries in your application, and adjust configuration
settings, you're ready to use the SDK classes in your apps.

Here’s an example of how you could use these classes to get an object from a Storage
collection in the mobile backend:

mcs. mobi | eBackend. st or age. get Col | ection(<coll ection id>)
.then(function(collection){
return collection. getCbject(<object id> ‘blob’);

5-7

Chapter 5
Using TypeScript

})
.then(function(object){

consol e. | og(obj ect);
})
.catch(function(response){
consol e. error(response);

})

Calling Custom APlIs

The JavaScript client SDK provides the Cust onCode class to simplify the calling of
custom APIs. You can call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs. mobi | eBackend. Cust onCode. i nvokeCust omCodeJ SONRequest (" TaskApi 1/ t asks/
100" , "CGET" , null).then(function(response){
/1 The response paraneter returns the status code and HTTP payl oad from
the HTTP REST Call.
consol e. | og(response);
/I Exanple: { statusCode: 200, data: {} }
/I Depends on the response format defined in the API.
}).catch(function(response){
/1 The response paraneter returns the status code and HTTP payload, if
available, or an error nessage, fromthe HTTP REST Call.
consol e. | og(response);

/*
Exanpl e:
{ statusCode: 404,
data: {

"type":"http://ww. w3.org/Protocol s/rfc2616/rfc2616-
secl0. ht m #sec10. 4. 1",
“status":404,"title":"APl not found",
"detail":"We cannot find the APl cordovaJSApi 2 in Mbile Backend
Cor dovaJSBackend(1.0). Check that this Mbile Backend is associated with
the API.",
"0: ecid":"005Bojj hp2j 2FSHLI ug8yf 00052t 000Jao, 0:2",
"0: errorCode": "M®BI LE-57926", "o:errorPath":"/mobil e/ cust on cor dovalSApi 2/
tasks" } }
*|
/I Depends on the response format defined in the API.

1)

Using TypeScript

ORACLE

It is also possible to use TypeScript objects with the Cordova and JavaScript client
SDKs.

Here are some basic steps and examples for using TypeScript with the SDK. The
examples assume your app is using the lonic framework (though you can also use
TypeScript without it).

5-8

Chapter 5
Using TypeScript

Setting Up the SDK

1. Install the SDK in your project by running this command in your project folder:

npminstall {path to unzipped SDK | ocation}

2. Add import statements to your service to import SDK types:
inport {IMCS} from'nts'

3. Create the configuration file for the app:

i nport {IMCS,

| Oracl eMbbi | eCl oudConfi g,

| Mobi | eBackendConfi g,

| Aut henti cationConfi g,

| Basi cAut hConfi g,

| QAut hConfi g,

inport * as ncssdk from'ncs'
const nts: I MCS = ncssdk;

export const ntsConfig: |COracl eMbiled oudConfig = {
[ogLevel : nts.LOG LEVEL. NONE,
[ogHTTP: true,
oAut hTokenEndPoi nt: ' QAUTH _URL',
mobi | eBackend: <I Mobi | eBackendConfi g>{
nane: ' NAMVE ,
baseUrl: 'BASE URL',
aut hentication: <l AuthenticationConfig>{
type: nts. AUTHENTI CATI ON_TYPES. basi c,
basi c: <l Basi cAut hConfi g>{
mobi | eBackendl d: ' MOBI LE BACKEND | D',
anonynousKey: ' ANONYMOUS_KEY'

}
}
}
};

4. Import the configuration into the app. If the above file is called nts-confi g. ts, the
import would look like :

inport { nmcsConfig } from™"../nts-config";

Calling Mobile APIs
1. Add these import statements to your service or component:
inport {IMCS} from'nts';

inport * as nctssdk from'nts'; And in your class add declaration
statenent:

ORACLE 5-9

ORACLE

2.

Chapter 5
Using TypeScript

Add the declaration statement in your class:

export class Conmponent O ass{
mcs: | MCS = ntssdk;
}

Initialize the SDK library with a configuration:

this.ncs.init(nmsConfig);

Call backend functionality:

thi s. ncs. nobi | eBackend. set Aut hent i cationType(this. nts. AUTHENTI CATI ON_TYP

ES. basi c¢);
t hi s. nts. nobi | eBackend. aut hori zati on. aut henti cat e(usernane, password);

Adding Support for Location Services (lonic Only)

i oni ¢ cordova plugin add cordova- pl ugi n-geol ocation

Adding Support for Push Notifications (lonic only)

1.

(For Android) Register your app for notifications on the Firebase Cloud Messaging
(FCM) console. See Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

When you generate the configuration file for your app, make sure you choose to
enable the Cloud Messaging service.

When generation is complete, the Project Number (aka Sender ID) and API Key
are displayed. These credentials are unique to the mobile app and can’t be used
to send notifications to any other app. You also need these values to get a
registration token from FCM and set up the connection with OMCe.

(For Android) Download the generated Firebase configuration file and put it in the
root of your project.

(For Android) If you haven't already done so, install the notifications plugin that is
supplied with the SDK:

cordova plugin add PATH TO UNZI PPED_SDK/ or acl e-nts-noti ficati ons-
cordova- plugin

(For i0S) Set up the app for notifications with APNS. See iOS: Apple Secure
Certificates

Create the app in OMCe and notifications profiles for Android and iOS. See
Creating a Notifications Profile.

In your app code, register for naotifications:
MCSNot i fi cati onsCor dovaPl ugi n. onTokenRef resh(t hi s. handl eTokenRef r esh. bin
d(this), this.handl eError.bind(this));

handl eTokenRef resh(t oken: string){

5-10

https://firebase.google.com/docs/cloud-messaging/android/client

Libraries

Chapter 5
Libraries

consol e.l og(' NotificationsService Token refreshed , token);

thi s. ncs. nobi | eBackend. notifications.registerForNotifications(token,
packageNanme, appVersion, 'FCM)
.then(this.handl eRegi sterForNotifications.bind(this))
.catch(this.handl eError.bind(this));

}

handl eRegi st er For Not i fi cati ons(response: | NetworkResponse) {
consol e.l og(' NotificationsService, device registered for
notifications');
}
handl eError(error: any){
consol e.error (' NotificationsService Error', error);

}

In your app code, subscribe to notifications events:

MCSNot i fi cati onsCor dovaPl ugi n. onMessageRecei ved(t hi s. handl eMessageRecei v
ed. bind(this), this.handl eError.bind(this));

handl eMessageRecei ved(data: any){

consol e. l og(' NotificationsService Message received', data);
}
handl eError(error: any){

console.error (' NotificationsService Error', error);

}

The JavaScript client SDK contains the following items:

ORACLE

j sdocs. zi p — The compiled documentation for the library.

ncs. j s — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

ncs. sync. j s — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

ncs. mn. j s — The compressed version of the SDK. Use this version when you
deploy the completed app.

ncs. sync. mn. j s — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

oracl e _mobi |l e_cloud_config.js — An OMCe configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

t ypes — Contains TypeScript definitions for the SDK’s modules and plugins.

5-11

Next Steps

ORACLE

Chapter 5
Next Steps

Once you have the JavaScript SDK set up, you can start using it to add OMCe
features to your app.

Authentication in OMCe
Notifications

My Profile

Storage

Data Offline and Sync
Location

Database

App Policies

5-12

Notifications

Oracle Mobile Cloud Enterprise (OMCe) provides a Notifications API to simplify
sending natifications to devices running your mobile apps. As a mobile app developer,
you can set up your mobile applications for notifications and use the Notifications API
to send notifications. As a service developer, you can add implementation code to your
custom APIs to trigger notifications.

What Can | Do with Notifications?

Notifications can provide the timely awareness of information and events that mobile
users seek. Notifications are short, specific, targeted messages sent to a mobile
application. The purpose of a notification is usually to tell users that there is new
information available. For example, a user who is running a shopping app might get
information about an upcoming sale.

You can send these targeted messages either on demand or on a predefined schedule
to:

» a specific device ID or a collection of device IDs (mostly useful for testing)

» aspecific user or a collection of users

» all users and devices associated with a specific mobile backend

» devices or users for a given operating system (iOS, Android or Windows)

¢ Note:

Push notifications should not be used to send critical or emergency
information, because network delays and other issues can make deliveries
untimely. However, for everyday uses like sports scores and upcoming sales,
notifications are great.

Setting Up a Mobile App for Notifications

To make notifications work in your mobile apps, there are several key steps.

1. Install the client SDK for your platform.

2. Get credentials from notification providers to establish your mobile app as a known
item on the network. For detailed instructions, see Getting Network Credentials for
Notifications.

3. Create notifications profiles to hold the credentials, described in Creating a
Notifications Profile.

Next, you need to register an app client and add the notifications profile to it:

ORACLE 6-1

Chapter 6
Setting Up a Mobile App for Notifications

1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for
Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

Click === to open the side menu and select Mobile Apps > App Profiles.
Click Clients.
Click New Client.

g M @D

In the New Client dialog:
e Fillin the Client Display Name and Client Name.

These can be whatever names that will help you identify the client. The former
can have spaces and the latter can't.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

e Select the Platform (iOS, Android, Windows, or Web).
e Fill'in the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

e Fill in the fully-qualified app ID. You get this from the platform vendor.
For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

9. Set up the app to connect to the natification provider from the mobile device and
establish rules for communication, described below.

ORACLE 6-2

Chapter 6
Setting Up a Mobile App for Notifications

Now that you have registered the app client in OMCe, you have a few options for
sending notifications to your app, as shown in Sending Notifications to and from Your

App.

Setting Up the Device Handshake for Notifications

To allow notifications to be delivered to your mobile app through the network, every
platform requires some form of “device handshake” to register and establish the
protocol for communication.

Setting Up a Device Handshake for Android (FCM)

ORACLE

This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

For FCM Natifications, an Android app needs to extend Fi r ebaseMessagi ngSer vi ce to
define a service for receiving Notifications. By overriding the onMessageRecei ved
method, you can perform actions based on the incoming message. For more
information on handling notifications in Android, see Receive Messages on Google
FCM Developers.

In your app’s src/ mai n/ Andr oi dMani f est. xm file, just before the closing </
appl i cati on> tag, register for the Notifications service, as shown below.

<application> ...
<service

andr oi d: nane="or acl e. cl oud. nobi | e. f crmot i fi cati ons. MCSFi r ebaseMessagi ngSer v
ice">
<intent-filter>
<action androi d: name="com googl e. fi rebase. MESSAG NG _EVENT"/ >
<lintent-filter>
</ service>
</ application>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <appl i cati on> entry).

<uses- perm ssion

andr oi d: nane="andr oi d. per mi ssi on. | NTERNET"/ >

<uses- perm ssion

andr oi d: nane="andr oi d. per m ssi on. ACCESS_NETWORK_STATE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per mi ssi on. WRI TE_| NTERNAL_STORAGE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per mi ssi on. WRl TE_EXTERNAL_STORAGE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per nm ssi on. ACCESS_FI NE_LOCATI ON'/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per mi ssi on. ACCESS_COARSE_LOCATI ON'/ >
<application>

6-3

https://firebase.google.com/docs/cloud-messaging/android/receive

ORACLE

Chapter 6
Setting Up a Mobile App for Notifications

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the client SDK:

i mport oracl e.cloud. mobi | e. exception. Servi ceProxyExcepti on;
i mport oracle.cloud. mobile.fcmmotifications. Notifications;
i mport oracl e. cl oud. mobi | e. nobi | ebackend. Mobi | eManager ;

public class MainActivity extends Activity {
private Notifications mNotification;

@verride protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceState) ;
setContent Vi ew(R | ayout . activity_main);
this.registerNotificationdient();
}
[/method that initializes and returns the Notifications client
private void registerNotificationdient(){
try {
mNot i fication =
Mbbi | eManager . get Manager () . get Mobi | eBackend(thi s). get Servi ceProxy(Notificat
i ons. cl ass);
mNotification.initialize(this);
} catch (ServiceProxyException e) {
e.printStackTrace();

}

Getting a FCM Registration Token

You also need the Sender ID to register your app with FCM to get a registration token.
The registration token is passed to OMCe, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network. Google provides the Instance ID API to handle registration tokens. See Set
Up a Firebase Cloud Messaging Client App on Android on Google Developers.

To set up a callback on successful registration, you could add code like the example
below:

public void onCick(View view {
try {
I/ Regi stration process call back
Broadcast Recei ver nRegi strationBroadcast Recei ver = new
Br oadcast Recei ver () {
@verride
public void onReceive(Context context, Intent intent) {

Shar edPr ef erences sharedPreferences =
Pref erenceManager . get Def aul t Shar edPr ef erences(cont ext);
bool ean sent Token = sharedPref erences
. get Bool ean(Not i ficati onsConfig. SENT_TOKEN_TO SERVER,
fal se);
if (sentToken){

6-4

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Chapter 6
Setting Up a Mobile App for Notifications

Logger . debug(TAG "Token retrieved and sent to server! App can use
FCM');
}el se{
Logger. debug(TAG "An error occurred while registering the
device");
}
}
b
[/Call on successful registration
Local Broadcast Manager . get I nst ance(get Appl i cati onCont ext()).regi sterReceive
r(
mRegi st rati onBroadcast Recei ver,
new IntentFilter(NotificationsConfig. REG STRATI ON_COVPLETE));

[l1nitialization of notifications service

Notifications notifications =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(get Appl i cati onCon
text()).getServiceProxy(Notifications.class);

bool ean result = notifications.initialize(view getContext());

After you've set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.
De-Registering a Device

To de-register a device for notifications, here’s what the code might look like in an
Android app, using the client SDK:

[llnitialization of notifications service

Notifications notifications =

Mobi | eManager . get Manager () . get Def aul t Mobi | eBackend(get Appl i cati onContext())
. get Servi ceProxy(Notifications.class);

bool ean result = notifications. deregisterDevice(view getContext());

Logger. debug(TAG "unregister " + result);

Setting Up a Device Handshake for i0OS

ORACLE

As an iOS developer, to make a device handshake happen you need to add this code
to your Xcode project to get a device token, get a naotifications object, and register your
app for notifications:

Note that the registration code should be called each time the app starts.

1. Get a device token from Apple.

if([application
respondsToSel ector: @el ector (regi sterUserNotificationSettings:)]){
//use registerUserNotificationSettings for iOS 8 and |ater
U UserNotificationSettings *settings=[U UserNotificationSettings
settingsFor Type: (U UserNotificationTypeBadge
| Ul User Noti ficationTypeSound
| UlUser Noti ficationTypeAl ert) categories:nil];
[application registerUserNotificationSettings:settings];
} else {
/W expect deprecation warnings here - thisis for iOS7.1 or

6-5

ORACLE

Chapter 6
Setting Up a Mobile App for Notifications

before

[[U Application sharedApplication]
regi st er For Renot eNot i fi cati onTypes:

(Ul Renmot eNot i fi cationTypeBadge | U ReroteNotificationTypeSound |
U Rermot eNot i fi cati onTypeAl ert)];

}

After calling the above lines of code, the Apple Push Notification Service (APNS)
will call one of the delegate methods based on the success or failure to retrieve
the device token. If successful, one of the following methods is called:

di dRegi sterUser Noti ficationSettings: (iOS 8 or later) or

di dRegi st er For Renot eNot i fi cati onsW t hDevi ceToken: (iOS 7.1). In case of an
error, the di dFai | ToRegi st er For Renot eNot i fi cati onsW t hEf f or: method is
called.

2. Get the Notifications SDK obiject.

(OMCNot i fi cations *) get OMCNoti fi cati ons{

OMCAut hori zation *auth = [[[OMCMbbi | eManager sharedManager]
mobi | eBackend] nobi | eBackendFor Nane:

<Nare_of Mbbi | e_Backend_from OMC. Pli st >]. aut hori zati on;

OMCNot i fi cations* omcNQtifications=nil;

NSError* err = [auth authenticate: <Usernane> password: <Passwor d>] ;

if (lerr){

oncNotifications = [[[OMCMbbi | eManager sharedManager]
mobi | eBackendFor Nane:
<Nare_of Mbobi | e_Backend_from OMC. Plist>] notifications];
}

return oncNotifications;

}

3. Register for notifications using the Notifications SDK object.

-(void) registerFor MCSNotifications:(id) sender {
/1 Get notifications object fromyour nobile backend object.
OMCNoti fications* notifications = [nbe notifications];

/1 Call the register api and pass your iOS device's device token
dat a.
[notifications registerForNotifications:[self getDeviceTokenDat a]
onSuccess: *(NSHTTPURLResponse *response) {
NSLog(@ Devi ce registered successfully.");
di spat ch_async(di spatch_get main_queue(), ™
/1 Update U if-needed.
b
} onError:~(NSError *error) {
NSLog(@Error registering your device.");
di spat ch_async(di spatch_get main_queue(), *{
Il Update U if-needed.
b
s
}

Next, register your mobile app with the associated backend, and enable notifications.
SeeBackends.

6-6

Chapter 6
Sending Notifications to and from Your App

After you've registered your app, it can receive notifications from a range of sources.
For details and sample code, see Sending Notifications to and from Your App.

Setting Up a Device Handshake for Windows

This section assumes you have already registered your mobile app with WNS,
described in Windows: WNS Credentials.

For details on requesting a channel URI and constructing the notification payload, see
Windows Push Notification Services (WNS) overview.

Next, register your mobile app with the associated backend, and enable notifications.
For detailed instructions, see the Backends chapter.

After you've registered your app, it can receive notifications from a range of sources.
For details, see Sending Notifications to and from Your App.

Sending Notifications to and from Your App

Once you've set up and registered your mobile app, you can start sending notifications
and SMS messages.

* Send notifications and cancel scheduled notifications from the Ul, which can be
useful for development.

» Use the Notifications API to send notifications to and from apps and devices all
over the place.

You can also check the status of your notifications in the Ul or using the Notifications
API. For details, see Troubleshooting Notifications.

Testing Notifications from the Ul

ORACLE

OMCe provides a notifications testing Ul that allows you to send scheduled
notifications to a defined set of recipients.

1. Click === to open the side menu and select Mobile Apps > Backends.

2. On the Backends page, select the backend that includes your mobile app and click
Open.

3. Click Notifications.
4. On the Notifications page, click the Send icon.

5. If your device isn’t registered yet, you can access the Device Registry by clicking
Manage Devices.

To register a device for SMS through the Ul, you must have consent management
disabled in the associated notifications profile as described in Creating a
Notifications Profile. If you register a device for SMS through the Ul and it fails, it's
probably a problem with your Syniverse Developer Community setup. Make sure
you completed all the steps described in Syniverse: SMS Credentials.

6. Enter the notification message you want to send in plain text or a JSON payload. If
you enter JSON, it must conform to the notification provider's requirements. If it is
not valid JSON, it will be sent as a plain text message.

7. Choose when to send the message.

6-7

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

9.

Chapter 6
Sending Notifications to and from Your App

To send the notification immediately, leave the default Now.

To schedule the notification for a later date and time, choose Later and select
the date and time for the notification to be sent.

8. Choose who to send the message to.

To send the notification to everyone in the mobile backend, leave the default
All notifications-enabled mobile apps that use this backend. A single
backend may contain more than one version of a mobile application, with
implementations for different devices and networks. This option sends to all
notification-enabled clients, regardless of the network or device.

To define a filter by user name, platform type, device ID, Facebook ID, or any
combination, choose Filtered set of recipients. Under Match all of the
following, select the filter type from the dropdown list:

— Device ID: Send a notification to a single device ID or to multiple device
IDs at the same time. The device ID is a unique number assigned to a
mobile device during the device handshake. For SMS, the device ID is a
phone number. In general, sending a notification to a device ID is useful
for testing your application but not practical in bulk.

— Platform: Send to all recipients running on iOS, Android, Windows or
Web.

— Provider: Send to all recipients receiving APNS, FCM, WNS or SMS
notifications.

— User: Send a notification to a single user or to a list of users.
— Facebook Unique ID: Send a notification to a Facebook user, by ID.

If the list of recipients gets too long, click the + button to add another filter and
continue your entries there. Filters can be mixed and matched for additional
selectivity.

Click Send.

Once you click Send, you can monitor the status of your notifications in the History
pane. For details, see Troubleshooting Notifications.

Cancelling a Scheduled Notification from the Ul

The only notifications that can be cancelled are those that are scheduled for a future
time.

To cancel a scheduled notification, go to the Scheduled tab in the History pane and

click the X in the corner of the entry you want to remove. You will be prompted to
confirm the cancellation.

Sending Notifications Using the Notifications AP

ORACLE

You can send notifications to mobile devices from your apps using the Notifications
API. Notifications have a maximum limit of 1,000 devices per call.
You can call Notifications REST API endpoints directly or use custom code in your

mobile app. This section details the REST endpoints. For information on using custom

code including examples and sample code, see Accessing the Notifications APl from
Custom Code in the Calling APIs from Custom Code chapter.

6-8

Chapter 6
Sending Notifications to and from Your App

To register a device ID for notifications, you can use the Ul or the Notifications Device
Registration API as described in Registering a Device ID.

The / nobi | e/ systenm notifications/notifications endpoint allows you to send
notifications, cancel scheduled notifications, and check the status of sent notifications.

¢ Note:

Calls to this endpoint must include these headers:

e Authorization: This header should include the name and password for
a team member with either the Administrator or Developer role.

e (Oracl e- Mobi | e- Backend- | D: If you're using basic authentication, you
must include this header. The mobile backend ID is listed on the Settings
tab for the mobile backend. For OAuth, this information is included in the
access token.

When you send a notification, you can specify any combination of the following for the
payload:

n.un

 {"payload":""} A unified payload that includes well-formed JSON for each
supported notification provider (Google, Apple, Windows and Syniverse). For
details, see Sending a Notification Using a Unified Payload.

- {"tenplate":""} Areusable payload template with defined parameters, used to
create payloads for each supported notification provider. The payload template
includes the following optional parameters: ti tl e, body, badge, sound and cust om
For details, see Sending a Notification Using a Payload Template.

{"nessage":""} A plain-text message string. For details, see Sending a Text
Message Notification.

The unified payload is used if it exists, then the template, then the message, in that
order.

To send notifications to specific recipients, add an argument after the content of the
payload:

* Tosend to a user or a list of users, add the user s argument. A user can be
defined by first nane: | ast name or email address. Multiple users are listed as
tokens in an array, and there’s no limit on the number. For example:

-d "{"nmessage": "H! Qur storewide sale is tomorrow.", "users":
["bob@cne. com', "sjones@yz.net", "banana@eel me.conf']}'

* To send to everyone on the same mobile platform, add the pl at f or m(10OS,
ANDROID, WINDOWS or WEB). For example:

-d "{"message": "H'! Qur storewide sale is tomorrow.", "platforn:
lll%ll}l

ORACLE 6-9

REST

Chapter 6
Sending Notifications to and from Your App

* To send to a specific notification provider, add the provi der (APNS, FCM, WNS or
SYNIVERSE). For example:

-d "{"nmessage": "H! Qur storewide sale is tomorrow.", "provider":
|IAPNSII}I

* To send to a specific device ID or a list of device IDs, add the
notificationTokens argument. Multiple IDs are listed as tokens in an array, and
there’s no limit on the number. For example:

-d "{"message": "Test of notifications feature.", "notificationTokens":
[" 2DD2D2- D2DDGA4GD- GDGSDFZS3- 3- 3DFZSDFDS"] }!

To schedule a notification for a future date and time, add the sendOn argument. For
example:

-d '"{"nmessage": "Cone to our discount sale today!", "sendOn":
"2015- 06- 15T6: 00Z"}'

For further details, including HTTP response status codes and full schemas for the
request and response bodies, see the REST APIs for Oracle Mobile Cloud, Enterprise.

Registering a Device ID

ORACLE

The Notifications Device Registration API lets you register the device ID of your mobile
app, which can then be used as a recipient address for sending notifications. This API
can also associate a user with the device ID, so the user name can also be used as a
target for notifications.

You can register a device ID (noti fi cati onToken) directly and send notifications
directly to that ID. You can also use this API to associate any user with the device ID.

The Notifications Device Registration API includes the following endpoints:
e POST /nobilelplatform devices/register
e PCST /mobile/platforn devi ces/ deregi ster

When you register a device, include these parameters:

e The nobi | e i ent parameter identifies the client in the backend with three
properties:

— id: The Application ID assigned by the Google or Apple app store. (This is
different from the "App-Key".)

— version: The version of the mobile client that will receive the notifications,
currently 1.0.

— platform"lOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

e ThenotificationProvider parameter defines the service the noti ficati onToken
is used for: "APNS" or "GCS" or “FCM" or "WNS" or "SYNIVERSE".

* ThenotificationToken parameter defines the token needed by the notification
service for sending calls. This token uniquely identifies the specific instance of a

6-10

ORACLE

Chapter 6
Sending Notifications to and from Your App

mobile app associated with a specific device, and is used to ensure that
notifications are sent to the correct recipient. Encode in hexadecimal if necessary.

* The optional user parameter associates the device ID with the user name
provided. If the user parameter isn't included, the device ID is associated with the
user who is logged in during the registration call.

" Note:

To specify a different user name, the logged in user must be a team
member with either the Administrator or Developer role. Keep in mind
that registering a user name this way doesn'’t validate the entry in the
Device Registry. If this results in duplicate user names, notifications
could be sent to multiple users. It's up to the app to ensure that user
names are unique if that's a requirement.

This example registers a device with the device ID MyAppToken:

curl -v
-H "Authorization: Basic
VGVzdELvYm sZWzZXI yYZEAYVR Zj MyMDg0ZWZk OAQy ODMDONj ALOGNmEXxanpl eAut hStri ng="

-H "Oracl e- Mobi | e- Backend- I D 7cf 06198- 053e- 4311- 8186- cae145900d59"
-H "Cont ent - Type: appl i cati on/j son"
-d "{"mobileCient": {"id":
"Myd i ent ac3d8baf 1aa348b48d80e9b7f d026067", "version": "1.0","platforni:
"I 08"}, "notificationProvider":"APNS', "notificationToken":"03767dea- 29ac- 444
0- b4f 6- 75a755845ade", "user": "JoeSni th"}'
http://ww. fixitfast.com 8080/ nobile/platform devices/register

If the REST operation to register the device is successful, you can expect to get a
response something like this:

Connected to fixitfast.comport (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'

POST / mobi | e/ pl at f or m devi ces/regi ster/

Aut hori zation: Basic

VGVzdELvYmM sZWzZXI yYzEAYVR Zj MyMDg0ZWZk OAQy COMDN] ALCGNmExanpl eAut hStri ng=
User-Agent: curl/7.33.0

Host: fixitfast.com 8080

Accept: application/json

Content - Type: application/json

Oracl e- Mobi | e- Backend- I D 7cf 06198- 053e- 4311- 8186- cae145900d59
Content-Length: 32

upl oad conpletely sent off: 32 out of 32 bytes

HTTP/ 1.1 201 Created

The response includes a JSON payload that contains the device ID for the registered
device.

{
"id": "7cf06198-053e-4311- 8186- cae145900d59",

6-11

Chapter 6
Sending Notifications to and from Your App

"user": "JoeSmth",
"notificationProvider":"APNS",
"notificationToken":"03767dea- 29ac- 4440- b4f 6- 75a755845ade" ,
"mobileCient": {"id":
"Myd i ent ac3d8baf 1aa348b48d80e9b7f d026067", "version": "1.0","platforni:
"108'},
"nodi fi edOn": "2016- 05- 25T14: 58: 16. 373Z"
}

Sending a Text Message Notification

The example below uses the Notifications REST API to send a simple notification to
everyone in the mobile backend. As noted above, the name and password sent in the
Aut hori zat i on header must be a team member with the necessary permissions.

curl -X PCST
-H "Aut hori zation: basic bW\zQ dl bG\vbWIxKg=="
-H "Accept: application/json"
-H "Content-Type: application/json; charset=UTF-8"
-H "Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d"
-d "{"message": "Hi! Qur storewide sale is tonorrow "}’
http://ww. Fi xI't Fast. com 8080/ mobi | e/ system notifications/
notifications/

If the notification is sent successfully, the response might look like the example below.
The body will be the JSON for the created notification.

Connected to FixltFast.comport (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'

PCST / nobi | e/ system notifications/notifications/ HTTP/ 1.1

Aut hori zation: Basic bW\NzO dl bG\WhWIxKg==

User-Agent: curl/7.33.0

Host: newcl ot hes. com 8080

Accept: application/json

Cont ent - Type: application/json; charset=UTF-8

Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d
HTTP/ 1.1 201 Created

You could also get a status code of 400 (bad request) or 401 (unauthorized).

Sending a Notification Using a Unified Payload

ORACLE

A unified payload allows you to specify a different payload for each supported
notification provider using Notifications REST API. One or more of the following can be
defined under the servi ces property:

e The apns payload must conform to APNS requirements.
* The fcmpayload can contain arbitrary JSON properties.
* The wns payload property must contain a well-formed WNS payl oad.

e The syni ver se payload property should contain the string to send as a SMS
message.

6-12

Chapter 6
Sending Notifications to and from Your App

< Note:

The payload template allows you to send provider-specific payloads without
defining the code. For details, see Sending a Notification Using a Payload
Template.

The following are simple examples that define payloads for FCM. An FCM object can
contain either a notification object or a data object. A notification object has a
predefined set of user-visible keys described in the FCM documentation. A data object
has custom key-value pairs.

Notification object:

{"notificationTokens": ["xxxxx"],"payload": {"services": {"fcni:
{"notification": {"title": "Sale On Now","body": "50% off until Saturday”
}
}
}
}
}

Data object:

"notificationTokens": ["xxxxxx"],"payload": {"services": {"fcn':
{"data": {"acnel": "valuel", "acme2": "val ue2"
}
}
}
}
}

Sending a Notification Using a Payload Template

ORACLE

When you use a payload template with the Notifications REST API, the content you
enter is used to create a driver-specific payload for each supported notification
provider. The default payload template includes the following optional parameters.

Parameter Description Data Type Example

title The alert title. If a title string "Sale On Now "
is specified, the body
parameter is also

required.
body The alert body. string "50% of f until
If only a body is Sat ur day"

specified, the content
is used as the value
for the al ert property
in the APNS and FCM
payloads.

6-13

ORACLE

Chapter 6
Sending Notifications to and from Your App

Parameter Description Data Type Example

badge A number to badge number 43
the notification with.
Android applications
don’t support badging,
so the number is not
passed in the payload.
If there is a
requirement to pass
the "badge" value, it
can be passed as part
of a custom data
payload.

sound The sound file to play string "alert.wav"
with the natification.

Only .wav format is

supported by APNS ,

WNS, and FCM.

. For APNS, the file
must be in the
app bundle.

e For WNS, the file
must be in the
app package (the
"ms-appx://I"
prefix is added
automatically).

. For FCM, the file
can be anywhere.

custom Any required custom object
data. {
"acmel":
"val uel",
"acme2":
["val ue2",
"val ued"]

}

The example below shows a notification sent using FCM that includes all five
parameters and the resulting payload. An FCM object can contain either a notification
object or a data object. A notification object has a predefined set of user-visible keys
described in the FCM documentation. A data object has custom key-value pairs.

This specifies the default template:

{

"tenplate": {

"nane" : "#default",
"parameters": {
"title":"this is the title",
"body":"this is the body",
"sound":"al ert.wav",
"badge": 5,

"custont':

6-14

Chapter 6
How Are Notifications Sent and Received?

{ "keyl": "valuel", "key2": "value2", "key3": ["value3.1", "value3.2"] }

}
b

This payload is delivered in the same way as the following unified payload. As noted
above, Android apps don't support badging, so your app can use the badge value in
other ways. Note that in this example, value is a string, so the value for key3 is
converted to a string.

FCM driver payload:

"fend: {

"notification":

{ "title": "this is the title", "body": "this is the body", "sound":
"alert.wav" }

"data":

{ "keyl": "valuel", "key2": "value2", "key3": "[\"value3.1\",
\"value3.2\"]" }

}

Cancelling Scheduled Notifications

To cancel a scheduled notification, send DELETE to / nobi | e/ syst eml noti fi cati ons/
notifications/{id} with the ID assigned to the notification you want to cancel. For
this example, the notification ID is 113455.

curl -X DELETE
-H "Aut hori zation: Basic bW\zQ dl bG\vbWixKg=="
-H "Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d"
-H "Accept: application/json"
-H "Content-Type: application/json; charset=UTF-8"
http://ww. fixitfast.com 8080/ nobile/systentnotifications/
notifications/ 113455

How Are Notifications Sent and Received?

ORACLE

As a mobile application developer, you configure your mobile app to receive
notifications over the network. Once your mobile app is configured and installed on a
device, it connects to its backend to receive notifications. The steps below summarize
the path that a notification takes.

1. You compose a notification, for example, "Hi! Our storewide sale is tomorrow," and
define a recipient for it. You can send the notification to a specific user or device or
set of users or devices, to everyone in the backend, or to a specific device type
(Android, iOS or Windows). You can send the notification immediately or schedule
it to be sent at a later date and time. When you POST a notification, an ID is
created for the message. You can use this ID to cancel a message if it hasn’t been
sent yet.

2. The notification is addressed to the associated device IDs and distributed to the
appropriate push networks for delivery.

3. The notification is received by the mobile application, and the owner of the device
gets it.

6-15

Chapter 6
Troubleshooting Notifications

The notification service providers and their payload limits are:

* WNS: 5K
* FCM: 4K
* APNS: 4K

* SMS: 1000 bytes

- “ Hil Cur
* Hil Our storewide
] storewide 5 M saleis
salels tomorrow, "
tomorrow.
Application Device
Developer Owner

What is the Device ID or Notification Token?

The device ID, also known as the notification token, uniquely identifies the specific
instance of a mobile application associated with a specific device. This ID is used to
ensure that notifications are sent to the correct recipient.

A unique device ID is assigned when a mobile app registers a device during the device
handshake. After that point, the ID can be used to identify that specific recipient.
Multiple instances of the same mobile app on the same device have different device
IDs. The device ID changes periodically, but this is handled internally and is
transparent to the mobile app.

You can look up the device IDs registered with a mobile app in the Device Registry,
from the Notifications page for the associated backend in the Ul. To register a specific
device ID to be used as a recipient address for natifications, you can use the REST
API. Keep in mind that sending a natification directly to a device ID is only useful for
testing. There are more efficient ways to send natifications to a specific group of users.
For details and examples, see Sending Natifications to and from Your App.

Troubleshooting Notifications

ORACLE

Sending a notification is an asynchronous process. Once you send a notification, it can
sit for minutes, hours, or maybe even days on an Apple, Google or Microsoft server
before it gets delivered to the mobile device. Even if a notification can’t be delivered,
there might be no error message returned. You have no control over a notification
once it gets sent, but these are some common notification problems:

* A secure certificate is missing, expired, or not located in the right place.
» The network credentials for the device don't match the credentials registered.

* A security identifier used in your code doesn’t match the identifier registered with
Google, Apple or Windows, or match what's defined in your Android manifest or
iOS Xcode project.

6-16

Chapter 6
Troubleshooting Notifications

* The wrong identifier has been entered into a form. For example, when you register
for notifications in a backend and it asks you for an API Key, you entered the
application key instead.

* An APNS mismatch between production/development flag and certificate, for
example uploading a production certificate but configuring the client saying it's a
development certificate.

* In FCM, the wrong API key or Project Number/Sender ID means the user might
have disabled notifications on their device.

OMCe will automatically unregister the device if a notification is sent to it and the
notification provider reports the device ID as being bad. This can happen in a few
ways:

* The most likely is that the token has expired. A device token lasts between 30 and
90 days depending on the provider. A mobile app should reregister the
notifications token every time the app starts up with both OMCe and the
notifications provider to refresh it.

* The user deleted the app from their device

* The API key or certificate in OMCe has gone bad by either expiring, or a new API
key or certificate was requested from Google/Apple and not uploaded.

* The user has reinstalled/updated their OS and hasn’t run the app since reloading
the OS.

* The token was mangled somehow during registration.

Checking Notification Status in the Ul

ORACLE

Check the History pane, accessible from the Notifications page for your mobile
backend, to find out if your notifications were successfully sent.

Scheduled notifications are displayed in the Scheduled tab. To see a list of sent
notifications, click the Sent tab. If you don’t see the notifications you expect, click
Check for Updates.

The status you see in the History pane reflects the success rate of the notifications
that have been sent. You can quickly tell the status of each natification in the History
pane by the color in the left column:

Green means that more than 70% of individual notifications in the batch were
accepted by the Apple and/or Google networks.

* Yellow means that less than 70% of individual notifications in the batch were
accepted.

* Red means that the batch failed to send successfully. In most cases, there is a
configuration error that needs to be fixed. See Troubleshooting Notifications.

* Blue means a batch of notifications is currently being sent. In most cases, a Blue
indicator appears for only a few moments.

Given the large the number of recipients sent to a popular mobile application, there will
never be 100% success. For example, if a notification is directed to a user that has
recently lost her phone, the Apple or Google network won’t accept the notification for
delivery to the device. The default warning threshold is 70%, but you can change it in
the Noti fi cations_Devi ceCount War ni ngThr eshol d environment policy.

6-17

Chapter 6
Troubleshooting Notifications

The Device Manager, also accessible from the Notifications page for your mobile
backend, lists all registered devices for the mobile backend with their device IDs/
notification tokens. If you don’'t see your device, the network provider might have
specified that the device ID/notification token is invalid and should be deregistered.
Also, if a device hasn’t been reregistered in 60 days, it will be removed from the
registry. You can click Clear Registry to remove all registered devices from a mobile
backend to facilitate troubleshooting.

You can always look at the logs to see if more information about a notification or batch

of notifications is available. Click === to open the side menu and select
Administration > Logs. For details on the diagnostics tools available, see
Diagnostics.

Checking Notification Status with the Notifications REST API

You can use the Notifications API to check the status of notifications.

Send GET to nobi | e/ system noti fications/notifications with the ID of the
notification or using the st at us= query parameter. You can check for any notification
status: New, Schedul ed, Sendi ng, Error, Wr ni ng, or Sent . (The notification must have
been successfully sent.)

The example below checks for scheduled notifications.

curl -i

-X GET

-u team user @xanpl e. com Vel conel!

-H "Oracl e- Mobi | e- Backend- | D: ABCD9278- 091f - 41aa- 9ch2- 184bd0586f ce"
http://fif.cloud. oracle.conf nobile/systenfnotifications/notifications/?
st at us=Schedul ed

If the query is successful, the response will be JSON listing the first 1000 notifications
found. You can specify a range using limit and offset parameters, for example,
I'imt=100&0f f set =400 would return notifications 400-499.

{

"items": [

{
"id": 1234,
"tag": "Marketing",
"message”: "This is the alert message.",
“status": "Sent",
“notificationTokens": ["APNSdeviceToken"],
"createdOn": "2014-04-02T12: 34:56. 789Z",
“platformCounts": |

{
"platfornt: "1CS",
"devi ceCount": 1,
"successCount": 1
}
] 1
"links": [
{
"rel": "canonical",

ORACLE 6-18

Chapter 6
Troubleshooting Notifications

"href": "/notifications/1234"

"rel": "self",
"href": "/notifications/1234"

"id": 1235,
"tag": "Systent,
"nmessage”: "Update required.",
"status": "Sent",
"processedOn": "2014-04-01T12: 34:56. 789Z",
“notificationTokens": ["APNSdeviceToken"],
“platformCounts": |
{
"platforn: "10S8",
"devi ceCount": 1,
"successCount": 1

}
I
"createdOn": "2014-04-03T58: 24: 12. 345Z",
“links": [

{

"rel": "canonical",
“href": "/notifications/1235"

1
{
“rel": "self",
“href": "/notifications/1235"
}
]
}
1,
"hasMre": false
"links": [
{
“rel": "canonical",
“href": "/notifications?offset=0&imt=2"
1
{
“rel": "self",
“href": "/notifications?offset=08&imt=1000"
}
]
}

ORACLE 6-19

My Profile

As a mobile app developer, you use the My Profile API to access details about the
currently authorized user.

" Note:

This API only retrieves user information. To add or update users
programmatically, see REST API for Oracle Identity Cloud Service.

User Types

The information that the API returns depends on what type of user you are inquiring
about. Here are the types of users:

« IDCS users: These users have accounts that are managed by the domain’s
Oracle Identity Cloud Service (IDCS) as described in Mobile Users and Roles.

e Virtual users: These users pass a third-party token for authorization as described
in Enterprise Single Sign-On in OMCe.

e Social users: These users have logged into the app from Facebook, as described
in Facebook Login in OMCe.

Getting User Profile Information

ORACLE

If your app needs user information, such as full names and roles, you can call the User
Profile API to get that information from their profile.

You have two options for getting a user’s profile:

* You can make a direct REST call as described in this topic and detailed in Oracle
Mobile Cloud Enterprise REST API Reference.

* You can call the ums.getMe(httpOptions) method from a custom API
implementation.

To get the currently authorized user’s profile via a direct REST call, send a GET request
to / nobi | e/ pl at f or m user s/ me. Here’s an example of using cURL to send the
request:

curl -i\

-X CGET \

-u j oe. doe@xanpl e. com nypass \

-H "Oracl e- Mobi | e- Backend- I D: ABCD9278- 091f - 41aa- 9cbh2- 184hd0586f ce" \
https://fif.cloud.oracle.con nobile/platformusers/ne

The contents of the response body depends on the user type:

7-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/identity-cloud&id=idcsa_restapi
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

ORACLE

Chapter 7
Getting User Profile Information

* When the user is an IDCS user, the response contains the IDCS user information,
including roles.

* When the user is a virtual user, the response contains the user name and roles.

* When the user is a social user, the response contains the user's mobile ID.

Here’s an example of a response for an IDCS user:

{
"i dcsCreat edBy": {

"type":"User",
“display": "adnin opc",
"val ue": " ABCD6996al13b1641eca66f bf 4c75af 42",
"$ref":"https://ny.idcs. com 443/ adm n/v1/ Apps/
ABCD6996a13b1641eca6b6f bf 4c75af 42"},
"id":" ABCD5f 2abeb5e1664chc94f c651a8562",
"active":true,
"di spl ayNane": " Doe Joe",
"i dcsLast Modi fiedBy": {
"val ue": " ABCD5316f b6146d1bb3bh60b75363",
"display":"idcssso",
"type":"App",
"$ref":"https://ny.idcs. com 443/ adm n/v1/ Apps/
ABCD5316f h6146d1bb3b60b75363"},
"user Nane": " doe",
"urn:ietf:parans:sci mschenas: oracl e:idcs: extension: user: User":{
"i sFederat edUser": f al se,
"grants":|
{
"appl d": "c6a3a4174e8a4975h688f 43e8aaacel8",
"grant Mechani snf': " ADM NI STRATOR _TO USER',
"val ue":"273979318ee2482hba40a44142a6¢90a"
“$ref":"https://ny.idcs. com 443/ adm n/vl/ Gants/
273979318ee2482bbad0a44142a6¢90a" }
1,
"appRol es": |
{
"val ue": " ABCD278f bf 50244c0ab13f 16a117b7da7",
"adm nRol e": fal se,

"l egacyG oupNane": " ABCD29F71D52E41B49EBD6F895FDA. Ser vi ceBusi nessUser ",
"appl d": " ABCD220aeebc14937b4b82df 71671",
"appName" : " ABCD2F71D52E41B49EBD6F895FDA APPI D',
"di spl ay": " MyMobi | eAppUser ",
"$ref":"https://ny.idcs. com 443/ adm n/v1/ AppRol es/
ABCD278f bf 50244c0ab13f 16a117b"}
1,
"accounts":|
{
"val ue": " 125daaable7e47h995232f 51516544¢c6"
"appl d": "c6a3a4174e8a4975h688f 43e8aaacel8",
“$ref":"https://ny.idcs. com 443/ adm n/v1/ Account Mynt | nf os/
125daaable7e47h995232f 51516544¢6" }
1},

"emails":[

7-2

ORACLE

Chapter 7
Getting User Profile Information

"type":"recovery",
"primry":fal se,
"val ue":"j doe@xanpl e. cont',
"verified":fal se},
"type":"work",
"primry":true,
"val ue":"j doe@xanpl e. cont',
"verified":fal se}
1
"name":
"gi venNane": " Joe",
“fam | yName": " Doe",
"formatted":"Joe Doe"},
"schemas":["urn:ietf:params: sci mschemas: core:2.0: User"

1}

Here’s an example of a response for a virtual user:

{
"user Nane":"j doe",
“urn:ietf:params:sci mschemas: oracl e:idcs: extension: user: User": {
"appRol es": [
{
"display":"FIF_TECHNI Cl AN'}
J
}
}

Here's an example of a response for a social (Facebook) user:

{
"userNane": "1 :623:165"

}

7-3

Storage

Oracle Mobile Cloud Enterprise provides a Storage API for storing media in the cloud.

As a mobile app developer, you can use this API in your mobile app to store and

retrieve objects, such as files, text, images, and JSON objects.

What Can | Do with Storage?

Android

The Storage API enables your mobile app to store, update, retrieve, and delete media,
such as JSON objects, text files, and images, in collections in your OMCe instance.
The media are stored as opaque objects, which means that each object is stored and
retrieved from the collection by a user- or system-generated GUID (globally unique
ID). You use mobile user roles to control who can read and write the objects in the
collection.

Note that this API isn’t intended to act as a database-as-a-service (DBaaS) solution by
storing business data used by external systems, or to host HTML 5 applications like a
content management system (CMS).

Adding an Object to a Collection

String text = "This is sanple text file";

String name = "sanpl eText.txt";

St oragehj ect storageChbj ect = new Storagehject (null, text.getBytes(),
"text/plain");

st oragehj ect. set Di spl ayNane(nane) ;

Fetching an Object

ORACLE

This fetches the storage object from a collection and reads its contents in a stream:

int i=0;

for (Storagehject storageQbject: storageChjects) {
i ++;
I nput Stream payl oad = st orage(bj ect . get Payl oadStream();
int n;

char[] buffer = new char[1024 * 4];
I nput StreanReader reader = null;
try {
reader = new I nput StreanReader (payl oad, "UTF8");
} catch (UnsupportedEncodi ngException e) {
e.print StackTrace();

}
StringWiter witer = new StringWiter();

8-1

Chapter 8
Android

assert reader != null;

try {
while (-1 !'= (n = reader.read(buffer))) {

witer.wite(buffer, 0, n);

}
}catch (1 OException e){
e.printStackTrace();
}
Logger. debug(TAG "Storage Qbject "+i+" "+witer.toString());

Getting Multiple Objects from a Collection

Li st <storageChj ect > storagethjects = null;
try {
Storage storage = nobil eBackend. get Servi ceProxy(St orage. cl ass);
storageChj ects = storageCol | ection.get(0,10,true);
} catch (ServiceProxyException e) {
e.printStackTrace();

}

Getting a Shared Collection

This gets a specific shared collection called sharedCollection:

St orageCol | ection storageCol | ecti on= null;
try {
Storage storage = nobil eBackend. get Servi ceProxy(Storage. cl ass);
storageCol | ection = storage. get StorageCol | ection("sharedCol | ection");
} catch (ServiceProxyException e) {
e.print StackTrace();

}

Retrieving an Object

ORACLE

private Storage nttorage;
private String collectionlD = "YOUR_COLLECTI ON_I D';
private String object!D = "YOUR_OBJECT_ID';

try {
[Ilnitialize and obtain the storage client

nSt orage =
Mobi | eManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceProxy(St
orage. cl ass);

/I Fetch the collection

StorageCol l ection coll ection =
St or age. get St orageCol | ection(col | ectionlD);

/I Fetch the object

8-2

Chapter 8
i0S

St oragehj ect object = collection.get(objectlD);

[/ CGet the payl oad

I nput Stream payl oad = obj ect. get Payl oadStrean);

[/Display the image

| mgeVi ew i mageView = (1 mageView) findViewByld(R id.inmageView;
i mgeVi ew. set | mageBi t map(Bi t mapFact ory. decodeSt r ean(payl oad)) ;

} catch (ServiceProxyException e) {
e.printStackTrace();

}

Updating an Object

St oragehj ect storageCbject = null;
try {
Storage storage = nobil eBackend. get Servi ceProxy(Storage. cl ass);
storageChj ect = storageCol | ection. get ("26651715-9259-4676- a035-
df 47ef 3e7e79") ;
} catch (ServiceProxyException e) {

e.printStackTrace();

}

String text = "This is nodified text in a text file";
st orageQhj ect . set Payl oad(t ext. get Bytes(), "text/plain");

try {
Storage storage = nobil eBackend. get Servi ceProxy(Storage. cl ass);

storageCol | ection. put (storageChj ect);
} catch (ServiceProxyException e) {
e.printStackTrace();

}

Uploading a New Object to a Collection

try {
Storage storage = nobil eBackend. get Servi ceProxy(Storage. cl ass);

storageCol | ecti on. post (st orageQhj ect);
} catch (ServiceProxyException e) {
e.printStackTrace();
}

I0S
Adding an Object to a Collection

- (void) upl oadDat af

NSString* collection Id = @nyCol | ection”;
NSString* payload = @This is a sinple text object”;

ORACLE 8-3

Chapter 8
i0S

NSString* content Type = @text/plain";

if (payload == nil || [payload isEqual ToString: @"])
{
NSLog(@ There is nothing to upload");
}
el se{

Il Get storage object.
OMCSt or age* storage = [nbe storage];

Il Get collection where you want to upl oad new dat a.
OMCSt or ageCol | ection* aCol | ection = [storage
get Col I ection:collection_ld];

Il Create new data from payload (in case your payload is not
already in NSData format)

NSDat a* payl oadData = [payl oad
dat aUsi ngEncodi ng: NSUTF8St ri ngEncodi ng] ;

OMCSt or agehj ect * aChj ect = [[OMCSt or ageQbj ect al | oc]
set Payl oadFr onDat a: pay! oadDat a

wi t hCont ent Type: cont ent Type] ;

/1 Post data.
[aCol | ection post:aQbject];

NSLog(@ Upl oad fi ni shed");

Deleting an Object

NSString* collection Id = @";

Il Get your collection

OMCSt or ageCol | ection* aCol | ection = [storage
get Col l ection: col l ection_Id];

Il Create/Update an object with the same object!|D.

NSString* objectlD = @object2";
BOOL i sDel et eSuccessful = [aCol | ection del eteWthKey: objectlD];

Downloading Data to a Collection

This downloads data from any storage collection where:
col | ectionl Dis the id for the target collection.

obj ect I Dis the id for the target object.

-(voi d) downl oadDat a{

NSString* collection_ld = @";

ORACLE 8-4

Chapter 8
i0S

NSString* object_Id

(@

Il Cet storage object.
OMCSt or age* storage

[mbe storage];
Il Cet your collection
OMCSt or ageCol | ection* aCol l ection = [storage
get Col I ection:collection_ld];

Il Cet your object fromyour collection.
OMCSt or agehj ect * anCbj ect = [aCol | ection get:object _Id];

Il Cet the data from payl oad of your object.

NSDat a* data = [anCbj ect get Payl oadDat a] ;
NSLog(@ Downl oad fi nished");

Getting a User Isolated Collection

NSString* collection_Id = @";
NSString* user Id = @";
Il Get user isolated collection.

OMCSt orageCol | ection* aCol |l ection = [storage get Collection:collection_|d
forUserld:user |d];

Getting Multiple Objects from a Collection

NSString* collection Id = @";
Il Get your collection.
OVCSt orageCol | ection* aCol | ection = [storage
get Col | ection: collection_Id];
NSUI nteger offset = 0; NSU nteger linit = 10;

NSAr r ay<OMCSt or ageChj ect *>* objects = [col |l ection get: of fset
withLimt:linit getAllChjects:NJ;

Getting Object Data as a Stream

NSString* collection_Ild = @";

OMCSt or ageCol | ection* aCol l ection = [storage
get Col I ection:collection_ld];

NSString* object Id = @";

OMCSt or agehj ect * anChj ect = [aCol | ection get:object _Id];

ORACLE 8-5

Chapter 8
i0S

NSI nput Streant inStream = [anCbj ect get Payl oadStreani;

Retrieving a Storage Object

- (voi d) downl oadDat af

[/Fill in IDs for collection and object.
NSString* collection_ld = @";
NSString* object_Id = @";

Il CGet storage object.
OMCSt or age* storage = [nbe storage];

/1 Get your collection.
OMCSt or ageCol | ection* aCol | ection = [storage
get Col l ection: col l ection_ld];

/1 Get your object fromyour collection.
OMCSt or agehj ect* albj ect = [aCol | ection get:object_Id];

Il Get the data from your object's payload.
NSDat a* data = [a(hject get Payl oadDat a] ;
NSLog(@ Downl oad fi ni shed");

Updating an Object
NSString* collection Id = @";

Il Get your collection.
OVCSt orageCol | ection* aCol | ection = [storage
get Col | ection: collection_Id];

Il Createl/ Update object with the sane objectlD.
NSString* objectiID=@";
NSDat a* payload = [@This i s updated object" dataUsi ngEncodi ng:
NSUTF8St ri ngEncodi ng] ;
OMCSt or agehj ect * obj ect = [[OMCSt orageChj ect al | oc]
i ni t Payl oad: obj ectID

wi t hDat a: payl oad

andCont ent Type: @pl ain/text"];
OMCSt or agehj ect * returnedChject = [aCol | ection put:object];

Uploading Data to a Collection

-(voi d) upl oadDat a{
NSString* collection_ld = @";
NSString* payload = @";

ORACLE 8-6

Chapter 8
Cordova, JavaScript, and TypeScript

NSString* content Type = @";

if (payload == nil || [payload isEqual ToString: @"])
{
NSLog(@ There is nothing to upload");
}
el se{

Il Get the storage object fromyour MobileBackend object.
OMCSt or age* storage = [nbe storage];

Il Get the collection where you want to upl oad new data.
OMCSt or ageCol | ection* aCol | ection = [storage
get Col I ection:collection_ld];

Il Create new data from payload (in case your payload is not
already in NSData format).

NSDat a* payl oadData = [payl oad
dat aUsi ngEncodi ng: NSUTF8St ri ngEncodi ng] ;

OMCSt or agehj ect * anCbj ect = [[OMCSt or agehj ect al | oc]
set Payl oadFr onDat a: pay! oadDat a

wi t hCont ent Type: cont ent Type] ;

Il Post data to the collection.
[aCol | ection post:anject];

NSLog(@ Upl oad fi ni shed");

Cordova, JavaScript, and TypeScript

Adding an Object to a Collection

ORACLE

var obj = new nts. Storagehject(col | ection);

obj . set Di spl ayNanme(" XYZ. pdf");

obj . | oadPayl cad("Hello Wrld from Oracl e Aut onomous Mbile C oud
Enterprise Cordova SDK', "text/plain");

col I ection. post Qbj ect (obj).then(onSuccess, onFailure);
function onSuccess(collection) {

consol e. | og(col I ection);

return col l ection;

}

function onFailure(error) {
consol e.error(error);
return Promise.reject(error);

8-7

Deleting an Object

col | ection. del et eCbj ect (obj ect | d)

.then(onDel et ethj ect Success)

.catch(onDel et eCbj ect Fai l ure);

function onDel et eQbj ect Success(response) {
consol e. | og(response) ;

return response;

}

function onDel eteQbject Failure(error) {
consol e.error(error);
return Promise.reject(error);

Fetching an Object

This fetches the storage object from a collection and reads its contents in a stream:

col I ection. getQhject(objectld, "json')
.then(onGet Obj ect Success)
. catch(onGet Obj ect Fai | ed) ;

function onGet Qbj ect Success(obj ect)
{ consol e.log(object);

return object;
}

function onGet Qbj ect Fail ed(error)
{ console.error(error);

return Prom se.reject(error);
}

Getting a Collection

ORACLE

var backend = nts. nobi | eBackend;

backend. st or age. get Col | ecti on(col | ecti onNane)
.then(onCet Col | ecti onSuccess)

.catch(onGet Col | ecti onFai | ed);

function onGet Col | ecti onSuccess(col | ection){
consol e. | og(col I ection);
return coll ection;

}

function onGetCol | ectionFailed(error) {
consol e.error(error);
return Prom se.reject(error);

Chapter 8
Cordova, JavaScript, and TypeScript

8-8

Chapter 8
Cordova, JavaScript, and TypeScript

Getting an Object from a User Isolated Collection

This gets an object from a user isolated collection belonging to another user:

| et backend = nts. nobil eBackend

backend. st orage. get Col | ection(col | ectionNane, userld)
.then(onGet Col | ectionSuccess)
.catch(onGet Col | ecti onFai | ed);

function onGet Col | ectionSuccess(collection) {
consol e. | og(col | ection);
return col l ection

}

function onGet Col | ectionFail ed(error){
consol e.error(error);
return Promise.reject(error);

Getting Multiple Objects from a Collection

Gets a collection, then uses that collection to get multiple objects:

col lection.getChjects(2, 3, false)
.then(onSuccess)
.catch(onFail ure)

function onSuccess(collection) {
consol e. | og(col ection);
return col | ection

}

function onFailure(error) {
consol e.error(error);
return Prom se.reject(error);

Updating an Object

col I ection. get Obj ect (object!d)
.then(onGet Obj ect Success)
.then(onSaveChj ect Success)
.catch(onGet Cbj ectFail);

function onGet Qbj ect Success(response){
response. name = ' NewNane'
return collection. put Chj ect (response);

}

function onSavebj ect Success(response){
consol e. | og(response) ;

ORACLE 8-9

Chapter 8
Custom Code

return response;

}

function onGet QbjectFail (error){
consol e.error(error);
return Prom se.reject(error);

Custom Code

Retrieving and Storing Collections and Objects

For information on how custom code can retrieve collection information and store and
retrieve objects, see Accessing the Storage API from Custom Code.

REST API
Storage API Endpoints

The Storage API has endpoints for retrieving, paginating, and ordering collections and
also for retrieving, updating, and removing objects.

Operations for Operations
retrieving a list thatapply toa
of collections. list of objects.

{baseuri} /mobile/platform/storage/collections/{collection}/objects/{object}

The collection The object
ID, used with ID, used for
operations operations
that thatapply to
correspond to asingle
asingle object.

collection.

Here, we give a brief overview of the Storage API endpoints. For detailed information,
see Oracle Mobile Cloud Enterprise REST API Reference.

Getting a Single Collection

To get the metadata about a collection, such as ID, description, and whether it is user
isolated, call the GET operation on the {col | ecti on} endpoint as follows:

GET {baseUri}/nobil e/ platfornistorage/collections/{collection}

For example, for a collection named i mages:

GET {baseUri}/ nobil e/ pl atforn storage/collections/inmages

ORACLE 8-10

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Chapter 8
REST API

Getting All Collections Associated with a Mobile Backend

To get a list of the collections that are associated with a mobile backend, call the GET
operation on the col | ecti ons endpoint as follows:

GET {baseUri}/ nobil e/ platforn storage/collections

Storing an Object

The Storage API has two operations for creating objects. The operation that you use
depends on if you want to specify the object’s ID or you want the ID to be generated
automatically.

* To specify the ID, use PUT, and put the ID in the URI as described in Specifying
the Object Identifier. Note that you can use the | f - None- Mat ch header to ensure
that you don’t overwrite an object that has the same ID, as described in Creating
an Object (If One Doesn't Already EXxist).

* To generate an ID, use POST as described in Generating an Object Identifier.

When you create an object using your own ID, remember that, for shared collections,
the ID must be unique to the collection. For user isolated collections, the ID must be
unique to the user’s space.

Always include the Cont ent - Type header to specify the media type of the object being
stored. This property also specifies the media type to return when the object is
requested. If you don't include this header, then the content type defaults to
application/octet-stream

Note that Storage doesn’t transform or encode an object. Storage stores the exact
bytes that you send in the request. For example, you can’t send a Base-64 encoded
image and store it as a binary image by including a Cont ent - Type header set to

i mage/ j peg and a Cont ent - Encodi ng header set to base64. You can use a custom API
to perform the transformation for you, as shown in the code examples in
storage.store(collectionld, object, options, httpOptions).

Specifying the Object Identifier

When performing a PUT operation, the identifier of the object corresponds to the last
value specified in the URI. For example, to store an object with an ID called part 1524:

PUT {baseUri}/ nobil e/ platforn storage/collections/images/objects/part1524

Creating an Object (If One Doesn't Already Exist)

ORACLE

Put the wildcard (*) character in the request's | f - None- Mat ch header to force the PUT
operation to create the object with the specified object ID only if no other object exists
with that ID. Specifying the wildcard causes the call to fail if another object already
exists with the same ID. For example:

PUT {baseUri}/nobile/platforn storage/collections/images/objects/ part1542

8-11

Chapter 8
REST API

Header s:
| f-None- Match: *

Generating an Object Identifier

To generate the identifier for an object and then store the object, use the POST
operation. Unlike the PUT operation, there’s no identifier specified at the end of the URI
for a PCST operation. For example:

PCST {baseUri}/ nobil e/ pl atforni storage/collections/inmages/objects

The URI that accesses the newly created object is returned through the Locat i on
header in the response, and the | D attribute is included in the response body.

What Happens When an Object is Created?

When an object is created:

 The content is stored.

* The value of the Cont ent - Type field in the request is stored. (This becomes the
Cont ent - Type field definition returned when the object is requested using a GET
operation.)

* An entity tag (ETag) value is assigned.

* The creat edBy value is set to the user ID of the user who performed the create
operation.

e The creat edOn value is set to the time the object was stored on the server.

Updating an Object

Objects are updated using the PUT operation. For the PUT call, specify the same
identifier that was specified or generated when the object was created. Because
objects are opaque, updating an object completely replaces the previous contents.

What Happens When an Object Is Updated?

When a PUT is performed on an object, the following occurs:
* The content is completely replaced.
e The value of the ETag changes.

e The nodi fi edBy value is set to the user ID for whom the mobile app performed the
PUT operation.

* The nodi fi edOn value is set to the time the object was stored on the server.
Optimistic Locking
Optimistic locking is a strategy to use when you want to update an object only if object

was not updated by someone else after you originally retrieved it. To implement this
strategy, do one of the following:

ORACLE 8-12

Chapter 8
REST API

» Put the timestamp of when you last retrieved the object in the | f - Unnmodi f i ed-
Si nce header.

e Putthe object’'s ETag in the | f - None- Mat ch header.

For example, if the ETag value from the previous call is 2, then the PUT operation in the
following example is performed only when the | f - None- Mat ch value of "2" matches
the ETag of the object (part 1524). If the versions don’t match, then the call’'s PUT
operation isn’t performed and part 1524 remains unchanged.

PUT{ baseUri}/ mobi | e/ pl at f or nf st orage/ col | ecti ons/i mages/ obj ect s/ part 1524

Header s:
| f-None-Match: \"2\"

You can get a similar result using | f - Unnodi fi ed- Si nce:

PUT {baseUri}/ nobil e/ platforn storage/collections/images/objects/part1524

Header s:
| f-Unnodi fied-Since: Mn,30 Jun 2014 19:43:31 GVl

Retrieving a List of Objects

To get the metadata about a set of objects in a collection, use the GET operation on
the / col I ections/{col | ection}/objects endpoint. This metadata includes the
object’s ID, its name, and size. The metadata also includes the canonical link and self
links. For a full list of properties, see Taking a Look at Object Metadata.

In this example, i mages is the name of a shared collection.

GET {baseURl }/ nobil e/ pl atf orm st orage/ col | ections/images/ obj ects

If the collection is user isolated and you have READ ALL or READ WRI TE_ALL access,
then you must include the user query parameter and specify which user's objects you
want listed, even if you want to see your own objects (use * to list all user’s objects).
Note that you provide the user’s ID, not the user name. For example:

GET {baseURl }/ nobi | e/ pl at f or m st orage/ col | ecti ons/i mages/ obj ects?
user =0cea04ee- 9e26- 4de3- ad6b- 00a66c8d3b96

Paging Through a List of Objects

ORACLE

If you don’t want to see all the results, or if you want to get the results in small blocks,
usethelimt and of f set query parameters to request a subset of items.

Use the li mt parameter to restrict the number of items returned. The default is 100.
Define of f set as the zero-based starting point for the returned items. The returned
JSON body contains links for retrieving both the next and previous sets of items.

8-13

Ordering

Querying

Chapter 8
REST API

The following example gets the metadata for 50 objects, starting with the 201st object.

Get {baseUri}/nobilel/platforn storage/collections/images/objects?
of f set =200&! i mi t =50

Use the or der By parameter to control the order of the returned items. You can specify
which property to order on and specify whether to put the items in ascending (asc) or
descending (desc) order:

Get {baseUri}/nobile/platforn storage/collections/imges/objects?
or der By=cont ent Lengt h: desc

You can sort by the name, nodi fi edBy, nodi fi edOn, cr eat edBy, creat edOn, or
cont ent Lengt h property.

¢ Note:

You can order by one property only (either asc or desc).

Use the g query parameter to restrict the list of returned objects to the value specified
for the i d, nane, creat edBy, or modi f i edBy attributes.

Get {baseUri}/mobile/platform storage/collections/imges/objects?q=part

The objects returned are based on a case-sensitive, partial match of the i d, nane,
creat edBy, and nodi fi edBy attributes. With this example, the results might include an
item with an ID of part 1524 and an item modified by bonapart .

Retrieving an Object

ORACLE

Use the GET operation to retrieve the entire object. When performing the GET operation,
the identifier (such as part 1524 in the following example) is specified at the end of the
URI.

Storage always returns the exact bytes that were stored. If the Accept s header doesn’t
match the Cont ent - Type that the object was stored with, then it returns a 406 status
code.

In this example, the object is returned only if the Etag does not match. You can use
this strategy prevent re-fetching an object if it hasn’t changed.

Get {baseUri}/nobilel/platform storage/collections/images/objects/part1524

Header s:
| f-None-Match: \"2\"

8-14

Chapter 8
REST API

Deleting an Object

To remove an object from a collection, call the DELETE operation. Deleting an object is
permanent. There’s no way to restore an object after you call this operation.

DELETE {baseUri}/ mobil e/ pl atform storage/ col | ections/imges/ objects/
part 1524

To safely remove an object, use the | f - None- Mat ch header with the object’s ETag, or
the | f - Unnodi fi ed- Si nce header with the timestamp of when you last retrieved the
object:

DELETE {baseUri}/ mobil e/ pl atform storage/ col | ections/images/ objects/
part 1524

Header s:
| f-None-Match: \"2\"

As described in Updating an Object, you can use these headers to prevent overriding
a change that another user made after you originally retrieved the object.

Optimizing Performance

You can use these strategies to optimize performance when you retrieve an object:
* Check If Exists
* GetIf Newer

* Reading Part of an Object (Chunking Data)

Check If Exists

Put If Absent

ORACLE

To check if an object exists, use the HEAD operation instead of a GET operation. The
HEAD operation returns the same information except for the actual object value.

You can use the | f - None- Mat ch header with a wildcard (*) value in a PUT operation to
store an object only when (or if) it isn't already included in the collection.

When you use this strategy, the call executes only when the ETag is absent, which is
true only if the object does not exist.

PUT {baseUri}/ mobil e/ platforn storage/ coll ections/profiles/objects/uprofile

Header s:
| f - None- Mat ch: *

In this example, if the upr of i | e object doesn’t have an ETag, then nyProfile.txt is
stored as the upr of i | e object.

8-15

Get If Newer

Chapter 8
REST API

If you have already retrieved an object, and you want to re-fetch it only if it has
changed, use the GET operation with the | f - None- Mat ch or | f - Modi fi ed- Si nce header
to retrieve the object only if there has been a change since the last time the object was
fetched.

* If-None-Match
This example re-fetches the object only if the ETag is not 2.

GET {baseUri}/nobil e/ pl atform storage/col |l ections/imges/objects/
part 1542

Header s:
| f-None-Match: \"2\"
¢ If-Modified-Since

This example re-fetches the object only if it was modified after the date and time
specified. Otherwise, the response status is 304 not nodifi ed.

CET {baseUri}/ nobil e/ pl atfornfstorage/collections/imges/objects/
part 1542

Header s:
[f-Mdified-Since: Mn, 30 Jun 2014 19:43:31 GVl

Reading Part of an Object (Chunking Data)

ORACLE

If the mobile app needs to get a large object like a video file, you can use the Range
header to retrieve a subset of the object. This field lets the mobile app retrieve the data
in chunks, rather than all at once, by requesting a subset of bytes. Using this strategy,
you can start streaming a video, or start displaying the contents of a long list before
you fetch the whole object.

Here are examples of byte-range specifier values:

e First 100 bytes: byt es=0-99

e Second 100 bytes: byt es=100- 199

e Last 100 bytes: byt es=- 100

e First 100 and last 100 bytes: byt es=0- 99, - 100

This example gets the first 100 and last 100 bytes of a profile to display a preview of
the object’s contents:

GET {baseUri}nobile/platform storage/collections/profiles/objects/uprofile

Headers:
Range: bytes=0-99, -100

8-16

Chapter 8
Testing Runtime Operations Using the Endpoints Page

Testing Runtime Operations Using the Endpoints Page

You can test client REST calls for collections manually through a command line tool or
utility, from a mobile app running on a device or simulator, or you can use the
Endpoints page to test various operations.

Using the Endpoints page for the Storage API, you can try out basic collection calls,
which would typically be exercised by a mobile app. These endpoints would be called
directly by calling REST APIs, indirectly (by calling the client SDK), or through custom
code. Instead of configuring a device or simulator, or entering the command manually,
you can test the API by first entering mobile app user credentials and parameters
appropriate to the call and then by clicking Test Endpoint. The page displays the
payload and the status code.

You can access the Endpoints page by clicking Storage in Platform APIs section that
is located at the bottom of the APIs page for a mobile backend. You can also open the
page by clicking Storage in the Platform APIs section at the bottom of the APIs page.

(You open this page by clicking =t open the side menu. You then click Mobile
Apps and then APIs).

Managing Collections

Mobile apps can only use collections that are associated with a backend. You can
make this association by adding existing collections to the backend when you create it.
You can also create new collections as part of this process.

You can also use the Storage configuration pages in the OMCe Ul to associate a
collection with a backend, as well as create and configure a collection, and define
whether the collection is shared or user isolated.

Shared and User Isolated Collections

ORACLE

A collection is either shared or user isolated.

When a collection is shared, no one owns the collection or an object, and the objects
are kept in a shared space. Those with certain mobile user roles, permissions, and
access to the backend, or anonymous access to the backend associated with the
collection, can update an object. Note that in both shared and user isolated collections,
each object has an ID that is unique to the collection.

When a collection is user isolated, users who have Read-Only (Al Users) access
can read objects in other users’ spaces. Users with Read-Wite (Al Users) access
can both read and write objects in other users’ spaces. Anonymous access is not
permitted in user isolated collections.

Let's look at some examples of this behavior using the following scenarios:

8-17

ORACLE

Chapter 8
Managing Collections

Shared Collection

An online magazine is leveraging the Storage API as a way for authors to submit,
change, or read, articles. They've provisioned a shared collection called articles, as
shown in the figure below.

* Ben has contributed articles on bugs and bats, while Art has written about cows
and dogs.

* The dogs article is shared, allowing both Ben and Art to collaborate on it.
* Artand Ben are able to modify any article regardless of who originally submitted it.
* Dee can read all the articles, but she can't make changes.

However, if this shared collection is added to the
Security_Col | ecti onsAnonynousAccess environment policy, then Ben, Art, Dee or
anyone who has access to the backend can submit, change, or read articles.

Ben Art Dee
User Role Permission
t}ugs l COWS l dogs B Ben Author AW
bats | clogsl [| Art Author RW
Dee Inactveluthor BEAD
Articles

User Isolated Collection

An online magazine has provisioned a user isolated collection called Articles, as
shown in the following figure.

* Ben and Art can read and edit their articles, and upload new articles as well. They
can’t read or write each other's files.

» Dee can read only her article. Because her role is | nact i veAut hor , which gives
her Read- Onl y permission, she can't upload any new articles.

* Eva, the editor, can make changes to any file and return it to the author's isolated
space.

* Raj, the publisher, can view all the articles, but he can't make changes.

» Because users are isolated, the authors don't have to worry about naming conflicts
with others. Objects in different isolation spaces can have the same name (as is
the case for the “dogs” articles by Dee and Art).

8-18

ORACLE

Chapter 8
Managing Collections

* Eva and Raj can access Ben, Art, and Dee’s objects only by specifying a user
qualification parameter. When Eva wants to make changes to Art’s article, the call
that enables her to write to Art's user space must include Art’s ID.

Anonymous users don’t have access to user isolated collections. If a user isolated
collection is added to the Security_Col I ecti onsAnonynousAccess environment policy,
it's just ignored.

Eva Art Dee

User Role Permission
|| Ben Author RW

] Eva Editor RAW-ALL

[| Art Author RW

Dea InactveAuthor READ

Raj))
Raj Publishar READ-ALL

Articles

Permissions in Shared and User Isolated Collections

You can designate who can access and update objects in a collection by attaching
access permissions to mobile user roles, or for anonymous access, by adding the
shared collection name to the Security_Col | ecti onsAnonynousAccess environment
policy. For example, if the collection does not, or cannot permit anonymous access:

e Art and Ben’s Aut hor mobile user role is associated with the Read-Wite
permission.

— Inthe shared collection, they can read and update any article within the
shared collection.

— Inthe user isolated collection, they can read and update their own articles.

* In contrast, Dee has the | nact i veAut hor mobile user role, which gives her Read-
Ol y permission.

— Inthe shared collection, Dee can read Art’s article about dogs, as well as
various articles from either Art or Ben about bugs, cows, and bats. Unlike Ben
or Art, she can’t delete articles or add new ones.

— Inthe user isolated collection, she can read her own article about dogs, but
she can't read Art's article about dogs.

* For user isolated collections, mobile user roles that are associated with the Read-
Only (Al Users) permission can view any object. The Read-Wite (Al Users)
permission allows users to view and update objects in other users’ spaces.
Because her role as Edi t or has a Read-Wite (Al Users) permission, Eva can
read and edit various authors’ files, such as those authored by Ben and Art.

8-19

Chapter 8
Managing Collections

< Note:

Although different mobile user roles can grant access to the same objects in
a collection, such as Eva (Edi t or), Ben (Aut hor), and Art (also Aut hor), in
the user isolated collection, the objects remain in their respective isolated
spaces.

When anonymous access is allowed on a shared collection, access and the
ability to update an object is granted to any authenticated user as well,
regardless of role. This means adding a collection name to the

Security Col | ecti onsAnonynousAccess environment policy overrides
permissions given through roles. Take care when allowing anonymous
access to a collection. Security is more limited than with role-based
permissions.

Storage Configuration

ORACLE

The Storage configuration pages in the Ul can help you with a variety of tasks, such as
creating and editing collections, and associating backends with collections.

Using the Storage Configuration Pages

There are two Storage configuration pages you can use: Manage all collections in your

instance from the = > Mobile Apps >Storage page. Manage collections for a
specific backend from the Storage tab on the backend page.

Storage Configuration for All Collections

To open the Storage page for all collections, click => Mobile Apps >Storage.

Using this page, you can create collections, edit existing ones, associate them with
mobile backends, and publish them.

You can find out when the collections listed were created or updated and which
backends are using them by first selecting a collection and then expanding Used By
and History.

4 Used By
Maobile Backend FIF_Technician 1.0 b
Maobile Backend ~ FIF_Customer 1.0 X
4 History
[l Updated by Chis 3 minutes ago
Created version 1.0 by Chris 8 minutes ago

Storage Configuration for a Specific Backend
To manage collections for a specific backend, click = > Mobile Apps >Backends >

Storage. This page shows which collections are associated with the backend and
allows you to create and update associated collections.

8-20

Chapter 8
Managing Collections

Defining a Collection

The New Collection dialog lets you name a collection so that it can be identified in
REST calls and designate it as shared or user isolated.

1. Open the Storage page either from a mobile backend or by clicking Storage in the
side menu, and click New Collection.

2. Complete the New Collection dialog:

a. Enter a name for your collection. This hame is used to form the Universal
Resource Identifier (URI) for the collection. Within the context of the API call,
the collection name is referred to as the collection ID:

{baseUri}/ nobil e/ pl atfornistorage/collections/{collection |D}

For example, for a collection named FiF_Uploadedimages (cloud storage of
images uploaded from mobile apps), the URI call would look like this:

{baseUri}/ nobil e/ pl at f orm st orage/ col | ections/Fi F_Upl oadedl mages

For a closer look at Storage API syntax, see Storage API Endpoints.

b. Choose the collection type: Shar ed or User | sol at ed. You can’'t change
the scope of the collection after you've set it. For details and examples, see
Shared and User Isolated Collections.

c. If needed, enter a short description for the purpose of the collection, to be
displayed in the list of collections.

3. Click Create.

New Collection x

Collections provide a way to group and manage related data objects. You can
control who has permission to upload files, or to use the files in a collection.

* Collection Name FIF_Deals 1.0

Collection Type User Isolated @

The collection type cant be changed after the collection
is created.

Short Description Displayed in the collections list. 100 character

Create

ORACLE 8-21

Chapter 8
Managing Collections

< Note:

When you initially create a collection, it's in a draft state, in version 1.0.

* You can modify the collection name, access permissions, and its
contents. Remember, you can’t change the collection type after it's
created.

* You can version a collection. You might want to increment a collection’s
major and minor version numbers when you publish it or when you add
new objects.

* While in the draft state, a collection can be moved to the trash from the
More menu.

Collection Metadata

In addition to the basic properties like size (in bytes), and description, the collection
metadata includes the collection name that identifies it for REST calls.

When you create a collection, the Storage API defines it using the following metadata:

Property Value Type Description

description string The short description. This is an optional
value.

id string The collection name, which is used in the

uniform resource identifier (URI). For example:
{baseURI }/ nobi | e/ pl at f or nf st or age/
col l ections/{collection}

The collection name is case-sensitive,
meaning that mycol | ecti on and

Mycol | ecti on are two different collections.

Adding Access Permissions to a Collection

ORACLE

Collection access is granted through anonymous user settings in the policy file, or
managed by mobile user roles. Once a mobile user role is defined, you can also grant
which roles can read and write objects in the collection. To see what mobile user roles
are available, go to the My Profile Ul and click Roles. To learn more about roles and
mobile users, see Mobile Users and Roles.

Anonymous Access to Collections

Anonymous access is often given to users who just want to check information on an
app without having to log in or needing a defined role. Weather apps, where a user
can check their local weather, are a good example of this.

Likewise, you can grant anonymous access to a shared collection. Once a shared
collection is created, the administrator adds its name to the

Security Col | ecti onsAnonynousAccess policy. You can then access the shared
collection via the REST API or the client SDK for your mobile platform. Also, if you
want to access this anonymous shared collection from the Ul, a workaround is to grant
Read- Wi t e permission to any role on the properties page.

8-22

Chapter 8
Managing Collections

Keep in mind that when you add a shared collection to the policy, both anonymous
and named users have access and read/write privileges to the collection.

Role-based Access to Collections

1. Inthe Storage page, select a collection and then click Open.

2. In the Properties page, specify one or more mobile user roles for each permission

type.

* Read-Only and Read- Wit e access apply to all collections (shared or user

isolated).

* You can specify Read-Only (Al Users) and Read-Wite (Al Users)
permissions only if the collection type is user-isolated.

Permission Shared

User Isolated

Read-Only Read-only access to all of
the objects in a collection.
For example, both a field
technician and a
customer can read
promotional material like
coupons, but they can’t
update them.

Read-only access to a user
isolated collection. When the
Read- Onl y permission is applied
to user isolated collections, for
example, a customer can view
images (like a coupon), but he
can’t update them, or submit
additional ones (only a user with
Read-Wite (Al Users)
privileges can add an object to the
customer’s user space). Because
this is a user isolated collection,
the customer can view only his
images (or other customer-specific
objects that are intended only for
him). The Read- Onl y permission
also prevents him from adding
additional work orders or deleting
them.

Read-Write A user can override any
object in the collection.

A user can override the objects in
his isolated space. For example, a
customer can update the images of
broken appliances that he’s
submitted. Because this is a user
isolated collection, the images that
he can add (and update) are
intended only for him. Because
these images exist in his isolated
space, he can update these
objects, but no one else’s.
Likewise, he can add or delete
images, but can’t do this in anyone
else’s isolated space.

Read-Only (All Users) NA

A user can read objects in all
spaces. For example, a field
technician can see the images
updated by any customer, but she
can’t update them, delete them, or
add new ones.

ORACLE

8-23

Chapter 8
Managing Collections

Permission Shared User Isolated

Read-Write (All Users) NA A user can override objects in all
spaces. If a field technician has
Read-Wite (Al Users)
permission, then she can update
work orders submitted by any
customer.

< Note:

By default, mobile users can’t access a collection until they’ve been
assigned mobile user roles that are associated with the Read- Wi te,
Read- Only, Read-Wite (Al Users) orRead-Only (Al Users)
permissions.

Adding Objects to a Collection

You can populate a collection with objects.

These steps show how to add an object using the Ul. When you add an object from
the Ul, the ID is generated automatically. If you want to assign a specific ID to an
object, use the Storage API, the custom code SDK, or the client SDK for your mobile
platform. For details, see Storing an Object.

1. On the Storage page, select a collection and click Open.

e If this collection has no objects, click Upload Files and then browse to and
retrieve the object. Click Open.

« If this collection already has objects, click Upload in the Content page. Browse
to and retrieve the object. Click Open.

2. If the collection is shared, click Add. If you have the identity domain administrator
role, you can also upload to user isolated collections. Add the user realm and user
name to the User Name Required dialog, and click Ok. You can only select from
users whose roles have been granted permission to the collection. (Assign these
roles in the Properties page.)

3. To view the object data, select it from the list.

Tip:

To permanently remove an object from a collection, select it and click Delete.

Object Metadata

When you upload an object, the Content page displays basic metadata, such as size,
content type, version information, and who uploaded it. Using this page, you can also
delete unneeded objects, or filter them. Some functions in user isolated collections are
only available if you have the identity domain administrator role.

ORACLE 8-24

Chapter 8
Managing Collections

Property Value Type Description/Usage
ID string The object name, which is used for operations on a
single object. It is the last value specified in the
URI.
Content Length integer The size, in bytes.
Content Type media type The media type for the data, such as i mage/ j peg
for a JPEG image, or appl i cati on/j son for
JSON.
ETag string (an integer A value that represents the version of the object.
in quotes, for It's used with the | f - Mat ch and | f - None- Mat ch
example, "17") HTTP request headers.
Created By user name The name of the user who uploaded the data.
Created On time stamp (In The time that the object was most recently stored
ISO 8601) on the server. Time stamps are stored in UTC.
Modi fy By user name The name of the user who modified the object.
Modi fied On time stamp (in The time when the server received a request for an
ISO 8601) object. Time stamps are stored in UTC.
User ID string For a user isolated collection, the ID of the user

whose space the object is in.

Updating the Collection

You can update the name, description and access to a collection. You can't however,
change the collection type.

1. On the Storage page, select a collection and then click Open.

2. Click Properties. (The Properties page opens by default when you first create a
collection. On subsequent visits, the Content page opens by default.)

3. Change the name, description or access as needed.

4. Click Save.

Offline Data Storage

ORACLE

The client SDK’s Sync Client library, in conjunction with the Storage library, enables
mobile apps to cache a collection’s objects for offline use and performance
improvement. The apps can then use the cached objects instead of re-retrieving them
from Storage, as described in How Synchronization Works with the Storage APIs. If a
collection’s content changes infrequently, then consider enabling those mobile apps to
cache the collection’s objects by selecting Enable the mobile client SDK to cache
collection data locally for offline use.

When Enable the mobile client SDK to cache collection data locally for offline
use is selected, the objects that a mobile app retrieves can remain in the cache for the
period set in the Sync_Col | ecti onTi meToLi ve policy. This value is conveyed to the
app through the Or acl e- Mobi | e- Sync- Expi r es response header. By default, the
timeout period is set for 24 hours (86,400 seconds).

8-25

Chapter 8
Managing Collections

Don't select this option for time-critical data, where a cached value might be
misleading. For example, if the collection contains current stock prices, you shouldn’t
select this option, because users expect the latest value (or no value at all).

If your mobile app isn't using the client SDK'’s Storage library, and your app is caching
Storage objects, then you can take advantage of the following request and response
headers:

Type Header Description

Request O acl e- Mobi | e- Sync- When this header is set to
Agent t rue in the request, then the
response includes either
Or acl e- Mobi | e- Sync-
Expi res or O acl e- Mobi | e-
Sync- No- St ore.
Response Oracl e- Mobi | e- Sync- Specifies when the returned
Expi res resource must be marked as
expired. Uses RFC 1123
format, for example EEE, dd
MW yyyyy HH mm ss z for
Si npl eDat eFor mat . This
value is determined by the
Sync_Col | ecti onTi neTolLi
ve policy.

Response Oracl e- Mobi | e- Sync-No- When set to t r ue, the client
Store mustn’t cache the returned
resource.

To learn more about data caching, see Data Offline and Sync.

Associating a Collection with a Backend

Associating a collection makes its contents available to a specific backend. The
associated collection is a dependency.

1. Inthe Storage page, select a collection.

2. Click More and then select Associate Backends.

3. Inthe Associate Backends dialog, select one or more backends from the list.

Associate Mobile Backends

Associate your collection with one or more mobile backends.

A mobile backend stores application objects and resources in its dependent
collections, which the client application accesses for data storage and retrieval.

Mobile Backends FiFTechnician 1.0 ¥ FiFCustomer 1.0 X

Add

ORACLE 8-26

4.

Chapter 8
Managing Collections

Click Add.

In the details pane, you can see any associated backends by expanding Used By.

You can also associate a collection with a backend this way:

1.
2.
3.

Open the backend.
Click the Storage tab and then choose Select Collections.

Choose one or more collections from the Select Collections dialog, and then click
Select.

Removing a Collection from a Backend

You might want to disassociate a collection from a backend so that you can change
the backend's state without affecting the collection. Or you might want to disassociate
the collection and associate a different one.

1.
2.

4,

In the Storage page, select a collection.

In the Details section on the right, view the Used By list.

DEVELOPMENT €= ORACLE' Mobile Cloud Service DEVELOPMENT + ragnar.smith@example.com

APPLICATIONS > STORAGE

mp

Storage API FIF_Deals 1.0

@ New Collection Fonan

» Deployments @

Publish More ~

Name Ascending ~ 4 Used By

FIF_Deals1.0 DRAFT FIF_Technician 1.0

x

Mobile
Backend
FIF_Customer 1.0 X

Import

Mobile
Backend
FIF_UserData 1.0 DRAFT
4 History

Page 1 of1(1-20f2items) m @ Updated by chris 3 minutes ag

4 Created version 1.0 by chris 8 minutes g

To delete the association, click the X that follows the backend version number.

You'll be prompted to remove the dependency. Click Remove.

To remove a collection from a backend:

1
2
3.
4

ORACLE

Open the backend.
Open the Storage page.
Click the X adjacent to the collection that you want to remove.

In the Confirm Remove Dependency dialog, click Remove.

8-27

Data Offline and Sync

Mobile app developers can use the Data Offline and Sync features to build a client app
that enables the users to perform critical tasks when offline.

You can use the following APIs to build applications that cache REST resources for
offline use and then synchronize all offline changes with the server when the device
goes online again.

API Platforms Features
Sync Express e Cordova * Basic synchronization.
e JavaScript * Easyto use.

* Works with any REST API
where the resource name
alternates between plural
nouns and singular
resource identifiers (rid),
suchas/items/{rid}/
subitens/{rid}.

* Requires minimal
changes to existing code.

e Works with any
JavaScript framework.

« When device reconnects,
sends change requests
one resource object at a
time.

* Always overwrites the
server version of the
object.

ORACLE 9-1

Chapter 9
Building Apps that Work Offline Using Sync Express

API Platforms Features
Synchronization e Android * Robust synchronization.
< I0S * Works with
synchronization-compliant
custom APIs.

* When device reconnects,
sends all changes in one
request.

» Provides choices for what
to do if the server version
of an object changes
while edits were made
offline (server wins, client
wins, preserve conflict).

e Provides choices for how
long to store resource
objects on the device,
when to refresh data from
the server, and which
resources can be edited
when offline.

* Automatically
synchronizes with the
Storage platform.

Building Apps that Work Offline Using Sync Express

ORACLE

The Javascript and Cordova client SDKs feature Sync Express, which enables you to
easily and quickly make your application work offline using your existing REST
requests. You can use this library for REST APIs where the resource name alternates
between plural nouns and singular resource identifiers (rid), such as/itens/{rid}/
subi tens/{rid}.

Adding Sync Express to Your App
To use Sync Express in your app, you must complete the following tasks.

e Copy both nts. sync. nin.js and nts. mn.js from the SDK into the directory
where you keep your JavaScript libraries.

 Useascript elementto load nts. sync. m n. j s. This must be the first script that
the app fetches and loads unless you add | oki - cor dova- f s- adapt ers. j s, which
is explained next.

* Use either RequireJS or a scri pt element to load nts. nin.js.

* From the command line, enter the following to add the cordova-plugin-network-
information plugin. This plugin enables Sync Express to detect if the device is
online or offline.

cordova plugin add cordova- pl ugi n- network-i nformation

When an application attempts to store more REST resources than the device’s cache
size allows, Sync Express throws a QUOTA_EXCEEDED ERR exception. With Cordova
apps, you can install the cordova-plugin-file to increase the device’s cache size. This
plugin isn’t available for JavaScript web apps.

9-2

ORACLE

Chapter 9
Building Apps that Work Offline Using Sync Express

1. Toinstall and use the cordova-plugin-file.
cordova plugin add cordova-plugin-file
2. Copy | oki-cordova-fs-adapters.js fromthe SDK into the directory where you

keep your JavaScript libraries.

3. Add a script element to load | oki - cor dova- f s- adapt er. j s. This must be the first
script that the app fetches and loads. Then the app can load nts. sync. nin.js and
mcs. min. j s as described above.

Configuring Your App to Use Sync Express

To enable Sync Express, add a syncExpr ess entry to

oracle_mobi |l e _cloud_config.js, and use pat h elements in the pol i ci es array to
identify the endpoints that you want to activate Sync Express for. The name that you
use for a path parameter must exactly match the name of the property that uniquely
identifies a returned object. Use a colon to identify the path parameter, such

as :deptld.

Note:

The configuration file can have a syncExpr ess entry for Sync Express or a
sync entry for the Synchronization library, but it can’t have both.

Let's say, for example, that you want to activate Sync Express for all calls to these
endpoints:

e /departnents
e [departments/{deptld}

The department database object has these properties:

dept | d: nunber
name: string

The response object for a department collection looks like this:

{

“deptld": 1,

“name": "Departnent 1"
¥
{

“deptld": 2,

“nane": "Department 2"
}

9-3

ORACLE

Chapter 9
Building Apps that Work Offline Using Sync Express

The corresponding syncExpr ess entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for both endpoints.

var ncs_config = {
"l ogLevel ": nts.LOG LEVEL. | NFQ
"nobi | eBackend": {

"name": "myBackend",
}
"syncExpress": {
"policies": [
{
"path": '/ nobil e/ custom nmyApi/departnents/:deptld(\\d+)?
}
]
}

b

Now let’s say, for example, that you want to include calls to endpoints with
subcollections (nested entities), such as an employees within a department:
e /departments

e /departments/{deptld}

e /departments/{dept!d}/enpl oyees

e /departments/{deptl!d}/enpl oyees/{enpld}

The employee database object has these properties:

dept 1 d: nunber

enpl d: nunmber
nanme: string

The response object for an employee collection looks like this:

[

{
“enpld": 1,
“name": "John Doe"
1
{
“enpld": 2,
"name": "Jane Doe"
}

]

The corresponding syncExpr ess entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for all the endpoints.

var nts_config = {
"l ogLevel ": nts.LOG LEVEL. | NFQ,
“mobi | eBackend": {
" "nmyBackend",

nanme" :

9-4

Chapter 9
Building Apps that Work Offline Using Sync Express

}
"syncExpress": {
"policies": [
{
"path": '/nobil e/ custom myApi/departments/:deptld(\\d
+)/: _enpl oyees?/ :enpl d(\\d+)?
}
]
}
b

Sync Express provides some regular expressions for formulating the path
specification:

» Use acolon (:) plus the property name to indicate either a path parameter or the
name of the property that uniquely identifies each returned object (or both). For
example, for the / depar t ment s endpoint, you must include : dept 1 d(\\ d+) in the
path specification to indicate the unique identifier for a department resource, even
if the API didn’t have a / mobi | e/ cust om nyAPI / depar t nent s/ { dept | d} endpoint.

» Use a question mark (?) to indicate that the path parameter is optional.

* When a path segment represents a collection of children resources (a
subcollection), then you must precede the parameter name with a colon and an
underscore (: _) so that Sync Express stores the response objects in the client
cache as children objects that are associated with the parent object.

e By default, Sync Express assumes that the path parameter is a string. Use (\\ d+)
to indicate that the path parameter must be a numeric value.

For example, given the / nobi | e/ cust oml nyApi / depart nent s/ : dept I d(\\d
+)/: _enpl oyees?/ : enpl d(\\ d+) ? path specification:

e :dept|d specifies a path parameter and also provides the name of the property in
the department object that uniquely identifies a department.

The ? after : dept I d(\\ d+) indicates that this and subsequent parameters are not
required. Thus, the path specification applies to these endpoints:

— [/ nobil e/ cust omf nyApi / depart ment s

— I nobil el cust onf nyApi / depar t ment s/ { dept | d}

— [nobi | e/ cust onf myApi / depart nent s/ {dept | d}/ enpl oyees

— I nobil el cust onl nyApi / depar t ment s/ {dept | d}/ enpl oyees/ { enpl d}

(\\d+) indicates that the path parameter value must be numeric. If the object’s
dept | d property is a string, then you’d use / nobi | e/ cust ont nyApi /
depart nents/: dept|d? instead.

* (:_enpl oyees) identifies a subcollection and indicates that all response objects
must be stored in the client cache as children of the specified dept | d.

ORACLE 9-5

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Configuring Your App to Handle items Arrays

If any response bodies wrap a collection in an i t ens property, such as "itens":
[{"id:":33},{"id:":34}], then you must add the Oracle REST handler to the
syncExpr ess entry in the configuration file, as shown in the following example:

var nts_config = {
"l ogLevel ": nts.LOG LEVEL. | NFQ,
“mobi | eBackend": {
" "nmyBackend",

nanme" :

} o
"syncExpress": {
“handl er": "Oracl eRest Handl er",
“policies": [
{
"path": '/ nobil e/ custom myApi/departnents/:deptld(\\d+)?
}
]
}
b

Making Your App Synchronize Offline Changes Automatically

To make an app synchronize offline changes with the server automatically, add code
to refresh the user interface when the device re-connects (goes online) by making
explicit REST calls, which then flush pending changes automatically.

Building Apps that Work Offline Using the Synchronization

Library

Use the Synchronization library from Android and iOS mobile apps to enable the app
users to continue to use the app when offline.

What Can | Do with the Synchronization Library?

ORACLE

When developing Android and iOS client apps, you, as a mobile app developer, might
often take these goals into consideration:

» Enable updates to app data on mobile devices when connectivity is intermittent or
non-existent.

* Improve performance by minimizing the amount of calls and data transported over
the wire.

The client SDK’s Synchronization library, with its data caching, support for offline
operations, and automated synchronization, enables you to achieve these goals when
you access custom API resources. In addition, through declarative policies, you can
design caching and synchronization policies for your custom APIs that you can apply
across your apps, and adjust without having to modify code.

9-6

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Using the Synchronization Library to Enable Edits to App Data When the Mobile
Device Is Offline

As an example of how you can use the Synchronization library to enable app users to
read, create, update, and delete data when the mobile device is offline, consider some
apps that are designed for the Fix it Fast (FiF) company, which maintains in-house
appliances. The mobile app developer wants to ensure that the apps continue to work
even when there is no internet connection. For example:

A customer uses an FiF mobile app to fill out the details for an incident report
regarding a basement furnace. She then goes to the basement to take a picture of
the furnace's barcode, attaches it to the report, and taps Send. Even though
there’s no internet connection in the basement, the app should enable the
customer to access, change, and send the incident report. As soon as the device
reconnects to the internet, the app should transmit the report and the attached
photo to the server.

During the day, a technician reviews her job list, sorts the jobs by priority, driving
distance, and issue type, and adjusts the priorities as needed. As she completes a
job, she attaches notes to the incident report, and she updates the job status. She
expects to be able to do all these tasks even when she doesn't have access to the
internet. When her device is connected, she expects the app to synchronize her
offline modifications with the server, first synchronizing the essential information,
such as job status, and then synchronizing the less essential information, such as
her notes.

After an unexpectedly long repair, the technician lowers the priority for customer
that is the furthest away, John Doe. Because she is offline, her modifications are
stored in the offline edits in the local cache. During the time she was offline, John
Doe called the office to report that his water heater was now leaking, and the office
changed his priority to high. When the technician goes back on line, the app
synchronizes the updates, and sees that there is a conflict. The app pops up a
notice about the conflict and asks the technician if she still wants to lower the
priority.

To implement these data offline requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
update, and conflict resolution policies in the configuration file.

To ensure that incident reports from the /i nci dent s resource are always
available, that they can be modified while offline, and that the server is updated
with queued offline modifications as soon as the device resumes access, the
mobile app developer sets the following policies for the resource:

— Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM SERVI CE_| F_ONLI NE).

— Update policy: Queue updates if offline and synchronize automatically when
the client app is back online (QUEUE_I F_OFFLI NE)).

To ensure that two technicians don't inadvertently update the same status or
priority for an /i nci dent st at us resource due to queued offline updates, the
mobile app developer sets the following policy:

— Conflict resolution policy: Don’t overwrite the server’s version with the local
version if there’s a conflict. The edited local version is kept in the offline edits

9-7

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

in the local cache, and the mobile app handles the conflict
(PRESERVE_CONFLI CT).

Note:

This assumes that the code for this custom API returns the correct
information, such as the ETag that is used to detect conflicts, as
described in Returning Cacheable Data.

To learn about all the data offline policy options, see Synchronization Policies.

Using the Synchronization Library to Improve Performance

As an example of how you can use the Synchronization library to improve
performance, consider the FiF apps that we discussed previously.

Before leaving the office every morning, the technicians start an FiF app on their
tablets, and pull a list of their jobs for the day. Because the customer information
such as name, phone, and address is static, the app can cache that data upon
startup and not re-retrieve it during the day to improve performance. Other
information, such as incident status and priority, must be kept current.

Expired data needs to be cleared whenever the app is restarted.

The finance department designed an API that supplies a customer's default credit
card information. Because the information is fairly static, mobile apps might
consider caching that information to improve performance. However, the finance
department wants to ensure that mobile apps never cache that information.

To implement these performance requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
expiration, and eviction policies in the configuration file.

To cache the information from the / cust oner resource so that it's retrieved from
the server on startup, and, after that from the local cache only, the mobile app
developer sets the following policies:

— Expiration policy: Mark resources as expired when the client application
restarts (EXPI RE_ON_RESTART).

— Euviction policy: Delete expired resources from the local cache when the client
application restarts (EVI CT_ON_EXPI RY_AT_STARTUP).

— Fetch policy: Fetch resource from the server only if it isn't in the local cache or
is expired (FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY).

To ensure that the priority and status from the /i nci dent st at us resource is

always available, but stays as current as possible;

— Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM SERVI CE_| F_ONLI NE).

— Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVI CT_ON_EXPI RY_AT_STARTUP).

— Expiration policy: Mark a resource as expired when the client application
restarts. Update the local cache with the latest version from the server the next
time the client application calls the resource (EXPI RE_ON_RESTART).

9-8

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

* To ensure that none of the information from the / cr edi t car ds resource is cached,
the custom code that implements this APl makes sure that all HTTP responses
include the Or acl e- Mobi | e- Sync- No- St or e header set to tr ue.

To learn about all the data caching policy options, see Synchronization Policies. To
learn about the synchronization headers, see Defining Synchronization Policies and
Cache Settings in a Response Header.

Synchronization Library Process Flow

To help you understand how the parts fit together, here’s an explanation of how the
Synchronization library does the following:

e Manages objects in the local cache

e Uses synchronization policies to retrieve resources from either the local cache or
the server

e Handles object updates

When the mobile app makes a request through the Synchronization library to get data
from a custom API, the Synchronization library looks at the fetch policy setting to
determine whether to get the objects from the server or the local cache. Whenever the
Synchronization library fetches objects from the server, it refreshes the local cache
with the newly fetched objects.

Depending on the policy settings, the Synchronization library might also periodically
refresh expired items in the local cache using a background process.

When the user edits an object, the following occurs depending on whether the mobile
device is online or offline:

e Online edit: An update request is sent to the server.

» Offline edit: The edited object is stored in the offline edits in the local cache. When
the app goes online, a background process sends a request to update the
resource on the server.

If the conflict resolution policy is CLI ENT_W NS, the update request includes an | f -

Mat ch header of * so that the server updates the resource without conflict. Otherwise
the request includes an | f - Mat ch header that is set to the ETag that was last returned
by the server.

To learn more about the synchronization policy types and options and how to set
them, see Synchronization Policies.

Video: Overview of the Data Offline & Synchronization API

To learn more about how the Synchronization library uses caching to enable a client
app to work offline as well as improve performance, take a look at this video:

@Video

Android Synchronization Library

This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

ORACLE 9-9

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13339

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

For detailed information about the library, see Oracle Mobile Cloud, Enterprise Android
SDK Reference.

Tip:

The client SDK download page contains an exanpl es zip, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the Android Synchronization Library

1.

Ensure that the Andr oi dMani f est. xnl file contains the following entries.

VRl TE_EXTERNAL STORAGE lets the Synchronization library maintain the local cache.
ACCESS_NETWORK_STATE lets the Synchronization library determine the connection
status.

<uses- per m ssi on

andr oi d: name="andr oi d. per ni ssi on. WRl TE_EXTERNAL_STORAGE" />
<uses- per m ssi on

andr oi d: nane="andr oi d. per ni ssi on. ACCESS_NETWORK_STATE" />

Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

As with all mobile apps, instantiate Mobi | eManager, and then instantiate

Mobi | eBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

try {
Synchroni zation synchroni zation =

Mobi | eManager . get Manager ().
get Mobi | eBackend(this).
get Servi ceProxy(Synchroni zati on. cl ass) ;
} catch (ServiceProxyException e) {
e.printStackTrace();

}

Fetching Resources

ORACLE

After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

9-10

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssda-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssda-index

ORACLE

1.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

To access an endpoint, instantiate Mobi | eEndpoi nt for that endpoint. This
example instantiates an endpoint for / nobi | e/ cust ont i nci dent report/
i nci dents.

/1 open Endpoi nt
Mobi | eEndpoi nt endpoi nt =
synchroni zat i on. openMobi | eEndpoi nt (
"incidentreport",
"incidents",
Mobi | eQbj ect . cl ass);

(Optional) Add objects or files to the collection. This example adds an object.

Mobi | eChj ect newCbj ect = endpoint. createthject();
JSONObj ect payl oad = new JSONObj ect ();
Il Set properties

try {
payl oad. put ("title", "incident 213");

} catch (JSONException e) {

}

newlbj ect.initialize(null, endpoint, payload);

/1 Add incident

new(bj ect . saveResour ce(new Mobi | eEndpoi nt Cal | back() {

@verride
publ i ¢ void onConpl et e(Exception exception, MbileResource
mobi | eResour ce) {
[1This function is called when the request conpletes

}
1

Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

e FetchQbj ect Bui | der
e FetchCol | ectionBuil der
e FetchFil eBuil der

Here’s an example of creating a fetch builder for a collection.

Fet chCol | ectionBui | der fetchCollectionBuilder = endpoint.fetchChjects();

In this example, we want to filter all the incidents for the signed-in technician
(which is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

fetchCol | ectionBuilder =
fetchCol | ectionBuil der.w thQueryParameter("technician", usernane);

9-11

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Tip:

You can call wi t hQuer yPar anet er as many times as you need to specify
all the query parameters.

Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Or acl e- Mobi | e- Di agnosti c-
Sessi on- | D header. The nDi agLogFi | t er Tag string variable has been set to a
value that uniquely identifies requests that are made using this fetch builder.

fetchCol | ectionBuil der.w thHeader (" Oracl e- Mobi | e- Di agnost i c- Sessi on-
I D', nDiaglogFilterTag);

Use the builder to execute the fetch.

fetchCol | ectionBuil der.execut e(new Mbi | eEndpoi nt Cal | back() {
@wverride
public void onConpl et e(Exception exception, MbileResource
mobi | eResource) {
[/ This function is called when the request conpletes

Mobi | eQbj ect Col | ection col |l ection = (Mbil eChjectCollection)
mobi | eResour ce;
}
1}

If the fetch policy is to fetch the data from the local cache, such as

FETCH FROM SERVI CE_ON_CACHE_M SS, then it's fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

The raw downloaded JSON object is exposed through the JsonChj ect property.
Use this property to set the appropriate values.

Li st objectsList = collection.gethjectsList();

Mobi | eChj ect incident Mobi | eCbj ect = (Mobil eChject)

obj ect sLi st. get (i ndex);

JSONObj ect json = incidentMbil ethject. get JsonQhj ect();
/1 This updates incidentMbileject

json. put("status", "conpleted");

Use one of the Mobi | eObj ect save methods to save the changes on the server.

i nci dent . saveResour ce(new Mobi | eEndpoi nt Cal | back(){

@verride
publ i c void onConpl et e(Exception exception, MbileResource
mobi | eResource) {

}
1

9-12

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

If the device isn’t connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
Synchronization library sends the changes to the server automatically when the
device reconnects with the internet.

8. Use one of the Mbi | eChj ect delete methods to delete an object.

i nci dent . del et eResour ce(new Mobi | eEndpoi nt Cal | back() {

@wverride
public void onConpl et e(Exception exception, MbileResource
mobi | eResource) {

}
1

If the client is offline, then the library deletes the object in the local cache. It
deletes the object on the server when the client is online again.

Fetching Filtered Resources

ORACLE

You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as nobi | eResour ce objects, convert the objects to JISON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the nobi | eResour ce objects in the local cache because the objects are just blobs
of data. The solution is to use a custom Mbi | e(bj ect . When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We'll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom Mbi | eQbj ect class, you can use the
fetch builder’s quer yFor method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn't affect the way
that the Synchronization library retrieves results from the server. Whenever you
execute the fetch builder, the library first looks at the fetch policy setting to determine
whether to refresh the local cache. If the policy specifies that it must refresh the local
cache from the server, then it retrieves all the objects, regardless of the filter that you
specify using the quer yFor method. Regardless of the fetch policy and whether it
refreshed the local cache, the library then uses the quer yFor method to filter the data
in the local cache, and return the filtered results. That is, regardless of whether the
device is online or offline, and regardless of whether the library fetches data from the
server or uses the local cache, the quer yFor method filters the results based on the
guery property and value.

1. Create a class that extends Mbi | eQbj ect . Add a property for every field that you'll
use in the app. Then override onDat aLoad() and get Propert yNames() and create
getters and setters for the fields. Here's an example of creating an
I nci dent Cust onvbbi | eChj ect class.

public class IncidentCuston\bbil eChject extends Mbilehject {
private int id;
private String title;
private String technician;
private String custoner;

9-13

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

private String status;
private String priority;
private String createdBy;
private String createdOn;
private String nodifiedBy;
private String nodifiedOn;

[/ This method tells the Synchronization |ibrary how to get the
val ues fromthe JSON object.
@verride
protected void onDatalLoad(){
tryf
if(jsontoject !'= null){
title = jsonoject.has("title") ?
jsonvj ect.getString("title") : ""
techni cian = jsonQbj ect. has("technician") ?
j sonj ect.get String("technician") : "'
cust omer = jsonQbj ect. has("custoner") ?
j sonvj ect. get String("custoner") : ""
status = jsonbj ect. has("status") ?
jsonvj ect.get String("status") : ""
createdBy = json(bject.has("createdBy") ?
j son(bj ect.get String("createdBy") : ""
createdOn = json(vj ect.has("createdOn") ?
j son(bj ect.get String("createdOn") : "";
modi fiedBy = jsonQhj ect. has("nodifiedBy") ?
j sonQvj ect. get String("nodifiedBy") : "";
modi fi edOn = j sonQbj ect. has(" nodi fi edOn") ?
j sonvj ect.get String("nmodifiedOn") @ "";
priority = jsonCbject.has("priority") ?
jsonvj ect.getString("priority") : "";
}
} catch (Exception e){
e.printStackTrace();
}
}

/1 The Synchronization library uses this method to determne the
col utm names and data
/] types for the database table for the local cache.
@verride
publ i ¢ voi d get PropertyNames(Map<String, PropertyType> properties,
Li st <Li st<String>> i ndexes) {
properties.put("title", PropertyType.String);
properties.put("technician", PropertyType.String);
properties.put("customer”, PropertyType.String);
properties.put("status", PropertyType.String);
properties.put("createdBy", PropertyType.String);
properties.put("createdOn", PropertyType.String);
properties.put ("modifiedBy", PropertyType.String);
properties.put("modifiedOn", PropertyType.String);
properties.put("priority", PropertyType.String);
}

[/ CGetters and Setters

ORACLE 9-14

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

public int getld() {

return id;

}

public void setld(int id) {
this.id =id;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getTechnician() {
return technician;

}

publ i ¢ void setTechnician(String technician) {
this.technician = technician;

}

public String getCustomer() {
return customer;

}

publ i c void setCustomer(String custonmer) {
this.customer = custoner;

}

public String getStatus() {
return status;

}

public void setStatus(String status) {
this.status = status;

}

public String getPriority() {
return priority;

}

public void setPriority(String priority) {
this.priority = priority;
}

public String getCreatedBy() {
return createdBy;

}

public void setCreatedBy(String createdBy) {
this.createdBy = createdBy;

9-15

ORACLE

2.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

}

public String get CreatedOn() {
return createdOn;

}

public void setCreatedOn(String createdOn) {
this.createdOn = createdOn;

}

public String getMdifiedBy() {
return nodifi edBy;

}

publ i c void setMdifiedBy(String nodifiedBy) {
this. modi fiedBy = nodifiedBy;
}

public String getMdifiedOn() {
return nmodifiedOn;

}

public void setMdifiedOn(String nodifiedOn) {
this.nodifiedOn = nodifiedOn;
}

}

Open the endpoint for the custom class.

Mobi | eEndpoi nt endpoi nt =
synchroni zat i on. openMobi | eEndpoi nt (
“incidentreport”,
"incidents",
I nci dent Cust omvbbi | etoj ect . cl ass);

When you create the fetch builder, use the quer yFor method to add a query to
filter the results by status.

Fet chCol | ectionBuil der fetchCollectionBuilder = endpoint.fetchCbjects();
fetchCol I ectionBuil der = fetchCol I ecti onBuil der. queryFor (

"status",

Conpari son. Equal s,

"pending");

Fetch the data.

fetchCol | ectionBuil der. execut e(new Mbi |l eEndpoi nt Cal | back() {
@wverride
public void onConpl et e(Exception exception, MbbileResource
mobi | eResour ce) {
Mobi | eChj ect Col | ection col | ection = (NMbbileChjectCollection)
mobi | eResour ce

9-16

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

}
})

5. The raw downloaded JSON object is exposed through the JsonQbj ect property.
Use this property to access the appropriate values.

Incident incident = (Incident) collection.getjectsList().get(index);
JSONObj ect json = incident.getJsonoject();
json.put("status", "conpleted");

6. Save and delete objects the same way you save and delete OMCMobi | eQbj ect
objects.

/] Save the object
i nci dent . saveResour ce (new Mbbi | eEndpoi nt Cal | back() {

1

/1 Delete the object
i nci dent . del et eResour ce (new Mobi | eEndpoi nt Cal | back() {

1

Specifying Which Resources to Synchronize First

When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the Mbi | eResour ce class’ pi nResour ce method
to set a resource’s priority (Mobi | eFi | e, Mobi | eCbj ect, and Mobi | eQbj ect Col | ecti on
inherit from this class).

bui | der. execut e(new Mobi | eEndpoi nt Cal | back(){
@wverride
public void onCompl et e(Exception exception, MbileResource
mobi | eResource) {
mobi | eResour ce. pi nResource(PinPriority. H gh);
}
IOk

Setting a Resource’s Synchronization Policies Programmatically

ORACLE

When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Setting a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

9-17

1.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Create the fetch builder.

Fet chCol | ectionBui | der fetchCollectionBuilder = endpoint.fetchCbjects();

Create a SyncPol i cy object and set the policies to override. This example
overrides all the policies:

SyncPolicy policy = new SyncPolicy();

policy. set Fet chPol i cy(SyncPol i cy. FETCH POLI CY_FETCH FROM SERVI CE_| F_ONLI
NE) ;

pol i cy. set ExpirationPolicy(SyncPolicy. EXPI RATI ON_POLI CY_EXPI RE_ON_RESTAR
7,

pol i cy. set Evi ctionPol i cy(SyncPolicy. EVI CTI ON_PCLI CY_EVI CT_ON_EXPI RY_AT_S
TARTUP) :

pol i cy. set Updat ePol i cy(SyncPol i cy. UPDATE PCLI CY_QUEUE | F_OFFLI NE) ;
policy. set ConflictResol utionPolicy(SyncPolicy. CONFLI CT_RESCLUTI ON_PCLI CY
_CLIENT_WNS);

policy. set NoCache(fal se);

Set the builder’s synchronization policy.

fetchCol | ectionBuilder = fetchCol |l ectionBuilder.w thPolicy(policy);

Changing a Resource Object’s Synchronization Policy

Sometimes, you'll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_W NS.

1.

Get the synchronization policy for the mobile resource object.

SyncPol i cy policy = mncident Mbileject. get Current SyncPolicy();

Set the conflict resolution policy to CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_W NS.
All other policies remain as is.

policy. set ConflictResol utionPolicy(SyncPolicy. CONFLI CT_RESCLUTI ON_PQLI CY
_CLIENT_WNS);

Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResour ce (to perform an add or update). For a delete, you
must call r el oadResour ce for the policy change to take affect before you call

del et eResour ce.

m nci dent Mobi | eQbj ect . set SyncPol i cy(policy);

Detecting and Handling Conflicts

ORACLE

In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLI CT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.

9-18

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary's device reconnects with the internet, and the Synchronization library
automatically sends Mary’s offline edit to the server. The server responds with a 412
Precondi ti on Fail ed status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
it makes available both the modified object (from the offline edits in the local cache),
and the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

* To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the of fI i neResour ceSynchr oni zed method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

* To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResour ceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the Ul with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don't initialize CachedResour ceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the Synchroni zati on of fI i neResour ceSynchr oni zed
method to detect conflicts after the Synchronization library has finished synchronizing
the cache. In this example, the only mobile endpoint that the mobile app accesses is
the i nci dent s endpoint. This example shows how to handle both custom and generic
Mobi | eQbj ect objects.

synchroni zati on. of f | i neResour ceSynchr oni zed(new
SyncResour ceUpdat edCal | back() {

@verride

publ i ¢ voi d onResourceUpdat ed(String uri, MbileResource
mobi | eResour ce) {

i f (mobileResource == null) {
Log.i ("of flineResourceSync", "Resource for " + uri +
"deleted fromcache after offline synchronization");

9-19

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

return;

}

String result = null;
i f (mobileResource. hasConflict()) {

result = "with conflicts";

} else if (robileResource.hasOiflineUpdates()) {
result = "with offline update";

} else if (robileResource.hasCOiflineCommitError()) {
result = "with error";

} else {
result = "successful ly";

}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f (mobileResource instanceof |ncidentCustombbileCbject) {

I nci dent Cust onvbbi | eQbj ect anl ncident =
(I'nci dent Cust omvbbi | eCbj ect) nobi | eResour ce;

Log.i("of flineResourceSync", "COffline edits for " +
anincident.getTitle()
+ " finished with result :

+result);

/1 I'ncident has been synchronized with the service object.
/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

} else {

Il Process has finished.

/1 Mobil ethject/MbileFile has been synchronized with the
service object.

/1 You can show a pop up or reload the resources in the U,

/1 such as in the main thread.

}
IO

Detecting Conflicts When the Library Updates the Cache

Here’'s an example of using the Synchroni zat i on cachedResour ceChanged method to
detect conflicts whenever a cached resource is updated either from new data from the
service or an update or delete from the mobile app. In this example, the only mobile
endpoint that the mobile app accesses is the i nci dent s endpoint. This example shows
how to handle both custom and generic Mbi | eChj ect objects.

synchroni zat i on. cachedResour ceChanged(new SyncResour ceUpdat edCal | back() {
@verride
publ i ¢ voi d onResourceUpdat ed(String uri, MobileResource
mobi | eResour ce) {
i f (nobileResource == null) {
Log.i ("cachedResour ceChanged", "Resource for " + uri +

9-20

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

"del eted fromcache");
return;

}

String result = null;
i f (mobileResource. hasConflict()) {

result = "with conflicts";

} else if (robileResource.hasOiflineUpdates()) {
result = "with offline update";

} else if (rmobileResource.hasCOiflineCommitError()) {
result = "with error";

} else {
result = "successful ly";

}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f (mobileResource instanceof |ncidentCustombbileCbject) {

I nci dent Cust onvbbi | eQbj ect anl ncident =
(I'nci dent Cust omvbbi | eCbj ect) nobi | eResour ce;

Log. i ("cachedResour ceChanged", "Cache changes for " +
anincident.getTitle()
+ " finished with result :

+result);

/1 Custom object changed in local cache. You can show a pop up
/1 or reload the resources in the U, such as in the main

thread.
} else {
Log. i ("cachedResour ceChanged", "Cache changes finished with
result :" + result);
/1 OMCMbbi | e(hj ect, OMCMbbi |l eFile, or OMCMbbil eCbject Col | ection
/1 object changed in local cache.
/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.
}
}
1

Reviewing and Discarding Offline Edits

ORACLE

You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

e Switch the app to work-offline mode and switch back to work-online mode.
e List the resources that have been changed while offline.

» Discard all offline edits.

9-21

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Discard a resource’s offline edits.

The Synchr oni zat i on class provides the methods for reviewing and discarding offline
edits. As shown in the following steps, you use its get Net wor kSt at us and

set O f | i neMbde methods, along with the SyncNet wor kSt at us enumeration to switch
the work-offline mode on and off. You use its | oadO f | i neResour ces method to get all
the offline edits that haven't been synchronized with the server, and its

di scardO f | i neUpdat es method to discard all offline edits.

1.

At application start-up, instantiate Synchroni zat i on and open the mobile endpoint.

try {
synchroni zation =

Mobbi | eManager . get Manager () . get Mobi | eBackend(thi s). get Servi ceProxy(Synchr
oni zati on. cl ass);

} catch(ServiceProxyException e) {

e.printStackTrace();

}
i nci dent sEndpoi nt = synchroni zat i on. openhbbi | eEndpoi nt (

“incidentreport”,

"incidents",

Mobi | eQhj ect . cl ass);

Add a Swi t ch component to the layout.

<Swi tch
androi d:i d="@i d/ wor kO f | i neSwi t ch"
androi d: | ayout _wi dt h="wrap_content"
androi d: | ayout _hei ght ="wr ap_content"
androi d: | ayout _al i gnPar ent Bot t on¥"t r ue"

andr oi d: ond i ck="changeWr kO f | i neMbde"
androi d: text="Wrk O fline" />

Add the changeWr kO f | i neMbde function, which is called when

wor kOF f i neSwi t ch is clicked. This method uses the Synchroni zati on

get Net wor kSt at us method to determine the current network status, and the

set O f | i neMbde method to switch the work-offline mode on and off. When it calls
set O f | i neMbde, the library synchronizes all offline edits with the server
automatically. Note that calling set O f | i neMbde(t rue) when the device isn't
connected to the internet has no effect.

public void changeWr kO flineMde(View view) {
SyncNet wor kSt at us syncNet wor kSt at us =
synchroni zati on. get Net wor kSt at us() ;
try {
i f (syncNetworkStatus == SyncNetworkStatus. SyncOifline) {
/1 Because setOFflineMde() is a no-op when the device
/1 is offline, don't allow user to swtch modes when
of f1ine.
Toast . makeText (Mai nActivity.this,
"No internet connection. " +
"You can't switch the Work Ofline node on
or off when " +

9-22

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

“there isn't an internet connection."”,
Toast . LENGTH_SHORT) . show() ;
} else {
/] Device is not in "real" offline node.
/1 Switch fromwork online to work offline, or switch from
work offline to work online
/1 setOfflineMdde(true) sets SyncNetworkStatus to
SyncOF f I i neTest
/] setOfflineMde(false) sets SyncNetworkStatus to
SyncOnl i ne
{1 (if the device is actually online)
synchroni zation. set O f | i neMbde(syncNet wor kSt at us ==
SyncNet wor kSt at us. SyncOnl i ne) ;
}
} catch (Exception e) {
/1 Handl e error

}
}

Add code to the onCr eat e method to set the switch according to the current mode.

Switch workOfflineSwitch = (Switch)
findViewByl d(R id.workOfflineSwtch);

wor kOf f 1 i neSwi t ch. set Checked(
synchroni zati on. get Net wor kSt at us() ==
SyncNet wor kSt at us. SyncOFf I i neTest) ;

Add code to display a list of the offline edits. You use the Synchroni zati on

| oadO f | i neResour ces method to get the list. In this example, the mobile app
accesses only the incidents endpoint, and all the items in the offline edits list are of
type Mobi | e(bj ect .

[IDisplay a list of offline edits
synchroni zation. | oadOf f | i neResour ces(new SyncLocal Loadi ngCal | back() {
@verride
publ i ¢ voi d onSuccess(Li st <Mobil eResource> resources) {
Il This list contains all the MobileResource objects in the
| ocal edit cache
Il In this app, the only nobile endpoint is for incidents
Il So, only MbileCojects are in the edit cache
for (MobileResource resource : resources) {
/1 Put your code to add the incident to the display Iist
here

}
@verride

public void onError(String errorMessage) {
[/ Handl e the error

}
1

9-23

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

6. Add a button to discard all offline edits. Use code like the following to discard the
edits.

final Button nDiscardEdits = (Button)
findviewByl d(R id. buttonDi scardCOfflineEdits);

mDi scar dEdi ts. set OnCl i ckLi stener(new Vi ew. OnCli ckLi stener() {
@verride
public void ondick(Viewv) {
[/Discard all offline edits:
I/Deletes all resources in the edit cache,
/1but keeps all resources in the local cache as is
synchroni zati on. di scardCf f| i neUpdat es(new
SyncDi scardOf f | i neResour ceCal | back() {
@verride
public void onError(String errorMessage) {
[/ Handl e the error

7. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's r el oadResour ce
method with the di scardO f | i neUpdat es parameter set to t r ue and the
r el oadFr onBer vi ce parameter set to f al se.

In the following code example, ar r aySel ect edResour cesToDi scardOf flineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

try {
for (int index = 0; index <
arraySel ect edResour cesToDi scardO flineEdits. | ength; index++) {

Mobi | eResour ce mobi | eResource =
arraySel ect edResour cesToDi scardOf f | i neEdi t s[i ndex];
mobi | eResour ce. rel oadResour ce(true, fal se, new
Mobi | eEndpoi nt Cal | back() {
@verride
public void onConpl et e(Exception exception, MbileResource
mobi | eResour ce) {
if (exception !=null) {
Il handl e exception here
} else {
Il handl e success here

}
}
1

} catch (Exception ex) {
/1 handl e exception here

}

ORACLE 9-24

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

I0S Synchronization Library

This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud, Enterprise iOS
SDK Reference.

Tip:

The client SDK download page contains an exanpl es zip, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the iOS Synchronization Library

1.

2.

3.

Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

As with all mobile apps, instantiate OMCMbbi | eManager , and then instantiate
OMVCMbbi | eBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

OMCSynchr oni zat i on* synchroni zati on = [nbe synchroni zation];
[synchroni zation initialize];

Fetching Resources

ORACLE

After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1.

To access an endpoint, instantiate OMCMbbi | eEndpoi nt for that endpoint. This
example instantiates an endpoint for / nobi | e/ cust onl i nci dent report/
i nci dents.

/'l open Endpoi nt

OMCMobi | eEndpoi nt* endpoint = [

synchroni zati on openEndpoi nt: OMCMbbi | eQbj ect . cl ass
api Name: @i nci dentreport”

endpoi nt Pat h: @i nci dent s"

1;

9-25

https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index
https://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=mssdi-index

ORACLE

2.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

(Optional) Add objects or files to the collection. This example adds an object.

OMCMobi | eQbj ect* newhj ect = [nobi | eEndpoi nt createj ect];
Il Set properties
[newdbj ect addOr Updat eJsonProperty: @title"

propertyVal ue: @i nci dent 213"];

[newhj ect saveResour ceOnSuccess: (i d mobil eQhj ect) {

} OnError:~(NSError *error) {

H;

Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

e OMCFet chbj ect Bui | der
e OMCFet chbj ect Col | ecti onBui | der
e OMCFet chFi | eBui | der

Here’s an example of creating a fetch builder for a collection.

OMCFet chObj ect Col | ecti onBui | der* buil der = [endpoi nt
fet chOoj ect Col | ecti onBui | der];

In this example, we want to get all the incidents for the signed-in technician (which
is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

[buil der withParanNane: @technician" paranVal ue: usernane];

You can call wi t hPar amNane as many times as you need to specify all the query
parameters.

Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Or acl e- Mobi | e- Di agnosti c-

Sessi on- | Dheader. The di agLogFi | t er Tag string variable has been set to a value
that uniquely identifies requests that are made using this fetch builder.

[buil der setRequestHeaders: [NSDi ctionary dictionaryWthChjectsAndKeys:
di agLogFi | terTag, @ Oracl e-Mbbile-Diagnostic-Session-1D", nil]];

Use the builder to execute the fetch.

[bui | der execut eFet chOnSuccess: *(OMCMbbi | eCbj ect Col | ecti on

*mobi | eCbj ect Col ection) {
Il This function is called when the request finishes successfully.
Il Get all the objects fromthe collection.
NSArray* collection = [nobileCbjectCol | ection get Mbil ethjects];

} OnError:~(NSError *error) {

9-26

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Il This function is called when the request finishes with an error

H

If the fetch policy is to fetch the data from the local cache, such as

FETCH_FROM SERVI CE_ON _CACHE M SS, then it's fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

The raw downloaded JSON object is exposed through the j sonChj ect property.
You can use this property to set the appropriate values, or use
addOr Updat eJsonProperty.

OMCMbbi | eQhj ect* incident = [collection objectAtlndex:index];

/1 You can access raw JSON

NSDi ctionary* json = [incident jsonChject];

/1 O use the addOr Updat eJsonProperty nethod

[incident addOrUpdat eJsonProperty: @status" propertyVal ue: @conpl eted"];

Use one of the OMCMbbi | eChj ect save methods to save the changes on the
server.

[incident saveResourceOnSuccess:*(id object){
Il Block that is called after the request finishes successfully

}OnError; ~(NSError *error){
/1 Block that is called after the request finishes with an error

N

If the device isn't connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Use one of the OMCMbbi | eQbj ect delete methods to delete an object.

[incident del eteResourceOnError:~(NSError *error) {

E

If the device isn’t connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Fetching Filtered Resources

ORACLE

You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as nobi | eResour ce objects, convert the objects to JISON
objects, and then filter the items. However, when the device is offline, your app can't
filter the nobi | eResour ce objects in the local cache because the objects are just blobs
of data. The solution is to use a custom Mobi | e(oj ect . When you do this, the local

9-27

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We'll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom Mbi | eQbj ect class, you can use the
fetch builder’s quer yFor Proper t y method to specify the filter to use in the local cache.
Note that this method is for filtering JSON objects from the local cache. It doesn't
affect the way that the Synchronization library retrieves results from the server.
Whenever you execute the fetch builder, the library first looks at the fetch policy setting
to determine whether to refresh the local cache. If the policy specifies that it must
refresh the local cache from the server, then it retrieves all the objects, regardless of
the filter that you specify using the quer yFor Pr opert y method. Regardless of the fetch
policy and whether it refreshed the local cache, the library then uses the

quer yFor Property method to filter the data in the local cache, and return the filtered
results. That is, regardless of whether the device is online or offline, and regardless of
whether the library fetches data from the server or uses the local cache, the

quer yFor Property method filters the results based on the query property and value.

1. Create a custom mobile object class that extends OMCMobi | eQoj ect , define all the
properties that you need for your custom mobile object, and synthesize those
properties. Here’s an example of the i nci dent . h header file for an | nci dent class.

#i nport <Foundati on/ Foundati on. h>
#i nport " OMCMbbi | e(oj ect . h"

@nterface Incident : OMCMobi |l eChject {

}

/1 Properties

@roperty (nonatonmic, retain) NSNumber* id
@roperty (nonatomic, retain) NSString* title;
@roperty (nonatomic, retain) NSString* customer;
@roperty (nonatomic, retain) NSString* status;
@roperty (nonatomic, retain) NSString* priority;

@nd

2. When you initialize the mobile backend's synchronization service, use the
initializeWthMbileCbjectEntities method to create database entities for the
I nci dent custom class.

NSArray* entities = [NSArray arrayWthQbjects:[Incident class], nil];
[synchroni zation initializeWthMbileQbjectEntities:entities];

You can include more than one custom object in the initialization.

3. Open the endpoint for the custom class.

OW\bbi | eEndpoi nt* endpoint = [
synchroni zati on openEndpoi nt: I nci dent. cl ass
api Name: @i nci dentreport”
endpoi nt Pat h: @i nci dent s"

1;

9-28

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

4. When you create the fetch builder, use the quer yFor Property method to add a
query to filter the results by status.

OMCFet chCbj ect Col | ecti onBui | der* bui | der = [endpoi nt
fet chQoj ect Col | ecti onBui | der];

[buil der queryForProperty: @status"
conpari si on: Equal s
conpar eWt h: @ pendi ng"] ;

5. Fetch the data.

[bui | der execut eFet chOnSuccess: *(OMCMbbi | eCbj ect Col | ecti on
*mobi | eCbj ect Col ection) {
Il This function is called when the request finishes successfully.
Il Get all the objects fromthe collection.
NSArray* col | ection = [nobilehjectCollection getMbileljects];
} OnError:~(NSError *error) {
[l This function is called when the request finishes with an error

H

6. The raw downloaded JSON object is exposed through the j son(bj ect property.
You can use this property to set the appropriate values, or you can access the
properties directly.

Incident* incident = [collection objectAtlndex:index];
Il You can access raw JSON

NSDi ctionary* json = [incident jsonQhject];

/1 O you can access the property directly
incident.status = @conpl eted";

7. Save and delete objects the same way you save and delete OMCMobi | eQbj ect
objects.

[/ Save the object
[incident saveResourceOnSuccess: *(id object){

}OnError: A(NSError *error) {

Ik

/| Delete the object
[incident del eteResourceOnError:~(NSError *error) {

H
Specifying Which Resources To Synchronize First

When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before

ORACLE 9-29

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the OMCMbbi | eResour ce class’ pi nResour ce
method to set a resource’s priority (OMCMobi | eFi | e, OMCMobi | eQbj ect, and
OMCMobi | eCbj ect Col | ect i on inherit from this class).

[bui | der execut eFet chOnSuccess: *(OMCMbbi | eCbj ect Col | ection
*mobi | eCbj ect Col ection) {
[mobi | e(oj ect Col | ecti on pinResource: H gh] ;
Il Get all the objects fromthe collection
NSArray* objects = [nobil e(bject Col | ection get Mbil eChjects];
} OnError:~(NSError *error) {
[l This function is called when the request finishes with an error

H

Setting a Resource’s Synchronization Policies Programmatically

ORACLE

When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Changing a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

OMCFet chCbj ect Col | ecti onBui | der* buil der = [endpoi nt
fet chOoj ect Col | ecti onBui | der];

2. Create an OMCSyncPol i cy object, and then set the policies that you want to
override. This example overrides all the policies:

OMCSyncPol i cy* policy = [[OMCSyncPolicy alloc] init];
policy.fetch_Policy = FETCH POLI CY_FETCH FROM SERVI CE_| F_ONLI NE;
policy.expiration_Policy = EXPlI RATI ON_POLI CY_EXPI RE_ON_RESTART;
policy.eviction_Policy = EVICTI ON_POLI CY_EVI CT_ON_EXPI RY_AT_STARTUP;
policy. update_Policy = UPDATE _PCLI CY_QUEUE_| F_OFFLI NE;
policy.conflictResol ution_policy =

CONFLI CT_RESOLUTI ON_PQLI CY_CLI ENT_WNS;

policy.no_cache = fal se;

3. Set the builder’s synchronization policy.

[buil der setSyncPolicy: policy];

9-30

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Changing a Resource Object’s Synchronization Policy

Sometimes, you'll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_W NS.

1. Get the synchronization policy for the mobile resource object. In this example,
anl nci dent is an OMCMobi | eQoj ect .

OMCSyncPol i cy* policy = [anlncident getCurrentSyncPolicy];

2. Set the conflict resolution policy to CONFLI CT_RESCLUTI ON_POLI CY_CLI ENT_W NS.
All other policies remain as is.

policy.conflictResolution_policy =
CONFLI CT_RESCLUTI ON_PQLI CY_CLI ENT_WNS;

3. Set the mobile resource object’'s synchronization policy. This change doesn't take
affect until you call saveResour ce (to perform an add or update). For a delete, you
must call r el oadResour ce for the policy change to take affect before you call
del et eResour ce.

[anl ncident set SyncPolicy: policy];

Detecting and Handling Conflicts

ORACLE

In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLI CT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the library automatically sends
Mary’s offline edit to the server. The server responds with a 412 Precondition Fail ed
status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
the library makes available both the modified object (from the offline edits in the local
cache), and the current server version to enable you to handle the conflict in your
code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

9-31

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

* To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the of fI i neResour ceSynchr oni zed method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

e To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResour ceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the Ul with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don't initialize CachedResour ceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the OMCSynchr oni zat i on of f | i neResour ceSynchr oni zed
method to detect conflicts after the library has finished synchronizing the cache. In this
example, the only mobile endpoint that the mobile app accesses is the i nci dent s
endpoint. This example shows how to handle both custom and generic Mobi | eQbj ect
objects.

[sync of flineResourceSynchronized: *(NSString *uri, id nobileResource) {

if (!nobileResource) {
NSLog(@ Resource for %@del eted from cache after offline
synchroni zation ", uri);
return;

}

NSString* result = nil;

if (((OMCMobileResource*) nobil eResource).hasConflicts) {
result = @with conflicts";

}

else if (((OVC\bbileResource*)
mobi | eResour ce). hasO flineCommitError) {
result = @with error";

}
el se {

result = @successfully";
}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f([mobi | eResource isKindOfd ass:[Incident class]]) {
I ncident* anlncident = nobileResource;

NSLog(@Offline edits for 9%@finished %@", anlncident.title,
result);

/1 I'ncident has been synchronized with the service object.

9-32

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

/1 \When mobi | eResource is a custom Mbil eCbject class,

/1 and hasConflicts is true,

/1 then both the MbileCbject class and its jsonChject
property

/1 contain the local edited copy and the

/1 jsonChjectPersistentState property contains the server copy

}

el se {

OVCMobi | eResour ce* aMbbi | eResource = nmobi | eResour ce;
NSLog(@Offline edits for resource %@finished %@,
aMobi | eResource. uri, result)

/1 OMCMbbi | ethj ect or OMCMbbi | eFil e has been synchronized
/1 with the service object.

/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

/1 \Wen mobi | eResource is an OMCMbbi | e(bj ect

/1 and hasConflicts is true,

/1 then its jsonCbject property contains the local edited copy
and

/1 its jsonQbjectPersistentState property contains the server
copy

}
H

Detecting Conflicts When the Library Updates the Cache

Here’'s an example of using the OMCSynchr oni zat i on cachedResour ceChanged method
to detect conflicts whenever a cached resource is updated either from new data from
the service or an update or delete from the mobile app. In this example, the only
mobile endpoint that the mobile app accesses is the i nci dent s endpoint. This
example shows how to handle both custom and generic Mbi | eQbj ect objects.

[sync cachedResour ceChanged: *(NSString *uri, id nobileResource) {

if (!nobileResource) {
NSLog(@ Resource for %@del eted fromcache ", uri);
return;,

}

NSString* result =nil;
if (((OMCMobileResource*) nobil eResource).hasConflicts) {
result = @with conflicts";
}
else if (((OVCMobil eResource*)
mobi | eResour ce). hasO fl i neUpdates) {
result = @with offline update";

}
else if (((OVCMobil eResource*)

ORACLE 9-33

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

mobi | eResour ce). hasOf flineCommitError) {
result = @with error";

}
el se {

result = @successful ly";
}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f ([mobi | eResource isKindOfd ass:[Incident class]]) {
I ncident* anlncident = nobileResource;

NSLog(@ Cache changes for %@finished %@", anlncident.title,

result);
/1 Custom object changed in local cache. You can show a pop up
/1 or reload the resources in the U, such as in the main
t hr ead.
}
el se {

OMCMbbi | eResour ce* aMobi | eResour ce = nobi | eResour ce;
NSLog(@ Cache changes for %@fini shed %@",
aMobi | eResource. uri, result);
/1 OMC\Wbbi | ethj ect, OMCMbbi | eFile, or
OMCMbbi | eQbj ect Col | ecti on
/1 object changed in local cache.
/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

}
s

Reviewing and Discarding Offline Edits

ORACLE

You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

e Switch the app to work-offline mode and switch back to work-online mode.
e List the resources that have been changed while offline.

+ Discard all offline edits.

» Discard a resource’s offline edits.

The OMCSynchr oni zat i on class provides the methods for working offline, and for
reviewing and discarding offline edits. As shown in the following steps, you use its
Cet Net wor kSt at us and set O f | i neMbde methods, along with the SyncNet wor kSt at us
constants to switch the work-offline mode on and off. You use its

| oadOF f 1 i neResour cesOnSuccess method to get all the offline edits that haven’t been
synchronized with the server, and its di scar dOf f | i neUpdat esOnEr r or method to

9-34

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

discard all offline edits. You also can discard a specific resource’s offline updates by
calling the resource’s r el oadResour ce method.

1. Add a button to switch between work-online mode and work-offline mode. Use
code like the following to switch modes when the user clicks the button. You use
the OMCSynchr oni zat i on Get Net wor kSt at us method to determine the current
network status, and the set O f | i neMbde method to switch the work-offline mode
on and off. When you call set O f | i neMde(f al se), the library synchronizes all
offline edits with the server automatically. Note that calling set O f | i neMbde when
the device isn’'t connected to the internet has no effect.

- (IBAction) switchCOflineNbde: (id)sender {

/] Get current status
SyncNet wor kSt at us networkStatus = [synchroni zati on
get Net wor kSt at us] ;

if (networkStatus == SyncOfline) {

U AlertController *myAlertController = [U AlertController
alertControllerWthTitle: @Sorry!"
message: @ You can't switch to Wrk O fline node when there
isn't an internet connection."”
preferredStyle: U AlertControllerStyleAlert J;
U Al ert Action* okBtn = [U Al ertAction
actionWthTitle: @K'
style: U AlertActionStyl eDefaul t
handl er: (U Al ert Action * action)
{
[myAl ertControl | er
di smi ssVi ewCont rol | er Ani mat ed: YES

conpletion:nil];
H
[myAlertControl | er addAction: okBtn];
[sel f presentViewController:nmyAlertController
ani mat ed: YES
conpletion:nil];

}
el se {
[ontSynchroni zation set O flineNMbde: (networkStatus ==
Syncnline)];

/1 Get updated status
networ kStatus = [ontSynchroni zati on get Net wor kSt at us];

if (networkStatus == SyncOfflineTest) {

I bl NetworkStatus.text = @Wrking offline.";

}

el se {

| bl NetworkStatus.text = @";

ORACLE 9-35

ORACLE

2.

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

}

Add code to display a list of the offline edits. You use the OMCSynchr oni zat i on
LoadOr f | i neResour cesAsync() method to get the list. In this example, the mobile
app accesses only the incidents endpoint and all items in the offline edits list are of
type Mobi | e(bj ect .

[oncSynchroni zation | oadOf fli neResour cesOnSuccess: *(NSArray
*nobi | eResour ces) {

for (OMCMobi | eResour ce* aResource in nobil eResources) {
/1 Put your code to add the incident to the display Iist
here

}

} onError:~(NSError *error) {

/! Handl e error here.

HE

Add a button to discard all offline edits. Use code like the following to discard the
edits.

[/ Discard all offline edits only.

/'l Resources remain in the cache with their persistent state (that is,

the server version).

[ontSynchroni zation discardOf flineUpdat esOnError: ~(NSError *error) {
[/ Handl e error here

}

The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's r el oadResour ce
method with the di scardO f | i neUpdat es parameter set to YES and the

r el oadFr onBer vi ce parameter set to NO.

In the following code example, arraySel ect edResour cesToDi scardOf f 1 i neEdi ts
is a list of resources that were edited while offline and were selected for discarding
the edits.

for (int index = 0; index <
arraySel ect edResour cesToDi scardOf f | i neEdits. count; index++) {

OMCMbbi | eResour ce* aResource =
[arraySel ect edResour cesToDi scardOf f | i neEdits obj ect At | ndex: i ndex] ;

[aResource rel oadResource: YES
rel oadFr onter vi ce: NO
onSuccess: (i d mobi | eResource) {

/I Offline edits succesfully discarded froma
resource.

9-36

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

s

Making Custom APIs Synchronizable

ORACLE

If your mobile app uses the Synchronization library to access a custom API offline,
then that API should follow the sync-compatibility guidelines and should return data in
a sync-compatible format. You also need to consider whether to configure
synchronization policies for some or all of its resources.

Dasign Implement Configure Sync Enable Data
Sync-Compatible — Sync-Compatible — Fuolicies for » Synchronization
Custom AP Custom AP Custom API with Custormn API

Designing a Synchronization-Compatible API

As described in API Design Considerations, the custom API should follow these
guidelines to be synchronization compatible:

* The resource name should alternate between plural nouns and singular resource
identifiers (rid). For example: /itens/{rid}/subitens/{rid}/.

e For pagination, use the | i ni t and of f set query parameters so that the
Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, then you don't need to specify these parameters.

» Use the or der By query parameter to specify sorting. For example:
or der By=pr opA, propB: desc, propC: asc.

* The API must contain all the necessary endpoints to support data synchronization.
For example, if you have an endpoint that returns a collection, then you must also
have an endpoint that returns a specific item in the collection. See Endpoint
Requirements for Sync Compatibility.

Implementing a Sync-Compatible API

As detailed in Implementing Synchronization-Compatible APIs, the custom API
implementation should follow these guidelines:

e For CET requests, use the custom code SDK's set | t emand addl t emmethods in
your API's custom code to return data in a format that enables the Synchronization
library to more easily cache and synchronize the data in the client’s local cache.
Responses must include the Or acl e- Mobi | e- Sync- Resour ce- Type header, and,
for single items, the ETag header.

e For PUT and DELETE requests, your code must honor the | f - Mat ch header as
follows:

— If the header contains an ETag value, and that value doesn’'t match the ETag
on the server, then the code must not update or delete the item and must

9-37

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

return a 412 HTTP response status (precondition failed) to indicate that the
ETag does not match the server-side object’'s ETag.

— If the header contains a value of * (asterisk), then the server-side's object
must be replaced by the request object (or deleted for a DELETE request).

* For PUT requests, responses must include the Or acl e- Mobi | e- Sync- Resour ce-
Type and ETag headers. If the item was added, then it must include the Locat i on
header. For example Locati on: /nobile/custontincidentreport/incidents/1.

e For POST requests, responses must include the O acl e- Mobi | e- Sync- Resour ce-
Type, Locati on, and ETag headers.

e When you need to control data caching from the server side, use the Or acl e-
Mobi | e- Sync- Evi ct, Oracl e- Mobi | e- Sync- Expi res, and Or acl e- Mobi | e- Sync- No-
St or e headers to override client side configuration.

Configuring Synchronization Policies for a Custom API

As described in Defining Synchronization Policies Using a Configuration File, you use
the configuration file to set the synchronization policies for each mobile backend that
your mobile app accesses. In addition to setting the overall (default) synchronization
policies for each mobile backend, consider the custom API's resources that you'll
access, and determine which, if any, need special synchronization policy configuration.
Say, for example, that your default fetch policy is

FETCH _FROM SERVI CE_ON_CACHE_M SS. The custom API might have a resource for
which the mobile app always needs the most current data. In that case, you can use
the configuration file to specify the FETCH_FROM SERVI CE_| F_ONLI NE fetch policy for
that specific resource. To learn about configuring synchronization policies on a
resource basis, see the Resource-Level Configuration section in Synchronization
Configuration File Structure. Note that you can define synchronization policies at the
default level and the resource level, and that you can override these programmatically,
To learn more, see Synchronization Policy Levels and Precedence.

Synchronization Policies

ORACLE

The Synchronization library uses several types of synchronization policies:

» Conflict Resolution Policies define how to handle offline edits if the server’'s
version changed after the initial data was fetched from the server. For example, if
another client updated a resource, you might want the app’s updates to overwrite
the other client’s update.

» Eviction Policies designate when to delete expired resources in the local cache.
For example, you might want the app to delete all expired resources when the app
starts. Expiration and eviction policies work together to keep stale resources from
cluttering the cache. You can also use them to prevent users seeing out-of-date
data and, by inference, potentially harmful data. Note that these policies apply only
to resources in the local cache, not to server-side resources.

» Expiration Policies define how and when the Synchronization library marks
resources stored in the local cache as out-dated or stale. For example, you might
want all the resources to expire when the app is restarted so that the app fetches
the latest version of a resource from the server the first time the app uses it in that
session. The expiration policy only marks data, allowing you the option to display
stale data if the app is offline. To delete data, use the eviction policy.

9-38

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

» Fetch Policies define how the Synchronization library determines whether to
retrieve resources from the local cache or from the server. For example, if the
resource changes frequently, you might choose to always retrieve it from the
server unless the client is offline.

» Update Policies define what to do if the app modifies resources when the device is
offline. For example, you might want the app to put all changes that are made
while the device is offline in a queue and then synchronize the changes with the
server when the device goes online again.

In addition to configuring the synchronization policies, you also can configure the
cache settings for a mobile backend. You can configure the maximum size of the
cache and you can specify when and how to perform background cache refreshes.
See Synchronization Configuration File Structure.

You can specify synchronization policies for custom API resources at several levels:

e Inthe app’s configuration file, you can specify default synchronization policies for
all custom API endpoints that the library accesses through a specific mobile
backend.

e Inthe app’s configuration file, you can specify synchronization policies for specific
custom API endpoints.

e Inthe custom APl implementation, you can specify a resource’s synchronization
policies in a response header.

e Inthe app, you can specify a resource’s synchronization policies when you fetch
the data.

e Inthe app, you can specify a resource’s synchronization policies when you add,
update, or delete the resource.

When the Synchronization library fetches a resource from the server, it sets the
resource's synchronization policies according to your configuration, and then saves
those policies with the resource. When you configure a policy at more than one level,
the library uses precedence rules to determine which policy level to use. For example,
a response-header policy setting takes precedence over a fetch builder’s policy
setting. If a policy isn’t set at the response header or fetch builder level, then the library
uses the policy’s setting from the configuration file. First, the library looks for the policy
setting for the path that matches the fetch builder's endpoint. When there isn’t a policy
for the endpoint, then it uses the configuration file’s default policy. If a policy isn’t
specified at any level, then the Synchronization library’s hard-coded default policy is
used. The actual rules are somewhat more complex than summarized here. For
complete details see Synchronization Policy Levels and Precedence.

When the library does an automatic refresh, it always uses the

FETCH_PCLI CY_FETCH_FROM SERVI CE fetch policy. For all other policies, the refresh
process honors the response header values, if present, and, when not present, it uses
the policies that were saved with the resource.

When you fetch a resource and the library uses the resource from the cache instead of
from the server, then the resource's policies are not necessarily the policies that you
configured for the object's endpoint. For example, if the resource was fetched using a
fetch collection builder, then the resource's policies are the collection endpoint’s
policies and not the object’s endpoint policies. Thus, you can't be sure what the
resource's policies are. A cached resource’s policies depend on whether it was
originally fetched from the server as part of a collection, as an object, or as part of a
refresh.

9-39

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Defining Synchronization Policies Using a Configuration File shows how to configure
default policies for the mobile backend and for endpoints (paths). Defining
Synchronization Policies and Cache Settings in a Response Header shows how a
custom API can use headers to control whether the response is cached, when it
should expire in the local cache, and when it should be evicted. The following platform-
specific topics show how to get and change a fetch builder’s policies and get and
change a mobile resource’s policies programmatically:

* Android: Setting a Resource’s Synchronization Policies Programmatically

* i0S: Setting a Resource’s Synchronization Policies Programmatically

Video: Introduction to the Data Offline & Sync Policies

If you want a high-level understanding of how to use synchronization policies to drive
data offline and synchronization capabilities, take a look at this video:

@Video

Synchronization Policy Options

Here are the Synchronization library’s policy options for each policy type.

Conflict Resolution Policies

Conflict resolution policies define what to do if, when updating a resource, it's
discovered that the server version was updated after it was last requested. Say, for
example, that the client app retrieved a resource on startup. Soon after, someone else
updated the resource on the server. If the resource is then updated on the client app,
you might want the client updates to overwrite the updates made by someone else.

Policy Description

CLI ENT_W NS Instructs the Synchronization library to
overwrite the server’s version with the local
version regardless of whether there is a
conflict.

PRESERVE_CONFLI CT Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is kept in the offline edits in the local cache,
and the mobile app is responsible for handling
the conflict, such as programmatically merging
the two versions.

SERVER_W NS Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is removed from the offline edits in the local
cache.

Eviction Policies

Eviction policies designate when expired resources in the local cache will be deleted.
For example, you could set the eviction policy to EVI CT_ON_EXPI RY_AT_STARTUP so
expired items are deleted when the app starts. Keep in mind that if a user didn’t use

ORACLE 9-40

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13340

Chapter 9

Building Apps that Work Offline Using the Synchronization Library

the app for several days and it's offline when it starts, the local cache could get
cleared.

These policies apply to resources in the local cache only, not to server-side resources.

Policy

Description

EVI CT_ON_EXPI RY_AT_STARTUP

Instructs the Synchronization library to delete
expired resources from the local cache when
the client application restarts, and update the
local cache with the server copy the next time
it's called by the client application. This can
result in an empty cache, but this is
appropriate if the latest resource is required.

MANUAL_EVI CTI ON

Instructs the Synchronization library that
resources can't be deleted from the local
cache automatically. To evict resources

manually, use an API.

Expiration Policies

Fetch Policies

ORACLE

Expiration policies define how and when the Synchronization library marks resources
stored in the local cache as out-dated or stale. For example, if your resources change
frequently, then you can set the policy to EXPI RE_ON_RESTART to ensure that the local

cache gets cleared periodically, and thus does not become too large.

Policy

Description

EXPI RE_ON_RESTART

Instructs the Synchronization library to mark a
resource as expired when the client
application restarts. The Synchronization
library updates the local cache with the latest
version from the server the next time it's called
by the client application.

EXPlI RE_AFTER

Instructs the Synchronization library to mark
resources as expired after the specified time
(in seconds) set for the expi reAfter
parameter. When you use the EXPI RE_AFTER
policy, you must set a value for the

expi reAft er property.

NEVER_EXPI RE

Instructs the Synchronization library that
resources in the local cache can’t be marked
as expired.

Fetch policies define how the Synchronization library determines whether to retrieve
resources from the local cache or from the server. For example:

If your data doesn’t change often, like a contact’s photo, then a good choice for the
fetch policy is FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY with an
EXPI RE_AFTER expiration policy set to a suitable timeout.

If data will change very frequently and you always want the most current data, but
cached data is acceptable if the user is offline, then use

FETCH_FROM SERVI CE_| F_ONLI NE.

9-41

Chapter 9

Building Apps that Work Offline Using the Synchronization Library

Note that setting the noCache property to t r ue in the configuration file, as described in
Synchronization Configuration File Structure, tells the Synchronization library to ignore
fetch policies and to not add data to the local cache.

Policy

Description

FETCH_FROM CACHE

Instructs the Synchronization library to fetch
resources from the local cache only, not from
the server. Because the Synchronization
library retrieves resources directly from the
cache, this policy can be carried out whether
the client application is online or offline.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_FROM SERVI CE

Instructs the Synchronization library to always
fetch resources directly from the server, not
from the local cache. The library can only
apply this policy when the client application is
online.

If the app is offline, the Synchronization library
returns null.

FETCH_FROM SERVI CE_| F_ONLI NE

Instructs the Synchronization library to fetch
resources from the server when the client
application is online, and to fetch them from
the local cache when the app is offline.

FETCH_FROM SERVI CE_ON_CACHE_M SS

Instructs the Synchronization library to fetch
resources from the local cache if it is present.

If a collection is empty, or if the requested
object isn't in the local cache, then the
Synchronization library fetches it from the
server. If the app is offline, then the
Synchronization library returns null.

FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_
EXPI RY

Instructs the Synchronization library to fetch
resources from the local cache if they are
present and not expired. Make sure to set
expi reAf t er parameter to a suitable time
period.

If a collection is empty or has expired, or if the
resource isn’t in the local cache or has
expired, then the Synchronization library
fetches it from the server. If the app is offline,
then it returns null.

FETCH_FROM CACHE_SCHEDULE_REFRESH

Instructs the Synchronization library to fetch
resources from the local cache and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache, then the
Synchronization library returns null.

ORACLE

9-42

Chapter 9

Building Apps that Work Offline Using the Synchronization Library

Policy

Description

FETCH W TH_REFRESH

Instructs the Synchronization library to fetch
resources from the local cache if they exist
and are not expired, and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache or has
expired, then the Synchronization library
fetches it directly from the server. If the app is
offline, then it returns null.

Update Policies

Update policies define what the app should do if a resource is updated when the client
app is offline.

Policy

Description

UPDATE_| F_ONLI NE

If the client app is offline when the update
request is sent, then the Synchronization
library returns an error.

QUEUE_| F_OFFLI NE

If the client app is offline when the update
request is sent, then the Synchronization
library queues the operation and updates the
local cache when the client app is back online.

Video: Deep-Dive into the Data Offline & Sync Policies

Synchronization Policy Levels and Precedence

ORACLE

If you want an overview of the ways you can configure synchronization policies, which
methods take precedence, and the outcomes of the various policies, take a look at this
video:

@Video

As described in Synchronization Policy Options, there are several policy types that you
can configure for custom APIs. You can configure these at the following levels, which
are listed in order of precedence, from highest to lowest. Note that the order of
precedence applies to both fetch and save calls to a mobile endpoint and

request Wt hURI calls to a synchronization object.

Response-level policies: The server can use HTTP response headers to transmit
expiration and eviction policies, as described in Defining Synchronization Policies
and Cache Settings in a Response Header. The server also can use a header to
instruct the client to not cache a response. These policies take precedence over

policies set for all other levels.

Request-level policies: For requests made through an OMCMbbi | eEndpoi nt , you
can call the fetch builder’s set Pol i cy method to set a policy at the request level.
For requests made using the r equest Wt hURI method, you can use the

SyncPol i cy object to set policies. Request-level policies take precedence over
policies set at the resource and mobile-backend levels.

9-43

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13341

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

* Resource-level policies: In the configuration file, you can define a set of policies
and associate the set with a resource path (URL). You can associate the set with a
specific endpoint, or you can use wildcard characters to associate the set with a
resource hierarchy (/ * applies to all resources at the same level, and / ** applies
to all resources at the same level and any nested levels), as described later in this
section. These policies take precedence over policies that are set at the mobile-
backend level.

When a policy type is defined for more than one resource level, then the
precedence is:

— A synchronization policy type that is defined for a specific endpoint takes
precedence over the same policy type setting for a path that has wildcard
characters. For example, if the URL is ww. baseuri . conl nobi | e/ cust ont
i nci dentreport/incidents, and an eviction policy is set for both / nmobi | e/
custontincidentreport/incidents and/nobile/custonincidentreport/
i nci dent s/ *, then the eviction policy for / mobi | e/ cust ond i nci dent report/
i nci dent s takes precedence.

— Policies that are defined for a path that has the / * wildcard take precedence
over policies for a path with the / ** wildcard. For example, if the URL is /
mobi | e/ cust on i nci dentreport/incidents/ 1, and an eviction policy is set
for both / mobi | e/ cust oni i nci dentreport/inci dents/* and/ mobi | e/ cust om
i nci dentreport/incidents/**, then the eviction policy for / mobi | e/ cust om
i nci dentreport/incidents/* takes precedence.

For information about setting resource-level policies, see Synchronization
Configuration File Structure.

* Mobile backend-level default policies. You can override the default policies at the
request, response, and resource levels. These settings take precedence over the
Synchronization library default settings. For information about setting mobile
backend-level default policies, see Synchronization Configuration File Structure.

* Synchronization library default settings: For custom APIs, if a policy is not set at
the request, resource, or mobile-backend level, then the Synchronization library
default setting is used.

Here are the default policy settings:

Setting Synchronization Library Default Value
conflictResol utionPolicy PRESERVE_CONFLI CT

evi ctionPolicy MANUAL_EVI CTI ON
expirationPolicy EXPlI RE_ON_RESTART

expireAfter Maximum integer value

fetchPolicy FETCH_FROM SERVI CE_| F_ONLI NE
noCache fal se

updat ePol i cy QUEUE_I F_OFFLI NE

Defining Synchronization Policies Using a Configuration File

You can define the synchronization policies for a custom API’s resource
programmatically, and you can use a configuration file to define the synchronization

ORACLE 9-44

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

policies for a mobile backend and the custom API resources that it uses. You typically
define the policies in the configuration file for the following reasons:

* You can change a policy without needing to change code.
* You can view all your policies in one place.

» If you access the same resource from several places in your code, you can ensure
that all accesses use the same policies.

The name of the configuration file differs by platform:
e Android: / asset s/ oracl e_mobi | e_cl oud_confi g. xm
 I0S: OVC pli st

Synchronization Configuration File Structure

ORACLE

To configure the Synchronization library for the custom API resources that are
accessed by a mobile backend, add the elements described in this section to its
synchroni zat i on element in the configuration file.

The following illustration shows the synchronization section from an OVC. pl i st file for
iOS.

¥ synchronization © & Dictionary % (5 items)
maxStoreSize Number 100
pericdicRefreshPolicy String PERIODIC_REFRESH_POLICY_PERIODICALLY REFRESH_EXPIRED_ITEMS
pericdicRefreshinterval Number 120
¥ policies Array (2 items)
¥ ltem 0 Dictionary (5 items)
path String /mobilefcustom/technicians/**
fetchPolicy String FETCH_FROM_SERVICE_IF_ONLINE
expirationPolicy String EXPIRE_OMN_RESTART
evictionPolicy String MANUAL_EVICTION
conflictResolutionPolicy String SERVER_WINS
¥ ltem 1 Dictionary (6 items)
path String /mobile/customfincidentReportsfincidents
fetchPolicy String FETCH_FROM_SERVICE_ON_CACHE_MISS
expirationPolicy String EXPIRE_OMN_RESTART
evictionPolicy String EVICT_ON_EXPIRY_AT_STARTUP
conflictResolutionPolicy String PRESERVE_CONFLICT
updatePolicy String QUEUE_IF_OFFLINE
¥ defaultPolicy Dictionary (6 items)
fetchPolicy String FETCH_FROM_SERVICE_ON_CACHE_MISS
evictionPolicy String EVICT_ON_EXPIRY_AT_STARTUP
expirationPolicy String EXPIRE_AFTER
expireAfter String 600
conflictResolutionPolicy String CLIENT_WINS
noCache Boolean NO »

Cache Settings

To configure the cache settings for the mobile backend, add these elements in any
order directly under the mobile backend’s synchr oni zat i on element. These settings
affect both custom API and storage resources.

9-45

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

Key Description Default

maxSt or eSi ze The maximum size of the local 100
cache in megabytes. The
Synchronization library stops
storing resources when it
reaches this limit.

peri odi cRefreshPol i cy Names the policy that instructs PERI ODI C_REFRESH PQOLI CY

the Synchronization library REFRESH NONE
when to refresh cached B B

resources. Use this attribute

for background refreshes. You

can set this to one of the

following options:

* PERI ODI C_REFRESH POL
| CY_REFRESH_NONE

* PERI ODI C_REFRESH POL
| CY_REFRESH EXPI RED _
| TEM ON_STARTUP

* PERI ODI C_REFRESH POL
| CY_PERI ODI CALLY_REF
RESH_EXPI RED | TEMS

periodi cRefreshinterval Sets the interval, in seconds, When the

for refreshing cached peri odi cRef reshPol i cy is
resources in the background. PER| ODI C REFRESH POL| CY
The interval should be PERI ODI EALLY REERESH E
appropriate to the policy XP| RED | TEMS, thenthe

named by the
peri odi cRef reshPol i cy
attribute.

default is 120.

Here’s an example of adding cache settings to an OMC. pl i st file.

<key>synchroni zat i on</ key>
<di ct>

<key>maxSt or eSi ze</ key>

<i nt eger >100</i nt eger >

<key>peri odi cRef reshPol i cy</ key>

<string>PERI ODI C_REFRESH_PCLI CY_PERI ODI CALLY_REFRESH EXPI RED | TEMS</
string>

<key>peri odi cRef reshl nt er val </ key>

<i nteger>120</i nt eger >

Synchronization Policy Settings

You can add the following settings at the resource and mobile-backend default levels.
These are explained in Synchronization Policy Options.

e conflictResol utionPolicy
e expirationPolicy
e expireAfter

e evictionPolicy

9-46

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

o fetchPolicy

e noCache

Resource-Level Configuration

To configure resource-level synchronization policies for custom APIs, first add a
pol i ci es node to the sychroni zati on element.

Next, configure the policies for the specific resources:

* 10S: Add dictionary items to the pol i ci es array.
* Android: Add pol i cy elements under pol i ci es.

You use the pat h element to identify the resource to associate the policy set with. You
can use the path to specify a policy set for a specific endpoint, or you can use wildcard
characters to associate the policy set with a hierarchy of resources:

" Note:

You can begin your path with or without the forward slash (/).

» If there are no wildcard characters, then the request URL must match the string
exactly. For example, if <pat h> is set to / nobi | e/ cust ont i nci dentreport/
i nci dent then www. baseuri . com nobi | e/ cust onl i nci dentreport/inci dent
matches, but www. baseuri . com nobi | e/ cust onii nci dentreport/inci dents does
not.

* /* matches O or more characters after the value in <Pat h> but does not include
lower resources in the hierarchy in the wildcard matching. For example, if <Pat h>
is set to / mobi | e/ cust ond i nci dentreport/inci dents/* then both
www. baseuri . com nobi | e/ custoniinci dentreport/incidents/report and
www. baseuri . conl nobi | e/ cust ont i nci dentreport/incidents/id match, but
www. baseuri . comincidentreport/incidents/id/attachments does not.

e [** matches 0 or more characters after the value in <Pat h> including resources
lower in the hierarchy. For example, if <Pat h> is set to / nobi | e/ cust ont
i nci dentreport/incidents/**, then the following match:

— ww. baseuri. com nobil e/ custoniinci dentreport/incidents
— ww. baseuri. com mobi | e/ cust om i nci dentreport/incidents/id

— www. baseuri . com mobi | e/ cust oninci dentreport/incidents/id/
attachnents

Here’s an example of setting resource-level policies in an OMC. pl i st file.

<key>synchroni zat i on</ key>
<di ct>

<key>pol i ci es</ key>
<array>
<di ct>
<key>pat h</ key>
<string>/mobi | e/ cust onl i nci dentreport/technicians/**</string>
<key>f et chPol i cy</ key>

9-47

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

<string>FETCH FROM SERVI CE_| F_ONLI NE</ stri ng>
<key>expi rationPol i cy</ key>
<string>EXPI RE_ON_RESTART</string>
<key>evi cti onPol i cy</ key>
<string>MANUAL_EVI CTI ON</ st ri ng>
<key>conf | i ct Resol uti onPol i cy</ key>
<string>SERVER W NS</ st ring>
</dict>

</dict>

Mobile Backend-Level Configuration

To define mobile backend-level synchronization policies, add a def aul t Pol i cy
element. Then, for each type you want to configure, add a dictionary item for iOS, and
add a child element for Android.

The next sections show examples for each platform.

Android Example Configuration File

The following example for Android is an excerpt from the
oracl e_mobi | e_cl oud_config.xm file.

<mobi | eBackends>
<mpbi | eBackend>

<synchr oni zat i on>
<max St or eSi ze>100</ max St or eSi ze>

<peri odi cRef reshPol i cy>PERI ODI C_REFRESH POLI CY_PERI ODI CALLY_REFRESH EXPI RED
_| TEMS</ peri odi cRef reshPol i cy>
<peri odi cRef reshl nt erval >120</ peri odi cRef reshl nt erval >
<pol i ci es>
<pol i cy>
<pat h>/ mobi | e/ cust onl i nci dent report/techni ci ans/ **</ pat h>
<f et chPol i cy>FETCH_FROM SERVI CE | F_ONLI NE</ f et chPol i cy>
<expirationPol i cy>EXPI RE_ON_RESTART</ expi rati onPol i cy>
<evi ctionPol i cy>MANUAL_EVI CTI ON</ evi ct i onPol i cy>
<conflict Resol utionPol i cy>SERVER_W NS</
conflictResol utionPolicy>
</ policy>
<pol i cy>
<pat h>/ mobi | e/ cust onl i nci dent report/inci dent s</ pat h>
<f et chPol i cy>FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY</
fetchPol i cy>
<expirationPol i cy>EXPI RE_ON_RESTART</ expi rati onPol i cy>
<evi ctionPol i cy>EVI CT_ON_EXPI RY_AT_STARTUP</
evi ctionPolicy>
<conflict Resol utionPol i cy>SERVER_W NS</
conflictResol utionPolicy>
<updat ePol i cy>QUEUE | F_OFFLI NE</ updat ePol i cy>
<expi r eAf t er >300</ expi reAfter >
</ policy>
</ pol i ci es>

9-48

ORACLE

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

<def aul t Pol i cy>
<fet chPol i cy>FETCH FROM SERVI CE_ON_CACHE_M SS</ f et chPol i cy>
<evi ctionPol i cy>EVI CT_ON_EXPI RY_AT_STARTUP</ evi cti onPol i cy>
<expi rationPol i cy>EXPI RE_AFTER</ expi rati onPol i cy>
<expi reAf t er >600</ expi reAf t er >
<conflictResol utionPol i cy>CLI ENT_W NS</
conflictResol utionPolicy>
<noCache>f al se</ noCache>
</ defaul t Pol i cy>
</ synchroni zati on>
</ mobi | eBackend>
</ nmobi | eBackends>

iOS Example Configuration File

The following example XML for iOS is an excerpt from the OMC. pl i st file.

<?xm version="1.0" encodi ng="UTF-8"?>

<IDOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://ww. appl e. com
DTDs/ PropertyList-1.0.dtd">

<plist version="1.0">

<di ct>
<key>mobi | eBackends</ key>
<di ct >
<key>myBackend/ 1. 0</ key>
<di ct >
<key>synchroni zat i on</ key>
<di ct>

<key>maxSt or eSi ze</ key>
<i nt eger >100</i nt eger >
<key>peri odi cRef reshPol i cy</ key>

<string>PERI ODI C_REFRESH_PCOLI CY_PERI ODI CALLY_REFRESH_EXPI RED | TEMS</ st ri ng>
<key>peri odi cRef reshl nt erval </ key>
<i nteger>120</i nt eger >
<key>pol i ci es</ key>
<array>
<di ct >
<key>pat h</ key>
<string>/mobi | e/ cust oniinci dentreport/technicians/**</string>
<key>f et chPol i cy</ key>
<string>FETCH FROM SERVI CE_I F_ONLI NE</ stri ng>
<key>expirationPol i cy</ key>
<string>EXPI RE_ON_RESTART</ stri ng>
<key>evi cti onPol i cy</ key>
<string>MANUAL_EVI CTl ON</ st ri ng>
<key>confli ct Resol utionPol i cy</ key>
<string>SERVER W NS</stri ng>
</dict>
<di ct >
<key>pat h</ key>
<string>/nobil e/ custoninci dentreport/incidents</string>
<key>f et chPol i cy</ key>
<string>FETCH _FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY</ st ri ng>
<key>expirationPol i cy</ key>

9-49

Chapter 9
Building Apps that Work Offline Using the Synchronization Library

<string>EXPI RE_ON_RESTART</string>

<key>evi cti onPol i cy</ key>

<string>EVI CT_ON_EXPI RY_AT_STARTUP</string>
<key>conf | i ct Resol uti onPol i cy</ key>
<string>PRESERVE_CONFLI CT</string>
<key>updat ePol i cy</ key>

<string>QUEUE | F_OFFLI NE</stri ng>

</dict>
<larray>

<key>def aul t Pol i cy</ key>

<di ct>

<key>f et chPol i cy</ key>
<string>FETCH FROM SERVI CE_ON CACHE M SS</string>
<key>evi cti onPol i cy</ key>

<string>EVI CT_ON_EXPI RY_AT_STARTUP</ stri ng>
<key>expi rationPol i cy</ key>

<string>EXPI RE_AFTER</ stri ng>

<key>expi r eAf t er </ key>

<i nt eger >600</i nt eger >

<key>conf i ct Resol uti onPol i cy</ key>
<string>CLI ENT_W NS</string>

<key>updat ePol i cy</ key>

<fal se/>
</dict>
</dict>

</dict>
</plist>

Defining Synchronization Policies and Cache Settings in a Response Header

When you implement a custom API, you can fine tune caching for a response by
defining synchronization policies or basic cache settings in response headers.

To specify the basic synchronization and cache settings for a REST resource use the
following optional HTTP Headers:

Header Description

Oracl e- Mobi | e- Sync- If setto t r ue, the client does not cache the returned resource.
No- St or e

O acl e- Mobi | e- Sync- Specifies the date and time after which the expired resource
Evi ct should be deleted from the local cache. Uses RFC 1123 format,

for example EEE, dd MW yyyyy HH. nm ss z for

Si npl eDat eFor mat .

The following synchronization policies are set for the resource

object that is created from the response:

* Eviction policy: EVI CT_ON_EXPI RY_AT_STARTUP

* Expiration policy: EXPl RE_AFTER with the expi r eAf t er
property set to date and time provided in the header value

ORACLE

9-50

Chapter 9
How Synchronization Works with the Storage APIs

Header Description
O acl e- Mobi | e- Sync- Specifies when the returned resource will be marked as expired.
Expi res Uses RFC 1123 format, for example EEE, dd MW yyyyy

HH. nm ss z for Si npl eDat eFor mat .

Tracking Cache Hits with the Synchronization Library

The Synchronization library tracks cache hits and detects if the returned result came
from the cache. Use these OMCSynchr oni zat i on methods to get data about cache hits
and misses:

e cacheHi t Count : Returns the number of cache hits.

e cacheM ssCount : Returns the number of cache misses.

How Synchronization Works with the Storage APIs

When your mobile app accesses the Storage APls, the client SDK automatically works
with the Storage library to refresh and synchronize the storage objects in the local
cache. You don't need to add any code to enable synchronization with storage.

The client SDK enforces the following synchronization policies for the Storage APIs:
» Conflict resolution policy: SERVER W NS

« Eviction policy: EVI CT_ON_EXPI RY_AT_STARTUP

» Expiration policy: EXPI RE_AFTER 86400 seconds (24 hours).

You can use the Sync_Col | ecti onTi meToLi ve environment policy to override the
number of seconds after which a Storage object expires. This value is conveyed to
the Storage library through the O acl e- Mobi | e- Sync- Expi r es response header.
See Offline Data Storage.

e Fetch policy: FETCH FROM SERVI CE_| F_ONLI NE
e Update policy: QUEUE | F_OFFLI NE

See Synchronization Policy Options for detailed descriptions of these synchronization
policies.

Just as with the custom API resources, you can use the configuration file to override
the default cache settings for storage resources on a mobile backend basis.

The default cache settings are:
* Maximum storage size in the local cache: 100 MB
» Periodic refresh policy: Don’'t automatically refresh cached resources periodically

To learn how to configure the cache settings, see the Cache Settings section in
Synchronization Configuration File Structure.

ORACLE 9-51

Location

Use the Location API to access details about location devices, places, and assets that
have been registered in OMCe.

What Can | Do With Location?

Users today expect information to be presented based on their current situation and
individual needs and preferences. One of the most important contextual data points is
location. The impact of location-aware mobile apps on users and businesses is
growing faster every day.

e Everyone uses navigation apps for location data, including getting directions to
restaurants, airports, hospitals, and just about anything else needed in a
geographic area.

* You can implement location-based functionality in a wide range of apps, like
focused queries and location-aware history.

* Your apps can use location data to send notifications targeted to mobile devices in
a geographic area or a certain mobile user or asset only in a specific geographic
area.

e Location-aware applications can also contribute a lot to business intelligence and
analytics, including customer profiling and demographics, competitive analysis and
supply chain tracking.

A Few Important Location Terms

Location devices, places and assets provide the tools you need to create location-
aware mobile apps.

* Alocation device is any device that provides location services, like a Bluetooth
proximity beacon. Location devices transmit an ID within a defined space, so
mobile apps can use these signals to trigger notifications and other actions. The
following location protocols are currently supported:

— AltBeacon is an open source protocol for Bluetooth proximity beacons. For
more information and the full specification, see altbeacon.org and https://
github.com/AltBeacon/spec.

— Eddystone is Google’s open protocol for Bluetooth proximity beacons. For
details, see https://github.com/google/eddystone.

— iBeacon is the Apple protocol for Bluetooth proximity beacons. For details, see
https://developer.apple.com/ibeacon/.

» A place is a physical location associated with one or more location devices.

* An asset is a mobile physical object that's associated with one or more location
devices.

ORACLE 10-1

Android

Chapter 10
Android

Querying for Location Objects

ORACLE

The Locat i onQuery class in the Android SDK allows you to construct queries for
location devices, places and assets.

Below is an example of using the Android SDK to query for a place by name:

Location location =

Mbbi | eManager . get Manager () . get Def aul t Mbbi | eBackend(mActivity). get ServicePro
xy(Location.class);

bj ect 1ock = new Chject();

String searchString = "store";

final AtonicReference<String> searchString = "store";

final AtonicReference<LocationChjectQueryResult> nResult = new
At oni cRef erence<Locat i onQhj ect Quer yResul t >() ;

final AtonicReference<ServiceProxyException> nError = new

At oni cRef er ence<Ser vi ceProxyException>();

/'l search by nane
/'l sort results by nane, in ascending order
[/ results will be in "short" format
LocationPl aceQuery query = | ocation. buil dPl aceQuery();
query. set Name(searchString);
query. set Order ByAttri but eType(Locat i onDevi ceCont ai ner Query. Locat i onDevi ceCo
nt ai ner Quer yOr der ByAttri but eType
. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTypeNane) ;
query. set For mat (Locat i onChj ect Query. Locat i onChj ect Quer yFor mat Type. Locat i onO
bj ect Quer yFor mat TypeShort);

do{
query. execut e(new Locati onChj ect sQueryCal | back() {

@wverride
voi d onConpl et e(Locati onQhj ect QueryResult result,
Servi ceProxyException exception){
nError. set(exception);
nmResul t.set(result);

synchroni zed(! ock){
| ock. notifyAll();
}

}
1)

synchroni zed(1 ock) {
[ock.wait();
}
if(nError.get() '= null){

/I'handl e error
}

10-2

Chapter 10
Android

el se{
for(LocationChject object : nResult.get().getltens()){
LocationPl ace place = (LocationPlace) object;
/I process each place...

}
query = mResul t (). get().get Next Query();

} while(nResult.get() !'= null && nResult.get().hasMre());

For more information on place queries, see Querying for Places.

Retrieving a Location Object

ORACLE

Here’s how to use a place ID to retrieve the properties for the place:

Location location =

Mobi | eManager . get Manager () . get Def aul t Mobi | eBackend(mActivity). get ServicePro
xy(Location. cl ass);

Obj ect lock = new Object();

final AtonicReference<LocationhjectQueryResult> nResult = new
At oni cRef erence<Locat i onQhj ect Quer yResul t >() ;

final AtonicReference<LocationPlace> nError = new

At oni cRef erence<Locat i onPl ace>() ;

[l query for all places
/1 sort results by name, in ascending order
/] results will be in "short" format
LocationPl aceQuery query = | ocation. buil dPl aceQuery();
query. set Name(searchString);
query. set Order ByAttri but eType(Locat i onDevi ceCont ai ner Query. Locat i onDevi ceCo
nt ai ner QueryQrder ByAttri but eType
. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTypeNane) ;
query. set For mat (Locat i onCbj ect Query. Locat i onQbj ect Quer yFor mat Type. Locat i onO
bj ect Quer yFor mat TypeShort);

query. execut e(new LocationChj ect sQueryCal | back() {
@verride
voi d onConpl et e(Locati onObj ect QueryResult result,
Servi ceProxyException exception){
mResul t. set(result);

synchroni zed(I ock) {
| ock. notifyAll();
}
}
1)

synchroni zed(I ock) {
lock.wait();

}

10-3

ORACLE

Chapter 10
Android

/] take the first itemfromthe results
[/ it will be in "short" format...
LocationPl ace place = (LocationPlace) nResult.get().getltens().get(0);

[l ...now, fetch the "entire" place directly
| ocation.fetchPlace(place.getlD(), new LocationQObjectQueryCallback(){
@verride

voi d onConpl et e(Locati onQbj ect object, ServiceProxyException exception)

{
LocationPl ace detailedPl ace = (LocationPl ace) object;
nPl ace. set (det ai | edPl ace);
synchroni zed(! ock) {

[ock.notifyAl'l();
}
}
1

synchroni zed(| ock) {
lock.wait();
}
Il process place...
Log.i (TAG "place nanme is " + nPlace.get().getName());

If you've already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

Il take the first itemfromthe results
[/ it will bein "short" format...
LocationPl ace place = (LocationPlace) nResult.get().getltens().get(0);

/1 ...now, refresh the place
pl ace. refresh(new Locati onQbj ect Fet chCal | back() {
@verride
voi d onConpl et e(Locati onQbj ect object, ServiceProxyException exception)
{
i f(exception !'=null)
[Ihandl e error
synchroni zed(l ock) {
[ock. notifyAll();
}
}
1K

synchroni zed(|I ock) {
lock.wait();

}

/'l process place...
Log.i (TAG "place name is " + place.getName());

10-4

Chapter 10
i0S

I0S
Querying for Location Objects

The OMCLocat i onQuery class in the iOS SDK allows you to construct queries for
location devices, places and assets.

Below is an example of using the iOS SDK to query for a place by name.

OMCLocation* |ocation = [[OMCMobi | eManager sharedManager] |ocation];
NSString* searchString = @store";

/'l search by nane

/'l sort results by nane, in ascending order

[/ results will be in "short" format

OMCLocat i onPl aceQuery* query = [l ocation buil dPl aceQuery];
query. name = searchString;

query.orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;
query.format = OMCLocati onChj ect Quer yFor mat TypeShort ;

__block OMCLocationPl aceQueryResult* result;
do {
result =nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[query execut eWthConpl etionHandl er:~(OMCLocat i onPl aceQuer yResul t *
result , NSError* error_) {
result =result_;
error = error_;
executing = NO,

H:

while (executing) {
[[NSRunLoop current RunLoop] runUntil Date: [NSDat e
dateWthTinelnterval ;0.5 sinceDate:[NSDate date]]];

}
if (error) {
/1 handle error...
} else {
for (OMCLocationPlace* place in result.itens) {
/'l process each place...
NSLog(@ pl ace name: %@, place.nane);
}
}

query = result.next Query;
} while ((result !'=nil) && result.hasMre);

For more information on place queries, see Querying for Places.

ORACLE 10-5

Chapter 10
i0S

Retrieving a Location Object

ORACLE

This example uses the place ID to retrieve the properties for the place:
OMCLocation* |ocation = [[OMCMobi | eManager sharedManager] |ocation];

[l query for all places

/1 sort results by name, in ascending order

/] results will be in "short" format

OMCLocat i onPl aceQuery* query = [l ocation buil dPl aceQuery];
query. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;
query. format = OMCLocati onChj ect Quer yFor mat TypeShort ;

__block OMCLocationPl aceQueryResult* result = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[query execut eWthConpl eti onHandl er: ~(OMCLocat i onPl aceQuer yResul t *
result_, NSError* error_) {
result =result_;
error = error_;
executing = NO

H

whi | e (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTinelnterval :
0.5 sinceDate:[NSDate date]]];

}

/1 take the first itemfromthe results
/!l it will be in "short" format...
OMCLocat i onPl ace* shortPlace = result.items.firstChject;

Il ...now, fetch the "entire" place directly
__block OMCLocationPl ace* place = nil;
error = nil;

executing = YES

[location placeWthlD: shortPlace.id_

conpl eti onHandl er: ~(OMCLocat i onPl ace* place_, NSError* error_) {
pl ace = place_;
error = error_;
executing = NO

H

whi | e (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTinelnterval :
0.5 sinceDate:[NSDate date]]];

}

Il process place...
NSLog(@ pl ace name: %@, place.nane);

10-6

Chapter 10
i0S

If you've already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

/1 take the first itemfromthe results
/!l it will be in "short" format...
OMCLocationPl ace* place = result.itens.firstQbject;

/1 ...now, refresh the place

error = nil;

executing = VES;

[place refreshWthConpl etionHandl er:~(NSError* error_) {
error = error_;
executing = NO

H

whi | e (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTinelnterval .
0.5 sinceDate:[NSDate date]]];

}

Il process place...
NSLog(@ pl ace name: %@, place.nane);

Retrieving iBeacon ldentifiers

ORACLE

The first step to monitoring a place that uses beacons is to retrieve the beacon
identifiers, as shown in this example:

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eManager shar edManager]
| ocation];
OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace.nane = @Chris's Enporiun;

queryPlace.linmt = @;

/1 Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByQr der TypeAscendi ng;

[queryPl ace
execut eWt hConpl et i onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac
eQuery *, OMCLocationPl ace *>* queryResult, NSError * Nullable queryError)

{

OMCLocat i onPl ace *place = queryResult.itens.firstQbject;
[pl ace devicesWthConpl etionHandl er: *(NSArray<OMCLocat i onDevi ce *>

*| ocati onDevices, NSError * error) {
/'l Followi ng code assunes 1 device for place

10-7

Chapter 10
i0S

OMCLocat i onDevi ce *device = [l ocationDevices firstQject];
OMCLocat i onl Beacon *beacon = (OMCLocati onl Beacon*)devi ce. beacon;
NSUUI D *beaconUui d = beacon. uui d;
CLBeaconMj or Val ue beaconMaj or =

(CLBeaconMyj or Val ue) beacon. mgj or. i nt eger Val ue;
CLBeaconM nor Val ue beaconM nor =

(CLBeaconM nor Val ue) beacon. mi nor . i nt eger Val ue;

CLBeaconRegi on *beaconRegi on = [[CLBeaconRegi on
al loc]initWthProxinityUUJ D beaconWui d maj or: beaconMaj or ninor: beaconM nor
i dentifier: @MBeaconRegion"];

beaconRegi on. noti fyOnEntry = YES;

beaconRegi on. noti fyOnExit = YES;

beaconRegi on. del egate = // Assign instance of
CLLocat i onManager Del egate to handl e beacon events

[l ocationManager startNbnitoringForRegi on: beaconRegion]; //
I nvokes ClLLocati onManager Del egat e di dEnt er Regi on/ di dExi t Regi on
[l ocationManager startRangi ngBeaconsl nRegi on: beaconRegi on]; //
I nvokes ClLLocationManager Del egate inRegi on
H
Hi

Defining a Geofence

ORACLE

You can use a geofence to define a monitoring area as a place, as shown here:

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eManager shar edManager]
| ocation];
OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace.nane = @Chris's Enporiunt;

queryPlace.linit = @;

/1 Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByQr der TypeAscendi ng;

[queryPl ace
execut eWt hConpl eti onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac
eQuery *, OMCLocationPl ace *>* queryResult, NSError * queryError) {

OMCLocat i onPl ace *place = queryResult.itens.firstQbject;

OMCLocationGeoCircle *geocircle = (OMCLocationGeoCircle *)[place
address] ;
OMCLocat i onGeoPoi nt *geopoint = [geocircle center];

CLLocationDegrees latitude = [[geopoint |atitude]doubleVal ue];

CLLocat i onDegrees |ongitude = [[geopoint |ongitude]doubl eVal ue];
CLLocationDi stance radi us = [[geocircle radius]doubl eval ue] ;

10-8

Chapter 10
i0S

ClLLocat i onCoor di nat e2D coordi nate =
CLLocat i onCoor di nat e2DVvake(| atitude, |ongitude);

CLGi rcul arRegion *circul arRegion = [[CLGi rcul ar Regi on
alloc]initWthCenter:coordinate radius:radius
identifier:@MGeof enceRegi on"];

circul arRegi on. notifyOnEntry = YES;

circul arRegion. noti fyOnExit = YES;

circul arRegi on. del egate = // Assign instance of
CLLocat i onManager Del egate to handl e events

[l ocationManager startNbnitoringForRegion:circul arRegion]; //
I nvokes ClLLocationManager Del egat e di dEnt er Regi on/ di dExi t Regi on
H
Hi

Retrieving Custom Attributes

Many location objects use custom attributes. The iOS SDK makes it easy to access
these properties, as shown in the examples below.

Retrieving a Custom Attribute for a Place

The iOS SDK example below retrieves a custom attribute for a place:

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eManager shar edManager]

| ocation];

OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace.nane = @Chris's Enporiun;

queryPlace.linmit = @;

/1 Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByQr der TypeAscendi ng;

[queryPl ace
execut eWt hConpl et i onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac
eQuery *, OMCLocationPl ace *>* queryResult, NSError * queryError) {

OMCLocat i onPl ace *place = queryResult.itens.firstQbject;

NSString *myCust onProperty
attribut eFor Key: @ MyCust onProperty"];
NSLog(@M Custom Property = %@, myCustonProperty);

[place

H

ORACLE 10-9

Chapter 10
REST API - Location

Retrieving a Custom Attribute for a Location Device

The iOS SDK example below is very similar to the one above, but uses
OMCLocat i onDevi ce to retrieve a custom attribute for a beacon:

OMCLocation* |ocation = [[OMCMobi | eManager sharedManager] |ocation];

/1 Query iBeacon

OMCLocat i onDevi ceQuery *queryDevi ce = [l ocation buil dDevi ceQuery];

NSUUI D *uuid = [[NSUUI D al l oc] initWthUU DString: @O0AC59CA4-

DFAG- 442C- 8065- 22247851344C"] ;

NSNumber *maj or = @,

NSNumber *m nor = @O00;

queryDevi ce. beacon = [OMCLocat i onl Beacon i BeaconW t hUUI D: uui d maj or : maj or
mnor: mnorj;

[queryDevi ce

execut eWt hConpl et i onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onDevi

ceQuery *, OMCLocati onDevi ce *>* queryResult, NSError * queryError) {
OMCLocat i onDevi ce *device = queryResult.itens.firstbject;

Il Retrieve devicel/beacon custom property
NSString *custonmProperty = (NSString *) [device
attribut eFor Key: @ MyCust onProperty"];

HE

REST API - Location

This section shows how to use the Location REST API to perform some common
tasks. If you don'’t find what you need here, see the complete reference docs at REST
APIs for Oracle Mobile Cloud, Enterprise.

Querying for Location Devices, Places and Assets

The Location API allows you to write complex queries for location devices, places and
assets. You can call the REST endpoint directly or use one of the SDKs to construct a

query.

The available query parameters depend on the object type.

Querying for Location Devices

Query for location devices using the following REST endpoints:

e CET {baseUri}/nmobile/platfornm|ocation/devices?nane={name} to query by
the device name.

e PCST {baseUri}/nobile/platform|ocation/devices/query toquery using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

ORACLE 10-10

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

Chapter 10
REST API - Location

Parameter

Description

name

description

search

attributes

pr ot ocol

associ at edAsset | d

|istOf Devices
i Beacon_uuid

i Beacon_mmaj or
i Beacon_mi nor

al t Beacon_i d1
al t Beacon_i d2
al t Beacon_i d3
eddyst one_nanespace

eddyst one_i nstance
eddyst one_ur |

orderBy

of f set

limt

ORACLE

Filters results by a partial match of this string
with the name defined for the device in the UI.
Not case sensitive.

Filters results by a partial match of this string
with the description defined for the device in
the Ul. Not case sensitive.

Filters results by a partial match of this string
with the name or description defined for the
device in the Ul. Not case sensitive.

Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the device in the UI.

Filters results by device protocol type(s):
* iBeacon

* altBeacon
* eddystone

The asset ID to search for. (Returns location
devices associated with the specified asset.)

An array of device IDs to search for.

The UUID of the iBeacon device(s) to search
for.

The major version of the iBeacon device to
search for.

The minor version of the iBeacon device to
search for.

ID1 of the altBeacon to search for.

ID2 of the altBeacon to search for.

ID3 of the altBeacon to search for.

The namespace of the Eddystone device to
search for.

The instance of the Eddystone device to
search for.

The URL of the Eddystone device to search
for.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* :asc for ascending

* :desc for descending
For example, nane: asc.

By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with

of f set for pagination.

10-11

ORACLE

Chapter 10
REST API - Location

Parameter Description

for mat By default, the response is in | ong format and
results include the device id, name,
description, attributes, createdOn and
createdBy, as well as the place ID and
identifying details about the device. Specify
short to return only the device id, name,
description and protocol.

i Beacon

"protocol ":"iBeacon",

"i Beacon_major": "2.0",

"i Beacon_mnor": "2.2",

"i Beacon_uui d": "B9407F30- F5F8- 466E- AFF9- 25556B57FE6D"

If the query is successful, the response will be 200, and the body will include the
matching location device and its associated place or asset if it has one. For example:

{
"items": [
{
"id": 15,
"createdOn": "2015-11-11T21: 15: 34. 341+0000",
"createdBy": "thomas.snmith@if.cont,
"modi fiedOn": "2015-11-11T21: 15: 34. 341+0000",
"nodi fiedBy": "thomas.smth@if.conl',
"nane": "RC_WH 01_F01_B003",
"description": "Beacon on 1st Floor in FixltFast Wrehouse in
Redwood City",
“place": {
"name": "FixitFast Redwood City Warehouse",
"label": "FixitFast \arehouse",

"description": "FixitFast Warehouse in Redwood City",
"address" : {
"gpsPoint" @ {
"latitude": 37.5548,
"longitude": -121.1566
}
¥
"attributes" : {
"Equi pment Manuf acturer™": "Abc Corp"

}l
"links": [
{
“rel": "canonical",
"href": "/internal -tool s/1.0/envs/dev/location/places/9876"
}1
{
"rel": "self",
"href": "/internal -tool s/1.0/envs/dev/location/places/9876"

10-12

ORACLE

Chapter 10
REST API - Location

}
]
¥
"beacon": {
"i Beacon": {
“mgjor": "2.0",
"mnor": "2.2",
"uui d": "B9407F30- F5F8- 466E- AFF9- 25556B57FE6D"
}
b
"attributes": {
"manufacturer": "G nbal ",
"status": "Active",
"manufacturerld": "10D39AE7- 020E- 4467- 9CB2- DD36366F899D",
"visibility": "Public"
b
¥
"total Results": 1,
"of fset": O,
"limt": 20,
“count": 1,

"hashbre": false

The example below queries for al t Beacon devices with “Wr ehouse” in the name or
description and specifies the short response format, ordered by name, with a limit of 5
items.

{
“protocol ":"al t Beacon",
“orderBy": "nane",
"limt":"5",
“format":"short",
"search": " Warehouse"

}

If the query is successful, the response is 200 and the body contains just the id, name,
description and protocol for the 5 returned devices.

{
"items": [
{
"id":33,
"nane": " RC_WH 01_B09_C004",
"description":"Beacon on 2nd Floor in FixltFast Warehouse in
Redwood City",
"protocol ":"al t Beacon"
I3
{
"id":12,
"name":"RC_WH 01_F01_B001",
"description":"Beacon on 1st Floor in FixltFast Warehouse in
Redwood City",

"protocol ":"al t Beacon"

10-13

Chapter 10
REST API - Location

"id": 61,
"nanme":"RC_WH 01_F01_B008",
"description":"Beacon on 2nd Floor in Fix*tFast \Wrehouse in
Redwood City",
"protocol ":"al t Beacon"
b
{
"id": 58,
"nanme":"RC_WH 02_F01_BO11",
"description":"Beacon on 1st Floor in FixitFast Wrehouse in
Redwood City",
"protocol ":"al t Beacon"
b
{
"id": 114,
"nanme":"RC_WH 01_K22_A999",
"description":"Beacon on 3rd Floor in FixitFast Wrehouse in
Redwood City",
"protocol ":"al t Beacon"
}
I
"total Resul ts":5,
"offset":0,
"limt":s,
“count":5,
"hasMore": fal se

Querying for Places

Query for places with specific parameters using the following REST endpoints:

e CET {baseUri}/mobilel/platforn|ocation/places?name={nane} to query by the
place name.

e POST {baseUri}/mobile/platform|ocation/places/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

nane Filters results by a partial match of this string
with the name defined for the place in the UL.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the place in the
Ul. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the place in the Ul. Not case sensitive.

ORACLE 10-14

ORACLE

Chapter 10
REST API - Location

Parameter Description

attributes Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the place in the Ul.

| abel Filters results by a partial match of this string
with the label specified for the place in the UI.
Not case sensitive.

listOfPlaces An array of place IDs to search for.

descendant Cf

nearest To

i nGeoFence

descendant Devi ces

or der By

of f set

limt

f or mat

Specify a place ID to search for direct
descendants.

Specify a gpsPoi nt (latitude, longitude) to
return the closest place. This parameter can’t
be combined with other query parameters.

Specify a gpsCi r cl e (latitude, longitude,
radius) to return all places within that
geofence.

Setto t r ue to include the

descendant Devi ces property in the results,
which lists the devices associated with this
place and all its child places. These results are
always in short format.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* :asc for ascending

* . desc for descending
For example, nane: asc.

By default, O to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with

of f set for pagination.

By default, the response is in | ong format and
results include the place id, name, description,
attributes, label, creation and modification
data, as well as the place address, and a list of
the devices within the place and the place’s
parent. Specify short to return only the place
id, name, description and label.

{
"l abel ":"block 1",

"inGeoFence": {
“gpsCircle": {
"latitude": 37.488179,
"l ongitude": -122.229011,
"radius": 32186

10-15

ORACLE

Chapter 10
REST API - Location

"orderBy": "nane: asc",
“limt":100

}

If the query is successful, the response will be 200, and the body will include an array
of matching places. In this example, only two places matched the query:

{

"items": [

{

"id": 16,
"createdOn": "2016-03-08T22: 09: 19. 968+0000",
"createdBy": "joe",

"modi fiedOn": "2016- 03-08T22: 09: 19. 968+0000",
"nodi fiedBy": "joe",
"name": "I 1bl",
"label": "lot 1 block 1",
"parent Pl ace": 15,
"description": "Lot 1 block 1 New City",
"hasChildren": false,
"address": {
"gpsCGircle": {
“longitude": -120.87449998,
“latitude": 37.98560003,
“radius": 29999. 99999997

}
b
"links": [
{
“rel": "canonical",
“href": "/mobilelplatfornllocation/places/16"
I3
{
"rel": "self",
“href": "/mobilelplatfornllocation/places/16"
}
]
"id": 17,

"createdOn": "2016-03-08T22: 09: 20. 065+0000",
"createdBy": "joe",
"modi fiedOn": "2016- 03-08T22: 09: 20. 065+0000",
"nodi fiedBy": "joe",
"name": "I 2bl",
"l'abel": "lot2 block 1",
"parent Pl ace": 15,
"description": "Lot 2 block 1 New City",
"hasChildren": false,
"address": {

"gpsPol ygon": {

“vertices": [

{
“longitude": -121.7845,

10-16

ORACLE

"latitude": 37.8453

I3
{
"l ongitude": -120.9853,
"latitude": 37.1248
I3
{
"longitude": -121.7758,
"latitude": 37.6983
}
]
}
b
"links": [
{
“rel": "canonical ",
“href": "/nmobile/platform|ocation/places/17"
¥
{
“rel": "self",
“href": "/nmobile/platform|ocation/places/17"
}
]
}
1,
"total Results": 2,
"of fset": O,
“limt": 100,
“count": 2,

"hashbre": fal se

"i ncl udeDescendant sInResult": "direct",
“orderBy" : "
"offset" : 0,
"limt" : 10,
"format" : "short"

nane",

Chapter 10
REST API - Location

If the query is successful, the response will be 200, and the body will include only the
first level descendants. In this example, only three descendants matched the query:

{
"places": [
{

"id": 3331,

"name": "FixitFast Redwood City HQ Campus",

"l abel ": "canmpus",

"description": "1st Floor in FixitFast \Warehouse in Redwood
Cty"

"children": [

{

10-17

Chapter 10
REST API - Location

"id": 3334,

"name": "Building #1 FixitFast Redwood Gty HQ Canpus",

"description": "Building #1 on FixitFast Redwood City
Headquarters Canpus”,

"l abel ": "building",

“children": []

"id": 3335,

"name": "Building #2 FixitFast Redwood Gty HQ Campus",

"description": "Building #2 on FixitFast Redwood City
Headquarters Canpus”,

"l abel ": "building",

“children": []

"id": 3336,

"name": "Building #3 FixitFast Redwood Gty HQ Campus",

"description": "Building #3 on FixitFast Redwood City
Headquarters Canpus”,

"l abel ": "building",

“children": []

Querying for Assets

Query for assets with specific parameters using the following REST endpoints:

e CET {baseUri}/mobilel/platforn|ocation/assets?name={nane} to query by the
asset name.

e POST {baseUri}/mobile/platform|ocation/assets/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

nane Filters results by a partial match of this string
with the name defined for the asset in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the asset in the
Ul. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the asset in the Ul. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the asset in the Ul.

| abel Filters results by a partial match of this string
with the label specified for the asset in the UI.
listOf Assets An array of asset IDs to search for.

ORACLE 10-18

ORACLE

Chapter 10
REST API - Location

Parameter

Description

associ at edDevi cel d

near est To

i nGeoFence

order By

of f set

limt

f or mat

A device ID to search for. Returns the asset
associated with this device ID. When you use
this query parameter, don't combine it with
other parameters.

Specify a gpsPoi nt (latitude, longitude) to
return the closest asset. Can't be combined
with other parameters.

Specify a gpsCi r cl e (latitude, longitude,
radius) to return all assets within that
geofence.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* :asc for ascending

* . desc for descending
For example, nane: asc.

By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 100. Generally meant to be used with

of f set for pagination.

By default, the response is in | ong format and
results include the asset id, name, description,
attributes, label, creation and modification
data, as well as the associated place, and the
IDs of associated devices. Specify short to
return only the asset id, name, description and
label.

“| abel ": "bed",
"attributes":{

"Equi pment Manuf act urer”: " Exanpl e Conpany"

}

n n.on

“format":"long"

rderBy":"createdOn: asc",

If the query is successful, the response will be 200, and the body will include an array
of matching assets:

{

“items": |

{

"id":333,
"createdBy":

"createdOn": "2015-08-06T18: 37: 59. 4247",
"modi fiedOn":"2015-08-06T18: 37: 59. 4247",

"nodi fi edBy":

10-19

Chapter 10
REST API - Location

"nanme": "hospital bed #233"
"l abel ":"hospital bed"
"description":"nmodel 1225 hospital bed",
"l ast KnownLocati on": {
"placel d": 244
b
"devices": [
3409
1
"attributes":{
"Equi pment Manuf acturer": "Exanpl e Conpany",
"SJld": "6754843090"

}
b
{
"id": 888,
"createdBy":"jdoe",
"createdOn":"2015-10- 16T09: 24: 41. 354Z",
"nodi fiedOn":"2015- 10- 16T09: 24: 41. 354Z",
"nodi fi edBy": "] doe",
"nanme": "hospital bed #233",
"l abel ":"hospital bed",
"description":"nmodel 1225 hospital bed",
"l ast KnownLocati on": {
"“placel d": 360
b
"devices":|[
658
1,
"attributes":{
"Equi pment Manuf acturer": "Exanpl e Conpany",
"SJhd": "6754843090"
}
}
I
"total Resul ts": 2,
"of fset":0,
“limt":100,
“count": 2,

"hashore": fal se

Retrieving Location Objects and Properties

ORACLE

Use the Location API to retrieve location devices, places and assets and their
associated properties.

The following REST endpoints allow you to retrieve location objects:

Location devices: GET {baseUri}/nobil e/ pl atforni | ocation/devices
Assets: GET {baseUri}/nobile/platfornflocation/assets

Places: GET {baseUri}/mobile/platform|ocation/places

You can retrieve an object by ID or by name:

10-20

Chapter 10
Setting Up Location Devices, Places and Assets

To retrieve an object by ID, include the ID in the path, for example: GET
{baseUri}/nobilel/platfornilocation/devices/12345.

To retrieve an object by name, pass the name of an existing object to the endpoint
in the name query parameter, for example GET {baseUri}/ mobil e/ pl at f ormnl
| ocati on/ devi ces?name=RC VWH 01 _FO1 B0O1.

Setting Up Location Devices, Places and Assets

To set up a location in OMCe, define the related places and/or assets and register the
associated location devices in the Ul under Mobile Apps > Location. You can also
use the Location Management API to create, update and delete location devices,
places and assets from custom code. For details, see Accessing the Location
Management API from Custom Code.

Defining Places

A place is a physical location associated with one or more location devices. You can
define places through the Ul individually or by uploading a CSV file. You can also use
the Location Management API to create, update and delete places from custom code.
For details, see Accessing the Location Management AP| from Custom Code.

7.

Click === to open the side menu and select Mobile Apps > Location.

From the Places tab, click New Place to define a place using the Ul. This tab
shows all the places defined. To edit an existing place, select it in the list and click
Edit .

If you are creating a new place, enter a name, and an optional label and
description. If you enter a new label, it will be saved and can be used to categorize
other places, location devices and assets. Click Create.

On the Overview tab of the new Location Place Editor, enter the GPS coordinates
for the place. You can also define a geofence by radius or polygon. To associate
the place with another existing place, select that place from the Parent dropdown.

Click the Attributes tab to define custom attributes for the place. Create new
attributes or copy them from an existing place. You can use attributes to associate
a content URI with the place, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
gueries that use the Location Platform API.

Click the Devices tab to associate location devices with the place. You can
register a new device from this page (Registering Location Devices) or select from
location devices already registered. A device can be associated with a single place
or asset, not both. By default, only the devices for the current place are displayed,
but you can expand the list by checking the box Show all devices associated with
children of this place.

When you are done configuring the place, click Save.

If a place has descendants, click > at the end of the table row to navigate to them.

Uploading Places Using a CSV File

You can upload multiple places using a CSV file.

ORACLE

10-21

Chapter 10
Setting Up Location Devices, Places and Assets

From the Location : Places page, click Upload Places.
Browse to the .csv file and click Upload.

The CSV file for uploading places must follow this format:

#version=1.0

#nane, #l abel , #descri pti on, #GPSPoi nt , #GPSCi r cl e, #GPSPol ygon, #l i st of
Attributes

nane, | abel , description,lat:lon,lat:lon:radius,latl:lonl;lat2:1on2;lat3:l
on3, keyl=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one type of place:
» For specific GPS coordinates (GPSPoi nt), include the latitude and longitude.

* For a circle geofence (GPSGi r cl e), include the latitude and longitude of the
center point, and the radius. In Oracle Spatial, GPS circles are converted to
polygons, which might cause the radius to be recalculated.

» For a polygon geofence (GPSPol ygon), include the latitude and longitude for
each corner of the polygon.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below defines a GPSPoi nt .

#version=1.0

#nane, #| abel , #descri pti on, #GPSPoi nt , #GPSCi r cl e, #GPSPol ygon, #l i st of
Attributes

Fi xit Fast Redwood City Warehouse, War ehouse, Fi xi t Fast \\rehouse in
Redwood City, 37.8453:-121. 7845, ,, keyl=val 1, prop2=val 2, prop3=val 3

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Defining Location Assets

ORACLE

An asset is a physical object that's associated with one or more location devices,
typically something mobile and valuable like a forklift or hospital bed. You can define
location assets through the Ul individually or by uploading a CSV file. You can also
use the Location Management API to create, update and delete location assets from
custom code. For details, see Accessing the Location Management API from Custom
Code.

Click === to open the side menu and select Mobile Apps > Location.

10-22

Chapter 10
Setting Up Location Devices, Places and Assets

From the Assets tab, click New Asset to define a location asset using the Ul. This
tab shows all the assets defined. To edit an existing asset, select it in the list and
click Edit Asset.

If you are creating a new asset, enter a name, and a label and description if you
choose. Labels will be saved and can be used to categorize other location assets.
If the device(s) you want to associate with the asset are already registered, you
can select them on this page. (A device can be associated with a single place or
asset, not both.) Click Create.

On the Overview tab of the Location Asset Editor, you can update your entries.

Click the Attributes tab to define custom attributes for the asset. Create new
attributes or copy them from an existing asset. You can use attributes to associate
a content URI with the asset, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
gueries that use the Location Platform API.

When you are done configuring the asset, click Save.

Uploading Assets Using a CSV File

You can upload multiple assets using a CSV file.

1.
2.

ORACLE

From the Location : Assets page, click Upload asset file.
Browse to the .csv file and click Upload.

The CSV file for uploading assets must follow the following format:

#version=1.0
#name, #description, #l abel , #/ist of Attributes
Name, Description, | abel , keyl=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3, as shown in the example below. Make sure to include
commas for any empty properties to define the entry correctly.

#version=1.0

#nane, #description, #l abel , #ist of Attributes

RC_WH 01_F01_B023, Beacon #23 in the Fix|tFast Warehouse in Redwood
G ty, beacon,

Fi F Warehouse Forklift #6, MyMed DA332

forklift,forklift, Equi pment Manuf acturer=M/Med, MyMed seri al

nunber =CUB12- 9845873

Hospital Bed #233, MyMed nodel 1225 hospital bed, hospital

bed, Equi pment Manuf act ur er =MedBed, SJI d=6754843090

10-23

Chapter 10
Setting Up Location Devices, Places and Assets

< Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Registering Location Devices

ORACLE

A location device is any device that provides location services, like a Bluetooth
proximity beacon. You can define location devices through the Ul or by uploading a
CSV file.

1. Click === to open the side menu and select Mobile Apps >Location.

2. From the Devices tab, click New Device to register a location device using the Ul.
This tab shows all the location devices defined. To edit an existing device, select it
in the list and click Edit. (You can also register devices from the Devices tab in the
Location Places Editor.)

3. Ifyou are creating a new location device, enter a name and a description. Select
the Protocol:

« altBeacon
* Eddystone

 iBeacon

< Note:

The protocol can’t be changed after a device is registered.

Click Create.

4. On the Overview tab of the Location Device Editor, enter the identifying
information for the location device. The required values depend on the selected
protocol:

e For iBeacon, enter the UUID, Minor and Major values.
* For altBeacon, enter ID1, ID2 and ID3.
e For Eddystone, enter the Namespace, Instance and URL.

If the place and/or asset you want to associate with the device is already defined,
select it from the dropdown list. A device can be associated with a single place or
asset, not both.

5. Click the Attributes tab to define custom properties for the device. Create new
attributes or copy them from an existing device. You can use attributes to
associate a content URI with the device, for example a coupon or flier that a
mobile app downloads when the user is nearby. Attributes can also be used to
filter results in queries that use the Location Platform API.

6. When you are done configuring the device, click Save.

10-24

Chapter 10
Setting Up Location Devices, Places and Assets

Uploading Location Devices Using a CSV File

You can upload multiple location devices using a CSV file.

1.
2.

ORACLE

From the Location > Devices page, click Upload Devices.
Browse to the .csv file and click Upload.

The CSV file for uploading devices must follow the following format:

#version=1.0

#name, #descri ption, #uui d, #maj or, #mi nor, #i d1, #i d2, #i d3, #namespace, #i nst an
ce, #url , #list of Attributes

Name, Descri ption, uui d, maj or, minor,idl,id2,id3, namespace, i nstance, url, key
1=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one protocol type.
The required properties depend on the protocol type:

* For iBeacon, include uui d, maj or and ni nor properties.
e For altBeacon, include i d1, i d2 and i d3 properties.
* For Eddystone, include the namespace, i nst ance and URL.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below registers an iBeacon location device by
defining values for the uui d, maj or and m nor properties.

#version=1.0

#nane, #descri ption, #uui d, #maj or, #m nor, #i d1, #i d2, #i d3, #namespace, #i nst an
ce, #url,#list of Attributes

RC WH 01 _FO1 B001, Beacon on 1st Floor in FixitFast Warehouse in Redwood
City, B9407F30- F5F8- 466E- AFF9- 25556B57FE6D,
1.0,1.1,,,,,,, keyl=val 1, key2=val 2, key3=val 3

< Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

10-25

Database

Database APIs help you create and manage database tables for use in mobile apps.
As a service developer, you can call the Database Access API from custom API
implementations to create and access database tables, and use the Database
Management API to manage and view table metadata.

What Can | Do with Database APIs?

As noted above, there are two database APIs:

* The Database Access API, which is available only from custom code
implementations using the custom code SDK, lets you to create and access
database tables. For security reasons, you can't call this API from client apps. To
try out calls to this API, open a custom API, go to the Custom Catalog, and then
click Database Access.

* The Database Management API can be accessed through custom code
implementations and HTTP REST calls to manage table metadata and deploy

tables. To try out calls to this API from the UlI, click = to open the side menu, and
click Mobile Apps > APIs. In the Platform APIs section at the bottom of the APIs
page, click Database Management.

This chapter discusses how to use these Database APIs to perform common tasks.
For more details on using the platform APls, see REST APIs for Oracle Mobile Cloud,
Enterprise.

Database Access API

All your mobile apps’ interactions with the Database Access API are made through
custom API implementations. You can’t access this API directly from client apps. This
section covers how to use the custom code SDK in a custom APl implementation to
interact with the database. To learn about designing APls, see Custom API Design. To
learn about implementing a custom API, see Implementing Custom APIs.

Calling the Database Access API from Custom Code

ORACLE

Before we delve into how to implement a custom API to perform database tasks, let’s
go over a simplified description of how to call the Database Access API from custom
code. Here we talk about some API operations that you learn about later. While they
may not make sense now, these steps should give you some context for how you use
the operations that you will learn about.

To call the Database Access API from custom code, you add endpoints (resources)
and operations (methods) to the custom API, and then you add route definitions to
your custom code implementation for the custom API. We are going to talk about how
to implement the route definitions in the custom code.

To call the API from your custom code:

11-1

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

ORACLE

Chapter 11
Database Access API

Add the route definition to the custom code.

You implement a route definition by calling the ser vi ce method for the API's
endpoint operation. Say, for example, that your API has a GET operation for the /
mobi | e/ cust om FI F_I nci dent s/ i nci dent s endpoint. To implement this from your
custom code, you call servi ce. get (). The servi ce method’s arguments are the
URI and a function that takes both the request object and the response object as
arguments. For example:

service. get (
"' mobi | e/ custom FI F_Incidents/incidents', function (req, res) {
/'l your code goes here

})i

From the route definition, call the appropriate r eq. or acl eMbbi | e. dat abase
method to send your request to the Database Access API, such as get (),

getAll (), orinsert(). Accessing the Database Access API from Custom Code
describes the available methods and the arguments that each method takes, and
provides example code.

Here’s a complete route definition. This route definition calls the get Al | () method,
which, in turn, calls the Database Access API's GET / nobi | e/ pl at f or mf dat abase/
obj ect s/ {t abl e} operation. When the get Al | () method receives a response from
the API, it calls either the resul t function or the error function, depending on
whether an error occurred.

Notice that the first argument is the name of the table, and that the second
argument is a JSON object that contains a f i el ds property. This instructs the

get Al | () method to return only the cust omer and st at us fields.

/ * %
* GET CUSTOMER AND STATUS FOR ALL | NCI DENTS
*|
service. get (' /mobil e/ custontincidentreport/incidents'
function (req, res) {
reg. oracl eMbbi | e. dat abase. get Al | (
"FIF_Incidents', {fields: 'custoner,status'}).then(
function (result) {
res.status(statusCode).send (result.result);
})
function (error) {
res.status(statusCode).send(error.error);

The response to this call would look like this:

{

"itens":|
{
"status":"Qpen",
"custoner":"Lynn Smth"
¥
{

11-2

Chapter 11
Database Access API

"status": " Conpl et ed",
"custoner":"John Doe"

}
]
}

Creating and Restructuring Database Tables

ORACLE

You might think that before you can access a database table, you need to first add it to
the schema. However, you can create a new table simply by adding a row to the table.
This action is referred to as a implicit table creation.

You use the following methods to insert rows into a table:

* insert(): Add one or more rows.
e nerge(): Add or update one or more rows.

When you call these methods for a table that doesn’t exist, a new table with the row(s)
is created by deriving the table specifications from information in the obj ect and
opti ons arguments.

To specify the table structure:

e Calleitherinsert() or nerge(), both of which require t abl e and obj ect
arguments. In the obj ect argument, which is a JSON object, include all the
columns that you want in the table, and provide mock or real data for each column.
The column type and size are based on the content. For example, if the value is
100 then the column will be NUMBER(3, 0) . Don’t worry about the size being too
small. If you later post 3. 25, the column is resized to NUMBER(5, 2) , which is large
enough for both 100 and 3. 25. Also don’t worry about adding all the columns that
you need. If you later decide you want more columns, then add the new columns
to a JSON object and send itin aninsert() ormerge() call. The table will be
restructured automatically to add the new columns.

" Note:

The maximum size for a string column is 4000 characters. If you need to
store a larger string, then you can use the Storage API to store the
object.

Here’'s an example of the JSON object:

{
"incidentReport": 1,
"title": "Water heater is |eaking",
"customer": "Lynn Snith",
"address": "200 Oracle Parkway Redwood City, CA 94065",
"phone": "(555) 212-4567",

"technician": "jwhite",

"status": "Qpen",

"notes": "lynnf|lnitial incident report description",
"priority": 1,

11-3

ORACLE

Chapter 11
Database Access API

"imageLink": "http://link.to.storage"
}

By default, a set of predefined columns are added and populated automatically
whenever you add or update a record using i nsert () or merge().

If you don’t want all these columns in your table, then use the extraFi el ds
property in the optional opt i ons argument to specify which columns to include,
such as creat edOn, creat edBy (be sure to include i d if you aren’t specifying a
primary key). If you later decide you want to add more predefined columns, you
can just add them to the ext r aFi el ds property the next time you add a row.

If you don’'t want any of these columns, then set the ext r aFi el ds property to none.
However, if you don’t add any predefined columns when you create the table, then
you can't add any later.

The predefined fields are:

— id: The row key. This column is added only if both the pri mar yKeys and
extraFi el ds properties are absent. The i d is an integer set and incremented
automatically.

— createdBy: Who created it.

— createdOn: When it was created.

— nodi fi edBy: When it was last modified.
— nodi fi edOn: Who modified it last.

The dates are in W3C date-time format, and include hours, minutes, seconds, and
a decimal fraction of a second (YYYY- MM DDThh: nm ss. SSSZ) .

If you want a primary key, use the pri mar yKeys property in the opti ons argument
to specify which columns to use for the primary key. For example,

i nci dent Report, t echni ci an. Note that the order that you list the fields is the
order that you use when you retrieve or update a row. Because you can'’t retrieve
the primary key order from the table metadata, make sure that you document the
order of the primary fields.

You can see code examples for these two methods in the next section.

The following table summarizes what aspects of a table can be changed implicitly:

Object Can It Change?

Table Name No. The name is set when the table is first created.

Primary Key No. The primary key is defined when the table is created.
Predefined Columns Yes. You can allow predefined columns in the table when it's

created by the call. However, you can’t add these predefined
columns at a later point if the table was not originally intended
to use them. If predefined columns are allowed, then any of
them (other than i d, that is) can be added by subsequent
calls.

Columns Yes. Although columns are created with the table, subsequent

calls can add columns. These calls can also alter the column
size. However, you can’'t change the column type after the
table has been created.

11-4

Chapter 11
Database Access API

< Note:

You can also disable implicit table creation. If the

Dat abase_Cr eat eTabl esPol i cy environment policy is neither al | ow (the
default setting) nor i npl i ci t Onl y, adding a row to a non-existent table will
fail.

Adding and Updating Table Rows

You use theinsert () and mer ge() methods to add and update rows:

i nsert() adds one or more rows.

mer ge() adds or updates one or more rows. Whether an add or update is
performed depends on whether the table uses i d or primary key fields to uniquely
identify rows.

— idfield: If you include an i d property in the obj ect , then the matching row is
updated if it exists. Otherwise a new row is added.

— Primary key fields: If the table uses primary key fields, the matching row is
updated if it exists. Otherwise, a new row is added.

" Note:

If you submit a batch of rows, then all the rows must have the same set of
columns.

To call either of these methods:

ORACLE

Pass the table name in the first argument.

If the table doesn’t exist, and you want to limit which predefined columns to
include, set the extraFi el ds property in the opti ons argument. For example:

options =
{"extraFields' : 'createdOn,createdBy'}

If you want all the predefined columns, omit this property. If you don’t want any
predefined columns, set it to none. It doesn't hurt to include it in subsequent adds,
but make sure you include it in your first add if you don’t want the full set of
predefined columns.

If the table doesn't exist, and you want to specify a primary key, make sure you set
the pri mar yKeys property in the opt i ons argument. For example:

options =
{ "primaryKeys' : 'incidentReport,technician' }

The primary key list must be URL encoded.

Put the row data in the request body in JSON format. The JSON object can
contain data for one row or several rows.

11-5

Chapter 11
Database Access API

Here is an example of data for one row:

{

"status" : "Open",
n Codeu : n 3"

}
Here is an example of data for multiple rows:

[

"status":"Qpen",
"code": 3},

"status":" Conpl et ed",
"code": 9}
]

Here’s an example of using the i nsert () method to add two rows to the FIF_Status
table. The first argument is the table name, and the second argument is the obj ect
argument, which contains the rows to add to the table. The third argument is the

opt i ons argument, which specifies to not add any extra (predefined) fields, and to
create a primary key based on the code field.

service. post (' /mobile/custoniincidentreport/initStatus', function (req,

res) {
reg. oracl ehbbi | e. dat abase. i nsert (
"FIF_Status',
[
{
“status": "dosed",
"code": "0"},
{
“status": "Conpleted",
"code": "9"}

I

{extraFields: 'none', primryKeys: 'code'}).then(
function (result) {
res.status(statusCode).send (result.result);
}l
function (error) {
res. status(statusCode).send(error.error);

1

Retrieving Table Rows

ORACLE

You can retrieve a single table row by its primary key or ID, and you can retrieve a set
of table rows.

To retrieve a row by its primary key or ID, call the get () method. You use the keys
argument to identify the row that you want.

11-6

ORACLE

Chapter 11
Database Access API

If the table uses the i d column for the row key, then set keys to the row’s ID.

If the table has a primary key, then set keys to the primary key values in the order

in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For

example, if the opti ons. pri mar yKeys property was set to

i nci dent Report, t echni ci an when the table was created, then the values must be
listed in that order, such as: [' 5690', ' jwhite'].

Here’s an example of using the get () method to retrieve a row from the FIF_Incidents
table. The first argument is the table name, and the second argument is the keys
argument:

/**

* GET INCIDENT BY ID
*|

service. get (' /mobil e/ custon incidentreport/incidents/:id",

function (req, res) {

reg. oracl eMbbi | e. dat abase. get (

1)

"FIF_Incidents', req.params.id).then(
function (result) {
res.status(statusCode).send (result.result);
}1
function (error) {
res. status(statusCode).send(error.error);

The response body looks like this:

{

"items":|

{

"id": 168,

"title":"COven not working",
"technician":"jwhite",
"status":"Qpen",

"cust omer":"John Doe",
"inci dent Report":"5690",

"createdBy": " doe",
"createdOn":"2015-11- 16T23: 42: 18. 281823+00: 00"

To get a set of rows from a table, call the get Al l () method.

To filter the rows, add the columns to search on and the values to match to the gs
property in the optional ht t pOpt i ons argument. For example, this requests all the
incident reports for the technician J. White:

httpOptions.gs = {technician : 'jwhite'};

11-7

Chapter 11
Database Access API

* To specify which columns to return, use the fi el ds property in the opti ons
argument.

For example, to get a quick phone list:
options={"fields'" : 'custoner,phone'}

Here’s an example of using get Al | () to retrieve the cust omer and st at us fields for all
rows in the FIF_Incidents table that match the query string that's specified in
htt pOptions. gs.

/**
* CGET ALL I NCI DENTS
x|
service. get (' /mobil e/ custontincidentreport/incidents'
function (req, res) {
htt pOpti ons={};
httpOptions.gs = {technician : '"jwhite'};
reg. oracl eMbbi | e. dat abase. get Al | (
"FIF_ Incidents', {fields: 'custoner,status'}, httpQptions).then(
function (result) {
rres.status(statusCode).send (result.result);
b
function (error) {
res. status(statusCode).send(error.error);

1)

The response body looks like this:

{"itenms": [
{"title":"Water heater is |eaking",
"technician":"jwhite",
,"customer”:"Lynn Smth"

"inci dent Report": 25

"createdOn": "2015-03-05T12; 10: 15. 171284-07: 00"},
{"title":"Dryer doesn't dry",
"technician":"jwhite",

,"customer”:"Lynn Smth"

| ﬁci dent Report": 67
"createdOn": "2015-08-07T14: 22: 37. 171284-07: 00"}
1}
Deleting Table Rows

To delete a row, you call the del et e() method.
You use the keys argument to identify the row that you want to delete.

» If the table uses the i d column for the row key, then set keys to the row’s ID.

ORACLE 11-8

Chapter 11
Database Access API

» If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the opti ons. pri mar yKeys property was set to
i nci dent Report, t echni ci an when the table was created, then the values must be
listed in that order, such as: [' 5690', ' jwhite'].

Here’'s an example of deleting a row from the FIF_Incidents table. The first argument
to the del et e() method is the table name, and the second argument is the keys
argument.

/**
* DELETE | NCI DENT BY ID
*|
service. del ete(' /mobil e/ custonlincidentreport/incidents/:id",
function (req, res) {
reg. oracl eMbbi | e. dat abase. del et g(
"FIF_Incidents', req.params.id).then(
function (result) {
res.send(result.statusCode, result.result);
}l
function (error) {
res.send(error.statusCode, error.error);

b
If the table has a primary key, then the response body looks like this:

{ "rowCount" : 1}

If the i d is the key value for the table, then the response body looks like this:

{"items":; [{"id":42}]}

Executing SQL on a Table

ORACLE

If neither del ete(), get (), getAll (), insert(), normerge() let you perform the
database operation that you need to do, then use the dat abaseSQ.() method.

The dat abaseSQ.() method lets you execute SQL statements such asinsert (),
update(), merge(), del ete(), or sel ect (). You can use this method for complex
actions, such as when you need to join tables, use aggregate functions like count ()
and sun(), or use a wher e clause to delete a set of rows.

Note that you can’t use the dat abaseSQ.() method to create a table or add columns to
it. You must either use the i nsert () or merge() methods to create and restructure the
table implicitly, or use the Database Management API to create and re-recreate it
explicitly, as described in Database Management API. In addition, the predefined fields
are not populated automatically when you use dat abaseSQ.() .

To use the the dat abaseSQ.() method:

11-9

Chapter 11
Database Access API

* Setthe required sql argument to the SQL statement that you want to execute. For
example:

SELECT COUNT("i nci dent Report™) "report Count”
FROM "FI F_I nci dents" WHERE "status" = :status

See Preventing SQL Injection to learn about precautions that you should take
when you write the SQL statement.

* If your SQL statement takes parameters, then you need to pass them in the
required bi ndi ngs argument, which is a JSON object. For example, if you use the
SQL statement shown for the sql argument, then you would set bi ndi ngs to
{status:' Qpen'}. If the SQL statement doesn’t use parameters, then use nul | or

{}.

Here’'s an example of executing a SQL statement. In this example, the sql argument is
set to a SQL statement that counts the number of rows in the FIF_Incidents table with
a st at us of Open.

/**
* CGet Count of Qpen Incidents
*|
service. get (' /nobil e/ custonincidentreport/openReport Count',
function (req, res) {
reg. oracl eMobi | e. dat abase. SQ(
" SELECT COUNT("incidentReport") "reportCount™ ' +
"FROM "FI F_Inci dents" WHERE "status" = :status',
{status: 'Qpen'}).then(
function (result) {
res.status(statusCode).send (result.result);
¥
function (error) {
res. status(statusCode).send(error.error);

1

Passing Parameters to the SQL Statement

You might want to let users specify some of the values in the SQL statement. For
example, you might want your custom API to have a GET /i nci dent s/ count operation,
which counts the number of incidents for a given status, and let the user specify which
status to count by passing it as a request parameter. You use the bi ndi ngs argument
to pass the parameter to the execut eSQL() method.

There are two ways to reference parameters in the SQL statement:

e Use the : nane syntax to reference parameters by name. This is the preferred
method. For example:

Sel ect SELECT COUNT("inci dent Report™) "report Count"
FROM "FI F_I nci dents" WHERE "status" = :status

ORACLE 11-10

Chapter 11
Database Access API

To pass the named parameter, you use a JSON object like this:
bi ndings = {status:' Qpen'}

» Use the ? syntax to reference parameters by the generic names ar g1, ar g2, ar g3,
and so on. This is called an anonymous parameter. For example:

Sel ect SELECT COUNT("inci dent Report™") "report Count"
FROM "FI F_Incidents" WHERE "status" = ?

To pass the anonymous parameter, you use a JSON object like this:
bindings = {argl:' Cpen'}

Note that unlike anonymous parameters, named parameters can be bound at multiple
places in a SQL statement. In the following example, the named parameters : TI TLE
and : TOTAL_GRGSS are bound twice: once if there’s an UPDATE and once if there’s an

| NSERT.

MERGE | NTO " Movi es" t0
USI NG
(SELECT : TITLE "TI TLE" FROM DUAL) t1
ON
(tO."TITLE" = t1."TITLE")
VHEN MATCHED THEN
UPDATE SET t0."TOTAL_GROSS" = : TOTAL_GROSS
VHEN NOT MATCHED THEN
I NSERT (t0."TITLE", t0."TOTAL_GROSS') VALUES (:TITLE, :TOTAL_GRGCSS)

If you use anonymous parameters, then you must use a different generic parameter
for each occurrence. For example, with the following SQL statement, you must pass in
4 parameters: ar g1 and ar g3 provide the title, and ar g2 and ar g4 provide the total
gross:

VERGE | NTO "Movi es" t0
USI NG
(SELECT ? "TITLE' FROM DUAL) t1
ON
(t0."TITLE' = t1."TITLE")
VHEN MATCHED THEN
UPDATE SET t0." TOTAL_GROSS' = ?
WHEN NOT MATCHED THEN
| NSERT (t0."TITLE", t0."TOTAL_GROSS') VALUES (?, ?)

Here’s an example of how to execute a SQL statement that has a parameter.

/**
* Cet Count of Incidents for a Gven Status
*/
service. get('/mobile/custon incidentreport/openReport Count',
function (req, res) {
reg. oracl ehbbi | e. dat abase. execut eSQL(

ORACLE 11-11

Chapter 11
Database Access API

" SELECT COUNT("incidentReport") "reportCount" ' +
"FROM "FI F_Inci dents" WHERE "status" = :status',
{status: 'Open'}).then(
function (result) {

res.status(statusCode).send (result.result);
I3
function (error) {

res. status(statusCode).send(error.error);

1

Labeling Calculated Columns in Select Statements

As with all response bodies for this endpoint, the response body for a SELECT
statement is in JSON format. To make it easier to extract a calculated value from the
JSON object, always label the functions. Take, for example, the following SQL
statement:

SELECT SUM "inci dent Report") FROM "FIF_I ncidents"

The JSON response looks like this:
{ "SUM\"incidentReport\")" : 678 }
In this example, the function is labeled r epor t Count :

SELECT SUM "incident Report") "reportCount™ FROM "FIF_Incidents"

The JSON response looks like this:

{ "reportCount" : 678 }

Preserving Case in SQL Statements

ORACLE

By default, Oracle Database is case-insensitive. However, the tables and columns that
you create using the Database Access API are case-sensitive. Therefore, you must
enclose the table name, columns, and labels in SQL statements in double quotation
marks ("..."). Otherwise, the call might not return any rows.

Say, for example, that your SQL statement is:

Sel ect incidentReport fromFIF_Incidents

Because the table and column names are not protected by double quotation marks,
the SQL statement will not work as expected. You might get a status of 400 with a
message that the table or view does not exist or that there is an invalid identifier.

Instead, use:

Sel ect "incidentReport” from"FIF_Incidents"

11-12

Chapter 11
Database Access API

Preventing SQL Injection

SQL injection is an attack technique that allows hackers access to databases by co-
opting user input with a SQL block that can be interpreted by a backend database. To
prevent this type of attack, you must ensure that SQL statements are never passed to
the custom code from a mobile app. The SQL statements allowed by the Database
Access API must reside in the custom code.

Here are some common SQL injection considerations:

e Passing SQL as User Input

e Preventing SQL Injection with Bind Parameters

Preventing Passing SQL to the Execute SQL Operation

Don't let users pass SQL into your custom code for use in the execut eSQL() method
or the POST / nobi | e/ pl at f or nf dat abase/ sql operation.

For example, don't write code like the following example, which lets users put a SQL
statement in the SQL header, and then pass that SQL statement to be executed.
Instead, hard-code the SQL statement, and use parameters when necessary.

/**
* Exanpl e of Code that Lets
* Users Inject SQ
x|
service. get('/mobile/custonincidentreport/openReport Count',
function (req, res) {
reg. oracl eMbbi | e. dat abase. execut eSQL(
req. headers. sql
). then(
function (result) {
res.status(statusCode).send (result.result);
b
function (error) {
res. status(statusCode).send(error.error);

1)

Preventing SQL Injection with Bind Parameters

In this example, a hacker can pass an escaped SQL block in the st at us field of an
input entry form:

/**
* Exanpl e of Code that Lets
* Users Inject SQL
x|
service. get('/mobile/custonincidentreport/openReportCount',
function (req, res) {
reg. oracl eMbbi | e. dat abase. execut eSQL(
" SELECT COUNT("incidentReport") "reportCount" ' +

ORACLE 11-13

Chapter 11
Database Management API

"FROM "FI F_Inci dents" WHERE "status" ="' +
reg. body. st at us
). then(
function (result) {
res.status(statusCode).send (result.result);
I3
function (error) {
res. status(statusCode).send(error.error);

1

To prevent this type of attack, use parameters as shown in this example:

service. get('/mobile/custonincidentreport/openReportCount',
function (req, res) {
reg. oracl eMbbi | e. dat abase. execut eSQL(
" SELECT COUNT("incidentReport") "reportCount" ' +

"FROM "FI F_Inci dents" WHERE "status" ="' +
:status,
{status: 'Open'}

). then(

function (result) {
res.status(statusCode).send (result.result);

}l
function (error) {
res.status(statusCode).send(error.error);

1)

Database Management API

In addition to the Database Access API, there’s also a Database Management API,
which lets you manage the tables that you created through the Database Access API.
This API lets you view table metadata, create, drop, and re-create tables.

You can access the Database Management API through custom APl implementations

and HTTP REST calls. To try out calls to the API, click =t open the side menu.
Next, click Mobile Apps then APIs. In the Platform APIs section located at the bottom
of the page, click Database Management . For further details about each API
operation, see Here, we give a brief overview of the Storage API endpoints. For
detailed information, see Oracle Mobile Cloud Enterprise REST API Reference..

Creating a Table Explicitly

ORACLE

You can create a table from a JSON object using the PCST method for the / mobi | e/
syst eni dat abaseManagenent / t abl es endpoint. To restructure a table, use the PUT
method for the same endpoint. The PUT method drops the existing table and re-creates
it.

To create a table explicitly:

11-14

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-suite&id=msura-index

ORACLE

Chapter 11
Database Management API

1. If you want to include predefined columns in the table, set the Oracl e- Mobi | e-
Extra- Fi el ds header to a comma-separated list of the columns to include from
amongst i d, creat edBy, creat edOn, nodi f i edBy, and nodi fi edOn. If you don't
want any of these columns, specify none. The i d column, which is a row key, is
added to the table only if no primary key is specified.

2. Create the JSON object for the request body. The JSON attributes are:
* nane: The table name.
* colums: An array of the table columns. For each column, specify:

— nane: The column name.

type: The data type. The binary data type is not supported.

— size: (Optional) The size or precision of the column.

subSi ze: (Optional) For decimal columns, the scale of the column,
meaning the number of places after the decimal point.

e primryKeys: An array of column names.
e requiredCol ums: An array of column names.

3. Call the POST method for the / mobi | e/ syst em dat abaseManagenent/t abl es
endpoint.

Here’s an example of a JSON object for creating a table. When used in a POST
request, a table called Movi es is created with the specified columns and primary key.

{ "name" : "Movies",
"colums": |
{"name": "title", "type": "string", "size": 50},
{"name": "synopsis", "type": "string"},

{"name": "inTheaters", "type": "bool ean"},

{"name": "rel easeDate", "type": "dateTime"},

{"name": "runningTime", "type": "integer", "size": 3},

{"name": "total Goss", "type": "decimal", "size": 10, "subSize": 2}],

“primryKeys" @ ["title"],
"requiredCol ums": ["title", "releaseDate"]

The Database Management API creates and executes the following SQL statement
based on this request. In this case, the O acl e- Mbobi | e- Ext ra- Fi el ds request header
was set to none, so the table does not have any predefined fields.

CREATE TABLE "Movi es" (
"title" VARCHAR2(50) NOT NULL,
"synopsi s" VARCHAR2(4000),
"inTheaters" CHAR(1),
"rel easeDat e" Tl MESTAMP NOT NULL,
“runni ngTi ne" NUMBER(3, 0),
"total Goss" NUMBER(10,2),
CONSTRAI NT "Movi es_PK' PRI MARY KEY (“title"))

This example also illustrates some of the data types allowed by the Database
Management APl and the Database Access API:

11-15

ORACLE

Chapter 11

Database Management API

Type Description Size | Subsize Database Type

string A JSON string Maximum of 4000 VARCHAR2
bytes

dat eTi ne An 1SO- or date- TI MESTAMP

formatted JSON string
bool ean A JSON boolean CHAR(1) “1" true,
“0" false

deci mal A JSON number Precision (the total * NUMBER
number of digits). « NUMBER(si ze)
Optional. / Scale NUMBER(* - SUDSi
(number of decimal (*, subsi
digits). Optional. ze)

i nt eger A JSON number with NUMBER(si ze, 0) and

no decimal digits

NUMBER(*0)

The si ze and subSi ze attributes are optional. Don't provide them for columns of type
dat eTi me and bool ean. As a best practice, unless you have a valid business
constraint, don't provide si ze or subSi ze for integers and decimals because doing so
limits what values are acceptable and makes it harder to resize the column. When
possible, allow the database to size and store the value as efficiently as possible.
However, you should provide the si ze attribute for string columns. The maximum size
for a string column is 4000 characters. If you need to store a larger string, then you
can use the Storage platform to store the object.

11-16

Analytics

Oracle Mobile Cloud Enterprise provides an Analytics API to help you measure
patterns in app performance and usage. As a business development manager or
mobile program manager, you can use analytics to find out how to improve your apps.

What Can | Do with Analytics?

Use analytics to gain insight into how (and how often) users use a mobile app at any
given time. The analytics reports generated by Oracle Mobile Cloud Enterprise enable
you to see an application's adoption rate, and find out which functions are used the
most (or the least). SeeLegacy Analytics API for information on how to define sessions
and events in your app code.

How Does Create Analytics Reports?

ORACLE

creates analytics reports from events, which describe how users interact with the
mobile app.

A mobile app developer can track the mobile app’s entire usage by raising events in
the mobile app code. For example, a mobile app for repair technicians might track
events like Work Order Dispatched, Work Order Accepted, Work Order Resolved, and
Work Order on Hold. To add further detail to an event, you can define properties that
describe an event's characteristics. For the Work Order on Hold event, for example,
you might add properties for Customer Not Home or Parts on Order.

Tip:

Mobile program managers should decide which aspects of an app to track by
events early in the app development process.

Mobile backends receive events from the REST calls made from mobile apps. A
mobile app makes a single call, which includes a JSON payload that describes the
events along with such contextual information like a user’s location, the start and end
of a user session, and details about the user’s mobile device. You can craft the
payload yourself if you use straight REST calls, or use the mobile client SDK to
construct one for you. The SDK defines the user session and automatically applies the
user and system context that allows to generate reports that describe the number of
users of the app, and how (and from where) they’re using it.

12-1

Chapter 12
API Call Analytics

< Note:

While the SDK enables Analytics to automatically generate reports that tell
you how many users your app has, or how much time they’re spending on it,
you must define events in the mobile app’s code if you want to see these
reports.

API Call Analytics

OMCe provides API call analytics to help you measure patterns in app usage and
performance. As a developer, you can use these analytics to find out how to improve
your app design and performance.

API call analytics are raw code-centric metrics that give you insight into how your app
is functioning. These are distinct from the “customer experience” analytics that are
based on user events that you track by instrumenting your app. Information on using
the latter type of analytics is covered in Analyzing Customer Data with Oracle Mobile
Cloud, Enterprise.

Note:

There may be a lag in the reported data. When you enter a date range that
includes the current day, that day’s data may not appear.

API Calls Count and Response Time

You can use the API Calls page to generate reports to show the following type of data:

* Traffic for one or more APIs.

These reports include both successful and failed calls. You can filter the reports by
backend, APIs, and APl endpoints.

* Response time for API calls.

OMCe measures the response time (in milliseconds) for an API call as starting
when the server receives the request and ending when the call returns the data to
the mobile app. The response time includes the time dispatching the call.

You can compare the response time for one (or all), APIs for a selected period of
time. The bar graph compares the response time against the number of calls.

To access the API Calls page:

* Click === to open the side menu and select Analytics > Operations.

Adding Locations in China

If you want to add locations in China to your analytics you have to use Baidu Maps, a
service provider for maps of China. This lets you to track where your app users are,
and allow other map related functions like browsing for specific locations.

ORACLE 12-2

Chapter 12
Adding Locations in China

Before you add Baidu Maps, make sure your application ID is set. This is the app key
that is generated when you create an analytics app.

1. Click == to open the side menu and select Mobile Apps > Backends.

2. Open your backend and click Settings to get the application ID.

To add Baidu Maps:

1. Click = to open the side menu and select Settings > Credentials > Keys >
New CSF Key.

Enter a descriptive key name you want to use to store the Baidu Map application
key. For example, Csf KeyNane_For Bai dumapAK.

2. In atext editor, create a policy file pol i ci es. properti es that sets
Anal yti cs_Bai duMapCsf KeyNane to the CSF file you just created.

For example, here is how you would set the Anal yti cs_Bai duMapCsf KeyName
policy to Csf KeyName_For _Bai dumapAK and apply it to version 1.0 of the
M/Test Backend backend:

MyTest Backend(1. 0). *. Anal yti cs_Bai duMapCsf KeyNanme=Csf KeyNane_For Bai duma
pAK

3. Import the policy by selecting Settings > Policies > Import a policies file.

Make sure the checkbox Delete all policies before import is not selected before you
import the policies file, unless you want to delete all policies.

ORACLE 12-3

App Policies

As a mobile app developer, you can use the App Policies API to create read-only
custom properties in a mobile backend and access them in your application with REST
calls.

What Are App Policies and What Can | Do With Them?

App policies are custom properties that you can define and adjust in a mobile backend
and then reference from your apps through a simple REST call. Once you have
defined an app policy, you can update its value anytime, even after you have
published the mobile backend. This lets you make changes to the appearance and
behavior of a deployed app without having to update the app itself.

Here are some of the things that you might use app policies for:

» Determining when a given feature is enabled in the app. For example, an app for a
retailer might have a feature to display a section for holiday sales that should only
be displayed when there is a current sale.

» Fonts, colors, names of images to use, and other things that are typically stored as
part of an app’s configuration.

* Timeout values for network calls. Having an app policy for this can allow your
mobile cloud administrator to tune app responsiveness based on prevailing
network performance.

Setting an App Policy

Click === to open the side menu and select Mobile Apps > Backends.
Open the backend. (Select it and click Open.)
Click the App Policies tab.

P @ NP

Click New Policy, fill in the property name, type, value, and description, and then
click Create.

The new app policy appears in a table on the page.

You can later use the Edit and Delete buttons in the table to edit the policy or remove
it entirely. After the mobile backend has been published, you can still change a policy’s
value, but you can not add, delete, or rename policies or change the policy type.

Note:

You can only set app policies and change their values from within the OMCe
user interface. You can't do this programmatically from app code.

ORACLE 13-1

Android

Chapter 13
Android

Retrieving App Policies

ORACLE

You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies for your Android apps for the first time, you use the
Mobi | eBackend object’s get AppConfi g() method to return all app policies as a
JSONObj ect :

JSONOhj ect appPolicies = oracle. cl oud. nobi | e. mobi | ebackend. Mobi | eManager
. get Manager () . get Mobi | eBackend() . get AppConfig();

Once you have fetched the app policies, you can query the app config for the values of
individual properties.

To return the value of a specific app policy of type Stri ng, where nyPol i cyNane is the
name of the policy and “No policy configured” is the string returned if myPol i cyName
doesn't exist:

String nyPolicyVal ue =

oracl e. cl oud. nobi | e. nobi | ebackend. Mobi | eManager . get Manager ()

. get Mobi | eBackend() . get AppConfig().getString(myPolic
yNane, "No policy configured");

To load a new app policy asynchronously and make a network call:

mobi | eBackend. | oadAppConfi g(new AppConfi gCal | back() {

@verride
public void onResul t (McsError error, AppConfig config) {

To return the value of a specific app policy of type string where test _string is the
name of the policy if exists and returns the value of nul | iftest string doesn't exist:

String testString = config.getString("test_string", null);

To return the value of a specific app policy of type | nt eger, where t est _i nt is the
name of the policy and 0 is the value returned if Test _i nt doesn’t exist:

int testInt = config.getInt("test_int", 0);

To return the value of a specific app policy of type Bool ean, where t est _bool is the
name of the policy and f al se is the value returned if t est _bool doesn't exist:

Bool ean testBool = config.getBool ean("test _bool", false);

13-2

I0S

Chapter 13
i0S

To return the value of a specific app policy of type Doubl e, where t est _doubl e is the
name of the policy and 0. 0 is the value returned if t est _doubl e doesn't exist:

doubl e testDoubl e = config. getDoubl e("test _double", 0.0);

To return the value of a specific app policy of type Nunber , where t est _nunber is the
name of the policy and 0. 0 is the double value returned if t est _nunber doesn'’t exist.
Works for both double and single integer values. Returns exact value with which it is
initialized:

Nunber testNunmber = config. get Nunber ("test_number", 0.0);

To return a local copy of the app policy, and returns an empty app policy object if the
app policy doesn't exist:

AppConfig config = nobil eBackend. get AppConfig();

Retrieving App Policies

ORACLE

You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies for your iOS apps for the first time, you use an ansynchronous
callback. Here's some code that will fetch the app config from the mobile backend and
loop until the network call returns with either the app config or an error:

OMCMbbi | eBackend* nmbe = [[OMCMobi | eManager sharedManager] nobi | eBackend];

__block OMCAppConfi g* appConfig = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[_mbe appConfi gWt hConpl eti onHandl er: ~(OMCAppConfi g* appConfig_, NSError*
error_) {
appConfig = appConfig_;
error = error_;
executing = NO

E

while (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTinelnterval:
0.5 sinceDate:[NSDate date]]];

}

if (error '=nil) {
return;

}

13-3

REST

Chapter 13
REST

Once you have fetched the app policies, you can query the app config for the values of
individual properties. You can also insert an optional parameter to return a value if the
policy is not found.

NSString* wel come = [appConfig stringForProperty: @wel come"

defaul t: @bogus"];

int timeout = [appConfig integerForProperty: @TI MEQUT" defaul t:42];
bool ean enabl ed = [appConfig bool eanFor Property: @ enabl eLocati on"
default:NJ ;

Retrieving App Policies

Cordova

You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

Using the following call, you can retrieve all of the app policies associated with a
mobile backend.

GET {BaseURL}/ nobi | e/ pl at f or ml appconfig/client

The response body is a JSON object containing all of the app policies configured for
that mobile backend. For example, if the mobile backend contains fi f TechReqTi neout ,
fifTechWel coneMsg, and fi f TechBgl nage policies, the response might look something
like this:

{
“fifTechReqTi meout": 100000,

“fifTechWel comeMsg": "Hel | 0",
“fifTechBgl mage": "/ mobil e/ pl atform storagel/ col |l ections/appChj ect s/
obj ect s/ bgl mage42"

}

From there, you can process them in your app code.

Retrieving App Policies

ORACLE

You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

13-4

Chapter 13
JavaScript

To fetch app policies for your Cordova apps, call | oadAppConfi g() on your mobile
backend object, e.g.

mcs. mobi | eBackend. | oadAppConfi g(success, error);

JavaScript

Retrieving App Policies

You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

To fetch app policies , call | oadAppConfi g() on your mobile backend object:

mcs. mobi | eBackend. | oadAppConfi g(success, error);

Updating an App Policy Value in a Published Mobile
Backend

Even after a mobile backend has been published, you can still change the value of an
app policy. However, you can not change its name or type.

Click == to open the side menu and select Mobile Apps > Backends.
Open the mobile backend. (Select it and click Open.)
Click the App Policies tab.

In the table of app policies, select the policy and click Edit.

@ H @ b PR

Edit the value and click Save.

ORACLE 13-5

Backends

Oracle Mobile Cloud Enterprise (OMCe) is built around the concept of mobile
backends, which enable you to develop and deploy groupings of APIs that are
designed to support a specific set of mobile apps or bots. You can then associate one
or more apps or bots with the mobile backend to access those APIs.

What Are Backends and How Can | Use Them?

In OMCe, a backend is a secure grouping of APIs and other resources for a set of
apps. Within a backend, you select the APIs that you want available for those apps.
For any apps that you want to receive notifications, you can also register the
appropriate credentials for the given network (e.g. APNS or FCM) in the backend.

You can have multiple backends, each serving a set of applications. In addition, you
can have APIs that are used by multiple backends.

When an app accesses APIs through OMCe, it is always in the context of a backend.
The app authenticates with credentials (OAuth Consumer or HTTP Basic
Authentication) specific to the backend or through an identity provider (or social login
provider) that is mediated by your backend.

What's the Backend Development Process?

Generally speaking, using OMCe to develop apps involves these steps:

* Getting the OMCe client SDK for your target platform to simplify the use of
platform features such notifications, storage, sync, and location.

» Developing any custom APIs that your app or bot may need.

* Creating a backend and populating it with any APIs and other resources that the
app or bot will need.

» Configuring apps and/or bots to connect to the backend.

The development model is flexible, allowing you to largely work in parallel on APIs,
backends, apps, and bots.

Creating and Populating Backends

You create and populate backends directly in OMCe. Once you have created a
backend, you can:

e Assign roles that can be used to access the backend.
e Associate APIs and Storage collections with the backend.

e Set up profiles for the apps that will use the backend.

ORACLE 14-1

Chapter 14
Creating and Populating Backends

Creating a Backend

You create a backend to serve as a secure gateway between your app and OMCe
features, such as platform and custom APIs. For your app to access these resources,
it authenticates with a backend.

Click === to open the side menu and select Mobile Apps > Backends.
Click New Backend.

Once you complete the dialog and the backend is created, keep the Settings page
open.

You'll need to configure your app with some of this information.

Backend Authentication and Connection Info

The following authentication and connection details are generated when you create a
backend and are displayed on the backend’s Settings page:

ORACLE

Access Keys

You can use these to control access to the backend. They are unique for each
backend.

— OAuth Consumer keys are generated in the form of a client ID and a client
secret.

— HTTP Basic Authentication keys are generated for you in the form of a
backend ID and an anonymous key.

If you suspect that these credentials have been compromised (such as by an
application handling them insecurely), click Refresh to replace the credentials with
new ones, or click Revoke to cancel the existing credentials without generating
replacements.

Note:

Think twice before refreshing or revoking credentials, since these actions
will block any calls that any existing apps make through the backend. To
get the apps working properly again after credentials have been revoked
or refreshed, you need to rebuild the apps with the new credentials and
redeploy them.

Environment URLs

— The Base URL is needed for all API calls. This URL is unique for each
instance that you have provisioned.

— The OAuth Token Endpoint is the URL that your app needs to make OAuth
token requests.

— The OAuth Authorize Endpoint is the URL that your app can use to get an
authorization code to exchange for an OAuth access token.

14-2

Chapter 14
Creating and Populating Backends

For details on using these and other authentication methods, see Authentication in
OMCe.

To make it easier to incorporate these details in your apps, use the client SDKs for
your app platforms. See Client SDKs.

Role-Based Backends

You provide an additional layer of security for a backend (and, by extension, the
resources it represents) by making it role-based and then designating user roles that
enable access.

1. Click === to open the side menu and select Mobile Apps > Backends.

2. Open the backend that you want to make role-based.

3. Inthe left navigation for the backend, click Security.

4. Setthe Role-based Access switch to the ON position.

5. In the Roles field, select any roles that you want to associate with the backend.

See Mobile Users and Roles for info on how roles work.

" Note:

If your app uses Facebook login, Role-based Access needs to be turned
OFF.

Associating APIs with a Backend

Once you have a backend, you can use the API Catalog to select the custom APIs you
want to access through that backend. The API Catalog provides detail on each API
endpoint and its documentation, as well as an opportunity to test the endpoint with
mock data to see what it does.

Click == to open the side menu and select Mobile Apps > Backends.
Select your backend and click Open.

In the left navbar, click APIs.

Click Select APIs.

@ H w b P

Optionally, click an API's name to view its endpoints.

At this stage, you can click Test Endpoint to see how the AP| works with mock
data.

For custom APIs, you can also specify that the API can be accessed without a
user login. See Testing Your Custom API for more details.

6. Click the + (Add) icon for each API that you want to include.

ORACLE 14-3

Chapter 14
Notification Profiles and Client Apps

< Note:

Platform APIs (for Storage, Notifications, Location, etc.) are automatically
available in your backends.

Associating Storage Collections with a Backend

You can associate a backend with collections so that your apps can work with data in
those collections using the Storage API.

To associate your backend with an existing collection:

LA S

Click == to open the side menu and select Mobile Apps > Backends.
Select your backend and click Open.

In the left navbar of the backend, click Storage.

Click Select Collections.

Start typing the name of the collection that you want to add, select the collection
from the drop-down list, and click Select.

For more on collections, including creating them, see Storage.

Notification Profiles and Client Apps

If you are using notifications in an app, you can create a notifications profile to manage
the network credentials. You can then register the client app in OMCe and associate it
with the notifications profile and a given backend.

Setting up a notifications profile and registering the client app accomplishes the
following things:

Enables you to store the ID that is needed for the app store.
Enables the app to receive notifications via OMCe.

Simplifies lifecycle management of the app and its associated backend and related
artifacts.

How Notification Profiles Work

You use notifications profiles to store credentials for notification services that you use
in your apps. After you create a notification profile, you can associate it with a client
that you have registered for an app and associated with a backend.

How App Clients Work

Here are the principles behind app clients:

ORACLE

A client represents a single version of a single app binary.

For example, if you have both iOS and Android versions of an app, you would
register a client for each. Similarly, if you provide an upgraded version of the app,
you would register a new client to hold its metadata.

14-4

Chapter 14
Notification Profiles and Client Apps

When you register a client, you specify metadata such as the application ID that is
required by the platform vendor’s app store, the app version number, and a profile
that contains notifications credentials.

A client can only be associated with one version of a mobile backend.

This means that when you create a new version of a mobile backend, that mobile
backend doesn’t inherit any clients that you associated with the previous version of
the mobile backend. So, as you create new versions of your mobile apps that use
a new version of a mobile backend, you should create corresponding clients.

A client can be published and deployed in a way similar to other artifacts. When a
client is deployed, its backend and other dependencies are deployed with it.

For a rundown on publishing, deploying, and versioning app profiles, see App
Profile Lifecycle in Administering Oracle Mobile Cloud, Enterprise.

Getting Network Credentials for Notifications

To enable your app to send and receive notifications via OMCe, you create an app
profile and configure an associated notifications profile with the appropriate network
credentials. Here's how to get the network credentials for the different platforms.

Android: Google API Key

Configuring an Android mobile app for notifications requires getting a Google API Key
through Firebase Cloud Messaging (FCM).

ORACLE

1.

Set up your Android mobile application in FCM according to the instructions at Set
Up a Firebase Cloud Messaging Client App on Android on Google’s developer
site.

This page includes detailed instructions and a link to generate the required
configuration file for your project, as well as information on using the Instance ID
API to create and update registration tokens.

" Note:

When you generate the configuration file for your app, make sure you
choose to enable the Cloud Messaging service.

In the Android app’s AndroidManifest.xml file, within the <appl i cati on> node, add
the following entries:

<service

androi d: name="or acl e. cl oud. nobi | e. noti fications. McsRegi strationlntent Ser
vice" android: exported="fal se" />

<service

andr oi d: nane="or acl e. cl oud. nobi | e. noti fications. GcnifokenRef r eshLi st ener S
ervi ce" android: exported="fal se">

<intent-filter>

<action androi d: name="com googl e. androi d. gns.iid. InstancelD" />
<lintent-filter>

</ service>

14-5

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Chapter 14
Notification Profiles and Client Apps

Google Play Services must be added as a dependent library in the application's
build file, or these services will be flagged in error.

When generation is complete, the Project Number (aka Sender ID) and API Key are
displayed. You need these credentials to register the mobile app for notifications in
OMCe. They are unique to the mobile app and can'’t be used to send notifications to
any other app. You also need these values to get a registration token from FCM and
set up the connection with OMCe.

" Note:

It is still possible to use Google Cloud Messaging (GCM), but you should
configure new apps with FCM. See Migrate a GCM Client App for Android to
Firebase Cloud Messaging on Google Developers.

I0OS: Apple Secure Certificates

Notifications make special use of Apple's network, so Apple wants extra security
protections. In addition to the certificate used to set up your account, you need one of
the following secure certificates:

* Apple Push Notification service SSL (Sandbox) certificate for developing and
testing your application with notifications while you do development. Sandbox
certificates are intended for automated QA environments where devices don'’t
change often. In most cases, spam filters should be disabled.

* Apple Push Notification service SSL (Production) certificate for releasing your
application to Apple’s App Store. Apple requires this certificate before you can ship
your app to the public, but you can wait until your app is finished to get it.

You need your certificate to register the mobile app for notifications in OMCe. It is
unique to the mobile app and can't be used to send notifications to any other app.
Once you have configured these extra certificates, you can get a device token from
Apple and set up communication with OMCe, described in Setting Up a Device
Handshake for iOS.

The steps for getting a Sandbox or Production certificate are very similar to the steps
you used to get the first secure certificate when you set up your app. This section
assumes that you already set up your Apple developer account, got the required
secure certificate, and set up an Application ID and a Provisioning Profile. For further
details on using notifications in iOS, see the Local and Remote Notification
Programming Guide on http://developer.apple.com.

1. If you didn’t enable notifications in your provisioning profile when you created your
App ID, go back and enable it now.

2. Get your certificate(s) from the Apple Developer Center. Use the App ID you set
up when you created your app.

ORACLE 14-6

https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://developers.google.com/cloud-messaging/android/android-migrate-fcm
http://developer.apple.com/

Chapter 14
Notification Profiles and Client Apps

< Note:

Follow Apple’s direction to create a Certificate Signing Request (CSR)
file, then export it to a . p12 file to upload it to OMCe. Do not password
protect the . p12 secure certificate. (Leave the password field blank when
you save the . p12 file.)

Windows: WNS Credentials

Configuring a Windows mobile app for notifications requires a unique set of credentials
for Windows Push Notification Service (WNS). This section assumes you have a
Microsoft Developer account.

The following credentials are required to authenticate with WNS:
e Client ID (also called the Package SID)

* Client Secret (also called a secret key)

To get these credentials, register your mobile app in the Windows Store Dashboard,
accessible from the Windows Dev Center. For details on WNS, see WNS Overview on
MSDN.

You need these credentials to register the mobile app for notifications in OMCe. They
are unique to the mobile app and can’t be used to send natifications to any other app.

Syniverse: SMS Credentials

ORACLE

To send Short Message Service (SMS) messages using the Syniverse Messaging
Service, the first step is to establish a profile on the Syniverse Developer Community,
where you subscribe to the service, register your app, and get credentials.

Creating a Profile on the Syniverse Developer Community

1. Go to the Syniverse Developer Community (developer.syniverse.com).

2. Click Sign Up in the top right corner of the site and enter the requested
information.

3. If you have an invitation code from a company in the Syniverse Developer
Community enter that into "Company invite code" field. If not, ignore this step.

Read and accept the Terms of Service.
Check the Captcha box and answer the challenges to prove you aren’t a robot.

Click Create profile.

N o o &

When the confirmation email arrives, click the link in the email and verify your user
credentials.

Subscribing to the Syniverse Messaging Service

To use SMS in your apps using the SMS short code you got from Syniverse, you need
to subscribe to the Syniverse Messaging Service.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click your user name in the top right corner and select Company. Verify that your
accounts have a billing address associated with them.

14-7

https://developer.microsoft.com/en-us/windows
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx
https://developer.syniverse.com/
https://developer.syniverse.com/

ORACLE

Chapter 14
Notification Profiles and Client Apps

Navigate to Service Offerings > Messaging Offering and click Subscriptions.
Click Subscribe and select “Initial account for [Your username]”

a. Read and accept the Terms of Service.

b. Select Confirm.

c. Verify that your account is listed in Subscriptions.

If you're using a Syniverse-provisioned public channel to test messages, you also
need to add test phone numbers to the associated whitelist. (Whitelisting is only
necessary when testing SMS to U.S. or Canada phone numbers and isn’t required
for production apps.)

a. Click your user name in the top right corner and select Company.
b. On the Company page, click the Whitelist tab.

c. Click Add phone number and enter your phone number in the ITU-T E.164
format (i.e., +11234567890).

d. Click Send confirmation code to send a randomly generated number to the
phone number in a text message.

e. Retrieve the confirmation code from the text message and enter it in the
Confirmation code field. Click Add to confirm the phone number whitelist.

f. Verify that your phone number is included in the whitelist table with "Validated"
status.

Register Your App and Get Credentials

Before messages can be sent through the Syniverse Messaging Service, there must
be an application configured in the SDC platform. Once your app is registered, you
can generate the required credentials.

1.
2.
3.

Log in to the Syniverse Developer Community (developer.syniverse.com).
Click Applications.

Click New application.

In the dialog:

a. Give your application a name and description and click Save.

b. Click the gear icon next to your app nhame and select Edit.

Click SDC Self Service and make sure all the options are selected.

0

d. Click Account & APIs and select the "Initial account for [Your username]"
from the Account dropdown.

Turn on the following services: Messaging, SDC Gateway Services, Event
Subscription Services, Voice & Messaging and Whitelisting Services.

e. Click Save.
Generate the required credentials:

a. From the Applications page, click the gear icon next to your app name and
select Edit.

b. Click Application permissions.

c. Make sure Require user token validation is unchecked.

14-8

https://developer.syniverse.com/

f.

g.

Chapter 14
Notification Profiles and Client Apps

Click the first check box next to your app name to give your application full
entitlements.

Click Auth Keys to generate the credentials.
Copy and store the keys to a safe place on your computer.

Click Save.

Creating a Notifications Profile

You create notifications profiles to hold notification credentials that your apps need.

ORACLE

To create a notifications profile:

1. Click === to open the side menu and select Mobile Apps > App Profiles.

2. Click Profiles.

3. In the New Profile dialog:

Fill in the Name. This can be whatever name that will help you identify the
profile most easily.

Select the Notification Service.

Fill in the rest of the dialog with the information required by the notification
service. For details on getting credentials from your notification provider,
including any additional setup steps, see Setting Up a Mobile App for
Notifications.

For Apple Push Notification Services (APNS), you need to register a certificate
obtained from the Apple Developer portal.

For Firebase Cloud Messaging (FCM), you must register server credentials
obtained from the Developers Console for an Android application. (However,
providing the package name is optional, because credentials may or may not
be scoped to a specific app.)

For Windows Notification Service (WNS), you register your app in the
Windows Store Dashboard to get the credentials required to authenticate with
the Windows Notification Service.

For Syniverse (SMS), fill in the required fields:

— Channel ID or sender address. A channel represents a collection of
sender addresses, for example, a set of SMS short codes that can be
used to send text-based messages. A sender address can be any long
code, short code or alphanumeric ID that applications can send SMS
messages from. You can use your own sender address or purchase a
sender address owned by Syniverse. When sending messages via a
channel, the Syniverse Messaging API service chooses the most
appropriate sender address for each message and recipient. To get a
Syniverse-provisioned test channel ID for testing SMS in the U.S. or
Canada, go to your Syniverse Dashboard > Service Offerings >
Messaging Accounts > Public Channels (U.S. apps must use the “US MT
Test Channel”). To test in the U.S. or Canada, you also need to whitelist
test phone numbers as described in Setting Up a Mobile App for
Notifications.

— The authentication keys you got from Syniverse: Consumer Key,
Consumer Secret and Access Token.

14-9

Chapter 14
Notification Profiles and Client Apps

— By default, consent management is handled by Syniverse, but if you want
your app to handle consent management or you want to register devices
through the Ul, deselect Consent Management Enabled.

4. Click Create.

Once a natifications profile is created, you can add it to a client by opening the client,
selecting its Profiles tab, and clicking Select Profile.

You can add a profile to any client whose platform is valid for the profile's notification
service and whose application ID matches that of the profile. If an FCM or GCM profile
does not specify a package name, the profile may be used with any Android client.

Registering an App Client

ORACLE

1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for
Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

Click to open the side menu and select Mobile Apps > App Profiles.
Click Clients.

Click New Client.

g H W D

In the New Client dialog:
e Fillin the Client Display Name and Client Name.

These can be whatever names that will help you identify the client most easily.
The former can have spaces and the latter can't.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

* Select the Platform (iOS, Android, Windows, or Web).
e Fillin the Version Number field.

This version must match the version number of the app as registered with your
platform vendor.

* Fill in the fully-qualified app ID. You get this from the platform vendor.
For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

14-10

Chapter 14
What Can | Change in a Backend?

< Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

After you have registered the app client in OMCe, you have a few options for sending
notifications to your app, as shown in Sending Notifications to and from Your App.

What Can | Change in a Backend?

If you haven't yet published your backend, you can change the following parts of the
backend at any time:

Notification profiles

Custom APIs (and their implementations)

Any connector APIs that are called from custom APl implementations
Storage collections

App policies

Once you have published a backend, its content is frozen. At that point, you would
need to create a new version of the backend to make any changes.

Note:

Though you can’t change the list of app policies in a published backend, you
can change their values.

Connecting Your App to a Backend

Once you have a backend set up and an app registered with that backend, you need
to configure your app code to access the backend.

ORACLE

Connecting your app to a backend involves these basic steps:

Adding the client SDK libraries to your app. (This step is optional, but highly
recommended.)

Adding a configuration file to your app to hold environment information that your
app needs to access the backend. The SDK classes that you use to make calls to
the backend use the values in this file so that you don’t have to manually include
them in each of your calls.

Adding calls to OMCe APIs in your app.

The APIs available include OMCe platform APIs and any custom APIs that you or
other members of your team have developed in OMCe.

Testing your app.

14-11

Chapter 14
Analytics Apps

Add
SDK

Insert
Test App with
Credentials | o) 10 Mobile

in Config Backend
Files

Develop
App

Analytics Apps

In order for a business analyst on your team to be able to track analytics for an app,
you need to register the app in OMCe and then use the client SDK to instrument the

app.

See Analytics for details on instrumenting your apps.

To see how a business analyst would access and use that data in OMCe, see
Analyzing Customer Data with Oracle Mobile Cloud, Enterprise.

Registering an Analytics App

So that OMCe can collect and display analytics for an app, you need to register that
app in OMCe.

ORACLE

1.

In OMCe, click the application picker and then click New Application.

The dropdown arrow appears to the right of the title for the currently open
application that appears in the top left of the window.

— ORACLE wmchile!

EasyShopping ¥

In the New Application dialog, type a hame for the app, select the appropriate time
zone, and click Create.

The app name can be anything that you want and should be named so that you
can easily identify the app (and possibly its version and platform).

Click === to open the side menu and select Settings > Application to display the
environment details and credentials that your app will need for sending analytics
data to OMCe.

14-12

Chapter 14
Analytics Apps

You will copy these details into the configuration file provided by the client SDK for
your platform.

Associating an Analytics App with a Backend

If you have set up a backend for your apps, you can associate your analytics app with
that backend. This association is useful if you are monitoring API call analytics and
want to filter them by backend.

To create the association:

Click == to open the side menu and select Mobile Apps > Backends.
Select the backend you want to use and click Open.
Click the backend’s Settings tab.

In the Application ID field, enter the analytics app key that was generated when
you created the analytics app.

P ® NP

You can find this key by opening the analytics app and selecting Settings >
Application.

ORACLE 14-13

Mobile Users and Roles

You can set up users for your apps in one of these ways:

e In Oracle Identity Cloud Service (IDCS).
e Through a third-party identity provider (IdP).
e By using Facebook Login.

For users provisioned in IDCS or a third-party identity provider (IdP), you can set up
role-based security by doing the following:

1. Creating user roles in OMCe.
2. Applying roles to backends and APIs.
3. Assigning the roles to the users.

For details on integrating with a third-party IdP or Facebook, see Authentication in
OMCe.

Navigate to Your Oracle Identity Cloud Service
Application

Oracle Identity Cloud Service is provided as part of your mobile service stack, and you
use it to add and edit users, groups, and roles. For each mobile instance, you have an
Oracle Identity Cloud Service application.

To navigate to the Oracle Identity Cloud Service application for an instance:

1. Sign in to your Oracle Cloud account.

2. From the Infrastructure Console , click the navigation menu = in the top left
corner, expand Identity, then click Federation.

3. Inthe Instance Overview that appears, click the Oracle Identity Cloud Service
Console link.

Adding Users and Groups in Oracle Identity Cloud Service

ORACLE

Unless you are using a 3rd-party IdP or Facebook as your identity store, you add
users by creating user accounts with Oracle Identity Cloud Service. You can create
groups to organize users and assign roles.

¢ Note:

You must have an identity domain administrator role in Oracle Identity Cloud
Service to add mobile users. If you don’t have this role, ask your service
administrator for help.

15-1

Chapter 15
Creating and Managing Mobile Roles

To add a single user, follow the steps below. Oracle Identity Cloud Service also
provides a REST API for creating and managing users and groups, described in REST
API for Oracle Identity Cloud Service.

1. From Oracle Identity Cloud Service, click == and select Users.
2. Click Add.
3. Enter the first name and last name of the user in the corresponding fields.

» If the user is going to log in with a user name, enter the user name in the User
Name field and enter the user’s email address in the Email field.
Be sure to clear the Use the email address as the user name option, which
makes the user name the same as the user’s email address.

« If the user is going to log in using an email address, make sure the Use the
email address as the user name option is checked and enter the email
address for the user account in the User Name/Email field.

4. Click Next if you want to assign the user to a group or click Finish.
To assign a group, just select the groups that you want to assign to this user
account and click Finish.

5. From the Details page displayed for the new user, click the Access tab.

6. Search for your mobile core application and click Assign.
Repeat this step for each application the user should have access to.

Creating and Managing Mobile Roles

ORACLE

Mobile user roles allow you to define permissions for your backends and APls. You
can define as many roles as you need, and you can assign multiple roles to the same
user.

To create mobile user roles:

1. In OMCe, click === to open the side menu and select Mobile Apps > Roles.

2. Click + New Role to add a role.

Once you've defined roles, use them to:
* Restrict access to a backend as explained in Role-Based Backends.

* Restrict access to custom APIs as described in Setting Access to the API.

Roles for Users That Are Set Up in IDCS

For mobile users that are set up in IDCS, you assign roles (to individual users or
groups of users) through IDCS:

1. From Oracle Identity Cloud Service, click the navigation menu== and select
Identity > Federation.

2. Select the IDCS provider and click Create IDCS User.
3. Select your OMCe mobile core application, then select the Application Roles tab.

4. For each role, click Action > Assign Users. Select one or more users from the
Role window and click Assign.

15-2

Chapter 15
Permissions Required for Platform APIs

For more details on OMCe roles in IDCS, including how to identify your OMCe mobile
core application, see Assigning Cloud Account Roles to a User in Getting Started with

Oracle Cloud.

Roles for Users That Are Set Up in a 3rd-Party IdP

There are several ways to assigns roles to users who provisioned in 3rd-party IdP.
See Associating Roles with a SAML Token and Associating Roles with a JWT Token.

Permissions Required for Platform APIs

ORACLE

The types of users that can access a platform API, the way they can access it, and the
roles they need to access it vary by API. Here's a quick rundown:

API

Access and Required Permissions

Analytics

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

App Policies

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Database Access

Accessible to IDCS, virtual, and social
users. For security reasons, you can call
these operations only from custom API
implementations by using the custom
code SDK. You can't make direct requests
from client applications.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Database Management

Accessible to team members with either
the Adni ni strat or or Devel oper role.

Location

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Location Management

Accessible to team members with the
Admi ni strator role.

15-3

ORACLE

Chapter 15
Permissions Required for Platform APIs

API

Access and Required Permissions

My Profile

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Noatifications (device registration)

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Notifications (create, delete, and return)

Accessible to team members with either
the Admi ni strat or or Devel oper role.

Storage

Accessible to IDCS, virtual, and social
users from both client app code (either via
REST or client SDK) and custom API
implementation code.

For IDCS and virtual users, must have a
role associated with the mobile backend if
the backend is role based.

Access depends on whether the given
collection is shared or isolated, whether
it's listed in the

Security Col | ecti onsAnonynmousAcc
ess environment policy, and whether you
need READ or READ WRI TE access.

15-4

Authentication in OMCe

In Oracle Mobile Cloud Enterprise (OMCe), all resources are secured and can only be
accessed via API calls made by authenticated users that are authorized to access
those resources. As a mobile app developer, you enable one or more authentication
methods for a mobile backend, associate the APIs that you want to use with that
backend, and then write app code using one of those authentication methods.

The authentication methods available are:

e OAuth Consumer

e HTTP Basic

* Enterprise Single Sign-On (SSO)
This method includes variants for browser-based SSO and use of third-party
tokens.

* Facebook Login

Before getting into the specifics of each authentication method, let's go over how
authentication relates to authorization:

* Authentication is the process of ensuring a user is who he or she claims to be,
usually based on a user name and password, and often in combination with other
credentials.

* Authorization is the process of determining whether a user has access to given
backends and APIs, based on permissions granted to the user via roles.

Login
¥
Authentication . Authenticated . Authorization . Authorized User
(Who are you?) User (What rights do you hawe?) (Access rights)
¥
Access
Resources

OAuth Consumer Authentication in OMCe

ORACLE

The ability to use OAuth 2.0 as your authentication mechanism is built in to all
backends and enabled by default. Whenever you create a backend, the OAuth
Consumer keys are generated for you.

For details on the access keys and backend details provided, see Backend
Authentication and Connection Info.

16-1

Chapter 16
HTTP Basic Authentication in OMCe

Once you have these keys, you can use them in your apps. When using Client SDKs
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the backend. If you are coding the REST calls manually, see
Authenticating with OAuth in Direct REST Calls.

OAuth authentication in OMCe is handled by Oracle Identity Cloud Service (IDCS),
which supports the standard OAuth grant types: authorization code, implicit, resource
owner password credentials, and client credentials.

HTTP Basic Authentication in OMCe

The ability to use HTTP Basic as your authentication mechanism is built in to all
backends and enabled by default.

To enable or disable HTTP Basic as an authentication method:

1. Open the backend and select the Settings page.
2. Under Access Keys, set the HTTP Basic switch to ON or OFF.
When switched to ON, the access keys that you need are displayed.

Once you have these keys, you can use them in your apps. When using Client SDKs
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with HTTP Basic in Direct REST Calls.

For details on the access keys and environment details provided, see Backend
Authentication and Connection Info.

Enterprise Single Sign-On in OMCe

ORACLE

If you want to use your own identity provider (IdP) for users of your apps, you can use
OMCe'’s single sign-on (SSO) support to create a trust relationship with that IdP in
OMCe so that those users from that IdP can log in to those apps. This is particularly
useful if you're rolling out apps for your company’s employees and you want them to
be able to sign into the apps using their existing employee login credentials. Similarly,
this could work for consumer applications where the customers already have user
accounts for corresponding web applications.

You can set up SSO to work through the following mechanisms:

* SAML or JWT tokens from a 3rd-party IdP. The app obtains a token from a 3rd-
party IdP that is registered in OMCe as a trusted token issuer, makes an API call
to the OMCe token exchange endpoint, and receives back an OMCe-issued token,
which you include as a bearer token on each subsequent OMCe API call. The
client SDKs support this token exchange.

In the case of JWT tokens, OMCe uses the OpenID Connect discovery protocol.

* Browser-based SSO using IDCS as the IdP. Oracle Identity Cloud Service is the
IdP. The app uses OAuth 2.0’s authorization code grant to get an authorization
token. The client SDKs currently do not provide support for this grant type.

16-2

Chapter 16
Enterprise Single Sign-On in OMCe

Third-Party SAML and JWT Tokens

OMCe supports the use of SAML and JWT tokens in the following ways:

With zero footprint SSO, where no user accounts are stored in Oracle Cloud.
Instead, all of the information for the user, including user roles, is derived from the
third-party token. Such users are referred to as virtual users.

With a token that identifies a user that has been provisioned in both Oracle Identity
Cloud Service (IDCS) and the third-party IdP. Roles are associated for the user
based on information provided in IDCS.

SAML Tokens and Virtual Users

If you have users set up in a third-party IdP that supports the SAML 2.0 spec, you can
authenticate those users in OMCe via SAML tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1.

4.

You configure your backend to use HTTP Basic authentication. (This is required
for you to be able to get the token.)

You do this by selecting the backend in OMCe, selecting the backend’s Settings
page, and setting the switch for HTTP Basic Authentication to ON.

Your administrator configures the 1dP to generate a SAML token when the user
logs in.

Your administrator registers the third-party token issuer and one or more token
certificates in OMCe.

As part of this process, she can also associate OMCe roles with tokens in one of
the following ways.

» By designating OMCe roles to be associated with all tokens based on a given
certificate.

* By deriving role names (that match existing OMCe roles) from given token
attributes.

* By mapping given token attribute values to existing OMCe roles (where the
attribute values don’t already match the OMCe names).

You code your app to do the following:
a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an OMCe token exchange endpoint to get an OMCe-issued
token in return.

c. Use the OMCe token for all subsequent API calls to OMCe.

Configuring SAML Tokens for Virtual Users

ORACLE

To enable the authentication of virtual users via SAML tokens, you need to create a
SAML app in your IdP. This is a special app that mediates the creating and passing of
the SAML tokens.

Though the workflow varies by I1dP, you generally need to do the following key tasks:

16-3

1.
2.

Chapter 16
Enterprise Single Sign-On in OMCe

Create a SAML 2.0 app.
Configure the SAML 2.0 app by specifying the following:
a. Redirect URL.

You'll configure your app to use the redirect URL to obtain the token. How the
token is obtained depends on the operating system you use (iOS or Android) .
Avoid entering an address to an actual live site. Use a fictitious address URL
request, for example,

http://host nane/ mobi | e/ pl at f orm sso/ redi rect

Be sure the redirect URL you provide is formed correctly, that is it should
match the expected redirect URL value.

b. Audience.

SAML tokens have the concept of an audience. An audience is the intended
recipient of the SAML response (the token). It restricts the set of URLs against
which the token can be used. You configure the audience to the URL for the
OMCe SSO token endpoint.

You construct this endpoint by appending / mobi | e/ pl at f or ml sso/ exchange-

t oken to your instance’s base URL. You can determine the base URL by
opening any mobile backend in OMCe, clicking its Settings tab, and looking in
the Environment URLS section.

c. An assertion that lists the applicable roles for the user.

For concrete examples, see Use Case: Configuring OKTA to Obtain a SAML Token
and Use Case: Configuring AD FS to Obtain a SAML Token.

Registering the Token Issuer in OMCe

ORACLE

Before your apps can use tokens issued by a third-party IdP to authenticate with a
backend, an administrator needs to register the IdP as a token issuer in OMCe. Here
are the steps:

1.
2.
3.

4

© ® N 9o

In OMCe, click = and select Settings > Credentials from the side menu.
Click Certificates.

Click New Certificate to clear the Certificate Details and provide the following
information:

* Inthe Alias field, enter a unique identifiable name for the certificate.

* In the Certificate field, paste the definition of the token certificate that was
provided by the identity provider.

Click Save.

Wait for the token certificate to be propagated in the system. This should take no
longer than 10 minutes.

Click the Token Issuers tab.

Click New Token Issuer.

Enter the name of the token issuer in the Name field under Issuer Details.
Click Add Certificate Subject Name (+) .

. From the Select Certificate Subject Names dialog, select at least one name and

click Save.

16-4

11.
12.

13.

14.

Chapter 16
Enterprise Single Sign-On in OMCe

Typically the name is the subject name of the token certificate you added
previously.

Back on the Token Issuers tab, select Enable Virtual User.

In the Username Attribute field, type the name of the token’s attribute that
identifies the user.

Optionally, designate user roles and mappings. The next topic has more
information on how this works.

Click Save.

Associating Roles with a SAML Token

If you want to set up role-based access for users that authenticate with SAML tokens,
you can do so when registering the token issuer in OMCe. You have the following
possibilities:

Use roles already defined in the token that match the names of OMCe roles.

You do this by typing a comma-separated list of token attribute names in the Role
Attribute field. The roles are then derived from the values of these attributes.

If the role names defined in the token don’t match role names defined in OMCe,
provide a mapping between the two.

You do this by:

1. Inthe Role Attribute field, typing a comma-separated list of token attributes
that contain the role names.

2. Clicking Add Role Mapping Setting (+) to create a mapping between a role
derived from the token with one or more OMCe user roles.

You can create multiple mappings.

Apply one or more OMCe roles to all tokens issued with a given certificate (unless
roles were applied via the role attribute or Role mapping mechanisms).

You do this by selecting one or more OMCe user roles in the Default Roles field.

Extracting the SAML Assertion

After you've obtained a SAML token from an IdP, you need to decode it to extract the
SAML assertion from its response. You then GZIP compress that assertion and
base64 encode it again before submitting it to the OMCe token exchange to receive an
OMCe token.

ORACLE

One way to extract the assertion is to follow these steps:

1.

3.

Open a browser and enter the address for the identity provider:

For example, if you configured a SAML token with AD FS: https://
domain_namel/ adf s/ | s/ i dpi ni ti at edsi gnon

You're taken to the Test Local Federation page.

Enter the user name and password credentials for the user you created and click
Sign In.

After the page refreshes, select the SAML app you created and click Sign in
again.

16-5

Chapter 16
Enterprise Single Sign-On in OMCe

You are redirected to the endpoint URL and the SAML token is displayed in the
browser URL field.

4. Copy the response beginning with SAM. Response=.

5. Since you’'ll need to base64 decode and inflate the SAML response, go to a SAML
decoder tool such as SAML Decoder at https://www.samltool.com/decode.php.

6. Go to the base64 Decode and Inflate page and paste the response into the
Decode and Inflate XML field.

7. Click DECODE AND INFLATE XML.

8. Extract the SAML assertion from the XML field.
9. Gzip compress the extracted assertion.

10. Base64 encode the assertion.

Now you can call the token exchange, pass the assertion, and receive the OMCe
token.

Using a SAML Token to Authenticate with OMCe

Once you have obtained a valid SAML token, you can use it to authenticate with
OMCe. You do so by passing the token to OMCe'’s token exchange endpoint. In
exchange, you get an OAuth token issued by OMCe that can be used for subsequent
API calls during the session.

OMCe’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAut horization;
private Mobil eBackend mobil eBackend,;

try {
mobi | eBackend = Mbbi | eManager . get Manager () . get Mobi | eBackend(t hi s);

} catch (ServiceProxyException e) {
e.printStackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zati on(Aut hType. TOKENAUTH) ;

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCError Conpl eti onBl ock)
conpl eti onBl ock;

ORACLE 16-6

https://www.samltool.com/decode.php

Chapter 16
Enterprise Single Sign-On in OMCe

Cordova and JavaScript

mcs. nobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. mobi | eBackend. aut hori zati on. aut henti cat e(token). then(cal | back). cat ch(er
ror Cal | back);

Coding the SAML Token Exchange Manually

If you are not using a client SDK, you need to manually code your app to exchange
that token for an OMCe token, with which you then authenticate.

1.

In the app’s login sequence, call the OMCe token exchange endpoint to exchange
the third-party token for an OMCe-issued OAuth token:

e The token exchange request is a simple GET request with no parameters.
e |t must include an Authorization header of the form:
Aut hori zation: Bearer external-token

e |t must also include the or acl e- nobi | e- backend- i d header with the value of
the Basic Auth mobile backend ID for the mobile backend that you’re using.

The token exchange endpoint is formed by starting with the base URL for your
environment (which you can get from the Settings page of a mobile backend) and
appending / mobi | e/ pl at f or mf sso/ exchange-t oken.

In all REST calls to OMCe APIs, include the given token in the Aut hori zati on
header.

The header takes the form Bear er access-t oken.

The access-token value includes the mobile backend ID from the original request
so you don't have to include the ID in a separate header.

JWT Tokens and Virtual Users

If you have users set up in a third-party IdP that supports JWT, you can authenticate
those users in OMCe via JWT tokens.

ORACLE

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in IDCS):

1.

You configure your backend to use HTTP Basic authentication. (This is required
for you to be able to get the token.)

You can do this by selecting the backend in OMCe, selecting the backend’s
Settings page, and setting the switch for HTTP Basic Authentication to ON.

Your administrator configures the I1dP to generate a JWT token when the user logs
in.

Your administrator registers the third-party token issuer via a policy in OMCe.

As part of this process, she can also associate OMCe roles with tokens in one of
the following ways.

* By designating OMCe roles to be associated with all tokens based on a given
certificate.

16-7

Chapter 16
Enterprise Single Sign-On in OMCe

* By deriving role names (that match existing OMCe roles) from given token
attributes.

* By mapping given token attribute values to existing OMCe roles (where the
attribute values don’t already match the OMCe names).

4. You code your app to do the following:
a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an OMCe token exchange endpoint to get an OMCe-issued
token in return.

c. Use the OMCe token for all subsequent API calls to OMCe.

Note:

This mode of integrating with an I1dP is based on enhanced features that are
specific to working with JWT tokens (such as JWKS support) and includes
other features, such as the ability to configure allowed audience values and
username attribute. You can also use the process that is used for integrating
with SAML-based IdPs, though this provides you with less flexibility. See
SAML Tokens and Virtual Users.

Registering a JWT Token Issuer in OMCe

Before your apps can use JWT tokens issued by a third-party IdP to authenticate with
a backend, an administrator needs to register the IdP as a token issuer in OMCe.
Here’s how it works:

1. You create a configuration that holds information that is needed to integrate with
the token issuer. This integration takes the form of a JSON object.

2. You flatten the configuration into a single line.

3. You insert the configuration as the value of the
Security_Aut hTokenConfi guration policy.

See Modifying Policies in Administering Oracle Mobile Cloud, Enterprise.

The following several topics provide some examples of creating the configuration file
for a token issuer.

Minimal IdP Configuration

ORACLE

Here is an example of a configuration file that covers a basic use case, where:

* The user name can be derived from the token’s sub claim.

* The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

* You are using OMCe’s virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

* User roles are specified in a token attribute named r ol es.

16-8

Chapter 16
Enterprise Single Sign-On in OMCe

* The token’s audience (aud) claim is set to the JWT auth token endpoint for your
OMCe instance (OMCe- BASE- URL/ nobi | e/ pl at f or i aut h/ t oken) so there is no
need to override the default audience validation behavior.

{
"issuers": [
{
"i ssuerName": "TOKEN- | SSUER- URL",
"fwks": {
"discoveryUri": "TOKEN-| SSUER- URL/ . wel | - known/ openi d- confi gurati on"
b
"virtual User Enabl ed": true,
"rol eAttributes": |
“rol es"
]
}
]
}

|dP Configuration with Audience

Here is an example of a configuration file that covers a basic use case, where:

* The user name can be derived from the token’s sub claim.

e The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

e You are using OMCe’s virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

e User roles are specified in a token attribute named r ol es.

* The token’s audience (aud) claim is set to GUI D- 12345678- ABCD- EFAB-
CDEF- 123456789ABC (which is a value that does not match OMCe'’s auth token

endpoint).
{
"issuers": [
{
"issuerName": "TOKEN- | SSUER- URL",
"audi ence": [
" QU D- 12345678- ABCD- EFAB- CDEF- 123456789ABC"
] L]
"jwks": {
"di scoveryUri": "TOKEN | SSUER- URL/ . wel | - known/ openi d- confi guration”
}1
"virtual User Enabl ed": true,
"roleAttributes": [
"rol es”
]
}
]
}

ORACLE 16-9

Chapter 16
Enterprise Single Sign-On in OMCe

|dP Configuration with Audience and Username Attribute

Here is an example of a configuration file that covers a basic use case, where:

* The username is specified in the uni que_namne claim (rather than the sub claim).

* The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

* You are using OMCe’s virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Identity Cloud Service
(IDCS).

* User roles are specified in a token attribute named r ol es.

e The token’s audience (aud) claim is set to GUI D- 12345678- ABCD- EFAB-
CDEF- 123456789ABC (which is a value that does not match OMCe'’s auth token

endpoint).
{
"issuers": |
{
"i ssuerName": "BASE- TOKEN- | SSUER- URL"
"usernaneAttribute": "unique_nane",
"audi ence": [
" QUI D- 12345678- ABCD- EFAB- CDEF- 123456789ABC"
1,
"jwks": {
"discoveryUri": "BASE- TOKEN | SSUER- URL/ . wel | - known/ openi d-
configuration"
b
"virtual User Enabl ed": true,
"rol eAttributes": [
"rol es"
]
}
]
}

Associating Roles with a JWT Token

If you want to set up role-based access for users that authenticate with JWT tokens,
you do so when registering the token issuer in OMCe via the
Security_Aut hTokenConfi guration policy. You have the following possibilities:

» Use roles already defined in the token that match the names of OMCe roles.

You do this by creating arol eAttri but es array for the issuer and populate it with
claims in the token that you want to derive roles from.

e If the role names defined in the token don’t match role names defined in OMCe,
provide a mapping between the two.

You do this by:

1. Creatingarol eAttributes array for the issuer and populate it with claims in
the token that you want to derive roles from.

ORACLE 16-10

Chapter 16
Enterprise Single Sign-On in OMCe

2. Creating a r ol eMappi ngs array rule to create a mapping between a role
derived from the token (via the rol eAt t ri but es array) with one or more OMCe
user roles.

You can create multiple mappings.

* Apply one or more OMCe roles to all tokens issued with a given certificate (unless
roles were already applied via rol eAttri but es or r ol eMappi ngs).

You do this by creating a def aul t Rol es array.

* Apply one or more OMCe roles to all tokens issued with a given certificate
(whether or not roles were already applied via r ol eAttri but es or rol eMappi ngs).

You do this by creating an i ssuer Rol es array.

See JWT Configuration Reference for details on the syntax of the configuration file.

Converting a JSON Object to One Line

You might find it useful to have some tools to convert JSON objects from multi-line
objects to single-line objects and vice versa. Here are some examples of Python
commands that you can use for that purpose,

To output the JISON content in file / scrat ch/j smi t h/ aut hTokenConfi g.j son as a
single line:

cat /scratch/jsmth/authTokenConfig.json | python -c "inport
j son, sys; obj =j son. | oad(sys. stdin);print json.dunps(obj);’

To output the JISON content in file / scrat ch/j sm t h/ aut hTokenConfi g. j son in “pretty
print" form:

cat /scratch/jsmth/authTokenConfig.json | python -c '"inport
j son, sys; obj =j son. | oad(sys. stdin);print json.dunps(obj, indent=4,
sort _keys=Fal se) ;'

JWT Configuration Reference

ORACLE

Here are the fields that can be used in the JSON object that serves as the
configuration for a JWT identity provider.

Root Fields

* issuers — Required. A JSON array of trusted issuers objects. Each trusted issuer
is defined as a JSON object, with a combination of the following fields.

e policyM nRel oadl nterval — Optional. If a token exchange request is received,
and the specified issuer is not found in the configuration cache, the configuration
cache will automatically be reloaded from the stored policy in order to check for
changes, unless the amount of time since the last configuration cache reload is
less than the pol i cyM nRel oadl nt erval . The default value for this interval is 10
seconds. The pol i cyM nRel oadl nt er val configuration field can be used to
override the default value with a specified integer value in seconds.

e policyMaxRel oadl nt erval — Optional. If a token exchange request is received, if
the elapsed time since the last time the configuration cache was reloaded is in
excess of pol i cyMaxRel oadl nt erval , the configuration cache will automatically be

16-11

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

reloaded from the stored policy in order to check for changes. The default value for
this interval is 120 seconds. The pol i cyMaxRel oadl nt erval configuration field can
be used to override the default value with a specified integer value in seconds.

certificatesM nRel oadl nterval — Optional. If a token exchange request is
received, and a required certificate is not found in the certificates cache, the
certificates cache will automatically be reloaded from Oracle Keystore Service
(KSS) in order to check for changes, unless the amount of time since the last
certificates cache reload is less than the certi fi cat esM nRel oadl nterval . The
default value for this interval is 10 seconds. The certifi cat esM nRel oadl nt erval
configuration field can be used to override the default value with a specified
integer value in seconds.

certificatesMaxRel oadl nterval — Optional. If a token exchange request is
received, if the elapsed time since the last time the certificates cache was
reloaded is in excess of certifi cat esMaxRel oadl nt erval , the certificates cache
will automatically be reloaded from KSS in order to check for changes. The default
value for this interval is 300 seconds. The certi fi cat esMaxRel oadl nt er val
configuration field can be used to override the default value with a specified
integer value in seconds.

Issuer Fields

i ssuer Name — Required. A JSON string which specifies the issuer name. This
value must match the value of the i ss claim in tokens from the associated token
issuer.

enabl ed — Optional. A JSON boolean which can be used to enable or disable the
token issuer. If the token issuer is disabled, any attempt to exchange a token from
that issuer will fail. The default value is t r ue.

audi ence — Optional. A JSON array of string values, specifying valid audience
values for the external token. If the external token contains an aud claim and none
of the associated values exactly matches one of the values in the specified list,
then the external token will be treated as invalid.

The default behavior if this field is not specified (or contains an empty list) is to
compare the aud values in the external token to the following values:

— base-URL

— base- URL/

— base- URL/ mobi | e

— base- URL/ nobi | e/

— base- URL/ nobi | e/ pl atform

— base- URL/ nobi | e/ pl at f or !

— base- URL/ nobi | e/ pl at f ormf aut h

— base- URL/ nobi | e/ pl at f or nf aut h/

— base- URL/ nobi | e/ pl at f or mf aut h/ t oken
— base- URL/ nobi | e/ pl at f or nf aut h/ t oken/

If none of the aud values in the external token match any of the above values, the
external token will be treated as invalid.

16-12

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

vi rtual User Enabl ed — Optional. If t r ue the virtual user (zero footprint) feature is
enabled for this issuer, meaning your users can authenticate with third-party
tokens without having corresponding user accounts in Oracle Cloud. The default
value is f al se.

usernaneAttri but e — Optional. A JSON string specifying the name of a JWT
token claim from which a username is extracted. If no value is provided, the value
of the sub claim will be used as the username.

requi red i ent Auth — Optional. A JSON boolean which can be used to configure
whether client authentication is required for this token issuer.

— If the value is t r ue, full client authentication is required.

— Ifthe value is f al se, a token exchange request can contain a cli ent-id value
in the POST body, with no cl i ent _secret value provided. This is intended
only for cases where devices are not able to protect the cl i ent _secret.

The default value is t r ue.

clientldAttribute — Optional. A JSON string specifying the name of a JWT
token claim which contains the client ID of the OAuth client on the external token
issuer which was used to obtain the external token. Ifa client | dAttri but e value
is specified, the specified attribute is present in a token, and its value matches the
username associated with the token, then the token exchange request will be
rejected, because client tokens shouldn’t be exchanged for OMCe user tokens.

IfnoclientldAttribute value is provided, this check will not be performed.

t okenTi meout Seconds — Optional. A JSON integer specifying the token lifetime
(i.e. fromi at to exp) in seconds for OMCe tokens issued in exchange for tokens
from this issuer. If this field is not specified, the token lifetime will be governed by
the Security_TokenExchangeTi meout Secs policy. If the
Security_TokenExchangeTi meout Secs policy has not been defined, the default
token lifetime is 28800 seconds (i.e. 8 hours).

The token lifetime is also governed by the t okenTi meout Pol i cy.

t okenTi meout Pol i cy — Optional. A JSON string specifying the policy used to
control the token lifetime (i.e. from i at to exp) for OMCe tokens issued in
exchange for tokens from this issuer. Three policy values are supported:

— Fronfli meout Secs — The token lifetime is governed by the
t okenTi meout Seconds value.

— FronExt ernal Token — The OMCe-issued token will expire at the same time
the external token being exchanged will expire (i.e. t okenTi meout Seconds is
ignored).

— FronExt ernal TokenLi nit edByTi meout Secs — The OMCe-issued token will
expire at the same time the external token being exchanged or after the token
timeout value, whichever comes first.

If this field is not specified, the token timeout policy lifetime will be governed by the
Security_TokenExchangeTi meout Pol i cy policy. If

the Security_TokenExchangeTi meout Pol i cy policy has not been defined, the
default token timeout policy is Fr onili meout Secs.

j wks— Optional. A JSON object which specifies the URI(s) and other configuration
options associated with loading keys and/or certificates from the external token
issuer on the fly.

16-13

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

Use this object if you are using a discovery URI to load keys and/or certificates
(and you are not using a certi fi cat eSubj ect Nanes object).

See jwks Fields for the options.

certificateSubject Nanes — Optional. A JSON array of strings containing a list of
the certificate subject names of certificates that have been uploaded into OMCe
through the Settings tab’s Credentials page. (See Registering the Token Issuer in
OMCe.)

Use this object if you are not using a discovery URI to load keys and/or certificates
(and therefore are not using a j wks object).

filters — Optional. A JSON array of filter objects. Each filter is defined as a
JSON object, with a combination of these fields:

— name — Required. A JSON string specifying the name of an attribute or claim
to which the filter will be applied.

— type — Optional. A JSON string specifying whether the filter is an i ncl ude
filter or an excl ude filter.

An include filter is satisfied if the token contains a value which matches one or
more of the specified filter values (i.e. presence of a "match" causes the filter
to be satisfied). An exclude filter is satisfied if the token does not contains a
value which matches any of the specified filter values (i.e. absence of a
"match" causes the filter to be satisfied).

The default value is i ncl ude.

— val ues — Required. A JSON array of string values which will be compared to
the value of the attribute or claim in the external token as identified by the name
field.

Filter values may contain the * character as a wildcard for matching purposes.

Each filter in the array must be satisfied in order for the external token to be
considered valid.

Note:

If a filter is specified incorrectly or incompletely (e.g. missing name,
invalid type, missing or empty values array) the filter will always be
considered to be not satisfied. The rationale is that the admin who
configured the filter was trying to filter out something, and if we cannot
figure out what that something is, it is better to err on the side of caution,
and reject the external token.

al | onedMbes — Optional. A JSON array of JSON objects which identify mobile
backends can be used with this token issuer.

You can specify a mobile backend including the nane and ver si on, or by including
justclientld.

If this field isn’t specified, the issuer can be used with any mobile backend.
Here are the possible entries:

— name — Optional. A JSON string specifying the name of a mobile backend. If
you include this field, you must also include ver si on.

16-14

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

— versi on — Optional. A JSON string specifying the mobile backend version. If
you include this field, you must also include nane.

— clientld— Optional. A JSON string specifying the OAuth client ID of a
mobile backend.

user Mappi ngAttri but e — Optional. A JSON string identifying the user attribute
used to search for an Oracle Cloud user to be associated with the token
exchange.

This attribute is ignored if vi r t ual User Enabl ed is setto t r ue.
The string can have one of the following values:

— ui d — Search for an Oracle Cloud user whose username matches the
username extracted from the external token.

— mai | — Search for an Oracle Cloud user whose primary email address
matches the username extracted from the external token.

The default value is ui d.

< Note:

If a usernaneAttri but e hasn’t been configured, the username extracted
from the external token will be the value of the sub claim. If a

user nameAtt ri but e has been configured, the username extracted from
the external token will be the value of the whatever claim is identified by
the user naneAtt ri but e value.

def aul t Rol es — Optional. A JSON array of strings, where each string is the name
of an OMCe role which should be granted to a virtual user in the case where no
rol eAttributes value has been configured or where arol eAttri but es value is
configured but the specified attributes are either absent from the external token or
are empty.

i ssuer Rol es — Optional. A JSON array of strings, where each string is the name
of an OMCe role which should be always granted to a virtual user when a token
from this external issuer is exchanged. The difference between default roles and
issuer roles is that default roles are granted only when no roles have been found
during processing of role attributes, while issuer roles are always granted.

rol eAttributes — Optional. A JSON array of strings where each string is the

name of a token attribute (i.e. claim) which should be searched for role values. If a
specified token attribute is not present in the external token, no roles will be added
for that attribute. Otherwise, the token attribute value will be processed as follows:

— If the token attribute value contains a JSON string, the string value will be
granted as a role, subject to role mapping (see ther ol eMappi ngs field).

— If the token attribute value contains a JSON array of JSON string values, each
of the string values will be granted as a role, subject to role mapping.

Ifnorol eAttributes array is provided, the external token will not be searched for
roles, and the roles to be granted to the user will be based on def aul t Rol es
and/or i ssuer Rol es configuration, where provided.

r ol eMappi ngs — Optional. A JSON array of role mapping objects, each of which
specifies a mapping from a token role value (i.e. a value obtained from

16-15

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

rol eAttribut es) and one or more OMCe roles. Use this field when the values
derived from role attributes do not match OMCe role names.

Here are the fields for a role mapping object:
— tokenRol e — Required. A JSON string specifying a token role name.

— mappedRol es — Required. A JSON array of string values. Each string value
should match an OMCe role name.

jwks Fields

di scoveryUri — Optional. A JSON string specifying the URI from which the token
issuer's discovery information can be loaded. The discovery information provided
by the external token issuer must be in accordance with the following specification:

http://openid.net/specs/openid-connect-discovery-1_0.html

The discovery URI for a token issuer will typically be of the form base-url /. wel | -
known/ openi d- conf i gur ati on, but OMCe does not require this to be the case.

If a di scoveryUri is configured for a token issuer, the OMCe token exchange
service will make a GET request to that URL to obtain the discovery information as
needed. Once the discovery information has been obtained, OMCe will typically
use the j wks_uri value specified in the discovery information to obtain the issuer's
current keys and/or certificates.

If no di scoveryUri is configured, then a j wksUri value must be configured.

j wksUri — Optional. A JSON string specifying the URI from which the token
issuer's JWKS information can be loaded. The information provided by the
external token issuer must be in accordance with the following specification:

https://tools.ietf.org/html/rfc7517

If ajwksUri is configured for a token issuer, the OMCe token exchange service
will make a GET request to that URL to obtain the current keys and/or certificates
for that issuer as needed.

If both a di scoveryUri and ajwksUri are specified in the configuration, the
configured j wksUri value will be used, overriding the value in the issuer's
discovery information.

al | owHt t p — Optional. A JSON boolean indicating that HTTP di scoveryUri and
jwksUri values should be allowed.

For security reasons, di scoveryUri and j wksUri values for external token issuers
in production should always use HTTPS URLS, so that the server providing the
information can be verified using its SSL certificate. However, in certain non-
production test scenarios, it may be helpful to allow HTTP URIs to be used.

The default value is f al se.

m nRel oadl nt erval — Optional. If a token exchange request is received, and the
key and/or certificate needed to validate the external token cannot be found,
OMCe will automatically reload the discovery and JWKS information in order to
check for changes (e.g. key rotation), unless the amount of time since the
discovery/JWKS reload is less than this value (in seconds, expressed as an
integer).

The default value is 60.

16-16

http://openid.net/specs/openid-connect-discovery-1_0.html
https://tools.ietf.org/html/rfc7517

Chapter 16
Enterprise Single Sign-On in OMCe

maxRel oadl nt erval — Optional. If a token exchange request is received and if the
elapsed time since the last time the discovery and JWKS information was reloaded
is in excess of this value (in seconds, expressed as an integer), the discovery and
JWKS information will automatically be reloaded from the external token issuer in
order to check for changes.

The default value is 28800 (i.e. 8 hours).

connect Ti mout — Optional. A JSON integer specifying the default connect
timeout for discovery and/or JWKS requests. The default is 30 seconds.

readTi meout — Optional. A JSON integer specifying the default read timeout for
discovery and/or JWKS requests. The default is 60 seconds

t1 sVersi ons — Optional. A JSON array of string values, listing the SSL/TLS which
will be allowed when connecting to the external token issuer for Discovery and/or
JWKS requests. Valid version names are:

- SSL

— SSLv2

— SSLv3

- TLS

— TLSv1

— TLSvl.l

— TLSvl.2

The default value is [" TLSv1. 1", "TLSv1.2"].

Note:

Older SSL/TLS versions are considered insecure, and should be
avoided.

aut hori zati onHeader — Optional. A JSON string specifying an Authorization
header value which should be included in discovery and/or JWKS requests. In
most cases, discovery and JWKS web pages are public and no authorization is
required. This property is intended primarily for test purposes (e.g. when setting up
a custom service to act as a discovery and/or JWKS endpoint).

Obtaining a JWT Token Using an Embedded Browser

ORACLE

If you use an embedded browser to obtain JWT tokens, you'll need to perform the
following actions:

1.

Create a delegate object (for iOS) or client (for Android) to intercept the web
request that contains the token. The delegate (or client) implements a method that
allows your app to preview any web requests. For iOS, create a

U WebVi ewDel egat e object. For Android, create a VbVi ewCl i ent object.

Register the delegate or client object with the embedded browser.

Modify the method to look for a redirect URL or a form post URL, depending on
how the IdP is configured to deliver it.

16-17

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

When the specified request is located, the method should extract the token from
the query string (or post body) and indicate to the browser to stop the request and
close or hide the browser.

For either iOS or Android, you'll need a web view class, a delegate (or client) class,
and the delegate (or client) implementation method name.

For iOS, use the Ul WbVi ew object and the Ul WebVi ewDel egat e method:

#pragma mark - Ul WebVi ewDel egat e

- (BOQL) webVi ew: (Ul VebVi ew *)webVi ew shoul dSt art LoadW t hRequest :
(NSURLRequest *)
request navigationType: (U WebVei wNavi gat i onType) navi gati onType

For Android, use the WebVi ew client and the WebVewCl i ent method:

public class MainActivity extends Activity {
private Activity nCtx;
private static final String TAG = "TokenExchange";
private String remotel DPURL = "https://hostname/ nobil e/ pl atform sso/
redirect/sam";
private VebView my\WebView = nul | ;
@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCreat ¢(savedl nst anceState);
set Content Vi ew(R | ayout . content _mai n);
mCtx = MainActivity.this;
myVebVi ew = (VebView) findViewByl d(R id.webview);

initWebView);
}
private class MyBrowser extends WebViewdient {
@verride
public void onReceivedSsl Error (WebVi ew vi ew, Ssl ErrorHandl er
handl er,

Ssl Error error){
handl er. proceed();
}
@verride
public void onPageStarted(WebView view, String url, Bitmp
favicon) {
super. onPageStarted(view, url, favicon);
if(url.contains("http://local host:port")) {
Il get value of SAMLResponse formfield
myVebVi ew. | oadUr | ("j avascri pt:w ndow. Ht m Vi ewer. showHTM." +
"('<htm >' +document . get El enent sByNane(' SAML.Response') [0] . val ue+' </
htm >):");

}
}
}
class MyJavaScriptlnterface
{

@avascriptlinterface
@uppr ess\War ni ngs("unused")
public void showHTM.(String htm){

16-18

Chapter 16
Enterprise Single Sign-On in OMCe

Log.i (TAG "===== htm is "+htm);
String sam Token = htm.substring(htm.indexOf("<htm >") + 6,
htm .indexOr ("</htm>"));
Log.i (TAG "SAM. Token =" + sanl Token);
runOnUi Thr ead(new Runnabl e() {
@verride
public void run() {
my\ebVi ew. st opLoadi ng();
my\WebVi ew. set Vi si bility(View | NVISIBLE);
my\WebVi ew. dest roy();
finish();
}
1
}
}
private void initWebView){
my\VebVi ew. set WebVi ewd i ent (new MyBrowser());
my\ebVi ew. get Settings(). setJavaScri pt Enabl ed(true);
my\WebVi ew. addJavascriptlnterface(new MyJavaScriptinterface(),
"Hm Viewer");
my\ebVi ew. get Settings(). set LoadWt hOvervi ewNbde(true);
my\WebVi ew. get Settings(). set UseW deVi ewPort (fal se);
my\ebVi ew. | oadUr | (renot el DPURL) ;
}
private void showMessage(final String message){
runOnUi Thr ead(new Runnabl e() {
@verride
public void run() {
Toast . makeText (Mt x, message, Toast.LENGTH LONG) . show();

}
1

When the app is launched, it's directed to the r enot el DPURL (the redirect URL). When
you enter your login credentials, the page is redirected. The onPageSt art ed method
intercepts the response and the showHTM. method retrieves the token

Obtaining a JWT Token Using a System Browser

If you use a system browser to obtain the token, your app must relinquish control to
the system browser app. When the login process is complete, you'll need to return
control to your app. You can return control via a redirect to a custom app scheme for
which your app has registered.

For either iOS or Android, you'll need to perform the following actions:

1. Register the custom scheme for your app as dictated by the operating system. The
custom scheme URL tells the mobile OS that requests to the given scheme should
be sent to your app.

2. Edit your app to handle the redirection. You'll need to implement a method to
handle the incoming redirect, which contains the token.

ORACLE 16-19

Chapter 16
Enterprise Single Sign-On in OMCe

Coding Your Android App to Obtain a JWT Token

For Android apps, you need to register a custom URL scheme and then code the app
to handle requests associated with that scheme. You do this by editing the
Andr oi dMani f est . xm file:

<activity android: nane=". Mai nActivity">
<intent-filter>
<action androi d: name="androi d.intent.action. VIEW/>
<cat egory androi d: name="androi d. i ntent. cat egory. DEFAULT"/ >
<cat egory androi d: nane="androi d. i ntent. cat egory. BROASABLE"/ >
<data androi d: scheme="htt p"
andr oi d: host ="nyt est . cont
androi d: pathPrefix="/"/>
</intent-filter>
<lactivity>

The following example shows how to extract the token from the custom URL scheme
in the Android activity class:

@verride
protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nstanceState);
set Content Vi ew(R. | ayout . cont ent _mai n);
Ui uri = getintent().getData();
if(uri '=null) {
String token = uri.get QueryParameter("token");
Logger. debug(TAG "token is : " + token);

When you open the link to nmyt est . com you'll have the option to open the link with the
app. This will launch the Android activity from where the JWT token is retrieved.

Coding Your iOS App to Obtain a JWT Token

ORACLE

To obtain a third-party token via a system browser for an iOS app, you need to
perform the following actions:

1. Declare a custom URL scheme by editing the app’s I nf 0. pl i st configuration file.

The scheme tells the mobile operating system to route to your app the request that
contains the token.

2. Edit your app to implement the method to handle requests associated with that
scheme.

To register a custom URL scheme with your iOS app, you must include the
CFBundl eURLTypes in your app’s I nf o. pl i st file. CFBundl eURLTypes is an array of
dictionaries. Each dictionary defines a URL scheme that the app supports.
CFBundl eURLTypes contains the following keys:

e CFBundl eURLNan® - a string that contains the abstract name of the URL scheme.
This name should be unique. To ensure the name is unique, specify it as a reverse
DNS style of identifier, such as com conpany. nyschene.

16-20

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

This string is also used as a key in your app’s | nf oPl i st. stri ngs file. The value
of the key is the human-readable scheme name.

e CFBundl eURLSchenes - An array of string s that contain the URL scheme names.
For example: http, mail to, tel, and sns.

¢ Note:

If multiple third-party apps register to handle the same URL scheme,
there’s no way to determine which app is given the scheme.

Here’s an example of how to implement support for the custom URL scheme:

<key>CFBundl eURLTypes</ key>
<array>
<di ct>
<key>CFBundl eURLName</ key>
<string>oracl e. cl oud. nobi | e. URLDenp</ string>
<key>CFBundl eURLSchenes</ key>
<array>
<string>url deno</string>
<larray>
<key>CFBundl eTypeRol e</ key>
<string>Viewer</string>
</dict>
<larray>

This stipulates that any URL specifying the scheme, ur| Schere, is redirected to your
app.

When the iOS system browser encounters a URL with this custom scheme, it launches
your app, if necessary, and passes the URL to your app delegate. To handle incoming
URLSs, your app delegate must implement the appl i cati on: openURL: opti ons:
method. For example:

- (BOQL) application: (U Application*)application
openURL: (NSURL*) ur |

opti ons:
(NSDi cti onary<Ul Appl i cati onOpenURLOpt i onsKey, i d>*) opti ons
{
NSLog(@ Open URL: %@, url.absoluteString);
NSLog(@ Open URL options: %@, options);
if ([url.scheme isEqual ToString: @urldem"]) {
[self viewController].inconmingURL = url;
return YES,
}
return NG
}

This implementation parses the incoming URL and extracts a ‘token’ query argument
and stores it in an instance variable for later use. The implementation assumes the
token is passed via the URL'’s query string. Your implementation might differ and the

16-21

Chapter 16
Enterprise Single Sign-On in OMCe

token could be stored somewhere else in the URL. After your app extracts the token
from the URL, the token can be exchanged for an OMCe-issued token.

If you're not familiar with creating URL schemes or implementing them in your app,
see Apple’s documentation, specifically Using URL Schemes to Communicate with
Apps.

Using a JWT Token to Authenticate with OMCe

Once you have obtained a valid JWT token, you can use it to authenticate with OMCe.
You do so by passing the token to OMCe’s token exchange endpoint. In exchange,
you get an OAuth token issued by OMCe that can be used for subsequent API calls
during the session.

OMCe’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAut horization;
private Mobil eBackend mobil eBackend,;

try {
mobi | eBackend = Mbbi | eManager . get Manager () . get Mobi | eBackend(t hi s);

} catch (ServiceProxyException e) {
e.printStackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zati on(Aut hType. TOKENAUTH) ;

iOS

-(voi d) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCError Conpl eti onBl ock)
conpl etionBl ock;

Cordova and JavaScript

mecs. nobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. nobi | eBackend. aut hori zati on. aut henti cat e(token). t hen(cal | back). cat ch(er
ror Cal | back);

Coding the JWT Token Exchange Manually

ORACLE

Once your mobile administrator has registered an IdP as a token issuer in your
instance and you have code in your app to acquire a 3rd-party token, you can use the
OMCe client SDK for your platform to handle the complete login sequence.

If you are not using a client SDK, you need to code your app to exchange that token
for an OMCe token, with which you then authenticate.

16-22

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

ORACLE

Chapter 16
Enterprise Single Sign-On in OMCe

In the app’s login sequence, you call the OMCe token exchange endpoint to exchange
the third-party token for an OMCe-issued OAuth token.

The token exchange request is an HTTP POST request, with an appl i cati on/ x/ ww
form url encoded request body, to the token exchange URL: base- URL/ nmobi | e/
pl at f or m aut h/ t oken.

The token exchange request must provide:

The external token (a.k.a. "user assertion") being exchanged in the form
assertion=external -token.

Client authentication for the OMCe mobile backend for which a new token is being
requested, to prove that it is a valid user of that mobile backend.

Client authentication can be provided in any of the following ways:

Encode the client _idandclient_secret in basic auth form in the Authorization
header.

In this case, the following headers are required:

Cont ent - Type: application/x/ wwwformurl encoded
Aut horization: Bearer Base64(client id:client_secret)

And the body of the POST must contain these values:

grant _type=urn:ietf:params:oauth: grant-type:jw -bearer
assertion=external -token

Encode the client _idandclient_secret as application/x/ ww«form
ur | encoded form values in the POST body.

In this case, the following header is required:

Content - Type: application/ x/ wweformurl encoded

And the body of the POST must contain these values:

grant _type=urn:ietf:parans:oauth: grant-type:jw-bearer
assertion=external -t oken

client_id=client-id

client_secret=client-secret

If this option is used, the cl i ent _secret can be omitted if the requi reC i ent Aut h
value in the configuration is set to f al se for the given issuer. This option is
provided for clients that are unable to securely protect a client secret value. Even if
the cli ent _secret is omitted, the cli ent _i d value must still be provided, in order
to identify the OMCe mobile backend for which a token is being requested.

Provide a valid client assertion as an appl i cati on/ x/ ww« f or m ur | encoded form
value in the POST body.

In this case, the following header is required:

Content - Type: application/ x/ wwformurl encoded

16-23

Chapter 16
Enterprise Single Sign-On in OMCe

And the body of the POST must contain these values, where cl i ent - t oken is
client token obtained from Oracle Cloud for the OAuth client associated with the
OMCe mobile backend for which a user token is being requested.

grant _type=urn:ietf:parans: oauth: grant-type:jw-bearer
assertion=external -token
client_assertion_type=urn:ietf:parans:oauth:client-assertion-type:jw-
bearer

client_assertion=client-token

If the token exchange is successful, the response will have a 200 status, and will
include an appl i cati on/j son body similar to this:

{

"access_token":"123456789i JKV1Q LAOKI CIhbCci O JI Uzl 1Ni J9. abcdefi O Jgbh2Ui LAO
KI CJI eHAI O EzMDA4MTkz ODAsDQogl mhOdHAGLY 9l eGRt cCxl Lm\vbS9pc19yb2901 j pOcnVi f Q
. dBj ft JeZ4CVP- mB92K27uhbUJULlplr _wWWLgFWFOE] Xk",

"token_type": "Bearer",

"id_token":null,

"expires_in":28800 }

Mapping Users from a Third-Party IdP to IDCS Users

ORACLE

It is also possible to have enable authentication with 3rd-party tokens where there are
matching records for the users in Oracle Identity Cloud Service (IDCS). This enables
you to apply roles to users directly in IDCS.

For this matching to work, the following conditions apply:

e When registering the token issuer in OMCe, your mobile administrator didn’t select
the Enable Virtual User option.

e In SAML tokens, the subject must identify the user’'s username as defined in IDCS.

* In JWT tokens, the sub or prn attributes must identify either the user’'s username
or email address as defined in IDCS.

User roles can be applied in any of these ways:

* Within IDCS, your administrator can assign such users the roles that are needed
to access the backend and/or APIs.

* Inthe process of registering the IdP as a token issuer in OMCe, your administrator
can specify one or more mobile roles to give to users authenticated with this IdP
(via the default role rule).

* Inthe process of registering the IdP as a token issuer in OMCe, your administrator
can create rules to map information extracted from the token (such as role names)
to OMCe mobile roles (via role attribute rules).

If the role names defined in the IdP don’'t match the role names defined in OMCe,
your administrator can configure role apping rules to map the token role names to
the OMCe role names.

See Mobile Users and Roles if you need info on setting up user accounts in IDCS.

16-24

Chapter 16
Enterprise Single Sign-On in OMCe

Browser-Based SSO through OMCe

To enable browser-based single sign-on (SSO) with a third-party identity provider in
OMCe, you need to first set up that identity provider in Oracle Identity Cloud Service
(IDCS). To do so, you need to have an identity domain administrator role in IDCS.

See Managing Oracle Identity Cloud Service Identity Providers in Administering Oracle
Identity Cloud Service.

To get your apps to work with browser-based SSO:

In OMCe, click === to open the side menu and select Mobile Apps > Backends.
Open the backend you want the app to use and click its Settings tab.

Copy the OAuth Authorize Endpoint and OAuth Token Endpoint values.

P @ NP

Code your app to:

a. Open the OAuth authorize endpoint in a browser, redirect to the login screen
of the third-party identity provider.

b. Upon user login, return the authorization code to the redirect URL you have
specified in the identity provider.

c. Post the returned authorization code to the OAuth token endpoint.

The app should then receive an OAuth token in return.

Testing APIs in a Backend with SSO Login

ORACLE

Once you add an API to a mobile backend with SSO login enabled, you can use the
API's Test page with SSO as the authentication method. This helps you ensure that
the API call works end to end. You can test with the OMCe-issued SSO token or a
token from a third-party provider.

To test a custom API with SSO login:

Click = and select Mobile Apps > Backends from the side menu.
Select your mobile backend and click Open.

In the left navbar of the mobile backend, select APIs.

Click the API that you want to test.

CANE S

If the user that you plan to authenticate in the test has not yet been assigned the
role that is needed to access the API, click the Security navigation link and switch
Login Required to OFF.

6. Click the Endpoints navigation link and scroll to the endpoint that you want to test.

7. From the Authentication Method dropdown, select Single Sign-On or Bearer
Token.

8. Obtain a valid SSO token for the mobile backend.
9. Inthe Single Sign-On Token, text field, paste the SSO token.
10. Click Test Endpoint.

16-25

Chapter 16
Facebook Login in OMCe

If successful, a test response will appear with an appropriate HTTP code, such as
200.

Token Expiration for SSO Login

When you use SSO as your login mode, the token expires after six hours by default,
meaning that the app user will need to log in again after that time. The length of the
timeout is governed by the Security_TokenExchangeTi meout Secs policy, which is
given in seconds. See Modifying Policies in Administering Oracle Mobile Cloud,
Enterprise for information on changing the policy.

Facebook Login in OMCe

You can configure mobile backends to enable users to log in through Facebook. This
mode of authentication is particularly useful for apps targeting consumers (as opposed
to employees of your business).

When you enable users to log in to an app through Facebook, you can do the following
things in the app:

* Call any custom APIs that allow access with a social identity login.

* In the implementation code of such custom APIs, use the custom code SDK to call
OMCe platform APIs (with the exception of any APIs that are role-based).

» Register for notifications.

The main steps for setting up an app to use Facebook for login are:

1. Registering the app itself with Facebook.

2. Configuring Facebook login in the mobile backend that the app will be using.

Note:

This mobile backend can only be used for Facebook login. If you wish to
have apps access the mobile backend using different authentication
methods, you must create a separate mobile backend for that purpose.

3. Configuring the app itself to use Facebook for logging in.

4. In the mobile backend, adding custom APIs that allow access through Facebook
login.

Register App Enable Configure App Add Custom
with — Facebook Login in —= o Use —= APIs Enabled for
Facebook Mobile Backend Facebook Login Social Login

ORACLE 16-26

Chapter 16
Facebook Login in OMCe

Registering an App for Login Through Facebook

Before you can enable login through Facebook, you need to register your app with
Facebook using the Facebook SDK for your platform. From the registration process
Facebook will give you a Facebook app ID and secret which you will next configure in
OMCe.

For details, see Facebook’s documentation at https://developers.facebook.com/docs/
apps/register.

Enabling Facebook Login in a Mobile Backend

Once you have registered your app with Facebook, you can enable Facebook login in
a mobile backend.

1. In OMCe, open the mobile backend and select the Settings page.
2. Under Social Login, switch on Facebook.

3. Inthe Facebook Settings dialog, enter the app ID and app secret that you
obtained when registering the app with Facebook.

4. On the same page, make sure that HTTP Basic authentication is enabled.

(HTTP Basic authentication is needed for the first part of the authentication
process when the app requests the Facebook access token.)

5. Click the backend’s Security tab and make sure that role-based access is not
enabled. (Facebook login only works with anonymous access.)

Note:

If you also want to make an app accessible through any other authentication
method, create a separate mobile backend for which Facebook Login is not
enabled. Then, in the configuration file provided by the OMCe client SDK for
the given platform (e.g. OMC. pl i st for iOS and

oracl e_mobile_cloud_config.xm for Android), add the details for that
mobile backend. The app can then use both mobile backends, depending on
how the user authenticates.

Configuring an App to Use Facebook Login

ORACLE

Once you have registered your app with Facebook and have configured a mobile
backend to work with Facebook login, you can configure your app to log users in with
their Facebook identities. You need to:

* Specify that Facebook is the identity provider.
* Provide the Facebook App ID.
* Provide the mobile backend ID and HTTP Basic anonymous key.

The easiest way to get this working is by using the client SDK, which enables you to
specify all of the credentials in a single configuration file. See Client SDKs.

16-27

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

Chapter 16
Facebook Login in OMCe

Adding APIs to a Mobile Backend with Facebook Login

You can add the following types of APIs to a mobile backend configured for Facebook
login.

Custom APIs that have the Login Required switch set to OFF.

Custom APIs that have the Login Required switch set to ON and the Social
Login switch set to ON.

Any OMCe platform APIs endpoints that allow anonymous access. The Analytics
Collector, App Policies, Devices, OMCe, and Location APIs all have endpoints that
can be accessed anonymously. The Database Access API and Notifications API
can be accessed from any custom API, including custom APIs that allow
anonymous access.

To add an API to a mobile backend with Facebook login:

1.

Make sure that the API allows social login. For custom APIs, you can check by
following these steps:

a. Click = and select Mobile Apps > APIs from the side menu.
b. Select the API that you want to add and click Open.

c. Inthe API Designer, select the Security tab and check the settings.

< Note:

APIs that you design for use with Facebook login can not be used
with other authentication types. If you want an API's functionality to
be available for apps with Facebook login and apps that are based
on other types of authentication (such as OAuth, enterprise SSO, or
HTTP Basic anonymous access), you need separate variants of the
API, each with the appropriate security settings. For more
information on API security, see Security in Custom APIs.

Add the API to the mobile backend:

Click = and select Mobile Apps > Backends from the side menu.

a.
b. Select your mobile backend and click Open.

0

In the left navbar of the mobile backend, select APls.
d. Click Select APIs.
e. Click the + (Add) icon for the API.

Getting a Facebook User Access Token Manually

For an app to authenticate through Facebook, it needs to get a user access token from
Facebook. Using the OMCe client SDK for your platform simplifies this process.

ORACLE

However, if you are testing an APl with the API tester or another tool (such as cURL or
Postman) or making the REST calls directly from your app, you need to get the user

access token yourself. If you are the person who registered the app with Facebook,
you can do this by following these steps:

16-28

Chapter 16
Authenticating in Direct REST Calls

1. Log into your Facebook account (the one with which you registered the mobile
app).
2. Navigate to https://developers.facebook.com/tools/accesstoken/ and find your app.

3. Click the You need to grant permissions to your app to get an access token
link to generate the token. A token is generated for you on the next page.

" Note:

If you anticipate testing the app over a period of several weeks, you might
find it convenient to extend the validity of your access token. You can do so
by clicking Extend Access Token.

For more information, see Facebook’s documentation on user access tokens at https://
developers.facebook.com/docs/facebook-login/access-tokens#usertokens.

Headers Needed for API Calls with Facebook Authentication

When you call custom APIs from apps that use Facebook login, headers need to be
passed to handle authentication. If you are using Client SDKs for your platform, these
headers are constructed for you based on values that you have entered into the SDK’s
configuration file.

If you are making REST calls to the APIs directly from your app (or from a separate
tool, such as cURL), you need to add the following headers in your calls manually:

e Authorization: Basic {anonynousKey}
e (Oacl e-Mbile-Backend-1D: {nobil eBackendl D}
e (Oacle-Mbile-Social-ldentity-Provider : facebook

* Oacl e-Mbile-Social - Access-Token : {YOUR_FACEBOOK_USER_ACCESS TOKEN}

Authenticating in Direct REST Calls

When your app uses the OMCe client SDK, you store the authentication credentials in
one place so that you don’t need to manually insert them into each call. In addition, the
SDK handles the encoding of the username and password. However, if you are
making the REST calls directly from your app (or you are testing API calls using
another tool, such as cURL or Postman), you need to handle the authentication in
each call. The value you send in the Aut hori zat i on header depends on the type of
authentication.

Authenticating with OAuth in Direct REST Calls

ORACLE

When you have OAuth enabled as an authentication mechanism for a mobile backend,
an app can authenticate itself by sending the mobile backend’s OAuth credentials
(client ID and client secret) plus a user name and password to get an OAuth access
token. If the API that is being called does not require a logged-in user, then the user
name and password are not needed. The app then uses the OAuth token to make
REST calls to APIs in the mobile backend.

You need the following information from the Settings page for the mobile backend:

16-29

https://developers.facebook.com/tools/accesstoken/
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens

ORACLE

Chapter 16
Authenticating in Direct REST Calls

OAuth token endpoint
Client ID
Client secret

Base URL

If the API is configured to require login, you also need the user name and password for
a mobile user.

To construct a REST call to authenticate via OAuth:

1.

Send the request to retrieve an access token:
a. Base64 encodetheclientlD: clientSecret string.

b. Setthe Aut hori zati on header to Basi ¢ client id:client secret-Base64-
encoded-string.

c. Setthe Content-Type to appl i cation/ x-wwwformurl encoded;
charset=utf-8.

d. Set the request body to the appropriate grant type and include scope:

* For access without a logged-in user, use:
grant _type=client_credential s&cope=baseURLur n: opc: resour ce: con
suner::all

» For access with a logged-in user, use:
grant _t ype=passwor d&user name=user nane&passwor d=passwor d&scope=b
aseURLur n; opc: resour ce: consumer: : al | . The user name and password
must be URL encoded.

e. POST the request to the OAuth token endpoint. For example, in cURL:

curl -i

-H "Authorization: Basic clientld:clientSecret—encoded-string"

-H "Content-Type: application/x-wweformurlencoded; charset=utf-8"
-d

"grant _type=client_credential s&cope=baseURLur n: opc: resour ce: consume
r.:all"”

--request POST oaut hTokenEndpoi nt

In the response, find the access_t oken property, as shown below (the value is
truncated in this example).
{"oracle_client_assertion_type":"urn:ietf:params:oauth:client-assertion-
type:jw-bearer",

"expires_in": 604800,

"token_type":"Bearer",

"oracle_tk_context":"client_assertion",

"access_token": "eyJhbCeci O J...FlgFi A"}

Copy the access_t oken property’s value into the value of the Aut hori zati on
header.

The header takes the form Bear er access_t oken.

16-30

Chapter 16
Securing Cross-Site Requests to OMCe APIs

Authenticating with HTTP Basic in Direct REST Calls

When you have HTTP Basic enabled as an authentication mechanism for a mobile
backend, an app can authenticate itself by sending the mobile backend ID, a user
name, and a password. You pass the username and password as a Base64—encoded
string. If the API that is being called is set to allow anonymous access, then you pass
an anonymous access key instead of a user name and password.

Remember, if your app uses the OMCe client SDK, the authentication credentials are
stored in one place so you don't need to manually insert them.

To authenticate with OMCe using HTTP Basic, you send a method to any platform
endpoint with these headers:

e (Oacl e- Mobi | e- Backend- | D: The mobile backend ID is listed on the Settings tab
for the mobile backend.

e Authorization: Basic: For basic authentication this header should include the
mobile user’'s name and password encoded in Base64 or the anonymous key. If
the anonymous key is available, it will also be displayed on the Settings tab for the
mobile backend.

For example:

curl -X GET
-H "Aut horization: Basic {Base64 of
mobi | eUser nane: nobi | eUser Passwor d} or {anonynmousKey}"
-H "Oracl e- Mobi | e- Backend- 1 D {nobi | eBackendl D} "
{baseUri}/ nobil e/ platform users/~

For this call, the response would be one of the following:

* Inthe case of 200: Success, the payload returned from OMCe contains a JSON
object with the user information.

e In case of an error, a JSON error message is returned.

For more information about Base64 encoding, see Base64 Decode and Encode.

Securing Cross-Site Requests to OMCe APIs

ORACLE

In addition to setting authentication methods, it's very important that you manage
cross-origin resource sharing (CORS) for access to OMCe APIs. You do so through
the Security_Al'l owOri gi n environment policy.

See Oracle Mobile Cloud Enterprise Policies for a rundown of environment policies
and how to use them.

For browser-based applications, particularly those that use Single-Sign On (SSO)
authentication, you should either not allow cross-site access at all or restrict access
only to trusted origins where authorized applications are known to be hosted to
mitigate vulnerability to Cross-Site Request Forgery (CSRF) attacks. If you're not using
browser-based applications, it's best to use the default value, di sal | ow, for
Security Al'l owOrigin.

Control cross-site access by setting the Security Al |l owOri gi n environment policy
value to either di sal | ow (the default value) or to a comma separated list of URL

16-31

https://www.base64encode.org/

ORACLE

Chapter 16
Securing Cross-Site Requests to OMCe APIs

patterns, which specifies a whitelist of trusted URLs from which cross-site requests
can be made. If the origin of a cross-site request matches at least one of the patterns
in the whitelist, the request is allowed.

For example, the URL value for Security_Al | owOri gi n might look like this:

https://myexanpl e. com https://*. exanpl e.com https://*. exanpl e2. com

When specifying a URL, note the following:

You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern htt p: / / ww. exanpl e. commatches the URL
http://ww. exanpl e. comor the URL htt p://ww. exanpl e. com 80, but not
http://ww. exampl e. com 8080.

When specifying values for Security_A | owOri gi n, don't include path parts and
don't include a trailing forward slash, ‘/ ’, character. For example, the pattern
http:// ww. exanpl e. conml won't match htt p: // ww. exanpl e. com

You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (;) characters.

For example, if the URL is htt ps: // exanpl e. exanpl e. com 8080, the following
patterns match:

— https://*. exanpl e. com 8080

— https://*. exanpl e.com*

— https://ex*. exanpl e. com *
These patterns, however, won'’t match:
— https://*. exanpl e. cont

— https://exanpl e*.oracle.com*

These restrictions are designed to prevent matching unintended sites.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://1ocal host:[port], but be sure to update
the value in production.

16-32

Creating APIs Fast with the Express API
Designer

What is the Express API Designer?

The Express API Designer enables you to create an API using sample data. This data-
first approach lets you build an API quickly and with a minimum of effort. This designer
is an alternative to the API Designer, where less is generated but you have more
control of the API definition. See Which API Designer Should | Use? for a more
detailed comparison.

How Do You Get Started?

Using the Express API Designer, you get a set of generated endpoints when you paste
in a set of sample data that's formatted as a JSON instance. Within the context of the
API Designer, this collection of endpoints is known as a resource. Resources are the
building blocks of the API.

How Do You Use the API?

With your methods sketched in, you can then start using the API as part of your
development effort by testing its endpoints and taking a look at mock data that it
returns. Your service developers can implement a service for this API using JavaScript
and Node. For more design and customization options, use the API Designer instead.
See Custom API Design.

What are Resources?

A resource represents a real world object and the operations that can be performed
upon it. In other words, the GET, POST, and PUT operations on the /i nci dent s
endpoint would simply be known as an “incident”.

Creating An API

1. Click the side menu (E), choose Mobile Apps and then APIs.

2. Click New API and then choose Express API.

+ NewaAPl «~

AP

Express API

N

ORACLE 17-1

Chapter 17
Creating An API

3. Complete the New Express API dialog by adding the API's name, its display
name, and the description for the Service Catalog in the MAX Designer. When
you're done, click Create.

By completing this dialog, you open the Express API Designer. The Express API
Designer defaults to its General page, where you can the change the APl name or
description. Now you're ready to add a resource.

4. Click Resources in the left navbar, then click New Resource to open the Create
Resource wizard.

Note:

When you click New Resource you create a top-level resource. This
resource can't be selected as a child resource.

5. Describe your resource by adding a name, a display name, and a brief description.
Enter a display name in plural form for the collection.

Tip:

The name and description that you enter here display in the Data Palette
in MAX.

When you add a resource to your APl, OMCe creates a set of CRUD methods on
these endpoints and constructs the JSON request and response schemas for you
as well. To find out more about creating these schemas on your own, see Creating
Resources with JSON Schemas, but if you want to see the ones that OMCe
creates for you, click Export RAML (%) to download a a RAML file, or toggle
between the designer and the RAML document by selecting Enter RAML Source

Display Mode (ﬁ).

Resources typically have two GET methods: one that returns a single item of an
object, and one that returns multiple items (a collection). If you select Also expose
a collection of these resources, OMCe creates both GET methods and labels
them Find and List, respectively. If your API supports create actions (POSTS), you
need to add a collection.

Not all resources require both GET methods (or other methods that OMCe creates
for you, like POST, PATCH, and DELETE). You can remove any methods you
don’t want from the Express API Designer after you've finished creating the
current resource.

6. Click Next and then add JSON arrays or instances of sample data in the Sample
Data page. This is the mock data that helps you test the API. Within MAX, the
mock data helps users visualize their app.

ORACLE 17-2

Chapter 17
Creating An AP

[% Create Resource
< Cancel Q e Next >
Description Sample Data

Sample Data

You can enter just a single JSON instance of sample data or add multiple instances of sample data using an array. If a field’s data type isn't consistent
across all of the instances, we'll use the last one as the field type. You can change this later.

{ "desg""Northern California Data Center”
“region”:"NA",
“winpsrcant”:98,
"sglesstage” "Closing”
“revenue":550000,
"products”:"EXA-Data2, A420 Cable, 15 Routers, A10 Switchess”
“expactedeloge"2016-07-09T02:40:25.328"
"createddate” "2015-09-05T00-00-00 000"
"account”:{"name":"Acme Corporation”,
"website":"pttR:/fwgy acme.com”,
“region”:"IN",
"address":"100 Main St",
“city™:"San Carlos"
"state":"CA”",
“country™:"USA"
"f " "100 Main St, San Francisco, CA, USA"

7. If you don't want to add sample data now, click Finish to exit the Create Resource
wizard and go back to the Express API Designer. You can add fields and sample
data from here later on. Otherwise, click Next to review the fields created from the
sample data.

Click the Sample Data tab to review the sample date you previously entered.
Don't worry if field names or labels aren’t exactly what you want. You can edit all
these fields from the Express API Designer after you're done creating the
resource.

8. Click Endpoints and review all the methods created for you. When you return to
the API Designer, you can select the methods that you want your resource to use.
9. Click Finish when you're done.

After you've created your resource, the Express API Designher opens so you can select
the fields and methods you want to use to complete your resource. You can also
shape request and response payloads for your methods. See Completing Your
Resources.

To configure security for your API, export the RAML and then import it into the API
Designer.

Completing Your Resources

When you click Resources from the Express API Designer navbar (or when you click
Finish from the Create Resource wizard), you end up on the Overview tab in the
Express API Designer, where you refine your resources by doing the following:

» Changing the resource’s display hame(s) and description.

* Creating reference or child relationships. You can learn more about peer and child
relationships in Referenced Resources.

ORACLE 17-3

Chapter 17
Creating An API

4 Reference Resources &) ==

No Reference Resource .
Resource Name

Account v

% X

4 Parent Resource

This is a top-level resou

Toggle the Include Resource Collection option to allow (or prevent) the return of
multiple items from a collection. When you select this option, the General tab
displays the methods available to a collection: List (GET /items) and Create (a
POST call on a collection).

Collection Methods Single Item Methods

¥ Include resource collection
Display Name (plural) 4 Methods Include resource collection

4 Methods

Accounts Display Name (plural)

Resource Paths
Resource Paths

Single faccount/(id)

Collection /account/ Single /account/{id)

These methods display as hyperlinks that open pages for editing the method’s
requests and responses. Shaping Payloads tells you more about editing methods.

Adding Additional Fields

1.

Click the Fields tab.

For each resource, OMCe creates a field called id. You can'’t delete this field,
whose role is described in Fields.

If your resource needs more fields, click New Field and then complete the dialog
by defining the field name along with the display name and description. If you use
this APl in MAX, the field names and descriptions that you enter here display in
the Service Catalog.

In addition to these display-related values, you also use this dialog to specify the
format (string, integer, geolocation coordinates, and so on) expected by this field. By
choosing the Reference field type, you can allow the field to reference the fields
defined for a peer or child resource that's selected from the Reference Resource list.
You can find out more in Fields.

Shaping the Payload for Your Resource

ORACLE

Once you've defined the fields for your resource, you're ready to select which fields
are sent to, and returned from, the service. This is known as shaping the request and
response payloads, which you can do as part of editing the methods.

1.
2.

Click a link in the Methods tab to open the Edit Method page.

Choose the request or a response type along with media type.

17-4

Chapter 17
Creating An AP

Click the Shaped option and move the fields you don't want to include in the
payload from the Selected Fields window to the Available Fields window.

By default, all of the fields are included in the payload. See Methods to learn about
custom methods and payloads.

Edit Method

cccccccc

se - 200
Add Response ¥

Response 200 - Body

What do you want this method to retum in the collection?
Media Type application/json

Complete Account reseurces

@ Shaped Account resources

Available Fields

address

4. Click OK to save your changes.

oK Cancel

Selected Fields

See Shaping Payloads to find out about shaping data for different types of methods.

Adding More Sample Data

Use the Sample Data tab to add the mock data that helps you test your API. Mock
data also guides MAX users as they map field data to their Ul components. While
OMCe includes a row of sample data in the RAML document when you create fields
manually for your resource, it may not reflect the data returned by your service. You

can take a look at this sample data by toggling the RAML display mode option (ﬁ). An

ORACLE

array of -generated sample data might look like this:

[

“id": "ido",
"amount": "amount 0",
"nane": "nameQ",
"date": "date0"
“id": "id1,
"amount": "amount 1",
"nane": "namel",
"date": "datel"
“id": "id2",
"amount": "amount2",
"nane": "name2",

17-5

Chapter 17
Creating An API

"date": "date2"

To get started populating your resource with sample data:
1. Click New Row.
2. Complete the Create Sample Data dialog.

Because this template lets you enter sample values for all of the fields that you've
defined for the resource, your sample data stays in step with the field schema
definition.

Referenced Resources

Your resources can reference each other as peers; that is, they occupy the same
level. Suppose your API includes two resources that complement each other but are
distinct. For example, an API that returns CRM (Customer Relationship Management)
data might have two such resources: Accounts and Opportunities. The Accounts
resource includes a set of fields that describe different facets of an account, like the
company name and location. The information returned for these fields may relate to,
but doesn't overlap, the information returned by Opportunities resource, whose fields
return data that allow status meters to measure the opportunity’s win percent. Your
API might include resources that reference each other in a different way, as a parent-
child relationship. The Accounts resource might have a subsidiary resource called
Account Notes, which is wholly dependent on the Accounts resource. If you deleted
the Accounts resource, you'd delete the Account Notes resource along with it.

Resources Endpoints

4 New Resource

Opportunity
Opportunities

Statistics
Description for statistics

Accounts
Description for accounts

Account Notes
Description for accountnotes

You can include the fields from a referenced resource in the payloads. When the
Opportunities resource references the Accounts resource, for example, its payload for
the Find Opportunities’ 200 response includes account.id and other fields defined for
the Accounts resource.

ORACLE 17-6

Edit Method
Response 200 - Body
Path
VWhat do you want this method to retum in the collection?
Name Media Type application/json =
Complete Opportunity resources
i @ Shaped Opportunity resources
Display Name

List Opportunities with Account |
Available Fields
Description
P accounts. Address
Retums a callection of

Opportunities accounts Region

accounts Website

Request >

Response - 200

Add Response v
«

Referencing Resources

To reference a resource:

1. Click Resources.

] |
1 General

E Resources

1 .
E Documentation

2. Click aresource.

Selected Fields

description
expectedclose
id

products

region

revenue
salesstage
winpercent
accounts.Name

accounts id

Chapter 17
Creating An AP

Cancel

3. Click Add (+) and then choose a child or a parent resource.

4 Reference Resources €) +

No Reference Resource .
Resource Name

Account v

4 Parent Resource

X

This is a top-level resou

To reference a child resource, first click Add and then complete the Create
Resource dialog. OMCe will create a set of method definitions for the child
resource. Next, choose the child resource from the Resource Name list.

4. Click the Fields tab. OMCe lists the resource with the fields. You can choose this
resource (or other peer or child resources that you've reference in the API) for

reference fields.

ORACLE

17-7

Fields

ORACLE

Chapter 17
Creating An API

5. Click the Methods tab and then click one of the links to open the Edit Method
page. By clicking Response-200 in the Edit Method page, you can take a look at
the referenced fields. Shaping Payloads describes these referenced fields, which
are noted as resource.field name (like accounts.region, for example).

The payloads for the POST and PATCH requests include the reference object
itself, not its individual fields. There are no fields (referenced or otherwise) for
either GET request because they don't include payloads.

Response 200 - Body
Path
What do you want this method ta retum in the collection?
Name Media Type applicationfjson
Complete Opportunity resources
. @ Shaped Opportunity resources
Display Name
List Opportunities
Available Fields Selected Fields
Description expectedclose b desc
Returns a collection of Opportunities
products id
account.address region
Regquest atcnu%:\ly S revenue
Response 200 account.country » salesstage
account formattedaddress winpercent
Add Response v L
account.id 2 [«
account.name
account.region
account state
account website

After you've made your API available to MAX by publishing it, take a look at the MAX
Designer’s Service Catalog to see the various relationships between your resources.

< Opportunity v
Fields Related Objects Actions

Child Objects @

Opportunity Notes >

Reference Objects @

Account >

Fields describe the different aspects of a resource. They are like properties: they
describe the data they hold by type (like a string, number, or reference) and format
(date-time, URI, and so on). Fields can behave differently depending on context (or
more specifically, on the payload definition).

17-8

Chapter 17
Creating An AP

< Note:

The fields that populate list views in MAX are read-only, while the ones used
in form-based create and update screens can accept user input.

The Fields tab lets you take inventory of the fields for a selected object. It's where you
can create a complete (or canonical) resource by defining all of the possible fields.
After you've completed the resource, you can decide which methods can accept and
return a subset of these fields by shaping the payloads in the Methods tab.

OMCe adds the id field for you when you create a resource. Because of its role as a
UUID (universally unique identifier), this field acts as the primary key. You can't delete
this field, change its field type from a string, or change it from being a primary key, but

by clicking Edit (.f), you can use the field editor to change its display name and
description to reflect the resource.

Opportunity Ovenview | Fields | Methods ~ Sample Data
Opportunities

Al of the fields that you define here represent the complete resource. Using the Methods tab, you can shape the payloads by
Account selecting a subset of these fields
Description for accounts

Filter SOl + New Field |
Note
Description for note Type Display Label Name Name *

Stiing nid id

Display Label *
nid

Description

The note ID

Type *
Reference Resource
Select Resource
Constraints

Primary Key

Methods

OMCe creates a set of CRUD (Create, Read, Update, and Delete) methods for you
when you create a resource. Using the Methods tab, you can select from among these
methods, add new ones, and shape the request and response payloads.

& B
B8 General
= O Resources Endpoints
n ‘‘‘‘‘ Ii* Opportunity 3 Delete Resource
B oocumenaton Oy Ovniew Fields | Methods | Sample Data

Opportunitas

Enable the methods that support your resource's actions. Click a link to edit a method's description, request, and response.
Account
Desciiption for a

& APicataog Ea
Kl of Opportunities
@ o POST
2 Updates an existing instance of Opportunities
2] m o Delete an instance of Opportunities

ORACLE 17-9

Chapter 17
Creating An API

Selecting Methods

While all of the methods are selected by default, they may not all apply to your
resource. You can select the CREATE, POST, or PATCH methods as needed, but
because each resource needs at least one GET endpoint (or two if it's exposed as a
collection), you can’t remove the GET methods.

Custom Methods

Custom methods (which are always POST methods) allow your resource to perform a
task or server-side action that falls outside of the functions enabled by the default set
of CRUD methods. For example, you can define a custom method that enables an
upload action on an Image component. Using the Fix-It-Fast app as an example, you
could define an action to close an incident that's triggered by a swipe tile. Clicking
New Custom Method opens the Create Custom Method dialog that lets you define a
custom method on a nested resource (which OMCe adds for you). After you've
created the method, you can use the Edit Method page to shape the payload of its
request body and add its responses for the 200 status code and the 500 status code.
See Shaping Payloads.

Create Custom Method X

Display Name *
Upload Phato

Name *

uploadphoto

Path *

Description

Adds a user photo

You can delete a custom method, but you can’t delete any of the default set of
methods that OMCe creates for you.

A PEIEtE Oppurtu‘mt\es Delete an instance of Opportunities
opportunity/{id}

Create Opportunity Note

[} T AN S R R Creates a note for the specified opportunity.

Shaping Payloads

ORACLE

The Edit Methods page not only lets you change the method’s display name and
description, but also allows you to shape its request and response bodies by including,
or excluding, the fields that filter the returned data and populate the create, update, list
and detail screens. You can open this page by clicking the method links in the
Overview or Methods tabs for a selected resource, or from the read-only list of all the
methods defined for the APIs that display in the Endpoints tab.

17-10

ORACLE

Chapter 17
Creating An AP

APPLICATIONS > APIS > CRM 1.0 Save | Test
s
General
wm Cener Resources Endpoints
. Resources Your APl includes the following endpoints. We'll update this list whenever you modfy a resource

B Documentation

Path Method Method Name Description
B impementation /CRMaccount List Accounts Retums a collection of Accaunts
/CRM/account Create Account Creates a new Account via POST

GET Payloads

There are no request bodies for GET methods; there are only response bodies. The
Edit Methods page lets you select filtering criteria for the data returned for a list or a
detail. In MAX, these surface as query parameters.

For each 200 response, OMCe adds all of the fields that you created for the resource
per the default option, Complete. While you can choose this option for detail screens,
you might want to pare down the payload for a list screen by clicking the Shaped
option. You can then shuttle the fields that you don’t want from the Selected window to
the Available window. When the subset of fields in the Selected window suits your
needs, click OK.

Edit Method OK Cancel

Path

Response 200 - Body
What do you want this method to retum in the collection?

Media Type application/json

Name
Complete Account resources
! @ Shaped Account resources
Display Name
List Accounts
Available Fields Selected Fields
Description
P address city
Retums collection of
Accounts website country
id
Request name
»
Response - 200 region
state
Add Response ~
«

POST and PATCH Payloads

For POST and PATCH requests, you shape the payload with the fields that are sent to
these methods to create or update an item.

17-11

Chapter 17
Creating An API

Edit Method

Body Paramsters
Path

What data do you want this method to accept to create a new item for the resource?
Name Media Type apglication/json

“ Complete Opportunity resources

Display Name @ Shaped Opportunity resources

Create Opportunity

Available Fields Selected Fields
Description

Creates a new Opportunity via POST expectedelose createdate

desc

region

Request winpercent >

Response - 200

Add Response +

Media Types for Request and Response Bodies

As part of the payload configuration, you can set the content type as application/json,
application/octet-stream, or image/*. For binary streams, choose application/octet-
stream. See Enabling Uploadable Images .

Read-Only Fields

For POST and PATCH fields, you can create read-only fields by shaping the request
and response bodies. By including a field in both the request and response payloads,
you allow it to accept user input. By including it in the response body only, you confine
the field to read-only display.

By default, OMCe adds the ID field to the response body because this field typically
holds a server-generated value that users shouldn’t edit. Other than the ID field, there
may be other cases where your request and response bodies don't align. For example,
to ensure that users can’t inadvertently compromise the integrity of your data by
updating the date field in an edit screen, you'd first add the field to the response
payload’s Selected window and then update the request payload by shuttling the date
field from the Selected window to the Available window.

Response Body Request Body

uuuuuuuuu

Response 200 - Body

Sample Data

The Sample Data tab displays all of the data used by a resource for any purpose. In
other words, the data is not specific to any method. As noted in Creating An API, you

ORACLE 17-12

ORACLE

Chapter 17
Creating An AP

can add this data manually, or derive it from the instances and arrays of sample data
that OMCe uses to generate the both the resource’s fields and the resource itself.

JSON Instance of Sample Data Sample Data for the Resource

#* Opportunity 3 Dolete Rosource

"products": "exA-Data2, A420 Cable, I5 Routers, ALO Switchees”,
"expectedclose”:"2016-07-09702:40:25. 328",
"createddate":"2015-09-05700:00:00.000"

}

By adding a single JSON instance similar to the following, you can complete the
resource by defining key-value pairs.

{ "desc":"Northern California Data Center",
"region":"NA",
"W npercent": 95,
"sal esstage":"d osing",
"“revenue": 550000,
"products":"EXA-Data2, A420 Cable, |15 Routers, AlO
Swi t chees",
"expect edcl ose": "2016-07- 09T02: 40: 25. 328",
"createddate": "2015- 09- 05T00: 00: 00. 000"

}

Tip:

Because OMCe creates the i d field for each resource, you don’t need to
include it your JSON.

OMCe does more than just create fields from the JSON: it infers their data types as
well. From the “revenue”: 550000, key-value pair in the above sample, for example,
OMCe can interpret the field type as an integer rather than as a string.

You can create your top-level resources using this data-first approach. By nesting
instances, you can create multiple top-level resources and establish reference
relationships for them. The following example shows how nesting an instance creates
a peer resource called Account:

{ "desc":"Northern California Data Center",

"region":"NA",

"wi npercent": 95,

"sal esstage":"d osing",

"revenue": 550000,

"products": "EXA-Data2, A420 Cable, 15 Routers, Al0
Swi t chees",

"expect edcl ose": "2016-07- 09T02: 40: 25. 328",

"creat eddat e": " 2015- 09- 05T00: 00: 00. 000",

"account": {"nane":" Acme Corporation",
"website":"http:// ww. acrme. cont,
“region":"IN',

17-13

Chapter 17
Creating An API

"address":"100 Main St",

"city":"San Carlos",

"state":"CA",

“country":"USA",

"formattedAddress": "100 Main St, San
Franci sco, CA, USA"

}

Using arrays, you can create top-level resources along with multiple rows of sample
data:

"desc": "Anvils",

“region": "NA",

“wi npercent": 30,

"sal esstage": "appointment",

"revenue": "35000",

"expect edcl ose": "2016-07-09T02: 40: 25. 328",
"account": {

" "

nane": "Acme"

}

"desc": "Horns",
“region": "SA",
“wi npercent": 90,
"sal esstage": "closing",
"revenue": 25000,
"expect edcl ose": "2016-07-09T02: 40: 25. 328",
"account": {
"name": "Road Runner"

}

“desc": "Bank Vaults",
“region": "EU',
“winpercent": 25,
"sal esstage": "prospect",
"revenue": 15000,
"expect edcl ose": "2016-07-09T02: 40: 25. 328",
"account": {
"nane": "Coyote"

}

ORACLE 17-14

Chapter 17
Using the Express API Designer with MAX

< Note:

You can only create top-level resources with sample data, so you can’'t add a
child resource by nesting an array. Referenced Resources tells you how to
add child resources.

As noted in Completing Your Resources, you can add or remove fields, or change the
field display name and data type using the field editor. Because you need to define a

value for each key, your resource’s GET methods will always return a full set of data.

In cases where this may not reflect real-world scenarios, you can edit your data using
the Sample Data tab. To find out more, see Adding More Sample Data.

Using the Express API Designer with MAX

While the Express API Designer can help you jump-start your APl development, it's
also the quickest way for you to develop APIs for use with Mobile Application
Accelerator (MAX).

MAX is a web-based development environment for mobile apps that caters to business
users. Resources developed in the Express API designer can be treated as business
objects that can be easily incorporated into MAX apps.

Tip:

You can learn more about the MAX App along with information on building,
testing, and distributing apps in Designing Your App. If you want hands-on
experience with using business objects to build a mobile app, follow the
Create a Mobile App in Record Time with MAX! tutorial.

How Do | Surface My APl in MAX?

After you've defined the resources, you can make your API available to MAX by
publishing it. Any API that you publish for use in MAX must include resources, not
endpoint definitions. Because MAX has no concept of endpoints, it can’'t discover them
and therefore can’t surface your API for MAX users. To allow mobile apps running on
smartphones (via the MAX App) to access the API, you need to publish both the API
and its implementation. If there are multiple environments, you must deploy the API
and its implementation prior to publishing them.

" Note:

Take a look at Exploring Services to find out about more about the role of
business objects in the MAX Designer.

Who Uses MAX?

There are two types of MAX users:

ORACLE 17-15

https://apex.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:17437

Chapter 17
Using the Express API Designer with MAX

» Mobile Cloud developers (mobile app developers and service developers), who
use MAX as part of their testing

* Business users, who create line-of-business (LoB) apps.

To create these apps, MAX users don’t need to know platform-specific languages, nor
do they even need to know anything about OMCe in particular: a business user may
be completely unaware that a mobile backend manages the app that he’s building, or
that a custom code API enables his app to use enterprise data.

These users access MAX in different ways: developers access MAX from within
OMCe by clicking MAX Apps in the left navbar. Because they focus on building apps
(rather than the backend services that these apps consume), business users access
MAX directly after they log into OMCe. Unlike Mobile Cloud developers, business
users are MAX-only users: they're granted the Busi nessUser role, so they never see
OMCe (and can't log into it).

ORACLE" wmobile Application Accelerator bob@example.com ¥

Fi Import Sortby Newest v

mp

FixItFastestl

Distribute to team
New Application

E O
COpen

Export

Move to Trash

Enabling Uploadable Images

ORACLE

Users of MAX apps can upload images when the Image component is mapped to a
business object that includes an upload action. You can add this action by creating a
custom function for your business component, which is a POST method on a nested
resource. To create this action:

1. Click Add New Custom Method. The path for this custom method points to a
backend action. For example, the path for the POST might be something like/
opportuni ty/{id}/ upl oadpi cture.

2. Because you're sending binary streams through this API, you need to select
application/octet-stream as the media type for this method's request in the Edit
Method page. This media type signals MAX that this action supports binary
streams.

3. In MAX’'s Data Mapper, populate the Image component’s Source field with the
appropriate business object field.

4. To enable the action on the mapped field, clear the Read Only option in the Image
component’s Properties page. When you clear this property, MAX superimposes

17-16

an edit overlay (! &

Chapter 17
Using the Express API Designer with MAX

) on the image component in the Preview. It allows MAX to

populate the Data tab’s Image Update Action menu with actions that support

binary streams.

= My Photos

IMAGE

Properties Data Actions

Either select a fixed image ormap o a
business object and field with the image
source

Select image

@ Map to business object

Incident v W

Source

picture b

1]
=

values 1o icons

Data Mapper

Image Update Action ~

Upload Incident Picture ¥

Tips for User-Friendly Business Objects in MAX

You can help business users pick services and map data by adding metadata in

OMCe.

ORACLE

17-17

Chapter 17

Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

The API metadata entered in the General Page of the The service name and description in the Service
API Designer: Catalog:

e API Display Name
e Short Description

. Icon Service Catalog

Select a service that provides the data that displays in your app

Filter Services

= ORACLE vobile Cloud Service

APPLICATIONS * APIS * FixitFast 1.2

General N
e * API Display Name FixiFast
- * API Hame ifixitfast
&% Endpoints
http:/iexample.com: 777 7/mobilefcustomiifixitfast
a Security Default Media Type applicationjson -
Page

4 API Catalog Properties

JL - .
Short Description The iFxttFast technician service.
B e
£6 characters |eft M-
.
&

Traits. lcon Select
[<3

(2]

Acme4Max
Custom API for
Auraplayer Acme
Orders System

vid

FixItFast
The iFixItFast
technician service

vi2

1 0f2 (1-6 of 10 ftems)

@ Show latest versions only

® crv

I’{'; CRM Sample API

viT

HCM_Employees_AP
= The HCM test case

Sort By Application Name & v

FastRepairs
test api

V10

INGInnovation

ING Innovation day
beacon visits

V15

ORACLE"

17-18

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The endpoint description and display name for top-level e« Business object name and description in the Data
resources entered in the Endpoints page of the API Palette:

Designer:

ORACLE" Mobile Application Accelerator

+ K fincidents/ {id} Incident Methods >
An incident retrieved using fts ‘i’ that describes the nature ofthe [object Object] - 000 .
problem fif2 FIF LIST
< FixltFast v
© Incident :
i An incident retrieved using its 'id' that ! >

1 describes the nature of the problem. 5

Customer
A single customer

e The Data Source page of the Add Data QuickStart
and the Data Mapper:

ORACLE’ Mobile Application Accelerator

Add Data to List Component

< cancel O ° Next >
Layout DataSource Data

Select Data Source
What s the source of the data you want to display in your list?

FixitFast Business Objects

FixltFast v < Add Service Analytics
Customer
Incident

Technician Performance

ORACLE 17-19

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe... ...Is surfaced here in MAX
The property members of the schema definition * The field names and descriptions in the Fields tab
(including the descr i pti on key) that are defined for the of the Data Palette

GET response:

{ "$schema”: "http://] son-schem. or g/ ORACLE" Mobile Application Accelerator
draft-04/ schema#",
"id": "incident". FIF THATTITLE LIST
“title": "Incident Detail", _
"type": "object", £ Incident v
"properties": { . _ _
"igr { Fields Related Objects Actions
"type": "string",
"description”: "Unique incident Filter Q,
ticket number"
¥ Aid
"problent: { Unique incident ticket number

"type": "string",
"description”: "Short description of
the incident"”

A problem
Short description of the incident

A\ description
Detailed description of the incident

A\ createdOn
When the incident was logged
e The Data page of the Add Data QuickStart and the
Data Mapper:

ORACLE" Mobile Application Accelerator

g-ﬂ DATA E-‘)'E QUERY

Map your Ul to data Filter the data queried for your selected
business object

Cancel

@ Incident List Component Fields
. Title
problem X
lastUpdatedon
(]
M e

problem

status

customer >

ORACLE" 17-20

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

The display name and description for endpoint methods
entered in the Endpoints page of the API Designer:

De=cription

DELETE

Get a single incident.

The title key in the schema:

{

"$schema": "http://json-schema. org/
draft-04/ schema#",

"id": "patch-incident",

"title": "Update Incident",

"type": "object",

The Actions tab of the Data Palette:

FIF THATTITLE LIST
£ Incidént ¥
Fields Related Objects Actions

The Tollowing actions can be performed on this
business object

read

Get a single incitent

The Configure Action page of the Properties Inspector:

Configure Action Cancel Save

When the user taps and holds List ltem:

Business Action Mapper

4 Navigate

Navigate to Screen

Navigate Back

4 Business Objects. THEN DO SOMETHING ELSE

ORACLE"

17-21

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

GET method Query definitions for the request

parameters entered in the Endpoints page of the API
Designer:

Request | Responses

4 Parameters (2) Add Parameter
X Query ~ technician Technician User Name. String
Required

user are retrieved. The special
value "~ ean be used to ndicate the authenticated user.

technician=~

The Query page of the Add Data QuickStart and the
Data Mapper:

ORACLE" Mobile Application Accelerator

E‘E DATA E-‘)'E QUERY

Filter the data queried for your selected
business object

Map your Ul to data

Gancel <

Query Parameters

Technician *
User Name X
Tap a category to show data Filtergy

values you can use

ORACLE"

17-22

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

The $r ef definition that point to other top-level

resources in the GET response schema definition.

{

"$schema": "http://json-schema. org/
draft-04/ schema#",

"id": "incident",

"title": "Incident Detail",

"type": "object",

"properties": {

"customer": {
"$ref": "incident-customer"”,
"title": "Details of customer who
| ogged the incident."

¥
"l ocation": {
"$ref": "IncidentLocation"
"title": "Location where the incident
occurred"
1
ORACLE

e The Fields tab of the Data Palette. Reference

objects are identified with a chain link ((:{0)_

FIF THATTITLE LIST

< Incident :
Fields Related Objects Actions
b
A
A, problem
A descriplion
A createdOn

A lastupdatedOn
picture

A status

A priority

£ customer

& location

L

The Data page of the Add Data QuickStart and the
Data Mapper

17-23

Chapter 17

Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

The display name and description for endpoint methods The Related Objects tab of the Data Palette (under

entered in the Endpoints page of the API Designer:

4+ X 1 bcatonsiid) Geographical Location Methods >

Geographical Location [object Object] i @ 0

The display name and description for nested resources
that are entered in the Endpoints page of the API
Designer:

+ ¥ fncidentsiid) activites Incident Activiies Methods >

[object Object] - @ Q

List of incident-activibes

ORACLE

Reference Objects):

FIF THATTITLE

< Incident

Fields Related Objects

Child Objects @

Incident Activities

LIST

Reference Objects @

Customer

Geographical Lecation

FIF THATTITLE

< Incident

LIST

Fields Related Objects

Child Objects @

Incident Activities

Reference Objects @

Customer

Geographical Loecation

Acticns

The Related Objects tab of the Data Palette (under Child
Objects):

Acticns

17-24

Chapter 17
Using the Express API Designer with MAX

The metadata that you enter in OMCe... ...Is surfaced here in MAX

The property members of the schema definition The Data Source page Data pages of the Data Mapper
(including the ti t | e key) that are defined for the GET and the Add Data QuickStart for a detail screen.
response for a nested object.

{

"$schema": "http://json-schema. org/
draft-04/ schema#",

"id": "incident-activity",

"title": "Incident Activity",

"type": "object",

"description”: "Asingle activity
reported on an incident.",

"properties": {

"incidentld": {
"type": "string",
"description”: "lIncident Identifier
that this activity record bel ongs to"
}!
“firstName": {

"type": "string",
"description": "The first nanme of
the person who created the activity"

}!
"l ast Name": {
"type": "string",
"description": "The person's |ast
nane"
}!

ORACLE 17-25

Chapter 17

Using the Express API Designer with MAX

The metadata that you enter in OMCe...

...Is surfaced here in MAX

Mock data defined for requests and responses in the
API Designer:

{
"id": "inc-201",
“problent: "Incident New',
"description": "I learned that beneath ny

goody two shoes lie some very dark socks.",
"createdOn": "2015-08-18",
"| ast Updat edOn": "2015- 08- 20",
"picture": "/builtin/imges/ broken-water-
heat er. png",
“status": "open",
"priority": "nmediunt,
"customer": {
"id": "cus-101",
"usernane": "julie.sinpson",
“firstName": "Julie",
"l ast Nane": "Sinpson",
"mobi | e": "6505067000",
"home": "5105552121",
"email": "julie.sinmpson@pringtine.cont

ORACLE

List Component Fields

lcon

priority

Map values to icons

Title

problem

Subtitle

customerfirstName

customer lastName

Separate With Space

Value 1

status

Value 2

lastUpdatedOn

The Preview:

The Live Data view for both the Data Mapper and
the Add Data QuickStart:

+ Live Data Preview

17-26

Chapter 17
Creating Resources with JSON Schemas

The metadata that you enter in OMCe... ...Is surfaced here in MAX

Video: An Introduction to Mobile Application Accelerator (MAX)

To see how you can build, test, and publish mobile apps using MAX, take a look at this
video:

Video

Creating Resources with JSON Schemas

As an alternative to the Express API Designer, you can build an API with resources
using the API Designer.

If you use the API Designer instead of the Express API Designer, you need to enable
your API to surface in the MAX Designer by creating JSON schema definitions on its
endpoints. These schema define the resources, their fields, and their methods. You
can build these schemas from scratch, or you can import a RAML file (even the one
generated by the Express API Designer). To get a comprehensive view of creating an
API for MAX including adding JSON schemas, go through the tutorial, Shaping MCS
APIs for MAX .

ORACLE 17-27

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:16865
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html

Chapter 17
Creating Resources with JSON Schemas

Resources Defined in API Designer MAX Business Objects

myerm MY LIST LIST

nnnnnnn

Hemozs >

W Tas - 00

Q Tip:

Before you read on, take a look at the JSON schema specification.

Defining Fields in a Schema

To create fields, you need to define JSON schemas for the endpoint requests and
responses.

These schemas define the fields as property members, like nane and websi t e in the
following example:

{

"$schemn": "http://json-schema. org/draft-04/schema#",
"id": "account",
"type": "object",
"properties": {

"name": {
"id": "nane",
"type": "string"
}1
"website": {
"id": "website",
"type": "string"
}1

They also designate the kind of data that the fields can hold and the kind of user input
and actions that they allow.

ORACLE 17-28

http://json-schema.org/documentation.html

Chapter 17
Creating Resources with JSON Schemas

APPLICATIONS = APIS > CRM 18 Save Test

1]
General
= 4+ New Schema

(> Endpoints
% account

B secuiy

B Types

X getAccount
X getAccounts
% getAccountOpportunities

W Trais

X postAccount

B Documentation

% patchAccount

@ mplementation

Defining Field Types, Formats, and Enums

Define the kind of data that your field holds by using combinations of the JSON
schematype, f or mat , and enumkeywords.

Some things to keep in mind:

» Define enumerated values (enums) in the schema so that business users won't
have to enter them as fixed values in the MAX Designer. For example:

"region": {
"id": "region",
"type": "string",
"enumt: ["IN', "NA", "SA", "AP", "EU']

e When defining the field format for a date, we recommend UTC (Coordinated
Universal Time):

"properties": {
"l ast Updat edOn": {
"type": "string",
"format": "date-time",
"description": "When the incident was |ast updated"

b

Field Formats

You can add constraints on the values that users enter by adding validators like
requi red, m nl engnt h, maxLengt h, m ni mum and maxi numto the property:

{
"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "postCpportunity",
"type": "object",

"al O
{"$ref": "opportunity"}
] 1
"required": [
"desc",

ORACLE 17-29

ORACLE

Chapter 17
Creating Resources with JSON Schemas

"region"
]
}

For fields that require input in a special format like a phone number, use the pattern
keyword and then define a regular expression:

“pattern”: "A(\\([0-9]{3}\\))?[0-9]{3}-[0-9]{4}$"

Example 17-1 Taking a Look at Properties in the JSON Schema

In the following example, a schema called account that defines of the base fields for a
business object. Notice the t ype keyword defines the kind of data allowed in each field
(string).

{
"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "account",
"type": "object",
"properties": {

"name": {
"id": "name",
"type": "string"
1
"website": {
"id": "website"
"type": "string"
1,
“region": {
"id": "region"
"type": "string",
"enunt: ["IN', "NA", "SA", "AP", "EU']
1,
"address": {
"id": "address",
"type": "string"
1
"city": {
"id": "city",
"type": "string"
1
"state": {
"id": "state",
"type": "string"
1
“country": {
"id": "country",
"type": "string"
}

}
}

17-30

Chapter 17
Creating Resources with JSON Schemas

For a base object, the properties don’t include an ID (defined as ai d in the following
example). IDs aren’t present when POST calls create records. Instead, the ID is
assigned by the server. The following schema defines a field for the account ID called
ai d, which allows data to be returned by a GET call. In addition to the account ID, this
schema allows all of fields defined for the account schema as well, because it includes
the al | O keyword and assigns account as the pointer to the ref keyword.

{

"$schema": "http://json-schema. org/draft-04/ schema#",
"id": "getAccount",
"type": "object",
"al IO [
{"$ref": "account"}
1,
"properties": {
"aid": {
"id": "aid",
"type": "string"
}
}
}

Defining Child Objects

ORACLE

By defining a schema for a nested resource, you can create a child object. Unlike a
reference (or peer) resource, a child object can’t exist on its own. It only has meaning
within the context of its parent resource.

The following schema defines a child object for the nested resource, / account s/

{ai d}/ opportunities. Inthis example, the canonical (or base) link returns the child
object’s resource (opportuni ties). Thelinks keyword gives the location for the child
resource, opportunities.

{

"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "getAccount Cpportunities",

"type": "array",
"items": {
"$ref": "get Qpportunities"
}l
"links": [
{
“rel": "canonical",
“href": "/opportunities?aid={aid}"
H

Tip:

You can have different links defined in an array.

17-31

Chapter 17
Creating Resources with JSON Schemas

This example shows a schema on another nested resource, / opportuni ties/{oi d}/
not es to return the notes for a specific opportunity. In this case, the nested resources
defines a grandchild object using the ID (oi d) as part of the canonical link:

{
"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "get QpportunityNotes",
"type": "array",
"items": {
"$ref": "get Notes"
|3
"links": [
{
“rel": "canonical ",
“href": "/mobil e/ custom CRM not es?oi d={ oi d}"
H

Defining Fields for List, Details, Create, and Update Screens

Field behaviors can be described as summary, creatable, and updatable, that is,
whether fields can accept user input, like those in a create or update screen, or appear
as a read-only field in a list component.

These behaviors — and their related collection, create, read, update, and delete actions
— are based on endpoints. By defining schemas for an endpoint’s request and
response, you tell MAX how it can use these fields to populate the different types of
screens created by the QuickStarts.

Every business object needs at least one endpoint. Some might require more than
one. For example, you can define GET and POST methods on a top-level resource
(like / enpl oyees). Its GET method allows users to return all of the fields defined in the
schema for the response. The schema defined for the POST method'’s request defines
the fields that can be used to create an item. To return a specific item, define a GET
method on a nested resource (/i t ens/ {i d}).

" Note:

In MAX, POST methods are always used for fields used for create actions.
Read actions are always GET methods.

ORACLE 17-32

Chapter 17
Creating Resources with JSON Schemas

ORACLE

Field Behavior = Description Used in These = Method Tips
MAX
Components
Collection Returns multiple « List GET Specify the fields
items (or records) Components that you want to
of the e DVT include in the
object. Calls GET Components schema for a
on the collection collection
resource (/ endpoint. Add
it en’s) to return mock data field
all fields. See values for the
Collection request and the
Actions. response.
Read Gets a single Detail Screen GET
item of the (read-only fields
object. Calls GET ina Form
on the item component)
resource (/
itens/{id})to
return the
properties for an
item. An object
can be a
singleton, in
which case this
calls GET on the
item resource (/
i tem. See
Collection
Actions.
Create Creates a single Create Screen POST Specify the fields
item of the (form fields) that should be
object. Calls POS included in

T on the
collection
resource (/

i tens) with a
request body that
contains all of the
creatable fields
(which can be
either required or
optional), along
with the user-
provided values.
This returns the
new object with
its new unique 1D
(which can be
used
subsequently in a
read action). See
Create Actions.

Create screens in
the schema. Add
mock data field
values in the
request and
response.

17-33

ORACLE

Chapter 17

Creating Resources with JSON Schemas

Field Behavior = Description Used in These = Method Tips
MAX
Components
Update Updates a single Edit Screen (form PATCH (and Specify the fields
item of the fields) sometimes, PUT) that users can
object. Calls PAT update in the
CH on the item schema. Provide
resource (/ mock data for the
itens/ field values for
{i d}) with one or the request and
more updatable p response. You
roperties. See shpuld consider
Update Actions. using the PATCH
method because
it updates the
server with only
the fields that
have been
modified. See
Using the PUT
Method for
Update Actions.
Delete Deletes a single DELETE

item of the
object. Calls DEL
ETE on the item
resource (/
itens/{id}).
See Delete
Actions.

Collection Actions

Typically, collection actions are based on two different GET methods.

One endpoint returns a list of multiple items of the object using the top-level resource.
The other returns a particular item and uses a nested resource. Together, these two
endpoint definitions represent a single resource that supports both the collection and

read actions.

APPLICATIONS > APIS > CRM 1.8

.
General
"
@ Endpoints 4+ X 1 accounts
B securiy
aa Schema
laccounts
B tees
] e + X /faccounts/ {aid}
P T B

Accounts.

Account

Save | Test

[«
=

Compact Mode

Methods >

-0

Metheds >

- 00

17-34

Chapter 17
Creating Resources with JSON Schemas

This example shows a schema for the response for collection action. In this case it's a
GET method on the top-level resource, / account s.

{
"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "getAccounts",
"type": "array",
"items": {
"properties": {
"aid": {
"id": "aid",
"type": "string"
b
"name": {
"id": "nane",
"type": "string"
b
"region": {
"id": "region",
"type": "string",
"enuni: ["IN', "NA", "SA", "AP", "EU']
b
"city": {
"id"r "city",
"type": "string"
b
"state": {
"id": "state",
"type": "string"
b
"country": {
"id": "country",
"type": "string"
}
}
}
}

This example shows the schema for the response of a read action, defined for a GET
action on a nested resource (/ account s/ {ai d}):

{

"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "getAccount"”,
"type": "object",

"all O [
{"$ref": "account"}
1,
"properties": {
"aid": {
"id": "aid",
"type": "string"
}

ORACLE 17-35

ORACLE

Chapter 17
Creating Resources with JSON Schemas

Defining a Collection Using a Single Resource

You can create a resource that returns a list of items using a GET endpoint on a single
resource. In this case (which is more the exception than the rule), there isn’'t an
additional endpoint for retrieving an individual item. In the following example, the
Analytics resource has a collection action that returns a list of metrics (GET / st at s).
However, it does not use an endpoint that points to a specific resource (like GET /

st at s/ { sequence}) to return an individual metric. The JSON response can be an array
or an object. Objects include information about the data set, such as the number of
items in the set, a token for the next set of items, and so on.

"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "stats",
"title": "Analytics",
"type": "object",
“properties": {
“nmetrics": {
"type": "array",
"description": "Metrics are individual neasurements related to
incident activity, techncian performance",
"items": {
"type": "object",
“properties": {
“month": {
"type": "string",
"description": "Date Dimension for which a data point is
provi ded"

}

"technician": {
"type": "string",
"description": "Technician for whomthe data is provided."

}

“radius": {
"type": "nunber",
"description": "radius in nmles fromthe technician |ocation,

where incidents were reported.”

}7
“inci dent sAssi gned": {
"type": "nunber",
"description": "Incidents Assigned to Technician"
}7
“incidentsC osed": {
"type": "nunber",
"description": "Incidents Cosed by Technician"

17-36

Chapter 17
Creating Resources with JSON Schemas

< Note:

MAX can only detect objects that have one top-level array. MAX can't detect
the primary collection when an object has more than one top-level array like
metri cs2 in the following snippet. In cases like this, the MAX can't make this
collection available for data mapping.

{

“count": 2,
"metricsl": [
{...}

1,
"metrics2": |
{...}

]
}

Create Actions

ORACLE

You can add a create action by defining a POST method.

You can define the creatable fields in the JSON schemas for both the POST request
and response.

The following example shows a schema for the POST request called post Account that
defines creatable fields from the referenced account schema. Some of the fields
returned from the account schema are optional, but in this schema, the nane and

regi on are designated as required fields; app users can'’t create a new item without
defining them.

{

"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "postAccount"”,
"type": "object",
"al O |
{"$ref": "account"}
1,
"required": [
"name",
"region"
]
}

In addition to these required fields, the al | O keyword allows app users to add values
into any of the fields defined in the account schema (shown below) to create new
items. While the nane and r egi on fields (which are also defined in the account
schema) are required, the other fields are optional.

{

"$schemn": "http://json-schema. org/draft-04/ schema#",
"id": "account",

17-37

Chapter 17
Creating Resources with JSON Schemas

"type": "object",
"properties": {

"name": {
"id": "nane",
"type": "string"

1

"website": {
"id": "website",
"type": "string"

1

“region": {
"id": "region",
"type": "string",
"enun: ["IN', "NA", "SA", "AP", "EU']

1

"address": {
"id": "address",
"type": "string"

1

"city": {
"id": "city",
"type": "string"

1

"state": {
"id": "state",
"type": "string"

1

“country": {
"id": "country",
"type": "string"

}

}

}
Note:

In MAX, the POST method is the only way to enable create actions. Having a
POST method enables MAX to populate create screens with fields that allow
user input (creatable fields). If a business object doesn’t have a POST
method, then app users won't be able to create items.

Read Only Fields

To create read-only fields in a form, define fields in the JSON schema for the POST
response that have no counterparts in the POST request schema. In the following
table, the get Account schema, which is defined for the POST response, includes the
ai d field, which holds the server-generated ID for an account. Because this is a read-
only value, one which app users shouldn’t update, it's not included in the field
definitions of the POST request schema, post Account , or the account schema that it
references.

ORACLE 17-38

Chapter 17
Creating Resources with JSON Schemas

Response Schema Request Schema
{ {
"$schema": "http://json- "$schema": "http://json-
schema. or g/ draf t - 04/ schema#" schema. or g/ draf t - 04/ schema#"
"id": "getAccount", "id": "postAccount",
"type": "object", "type": "object",
"allOF " "al IOt |
{"$ref": "account"} {"$ref": "account"}
] 1] 1
"properties": { "required": [
"aid": { "name",
“id": "aid", "region"
"type": "string"]
} }
}
}

Content Types for Creatable Fields

At runtime, mobile apps return the content types specified in the POST endpoint,
which can be appl i cati on/json or application/ x-wwformur| encoded. You can
specify appl i cati on/ x- ww«f orm ur| encoded as the content type for a creatable field
in the POST request, but also specify appl i cation/j son as the content type for the
read only fields returned by the response.

Update Actions

You can allow users to update a field's value by defining a JSON schema on a PATCH
endpoint.

Schemas for PATCH endpoints enable MAX to populate edit screens (and other
forms) with updatable fields. When forms are modified using PATCH, only the fields
that users have updated are sent to the server, not the entire object.

Note:

When you define your PATCH endpoint, always specify the content in the
request body as type as appl i cati on/j son instead of the JSON patch

format (appl i cati on/j son- pat ch+j son).

Using the PUT Method for Update Actions

ORACLE

In addition to the PATCH method, you can make fields editable by defining a JSON
schemas for the requests and responses of a PUT method.

Although you can use both PUT and PATCH for update actions, keep in mind that the
PUT method replaces all of the fields defined for a schema object (even if none of
them have been modified). That means that the request payload must include the
entire object. The request payload for the PATCH method, on the other hand, includes

17-39

Chapter 17
Creating Resources with JSON Schemas

only the fields that have changed. Because of this, we recommend using PATCH (if
the service supports it, that is).

Delete Actions

The delete action is defined for an object. It enables users to remove an entire record,
not just a field.

You can define a DELETE method on a nested resource like / account s/ { ai d}, for
example.

Custom Actions

In addition to the CRUD actions, resources can also have custom actions that require
custom code, transactional semantics, or unigue processing on the objects.

In general, custom actions don't return a payload. Instead, they perform server-side
tasks and return success and failure responses.

Keep the following in mind when you create a custom action:
* Use POST methods for custom actions.

e Create the POST method for a nested resource like /i nci dent s/ {i d}/
cl osel nci dent .

* If needed, define a request body for the POST method.

e Use a JSON hyper-schema | i nks property to define the sub-resource. For

example:
{
"$schema": "http://json-schena. org/draft-04/schema#",
"id": "incident",
“title": "Incident Detail",
"type": "object",
"properties": {...},
"links": |
{
“rel": "self",
"title": "Incident",
"href": "/incidents/{id}",
"method": "CET",
"target Schema": {"$ref": "incident"}
b

Creating Mock Data

Creating mock data for the fields defined in your JSON schemas helps you test the
API. When you define these values, be sure that they align with the fields that you've
defined in your schema.

ORACLE 17-40

Chapter 17
Which API Designer Should | Use?

< Note:

Take care when you define your mock data, because OMCe doesn't verify
mock data against a schema.

Mock Data (Field Values) Field Definitions

4 Body
Example Schema

X Media Type application/json - Reference Root Schema getAccounts

Example Schema " “Sschema™: “http://json-schema.org/draft-as/schemat”,
~id™ ; ")

L.

Which API Designer Should | Use?

When creating your APIs, you can use either the API Designer or the Express API
Designer. Which you choose boils down to a few important factors:

» If you want full control of the development process, choose the API Designer.

» If you'd rather get going fast with no coding, or you need to develop APlIs to use
with the Mobile Application Accelerator (MAX), the Express API Designer is your
best bet.

This table highlights some of the key differences:

Category API Designer Express API Designer

Overview Enables you to define custom Enables you to use sample
APIs in a visual editor that data to quickly create APIs
gives you control over without writing any code.
endpoint definition and Based on the sample data you

security. You can also define a provide, the designer

schema, resource types, and generates resources with

traits. You implement the APl GET, POST, PATCH,

by writing a Node.js module. = CREATE, and DELETE
methods.

ORACLE 17-41

ORACLE

Chapter 17
Which API Designer Should | Use?

Category

API Designer

Express API Designer

Who's it best for?

Can use to set secure
access?

MAX Friendly?

Coding needed?

e Developers who want to
craft, or explicitly design,
a custom API.

e Developers who prefer
working with the details,
such as defining the
method requests and
responses, configuring a
schema, and setting
security

The focus is on flexibility and

control of the development

process.

Yes. You can add user
authentication and role-based
access to resources.

Yes. But you must shape the
API to surface in the MAX
Designer by defining the
JSON schema (one built from
scratch, or a RAML file
generated by the Express API
Designer).

Yes. After you define the
custom API's REST endpoints
with the API Designer, you
then need to implement
internal logic through Node.js.

» Developers needing an
API with only the basic
CRUD operations (create,
read, update or delete),
who want to get up and
running quickly.

» Developers who want to
jump-start their API
designs before switching
to the API Designer for
fine-tuning.

» Developers creating APIs
for use with Mobile
Application Accelerator
(MAX).

The focus is on speed,

creating a spec to export to

the API Designer for further
development, and creating

APIs to use with MAX.

No. However, you can export
the RAML to the API Designer
and add role-based security
settings with the tools there.

Yes. You create an API with
an object-centric focus. This
kind of API can be used out-
of-the-box to build mobile
apps with MAX.

No, though you can modify the
generated implementation.

17-42

Custom API Design

In Oracle Mobile Cloud Enterprise (OMCe), you can create custom REST APIs that
can be used by your mobile apps. If you're a mobile app developer, use the API
Designer to sketch out and test the endpoints that you define and then have a service
developer fill out the details of the API (add resource types or traits, provide a schema,
and set the access to the API and its endpoints), and implement it in JavaScript. If
you're a service developer, use the API Designer to explicitly configure a complete API
that you can test with mock data. Alternatively, you can generate custom APIs from a
REST or Fusion Applications connectors without writing any code.

Unlike the OMCe platform APls, which provide a core set of known services, custom
APIs let you use Node.js to code any service your mobile app needs, published
through a REST interface. You can relay data by using an OMCe connector to a
backend service, which transforms complex data into mobile-friendly payloads. By
using custom APIs to build a catalog of reusable services, you can save lots of time
that might otherwise be spent periodically re-creating and maintaining implementation
details in your mobile apps.

If you want to create an API quickly by providing sample data and letting OMCe define
a set of endpoints for you, use the Express API Designer.

API Design Process

ORACLE

The API Designer guides you through the process of creating a custom API.

You can quickly create a draft version of the API in just a few steps:

Name the APl and
Creat
Set the Message [— En Jﬁziﬁm
EBody Format

Y

Set . Test the
Security Endpoints

1. Add the basics (name of the API, the message media type, and a brief
description).

2. Define an endpoint by setting a resource and at least one method for it.

3. Set access security.

18-1

|

AF| Csatslog

ORACLE

Implementation

Chapter 18
API Design Process

4. Test your endpoint after you've defined at least one resource.

You can create mock data to quickly test and validate an endpoint even when you
haven’t completely finished configuring your APIl. When you define your message
body, you can provide placeholder values to verify that the correct data is being sent
or returned. See Testing APl Endpoints Using Mock Data.

Completing Your Custom API

To fully complete your API, use the API Designer to help you add the essential
components for a robust API:

Provide the APl metadata (that is, the basic attributes of the API, which are the
API display name, API name, and short description) or, if you already have a
RAML document that contains the configuration of your API, then you can upload
it to the API Designer. All the information (metadata, resources, methods, and the
schema for the message body) is extracted from the RAML document and loaded
into the API Designer, letting you quickly proceed to testing your endpoints or
editing your API configuration. To provide a valid RAML file, see RAML.

Add one or more root and nested resources.
Add methods to act on the resources.
Create a schema to describe the body of data.

Test your endpoints during design time with sample data and make any changes
as needed.

Allow anonymous access to your API or specify which roles can access it.

Add documentation for your custom API

& B
FIFIncidentReports version 1.0 has been created and is ready for you to start designing it. f
Suggested next steps:
Take = tour of the AF| Designer.
Lesrn more about recommended best practices when designing RESTful AFls for mobile.
Learn maore about RAML, the definition language we're using for your AP|.
* AP1 Display Name FIFIncidentReports
* AP| Name incidentreport
http:/ /cloud.oracle.com/mebile/custom/incidentreport
Default Media Type applicstiondjson -
4 APl Catalog Properties
€ To help familiarize application developers with the published APIs in the catalog, briefly describe the purpose x
of the AF| and sssociste an icon with it. The description and icon image are not saved in the AFPI's generated
RAML document, and are not displayed in the Source view.
* Short Description Customar reparts.
|
leon Select

Chapter 18
Generating Custom APIs for Connectors

Later on, as you create more APIs, you might find that you are repeatedly defining the
same methods, using the same parameters, etc. You can reduce the redundancy by

creating resource types and traits. If your APl is still in the draft state, then you can go
back into your configuration and add the resource types and traits that you've defined.

Generating Custom APIs for Connectors

ORACLE

Oracle Mobile Cloud Enterprise (OMCe) can generate custom code from connectors to
connect to external services. As a service developer, you can select a Fusion
Applications connector or a REST connector that has been created with a valid
descriptor, generate the custom API, and use the generated API to make it easier to
call these services from the implementations of your custom APIs, or directly from a
mobile app.

A connector is a means of enabling a mobile backend to communicate with an external
service such as enterprise system or third-party APIs, which in turn, allows a mobile
app to interact with the functions of that service. A connector API is a configuration for
communicating with a specific external service to send and receive data.

As a service developer, you can generate a custom API that exposes the methods of a
connector APl and provides a default implementation, without writing code.

The custom API is generated with an endpoint for each resource in the connector API,
and it is opened in the API Designer for you to continue to specify details of the API,
such as roles. The default implementation, passes through all the requests coming
from the generated custom API to the target connector API, is also generated and
assigned to the generated API. As soon as you have assigned roles to the API if they
are required for security on the connector you can use the implementation to test the
API. You can download and modify the implementation and then upload it.

Creating a Generated Custom API for a Connector

Being able to create a custom API for a connector means that it is much easier to
create a prototype which you use to test a connector. As you find things you want to
change, you can quickly make a change to the connector, and generate a new custom
API and implementation. Once you are satisfied you can generate a final version of the
custom API and implementation.

e First, you develop a REST connector or Fusion Applications connector that is
defined using a descriptor.

e Generate the custom API from the connector. It opens in the API Designer, where
you can define one or more roles or specify the authentication required by the API.

* You can immediately call the generated API from the mobile device. The default
implementation passes through all the requests coming from the generated API to
the target connector API.

e You will probably want to download the implementation and modify it to shape the
data returned.

* You may want to revisit the connector and make changes to the connector
resources or descriptor. If you do you must generate a new custom APl and
implementation. If you make changes to the generated custom API, these changes
are not reflected in the connector. You should make the appropriate changes in
the connector and then generate the custom APl and implementation again.

18-3

Chapter 18
Generating Custom APIs for Connectors

Limitations of Generated Custom APIs for Connectors

You can only generate a custom API for a REST or Fusion Applications connector
which is defined using a descriptor. You cannot generate a custom API for another
type of connector, or where the REST or Fusion Applications connector does not have
a descriptor.

If you want to send multipart form data or use the ht t p options object, you might need
to replace the cal | Connect or method in the implementation with your own code. See
Calling Connector APIs from Custom Code.

How Do | Generate a Custom API from a Connector

ORACLE

Before you can generate your custom API, you must have created the connector that
the API will be configured for. If the connector isn't valid you'll see a popup explaining
that you can only generate custom connector API code for:

e REST connectors that use a descriptor URL

e Fusion Applications connectors

Note:

Make sure that you have the descriptor defined for the connector, and that
you have selected the resources and methods you want to generate code
for. The connector should be as complete as possible

1. Click === and select Mobile Apps > APIs from the side menu.

The Connectors page appears. Select the connector API you want to generate
custom code for. You can filter the list to see only the connector APIs that you're
interested in or click Sort to reorder the list.

2. Click More and from the drop-down list, select Generate Custom API.

The Generate Custom API dialog appears.

18-4

ORACLE

3.

Chapter 18
Generating Custom APIs for Connectors

Generate Custom API X

Generate a custom code APL including a default implementation. exposing the methods of your connector.

* Title <AP[Title>
* 3 i s
Version < \Version string>
i A DTAT
Name <APINames

Description

100 characters left

Generate

Provide the following information for the generated custom API:

a.

Title: Enter a descriptive name (an API with an easy-to-read name that clearly
identifies the API makes it much easier to locate in the list of custom APIs).

For example, myCust omAPI .

" Note:

The names you give to a custom API (the value you enter in the API
name field) must be unique among custom APIs.
Version: Enter a version number.

If you enter a version number that already exists, you'll get a message letting
you know that number is already in use.

Name: The title you entered is automatically entered here as the name. You
can change it if you want. This name is used a unique name for your custom
API.

By default, this name is appended to the relative base URI as the resource
name for the custom API. You can see the base URI below the Name field.

Note:

The custom APl name must consist only of alphanumeric characters.
It can’t include special characters, wildcards, slashes /, or braces {}.

If you edit the name for the API here, the base URI is automatically updated.

Other than a new version of this custom connector API, no other custom
connector API can have the same resource name.

Description: You can accept the default description, or provide a brief
description, including the purpose of this API.

18-5

Chapter 18
Generating Custom APIs for Connectors

After you've filled in all the required fields, click Generate.

The draft API is generated and displayed in the General page of the API Designer
(see The API Designer) where you can continue to edit it.

You can find the new custom connector API listed under Mobile Apps > APIs.

Completing the Custom AP|

The generated API opens in the API Designer.

* An endpoint exists for all the resources selected in the connector, along with an
implementation that you can use to test the API.

» By default, security is set that login is required and security is enterprise level so
you need to add the roles that can access the API. See Security in Custom APIs

As soon as you assign appropriate roles, you can test the custom API.

Working with the Implementation

The default generated implementation passed through all requests. You can edit the
implementation to shape the data returned, which is useful if there is a lot of data.

1. Click === and select Mobile Apps > APIs from the side menu.

The APIs page appears. Select the custom API that you have generated. You can
filter the list to see only the custom APIs that you're interested in or click Sort to
reorder the list.

2. Click the Implementations navigation link, select the implementation which will
have the same name as the custom API, and click Download.

3. The download is a zip file with the default name <cust om api ><ver si on>. zi p.
Expand it to a suitable location. The implementation files are:

« call Connector.js, passes the client’s request to the connector, and sends
back the connector’s response.

e <custom api>.js, provides the main body of the scaffolding of the custom
APl implementation. You can uncomment lines in this to shape the data
returned from the connector.

e <custom api>.ran , the RAML definition of the custom API.

e package. j son, the package descriptor file.

* ReadMe. md, has a description of the implementation files.

e sanples.txt, code samples.

e swagger. | son, the Swagger definition of the custom API.

* tool sConfig.json, used by the OMCe command-line development tools.

4. In an appropriate editor, open <cust om api >. | s, which is the only file in the
generated implementation which you should edit.

ORACLE 18-6

ORACLE

Chapter 18
Generating Custom APIs for Connectors

To shape the response from the connector, uncomment the relevant lines and if
necessary change the type and li mit. See the servi ce. use examples in the
sample of <cust om api >. | s below.

servi ce. use(bodyParser.raw({type: 'application/octet-streamt, limt:
1100nb" }));

and

service. use(bodyParser.text({type: "text/*', limt: "1nb'}));

This is the first few lines of the <cust om api >. j s generated implementation file.

/1 no need to add body-parser as a dependency in package.json - it's
provi ded by custom code contai ner
var bodyParser = require(' body-parser');

/] passes client's request to the connector, sends back connector's
response
var cal | Connector = require('./callConnector.js');

/**
* Mbbile Coud custom code service entry point.
* (@aram {external : ExpressAppl i cati onQbj ect}
* service
* @ee {@ink http://expressjs.conien/4x/api.htn}
x|
modul e. exports = function(service) {

/1 uncomrent if using custom zer to custom ze binary request with
content-type 'application/octet-stream - it will be parsed into a
Buf fer and assigned to req.body. Ot herw se these requests streaned
through (recomrended approach if no custom zation is required).
/Iservice.use(bodyParser.raw({type: 'application/octet-stream, limt:
1100nb" }));

/1 uncomrent if using custom zer to custom ze text request with text
content-type - it will be parsed into a string and assigned to

reg. body. Qtherw se these requests streanmed through (recomended
approach if no custom zation is required).
/Iservice.use(bodyParser.text({type: "text/*', limt: "1nb'}));

/1 I'n the product U, in Diagnostics -> Logs tab, ServerSetting button
allows to set backend log |evel: set your nbe log |evel to FINE (FINER
FINEST) to see the generated custom code sdk calls.

service. post (' / mobi | e/ cust oml sanpl e_api/enps', function(req,res) {
/1 uncomrent custom zer to custom ze request and/or response
cal | Connector(req, res/*, customnizer*/);

1)

service. get('/nobile/custonm sampl e_api/enps', function(req,res) {
/1 uncomrent custom zer to custom ze request and/or response

18-7

Chapter 18
Generating Custom APIs for Connectors

cal | Connector(req, res/*, custom zer*/);

1

There is a sample customizer in the same generated implementation file. You can edit
it and pass it as a last parameter to cal | Connect or to override the request sent to the
connector and/or the connectors response. See the comments in the code for
examples of what you can do.

[/ Edit this sanple custom zer and pass it as a last paranmeter to

cal | Connector to override request sent to connector and/or connector's
response

/1 Wthout custom zer call Connector streans request to connector, then
connector's response is streaned back to client - reconmended approach in
case no custonization is required

var custonizer = {

/] allows to custonize request sent to connector. If omtted then the
request streamed to the connector - recommended approach in case no
request custonization is required

request: {

Il used - with post and put only - to custon ze request body
Il 1f not specified then request body is streamed directly to the
connector - no need to define this function unless you need to override
t he payl oad.
body: function(req) {
consol e. | og(' custom zer.request.body: req.body =
var body = req. body;
/1 OVERRIDE request body here - substitute this sanple code
if (typeof body == "string'){
/] to enable string parsing uncomrent

, req.body);

servi ce. use(bodyParser.text... - otherw se req.body woul d never be a string
body += ' custom zed request’
} else if (typeof body == 'object'){

if (Buffer.isBuffer(body)){
Il to enabl e binary parsing unconment
service. use(bodyParser.raw... - otherw se req.body woul d never be a Buffer
body = Buffer.concat([Buffer.alloc(8, '00000000"),
body]);
} else {
Il json parsing is enabled by default
body[' custom zed-request'] = true
}
}
consol e. | og(' customi zer.request.body ->, body);
return body;
M,
/'l advanced: uncomment to add options to connector request, see
https://github. com request/request#request options-cal | back
options: function(req) {
var options = {headers: {nyHeader: 'myHeaderValue'}};
consol e. | og("' customi zer.request.options ->, options);
return options;

ORACLE 18-8

Chapter 18
The API Designer

el
b

The API Designer

The API Designer helps you configure a custom API with task-specific tabs that you
use to name your API, define its endpoints, set security, add APl documentation, add
a schema, define resource types and traits, and test the API.

While you're configuring the API, you can switch between the Design view and the
Source view. In the Design view (the default view), you enter values in fields. In the
Source view, you manually define the API's properties in a source code editor. Click
Enter RAML Source Editor Mode # to toggle between the Design and Source views.

If you already have a RAML document, then you can import it and edit it in the API
Designer. Click Upload a RAML Document or drag and drop your RAML document in
the New API dialog to download your API definition.

¢ Note:

If you came to the API Designer by clicking the APIs navigation link from a
mobile backend, the feature to upload a RAML document is not available.

OMCe APIs are based on the RESTful APl Modeling Language (RAML) standard.
Once you've begun to configure your APl, OMCe generates a RAML document of the
configuration. See RAML to learn more about it.

If you want to work on the RAML document outside of OMCe, you can export it by

clicking Export RAML document . at the top of the page.

Spec Out a Custom AP|

ORACLE

As a mobile developer, you might want to quickly spec out an API for your backend
then configure it later, or hand it to someone like the service developer to complete.
You can construct a functioning API with just a few steps: name your API, define an
endpoint, and test the endpoint. These next steps use a simplified FixItFast example. It
doesn’t show you how to add method parameters, or schemas, or resource types and
traits.

1. Click = and select Mobile Apps > Mobile Backends from the side menu.

2. Select the mobile backend that you want to associate the API with from the list of
backends and click Open.

3. Click the APIs navigation link.
4. Select New API > API.

The New API dialog opens. Here’'s where you enter the basic information for your
API:

18-9

ORACLE

Chapter 18
Spec Out a Custom API

Now AP

~ APIDisplay Hame My AP! Mamo ar

“APIName 7

Select API to craft a custom API with the API Designer. Or choose Express API to
open the Express API Designer to quickly create a no-code API using sample data
you provide. See Which API Designer Should | Use? to learn about the difference
between the two designers.

a. Enter a name in the API Display Name field that is easy to read and
describes your API. For example, Fi xI't Fast |nci dent Reports. This name
appears in the API Catalog, which other developers can see.

The name you give to a custom API (the values you enter in the API Display
Name and the APl Name fields) must be unique. No two custom APIs can
have the same name.

b. Enter a name in the API Name field for the internal name of the API. It's part
of the metadata of the API, that is, it appears in the custom API URI. It won't
appear in the API Catalog, so you can use a more concise form of the display
name if you choose. For example, i nci dentreports.

c. Add a brief description that tells others what the API does.
Click Create.

The General page of the API Designer is displayed. If you want to change the
name of your API or its description, then you can do it here.

Select the default media type, that is, the content type of the message body. REST
APIs commonly use the appl i cation/j son or the appl i cati on/ xml media type.

That's all you need to do to set the basic information for your API. If you'd like, you
can choose a different icon to associate with the API display name or just go with
the default and select a different icon later.

Click Endpoints in the navigation bar to define endpoints for the API.

a. Click New Resource and enter the resource name and the display hame of
the resource (the field next to the resource name field). For instance, you
could have cont act s as the resource name and Cust omer cont acts as the
display name. Resources are listed by their display names on the left side of
the API Test page. Enter a brief description of the resource so others can
understand what the resource does.

i contacts Customer contacts Methods >

Create customer contact info Resource Type i

18-10

ORACLE

Chapter 18
Spec Out a Custom API

Tip: This image shows a “P” under the Methods link. When a method is
defined for an endpoint, an icon for the method appears below the Methods
link. The icons are a shortcut you can use later to quickly see what methods
are defined for the resource and you can go directly to the method definition
by clicking on an icon.

If you want to add another top-level resource, then click New Resource again
and enter names and descriptions.

b. (Optional) If you want to add a nested resource (a child resource of cont act s),
click Add (+) next to the Resource name field. Enter a name, a display name,
and a description of the nested resource. Click Add (+) again to add more
nested resources if you need them.

Endpoints are what really define an API. They are the resources and the
methods that act on those resources.
If you want to know more about resources, see APl Resources.

Click Methods next to the resource display name and define a method for the
resource.

For each method, you need to define a request and a response. You can add
parameters to filter the information for the request and response message bodies
if you need them.

? { Endpointz * jcontacts L 4
+ Add Method -

Description 2 Remove POST
Crestes 3 customer

Display Name

Traits

Request Responses
4 Parameters (0) Add Parameter
4 Body Add Media Type

X Media Type a

Example Schema

a. Click Add Method, select an operation and, optionally, add a description of

the method in the Description field.

For example, you could select a POST method to create a customer and add
“Creates a customer” as the description. Notice that a POST icon appears
next to Add Method. All methods defined for a resource have icons displayed
at the top of the page. When you want to view or edit a specific method, just
click the icon for it.

18-11

ORACLE

9.

10.

11.

Chapter 18
Spec Out a Custom API

b. Click Add Media Type and select the format of the request message body,
which is usually JSON or XML.

c. Add a schema (a template of the message body) or an example of the
message body using mock data. Click Example or click Schema to paste the
message body.

Here’s an example body you could use for the FixtltFast example:

{
"AddressLine":"1 Main Street',

"City":"Anytown",
"User Nane": "user",
"FirstName":"Jint',
"Last Name":"Smth",
"Post al Code": "12345"

}

d. Add aresponse body by clicking Add Response and selecting a response
code. Don't forget to add a description for the response body.

Using the example, you would select 201 — Created for the POST method and
enter the following description: Request fulfilled, new customer added.

You can add parameters to filter information for the response body. You can
also enter a response message body. If you're using the FixItFast example,
then a response body isn’'t needed for the POST method.

e. Save your method definitions by going to the top of the Methods page and
clicking Save.

Set security access for your API by clicking Endpoints to get back to the
Endpoints page. From there, click the Security navigation link.

Switch Login Required to OFF so you don't have to provide mobile user
credentials or access tokens for authentication and click Save.

% = B

© Login Required controls whether credentials are required to test this APIs endpoints. When enabled, credentisls are X
required. itionalhy, Enterprise mobile users must have at keast one of the roles selected here to scocess the AR

When disabled, credentizls are not reguired. These properties aren’t saved in the associsted RAML document, so
you won't ses them in the Sowrce view.

Tell me maore sbout AP| security

Login Required

See Security in Custom APIs to learn more about securing access to the API. Now
you're ready to test your endpoint.

Click Test to go to the API testing page.

The endpoints defined for the API are listed on the left side of the page. Click an
endpoint to load it. You can see each method’s request and response
configurations for each resource.

18-12

ORACLE

Chapter 18
Spec Out a Custom API

Endpoints (1) Documentation

Customer contacts

POST Jcontacts

You can check the definition of each method and if you want to modify a
parameter name or an example, enter the change in the box to the right of the
field. If you click Use Example by a message body, then the current body is
copied into the text editor and you can make any changes.

FIFincidentReports 1.0

Rl http://cloud.oracle.com/mobile/custom/incidentraport

Endpoints (B) Documentstion

Filter Default Test Credentials

Customer contacts
POST /contacts

POST /contacts htto:/ /cloud.oracle.com/mabile/custom/incidentreoort/contacts

Incident Reports
4 Creates 3 customer

Request = Response
fincidentsi{id} 4 Parameters Description Test Consol
BODY
GET Jincidents/{id}
body string — ple

lincidents/{id} status
Example Schema

GET /incidents/{id}/status

PUT Jincidents/{id}/status

on, and mobile user cradentisls to test this AR When applicablz, you must slso specify an

* Mobile Backend Sele

* Version Zele

* Authentication Method Zele

Test Endpoint

12. In the Authentication section, select the mobile backend that this API is associated

with and the mobile backend’s version number.

Because you set Login Required to OFF, you don’t need to specify the
authentication method or provide credentials.

If you defined more than one endpoint, then set the default test credentials so you
won't have to fill out the Authentication field for each method. Click Default API
Designer Test Credentials at the top of the page and select the associated

mobile backend and its version number. When you click Save (¥"), the values are
applied to the Authentication fields of each method.

13. Click Test Endpoint.

18-13

Chapter 18
Creating a Complete Custom API

You can view the request and response status and data of the test under the
Response Status section. If you used the FixltFast example and your test was
successful, then you should see a 201 status.

That's all you need to do to spec out your custom API. As long as the API is in a draft
state, you or a teammate can edit the API configuration as needed. For steps on how
to fully configure a custom API, see Creating a Complete Custom API.

Creating a Complete Custom API

Previously, you learned how to spec out an API using the API Designer. You gave a
name to the API, added at least one resource and method and tested your endpoint.
At this point you have a draft version of the API but it isn’t quite complete. In this
section, you'll fill in more details (such as defining the method requests and response,
adding a schema, and setting secure access) to make a more robust API. Just in case
you're starting from scratch though or want more details about setting the basics, the
complete set of steps to creating a custom API are presented.

Click === and select Mobile Apps > APIs from the side menu. If an API has already
been created (whether in a Draft or a Published state), you'll see a list of APIs. If no
custom APIs exist, then you'll see a page with the New API button. Click the APl you
spec’d out already or click New API to get started.

Setting Up Your API

ORACLE

Let’s use the FixItFast example to create a custom API. In this example, you work for
the FixItFast appliance repair company. You need to find a way to track the repair calls
and responses. It would also be helpful to know which technicians are assigned to the
repair jobs. You want to create an API that lists the customer service calls based on
the customer who called to report the problem, the customer location, and the
technician assigned to the job. You'll create the following API with the following
properties:

* An API called FI FI nci dent Report s

e AbaseURI:https://fif.nts.cloud. oracle.con mobile/customfif-
i nci dentreport/

* Anapplication/json media type
e Anicon to associate with the API display name (a PNG file that we selected)

When you click Create, a Draft state of the API is created and added to the list of
custom APIs.

First, set the basic characteristics for your API by going to the General page.

1. Click = and select Mobile Apps > APIs from the side menu.
2. Select New API > API.

You select API to craft custom APIs with the API Designer. Express API enables
you to create API quickly without having to write any code as long as you have
sample data to provide. See Creating An API to learn about the Express API
Designer. If you're developing mobile apps with the Mobile Application Accelerator
(MAX), the Express API designer is the quickest way to develop APIs for use with
MAX. See Creating APIs Fast with the Express API Designer for information about
MAX.

18-14

Chapter 18
Creating a Complete Custom API

Enter a name for the API in the API Display Name field that will appear in the list
of APIs (required).

The display hame can contain alphanumeric characters and special characters
('?2&@() _- . " ") The name can't begin with a space and can’t exceed
100 characters.

The name you give to a custom API (the values you enter in the API Display Name
and the API Name fields) must be unique among custom APIs. For example, if a
custom API exists with the APl name My APl , then you can’t create another
custom API with the same name.

Enter a name for the API in the APl Name field that will appear in the API
configuration (required).

This name is appended to the relative base URI as the resource name for the API.
The APl name must begin with a letter (A - Z) and can contain numbers (0 - 9) and
underscores (_). The name can’t exceed 100 characters. A validation error
message is displayed if you enter a name that’s already in use.

If you edit the name of the API here, then the change will be made automatically to
the resource name in the local URI.

Add a brief description of your API and click Create.

You're taken to the API Designer page where you can complete the basic
information for your API:

» Default media type for the payload (app! i cation/j son is selected by default,
click the drop-down list to select another type).

* API Catalog Properties to make it easier for you and other developers to
locate the API. Provide a brief description of your APl and select an icon to
associate with your API.

If you want to use your own icon, then you can upload an icon (it must be in a
PNG format) or if you're creative, then you can download Photoshop
QuickStart to use an icon template to create an icon. You should be familiar
with using Photoshop to create an icon. Follow the icon guidelines for sizing
and color information. For sizing information, see the Full Palette Icon section
of the ALTA ICON STYLE chapter in the Oracle Alta Web Design Guide. You'll
need a 48x48 icon image within a 70x70 canvas. For color guidelines, see the
Icon Palette section of the ALTA COLORS chapter of the same guide.

Now that you've provided the basic information, it's time to define endpoints for your
API.

Defining Endpoints

ORACLE

You create resources to define the endpoints of your API. A resource is the crux of an
API. It has a type, some data associated with it, a relationship to other resources, and
conta