
Oracle® Cloud
Managing Oracle Mobile Cloud Enterprise

Release 18.2.3
E96585-01
May 2018

Oracle Cloud Managing Oracle Mobile Cloud Enterprise, Release 18.2.3

E96585-01

Copyright © 2017, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: Jennifer Shipman

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Conventions vi

1 An Administrator’s Roadmap to Oracle Mobile Cloud Enterprise

Part I Configuring Oracle Mobile Cloud Enterprise

2 Policies

Defining Policies 2-1

OMCe Policy Names 2-2

Policy Scope 2-3

Removing Policies 2-4

3 Credentials (CSF Keys and Certificates)

Managing Keys and Certificates 3-1

Configuring a CSF Key 3-2

Configuring a Web Service or Token Certificate 3-2

Configuring an SSL Certificate 3-2

Disabling SSL Hostname Verification 3-3

Adding a Token Issuer 3-3

Configuring Rules 3-4

Rule Types 3-4

Part II Managing OMCe Artifact Lifecycles

iii

4 Understanding Lifecycles

Draft State 4-1

Published State 4-2

Making Changes After a Backend is Published (Rerouting) 4-3

Versioning 4-5

Deleting an Artifact 4-6

Moving an Artifact to the Trash 4-6

Restoring an Artifact 4-9

Restoring an Artifact from Administration 4-10

Purging an Artifact 4-11

Purging Artifacts from Administration 4-11

Artifact Lifecycles 4-12

5 Client and App Profile Lifecycle

Publishing a Client 5-1

Updating the Version Number of a Client 5-1

Creating a New Version of a Client 5-2

Moving a Client to the Trash 5-2

Restoring a Client 5-3

Managing Your Clients and App Profiles 5-3

6 Backend Lifecycle

Backend Lifecycle States 6-1

Publishing a Backend 6-1

Updating the Version Number of a Backend 6-2

Creating a New Version of a Backend 6-3

Moving a Backend to the Trash 6-3

Deactivating a Backend 6-4

Restoring a Backend 6-4

Managing a Backend 6-4

7 API Lifecycle

Custom APIs and API Implementations 7-1

Publishing a Custom API 7-2

Updating the Version Number of an API 7-3

Creating a New Version of an API 7-3

Moving a Custom API to the Trash 7-4

Restoring a Custom API 7-4

iv

Managing an API 7-4

8 API Implementation Lifecycle

Publishing an API Implementation 8-1

Creating a New Version or Updating the Version of an API Implementation 8-2

Moving an API Implementation to the Trash 8-3

Restoring an API Implementation 8-3

9 Connector Lifecycle

Publishing a Connector 9-1

Updating the Version Number of a Connector 9-1

Creating a New Version of a Connector 9-2

Moving a Connector to the Trash 9-2

Restoring a Connector 9-3

Managing a Connector 9-3

10

Collection Lifecycle

Publishing a Collection 10-1

Updating the Version Number of a Collection 10-2

Creating a New Version of a Collection 10-2

Moving a Collection to the Trash 10-2

Restoring a Collection 10-3

Managing a Collection 10-3

Part III Reference

A Oracle Mobile Cloud Enterprise Policies

OMCe Policies and Values A-1

v

Preface

Welcome to Managing Oracle Mobile Cloud, Enterprise.

Audience
This guide is intended for administrators who maintain and monitor services in Oracle
Mobile Cloud Enterprise.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
An Administrator’s Roadmap to Oracle
Mobile Cloud Enterprise

Welcome to Oracle Mobile Cloud Enterprise! OMCe is a cloud-based service that
provides a unified hub for developing, publishing, maintaining, monitoring, and
analyzing your mobile apps and the resources that they rely on.

As OMCe administrator, you define policies, configure credentials, and manage
lifecycles of the artifacts created by your team’s developers. Use this guide to help you
understand and manage these features.

• The way OMCe manages artifacts is governed by policies. For details on policies
and how to define them, see Policies.

• CSF keys and security certificates are unique to each instance of OMCe. For
details on configuring credentials, see Credentials (CSF Keys and Certificates).

• Artifact lifecycles are simple but interdependent. For more information on lifecycles
and tips for managing each type of artifact, see Understanding Lifecycles.

• Diagnostics also provide important information for monitoring the health of your
instance and its artifacts. For details about diagnostics, see Diagnostics in
Developing Applications with Oracle Mobile Cloud, Enterprise.

1-1

Part I
Configuring Oracle Mobile Cloud
Enterprise

This part contains the following chapters:

• Policies

• Credentials (CSF Keys and Certificates)

2
Policies

Policies define properties for artifacts on a global or artifact-specific level. You can use
policies to adjust how artifacts behave even after they are published.

Even though an artifact can’t be changed after it’s published, its behavior can still be
affected. You have the flexibility to adjust policy values to better fit the required
behavior of artifacts. For example, you might be testing that a connector’s endpoints
are valid. The timeout values don’t matter much during the experimental phase, but
when you publish the connector, realistic timeout settings are required. You can adjust
the value of the Network_HttpRequestTimeout policy accordingly.

Only OMCe administrators can modify policies. You can modify policies when you
deploy an artifact (client, backend, custom API, API implementation, connector, or
collection) or by editing the policies.properties file directly from the Administration
view. For information on how to change policy settings, see Defining Policies.

In most cases, you should leave the policy’s default settings. Make sure you
understand the scope of a policy before you change it. When you change a policy with
global scope, the value is applied to all relevant artifacts. For details on policy scope,
see Policy Scope.

For a list of policies including descriptions, scopes, and default values, see Oracle
Mobile Cloud Enterprise Policies.

Defining Policies
Define and modify policies by exporting the current policies.properties file, editing the
property values, and importing the modified file.

1. Click and select Settings from the side menu.

2. Click Policies and then click Export.

3. Make a backup copy of the policies.properties file before you update it. If you
find you've made unintended changes, you can restore policies to their previous
state by importing the backup copy.

4. Open the exported policies.properties file in a text editor, edit the policies as
needed, and save the file.

5. Go back to the Policies page, click Import, and select the modified
policies.properties file.

Here’s an example policies.properties file:

2-1

OMCe Policy Names
Policy names use the format backendName.apiName.policyName
(mbeArtifactIdentity.invocableArtifactIdentity.policyPropertyName):

• backendName binds the policy value to a specific backend.

• apiName binds the policy to an API, API implementation, or connector API.

Chapter 2
Defining Policies

2-2

Note:

When you define a policy that affects an API, you must use a fully-
qualified name, consisting of the API category and the API name (with or
without the version). The API category can be: custom, connector,
platform, or system. For example: myBackend.custom/
myAPI(1.0).propertyName. Policy names for API implementations don’t
include category types. For example, *.myAPIImpl(1.0).

• policyName is the name of the policy (initial-capped and preceded by a category).
For a full list of policies, see Oracle Mobile Cloud Enterprise Policies.

To set the scope of the policy you are defining, set the backendName, apiName and
policyName in the following ways:

• A wildcard denoted by an asterisk (*), which binds the policy to all artifacts of the
particular type.

• The artifact name alone, which binds the policy to all artifacts of the particular type
with the specified name. For example, myBackend.

• The artifact name and version, which binds the policy to the artifact of the
particular type with the specified name and version, for example, myBackend(1.0.0).

Policy Scope
Policy scope defines which artifacts use the policy’s settings. Policies can be set
globally, by artifact type, or for a specific artifact. Some policies don’t support all three
scopes. For example, the Connector_Endpoint policy stores the endpoint URL of a
specific connector, so it can only be set at the artifact level. The
Network_HttpRequestTimeout policy affects APIs and connectors, so it can be set
globally.

The combination of values in the name defines the scope for the policy.

• Global scope: Set both backendName and the apiName as wildcards so that the
policy is applied globally.

For example: *.*.Logging_Level=800

• Backend scope: Set backendName to a specific backend and set the apiName as a
wildcard so that the policy is applied to all APIs and connectors called in the
context of the given backend. You make this more specific by including the version
of the backend.

For example: MyBackend(1.3).*.Logging_Level=800

• API scope: Set backendName to a wildcard and set the apiName to a specific API so
that the policy is applied to that particular API when called in the context of any
backend. You make this more specific by including the version of the API.

For example: *.custom/MyApi(2.0).Logging_Level=800

• API Implementation scope: Set backendName to a wildcard and set the apiName to a
specific API implementation so that the policy is applied to that particular
implementation when called in the context of any backend. You make this more
specific by including the version of the API implementation.

For example: *.MyApiImpl(1.0).Logging_Level=800

Chapter 2
Defining Policies

2-3

• Connector scope: Set backendName to a wildcard and set the apiName to a specific
connector so that the policy is applied to that particular connector when called in
the context of any backend. You make this more specific by including the version
of the connector.

For example: *.connector/MyConnector(2.2).Logging_Level=800

• Fully-qualified API scope: Set the backendName to a specific backend and set the
apiName to a specific API so that the policy is scoped at the fully-qualified API level
whenever the API is called within the scope of the given backend. You make this
more specific by including the version of the backend and the API.

For example: MyBackend(1.3).custom/MyApi(2.0).Logging_Level=800

• Fully-qualified API Implementation scope: Set the backendName to a specific
backend and set the apiName to a specific API Implementation so that the policy is
scoped at the fully-qualified API implementation level whenever the
implementation is called within the scope of the given backend. You make this
more specific by including the version of the backend and the API implementation.

For example: MyBackend(1.3).MyApiImpl(1.0).Logging_Level=800

• Fully-qualified Connector scope: Set the backendName to a specific backend and
set the apiName to a specific connector so that the policy is scoped at the fully-
qualified connector level whenever the connector is called within the scope of the
given backend. You make this more specific by including the version of the
backend and the connector.

For example: MyBackend(1.3).connector/MyConnector(2.2).Logging_Level=800

Removing Policies
You can reduce clutter in the policies.properties file by removing policies defined for
obsolete artifacts.

To remove policies:

1. Click and select Settings from the side menu.

2. Click Policies and then click Export.

3. Make a copy of the exported policies.properties file as a backup.

4. Open the file in a text editor and delete the policies you want to remove. Save the
file.

5. Back on the Settings page, select Delete all policies before import.

6. Import the modified policies.properties file.

All the previous policies are deleted, leaving only the policies you imported from the
modified file. If you find you've accidentally deleted the wrong policies, you can restore
policies to their previous state by importing the backup copy of the file.

Chapter 2
Removing Policies

2-4

3
Credentials (CSF Keys and Certificates)

OMCe uses the Credential Store Framework (CSF) to manage credentials, allowing
you to store, retrieve, update, and delete credentials for web services and other apps.

CSF keys are credentials that use basic authentication (user name and password) to
certify the authority of users and system components.

Certificates are electronic documents used to authenticate an individual or
organization. There are a few different kinds of certificates:

• Web Service Certificates can be trusted certificates containing only a public key
or certificates that contain both public and private key information. Web Service
Certificates are stored in the Oracle WSM Keystore.

• Token (Signing) Certificates are standard X509 certificates used to securely sign
all tokens issued by a federation server. For third-party tokens, you configure
Token Issuer Certificate and Signing Authority Certificate information, along with
any intermediate certificates, to establish a chain of trust. For details, see Adding a
Token Issuer.

• Secure Sockets Layer (SSL) Certificates are trusted certificates that you use to
establish SSL communication with the external service. SSL Certificates are
stored in the Trust Keystore.

CSF keys and certificates are configured from the Settings > Credentials dialog. CSF
keys, certificates, and their values are specific to the OMCe instance where they are
defined.

Managing Keys and Certificates
CSF keys and certificates are managed from the Credentials dialog.

As administrator, you manage the credential keys and certificates used by service
developers from To open the Credentials dialog:

1. Click and select Settings > Credentials from the side menu.

2. Click the Keys, Certificates, or Token Issuer tab.

3. Select an alias in the Available Keys or Available Certificates list to view the
details of the key or certificate. Only the CSF keys and certificates that are
currently in use are listed.

• For CSF Keys, select Show only referenced keys with null values to see
only keys that are referenced by artifacts that have no credential values.

• For certificates, click Export to save the selected certificate to a file. You can
then import the certificate for use in another instance.

3-1

Configuring a CSF Key
You can configure a new CSF key from the Keys tab in the Credentials dialog. You
can edit the description, user name, or password of an existing key, but the key name
can’t be changed after it’s created.

1. Click the Keys tab.

2. Click Add and provide the following values:

• Unique key name. This name can’t be changed after the key is created.

• User name and password for the external system that requires this key for
access.

3. Save the key.

Configuring a Web Service or Token Certificate
You can configure a new web service or token certificate from the Certificates tab in
the Credentials dialog. You can’t edit a certificate after it’s created.

1. Click the Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

3. Save the certificate.

Note:

When a certificate is uploaded, it takes a few seconds before the certificate is
available. Token certificates can take up to ten minutes.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Configuring an SSL Certificate
You can configure a new SSL Certificate from the Certificates tab in the Credentials
dialog. You can’t edit a certificate after you’ve created it.

1. Click the Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

• Select Trusted SSL Certificate.

Chapter 3
Managing Keys and Certificates

3-2

3. Save the certificate.

Note:

When a certificate is uploaded, it takes a few seconds before the certificate is
available.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Disabling SSL Hostname Verification
Testing connectors can be difficult when they call an outbound service over SSL. If the
SSL certificate has an incorrect or missing hostname, the developer might not be able
to create the connector or might just have problems with testing.

You can make it easier to test a connector by turning off hostname verification for
outbound SSL connections through the Security_IgnoreHostnameVerification policy.

Caution:

Turning off hostname verification is a security risk. Setting this policy to true
should be limited to development. When testing is complete, set the policy
back to its default value of false.

This policy is set globally (*.*.Security_IgnoreHostnameVerification) and will affect all
connectors. Setting the scope for a specific backend or connector is not supported.

For more information on configuring policies, see Policies.

Note:

Even if SSL hostname verification is disabled, you still need to import the
SSL certificate if it's self-signed.

Adding a Token Issuer
To authenticate users with third-party tokens, you need to register the token issuers
and associate them with their certificates.

After you’ve added at least one token certificate, use the steps below to add a token
issuer from the Credentials dialog:

1. Click the Token Issuers tab.

2. Click New Issuer.

3. Enter the name of the token issuer in the Name field under Issuer Details.

4. Click Add (+) and select at least one name from the Select Certificate Subject
Names dialog. All the certificates that have been uploaded are listed.

Chapter 3
Managing Keys and Certificates

3-3

5. Save the token issuer.

6. If the list on the Token Issuers tab doesn’t include your new issuer, click Save in
the tab to update the list.

7. (Optional) Click Rules to configure a rule for a certificate subject name.

Configuring Rules
Rules govern how tokens provided by token issuers are processed. If the token
provided by a token issuer doesn’t meet the criteria specified by the rule, the request is
rejected.

After you’ve added at least one token certificate and created a token issuer, you can
configure a rule for the certificate subject name from the Token Issuer tab in the
Credentials dialog.

1. On the Token Issuers tab, select a certificate subject name from the list.

2. Click Rules. As you add rules, the current number of rules is indicated on the
Rules button.

3. Select Enable Virtual User if you’re configuring rules for users that aren’t
registered.

With virtual users enabled, a token identifies a user with a record in IDCS, but
roles are associated with the user based on the default content in the token,
instead of on information in that account.

4. Under Add a New Rule, select the rule type.

5. Enter the required values for the rule type.

6. Click Add.

If you need to change a rule, just select it, make the updates and click Done. To delete
a rule, select the rule and click X.

Rule Types

Filter Rule

The Filter rule consists of a token attribute and at least one value that must match the
value associated with the token. The name-id attribute represents the username
identified in the token, while the user.tenant.name attribute represents the tenant name
associated with the token.

Use a comma-separated list to enter multiple attribute values for either attribute. If
none of the values match, the token is deemed invalid. A value can contain a wildcard
(*) character.

For example:

• name-id=jack, jill, ann

• user.tenant.name=testing, development

You can configure only one Filter rule per token attribute (that is, you configure one
Filter rule with the name-id attribute and one Filter rule with the user.tenant.name
attribute).

Chapter 3
Managing Keys and Certificates

3-4

User Mapping Rule

The User Mapping rule defines how tokens are mapped to users, either by user name
or email address. This rule is applicable only to JWT tokens, only if virtual users are
disabled.

The rule consists of a token attribute, name-id, that represents the username identified
in the token, and a user attribute name value of either uid or mail:

• uid is the user’s username in the associated IDCS account (default behavior)

• mail is the user’s email address in the IDCS account

You can configure only one User Mapping rule per issuer certificate name. If you don’t
configure a User Mapping rule, name matching is used (the default behavior).

Note:

For SAML tokens the User Mapping rule type is ignored and the default
behavior is to map the username in the token to the username in the
associated record.

Default Role Rule

The Default Role rule defines a list of roles to associate with users. This rule is
applicable only if virtual users are enabled.

The rule consists of a list of role names that are assigned to all users presenting
tokens verified using the corresponding token certificate. Use a comma-separated list
to enter multiple attribute values.

For example:role=technician, manager, tester

You can configure only one Default Role rule per issuer certificate name. If you don’t
configure a Default Role rule, no roles are assigned to the requesting user unless
you’ve configured a Role Attribute rule.

Role Attribute Rule

Use the Role Attribute rule to determine which roles to assign by examining the
attributes in the token. If a Role Attribute role is defined, the token is searched for
attributes with names that match any of the values defined in the rule. If matches are
detected, the values of those token attributes are interpreted as roles and assigned to
the virtual user. This rule is applicable only if virtual users are enabled.

The rule consists of a comma-separated list of token attribute names used to derive
the roles that are assigned to users.

For example: employeelevel, QAgroup

You can configure only one Role Attribute rule per issuer certificate name, but you can
use this rule in combination with the Role Mapping rule. If you don’t configure a Role
Attribute rule, no roles are assigned to the requesting user unless you’ve configured a
Default Role rule.

Chapter 3
Managing Keys and Certificates

3-5

Note:

If you configure both the Default Role rule and the Role Attribute rule and the
role attribute you defined is present in the token, the Default Role rule is
ignored. However, if the defined role attribute isn’t present, the roles
specified in the Default Roles rule are applied to the virtual user. Role
Mapping rules can also define which roles to use when no matches are
found.

Role Mapping Rule

The Role Mapping rule associates roles with role attributes in the token identified by
the Role Attribute rule. This rule is applicable only if virtual users are enabled.

The rule consists of an external role name, which is the value that should be found in
one or more token attributes, and a list of roles to which the external role names are
mapped. Use a comma-separated list to enter multiple attribute values.

For example: employee=technician, manager, tester

This example maps the external role name, employee, to the existing roles, technician,
manager, tester.

Note:

Role Mapping rules only work in conjunction with Role Attribute rules. If no
Role Attribute rule is defined, Role Mapping rules are ignored. If the names
of the token attributes configured in the Role Attributes rule don’t match the
external role names configured in the Role Mapping rule, the token attributes
are treated as role names and are assigned to the requesting user. If the role
names defined in the rule don’t correspond to any existing roles, the value is
ignored.

You can configure as many Role Mapping rules per issuer certificate as you need, but
only one rule can be configured for each external role name. To map one external role
to multiple roles, use a single rule and include all the roles in a comma-separated list,
as shown in the example above.

Chapter 3
Managing Keys and Certificates

3-6

Part II
Managing OMCe Artifact Lifecycles

This part includes the following chapters:

• Understanding Lifecycles

• Client and App Profile Lifecycle

• Backend Lifecycle

• API Lifecycle

• API Implementation Lifecycle

• Connector Lifecycle

• Collection Lifecycle

4
Understanding Lifecycles

Oracle Mobile Cloud Enterprise provides a UI to simplify lifecycle management of your
artifacts. As OMCe administrator, you use these features to create, maintain and
publish backends, APIs and other artifacts.

An important part of your role as OMCe administrator is managing artifacts from
implementation to production and maintaining them through multiple versions, also
known as lifecycle.

The artifacts you’ll be working with most often are clients, backends, custom APIs,
connector APIs, and collections. In general, the same lifecycle phases apply to all of
these artifacts.

Throughout the development and testing phases of a project, artifacts can be created
and edited in a Draft state, then Published (or moved to the trash). All artifacts are
automatically assigned a version of 1.0 when they’re created. During an artifact’s
lifecycle, new versions can be created and updated. Since artifacts are closely related
to each other, it’s important to keep track of dependencies and manage interactions.

This chapter introduces these important lifecycle phases and explains how you can
work with an artifact through each of the phases and manage interactions between
associated artifacts.

Draft State
When you create an artifact, whether it’s a client, a collection, a custom API or any
other type, the artifact has a Draft status. With a Draft version of an artifact, you can
edit, create a new version, update an existing version, or remove the artifact (move it
to the trash).

While an artifact is in the Draft state, you can experiment with it, modify it as many
times as you need to, and test it thoroughly. You publish the artifact when you’re
satisfied with its configuration.

4-1

You can update the version number of an artifact in Draft state or create a new version
to modify, then you can publish the updated artifact or the new version of the artifact.

Published State
When a specific version of an artifact is final, you can publish it. After it’s published,
that version of the artifact can no longer be edited. If you create a new version of an
artifact that’s in a Draft or Published state, the new version is created in the Draft state.

If there are no dependency issues, a published artifact can be exported to another
instance. If you need to modify the artifact, you can create a new version of it and
modify the new version. Because the new version is in the Draft state, you’ll need to
publish it before you can export it.

You can have multiple versions of an artifact. You can export different versions of an
artifact to different instances.

If you’ve published an artifact by mistake or realize after it’s been published that you
need to make a change, you can create a new version of the artifact and make your
changes to it. When you’re satisfied with the configuration of the new version, you can
publish it. For API implementations, OMCe automatically makes the latest version the
default when the implementation is initially loaded. If the most recent version loaded
isn’t the implementation that you want associated with your API, you must explicitly
specify a previously loaded implementation as the default.

You have the choice of keeping the previous version of an artifact as long as it’s
needed, or moving it to the trash (removing the artifact from the main view). In the
case of a backend, you also have the option of changing its activation state to inactive.
Artifacts in the trash are still accessible at runtime. For example, if you have a backend
that calls My_API and someone moves My_API to the trash, the app can still call the
backend and My_API.

All artifacts can be published independently and some can also be published when
you publish their associated artifacts. For example, you can publish an API
independently or the API can be published when you publish its associated backend.

When you publish an artifact, it’s checked for any dependencies and whether or not
those dependencies are already published. You'll be able to see the list of
dependencies and can decide whether or not to proceed with publishing. If you decide
to publish, any unpublished dependencies may be published too.

This table compares the Draft and Published states, behavior, and dependency
considerations for backends, collections, custom APIs, and connector APIs:

Chapter 4
Published State

4-2

Artifact Type Permissible in
Draft state

Permissible in
Published state

Number of
active versions
per instance

Dependencies

Backend Edit

Create new
version

Update version

Publish

Export/import

Manage
activation

Move to Trash

Create new
version

Manage
activation

Move to Trash

Multiple Collection

Custom APIs

Connector APIs

Roles

Collection Edit

Associate a
backend

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple Roles

Custom API Edit

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple

(Note: Only one
API version per
backend version)

Roles, Connector
APIs, Custom
APIs

Connector Edit

Create new
version

Update version

Publish

Export/import

Move to Trash

Create new
version

Move to Trash

Multiple None

Making Changes After a Backend is Published (Rerouting)
If you need to make backend fixes to your app, but the app’s backend is already in
production, there is a way that you can incorporate those changes into your app
without having to recompile it — reroute the call to the backend.

Using a policy, you can reroute the call your app makes to the backend to a different
backend that contains the needed fixes. First, publish the backend that contains the
fix. Then, set the Routing_RouteToBackend policy, which lets you specify the original
backend and redirect the call to the target backend with the fixes. Because your app is
calling the original backend, there's no change to the ClientID or ClientSecret, which
would require you to recompile the app binary.

Chapter 4
Published State

4-3

Rerouting the call to a backend is useful when you want to make a minor fix that
requires a change to the backend’s metadata. Some instances where rerouting a
published backend is useful:

• Making modifications to an API or a connector, such as adding an endpoint that
you forgot.

• Changing the access permissions for an API.

• Changing the access permissions for a storage collection.

• Changing the offline sync property of a storage collection.

• Adding a storage collection to a backend, such as when you want to include a
more efficient API implementation that needs storage for caching purposes.

• You have a change to the backend and you want to distribute the backend that
has the fixes to other instances.

Note:

The Routing_RouteToBackend policy should also be set when you’re exporting
or importing a package containing the target backend.

You can set Routing_RouteToBackend to specify that any API calls within the context of
any version of the original backend are routed to the target backend:

• OriginalBackend.*.Routing_RouteToBackend=TargetBackend(X.X)

• OriginalBackend(A.A).*.Routing_RouteToBackend=TargetBackend(X.X)

For example: FiF_Customer.*.Routing_RouteToBackend=FiF_Customer(3.2)

Any API calls sent to any version of FiF_Customer are sent to FiF_Customer, v3.2.

Note:

You can’t use wildcards (*) in version values when setting the
Routing_RouteToBackend policy.

You can also specify a particular version of the backend to route to a specific version
of it. For example: FiF_Customer(1.3).*.Routing_RouteToBackend=FiF_Customer(3.5)

Any API calls sent to FiF_Customer, v1.3 are sent to FiF_Customer, v3.5.

Note:

If more than one redirect policy is defined for the backend, the policy defined
with the fully-qualified backend takes precedence.

A call can be redirected to any backend, not just another version of the same backend.
For example: FiF_Customer(1.3).*.Routing_RouteToBackend=RepairIt(1.0)

Chapter 4
Published State

4-4

Any API calls to FiF_Customer, v1.3 are sent to the backend RepairIt, v1.0.

You can also create a chain of rerouted calls to a backend. For example, a call to
backend_A can be rerouted to backend_B. A second routing policy could redirect any calls
to backend_B to backend_C. This would result in a call to backend_A being redirected to
backend_C.

Packaging a Rerouted Backend

If you are exporting or importing a backend that is being rerouted, the Dependencies
page includes a "Redirect to" statement that specifies the immediate target backend.
Using the previous example, if a rerouting chain exists, and backend_A is being
exported, the Dependencies page indicates a reroute to backend_B. Also, the
policies.properties file lists only the routing policy for the backend in the package
(backend_A).

Conditions for Rerouting a Backend

The following conditions apply whenever you reroute a backend:

• The original backend can be in an inactive state and be rerouted.

• If the app calls the original backend, notifications are sent and devices are
registered using the client credentials associated with the original backend.
However, if the app calls the target backend directly, then the clients from the
target backend are used to send the notifications and register devices.

• If Social Identity is used to access an API and its associated backend is rerouted,
the social authentication provider of the target backend should be selected and the
access token from that provider should be entered in the Authentication section of
the API Test page.

• If the original backend is exported, the target backend is not considered to be a
dependency of the original.

• Generally, if either the original or target backend is included in an export or import
package, the routing policy should be set when the export package is created or
when the contents of the package are imported.

• When a backend is rerouted, the system log records the event. You can see which
backends are being redirected from the log messages.

Versioning
Each time you create an artifact, it’s assigned a version value of 1.0. As long as the
artifact is in a Draft state, you can edit it, update its version, or create a new version (a
major or minor incremental increase). As you develop your artifact, you can change
the version's major and minor values (Major.minor).

When the major version number increments from 3.5 to 4.0 or even 6.0, it indicates
that a significant change has been made to the current instance of the artifact, which
likely affects its relationship to related artifacts. For example, changing the Web
Services Description Language (WSDL) file of a SOAP Connector API would
necessitate creating a new custom API implementation for it. A major change to a
backend would also necessitate upgrading any mobile apps that use it.

After you create an artifact and it’s still in a Draft state, you can change the version
number with the Update Version Number command available from the landing page
for your artifact type. For example, to update the version number for a backend, you

Chapter 4
Versioning

4-5

can go to the Backends page and select your backend, select More > Update Version
and change the version number.

App Profile Versions

An app profile represents a specific version of a mobile app binary and the version
number you assign to the app profile should correspond to the mobile app binary that it
represents. When you create an app profile, you enter the version in the same format
as the app binary. For example, if the app has a version of 3.1.2.3, the version you
enter for the app profile is 3.1.2.3. No default version is applied to a new app profile.

While the app profile is in Draft state, you can update the version. For instance if the
app version changes, you can change the version by opening the app profile and
editing the Version field. After the app profile is published, you can create a new
version through the More > New Version command on the App Profiles page.

Deleting an Artifact
Deleting an artifact permanently takes two steps. When you have an artifact that you
don't need anymore, you can move it to the trash where it's kept until you're sure you
want to delete. To delete an artifact permanently, you purge the artifact from the trash.

You can move an artifact that’s in Draft or Published state to the trash. Depending on
whether or not it’s needed later, you can restore it or purge it.

Almost any artifact can be moved to the trash. For details on the conditions for
removing artifacts, see Moving an Artifact to the Trash.

When you restore an artifact, it retains the same state it had when it was moved to the
trash. For details on restoration, see Restoring an Artifact.

Purging is a permanent deletion and is available only from the Administration view. For
details on how to permanently delete an artifact, see Purging an Artifact.

Moving an Artifact to the Trash
Putting an artifact in the trash is considered a temporary deletion, the artifact is
removed from the main view and is inaccessible to other artifacts. You can move an
artifact that’s in Draft or Published state to the trash. Depending on whether or not it’s
needed later, you can restore it or purge it.

You can’t use artifacts that are in the trash because they can’t be accessed, called, or
executed. If you change your mind later or find you do need an artifact in the trash,
you can restore it depending on the deletion policies.

The Asset_AllowTrash and Asset_AllowUntrash policies control the ability to move an
artifact to the trash or restore it. You can set these policies to one of the following
values:

• All

• None

• Draft

• Published

For details on setting policies, see Policies.

Chapter 4
Deleting an Artifact

4-6

While it’s in the trash, an artifact in Draft state can’t be published, and any
dependencies of that artifact can’t be published regardless of whether or not those
dependencies are in the trash. If you restore it, an artifact in Draft state can then be
published.

Note:

When an artifact is removed, its associated policies are removed along with
the artifact and its dependencies. If the artifact is restored, the policies are
also restored.

Upstream and Downstream Dependencies

You can move an artifact that's in Draft or Published state to the trash, but there are
some conditions based on whether dependencies are involved. An artifact that’s called
by another artifact has an upstream dependency. An artifact that calls another artifact
has a downstream dependency. If an artifact has dependencies that are active (not in
the trash), you need to resolve the relationships to those dependencies before you can
move the artifact to the trash.

For example, say you created an API called MyAPI. The backend that calls it, MyBackend,
is the upstream dependency ofMyAPI. The API calls its implementation, MyAPIImpl, is
the downstream dependency of MyAPI.

Below are the common dependency scenarios that affect whether or not you can move
an artifact to the trash, and whether or not dependencies of that artifact are also
moved to the trash:

Case 1, Artifact is a dependency of a published artifact: If the artifact you want to
remove is a dependency of a published artifact, you can't move the artifact in question
to the trash because it would break its relationship with the published artifact. If you
need to move the artifact to the trash, you must break the relationship between the
artifacts first. For example, you want to move MyAPI to the trash but you can’t because

Chapter 4
Deleting an Artifact

4-7

it’s a dependency of MyBackend, which is published. You have to break the relationship
by moving MyBackend to the trash first, then moving MyAPI to the trash. If you need
MyBackend, you can create a new version of it before moving the previous version to the
trash.

Case 2, Artifact has tightly-coupled dependencies: If the artifact you want to
remove has tightly coupled dependencies, moving it to the trash will remove the
artifact with its dependencies. For example, if you need to remove an API that’s
associated with a real implementation or a connector API and its implementation,
moving the API to the trash will also remove the implementation. (If the API is
associated with a mock implementation, the relationship is broken and only the API is
moved to the trash.)

Case 3, Artifact has dependencies: If the artifact that you want to move to the trash
has dependencies that aren’t tightly coupled, you must disassociate the artifact from
its dependencies before you can move it to the trash. Only first-level upstream and
downstream dependencies are considered. If there are any second-level
dependencies (for example, the API’s implementation calls a connector), you’ll have to
be aware of those relationships and resolve them prior to moving the artifact to the
trash.

If the artifact has a dependency on a role, the artifact can be moved to the trash but
not the role. Rule of thumb: Roles can’t be trashed.

The following table lists the dependencies involved in a move to the trash. For each
artifact type, it lists 1) the dependencies that are moved to the trash with the artifact, 2)
the possible dependencies that may be associated with the artifact but are not moved
to the trash with the artifact, 3) and any published upstream dependencies that would
prevent a move to the trash.

Table 4-1 Dependencies Involved in a Move to the Trash

Artifact Dependencies
Moved to the Trash

Dependencies Not
Moved to the Trash

Published Upstream
Dependency That
Prevents a Move to
the Trash

Client None Backend

App Profile

None

Backend None APIs

Collections

Client

API API Implementation

Note: mock
implementations can’t
be moved to Trash.

Backend

API implementations
that invoke the API

Roles – Any role
associated with the
API is revoked. Roles
can’t be moved to
Trash.

Backend

API Implementation None API that is
implemented

APIs that are called by
the implementation

API that lists the
implementation as
active

Chapter 4
Deleting an Artifact

4-8

Table 4-1 (Cont.) Dependencies Involved in a Move to the Trash

Artifact Dependencies
Moved to the Trash

Dependencies Not
Moved to the Trash

Published Upstream
Dependency That
Prevents a Move to
the Trash

Collection None Backend

Roles – Any role
associated with the
collection is revoked.
Roles can’t be moved
to Trash.

Backend

Connector None Backend

API implementations
that call the connector.

None

Restoring an Artifact
You might find that you need an artifact that’s been moved to the trash. Restored
artifacts retain the same state they had when they were moved to the trash. That is, an
artifact in Draft state that was moved to the trash will still be in Draft state when
restored.

As with moving an artifact to the trash, restoring an artifact has some considerations:

• If the artifact has no naming or version conflict, you can restore it by simply

clicking the Trash () and selecting Restore from Trash from the Trash drawer

() and confirming the restoration action.

• If duplicate artifacts exist (that is, artifacts with the same name and version) and
one of these artifacts is in the trash, you can’t restore the artifact. You must
resolve the conflict first in one of the following ways and then restore the artifact:

– Move the active artifact to the trash and restore the one already in the trash.

– Change the version of the active artifact and then restore the one in the trash.

The following table lists the types of artifacts that can be restored and which
dependencies are restored from the trash with each type of artifact. The last column
lists the possible upstream and downstream dependencies of the artifact that are not
in the trash and that could be affected by the restoration. These items are displayed in
the Restore dialog as information only.

Chapter 4
Deleting an Artifact

4-9

Artifact Dependencies Restored
With Artifact

Possible Artifact
Dependencies Not in the
Trash

Client None Backend

Backend None APIs

Collections

API Role Backend

API Implementation (non-
mock)

API implementation that calls
the API

API Implementation None API that is implemented

Collection Role Backend

Connector None Backend

Detailed instructions for restoring an artifact in the trash are included for each artifact
type in the chapters that follow.

Restoring an Artifact from Administration
You can restore an artifact from the Trash menu as described above, or you can
restore deleted artifacts from the Administration view.

1. Click and select Settings from the side menu.

2. Click Deleted Artifacts.

3. Filter the list by selecting the type of artifacts you want to see. The default value is
All Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the person who moved the artifact to the trash.

Chapter 4
Deleting an Artifact

4-10

4. Click the checkbox for each artifact you want to restore and click Restore.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can restore only the selected
artifacts on the current page. If you want to restore artifacts listed across multiple
pages, you’ll have to restore the artifacts on the current page and then go to the
next page.

Purging an Artifact
So how do you permanently delete an artifact? You must be a mobile cloud
administrator and you purge it via the Deleted Artifacts tab from the Administration
view. When an artifact is purged, it no longer appears in the list of trashed items and
can’t be restored.

Just as dependencies can affect restoring an artifact, they affect purging an artifact
from the trash. If the artifact you want to purge has downstream dependencies, those
dependencies are deleted along with the artifact. For example, when you purge an API
in the trash, its implementation is deleted as well.

If the artifact is a downstream dependency of another artifact, you need to resolve the
dependency with the other artifact before you can purge it.

The following table shows you which dependencies will be purged with a each type of
artifact.

Artifact Type Dependencies Purged with
the Artifact

Dependencies Not Purged
with the Artifact

Backend None APIs

Collections

API API implementations

Roles

Backends

Mock API Implementations

API Implementation None API implemented by the
implementation

Connector None Backends

Collection Roles Backends

API implementations that call
the connector

Purging Artifacts from Administration
To permanently remove an artifact, you need to purge it from the trash. You can only
purge artifacts from the Administration view.

1. Click and select Settings from the side menu.

2. Click Deleted Artifacts.

By default, the list shows all artifacts in the trash. Artifacts are displayed in a
descending order of when items were moved to the trash. You can change the
display to list artifacts in alphabetical order of the person who moved the artifacts
to the trash or by comments.

Chapter 4
Deleting an Artifact

4-11

3. Filter the list by selecting the type of artifacts you want to see. The default value is
All Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the team member who moved the artifact to the trash.

You can also sort the order of the items in the trash by artifact, type, time the item
was moved to the trash, or by the person who moved the item to the trash.

4. Click the checkbox of each artifact that you want to purge and click Purge.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can purge only the selected
artifacts on the current page. If you want to purge artifacts listed across multiple
pages, purge the artifacts on the current page and then go to the next page.

Artifact Lifecycles
Clients, backends, APIs, and other artifacts in OMCe each have an independent
lifecycle.

In most respects, how an artifact is managed after it’s created is the same regardless
of whether it’s a client, backend, collection, connector API, or a custom API. You‘ve
learned how to create an artifact, then modify it, and test it. Now that you have a viable
artifact, it’s time to publish it, perhaps create new versions or update existing versions
and eventually deploy it to another environment for others to test and use.

There are some key details unique to different types of artifacts. The following
chapters show you how to take each type of artifact through its lifecycle phases:

• Client and App Profile Lifecycle

• Backend Lifecycle

• API Lifecycle

• API Implementation Lifecycle

Chapter 4
Artifact Lifecycles

4-12

• Connector Lifecycle

• Collection Lifecycle

Chapter 4
Artifact Lifecycles

4-13

5
Client and App Profile Lifecycle

If your mobile app uses push notifications or you want to use analytics to examine and
improve your app, you need a client. You associate the client, which represents a
backend binary, with a backend. Use profiles to store notification credentials that can
be shared between your clients. Clients go through similar lifecycle phases as other
artifacts with a few differences, detailed in this chapter.

OMCe can help you manage client lifecycle. You can publish and export a client. You
can modify its version number and move it to the trash when you don’t need it
anymore. Clients are top-level artifacts and their relationships with backends can affect
how both types of artifacts are exported, imported, and moved to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle,
see Understanding Lifecycles.

Publishing a Client
When you’re satisfied with a client configuration, you can publish it, but only if it’s
associated with a backend.

1. Click and select Mobile Apps > App Profiles from the side menu.

2. Select the client that you want to publish.

3. Click Publish.

Dependencies are checked. If the associated backend is in Draft state, the
confirmation dialog lists it and informs you that it will be published with the client. If
the backend is already published, no dependencies are shown.
If the backend has downstream dependencies in Draft state, those dependencies
will also be published. For example, MyAppProfile 1.1 references MyMobileBackend
1.0. MyMobileBackend has dependencies on published MyAPI2.2 and unpublished
MyAPI2.4. When you publish MyAppProfile 1.1, the confirmation dialog only lists
MyMobileBackend1.0 as a dependency but MyAPI2.4 is also published.

4. Click Publish All.

If the backend is in the trash, you won't be able to publish the client. Cancel the
publish operation, and either restore the backend or associate the client with a
different backend. Then try publishing again.

Usually, once an artifact is published it can't be changed. In the case of clients, you
can add or remove the associated app profiles even if a client is published.

Updating the Version Number of a Client
When you create a client, you assign it a version number that is usually the version of
the mobile app that the client represents. You can update its version number at any
time if the client is in a Draft state. This is useful if a change to the binary was made
and you need a new version designation.

5-1

1. Click and select Mobile Apps > App Profiles from the side menu.

2. Open the client that you want to update from the list.

3. On the Settings page, change the value in the Mobile App Version field.

You'll get a message letting you know if you enter a duplicate version number.

Creating a New Version of a Client
You can create a new version of a client regardless of whether it's in a Draft or
Published state. When you create a new version of a client, you’re basically cloning
the client configuration. You can then make changes to the new version. For example,
although a client can be associated with only one instance of a backend, that backend
can reference multiple clients. You could create new versions of a client, where each
version corresponds to a specific platform of a mobile app (iOS, Android, and
Windows), and then edit each client to reference the same backend.
Another reason for creating new versions is to create multiple clients for the same
platform if there are multiple mobile app binaries for the same platform that use the
same backend.

Note:

Unlike other artifacts, which require that the version number use the
Major.minor format, the version number for a client should be the same as
the mobile app binary that’s set by the app store. Depending on the version
of the mobile app binary, the version could take the format of Major.minor or
include an alphanumeric suffix with or without parentheses, a hyphen, space,
or full stop. For example:

• 1.2

• 1.2 build 3452

• 1.2 (3452)

• 1.2–3452

• 1.2.3 (01–Jun-2016)

1. Click and select Mobile Apps > App Profiles from the side menu.

2. Select the client and then select More > New Version.

3. Enter a version number in the Mobile App Version field. (The same as the mobile
app binary set by the app store.)

4. Click Save.

The new version is created in a Draft state.

Moving a Client to the Trash
Remove a draft or published client by moving it to the trash. If it’s needed later on, you
can restore it from the trash.

Chapter 5
Creating a New Version of a Client

5-2

Note:

Moving a client to the trash does not move the associated backend or any
profiles referenced by the client to the trash.

1. Click and select Mobile Apps > App Profiles from the side menu.

2. Select the client, then select More > Move to Trash.

3. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see Moving
an Artifact to the Trash.

Restoring a Client
1. Click and select Mobile Apps > App Profiles from the side menu.

2. Click Trash ().

3. In the list of items in the trash, select the client and select Restore from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate exists. To find out more about
restoring an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing Your Clients and App Profiles
When at least one client or app profile exists, you'll be taken to the Clients page every

time you click and select Mobile Apps > App Profiles from the side menu. On the
left side of the page, you see a list of all the clients, their version numbers, and their
Draft or Published state (clients in the trash aren't displayed).

On the Clients page, you can open, test, publish, and view see the dependencies and
history for your clients:

• Click Open to see details about the selected client.

Chapter 5
Restoring a Client

5-3

• Click Publish to change the state of the client.

• Click More to create a new version, export the client to another instance, or move
the client to the trash.

• Click Trash () to see which clients are in the trash.

• Expand Keys to obtain the values for the client ID and the application key.

• Expand Notifications to see which push notifications, if any, are enabled for this
app profile.

On the lower right side of the page, you can view data about the selected client:

• Expand Dependencies to see the backend and app profile that this client
references.

Note:

If the backend has downstream dependencies, go to Mobile Apps >
Backends and view them from the Dependencies section of the selected
backend.

• Expand History to quickly see the latest activity for the client.

Click the Profiles tab to view available app profiles and create new app profiles for
your clients.

Chapter 5
Managing Your Clients and App Profiles

5-4

6
Backend Lifecycle

You created a backend and now it's time to use it. Remember that after you publish it,
it becomes immutable, that is, you can't modify it.

If you want to make a change to a published backend, you create a new version of it.
Because backends are tightly integrated with custom code, APIs, and other objects in
OMCe, you'll need to consider the relationships and dependencies on those objects.

If you want a general introduction to how artifacts interrelate in the overall lifecycle
before exploring the lifecycle of backends, see Understanding Lifecycles.

Backend Lifecycle States
Relationships with other artifacts create dependencies. For example, your backend
might depend on other artifacts, such as collections or APIs. When any artifact
changes state, all dependent artifacts must also change states. OMCe keeps track of
any dependencies for you.

Backends have the following activation states that determine whether they can be
updated, deleted, or whether or not a new version can be created:

• Active: Denotes the version of the backend is valid and active.

• Quiesce: Denotes the version of the backend has become quiet, that is, it no
longer supports new requests, and after all currently running requests are
completed, it’s changed to Inactive. This is a transitional state.

• Inactive: Denotes the version of the backend that’s present but not in an active
state (that is, not usable).

If a user tries to access an API through an inactive backend, a 404 code is
returned.

• Deleted: Denotes the version of the backend that’s been moved to the trash and
susceptible to a hard delete (actually removed from the repository).

Note:

Only mobile cloud administrators can purge (that is, permanently delete)
an item in the trash.

Publishing a Backend
Follow these steps to publish a backend. When a backend is published, all
dependencies that aren’t yet published must also be published.

1. Click and select Mobile Apps > Backends from the side menu.

2. Select the backend that you want to publish.

6-1

3. Click Publish.

The Confirm Publish dialog opens:

4. In the Confirm Publish Backend dialog, click Check Dependencies to reveal
whether or not the backend has dependencies and what those dependencies are
so you'll know how to proceed:

• If you don't have dependencies, a confirmation dialog is displayed. Click
Publish.

• If any dependencies are found in the trash, they’re listed. Cancel the publish
operation, restore the dependent items from the trash, and restart the process.

• If there are dependencies in the Draft state, they’re listed in the confirmation
dialog. You have the option to publish all the dependent artifacts along with
your mobile backend. Click Publish All.

Updating the Version Number of a Backend
If you created a new version of a backend using the New Version dialog, you can
update its version number if it’s still in a Draft state. This is useful if you need to
designate a different version number for it before you publish it or you’ve made a
change to the configuration and you need a new version designation.

1. Click and select Mobile Apps > Backends from the side menu.

2. Select the backend you want to update from the list.

3. In the right section, select More > Update Version Number.

4. Enter a version number of the format Major.minor.

The previous version of the backend is displayed next to the field. You'll get a
message letting you know if you've entered an existing version number.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of backends.

Chapter 6
Updating the Version Number of a Backend

6-2

Creating a New Version of a Backend
When you create a new backend, the version is automatically set to 1.0. As long as
the backend is in a Draft state, you can change any aspect of it. As you develop your
backend, you can change the version's major and minor version values as you see fit.

You can use a published backend as a root for a new version.

1. Click and select Mobile Apps > Backends from the side menu.

2. Select the published backend.

3. In the right section, select More > New Version.

The new version is created in a Draft state.

Note:

If the backend is associated with an API, you can’t associate another version
of that API with the backend, regardless of whether the backend is in a Draft
or Published state. You must create a new version of the backend and
associate it with the other API version.

Moving a Backend to the Trash
Remove a backend in a by moving it to the trash. A backend in the trash is no longer
listed but it’s still viable, that is, it could continue to serve requests. If the backend is
needed later on, you can restore it from the trash.

Note:

If a backend is referenced by a client, you can’t move that backend to the
trash. If the backend is in Draft state, you can disassociate it from the client
by opening the backend, selecting Clients in the navbar and clicking Delete
(X) for that client. Then you can move the backend to the trash.

An alternative to removing a backend is to deactivate it, in which case it no longer
services requests. See Deactivating a Mobile Backend for information.

1. Click and select Mobile Apps > Backends from the side menu.

2. Select the backend.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Chapter 6
Creating a New Version of a Backend

6-3

To find out how dependencies can affect moving an artifact to the trash, see Moving
an Artifact to the Trash. To restore a backend that’s in the trash, see Restoring a
Backend.

If you move a backend to the trash that has been redirected to another backend, the
redirection still occurs.

Deactivating a Backend
If you want to stop access to a backend without deleting it, you can do so by
deactivating it. A deactivated backend can’t service any more requests. Deactivation is
most common for backends in a Published state that have been replaced by newer
versions and are no longer needed.

1. Click and select Mobile Apps > Backends from the side menu.

2. Select your backend and click More > Manage Activation .

3. In the dialog that appears, select Inactive from the drop-down list to deactivate the
backend, or Active to reactivate an inactive backend.

4. Click Save.

If you deactivate a backend that has been redirected to another backend, the
redirection still occurs.

Restoring a Backend

1. Click and select Mobile Apps > Backends from the side menu.

2. Click Trash ().

3. In the list of items in the trash, click by the backend you want and select
Restore from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate exists. To find out more about
restoring an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Backend
When at least one backend exists, you’ll be taken to the Backends page every time

you click and select Mobile Apps > Backends from the side menu. On the left
side of the page, you see a list of all the backends, their version numbers, and their
Draft or Published state (mobile backends in Trash aren’t displayed).

On the upper right side of the Backends page, you can open, test, publish, see runtime
data about your backend, and get authentication and application key values:

Chapter 6
Deactivating a Backend

6-4

• Click Trash to see which backends are in the trash.

• Click Open to see details about the selected backend.

• Click Publish to change the state of the backend from Draft to Published.

• Click More to create a new version, update an existing version, change the
activation state, or move the backend to the trash.

• Look in the Metrics section to see the number of calls to the API associated with
the backend and the average response time.

• Expand Keys to obtain the values for the backend ID, anonymous key (click
Show), and the application key for the associated client. Click Manage to
configure the associated clients or create a new client.

On the lower right side of the page, you view data about the selected backend:

• Expand Dependencies to see the artifacts the mobile backend is dependent on.

• Expand Used By to see any associated artifacts that aren’t dependencies.

• Expand History to quickly see the latest activity for the selected backend.

Chapter 6
Managing a Backend

6-5

7
API Lifecycle

The lifecycle stages of custom APIs and API implementations are similar. Both
artifacts go through a design-time phase where each is created, tested, edited, and
then published.

When you create a new custom API, its version is automatically set to 1.0 and it’s
considered to be in a Draft state. You can test and edit your draft API as often as
needed. As you develop your API, you can change the version's major and minor
values as you see fit, that is, creating a new version of your API or updating an
existing version.

After you've implemented and tested your API, and you’re satisfied with your API
configuration, you can publish it with the understanding that a published API can’t be
changed. To make a change to a published API, create a new version of the API. APIs
are implemented with custom code. For custom APIs, you'll also need to create a new
implementation for the new version.

You can export a draft or published API for use in other instances. Eventually, the API
may become obsolete, and you can move it to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle
before exploring the lifecycle of APIs, see Understanding Lifecycles.

Custom APIs and API Implementations
OMCe tracks a custom API as it's created, saved, published, implemented,
deactivated, and reactivated. Custom APIs can be published independently or when a
related backend is published.

Scope and Version Format

Both custom APIs and API implementations have versions that use the format
Major.minor.

Active Versions

Though there can be multiple active versions of an API implementation, a single
implementation is mapped to a specific API version.

Draft and Published States

Both custom APIs and API implementation can have a Draft state or a Published state.

• A custom API can be published independently or published when a related
backend is published.

• An API implementation can be published independently.

7-1

Actions Tracked by OMCe

The following operations are tracked for custom APIs: Create, Update, Publish, and
Move to Trash.

The following operations are tracked for API implementations: Create and Save.

Backend References

A backend can reference multiple APIs, but a backend can only reference one version
of a specific API. For example, a backend can reference both myAPI1.1 and yourAPI2.0,
but it can’t reference both myAPI1.1 and myAPI2.0.

API implementations aren’t referenced directly by a backend. The implementation is
referenced by the API, which is in turn referenced by the backend.

Dependencies

A custom API is dependent on its active API implementation (as determined by the
policy). In other words, an API implementation is a dependency of any APIs that list it
as the active or default implementation.

An API implementation is dependent on the API that it implements and any other APIs
called by the custom code (as listed in the file manifest).

Backends are also dependencies of associated custom APIs.

Policy Attributes

A custom API is affected by the API version to implementation policy mapping and the
default API version setting.

An API implementation is affected by the number of node instances per virtual
machine and standard runtime policies such as read-only, log-levels, etc.

For detailed descriptions of policies and their values, see Oracle Mobile Cloud
Enterprise Policies.

Publishing a Custom API
As soon as an API is published, it can’t be changed. You can create a new version of
it, but you cannot edit it.

Note:

You must have an implementation associated with the API to publish it. A
mock implementation is provided by default. To associate an implementation
other than the mock implementation, open the API, and click
Implementations in the left navigation bar. Select the implementation you
want and click Set as Default.

1. Click and select Applications > APIs from the side menu.

2. Select the draft API that you want to publish.

Chapter 7
Publishing a Custom API

7-2

3. Click Publish.

You can enter a justification for publishing in the Comment field.

When the API is published, you’re returned to the APIs page where you can see the
updated status of your API.

Note:

Custom APIs can be published independently of implementations. When you
publish an API, the implementation isn’t published automatically. To
understand the relationship between custom APIs and their implementations,
see Custom APIs and API Implementations.

Updating the Version Number of an API
If you created a new version of an API using the New Version dialog, you can update
the version number of the API if it’s still in a Draft state. This is particularly useful if you
need to designate a different version number for it before you publish the API.

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the API you want.

3. Select More > Update Version Number.

4. Enter a version number of the format Major.minor.

The previous version of the API is displayed next to the field. You'll get a message
letting you know if you enter an existing version number.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of APIs.

Creating a New Version of an API
You can make a new version of a custom API regardless of whether it’s in a Draft or
Published state. When you create a new version of a custom API, you are basically
cloning the API configuration and making changes to it alone. You can specify the
implementation to associate with the new version of the API. You can upgrade your
custom API easily by creating a new version of it:

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the API.

You can create a new version of a custom API whether it’s in a Draft or Published
state.

3. In the right section, select More > New Version.

OMCe checks for any dependencies on other APIs and for an associated
implementation.

Chapter 7
Updating the Version Number of an API

7-3

4. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Create.

A confirmation message is displayed. A draft of the new version is created and is
visible in the API Catalog.

Moving a Custom API to the Trash
Remove a custom API by moving it to the trash. If the API is needed later, you can
restore it from the trash.

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the custom API you want to remove.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see Moving
an API Implementation to the Trash.

Restoring a Custom API
1. Click and select Mobile Apps > APIs from the side menu.

2. Click Trash ().

3. Make sure APIs is selected in the trash drawer.

4. In the list of items in the trash, click by the API you want and select Restore
from Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

When you restore an API, its implementations are not restored with it. You’ll have to
manually restore the implementations you want and designate an implementation as
the default. Open the restored API, click Implementations from the navbar, and set
an implementation as the default.
Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing an API
After you create a custom API, you’ll want to edit it, publish it, see what
implementations are associated with it, in short, you want to be able to manage the
API and examine details of the APIs created by other service developers. The APIs
page gives you access to all these features.

Chapter 7
Moving a Custom API to the Trash

7-4

When at least one custom API exists, you’ll be taken to the APIs page every time you

click and select Mobile Apps > APIs from the side menu. On the left side of the
page, you’ll see a list of all the custom APIs except for those in the trash. You can see
which APIs are in the Draft state and which are in the Published state. Every API is
listed by its name and version number.

The right side of the page is where you can open, test, publish, and examine data
about your custom API.

On the upper right side of the APIs page, you can perform the following actions:

• Click Open to view details and settings for the selected custom API.

• Click More to create a new version, update an existing version, or move an API to
the trash.

• Expand Implementations to see what implementations are available, along with
their version numbers and whether they are in a Draft or Published state. Click
Manage to go directly to the Implementations page.

On the lower right side of the page, you view data about the selected API:

• Expand Used By to see the list of the backends that call on the API.

Click All Usages to see the complete list.

• Expand the History section to quickly see the latest activity for the selected
custom API.

Chapter 7
Managing an API

7-5

8
API Implementation Lifecycle

After you have an API implementation in a Draft state that’s configured and tested,
you’re ready to publish it. API implementations go through the same lifecycle phases
as APIs, in addition to being published, new versions can be created, existing versions
can be updated, and obsolete implementations can be moved to the trash.

Remember that after an API implementation is published, it can’t be changed. If you’re
still configuring and testing the implementation, keep it in a Draft state until it’s ready
for the next phase of the lifecycle.

If you want a general introduction to how artifacts interrelate in the overall lifecycle
before exploring the lifecycle of API implementations, see Understanding Lifecycles.

Publishing an API Implementation
You can publish an implementation that contains real, non-mock data from the API
Implementation page. Implementations can be published independently of APIs and
can have separate versions as well. This lets you make changes to a published
implementation, such as minor modifications or bug fixes, without requiring the API
itself to be updated.

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the API associated with the implementation that you want to publish.

3. Expand Implementations in the right section and click Manage.

The API Implementation page is displayed:

You can see the list of dependencies by expanding the Dependencies section of
the API Implementation page. The API associated with the implementation and
any other APIs or connectors that the implementation calls are listed. You can see
which dependency is in a Draft state, a Published state, or is unresolved.

8-1

4. Select the implementation and click Publish.

A dependency search is performed. If unresolved dependencies are found, the
implementation can’t be published. Resolve the issue and try publishing the
implementation again.

If any API dependencies are declared through the Oracle-Mobile-API-Version
header instead of through the package.json file, the API Designer isn’t aware of
dependencies declared through the header and won’t prompt you with information
when you publish the calling API. In this case, you must remember to publish the
dependent API yourself.

5. If unpublished dependencies are found, click Publish All to publish all the listed
unpublished artifacts.

If you don’t want to publish all the dependencies with your implementation, click X
to cancel the operation. You can either publish the dependencies individually or
edit your implementation to remove them.

Creating a New Version or Updating the Version of an API
Implementation

Implementations can be published independently of APIs and can have separate
versions as well. This lets you make changes to a published implementation, such as
minor modifications or bug fixes, without requiring the API itself to be updated. You
can create a new version of an API Implementation that is in a Draft or Published
state. If you want to make changes to a published implementation, you must create a
new version of it.

If you have previously uploaded an implementation with a given version specified and
that implementation is still in a Draft state, you can replace that version without
incrementing the version number. This might be desirable if you’ve uploaded the
implementation and find, after testing the implementation, that there are further
changes that you need to make before you can publish the changes. After you’ve
published a version, that version is final.

You can also update the version number of an implementation in a Draft state. The
process for both is the same. You set the version attribute in the implementation’s
package.json file.

1. Open the package.json file and change the version attribute. For example,
change “version”:”1.0” to “version”:”1.1”.

2. Upload a zip file of the modified implementation to the associated API version.

Some key points to know about implementation versions are:

Chapter 8
Creating a New Version or Updating the Version of an API Implementation

8-2

• Implementation versions are maintained independently of API versions. When you
publish an API, the implementation isn’t published automatically.

• When you upload a new version of an implementation, it becomes the default
version (active implementation) for that API. You can change the default version in
the API’s Implementations page.

• The custom API’s Routing_BindApiToImpl policy defines the association between
an API version and the implementation version.

Moving an API Implementation to the Trash
Remove an API implementation by moving it to the trash. If the implementation is
needed later, you can restore it from the trash.

1. Click and select Mobile Apps > APIs from the side menu.

2. Select the API associated with the implementation.

3. Click Implementations in the API navigation bar.

4. Select the draft API implementation to remove.

5. Click Move to Trash.

Only real implementations (not mock implementations) can be moved to the trash.
If you’re moving the current default implementation to the trash, the next most
recent version of the implementation is automatically set to the default. If no other
implementations exist, the mock implementation is made the default.

6. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see Moving
an Artifact to the Trash. To restore an API implementation that’s in the trash, see
Restoring an API Implementation.

Restoring an API Implementation
1. Click and select Mobile Apps > APIs from the side menu.

2. Select the API associated with the implementation.

3. Click Trash ().

4. Select Implementations in the trash drawer.

5. In the list of items in the trash, click by the implementation you want and select
Restore from Trash.

6. Click Restore in the confirmation dialog if there are no conflicts.

If you’re restoring an implementation that was used by an API, the implementation
won’t be restored as the default (active) implementation for the API. You’ll have to
reset the implementation as the default from the Implementations page (select the API
and click Implementations in the navbar).
Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Chapter 8
Moving an API Implementation to the Trash

8-3

9
Connector Lifecycle

The lifecycle stages of all connectors are the same. Each type of connector goes
through a design-time phase where each is created, tested, edited, and then
published.

For all connectors, there are the creation phase, the testing and editing phase, and the
publishing phase. When you create a new connector, its version is automatically set to
1.0 and it’s considered to be in a Draft state. In the Draft phase, you can test and edit
your API as often as needed. When you’re satisfied with your connector configuration,
publish it with the understanding that a published connector can’t be changed.

As you develop your connector, you can change the version's major and minor values
as you see fit, that is, creating a new version of your API or updating an existing
version. After you've implemented and tested your connector, you can publish it.
Eventually, a connector may become obsolete, and you can move it to the trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle
before exploring the lifecycle of connectors, see Understanding Lifecycles.

Publishing a Connector
Before you can use a connector, you need to publish it:

1. Click and select Mobile Apps > Connectors .

2. Select the draft connector that you want to publish.

3. Click Publish.

(Optional) You can enter a justification for publishing the connector in the
Comment field.

When the connector API is published, you’re returned to the Connectors page where
you can see the updated status of your connector.

Updating the Version Number of a Connector
If you created a new version of a connector using the New Version dialog, you can
update the version number of the connector if it’s still in a Draft state. This is
particularly useful if you want to create an alternate version of the current connector or
need to designate a different version number before you publish the connector.

1. Click and select Mobile Apps > Connectors from the side menu.

2. Select the connector from the list.

3. In the right section, select More > Update Version Number.

4. Enter a version number of the format Major.minor.

9-1

The previous version of the connector is displayed next to the field. You'll get a
message letting you know if you've entered an existing version number.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of connectors.

Creating a New Version of a Connector
You can make a new version of a connector regardless of whether it’s in a Draft or
Published state. When you create a new version of a connector, you’re basically
cloning the connector configuration and making changes to it. You can make minor
changes or expand upon already defined functionality. A major update can result in a
disruption of mobile services to your customers due to invalid values being requested
or returned, an inability to read the same file formats as the previous version, and so
on.

1. Click and select Mobile Apps > Connectors from the side menu.

2. Select a connector from the list.

You can create a new version of a connector whether it is in a Draft or Published
state

3. In the right panel, select More > New Version.

4. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

5. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

6. Click Create.

A confirmation message is displayed. A draft of the new version is added to the
Connector page.

Moving a Connector to the Trash
Remove a connector by moving it to the trash. If the connector is needed later, you
can restore it from the trash.

1. Click and select Mobile Apps > Connectors from the side menu.

2. Select the connector.

3. In the right section, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see Moving
an Artifact to the Trash.

Chapter 9
Creating a New Version of a Connector

9-2

To restore a connector that’s in the trash, see Restoring a Connector.

Restoring a Connector
1. Click and select Mobile Apps > Connectors from the side menu.

2. Click Trash ().

3. In the list of items in Trash, click by the connector you want and select Restore
from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Connector
After you create a connector, you’ll want to edit it, publish it, see what artifacts are
associated with it, in short, you want to be able to manage the connector and examine
details of the connectors created by other service developers. The Connectors page
gives you access to all these features.

When at least one connector exists, you’ll be taken to the Connectors page every time

you click and select Mobile Apps > Connectors from the side menu. On the left
side of the page, you see a list of all the connectors except for those in the trash. You
can see which connectors are in the Draft or Published state. Every connector is listed
by its name and version number.

The right side of the Connectors page is where you can open, test, publish, or
examine data about the connector:

On the right side of the page, you can perform the following actions:

• Click Open to see details about the selected connector.

• Click More to create a new version, update an existing version, or move an
connector to the trash.

• Expand Used By to see the list of the implementations that call on the connector.

• Expand History to quickly see the latest activity for the connector.

Chapter 9
Restoring a Connector

9-3

10
Collection Lifecycle

The collection lifecycle involves moving from the Draft state to the Published state.

After you publish a collection, it can’t be modified. While you can publish a collection
and also create a new version of a collection, you can also remove a collection as
described in Moving a Collection to the Trash.

If you want a general introduction to how artifacts interrelate in the overall lifecycle
before exploring the lifecycle of collections, see Understanding Lifecycles.

Publishing a Collection
You create a collection within the context of a backend. When you’re satisfied with that
collection, you can publish it.

1. Click and select Mobile Apps > Storage from the side menu.

2. Select the collection you want to publish.

3. In the Details section on the right, click Publish.

Note:

You can publish a draft collection whenever you feel that it’s complete. After
it's published, however, it can't be changed.

A collection can also be published involuntarily when a backend associated with a
collection is published. If the associated collection isn’t yet published, it will be
published automatically to support the backend.

When a collection is published:

• Its metadata (its description and access roles) are frozen. To update the
collections metadata, you must create a new version.

• The major version (given the version that you arbitrarily defined) is incremented.

• It’s no longer in your personal development space. It’s available for anyone with
the proper permissions to associate with a backend.

• Instance data isn’t moved with the collection.

Note:

Instance data (such as actual user objects or actual collection objects
stored in collections) is typically created at runtime, or by user scripts or
code as part of a configuration. It isn't moved with the collection.

10-1

Updating the Version Number of a Collection
When you update a version, the new number is backward-compatible and the
collection history continues.

1. Click and select Mobile Apps > Storage from the side menu.

2. Select a collection.

3. In the Details section, select More > Update Version Number.

4. Specify an optional comment and click Update.

The collection history reflects the incremented number.

Creating a New Version of a Collection
You can’t copy a collection, but you can save yourself some time by creating a new
version of an existing collection. If you create a new version, you’ll have the same
data. It is possible to rename the collection and reset the version as long as the
collection is in a Draft state.

If you want a collection that starts with 1.0 and that has the same data as another
collection, you must make a new collection and import the data.

When you create a new version number, an independent collection is spawned from
that point with a new history that’s unrelated to the previous collection. Any data is
carried forward to the new version.

Note:

A collection can’t have more than one version of an object.

1. Click and select Mobile Apps > Storage from the side menu.

2. Select a collection.

3. In the Details section on the right, select More > New Version.

4. Specify an optional comment and click Update.

Moving a Collection to the Trash
Remove a collection by moving it to the trash. Moving a collection to the trash means
it’s no longer listed but it’s still viable. If the collection is needed later, you can restore
it.

1. Click and select Mobile Apps > Storage from the side menu.

2. Select the collection you want to remove.

3. In the Details section on the right, select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

Chapter 10
Updating the Version Number of a Collection

10-2

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Although only a mobile cloud administrator can purge a collection (eliminate it
permanently), you can delete an object in a collection using the command-line
operation, DELETE.

To find out how dependencies can affect moving an artifact to the trash, see Moving
an Artifact to the Trash.

To restore a collection in the trash, see Restoring a Collection.

Restoring a Collection
1. Click and select Mobile Apps > Storage from the side menu.

2. Click Trash ().

3. In the list of items in the trash, click by the collection you want and select
Restore from Trash.

4. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Collection
After you create a collection, you’ll want to edit it, publish it, and in short, manage the
collection and examine details of collections created by other mobile developers. The
Storage page gives you access to all these features.

When at least one collection exists, you’ll be taken to the Storage page every time you

click and select Mobile Apps > Storage from the side menu. On the left side of
the page, you’ll see a list of all the collections except for those in the trash. You can
see which collections are in the Draft state and which are in the Published state. Every
collection is listed by its name and version number.

The upper right side of the page is where you can open, test and publish the selected
collection:

• Click Open to see details about the selected collection.

• Click Publish to change the state of your collection from Draft to Published.

• Click More to create a new version, update an existing version, associate the
collection with a backend, or move a collection to the trash.

On the lower right of the page, you can examine usage and history details:

Chapter 10
Restoring a Collection

10-3

• Expand Used By to see which backends are associated with the collection. To
disassociate the selected collection from an artifact that uses it, click X next to the
artifact’s name.

• Expand the History section to quickly see the latest activity for the selected
collection.

Chapter 10
Managing a Collection

10-4

Part III
Reference

• Oracle Mobile Cloud Enterprise Policies

A
Oracle Mobile Cloud Enterprise Policies

This chapter lists the policies that you can configure in Oracle Mobile Cloud Enterprise
(OMCe). Policies control a variety of things, including logging level, password
expiration times, means for restricting user access, and proxies. Policies can affect all
artifacts of a specific type, or they can affect an individual artifact.

Note:

The scope value shown is the narrowest level at which the property can be
set.

OMCe Policies and Values

Policies determine the behavior of various aspects of OMCe. As OMCe administrator,
you can view and modify the policies in the policies.properties file by exporting the
file from the Administration page.

Policy Description Type Default
Value

Scope / Affects

Analytics_Applicati
onGuid

Stores an association
between the backend
and the Analytics
application. The value
is the Application ID.

String There is no
default value
for this
policy.

Scope: Backend

Affects: Backend

Analytics_BaiduMapC
sfKeyName

Stores the name of the
CSF key that stores
the Baidu application
key (ak).

String There is no
default value
for this
policy.

Scope: Backend

Affects: Backend

Asset_AllowPurge Controls whether or
not Draft and
Published artifacts in
the trash can be
purged (deleted
permanently).

Valid values are:
• All
• None
• Draft
• Published

String All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

A-1

Policy Description Type Default
Value

Scope / Affects

Asset_AllowTrash Controls whether or
not Draft and
Published artifacts can
be moved to the trash.

Valid values are:
• All
• None
• Draft
• Published

String All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowUntrash Controls whether or
not Draft and
Published artifacts can
be restored from the
trash.

Valid values are:
• All
• None
• Draft
• Published

String All Scope: Instance

Affects: Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_DefaultInitia
lVersion

Sets the default
version for all newly
created artifacts.

String 1.0

Note:
Generally,
the default
value should
be used.

Scope: Instance

Affects: all
artifacts that have
versions

A-2

Policy Description Type Default
Value

Scope / Affects

CCC_DefaultNodeConf
iguration

Sets the default
node.js configuration
used by the API
implementation
(custom code).

Valid values are:

• 0.10 - node.js
version 0.10.25
(the original
configuration).

"dependencies":
{
"method-
override":
"2.2.0",
"express":
"3.5.1",
"url":"0.7.9",
"path":"0.4.9",
"bluebird":
"2.9.30",
"request":
"2.34.0",
"https-proxy-
agent":
"0.3.5",
"http-proxy-
agent":
"0.2.6",
"agentkeepalive"
:"0.2.2"
}

• 6.10 - Node.js
version 6.9.1

"dependencies":
{
"method-
override":
"2.3.6",
"express":
"4.14.0",
"bluebird":
"3.4.6",
"request":
"2.74.0",
"https-proxy-
agent":
"1.0.0",
"http-proxy-
agent":
"1.0.0",
"agentkeepalive"
:"3.1.0",
"body-parser":

String Scope: Instance

Affects: Custom
Code

A-3

Policy Description Type Default
Value

Scope / Affects

"1.15.2"
}

The custom code
implementation
might override the
default node
configuration in its
package.json:

"oracleMobile" :
 {
"configuration"
: {
"node" : "0.10"
}
}

The node
configuration in
package.json
always takes
precedence over
the default node
configuration
that’s specified in
the policy.

If the policy value
is toggled at
runtime, each API
implementation
that uses the
default node
configuration
switches node
configuration no
later than its
second REST
request after the
policy change.

CCC_LogBody Determines whether to
log the body of a
request in custom
code. Bodies will be
logged in the following
circumstances:

• Logging level
== FINEST or
there is an
uncaught
exception.

• This property is
set to true.

Boolean false Scope: Backend

Affects: Custom
Code

A-4

Policy Description Type Default
Value

Scope / Affects

CCC_LogBodyMaxLengt
h

Sets the maximum
number of characters
to log if the custom
code is logging the
request body.

Integer 512 Scope: Backend

Affects: Custom
Code

CCC_SendStackTraceW
ithError

Determines whether or
not to send the stack
trace from node.js with
the REST response
from the custom code
container indicating
that there is a code
problem.

Boolean false Scope: Backend

Affects: Custom
Code

Connectors_Endpoint Stores the endpoint
URL of the particular
connector instance.

Set this policy by
uncommenting the
policy.

String There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Connector

Affects:
Connectors

Connector_Ics_Conne
ctions

Identifies the JSON
document
representing
connections to each
configured ICS
instance.

String null Scope: Instance

Affects: ICS
Connector

A-5

Policy Description Type Default
Value

Scope / Affects

Database_CreateTabl
esPolicy

Controls whether the
Database API can
create, alter, or drop
tables from custom
code or SQL. The
default value (allow)
enables calls from
custom code that
perform implicit
operations and also
explicit query
operations from raw
SQL.

Setting this policy to
implicitOnly enables
these operations and
JSON from custom
code calls, and
prohibits SQL
operations. Setting the
policy to
explicitOnly enables
these operations using
the Database
Management Service
API, and prohibits
non-SQL operations
from custom code.
Setting the policy to
none curtails implicit
and explicit table
creation, deletion, and
updates.

String allow Scope: Instance

Affects: Database
Service

Database_MaxRows Sets the maximum
number of rows that
can be returned by a
single database query.

Integer 1000 Scope: Instance

Affects: Database
Service

Database_QueryTimeo
ut

Sets the number of
seconds to wait for a
database query to
return before
canceling it.

Integer 20 Scope: Instance

Affects: Database
Service

Diagnostics_Exclude
dHttpHeadersInLogs

Creates a list of
headers that shouldn’t
be logged with each
API request in the API
History log file.

String Authorizatio
n header,
cookie name

Scope: Instance

Affects:
Administration
Console

A-6

Policy Description Type Default
Value

Scope / Affects

Diagnostics_Request
PercentageErrorThre
shold

Sets the percentage of
requests returning
error codes compared
with total request
above which the
admin console will
report an error
condition.

Set this value higher
than the one set for
the
Diagnostics_Request
PercentageWarningTh
reshold policy, which
sets the adverse level
of system health.

Double 10 Scope: Instance

Affects:
Administration
Console

Diagnostics_Request
PercentageWarningTh
reshold

Sets the percentage of
requests returning
error codes compared
with total request
above which the
admin console will
report a warning
condition.

Double 1 Scope: Instance

Affects:
Administration
Console

Logging_Level Sets the logging level. Integer 800 Scope: Backend

Affects: Custom
APIs, Storage

Network_HttpConnect
Timeout

Sets the amount of
time spent in
milliseconds (ms)
connecting to the
remote URL.

The value should be
less than the value of
Network_HttpRequest
Timeout.

Integer There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope: Instance,
Backend,
Connector, Fully-
Qualified
Connector

Affects:
Connectors

Network_HttpReadTim
eout

Sets the maximum
time (in milliseconds)
spent waiting to read
data.

The value should be
less than the value of
Network_HttpRequest
Timeout.

Integer There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope: Instance,
Backend,
Connector, Fully-
Qualified
Connector

Affects:
Connectors

Network_HttpRequest
Timeout

Sets the amount of
time in milliseconds
(ms) on an HTTP
request before it times
out.

Integer 40,000 ms Scope: Instance

Affects: Custom
APIs

A-7

Policy Description Type Default
Value

Scope / Affects

Notifications_Devic
eCountWarningThresh
old

Defines the threshold
level (percentage) of
messages sent
successfully without
returning an error.

If the proportion of
messages accepted
by the service provider
is below the threshold,
then a warning is
displayed. The default
value is 70.0 (70%).

Set this policy as
needed.

Double 70.0

Note: For
testing
purposes
only,
consider
setting this
value to
100.0
(100%).

Scope: Instance

Affects:
Notifications

Routing_BindAPIToIm
pl

Determines which
core service to use to
resolve the API
request.

String There is no
default value
for this
policy.

Scope: API

Affects: Custom
APIs, Connectors

Routing_BindAPIToMo
ck

Resolves the API
request to a mock
service instead of the
implementation that’s
bound to the API.

Boolean false

Note: Do not
modify this
policy.

Scope: Fully-
Qualified API

Affects: Backend,
Custom APIs

Routing_DefaultImpl
ementation

Specifies the default
implementation for the
initially created API
(that is, the mock
service).

String MockService
/1.0

Note: Do not
modify this
policy.

Scope: Instance

Affects: Custom
APIs

Routing_RouteToBack
end

Reroutes mobile API
calls made to a
backend to the target
backend specified.

String There is no
default value
for this
policy.

Scope: Backend

Affects:
Dispatcher

A-8

Policy Description Type Default
Value

Scope / Affects

Security_AllowOrigi
n

Enables Cross Origin
Resource Sharing
(CORS) from HTML5
clients on an external
domain.

Supported values are:
• disallow
• url1, url2, url3

By providing
URLs as values,
specifies a
whitelist of URLs
from which cross-
site requests to
APIs can be
made. If the origin
of the cross-site
request matches
one of the
patterns in the
whitelist, the
request is
allowed.
Otherwise,
access is
restricted.

The wildcard
character, *, can be
used when providing
URL values. However,
there are rules for its
use, described in
Securing Cross-Site
Requests to OMCe
APIs in Developing
Applications with
Oracle Mobile Cloud,
Enterprise.

String disallow

Note: When
dealing with
browser-
based
applications,
it’s highly
recommend
ed that
cross-site
access to
APIs either
be restricted
completely,
or be
restricted to
trusted
origins
where
legitimate
applications
are known to
be hosted to
prevent
vulnerability
to cross-site
attacks (e.g.,
Cross-Site
Request
Forgery).

Scope: Instance

Affects: All cross
origin calls to a
given instance

Security_AuthTokenC
onfiguration

Provides a
configuration to
integrate with third-
party identity providers
that mobile app users
can use to
authenticate. See JWT
Tokens and Virtual
Users in Developing
Applications with
Oracle Mobile Cloud,
Enterprise.

JSON object Scope:
Environment

Affects: Security

A-9

Policy Description Type Default
Value

Scope / Affects

Security_Collection
sAnonymousAccess

Sets a storage
collection to allow
anonymous access.
For each storage
collection listed in the
policy, anonymous
read and write access
will be allowed,
provided that the
correct anonymous
access key is defined
in the request
headers. Specifying '*'
as the version allows
anonymous access to
all versions of the
collection.

A comma-
separated
list of
storage
collections
following this
pattern:

<collection
1_name>[(<v
ersion>|*)]
[,<collecti
on2_name>[(
<version>|
*)]][, ...]

No default
value

Scope: Storage
collections

Affects: The
collections and
versions listed in
the policy

Security_ExposeHead
ers

Provides a means for
browsers to access
the server whitelist
headers. By default,
Cross Origin Resource
Sharing (CORS)
disallows accessing
returned headers by
the browser.

Applies to HTML5
clients accessing a
given resource from
an external domain.

String ""

Indicates
that no
response
headers are
to be
exposed to
the browser.

Scope: Instance

Affects: All cross
origin calls to a
given instance

Security_IdentityPr
oviders

Stores identity
providers
configuration.

String Facebook
identity
provider
configuration

Scope: Instance

Affects: Security

Security_IgnoreHost
nameVerification

Disables the SSL host
name verification.

To be applied to
connectors (in
development) that call
outbound services
using SSL certificates
with an invalid or
incomplete hostname.

Boolean false Scope: Instance

Affects: REST,
SOAP, ICS, and
Fusion
Applications
Connectors

Security_OwsmPolicy Sets the security
policy used for
outbound security.

Object There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Connector

Affects:
Connectors

A-10

Policy Description Type Default
Value

Scope / Affects

Security_SsoRedirec
tWhitelist

Lists the URL patterns
for the SSO
redirct_uri
parameter values that
are permitted.

String disallow Scope: Instance,
Backend

Affects: SSO
Token Relay

Security_TokenExcha
ngeTimeoutPolicy

Defines the policy that
governs the expiration
time for tokens
generated and issued
as a result of token
exchange.

Valid values are:

• FromTimeoutSecs
- token expiry
time is governed
by the
Security_TokenE
xchangeTimeoutS
ecs policy.

• FromExternalTok
en - token expiry
time is set to the
same time as the
external token
expiry time.

• FromExternalTok
enLimitedByTime
outSecs - token
expiry time is set
to the value
determined from
the
Security_TokenE
xchangeTimeoutS
ecs policy or the
external token
expiry time,
whichever comes
first.

String FromTimeout
Secs

Scope: Instance

Affects: SSO
Token Exchange

Security_TokenExcha
ngeTimeoutSecs

Sets the token
expiration time for
SSO login.

Integer 216000 s Scope: Instance

Affects: SSO
Token Relay

A-11

Policy Description Type Default
Value

Scope / Affects

Security_TransportS
ecurityProtocols

Specifies a list of the
TLS/SSL protocols
that should be used
for the outbound
connection for the
specific connector. By
default, only TLSv1.2
protocols are used for
outbound connections.
This property can be
used to override the
system defaults so
that connections can
be established to
legacy systems that
don't support new
versions of TLS/SSL.

Caution: Use this
property carefully as
older protocols are
more vulnerable to
security exploits.

Valid value is a
comma separated list
of the TLS/SSL
protocols. Note that
extra spaces around
the protocol names
are ignored. For
example, TLSv1,
TLSv1.1, TLSv1.2.

Supported protocols
are: SSLv2Hello,
TLSv1, TLSv1.1,
TLSv1.2.

String No default
value

Scope:
Connectors,
Fully-qualified
Connectors

Affects: All
Connectors

Sync_CollectionTime
ToLive

Sets the default
amount of time that
data requested by a
mobile app from a
storage collection
remains in the local
cache that’s used by
the Synchronization
library.

Integer 86400 s

Set this
policy as
needed.

Scope: Instance

Affects: Storage

Url_PercentEncodeQu
eryParameterSpaces

Controls how spaces
in query parameters of
a URL are encoded. If
set to true encodes
spaces as %20; and
encodes them as +
otherwise. Spaces in
other parts of the URL
are always encoded
as %20.

Boolean false Scope:
Connector

Affects: REST
Connector

A-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 An Administrator’s Roadmap to Oracle Mobile Cloud Enterprise
	Part I Configuring Oracle Mobile Cloud Enterprise
	2 Policies
	Defining Policies
	OMCe Policy Names
	Policy Scope

	Removing Policies

	3 Credentials (CSF Keys and Certificates)
	Managing Keys and Certificates
	Configuring a CSF Key
	Configuring a Web Service or Token Certificate
	Configuring an SSL Certificate
	Disabling SSL Hostname Verification

	Adding a Token Issuer
	Configuring Rules
	Rule Types

	Part II Managing OMCe Artifact Lifecycles
	4 Understanding Lifecycles
	Draft State
	Published State
	Making Changes After a Backend is Published (Rerouting)

	Versioning
	Deleting an Artifact
	Moving an Artifact to the Trash
	Restoring an Artifact
	Restoring an Artifact from Administration

	Purging an Artifact
	Purging Artifacts from Administration

	Artifact Lifecycles

	5 Client and App Profile Lifecycle
	Publishing a Client
	Updating the Version Number of a Client
	Creating a New Version of a Client
	Moving a Client to the Trash
	Restoring a Client
	Managing Your Clients and App Profiles

	6 Backend Lifecycle
	Backend Lifecycle States
	Publishing a Backend
	Updating the Version Number of a Backend
	Creating a New Version of a Backend
	Moving a Backend to the Trash
	Deactivating a Backend
	Restoring a Backend
	Managing a Backend

	7 API Lifecycle
	Custom APIs and API Implementations
	Publishing a Custom API
	Updating the Version Number of an API
	Creating a New Version of an API
	Moving a Custom API to the Trash
	Restoring a Custom API
	Managing an API

	8 API Implementation Lifecycle
	Publishing an API Implementation
	Creating a New Version or Updating the Version of an API Implementation
	Moving an API Implementation to the Trash
	Restoring an API Implementation

	9 Connector Lifecycle
	Publishing a Connector
	Updating the Version Number of a Connector
	Creating a New Version of a Connector
	Moving a Connector to the Trash
	Restoring a Connector
	Managing a Connector

	10 Collection Lifecycle
	Publishing a Collection
	Updating the Version Number of a Collection
	Creating a New Version of a Collection
	Moving a Collection to the Trash
	Restoring a Collection
	Managing a Collection

	Part III Reference
	A Oracle Mobile Cloud Enterprise Policies
	OMCe Policies and Values

