Oracle® Cloud

Creating Intelligent Bots with Oracle Mobile
Cloud Enterprise

18.2.3
E80652-01
May 2018

ORACLE"

Oracle Cloud Creating Intelligent Bots with Oracle Mobile Cloud Enterprise, 18.2.3
E80652-01

Copyright © 2018, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: John Bassett

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience viii

Documentation Accessibility viii

Conventions viii
1 Overview

What Are Intelligent Bots? 1-1

Why Use Oracle Bots? 1-1

2 The Basics

Bot Concepts 2-1

How Do | Create a Bot? 2-1
3 Quick Reference

Managing Your Bots 3-1

4 The Sample Bots

5 Intents

Create an Intent 5-1

Add Entities to Intents 5-4

Import Intents from a CSV File 5-6

Export Intents to a CSV File 5-7

Intent Training and Testing 5-7

Test Sets 5-7

The Intent Tester 5-7

Which Training Model Should | Use? 5-13

Guidelines for Building Your Training Corpus 5-14

ORACLE" iii

6 Entities

Reference Intents in the Dialog Flow 5-16
Built-In Entities 6-1
Simple Entities 6-2
Complex Entities 6-2
Custom Entities 6-5
Custom Entity Types 6-5
Create Entities 6-6
Import Value List Entities from a CSV File 6-10
Export Value List Entities to a CSV File 6-10
7 The Dialog Flow Definition
The Dialog Flow Structure 7-1
How Do | Write Dialog Flows in OBotML? 7-3
Dialog Flow Syntax 7-5
Flow Navigation 7-8
Conifguring the Dialog Flow for Unexpected Actions 7-8
Accessing Variable Values with Apache FreeMarker FTL 7-10
User-Scoped Variables 7-12
Defining User-Scoped Variables 7-14
Getting the User Context 7-14
Test the Dialog Flow 7-15
8 Localization
Resource Bundles 8-1
Create Resource Bundle 8-1
Reference Resource Bundles in the Dialog Flow 8-3
Resource Bundle Entry Resolution 8-5
Autotranslation 8-5
Enable Autotranslation 8-6
0 Components
The Custom Component Service 9-1
Create a Service 9-2
How Do Custom Components Work? 9-3
The Component Service 9-4
The Shell 9-5

ORACLE"

The Registry 9-5
Component Modules 9-6
The SDK 9-7
The Message Model 9-8
How Do | Implement the Component Service in OMCe? 9-8
10 Channels
Running Your Bot on Facebook Messenger 10-1
Step 1: Set Up Facebook Messenger 10-2
Step 2: Add the Facebook Keys 10-3
Step 3: Configure the Facebook Messenger Webhook 10-5
Step 4: Enable the Facebook Channel 10-7
Step 5: Testing Your Bot on Facebook Messenger 10-8
Running Your Bot on Other Messaging Services 10-9
Running Your Bot Within Client Messaging Apps and Web Pages 10-17
Bots Client SDKs 10-18
Bots Client SDK for Android 10-18
Bots Client SDK for iOS 10-23
Bots Client SDK for JavaScript 10-31
11 Quality Reports
How Do | Use the Data Quality Reports? 11-1
Utterances 111
Run an Utterance Quality Report 11-2
Suggestions 11-4
History 11-5
How Do | Run a History Report? 11-6
12 Bots Analytics
Adding Analytics to the PizzaBot Sample Bot 12-1
Setting up the PizzaBot Analytics Application 12-1
Setting up the PizzaBot Custom Component 12-1
13 Instant Apps
Creating an Instant App from Scratch 13-4
App Settings 13-4
Laying Out an Instant App 13-5
Panes 13-5

ORACLE"

Elements 13-6

Events and Actions 13-25
App Events 13-26
Actions 13-28
Parameters 13-45
Using Brace Notation in Element and Parameter Values 13-47

Modes 13-48
Preview Mode 13-48
Test Mode 13-49
JSON 13-51
Starting an Instant App from a Template 13-51
Instant App Lifecycle 13-52
Editing 13-52
Publishing 13-53
Deactivating 13-53
Deleting and Restoring 13-53
Exporting and Importing 13-54

14 Reference

Built-In Components: Properties, Transitions, and Usage 14-1
Control Components 14-1
System.ConditionEquals 14-1
System.ConditionExists 14-4
System.Switch 14-4
Language 14-6
System.Intent 14-7
System.MatchEntity 14-11
System.DetectLanguage 14-13
System.Translatelnput 14-13
System.TranslateOutput 14-14
Security 14-14
System.OAuthAccountLink 14-15

User Interface Components 14-17
System.Text 14-17
System.List 14-19
System.Output 14-24
System.CommonResponse 14-28
System.Interactive 14-45
Transitions 14-49
Message Handling for Output Components 14-49

ORACLE

Vi

Limiting the Number of User Prompts 14-52

Variable Components 14-53
System.SetVariable 14-53
System.ResetVariables 14-54
System.CopyVariables 14-54

Apache FreeMarker Reference 14-55

Built-In String FreeMarker Operations 14-55
Example: Improving the Confidence Level with Casing 14-57
Example: Transforming Case with the System.Switch Component 14-58
Example: Concatenating FTL Expressions 14-58

Built-In FreeMarker Number Operations 14-58

Built-In FreeMarker Array Operations 14-60
Example: Iterating Arrays 14-63

Built-In FreeMarker Date Operations 14-63
Example: Extracting Dates from User Input 14-65
Example: Setting a Default Date (When No Date Value Is Set) 14-66

The SDK Helper Methods 14-69
Navigation with keepTurn and transition 14-72
The Custom Component Payload 14-75

ORACLE vii

Preface

Preface

Welcome to Creating Intelligent Bots with Oracle Mobile Cloud, Enterprise!

Audience

Creating Intelligent Bots with Oracle Mobile Cloud Enterprise is intended for
developers who want to use bots to automate user interactions with backend data.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Overview

What Are Intelligent Bots?

It might be good to start off with a quick description of what a bot is. You can think of
your bot as a virtual personal assistant, one that completes a task through a
combination of text messages and simple Ul elements like select lists. While a bot can
open your enterprise to messaging, it's not a replacement for a mobile or web app. It
instead provides a new channel.

.. 1:00 PM + 3 100% B+
Inc.
(e S3Edge Inc

L
What is the approximate 59
.6 footage of your home?

3000 sq ft
Here's your recommended

product, tell us what to do next!

Recommended. Naxus 200

Recommended: Nexus 200

Why Use Oracle Bots?

Bots enables you to build a bot that connects your users to enterprise while engaging
them in naturalistic conversations. Bots manages the entire conversation. Throughout
this user session (that is, the conversation, from start to finish), Bots enables your bot
to keep pace with its user: it executes the functions that drive dialog all the while

ORACLE 1-1

ORACLE

Chapter 1
Why Use Oracle Bots?

keeping track of the choices that the user's made so far (the context) and where the
user is within the dialog (the current state). Bots can scale to the B2C level while still
managing millions of user sessions (and their states) securely. Through account
linking, Bots optimizes the user experience by allowing seamless access to the bot.

While users are probably aware that they’re chatting with a bot, they won’t need to use
(or endure) mannered, stilted language because of the language intelligence
framework, which produces natural language interactions from machine learning.
Because buttons or lists might provider a sleeker user experience than Al-based
conversation, the framework’s flexibility lets you alternate lists of options, buttons, and
even forms in the dialog flow when natural language is not needed.

1-2

The Basics

Bot Concepts

Intents—Categories of actions or tasks users expect your bot to perform for them.

Entities—Variables that identify key pieces of information from user input that
enable the bot to fulfill a task.

Both intents and entities are common NLP (Natural Language Processing)
concepts. NLP is the science of extracting the intention of text and relevant
information from text.

Components—Provide your bot with various functions so that it can respond to
users. These can be generic functions like outputting text, or they can return
information from a backend and perform custom logic.

Dialog Flow—The definition for the bot-user interaction. The Dialog flow describes
how your bot responds and behaves according to user input.

Channels—Bots aren’t apps that you download from an app marketplace, like
iTunes. Instead, users access them on various messaging platforms like Facebook
Messenger.

Instant Apps—Instant Apps are self-contained, wizard-liked modules that enable
bot users to complete some task — a purchase that requires users to complete a
form with specific field formats, for example, or an escalation.

Bot Builder—Not only does the Bots platform provide its own A.l framework that
allows your bot to parse and interpret user input, it also provides you with the Bot
Builder, a Ul for creating and managing all aspects of you bot, from building its
cognition, to publishing it to a messaging platform.

How Do | Create a Bot?

Here's a bird’s-eye view of bot development.

ORACLE

Create Train the Create Intagrate Create Test the Configure
Intents ~ Bot | Entii Custom > Diglog > "™ > channel
ntents 0 ntities Components Elow o annels

Create Intents—Start off by creating intents. Intents illustrate your use case by
describing the various actions that your bot helps its users complete. If your bot
enables users to perform various banking transactions, for example, then you
could create intents like CheckBalance or TransferMoney. Intents not only

2-1

ORACLE

Chapter 2
How Do | Create a Bot?

describe what your bot can do, they are also the key to your bot’s intelligence: they
enable it to recognize user input because each intent has a set of typical user
statements known as utterances associated with it. While these phrases share the
same meaning, they make your bot resilient because they’re also varied (for
example, What's my savings account balance? and How much is in my checking
account?). See Intents.

Train the Bot—To enable your bot to reference intents when it parses the user
input, you need to train it. Specifically, you need to train it with the intents and their
utterances (collectively, the training data), so that it can resolve the user input to
one of the intents. By training your bot, you leverage the language intelligence
which is at the core of the Bots platform: its algorithms enable your bot to not only
recognize the sample phrases that belong to each intent, but similar phrases as
well. See Intent Training and Testing.

Create Entities— In some cases, you may need to provide some context to
enable your bot to complete a user request. While some user requests might
resolve to the same intent (What's my savings account balance? and How much is
in my checking account? would both resolve to the CheckBalance intent, for
example), they are nonetheless asking for different things. To clarify the request,
you would add an entity. Using the banking bot example, an entity called
AccountType, which defines values called checking and saving would enable the
bot to parse the user request and respond appropriately. See Entities.

Integrate Custom Components—At this point, your bot can recognize input, but
it can’t respond to it. To put your bot’s intelligence to work, you need to add
components and then later, create a dialog flow. Components enable your bot to
do its job. There are two types of components: the ones provided by Bots that
perform functions ranging from holding the resolved intent to outputting text, and
the ones that you provide. The components belonging to this latter category are
known was custom components. Unlike the built-in components that you can use
in any bot that you build with the Bots platform, the custom components perform
tasks that are specific to a single bot, like checking a user’s age, or returning
account information. Custom components don'’t reside within the Bots platform, so
for your bot to use them, you need to access them through a REST service. See
The Custom Component Service.

Create the Dialog Flow— Next, you need to give the bot the wherewithal to
express its intelligence to its users by creating the dialog flow. The dialog flow
describes how you bot reacts as different intents are resolved. It defines what your
bot says to its users, how it prompts them for input, and how it returns data. Think
of the dialog flow as a flow chart that’s been transposed to a simple markdown
language. In Bots, this markdown language is a version of YAML called OBotML.
See The Dialog Flow Definition.

Test the Bot—Once you've started your dialog flow, you can chat with your bot to
test it out..

Configure Channels—Users subscribe to your bot through messaging platforms
such as Facebook Messenger. You don’t have to rewrite your bot for each
messaging platform, but you do need to configure a channel for each one. Bots
enables you to integrate with Facebook Messenger quickly through its Facebook
Channel. You don't need to craft any REST calls to run your bot on Facebook.
Instead, you complete a Ul using artifacts that are generated by both Facebook
and Bots. See Running Your Bot on Facebook Messenger. To integrate your bot
with other services, Bots provides the Webhook channel. You build your own
webhooks for these non-Facebook integrations. To help you out, you can use the

2-2

Chapter 2
How Do | Create a Bot?

sample chat server that we provide with the Developer Resources or create your
own.

ORACLE' 2.3

Quick Reference

Managing Your Bots

ORACLE

Using the landing page (accessed by clicking Development > Bots in the left navbar),
you can manage the lifecycle of your bots by creating, revising, or deleting them. It's
also where you can import a bot and access the Instant App builder and configure a
translation service. See Autotranslation and Instant Apps.

e ags [T ator]

Q SortBy Name Ascending v Teach Me Houw!

CrcPizzaBot FinancialBot

Piza bot showeasing the common respanse Finandial Virtual Assistant
component

Training Model: Trainer Ht Training Model: Trainer Tm

Updated: Last Tuesday at 4:22 AM Updated: Last Tuesday at 6:18 AM

Managing Your Bots

Clicking the tile menu gives you access to the following options:
» Edit—Update your bot.

* Clone—You can clone a copy of your bot to try out new features, or you can use
this option to create an entirely new version of your bot.

* Export Bot—Share your bot as a ZIP file. This ZIP packages the different
components of your bot in different formats. The bot itself is a . j son file. The dialog
flow is a . yani file, and the other components (intents, entities, channels, settings,
and resource bundles) are all . j son files. You can use the Export Bot option, for
example, when you need someone to troubleshoot your app. You can send the
ZIP to your designated expert to get a second opinion. When you get it back, you
add it to your bot library by clicking Import Bot. If you or your expert added
comments to your dialog flow definition (#), they’ll be preserved.

" Note:

If you import a bot, you'll need to re-enter the user credentials for
component services and channels.

« Export Conversation Log—You can also export the conversation logs to test out
new and revised versions of your bot.

3-1

Chapter 3
Managing Your Bots

Delete—Trashes the bot.

FinancialBot

Financial Virtual Assistant

Training Model: Trainer Tm

Updated: Last Tuesday at 6:18 AM

Edit

Clone
Export Bot
Export Conversation Log

Delete

ORACLE"

3-2

The Sample Bots

To get you familiar with the Bot Builder and some of the techniques used to create
dialog flows, intents, and entities, we've provided you with some sample bots. You can
use them as references as you build your own. The container for the Developer
Resources, which includes these sample bots, is generated by selecting Install
Sample when you create a Bots-only stack. Once the samples are installed, you can
access them from the landing page (accessed by clicking Development > Bots in the

left navbar).

Bot Description

PizzaBot Shows you the basics of bot building through a
simple dialog flow.

PizzaBotWithMemory A step up from the PizzaBot in that it

CrcPizzaBot

FinancialBot

demonstrates how to store user information
from prior visits.

Another version of the PizzaBot, but this one
shows you how you can incorporate scrolling
menus and quick action buttons without having
to write a backend service. It's all in the
configuration.

Another retail bot, but unlike the either of the
PizzaBots, this bot shows you how to create a
sophisticated dialog that maintains the user
state across different transitions. This bot
collects user input in two ways: through
natural, free-flowing conversation and, when it
needs to collect structured data, through forms
and radio buttons. To do this, the bot calls a
wizard-like app called an instant app. The bot
passes values to the instant app, which opens
in a webview. The instant app, which is
populated with these values, guides the user
through a series of pages. When the user
completes the instant app, it seamlessly
returns the user to the bot along with the
values that it collected from the user.

ORACLE

4-1

Intents

Intents allow your bot to understand what the user wants it to do. An intent categorizes
typical user requests by the tasks and actions that your bot performs. The PizzaBot's
OrderPizza intent, for example, labels a direct request, | want to order a Pizza, along
with another that implies a request, I feel like eating a pizza.

Intents are comprised of permutations of typical user requests and statements, which
are also referred to as utterances. As described in Create an Intent, you can create the
intent by naming a compilation of utterances for a particular action. Because your bot’s
cognition is derived from these intents, each intent should be created from a data set
that's robust (one to two dozen utterances) and varied, so that your bot can interpret
ambiguous user input. A rich set of utterances enables a bot to understand what the
user wants when it receives messages like “Forget this order!” or “Cancel delivery!"—
messages that mean the same thing, but are expressed differently. To find out how
sample user input allows your bot to learn, see Intent Training and Testing.

< CrcPizzaBot ¥

Examples @

Add Example

Canlget pasta
Twant pasta

Twant pasta with pesto

Pasta please

What kind of spaghettis do you have

— » JSON
Page 1 of1 (1-5ofS items)

Create an Intent

ORACLE

To create an intent:

Click Intents (o in the left navbar.
Click Add Intent.

Name the intent.

P W NP

As a optional step, add description of the intent. Your description should focus on
what makes the intent unique and the task or actions it performs.

5. Start building the training corpus by adding utterances that illustrate the meaning
behind the intent. To ensure optimal intent resolution, use terms, wording, and
phrasing specific to the individual intent. Ideally, you should base your training

5-1

ORACLE

Chapter 5
Create an Intent

data on real-world phrases, but if you don’t any, aim for one-to-two dozen
utterances for each intent. That said, you can get your bot up and running with
fewer (three-to-five) when you train it with Trainer Ht. You can save your
utterances by clicking Enter or by clicking outside of the input field.

0 + ntent More ¥

4 Description

Order X Name

Order

. Page 1 of1 (1 of1items) Description
] - ’

[

s

Examples @

Filter Q

I want a pizza

Page 1 ofl (1oflitems)

To manage the training set, select a row to access the Edit (©) and Delete ()
functions.

Alternatively, you can add an entire set of intents and their respective utterances
by importing them from a CSV file.

You can make your bot more resilient by adding utterances that contain commonly
misspelled and misused words. See Guidelines for Building Your Training Corpus.

Examples

[want a piazza

Can I order a Pizza
I feel like eating a Pizza

[want to order a Pizza

Add an entity if the intent needs one to resolve the user input. To find out how, see
Add Entities to Intents.

To teach your bot how to comprehend user input using the set of utterances that
you've provided so far, click Train, choose a model and then click Submit.

5-2

ORACLE

Chapter 5
Create an Intent

Validate O Train

Trainer Ht

A fast-training, linguistics-based model.

s

Trainer Tm

& machine learning-based model.

As described in Which Training Model Should | Use?, we provide two models that
learn from your corpus: Trainer Ht and Trainer Tm. Each uses a different algorithm
to reconcile the user input against your intents. Trainer Ht uses pattern matching
while Trainer Tm detects variations in user input. You'd typically follow training
process when you're creating intents:

a. Create the initial training corpus.

b. Train with Trainer Ht. You should start with Trainer Ht because it doesn't
require a large set of utterances. As long as there are enough utterances to
disambiguate the intents, your bot will be able to resolve user input.

c. Refine your corpus, retrain with Trainer Ht. Repeat as necessary—training is
an iterative process.

d. Train with Trainer Tm. Use this trainer when you've accumulated a robust set
of intents.

The Train button (Edllaill) activates whenever you add an intent or when you

update an intent by adding, changing, or deleting its utterances. To bring the
training up to date, choose a training model and then click Train. The model

displays an exclamation point whenever it needs training. When its training is
current, it displays a check mark.

5-3

Chapter 5
Create an Intent

@ Trainer Ht

A fast-training, linguistics-based model. l

Trainer Tm

& machine learning-based model.

Note:

For Trainer Ht, your bot needs at least two intents which each have three
or more utterances. Trainer Tm also requires more than one intent.

8. In the test window, click Intents and then enter some of the phrases from your test
set. See Testing Intents.

Add Entities to Intents

Some intents require entities—both built-in and custom— to complete an action within
the dialog flow or make a REST call to a backend API. The system uses only these
entities, which are known, as intent entities, to fulfill the intent that's associated with
them. In the absence of intent entities, the system attempts to complete the intent by
iterating through all of the bot's entities. You can associate an entity to an intent when

you click Add New Entity and then select from the custom (-) or built-in ()
entities.

ORACLE" 5-4

Chapter 5
Create an Intent

Intent Entities
+ MNew Entity

Filter Q

4+ ADDRESS
CheeseType
N

£ CURRENCY

¥ DATE

Alternatively, you can click New Entity to add an intent-specific entity. See Custom

Entity Types.
Create Entity X
Description Configuration
Name * Type *
RewardsGifts Value list v
Description
Value Synonyms
A Toaster
Bean Bag
Toys
Car Wash

Create

ORACLE 5-5

Chapter 5
Create an Intent

Q Tip:

Only intent entities are included in the JSON payloads that are sent to, and
returned by, the Component Service. The ones that aren’t associated with an
intent won't be included, even if they contribute to the intent resolution by
recognizing user input. If your custom component accesses entities through
entity matches, then be sure to add the entity to your intent. See How Do
Custom Components Work?

Import Intents from a CSV File

You can add your intents manually, or import them from a CSV file. You can create
this file by exporting the intents and entities from another bot, or by creating it from
scratch in a spreadsheet program or a text file.

The CSV file has two columns: query and t opl nt ent :

query, topl nt ent

| want to order a pizza, OrderPizza

| want a pizza, OrderPizza

| want a pizaa, OrderPizza

| want a pizzaz, OrderPizza

I m hungry, O derPi zza

Meke me a pizza, OrderPizza

| feel like eating a pizza, OrderPizza

G mre a pie, OderPizza

Gve ne a pizza, OrderPizza

pizza | want, OrderPizza

| do not want to order a pizza, Cancel Pizza
| do not want this, Cancel Pizza

| don't want to order this pizza, Cancel Pizza
Cancel this order, Cancel Pi zza

Can | cancel this order?, Cancel Pizza
Cancel ny pizza, Cancel Pi zza

Cancel ny pizaa, Cancel Pi zza

Cancel ny pizzaz, Cancel Pizza

' mnot hungry anynore, Cancel Pi zza

To import a CSV file:

1. Click Intents (o in the left navbar.

2. Click More, and then choose Import intents.

Import intents

Balances @t]
Expi=at Intents

3. Select the . csv file and then click Open.

4. Train your bot.

ORACLE 5-6

Chapter 5
Create an Intent

Export Intents to a CSV File

You can reuse your training corpus by exporting it to CSV. You can then import this file
to another bot.

To export your intents and their utterances:

1.

2. Click Intents (G in the left navbar.

3. Click More, and then choose Export intents.

e N

Import intents

CancelPizza . X
Export intents

OrderPizza ®

4., Save the file.

Q Tip:

Remember to train your bot after you import the CSV file.

Intent Training and Testing

Test Sets

Training a model with your training corpus allows your bot to discern what users say
(or in some cases, are trying to say).

You can improve the acuity of the cognition through rounds of intent testing and intent
training. In Bots, you control the training through the intent definitions alone; the bot
can't learn on its own from the user chat.

We recommend that you set aside 20% percent of your corpus for testing your bot and
train your bot with the remaining 80%. Keep these two sets separate so that the test
set remains “unknown” to your bot.

Apply the 80/20 split to the each intent’s data set. Randomize your utterances before
making this split to allow the training models to weigh the terms and patterns in the
utterances equally.

The Intent Tester

ORACLE

The Intent tester is your window into your bot’s cognition. By entering phrases that are
not part of the training corpus (the utterances that you’ve maintained in your testing

5-7

Chapter 5
Create an Intent

set), you can find out how well you've crafted your intents and entities through the
ranking and the returned JSON. This ranking, which is the bot’s estimate for the best
candidate to resolve the user input, demonstrates its acuity at the current time.

Testing Intents

To find out how well you've labeled your intents and entities:
1. Click Test (I3) to open the tester window.

2. Open the Intent tab.

VEIEL

Bot Intent Batch

o

3. Enter a string of text that is not part of the corpora.

4. Click Send and then take a look at the ranking.

Test Reset

Bot Intent Batch
Intent Confidence
FAQ — 91.1% @
Balances — 724% ©
Send Money — 427% ©

Show All

Add Example

5. Expand the JSON window to see how your bot ranked the intents.

ORACLE" 5-8

Chapter 5
Create an Intent

JSON

¥

B1FC-36FB627B69307, i
“entityMatches™ {
"ADDRESS™ [
i
“road” “cardenal balance”,
“validObject” true,
“entityMame™: "ADDRESS
i
1
¥
“intentMatches™ {
“Send Money™ 0.4273459914544302,
“FAQ™ 0.9113193155552929,
“Balances™ 0.7236309476637943,
“Track Spending™ 0.30582478837152458
I -

card balance Send

If your bot’s top-ranking candidate isn’t what you expect, you might need to retrain
the intents after doing one or both of the following:

» Update the better candidate’s corpus with the input text that you just entered—
Select the appropriate intent and then click Add Example.

Test S

Bot Intent Batch

card balance

Intent Confidence
FAQ I 91.1% &
Balances I 724% @
Send Money — 427% ©
Show All

Caution:

Adding a test phrase can change how utterances that are similar to it
get classified after you retrain the bot, so consider the impact before
updating the training set with a test phrase. In addition, adding a test
phrase invalidates the test, because it's now incorporated into the
training set and therefore ensures that the test will be successful.

» Correct the system by editing the corpus using the Edit (=) and Delete ()
functions.

ORACLE" 5-9

Chapter 5
Create an Intent

You need to retrain an intent whenever you add, change, or delete an utterance. A
dirty Train icon (m) indicates when your training becomes outdated. When
the retraining completes, click Reset m and then send the test phrase

again.
Test Reset
Bot Intent Batch
Intent Confidence
Balances IEEEEESSSSS———— 00.0% @
Transactions 0.0% ®
Track Spending 0.0% ©
Show All
Add Example
p JSON
card balance Send

ORACLE" 5-10

Chapter 5
Create an Intent

The Intent Testing History

You can export the training data into CSV file so that you can find out how the intents
were trained.

By examining these logs in a text editor or spreadsheet program like MicroSoft Excel,
you can see each user request and bot reply. You can sort through these logs to see
where the bot matched the user request with the right intent and where it didn't.

Export Intent Data

To export data:

1. Inthe bots catalog, open the menu in the tile and then click Export Conversation
Log.

FinancialBot

Financial Virtual Assistant

Updated: Last Monday at 9:53 PM E

Edit

Clone

Export Bot

Export Conversation Log

Delete

2. In the Export Bot dialog, choose the log type (conversation or intent) and a logging
period.

Export Bot

@ Intent Conversation Log

@ Bot conversation log

Time period
Last 7 days N7
Last 60 minutes

Last 24 hours

Last 7 days
Last 30 days
Last 90 days

Last 6 months

3. Openthe CSV files in a spreadsheet program to review it. You see if your model
matches intents consistently by filtering the rows by keyword.

ORACLE" 5-11

Chapter 5
Create an Intent

Batch Testing Intents

You can use the intent testing data that you've exported on new iterations of your bot
to gauge the accuracy of its intent detection.

To use that test data:
1. Open the tester (IZ) and then click Batch.

Test Reset

Bot Intent Batch

2. Click Load and then upload the intents log.

Load Batch

I

0 FinancialBot_intent_log.csv validated.

Maximum number of concurrent tests 3

3. Choose the number of tests running in parallel. Increasing the number of
concurrent tests may speed up testing, but may also burden the system.

4. Click Test.

The results display in the test window.

ORACLE" 5-12

Chapter 5
Create an Intent

Test Reset
Bot Intent Batch
Load Test complete - 5 passed, 0 failed.

+/ Tlost my card

/' 1need to send money to the baby sitter >
v 575 >
' how much in checking? >
v what's my credit card balance? >

5. Drill down (>) to see how the test results compare to the batch data.

Which Training Model Should | Use?

ORACLE"

We provide a duo of models that you can train to mold your bot’s cognition. You can
use one or both of these models, each of which uses a different approach to machine
learning.

Trainer Ht

Trainer Ht is the default training model. It needs only a small training corpus, so use it
as you develop the entities, intents, and the training corpus. When the training corpus
has matured to the point where tests reveal highly accurate intent resolution, you're
ready to add a deeper dimension to your bot’s cognition by training Trainer Tm.

You can get a general understanding of how Trainer Ht resolves intents just from the
training corpus itself. It forms matching rules from the sample sentences by tagging
parts of speech and entities (both custom and built-in) and by detecting words that
have the same meaning within the context of the intent. If an intent called SendMoney
has both Send $500 to Mom and Pay Cleo $500, for example, Trainer Ht interprets
pay as the equivalent to send . After training, Trainer Ht's tagging reduces these
sentences to templates (Send Currency to person, Pay person Currency) that it
applies to the user input.

Because Trainer Ht draws on the sentences that you provide, you can predict its
behavior: it will be highly accurate when tested with sentences similar to the ones that
make up the training corpus (the user input that follows the rules, so to speak), but
may fare less well when confronted with esoteric user input.

5-13

Chapter 5
Create an Intent

Tip:

Because of its quick training, use Trainer Ht to help you define and refine
your training corpus. While you can add sentences to an intent whenever the
resolution is faulty (or in the worst case, add your entire testing corpus), be
sure to aim for a concise training corpus by following the guidelines in
Guidelines for Building Your Training Corpus.

Trainer Tm

Because Trainer Tm doesn’t focus as heavily on matching rules as Trainer Ht, it can
help your bot interpret user input that falls outside of your training corpus. Trainer Tm
differs from Trainer Ht in other ways as well: its intent resolution can be less
predictable across training sessions.

¢ Note:

Trainer Ht is the default model, but you can change this by clicking Settings
> General and then by choosing another model from the list. The default
model displays in the tile in the bot catalog.

Virtual_Sales_Assistantl

8 ®

Training Model: Trainer Tm

Updated: a few seconds ago

Guidelines for Building Your Training Corpus

ORACLE

When you define an intent, you first give it a name that illustrates some user action
and then follow up by compiling a set of real-life user statements, or utterances.
Collectively, your intents, and the utterances that belong to them, make up a training
corpus. The term corpus is just a quick way of saying “all of the intents and sample
phrases that | came up with to make this bot smart”. The corpus is the key to your
bot’s intelligence. By training a model with your corpus, you essentially turn that model
into a reference tool for resolving user input to a single intent. Because your training
corpus ultimately plays the key role in deciding which route the bot-human
conversation will take, you need to choose your words carefully when building it.

Generally speaking, a large and varied set of sample phrases increases a model’s
ability to resolve intents accurately. But building a robust training corpus doesn't just
begin with well-crafted sample phrases; it actually begins with intents that are clearly
delineated. Not only should they clearly reflect your use case, but their relationship to
their sample sentences should be equally clear. If you're not sure where a sample
sentence belongs, then your intents aren’t distinct from one another.

5-14

Chapter 5
Create an Intent

You probably have sample utterances in mind when you create your intents, but you
can expand upon them by using these guidelines:

» Create 12 to 24 sample phrases per intent (if possible). Keep in mind that the
more examples you add, the more resilient your bot becomes.

© Important:

Trainer Tm can't learn from an intent that has only one utterance.

» Avoid sentence fragments and single words. Instead, use complete sentences
(which can be up to 255 characters). If you must use single key word examples,
choose them carefully.

e Vary the vocabulary and sentence structure in your sample phrases by one or two
permutations using:

slang words (moolah, lucre, dough)
common expressions (Am | broke? for an intent called AccountBalance)

alternate words (Send cash to savings, Send funds to savings, Send money to
savings, Transfer cash to savings.)

different categories of objects (I want to order a pizza, | want to order some
food.

alternate spellings (check, cheque)
common misspellings (“buisness” for “business”)
unusual word order (To checking, $20 send)

Create parallel sample phrases for opposing intents. For intents like
CancelPizza and OrderPizza, define contrasting sentences like | want to order
a pizza and I do not want to order a pizza.

When certain words or phrases signify a specific intent, you can increase the
probability for a correct match by bulking up the training data not only with the
words and phrases themselves, but with synonyms and variations as well. For
example, a training corpus for an OrderPizza intent might include a high
concentration of “| want to” phrases, like I want to order a Pizza, | want to
place an order, and | want to order some food. Use similar verbiage sparingly
for other intents, because it might skew the training if used too freely (say, a
CancelPizza intent with sample phrases like | want to cancel this pizza, | want
to stop this order, and | want to order something else). When the high
occurrence of unique words or phrases within an intent’s training set is
unintended, however, you should revise the initial set of sentences or use the
same verbiage for other intents.

Use different concepts to express the same intent, like | am hungry and Make
me a pizza.

* Watch the letter casing: use uppercase when your entities extract proper nouns,
like Susan and Texas, but use lowercase everywhere else.

e Grow the corpus by adding any mismatched sentence to the correct intent.

ORACLE

5-15

Chapter 5
Reference Intents in the Dialog Flow

Q Tip:

Keep a test corpus as CSV file to batch test intent resolution by clicking
More and then Export Intents. Because adding a new intent example can
cause regressions, you might end up adding several test phrases to stabilize
the intent resolution behavior.

Reference Intents in the Dialog Flow

Within your dialog flow, your intents can define the acti ons property, as shown in the
PizzaBot's i ntent state. See System.Intent.

intent:
conmponent: "SystemlIntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
OrderPizza: "resol vesi ze"
Cancel Pi zza: "cancel order"
unresol vedl ntent: "unresol ved"

ORACLE 5-16

Entities

While intents map words and phrases to a specific action, entities add context to the
intent itself. They help to describe the intent more fully and enable your bot to
complete a user request. The OrderPizza intent, for example, describes a user
request, but only in general terms. To fill in the specifics, this intent is augmented by
the PizzaSize entity, which identifies values like large, medium, and small from the
user input. There are two types of entities, both of which you can declare as variables
in the dialog flow: built-in entities that we provide for you and custom entities, which
you can add on your own.

Built-In Entities

We provide entities that identify objective information from the user input, like time,
date, and addresses.

iPod F 12:50 PM < § WD
Moose Jaw EXpress
|
Entities:
Book 2 tickets on the
2pm flight from SFO to = __Il\ill:nrgbrlezzjir:;
1
Lo *Address (SFO, Canada)
*Date (today)
|
T
N = 4

These built-in entities are divided into two groups: simple entities that extract primitive
values like strings and integers, and complex entities that detect values from the user
input using groups of properties.

ORACLE 6-1

Chapter 6
Built-In Entities

Whenever you define a variable as an entity in your dialog flow, be sure to match the
entity name and letter case exactly. In other words, you'll get a validation error if you
enter confirm "YESNO' instead of confirm “YES NO'.

Simple Entities

Entity Name Content Identified Examples
NUMBER Matches ordinal and cardinal + 1st
numbers o first
. 1
e one
EMAIL An email address—The NLU ragnar.smith@example.com
system can recognize email
addresses that have
combinations of letters (a-z),
numbers (0-9), underscores
(1) and plus (+) and minus (-)
signs before the at symbol
(@). The address can't have a
dot (.) immediately after the @
symbol, but the domain name
(which is comprised of letters
and numbers only), must
include the dot.
ADDRESS An address or location-related 200 Oracle Parkway,
entities Redwood Shores, CA
YES_NO Detects a “yes” or “no”. Yes, Yeah, no

Complex Entities

Unlike simple entities, complex entities extract content using properties, each of which
recognizes a specific value. When you train and test your intents, you can see these
properties in the Tester. The JSON output that’s returned by the NLU Engine shows
these entities along with the value that they've identified from the user input.

Propertiesin the Test Window

Test

Bot

Intent

Propertiesin JSON Output

4JSON

[«

Batch

Entity

DATE - date

DATE - origjnal...
NUMBER -
NUMBER
NUMBER -
NUMBER - type
TIME - hrs
TIME - mins
TIME - secs
TIME - original...

TIME - hourfor...

ORACLE

.9

. 0

Value

Wed Jun 14 2017 02:00:00
GMT-0700 (Pacific Standard Time)

tomorrow at 9:00 am

Integer

Integer
9
0
0

tomorrow at 9:00 am

AM

6-2

ORACLE

Chapter 6
Built-In Entities

When you define a variable in your dialog flow that uses a complex entity, you will
need to include these properties in the value expression. See Accessing Variable
Values with Apache FreeMarker FTL.

Entity Name Content Examples Properties Example NLU
Extracted (Referenced in Engine
Value Response
Expressions)
DATE An absolute or e November9, ¢ original Str {
relative date 2016 ing "date"
* Today . date 895685400000,
"val ue" :
895685400000,
“entityNanme" :
" DATE"
1
TIME A specific time 2:30 pm e hrs { "hrs":8,
* mns "mns":0,
° Secs "secs": 0,
e “hourFormat "hourFormat":"P
" TPM M,
"entityName":"T
IME" }
DURATION The amount of e 4years e startDate { "startDate":
time between the « two weeks . endDat e 1482019200000
tyvo gndpoint of a " endDat e" '
time interval 1482623999999,
“entityNane":"D
URATI ON' }
SET Recurring time « Every e nminute—The {
periods. Tuesday range is {O— . minute"
« Everytwo 59} [30],
weeks e hour—The vy -
range is {O0— [19],
23} "dayOf TheMont h"
. dayOf TheMon @ [15],
th—The "nmont hOf TheYear
range is {1- " :
31} ["MARCH'],
e monthCf They "entityName" :
ear —The " SET"
range is {1- }
12}
e dayOf TheWee
k—{0-6},
with 0 being
Sunday
° year

6-3

ORACLE

Chapter 6
Built-In Entities

Entity Name Content Examples Properties Example NLU
Extracted (Referenced in Engine
Value Response
Expressions)
CURRENCY Representations « $67 ° anount { "amount": 50
of money . 75dollars - currency "currency";"dlol
e totalCurren |ar",
cy “total _currency
":"50.0
dollar",
“entityName":"C
URRENCY" '}
PHONE A phone number ¢ (650)-555—- e« phoneNunber "
NUMBER —The NLU 5555 « conpl et eNum {Eggg)e-gggbg;
Engine * 1650555555 ber 55
recognizes phone 5 "co;ml ete nunbe
numbers that + +61.3.5555.5 £ " (650) - 555- 5
have seven or 555

more digits (it
can'’t recognize
any phone
number with
fewer digits). All
country codes
need to be
prefixed with a
plus sign (+),
except for the
United States of
America (where
the plus sign is
optional). The
various parts of
the phone
number (the area
code, prefix, and
line number), can
be separated by
dots (.), dashes
(-), or spaces. If
there are multiple
phone numbers
entered in the
user input, then
the NLU Engine
can recognize
them when
they're separated
by commas. It
can't recognize
different phone
numbers if they're
separated by
dots, dashes or
spaces.

555",
“entityNane":"P
HONE_NUMBER' }

6-4

Chapter 6
Custom Entities

Entity Name Content Examples Properties Example NLU
Extracted (Referenced in Engine
Value Response
Expressions)
URL AURL—ThlS http:// e prot gcol {"protocol ": "ht
entity can extract exanpl e. com « dommin to" "domain": "
IPv4 addresses p, domains e
’ « fullPath xanpl e. cont', }

Web URLs, deep
links (http://
exanpl e. cont
pat h/ page), file
paths, and

mai |t o URIs. If
the user input
specifies login
credentials, then
it must also
include the
protocol.
Otherwise, the
protocol isn’'t
required.

Custom Entities

Because the built-in entities extract generic information, they can be used in a wide
variety of bots. Custom entities, on the other hand, have a narrower application. Like
the FinancialBot's AccountType entity that enables various banking transactions by
checking the user input for keywords like checking, savings, and credit cards, they're
tailored to the particular actions that your bot performs.

Custom Entity Types

ORACLE

Entity Type

Description

Derived

Value list

A derived entity is the child of a built-in entity
or another entity that you define. You base this
relationship on prepositional phrases (the “to”
and “from” in utterances like want to go from
Boston to Dallas or Transfer money from
checking to savings).

An entity based on a list of predetermined
values, like menu items or the FinancialBot's
checking, credit, and card options that are
output by the Syst em Li st component. You
can optimize the entity’s ability to extract user
input by defining synonyms. These can include
abbreviations, slang terms, and common
misspellings. Synonym values are not case-
sensitive: USA and usa, for example, are
considered the same value.

6-5

Chapter 6
Custom Entities

Entity Type Description

Entity list A super set of entities. Using a travel bot as an
example, you could fold the entities that you've
already defined that extract values like airport
codes, cities, and airport names into a single
entity called Destination. By doing so, you
would enable your bot to respond to user input
that uses airport codes, airport names, and
cities interchangeably. So when a user enters
“l want to go to from JFK to San Francisco,”
the Destination entity detects the departure
point using the airport code entities and the
destination using the cities entity.

Regular Expression Resolves an entity using a regular expression
(regex). Using regular expressions lets your
bot identify pre-defined patterns in user inputs,
like ticket numbers.

Create Entities

To create an entity:

1. Click Entities (0) in the side navbar.
2. Click Add Entity and then enter the name.

3. In the Configuration section, choose entity type from the list.

Configuration
Type 2]

Value list v

Derived
Value list
Entity list

Regular Expression

* Value List—Define a set of values for an entity that's defined by
predetermined terms.

ORACLE 6-6

Chapter 6
Custom Entities

Note:

Adding punctuation or special characters to the same term creates
different values: the entity can't match USA from the user input with
either USA? or USA!, or cafe with café. To match a value regardless
of case or punctuation, create a regular expression entity. You can
define it using syntax like (\ w+)

Create Value X

Value *
Large pizza
Synonyms

biggest ¥ jumbo *

Q Tip:

You don’'t need to add your value list entities one at a time. Like
intents, you can define groups of entities in a CSV file first, then
import them. You can create this file from scratch, or reuse the
entities that you've exported from another bot.

Entity List—A super set of entities.

Derived Entities—A derived entity is the child of another entity (either built-in
or custom) that's modified by a preposition that you add using the Preceding
Phrase or Following Phrase rules.

ORACLE"

6-7

ORACLE

Chapter 6
Custom Entities

Configuration
Type

Derived v

Parent

DATE v

Rule

Preceding Phrase v

Phrases
return on X come back on X

returning on * coming back on %

@© Important:

Derived entities can’t be parent entities. And because the NLU
Engine detects derived entities only after it detects all of the other
types of entities, you can’t add derived entities as members of an
entities list. Only custom or the built-in entities can belong to a list.

Regular Expression—Enter the regular expression (regex) pattern. Unlike the
other entity types, regex-based entities don't use NLP because the matching is
strictly pattern-based.

6-8

Chapter 6
Custom Entities

4 Description

Name *

WordBetween

Description

returns the word between "one” and "three"

Configuration
Type 0

Regular Expression s

Regular Expression

(7« =one\s).*(?=\sthree)

For example this expression, (?<=one\ s) . *(?=\'st hree) returns the word that’s
between “one” and “three” in the user input.

4 JSON

[
{
"appld™: "ASEFT7931-82B6-4ED1-9229-
EBFOB&SAR3ITO",
"botHame™: "JMBTeatBot”™,
"entityMatchea™: |
"WordBetween™: |
"two"

4. Next steps:

a. Add the entity to an intent. This informs the bot of the values that it needs to
extract from the user input during the language processing. See Add Entities
to Intents.

b. If needed, add the entity to an Entity List entity or a Derived entity.

c. Inthe dialog flow, declare a context variable for the entity, one that references
that value that holds the language processing result, nl presul t (for example,
i Result: “nlpresult”). See Dialog Flow Syntax.

d. Reference this context variable in the System.Intent component.

The System.MatchEntity also extracts entity values.

ORACLE' 6-9

Chapter 6
Custom Entities

e. After the System I ntent component, which processes the input string, access
the variable values using Apache FreeMarker expressions. For example, you
can use the entityMat ches keyword to iterate over entity values ($
{iResult.val ue.entityMatches[‘nane of entity’]}). See Built-In FreeMarker
Array Operations.

Import Value List Entities from a CSV File

Rather than creating your entities one at a time in the Bot Builder, you can create
entire sets of them when you import a CSV file containing the entity definitions. The
CSV file is divided into three columns: enti ty, val ue, and synonyns. For example:

entity, val ue, synonyns

CheeseType, Mbzzarel | a, Mozarel a: Mozzarel a
CheeseType, Provol one,

CheeseType, Gouda,

CheeseType, Cheddar,

Pi zzaSi ze, Large

Pi zzaSi ze, Medi um

Pi zzaSi ze, Smal |

1. Click Entities (O) in the side navbar.

2. Click More, choose Import Value list entities, and then select the . csv file from
your local system.

Import Value list' entities

—
|

Filter

Export "Value list' entities
Sort By MY e HSTEITUITY -

3. Add the entity or entities to an intent (or to an entity list and then to an intent).

Export Value List Entities to a CSV File

You can export your entity definitions in a CSV file for reuse in another bot. To do this:

1. Click Entities (O) in the side navbar.

2. Click More, choose Export Value list entities and then save the file.

Filter Import 'Value list' entities

Export 'Value list' entities
Sort E_:. Ty HJLEII\@’ -

ORACLE 6-10

Chapter 6
Custom Entities

The exported . csv file is named for your bot.

ORACLE" 6-11

The Dialog Flow Definition

ORACLE

The dialog flow definition is the model for the conversation itself, one that lets you

choreograph the interaction between the bot and its users.

Using the Bot Builder, you define the framework of the user-bot exchange in OBotML,
Bots’ own implementation of YAML. This is a simple markup language, one that lets
you describe a dialog both in terms of what your bot says and what it does.

The Dialog Flow Structure

Your OBotML definition is divided into three main parts: cont ext, def aul t Transi ti ons,
and st at es. You define the variables that are available across the session within the
cont ext node. The definition of the flow itself is described in the st at es section.

< FinancialBot ¥

‘_— + com ponents o

1 etadata:
2 platformVersion: "1.8"
3 main: true

4 name: "FinancialBotMainFlow"

accountType: "AccountType"
txnType: “"TransactionType”
txnSelector: "TransactionSelector”
toAccount: "ToAccount™

context:
variables:

spendingCategory: "TrackSpendingCategory"

paymentAmount: "CURRENCY"
iResult: "nlpresult™

13

1 iResult2: "nlpresult”
transaction: "string"
dispute: "string”
amount: "string”
merchant: “string"”
date: "string"

2€ description: "string”

21 states:

intent:

component: "System.Intent”
24 properties:
variable: "iResult”
2 confidenceThreshold: ©.4
2 transitions:
actions:
Balances: "startBalances"
Transactions: "startTxns”
Send Money: "startPayments"
Track Spending: "startTrackSpending”
Dispute: "setDate"
unresolvedIntent: "unresolved”
startBalances:

The dialog flow is laid out as follows:

main: true
nanme: "Hell oKids"
context:
vari abl es:

variablel: "entityl"

variable2: "error"
States

statel:

Flow Name

Context
*Session-Wide Variables
*Error Handling

States

*Component Name
Component Properties
«State Transitions

*includes user-scoped variable definitions.

7-1

ORACLE

Chapter 7
The Dialog Flow Structure

conponent: "a customor built-in conponent”
properties:
propertyl: "conponent-specific property val ue"
property2: "conponent-specific property val ue"
transitions
actions:
actionl: "val uel"
action2: "val ue2"
state2:
conponent: "a customor built-in conponent”
properties:
propertyl: "conponent-specific property val ue"
property2: "conponent-specific property val ue"
transitions
actions:
actionl: "val uel"
action2: "val ue2"
Context

The variables that you define within the cont ext node can be primitive types like i nt,
string, bool ean, doubl e, or f| oat . They can also describe error handling, or, as in the
following snippet from the PizzaBot dialog flow definition, they name entities like

Pi zzaSi ze and Pi zzaCr ust . Along with built-in entities and the custom entities, you can
also declare a variable for the nl presul t entity, which holds the intent that's resolved
from the user input. These variables are scoped to the entire flow. How Do | Write
Dialog Flows in OBotML? tells you how to assemble the different parts of the dialog
flow. You can also scope user variable values to enable your bot to recognize the user
and persist user preferences after the first conversation. See User-Scoped Variables.

met adat a

pl atformersion: "1.1"

main: true

name: "PizzaBot"

cont ext :

vari abl es:

size: "PizzaSize"
type: "PizzaType"
crust: "PizzaCrust"

i Result: "nlpresult”

States

You define each bit of dialog and its related operations as a sequence of transitory
states, which manage the logic within the dialog flow. To cue the action, each state
node within your OBotML definition names a component along with component—
specific properties and transitions that trigger the next state. The PizzaBot includes a
sequence of st at e nodes that verify a customer’s age. These states include
components that take the user-supplied integer value, check it, and then output a text
string as appropriate. To start off the process, the askage state’s component requests
the user input then moves on to the checkAge state, whose AgeChecker component
validates the user input. Here, the dialog is at a juncture: its transi ti ons key defines
the bl ock or al | ow states. If the al | ow state is triggered, then the user can continue on.
The subsequent state definitions will track the user input to preserve the user’s context
until she completes her order. If the user input causes the AgeChecker component to
trigger the bl ock action, however, then conversation ends for the under-age user
because the dialog transitions to the under age state.

7-2

Chapter 7
How Do | Write Dialog Flows in OBotML?

met adat a:

pl atfornVersion: "1.1"

main: true

name: "PizzaBot"

context:

vari abl es:

size: "PizzaSize"
type: "PizzaType"
crust: "PizzaCrust"
cheese: "CheeseType"
i Result: "nlpresult”

askage:
conmponent: "System Qut put"
properties:
text: "How old are you?"
transitions: {}
checkage:
conponent: "AgeChecker"
properties:
m nAge: 18
transitions:
actions:
allow "crust"
bl ock: "underage"
crust:
conponent: "System List"
properties:
options: "Thick, Thin, Stuffed, Pan"
pronpt: "What crust do you want for your Pizza?"
variable: "crust"
transitions: {}

under age:
conmponent: "System Qut put"
properties:
text: "You are too young to order a pizza"
transitions:
return: "underage"

How Do | Write Dialog Flows in OBotML?

OBotML uses a simple syntax for setting variables and defining states. Because it's a
variant of YAML, keep the YAML spacing conventions in mind when you define the
dialog flow. You don’t need to start from scratch. Instead, you can use the Echo bot's
dialog flow definition as a basic template.

ORACLE' 7.3

Chapter 7
How Do | Write Dialog Flows in OBotML?

TestBot ¥

I\g + components K2 Theme Default v
1 #metadata: information about the flow
E 2 # platformVersion: the version of the bots platform that this flow was written to work with
3 metadata:
4 platformversion: 1.6
5 main: true
6 name: TestBot
7 #context: Define the variables which will used throughout the dialog flow here.
8 context:

o variables:

16 #The syntax for defining the variables is variablename: "variableType".

11 & The "variableType" can be defined as a primitive type ("int", "string”, "boolean"), "list", or an entity
name. A variable can also hold the results returned by the Intent Engine. For these variables, the

8o “variableType" must be "nlpresult” (for example, iResult: "nlpresult”).
m 12 greeting: "string”
13 name: "string”

14 #states is where you can define the various states within your flow.
15 # The syntax for defining a state is

16 # statename:

17 # component:Specify the component you want to use. This can be either a Built-In or custom compenent.

18 properties:
19 propertyl: "value” (These are the properties to the specified component
20 transitions: You can specify one of the following four

#
#
#
21 # next: Specify the state you want to execute next after this state. By default it will execute the state

specified after this

#

#

22 error: Specify the state you want to execute in case the component encounters any error in execution.
23 actions: You can handle various actions returned by the components here the syntax is actionName:
"statename”
24/ actionl: statel
25 # return: "done” You can exit the flow using the return statement
26
27 states:
25 askGreeting:
29 component: "System.List"
30 propertie
31 options: "Hello!, Ola!, Vannakam!, Namaste!"
prompt: "Hi there! what would you like me to echo back?"

variable: "greeting"
2 ackiama-

Along with the metadata definition at the top of the dialog, the Echo bot already has
the context and st at es nodes, so you can just delete the existing boilerplate and add
your own content. To help you build state definitions that are syntactically sound, use
the component templates in the Add Components menu. See Dialog Flow Syntax for
tips on setting variables and defining states.

© Important:

Click Validate and check the logger widow (E) as you write your dialog
flow.

< TestBot ¥

n ‘We found some problems with the TestBot bot. Open the logger window to see mare details

1 metadata:
platfornversion: 1.6

6
7 greeting: "string”
s name: “string"
o states:
16 askGreeting:
1 component: "Systen. List"
° 12 properties:
1] 13 Hello!, Ola!, Vannakam!, Namaste!™
= 1a i there! What would you like me to echo back?"
15 variable: "greeting”
16
17 “System. Text"
18
19 what is your name?”
20 variable: "name"
Description Source
[x] (11:5) The flow is not valid yam! type. TestBot

ORACLE 7-4

Dialog Flow Syntax

ORACLE

Chapter 7
How Do | Write Dialog Flows in OBotML?

How Do I? Use this

Example OBotML Markup

Within the cont ext
node, use the following
syntax:

vari abl enane:

"vari abl eType"

Set variables that
persist the context
across the entire
dialog flow?

Define an error Define the
handler for your bot? defaul t Transiti ons
node.

Within the cont ext
node, define a variable
that names the

nl presult entity. As its
name implies ("nip"
stands for Natural
Language Processing),
this entity extracts the
intent resolved by the
Intent Engine. Nearly all
of the reference bots
declare nl presul t
variables.

Define a variable
that holds the value
for the resolved
intent?

main: true

name: "Financi al Bot Mai nFl ow'

cont ext :

vari abl es:

account Type: "Account Type"
txnType: "TransactionType"
txnSel ector: "TransactionSel ector"
t oAccount: "ToAccount"
spendi ngCat egory:

" TrackSpendi ngCat egor y"
paynent Amount: "string"

You can define variables as entities (like
Account Type and ToAccount and as primitives
(paynment Amount: “string”).

context:
variabl es:
iresult: "nlpresult"
defaul t Transi tions:
next: "InplicitTransitionDetected"
error: "MErrorState”
actions:
unexpect edActi on:
"Handl eUnexpect edActi on"

See Conifguring the Dialog Flow for
Unexpected Actions.

main: true
nane: "Financi al Bot Mai nFl ow'
cont ext :
vari abl es:
i Resul't: "nlpresult”

7-5

ORACLE

Chapter 7
How Do | Write Dialog Flows in OBotML?

How Do I? Use this Example OBotML Markup

Control the dialog Typically (though not In the following snippet from the FinancialBot

flow based on the always), you'd define an dialog flow, the Syst em | nt ent component

user input? nl presult variable instructs the Dialog Engine to proceed based
property for the on the value returned by its nl presul t variable
System I ntent (i Resul t). As described in The Dialog Flow

Equip my bot to
handle unresolved
intents?

component that returns ~ Structure, you can declare an nl presul t

the result from the Intent variable in the flow’s cont ext node to hold the

Engine. See resolved intent (i Resul t: "nl presul t”). The

System.Intent. potential outcome, defined by the states
named in the act i ons node, is also predicated
on the second property defined for this
component, confi denceThreshol d. You can
set this optional property against the
probabilistic score given by the Intent Engine.
This definition for the Syst em | nt ent
component tells the Dialog Engine to move on
to the next state that matches a resolved intent
whose accuracy rate at parsing user data is at
least 40% or higher (confi denceThreshol d:
0.4). See The confidenceThreshold Property.

intent:
component: "SystemIntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
Bal ances: "startBal ances"
Transactions: "startTxns"
Send Money: "startPayments"
Track Spending:
"startTrackSpendi ng"

Define a state for the
System I ntent’s
unr esol vedl nt ent

unresol vedl ntent: "unresol ved"

unresol ved:

action. " "
. component: " System Qut put
unresol vedl ntent is an properties:

intent that we provide for
you to track the
messages that couldn’t
be resolved within the
minimum confidence
threshold. See Running
Failure Reports to find
out how to filter a quality
report using this intent.

text: "Sorry | don't understand
that question!"
transitions:
return: "unresol ved"

7-6

Chapter 7
How Do | Write Dialog Flows in OBotML?

How Do I? Use this Example OBotML Markup

Enable components Use the . val ue property

. . . context:
to access variable in your expressions ($ vari abl es:
values? {crust.val ue}). To size: "PizzaS ze"
substitute a default confirm "YES NO'
value, use $ -
{vari abl e. val ue! confirnstate:
\"default value\"} . conponent: "System List"
For example, t hi ck is properties:
the default value in $ options: "Yes, No"
{crust.val ue!'\"thick pronpt: "You ordered a $
\"}. {size.value} pizza. |s this correct?"

variable: "confirnf

Use the Apache FreeMarker default operator
(${variabl e.val ue!\"defaul t value\"}) if
it's likely that a null value will be returned for a
variable. You can use this operator wherever
you define variable replacement in your flow,
like the val ue definitions for variables used by
system and custom components, or the
variables that name states in atransitions
definition. See Defining Value Expressions for
the System.Output Component.

Save user values for Within a state definition,

return visits? add a variable definition
with a user. prefix. See
Defining User-Scoped

checkl ast order:
conponent: "System Condi ti onExi sts"
properties:
variable: "user.|astpizza"

Variables.
To find out more about user variables, see the
dialog flow for the PizzaBotWithMemory
reference bot.
Slot values? Use the

askBal ancesAccount Type:
conponent: "System List"
properties:

System Set Vari abl e,
System Li st , and

System Text prompt: “For which account do you
components. Whenthe - your bal ance?"
System Set Vari abl e options: "${ ACCOUNT TYPES. val ue}"

component can’t access
a value, use
components

System Li st and
System Text to prompt
user input. See
System.SetVariable.

variabl e: "account Type"
nl pResul t Variable: "iResult"
transitions: {}

EX('jt a ddlafg flow Use ar et ur n transition. ori nt Bal ance:
zgss?c?n fhe user corrpone_nt: "Bal anceRetrieval "
' properties:
account Type: "${account Type. val ue}"
transitions:

return: "printBal ance"

ORACLE 7.7

Chapter 7
How Do | Write Dialog Flows in OBotML?

Flow Navigation

You can set the Dialog Engine on a specific path within the dialog flow by setting the
transitions property for a state. Transitions describe how the dialog forks when variable
values are either set or not set. They allow you to plot the typical route through the
conversation (the “happy” flow) and set alternate routes that accommodate missing
values or unpredictable user behavior.

The transition definition depends on your flow sequence and on the component.

To do this... ...Use this transition

Set a default sequence in the dialog flow. To enable the Dialog Engine to move to the
next state in the dialog, use an empty
transition (transi tions: {})oromita
transitions definition altogether.

Specify the next state to be executed. Setting a next transition (next: “statenane”),
tells the Dialog Engine to jump to the state
named by the next key.

Terminate the conversation. Defining a r et ur n transition terminates the
user session at the state defined for the
return key:
done:

conmponent: "System Qut put"
properties:

text: "Your ${size.value} $
{type.value} Pizza is onits way."
transitions:
return: "done"

Trigger conditional actions. Define the acti ons keys to trigger the
navigation to a specific state or an action
belonging to a custom component that's
executed by a backend service. If you don't
define any action keys, then the Dialog Engine
relies on the default transition or a next
transition (if one exists). See Transitions to
find out about the specific actions that you can
define for the user interface components.

Handle component errors. Setan error transition in case an error occurs
when the component executes. The Dialog
Engine will jump to the state that you define for
the error key. If you don’t set an error
transition, then the bot outputs the Oops! I'm
encountering a spot of trouble message and
terminates the session.

Conifguring the Dialog Flow for Unexpected Actions

When designing your dialog flow, you typically start modeling the “happy” flow, the
path that the user is most likely to follow.

ORACLE 7-8

ORACLE

Chapter 7
How Do | Write Dialog Flows in OBotML?

Scenario

Solution

Instead of tapping buttons, the user responds
inappropriately in this situation by entering
text.

To enable your bot to handle this gracefully,
route to a state where the System | nt ent
component can resolve the text input, like

t ext Recei ved: | ntent in the following snippet
from the CrcPizzaBot:

ShowMenu:
conponent: System ConmonResponse
properties:
met adat a:
processUser Message: true
transitions:
actions:
pizza: OrderPizza
pasta: OrderPasta
t ext Recei ved: Intent

7-9

ORACLE

Chapter 7
How Do | Write Dialog Flows in OBotML?

Scenario

Solution

Users scroll back up to an earlier message
and tap its options, even though they're
expected to tap the buttons in the current
response.

Adding an unexpect edAct i on transition to all
of the states that process a user message
handles situations where a user taps the
button belonging to an older message,
because this action tells the Dialog Engine to
transition to a single state that handles all of
the unexpected actions, such as the
Handl eUnexpect edAct i on state in the OBotML
shippet above. You can use different
approaches to create this state:
e You can use the Syst em Qut put or
Syst em ComrmonResponse component that
outputs a message like “Sorry, this option
is no longer available” along with a
return: “done” transition to invalidate
the session so that the user can start
over. For example:

Act i onNoLonger Avai | abl e:
component: " System Qut put”
properties:
text: "Sorry, this actionis
no | onger avail abl e"
transitions:
return: "done"

e Using a System Swi t ch component, you
can enable your bot to honor some of the
request actions by transitioning to another
state.

Note:

Depending on
the factors
involved in
honoring the
request, you may
need to create a
custom
component to
implement the
routing.

Accessing Variable Values with Apache FreeMarker FTL

You can use Apache FreeMarker Template Language (FTL) to access variable values.
The basic syntax for these value expressions is ${...}. You can incorporate FTL into
the property definitions for various components, such as System.SetVariable and

System.Output .

7-10

HTTPS://FREEMARKER.APACHE.ORG/

Note:

Chapter 7
How Do | Write Dialog Flows in OBotML?

As illustrated by the text and render ed metadata properties of the
System.CommonResponse, you can also define the expressions using the if

directive (<#i f>. .. </ #if>).

To do this...

...Do this

ORACLE

Read values from context variables.

Read values from context variables defined by
complex entities.

Create a comma-delimited list of entity values
that display as buttons that are specified by
the opti ons property.

Add the val ue property using dot notation:

${vari abl enane. val ue}

For example:

${ WEmai | . val ue}

Use dot notation to add an additional property:

${vari abl enane. val ue. property}

For example:

${ M/Money. val ue. t ot al Currency}

If you use an expression like ${ MyMoney} in a
Syst em Qut put component, you will see all the
properties of the referenced currency JSON
object.

Use this syntax:

${vari abl enane. t ype. enunval ues}

For example, for a list value entity like
AccountType (whose savings, checking, and
credit card values are constant and predefined
for the user), you'd store these values in the
account Type variable using $

{account Type. t ype. enunVal ues}:

accounts:
conponent: "System List"
properties:
options: "$

{account Type. t ype. enunVal ues}"
pronpt: "Wich account ?"
vari abl e: "account Type"

transitions: {}

When the user taps one the buttons, the bot

stores the corresponding value in the
account Type variable.

7-11

Chapter 7
How Do | Write Dialog Flows in OBotML?

To do this... ...Do this

Use built-ins for strings, arrays (sequences), Follow the val ue property with a question
numbers, and dates. See Apache FreeMarker mark (?) and the operation name:

Reference.))
${variabl e.val ue?ftl _function}

e string operations:

t oLower case:
conponent: "System Set Vari abl e"
properties:
variabl e: "userstring"
val ue: "${userstring.val ue?
| ower _case}"
transitions: {}

e array operations:

set ArrayCount :
conponent: "System Set Vari abl e"
properties:
variable: "count”
val ue: "${person.val ue?si ze?
nunber}"

e number operations:

${negati veVal ue. val ue?round}
e time and date operations:

pri nt Dat eFound:
conmponent: "System Qut put"
properties:
text: "Date found is: $
{theDat e. val ue. dat e?l ong?
number _to_dat e?string. short}"

Concatenate FTL expressions. String the operations together using a question
mark (?):

${variabl e.val ue?ftl _functionl?
ftl_function2}

User-Scoped Variables

ORACLE

When the conversation ends, the variable values that were set from the user input are
destroyed. With these values gone, your bot users must resort to retracing their steps
every time they return to your bot. You can spare your users this effort by defining

user-scope variables in the dialog flow. Your bot can use these variables, which store
the user input from previous sessions, to quickly step users through the conversation.

Unlike the session-wide variables that you declare in the context node at the start of
the flow, you do not need to declare user-scoped. Any reference to a variable name
that is prefixed with user. is treated as a user-scoped variable. As shown in the
following dialog flow excerpt from the PizzaBotWithMemory dialog flow, these
variables are identified by the user. prefix (such as user. | astsi ze in the checkl ast or der
state). The user. variable persists the user ID. That ID is channel-specific, so while you
can return to a conversation, or skip through an order using your prior entries on bots
that run on the same channel, you can't do this across different channels like
Facebook Messenger and Amazon Alexa.

7-12

https://freemarker.apache.org/docs/ref_builtins.html

met adat a:
pl atfornVersion: "1.0"
main: true
name: "PizzaBot"
par anet ers:
age: 18
context:
vari abl es:
size: "PizzaSi ze"
type: "PizzaType"
crust: "PizzaCrust"
i Result: "nlpresult”
saneAsLast: "YesNo"
states:
intent:
conponent: "System |ntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
OrderPizza: "checkl astorder”
Cancel Pi zza: "cancel order"

unresol vedl ntent: "unresol ved"
checkl ast or der:
conponent: "System Conditi onExi sts"
properties:
vari abl e:
transitions:
actions:
exists: "lastorderpronpt”
notexists: "resol vesize"
| ast or der pronpt :
conponent: "System List"
properties:
options: "Yes, No"
pronpt: "Sanme pizza as |ast tinme?"
vari abl e: "saneAslLast"
transitions: {}
renenber choi ce:
conponent: "System Conditi onEqual s"
properties:
vari abl e: "saneAsLast"
val ue: "No"
transitions:
actions:
equal : "resol vesi ze"
notequal : "l oad"

"user. | astsize"

| oad:
conponent: "System CopyVari abl es"
properties:
from "user.lastsize,user.lasttype, user
to: "size, type,crust”
transitions: {}

ORACLE

Chapter 7
How Do | Write Dialog Flows in OBotML?

.lastcrust”

7-13

Chapter 7
How Do | Write Dialog Flows in OBotML?

Defining User-Scoped Variables

As with other variable definitions in your flow, you enable the components to access
the value through value expressions like “ ${user . age. val ue}". Using these expressions
with the following built-in components, can among other things, set a value to the
stored user value. See Built-In Components: Properties, Transitions, and Usage.

Component Uses

System.SetVariable Sets the stored user value.

System.ResetVariables Resets a stored user value.

System.CopyVariables Copies in the stored user value.

System.Output Outputs the stored user value as text.

System.ConditionExists Checks if the user-scoped variable is already
in context.

System.ConditionEquals Checks for the user-scoped variable.

System.Switch Uses the stored value to switch from one state
to another.

Getting the User Context

ORACLE

The profil e property enables your bot to recognize a user's name, local, and local
time. For example:

G eeting:
conponent: System CQut put
transitions:
next: Intent
properties:
text: "Hello ${profile.firstNane}, how can | help you today?"

7-14

Chapter 7
How Do | Write Dialog Flows in OBotML?

. 3:08 PM -

Oracle Sales Cloud >
< Home (4) racle Sales Chou Manage

N

Hello John, how can | help you

@i‘ today? ®

Oracle Sales Cloud

o

Use these pre-defined variables to output context-specific for the bot user.

To do this... Do this

Get the first name of the bot user. ${profile.firstName}
Get the last name of the bot user. ${profile.lastNane}
Get the bot user’s locale. ${profile.local e}

Get the user’s time zone (offset in seconds). ${profile.tinmezoneO fset}

Test the Dialog Flow

Once you have a valid dialog flow, you can test your bot as a whole. Be sure to
validate the syntax before you test the bot.

To test the dialog flow:
1. Click Test (13).
2. Click Bot.

3. Enter an utterance and then click Send. Click & to test an attachment response
rendered by the System CommonResponse component.

ORACLE 7-15

Localization

Even though NLP support is in English, you can still add multi-language support for
your bot. Using resource bundles and autotranslation services, your bot can
automatically translate the users messages that it receives and its own prompts and
replies to and from English.

Resource Bundles

Resource bundles allow you to localize your bot based on the language set for
messaging channel currently in use. They not only allow your bot to output messages
in the user’s language, but in the user’s dialect as well. When you don’t want to rely on
the text provided by the translation service, and instead want to control the wording for
your bot’s responses in one or several languages, you can opt for resource bundles.

Create Resource Bundle

ORACLE

You define a single bundle for each bot that's made up of various keys that identify the
output text that needs to be translated.

To create a resource bundle:

1. Click Resource Bundle in the left navbar (@).
2. Click Add Bundle.

3. Enter the key and the and its text . For example, to localize the user prompt, How
old are you?, you'd enter HowOlId in the Key field and then How old are you? in
the Text field .

8-1

Chapter 8
Resource Bundles

Create Entry

Language *
default

*

Key
HowOld

*

Text

How old are you?

Create Entry

4. Click Create Entry.

5. By default, the language for your first key is English. To add a foreign language
version of the string, click. Add Language.

View By Key b

B
-

HowOld

HowOld
o Filter by Key or Text

Page 1 of1 (1 of1items) Language Message
default Hi {0}, How old are you? rd
en-AU G'day, (0} What is your age? £ X
fr Quel dge avez-vous? £ %
zh-CN ¥RET (0} 4715 ? s %

6. Complete the Create Entry dialog:

* Language—Add an IETF BCP 47 language tag like fr for French, de for
German, or en- US for U.S. English.

* Text—The output string. For example, for a French translation (fr) of the
HowOld key, you'd add a string like quel &ge avez-vous ?

ORACLE" 8-2

Chapter 8
Resource Bundles

Note:

If the bot can’'t match the language set for the browser with a
language tag defined in the bundle, it defaults to a less-specific tag
(if one is available). For example, it uses fr (a subtag) if the bundle
has no entry for fr- CA. If none of the entries match the browser’s
language, the bot uses the default entry, English. For more
information on this fallback to the most generic entry, see Resource
Bundle Entry Resolution

Create Entry

&

Key
HowOid

Language "

fr -

*

Text

Quel age avez-vous ?

Create Entry

7. If you want to translate other strings, click Add Key to create another entry in the
resource bundle.

8. Reference the resource bundle in the in the dialog flow.

Q Tip:

You can define the entity prompts as a resource bundle. See Create
Entities.

Reference Resource Bundles in the Dialog Flow

To set the output for a built-in component, you need to add a resource bundle context
variable and then reference both it and the message key. In the following OBotML
shippet for a pizza bot, the resource bundle is declared as the variable, rb, in the

ORACLE 8-3

ORACLE

Chapter 8
Resource Bundles

context section. Further down, value expressions define the text property for the
System Qut put components reference the rb variable and the keys, hat Type and
OnTheWay. The first outputs a simple string and the other uses dynamic values.

cont ext :
vari abl es:
rb: "resourcebundl e"

pi zzaType:
component: " System Qut put”
properties:
text: "${rb(' WatType'}" # rb refers to the variable, WhatType is the key to the
message in the resource bundle.
transitions: {}

done:
component: " System Qut put”
properties:
text: "${rb(' OnTheWay', si ze.val ue, type.val ue)}" # size.value and type.value are
the argunents for the ' OnTheWay' message code.
transitions:
return: "done"

For simple messages, you can also reference resource bundles using dot notation ($
{rb. Wat Type}).

Tip:

To test your resource bundles using the Tester, set your browser to another
language.

Enabling Complete Translation When Using Resource Bundles

If you're returning the user’s language from the browser, then simply setting the
resource bundle variable and then referencing both it and the message key in an
output component is all you need to do. Keep in mind that using this approach requires
users to first enter something in English (like “Hello, Pizzabot!”). To start the session in
the user’s language, you need to enable the translation service for the bot and
configure the dialog flow accordingly. The following snippet shows this hybrid
approach, which enables your bot to detect the user’s language. After the input is
translated and the intent is resolved to English, the resource bundles handle the rest.
In the following snippet, the rb context variable is set, but in this PizzaBot, it's
accompanied by another variable called transl at ed. Because both the

Syst em Det ect Language and Syst em Transl| at el nput components are positioned before
the System I ntent component, they enable the initial user input to be translated into
English before it can be used by the System I ntent component and resolved to one of
the intents.

met adat a:
pl at fornVersion: "1.0"
main: true
name: "PizzaBot"
par aneters:
age: 18
cont ext:

8-4

Chapter 8
Autotranslation

vari abl es:

size: "PizzaSi ze"

type: "PizzaType"

crust: "PizzaCrust"

i Result: "nlpresult”

rb: "resourcebundl e"

translated: "string" # holds the user's text that's translated into English.

states:

add DetectLanguage and Transl at el nput conponents
detect:

component: " System Det ect Language"

properties: {}

transitions: {}

translate the user text and store it in the translated variable
transl ate:
conponent: "System Transl at el nput "
properties:
variable: "transl ated"
transitions: {}

intent:
conponent: "System |ntent"
properties:
variable: "iResult"
sourceVariable: "translated" # this variable now would holds the translated
text
confi denceThreshol d: 0.4
transitions:
actions:
OrderPizza: "resol vesi ze"
Cancel Pi zza: "cancel order"
unresol vedl ntent: "unresol ved"

Resource Bundle Entry Resolution

To find out the users language, you can add a ${profile.local e} to the dialog flow
definition. Bots will look up the right message based on the user’s locale. For example,
if the ${profile.local e} returns en- AU sydney as the value for the | anguageTag variable
that's set in the context section, Bots returns the bundle entry by first searching for an
exact match. If it can’t return a match, it broadens its search. In this case, Bots does
the following to localize the output as Australian English:

1. Searches the bundle using a language-country-variant criteria. In this case, it
searches for en- AU- sydney.

2. Ifit can't find that, it searches the bundle by language and country (en- AU).
3. Failing that, it broadens its search for language (en).

4. If it can’t locate any entries, then it returns the default language, which is English

(en).

Autotranslation

Autotranslation uses services like Microsoft Translator and the Google Translation API
to enable the built-in components like Syst em Text and Syst em Qut put to output their
prompts in the user’s language.

ORACLE 8-5

Chapter 8
Autotranslation

When a user enters a non-English request or response, the translation service allows
the bot to convert this input to English. Once it's translated, the NLP engine can
resolve it to an intent and match the entities. Using both a translation service and an
OBotML definition that includes the System.DetectLanguage and
System.Translatelnput components, you can enable your bot to automatically detect
the user’s language and translate your bot’'s messages.

Enable Autotranslation

To enable your bot to use autotranslate:

1. First, configure a translation service for your instance of Intelligent Bots. To do
this, enter the URL and Authorization token for the Microsoft Translator service or
the Google Translation API in the Translation Services dialog.

Translation Services X

(Create Service

Service Type *

Google v

Base URL *

https:/itransiation.googleapis.com/language/translate/vz

Authorization Token *
AlzaSyCv2TjJcipFfH1jScBIAyvR

» Optional HTTP Headers

Save

Refer to the documentation for Microsoft Translator and Google Translation API to
find out how to get the URL and access token.

You can open this dialog from the menu on the landing page or from the Settings
page.

|

Translation Services

2. Next, click Settings in the left navbar and then choose a translation service for
your bot.

ORACLE" 8-6

Chapter 8
Autotranslation

General Channels

" Name myBot
Description
@ Training Model Trainer Ht hd
Translation Service None A

3. Finally, configure the dialog flow:

a.

ORACLE

Add aut oTransl ate: "bool ean" to the context node. This variable is common to
all bots (or at least the ones that use translation services). As such, you can’t
change its name or define it as string, another type of primitive, or an entity.
You can override the autotranslated output generated for the System.Output,
System.Text, and System.List components when you set their transl at e
property to f al se.

Note:

Do not set the aut oTr ansl at e variable to t r ue if you're translating text
using a resource bundle.

Generally, you'd first add a state with a System I nt ent component at the
beginning of the st at es node. But since the NLP engine can only recognize
English, you need to begin the states node with a set of language-specific
components and variables to translate the user input so that it can be resolved
by System I ntent component. The first of these states uses the

System Set Vari abl e component. As shown in the following snippet, its vari abl e
property is defined by the aut oTr ansl| at e context variable. To enable
translation, it's set to tr ue.

set AutoTransl ate:
conponent: "System Set Vari abl e"
properties:
variable: "autoTransl ate"
val ue: true
transitions: {}

Next, add the System.DetectLanguage component:

detect:
component: " System Det ect Language"
properties: {}
transitions: {}

Add the System.Translatelnput component:

transl ate:
component: "System Transl at el nput "
properties:

8-7

ORACLE

Chapter 8
Autotranslation

variable: "transl ated"
transitions: {}

Finally, add the System.Intent component. Set sour ceVari abl e to hold the
translated input.

intent:
conmponent: "SystemlIntent"
properties:
variable: "iResult"
sourceVariable: "translated" # this variable holds the English
translation of the user input.
confidenceThreshol d: 0.4

@ Important:

While the Add Components menu adds template state nodes for
these translation components, it doesn’t insert the aut oTr ansl at e:
“bool ean” variable into the cont ext node. You'll need to add it

yourself.

The following segment shows the PizzaBot equipped for autotranslation. Note that
along with the aut oTr ansl at e variable, this definition also includes a variable that
stores the translated output called transl ated (transl ated: “string”) in the context
node. The variable property for the System Transl at el nput component names this
component, as does the sourceVari abl e property for the System I nt ent component.

For example, the System Transl! at el nput component would store its English
translation (“I want pizza”) in this variable when a user enters “je voudrais
commander une pizza.” Because sour ceVari abl e names transl at ed, it holds “I

want pizza,” which the System I nt ent component can resolve to one of the intents.

met adat a:
pl at f or mersi on: "1.0"
main: true
name: "AutoTransl atePi zzaBot"
par anet ers:
age: 18
cont ext :
vari abl es:
size: "PizzaSi ze"
type: "PizzaType"
crust: "PizzaCrust"
i Result: "nlpresult”
autoTransl ate: "bool ean"
translated: "string"
states:
set Aut oTransl at e:
conponent: "System Set Vari abl e"

properties:
variable: "autoTransl ate"
val ue: true
transitions: {}
detect:

conmponent: "System Det ect Language
properties: {}
transitions: {}

transl ate:
conponent: "System Transl at el nput
properties:

8-8

ORACLE

variable: "transl ated"
transitions: {}
intent:
conponent: "System |ntent"
properties:
variable: "iResult"
sourceVariable: "translated"
confidenceThreshol d: 0.4

Chapter 8
Autotranslation

8-9

Components

Components give your bot the functionality that lets it interact with users and carry out
their requests.

Each state within your flow calls a component to perform actions that can range from
basic interactions like taking user input and outputting response text to some service-
specific action like fulfilling an order or booking a flight. We provide a set of built-in
components that support basic actions like setting variables, allowing OAuth, and
enabling user input. If your bot calls for a specific action that's outside of these
functions, you'll need to use a custom component. These components let your bot call
REST APIs that implement business logic and channel-specific rendering.

The Custom Component Service

ORACLE

Configuring a custom component service makes custom components available to your
bot's dialog flow.

A custom component service defines name of the custom component service
implementation that provides the bot with its custom components. This configuration
also includes that URL that invokes this service and the basic authentication settings
that allow the bot to access the service itself. Each bot can have one or more of these
custom component services configured for it. By configuring a custom component
service, you allow Bots to query the service for its metadata and display this
information in the custom components registry.

Note:

Every custom component that you've declared in your OBotML definition
needs a corresponding custom component service configuration. In other
words, your bot can’t work without this configuration, which allows Bots to
call the custom code service implementation that defines the components.

Refer to the components page (@) when you define the dialog to ensure
the component names and properties are correct.

< FinancialBot ¥

Mobile Cloud @

9-1

Chapter 9
Create a Service

Create a Service

The Custom Component Service authenticates the bot with the service using basic
auth. You can implement this on your authentication mechanism, or if you use the
node.js SDK, your bot can authenticate through a mobile backend. To create this
service:

1. Inthe left navbar, click Components (@).

2. Click Add Service to open the Create Service dialog.

Create Service X

* Name CustomComponent

Description Qaptic

® Mobile Cloud Other

@ " BackendID adikeflkdajf-alkfdjlkdflk-alkdsjfld
@ * Metadata URL https:/fexample.com:7777/mobile/CustomCompanent/components

Use anonymous access

Q- Key grd

» Optional HTTP Headers @

3. Add the name for the custom component service and an optional description.
4. Choose an authentication option:

* Mobile Cloud—For authentication handled by a backend in OMCe.
This is the default setting. If your service is handled by a backend, then you
need to reference the Settings page for the backend that hosts the API that
implements the Custom Component Service. Backend Authentication and
Connection Info in Developing Applications with Oracle Mobile Cloud
Enterprise Describes this page.

— ORACLE Mobile Cloud Service DEVELOPMENTv ragnarsmith@example.com ¥

APPLICATIONS > MOBILE BACKENDS > mymobilebackend 1.0

mymobilebackend Jick noble backen tior
Diagnostics 4 Click to add a mobile backend description

Setti
@ enas Access Keys @
O cen HTTP Basic () Refresn | Revoke OAuth Consumer (J Reffesh | Revoke
jents
Mobile Backend 1D 654c8cfe-1e11-4687-91¢1-104277 Client ID €9811330-6338-4971-aad8-40a435eD
x e Anonymous Key UFJUTUVIREVDRVBUSUNPTISNTOJJTEVIQUSPTI Client Secret Show
NT1VTXOFQUEIEONZrZW.xUmwu Enable Single Sign-on @
= S Environment URLs @
Base URL hitp:/fexample.com:7070
g users OAuth Token Endpoint hitp://example.com:7070/oam/oauth2/tokens
Social Login @

B3 notiications
o Facebook

Bi A Poicies

ORACLE" 9-2

Chapter 9
How Do Custom Components Work?

Option Description

Backend ID The unique identifier assigned to a mobile
backend. This ID is passed in the REST
header of every call made from the bot.

MetadataURL The URL that points to the endpoint of the
components service. This URL points to
the root, which means it should always be
appended with / conponent s.

Use Anonymous Access Select this option if the component service
allows anonymous login. If you choose
this option, enter the Anonymous Key, a
unique string that allows your app to
access anonymous APIs without sending
an encoded username and password
combination. The Anonymous Access Key
is passed to instead.

Tip: Click Show to reveal the Anonymous
Key in the Settings page.

If the component service requires a login
(meaning no anonymous access), enter
the username and password.

» Other—For non-backend authentication. For this option, define the following

options:

Option Description

Metadata URL The URL that points to the endpoint of the
components service. This URL points to
the root, which means it should always be
appended with / conponent s.

Username The username for the service.

Password The service’s password.

5. If the service requires specific parameters, click Add HTTP Header and then
define the key-value pairs for the headers.

6. Click Create.

The Components page is populated with the component name and properties,
which you can then reference in the dialog flow definition. Remember: unlike the
built-in components, custom components do not begin with System For example:

checkage:
conponent: "AgeChecker"
properties:
m nAge: 18
transitions:
actions:
allow "crust"
bl ock: "underage"

How Do Custom Components Work?

Your bot uses custom components when it needs to return data, execute some kind of
business logic, or render channel-specific Ul components like the carousel in
Facebook Messenger.

ORACLE 9-3

Chapter 9
How Do Custom Components Work?

Like the built-in components, the custom components are re-usable units of work that
you define within each state node of your dialog flow. But unlike the built-in
components, custom components perform actions that are specific to your bot. They
execute functions that the system components can’t. While the FinancialBot uses
system components for generic tasks like setting variables and outputting text, it uses
custom components for the operations that are unique to banking transactions, such
as returning account balances (Bal anceRet ri eval in the following state node,

pri nt Bal ance).

print Bal ance:
conponent: "Bal anceRetrieval "
properties:
account Type: "${account Type. val ue}"
transitions:
return: "printBal ance"

Custom components don’t reside within Bots. Their functionality is provided through
backend services that are accessed through calls made to, and returned from, a REST
service called the Component Service. As the Dialog Engine enters a state in the
dialog flow, it assesses the component. When it encounters one of the built-in
components (noted by System), it executes one of the generic tasks described in Built-
In Components: Properties, Transitions, and Usage. When the Dialog Engine
discovers a custom component, however, it calls the Component Service, which hosts
one or more custom components.

The Component Service is like a shim. It first finds and then invokes the custom
component on behalf of the Dialog Engine. When a custom component is invoked, it
can pass input parameters to a backend service and return the result. The Dialog
Engine then resumes, moving on to the next sate in the dialog flow (or to the state
dictated by the action described in the returned JSON payload).

The Component Service assists the bot through two methods: GET and POST. The
GET method returns the metadata for all of the components hosted by the Component
Service. This is a design time call, one that returns the names of the components
along with their properties and actions that you include in your dialog flow definition. At
runtime, the POST method invokes the component named in the state definition.

The JSON payload of the call made by the Dialog Engine includes input parameters,
variable values, user-level context, and the user's message text. When the component
gets this input from the Component Service, it mutates the variable values, and then
returns the call. The Dialog Engine parses the returned payload and proceeds.

The Component Service

ORACLE

The Component Service doesn’t reside within Bots, but is instead hosted in a separate
Node container. Because the Component Service is a REST service, you can
implement using any language.

As pictured here, the Node container can be part of OMCE, but it can be part of any
other REST infrastructure. If you opt for OMCE as the container for your custom
components, you can integrate them with remote services using various connectors.
Because they are implemented as custom code APIs, they can access the OMCE
platform APIs (such as the Analytics API) through the OMCE SDK. There’s another
advantage to implementing the Component Service in OMCE: you can get it up and
running with minimal coding using the Bots SDK because it provides you with a starter
application that gives you everything you need. To find out about the artifacts included
in the SDK, see How Do | Implement the Component Service in OMCe?.

9-4

The Shell

The Registry

ORACLE

Chapter 9
How Do Custom Components Work?

Note:

You can still integrate them with remote services if you use another Node
container, but keep in mind that direct REST calls can give rise to additional
concerns and tasks. With no backend to manage the connection, for
example, you'll need to update the code whenever the connection changes.

Bots Node Container
(OMCE)
Message
Model
Dialog Engine POST/components/component2 \L component1
POST
s - . = SHELL - component2
l "\ Component Service ’]‘ \ p——
&
SDK
Component GET/components 1\
Metadata %ﬁ_

Registry

The Shell routes the GET and POST requests. It produces a list of components in
response to the GET call made by Bots when you register a Component Service. The
Shell also invokes the component using the component name that's appended to the
POST call (POST uri/ conponent s/ { Conponent Nane}). To respond to these requests, the
Shell component references a file in the Registry component that maps the component
names to their corresponding JavaScript implementation files.

The Registry component maps each component to its implementation.

Within the Regi stry. s file, a JSON object definition surfaces the components to the
Shell. Each component is described by a name-value pair in which the name is the
name of the component (like ‘ Bal ance Retrieval’ in the following import statement)
and the value is a return function with a reference to the JavaScript module location
relative to the Regi stry. s file (/). In this snippet, the three components,
BalanceRetrieval, TrackSpending, and Payments are custom components, each of
which map to a separate JavaScript module. The requi re function includes these
separate modules in the Regi stry. | s file.

"use strict';
modul e. exports = {

" Bal anceRetrieval':

9-5

Chapter 9
How Do Custom Components Work?

require('./banking/bal ance_retrieval'),

" TrackSpending':
require('./banking/track_spending'),

" Paynments':
require('./banking/ payments')}

Tip:

Declare strict mode (‘ use strict') at the beginning of the Regi stry.js file to
safeguard against the inadvertent creation of global variables from erroneous
user input. The strict mode improves error checking by throwing exceptions
for errors that would otherwise occur silently, like values set on a read-only

property.

Because the Shel | . j s component assumes that it shares the same file location as the
Registry.js , the Shell.js file uses the following import statement:

var registry = require('./registry');
Remember that you don’t need to edit the Shel | . j s file. You just need to make sure

that it's in the same directory with the Regi stry. j s module (and if you're using , the
SDK. j s module as well).

Component Modules

ORACLE

Each component is written as JavaScript module. If you're writing one of these
modules, then you need to include two functions that mirror the GET and POST calls
in the Component Service REST contract: net adat a and i nvoke. You also need to
conclude the module with the callback function,done.

The net adat a function provides the component descriptions that you use when you
define your dialog flow. It includes a name (which must be unique), and the names and
types of the input parameters that it expects. It also includes the actions supported by
the component. For example:

metadata: () => ({
"nane": "helloWrld",
"properties": {
“properties": {
"nane": {
"type": "string",
"required": false"
}
I3
"supportedActions": ["nameFound", "nameNotFound"]

b,

The i nvoke function executes the REST call. It includes two arguments: conver sati on,
which is a reference to the SDK and done, a callback invoked by the component when
it has finished processing. The done function tells the Shell to create the component’s
response payload and send it back to the bot.

9-6

The SDK

ORACLE

Chapter 9
How Do Custom Components Work?

© Important:

Always include the done() callback at the end of each component. The
component can’t send its response without it and as a result, the bot will time
out.

modul e. exports = {
metadata: () => (

{
"name": "Bal anceRetrieval ", },
"properties": {
"account Type": { "type": "string", "required": true }
h
"supportedActions": []
}

I3

i nvoke: (conversation, done) => {
var account Type = conversation. properties().account Type;

var accounts = Account Servi ce. account (account Type);

done();

}
b

Along with the component name and properties that get returned during design time by
the i nvoke function, this code sample shows how the i nvoke function uses one of the
SDK'’s helper methods (conversati on. properti es) to retrieve the value of the

account Type from the payload of the POST request. With the value retrieved, the
custom code can use it to call connectors or other APIs running in OMCe.

Note:

The i nvoke function enables access to the OMCE platform APIs using the
conver sati on. Oracl eMobi | e object. To find out how to instrument the custom
component code to call the Analytics API

(conversati on. oracl eMbbi | e. anal yti cs. post Event), see Setting up the
PizzaBot Custom Component.

If you implement the Component Service with OMCe, you can also leverage the SDK,
whose helper methods enable the components to access the context of a bot’s request
messages, which can be comprised of elements that describe the variable values, the
language processing results, the extracted entities, and any input parameters that
have been defined for the component. The SDK also enables the components to
return a response to the bot.

9-7

Chapter 9
How Do Custom Components Work?

The Shell passes the SDK to the custom components with each call to the i nvoke
function. To access the SDK’s methods, the i nvoke function uses an argument called
conver sati on, which is automatically passed with each request along with the essential
done () callback that signals the Shell when the component has completed its work.

i nvoke: (conversation, done) => {

var listdata =
"itenl, iten2, itenB";

conversation.variable("listDatavar", |istdata);
conversation.transition();
conversation. keepturn(true);

done();

The Message Model

The Message Model is a utility class that creates and validates the message structure.
An instance of this class is instantiated with the payload that represents the message
so that the message can be parsed and validated.

" Note:

Version 1.1 of the Bots SDK lets you leverage the Conversation Message
Model (the CMM), a framework that defines various platform-agnostic
templates for the messages sent between the bot and its users. Not only
does the CMM allow your bot to output messages as loops of cards that
have actions configured for both the images and buttons that display within
each of them, it also gives your bot other capabilities as well, such displaying
context- specific messages and allowing users to share locations or upload
audio, video, file, or image attachments. The Bots SDK documentation
describes how you integrate the CMM into the code for your custom
components, the methods for different types of message formats, and how
you can upgrade your custom component service to use the CMM.

How Do | Implement the Component Service in OMCe?

ORACLE

While you can use the Shell and Registry components in any REST framework that
produces a JSON object from the incoming request, you can only use the SDK'’s
helper methods if you implement the Component Service in OMCe. To use the SDK
and get ready-made versions of the Shell and Registry, you need the Bots SDK.

Accessing the Bots SDK

You can get the Bots SDK (onte- hot s- sdk- <ver si on_nunber >. zi p) from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page. You can also
access this page by clicking Downloads in the left navbar.

After you unzip the file, open the api _i npl enent at i on folder. It contains the following
artifacts that you modify to build your service. It includes JavaScript files for the Shell,
Registry and the SDK (shel | .js, registry.js, and sdk. js). It also includes the
following:

9-8

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

ORACLE

Chapter 9
How Do Custom Components Work?

* nebots. j s—Contains the generic component logic. You copy and paste this into
your own component service.

e package. j son—Contains the node. j s module dependencies required for the
project’s package. j son file.

e nushots. raml —A template for creating the OMCe custom API.

Creating the Component Service in OMCe

You can find out more in Custom APIs in Developing Applications with Oracle Mobile
Cloud Enterprise, but the process in terms of the custom components is as follows:

1. Define the GET and POST endpoints—You can define these endpoints on your
own, or use the starter RAML template (ncebots. rant).

a. In OMCe, click New API.
b. Enter the API name, a description, and a short description.
c. Dragntebots.ran into the dialog and then click Create.

2. If you want to enable anonymous access, click Security in the left navbar and
then switch off Login Required.

3. Click Save.
4. Download the JavaScript scaffold:
a. Click Implementation in the left navabr.
b. Choose Download JavaScript Scaffold.
c. Unzip the scaffold file. This file contains the following:

e The component service file—This file, which is named after your API,
contains the REST endpoints defined for OMCe custom code APIs.

e package. j son—The project configuration file. It includes a list of module
dependencies.

5. Implement the Custom Component:

a. Within the scaffold file, add a directory with the SDK, Registry, MessageModel
and Shell modules.

" Note:

The Shell, Registry, MessageModel and SDK components must
reside within the same directory as the Component Service.

b. Implement the scaffold’s JavaScript to add the custom component logic. To do
this, you're going to replace most of the contents of the component service file
with those of the ntebot s. j s file from the Bots SDK:

i. Open the component service file in the JavaScript editor of your choice.

ii. Note the service. get function URI. It looks something like / mobi | e/ cust om
MyFi r st Conponent Ser vi ce/ conponent s.

iii. Delete all of the contents of the file except for the comments at the top of
the file.

9-9

ORACLE

Chapter 9
How Do Custom Components Work?

iv. Open the ntebots. j s file and then copy its contents to the component
service file.

v. Replace the value of const api URL = */nobi | e/ cust onf bot s/ conponent s’ ;
with the value of the servi ce. get function. For example, const api URL =
/[mobi | e/ cust oml MyFi r st Conponent Ser vi ce/ conponents’ ;.

vi. Point to the shel | .| s file. Because the component service file and the
directory containing the Bots SDK artifacts (which includes the shel | .js
file) are not located in the same folder, you need to modify the Shell
variable’s . / shel | parameter to reference the location of the shel | . j s file.
For example, if shel | . j s resides in a directory called j s, you would change
the default parameter from this:

var shell = require('./shell")();
to this:
var shell = require('./js/shell")();

vii. Save the file.

c. Edit the package. j son file in the scaffold file with the Bot SDK dependencies in
the package. j son file from the Bots SDK:

i. Open the Bots SDK'’s package. j son file in the text editor of your choice and
then copy and paste its dependenci es definition to a clipboard:

"dependenci es": {
"joi": "79.2.0"

b

ii. Inthe scaffold’s package. j son file, paste the definition on its own line, one
directly after the “mai n”: attribute.

Create the custom component module by creating a JavaScript file. This file
includes the net adat a and i nvoke functions described in Component Modules. The
scaffold for the file looks like this:

"use strict";

modul e. exports = {
metadata: () => (

{
"name": "sanple. hel | 0",
"properties": {
"name": { "type": "string", "required": true }
h
"supportedActions": []
}

),
i nvoke: (conversation, done) => {
const name = conversation. properties().name ?
conversation. properties().name : "'
conversation.reply({ text: "Hello "' + nane });
conversation.transition();
done();

b

Use the functions exposed by the SDK to allow interactions with the bot’s request
payload. See The SDK Helper Methods.

9-10

ORACLE

10.

11.

Chapter 9
How Do Custom Components Work?

© Important:

All custom component files must reside within the same directory. Also,
make sure that all of your component files all have the . s extension.

Edit the regi stry. s file with the name and location the component file.

Install the node modules.

Package the scaffold and upload the node project to OMCe.

Associating APIs with a Backend in Developing Applications with Oracle Mobile
Cloud Enterprise and then test your API.

Register the component service with Bots so that it can be discovered by the

Dialog Engine. To do this first click Components (@) in the left navbar and then
Add Service. Complete the dialog by adding a name, selecting Mobile Cloud,
and then by providing the following:

Backend ID—This value is generated when you create a mobile backend. It's
listed on the Settings page.

Metadata URL—The is custom APl URL, which is displayed in the Overview
panel of the API Designer when you click the GET method in the

@ Important:

Be sure to append this URL with / conponent s so that it can return the
component information in the Bot Builder's Components page.

The user name and password. If you selected Use anonymous Access, you
need to provide the Anonymous Key. This value is generated when you create
a backend. It's displayed on the Settings page for the backend that manages
your API.

You're now ready to add the custom components to your OBotML definition.

9-11

Channels

To introduce your bot to the users of these services, you need to configure a channel.

We provide a channel for Facebook Messenger and a generic channel called
Webhook that you can use for other messaging services. Your bots are limited to
messaging services; using one of our SDKs, you can integrate them in web pages, or
the Android and iOS messaging platforms.

Tip:

Check out the Developer Resources to find out about configuring other
channels and setting up different types of chat clients and the sample chat
server.

Your bot can run on any messaging service that supports webhooks, calls that allows
real-time messaging without polling. You don't need to implement a webhook to get
your bot running on Facebook Messenger: all you need to configure the Facebook
channel are the keys that are generated by both Facebook and Bots. Setting up the
Webhook channel for other messaging services require you to perform a few more
tasks in addition to the channel configuration, like setting up an HTTP server with a
webhook for sending and receiving your bot's messages.

Running Your Bot on Facebook Messenger

ORACLE

You'll need the following to configure the channel for Facebook Messenger:
e A Facebook Page

e A Facebook App

e A Page Access Token

 An App Secret ID

* The webhook URL

e A Verify Token

Note:

You also need a Facebook Developer account.

To run your bot on Facebook Messenger, you need to set up a Facebook page and a
Facebook App. You can find out more about this from the Facebook Messaging
Platform documentation, but in a nutshell, the Facebook page hosts your bot. Users
chat with your bot through this page when they use chat window in a desktop browser.
When they use a mobile device, users interact with your bot directly through Facebook

10-1

https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform

Chapter 10
Running Your Bot on Facebook Messenger

Messenger itself. In this scenario, the Facebook App allows your bot to get the
messages that are handled by Facebook Messenger.

To create a Facebook Messenger channel, you need artifacts that are generated by
both Bots and by Facebook Messenger. From Bots, you'll need the webhook URL that
connects your bot to Facebook messenger and the Verify Token that enables
Facebook Messenger to identify the bot. From Facebook Messenger, you'll need the
Page Access Token and the App Secret ID. Because you need transfer these artifacts
between Bots and Facebook Messenger, you'll need to switch between these two
platforms as you configure the channel.

Step 1: Set Up Facebook Messenger

Start off by generating the App Secret and the Page Access token in Facebook
Messenger.

1. Log into your Facebook developer’s account.

2. Create a Facebook page that hosts your bot. The description, images, and cover
page you add to the page will identify your bot to its users.

3. Next, create the Facebook app that you'll link to this page. Because this is a
Messenger app, choose Apps for Messenger and then click Create App ID.

Create a New App ID

Get started integrating Facebook into your app or website

Display Name
ThatTestApp

Contact Email

ragnar@example.com

Category

Choose a Category «

+ Choose a Category

Apsﬁmr Messenger

e Facebook Platform Policies Cancel [ENCEICYNT0]

Appsfor Pages
Books
Business
Communication
Education
Entertainment
Fashion
Finance

Food & Drink

Games

If you didn't choose the Apps for Messenger option in this dialog (for example, if
you're creating a test app), then click Add Product in the left navbar, choose
Messenger from the Product Setup page, and then click Get Started.

ORACLE" 10-2

Chapter 10
Running Your Bot on Facebook Messenger

%8 matrestapp APPID: 1111 2 View Analytics # Tools&Support Docs
Dashboard
Setiney Audience Network
‘Get Started
Roles. Monetize your mobile app or website with native ads from 3 million Facebook advertisers
+Add Product Analytics for Apps e
Understand how people engage with your business across apps, dsvicss, platiorms and websites
Account Kit
Get Started
Seamless account creation. No more passwords
Messenger
Get Started

Customize the way you interact with people on Messenger.

" Note:

You'll need the App Secret to complete your Facebook channel
configuration in the Bot Builder.

&R matrestapp Ml 2PPiD: 7777777777777777 ~ View Analytics 4 Tools & Support Docs

Dashboard

Settings. Dashboard

Roles

223 ThatTestApp

App Review This app s in development

API Version App D

can only be used by app admins, developers and testers

V2.8 TITTTTITTTIINIT

Messenger

App Secret

\Webhooks 068895980898989 | Reset |

+Add Product

In the Dashboard for your app, generate the Page Access Token by selecting your
Facebook page. You'll use this token, which gives your Facebook App access to
Facebook’s Messaging API, to complete your channel definition.

@ ThatTestApp - APPID: 7777777777777 ~* View Analytics #% Tools & Support Docs

and leamn more!
Dashboard

Settings
Roles Token Generation

Alerts

Page token is required to start using the APIs. This page token will have all messenger permissions even if your app
App Review is not approved to use them yet, though in this case you will be able to message only app admins. You can also
generate page tokens for the pages you don't own using Facebook Login

Messenger

Page Page Access Token

Settings Funbot v | EAA208ulgkLEBAOM7OnDI0JpdBCWiiotpqCZAIBWZASPKAVINKo GDSoCWwJLTGLIFVROYSSY3Js4Rz8X

Create a new page
Webhooks

Step 2: Add the Facebook Keys

Complete the Create Channel dialog by providing the Page Access Token and App

Secret keys from Facebook.

1. In Baots, click Settings (@) in the left navbar and then choose the Channels tab.

ORACLE"

10-3

Chapter 10
Running Your Bot on Facebook Messenger

General Channels

_ _

Component Services

2. Next, click Add Channel to open the Create Channel dialog.
3. Give your channel a name.

4. Choose Facebook Messenger as the channel type.

Create Channel X

" Name FB1

Description My Facebook Messenger channell

o Channel Type Facebook Messenger A4

" Page Access Token Copy from the Facebook App to here.

* App Secret Copy from the Facebook App to here.
Session Expiration (minutes) 60 7 Default

Channel Enabled

5. Copy and the Page Access Token from Facebook and paste it into the Page
Access Token field in the Create Channel Dialog. You can find this key in the
Facebook Messenger Platform settings page.

@ ThatTestApp - APPID: 7777777777777 2 View Analytics #% Tools & Support Docs

and leam more!
Dashboard

Settings
Roles Token Generation

Alerts

Page token is required 1o start using the APIs. This page token will have all messenger permissions even if your app
is not approved to use them yet, though in this case you will be able to message only app admins. You can also
generate page tokens for the pages you don't own using Facebook Login.

App Review

Messenger Page Page Access Token

‘ Funbot » | EAA208UIgkLEBAOM7ONDIOJpABCWIIOIpqCZAIBWZASPKAVINKO GDSOCWWILTGLIFVROYSSY3JS4RZ8X
Create a new page

Webhooks

6. Copy the App Secret —You can find this in the Facebook Messenger Platform
dashboard for your Facebook App.

ORACLE" 10-4

Chapter 10
Running Your Bot on Facebook Messenger

%5 matrestapp Ml AR ID: 7777777777777777 | View Analytics # Tools & Support Docs
Dashboard
Settings, Dashboard
Roles.
£rziD ThatTestApp
App Review This app is in development mode and can only be used by app admins, developers and testers (2]

API Version (21 AppID

V28 TITTTTIIITITTe

Messenger

App Secret
TR 068598060898980 [meset

+Add Product

7. Click Create.

In the Channels page, note the Verify Token and WebHook URL.

You'll need

these to configure the Facebook webhook.

General Channels
+ Channel Reset Sessions
o 81 X * Name FBL
e
. Description My Facebook Messenger channel
42k system_Bot Test
Channel Type Facebook Messenger
© " PageAccessToken esesssesesssssessssssssssssssssssssesssssssesessssssssssesssssssssases Reset
@ T ADDSECret #00 Reset
Verify Token QU Reset

Webhook URL

Session Expiration (minutes)

Channel Enabled

60 v Default

Step 3: Configure the Facebook Messenger Webhook

Define the Callback URL by adding the Webhook URL generated by Bots to Facebook
Messenger. Refer to the Channels page in the Bot Builder for these two values.

1. In Facebook Messenger, be sure that you've selected the project that you initially

created for the webhook.

$R ThatTestApp

W

Dashboard

2. Click Messenger and then choose Settings .

ORACLE"

10-5

Chapter 10
Running Your Bot on Facebook Messenger

%R ThatTestApp

Dashboard
Settings
Roles
Alerts

App Review

Messenger
Settings
Webhooks

+ Add Product

3. Click Setup Webhooks to open the New Page Subscription dialog.

4. Copy the Webhook URL from the Bots Channels page and paste it in the CallBack
URL field in the New Page Subscription dialog.

5. Copy the Verify Token generated by Bots and paste it into the Verify Token field.

6. Subscribe to only the messages and messaging_postbacks callback events.
The nmessages event is triggered whenever someone sends a message to your
Facebook page.

New Page Subscription

Callback URL

hitp 12345

Verify Token
cloudsrainrarinrainrainrainrainclouds

Subscription Fields

+ messages ¥ messaging_postbacks messaging_optins -
message_deliveries message_reads messaging_payments
messaging_pre_checkouts messaging_checkout_updates messaging_account_linking

messaging_referrals message_echoes

Learn more

ORACLE" 10-6

Chapter 10
Running Your Bot on Facebook Messenger

7. Subscribe to the page:
a. Choose your bot's Facebook page.

@ ThatTestApp B aFP D 1111 A7 View Analytics & Tools & Support Docs

Dashboard

Webhooks Edit events
Settings
Rz To receive messages and other events sent by Messenger users, the app.
o should enable webhooks integration
EHE @ Complete
Selected events: message_deliveries, messages, messaging_optins,
App Review messaging_postbacks

Select a page o subscribe your webhook to the page events » selecta Page
The app is not subscribed to any pages

Messenger

Pig Town

b. Click Subscribe.

Select a page to subscribe your webhook to the page events | Funbot = A
The app is not subscribed to any pages

Q Tip:
You might need to bounce your webhook by first clicking Unsubscribe
then Subscribe.

Funbot <

Step 4. Enable the Facebook Channel

With the configuration complete, you're ready to activate the Facebook channel by
switching on Channel Enabled in Bots. You can now test out your bot.

ORACLE 10-7

* Name

Description

Channel Type

0 * Page Access Token
x

© 7 App Secret

Verify Token

Webhook URL

Session Expiration (minutes)

Channel Enabled

Chapter 10
Running Your Bot on Facebook Messenger

Reset Sessions.

FB1

My Facebook Messenger channel

Facebook Messenger
Reset
Reset
QUjbbNbbNybbNybbNybbNybbNybbNybbNy Reset

hitpziicompany.com/listeners/channels/facebook/channels/12345

60 v Default

e

Step 5: Testing Your Bot on Facebook Messenger

With the Facebook Channel and messaging configuration complete, you can test your
simultaneously using your Facebook page, Facebook Messenger (https://

wwmv, messenger . conf) and the Facebook Messenger app on your phone (

o~

). Once you

locate your bot in the search, you're ready to start chatting with it. You can see the
changes that you make to the dialog flow in real time.

ORACLE

10-8

Chapter 10
Running Your Bot on Other Messaging Services

P 4216 PM 4 13
Funbot »

(Home (2) v _un N Manage

=

i ?
o What 15 your name?

Ragnar

Hi there! What would you like me to Hi the
echo back? echo

Hella!
Hola!

= Vannakam!
L -

a |] i)

QWERTY U I OFP
A'SDFGHJ KL

4 Z X CVBNM &

ey e O space return

Running Your Bot on Other Messaging Services

To allow your bot to talk to users who aren’t subscribed to Facebook Messenger, you
need to configure the Webhook channel.

To create a Webhook channel, you need the following:

A publicly accessible HTTP messaging server that relays messages between the
user device and your bot using a webhook.

Messaging Bots

Server —
— —
Webhook Webhook

ORACLE" 10-9

ORACLE"

Chapter 10
Running Your Bot on Other Messaging Services

You implement this webhook with:
1. A POST call that enables the server to receive messages from your bot.
2. A POST call that enables the server to send messages to your bot.

Because your bot needs to know where to send its message, you need the URI of
the webhook call that receives your bot’'s messages.

Likewise, the message server needs to know how to find your bot, so you need the
Webhook URL that's generated for your bot after you complete the Create
Channel dialog.

To assemble these pieces into a webhook:

1.
2.
3.

Set up the server.

To receive messages from your bot, publish the POST call on the server.
In the Create Channel dialog, enter a name and then:

* Choose Webhook as the channel type.

* Set Platform Version to 1.1 (Conversation Model).

* Register the server as the recipient of your bot's messages by entering the
URI to this POST call in the Outgoing Webhook URI field.

» If needed, enter the session expiry and switch on Channel Enabled.

Create Channel X

* Name MyTest

Description Optional short description for this channel.

© Channel Type Webhook -
@ Platform Version 1.1 (Conversation Model) -

@ " Outgoing Webhook URL https://example.com/alexa/singleBotWebhookChannel/messages
Session Expiration (minutes) 60 v Default

Channel Enabled

After you click Create, Bots generates the webhook URL for your bot and its
Secret Key for encrypting messages. Keep the webhook URL handy, because it's
the pointer that your messaging server needs to send messages back to your bot.

10-10

ORACLE

Chapter 10
Running Your Bot on Other Messaging Services

Reset Sessions

* Name Mytest

Channel Type Webhook

@ ~ Outgoing Webhook URI https://example.com/alexa/singleBotWebhookChannel/messages

SecretKey Y9tnj2fFswt1jDp8uzflyzn9E3umx6hR Reset

Webhook URL http://bots-connectors:8000/connectors/vl/tenants/5c82a414-e2d0-45fd-b6a2-8ca3b9c09160/listeners/webhook/chan
nels/1744B52C-AD22-4F6F-B2FC-62A4B8BF8102

Session Expiration (minutes; 60 V. Default

Channel Enabled

5. On your server, publish the second POST API, one that sends messages to your
bot using the webhook URL.

6. Switch the Channel Enabled option on.

Outbound Messages

You need to publish the calls in the JSON format that Bots expects, along with the
authorization header.

The call for your bot’s outbound messages includes:

1. An X-Hub- Si gnat ure header containing the SHA256 value of the payload,
calculated using the Secret Key as the key.

" Note:

Bots uses the X- Hub- Si gnat ur e header to allow the recipient to
authenticate your bot as the sender and validate the integrity of the
payload.

2. A JSON payload containing the user | D, a unique identifier that's specified by the
inbound message, the t ype, which can be text ,attachment, and card. As shown in
the following examples, both the text and card response types can have
associated actions. Any of the response types can also include global actions.

10-11

ORACLE

Chapter 10
Running Your Bot on Other Messaging Services

Response Type Example Payload
t ext {
"userld":"22343248763458761287
"nmessagePayl oad": {
"type": "text",
"text": "Hello, how are you?"
}
}

The following snippet show a t ext response
with actions:

{
"userld":"22343248763458761287

"nmessagePayl oad": {
"type": "text",
"text": "What do you want to do?",
"actions": [
{
"type": "postback",
"label": "Order Pizza",
"post back": {
"state": "askAction",
"action": "orderPizza"

}
1
{
"type": "postback",
"l abel ": "Cancel A Previous
Order”,
"post back": {
"state": "askAction",
"action": "cancel Order"
}
]
}
}

10-12

ORACLE

Chapter 10
Running Your Bot on Other Messaging Services

Response Type

Example Payload

card

{
"type": "card",
"layout”: "horiztonal",
"cards": [
{

"title": "Hawaiian Pizza",
"description”: "Ham and
pi neappl e on thin crust",
"actions": [
{
"type": "posthback",
"l abel": "Order Small",
"post back": {
"state": "GetOrder",
"variables": {
"pizzaType": "hawaiian",
"pizzaCrust": "thin",
"pizzaSize": "small"

}
1
{
"type": "posthback",

"l abel": "Order Large",
"post back": {
"state": "GetOrder",
"variables": {
"pizzaType": "hawaiian",
"pizzaCrust": "thin",
"pizzaSize": "large"

"title": "Cheese Pizza",
"description”: "Cheese pizza
(i.e. pizza with NO toppings) on thick
crust”,
"actions": [
{
"type": "posthback",
"l abel": "Order Small",
"post back": {
"state": "GetOrder",
"variables": {
"pizzaType": "cheese",
"pizzaCrust": "thick",
"pizzaSize": "small"

}
1
{
"type": "posthback",

"l abel": "Order Large",

10-13

Chapter 10
Running Your Bot on Other Messaging Services

Response Type

Example Payload

at t achnent

"post back": {
"state": "GetOrder",
"variables": {
"pizzaType": "cheese",
"pizzaCrust": "thick",

"pizzaSize": "large"
}
}
}
]
}
1,
"gl obal Actions": [
{
"type": "call",

"label": "Call for Help",
"phoneNunber": "123456789"
}
]
}

The attachment response type can an
image, audio file, or a video:

"type": "attachment",
"attachment": {
"type": "video",
“url": "https://wwm. yout ube. conf
wat ch?v=CWN\r y4PE93Y"
}
}

Inbound Messages

The call for sending messages to your bot must have:

1. An X- Hub- Si gnat ur e header containing the SHA256 value of the payload. The call
includes functions that create this hash using Secret Key as the key.

const body = Buffer.fron(JSON. stringify(nmessageToBot), 'utf8');

const headers = {};

headers[' Content-Type'] = "application/json; charset=utf-8";
headers[' X- Hub- Si gnature'] = buil dSi gnat ur eHeader (body, channel SecretKey);

function buil dSi gnat ureHeader (buf, channel Secret Key) {
return 'sha256=" + buil dSi gnature(buf, channel SecretKey);

}

function buildSignature(buf, channel SecretKey) {
const hmac = crypto. createHmac(' sha256', Buffer.from(channel Secr et Key,

‘utf8'));

hmac. updat e(buf);

ORACLE

10-14

Chapter 10
Running Your Bot on Other Messaging Services

return hmac. di gest (' hex');

}

2. A JSON obect with user!d, userProfil e, and nessagePayl oad properties:

{
"userid: "33cObcBc8e-378c-4496-hbc2a-b2b9647de2317"

"userProfile": {
“firstNane": "Bob",
"l ast Name": "Franklin",

"age": 45
¥
"nmessagePayl oad: {....}
}
Property Description Type Required?
userld A unique identifier for String Yes

the user. This ID is
specific to the caller.

userProfile Properties that JSON object No
represent the user,
like firstName and
Last Nane.

ORACLE 10-15

ORACLE

Chapter 10

Running Your Bot on Other Messaging Services

Property

Description

Type

Required?

messagePayl oad

t ext

{

"type":
"text",

"text":
hello, world!™"

}

post back

{
"type":
"post back",

"post back": {
"state":
"orderPi zza",

"action":
"del i ver Pi zza",

"variabl es": {

"pi zzaSi ze":
"Large",

"pizzaCrust":
"Thin",

"pi zzaType":
" Hawai i an"
}
}
}

attachnent

{
"type":
"attachment",

"attachment": {
"type":
"i mage",
“url":
"https://
i mge.freepik.c
om free-icon/
attachnent -
tool -ios-7-
interface-
synbol _318- 3553

9.jpg"
}
}

The nessagePayl oad JSON object
can be text,
post back,
attachnent, and
| ocation:

Yes

10-16

Chapter 10

Running Your Bot Within Client Messaging Apps and Web Pages

Property Description Type

Required?

e |ocation

{
"type":
"l ocation",

"location": {

"1 ongi tude":
-122. 265987

"latitude":
37.529818

}
}

Running Your Bot Within Client Messaging Apps and Web

Pages
We provide SDKs that enable you to integrate your bot with iOS apps, Android apps,
and web pages. For any of these integrations, you need to generate the App Id by
creating a Web, iOS, or Android channel.
Create Channel
* Name i0s
Description Optional short description for this channel.
@ Channel Type i0s
Facebook Messenger
Session Expirati inutes
ion Expiration (minutes) Webhook
Channel Enabled Web
ios ,{r_n)
Android
After you create the App Id, you copy and paste it into the client app code or, if you're
integrating your bot into a web page, the <scri pt > tag.
ORACLE 10-17

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Bots Client SDKs

Bots Client SDK for Android

e Adding the Bots Client SDK for Android to Your App
* Localization

e Permissions

Adding the Bots Client SDK for Android to Your App

The Bots Client SDK for Android library is distributed in both AAR and JAR formats. If
you are using Android Studio, follow the instructions for installation of the AAR
package.

" Note:

Compile your app using API Level 26 (Android Oreo) or higher. Level 19
(Android 4.4, Kitkat) is the lowest version that can support the Bots client
SDK for Android. If your app needs to support even earlier versions, keep in
mind that we haven't tested these and therefore can’t guarantee their
compatibility.

Adding the SDK and AAR Files

1. Download the Bots Client SDK for Android 18.2.3.0 module from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Import the core and Ul files (bot s-cl i ent - sdk- andr oi d- core-v18. 2. 3. aar and bot s-
client-sdk-androi d-ui -v18. 2. 3. aar into your Android Studio project by going to
File > New > New Module > Import .JARI.AAR Package.

3. Add the following lines to the project’s bui | d. gradl e file:

conpil e project(':bots-client-sdk-android-core-1.2.1")
conpile project(':bots-client-sdk-android-ui-1.2.1")

conpile 'com googl e. firebase: firebase-messaging: 11.0. 4

conpile 'com googl e. firebase: firebase-core:11.0.4

conpil e ' com googl e. code. gson: gson: 2. 4

conpi l e ' com squar eup. okhtt p3: okhttp:3.4.1

conpil e ' com androi d. support: support-annotations: 26. 0. 2'

conpil e ' com androi d. support: appconpat -v7: 26. 0. 2'

conpil e 'com androi d. support: recycl ervi ewv7:26.0. 2

conpil e ' com nostral3. uni versal i magel oader: uni ver sal - i mage-| oader: 1. 9.5
conpil e ' com davenorrissey. | abs: subsanpl i ng-scal e-i mage-view 3.5.0
conpil e ' com googl e. androi d. gms: pl ay- servi ces-location: 11.0.4

Initialize the Bots Android SDK in Your App

Before your code can invoke the SDK’s functionality, you'll have to initialize the library
using your app’s ID.

ORACLE 10-18

https://docs.smooch.io/guide/native-android-sdk/#android-studio-with-gradle
https://docs.smooch.io/guide/native-android-sdk/#android-studio-with-gradle
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

ORACLE

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

To get this unique ID, first click Add Channel to open the Add Channel dialog.
Complete the dialog by adding a channel name and then choosing Android as the
channel type. After you click OK, Bots generates the App ID.

After you obtain this ID, use the following to initialize the SDK.

Bots.init(this, new Settings("YOUR APP_ID"), newBotsCallback() {

@verride
public void run(Response response) {
Il Your code after init is conplete

" Note:

Make sure to replace YOUR_APP_I D with your app ID.

To ensure that the SDK is always initialized properly, copy the following snippet and
save it to your application package.

package your. package;

i mport androi d. app. Appl i cati on;
i mport oracle.cl oud. nobi | e. core. Bots;

public class YourApplication extends Application {
@verride
public void onCreate() {
super.onCreate();
Bots.init(this, new Settings("YOUR APP_ID"), new BotsCal | back() {
@verride
public void run(Response response) {
/1 Your code after init is conplete

10-19

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Note:

You need to declare this in the Appl i cati on class because it's the class that’'s
required by Bots.init(this, new Settings("YOUR APP_ID"). If you declare this
class elsewhere (say, AppConpat Act i vi ty), then add the following snippet,
which uses get Appl i cation() as the first argument:

@verride
protected void onCreate(Bundl e savedl nstanceState) {
super . onCreat e(savedl nst anceSt ate) ;

Bots.init(getApplication(), new Settings("YOUR APP_ID"), new
Bot sCal | back() {
@verride
public void run(Response response) {
/1 Your code after init is conmplete

You also need to declare your newly created class in the <appl i cati on> tag in your
Andr oi dvani f est file.

<application
andr oi d: name="your . package. Your Appl i cati on" >

</ application>

¢ Note:

Remember to replace your . package, Your Appl i cati on, YOUR_APP_I D with the
appropriate names and the App Id for the Android channel.

Displaying the Bots Android SDK User Interface

Once you've initialized Bots Android SDK, you're ready to try it out.

Find a suitable place in your app’s interface to invoke the SDK and use the code below
to display the Android Messenger user interface. You invoke up the Bots Android SDK
whenever your user needs access to help or needs to contact you.

Conversati onActivity.show(get ApplicationContext());

Calling Other Functions

ORACLE

You can call various functions when the SDK has been initialized successfully. As
shown in the following snippet, you can update user properties before your app calls
the ConversationActivity class:

if (Bots.getlnitializationStatus() == InitializationStatus.Success) {
Log. d(TAG "Already Initialized with App ID "+ mApplD);
User. get Current User (). set Fi rst Nane("John");
User. get Current User (). set Last Name("Smith");
User. get Current User (). set Emai | ("] ohn. smit h@xanpl e. cont') ;
User. get Current User (). set Si gnedUpAt (new Date());

10-20

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

final Map<String, Cbject> custonProperties = new HashMap<>();
custonProperties. put("prem unlser”, true);

cust onProperti es. put ("nunber Of Pur chases", 20);
custonProperties.put("itemslnCart", 3);

cust onProperti es. put ("couponCode", "PREM USR');

User. get Current User (). addProperti es(custonProperties);

ConversationActivity.show(get ApplicationContext(), Intent.FLAG ACTIVITY_NEW TASK);
}

Replacing the FileProvider

Localization

Customization

If you do not have a Fi | eProvi der entry in your Andr oi dMani f est. xm file, you can safely
ignore this section. These steps will fix the Mani fest nerger failed : Attribute
provi der #andr oi d. support . v4. cont ent . Fi | eProvi der @ut hori ti es compile error

To replace the FileProvider with your own, please do the following:
1. Addtool s:replace="androi d: aut horities" to the <provi der> entry.

2. Add the following path to your android.support.FILE_ PROVIDER_PATHS
resource file:

<external -path name="dcinf' path="DCI M />

3. When initializing the SDK, call
settings. setFileProviderAuthorities(authoritiesString); on the settings object.

Settings settings = new Settings(appld);
settings.setFileProviderAuthorities(authoritiesString);
Bots.init(this, settings, nylnitcCallback);

Every string you see in Bots can be customized and localized. Bots provides a few
languages out of the box, but adding new languages is easy to do. When localizing
strings, Bots looks for values in the strings. xnl in your app first then in the Bots Ul
bundle, enabling you to customize any strings and add support for other languages.

Adding More Languages

To enable other languages beside the provided ones, first copy the English
strings. xnl file from the Bots Ul bundle to the corresponding values folder for that
language. Then, translate the values to match that language.

e Strings Customization

e Styling the Conversation Interface

Strings Customization

ORACLE

Bots lets you customize any strings it displays by overwriting its keys. To do this,
simply add res/ val ues- <your - | anguage- code>/ strings. xni file in your Android project
and specify new values for the keys used in Bots. You can find all of the available keys
by browsing to the arti fact s: bot s- cl i ent - sdk- andr oi d- ui - x. x. x/ res/ val ues/ val ues. xm
file in the External Libraries in Android Studio.

10-21

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Dates shown in the conversation view are already localized to the user’s device.

For example, if you wanted to override strings for English, you would create a file
called res/ val ues-en/strings. xm and include the following in that file:

<resources>

<string name="Bots_activityConversation">Messages</string>

<string name="Bots_startCf Conversation">This is the start of your conversation with
the team </string>

<string name="Bots_wel conme">Feel free to | eave us a nessage about anything that\'s
on your mnd.</string>

<string name="Bots_nessageH nt">Type a nessage..</string>

</resources>

Note:

if you want to specify new strings for the default fallback language, you must
override them in the res/ val ues/ string. xn file.

Styling the Conversation Interface

ORACLE

Using a col ors. xm file in your res/ val ues folder, you can change the colors used by
Bots:

<resour ces>
<col or nanme="Bots_accent " >#9200aa</ col or >

<col or name="Bot s_accent Dar k" >#76008a</ col or >
<col or name="Bots_accent Li ght">#be7cca</ col or >

<col or name="Bot s_backgroundl nput ">#f fffff</col or>

<col or nanme="Bots_bt nSendHol | ow" >#c0c0c0</ col or >
<col or nane="Bots_ht nSendHol | owBor der " >#303030</ col or >

<col or nanme="Bots_header " >#989898</ col or >

<col or name="Bot s_messageDat " >@ol or/ Bot s_header </ col or >
<col or name="Bot s_nessageShadow' >#7f 999999</ col or >

<col or nanme="Bots_renmot eMessageAut hor " >@ol or/ Bot s_header </ col or >
<col or name="Bot s_r enot eMessageBackground" >#f fffff </ col or>

<col or nane="Bots_renot eMessageBor der " >#d9d9d9</ col or >

<col or nane="Bots_renot eMessageText " >#000000</ col or >

<col or name="Bot s_user MessageBackgr ound" >@ol or/ Bot s_accent </ col or >

<col or name="Bot s_user MessageBor der " >@ol or/ Bot s_accent Dar k</ col or >

<col or name="Bots_user MessageFai | edBackgr ound">@ol or/ Bot s_accent Li ght </ col or >
<col or name="Bot s_user MessageText ">#f ff{ff</col or>

</ resources>

If you need to update the image of the Send button, simply add an image with the
following name to your drawables:

bot s_btn_send_nor mal . png

You can find the original resources by browsing external libraries through Android
Studio.

10-22

Permissions

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

The Bots Client SDK for Android library includes the following permissions by default:

<uses- perni ssi on androi d: nane="andr oi d. per m ssi on. ACCESS_NETWORK_STATE"/ >
<uses- perni ssion androi d: nane="andr oi d. per m ssi on. | NTERNET" / >

<uses- perni ssi on androi d: nanme="andr oi d. per m ssi on. VI BRATE"/ >

<uses- perni ssi on androi d: nane="andr oi d. per mi ssi on. WRl TE_EXTERNAL_STORAGE"/ >
<uses- perni ssi on androi d: nane="andr oi d. per mi ssi on. ACCESS_FI NE_LOCATI ON'/ >

* WRITE_EXTERNAL_STORAGE is used to take photos and to store downloaded
pictures locally to avoid needless re-downloading.

« ACCESS_FINE_LOCATION is used in order to access the customer’s location
when requested using location request buttons.

If you do not intend to request the user’s location at any point, it is safe to remove the
ACCESS_FI NE_LOCATI ON using the following override:

<uses- perni ssi on androi d: nane="andr oi d. per m ssi on. ACCESS_FI NE_LOCATI ON'
tool s: node="renove" />

All other permissions are necessary for Bots to function as intended.

Bots Client SDK for i0OS

e Adding the Bots Client SDK for iOS to Your App
e Updating the SDK
e Localization of iOS Apps

e Customization

Adding the Bots Client SDK for iOS to Your App

1. Download the Bots Client SDK for iOS 18.2.3.0 module from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Unzip the file. This creates a directory called Bot s. f r amewor k (the framework).

3. Add the framework to your Xcode project by selecting File > Add Files to
My_Project and then selecting Bot s. f ranewor k in the file picker.

4. In your project settings, add Bot s. f ranewor k to the list of Embedded Binaries in the
General tab for your application target.

You can now import the framework (#i nport <Bot s/ Bot s. h>) and start using it in
your code.

Import the Bots Header File

ORACLE

Import the Bots file into the your app delegate’s . mfile and any other places you plan to
use it.

e Objective-C:
#inport <Bots/Bots. h>
e Swift:

i mport Bots

10-23

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Add Required Keys in Your App’s info.plist

ORACLE

The Bots Client SDK for iOS may need to ask users permission to use certain
features. Depending on the feature, you must provide a description in your app’s
Info.plist to explain why access is required. These descriptions will be displayed the
moment it prompts the user for permission.

Images

The Bots Client SDK for iOS allows users to send images. To support this feature, you
need to provide a description for the following keys:

e NSCaneraUsageDescri pti on—Describes the reason your app accesses the camera
(for example: camera permission is required to send images to ${ PRODUCT_NAME}).
For more information, see the iOS documentation about NSCaner aUsageDescr i pti on.

* NSPhot oLi braryUsageDescri pti on—Describes the reason your app accesses the
photo library (for example: photo library permission is required to send images to $
{ PRODUCT_NAME}). For more information, see the iOS documentation about
NSPhot oLi br ar yUsageDescri pti on.

Note:

Beginning with iOS 10, these values are required. If they are not present in
your app's I nfo. pli st, the option to send an image will not be displayed.

Location

The Bots Client SDK for iOS also allows users to send their current location. To
support this feature, you must provide a description for any of the following keys
depending on your app’s use of location services. The SDK will ask the user for the
location depending on the key you provide:

* NSLocati onWenl nUseUsageDescri pti on—Describes the reason for your app to
access the user’s location information while your app is in use (for example:
location services is required to send your current location to ${ PRODUCT_NAME}). This
permission is recommended if your app does not use location services. The SDK
will default to it if both keys are included. See the iOS documentation about
NSLocat i onWhenl nUseUsageDescri pti on.

* NSLocati onAl waysUsageDescri pti on—Describes the reason for your app to access
the user’s location information at all times (for example: location services is
required to send your current location to ${ PRODUCT_NAME}). See the iOS
documentation about NSLocat i onAl waysUsageDescri pti on.

Note:

If you don't provide one of these keys, any attempt from the user to send
their current location will fail.

10-24

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW24
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW24
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW26
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Initialize the Bots Client SDK for iOS in Your App

Before your code can invoke the SDK, you'll have to initialize the library using the App
Id that's generated for your Bot when you add an iOS channel. To get this ID, click
Add Channel to open the Create Channel dialog. Add a name for the iOS channel
and then choose iOS as the channel type. After you click Create, Bots generates the
App Id. Next, use this ID to replace YOUR APP I Din the

appl i cati onDi dFi ni shLaunchi ngW t hOpt i ons: method:

* Objective-C

[Bots initWthSettings:[OMCSettings settingsWthAppld: @YOUR APP_I D']
conpl etionHandl er: ~(NSError * _Nullable error, NSDictionary * Nullable
userlnfo) {

/1 Your code after init is conplete

H;
o Swift:

Bots.initWth(OVCSettings(appld: "YOUR APP_ID")) { (error: Error?, userlnfo:
[AnyHashabl e : Any]?) in// Your code after init is conplete}

You can show the Bots Ul anywhere in your app after it finishes loading by adding the
following line::

e Objective-C:
[Bots showj;
* Swift:
Bot s. show() ;

Calling Other Functions

You can call other functions after the SDK has been initialized successfully. For
example, you can update the user's first name, last name, and email address:

/1 Update first name and |ast name
[Bots setUserFirstNanme: @John"
| ast Name: @Snith"];

/1 Update email address
[OMCUser currentUser].email = @john.smth@xanple.coni;

Updating the SDK

Run the following to update Carthage dependencies:

$ carthage update

Localization of iIOS Apps

ORACLE

Every string you see in your bot can be customized and localized. Bots provides a few
languages out of the box, but adding new languages is easy to do. When localizing
strings, Bots looks for Bot sLocal i zabl e. stri ngs in your app bundle first then in the Bots
bundle, enabling you to customize any strings and add support for other languages.

10-25

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Enabling Localization in Your iOS App

For Bots to display a language other than English, your app needs to first enable
support for that language. You can enable a second language in your Xcode project
settings:

e S |
E Iz Q /L\, @ = o B BE < _@Awesumeﬁupp D ®

Identity and Type

[] @ ’ 7’* » .. AwesomeApp: Ready | Today at 1:38 PM

» Q |E| 3 Awesomefpp T Info Build Settings
Name AwesomeApp
Pods
»> |'g| ? ¥ Deployment Target
ZianeslSSoial Location | Relative to Group
== AwesomeApp.xcodeproj
i0S Deployment Target | 7.0 |~] ee Pl
Full Path /Users/jeanj/testapps‘help-

center-sdk/testpodapp/
¥ Configurations AwesomeApp.xcodepro]
Project Document

» Debug 1 Configuration Set| Project Format | Xcode 3.2-compatible <]

» Release 1 Configuration Set|
Orpanization | Jean-Philippe Joyal

Class Prefix | RP.

+
Use | Release E for command-line builds D i1 @
¥ Locslizxilons =7 Cocoa Touch Class - A Cacaa
Touch class
English — Development Language 2 Files Localized
= Test Case Class - A class
fen implementing a unit test
+
French (fr)
German (de) Playground - A Playground
Chinese (Simplified) {zh-Hans)
Chinese (Traditicnal) (zh-Hant) o
+ 10 =) Japanese (ja} oo |

Once you have this, Bots will display itself in the device language for the supported
language.

These languages are included with the Bots Client SDK for iOS: Arabic, English,
Finnish, French, German, Italian, Japanese, Korean, Mandarin Chinese (traditional
and simplified), Persian, Portuguese (Brazil and Portugal), Russian, Slovenian,
Spanish, and Swedish.

Note:

Localization is subject to caching. If you can't see your changes, cleaning
your project, resetting the simulator, deleting your app from your test devices
are good measures.

Customization
e Strings Customization

» Styling the Conversation Interface

Strings Customization

Bots lets you customize any strings it displays via Apple’s localization mechanism. To
override one or more strings, add an empty string file named Bot sLocal i zabl e. stri ngs

ORACLE 10-26

ORACLE

Chapter 10

Running Your Bot Within Client Messaging Apps and Web Pages

in your Xcode project and specify new values for the keys you would like to override.
For example, to change the “Messages” header, and the “ Done” button create a file with

these contents:

"Messages" = "My Messages"

"Done" = "1"'m Done"

To enable string customization across languages, make sure you localize your

Bot sLocal i zabl e. strings file in Xcode.

o000) #%; @§ DemoApp: Ready | Todayat 11:12 AM
B 2 a4 & & = o B |B| < [& Demospp » | SmoochLocalizable.strings * No Selection
1
+B DemoApp .

1 target, i0S SDK 8.4
b | | DemoApp
» [7] Resources
b | 7| Frameworks
» [7] Products

+0E(®

The BotsLocalizable.strings File

Here is the full set of keys:

[* Nav bar button, action sheet cancel button */
"Cancel" = " "

/* Conversation title */

"Messages" = "...";

/* Conversation header. Uses CFBundl eDi spl ayNane */

<o O OO
0D e

Identity and Type

Location | Relative to Group

Name | BotsLocalizable strings

Type Default - Localizable Strings

(ol o]

BotsLocalizahle, strings

Full Path fUsers/mario/Documents/

code/suppertkit-ios/
DemoApp/
BotsLocalizable strings =+

Localization

Localize...

Target Membership
tpég DemoApp

Text Settings

Text Encoding | Unicode (UTF-8)
Line Endings | Default - OS X / Unix {LF)

Indent Using = Spaces

ool ol)

Widths 4|
Tab Indent

Wrap lines

4

Source Control

fok

fok

0 @ =

Test Method - Add a test case
method to a test class.

Union Declaration - Declare a new
union type, where all fields overlap at
the same memory location.

While Statement - Execute code
while a condition is true.

"This is the start of your conversation with the %@team W'Ill stay in touch to
hel p you get the most out of your app.\nFeel free to |leave us a message about
anything that’s on your mind. W'll get back to your questions, suggestions or

10-27

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

anything el se as soon as we can." ="...";

/* Conversation header when there are previous nessages */
"ShOW I’TDI'e..." - n‘..n;

/* Conversation header V\lnen fetching previous messages */
"Retrieving history.. ="

/* Error message shown in conversation view */
"No Internet connection" ="...";

/* Error message shown in conversation view */
"Coul d not connect to server" ="...";

[* Error message shown in conversation view */
"An error occurred while processing your action. Please try again." ="...";

/* Error message shown in conversation view */
"Reconnecting..." ="...";

[* Fal | back used by the in app notification when no message author name is found */
"y@ Teant = "...";

/* Conversation send button */
"Send" ="...";

/* Conversation text |nput pI ace hol der */
"Type a message..." ="...";

/* Conversation nav bar left button */
"Done" = "...";

/* Failure text for chat messages that fail to upload */
"Message not delivered. Tap to retry." ="...";

/* Status text for chat nessages */
"Sending..." ="...";

—

[* Status text for sent chat nessages *
"Delivered" ="...";

/* Status text for chat messages seen by the appMaker */
"Seen" ="...";

—

/* Timestanp text for recent nessages *
“Just now' ="...";

/* Timestanp text for nmessages in the last hour */
"%0fmago" ="...";

/* Timestanp text for nmessages in the last day */
"%0fh ago" ="...";

/* Timestanp text for nmessages in the last week */
"%0fd ago" ="...";

/* Action sheet button |abel */
"Take Photo" ="...";

/* Action sheet button |abel */
"Use Last Photo Taken" ="...";

ORACLE 10-28

ORACLE

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

/* Action sheet button |abel */
"Choose fromLibrary" ="..."

/* Photo confirmation alert title */
"Confirm Photo" ="..."

/* Action sheet button |abel */
"Resend" ="...";

/* Action sheet button |abel */
"View I mge" ="...";

/* Error displayed in message bubble if image failed to downl oad */
"Tap to reload image" = "...";

/* Error displayed as message if location sending fails */
"Coul d not send location" ="...";

[* Error title when user selects "use |atest photo", but no photos exist */
"No Photos Found" = "...";

[* Error description when user selects "use |atest photo", but no photos exist */
"Your photo library seens to be enpty." ="...";

[* Error title when user attenpts to upload a photo but Photos access is denied */
"Can't Access Photos" ="...";

[* Error description when user attenpts to upload a photo but Photos access is
denied */
"Make sure to allow photos access for this app in your privacy settings." ="...";

[* Error title when user attenpts to take a photo but canera access is denied */
"Can't Access Camera" ="...";

[* Error description when user attenpts to take a photo but camera access is denied
*|
"Make sure to allow canera access for this app in your privacy settings." ="...";

[* CGeneric error title when user attenpts to upload an image and it fails for an
unknown reason */
"Can't Retrieve Photo" ="...";

/* Generic error description when user attenpts to upload an image and it fails for
an unknown reason */
"Please try again or select a new photo." ="..."

[* Error title when user attenpts to send the current |ocation but |ocation access
is denied */

"Can't Access Location" ="...";

/* Error description when user attenpts to send the current |ocation but |ocation
access is denied */

"Make sure to allow location access for this app in your privacy settings." ="...";

[* U A ertViewbutton title to link to Settings app */
"Settings" = "...";

/* UAertViewbutton title to dismss */
"Disnmiss" ="...";

10-29

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

[* Title for paynment button */
"Pay Now' ="

/* Title for message action when payment conpleted */
"Paynent Conpleted" ="...";

/*

Instructions for entering credit card info. Parameters are as foll ows:
1. Amount (e.g. 50.45)

2. Currency (e.g. USD)

3. App nane (Uses CFBundl eDi spl ayNane)

*|

"Enter your credit card to send $%@ %@ securely to %@ ="...";

[* Error text when paynment fails */
"An error occurred while processing the card. Please try again or use a different
Card." - n‘..n;

/* Button |abel for saved credit card view */
"Change Credit Card" ="

/*

Information | abel for saved credit card view Paraneters are as follows:
1. Amount (e.g. 50.45)

2. Currency (e.g. USD)

3. App nane (Uses CFBundl eDi spl ayNane)

*/

"You're about to send $%@ %@ securely to %@ ="..."

/* Title for user notification action */
"Reply" ="

/* Date format used for message groupi ng headers on the conversation screen */
"MWMd, h:rma" = "MWMd, h:mma";

/* Date format used for nessage tinestanps on the conversation screen */
"hh:mma" = "hh:nmma";

/* Error nmessage when the content of a webview fails to load */
"Failed to open the page" =" ;

Styling the Conversation Interface

ORACLE

The style of the conversation user interface can be controlled through two techniques:

* Using the Ul Appear ance proxy of Ul Navi gat i onBar to style the navigation bar’s color
and appearance.

e The OVCSettings class provides access to the status bar and the color of the
message bubbles.

Suppose you wanted the conversation Ul to have a black navigation bar and red
message bubbles. First, you'd use U Navi gati onBar 's appearance proxy to set up the
navigation bar. Then, you'd use OMCSet ti ngs to finish styling the Ul:

e Objective C
OMCSet ti ngs* settings = [OMCSettings settingsWthAppld: @YOUR_APP_ID'];

settings. conversationAccent Col or = [U Col or redCol or];
settings. conversationStatusBarStyle = Ul StatusBarStylelLi ght Content;

[[U Navi gationBar appearance] setBarTintColor:[U Col or blackColor]];

10-30

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

[[U Navi gationBar appearance] setTintColor:[U Color redColor]];
[[U Navi gationBar appearance]
setTitleTextAttributes: @ NSForegroundCol or AttributeName : [Ul Color redColor] }];

e Swift

var settings = OMCSettings(appld: "YOUR APP_ID');

settings. conversationAccent Col or = Ul Col or.red();
settings.conversationStatusBarStyle = Ul StatusBarStyl e. Li ght Cont ent
U Navi gat i onBar . appear ance() . bar Tint Col or = U Col or. bl ack();

U Navi gat i onBar . appearance().tintCol or = U Col or.red();

U Navi gati onBar . appearance().titleTextAttributes =

[NSForegroundCol or AttributeName : U Color.red()];

Bots Client SDK for JavaScript

The Bots Client SDK for JavaScript module is a highly customizable messaging widget
that can be added to any web page.

* Configuring the Library
* Deploying the SDK Files
* Adding Bots Client SDK for JavaScript to Your Site

e Customization

Configuring the Library

The Bots library is composed of multiple assets that get fetched at runtime for better
performance. For that reason, the public path (the URL where the stati ¢ files are
hosted) is hardcoded in multiple places.

To configure the library for your environment, run:

.Iconfigure

The script generates a folder with the configured project in it.

Setup Examples

ORACLE

Local Testing Setup

If the static files are hosted at http://1 ocal host: 8000/ stati ¢/ and you run the following
script from the / home/ your - nane/ folder:

.Iconfigure http://1ocal host:8000/static/
then the files will be available at / home/ your - nane/ htt p: __| ocal host: 8000_static_/.

Production Setup

If the static files are hosted at htt ps: //cdn. acne. or g/ and you run the following script
from the / home/ your - nane/ folder:

.Iconfigure https://cdn.acne. org/

then the files will be available at / home/ your - nane/ htt ps: __cdn. acne. org_/ .

10-31

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Deploying the SDK Files

1. Download the Bots Client SDK for JavaScript 18.2.3.0 module from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Put all of the files from the generated folder at the root of the storage within
https:// pl acehol der. publ i c. pat h/ . For example if your files are hosted at http://
I ocal host : 8000/ stati c/, copy all the files to the stati ¢ folder on your local server.

3. If your storage is behind a CDN (Content Delivery Network), issue a cache
invalidation for htt ps: // pl acehol der. publ i c. pat h/ | oader . j son.

4. Make sure your server allows CORS requests.

5. Test your deployment by initializing the SDK as described in Adding Bots Client
SDK for JavaScript to Your Site.

Adding Bots Client SDK for JavaScript to Your Site

You include the Bots Client SDK for JavaScript by editing the <scri pt > tag. You need
an App Id to do this, so if don’t have one already for the Web channel, start off by
clicking Add Channel. In the Create Channel dialog, add a nhame for the channel and
then choose Web as the channel type. When you click Create, Bots generates the
App Id. You then substitute this value for <app-i d> in the code.

Updating the Script Tag

Step 1: Include the Bots Client SDK for JavaScript in Your Web Page

Add the following code towards the end of the head section on your page and replace
<sdk- f ol der - ur| > with the URL where the SDK is hosted.

<script>
Ifunction(e, t,n, r){
function s(){
tryf
var e
if((e="string"==typeof this.response?
JSON. par se(this.response):this.response).url){
var n=t.get El ement sByTagNanme("script")[0],r=t.createEl enent("script");
r.async=!0,r.src=e.url,n.parentNode.insertBefore(r,n)
}
}
catch(e){}}var o,p,a,i=[],c=[];e[n]={init:function(){o=arguments
var e={then:function(t){
return c.push({type:"t", next:t}), e
} ,catch:function(t){return c.push({type:"c", next:t}),e}};
return e}, on:function(){
i .push(arguments)}, render: function(){p=argunents}, destroy: function()
{a=ar gunment s}
} ,e.__onWebMessenger Host Ready__=function(t){
i f(del ete e.__onWebMessenger Host Ready__, e[n] =t, o) f or (var
r=t.init.apply(t,o),s=0;s<c.l|ength;s++){
var u=c[s];
r="t"===u.type?r.then(u.next):r.catch(u.next)
} p&&t.render.apply(t,p),a&t.destroy.apply(t,a)
for(s=0;s<i.length;s++)t.on.apply(t,i[s])}
var u=new XM.Htt pRequest ; u. addEvent Li st ener ("l oad", s), u. open(" GET", r+"/
| oader.json",!0), u.responseType="j son", u.send()

ORACLE 10-32

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
https://enable-cors.org/server.html

Customization

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

(wi ndow, docunent, "Bots", "<sdk-fol der-url>");
</script>

Step 2: Initialize the Bots Client SDK for JavaScript with Your New App ID

Next, initialize the SDK by adding the following snippet near the end of the body section
of your page. and replace <app-i d> with your App Id for the Web channel found in your
app settings page.

<script>
Bots.init({appld:'<app-id>});
</script>

 Embedded Mode
e Strings Customization
» Date Localization

e Sound Notification

Embedded Mode

To embed the widget in your existing markup, you need to pass embedded: true when
calling Bot s. i ni t . By doing so, you are disabling the auto-rendering mechanism and
you will need to call Bot s. render manually. This method accepts a DOM element which
will be used as the container where the widget will be rendered.
Bots.init({

appl d: ' <app-id>',

enbedded: true
13K

Bot s. render (docunent . get El ement Byl d(' chat-container'));

" Note:

The embedded widget will take full width and height of the container. You
must give it a height, otherwise, the widget will collapse.

Strings Customization

ORACLE

Bots lets you customize any strings it displays by overwriting its keys. Simply add the
cust onText key in your Bots.init() call and specify new values for the keys used in
Bots. You can find all available keys here. If some text is between {}, or if there is an
html tag such as <a>, it needs to stay in your customized text.

For example:

Bots.init({
appld: < app-id' >,
custonText: {
actionPostbackError: 'An error occurred while processing your action. Please
try again.',

10-33

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

clickToRetry: 'Message not delivered. Click to retry.',

conversationTi nest anpHeader Format: ' MMMM D YYYY, h:.mm A',

fetchH story: 'Load nore',

fetchingH story: 'Retrieving history...",

header Text: 'How can we hel p?',

i nput Pl acehol der: ' Type a message...',

invalidFileError: 'Only images are supported. Choose a file with a supported
extension (jpg, jpeg, png, gif, or bnp)."',

introductionText: "We\'re here to talk, so ask us anything!',

| ocati onNot Supported: ' Your browser does not support |ocation services or
it's been disabled. Please type your location instead.',

| ocationSecurityRestriction: 'This website cannot access your |ocation.
Pl ease type your location instead.',

| ocati onSendi ngFail ed: ' Could not send | ocation',

| ocationServicesDenied: 'This website cannot access your location. Allow
access in your settings or type your location instead.',

messageError: 'An error occurred while sending your nessage. Please try
again.',

messagel ndi catorTitlePlural: '({count}) New nessages',

messagel ndi catorTitl eSingular: '({count}) New nessage',

messageRel ativeTi meDay: '{val ue}d ago',

messageRel ativeTi meHour: '{value}h ago',

messageRel ativeTi meJust Now. 'just now ,

messageRel ativeTi meM nute: '{val ue}mago',

messageTi mest anpFormat: ' hh:nm A’

messageSendi ng: ' Sending...',

messageDel i vered: 'Delivered',

sendButtonText: 'Send',

settingsHeader Text: 'Settings',

tapToRetry: 'Message not delivered. Tap to retry.',

unsuppor t edMessageType: ' Unsupported nessage type.',

unsupportedActionType: ' Unsupported action type.'

}

1Ok

Date Localization

ORACLE

When you translate the user interface by customizing strings, you might also want to
show the date and time in the target language as well. To do this, pass | ocal e at
initialization time. You might also want to override the timestamp format to match your
language.

Bots.init({
appld: < app-id' >,
|ocale: '"fr-CA",
custonfext: {
/...
conver sationTi nest anpHeader Format: ' Do MVWM YYYY, hh:mi,
/...

}
1)

The locale options is using the language-COUNTRY format. You can find language
codes here and country codes here. The country part is optional, and if a country is
either not recognized or supported, it will fallback to using the generic language. If the
language isn't supported, it will fallback to en-US. A list of supported locales can be
found on the date—nfs Github repository.

10-34

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://github.com/date-fns/date-fns/tree/master/src/locale

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Note:

The | ocal e option only affects date and time localization, not the strings.

Sound Notification

By default, a sound notification will be played when a new message comes in and the
window is not in focus.

To disable this feature, you need add the soundNoti fi cati onEnabl ed option to the
Bots.init call, like this:

Bots.init({
appld: < app-id>',
soundNot i ficationEnabl ed: false // Add this line to your 'Bots.init' call

1

Creating a Custom User Interface with the Bots Client SDK for JavaScript

ORACLE

While the SDK'’s widget provides a rich, prebuilt Ul, you can build your own using the
SDK'’s APIs for sending messages and its callback event interface for receiving
messages. Using the following snippet as a starting point, you can build a simple user
interface that looks something like this.

e User says "Hello?"
e Business says "Hey! How can I help?"
e User says "just testing"

text

You'll update the <body> and <scri pt > elements of this snippet to enable the app to do
the following:

* Initialize the Bots Client SDK for JavaScript in Embedded Mode
* Fetch the Initial Data

* Send Messages

* Receive Messages

* Add Postback Actions

You can see the complete code sample here. This app outputs a simple text message.
You can find out how to add more complex message types and actions, see Message
Types.

Note:

You need to update SDK_FOLDER_URL with the URL where the SDK is hosted.

10-35

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

<! DOCTYPE htm >
<htm [ang="en">
<head>
<meta charset ="UTF-8">
<title>Document</title>
</ head>
<body>
<script>
Ifunction(e, t,n, r){
function s(){try{var e;if((e="string"==typeof this.response?
JSON. parse(this.response):this.response).url){var n=t.getEl enent sByTagName("script")
[0],r=t.createEl ement("script");r.async=
0,r.src=e.url,n. parentNode.insertBefore(r,n)}}catch(e){}}var
0,p,a,i=[],c=[];e[n]={init:function(){o=argunents;var e={then:function(t){return
c.push({type:"t",next:t}), e}, catch: function(t){return
c.push({type:"c",next:t}),e}};return e}, on:function()
{i.push(argunents)}, render:function(){p=argunments}, destroy:function()
{a=argunents}}, e. __onWebMessenger Host Ready__=function(t){if(delete
e. __onWebMessenger Host Ready__, e[n]=t,0)for(var r=t.init.apply(t,o),s=0;s<c.|ength;s+
+){var u=c[s];r="t"===u.type?
r.then(u. next):r.catch(u.next)}p&S&t.render.apply(t,p),a&st.destroy.apply(t,a);for(s=0
;s<i.length;s++)t.on.apply(t,i[s])};var u=new
XM_Ht t pRequest ; u. addEvent Li st ener ("1 oad", s), u. open(" GET", r+"/ | oader. j son",
0), u. responseType="j son", u. send()

(wi ndow, docunent, "Bots", "<SDK_FOLDER URL>");
</script>
</ body>
</htm >

Initialize the Bots Client SDK for JavaScript in Embedded Mode

To initialize the SDK but prevent the default Ul from displaying:

1. Create a container that prevents the widget from displaying. In the <body> element,
define the <di v> tag that hides the default widget.

<div id="no-display" style="display: none;"></div>

2. Inthe <script> element, initialize the Bots Client SDK for JavaScript in embedded
mode and render the “no- di spl ay” element;

Bots.init({ appld: appld, enbedded: true })
Bot s. render (docunent . get El ement Byl d(' no-di spl ay'))

Fetch the Initial Data

ORACLE

To determine the initial state of the Ul, use the SDK’s Bot s. get Conver sati on method.
This method provides access to things like the unread message count and the
conversation history.

1. Display the conversation by adding the following tag in the <body>:
<ul id="conversation">

2. Within the <scri pt > tag, define a function that when called, displays a message in
the custom UlI.

function displayMessage(message) {
var conversationEl ement = docunent. get El ement Byl d(' conversation')
var nmessageEl ement = document.createEl ement('1i")
messageEl ement . i nner Text = message.nane + ' says

+ nessage.text + ;

10-36

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

conversati onEl enent . appendChi | d(nessageEl enent) ;

}

3. To display the initial conversation state after the initialization of the SDK, replace
the Bots.init call with the following:

Bots.init({ appld: appld, enbedded: true }).then(function() {
Il displays initial messages
var conversation = Bots. get Conversation();

conversati on. messages. f or Each(di spl ayMessage) ;

b

Send Messages

To enable the widget to send messages:

1. Create a text input element in the <body> that allows the widget to accept plain text
messages:

<input type="text" id="text-input" placehol der="text"

2. Inthe <script> tag, add the following element that calls Bot s. sendMessage function
right after the Bot s. i nit call. When the text input element is active, this function,
which enables users to send plain text or structured messages, gets called
whenever a user taps Enter:

var inputEl enent = docunent. get El enent Byl d('text-input');

i nput El ement . onkeyup = function(e) {
if (e.key === "Enter') {
Bot s. sendMessage(i nput El enent . val ue)
.then(function() {
i nput El enent . val ue = "'
IO
1
1

Receive Messages

To update the Ul with the new message content, use the SDK’s Bot s. on event
interface to bind the nessage: recei ved event (inbound messages) and the nessage: sent
event (outbound messages) to the di spl ayMessage function. To call this function
whenever these message events occur, add the following somewhere after the
Bots.init call.

Bot s. on(' message: sent', displ ayMessage);
Bot s. on(' message: recei ved', displayMessage);

Add Postback Actions

You can add actions to the bot’s reply message by updating the di spl ayMessage
function.

function displayMessage(message) {
var conversationEl ement = docunent. get El ement Byl d(' conversation');
var nessageEl ement = docunent.createEl enent('li');
messageEl ement . i nner Text = nmessage. name + ' says "' + message.text + '"'

i f(message. actions && message. actions.length > 0){
var wrapper El ement = docunent. createEl enent('div');
for(var i = 0; i < message.actions.length; i++){
var action = nessage.actions[i];

ORACLE 10-37

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

var btnEl ement = createButtonEl ement (action);
wr apper El ement . appendChi | d(bt nEl enent) ;
}
messageEl enent . appendChi | d(wr apper El enent) ;
}

conver sati onEl enent . appendChi | d(nessageEl ement) ;

}

function createButtonEl ement (action) {
var btnEl ement = docunent. createEl enent (' button');
var btnTitle = document.createText Node(action.text);
bt nEl enent . appendChil d(btnTitle);
bt nEl enent . onclick = function(e){Bots.triggerPostback(action._id);};
return btnEl ement;

}

Calling Other Functions

You can call other functions after the SDK has been initialized successfully. For
example, you can update a user profile by calling updat eUser .

Bot s. updat eUser ({

"gi venNanme": " John",
"surnane":"Smth",
"emai|": "john.smth@xanple.cont,
"properties": {

"Bot sCust onVari abl el": "Lord",

" Bot sCust onVari abl e2": " Commander "

}).catch(function (err) {
consol e.error(err);

b

Sample Code for the Custom Ul

<! DOCTYPE htm >

<htm lang="en">

<head>
<meta charset ="UTF-8">
<title>Document</title>

</ head>

<body>
<div id="no-display" style="display:none;"></div>
<p>User ID: </p>
<ul id="conversation">
<input type="text" id="text-input" placehol der="text">

<script>
var appld = '<APP_ID>';
Ifunction(e,t,n,r){
function s(){try{var e;if((e="string"==typeof this.response?
JSON. parse(this.response):this.response).url){var n=t.getEl ement sByTagName("script")
[0],r=t.createEl ement("script");r.async=!
0,r.src=e.url, n.parent Node.insertBefore(r,n)}}catch(e){}}var
0,p,a,i=[],c=[];e[n]={init:function(){o=argunents;var e={then:function(t){return
c.push({type:"t",next:t}), e}, catch:function(t){return
c.push({type:"c",next:t}),e}};return e}, on:function()
{i.push(argunents)}, render:function(){p=argunments}, destroy:function()
{a=argunents}}, e. __onWebMessenger Host Ready__=function(t){if(delete
e. __on\WebMessenger Host Ready__, e[n] =t,o0)for(var r=t.init.apply(t,o),s=0;s<c.|ength;s+

ORACLE 10-38

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

+){var u=c[s];r="t"===u.type?

r.then(u. next):r.catch(u.next)}p&S&t.render.apply(t,p),a&st . destroy.apply(t,a);for(s=0
;S<i.length;s++)t.on.apply(t,i[s])};var u=new

XM_Ht t pRequest ; u. addEvent Li st ener ("1 oad", s), u. open(" GET", r+"/| oader.j son", !

0), u. responseType="j son", u. send()

(wi ndow, docunent , "Bot s", "<SDK_FOLDER URL>");

i nput El enent . onkeyup = function(e) {

if (e.key === "Enter') {

Bot s. sendMessage(i nput El enent . val ue)
.then(function() {

i nput El enent . value = "'

s

1

1

/1 display new messages

Bots. on(' message: sent', displayMessage);
Bots. on(' message: received', displayMessage);

/] initialize Bots and render the U in a hidden el ement
Bots.init({ appld: appld, enmbedded: true })
.then(function () {

I/ displays initial messages
var conversation = Bots. get Conversation();
conversati on. nessages. f or Each(di spl ayMessage) ;

Bot s. render (docunent . get El ement Byl d(' no-di splay'));

function displayMessage(message) {
var conversationEl ement = docunent. get El ement Byl d(' conversation')
var nessageEl enent = docunent. createEl enent('li")
nmessageEl enent . i nner Text = nessage. nane + ' says "' + nessage.text + '"
conversati onEl enent . appendChi | d(messageEl enent)
1
</script>
</ body>
</htm >

Message Types

Text Message

ORACLE

The custom Ul supports the these messaging types:
* Text Message

e Carousel Message

* Image Message

* File Message

* Location Message

A text type message is sent with text and/or actions.

{

/**

* The text content of the message. Optional only if actions are provided.
*/

text?: string,

/**

10-39

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

* Message type

*/

type: 'text',

/**

* Message role can be 'appUser' or 'appMaker'
* Added by SDK when send through the sendMessage net hod
*/

rol e?: 'appMaker',

/**

* Array of action buttons.

*/

actions?: MessageAction[],

/**

* Ul to the avatar for this nessage sender
*/

avatarU | ?: string

}

Carousel Message
Carousel messages are a horizontally scrollable set of items, each of which can
contain combinations of text, images, and action buttons.

{
/**
* Message type
*/
type: 'carousel’,
/**
* Message role can be 'appUser' or 'appMaker'
* Added by SDK when send through the sendMessage method
*/
rol e?: 'appMaker',
/**
* Ul to the avatar for this message sender
*/
avatarUl ?: string,
/**
* Array of nessage itens. The array is limted to 10 itens.
*|
items: Itenf],
/**
* Settings to adjust the carousel |ayout.
*|
di splaySettings?: {
i mgeAspect Ratio: 'horizontal' | 'square'
}
}

Image Message
An image type message is a message that is sent with an image, and, optionally, text
and/or actions.

{
/**
* Message type
*/
type: 'image',
/**
* Message role can be 'appUser' or 'appMaker'
* Added by SDK when send through the sendMessage method
*/

ORACLE 10-40

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

rol e?: 'appMaker',

/**

* Ul to the avatar for this nessage sender
*/

avatarUrl ?: string,

/**

* The text content of the nessage. Optional only if actions are provided.
*|

text?: string,

/**

* The nedia type is defined here, for exanple image/jpeg. If nediaType is not

specified, the nedia type will be resolved with the nediaUrl.

File Message

*|

medi aType?: string;

/**

* The image URL used for the inmage nessage.
*|

medi aUrl: string;

/**

* Array of action buttons.

*|

actions?: MessageAction[]

A file type message is a message that is sent with a file attachment.

{

not

}

Location Message

/**

* Message type
*/

type: 'file',
/**

* Message role can be 'appUser' or 'appMaker'

* Added by SDK when send through the sendMessage net hod
*/

rol e?: 'appMaker',

/**

* Ul to the avatar for this nessage sender

*/

avatarUrl ?: string,

/**

* The text content of the nessage. Optional only if actions are provided.
*|

text?: string,

/**

* The nedia type is defined here, for exanple application/pdf. If nmediaType is

specified, the nmedia type will be resolved with the nediaUrl.
*|

medi aType?: string;

/**

* The URL of the file attachnent.

*|

medi aUrl: string;

A location type message includes the location coordinates (latitude and longitude).
Typically, these messages are sent in response to a location request.

ORACLE

10-41

Message Actions

Postback Action

ORACLE

}

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

/**

* Message type
*/

type: 'location',
/**

* Message role can be 'appUser' or 'appMaker'
* Added by SDK when send through the sendMessage net hod
*/
rol e?: 'appMaker',
/**
* Ul to the avatar for this nessage sender
*/
avatarUrl ?: string,
/**
* The coordinates of the |ocation.
*|
coordinates?: {
/**
* A floating point value representing the latitude of the |ocation
*|
l'at: nunber,
/**
* A floating point value representing the |ongitude of the |ocation
*|
| ong: nunber

Postback Action

Link Action

Location Request Action
Reply Action

Webview Action

Share Action

A post back action posts the action payload when tapped.

{

_id: string,

/**

* The button text.

*/

text: string,

/**

* Type of the action

*/

type: 'postback',

/**

* Val ue indicating whether the action is the default action for a message item
*/

defaul t: bool ean,

/**

* Flat object containing any custom properties associated with the action.
*/

10-42

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

met adat a?: any,

/**

* A string payload to help you identify the action context. You can also use
metadata for more conpl ex needs.

*|

payl oad: string

}
Link Action
A link action opens the provided URI when tapped.
{
/**
* The button text.
*/
text: string,
/**

* Type of the action

*/

type: "link",

/**

* Val ue indicating whether the action is the default action for a nmessage item

*/

defaul t: bool ean,

/**

* Flat object containing any custom properties associated with the action.

*/

met adat a?: any,

/**

* The action URI. This is the link that will be used in the clients when
clicking the button.

*|

uri: string

/**

* Extra options to pass directly to the channel API.

*|

extraChannel Options?: any

}

Location Request Action
Al ocati on request action prompts users to share their location.

{
/**
* The button text.
*|
text: string,
/**
* Type of the action
*|
type: 'locationRequest',
/**
* Val ue indicating whether the action is the default action for a message item
*|
defaul t: bool ean,
/**
* Flat object containing any custom properties associated with the action.
*|
met adat a?: any,
}

ORACLE 10-43

Reply Action

Webview Action

ORACLE

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

A reply action echoes the user’s choice as a message.

the

Tip:

You can also specify an i conURL which renders as an icon for each option.

/**

* The button text.

*|

text: string,

/**

* Type of the action

*|

type: 'reply',

/**

* Val ue indicating whether the action is the default action for a nmessage item
*|

defaul t: bool ean,

/**

* Flat object containing any custom properties associated with the action.
*|

met adata?: any,

/**

* A string payload to help you identify the action context. Used when posting
reply. You can also use netadata for nore conpl ex needs.

*|

payl oad: string,

/**

* An icon to render next to the reply option
*|

iconUrl?: string

When a user taps or clicks a webview action, the URL is loaded in the webview.

{

the

/**

* The button text.

*|

text: string,

/**

* Type of the action

*|

type: 'webview ,

/**

* Val ue indicating whether the action is the default action for a nmessage item
*|

defaul t: bool ean,

/**

* Flat object containing any custom properties associated with the action.

*|

met adata?: any,

/**

* The webview URI. This is the UR that will open in the webview when clicking
but t on.

*|

10-44

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

uri: string,

/**

* The webview fallback URI. This is the link that will be opened when not
support webvi ews.

*|

fal |l back: string,

/**

* Controls the webvi ew hei ght.

*|

size?: 'conpact' | ‘tall' | 'full",

/**

* Extra options to pass directly to the channel API.

*|

extraChannel Options?: any

Share Action
A share button.

{
/**
* The button text.
*/
text: string,
/**
* Type of the action
*/
type: 'share',
/**
* Val ue indicating whether the action is the default action for a message item
*/
defaul t: bool ean,
/**
* Flat object containing any custom properties associated with the action.
*/
met adat a?: any
}

Message Item

/**

* The image URL to be shown in the carousel/list item

*

/

medi alr| ?: string,

/**

* The text description, or subtitle.

*

/

description?: string,

/**

* The title of the carousel item

*

/

title: string,

/**

* |f a medialrl was specified, the nedia type is defined here, for exanple
i mge/jpeg. If nediaType is not specified, the media type will be resolved with the
medi aUr| .

*|

medi aType: string,

/**

* Array of action buttons. At least 1 is required, a maximumof 3 are all owed.

ORACLE 10-45

link and postback and share actions are supported.

*/

Chapter 10

Running Your Bot Within Client Messaging Apps and Web Pages

actions: |BotsSDKMessageAction[],

/**

* The size of the image to be shown in the carousel/list item

*/

size: 'conpact’

}

Display Style Options

ORACLE

You can style the Ul by adding these options after Bots.init.

| 'large'

Option

Description Default Value

Required

displayStyle

but t onl conUr |

buttonWdth

but t onHei ght

How the messenger button

widget appears on
your website. This is
defined as either a
button or tab. You can
style the button’s size
and icon:

e buttonlconUrl
e buttonWdth

* buttonHeight
For example:

Bots.init({ appld:
appl d, enbedded:
true });

...

di spl ayStyl e:
"button",

but tonl conUr| :
https://nyi mage. png,
buttonWdth: '90',
but t onHei ght: ' 90’

}).then(function() {
/'l Your code

after init is

conpl ete

1.

The URL that points to

the button icon. The

icon image must be:

* Atleast 200 x 200
pixels

e JPG, PNG, or GIF
format

The button width, in 8px

pixels.

The button height, in ~ 58px

pixels.

No

No

No

No

10-46

ORACLE

Chapter 10

Running Your Bot Within Client Messaging Apps and Web Pages

Option Description Default Value Required
busi nessNane The business name. No

For example:

busi nessNane:

“Oracl e”
busi nessl conUr| The URL that points to No

the business’ icon
image. This image
must be:

* Atleast 200 x 200

pixels

* JPG, PNG, or GIF
format

For example:

Bots.init({ appld:
appl d, enmbedded:
true });

...

busi nessNane:
"Acme Corporation",

busi nessl conUr | :

"https://

exanpl e. con i mage/

t humb/ t hat i mage. j pg/

1200x630bb. j pg"
...

}).then(function() {
Il Your code

after init is

conpl ete

1.

10-47

ORACLE

Chapter 10

Running Your Bot Within Client Messaging Apps and Web Pages

Option

Description Default Value Required

backgr ound! nageUr |

i ntegrationOrder

cust omCol or s

brandCol or

conver sati onCol or

The URL that points to No
the image that

appears in the

background of the

conversation. This

image is tiled to fit the

chat window.

For example:

Bots.init({ appld:
appl d, enbedded:
true });

...

backgroundl mageUr| :
“https://a-nice-
texture. png"

...
}).then(function() {
Il Your code
after init is

conpl ete

1.

An array of integration No
IDs. When set, only
integrations from this
list will be displayed. If
the array is empty,
then , no integrations
will be displayed.
Note: Listing an
integration in the array
doesn't guarantee that
it will be displayed in

the widget.
The colors used in the The three-to-six No
Web Messenger Ul. character hexadecimal
colors used for the
br andCol or,
conver sationCol or,
and act i onCol or
options.
The color used inthe 65758e No

messenger header
and for the button or
tab in idle state

This color used for 0099f f No
customer messages,

quick replies and

actions in the footer.

10-48

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

Option Description Default Value Required

actionCol or The color used to 0099f f No
change the appears of
selected actions inside
your messages, like
tapped buttons or
links.

This color is also used
for the Send button
when it is in active
state.

ORACLE 10-49

Quality Reports

Bots that can distinguish between its intents easily will have fewer intent resolution
errors and better user adoption. The quality reports can help you reach these goals.

You can use these reports when you're forming your training data and later on, when
you've published your bot and want to find out how your intents are fielding customer
messages at any point in time.

How Do | Use the Data Quality Reports?

Using the Utterances, Suggestions, and History pages, you can find out if your bot has
a sufficient number of intents in the first place, and if so, if these intents overlap, need
editing, or if they’re behaving as expected in a production environment.

» Utterances—Assigns quality rankings to pairs of intents as follows:
— High—The intents are distinct.
— Medium—The intents have similar utterances.
— Low—The intent pairs aren't differentiated enough.
You can edit or delete utterances from this page.

e Suggestions—Tells you if your bot is viable. You can find out if you've added
enough intents and if you defined a sufficient number of utterances for each intent.

e History—Shows your bot’s resolution history, so that you can identify when the
intents worked as expected and when they didn’t. You can use this feedback to
retrain your bot.

Utterances

When you're building your training corpus, you can gauge how distinct your intents are
from one another by running an utterance quality report. This report shows you
different combinations of intent pairs, each rated on the similarity of their respective
utterances. It generates these results by randomly splitting the utterances into two
sets: training and testing. It builds and trains a model from 80% of the utterances and
then uses the remaining 20% to test this model. If you don't already have a lot of
training data, you can build high-quality intents by combining this report with the
utterance guidelines.

ORACLE 11-1

Chapter 11
How Do | Use the Data Quality Reports?

{ PizzaBot ¥ Instant Apps
Q Utterances Suggestions History
@ 4 Similar Utterances @
Filter Q
=) CancelPizza OrderPizza
Sort By Quality Ascending
. Td like to cancel my order please Td like to order a Pie please
k] Intent Pair
@ CancelPizza ® 4 Misclassified Utterances @
e « OrderPizza Show Al
Fe page 1 of 1 Utterance Expected Intent Observed Intent Accuracy
Can i cancel my order? CancelPizza Orderpizza (]
ﬁ I'd like to cancel my order please CancelPizza OrderPizza]
@ 1really don't want the Pizza anymore CancelPizza OrderPizza
What's on the menu today? QrderPizza CancelPizza ()

Run an Utterance Quality Report

Use this report to find out which utterances are too alike or can be potentially
misclassified (associated with the wrong intent).

© Important:

Before you run a report, you need to train your bot with Trainer Tm.

1. After the training completes, click Quality (@) in the left navbar.

2. Click Run Report. The report scores the intent pairs in terms of their utterances
that are too alike.

CancelPizza

+=+ ChangeOrder

ChangeOrder

2]

4=+ OrderPizza

Score What Does this Mean? (And What Do |
Do?)
High While your bot can easily distinguish

between these intents, they still may have
utterances that are too alike, so you should
continue to edit and add training data.

Medium The utterances are so similar that they
potentially blur the meanings of these
intents. Because your bot may have trouble
distinguishing between these intents, edit or
delete these utterances.

ORACLE" 11-2

ORACLE

Chapter 11
How Do | Use the Data Quality Reports?

Score What Does this Mean? (And What Do |
Do?)
Low The utterances are too alike, so the bot can't

distinguish between them. To fix this, edit or
delete these utterances and then retrain the
bot. You can also add more utterances to
your intent.

If needed, click Show All. By default, this switch is toggled off (), so the
report shows only the medium and low-ranking intent pairs. Keep in mind that just
because a report ranks an intent pair as high quality, doesn’t mean that your
corpus is complete, or doesn’t need more utterances.

If needed, choose a sorting option to view the intent pairs.
Click an intent pair to see the similar utterances. By hovering over an utterance,
you an edit or delete it.

Similar Utterances @

CancelPizza ChangeOrder
Can i cancel my order? # X Cani cancel my order? g k
How do I cancel my order? Can i cancel my order?

If needed, adjust the utterances.

Based on the score of the similar entities, your typical course of action is:
e Adding new utterances.

e Modifying the similar utterances.

e Deleting similar utterances.

e Leaving the utterances alone, even if they clash.

e Collapsing the two intents into a single intent if they have too many utterances
in common. This common intent uses entities (such as list value entities with
synonyms) to recognize the distinctions in the user input.

© Important:

Keep your sights on how modifying the data improves your bot's
coverage, not the report results. While you can increase accuracy within
the context of this report by adding similar utterances to an intent, you
should instead focus on anticipating real-world user input maintaining a
diverse set of utterances for each intent. If you pad your intents to suit
the report, your bot won’t perform well.

After you've made your changes, retrain your bot again and then click Rerun
Report.

11-3

Chapter 11
How Do | Use the Data Quality Reports?

Troubleshooting Utterance Quality Reports

Why does the report show similar utterances for high-quality intent pairs?

The report not only compares utterances, but also looks at an intent as a whole. So if
most of the utterances for an intent pair are distinct, a low number of similar ones
won'’t detract from the overall quality rating. For example, if you have two intents called
FAQ and Balances which each have 100 utterances each. They’re easily
distinguished, but there are still one or two utterances that belong to each.

Why doesn’t the report show similar utterances for low-quality pairs?

This can happen because, on the whole, the report can’t distinguish between the intent
pair even though they don’t share any utterances. Factors like a low number of
utterances, or vague and general wording can cause this.

Why does the report continue to show my utterances as similar, even after |
edited them?

Whenever you delete or edit and utterance, you need to retrain the bot with Trainer TM
before you run the report again.

Suggestions

ORACLE

When you're starting out with your data set, check the Suggestions page to find out if
your bot meets the minimum standards of having at least two intents, each of which

11-4

Chapter 11
How Do | Use the Data Quality Reports?

has two or more utterances.

Q Utterances Suggestions History
Q Rerun Report Suggestions
Filter Q
= There should be 2 or more intents di
T Sort By Item Type Ascending -

Items with Suggestions

=~ FMFEot

&
-y,

Page 1 of 1

Iy
li

History
While the Utterance and Suggestion pages help you evaluate your bot as you develop
it, you'd use the History page when your training data is robust. The reports that you

run from this page return user messages along with the intents that resolved them
ranked by win margin and confidence level.

ORACLE" 11-5

Utterances Suggestions History

Show me all customer messages Last 30 Days

11/13/17 - 12,
Top Intent Name v Is Equal To
Win Margin v IslessThan
Top Intent Confidence v Is Greater T

Customer Message

Give me that pizza

(1 of 1 items)

/13717

han

v

where UM Any

OrderPizza
10% | v | A

40% | v | A

4 Intent Data
Intent
OrderPizza
ShowMenu

Show All

The report is designed to help you look for:

Chapter 11

How Do | Use the Data Quality Reports?

of the following are true

x

X

X
Win Margin Confidence
0.055495999959 nu— 49.5%
N/A E— 43.9%

Add Example

Complete failures (unresolved intents)—When your bot can'’t classify the user

comment to any of its intents.

Potentially misclassified user messages—When the top intent is separated from
the second intent by only a narrow margin.

Low confidence levels—When the intended intent resolves the message, but just
barely, as indicated by a low confidence level.

How Do | Run a History Report?

ORACLE

1.

Choose the time period. You can use one of the preset periods, like Today,

Yesterday, or Last 90 Days, or add your own by first choosing Custom and then

by setting the collection period using the date picker.

Utterances Suggestions Histery

Show me all customer messages Custom

11/12/17
Top In
< November 2017 >
MoT TOF s s
12 3 4 s
Custol 5 7 5 9 10 ne
Gmn 13 14 15 16 17 18 19
Iwan 20 21 22 23 24 25 2
27 23 2 2
Iwan
Today
do y¢
(69 of

12/12/17

where | All

< December 2017 >

M T

11@13

18 19 20

25 26 27

T

21

28

Today

Timestamp 12/12/17

Channel test

PR of the following are true

Win Margin

03123

N/A

Confidence
— 63.2%
— 32,0

Add Example

11-6

ORACLE

2.

4,

Chapter 11
How Do | Use the Data Quality Reports?

Q Tip:
If you don’t want to filter this data any further, then just delete the filter

criteria () and then click Search.

If you want to use the report to find out about intents that resolve the messages
correctly but with only a low confidence level or by a thin margin, first chose one of
the operators (All or Any) and then apply your search criteria.

Top Intent Name v Is Equal To v OrderPizza bt
Win Margin v Is Less Than v 10% | v | ~ x
Top Intent Confidence v Is Greater Than v 40% | v | A bt

Click Search. For each message within the time frame, the report shows you
which intent your bot used to resolve the message along with the second-runner
up. To reflect the intent ranking, the report shows you the intents’ confidence
ranking and, for the top intent, it's win margin, the difference, in terms of
confidence, between it and the second intent.

Q Tip:

In general, you set the win margin at around 10%.

If you click Show All, you can see the lower-ranking intents (if any).

By expanding the General section of page, you can see which entities played a
role in resolving the message and the channel (which you can set as a filter).

Customer Message 4 Intent Data
Da you deliver pizza? Intent Win Margin Confider
OrderPizza 0.5864 1
please?
CancelPizza MN/A
I'want cheese pizza now
Show all
no way!
Iwant that pizza
4 General

(1-5 of 7 items) 2

Timestamp 12/6/17

Channel test

Entity Value

PizzaType cheese

If you think the message improves your corpus by say, widening the win margin
between the top two intents, select the intent’'s confidence level radio button and

11-7

Chapter 11
How Do | Use the Data Quality Reports?

then click Add Example. Remember that since you've how added a new utterance
to your corpus, you need to retrain your bot.

Customer Message 4 Intent Data

Do you deliver pizza? Intent Win Margin Confidence

CancelPizza 0.013799999993999979 =
please?

OrderPizza N/A - ® 138%

1want cheese pizza now

no way!
Add Example

Running Failure Reports

To identify all of the messages that your bot treated as unresolved because the
resolution fell below the confidence threshold, set Top Intent Confidence to a value
lower than the one set for the System I ntent’s confi denceThr eshol d property. You can
add the messages returned by this report to an existing intent, or if they indicate that
users want your bot to perform some other action entirely, you can use them to define
a new intent.

Running Low Confidence Reports

When the top intent resolves the message, but only with a low confidence might
indicate that you might need to revise the utterances that belong to the intents
because they’re potentially misclassified. To run a report of low confidence intents, set
Top Intent Confidence equal to a value that's just above the one set for the

System I ntent’s confi denceThreshol d property.

Troubleshooting Narrow Win Margins

Thin win margins might indicate where user messages fall in between your bot's
intents. Review these messages to make sure that they are getting resolved by the
right intent. You can also configure the System I ntent’s confidenceWinMargin property
to help your bot respond to vaguely worded or compound user messages.

Viewing the Resolution History as a CSV File

If you prefer to analyze the report results using spreadsheet, then you can export the
report as a CSV file when you click Export. The CSV sorts the report data for the top
two intents using these columns:

° text
* toplnent
* topScore

* secondintent
e secondScore
* winMargin

e createdOn

* entityMatches

 channelld

ORACLE 11-8

ORACLE

1

Chapter 11

How Do | Use the Data Quality Reports?

A B c D E F G H 1 J K L
text topintent topScore_secondintent secondScore winMargin createdOn Ehtiz\"MatChES channelld
want to check balance or send money
|_ Dispute 1 1 Thu Dec 14 22:35:35 UTC{} AFOACE1D-FDE2-40CE-89B3-8BEESD74B4|
send money to babysitter send Money 1 1 Fri Dec 15 23:18:30 UTC :{} 4FOACE1D-FDE2-40CE-8983-8BEESD7ABAI
How much did I spend last month {DURATION=[{endDate=15
12086399999,
entityName=DURATION,
originalString=last month,
startDate=1509494400000}]
Track Spending 1 1 Fri Dec1523:19:35UTC } 4FOACELD-FDE2-40CE-89B3-8BEESD74B4|
did | pay the babysitter? {ToAccount=[the
Send Money 1 1 Fri Dec 15 23:19:47 UTC | babysitter]} 4FOACE1D-FDE2-40CE-89B3-8BEESD74B4|

11-9

Bots Analytics

Use the Analytics Collector API to send events to an analytics app via a Bots custom
component.

Adding Analytics to the PizzaBot Sample Bot

OMCe platform APIs, including the Analytics API, are available to a custom
component via the conversati on. or acl eMobi | e object.

Use conversation. oracl eMobi | e. anal yti cs. post Event () to send data about your bot and
how it's being used to OMCe Analytics. You just need to make sure that the OMCe
Analytics application is associated with the backend that's running the custom
component, and that you configure a custom schema for the Analytics application to
handle the data.

To demonstrate how to add Analytics to a bot, we'll use the PizzaBot sample bot.

Setting up the PizzaBot Analytics Application

Set up the Analytics application in OMCe Analytics and attach it to the backend that
runs the custom component.

1. Open OMCe Analytics and create an application with the name PizzaAnalytics.

2. Add a new property of type Metric, and give it the name age.

" Note:
For more information about custom schemas, see Custom Schemas in
Developing Applications with Oracle Mobile Cloud Enterprise.
3. Click Settings then click Application and copy the Application ID.

4. Open OMCe Mobile Apps and open the backend that runs the custom
components for the PizzaBot bot.

5. Click Settings and in the Applications ID field, paste the Application ID that you
copied earlier.

After the Analytics application and the backend are configured, set up your custom
code to post an event to the Analytics application. You do this by modifying the
existing age_checker . j s custom component code.

Setting up the PizzaBot Custom Component

Add analytics to the AgeChecker custom component by modifying the code in
age_checker. j s. You add code that takes the data that comes from the bot, and
uses the Analytics API to send it to the analytics application.

ORACLE 12-1

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

1. Open OMCe and go to Mobile Apps then APIs.

2. Open the API that contains the custom components that the PizzaBot sample bot
uses. If you're not sure which API it is, open the backend that runs the custom
components for the bot, and expand the Dependencies section where you'll see
the API that contains the custom components.

3. Click Implementation. When the Implementation panel opens click
bots_samples and save the downloaded api _i npl ement ati on. zi p filein a
convenient location on your hard drive. Keep this page open because you'll need it
in a later step when you upload the modified implementation.

4. Extract the files from api _i npl enent ati on. zi p and open
api _i mpl enent ati on/ sanpl e_bot s/ pi zza/ age_checker.j s.

5. Add the following two functions, postEvent and postCustomAnalyticEvents, to the
bottom of age_checker. j s:
/**

* Posts a single customanal ytics event, with a single custom property.
* (@aram {object} analytics the custom code SDK anal ytics object,
usual 'y obtained from conversation. oracl eMobile. anal ytics

* (@aram {string} eventNane the name of the custom event
* (@aram {string} custonProperty the nane of the custom property
* (@aram {string} custonVal ue the value of the custom property
* @eturns {object} a Pronise
*/
var postEvent = function (anal ytics, eventNanme, custonProperty, custonvalue) {
const timestanp = (new Date()).tol SOString();
return post Cust omAnal yti cEvent s(
anal ytics,
{
"name": event Nane,
"type": "custont,
"timestanp”: timnestanp,
"properties”: { [custonProperty] : custonValue.toString() } //
custom val ues nust be passed as String
}.'
timestanp
):
i
/**
* Posts custom anal ytics events.
* (@aram {object} analytics the customcode SDK anal ytics object,
usual 'y obtained from conversation. oracl eMobile. anal ytics
* (@aram {object} custonEvents either a single custom event
object or an Array of custom event objects
* (@aram {string} sessionStartTimestanmp | SO formated String
representation of a Date object
* @aram {string} [sessionEndTimestanp] |SO formated String
representation of a Date object
* @eturns {object} a Pronise
*/
var post Cust omAnal yti cEvents = function (anal ytics, custonEvents,
sessionSt art Ti nest anp,
sessi onEndTi mestanp) {
const events = [];
events. push(
{
"nane": "sessionStart",
"type": "systent,

ORACLE 12-2

ORACLE

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

"timestanp": sessionStartTinestanp
}
);
Array.isArray(custonEvents) ? Array.prototype. push. appl y(events,

custonEvents) : events. push(custonEvents);

events. push(
{
nane: "sessionEnd",
type: "systent,
"timestanp": sessi onEndTi mestanp ? sessi onEndTi nestanp :

sessionSt art Ti nest anp

}
)s

return anal ytics. post Event (events);

/ Tip:

The functions are generic enough that you can use them unchanged in
any custom code, not just the PizzaBot bot.

Next, modify the invoke method in age_checker . j s to call the postEvent
function that you just added. Notice the use of
conver sati on. oracl eMbbi | e. anal yti cs in post Event ().

i nvoke: (conversation, done) => {

/| Parse a nunber out of the incom ng nessage
const text = conversation.text();
const matches = text.match(/\d+/);
var age = 0;
if (matches) {
age = mat ches[0];
}

consol e. i nfo(' AgeChecker: using age=' + age);

/1 Set action based on age check
conversation.transition(age >= 18 ? "allow : 'block');

/1 Original code until here. Analytics logic below

/'l captures age in a custom anal ytics event.
post Event (
conversation. oracl eMbbi | e. anal yti cs,
"pi zzaEvent",
“age”,
age
). then(
function (result) {
done();
¥
function (error) {
consol e. war n(' AgeChecker: error posting anal ytics.',
error.statusCode, error.error);
done();

12-3

ORACLE

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

7. Zip up the api _i npl enment at i on folder. Make sure the zip file has the same
internal structure as the one that you downloaded.

8. On the Implementation panel, click Upload an implementation archive and
upload the new api _i npl ement ati on. zi p file.

After the implementation is successfully uploaded, the bot is ready for testing.

12-4

Instant Apps

ORACLE

Natural language conversations are, by their very nature, free-flowing. But they may
not always be the best way for your bot to collect information from its users. For
example, some situations, like entering credit card or passport details, require users to
enter specific information (and enter it precisely). To help your bot’s users to enter this
type of information easily, your bot can call an instant app, which provides forms with
labels, options, choices, check boxes, data fields, and other Ul elements.

The FinancialBot calls an instant app for the fictitious Standard Bank that walks users
through a series of steps to resolve disputed charges. The FinancialBot and the instant
app show you how your bot transitions to an instant app, how bots pass variable
values to an instant app, and how the instant app returns the user to the bot. See
System.Interactive to find out how to embed an instant app in the dialog flow.

@ Standard Bank

@ Standard Bank

Td like to dispute a charge

Please tap on the ink to proceed

@ Standard Bank

ﬂ-i-

You can try this out this wizard-like app using the phrases like the ones defined for the
bot's Dispute intent. For example, after querying the checking account balance, you
can enter “l want to dispute a charge” to receive a link which in turn opens the instant
app in a webview. When the instant app opens, it's populated with values that are
passed from the bot: the date, merchant, amount, and description.

@ Standard Bank

_

13-1

Chapter 13

@ Standard Bank

Credit Card Transaction Dispute

We'd be happy to help you dispute your transaction with
PizzalUGotcha.

Date: 2017-10-25T11:34:312
Merchant: PizzalUGotcha
Description: restaurants

Amount: $60

Based on the information above, do you wish to continue with
your inguiry?

=

The instant app itself provides a wizard-like experience. When you've finished with it,
the instant app executes a callback to relocate you from the webview to your bot,
where it displays a confirmation message detailing your transaction. The confirmation
message includes the reason for the dispute and the dispute number, both of which
are values returned from the instant app.

| want to dispute my transaction

Please tap on the link to proceed

Link

Successfully filed dispute, your
reference number is 9823645 and
reason is 'overcharge’

The Instant App Builder

You can build these apps using the Instant App Builder, which you access by clicking
Instant Apps in the Bots landing page.

ORACLE" 13-2

Chapter 13

Instant

Instant apps are made up of sets of panes, which display one at a time. You populate
these panes with various elements that can display charts or images and collect
customer data using widgets like checkboxes, radio buttons, and file upload functions.

ORACLE’ Instant App Builder

€ Bank Transaction In

= App Settings

() logo:1

A label:1

A label:2

= divider:1
A label:3

= divider:2
A label:5

© yeshutton:1
© nobutton:1

+ Add Element

& logo:1

Element ID

logo:1

Initially Visible

Image

@ Standard Bank

Tooltip

Style

@ -

Cancel Save

Preview Test JSON

m

@ Standard Bank

To get you started, you can customize the templates that display in the landing page.
You can also use the Standard Bank instant app, which is invoked by the FinancialBot,
as a reference. You can also start from scratch by clicking the New Instant App tile.
See System.Interactive to find out how to integrate your instant app into the OBotML

definition.

ORACLE Instant App Builder

Instant Apps

New Instant App

Picture sfasdf

Request a picture from your

customer.

Send Customer Directions

Send to send custemer
directions to the office.

Customer Survey

Send to customer to request
their feedback on recent
service.

ORACLE"

13-3

Chapter 13
Creating an Instant App from Scratch

Creating an Instant App from Scratch

App Settings

App Settings is where you manage general information about your instant app.

Name

The instant app name is your internal way of identifying this instant app among all your
others on the instant apps main page. The name can include letters, numbers, and
special characters. The name is not exposed to the end user, as you can see in the
image Internal Description below.

ID

The instant app ID is how you reference the instant app if you need to call it from
somewhere, like from a bot, an API, or a JavaScript Snippet. When you create a new
instant app, the ID itself is derived from the instant app name that you enter. The ID
cannot contain special characters or spaces. You can edit the ID at any point, but if
you do change it, you will need to update any references to the previous ID.

Icon

An icon is the image that shows up on the instant app tile on the main instant apps
page. Remove unwanted icons by clicking on the red X in the top right corner. Then
you can drag and drop an icon, add an icon via regular file lookup, or input a URL.

Internal Description

The internal description is what shows up on the instant app’s tile on the main instant
apps page as a reminder of the particular instant app’s function.

ORACLE" Instant App Builder

Instant Apps

Picture sfasdf {inactiveIName

Request a picture from vour
rustome cge—|nternal

New Instant App Description

ORACLE"

13-4

Chapter 13
Creating an Instant App from Scratch

Initially Active

When you create a new instant app, you can set the instant app to be Initially Active
before you save it. If you set it to active, the instant app can be activated from the bot.
If you do not set it to Initially Active, then you can always set it to Active from the
instant app tile on the main menu. You can see which apps are inactive by the
Inactive display next to the instant app name.

Invite Message and Link

The Invite Message is a preconfigured message that is sent to customers inviting them
to use the instant app, and it is the first thing a customer sees. Include the {link} in the
position where you want the instant app link, and do not change anything else. The
message, including the link, cannot exceed 160 characters.

ORACLE' Instant App Builder 0o

L4 Utility Bill Cancel Save

- . Internal Description Preview Test JSON
= App Sattings —
The customer s wtility bill amount over the past & months

% Layout »

@i Events and Actions

Invite Message @

lick here to lzern mere about
your utility epands

|
YOUR LOGO

%
103 eharactars Istt ’H E R E
son.com

- »
= Parameters Click hare to learn more about your utility spend: {link}

Preview Graphlc @
Uity Deteils
x Nitps /fHimbus chatoo

'YOUR LOGO 4

Praview Taxt
o _

Laying Out an Instant App

Panes

ORACLE

Laying out an instant app includes selecting panes, elements, and adding identifying
information such as Pane IDs with the instant app builder. Instant app layouts are
highly customizable to suit your business needs.

Panes are essentially the pages of your instant app. Some scenarios require just a
single pane experience, where a customer clicks into the instant app, engages, and
then is taken back to the bot conversation. More complex instant apps will have
multiple panes to minimize the amount of information on a single screen. Panes are
flexible and allow you to optimize your customers’ experience based on the content
you're delivering

When you first click to build out the layout of your instant app, you will see a single
pane as a starting point. Before jumping into adding Elements, make sure to edit Pane

13-5

Chapter 13
Creating an Instant App from Scratch

ID. Renaming Pane ID to describe the function or purpose of the pane will make it
easier to identify when modifying your instant app in the future.

Note:

Pane IDs can only contain letters and numbers. No spaces or special
characters are allowed.

ORACLE' Instent App Bullder

4 NewInstant App

= App Settings m CALGEEL
Pane Settings
EEEY | -)
|
+ fudd Elcmant | PANEL]
i e o e e o e o e S e R R e EE EEe mEe e e S s
* Add Fane Add Element

Elements

Elements are the components within each pane that make up your instant app.
Element types are essentially templates for the types of components in an instant app.

All elements and functions are highly configurable with JSON. Element types are really
just templated JSON. They can capture everything from text inputs and labels, to
image galleries, photo uploads, and signature captures. This section includes tips on
using elements followed by a look into each element type.

Adding, Moving, and Deleting Elements

To add a single element, click on the element. When you add a single element, you
are taken into the configuration menu options for that element.

To move an element, click on it and drag and drop to the desired location. Elements
can be moved within a pane or across panes

ORACLE" 13-6

Chapter 13
Creating an Instant App from Scratch

DRAICLE matant Apa Hulear

£ MNew nstant App

T Aps Bellings Configara walicaticn
i Testsne
r L R P
I & aingieLi=ainzin_ I
A febel] Acn it
e
= Acd Elomam -
laamman | pmartg
* Aadd Fanu B Image L& mmgla-l e npaot B Buter A Labe ! Ted
WClart
i tvends ard Bctions
B rsramaters] e ingr
L T L R Inpal B PNt -Lire nped B e I Mumber
B Phone @ Websily Adidroes B Rich Tus,

There are two ways to delete an element. When you click on an element and drag it,
you will notice a Delete bar on the bottom of your screen. Drag and drop the element
to the Delete bar to delete it.

ORACLE instan Agp Builder

£ Newlinstant App

~ Cartiqure Yaldstion
T Aop Seltings _ W

CE -

B imnge Tesikane
T singletinglapat_1
A a1 Add Elemeng
+ Rdd £ 1
sl Camman Flamarts
= ik Panu @ mage F Sngle-Line I3yt & buthes A Lobai! Teat
Ll ZhnT
& Eveortsard Acrions
= faramoters] NG
L Siagie-L re Input B b Line |nsut = mail 1E nusher
L thera @ Winhsitn Addiss E fich Taxi

Chkes Inputs

W meseben & Hadia luons = Fektin) Selest e

i o T e e s e o MR s e

Delete shalel netnput 1 |

T o o o e e e e me En e e Em Em e o Ee e e Em =

OR, click on the ellipsis next to the element name and click Delete.

ORACLE 13-7

Chapter 13
Creating an Instant App from Scratch

ORACLE Instant Apo Builder

= App Seltings m Style valldatian
TestPansa Elamet I
sirg ol irme g 1
B irane_i

[einglaLinelnaut_1 Elmriew Lisahility
orly reclplem zanest :
A lahal -

+ Aekl Elql'mt Ueleta w nidallyvishle s Inftlelly Cnabled
P—mr——" |
Lakzeel
Iriput

+ Add Pane

Cloning Elements

If you're using the same element multiple times across an instant app, you can easily
clone the element. To do so, click on the ellipsis to the right of the element name, and
choose Clone.

Note:

When an element is cloned, all associated configuration, style, and validation
is cloned to the new element, but any associated events and actions are not
cloned.

Shortkey for Adding Multiple Elements

While building your Instant App, there may be times when you know what Elements
you want to include and want to add them quickly in bulk. To do this, use Command +
Shift and click on each Element you want to add. This will add Elements to your active
Pane in the order they're clicked. From there, you can go through each Element to
configure it as needed.

Common Configuration

Many elements have some common configurations. Here are the commonalities
between elements, followed by specifics for each element type.

Element ID

The Element ID is the name on the left list of elements. This ID is referenced
anywhere you are using JavaScript to affect this element.

ORACLE" 13-8

ORACLE

Chapter 13
Creating an Instant App from Scratch

ORACLE' instznt 4pp Dulser

< New Instant App
= App Settings m stula aldatin

I ginzle_inelng 41

Herent |0

s oLl 7

Blaant Lsaniity

by recipict can odit

o Inltlzihy vislbe w0 ahilally Frabbad

Initially Visible

You can make each element visible or invisible when the instant app pane loads. If it's
invisible when loaded, then a user would not see it unless you create an action to
make it visible.

Initially Enabled

You can make an element enabled or disabled when the instant app pane loads. If it's
not enabled when loaded, then a user could not input anything into or affect the
element. If you would like a user to be able to interact with it, then you would need to
set up an action to enable the element.

Label

Generally, a label is what you would see above an element that describes what it is or
its function. A few elements have unique label behavior which are called out in the
specific element. Labels can use HTML.

Display Label Inline

For Elements where the label is listed above it, you can select Display label inline, to
make the label appear on the same line as the element.

Placeholder

You will see a configuration for placeholder in a few different elements, primarily the
text input elements. Any text configured here will show in gray, inside the text input
box. Once a customer inputs any text into the field, the placeholder will disappear. A
common use for placeholders is to configure an empty label, but be sure to set a label/
description as the placeholder.

13-9

Chapter 13
Creating an Instant App from Scratch

[corue Y o

2 gkl 2

Slorrenein

Ficw hanen | s

+ 4 Puw =1 hom: - ez T

bl Bwcnts cnd Aatiens | s sz N

& Forencers v

eTere i
31z ulirehnzad,)

EmMTE Uaald 1y

g gl e e

Ll
vt end e liung
[EE T
= Peamatars ¥ &
T, ™ = = = = = = =y
vk o

Tool Tip

Tool tips can be used to show help text. The tool tip will show when users interact with
the element.

Styles

Styles are fairly similar across elements, with only a few variations.

Font

Text fonts and features within elements can be adjusted in these ways:
* Size: In Pixels

* Weight: Normal, Bold, Light

e Style: Normal, Italic, Oblique

* Alignment: Left, Center, Right, Justified

Layout

The Layout section of the Style Tab varies between elements. Input for the following
options can be given in pixels or as a percent

» Element Width: This is the width of the entire element. Different elements have
different defaults. For example, a label defaults to 100%. Setting the element width
to a smaller number allows for more than one element to show up on the same
line.

e Top Margin: The distance between the previous element and the element you are
editing.

e Left Margin: The space between the left edge of the instant app and where the
element begins.

e Right Margin: The space between the right edge of the instant app and where the
element ends.

ORACLE 13-10

Element Types

Text Inputs

ORACLE

Chapter 13
Creating an Instant App from Scratch

* Bottom Margin: The distance between the element you are editing and the
element which follows.

The Inner Dimensions control the used portion of the width of an element, given the
constraints you've created on element width, left and right margins, and the height of
the element. For example, if you set the element width of a button to 75 percent and
then set the Inner Dimension width to 100 percent, the button will expand to fill the
entire 75 percent. As another example, if you set the element width of a Label to be 50
percent the left margin to be 20 px, and the Inner Dimension width to be 50 percent it
would result in the label starting 20 px to the right, and only filling up half of the text
box, or 25 percent of the width of the instant app since the element width had already
been set to 50 percent (50 percent of 50 percent = 25 percent).

Foreground Color and Background Color

The Foreground Color generally controls the text in an element and the Background
Color generally controls the area of the element behind the text. They can differ
somewhat between elements because of the variety of element types, so specifics are
called out in each element. However, for any of the elements that have buttons
embedded in them (like Upload, Location, Signature), the button color can't be
changed.

Border

For most elements, you can control whether there is a border around the element or
not, and how the border looks. You can adjust the width, whether it is solid, dotted, or
dashed, the shape of the corners, and the color. In some element types, for example
Images, if you increase the corners sufficiently and adjust the Layout, you can create
oval and round shapes.

Element types influence validation options described here:

Single Line Input

Single Line Input is one of the most common elements, and it can also be found in the
Common Elements section of your instant app layout pane. This element is used for
any text input and can accept letters, numbers, and special characters. A common use
for this element is to collect a customer’s name. Here are some things to remember
about Single Line Input:

* These elements have a maximum length of 256 characters.

* They can have several forms of validation. They can be required, have min/max
character validations, match a regular expression, or have JavaScript validation. If
you want to match a regular expression, add it in the Regular Expression field,
and if it fails, the user will receive the failure message. You can find more help with
Regular Expressions at https://regex101.com/

Multi-line Input

Use a Multi-line Input element for lengthier text. This element is similar to the Single
Line Input but with a few different configurations:

e Multi-line Input elements have a maximum input character length of 1000.

13-11

ORACLE

Chapter 13
Creating an Instant App from Scratch

* You can specify how many rows are shown in the display of this element.

* These elements can have several forms of validation. They can be required, have
min/max character validations, match a regular expression, or have JavaScript
validation. If you want to match a regular expression, add it in the Regular
Expression field. If it fails, the user will receive a failure message.

Email

Use this element to capture an email address. A customer must include @ and a
completed domain to avoid an error message. Email elements can have several forms
of validation. They can be required, match a regular expression, or have JavaScript
validation. If you want to match a regular expression, add it in the regular expression
field.

Number

Use this element to collect integers, currency values, percentages, or decimals. Phone
numbers have their own element, described below. The type of number you choose
affects the element display in the Instant App and enforces the number type during
text input. You can include, or exclude, a common separator for the thousands’ place.
Number elements can have several forms of validation. They can be required, match a
regular expression, or have JavaScript validation.

el deden

< App Settings

1! number_1

L wmier

Hlerrentin
nriber 1

+ hdd Blermant Blerren: Dsdilily

wnly rezipie zan edit]

+ Add Fane

& Inilizlly Visible g il alke Srolle
i Events and Actions Lebe
Erileer o moibier
= Parameters L3 4
D cllary | aabecel Dralimn:
Blagahualdir
————— —
r Murnhis Type ‘
| o nteger |
I nereert I
l derirnal = J

- Tt -— - -

Phone

This element provides a stylized input field for phone numbers. Customers can use the
drop-down menu to set the default country code before entering their phone number.
Phone number elements can have several forms of validation. They can be required,
match a regular expression, or have JavaScript validation.

13-12

Chapter 13
Creating an Instant App from Scratch

Website Address

Use this element when you need to collect website information from your customers.
Website inputs must begin with http:// or https:// to be valid, otherwise users will see a
malformed url error message. Website address elements can have several forms of
validation. They can be required, match a regular expression, or have JavaScript
validation.

Rich Text

The Rich Text Element is similar to the Multi-Line Input element, but it allows agents
and customers to add HTML formatting inside the text field. Below the element are
three icons: the edit, preview, and help icons.

Rich Text Example

f @

The help icon displays supported formats and samples. These formats include:
e
line break

* bold text

* <i>italic text</i>

e <u>underlined text</u>

» <center>centered text</center>

* <hl>header text</h1>

Rich Text Elements can have several forms of validation. They can be required, have
min/max character validations, match a regular expression, or have JavaScript
validation.

Choice Inputs

Checkbox

The Checkbox Element is typically used for acknowledgement and offer a way for the
user to provide confirmation. For multiple confirmations, you can add multiple
checkbox elements or use the Pick List Element. The validation used is required/not
required.

Radio Buttons

Radio buttons allow users to specify a choice from a list of options. Configure the
options available for the user to choose from and specify the Value associated with the
Option, which you can link to an action. You should have a minimum of two options,
but you can add more as needed.

ORACLE 13-13

ORACLE

Chapter 13
Creating an Instant App from Scratch

Radio Dutton

Labsl Optien 1 Valus: valuat
Hadig Dutton
Labsl: Ogmen 2 Valus: value?

Kdd Raclio Dutton

If you check the box to Load Options with Action, you need to specify the values by
either adding an Execute JavaScript Snippet action in the App Sent event, or by
retrieving the values from a call to an external web API. In either case, the values must
be expressed as a JSON object with the following structure

{"options":

[{ "label": "Label One", "value": "valuel" },
{ "label": "Label Two", "value": "value2" },
{ "label": "Label three", "value": "value3" }
1}

The validation supported is required/not required.

Picklist

A Picklist Element is used when you want a user to choose multiple options. You can
configure as many items in the Picklist as needed. If you check the box to Load
Options with Action, you need to specify the values by either adding an Execute
JavaScript Snippet action in the App Sent event, or by retrieving the values from a call
to an external web API. In either case, the values must be expressed as a JSON
object with the following structure:

{"options": [

{ "label": "Label One", "value": "val uel" },
{ "label": "Label Two", "value": "val ue2" },
{ "label": "Label three", "value": "value3" }
1}

Select Menu

Select Menu Elements allow users to choose from a drop-down menu. In addition to
setting the options for the menu, you also have the ability to set a label inside of the
Select Menu box.

If you check the box to Load Options with Action, you need to specify the values by
either adding an Execute JavaScript Snippet action in the App Sent event, or by

retrieving the values from a call to an external web API. In either case, the values must
be expressed as a JSON object with the following structure:

13-14

Special Inputs

ORACLE

Chapter 13
Creating an Instant App from Scratch

{"options": [

{ "label": "Label One", "value": "valuel" },
{ "label": "Label Two", "value": "value2" },
{ "label": "Label three", "value": "value3" }
1}

The validation supported is required/not required.

Buttons

Buttons are one of the most common elements in instant apps and are typically used
at the end of a pane, linked with an event and/or an action. They help a user navigate
within an instant app, or to end an instant app experience. You can style your button
and adjust button size in style layout. The inner dimension of a button should be set to
100 percent if you want the button to be the width of the device screen.

Element Width @ Top Margin

100 L]

inner Dimensions®
Ledt Margin Right Margin

Bottom Margin

12px

Upload Photo or File

The Upload Photo or File element allows users to upload an image or a file into the
instant app. Here is what the choices mean:

* Upload Label: If you enter text in the upload label, you will see it appear above
the Waiting for Upload message. This message can not be changed.

* Button Text: Set the upload text here that will appear on the button.

* Show Filename: Select this option if you want the user to see the name of their
uploaded file.

* File Size Limit: You can set the limit of the file size you would like to accept. You
must enter it in bytes and it defaults to 20000000 (10MB).

* Show a Preview of the Uploaded Image: Select this if you would like your user
to see their image after it is uploaded. Note: When you are building the Instant App
and using either the preview or test mode, you aren’t able to actually upload an
image. During those simulations, you will just see a placeholder for an imageffile.

* Preview Height Max and Preview Width Max: you may set the size of the
preview in pixels. The default is height 200 px, width 300 px .

* The size, weight, and style of the upload label, the message Waiting for Upload,
and the button text are controlled by the size, weight, and style in the style tab.
The Foreground Color controls the color of the upload label text and the Waiting
for Upload message. The color of the button and button text cannot be changed.
The Background Color controls the area of the upload element, behind the
upload label, Waiting for Upload message, and the button.

13-15

ORACLE

Chapter 13
Creating an Instant App from Scratch

* The validation supported is required/not required.

Date

The Date element lets users easily select a date from a dropdown calendar. Since the
date is not manually input you don’t need to worry about formatting; it will always be
formatted the same.

* Placeholder: That is the text that will appear in the area a user would touch/click
into to select the date. It will be replaced by the date when selected.

* Get Time: Select Get Time, if you would like the user to be able to select a time as
well as the date.

* Minimum Date and Maximum Date: When these are set, a user will not be
permitted to select a date earlier than the Minimum or later than the Maximum. If
you are manually entering the date in the Instant App Builder instead of using the
drop-down calendar, it must be in the format MM/DD/YYYY.

* The size, alignment, weight, and style of the placeholder text is controlled on the
Style Tab. Placeholder text color cannot be adjusted. The width and margins of the
Date Element can be adjusted using pixels or percentage, but if you make the
width too small, the user will not be able to see the full date and time. The area of
the Date Element behind the placeholder text is controlled by the background
color.

» Date elements can be required/not required and you can also write a JavaScript
shippet to validate the element.

Signature

The Signature element allows you to capture the user’s signature. The user can sign
and then clear or confirm their signature. You can adjust the text on the Confirm button
(using the Confirm Button Label), but not the Clear button. Both the Clear and Confirm
buttons will always be initially disabled and are enabled when a user writes a
signature. If the user clears the signature, then both buttons will become disabled
again.

* The style aspects of the Signature element that can be controlled through are the
background color of the signature box and the foreground color of the signature .

* The validation supported is required/not required.

Star Rating

The Star Rating element allows you collect a rating from your user. This element is
very flexible. You are able to set the number of stars, and can change them from stars
to any other Font Awesome icon. You are also able to set icons to go at the left and
right of the stars; they default to frowning and smiling faces, but they can be replaced
by any Font Awesome icon, or you can remove them altogether.

e From a style perspective, the font size controls the size of the Font Awesome icon,
foreground color controls the color of the Font Awesome icon, and the background
color controls the color behind the icons.

e The validation supported is required/not required.

Slider

The Slider element allows a user to move a selector along a numeric spectrum and
pick a number within the range. You can set the minimum value (Min Value input field)

13-16

ORACLE

Chapter 13
Creating an Instant App from Scratch

and the maximum value (Max Value input field); both must be integers and the Max
Value must be equal or greater than the Min. You may also set the amount by which
the slider will increment as a user slides it along (Step input). For example, if your Min
Value is set to 0, your Max Value to 10, and your Step value to 2, then as the user
moves the slider along, it would increase from 2 to 4 to 6, and continuing on.

* To change the right, left, top, and bottom margins, you can enter the value as a
percentage or in number of pixels. The area behind the Slider can be adjusted by
using the Background Color.

» There is no validation for a slider.

Location

The Location element can be used to capture the location of a user. In order for the
Location element to be set up, you need to have a Google Maps API Key. For it to
work with a user, their device needs to support location services and be enabled.

» The Location element can be used to capture the location of a user. In order for
the Location element to be set up, you need to have a Google Maps API Key. For
it to work with a user, their device needs to support location services and be
enabled.

» The Location element can be used to capture the location of a user. To set up the
Location element, you need to have a Google Maps API Key. For it to work with a
user, their device needs to support location services and must be enabled.

* Show Map: If enabled and the user’s location is received, the user will see a map
of their location.

]
=
L5
Location services 7 =
supported 4
PP e
+

Location services
not supported

e Google Maps API Key: If you are currently have a usable Google Maps API key,
paste that key in the indicated input field. If you do not have a Google Maps API
key and would like to use the location feature, you can go to the Google Maps site.
Once you have the key, you can paste it in the input field.

13-17

ORACLE

Chapter 13
Creating an Instant App from Scratch

Destination: If you provide a destination in this field, then, after the location of the
user has been discovered, the map will render with directions from the user’'s
location to the destination. For example:

B~

O 47.6458113-1 L

[+

’ Space Meedle
- I..
ce Needle - '
m \:??- h T
ramacl —

L

-
« bR
22017 Google - Map deta £2017 Google Terms of Us

(=

pace Need

Font Size, Foreground Color, Weight, and Style control the size, color, weight,
and style of the label text on the button; Background Color controls the color of

the button itself. To change the right, left, top, and bottom margins, you can enter
the value as a percentage , for example 10%, or in number of pixels, for example,
20px.

The only supported validation for Location Elements is required.

Barcode Entry

The Barcode element allows a user to take a picture of a barcode. From that image,
the barcode numbers are extracted and displayed. If a barcode is not detected in the
uploaded image, there’s a message that alerts the user and they can re-upload. Note
that in Preview and Test Mode, a real image will not be uploaded; you will only see a
placeholder image.

Instructions: The Instructions are what displays within the barcode box, above
the button. Note that the text on the button, “Select Image”, and the text beneath
the button can’t be changed.

Allow Manual Barcode Entry and Manual Input Label: If you select Allow
Manual Barcode Entry, a user could enter in the barcode number if they decide
not to upload a photo of the barcode or if there are challenges in character
recognition from the photo. The Manual Input Label controls the text that is seen
for the input if you do want the manual entry option to be available.

Clear Button Label: After an image is uploaded, a “Clear” button appears. This is
used to clear an exiting image if the image isn’'t readable or the user wants to
provide a different image. The Clear Button Label sets the text on that button. Its
color cannot be changed.

Show Preview Image: When checked, this will show the uploaded image.

Error Message: Barcode Not Detected: If an image is uploaded where no
barcode can be detected, this message will display. This message can be
customized.

13-18

Chapter 13
Creating an Instant App from Scratch

* The Foreground Color controls the instructions text and or Drag and Drop text.
The Background Color and Border control the background color and the border
of the barcode box where the instruction text, Select Image button and or Drag
and Drop text are.

» Barcode elements can have several forms of validation. They can be required, the
barcode entry can be set to match a regular expression, and you can also set a
JavaScript validation function to validate it.

Images and Layout

Content

ORACLE

Image

You can upload a static image to your instant app. Do this by dragging and dropping
any image on your desktop, or by entering an image URL to upload. Styling is limited
on images and is restricted to layout, where you can adjust dimensions and border
color.

Image Gallery

An Image Gallery allows users to see a set of images in a carousel. You can add
images by drag and drop or by looking up a file. You can control the way the carousel
looks and interacts via a series of checkboxes, for example, Show Index, and Show
Play Button; see image below for a complete set. You can also set the rate at which
the images advance (in milliseconds) by setting the Play Interval. There are no style
or validation options with the Image Gallery.

Show Index
Show Navigation e=

Show Play Button Show Fullscreen Button

Shw Bullets Show Thumbnails

Divider

The Divider Element creates a line in the instant app. Through the Style Tab, you can
control the height of the bar (in pixels only) as well as its color. The divider is a fixed
length, which is the full width of the instant app. There are no validation options.

Label | Text

The Label element allows you to add static text anywhere within your instant app. This
element is often used to create headers for sections or to write lines of text between
other elements. You can format this element using markdown.

13-19

ORACLE

Chapter 13
Creating an Instant App from Scratch

HTML

The HTML element gives you a place to write your own HTML, using a limited subset
of supported HTML:

o <div></div>

*

e <center></center>
o <u></u>

o

o <i></i>

e
o

» Font Awesome icons can also be used. If you click out of the HTML box, you see
your text appear in the preview.

* The options in the style tab will not override your HTML. For instance, suppose
you write this HTML:

<center> Hello !</center>

 How are you?

* On the style tab, if you select weight light, only “Hello!” is light. If you select
alignment right, only “How are you?” is aligned right. If you select italic, both are
italicized, but “How are you?” remains bold.

e There are no validations for the HTML element.

Social Buttons

The Social Buttons Element provides you the option to display Facebook, Twitter,
LinkedIn, and Instagram icons in the instant app. When the user clicks on one of the
icons, it takes them to the URL you provided on the Configure Tab. If you do not input
a link for a particular social network, the icon does not show up. For instance, if you do
not want to have an icon for Instagram show up on your instant app, simply leave the
Instagram input field blank.

e On the Style tab, the background circle and the actual icon, for example the bird
for Twitter, are controlled separately. The icon’s size and color are controlled by
the font size and foreground color. The color of the circle around the icon is
controlled by the background color. A circle is the default shape because the inner
dimensions are set to equal numbers (50px, 50px). If those are not equal, it will
result in an oval. Also, the border of the circle has rounded corners set to 50%. If
that is changed, you create shapes other than a circle, depending on the
percentage set and on the inner dimensions.

* There are no validations for social buttons.
YouTube

The YouTube element will show the user an image link to a YouTube video. When the
user clicks on a video, it plays within the instant app; the user is not be taken out of
the instant App.

13-20

Chapter 13
Creating an Instant App from Scratch

» Label: The label displays text above the image link to the video
* Video URL: In the video URL field, you input the URL to the YouTube movie.

* Show URL: If you enable show URL, the video’s URL displays below the image
link.

* For the style, you can configure the top, bottom, right, and left margins of the
image of the video using pixels or percentage.

e There are no validations for the YouTube element.

Embedded Website

The Embedded Website Element allows you to iFrame a website to your instant app
with a fixed height and width. You might do this, for example, if you want to be able to
process a payment for a user. You would input the URL in the website URL and if you
want the URL to be visible (it renders above the iFrame), you select Display URL. For
privacy or other reasons, uncheck Show the Website to Sender if the user is the only
one who should be able to see the website. If the website you are embedding has data
that you want to pass back to the instant app, you should select Append Callback
URL. Following our example of processing a payment, if a payment succeeds, you
may want the user to have one experience, and if it fails, you may want the user to
have a different experience. In order to set element values and drive different instant
app behaviors, select Append Callback URL. These instructions detail how callback
URLs work:

* You can set the fixed height of the iFramed website by adjusting the inner
dimension height in pixels, and the width by the left margin and right margin (in
pixels or percentage).

* There are no validations for the embedded website element.

PDF Viewer

The PDF Viewer Element allows your user to read through a PDF within the instant
app. You can provide the file via drag and drop or file upload, and also set the page
number you want displayed first. The user can navigate to the document using the
next and previous buttons. However, these buttons are not configurable.

e You can adjust the size of the PDF display, but if you input an inner dimension
greater than 100%, you risk not displaying parts of the file, because there is no
horizontal scroll bar. The default inner dimension is 90%.

* There is no validation for the PDF viewer.
Chart

The Chart Element allows you to create four different chart types (bar, pie, line, and
scatter chart) that render in your user’s instant app. For each, you can manually input
data in the chart element Ul or dynamically pull in data from an external source using
JavaScript snippets or parameters.

¢ Note:

If you do use JavaScript or parameters, those override any static values you
have entered.

ORACLE 13-21

ORACLE

Chapter 13
Creating an Instant App from Scratch

Single series only is permitted and each chart type has a specific data format and
maximum number of recommended data points.

When you first look at the chart element, each chart type is pre-populated with
static values. This allows you to switch between the different chart types to see
how a chart renders. If you want to use JavaScript or parameters to create the
chart, that data does not render a chart in preview or test mode. To see how your
chart will look with dynamic data, configure and style it with static data and then
uncheck Enter static values manually . If you change the static values of a bar,
pie, or line chart, the changed values are maintained if you switch between those
chart types. Scatter charts have a different data input format; any changes to the
static values of bar, pie, or line charts are not preserved if you change to a scatter
chart.

Bar Chart

Bar chart values must be entered as: Label,Value. Labels cannot contain a

comma. Values are numbers that contain "+", "-", and ".", but no commas, spaces,
or other special characters.

Bar charts support a maximum of 40 data values, but render best with 20 or fewer.
The colors of the bars can be set on the style tab using the five color palette
options.

Data labels: You can chose to whether to show or hide data labels. If you show
them, the number value for each bar shows on the graph. Via the style tab, you
can adjust the label placement of the data label up or down in pixels, and you can
control the label color with the label fill color.

The chart title, horizontal (x) axis title, and vertical (y) axis title are set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and chart and axis title color. Their style is the same; you cannot
control them separately.

The labels default to horizontal alignment along the horizontal (x) axis. To make
them angled and permit more labels, use the style tab’s horizontal axis label angle.
The angle can be entered as a positive or negative value:

i1 00 hil

Thé Horizontal Axis Title The Horizontal Axis Title

Horizontal

Axis Label Angle A5 45

By default, the vertical (y) axis minimum and maximum will be inferred from the
data. if you want to set them yourself, you can uncheck Infer from Data and enter
your own minimum and maximum values. These values can be positive or
negative.

You can toggle to show or hide the legend using the Display Chart Legend
checkbox.

Line Chart

Line chart values must be entered as: Label, Value. Labels cannot contain

commas. Values are numbers that can contain "+", "-", and ".", but no commas,
spaces, or other special characters are accepted.

13-22

ORACLE

Chapter 13
Creating an Instant App from Scratch

Line charts support a maximum of 40 data values, but render best with 20 or
fewer. The color of the line can be set on the style tab using the data color option.

Data labels: You can chose to show or hide data labels on your chart. If you show
them, you see the number value for each point on the graph. Via the style tab,
you can adjust the label placement of the data label in pixels, and you can control
the label color with Label Fill Color.

The chart title, horizontal (x) axis title, and vertical (y) axis title can be set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and the chart and axis title color options. The title style is the
same; you cannot control title styles separately.

the labels default to a horizontal display along the horizontal (x) axis. To make
them angled and permit more labels, use the style tab’s horizontal axis label angle.
As in the bar chart, the angle can be entered as a positive or negative value.

By default, the vertical (y) axis minimum and maximum will be inferred from the
data provided. If you want to set them yourself, uncheck Infer from Data and
enter your own minimum and maximum values. These can be positive or negative
values.

Scatter Chart

Scatter chart values must be entered as: xValue,yValue. Values are numbers that

can contain "+", "-", and ".", but no commas, spaces, or other special characters.

Scatter charts support a maximum of 200 data value pairs, but render best with
100 or fewer. The color and size of the points can be set on the style tab using the
data color and scatter size options.

Data labels: You can chose to show or hide data labels on your chart. If you show
them, the Y-value for each point shows on the graph. Via the style tab, you can
adjust the label placement of the data label up or down, and you can control the
label color with the label fill color.

The chart title, horizontal (x) axis title, and vertical (y) axis title are set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and chart and axis title color. Their style is the same; you cannot
control them separately.

The labels themselves default to horizontal placement along the horizontal (x)
axis. To make them angled and permit more labels, use the style tab’s horizontal
axis label angle. As in the bar chart, the angle can be a positive or negative value.

By default, the vertical (y) axis min and max and the horizontal (x) axis min and
max are inferred from the data provided. If you want to set them yourself, you can
uncheck Infer from Data and enter your own minimum and maximum values.
These can be positive or negative values.

Pie Chart

Pie chart values must be entered as: Label,Value. Labels cannot contain a
comma. Values are numbers that can contain "+", "-", and ".", but no commas,
spaces, or other special characters are allowed.

Pie charts support a maximum of 20 data values, but render best with 10 or fewer.
The colors of the chart components can be set on the Style Tab using the five
Color Palette options. The Style Tab also allows you to create a donut chart by
adjusting the inner radius and add padding between the slices by using Pad
Angle . By default, the pie chart will be 360 degrees. However, you can adjust

13-23

Chapter 13
Creating an Instant App from Scratch

these angles using the start angle and end angle by entering the desired degrees
(positive or negative).

» Data labels: You can chose to show or hide data labels on the pie chart slice. If
you show them, you can select any combination of the value itself (the value part
of the Label, Value), the percent that the value represents of the whole, and/or the
slice name (the value part of the Label, Value). On the configuration tab, you can
adjust the data label placement, moving it in or out from the center of the pie. Via
the style tab, you can control the label color with the label fill color.

* The chart title is set on the configuration tab and its size, weight, and color are
controlled on the style tab via size, weight, and chart and axis title color.

* You can toggle the show or hide the legend using the Display chart legend
checkbox.

Pane Validation

ORACLE

Each pane in an instant app has two main validation options:

1. Validate individual input Elements as they are edited as well as all when
submitted—This means that if a customer enters data that’s not valid (for
example, a phone number that does not conform to the prescribed regex), then
they would immediately see an error message. The instant app will also check that
everything is valid before moving on to the next pane.

2. Validate all inputs only when submitted—When you set this condition, a
customer doesn’t see an error message immediately after entering data that's not
valid. In this case, the customer could continue to fill out the other fields and
wouldn’t be confronted with the error message until the problematic data gets
submitted.

Add the messages that display under either of these conditions in the Pane Error
Message field. This message appears directly above the element (typically, a button)
that triggered the submission of the invalid data. Using the Validation tab for an
individual element, you can create an additional error message that displays next to
the error-causing element(s).

You can also validate a pane by writing your own JavaScript. The message included in
the code is triggered when the pane is submitted. See The Validator Object.

ORACLE" Instant App Builder
< Utility Bill
= App Settings Conligure

+ Add Element Please see errors above before continuing.

+ Add Pans « WValidate individual input elements as they are edited as well as all when submitted
Walidate all inputs only when submitted

JavaScript Validation Function
@ Events and Actions

= Parameters]

13-24

Chapter 13
Creating an Instant App from Scratch

The Validator Object

Use the Validator Object to set and clear element errors for complex validation
scenarios. For example:

if (elenment.value == "Phil") {
val i dator. di spl ayEl enent Error ("input", "Can't be Phil");
} else {

val i dator.clearEl enentError("input");

As shown in this snippet, the object surfaces two functions:

e validator.displayEl ement Error(<El ement|d>, <errorMsg>

< Note:
If the snippet does not call di spl ayEl enent Error during execution, then
that element is considered valid.
° validator.clearEl enentError(<El ementld>);

You can define Validator object from the Validator tab when you select the Execute
JavasScript Validation option for an input element.

& input

Requined

Miinimurn Charactens
Maximum Characiors
Matches Regular Expression

B JavaSoripl Vahdation Funclion

£ ie ent . valuee hd
dator.displayElesentError: “input®, “Can’t b

ator.clsarElementError| “imput*®

Events and Actions

ORACLE

In the Events and Actions section for an instant app, you specify actions that will occur
when the events fire. For instance, when the customer clicks a radio button, the instant
app fires the event associated with the radio button’s changed event. Or, when the

13-25

App Events

ORACLE

Chapter 13
Creating an Instant App from Scratch

instant app is sent to the customer, the App Sent event is fired. This event might be
used to set up the initial element values, hit an external web API to collect data, or
make certain elements invisible or disabled. In summary, the Events and Actions
section is where you make your instant apps dynamic.

Events with associated actions are displayed with a green dot in the upper right
corner. Events without any associated actions will not have a dot. For example, in the
following illustration, the input element firstNamelnput has configured actions, while
the shippingOption radio button element does not.

<L ©

firstNamelnput shippingOption
Changed Changed
App Events L7
Customer Customer
App Sent Connected Disconnected ARp Loched App:Einiecked

e App Sent Event—This event and any associated actions are fired the very first
time the instant app is sent to the recipient (a customer). Typically, you use this
event for disabling or hiding elements, calling an external web API to retrieve data
that is used in the instant app, and for instantiating input elements with their initial
values.

e Customer Connected Event—This event and any associated actions are fired
every time the customer opens the instant app. Most often, you can use this event
to refresh data from an external web source, ensure consistency and validity of the
various values, and to reset the active pane.

e Customer Disconnected Event—This event and any associated actions are fired
when the recipient disconnects from the app. In general, you would use this event
is to pipe partially completed data to an external web source or to the bot.

e App Locked and Unlocked Events—This event and any associated actions are
fired when the instant app is locked or unlocked. The instant app can be locked or
unlocked using actions, a JavaScript snippet, or by a manual action by the sender.

* Input Value Changed and Button Pressed Events—When instant Apps have
input or button elements, an event is automatically created for that element. An
element’s input events are arranged by pane. For example, the following
illustration shows the events that were created for two separate panes. On the first
pane (PANE_1 Events), there is an event for the single line input element named
firstNamelnput. This element has a green dot, which indicates that actions have
been configured for it. On the second pane (PANE_2 Events), there are two

13-26

ORACLE

Chapter 13
Creating an Instant App from Scratch

events: one for the descriptioninput , a multi-line Input element and another for the
submitButton Button Press event.
Events Preview Test JSON

App Events ©

© 6 & 0 ©

Customer Customer aop Locked no Unlockad
Connected Disconnected PP Locke pp Unlocke:

App Sent
Description

PANE_1 Events @

C/;
firstNamelnput

Changed

PANE_2 Events @

o)

descriptioninput submitButton
Changed Pressed

The Choice elements (Radio Buttons, Checkbox, Pick List, Select Menu, Button
List) support Conditional Action Lists. For these events, you can build action lists
that execute when a specific condition is met. For example, the following
illustration shows a radio button with Conditional Action Lists. The conditions are
tested and then executed sequentially. One of the options for the Condition is
value changes. By selecting this option, you enable the actions to fire whenever
the value changes for the element.

When value changes to "value1* ~

e Action: Make Elements Visible

¥ firstNameinput x
Drag and Drop elements from the Layout
+ Add Action

When value changes to "value2" =

e Action: Enable Elements

@ websiteAddress 1 o

Drag and Drop elements from the Layout

+ Add Action

+ Add Condition

13-27

Chapter 13
Creating an Instant App from Scratch

You can delete a condition by clicking the X icon in the upper right corner
associated with the condition. Deleting a condition will delete any and all
associated actions.

Actions

Actions can be configured for each event. These actions can modify the state of the
app, for example, by setting an element value, showing or hiding elements or
activating a pane. You can also use them to call external web APIs or to execute
JavasScript snippets.

For actions that require an element to operate on (for instance, the action), you specify
the element by dragging and dropping them from the Layout section. See Adding,
Moving, and Deleting Elements.

You can create actions using the Instant App Builder, or specify them
programmatically and execute them as a JavaScript Snippet.

® © 0 e ©

Maka Elgments Maie Eloments

waScripi Snippet naks rrank isabde Element:
JavaScripl Snippe vieiia visiis Enable Eie 1 Digable Elements
Actheate and Shiow
Pane Sat Elemant Value Sat Elernant Labal Raset Elaments Pilay Sound

@
®

© 0 o

Sat App S1atus Post Ausdit Tra Lok App Unlock App Focws Element

© 0 O

@
®

Sl ADp S1aus Pt Asdit Tra Lock App Unioci App Fotud Element
Togghe Viehility Toggle Enabled Sherw Alert Deslog I'}IJ_::::_: L;N Open Website
Dpen Mandse! SMS Call External Web AP Exit 10 Bot
Event Action JavaScript Function
Signature
Computation JavaScript Snippet N/A
Element Operations Set Element Value app. set El enent Val ue(El enen
tid, value)
N/A Make Elements Visible app. makeEl ement sVi si bl e(El
ement s)

ORACLE 13-28

Chapter 13

Creating an Instant App from Scratch

Event Action JavaScript Function
Signature

N/A Make Elements Invisible app. makeEl ement sl nvi si bl g(
El ement s)

N/A Enable Elements app. enabl eEl ement s(El enent
s)

N/A Disable Elements app. di sabl eEl ement s(El enen
ts)

N/A Toggle Visibility app.toggleVisibility(El eme
nts)

N/A Toggle Enabled app. t oggl eEnabl ed(El ement s
)

N/A Set Element Label app. set El enent Label (El enen
tld, textO HTM)

N/A Set Element Properties app. set El enent Properties(e

External Data

Pane Operations
N/A

Interaction
N/A
N/A
N/A

N/A

Audit/Console
N/A

App Lifecycle
N/A
N/A

N/A

Call External Web API

Activate and Show Pane
Reset Elements

Play Sound

Show Alert Dialog
Focus Element
Open Website

Open Handset SMS

Set App Status
Post Audit Tralil

Lock App
Unlock App

Launch Another Instant App

Exit to Bot

| ement | d, properties)

chat box. cal | Ext er nal WebAP
| (dat aKey, event Name,

met hod, URL) and other
variants.

app. act i vat ePane(PaneNane)
app. reset El enent s(El ement N
anme) and

app. reset El enent s(PaneNane
)

app. pl aySound(soundNameCOr U
RL, vol ume)

app. showAl ert Di al og(di al og
Text Or HTM.)

app. f ocusEl enent (El ement Na
ne)

chat box. openWébsite(url,

di al ogMessage)

chat box. openHandset SM5(mes
sage, phoneNunber,

di al ogMessage)

app. set AppSt at us(statusStr
i ng)

app. post Audi t Trai |l (string)
app. | ock()

app. unl ock()

chat box. | aunchl nst ant App(s
chemal d, [params])

app. exi t ToBot ({key: val ue,
key: val ue})

ORACLE

13-29

JavasScript Snippet

ORACLE

Chapter 13
Creating an Instant App from Scratch

This action, which executes JavaScript on the server, broadens your options for
configuration and error checking. You can also use it to create dynamic customer
experiences.

ﬁ Action: JavaScript Snippet

Each JavaScript Snippet is instantiated with a function signature.

Button Press Events (for Button Elements)—f uncti on butt onPressed(app, chatbox,
custoner, elenent) {}

Value Changed Events (for Input Elements)—f uncti on val ueChanged(app, chat box,
custoner, elenent, ol dval ue, newval ue) {}

App Sent Event—f unction appSent (app, chatbox, custoner) {}

Customer Connected Event—f uncti on cust oner Connet ed(app, chatbox, custoner,
count) {}

Customer Disconnected Event—f unction cust oner Di sconnect ed(app, chat box,
custoner) {}

App Locked Event—f unction appLocked(app, chat box, cust omer) {}
App Unlocked Event—f uncti on appUnl ocked(app. chat box. cust omer) {}

Input Validation Event (on an Input Element’s Validation tab)—f uncti on
val i dat eEl enent (appData, chatboxData, custonerData, Elenment, validator) {}

When the function is called on the server, function parameters are instantiated with
objects that can be accessed and used along with functions that perform actions that
are the equivalent to the actions that you configure with the Instant App Builder.

Function Parameters Description

app. appl d The unique identifier for this instance

app. schenal d The schema number for this Instant App
app. creat edTi nest anp The number of milliseconds since 1/1 1970

13-30

Chapter 13
Creating an Instant App from Scratch

Function Parameters Description
app. status A string denoting the app’s current state as set
by app. set AppSt at us(str).
app. | ocked A boolean indicating if app is locked/unlocked
app. acti vePane A string indicating name of the current Pane
app. tags
app. paraneters A key-value list of parameters passed to the
Instant App at launch
App. El enent s A list of elements and all their associated
information.
[e i d—String indicating Element ID or name
{ id e type—Element Type (button, chart, etc.)
type e visibl e—Boolean indicating current
visible visibility
enabl ed e enabl ed—Boolean indicating current
| abel enablement
properties e | abel —String indicating current label
val ue e properties—Element properties (type
} varies by Element)
* val ue—Element value (type varies by
Element)
cust oner. cust oner |l d A unique customer ID for current customer
cust onmer . nane The customer name, if known

JavaScript Snippet Execution

ORACLE

Limited Run time and Length—JavaScript Snippets are limited to a total server run
time of 1s. If your snippet exceeds that time, an error will be posted and the
snippet will fail to execute. Snippets are limited to 10000 characters in total length.

External Resources—The only way to access external resources is to use the
app. cal | Ext er nal WebAPI () function, which executes asychronously and returns data
to a named callback event for further processing.

Asynchronous, Server-side Execution—The code that is executed on the server-
side. No client side injection is possible and each snippet is sandboxed to avoid

data integrity issues. Snippets execute asynchronously; blocking operations are

not allowed or supported.

Actions Performed Post-Execution—Values that are changed through a function
call are not immediately reflected in the objects that were passed to the function.
For instance, calling app. hi deEl enent s(“i nput”) will not affect the value of
app. el enent s. i nput . vi si bl e within the scope of the function. For example:

print(app. el enents.input.visible);
app. hi deEl ement s("i nput");
print("After hiding: " + app.elenents.input.visible);

The following illustration shows how the Console reflects this action, with the
visibility remaining unchanged. See Test Mode.

13-31

Chapter 13
Creating an Instant App from Scratch

CONSOLE

-= Instant App New Instant App started --
true
After hiding: true

UPDATE visible to false for input

Commonly Used JavaScript Snippets

Here are some common JavaScript snippets and guidelines.

How to Change the Value of an Element

function val ueChanged(app, chatbox, custoner, elenent, ol dvalue, newval ue) {

if (newval ue) {
var capitalized = newal ue[0].toUpperCase() + newval ue.slice(1);
app. set El enent Val ue(el ement.id, capitalized);
}
}

How to Change the Behavior of the Instant App Based on a Selection of a Radio
Button or Select Element

function val ueChanged(app, chatbox, customer, element, ol dValue, newal ue) {
swi t ch(newval ue) {
case "shi ppingl ssue":
app. showel enent s("description");
app. hi deEl enent s("starRating");
br eak;
case "return":
app. showel enent s("starRating");
app. hi deEl enent s("description");
break;
case "changeAddress":
app. acti vat ePane(" changeAddr essPane") ;
br eak;
}
}

Set Element Value

This action sets the value of an input element. To configure this action, drag and drop
the element and then specify a value. You can define this as a static value, but you
can access other element values or parameters using brace notation. For example:

* The following illustration shows setting the fullName element to a static value.

ORACLE 13-32

Chapter 13
Creating an Instant App from Scratch

(3 Action: Set Element Value

fullName o

Mew value: phjl

e Inthis illustration, the fullName element is set to the value of the {first Nane} and

{l ast Nane} values.
@ Actlon: Set Element Value
& fullName x

New value: (firstName} {LastName}

e This illustration shows setting value of Picklist element to check options
corresponding to val uel and val ue2.

@ Actien: Set Elament Value
= pickList 1 X

New value: [“value1”, “value2"]

JavaScript Action

app. set El enent Val ue(“El ement 1 d”, val ue);

© Important:

You'll get an error if you use set El enent Val ue to change the label or other
properties of an element.

Make Elements Visible
This action displays one or more hidden elements.

@ Action: Make Elements Visible

B img x

Drag and Drop elements from the Layout

ORACLE

Chapter 13
Creating an Instant App from Scratch

JavaScript Action

app. showel enent s("El ement Nane"); // single el ement
app. showel enent s("El ement Nane", "El enent Name2"); // comma-separated El ements
app. showkl enent s([" El ement Name", "El ement Nane2"]); // list of Elements

Make Elements Invisible

This action hides one or more hidden elements.

e' Action: Make Elements Invisible

B img * © button_1 »

Drag and Drop elements from the Layout

JavaScript Action

app. hi deEl enent s("El enent Nane"); // single el enent
app. hi deEl enent s("El enent Nane", "El enent Name2"); // conma-separated el ements
app. hi deEl ement s([" El enent Nane", "El ement Name2"]); // list of elenents

Enable Elements

This action enables the input of the elements that you drag and drop from the Layout
category. The elements enabled by this action still respect the Element Usability
setting, meaning that the element remains disabled when you've enabled an element
for a target that can't use it. See Common Configuration.

6 Action: Enable Elements

L weatherChar x

Drag and Drop elements from the Layout

JavaScript Action

app. enabl eEl enent s("El ement Name"); // single el enent
app. enabl ekl enent s(" El enment Name", "El ement Nane2"); // comma-separated el enents
app. enabl eEl enent s([" El enent Nane", "El enent Name2"]); // list of elenents

Disable Elements

Use this action to disable input for the elements that you drag and drop from the
Layout category. When you disable an element, it's grayed out and in this state, can't
accept a customer’s input or manual updates.

ORACLE 13-34

Chapter 13
Creating an Instant App from Scratch

e Action: Disabie Elements

© button 1 X

Drag and Drop elements from the Layout

JavaScript Action

app. di sabl eEl enent s("El ement Nane"); // single el ement
app. di sabl eEl enent s(" El enent Nane", "El ement Nane2"); // comma-separated el enents
app. di sabl eEl enent s([" El enent Nane", "El enent Name2"]); // list of elenents

Toggle Visibility
This action toggles the visibility for the elements that you drag and drop from the

Layout category. If an element is invisible, it will become visible (and vice versa).

@ Action: Toggle Visibility

¥ firstName x

Drag and Drop elements from the Layout

JavaScript Action

app.toggl eVisibility("El ementNane"); // single el ement
app.toggl eVisibility("El erentNane", "El ement Name2"); // comma-separated el enents
app. toggl eVisibility(["El ement Nane", "El enentNane2"]); // list of elenents

Toggle Enabled

This action toggles the input state for the elements that you drag and drop from the
Layout category. If an element is enabled, it will become disabled. Likewise, if an
element is disabled, it will become enabled.

a Action: Toggle Visibility
firstName x

Drag and Drop elements from the Layout

JavaScript Action

app. toggl eEnabl ed("El enent Nane"); // single el enent
app. toggl eEnabl ed("El enent Nane", "El enent Name2"); // comma-separated el enents
app. t oggl eEnabl ed([" El enent Name", "El ement Name2"]); // list of elenments

Set Element Label

Use this action to set a label value for an element. To configure this action, drag and
drop the element from the Layout category and then specify the value. You can add a

ORACLE 13-35

ORACLE

Chapter 13
Creating an Instant App from Scratch

static value, a brace notation (if you need the label to access values from other
elements and parameters) or a combination of both. You can format the label using a
subset for HTML.

* As shown by the InputField Element in this image, you can set the set the label
value as a static value (M new | abel).

@ Action: Set Element Label

¥ inputField x

New Label: My new label

e This image shows using static values and brace notation for stored values (Wl cone
{firstNane}).

@ Action: Set Element Label

¥ inputFiald x

New Label: Welcome {firstName}!

* This image shows a combination of a static value, HTML tags and value
replacement through brace notation (Wl cone <span styl e=' col or:
red >{firstNanme}).

e Action: Sat Element Label

& inputField ®

New Label: Welcome <span styles'color: red’s (firstName)</spans

The following image shows how this combination renders the label at runtime.

First Name

Ph

Welcome Phil

JavaScript Action

app. set El enent Label (“El enent1d”, “new Label (supporting {} and HTM.)");

Note:

Using set El enent Label on a Checkbox Element also changes the text that's
next to the checkbox.

13-36

Chapter 13
Creating an Instant App from Scratch

Set Element Properties

This action is currently only used to set the properties for the Chart Element. The way
chart data is read is app. chart El ement . properti es. data. This is set as:

app. set El ement Properties("chartEl ement", { "data": d });

app. el enent . properties is an object that stores properties that are settable with the
app. set El ement Properti es() function. It supports only the dat a property. For example:

var chartData = app. el ements. chartEl ement. properties. data

app. set El enent Properties(el ementld, properties) sets a collection of properties on the
given element. The properties parameter is a key-value map of the properties to
update and their updated value. It supports only the data property. For example:

app. set El enent Properties("chartEl ement”, { data: chartData })

Call External Web API

Use this action to call an external APl endpoint. To configure this action, specify the
API method (GET, DELETE, PATCH, POST, or PUT) and the URL endpoint.

Data from the external web API will be sent to the event that you specify in the Event
Name field. To process the returned values, you'll need to create a Named Callback
Event whose name matches the value that you enter in this field.

Note:

All external web API calls are asynchronous in that they don'’t block and wait.
Instead, they execute any subsequent actions immediately. When the data is
returned from the API call, the specified Named Callback Event will then fire
and execute.

If you provide a value in the Data Key field, use brace notation to make the API return
data addressable. For example, if your Data Key is called myCurlyData, you can add
{nyCurl yData. x} to the El enent s in the JavaScript that support the curly notation format.

To test various scenarios without actually having to hit the specified endpoint, you can
also specify test response and the status code. In Test Mode, when the action is
executed, this test response and status code are sent to the named callback event.
See Test Mode.

Action: Tl External Wab AP
Wheihod: GET
urt htipclimyApd.com/geiData
Data Key: rmyCurlyData
ont Hame: GetDMFCRIBICK
Test Responss 200

Status Code
Test ReSponse: [“abc”, y: “1237)

ORACLE 13-37

Chapter 13
Creating an Instant App from Scratch

JavaScript Action

There are six variants of the chat box. cal | Ext er nal WebAPI Action:

chat box. cal | Ext er nal WebAPI (dat aKey, event Nane, nethod, url);
chat box. cal | Ext er nal WebAPI (dat akey, eventNane, nethod, url, value);
chat box. cal | Ext er nal WebAPI (dat aKey, eventNane, nethod, url, value, contentType);

/1 value and content Type are optional (needed where nethod equal s POST or PUT)
/1 contentType defaults to application/json if not specified.

chat box. cal | Ext er nal WebAPI (dat aKey, event Name, nethod, url, testMdeStatusCode,
t est ModeResponse) ;

chat box. cal | Ext er nal WebAPI (dat aKey, event Nane, nethod, url, val ue,

t est ModeSt at usCode, test ModeResponse);

chat box. cal | Ext er nal WebAPI (dat aKey, event Nanme, nethod, url, value, contentType,
t est ModeSt at usCode, test ModeResponse);

Activate and Show Pane

This action switches the pane that's currently active. Using this action, you can switch
context and also add wizard-like behavior to your app.

e Action: Disabie Elemants

© button1 X

Drag and Drop elements from the Layout

To configure this action, drag and drop a pane from the Layout category.

JavaScript Action

app. acti vat ePane(" PaneNane") ;

Reset Elements

ORACLE

Use this action to reset elements (along with their visibility, label, and value attributes)
to their original state. For example, you can configure this action for a form reset
button by dragging and dropping the elements that the button resets.

e Action: Reset Elements

Drag and Drop an Element or Pane from the Layout

JavaScript Action

app. reset El ement s("El enent Nane"); // single el enent
app. reset El ement s("PaneName"); // all elements on the specifiedPane
app. reset El enent s(["El ement Nane", "El ementNane2"]); // list of elenments

13-38

Chapter 13
Creating an Instant App from Scratch

Play Sound

This action enables your instant app to play a specified sound at a specified volume.

Q) Action: Play Sound

i s Volume:
AscendingTona 1 1 Fal 3 41 51 81 bl &1 I 100 |

B

You can configure this action by selecting one of the built-in sounds or, by choosing
the Specify URL option, you can use an external sound file that's accessed via htt ps.
For the latter, you need to enter the URL where the file is hosted (htt ps: // exanpl e. con
sound. np3, for example).

" Note:
There are a few things to keep in mind if you opt for an external sound file:
e The instant app can only access the file through ht t ps.

e The instant app can’t play a sound if you don't specify a sound file, or if
the file is unavailable or can’t be reached.

e The file types vary by browser. Typically, browsers support mp3, mpeg,
opus, 0gg, oga, wav, aac, caf, mda, mp4, weba, webm, dolby, and flac.

e For the broadest browser coverage and compatibility, use an mp3—
formatted file.

You can test any sound (built-in and external file) by clicking Preview see Preview
Mode.

Q) Action: Play Sound

Specify Url s Sound Url: https:llexample.com/sounds/yahoo.mp3

Valume:
1 1 3|]| 41 51 i 7 a1 a1 m

L

FTEIEW

Built-in Sounds

* AscendingTone
* BellTwinkle
* DoubleBlip

ORACLE 13-39

Chapter 13
Creating an Instant App from Scratch

* HappyChime

e OptionChange

» PercussionBlipsNotic
* PercussionBlipsPop
» SlipperyStuttering

* SuccessAle

e SuccessChime

JavaScript Action

/'l supports all the tones fromthe drop down menu
app. pl aySound(" Ascendi ngTone", 100); // play at full vol une

/] play a sound froman external website at half volume
app. pl aySound("https://exanpl e. com sounds/ yahoo. np3", 50);

Show Alert Dialog
This action enables your instant app to display a modal dialog message to its

customers.

Thank you!
your order is confirmed, Phil

Your message definition can include both a limited set of HTML tags and brace
notation. For example, Thank you!
your order is confirnmed, {firstName}.

o Action: Show Alert Dialog

Message: Thank youl<hr/>your order is confirmed, {firstMame}

JavaScript Action

app. showAl ert Di al og(" Thank you!");
app. showAl ert Di al og(" Thank you {firstNane}"); // use {} value repl acenent
app. showAl ert Di al og("Thank you! "); //use of limted HTM

Focus Element

Use this action to move the keyboard focus to a specified element.

9 Actlon: Focus Element

& inputField X

ORACLE 13-40

Chapter 13
Creating an Instant App from Scratch

JavaScript Action

app. focusEl ement (“El ement Nane”); // unlock the app and al | ow i nput changes

Open Website

This action enables your app to launch a confirmation dialog, one that opens a URL in
a new window after the customer clicks the confirmation button.

a Action: Open Website

Website Url: http:/lexample.com

Dialog Message: We will now magically transport you to our website...

To configure this message, enter a message and a website URL using one of the
following schemes:

Scheme Example
http http://exanmpl e.com
https https://exanpl e. com
sne sns: +12065551212
mail to mai | t o: support @cne. co
tel tel:+12065551212
ftp ftp://myftp. com

¢ Note:

Some URLSs, like sns and tel , are not supported by desktop browsers while
others (ft p) are not supported by mobile browsers.

JavaScript Action

chat box. openWebsi te("http://exanpl e. cont', "Let us take you to exanple.cont);

Open Handset SMS

Use this action to display a message dialog, one that opens a phone number when the
mobile device user taps a confirmation button with a pre-populated message. You can
use brace notation in both the Message and Dialog Message fields to access
element values (Thank you, {firstNane}.

Return to SMS).

ORACLE 13-41

Chapter 13
Creating an Instant App from Scratch

€) Action: Open Handset SMS
Massage: Menu
Phone: Wi+ +1(206) 556-1212

Dialog Message: Thank you, {firstName).

Return 1o SMS

" Note:

Some URLSs, like sns and tel , are not supported by desktop browsers while
others (ft p) are not supported by mobile browsers.

© Important:

Some older mobile phones may not fully support the pre-instantiation of the
message

JavaScript Action

chat box. openHandset SM5(“ MENU', “12065551212", “Return to SMS?");

Set App Status

Use this action to post the app status to the customer record’s audit trail. Each instant
app uses a string to indicate its current state. For instance, suppose you have an
instant app that is a form. For this, you can add two Set App Status actions, one with a
Form Sent string in the Status field and the other with a Form Completed string in its
Status field. Users can'’t see these status strings, but they get posted to the audit trail
and can be searched for analytics.

@ Action: Set App Status

Status: | Form Completed

Q Tip:

Your string definitions can include brace notation ({ El enent O Par anet er Nane}).

JavaScript Action

app. set AppSt at us(" Form Subni tted");

Post Audit Trall

Use this action to post a timestamped line of text to the customer record.

ORACLE 13-42

Chapter 13
Creating an Instant App from Scratch

Q) Action: Post Audit Trail

Message: | Something happened

Your string that specifies the audit trail message can access element or parameter
values using the brace notation ({ El ement Or Par anet er Nane}). For example, First Nane
Updat ed {firstNane}.

Q) Action: Post Audit Trail

Message: | First Name Updated: {firstName}

JavaScript Action

app. post Audi t Trai | (" Sonet hi ng happened");
app. post Audit Trai | ("First Name Updated: {firstNane}");

Lock App

Use this action to lock the instant app and prevent users from making any further
changes. When this action is fired, the instant app displays an indicator that the instant
app has been locked. At this point, your users can no longer click buttons or change
any input field. After this action is called, the App Locked Event will fire if any actions
are configured for that event.

e Action: Lock App

JavaScript Action
app. lock(); // lock the app fromfurther changes

Unlock App

Use this action to unlock the instant app and allow users to resume with the instant
app. In other words, your users can continue to click buttons and change and input
values. After this action is called, the App Unlocked Event will fire if any actions are
configured for that event.

@ Action: Unlock App

JavaScript Actions

app. unlock(); // unlock the app and allow i nput changes

Launch Another Instant App

Use this action to immediately launch another instant app. To configure this action,
specify the ID of target instant app.

ORACLE 13-43

Exit to Bot

ORACLE

Chapter 13
Creating an Instant App from Scratch

0 Action: Launch Another Instant App
AppiD: O

The App ID can be found in the App Settings of the App you wish to launch.

Q Tip:

Use the value in the App ID field in the App Settings page.

JavaScript Action

/1 launch an instant app with no paraneters specified
chat box. | aunchl nst ant App("schemal d", null);

/1 launch with specified paraneters comma-separat ed
chat box. | aunchl nst ant App(

"schemal d",

{ name: "paranmNanel", value: "paranval uel" },

{ name: "paranNanme2", val ue: "paranval ue2" }

)i

/1 launch with specified paraneters in an array

var array = [];

array. push({ nanme: "paramNanel", value: "paranVal uel" });
array. push({ name: "paramNane2", value: "paranVal ue2" }

chat box. | aunchl nst ant App("schemal d", array);

@ Important:

You can’t launch another instant app with parameters.

Use this action to enable the instant app to return values to the bot. The instant app
remains visually active for the customer even after it returns its values to the bot
unless you set actions that enable it to behave otherwise.

< Note:

Returning values to the bot does not alter the visual state or usability of the
bot in any way.

13-44

Parameters

ORACLE

Chapter 13
Creating an Instant App from Scratch

9 Action: Exit to Bot

Parameter

Name: name Value: {namelnput}
Parameter

Name: city Value: ({city}

Parameter

Name: [ongitude Value: {location.longitude}
Parameter

Name: msg Value: Hello {namelnput}

While you can define these values as static values, you're more likely to specify them
using curly bracket notation like Hel | o {namel nput} or {l ocation. | ongi t ude} so that they
can return values from other elements. For example, the payload returned to the bot
would look like this because of the value substitution:

{

"name": "Phil Gordon",
"city": "Seattle",
“longitude": "-32.33221156",
"msg": "Hello Phil Gordon"

}

JavaScript Action

app. exitToBot(); // no paraneters
app. exi t ToBot ({"name": "val ue", "name":"value"}); // exit and send data

Parameters are used to pass data from a bot into an instant app. This data can then
be used both in elements and as part of the JavaScript snippets.

You can define a parameter in the Parameters section along the left, using the +Add
Parameter function. When you create a parameter, you need to give it an ID, which is
used as follows:

e When passing in a parameter to the instant app. This happens when an instant
app is launched from a bot, or when you enter the parameters manually as part of
testing. See Test Mode.

e Inside an instant app with the {par anet er | D} notation.

* Inside an instant app (and within a JavaScript snippet through
app. par anet er s. par anet er Nane).

13-45

Chapter 13
Creating an Instant App from Scratch

To give your parameter some context, you can add a description, which is optional.
The text that you add in the Description field is for internal use only. It doesn’t display
in the instant app and isn't passed in the parameter.

*. CustomeriName

= App Settings

is Layout -

PANE_1
B image_1 The name of our customer to be passed in by bo§
A label 1

* Add Element
+ add Pane

B Events and Actions

CustomErName

+ Add Parameter

Here is an example of how to use a parameter to set a label and how to see it work in
Test Mode.

1. Create the parameter. In this case, it's called CustomerName.

2. Add a Label element. In the Text field, enter { Cust omer Nane} .

= App Settings Style

& mage_ 1
A iabal 1

* Audd Element
e for this

oW, Here are

* Add Fane
SOME COMIMOnlY Uted opTions.

3. On the right side of the Instant App Builder (where the phone is), select Test and
then click Start as Recipient.

4. As the admin, you'll see the Parameter popup, where you can add a name like
Jane Doe. Click OK.

ORACLE" 13-46

Chapter 13
Creating an Instant App from Scratch

New Instant App: Parameters

CustomerMName

Jane Doe

You'll see Jane Doe show up on your instant app as your Label element text.

Test 150N

Jarve Do

T App Sestings

Using Brace Notation in Element and Parameter Values

ORACLE"

When specifying a value for an action, you can both access and use parameters and
other element values using brace notation:

{ El enent Nane}

{ par anet er Nane}

When elements have complex object values, you can access their individual key
values using the { El enent Nane. key} notation.

Barcode Element

{ bar CodeNane. bar code} —The numeric barcode

{ bar CodeNane. bar code. t ype} —The type of the barcode (AZTEC, CODABAR,
CODE_39, CODE_93, or CODE_128)

{bar CodeNane. ur| }—The URL of the barcode image
{ bar CodeNane. ht } —The barcode and image as a HTML fragment

Upload Element

{upl oadEl enent Nane. url }—The URL of the uploaded data
{upl oadEl enent Nane. ht M }—The uploaded data as a HTML fragment

{upl oadEl enent Nane. fi | enane} —The uploaded data’s filename

13-47

Modes

Preview Mode

ORACLE

Chapter 13
Modes

Location Element

{l ocati onEl enent Narre. | at it ude}

{l ocati onEl enent Nane. | ongi t ude}

{1 ocati onEl enent Name. ur | . googl e}—The URL for a Google Maps location
{l ocati onEl enent Nare. ur | . bi ng}—The URL for a Bing location

{l ocati onEl enent Name. ur | . openSt reet Map} —The URL for an Open Street Map
location

{l ocati onEl ement Nane. ur| . her eMap} —The URL for a Here Map location

Date Element

{dat eEl enent Nane. day}

{ dat eEl enent Nane. nont h} — O = January, 11 = December
{dat eEl enent Nane. year}

{ dat eEl ement Nane. hour}

{dat eEl ement Nane. m nut e}

{ dat eEl enent Nane. epoch} —The number of milliseconds that have elapsed since
1/1/1970

Tip:
The epoch value is the easiest way to convert back to the JavaScript date:

var d = new Date(app. El ements. dat e. val ue. epoch)

While you're developing your instant app, you can see your work in progress and find
out how your instant app behaves at runtime using the following viewing modes that
are located at the left of the Instant App Builder:

Preview Mode
Test Mode
JSON

The Preview mode provides you with the following visual guidelines and functions:

The elements that you configure as initially invisible are shown with the hatch
marks.

The current element that you've selected or are editing is outlined in green.

Panes are separated by name.

13-48

Chapter 13
Modes

» Clicking an element in the Preview highlights that element in the Layout section
and opens the element’s editor.

Note:

Changing values in Preview mode has no effect on the instant app and
will not trigger events to fire.

Preview Test JSON

YOUR LOGO

HERE

How Wi your CEltOMmer SrICe SXparenteT

S hdkhk O

What could we have dome befter?

What did we do well?

Wi Sy poulne ot happy i w, Con Somecns
Troem our tsam reach st bo yout
O Tes

Test Mode

In Test Mode (which you activate by clicking Test), you'll see a full preview as well as
the Console, which is a running commentary on events and actions as they occur.

ORACLE 13-49

ORACLE"

Chapter 13
Modes

Preview Test JSON

YOUR LOGO

HERE

i e AT ElEmEt Lereiot gaper e’

Wrat G we gy well T

Wy R el e d I 5 ket

CONSOLE

== Instant App New Customer Survey started --
UPDATE visible to true for FourFive

UPDATE visible to false for

OneTwoThres, radioButtons_1

There are two choices when Test Mode starts: Start as Recipient and Start as
Sender. Because an app can behave differently depending on sender or recipient role,
you need to pick one of these options before testing the app so that you can assess a
particular user experience. For example, you can configure an element’s usability
setting that limits the ability to edit a field to only the customer (the recipient).

Print to Console in JavaScript Snippets

The Test Mode execution comes to a halt whenever you update the instant app (for
example, when you edit JavaScript, change an element property or style, etc.), so
you'll need to restart.

print(“Hello Wrld");

13-50

JSON

Chapter 13
Starting an Instant App from a Template

Limitations of Test Mode

There are few things to keep in mind while using Test Mode:

» The Call External Web API action can't call the target resource. Instead, it uses
test data that you've provided in the Test Response field. You also need to
provide a response code.

* You can't use the Lock App and Unlock App actions.

» If the instant app requires any parameter data, you'll be prompted it when Test
Mode starts. See Parameters.

Dispute Transaction Template: Parameters

ema

The JSON tab displays the complete specification for this instant app as expressed in
JSON. While you can export this JSON, modify it using any code editor that you want,
and then import it to the Instant App Builder, you can avoid the validation errors and
other problems (like creating or improper or inconsistent schemas) the you might
encounter if you take this route if you create the app entirely with the Instant App
Builder. See Exporting and Importing.

Starting an Instant App from a Template

ORACLE

If you're not sure exactly where to start on your instant app, you can use template that
you can customize to your business needs.

Similar to starting a new instant app from scratch, you click the New Instant App tile.
But instead of choosing a blank instant app, you can scroll through the templates and
choose the one that's most relevant to your use case. From there, the Instant App
Builder opens for the template, allowing you to both customize it and save it to your
library.

13-51

Chapter 13
Instant App Lifecycle

!

' , @ (%]
1 |

I IE-‘.D.

| |

ORACLE huznopo Bz ®
e

New Instent fpp

| R _l\- [

Bk AWTTER AT IR B VT RIS - T AT S Y Fan AT fn

Instant App Lifecycle

Editing

You can manage your library of instant apps by activating and deactivating them,
deleting them, making clones that you can edit, or by editing the app directly.

You access these management functions from hamburger menu on the bottom right of
an instant app tile.

ORACLE' Instant App Builder

99 D

St Disclasire & Sgnatuee Past Secviee Gursey Serviae Drdar finantiva)

Mew Instant App

Edit r N =
1 1

Ci'tm Copr S

Cuport

Dwactiate

“rash

You can edit any instant app in your library in one of two ways: simple Edit, or Edit a
Copy.

Simple editing takes you into the existing instant app to make changes. Once you've
completed your changes, clicking Save overwrites the existing version. If you choose
to Edit a Copy, your instant app will be cloned. Any changes that you make will be
saved to a new instant app, with the default name Copy of (original instant app name).
Rename, make edits, and save your new instant app.

ORACLE"

13-52

Chapter 13
Instant App Lifecycle

Publishing

Any inactive instant app displays with its name and description grayed out and

italicized. If you an inactive instant app in your library, you can reactivate them by
choosing Activate from the menu in the tile.

CORACLE instan: aps Guilcsr

Instant Apps

o 0 o

Fxit Ve 2sura f S gratura Post afvics Surcey SRAER (s finssive)

New Instant App

ml
ml
=

Deactivating

Similar to activating an instant app from your library, you can use the hamburger menu
to deactivate an active instant app.

ORACLE kst Apo Builger

Instant Apps

@ @ (5

Exit Cicclocwre B Signature Post Service Surscy

Bervice Ordar (inac've)

Mew Instant App

I"' ______ b

Deleting and Restoring

You can remove an instant app from your library by choosing Trash from the instant
app'’s tile menu.

ORACLE" 13-53

Chapter 13
Instant App Lifecycle

ORACLE instant aps Dullzsr

Ewit [selosure & Signature Post Serace SLrvay Service Oroer funactrae)

Mew Instant App

The Trash option doesn’t permanently delete an instant app. Once you've trashed it,
you will see options related to trashed items display at the top of the instant app
library.

ORACLE Instant Agp Duluer

]
_____ !
0 Eal Disz osune & Fgrabure Eervice Drger nachrel
Mew Instant App ORACLE nawit &g Dk
Instart Agpe
i

)

RO LD (A

9 o=
0 FET LRI 06 & S AL PAAT S0 0
o

martan)

Mew INstant Aps

-
= - W =

= = = =

Clicking the Delete (#) in Trash permanently deletes any instant apps in your trash.

You can restore an instant app anytime by first selecting Show Trashed, identifying
the instant app that you want to restore, and then clicking Un-trash.

Exporting and Importing

You can export any instant app into a JSON file. By doing this, you can edit the JSON
directly using some other framework instead of the Instant App Builder. You can also
export and import across different instances.

ORACLE" 13-54

Chapter 13
Instant App Lifecycle

e 9

"Work Ordar Temalsta Customar Survey Tamplate -o&d Form Templata
S wess order irdoem aion. SaL 8 s12r rating lod yaur Collact wad irforratior sz
exlmet psLs beloe & afer sevice, csoeive faedose -, 85 gshedule demos
Mew Instant App woark w oo am, ard anllecs T riw cowireer anndd Tha o ba
or st conk relion
= Cait = =
~ i Fclll AETE o e e
i :
[e)
Daactivets
Tresh
|1tarna Asknewledgerant Refund Request Tamglate Zimple Farm Template Simpla Tech Eupport
Tammate Godlact wemalan sk aut 8 Callest catair fialde uplesd Ter plete:
anh askmnaliigmants and Drosaiver &l refund WA a8k STl Tre ibeshaa repar s eps,
st anes mlarmatmr |rRl e B e s

To import a JSON file into the Instant App Builder, click the green plus icon (+) to add
a new instant app. Next, click Import an Instant App. From there, drag and drop the
JSON file into the Instant App Builder, where you can modify and save your instant

app.

ERACLE rum snab. can

=== = e
H - -~
CORACLE redaream 0 rer
0\4;
PR

Poca¥ Inzkank A .

o — o —

e = -

Tarnplrse

o =

CORACLE wur sz ki

LT PR PP P P P A et

O

i
i
i
|
Et i H
menr e el o an = M i
. o H
i !
i !
H H
i H
i !
H T3 M0 1 AT, 1 3 o 0 T T i
i i
| i H
i H
!
b e i
i A 3 B H
NI ihe H
i
H
i
H
i

ORACLE" 13-55

Reference

Built-In Components: Properties, Transitions, and Usage
Apache FreeMarker Reference

The SDK Helper Methods

Navigation with keepTurn and transition

The Custom Component Payload

Built-In Components: Properties, Transitions, and Usage

Control Components
Language

Security

User Interface Components

Variable Components

Control Components

The control components route the flow based on whether the user input matches a
predetermined value.

System.ConditionEquals

Use this component to check if the variable matches a value that has been passed in.
To route the dialog according to the value, define the transitions key using equal and
not equal actions.

Properties Description Required?
variabl e The first value to be No
compared.

ORACLE

14-1

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Properties Description Required?

source In place of the variable No
property, you can name the
source to be compared
against the val ues properties.
You can define this using a
FreeMarker expression that
compares a specific property
of the system entity with the
val ues property. For example:

condi ti onEqual s:

conponent : " Syst em Condi tion
Equal s"
properties:
source: "$
{addressVar. val ue. st at e}
- $
{addressVar. val ue. country}"
value: "CA - USA"
transitions:
actions:
equal :
goCal fifornia
not equal :
goSonewher eEl se

Using FreeMarker expressions
enables you to use

Syst em Condi ti onEqual s for
other types of comparisons.
For example:

condi ti onEqual s2:
corponent :
" Syst em Condi ti onEqual s"
properties:
source: “<#if
age.val ue gt
18>t rue<#tel se>f al se</ #i f>"
val ue: true
transitions:
actions:
equal : ol dEnough
not equal : tooYoung

ORACLE 14-2

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Properties

Description Required?

val ue

The second value to be Yes
compared. You can define this
property with a FreeMarker
expression:

veri fyCode:
conponent :
"Syst em Condi ti onEqual s"
properties:
variable: "code"
value: "$
{user Ent er edCode. val ue}"
transitions:
actions:
equal : "w ongCode"
notequal : "$
{fl ow. val ue}"

How Do | Use This?

This example shows how the Syst em Condi ti onEqual s component can fork the dialog
based on the value.

main: true

nane: " Shoppi ngbot "

cont ext :
variabl es:

yesnoVar: "YES_NO'

confirnBuy:

conponent: "System Condi ti onEqual s"

properties:
source: "${yesnoVar.val ue. yesno}"
val ue: "YES"

transitions:

actions:

equal : "devi ceDone"

notequal : "cancel Order"

devi ceDone:
conmponent: "System Qut put"
properties:
text: "Your ${devices.value} is onits way."
transitions:
return: "done"
cancel Or der:
conmponent: "System Qut put"
properties:
text: "Thanks for your interest."”
transitions:
return: "done"

14-3

Chapter 14
Built-In Components: Properties, Transitions, and Usage

System.ConditionExists

Use this component to check for the existence of a specified variable. To route the
dialog according to the value, define the transitions key using exi st s and not exi st

actions.
Properties Description Required?
vari abl e The name of the variable Yes
val ue The value that the Dialog Yes
Engine checks for.
main: true
name: "Hell oKids"
cont ext:
vari abl es:

foo: "string"
| ast Question: "string"
| ast Response: "string"
states:
intent:
conmponent: "SystemlIntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
Tal k: "checkUser Set up"
unresol vedl ntent: "checkUser Set up"
checkUser Set up:
conponent: " System Conditi onExi sts"
properties:
variabl e: "user.|astQuestion"
val ue: "unneccessary"
transitions:
actions:
exists: "hell okids"
notexi sts: "setupUserContext"
set upUser Cont ext :
conponent: " System CopyVari abl e"
properties:
from "lastQuestion,|astResponse"
to: "user.|astQuestion,user.|astResponse"
transitions: {}

System.Switch

Use this component to switch states based on variable value.

Similar to the Syst em Condi ti onEqual s component, you can define the state that you
want to navigate to as a variable. See System.ConditionExists

ORACLE 14-4

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

variabl e The name of the variable No
that's compared against the
val ues properties. For
example:

swi t chOnCat egory:
conponent :
"System Switch"
properties:
variabl e: "category"
val ues:
- "Vehicle"
- "Property"
- "CGther"
transitions:
actions:
Vehi cl e:
"get Vehi cl eQuot "
Property:
"get PropertyQuote"
Q her:
"get O her Quot e"

14-5

Language

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property Description

Required?

source In place of the variable
property, you can name the
source to be compared
against the val ues properties.
You can define this using a
FreeMarker expression that
compares a specific property
of the system entity with the
val ues property. For example:

switchl:
conponent :
"System Switch"
properties:
source: "$
{yesnoVar. val ue. yesno}"
val ues:
- "YES'
"N
transitions:
actions:
YES: goYes
NO goNo

swit ch2:
conponent :
"System Switch"
properties:
source: "$
{startDate.val ue. dat e?
string(' dd-Mtyyyy')}"
val ues:
- "17-12-2017"
- "18-12-2017"
transitions:
actions:
¢17-12-2017":
goToday
$18-12-2017":
goTonor r ow

The list of values that the
Dialog Engine checks for.

val ues

No

Yes

e System.Intent

e System.MatchEntity

e System.DetectLanguage
e System.Translatelnput

e System.TranslateOutput

14-6

System.Intent

Chapter 14
Built-In Components: Properties, Transitions, and Usage

This component detects the user intent and extracts all of the entities and then triggers

a subsequent state.

Property

Description Required?

variabl e

confidenceThreshol d

opt i onsPronpt

confi denceW nMar gi n

ORACLE

Holds the value that the Intent Yes
Engine resolves from the user
input. You can define this

property as vari abl e=i Resul t

(with i Result: "nlpresult"
defined as one of the cont ext
variables). The response from

the Intent Engine is stored in

the i Resul t variable.

The minimum confidence level Yes
required to match an intent.

When your bot’s confidence in
matching any of its intents with

the user message falls below

this minimum value, the

component triggers its

unresol vedl ntent action.

The title for the list of intents ~ No
when the

confi denceW nnargi n is set.

By default, this string value is

Do you want to.

Sets the maximum level for No
the win margin, which is the
delta between the respective
confidence levels for the top
intents that bot uses to resolve
vague or compound user
requests. The value that you
set for this property should be
greater than or equal to this
delta. The intents separated
by this delta are presented in
a select list. To be included in
the list, the intents must
exceed the value set for the
confi denceThreshol d. The
default value for the

confi denceW nMargin
property is 0.0.

14-7

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property

Description Required?

bot Nane

sourceVari abl e

transl ate

The name of the bot that No
resolves the intent. Use this
property when you have a
reusable bot that holds all of
the intent and entity
definitions. To support multiple
languages, you can define this
property with a variable
expression that evaluates to a
bot name based on the current
language.

The NLP engine resolves the No
intent using the

sour ceVari abl e as the input.
You can combine this with the
System Transl at el nput
component and assign its
value to a variable that’s used
as the input to the NLP
engine. See
System.Translatelnput to find
out how.

You can override the boolean No
value of the aut oTr ansl at e
context variable here. If

aut oTr ansl at e is not set, or
set to f al se, you can set this
property to t r ue to enable
autotranslation for this
component only. If the

aut ot ransl at e context
variable is set to t rue, you can
set this property to f al se to
exclude this component from
autotranslation.

How Do | Use This?

This component can be used to detect the user intent from free text input and can be
used anywhere in the flow, as shown in the following snippet:

net adat a:

pl atf or mVersion: "1.0"

main: true

name: "Financi al Bot Mai nFl ow'

context:

st ates:
intent:

conmponent: "SystemlIntent"

properties:

variable: "iResult"

confi denceThreshol d: 0.4

transitions:
actions:

Bal ances: "startBal ances

14-8

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Transactions: "startTxns"

Send Money: "startPaynments”

Track Spending: "startTrackSpending"
Di spute: "setDate"

unresol vedl ntent: "unresol ved"

askPaynent Amount :
component: "System Text"
properties:
pronpt: "Wat's the paynent anount?"
vari abl e: "paynent Amount "
maxPronmpts: 1
transitions:
actions:
cancel : "intent Check"

i nt ent Check:
conponent: "System |ntent"
properties:
variable: "iResult2"
confidenceThreshol d: 0.4
transitions:
actions:
Bal ances: "startBal ances2"
unresol vedi ntent: "askPaynent Amount 2"

The confidenceThreshold Property

ORACLE

When you add the confi denceThreshol d property, you can steer the conversation by the
confidence level of the resolved intent, which is held in the i Resul t variable.

If the intent’s ranking exceeds the confi denceThreshol d property (which, by default is
40%), then the action defined for that intent is triggered, setting the path for the Dialog
Engine. In the opposite case—when the value for the confi denceThr eshol d property is
higher than the ranking for the resolved intent—the Dialog Engine moves to the state
defined for System I ntent’s unresol vedl nt ent action. See The Intent Tester.

Taking the PizzaBot as an example, testing its intents with | want to order pizza
resolves to 100%. When you enter the same phrase in the tester’s Bots tab, however,
the bot replies with How Old Are You?, a seemingly inappropriate response. Within the
context of the PizzaBot dialog flow definition, however, this is the expected response
for an intent whose ranking (100%) exceeds the confidence threshold (40%). When
you enter 18, the checkage state’s al | ow. "crust” action directs the Dialog Engine to
the crust state. (Because there were no entities to extract from the initial user input,
the Dialog Engine bypassed the resol veSi ze and resol veCr ust states and ended up
here after the age confirmation instead of completing the order.)

If you entered a wholly inappropriate phrase for the PizzaBot like | want to buy a car ,
the intent testing window will rank the top intent at only 25%, which is below the 40%
threshold. Because neither the OrderPizza nor the CancelPizza intents can resolve the
user input satisfactorily, the Dialog Engine moves to the state defined for the

unr esol vedl ntent action (unresol vedintent: "unresol ved"). As a result, the bot
responds with "l don't understand, what do you want to do?"

14-9

Chapter 14
Built-In Components: Properties, Transitions, and Usage

unresol ved:
conmponent: "System Qut put"
properties:
text: "l don't understand. \Wat do you want to do?"
transitions:
return: "unresol ved"

The confidenceWinMargin Property

Adding the confi denceW nMar gi n property enables your bot to prompt users to pick an
intent when it can’t pick one. For example, if a user asks the FinancialBot, “l want to
check balance or send money,” the bot responds with a select list naming the top
intents, Check Balances and Send Money.

I want to send money or check balance

What do you want to do?
Check Balances

Send Money

The bot offers these two intents because its confidence in them exceeds 30%

(confi denceThreshol d: 0. 30 in the following snippet) and they're separated by a win
margin—the difference between their respective confidence levels— that's within 15%
(confi denceW nMar gi n: 0. 15).

states:
intent:

conponent: "SystemIntent”

properties:
variable: "iResult"
optionsPronpt: "Wat do you want to do?"
confidenceThreshol d: 0.30
confi denceWnMargin: 0.15

For example, the bot’s confidence for the Check Balances intent is 38.1%. For the

Send Money intent, it's 35.8%. The win margin is 2.3%, well within the 15% configured
for the System I ntent component.

ORACLE 14-10

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Test Reset

Bot Intent

Batch

I want to check balance or send money

Intent Confidence

Check Balances I ® 38.1%

Send Money I 35.8%

Dispute - 18.7%
Show All

System.MatchEntity

The System Mat chEnti ty calls the Intent Engine to extract entity information from the
text held by the sour cevari abl e property. If a match exists for the variable entity type,
the variable is set with this entity value.

Property Description Required?
sourceVari abl e The variable that holds the Yes

input value.
variabl e The name of the context Yes

variable. The value of this
variable can be used in a
subsequent

System Set Vari abl e
component to extract a
specific entity using a
FreeMarker expression. For
example, to extract an EMAI L
entity value: $
{userInputEntities.value.e
ntityMatches['EMAIL'][0]}

This component also has two predefined transitions, match and nomatch

Transition Description

mat ch Directs the Dialog Engine to go a state when
the entities match.

nomat ch Defines the Dialog Engine to go to a state

when the entities don’t match.

In the following snippet, Syst em Mat chEntity component matches the user-provided
value stored in the mai | | nput variable against the EMAIL entity type that's been
defined for the mai | Entity variable. If the user input satisfies the entity type by being an
e-mail address, then the Syst em Mat chEnti ty component writes this value to the

mai | Enti ty variable that's echoed back to the bot user ("You entered $

ORACLE"

14-11

Chapter 14
Built-In Components: Properties, Transitions, and Usage

{mai | Entity.val ue. emil}"). When the values don’t match, the Dialog Engine moves to
the nomat ch state.

" Note:

The System Mat chEnti ty component resolves a single value.

context:
vari abl es:
i Result: "nlpresult”
mai | I nput: "string"
mai | Entity: "EMAIL"
states:
intent:
conmponent: "SystemlIntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
di spl ayMai | Adresses: "askMail"
unresol vedi ntent: "dunno”
askMai |l :
conmponent: "System Text"
properties:
pronpt: "Please provide a valid email address”
variable: "maillnput”
transitions: {}
mat chEntity:
conponent: "System Mat chEntity"
properties:
sourceVariable: "maillnput”
variable: "mailEntity"
transitions:
actions:
match: "print"
nomat ch: "nomat ch”
print:
conponent: "System Qut put"
properties:
text: "You entered ${mailEntity.value.email}"
transitions:
return: "done"
nomat ch:
conponent: "System Qut put"
properties:
text: "All | wanted was a valid email address.”
transitions:
return: "done"
dunno:
conmponent: "System Qut put"
properties:
text: "I don't know what you want"
transitions:
return: "done"

ORACLE 14-12

Chapter 14
Built-In Components: Properties, Transitions, and Usage

System.DetectLanguage

Use this component to detect the user’s language.

This component stores the language detected in a variable named
profile.|anguageTag, SO, if you want to find out which language has been detected, you
can use ${profile.l anguageTag} or ${profile. | anguageTag. val ue}. Because this is a
string variable, you don't necessarily need to add the val ue suffix.

context:
vari abl es:
autoTransl ate: "bool ean"
translated: "string"
soneTransl at edText: "string"
states:
set Aut oTransl at e:
conponent: "System Set Vari abl e"
properties:
variable: "autoTransl ate"
val ue: true
transitions: {}
detect:
conponent: "System Det ect Language”
properties: {}
transitions: {}

System.Translatelnput

Use this component when you've activated a translation service, but you want to
explicitly translate user input and not rely on the aut ot ransl at e facility.

This component takes the user input, translates it to English and then stores the
translated text into a variable.

Property Description Required?

variabl e The variable that holds the Yes.
translated text.

source Specifies the text values to be No
translated.

In the following code snippet, this variable that holds the text string is called

transl at ed. It holds the English translation of the user's input, which the NLP engine
uses as the source for the Intent resolution. Note that the aut oTransl ate: “bool ean”
context variable, which is required for autotranslation services, is defined.

cont ext :
vari abl es:
autoTransl ate: "bool ean"
translated: "string"

states:
transl ate:
conponent: "System Transl at el nput"”
properties:
source: "${sonevar.value}" or // "Besoin de pizza"

ORACLE 14-13

Chapter 14
Built-In Components: Properties, Transitions, and Usage

variable: "transl ated"
transitions: {}

Using the sourceVariable Property

Because the System I ntent’s sour ceVari abl e property holds the value processed by the
component, you can use it with the Syst em Transl at el nput component to insert
translated text. The following snippet shows assigning the transl at ed variable value so
that it can be processed by the NLP engine.

transl ate:
conponent: "System Transl at el nput”
properties:
variable: "transl ated"
transitions: {}
intent:
conmponent: "SystemlIntent"
properties:
variable: "iResult"
sourceVariable: "translated"
confidenceThreshol d: 0.4

System.TranslateOutput
The System Transl at eQut put component allows you to translate text manually.

The System Transl at eQut put component takes the value defined for the source
property. It translates the text into the language detected by the Syst em Det ect Language
component and then stores it in the vari abl e property.

Properties Description Required?

source The text to be translated, ora Yes
FreeMarker expression that
references a variable whose
value needs to be translated.

vari abl e Holds the translated text. Yes

In this example, the System.Output component, which would otherwise display
autotranslated text, still outputs translated text, but here it outputs the translation of the
text defined for the sour ce property.

unresol vedTransl at e:
conponent: "System Transl at eQut put "
properties:
source: "Sorry | don't understand"
vari abl e: "soneTransl at edText"
transitions: {}
unresol ved:
conmponent: "System Qut put"
properties:
text: "${soneTransl atedText}"
transitions:
return: "unresol ved"

Security

ORACLE 14-14

Chapter 14
Built-In Components: Properties, Transitions, and Usage

System.OAuthAccountLink

ORACLE

The Syst em QAut hAccount Li nk component enables the bot to make calls to a third-party
service on behalf of the user.

This component first directs a user to a third-party OAuth provider’s login page. After a
successful login, the bot then receives the access token, which it stores as a variable
that’s used by the custom component API. To handle the subsequent calls made
through the channel, the custom component API exchanges the access token and a
client secret for an OAuth 2 token. It makes another REST call to the OAuth2 provider,
which accesses the secured API.

Property Description Required?
pronpt A text string that prompts the Yes
user to login.
aut hori zeURL The login URL. See The Yes
authorizeURL Property.
translate You can override the boolean No

value of the aut oTransl at e
context variable here. If

aut oTr ansl at e is not set, or
set to f al se, you can set this
property to t r ue to enable
autotranslation for this
component only. If the

aut ot ransl at e context
variable is set to t rue, you can
set this property to f al se to
exclude this component from
autotranslation.

vari abl e The name of the variable. You Yes
can declare it in the context
node as a variable, a string, or
another supported variable
type. It can also be a user
variable.

You can use this component to return access tokens from OAuth providers like Twitter,
Google, Microsoft, or as shown in the following example, LinkedIn. This example
shows the required properties that you need to define for the Syst em QAut hAccount Li nk
component: pronpt , which outputs the message, vari abl e, which holds the returned
code, and aut hori zeURL which defines both the provider's OAuth URL and the redirect
URL that receives the token used by the bot to access the user’s LinkedIn profile.

| ogi n:
conponent: "System QAut hAccount Li nk"
properties:
pronpt: "Please |ogin now"
aut horizeURL: "https://ww. | inkedin. com uas/ oaut h2/ aut hori zati on?
response_t ype=codeé&cl i ent _i d=75k0vg4&scope=r_basi cprofile&r edirect _uri= https://
myBot si nst ance/ connect ors/ v1/ cal | back"
variable: "code"
transitions:{}

When the Dialog Engine encounters this component, the bot prompts users to with two
links, Login and Cancel.

14-15

Chapter 14
Built-In Components: Properties, Transitions, and Usage

A29PM

Please login now.

login

cancel

The channel then renders the OAuth provider’s login page or its authentication dialog
as a webview.

Linked [T}

. __in!

FunTimeBot would like to access some of your
Linkedin infa:

* MName, photo, headline, and current positions

ot you? Privacy Policy

¢ Note:

The test window doesn’t render webviews, so you need to cut and paste the
link text into your browser.

The authorizeURL Property

To configure this property, you begin with the OAuth provider URL, such as https://
wwmv. | i nkedi n. conf oaut h/ aut hori zati on/ in the example. Next, you need to append the
following OAuth parameters to this URL:

ORACLE" 14-16

Chapter 14
Built-In Components: Properties, Transitions, and Usage

response_t ype—Set to code since the bot expects an authorization code.

client_i d—An API key value that you get when you register your app with the
OAuth provider.

scope—A list of permissions to access resources on the user’s behalf. These are
the permissions that you set when you register your app with the provider. They
can vary by provider: for LinkedIn, these include r _basi cprofile (shown in the
example) and r_emai | adr ess; for Microsoft, they're defined using openi d emai| and
openid profile.

redirect _uri —This is the redirect URI that you used to register your app with the
OAuth provider that tells it where it needs to redirect users. This parameter, which
is the Bots service host name appended with connect or s/ v1/ cal | back, is the
endpoint that receives the OAuth provider’'s token and then associates it with the
active channel. The redirect _uri property is based on the Webhook URL that's
generated when you create a channel. See Channels

© Important:

Be sure that the value you enter for the redi rect _uri matches the
redirect URI that you provided when you registered your app exactly. In
both instances, the URI must be appended with connect or s/ v1/ cal | back.

User Interface Components

Use these components to display text:

System. Text

ORACLE

System.Text—Prompts the user to enter text.
System.List—Prompts the user with a list option.
System.Output—Displays a message.
System.CommonResponse—OQutputs content-rich messages.

System.Interactive—Integrates your bot with an Instant App.

The System Text component enables your bot to set a context or user variable by
asking the user to enter some text.

When the Dialog Engine enters a Syst em Text state for the first time, it prompts the
user to enter some text. When the user enters a value, the Dialog Engine returns to
this state. The component processes the user response and if it can convert the user
input to the variable type, it stores the value in the variable. The Dialog Engine moves
on to another state when this variable has a value.

Note:

The Dialog Engine skips over the Syst em Text state of the variable already
has a value.

14-17

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

pronpt A text string that describes the Yes

input required from the user.

You can dynamically add

values to it using a value
expression. For example:

Hello $

{profile.firstName}, how

many pizzas do you want ?

vari abl e The name of the variable, Yes
which can be either a user
variable or one of the
variables declared in the
cont ext node.

nl pResul t Vari abl e Use this property when the No
vari abl e property references
some type of entity (custom or
built-in). If the vari abl e
property initially holds a null
value but the
nl pResul t Vari abl e holds an
entity that matches the entity
type that you've set for the
vari abl e property, then
vari abl e property is set with
this entity value and the dialog
flow will then transition to the
next state. You can obtain this
entity match by simply adding
the nl pResul t Vari abl e
property; you don’t need to
create a separate
Set Vari abl e state to set the
entity value.

maxPronpt s The number of times that No
component prompts the user
for valid input. See Limiting
the Number of User Prompts.

translate Use this property to override No
the boolean value that you've
set for the aut ot ransl ate
context variable. If you haven't
set this variable, or if you set it
to f al se, then you can set this
property to tr ue to enable
autotranslation for this
component only. If you set the
autotransl ati on variable is
set to t rue, you can set this
property to f al se to exclude
this component from
autotranslation. See
Autotranslation.

See Transitions for the predefined action types that you can use with this component.

ORACLE 14-18

System.List

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

How Do | Use This?

In this example, the t ype variable holds the values expected by the Pi zzaType entity,
like cheese, Veggi e Lover, and Hawai i an. When this information is missing from the user
input, the bot can still get it because its dialog flow transitions to the t ype state, whose
Text component prompts them to explicitly state what they want. Keep in mind that
even at this point, the user input still needs to resolve to the Pi zzaType entity to
transition to the next state.

main: true
nanme: "PizzaBot"
paramet ers:
age: 18
cont ext:
vari abl es:
size: "PizzaSize"
type: "PizzaType"
crust: "PizzaCrust"
i Result: "nlpresult”

type:
component: "System Text"
properties:
pronpt: "What Type of Pizza do you want ?"
variable: "type"
transitions: {}

What Type of Pizza do you want?

Your pan Medium Cheese Pizza is on its way.

Your bot can use the Syst em Li st component to set a user or context variable or set a
transition action. The mode depends on whether a value can be set for the
component’s vari abl e property (or if you configure a vari abl e property in the first
place).

When the Dialog Engine enters a System Li st state for the first time, your bot displays
a message containing a list of options. When the user clicks one of these options, the
Dialog Engine returns to the System Li st state to process the user response. If the
component can convert the selected option to a user variable or one of the variables
that you've defined in the cont ext node, the Syst em Li st’s vari abl e property it sets the
vari abl e property with this value. When this property can’t be set (or hasn’t been
defined), the Dialog Engine triggers a transition action instead.

14-19

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property

Description

Required?

options

pr onpt

vari abl e

maxPr onpt s

nl pResul t Vari abl e

You can specify the opti ons
using comma-separated text
strings, FreeMarker value
expressions, and as a list of
maps.

The text string that prompts
the user.

The name of the context or
user variable that's populated
when the user enters free text
as a response instead of
choosing a list option. When
the user taps on a button
rather than entering free text,
the button payload determines
which variable(s) are set and
this property is ignored. When
the Dialog Engine enters this
state and the variable already
has a value, then the state is
skipped.

The number of times that
component prompts the user
for valid input. See Limiting
the Number of User Prompts.

Set this property when the
vari abl e property references
an entity. If the referenced
variable is null and this
property has an entity match
of the same type as the

vari abl e property, then the
vari abl e will be set with this
entity value and the dialog
flow will then transition to the
next state. To get the match
for this entity, add this
property. You don’t need to
create a separate state for the
System.SetVariable
component to set the entity
value.

Yes

Yes

Yes (for value lists only)

No

No

14-20

Value Lists

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

translate Use this property to override No
the boolean value that you've
set for the aut otransl ate
context variable. If you haven’t
set this variable, or if you set it
to f al se, then you can set this
property to tr ue to enable
autotranslation for this
component only. If you set the
aut otransl ati on variable is
set to t rue, you can set this
property to f al se to exclude
this component from
autotranslation. See
Autotranslation.

See Transitions for the predefined action types that you can use with this component.

You can use the System Li st component to return a value that satisfies a context
variable that's defined as a primitive (like greeting: "string" in the dialog flow
template) or as an entity, as shown in the following snippet. In this dialog flow, the
options: "Thick, Thin, Stuffed, Pan" definition returns a value that matches cr ust
variable. The opti ons property defined for size is a value expression ($

{si ze. type. enunVal ues}) that returns the Large, Medium, Small, and Personal list
values as options. See Accessing Variable Values with Apache FreeMarker FTL.

This example also shows how the nl pResul t Vari abl e property’s i Resul t definition
allows the component to set the entity values for the vari abl e properties for the cr ust
and si ze states when these values haven’t been previously set. Like the Text
component, the System Li st component doesn’t require any transitions ({}).

main: true
name: "PizzaBot"

cont ext :
vari abl es:
size: "PizzaSi ze"
crust: "PizzaCrust"
i Result: "nlpresult”

states:

crust:
conponent: "System List"
properties:
options: "Thick, Thin, Stuffed, Pan"
pronpt: "What crust do you want for your pizza?"
variable: "crust"

14-21

ORACLE"

Chapter 14

Built-In Components: Properties, Transitions, and Usage

main: true
name: "PizzaBot"

cont ext :
vari abl es:
size: "PizzaSize"
crust: "PizzaCrust"
i Result: "nlpresult”

states:

crust:
conponent: "System List"
properties:
options: "Thick, Thin, Stuffed, Pan"
pronpt: "Wat crust do you want for your pizza?"
variable: "crust"
nl pResul t Variable: "iresult"
transitions: {}
si ze:
conponent: "System List"
properties:
options: "${size.type.enunval ues}"
pronpt: "Wat size Pizza do you want?"
variable: "size"
nl pResul tVariable: "iresult"
transitions: {}

| want a large pizza

How old are you?

What crust do you want for your Pizza?

14-22

Chapter 14
Built-In Components: Properties, Transitions, and Usage

< Note:

Users aren't limited to the options displayed in the list. They can resolve the
entity by entering a word that the entity recognizes, like a synonym. Instead
of choosing from among the pizza size options in the list, for example, users
can instead enter big, a synonym defined for the Pi zzaSi ze entity’s Large
option. See Custom Entities.

What size Pizza do you want?
Large
Medium
Small

Personal

What Type of Pizza do you want?

The options Property

You can set the opti ons property using any of the following:

e Alist of maps—While you can set the options property as a text string or value
expression, you can also configure the opti ons property as list of maps. Each one
has a | abel property, a val ue property, and an optionalkeywor d property. You can
localize your list options when you follow this approach because, as noted by the
following example, you can reference a resource bundle. See Resource Bundles
to find out more about using the dot notation. When users enter a value that
matches one the values specified in the keywor d property, the bot reacts in the
same way that it would if the user tapped the list option itself.

askPi zzaSi ze:
conponent: "System List"
properties:
pronpt: \Wat size do you want ?"
options:
- value: "small"
label : "${rb. pizza_size_sml | }"
keyword: "1"
- value: "mediunt
label : "${rb. pi zza_si ze_medi un}"
keyword: "2"
- value: "large"
label : "${rb. pi zza_size_| arge}"
keyword: "3"
variable: "pizzaSize"

ORACLE 14-23

Chapter 14
Built-In Components: Properties, Transitions, and Usage

* Atext string of comma-separated options, like “snal |, medium large” in the
following snippet. You can’t add | abel and val ue properties when you define
options as a string.

askPi zzaSi ze:
conponent: "SystemList"
properties:
pronpt: "What size do you want?"
options: "small, medium Iarge"
variabl e: "pizzaSize"

e An Apache FreeMarker value expression that loops over either a list of strings, or
a list of maps, where each map must contain both the | abel and val ue properties
and optionally, a keywor d property.

askPi zzaSi ze:
conponent: "System List"
properties:
pronpt: "Wat size do you want?"
options: "${pizzaSi ze. val ue. enunval ues}"
variable: "pizzaSize"

Refer to the Apache FreeMarker Manual to find out more about the syntax.

Action Lists
You don’t need to define the vari abl e property for a Syst em Li st option when you're
configuring a list of actions. In this case, the component sets a transition action based
on the option selected by the user. For example:
showMenu:
conponent: "System List"
properties:
pronpt: "Hello, this is our menu today"
options:
- val ue: "pasta"
| abel : "Pasta"
- value: "pizza"
| abel : "Pizza"
transitions:
actions:
pasta: "orderPasta"
pi zza: "orderPizza"
Tip:
Not only can you use this approach to configure conditional navigation, you
can use an action list in place of a System Swi t ch component.
System.Output

Use the Syst em Qut put component to output a message that doesn't require a user
response, or doesn't require your bot to process the user's response. If you need to
process the user’'s message, use either the Syst em Text or the Syst en. CommonResponse
component.

ORACLE 14-24

https://freemarker.apache.org/docs/index.html

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Your System Qut put component definition requires the text property. As illustrated in the
following example of a confirmation message, you can add value expressions to this
string.

done:
conmponent: "System Qut put"
properties:
text: "Your ${size.value}, ${type.value} pizza with ${crust.value} crust is on
its way. Thank you for your order."

By default, the Dialog Engine waits for user input after it outputs a statement from your
bot. If you override this behavior, add the optional property called keepTurn to the

Syst em Qut put component definition and set it to t r ue to direct the Dialog Engine to the
next state as defined by the transi ti ons property. When no transition as been defined,
the Dialog Engine moves to the next state in the sequence.

wai t
conmponent: "System Qut put"
properties:
text: "Please wait, we're reviewng your order"
keepTurn: true
transitions:
next: "ready"
wai t nor e:
conmponent: "System Qut put"
properties:
text: "A nost done..."
keepTurn: true
transitions:
next: "done"
done:
conmponent: "System Qut put"
properties:
text: "Your ${size.value}, ${type.value} pizza with ${crust.value} crust is on
its way. Thank you for your order."
transitions:
return: "done"

Use the keepTur n option when you want output multiple statements in quick succession
and without user interruptions.

Autotranslation

You can suppress or enable the Syst em Qut put component’s autotranslated text on a
per-component basis using the transl at e property. By setting it to f al se, as in the
following snippet, the components outputs the text as is, with no translation. By setting
this property to true , you can enable autotranslation when the aut oTr ansl at e variable
is either set to f al se or not defined. See Autotranslation.

" Note:
Typically, you would not set the aut oTransl at e variable to true if you're

translating text with resource bundles. We do not recommend this approach.

set AutoTransl at e:
conponent: "System Set Vari abl e"
properties:

14-25

Chapter 14
Built-In Components: Properties, Transitions, and Usage

variable: "autoTransl ate"
val ue: "true"
transitions: {}

pi zzaType:
component: " System Qut put"
properties:
text: "What type of pizza do you want?"
translate: false
transitions: {}

Defining Value Expressions for the System.Output Component

ORACLE

You can define one or more value expressions for the text property, as in the following
snippet that uses different expressions for outputting the text for an order confirmation
(pizza size and type).

confirmation:
conponent: "System Qut put"
properties:
text: "Your ${size.value} ${type.value} pizza is onits way."
transitions:
return: "done"

Your bot outputs raw text when these expressions return a null value for the variable. If
you're defining the text property with multiple expressions, each one must return a
value. Otherwise, your bot users will see output text like:

Your ${size.value} ${type.value} is on its vay.

14-26

Chapter 14
Built-In Components: Properties, Transitions, and Usage

12-80 P

Pizza! Pizza! Pizza!

Large cheese pizza.

@

| 7
S

\. J

It's all or nothing. To make sure that your bot always outputs text that your users can
understand, substitute a default value for a null value using the Apache Freemarker

default value operator: ${si ze. val ue!\"pi ping\”} ${type.val ue!\”hot\"}. The double
guotes indicate that the default value is a not a variable reference, but is instead the
constant value that the operator expects. For example:

text: "Your ${size.value!\"piping\"} ${type.value!\"hot\"} pizzais onits way."

ORACLE 14-27

Chapter 14
Built-In Components: Properties, Transitions, and Usage

12:50 P ¥ 1 D
Pizza! Pizza! Pizza! +
Large cheese pizza.
\ p— J

© Important:

Always escape the quotation marks (\"...\") that enclose the default value
when you use the Freemarker operator. Your dialog flow's OBotML syntax
won'’t be valid unless you use this escape sequence whenever you define a
default value operation, or set off output text with double quotes. For
example, the following Syst em Qut put component definition lets bot users see
You said, “Cancel this order.”

confirnCancel :
component: " System Qut put”
properties:
text: "You said, \"Cancel this order.\""
transitions:
return: "cancel Order"

System.CommonResponse

The Syst em ConmonResponse component enables you to build a specialized user
interface that can include text, action buttons, images, and cards without having to
write custom code. Instead, you define the component’s properties and metadata.

ORACLE" 14-28

Chapter 14
Built-In Components: Properties, Transitions, and Usage

You can see an example of using the Syst em ConmonResponse component in the
CrcPizzaBot, one of the sample bots. In this spin on the PizzaBot, you can display an
image-rich menu with quick action “Order Now” buttons.

Here are our pizzas you can order today

CHEESE

EPPERONI

L1ass ira sauce with authentic old-world sty

Order Now |

Wl b Bl LB = | il 2l SO el Ll I LI M

Order Mow

Within the context of the Syst em ConmonResponse component, the different types of
messages are known as “response types” and the CrcPizzaBot shows you how,
among other things, they allow the bot users to respond to prompts using action
buttons and view the pizza menu as a cascade of card items.

Adding a System.CommonResponse Component to Your Dialog Flow

Use the Add Components menu to add template Syst em ConmonResponse states for the
text, card, and attachment responses to your OBotML definition. These templates
include the properties that are common to all of these response types as well as the
ones that particular to each one. While the Add Components menu adds separate
states for each response type, you can combine one or more response types into a
single state. The CrcPizzaBot shows you examples of both in its Showvenu (text

ORACLE' 14-29

Chapter 14
Built-In Components: Properties, Transitions, and Usage

response) and O der Pi zza (text and card responses) states.

(User Interface Component Template

textResponse:
component: “System.CommonResponse”
properties:
Common response - card # set processUserMessage to true i
this state after receiving user message
processUserMessage: true
set keepTurn (true/ffalse) to tru
transition to the next state without wai
Interactive applicable when processUserMessage is fa
keepTurn: false
variable (optional) refers to th
will be set to the text value entered by
already has a value, the dialog flow tra
sending the bot response as specified in
variable:
nlpResultVariable (optional) is

Common response - attachment

Common response - text

m

List - set action

List - set variable

Output

e i s (sl =Tate
- RETNOYE e

¥
LA

The Component Properties

As shown in the following OBotML snippet from the CrcPizzaBot, configuring the

Syst em CommonResponse component includes setting properties that direct the Dialog
Engine along with metadata properties that describe not only how the component
delivers messages (as text prompts, cards, or attachments), but also sets the content
and behavior for the messages themselves.

AskPi zzaSi ze
conponent: " System CormonResponse”
properties:
variable: "pizzaSize"
nl pResul tVariable: "iresult"
maxPronpts: 2
met adat a
responsel t ens:
- type: "text"
text: "<#if systeminvalidUserinput == "true'>Invalid size, please try
again.\

\ </#if>What size do you want?"
name: "Wat size"
separ at eBubbl es: true
actions:

- label: "${enunval ue}"
type: "postback"
payl oad
action: ""
vari abl es:
pi zzaSi ze: "${enunmval ue}"
name: "size"

ORACLE" 14-30

Chapter 14
Built-In Components: Properties, Transitions, and Usage

iteratorVariable: "pizzaSize.type.enunVal ues"
processUser Message: true
transitions:
actions:
cancel: "Intent"
next: "AskLocation"

Tip:

The text property in this snippet is defined using Apache FreeMarker
Template Language (FTL). To find out how to add FTL expressions and use
FreeMarker built-in operations to transform variable values, see Accessing
Variable Values with Apache FreeMarker FTL.

Name Description Required?

met adat a The chat response created by Yes
this component is driven by
the contents of the net adat a
property. See The Metadata
Property.

processUser Message Set this property to t r ue to Yes
direct the Dialog Engine to
return to the state after the
user enters text or taps a
button. Set this property to
fal se if no user input is
required (or expected). When
you set this property to f al se,
the Syst em CommonResponse
component behaves like the
Syst em Qut put component.

variabl e This variable holds the name No
of the context or user variable
that gets populated when a
user responds by entering free
text instead of tapping a
button. This property is
ignored when a user taps a
button, because the button’s
payload determines which
variables values get set. If the
variable property has already
been set when the Dialog
Engine enters this state, then
the state is skipped.

ORACLE 14-31

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Name

Description Required?

nl pResul t Vari abl e

maxPr onpt s

keepTurn

This property only applies No
when you set the vari abl e as
an entity-type variable. If the
variable is null and the

nl pResul t Vari abl e has an
entity match that's the same
type as the vari abl e property,
then the variable will be set
with this entity value and the
dialog flow will then transition
to the next state. You can get
this entity match by simply
adding the

nl pResul t Vari abl e property;
you don't need to create a
separate Syst em Set Vari abl e
state to set the entity value.

Before the No
Syst em ConmonResponse
component can populate the
variable value that you've
specified for the vari abl e
property from the text entered
by the user, it validates the
value against the variable
type. This can be entity-type
validation, or in the case of a
primitive type, it's a value that
can be coerced to the primitive
type.

When the component can’t
validate the value, the Dialog
Engine sends the message
text and options again. (You
can modify this message to
reflect the validation failure.)
To avoid an endless loop
resulting from the user’'s
inability to enter a valid value,
set a limit on the number of
attempts given to the user with
the maxPronpt s property.
When the user exceeds this
allotment, the

Syst em ConmonResponse
component transitions to the
cancel action. See Limiting
the Number of User Prompts.

The keepTur n property only No
applies when you set the
processUser Message property

to f al se. See System.Output

to find out how to set this

property.

14-32

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Name

Description Required?

transl ate

Use this property to override No
the boolean value that you've
set for the aut otransl ate
context variable. If you haven’t
set this variable, or if you set it
to f al se, then you can set this
property to tr ue to enable
autotranslation for this
component only. If you set the
aut otransl ati on variable is
set to t rue, you can set this
property to f al se to exclude
this component from
autotranslation. See
Autotranslation.

The Metadata Property

You define the metadata at two levels for the Syst em Conponent Response component: at
the root level, where you define the output and actions specific to the component itself,
and at the response item level, where you define the display and behavior particular to
the text, list, card, or attachment messages that are displayed by this component.

The component-level metadata describes the component’s overall output in terms of
the type of items, or messages, that it sends to the user along with any actions that
particular to the component itself (and are independent of the message processing
actions configured for the list items).

AskLocat i on:

component: "System CommonResponse”

properties:
vari abl e:
met adat a:
responsel tens:

- text: "To which location do you want the pizza to be delivered?"

ORACLE

"\hat |ocation"
separ at eBubbl es: true

gl obal Acti ons:

"Send Location"

"SendLocat i on"

14-33

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property

Description

Required?

responsel t ens

gl obal Acti ons

A list of response items, each
of which results in a new
message sent to the chat
client (or multiple messages
when you set iteration for the
response item using the

i teratorVariabl e property).

Define these response items

using these values:

e text—Text bubbles (the
text property) that can
include a list of buttons
that typically display as
buttons

e cards—A series of cards
that scroll horizontally or
vertically.

e attachment—An image,
audio, video, or file
attachment.

A list of actions that are not
related to the specific
response item. These actions
are typically displayed at the
bottom of the chat window. In
Facebook Messenger, for
example. these options are
called quick replies.

Yes

No

You also configure the metadata for the various response items, such the text, card, or

attachment messages.

Property Description Required?
type The type of response item that determines the Yes
message format. You can set a message as
text, attachment, or cards.
name A name for the response item that's used for No
identification within the Bots platform. It's not
used at runtime.
visible Display properties. No

Property

Description

14-34

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

expressi on A boolean FreeMarker
expression for
conditionally showing
or hiding text, a card,
or attachment. For
example, the
CrcPizzaBot's
O der Pi zza state
defines this property
as follows:

expression: "<#if
cardsRangeStart ?
nunber +4 <

pi zzas. val ue?

si ze>true<#el se>fal s
e</ #if>"

For i ncl ude and

channel s: L ud !
i ncl ude: excl ude, en er?dl. :
excl ude: comma-separated lis

of channel types for
which the text, card, or
attachment should be
shown (i ncl ude) or
hidden (excl ude). The
valid channel values

are:
e facebook
e webhook

e web

e android

e io0s

e twilio

e kakaotal k
o t est

onl nval i dUserl nput A boolean flag that
shows the text item or
attachment either
when the user enters
valid input
(val ue=f al se) or
when the user enters
input that's not valid
(val ue=true).

ORACLE 14-35

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property

Description Required?

rangeSt art

rangeSi ze

channel Cust onPr oper
ties

iteratorVariable Dynamically adds
multiple text items to
the response by
iterating over the items
stored in the variable
that you specify for
this property. Although
you define the variable
as a string, it holds
JSON array when it's
used as an iterator
variable. You can
reference properties in
an object of the array
with an expression
like $
{iteratorVarName. pr
opertyNane} . For
example, with an
iterator variable
named pi zzas, the
name property of a
pizza can be
referenced using the
expression: $
{pi zzas. nane}.

If you've specified aniteratorVariable,you No
can stamp out a subset of response items by
specifying the rangeSt art property in
combination with the r angeSi ze property. You
can enter a hardcoded value or use a
FreeMarker expression that references a
context variable that holds the range start. By
using arangeStart variable, you can then
page to the next set of data by setting the
rangeStart variable in the payload of the
browse option. You can see an example of the
rangeStart and rangeSi ze properties in the
CrcPizzaBot's Or der Pi zza state.

The number of response items that will be No
displayed as specified by the

iteratorVariabl e and rangeStart properties.

A list of properties that trigger functions that No
are particular to a channel. Because these
functions are platform-specific, they're outside

of the Syst em CormobnResponse component

and as such, can’t be controlled by either the
component’s root-level or response item-level
properties. You can find an example of this
property in the CrcPizzaBot's O der Pi zza

state.

channel Cust onProperti es:
- channel: "facebook"
properties:
top_el enent _style: "large"

14-36

Chapter 14
Built-In Components: Properties, Transitions, and Usage

The Action Metadata Properties

You can assign various actions to the response items.

Property Description Required?

type The action type: Yes

e post back—Sends the payload of the
action back to the Dialog Engine.

e share—Opens a share dialog in the
messenger client, enabling users to share
message bubbles with their friends.

e cal | —Calls the phone number that's
specified in the payload.

e url —Opens the URL that's specified in
the payload in the browser. For Facebook
Messenger, you can specify
thechannel Cust onProperti es property
with webvi ew_hei ght _rati o,
messenger _ext ensi ons and
fal | back_url .

e | ocati on—Sends the current location. On
Facebook Messenger, current location is
not supported for text or card responses.
It's only supported using a Quick Reply.
For more information, see the Facebook
Messenger Platform documentation.

| abel A label for the action. To localize this label, Yes
you can use a FreeMarker expression to
reference an entry in your bot’s resource
bundle.

iteratorVariable Use this option to stamp out multiple actions No
by iterating over the items stored in the
variable that you specify for this property. You
can'’t use this property with the share and
location actions.

i mgeUr| The URL of image used for an icon that No
identifies and action. You can use this property
to display an icon for the Facebook quick reply
button (which is a global action).

channel Cust onProper A list of properties that some trigger channel- No

ties specific functionality that isn’t controlled by the
standard action properties. You can find an
example in the CrcPizzaBot's Or der Pi zza

state.
payl oad A nested payload object that has the following
properties.
Payload Property Description
action The transition action No

set by the Dialog
Engine when the user
taps this action. You
can only use this
property for the
postback action type.

ORACLE 14-37

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property

Description

Required?

namne

visible

vari abl es When you set the
action type to
post back, the payload

may have additional

properties named after

context variable or
user variable. When
the user taps this
action, the variables
are set to the values
specified in this
property.

For the

unexpect edActi on
transition, you can
store the value for the
unexpected action in
the

user . bot sUnexpect ed
Act i on variable so
that it's included in the
postback payload.
See Transitions.

url The URL of the
website that opens
when users tap this
action.

The phone number
called when a user
taps this action.

A name that identifies the action on the Bots
platform. This name is used internally and
doesn’t display in the message.

Display properties.
Property

phoneNunber

Description

A boolean FreeMarker
expression for
conditionally showing
or hiding an action.

expressi on

No

Yes (only for the url
action type)

Yes (only for the cal |
action type)

No

No

14-38

Chapter 14

Built-In Components: Properties, Transitions, and Usage

Property Description Required?
channel s: Forll ndcl udetand
i ncl ude: excl ude, enter aOI |'
excl ude: comma-separated list

onl nval i dUser | nput

of channel types for
which the action can
be shown (i ncl ude) or
hidden (excl ude). The
valid channel values

are:
- facebook
e webhook

e web

e android

e i0s

e twilio

e kakaotal k
o test

A boolean flag that
shows the action
either when the user
enters valid input
(val ue=f al se) or
when the user enters
input that's not valid
(val ue=true).

The Text Response Item

After you add a t ext Response state to your dialog flow, you can rename it and then
either replace the placeholder properties with your own definitions, or delete the ones
that you don’t need. The template state includes properties the following text-specific

properties.

Property Description Required?
t ext The text that prompts the user. Yes
iteratorVariable Dynamically adds multiple text items to the No

response by iterating over the items stored in
the variable that you specify for this property.
Although you define the variable as a string, it
holds JSON array when it's used as an iterator
variable. You can reference properties in an
object of the array with an expression like $
{iteratorVarNane. propertyNane}. For
example, with an iterator variable named

pi zzas, the name property of a pizza can be
referenced using the expression: $

{pi zzas. nane}.

ORACLE

14-39

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property

Description Required?

separ at eBubbl es

visible

You can define this property if you also define No
theiteratorVariabl e property. When you set

this property to t r ue, each text item is sent as
separate message, like Pizzas and Pastas in

the CrcPizzaBot's Showvenu and Or der Pi zza
states. If you set it to f al se, then a single text
message is sent, one in which each text item

starts on a new line.

Text display properties No
Property Description
expressi on A boolean FreeMarker

expression for
conditionally showing
or hiding tex. For
example, the
CrcPizzaBot's

Or der Pi zza state
defines this property
as follows:

expression: "<#if
cardsRangeStart ?
nunber +4 <

pi zzas. val ue?

si ze>true<#el se>fal s
e</#if>"

For i ncl ude and

channel s: ol)
i ncl ude: excl uade, en ertadl_ t
excl ude: comma-separated lis

of channel types for
which the text should
be shown (i ncl ude) or
hidden (excl ude). The
valid channel values

are:
« facebook
e webhook

e web

e android

e i0s

e twilio

e kakaotal k
o t est

onl nval i dUserl nput A boolean flag that
shows the text item
when the user enters
valid input

(val ue=f al se) or
when the user enters
input that's not valid

(val ue=true).

In addition to the metadata properties, you can assign the following actions for a text

response item.

ORACLE

14-40

Chapter 14
Built-In Components: Properties, Transitions, and Usage

* Postback
* Share

o Call

e URL

* Location

If you want to see an example of text response item, take a look at the CrcPizzaBot's
showMenu state.

Hello,Stu, this is our menu today:

Plizzas

Q Pastas
°

Because it names post back as an action, it enables the bot to handle unexpected user
behavior, like selecting an item from an older message instead of selecting one from
the most recent message.

Showienu
conmponent: "System ComonResponse”
properties:
met adat a
responsel tens:
- type: "text"

text: "Hello ${profile.firstName}, this is our menu today:"
name: "hello"
separ at eBubbl es: true
actions:
- label: "Pizzas"
keyword: "1"
type: "postback”
payl oad
action: "pizza"
name: "Pizzas"
- label: "Pastas"

keyword: "2"
type: "postback”
payl oad

action: "pasta"
nane: "Pastas"
processUser Message: true

The Card Response Item

Like the t ext Response state, you can rename the car dResponse state that's added to
your dialog flow and then update the properties with your own definitions. Specifically,
you can configure a card response item by defining the following properties. You can
delete the properties that you don't need.

ORACLE 14-41

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property

car dLayout

title
description

i mgelr|

cardUrl

iteratorVariable

visible

Description Required?
The card layout: hori zont al (the default) and Yes
vertical.

The card title Yes
The card description, which displays as a No
subtitle.

The URL of the image that displays beneath No
the subtitle.

The URL of a website. It displays as a No
hyperlink on the card that user open by

tapping on it.

Dynamically adds multiple cards to the No

response by iterating over the items stored in
the variable that you specify for this property.
Although you define the variable as a string, it
holds a JSON array when it's used as an
iterator variable. You can reference properties
in an object of the array with an expression
like ${i t er at or Var Nane. pr opert yNanme} . For
example, with an iterator variable named

pi zzas, the name property of a pizza can be
referenced using the expression: $

{pi zzas. nane}.

Card display properties No

expression A boolean FreeMarker
expression for
conditionally showing
or hiding tex. For
example, the
CrcPizzaBot's
O der Pi zza state
defines this property
as follows:

expression: "<#if
cardsRangeStart?
number +4 <

pi zzas. val ue?

si ze>true<#el se>fal s
e</ #if>"

14-42

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

For i ncl ude and

excl ude, enter a
comma-separated list
of channel types for
which the card should
be shown (i ncl ude) or
hidden (excl ude). The
valid channel values

channel s:
i ncl ude:
excl ude:

are:
- facebook
e webhook

e web

e android

e i0s

e twilio

e kakaotal k
o test

onl nval i dUserl nput A boolean flag that
shows the text item
when the user enters
valid input
(val ue=f al se) or
when the user enters
input that's not valid
(val ue=true).

rangeStart If you've specified an i teratorVari abl e, you No
can stamp out a subset of cards by specifying
the rangeSt art property in combination with
the rangeSi ze property. You can enter a
hardcoded value or use a FreeMarker
expression that references a context variable
that holds the range start. Using a rangeSt ar t
variable, you can then page to the next set of
data by setting the rangeSt art variable in the
payload of a browse option.

rangeSi ze The number of cards that will be displayed as No
specified by the i t er at or Vari abl e and
rangeStart properties.

You can assign a set of actions that are specific to a particular card, or a list of actions
that are that are attached to the end of the card list.

The CrcPizzaBot's Or der Pi zza state includes a card response item definition, as shown
in the following snippet:

cards:
- title: "${pizzas. name}"
description: "${pizzas.description}"
i mgeUr|: "${pizzas.imge}"
name: "PizzaCard"
iteratorVariable: "pizzas"
rangeStart: "${cardsRangeStart}"
rangeSi ze: "4"
actions:
- label: "Order Now'

14-43

Chapter 14
Built-In Components: Properties, Transitions, and Usage

type: "postback"
payl oad:
action: "order"
vari abl es:
orderedPi zza: "${pi zzas. name}"
orderedPi zzal mage: "${pi zzas. i mage}"
nane: "Order"”

The Attachment Response Item

The at t achment Response state includes the following properties.

Property Description Required?
attachnent Type The type of attachment: i mage, Yes

audi o, video, andfile.
attachnent URL The attachment’s download Yes

URL or source.

The CrcPizzaBot's Confirmation state uses an attachment response item to display
picture of the order, one that's different from the item pictured in the menu.

Confirmation:
conmponent: "System CommonResponse”
properties:
net adat a:
responsel tens:
- text: "Thank you for your order, your ${pizzaSize} ${orderedPizza} pizza\
\ will be delivered in 30 mnutes at GPS position $
{location.value.latitude}, ${l ocation.val ue.longitude}!"
type: "text"
name: "conf"
separ at eBubbl es: true
- type: "attachment"
attachnent Type: "i mage"
nane: "image"
attachment Url: "${orderedPizzal mge}"
processUser Message: fal se

User Message Validation

The Syst em ConmonResponse, Syst em Text, and System Li st components validate the
user-supplied free-text value that gets set for the vari abl e property. For example,
when the vari abl e property is defined as a primitive type (string, boolean, float,
double), these components try to reconcile the value to one of the primitive types.
When the variable property is defined for an entity-type variable, these components
call the NLP Engine to resolve the value to one of the entities. But when these
components can't validate a value, your bot can display an error message.

ORACLE 14-44

Built-In Components

What size do you want?
Small
Medium

Large

Chapter 14
: Properties, Transitions, and Usage

Invalid size, please try again. What size do you want?

Small
Medium

Large

Medium

’ T which location do you want the pizza to be deliverad?

By referencing the system i nval i dUser I nput variable, you can add a conditional error
message to your bot’s replies. This variable is a boolean, so you can use it as a
condition with the FreeMarker i f directive to display the message only when a user
enters an invalid value. Otherwise, the message is hidden. The CrcPizzaBot's

AskPi zzaSi ze state in the following snippet demonstrates this by adding this variable as
condition within a FreeMarker template that’s evaluated by the i f directive. Because
it's set to t rue, the bot adds an error message to the standard message (What size do

you want?) when the user enters an invalid value.

AskPi zzaSi ze:
component: " System CommonResponse”
properties:
variabl e: "pizzaSi ze"
nl pResul tVariable: "iresult"
maxPronmpts: 2
net adat a:
responsel t ens:
- type: "text"
text: "<#if systeminvalidUserlnput ==
again.\
\ </#if>What size do you want?"
name: "What size"
separ at eBubbl es: true

System.Interactive

"true' >Invalid size, please try

Instant apps are rich, interactive widgets that you can embed as web links in your
dialog. Your bot can transition to an instant app when it needs to data using structured

forms.

ORACLE

14-45

ORACLE

Chapter 14

Built-In Components: Properties, Transitions, and Usage

After you create one with the Instant App Builder, you can integrate it into your
OBotML definition using the Syst em I nt eracti ve component. See Instant Apps.

When you add this component using the Add Components menu, it generates a state
called i nteractive, which has placeholders for the following properties.

Property Description

Required?

sour ceVari abl eLi st A comma-separated list of
context or user variable
names. These variable names
are the parameters that are
that's sent to the instant app.
You can set each variable by
adding a series of

System Set Vari abl e states
before the

System I nteractive state. To
get an idea, take a look at the
set Dat e, set Anmount ,

set Mer chant , and

Set Descri pti on states in the
FinancialBot.

The name of the variable (a
string value) that identifies the

variabl e

instant app’s callback payload.

When the bot user completes
the instant app, it sends a
callback with a payload which
is stored by this variable. At a
later point in your OBotML
definition, you can use this
payload in a Syst em Qut put
component.

id The id of the instant app
schema that gets instantiated.
Enter the ID from the App
Settings page of the Instant
App Builder. See App
Settings.

App Settings

Name

Bank Transaction Interactive With Verify

d

Bank_Transaction_Interactive_With_Verify

con

\%

Yes

Yes

Yes

Standard Bank

14-46

ORACLE

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Property Description Required?

pr onpt A text string. By default, this No
component outputs “Please
tap on the link to proceed.”

['i nkLabel The label for the button that No
invokes the instant app. The
default string is Li nk.

cancel Label The label for the Cancel No
button that lets users leave the
state without invoking the
instant app. By default, the
string is Cancel .

transl ate Use this property to override No
the boolean value that you've
set for the aut ot ransl ate
context variable. If you haven't
set this variable, or if you set it
to f al se, then you can set this
property to t r ue to enable
autotranslation for this
component only. If you set the
autotransl ati on variable is
set to t r ue, you can set this
property to f al se to exclude
this component from
autotranslation. See
Autotranslation.

How Do | Use This?

The FinancialBotWithQnA uses an intent called st art Di sput e to trigger an instant app.
At runtime, when the Dialog Engine moves to the System I nteracti ve state called
startDi sput e, the bot returns a link to the user. (This is the URL that’'s configured for
the Invite Message in the Instant App Builder. See App Settings.) The component
identifies the instant app (Bank_Transaction_I nteractive Wth_Verify). The

sourceVari abl eLi st names the variables whose values get passed to the instant app,
namely date, merchant, amount, and description.

" Note:

For the purposes of this reference bot, the values for these variables are
populated with sample data through the Syst em Set Vari abl e component.

The instant app defines parameter counterparts for each of these variables called
i nput Dat e, i nput Descri ption, i nput Merchant, and i nput Descri ption. See Parameters
and Using Brace Notation in Element and Parameter Values.

The snippet also shows how the bot returns the reason and dispute ID from the instant
app’s return action. See Exit to Bot.

cont ext :
variabl es:

dispute: "string"

14-47

ORACLE

amount: "string"
merchant: "string"
date: "string"
description: "string"

states:

intent:
conponent: "System |ntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.4
transitions:
actions:
Bal ances: "startBal ances"”
Transactions: "startTxns"
Send Money: "startPaynments”

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Track Spending: "startTrackSpending"

Di spute: "setDate"

unresol vedl ntent: "unresol ved"

Popul ate the required variabl es

set Dat e:
conponent: "System Set Vari abl e"
properties:
variable: "date"
val ue: "2017-10-25T11: 34: 312"
transitions: {}
set Amount :
conponent: "System Set Vari abl e"
properties:
variabl e: "amount"
val ue: "$60"
transitions: {}
set Merchant :
conponent: "System Set Vari abl e"
properties:
variabl e: "merchant"”
val ue: "Pi zzaUGot cha"
transitions: {}
set Description:
conponent: "System Set Vari abl e"
properties:
variabl e: "description"
val ue: "restaurants"
transitions: {}
Call instant app
startDispute:
component: "SystemInteractive"
properties:

sourceVariabl eList: "date, merchant, anount, description"

variable: "dispute"

id: "Bank_Transaction_lnteractive Wth_Verify"

transitions: {}
Use the call back payl oad data
i nst ant AppQut put :
conmponent: "System Qut put"
properties:

text: "Successfully filed dispute, your reference nunber is '$

{di spute. val ue. di sputel D} '\

\ and reason is '${dispute.val ue.reason}""

14-48

transitions:

return: "instantAppQutput"

Transitions

Chapter 14

Built-In Components: Properties, Transitions, and Usage

The Syst em ConmonResponse , Syst em Li st, and System Text component use these
transitions. See Message Handling for Output Components to find out how these

transitions get triggered.

Transition

Description

cancel

t ext Recei ved

att achnent Recei ved

| ocati onRecei ved
unexpect edActi on

Set this transition when a user exceeds the
allotted attempts set by the maxAtt enpt s

property.
Set this when users send text or emojis. For
example:

ShowMenu:
component: " System ConmonResponse”

processUser Message: true
transitions:

actions:
pi zza: "OrderPizza"
pasta: "OrderPasta"
unexpect edActi on:

"Handl eUnexpect edActi on"

t ext Recei ved: "Intent"

Set this when a user sends an image, audio,
video, or file attachment.

Set this when the user sends a location.
Set this to circumvent unexpected user

behavior. Specifically, when a user doesn't tap
an action item in the current message, but
instead taps an action belonging to an older
message in the chat session. You can access
the unexpected action by referencing the

syst em bot sUnexpect edAct i on variable.

Message Handling for Output Components

Typically, a user might respond to a message in the following ways:

ORACLE

By entering free text.
By sending their location.
Using a multi-media option to send an image, audio file, video, or file attachment.

Tapping one of the postback buttons displayed in the most recent message output
by the bot.

By scrolling to a previous message in the conversation and tapping one of its
buttons.

14-49

Chapter 14
Built-In Components: Properties, Transitions, and Usage

Handling Free Text

When a user enters free text, the Syst em ConmonResponse, System Li st and Syst em Text
components first validate the value. For valid values, the components trigger the

t ext Recei ved transition. You don't have to set this transition in the OBotML definition; if
you don't define this transition, then the Dialog Engine transitions to the next state, or
performs the default transition.

Tip:

Use t ext Recei ved to handle unexpected user messages when you expect the
user to tap a button, send an attachment, or a location.

Handling Multimedia Messages

When a users sends a file, image, video, or audio file, the Syst em ConmonResponse,
System Li st, and System Text component stores the attachment information as a JSON
object in the variable property that's specified for the component. This object has the
following structure:

{

"type": "video",

"url": "https://ww.yout ube. conf wat ch?v=CWNr y4PE93Y"
}

For example, if a video attachment is stored in a variable called nyVi deo, you can
access the video using the FreeMarker expression, ${nyVi deo. val ue. url}. It also sets
the transition action to att achnent Recei ved. You don’t have to specify this transition in
your OBotML definition. If you don’t define this transition, then the Dialog Engine
transitions to the next state, or performs the default transition.

Tip:

Use at t achnent Recei ved to handle situations where users send an attachment
unexpectedly.

Handling Location Messages

ORACLE

When a user sends his or her current location, the Syst em CormonResponse, Syst em Li st ,
and System Text components store the location information as a JSON object in the
variable property specified for the component. This object has the following structure:

{
"title": "Oracle Headquarters",
“url": "https://ww.googl e. com au/ maps/ pl ace/ ..",
"l ongitude": -122.265987,
"latitude": 37.529818
}

For example, if the location is stored in a variable called location, you can access the
latitude using the FreeMarker expression, ${| ocati on. val ue. | atitude}. It also triggers
the | ocati onRecei ved action, so you don't have to specify this transition in your OBotML

14-50

Chapter 14
Built-In Components: Properties, Transitions, and Usage

definition. If you don’t define this transition, then the Dialog Engine transitions to the
next state, or performs the default transition.

Tip:

Include I ocat i onRecei ved transition to handle situations where users send a
location unexpectedly, or when you want to ensure that a user sends a
location at the point where it's expected.

Handling Button Posthack Actions

When a user taps a button in the most recent message, that button’s payload gets
processed. This payload is a JSON object which can hold an action property and one
or more payload variables (all of which are optional). The payload’s action is set as a
transition action. Each user or context variable that’s included in the payload is set to
the value that’s included in the payload. For example, when a user taps the Order Now
button for a pepperoni pizza, the Syst em Li st or Syst em ConmonResponse components
receive the payload as a stringified JSON object:

{

"action": "order",
"state": "OrderPizza",
"variables": {
"orderedPi zza": "PEPPERON ",
"orderPi zzal mage": "http://pizzasteven/ pepperoni.png"

}

In this example, the component parses the payload object with the order value, sets
the transition to or der, and sets the or der edPi zza and or der edPi zzal mage variables to
the value specified in the payload.

Handling Button Postback Actions for an Older Message

A user might ignore the most recent message and instead scroll up and tap a button
that's part of an earlier message. For example, user might tap the Order Now button
for a pepperoni pizza, but is now asked which size. At this point, he might change his
mind and click the Order Now button for another type of pizza, or he might decide on
pasta rather than pizza, so he scrolls further up to a previous message and clicks
Order Now for a pasta dish. When this happens, the component processes the button
payload and sets any user or context variables as a postback action. But in this case,
if the payload action has been specified, the action is not used to set the conversation
transition. Instead, the unexpect edAct i on transition is triggered and the action value is
stored in the syst em unexpect edAct i on variable. This allows you to have one generic
state to handle all of the unexpected user actions and messages.

defaul t Transi ti ons:
unexpect edActi on: "Handl eUnexpect edAction”

states:
O der Pi zza:
component: " System CommonResponse”
properties:
net adat a:
responsel t ens:

- type: "text"
text: "Here are our pizzas you can order today"

ORACLE 14-51

Chapter 14
Built-In Components: Properties, Transitions, and Usage

processUser Message: true
transitions:
actions:
order: "AskPizzaSi ze"
more: "OrderPizza"
text Received: "Intent"

Handl eUnexpect edActi on:
conponent: "System Switch"
properties:
variabl e: "system unexpect edActi on"
val ues:
- "pizza"
- "pasta"
- "order"
transitions:
actions:
NONE: "ActionNoLonger Avai | abl e"
pi zza: "OrderPizza"
pasta: "OrderPasta"
order: "AskPizzaSi ze"

Detecting Unexpected Actions

Because the built-in components that send bot messages with postback actions store
the name of the state in the st at e property of the postback payload, they allow your bot
to detect when a user does the unexpected by tapping a button from a previous
message, essentially traversing backwards through the dialog flow. When a user taps
this button, the name of the state is set for the postback’s state property. The bot
compares the payload’s state name against the current state. When the two no longer
match, the bot fires the unexpect edAct i on transition.

" Note:

Only components that set the state property in the payload can enable the
bot to respond when the user skips back in the flow. The

Syst enmQAut hAccount Li nk doesn’t set this property, so tapping the button on an
older message can't trigger the unexpect edAct i on transition.

Limiting the Number of User Prompts

ORACLE

The maxPronpt s property limits the number of times that the output components can
prompt the user when they can’t match the input value to any of the values defined for
the entity or input type that's referenced by the vari abl e property. While this is an
optional property, adding it can prevent your dialog from going in circles when users
repeatedly enter invalid values. You can set the maximum number of prompts using an
integer (like 2 in the following snippet). The dialog moves onto the next state if the user
enters a valid value before reaching this limit. Otherwise, the dialog transitions to the
state defined by the cancel action. In the following sample, the dialog moves to the

set Def aul t Si ze state when users run out of chances. At this point, the bot makes their

14-52

Chapter 14
Built-In Components: Properties, Transitions, and Usage

choice for them, because the Syst em Set Vari abl e component sets the pizza size to
large.

si ze:
conponent: "System List"
properties:
pronpt: "Wat size Pizza do you want?"
options: "${size.type.enunval ues}"
variable: "size"
mexPronmpts: 2
transitions:
actions:
cancel : "setDefaul t Si ze"
set Def aul t Si ze:
conponent: "System Set Vari abl e"
properties:
variable: "size"
val ue: "Large"
transitions: {}

Note:

Setting the maxPronmpt s property to a negative number is same as not entering
a value, or not including the property at all: the bot will continue to prompt the
user until it receives a valid value.

Variable Components

System.SetVariable

The System Set Vari abl e component sets the value of a pre-defined variable. For
example, you can set the value for an entity variable because this component can
extract the entity match that's held by the i Resul t variable that's set for the
System I ntent component.

Property Description Required?

variabl e The name of the variable Yes
that's defined as one of the
cont ext properties. This can
be a variable defined for an
entity or a predetermined
value, like a string.

val ue The target value, which you Yes
can define as a literal or as a
expression that references
another variable.

The start Txns state in the following code snippet shows how you can define the target
value using an expression that references another entity variable. In this case, "$
{iResul t.val ue. entityMatches[' Account Type'][0]” references the i Resul t variable
that’s resolved earlier in the flow by the System I nt ent component. This variable sets
the account Type variable if the Account Type entity is associated with the intent that's
resolved by the System I nt ent component. For example, if a user enters, “l want to

ORACLE 14-53

Chapter 14
Built-In Components: Properties, Transitions, and Usage

transfer money to checking,” then this expression sets the account Type variable value
to “checking.” If the Syst em Set Vari abl e component can't find matches, then the Dialog
Engine moves on to the next state in the dialog flow (declared by transitions: {}).

main: true

nane: "Financi al Bot Mai nFl ow'

context:

vari abl es:

account Type: "Account Type"
txnType: "TransactionType"
txnSel ector: "TransactionSel ector"
toAccount: "ToAccount"
spendi ngCat egory: "TrackSpendi ngCat egor y"
paynent Amount: "string"
i Result: "nlpresult”

states:

startTxns:
conponent: "System Set Vari abl e"
properties:
variabl e: "account Type"
val ue: "${iResult.val ue.entityMatches['Account Type'][0]}"
transitions: {}

Besides entity variables, you can set a predetermined value for a variable using an
Apache FreeMarker expression or, as shown in the following snippet, a literal. You can
find out more about FreeMarker here.

set QAut hRedi rect URL:
conponent: "System Set Vari abl e"
properties:
variabl e: "redirect URL"
val ue: "https://thatconpany.io/ connectors/vl/tenants/5c824-45f d- b6a2- 8cal
I'i steners/facebook/ channel s/ 78B5- BD58- 8AF6- F54B141/ redirect"
transitions: {}

See System.OAuthAccountLink

System.ResetVariables

This component resets the values of the variables to null. This component doesn’t
require any transitions (use transitions :{}).

Property Description Required?

vari abl eLi st A comma-separated list of Yes
variable names.

System.CopyVariables

Copies the variable values.

Define this component using fromand t o properties as in the following snippet, where
the value is copied to a user context:

ORACLE 14-54

https://freemarker.apache.org/docs/index.html

Chapter 14
Apache FreeMarker Reference

set upUser Cont ext :
conponent: "System CopyVari abl es"
properties:
from "lastQuestion,|astResponse"
to: "user.|astQuestion,user.|astResponse"

This component needs both of these properties, but their definitions don’'t have to
mirror one-another. While you can define both fromand t o as lists of variables, you
can also define fromwith a single variable and t o as a list. If you set an additional t o
property, it inherits the variable value of the proceeding f romproperty.

Apache FreeMarker Reference

e Built-In String FreeMarker Operations
e Built-In FreeMarker Number Operations
e Built-In FreeMarker Array Operations

e Built-In FreeMarker Date Operations

Built-In String FreeMarker Operations

The following table shows you how to use some of the built-in string operations using a
string variable called tester as an example. As shown in the following snippet, its
value is setto "hel l o world " (with three trailing blank spaces):

context:
vari abl es:
tester: "string"

states:
set Vari abl e:
conponent: "System Set Vari abl e"
properties:
variable: "tester"
value: "hello world

¢ Note:

The following t ext property definition allows the bot to output either the
tester value, or, no string found if no value has been set for the variable.

printVariabl e:
conponent: " System Qut put"
properties:
text: "${tester.value!'no string found'}"
transitions: {}

Built-In Operation Usage Output
capitalize ${tester.value?capitalize} Hello Wrld
| ast _i ndex_of ${tester.val ue? 7

last _index_of (‘orld")}

ORACLE 14-55

https://freemarker.apache.org/docs/ref_builtins_string.html

Chapter 14
Apache FreeMarker Reference

Built-In Operation Usage Output

left_pad ${tester.val ue? ___hello world
left_pad(3,' ")}

I ength ${tester.val ue?l engt h} 14

| ower _case ${tester.val ue?l ower _case} hello world

upper _case ${tester.val ue?upper_case} HELLO WORLD

repl ace ${tester.val ue? hello friends

remove_begi nni ng
trim

ensure_starts with

ensure_ends_with

cont ai ns

ends_with

starts_with

mat ches (regular expression
returns true or false)

ORACLE

replace(' world',
"friends')}

${tester.val ue?
remove_begi nning(' hello')}

${tester.val ue?trint

${tester.val ue?
ensure_starts_wth('brave
new ')}

${tester.val ue?
ensure_ends_with(' ny
friend)}$

${tester.val ue?
contains('world)?string
("You said world, 'You
did not say world)}

${tester.val ue?
ends_with('world)?string
("Ends with world',
"Doesn't end with world')}

${tester.val ue?
starts_with('world)?
string ('Starts with
world', 'Doesn't start
with world)}

${tester.val ue?
mat ches(' A([20-9]*)$')}

wor | d

hel | o worl d (the trailing three
spaces are removed)

brave new hello world

hello world ny friend

You said world

The contains('world")
expressions returns either
true orfal se. These boolean
values are replaced with a
string using the string
("stringl','string2')
function.

Ends with world

Doesn't start with world

The regular expression returns
true or f al se depending on
whether the value contains a
number (in which case the
boolean value is returned as
fal se). The tester value
returns true.

14-56

Chapter 14
Apache FreeMarker Reference

Built-In Operation Usage Output
mat ches (regular expression ${tester.val ue? Same as above, but this time,
returns a string) mat ches(' ~(["0-9]*)$') ?} true is returned as a string.

The mat ches(' regul ar
expression') function returns
true or f al se as boolean
types. To printtrue or fal se
in a Syst em Qut put
component, use ?string to
perform a to-string conversion.
Note: regular expressions
can't be used in expressions
that return groups. Use them
in expressions that returns a
single match or no match.

Example: Improving the Confidence Level with Casing

ORACLE

While The casing of the user input can impact the confidence level of the intent
resolution. For example, May might refer to the month or the verb and user input can
be erratic (Pizza, piZza, PIZZA). Instead of catching all of the possible case variations
as synonyms in the entity definition, you can make the casing uniform using the an
FTL operator like | ower _case in the following snippet.

getlintent:
conmponent: "System Text"
properties:
pronpt: "H, | ama the Pizza Palace bot. How can | hel p?"

variable: "userstring"
transitions: {}
t oLower case:
conponent: "System Set Vari abl e"
properties:
variabl e: "userstring"
val ue: "${userstring.val ue?l ower_case}"
transitions: {}
intent:
component: "SystemIntent"
properties:
variable: "iResult"
confidenceThreshol d: 0.8
sourceVariabl e: "userstring”
transitions:
actions:
orderPi zza: "orderPizza"
cancel Order: "cancel Order”
unresol vedl ntent: "handl eUnresol ved"

To implement this, you first ask the for the user input using the Syst em Text
component. In this example, the Syst em Text component saves the user input in the
userstring variable. The Syt em Set Vari abl e uses FTL to change the case of the user
input string to lower case and saves the modified string to the same userstring
variable. Finally, the user stri ng variable is referenced by the System I nt ent component
using the sour ceVari abl e property to run the modified user string against the intent
engine.

14-57

Chapter 14
Apache FreeMarker Reference

Example: Transforming Case with the System.Switch Component

Another component that can be simplified with FTL is System.Switch.

In the following snippet shows different states that get called depending on the user
input (wine or beer), which is stored in the choi ce variable.

Swi t ch:
conponent: "System Switch"
properties:
variabl e: "choice"
val ues:
- "w ne"
- "beer"
transitions:
actions:
wi ne: "serverWne"
beer: "serveBeer"
NONE: "serveWater"

The casing of the input collected using the System Text component may inconsistent,
even within a word (WINE). Instead of adding all possible variations to the

System Swi t ch definition, use an FTL operation like upper _case to make the casing
uniform:

switch:
conponent: "System Switch"
properties:
source: "${choi ce. val ue?upper _case}"
val ues:
- "WNE
- "BEER'
transitions:
actions:
WNE: "serveW ne"
BEER "serverBeer"
NONE: “serveWater"

Example: Concatenating FTL Expressions

The following snippet shows how concatenating FTL expressions transforms user
input UA1234 and UA 1234, to simply 1234.

nor mal i zeFl i ght Nunber :
conponent: "System Set Vari abl e"
properties:
variable: "flight"
val ue: "${flight.val ue?trin®?l ower_case?remove_begi nning('ua ')
?renove_begi nning('ua')}"

Built-In FreeMarker Number Operations

The following table lists the built-in number operations and shows how they output the
value set for the negati veVal ue (-2.5) and posi ti veVal ue (0.5175) context variables in
the following snippet.

cont ext :
vari abl es:

ORACLE 14-58

https://freemarker.apache.org/docs/ref_builtins_number.html

negativeVal ue: "float"
positiveVal ue: "float"
states:
set Negat i veVal ue:
conponent: "System Set Vari abl e"
properties:
variabl e: "negativeVal ue"
value: -2.5
set Posi tiveVal ue:
conponent: "System Set Vari abl e"

Chapter 14
Apache FreeMarker Reference

properties:
variable: "positiveVal ue"
val ue: 0.5175
Operation Example Output
abs ${negativeVal ue. val ue?abs} 2.5

string (used with a numerical
value)

${negati veVal ue. val ue?abs?
string. percent}

string (with the decimal
format value and various
currencies)

Tip: Check out Charbase for
other currency symbols.

${ posi tiveVal ue. val ue?
string[' ## ##]}

${ posi tiveVal ue. val ue?
string[' ###. ##%]}

${ posi tiveVal ue. val ue?
string[" ##. ###\ u00AMd']}

${posi tiveVal ue. val ue?
string[' ##. ###\ u20AC |}
${ posi tiveVal ue. val ue?
string[" ##. ###\ u00A3']}

${negativeVal ue. val ue?
round}

round

${posi tiveVal ue. val ue?
round}

floor ${posi tiveVal ue. val ue?

floor}

ceiling ${posi tiveVal ue. val ue?

ceiling}

ORACLE

The operator turns the
negative numeric value into a
positive value.

250%

The operator first changes the
negative value to a positive.
Then it converts it into
percent, implicitly multiplying
the value by 100.

0.51

51%

The operator adds adding a
percentage character after
multiplying the value by 100.

051%
0.51€
0.51£

-2

The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

1

The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

0
The operator rounds
downwards.

1
The operator rounds upwards.

14-59

http://www.charbase.com/block/currency-symbols

Chapter 14
Apache FreeMarker Reference

Operation Example

Output

| ower _abc ${negati veVal ue. val ue?abs?
round?l ower _abc}

upper _abc ${negat i veVal ue. val ue?abs?
round?upper _abc}

is_infinite ${posi tiveVal ue. val ue?
is_infinite?string}

c
The operator turns the
negative value into a positive,
then rounds it to 3. It returns c,
the third letter of the alphabet.

C

The operator turns the
negative value into a positive,
then rounds it to 3. It returns
C, the third letter of the
alphabet.

false

The operator returns false,
because a float value is not
infinite according to IEEE 754
(Standard for Floating-Point
Arithmetic).

Note: The returned value
would be a boolean without ?
string.

Built-In FreeMarker Array Operations

Array (or sequence) operations enable your bot to, among other things, determine the
size of an array, sort arrays, or find content within an array.

Arrays return the results from the intent and entity processing. For example:

* ${iResult.value.entityMatches[‘name of entity']} returns an array of entities
found in a user string that’s passed to the System I nt ent component and stored in

theiResult: nlpresult variable.

* ${iResult.val ue.intentMatches. summary} returns an array of intents and the

confidence level for the given user input.

You can save an array in a custom component, in a user-scoped variable, or as shown
in the following snippet, a context variable. In it, there are arrays set for the per son and

col ors variables.

context:
vari abl es:
person: "string"
colors: "string"

set Person:
conponent: "System Set Vari abl e"
properties:
variabl e: "person"
val ue:

- firstName: "Frank"
| ast Namre: " Nor mal "

- firstName: "Gant"”
| ast Nane: "Right"

- firstName: "Ceoff"
| ast Narme: " Power"

ORACLE

14-60

https://freemarker.apache.org/docs/ref_builtins_sequence.html

ORACLE

- firstNane: "Marcel 0"
| ast Nane: "Junp"

set Col ors:

conponent: "System Set Vari abl e"

properties:

variable: "colors"
val ue:
- "yell ow'
"“bl ue"
"red"
"bl ack"
"white"

- "green"

Chapter 14
Apache FreeMarker Reference

These col ors and per son arrays are used to illustrate the array operations and in

Example: Iterating Arrays.

You can use arrays with different components like the System.Output and
System.SetVariable to accomplish different things:

* To create mock data for testing.

* To define data structures that persist beyond user sessions.

You can define array properties for different components, like System.Output or
System.SetVariable (illustrated in the following snippet).

Operator Example Output
si ze ${ person. val ue?si ze? 4—The size (four members) of
number } the per son array
array index $ G ant —It's the value of the
{person.value[1] . firstNane second firstName property in
} the per son array.
$ Same as the above, but in this
{person.val ue[1].firstNane case, the bot outputs unknown
" unknown' } if the second fi r st Name
property has no value.
first ${ person. val ue? Fr ank—The first entry of the
first.firstName} person array. This operation
doesn't use the array index.
| ast ${ person. val ue? Mar cel o—The final | ast Nane

| ast.firstName}

value in the person array.

14-61

Chapter 14
Apache FreeMarker Reference

Operator

Example

Output

sort _hy

seq_i ndex_of
seq_| ast _i ndex_of

join

seq_cont ai ns

sort

reverse

${ person. val ue?
sort _by('lastNane')
[0].firstNane}

${ person. val ue?
sort _by('lastNane')?
reverse[0].firstNane}

${col ors. val ue?
seq_index_of ('red")}

${col ors. val ue?
seq_l ast _index_of ("red")}

${colors.value?join(',")}

${col ors. val ue?
seq_contains('red)?

${col ors. val ue?sort ?
join(',")}

${col ors. val ue?sort ?
reverse?join(',")}

Mar cel o

This operator sorts the per son
array by the | ast Nanme property
in ascending order. It then
prints the value of the
corresponding fi r st Nanme
property for final entry in the
person array:

e Jump, Marcelo

* Normal, Frank

. Power, Geoff

. Right, Grant

Note: Unless you save the
sorted array in a variable
using Syst em Set Vari abl e,
the data remains sorted for a
single request only.

G ant —the values are sorted
in descending order:

. Right, Grant

* Power, Geoff

Normal, Frank

e Jump, Marcelo

2—The index value for red in
the colors array.

2—The last index value for red
in the

Returns the col ors array as a
comma-separated string:
yellow, blue, red, black,
white, green

Returns Yes because the array
contains red.

Note: ?seq_cont ai ns returns
a boolean value. This value is
then replaced by a string using
the ?string(‘..."."...")
expression.

Returns the colors array as a
comma-separated string in
ascending order: bl ack,
blue, green, red, white,
yel | ow

Returns the col ors array as a
comma-separated string in
descending order: yel | ow,

bl ue, red, black, white,
green

ORACLE

14-62

Chapter 14
Apache FreeMarker Reference

Example: Iterating Arrays

Arrays determine the number of entities in the user input. The following snippet shows
how to determine the size of the array held in the per son variable and then iterate over
its elements so that the bot outputs something like:

Person 1 is Frank Normal
Person 2 is Grant Right
Person 3 is Geoff Power

Person 4 is Marcelo Jump

component: " System ComrmonResponse”

properties:
met adat a:
responsel tens:
- type: "text"

text: "${person?index+1}. ${person.firstNane} ${person.|astNane}"
nane: "Sorry"
separ at eBubbl es: true
iteratorVariable: "person"
processUser Message: fal se

Note:

The output described in this code is not sorted (that is, no sort _by operation
is used).

Built-In FreeMarker Date Operations

The following snippet derives the current date using the FreeMarker special variable
reference, . now and the built-in dat e operator.

Print Today:
component: " System Qut put”
properties:
text: "${.now?date}"
keepTurn: false

The following table lists some of the built-in date operations that you can use to define
properties and manipulate entity values.

ORACLE' 14-63

https://freemarker.apache.org/docs/ref_builtins_date.html

ORACLE

Chapter 14
Apache FreeMarker Reference

Operation(s) Example Output

date ${. now?dat e} The current date

tinme ${. now?t i me} The time of day, like 5:46:09
PM

datetinme ${. now?dat et i me} Prints current date and time,

| ong and nunber _to_date

string (with formatting styles)

string (with specified output
formats)

dat eti me (with string and
formatting style)

Converting the entity value to
a string using

e date

e long

e nunber_to_date

* formatting styles

e custom date formats

${ (. now?l ong + 86400000) ?
nunber _to_date }

${. now?string.full}

${. now?string. | ong}

${. now?string. short}

${. now?stri ng. nedi un}

${. now?string. i so}

${. now?string[' dd. M yyyy,
HH i]}

${. now?string["yyyy']}

${dat e_vari abl e?dat et i me?
string.short}

${dat eVar . val ue. dat e?l ong?
nunber _to_dat e?dat e?
string.short}

like Jan 17, 2018 5:36:13 PM.

Adds 24 hours to the current
date. If the call is made on
January 17, 2018, FreeMarker
outputs January 18, 2018.

Converts the current date to
string formatted as
Wednesday, January 17, 2018
6:35:12 PM UTC.

Converts date to string with
the following formatted output:
January 17, 20186:36:47 PM
UTC.

Converts date to string with
the following formatted output:
1/17/18 6:37 PM

Converts date to string with
the following formatted output:
Jan 17, 2018 6:38:35.

Prints the date in the ISO
8601 standard like
2018-01-17T18:54:01.1297Z.

Prints the current date in a
custom format, like
17.01.2018, 18:58.

2018

Converts the date to a string
formatted as 1/17/18 6:37 PM.
The dat et i me operator
enables FreeMarker to tell if
the variable holds a date that
contains both date and time
information. Similarly, you can
use the dat e or ti me operators
to indicate if the date value
contains only the date or only
the time, but using dat eti ne?
string avoids errors.

Converts the date from the
entity extraction to a string
formatted as 11/17/18.

The date operator tells
FreeMarker that the variable
only holds a date, not time
information. Using this format
avoids errors.

14-64

Chapter 14
Apache FreeMarker Reference

Operation(s) Example Output
${dateVar. val ue. date?l ong? Converts the date that's
nunber to_date? derived from entity extraction
string. medi ung to a string formatted as Jan
17, 2018.

Note: All other formats like
full,short,longandiso
work the same with dates
derived from entity extraction.

${dat eVar . val ue. dat e?l ong? Prints the date in custom

nunber _to_date? format. For example:
string['dd. M yyyy']} 17.01.2018, 18:58.
${dateVar.val ue. date?l ong? Prints the date derived from
nunber _to_date? entity in a custom format.

string['yyyy']}

Example: Extracting Dates from User Input

ORACLE

The following snippet is from a bot that manages appointments. When a user asks it,
Can you arrange a meeting with Mr. Higgs a day later than tomorrow?, the bot uses a
complex entity, DATE, to extract tomorrow from the request. It outputs the requested
date using ${(t heDat e. val ue. dat e?l ong + 86400000) ?nunber _t o_dat e} to add 24 hours
(or 86,400,000 milliseconds) to the current date.

14-65

Chapter 14
Apache FreeMarker Reference

OBotML Code

Output

context:
vari abl es:
iResult: "nlpresult"
theDate : "DATE"
states:
intent:
component: "SystemIntent"
properties:
variable: "iResult"
confi denceThreshol d: 0.4
transitions:
actions:
unresol vedl ntent: "dunno"
Appoi ntment: "print Today"
print Today:
conmponent: "System Qut put"
properties:
text: "Today is: ${.now"
keepTurn: true
start Appoi nt enent :
conponent: "System Set Vari abl e"
properties:
variabl e:
value: "$
{iResult.val ue.entityMatches[' DATE][0]}"
print Dat eFound:
conmponent: "System Qut put"
properties:
text: "Date found is: $
{theDat e. val ue. date}"
keepTurn: true
print DayAfter:
conmponent: "System Qut put"
properties:
text: "A day later is $
{(theDat e. val ue. date?l ong + 86400000) ?
nunber _to_date}"
transistions:
return: "done"

"t heDat e"

"Can you arrange a meeting with Mr. Higgs?"

Today is: 1/18/18 8:19 AM
Date found is: Jan 18, 2018

A day later is Jan 19, 2018

Example: Setting a Default Date (When No Date Value Is Set)

If the user message doesn’t include any date information, your bot can prompt users
for the date, or provide a default date, as shown by the following snippet (which
augments the dialog flow in the previous example). To perform the latter, your bot
needs to check if date variable has been set after the NLP engine extracts entities
from the user input.

condi ti onEqual s:
conponent: "System Conditi onEqual s"
properties:
variable: "theDate"
val ue: null
transitions:
actions:

ORACLE 14-66

Chapter 14
Apache FreeMarker Reference

equal : "set Defaul t Dat e"
not equal : "print Dat eFound"

If no date value has been set, the Syst em Set Vari abl e component defines a default
value in a variable and transform it into a string.

set Def aul t Dat e:
conponent: "System Set Vari abl e"
properties:
vari abl e: "defaul t Dat el nput”
val ue: "${.now?datetinme?string.|ong}"

The System Mat chEnti ty component verifies that this value is a date and then sets
thet heDATE variable:

mat chEntity:
conponent: "System Mat chEntity"
properties:
sourceVariabl e: "defaul t Dat el nput "
variable: "theDate"
transitions:
actions:
mat ch: "pri nt Dat eFound"
nomatch: "exit"

ORACLE 14-67

Chapter 14
Apache FreeMarker Reference

OBotML Output
cont ext :
vari abl es:

hemte ore
theDate : "DATE"
#need extra variable for default

date input Today is: 1/18/18 8:19 AM
defaul t Datel nput: "string"

states: Date found is: Jan 18, 2018

#try to extract date information from
user sentence
start Appoi nt enent :
conponent: "System Set Vari abl e"
properties:
vari abl e:
value: "$
{iResult.val ue.entityMatches[' DATE][0]}"
#set default date if none found
condi ti onEqual s:
conponent: "System Conditi onEqual s"
properties:
variable: "theDate"
val ue: null
transitions:
actions:
equal : "set Defaul t Dat e"
notequal : "print Dat eFound"
set Def aul t Dat e:
conponent: "System Set Vari abl e"
properties:
variabl e: "defaul t Dat el nput"
val ue: "${.now?dat eti ne?

"t heDat e"

string.long}"
mat chEntity:
conponent: "System Mat chEntity"
properties:
sourceVariabl e: "defaul t Dat el nput"”
variable: "theDate"
transitions:
actions:
mat ch: "print Dat eFound"
nomatch: "exit"

pri nt Dat eFound:
component: " System Qut put”
properties:
text: "Date found is:
${t heDat e. val ue. dat e?l ong?
nunber _t o_dat e?dat e?string. medi un}"
keepTurn: true
print DayAfter:
component: " System Qut put”
properties:
text: "A day later is $
{(theDate. val ue. date?l ong + 86400000) ?
nunber _to_date}"

ORACLE

A day later is Jan 19, 2018

14-68

Chapter 14

The SDK Helper Methods
OBotML Output
transistions:
return: "done"
The SDK Helper Methods
Function Usage
conversation. payl oad() Retrieves the payload of the current user

message. The payload contains the message
text and other information, like the user ID.

conversation. text() Accesses the text string.
conversation. attachnent () Accesses an attachment message.
conversation. | ocation() Accesses a location message.
conver sat i on. post back() Accesses a postback message.

ORACLE 14-69

Chapter 14

The SDK Helper Methods
Function Usage
conversation.transition(“action”) and Directs the Dialog Engine to the next state in
conversation.transition() the dialog flow. The custom component can

influence the navigation by returning an action

string that you've mapped to state in the dialog

flow.

e Component-controlled navigation
(conversation.transition(“action”))—
To set the target state, pass a string
argument that matches one of the
suppor t edAct i ons strings in the
component module’s net at dat a function,
like nameFound and nameNot Found in the
following snippet:

metadata: () = ({
"name": "hel | oWrld",
“properties": {
"properties": {
"nanme": {
"type": "string",
“required": false"
}
1
"support edActi ons":
["nameFound", "nanmeNot Found"]
b,

« Dialog flow-controlled navigation
(conversation.transition())—Youcan
call this function with no arguments when
the component module has no
suppor t edAct i ons definition (and
therefore, no arguments to pass). In this
case, the dialog flow definition sets the
transition, not the component. For
example, depending on the dialog flow
definition, the Dialog Engine might move
to the next state in the flow after
transiti on method executes
(transitions: {})oron to a specific
state:

transitions:
next: "newState"

The dialog flow will also determine the
transition when the component module
has a suppor t edAct i ons definition, but
the function itself has no arguments.

conversation. channel Type() Allows you to determine the messaging
channel.

ORACLE 14-70

ORACLE

Chapter 14
The SDK Helper Methods

Function

Usage

conversation. keepTur n(bool ean)

conversation.reply({text:

conversation. properties()

conversation.error

conversation. botld()
conversation. pl at f or nVer si on()

1)

Enables your bot to retain control of the
conversation. keepTur n essentially decides
who provides input or a response: the bot or
its user. So before you call done, you can
indicate who goes next by calling either
conversation. keepTurn(true) or
convesat i onkeepTurn(fal se).

e conversation. keepTurn(true)—Set to
t r ue to allow the bot to control the
conversation. This is essentially the bot
(through the component) asserting “It's
still my turn to speak.” Use this setting
when the component doesn’t require user
input or when it needs to send multiple
replies in quick succession while
suppressing user input.

e conversation. keepTurn(fal se) —Set to
fal se (the default) to enable the user to
reply. This setting essentially hands
control back to the user until the next
reply from the component. It enables a
typical back-and-forth conversation.

Returns the response from the messaging
client. This response can be a simple text
message, or a a more complex response with
a rich Ul that uses the functions of the
MessageMbdel class in the Custom Component
SDK. This function enables you to build more
a complex response, such as a scrolling
carousel on Facebook. For this type of
response, you need to structure the JSON
payload appropriately.

© Important:

You must call
done() to send
the response,
regardless of the
number of calls
made to
conversation.r

eply.

Provides access to the component input
properties
(conversation. properties().account Type).

Indicates that there was an error in the
processing.

Returns the ID of the bot that sent the request.

Returns the version of the message platform
(such as Facebook 1. 0).

14-71

Chapter 14
Navigation with keepTurn and transition

Function Usage

conversation. text() Provides access to the NLP text message that
triggered the invocation of the intent and the
component.

conversation. variabl e(“name”, val ue) Provides read or write access to variables

defined in the current flow. This function takes

the following arguments:

e variabl e(nanme) —Reads the name
variable and returns its value.

e variabl e(nanme, val ue) —Writes the
value of the val ue variable to the name
variable. Only enclose the value in quotes
when it's a string.

This function also creates a variable at

runtime, one that can be used to track the

state of component. You can use this when
component needs to track its internal state
because it doesn’t transition to the next state
in the dialog flow.

conversation. nl pResul t () Returns an NLPResul t helper object for
nl presul t variables. For example, you can
find the value of an entity that was extracted
from the user input by calling
conversation. nl pResul t. entityMatches(ent
ity nane). You can use this value to update
an entity type variable.

conversation. request () Accesses the JSON object body that's sent by
the bot. Use this function to parse the payload
for any information that's not directly exposed
by one of the SDK functions.

conversation. response() Grants access to the HTTP response payload
(a JSON object) that's sent back to the bot
when you call done() .

Navigation with keepTurn and transition

Use different combinations of the keepTurn and transi ti on functions to define how the
conversation continues once the component has finished processing.

i nvoke: (conversation, done) ==> {

conversation. keepTurn(true);
conversation.transition ("success");
done();

}

ORACLE 14-72

Chapter 14
Navigation with keepTurn and transition

Use Case Values Set for keepTurn and transition
A custom component’s reply that doesn’t e SetkeepTurntotrue:
require any user interaction. conversation. keepTurn(true).

e Settransition with a supportedActions
string(conversation. transition("succe
ss")) or with no arguments
(conversation.transition()).

For example, a custom component updates a
context variable with a list of values that is
then displayed by a Syst em Li st component
that's defined for the next state in the dialog
flow definition.

i nvoke: (conversation, done) => {
const |istVariabl eName =
conversation. properties().variabl eNang;

11
wite list of options to a context
variabl e

conversation. variabl e(listVariabl eNane,
list);

/lnavigate to next state. No user
interaction.

conversation. keepTurn(true);

conversation.transition();

done();

}

Note:

When
component
doesn’t transition
to the next state,
it needs to track
its own state by
creating a
runtime variable
using the
conversation.v
ariabl e
(“nane”,

vari abl e)
method.

ORACLE 14-73

Chapter 14
Navigation with keepTurn and transition

Use Case

Values Set for keepTurn and transition

A sequential user conversation in which the
user provides input, the bot replies, and so on.

The bot to passes control back to the user
without navigating to the next dialog state.
This allows the component to process the user
input. Here are a couple of examples:

e A component passes the user input to
query a backend search engine. If the
chatbot can only accommodate a single
result, but the query instead returns
multiple hits, the component can then
prompt the user more input to filter the
results. In this case, the custom
component continues to handle the user
input; it holds the conversation until the
search engine returns a single hit. When
the backend system is satisfied, the
component calls
conversation.transition() to move on
to the next state as defined in the dialog
flow definition.

e A guestionnaire, wherein a custom
component handles all of the questions
and only transitions to the next state when
each of them gets answered.

The custom component goes into a loop,
which can’t be stopped by user input. For
example, a component pings a remote service
for the status of an order until the status is
returned as accept ed or when the component
times out. If the accept ed status is not
returned after the fifth ping, then the
component transitions to a f ai | edOr der state,
which is defined in the dialog flow.

e SetkeepTurntofal se.

e Settransition with a supportActions
string

For example:

conversation. keepTurn(fal se);
conversation.transition("success");

e Donotcalltransition.
e SetkeepTurnto fal se.
For example:

conversation.reply("text");
conver sation. keepTurn(fal se);
done();

. Do not call transi tion.

e SetkeepTurntotrue:
conversation. keepTurn(true).

For example:

conversation.reply("text");
conversation. keepTurn(true);
done();

" Note:

Always call
keepTur n after
reply and not
before, because
reply implicitly
sets keepTurn to
fal se.

ORACLE

14-74

Chapter 14
The Custom Component Payload

The Custom Component Payload

Taking a Look at the Metadata Retrieval

The response payload for the GET endpoint is made up of properties that are required
to call the component along the name of the component itself. You can shape this
payload by defining the state machine transitions (that is, the possible actions returned
by this component). As illustrated by the array in this example, you can add as many
components as you need.

{
"version": "1.0",
"conmponents": [{
"name": "AgeChecker",
"properties": {
"mnAge": {
"type": "integer",
"required": true
}
b
"supportedActions": [
"success",
“fail"
]
oA
"nane": "PizzaBaker",
"properties": {
"size": {
"type": "string",
"required": true
b
"crust": {
"type": "string",
"required": true
b
"type": {
"type": "string",
"required": true
}
b
"supportedActions": [
" pi zzaReady",
“fail"
]
}
]
H

Taking a Look at the Invocation Request and Response Payloads

For the POST, the request contains the bot's GUID, the platform version of Bots, and a
cont ext definition for the dialog flow variables, the state’s properties, the original
message, the channel that delivered it, and the tenant.

ORACLE 14-75

Chapter 14
The Custom Component Payload

"botId" : “963B57F7/-CFE6—439D-BB39-2E342AD4EC92",
“platformVersion™: "“1.8",
"context™ : {
“variables" : {
“location" : {
lltFEell . Il5tringll
: null,
"entity" : false

system.errnrﬂctiun“ o
. TE“ ¢ "string",
“"walue" : null,
"entity" : false

”system errorstate” : {
[E (1} : Ilstringlll
”ua we" : null,
"entity" : false

}

properties" :
) ”1nc£Einn" ! "5an Francisco"
"message" : {
“payload" : {
“text" : “"What stores are near me?"

“retryCount® : @,
“channel™ : {
"botId" : "963B57F7-CFE6-439D-BB39-2E342AD4ECI2",
"sessionId” : "1769637",
Htv E” : "tESt”,
"userId" : "1769637",
) “channelld" : "“18DESAEF-65A4-461B-B140-0A4BCF1D6FT1"
"tenantId"” : "DefaultOliveTenant",
“createdﬂn". “2017-01-20700: 23:53,5932",
id™ : "Bc9556b2-993Q-422B8-985e-T972bfcfe2bd"

The POST response payload also includes the context definition for all of the variable
values, including those that have been mutated by the component. The response
payload can also control the routing through properties like exi t, done, and error. You
don’t have to parse the JSON if you use our SDK. Instead, you just need to set the
variables. See The SDK Helper Methods.

ORACLE" 14-76

Chapter 14
The Custom Component Payload

"platformVersion": "1.@",
"rontext" : {
“yariables" : {
"location" : {
" yEe" Ustrin
Ii“a

"o
ue" : "San Eranc;sco“.

"entity" : false

¥
'system.errnrﬁctinn" C
t

4 yEe" ¢ "string",
“value" : null,
"entity" : false

'EystEm.errurState“ s

'tyte“ i "string",
"walue" : null,
} "entity" : false

}
},
"action" : null,
"axit" : false,
"done" : false,

"error" : false,
"modifyContext" : false

ORACLE"

14-77

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 Overview
	What Are Intelligent Bots?
	Why Use Oracle Bots?

	2 The Basics
	Bot Concepts
	How Do I Create a Bot?

	3 Quick Reference
	Managing Your Bots

	4 The Sample Bots
	5 Intents
	Create an Intent
	Add Entities to Intents
	Import Intents from a CSV File
	Export Intents to a CSV File
	Intent Training and Testing
	Test Sets
	The Intent Tester
	Testing Intents
	The Intent Testing History
	Export Intent Data
	Batch Testing Intents

	Which Training Model Should I Use?
	Guidelines for Building Your Training Corpus

	Reference Intents in the Dialog Flow

	6 Entities
	Built-In Entities
	Simple Entities
	Complex Entities

	Custom Entities
	Custom Entity Types
	Create Entities
	Import Value List Entities from a CSV File
	Export Value List Entities to a CSV File

	7 The Dialog Flow Definition
	The Dialog Flow Structure
	How Do I Write Dialog Flows in OBotML?
	Dialog Flow Syntax
	Flow Navigation
	Conifguring the Dialog Flow for Unexpected Actions

	Accessing Variable Values with Apache FreeMarker FTL
	User-Scoped Variables
	Defining User-Scoped Variables

	Getting the User Context
	Test the Dialog Flow

	8 Localization
	Resource Bundles
	Create Resource Bundle
	Reference Resource Bundles in the Dialog Flow
	Resource Bundle Entry Resolution

	Autotranslation
	Enable Autotranslation

	9 Components
	The Custom Component Service
	Create a Service
	How Do Custom Components Work?
	The Component Service
	The Shell
	The Registry
	Component Modules
	The SDK
	The Message Model
	How Do I Implement the Component Service in OMCe?

	10 Channels
	Running Your Bot on Facebook Messenger
	Step 1: Set Up Facebook Messenger
	Step 2: Add the Facebook Keys
	Step 3: Configure the Facebook Messenger Webhook
	Step 4: Enable the Facebook Channel
	Step 5: Testing Your Bot on Facebook Messenger

	Running Your Bot on Other Messaging Services
	Running Your Bot Within Client Messaging Apps and Web Pages
	Bots Client SDKs
	Bots Client SDK for Android
	Adding the Bots Client SDK for Android to Your App
	Adding the SDK and AAR Files
	Initialize the Bots Android SDK in Your App
	Displaying the Bots Android SDK User Interface
	Calling Other Functions
	Replacing the FileProvider

	Localization
	Customization
	Strings Customization
	Styling the Conversation Interface

	Permissions

	Bots Client SDK for iOS
	Adding the Bots Client SDK for iOS to Your App
	Import the Bots Header File
	Add Required Keys in Your App’s info.plist

	Initialize the Bots Client SDK for iOS in Your App
	Calling Other Functions

	Updating the SDK
	Localization of iOS Apps
	Enabling Localization in Your iOS App

	Customization
	Strings Customization
	Styling the Conversation Interface

	Bots Client SDK for JavaScript
	Configuring the Library
	Setup Examples

	Deploying the SDK Files
	Adding Bots Client SDK for JavaScript to Your Site
	Updating the Script Tag

	Customization
	Embedded Mode
	Strings Customization
	Date Localization
	Sound Notification

	Creating a Custom User Interface with the Bots Client SDK for JavaScript
	Initialize the Bots Client SDK for JavaScript in Embedded Mode
	Fetch the Initial Data
	Send Messages
	Receive Messages
	Add Postback Actions
	Calling Other Functions
	Sample Code for the Custom UI
	Message Types
	Text Message
	Carousel Message
	Image Message
	File Message
	Location Message

	Message Actions
	Postback Action
	Link Action
	Location Request Action
	Reply Action
	Webview Action
	Share Action

	Message Item
	Display Style Options

	11 Quality Reports
	How Do I Use the Data Quality Reports?
	Utterances
	Run an Utterance Quality Report
	Troubleshooting Utterance Quality Reports

	Suggestions
	History
	How Do I Run a History Report?
	Running Failure Reports
	Running Low Confidence Reports
	Troubleshooting Narrow Win Margins
	Viewing the Resolution History as a CSV File

	12 Bots Analytics
	Adding Analytics to the PizzaBot Sample Bot
	Setting up the PizzaBot Analytics Application
	Setting up the PizzaBot Custom Component

	13 Instant Apps
	Creating an Instant App from Scratch
	App Settings
	Laying Out an Instant App
	Panes
	Elements
	Adding, Moving, and Deleting Elements
	Cloning Elements
	Shortkey for Adding Multiple Elements
	Common Configuration
	Styles

	Element Types
	Text Inputs
	Choice Inputs
	Special Inputs
	Images and Layout
	Content

	Pane Validation
	The Validator Object

	Events and Actions
	App Events
	Actions
	JavaScript Snippet
	Commonly Used JavaScript Snippets

	Set Element Value
	Make Elements Visible
	Make Elements Invisible
	Enable Elements
	Disable Elements
	Toggle Visibility
	Toggle Enabled
	Set Element Label
	Set Element Properties
	Call External Web API
	Activate and Show Pane
	Reset Elements
	Play Sound
	Show Alert Dialog
	Focus Element
	Open Website
	Open Handset SMS
	Set App Status
	Post Audit Trail
	Lock App
	Unlock App
	Launch Another Instant App
	Exit to Bot

	Parameters
	Using Brace Notation in Element and Parameter Values

	Modes
	Preview Mode
	Test Mode
	JSON

	Starting an Instant App from a Template
	Instant App Lifecycle
	Editing
	Publishing
	Deactivating
	Deleting and Restoring
	Exporting and Importing

	14 Reference
	Built-In Components: Properties, Transitions, and Usage
	Control Components
	System.ConditionEquals
	System.ConditionExists
	System.Switch

	Language
	System.Intent
	The confidenceThreshold Property
	The confidenceWinMargin Property

	System.MatchEntity
	System.DetectLanguage
	System.TranslateInput
	System.TranslateOutput

	Security
	System.OAuthAccountLink

	User Interface Components
	System.Text
	System.List
	Value Lists
	The options Property
	Action Lists

	System.Output
	Defining Value Expressions for the System.Output Component

	System.CommonResponse
	Adding a System.CommonResponse Component to Your Dialog Flow
	The Component Properties
	The Metadata Property
	The Action Metadata Properties
	The Text Response Item
	The Card Response Item
	The Attachment Response Item
	User Message Validation

	System.Interactive
	Transitions
	Message Handling for Output Components
	Handling Free Text
	Handling Multimedia Messages
	Handling Location Messages
	Handling Button Postback Actions
	Handling Button Postback Actions for an Older Message
	Detecting Unexpected Actions

	Limiting the Number of User Prompts

	Variable Components
	System.SetVariable
	System.ResetVariables
	System.CopyVariables

	Apache FreeMarker Reference
	Built-In String FreeMarker Operations
	Example: Improving the Confidence Level with Casing
	Example: Transforming Case with the System.Switch Component
	Example: Concatenating FTL Expressions

	Built-In FreeMarker Number Operations
	Built-In FreeMarker Array Operations
	Example: Iterating Arrays

	Built-In FreeMarker Date Operations
	Example: Extracting Dates from User Input
	Example: Setting a Default Date (When No Date Value Is Set)

	The SDK Helper Methods
	Navigation with keepTurn and transition
	The Custom Component Payload

