
Oracle® Cloud
Creating Intelligent Bots with Oracle Mobile
Cloud Enterprise

18.2.3
E80652-01
May 2018

Oracle Cloud Creating Intelligent Bots with Oracle Mobile Cloud Enterprise, 18.2.3

E80652-01

Copyright © 2018, 2018, Oracle and/or its affiliates. All rights reserved.

Primary Author: John Bassett

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience viii

Documentation Accessibility viii

Conventions viii

1 Overview

What Are Intelligent Bots? 1-1

Why Use Oracle Bots? 1-1

2 The Basics

Bot Concepts 2-1

How Do I Create a Bot? 2-1

3 Quick Reference

Managing Your Bots 3-1

4 The Sample Bots

5 Intents

Create an Intent 5-1

Add Entities to Intents 5-4

Import Intents from a CSV File 5-6

Export Intents to a CSV File 5-7

Intent Training and Testing 5-7

Test Sets 5-7

The Intent Tester 5-7

Which Training Model Should I Use? 5-13

Guidelines for Building Your Training Corpus 5-14

iii

Reference Intents in the Dialog Flow 5-16

6 Entities

Built-In Entities 6-1

Simple Entities 6-2

Complex Entities 6-2

Custom Entities 6-5

Custom Entity Types 6-5

Create Entities 6-6

Import Value List Entities from a CSV File 6-10

Export Value List Entities to a CSV File 6-10

7 The Dialog Flow Definition

The Dialog Flow Structure 7-1

How Do I Write Dialog Flows in OBotML? 7-3

Dialog Flow Syntax 7-5

Flow Navigation 7-8

Conifguring the Dialog Flow for Unexpected Actions 7-8

Accessing Variable Values with Apache FreeMarker FTL 7-10

User-Scoped Variables 7-12

Defining User-Scoped Variables 7-14

Getting the User Context 7-14

Test the Dialog Flow 7-15

8 Localization

Resource Bundles 8-1

Create Resource Bundle 8-1

Reference Resource Bundles in the Dialog Flow 8-3

Resource Bundle Entry Resolution 8-5

Autotranslation 8-5

Enable Autotranslation 8-6

9 Components

The Custom Component Service 9-1

Create a Service 9-2

How Do Custom Components Work? 9-3

The Component Service 9-4

The Shell 9-5

iv

The Registry 9-5

Component Modules 9-6

The SDK 9-7

The Message Model 9-8

How Do I Implement the Component Service in OMCe? 9-8

10

Channels

Running Your Bot on Facebook Messenger 10-1

Step 1: Set Up Facebook Messenger 10-2

Step 2: Add the Facebook Keys 10-3

Step 3: Configure the Facebook Messenger Webhook 10-5

Step 4: Enable the Facebook Channel 10-7

Step 5: Testing Your Bot on Facebook Messenger 10-8

Running Your Bot on Other Messaging Services 10-9

Running Your Bot Within Client Messaging Apps and Web Pages 10-17

Bots Client SDKs 10-18

Bots Client SDK for Android 10-18

Bots Client SDK for iOS 10-23

Bots Client SDK for JavaScript 10-31

11

Quality Reports

How Do I Use the Data Quality Reports? 11-1

Utterances 11-1

Run an Utterance Quality Report 11-2

Suggestions 11-4

History 11-5

How Do I Run a History Report? 11-6

12

Bots Analytics

Adding Analytics to the PizzaBot Sample Bot 12-1

Setting up the PizzaBot Analytics Application 12-1

Setting up the PizzaBot Custom Component 12-1

13

Instant Apps

Creating an Instant App from Scratch 13-4

App Settings 13-4

Laying Out an Instant App 13-5

Panes 13-5

v

Elements 13-6

Events and Actions 13-25

App Events 13-26

Actions 13-28

Parameters 13-45

Using Brace Notation in Element and Parameter Values 13-47

Modes 13-48

Preview Mode 13-48

Test Mode 13-49

JSON 13-51

Starting an Instant App from a Template 13-51

Instant App Lifecycle 13-52

Editing 13-52

Publishing 13-53

Deactivating 13-53

Deleting and Restoring 13-53

Exporting and Importing 13-54

14

Reference

Built-In Components: Properties, Transitions, and Usage 14-1

Control Components 14-1

System.ConditionEquals 14-1

System.ConditionExists 14-4

System.Switch 14-4

Language 14-6

System.Intent 14-7

System.MatchEntity 14-11

System.DetectLanguage 14-13

System.TranslateInput 14-13

System.TranslateOutput 14-14

Security 14-14

System.OAuthAccountLink 14-15

User Interface Components 14-17

System.Text 14-17

System.List 14-19

System.Output 14-24

System.CommonResponse 14-28

System.Interactive 14-45

Transitions 14-49

Message Handling for Output Components 14-49

vi

Limiting the Number of User Prompts 14-52

Variable Components 14-53

System.SetVariable 14-53

System.ResetVariables 14-54

System.CopyVariables 14-54

Apache FreeMarker Reference 14-55

Built-In String FreeMarker Operations 14-55

Example: Improving the Confidence Level with Casing 14-57

Example: Transforming Case with the System.Switch Component 14-58

Example: Concatenating FTL Expressions 14-58

Built-In FreeMarker Number Operations 14-58

Built-In FreeMarker Array Operations 14-60

Example: Iterating Arrays 14-63

Built-In FreeMarker Date Operations 14-63

Example: Extracting Dates from User Input 14-65

Example: Setting a Default Date (When No Date Value Is Set) 14-66

The SDK Helper Methods 14-69

Navigation with keepTurn and transition 14-72

The Custom Component Payload 14-75

vii

Preface

Welcome to Creating Intelligent Bots with Oracle Mobile Cloud, Enterprise!

Audience
Creating Intelligent Bots with Oracle Mobile Cloud Enterprise is intended for
developers who want to use bots to automate user interactions with backend data.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Overview

What Are Intelligent Bots?
It might be good to start off with a quick description of what a bot is. You can think of
your bot as a virtual personal assistant, one that completes a task through a
combination of text messages and simple UI elements like select lists. While a bot can
open your enterprise to messaging, it’s not a replacement for a mobile or web app. It
instead provides a new channel.

Why Use Oracle Bots?
Bots enables you to build a bot that connects your users to enterprise while engaging
them in naturalistic conversations. Bots manages the entire conversation. Throughout
this user session (that is, the conversation, from start to finish), Bots enables your bot
to keep pace with its user: it executes the functions that drive dialog all the while

1-1

keeping track of the choices that the user’s made so far (the context) and where the
user is within the dialog (the current state). Bots can scale to the B2C level while still
managing millions of user sessions (and their states) securely. Through account
linking, Bots optimizes the user experience by allowing seamless access to the bot.

While users are probably aware that they’re chatting with a bot, they won’t need to use
(or endure) mannered, stilted language because of the language intelligence
framework, which produces natural language interactions from machine learning.
Because buttons or lists might provider a sleeker user experience than AI-based
conversation, the framework’s flexibility lets you alternate lists of options, buttons, and
even forms in the dialog flow when natural language is not needed.

Chapter 1
Why Use Oracle Bots?

1-2

2
The Basics

Bot Concepts
• Intents—Categories of actions or tasks users expect your bot to perform for them.

• Entities—Variables that identify key pieces of information from user input that
enable the bot to fulfill a task.

Both intents and entities are common NLP (Natural Language Processing)
concepts. NLP is the science of extracting the intention of text and relevant
information from text.

• Components—Provide your bot with various functions so that it can respond to
users. These can be generic functions like outputting text, or they can return
information from a backend and perform custom logic.

• Dialog Flow—The definition for the bot-user interaction. The Dialog flow describes
how your bot responds and behaves according to user input.

• Channels—Bots aren’t apps that you download from an app marketplace, like
iTunes. Instead, users access them on various messaging platforms like Facebook
Messenger.

• Instant Apps—Instant Apps are self-contained, wizard-liked modules that enable
bot users to complete some task – a purchase that requires users to complete a
form with specific field formats, for example, or an escalation.

• Bot Builder—Not only does the Bots platform provide its own A.I framework that
allows your bot to parse and interpret user input, it also provides you with the Bot
Builder, a UI for creating and managing all aspects of you bot, from building its
cognition, to publishing it to a messaging platform.

How Do I Create a Bot?
Here’s a bird’s-eye view of bot development.

1. Create Intents—Start off by creating intents. Intents illustrate your use case by
describing the various actions that your bot helps its users complete. If your bot
enables users to perform various banking transactions, for example, then you
could create intents like CheckBalance or TransferMoney. Intents not only

2-1

describe what your bot can do, they are also the key to your bot’s intelligence: they
enable it to recognize user input because each intent has a set of typical user
statements known as utterances associated with it. While these phrases share the
same meaning, they make your bot resilient because they’re also varied (for
example, What’s my savings account balance? and How much is in my checking
account?). See Intents.

2. Train the Bot—To enable your bot to reference intents when it parses the user
input, you need to train it. Specifically, you need to train it with the intents and their
utterances (collectively, the training data), so that it can resolve the user input to
one of the intents. By training your bot, you leverage the language intelligence
which is at the core of the Bots platform: its algorithms enable your bot to not only
recognize the sample phrases that belong to each intent, but similar phrases as
well. See Intent Training and Testing.

3. Create Entities— In some cases, you may need to provide some context to
enable your bot to complete a user request. While some user requests might
resolve to the same intent (What’s my savings account balance? and How much is
in my checking account? would both resolve to the CheckBalance intent, for
example), they are nonetheless asking for different things. To clarify the request,
you would add an entity. Using the banking bot example, an entity called
AccountType, which defines values called checking and saving would enable the
bot to parse the user request and respond appropriately. See Entities.

4. Integrate Custom Components—At this point, your bot can recognize input, but
it can’t respond to it. To put your bot’s intelligence to work, you need to add
components and then later, create a dialog flow. Components enable your bot to
do its job. There are two types of components: the ones provided by Bots that
perform functions ranging from holding the resolved intent to outputting text, and
the ones that you provide. The components belonging to this latter category are
known was custom components. Unlike the built-in components that you can use
in any bot that you build with the Bots platform, the custom components perform
tasks that are specific to a single bot, like checking a user’s age, or returning
account information. Custom components don’t reside within the Bots platform, so
for your bot to use them, you need to access them through a REST service. See
The Custom Component Service.

5. Create the Dialog Flow— Next, you need to give the bot the wherewithal to
express its intelligence to its users by creating the dialog flow. The dialog flow
describes how you bot reacts as different intents are resolved. It defines what your
bot says to its users, how it prompts them for input, and how it returns data. Think
of the dialog flow as a flow chart that’s been transposed to a simple markdown
language. In Bots, this markdown language is a version of YAML called OBotML.
See The Dialog Flow Definition.

6. Test the Bot—Once you’ve started your dialog flow, you can chat with your bot to
test it out..

7. Configure Channels—Users subscribe to your bot through messaging platforms
such as Facebook Messenger. You don’t have to rewrite your bot for each
messaging platform, but you do need to configure a channel for each one. Bots
enables you to integrate with Facebook Messenger quickly through its Facebook
Channel. You don’t need to craft any REST calls to run your bot on Facebook.
Instead, you complete a UI using artifacts that are generated by both Facebook
and Bots. See Running Your Bot on Facebook Messenger. To integrate your bot
with other services, Bots provides the Webhook channel. You build your own
webhooks for these non-Facebook integrations. To help you out, you can use the

Chapter 2
How Do I Create a Bot?

2-2

sample chat server that we provide with the Developer Resources or create your
own.

Chapter 2
How Do I Create a Bot?

2-3

3
Quick Reference

Managing Your Bots
Using the landing page (accessed by clicking Development > Bots in the left navbar),
you can manage the lifecycle of your bots by creating, revising, or deleting them. It’s
also where you can import a bot and access the Instant App builder and configure a
translation service. See Autotranslation and Instant Apps.

Managing Your Bots

Clicking the tile menu gives you access to the following options:

• Edit—Update your bot.

• Clone—You can clone a copy of your bot to try out new features, or you can use
this option to create an entirely new version of your bot.

• Export Bot—Share your bot as a ZIP file. This ZIP packages the different
components of your bot in different formats. The bot itself is a .json file. The dialog
flow is a .yaml file, and the other components (intents, entities, channels, settings,
and resource bundles) are all .json files. You can use the Export Bot option, for
example, when you need someone to troubleshoot your app. You can send the
ZIP to your designated expert to get a second opinion. When you get it back, you
add it to your bot library by clicking Import Bot. If you or your expert added
comments to your dialog flow definition (#), they’ll be preserved.

Note:

If you import a bot, you’ll need to re-enter the user credentials for
component services and channels.

• Export Conversation Log—You can also export the conversation logs to test out
new and revised versions of your bot.

3-1

• Delete—Trashes the bot.

Chapter 3
Managing Your Bots

3-2

4
The Sample Bots

To get you familiar with the Bot Builder and some of the techniques used to create
dialog flows, intents, and entities, we’ve provided you with some sample bots. You can
use them as references as you build your own. The container for the Developer
Resources, which includes these sample bots, is generated by selecting Install
Sample when you create a Bots-only stack. Once the samples are installed, you can
access them from the landing page (accessed by clicking Development > Bots in the
left navbar).

Bot Description

PizzaBot Shows you the basics of bot building through a
simple dialog flow.

PizzaBotWithMemory A step up from the PizzaBot in that it
demonstrates how to store user information
from prior visits.

CrcPizzaBot Another version of the PizzaBot, but this one
shows you how you can incorporate scrolling
menus and quick action buttons without having
to write a backend service. It’s all in the
configuration.

FinancialBot Another retail bot, but unlike the either of the
PizzaBots, this bot shows you how to create a
sophisticated dialog that maintains the user
state across different transitions. This bot
collects user input in two ways: through
natural, free-flowing conversation and, when it
needs to collect structured data, through forms
and radio buttons. To do this, the bot calls a
wizard-like app called an instant app. The bot
passes values to the instant app, which opens
in a webview. The instant app, which is
populated with these values, guides the user
through a series of pages. When the user
completes the instant app, it seamlessly
returns the user to the bot along with the
values that it collected from the user.

4-1

5
Intents

Intents allow your bot to understand what the user wants it to do. An intent categorizes
typical user requests by the tasks and actions that your bot performs. The PizzaBot’s
OrderPizza intent, for example, labels a direct request, I want to order a Pizza, along
with another that implies a request, I feel like eating a pizza.

Intents are comprised of permutations of typical user requests and statements, which
are also referred to as utterances. As described in Create an Intent, you can create the
intent by naming a compilation of utterances for a particular action. Because your bot’s
cognition is derived from these intents, each intent should be created from a data set
that’s robust (one to two dozen utterances) and varied, so that your bot can interpret
ambiguous user input. A rich set of utterances enables a bot to understand what the
user wants when it receives messages like “Forget this order!” or “Cancel delivery!”—
messages that mean the same thing, but are expressed differently. To find out how
sample user input allows your bot to learn, see Intent Training and Testing.

Create an Intent
To create an intent:

1. Click Intents (in the left navbar.

2. Click Add Intent.

3. Name the intent.

4. As a optional step, add description of the intent. Your description should focus on
what makes the intent unique and the task or actions it performs.

5. Start building the training corpus by adding utterances that illustrate the meaning
behind the intent. To ensure optimal intent resolution, use terms, wording, and
phrasing specific to the individual intent. Ideally, you should base your training

5-1

data on real-world phrases, but if you don’t any, aim for one-to-two dozen
utterances for each intent. That said, you can get your bot up and running with
fewer (three-to-five) when you train it with Trainer Ht. You can save your
utterances by clicking Enter or by clicking outside of the input field.

To manage the training set, select a row to access the Edit () and Delete ()
functions.

Alternatively, you can add an entire set of intents and their respective utterances
by importing them from a CSV file.

You can make your bot more resilient by adding utterances that contain commonly
misspelled and misused words. See Guidelines for Building Your Training Corpus.

6. Add an entity if the intent needs one to resolve the user input. To find out how, see
Add Entities to Intents.

7. To teach your bot how to comprehend user input using the set of utterances that
you’ve provided so far, click Train, choose a model and then click Submit.

Chapter 5
Create an Intent

5-2

As described in Which Training Model Should I Use?, we provide two models that
learn from your corpus: Trainer Ht and Trainer Tm. Each uses a different algorithm
to reconcile the user input against your intents. Trainer Ht uses pattern matching
while Trainer Tm detects variations in user input. You’d typically follow training
process when you’re creating intents:

a. Create the initial training corpus.

b. Train with Trainer Ht. You should start with Trainer Ht because it doesn’t
require a large set of utterances. As long as there are enough utterances to
disambiguate the intents, your bot will be able to resolve user input.

c. Refine your corpus, retrain with Trainer Ht. Repeat as necessary—training is
an iterative process.

d. Train with Trainer Tm. Use this trainer when you’ve accumulated a robust set
of intents.

The Train button () activates whenever you add an intent or when you
update an intent by adding, changing, or deleting its utterances. To bring the
training up to date, choose a training model and then click Train. The model
displays an exclamation point whenever it needs training. When its training is
current, it displays a check mark.

Chapter 5
Create an Intent

5-3

Note:

For Trainer Ht, your bot needs at least two intents which each have three
or more utterances. Trainer Tm also requires more than one intent.

8. In the test window, click Intents and then enter some of the phrases from your test
set. See Testing Intents.

Add Entities to Intents
Some intents require entities—both built-in and custom— to complete an action within
the dialog flow or make a REST call to a backend API. The system uses only these
entities, which are known, as intent entities, to fulfill the intent that’s associated with
them. In the absence of intent entities, the system attempts to complete the intent by
iterating through all of the bot’s entities. You can associate an entity to an intent when

you click Add New Entity and then select from the custom () or built-in ()
entities.

Chapter 5
Create an Intent

5-4

Alternatively, you can click New Entity to add an intent-specific entity. See Custom
Entity Types.

Chapter 5
Create an Intent

5-5

Tip:

Only intent entities are included in the JSON payloads that are sent to, and
returned by, the Component Service. The ones that aren’t associated with an
intent won’t be included, even if they contribute to the intent resolution by
recognizing user input. If your custom component accesses entities through
entity matches, then be sure to add the entity to your intent. See How Do
Custom Components Work?

Import Intents from a CSV File
You can add your intents manually, or import them from a CSV file. You can create
this file by exporting the intents and entities from another bot, or by creating it from
scratch in a spreadsheet program or a text file.

The CSV file has two columns: query and topIntent:

query,topIntent
I want to order a pizza,OrderPizza
I want a pizza,OrderPizza
I want a pizaa,OrderPizza
I want a pizzaz,OrderPizza
I'm hungry,OrderPizza
Make me a pizza,OrderPizza
I feel like eating a pizza,OrderPizza
Gimme a pie,OrderPizza
Give me a pizza,OrderPizza
pizza I want,OrderPizza
I do not want to order a pizza,CancelPizza
I do not want this,CancelPizza
I don't want to order this pizza,CancelPizza
Cancel this order,CancelPizza
Can I cancel this order?,CancelPizza
Cancel my pizza,CancelPizza
Cancel my pizaa,CancelPizza
Cancel my pizzaz,CancelPizza
I'm not hungry anymore,CancelPizza

To import a CSV file:

1. Click Intents (in the left navbar.

2. Click More, and then choose Import intents.

3. Select the .csv file and then click Open.

4. Train your bot.

Chapter 5
Create an Intent

5-6

Export Intents to a CSV File
You can reuse your training corpus by exporting it to CSV. You can then import this file
to another bot.

To export your intents and their utterances:

1.

2. Click Intents (in the left navbar.

3. Click More, and then choose Export intents.

4. Save the file.

Tip:

Remember to train your bot after you import the CSV file.

Intent Training and Testing
Training a model with your training corpus allows your bot to discern what users say
(or in some cases, are trying to say).

You can improve the acuity of the cognition through rounds of intent testing and intent
training. In Bots, you control the training through the intent definitions alone; the bot
can’t learn on its own from the user chat.

Test Sets
We recommend that you set aside 20% percent of your corpus for testing your bot and
train your bot with the remaining 80%. Keep these two sets separate so that the test
set remains “unknown” to your bot.

Apply the 80/20 split to the each intent’s data set. Randomize your utterances before
making this split to allow the training models to weigh the terms and patterns in the
utterances equally.

The Intent Tester
The Intent tester is your window into your bot’s cognition. By entering phrases that are
not part of the training corpus (the utterances that you’ve maintained in your testing

Chapter 5
Create an Intent

5-7

set), you can find out how well you’ve crafted your intents and entities through the
ranking and the returned JSON. This ranking, which is the bot’s estimate for the best
candidate to resolve the user input, demonstrates its acuity at the current time.

Testing Intents
To find out how well you’ve labeled your intents and entities:

1. Click Test () to open the tester window.

2. Open the Intent tab.

3. Enter a string of text that is not part of the corpora.

4. Click Send and then take a look at the ranking.

5. Expand the JSON window to see how your bot ranked the intents.

Chapter 5
Create an Intent

5-8

If your bot’s top-ranking candidate isn’t what you expect, you might need to retrain
the intents after doing one or both of the following:

• Update the better candidate’s corpus with the input text that you just entered—
Select the appropriate intent and then click Add Example.

Caution:

Adding a test phrase can change how utterances that are similar to it
get classified after you retrain the bot, so consider the impact before
updating the training set with a test phrase. In addition, adding a test
phrase invalidates the test, because it’s now incorporated into the
training set and therefore ensures that the test will be successful.

• Correct the system by editing the corpus using the Edit () and Delete ()
functions.

Chapter 5
Create an Intent

5-9

You need to retrain an intent whenever you add, change, or delete an utterance. A

dirty Train icon () indicates when your training becomes outdated. When

the retraining completes, click Reset () and then send the test phrase
again.

Chapter 5
Create an Intent

5-10

The Intent Testing History
You can export the training data into CSV file so that you can find out how the intents
were trained.

By examining these logs in a text editor or spreadsheet program like MicroSoft Excel,
you can see each user request and bot reply. You can sort through these logs to see
where the bot matched the user request with the right intent and where it didn’t.

Export Intent Data

To export data:

1. In the bots catalog, open the menu in the tile and then click Export Conversation
Log.

2. In the Export Bot dialog, choose the log type (conversation or intent) and a logging
period.

3. Open the CSV files in a spreadsheet program to review it. You see if your model
matches intents consistently by filtering the rows by keyword.

Chapter 5
Create an Intent

5-11

Batch Testing Intents

You can use the intent testing data that you’ve exported on new iterations of your bot
to gauge the accuracy of its intent detection.

To use that test data:

1. Open the tester () and then click Batch.

2. Click Load and then upload the intents log.

3. Choose the number of tests running in parallel. Increasing the number of
concurrent tests may speed up testing, but may also burden the system.

4. Click Test.

The results display in the test window.

Chapter 5
Create an Intent

5-12

5. Drill down () to see how the test results compare to the batch data.

Which Training Model Should I Use?
We provide a duo of models that you can train to mold your bot’s cognition. You can
use one or both of these models, each of which uses a different approach to machine
learning.

Trainer Ht

Trainer Ht is the default training model. It needs only a small training corpus, so use it
as you develop the entities, intents, and the training corpus. When the training corpus
has matured to the point where tests reveal highly accurate intent resolution, you’re
ready to add a deeper dimension to your bot’s cognition by training Trainer Tm.

You can get a general understanding of how Trainer Ht resolves intents just from the
training corpus itself. It forms matching rules from the sample sentences by tagging
parts of speech and entities (both custom and built-in) and by detecting words that
have the same meaning within the context of the intent. If an intent called SendMoney
has both Send $500 to Mom and Pay Cleo $500, for example, Trainer Ht interprets
pay as the equivalent to send . After training, Trainer Ht’s tagging reduces these
sentences to templates (Send Currency to person, Pay person Currency) that it
applies to the user input.

Because Trainer Ht draws on the sentences that you provide, you can predict its
behavior: it will be highly accurate when tested with sentences similar to the ones that
make up the training corpus (the user input that follows the rules, so to speak), but
may fare less well when confronted with esoteric user input.

Chapter 5
Create an Intent

5-13

Tip:

Because of its quick training, use Trainer Ht to help you define and refine
your training corpus. While you can add sentences to an intent whenever the
resolution is faulty (or in the worst case, add your entire testing corpus), be
sure to aim for a concise training corpus by following the guidelines in
Guidelines for Building Your Training Corpus.

Trainer Tm

Because Trainer Tm doesn’t focus as heavily on matching rules as Trainer Ht, it can
help your bot interpret user input that falls outside of your training corpus. Trainer Tm
differs from Trainer Ht in other ways as well: its intent resolution can be less
predictable across training sessions.

Note:

Trainer Ht is the default model, but you can change this by clicking Settings
> General and then by choosing another model from the list. The default
model displays in the tile in the bot catalog.

Guidelines for Building Your Training Corpus
When you define an intent, you first give it a name that illustrates some user action
and then follow up by compiling a set of real-life user statements, or utterances.
Collectively, your intents, and the utterances that belong to them, make up a training
corpus. The term corpus is just a quick way of saying “all of the intents and sample
phrases that I came up with to make this bot smart”. The corpus is the key to your
bot’s intelligence. By training a model with your corpus, you essentially turn that model
into a reference tool for resolving user input to a single intent. Because your training
corpus ultimately plays the key role in deciding which route the bot-human
conversation will take, you need to choose your words carefully when building it.

Generally speaking, a large and varied set of sample phrases increases a model’s
ability to resolve intents accurately. But building a robust training corpus doesn’t just
begin with well-crafted sample phrases; it actually begins with intents that are clearly
delineated. Not only should they clearly reflect your use case, but their relationship to
their sample sentences should be equally clear. If you’re not sure where a sample
sentence belongs, then your intents aren’t distinct from one another.

Chapter 5
Create an Intent

5-14

You probably have sample utterances in mind when you create your intents, but you
can expand upon them by using these guidelines:

• Create 12 to 24 sample phrases per intent (if possible). Keep in mind that the
more examples you add, the more resilient your bot becomes.

Important:

Trainer Tm can’t learn from an intent that has only one utterance.

• Avoid sentence fragments and single words. Instead, use complete sentences
(which can be up to 255 characters). If you must use single key word examples,
choose them carefully.

• Vary the vocabulary and sentence structure in your sample phrases by one or two
permutations using:

– slang words (moolah, lucre, dough)

– common expressions (Am I broke? for an intent called AccountBalance)

– alternate words (Send cash to savings, Send funds to savings, Send money to
savings, Transfer cash to savings.)

– different categories of objects (I want to order a pizza, I want to order some
food.

– alternate spellings (check, cheque)

– common misspellings (“buisness” for “business”)

– unusual word order (To checking, $20 send)

– Create parallel sample phrases for opposing intents. For intents like
CancelPizza and OrderPizza, define contrasting sentences like I want to order
a pizza and I do not want to order a pizza.

– When certain words or phrases signify a specific intent, you can increase the
probability for a correct match by bulking up the training data not only with the
words and phrases themselves, but with synonyms and variations as well. For
example, a training corpus for an OrderPizza intent might include a high
concentration of “I want to” phrases, like I want to order a Pizza, I want to
place an order, and I want to order some food. Use similar verbiage sparingly
for other intents, because it might skew the training if used too freely (say, a
CancelPizza intent with sample phrases like I want to cancel this pizza, I want
to stop this order, and I want to order something else). When the high
occurrence of unique words or phrases within an intent’s training set is
unintended, however, you should revise the initial set of sentences or use the
same verbiage for other intents.

Use different concepts to express the same intent, like I am hungry and Make
me a pizza.

• Watch the letter casing: use uppercase when your entities extract proper nouns,
like Susan and Texas, but use lowercase everywhere else.

• Grow the corpus by adding any mismatched sentence to the correct intent.

Chapter 5
Create an Intent

5-15

Tip:

Keep a test corpus as CSV file to batch test intent resolution by clicking
More and then Export Intents. Because adding a new intent example can
cause regressions, you might end up adding several test phrases to stabilize
the intent resolution behavior.

Reference Intents in the Dialog Flow
Within your dialog flow, your intents can define the actions property, as shown in the
PizzaBot’s intent state. See System.Intent.

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 OrderPizza: "resolvesize"
 CancelPizza: "cancelorder"
 unresolvedIntent: "unresolved"

Chapter 5
Reference Intents in the Dialog Flow

5-16

6
Entities

While intents map words and phrases to a specific action, entities add context to the
intent itself. They help to describe the intent more fully and enable your bot to
complete a user request. The OrderPizza intent, for example, describes a user
request, but only in general terms. To fill in the specifics, this intent is augmented by
the PizzaSize entity, which identifies values like large, medium, and small from the
user input. There are two types of entities, both of which you can declare as variables
in the dialog flow: built-in entities that we provide for you and custom entities, which
you can add on your own.

Built-In Entities
We provide entities that identify objective information from the user input, like time,
date, and addresses.

These built-in entities are divided into two groups: simple entities that extract primitive
values like strings and integers, and complex entities that detect values from the user
input using groups of properties.

6-1

Whenever you define a variable as an entity in your dialog flow, be sure to match the
entity name and letter case exactly. In other words, you’ll get a validation error if you
enter confirm: "YESNO" instead of confirm: “YES_NO”.

Simple Entities

Entity Name Content Identified Examples

NUMBER Matches ordinal and cardinal
numbers

• 1st
• first
• 1
• one

EMAIL An email address—The NLU
system can recognize email
addresses that have
combinations of letters (a-z),
numbers (0–9), underscores
(_) and plus (+) and minus (-)
signs before the at symbol
(@). The address can’t have a
dot (.) immediately after the @
symbol, but the domain name
(which is comprised of letters
and numbers only), must
include the dot.

ragnar.smith@example.com

ADDRESS An address or location-related
entities

200 Oracle Parkway,

Redwood Shores, CA

YES_NO Detects a “yes” or “no”. Yes, Yeah, no

Complex Entities
Unlike simple entities, complex entities extract content using properties, each of which
recognizes a specific value. When you train and test your intents, you can see these
properties in the Tester. The JSON output that’s returned by the NLU Engine shows
these entities along with the value that they’ve identified from the user input.

Chapter 6
Built-In Entities

6-2

When you define a variable in your dialog flow that uses a complex entity, you will
need to include these properties in the value expression. See Accessing Variable
Values with Apache FreeMarker FTL.

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU
Engine
Response

DATE An absolute or
relative date

• November 9,
2016

• Today

• originalStr
ing

• date

{
"date" :
895685400000,
"value" :
895685400000,
"entityName" :
"DATE"
}

TIME A specific time 2:30 pm • hrs

• mins

• secs

• “hourFormat
”:”PM”

{ "hrs":8,
"mins":0,
"secs":0,
"hourFormat":"P
M",
"entityName":"T
IME" }

DURATION The amount of
time between the
two endpoint of a
time interval

• 4 years
• two weeks

• startDate

• endDate
{ "startDate":
1482019200000,
"endDate":
1482623999999,
"entityName":"D
URATION" }

SET Recurring time
periods.

• Every
Tuesday

• Every two
weeks

• minute—The
range is {0–
59}

• hour—The
range is {0–
23}

• dayOfTheMon
th—The
range is {1–
31}

• monthOfTheY
ear—The
range is {1–
12}

• dayOfTheWee
k—{0–6},
with 0 being
Sunday

• year

{
"minute" :
[30],
"hour" :
[19],
"dayOfTheMonth"
 : [15],
"monthOfTheYear
" :
["MARCH"],
"entityName" :
"SET"
}

Chapter 6
Built-In Entities

6-3

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU
Engine
Response

CURRENCY Representations
of money

• $67
• 75 dollars

• amount

• currency

• totalCurren
cy

{ "amount":50,
"currency":"dol
lar",
"total_currency
":"50.0
dollar",
"entityName":"C
URRENCY" }

PHONE
NUMBER

A phone number
—The NLU
Engine
recognizes phone
numbers that
have seven or
more digits (it
can’t recognize
any phone
number with
fewer digits). All
country codes
need to be
prefixed with a
plus sign (+),
except for the
United States of
America (where
the plus sign is
optional). The
various parts of
the phone
number (the area
code, prefix, and
line number), can
be separated by
dots (.), dashes
(-), or spaces. If
there are multiple
phone numbers
entered in the
user input, then
the NLU Engine
can recognize
them when
they’re separated
by commas. It
can’t recognize
different phone
numbers if they’re
separated by
dots, dashes or
spaces.

• (650)-555–
5555

• 1650555555
5

• +61.3.5555.5
555

• phoneNumber

• completeNum
ber

{ "phone_number
":"(650)-555-55
55",
"complete_numbe
r":"(650)-555-5
555",
"entityName":"P
HONE_NUMBER" }

Chapter 6
Built-In Entities

6-4

Entity Name Content
Extracted

Examples Properties
(Referenced in
Value
Expressions)

Example NLU
Engine
Response

URL A URL—This
entity can extract
IPv4 addresses,
Web URLs, deep
links (http://
example.com/
path/page), file
paths, and
mailto URIs. If
the user input
specifies login
credentials, then
it must also
include the
protocol.
Otherwise, the
protocol isn’t
required.

http://
example.com

• protocol

• domain

• fullPath

{"protocol":"ht
tp","domain":"e
xample.com",}

Custom Entities
Because the built-in entities extract generic information, they can be used in a wide
variety of bots. Custom entities, on the other hand, have a narrower application. Like
the FinancialBot’s AccountType entity that enables various banking transactions by
checking the user input for keywords like checking, savings, and credit cards, they’re
tailored to the particular actions that your bot performs.

Custom Entity Types

Entity Type Description

Derived A derived entity is the child of a built-in entity
or another entity that you define. You base this
relationship on prepositional phrases (the “to”
and “from” in utterances like I want to go from
Boston to Dallas or Transfer money from
checking to savings).

Value list An entity based on a list of predetermined
values, like menu items or the FinancialBot’s
checking, credit, and card options that are
output by the System.List component. You
can optimize the entity’s ability to extract user
input by defining synonyms. These can include
abbreviations, slang terms, and common
misspellings. Synonym values are not case-
sensitive: USA and usa, for example, are
considered the same value.

Chapter 6
Custom Entities

6-5

Entity Type Description

Entity list A super set of entities. Using a travel bot as an
example, you could fold the entities that you’ve
already defined that extract values like airport
codes, cities, and airport names into a single
entity called Destination. By doing so, you
would enable your bot to respond to user input
that uses airport codes, airport names, and
cities interchangeably. So when a user enters
“I want to go to from JFK to San Francisco,”
the Destination entity detects the departure
point using the airport code entities and the
destination using the cities entity.

Regular Expression Resolves an entity using a regular expression
(regex). Using regular expressions lets your
bot identify pre-defined patterns in user inputs,
like ticket numbers.

Create Entities
To create an entity:

1. Click Entities () in the side navbar.

2. Click Add Entity and then enter the name.

3. In the Configuration section, choose entity type from the list.

• Value List—Define a set of values for an entity that’s defined by
predetermined terms.

Chapter 6
Custom Entities

6-6

Note:

Adding punctuation or special characters to the same term creates
different values: the entity can't match USA from the user input with
either USA? or USA!, or cafe with café. To match a value regardless
of case or punctuation, create a regular expression entity. You can
define it using syntax like (\w+)

.

Tip:

You don’t need to add your value list entities one at a time. Like
intents, you can define groups of entities in a CSV file first, then
import them. You can create this file from scratch, or reuse the
entities that you’ve exported from another bot.

• Entity List—A super set of entities.

• Derived Entities—A derived entity is the child of another entity (either built-in
or custom) that’s modified by a preposition that you add using the Preceding
Phrase or Following Phrase rules.

Chapter 6
Custom Entities

6-7

Important:

Derived entities can’t be parent entities. And because the NLU
Engine detects derived entities only after it detects all of the other
types of entities, you can’t add derived entities as members of an
entities list. Only custom or the built-in entities can belong to a list.

• Regular Expression—Enter the regular expression (regex) pattern. Unlike the
other entity types, regex-based entities don’t use NLP because the matching is
strictly pattern-based.

Chapter 6
Custom Entities

6-8

For example this expression, (?<=one\s).*(?=\sthree) returns the word that’s
between “one” and “three” in the user input.

4. Next steps:

a. Add the entity to an intent. This informs the bot of the values that it needs to
extract from the user input during the language processing. See Add Entities
to Intents.

b. If needed, add the entity to an Entity List entity or a Derived entity.

c. In the dialog flow, declare a context variable for the entity, one that references
that value that holds the language processing result, nlpresult (for example,
iResult: “nlpresult”). See Dialog Flow Syntax.

d. Reference this context variable in the System.Intent component.

The System.MatchEntity also extracts entity values.

Chapter 6
Custom Entities

6-9

e. After the System.Intent component, which processes the input string, access
the variable values using Apache FreeMarker expressions. For example, you
can use the entityMatches keyword to iterate over entity values ($
{iResult.value.entityMatches[‘name of entity’]}). See Built-In FreeMarker
Array Operations.

Import Value List Entities from a CSV File
Rather than creating your entities one at a time in the Bot Builder, you can create
entire sets of them when you import a CSV file containing the entity definitions. The
CSV file is divided into three columns: entity, value, and synonyms. For example:

entity,value,synonyms
CheeseType,Mozzarella,Mozarela:Mozzarela
CheeseType,Provolone,
CheeseType,Gouda,
CheeseType,Cheddar,
PizzaSize,Large
PizzaSize,Medium
PizzaSize,Small

1. Click Entities () in the side navbar.

2. Click More, choose Import Value list entities, and then select the .csv file from
your local system.

3. Add the entity or entities to an intent (or to an entity list and then to an intent).

Export Value List Entities to a CSV File
You can export your entity definitions in a CSV file for reuse in another bot. To do this:

1. Click Entities () in the side navbar.

2. Click More, choose Export Value list entities and then save the file.

Chapter 6
Custom Entities

6-10

The exported .csv file is named for your bot.

Chapter 6
Custom Entities

6-11

7
The Dialog Flow Definition

The dialog flow definition is the model for the conversation itself, one that lets you
choreograph the interaction between the bot and its users.

Using the Bot Builder, you define the framework of the user-bot exchange in OBotML,
Bots’ own implementation of YAML. This is a simple markup language, one that lets
you describe a dialog both in terms of what your bot says and what it does.

The Dialog Flow Structure
Your OBotML definition is divided into three main parts: context, defaultTransitions,
and states. You define the variables that are available across the session within the
context node. The definition of the flow itself is described in the states section.

The dialog flow is laid out as follows:

main: true
name: "HelloKids"
context:
 variables:
 variable1: "entity1"
 variable2: "error"
...
States
 state1:

7-1

 component: "a custom or built-in component"
 properties:
 property1: "component-specific property value"
 property2: "component-specific property value"
 transitions:
 actions:
 action1: "value1"
 action2: "value2"
 state2:
 component: "a custom or built-in component"
 properties:
 property1: "component-specific property value"
 property2: "component-specific property value"
 transitions:
 actions:
 action1: "value1"
 action2: "value2"
...

Context

The variables that you define within the context node can be primitive types like int,
string, boolean, double, or float. They can also describe error handling, or, as in the
following snippet from the PizzaBot dialog flow definition, they name entities like
PizzaSize and PizzaCrust. Along with built-in entities and the custom entities, you can
also declare a variable for the nlpresult entity, which holds the intent that's resolved
from the user input. These variables are scoped to the entire flow. How Do I Write
Dialog Flows in OBotML? tells you how to assemble the different parts of the dialog
flow. You can also scope user variable values to enable your bot to recognize the user
and persist user preferences after the first conversation. See User-Scoped Variables.

metadata:
platformVersion: "1.1"
main: true
name: "PizzaBot"
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"

States

You define each bit of dialog and its related operations as a sequence of transitory
states, which manage the logic within the dialog flow. To cue the action, each state
node within your OBotML definition names a component along with component–
specific properties and transitions that trigger the next state. The PizzaBot includes a
sequence of state nodes that verify a customer’s age. These states include
components that take the user-supplied integer value, check it, and then output a text
string as appropriate. To start off the process, the askage state’s component requests
the user input then moves on to the checkAge state, whose AgeChecker component
validates the user input. Here, the dialog is at a juncture: its transitions key defines
the block or allow states. If the allow state is triggered, then the user can continue on.
The subsequent state definitions will track the user input to preserve the user’s context
until she completes her order. If the user input causes the AgeChecker component to
trigger the block action, however, then conversation ends for the under-age user
because the dialog transitions to the underage state.

Chapter 7
The Dialog Flow Structure

7-2

metadata:
platformVersion: "1.1"
main: true
name: "PizzaBot"
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 cheese: "CheeseType"
 iResult: "nlpresult"
...

 askage:
 component: "System.Output"
 properties:
 text: "How old are you?"
 transitions: {}
 checkage:
 component: "AgeChecker"
 properties:
 minAge: 18
 transitions:
 actions:
 allow: "crust"
 block: "underage"
 crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your Pizza?"
 variable: "crust"
 transitions: {}
...
 underage:
 component: "System.Output"
 properties:
 text: "You are too young to order a pizza"
 transitions:
 return: "underage"

How Do I Write Dialog Flows in OBotML?
OBotML uses a simple syntax for setting variables and defining states. Because it’s a
variant of YAML, keep the YAML spacing conventions in mind when you define the
dialog flow. You don’t need to start from scratch. Instead, you can use the Echo bot’s
dialog flow definition as a basic template.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-3

Along with the metadata definition at the top of the dialog, the Echo bot already has
the context and states nodes, so you can just delete the existing boilerplate and add
your own content. To help you build state definitions that are syntactically sound, use
the component templates in the Add Components menu. See Dialog Flow Syntax for
tips on setting variables and defining states.

Important:

Click Validate and check the logger widow () as you write your dialog
flow.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-4

Dialog Flow Syntax

How Do I? Use this Example OBotML Markup

Set variables that
persist the context
across the entire
dialog flow?

Within the context
node, use the following
syntax:
variablename:
"variableType"

main: true
name: "FinancialBotMainFlow"
context:
 variables:
 accountType: "AccountType"
 txnType: "TransactionType"
 txnSelector: "TransactionSelector"
 toAccount: "ToAccount"
 spendingCategory:
"TrackSpendingCategory"
 paymentAmount: "string"

You can define variables as entities (like
AccountType and ToAccount and as primitives
(paymentAmount: “string”).

Define an error
handler for your bot?

Define the
defaultTransitions
node.

context:
 variables:
 iresult: "nlpresult"
defaultTransitions:
 next: "ImplicitTransitionDetected"
 error: "MyErrorState"
 actions:
 unexpectedAction:
"HandleUnexpectedAction"

See Conifguring the Dialog Flow for
Unexpected Actions.

Define a variable
that holds the value
for the resolved
intent?

Within the context
node, define a variable
that names the
nlpresult entity. As its
name implies ("nlp"
stands for Natural
Language Processing),
this entity extracts the
intent resolved by the
Intent Engine. Nearly all
of the reference bots
declare nlpresult
variables.

main: true
name: "FinancialBotMainFlow"
context:
 variables:
 iResult: "nlpresult"

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-5

How Do I? Use this Example OBotML Markup

Control the dialog
flow based on the
user input?

Typically (though not
always), you’d define an
nlpresult variable
property for the
System.Intent
component that returns
the result from the Intent
Engine. See
System.Intent.

In the following snippet from the FinancialBot
dialog flow, the System.Intent component
instructs the Dialog Engine to proceed based
on the value returned by its nlpresult variable
(iResult). As described in The Dialog Flow
Structure, you can declare an nlpresult
variable in the flow’s context node to hold the
resolved intent (iResult:”nlpresult”). The
potential outcome, defined by the states
named in the actions node, is also predicated
on the second property defined for this
component, confidenceThreshold. You can
set this optional property against the
probabilistic score given by the Intent Engine.
This definition for the System.Intent
component tells the Dialog Engine to move on
to the next state that matches a resolved intent
whose accuracy rate at parsing user data is at
least 40% or higher (confidenceThreshold:
0.4). See The confidenceThreshold Property.

intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 Balances: "startBalances"
 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending:
"startTrackSpending"

Equip my bot to
handle unresolved
intents?

Define a state for the
System.Intent’s
unresolvedIntent
action.
unresolvedIntent is an
intent that we provide for
you to track the
messages that couldn’t
be resolved within the
minimum confidence
threshold. See Running
Failure Reports to find
out how to filter a quality
report using this intent.

unresolvedIntent: "unresolved"
...
 unresolved:
 component: "System.Output"
 properties:
 text: "Sorry I don't understand
that question!"
 transitions:
 return: "unresolved"

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-6

How Do I? Use this Example OBotML Markup

Enable components
to access variable
values?

Use the .value property
in your expressions ($
{crust.value}). To
substitute a default
value, use $
{variable.value!
\"default value\"} .
For example, thick is
the default value in $
{crust.value!\"thick
\"}.

context:
 variables:
 size: "PizzaSize"
 confirm: "YES_NO"
 ...
 confirmState:
 component: "System.List"
 properties:
 options: "Yes,No"
 prompt: "You ordered a $
{size.value} pizza. Is this correct?"
 variable: "confirm"
...

Use the Apache FreeMarker default operator
(${variable.value!\"default value\"}) if
it’s likely that a null value will be returned for a
variable. You can use this operator wherever
you define variable replacement in your flow,
like the value definitions for variables used by
system and custom components, or the
variables that name states in a transitions
definition. See Defining Value Expressions for
the System.Output Component.

Save user values for
return visits?

Within a state definition,
add a variable definition
with a user. prefix. See
Defining User-Scoped
Variables.

 checklastorder:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastpizza"

To find out more about user variables, see the
dialog flow for the PizzaBotWithMemory
reference bot.

Slot values? Use the
System.SetVariable ,
System.List , and
System.Text
components. When the
System.SetVariable
component can’t access
a value, use
components
System.List and
System.Text to prompt
user input. See
System.SetVariable.

 askBalancesAccountType:
 component: "System.List"
 properties:
 prompt: "For which account do you
want your balance?"
 options: "${ACCOUNT_TYPES.value}"
 variable: "accountType"
 nlpResultVariable: "iResult"
 transitions: {}

Exit a dialog flow
and end the user
session.

Use a return transition.
 printBalance:
 component: "BalanceRetrieval"
 properties:
 accountType: "${accountType.value}"
 transitions:
 return: "printBalance"

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-7

Flow Navigation
You can set the Dialog Engine on a specific path within the dialog flow by setting the
transitions property for a state. Transitions describe how the dialog forks when variable
values are either set or not set. They allow you to plot the typical route through the
conversation (the “happy” flow) and set alternate routes that accommodate missing
values or unpredictable user behavior.

The transition definition depends on your flow sequence and on the component.

To do this... ...Use this transition

Set a default sequence in the dialog flow. To enable the Dialog Engine to move to the
next state in the dialog, use an empty
transition (transitions: {}) or omit a
transitions definition altogether.

Specify the next state to be executed. Setting a next transition (next: “statename”),
tells the Dialog Engine to jump to the state
named by the next key.

Terminate the conversation. Defining a return transition terminates the
user session at the state defined for the
return key:

done:
 component: "System.Output"
 properties:
 text: "Your ${size.value} $
{type.value} Pizza is on its way."
 transitions:
 return: "done"

Trigger conditional actions. Define the actions keys to trigger the
navigation to a specific state or an action
belonging to a custom component that’s
executed by a backend service. If you don’t
define any action keys, then the Dialog Engine
relies on the default transition or a next
transition (if one exists). See Transitions to
find out about the specific actions that you can
define for the user interface components.

Handle component errors. Set an error transition in case an error occurs
when the component executes. The Dialog
Engine will jump to the state that you define for
the error key. If you don’t set an error
transition, then the bot outputs the Oops! I’m
encountering a spot of trouble message and
terminates the session.

Conifguring the Dialog Flow for Unexpected Actions
When designing your dialog flow, you typically start modeling the “happy” flow, the
path that the user is most likely to follow.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-8

Scenario Solution

Instead of tapping buttons, the user responds
inappropriately in this situation by entering
text.

To enable your bot to handle this gracefully,
route to a state where the System.Intent
component can resolve the text input, like
textReceived: Intent in the following snippet
from the CrcPizzaBot:

ShowMenu:
 component: System.CommonResponse
 properties:
 metadata: ...
 processUserMessage: true
 transitions:
 actions:
 pizza: OrderPizza
 pasta: OrderPasta
 textReceived: Intent

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-9

Scenario Solution

Users scroll back up to an earlier message
and tap its options, even though they’re
expected to tap the buttons in the current
response.

Adding an unexpectedAction transition to all
of the states that process a user message
handles situations where a user taps the
button belonging to an older message,
because this action tells the Dialog Engine to
transition to a single state that handles all of
the unexpected actions, such as the
HandleUnexpectedAction state in the OBotML
snippet above. You can use different
approaches to create this state:
• You can use the System.Output or

System.CommonResponse component that
outputs a message like “Sorry, this option
is no longer available” along with a
return: “done” transition to invalidate
the session so that the user can start
over. For example:

ActionNoLongerAvailable:
 component: "System.Output"
 properties:
 text: "Sorry, this action is
no longer available"
 transitions:
 return: "done"

• Using a System.Switch component, you
can enable your bot to honor some of the
request actions by transitioning to another
state.

Note:

Depending on
the factors
involved in
honoring the
request, you may
need to create a
custom
component to
implement the
routing.

Accessing Variable Values with Apache FreeMarker FTL
You can use Apache FreeMarker Template Language (FTL) to access variable values.
The basic syntax for these value expressions is ${...}. You can incorporate FTL into
the property definitions for various components, such as System.SetVariable and
System.Output .

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-10

HTTPS://FREEMARKER.APACHE.ORG/

Note:

As illustrated by the text and rendered metadata properties of the
System.CommonResponse, you can also define the expressions using the if
directive (<#if>...</#if>).

To do this... ...Do this

Read values from context variables. Add the value property using dot notation:

${variablename.value}

For example:

${MyEmail.value}

Read values from context variables defined by
complex entities.

Use dot notation to add an additional property:

${variablename.value.property}

For example:

${MyMoney.value.totalCurrency}

If you use an expression like ${MyMoney} in a
System.Output component, you will see all the
properties of the referenced currency JSON
object.

Create a comma-delimited list of entity values
that display as buttons that are specified by
the options property.

Use this syntax:

${variablename.type.enumValues}

For example, for a list value entity like
AccountType (whose savings, checking, and
credit card values are constant and predefined
for the user), you’d store these values in the
accountType variable using $
{accountType.type.enumValues}:

 accounts:
 component: "System.List"
 properties:
 options: "$
{accountType.type.enumValues}"
 prompt: "Which account?"
 variable: "accountType"
 transitions: {}

When the user taps one the buttons, the bot
stores the corresponding value in the
accountType variable.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-11

To do this... ...Do this

Use built-ins for strings, arrays (sequences),
numbers, and dates. See Apache FreeMarker
Reference.

Follow the value property with a question
mark (?) and the operation name:

${variable.value?ftl_function}

• string operations:

toLowercase:
 component: "System.SetVariable"
 properties:
 variable: "userstring"
 value: "${userstring.value?
lower_case}"
 transitions: {}

• array operations:

setArrayCount:
 component: "System.SetVariable"
 properties:
 variable: "count"
 value: "${person.value?size?
number}"

• number operations:

${negativeValue.value?round}

• time and date operations:

printDateFound:
 component: "System.Output"
 properties:
 text: "Date found is: $
{theDate.value.date?long?
number_to_date?string.short}"

Concatenate FTL expressions. String the operations together using a question
mark (?):

${variable.value?ftl_function1?
ftl_function2}

User-Scoped Variables
When the conversation ends, the variable values that were set from the user input are
destroyed. With these values gone, your bot users must resort to retracing their steps
every time they return to your bot. You can spare your users this effort by defining
user-scope variables in the dialog flow. Your bot can use these variables, which store
the user input from previous sessions, to quickly step users through the conversation.

Unlike the session-wide variables that you declare in the context node at the start of
the flow, you do not need to declare user-scoped. Any reference to a variable name
that is prefixed with user. is treated as a user-scoped variable. As shown in the
following dialog flow excerpt from the PizzaBotWithMemory dialog flow, these
variables are identified by the user. prefix (such as user.lastsize in the checklastorder
state). The user. variable persists the user ID. That ID is channel-specific, so while you
can return to a conversation, or skip through an order using your prior entries on bots
that run on the same channel, you can’t do this across different channels like
Facebook Messenger and Amazon Alexa.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-12

https://freemarker.apache.org/docs/ref_builtins.html

metadata:
 platformVersion: "1.0"
main: true
name: "PizzaBot"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 sameAsLast: "YesNo"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 OrderPizza: "checklastorder"
 CancelPizza: "cancelorder"
 unresolvedIntent: "unresolved"
 checklastorder:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastsize"
 transitions:
 actions:
 exists: "lastorderprompt"
 notexists: "resolvesize"
 lastorderprompt:
 component: "System.List"
 properties:
 options: "Yes,No"
 prompt: "Same pizza as last time?"
 variable: "sameAsLast"
 transitions: {}
 rememberchoice:
 component: "System.ConditionEquals"
 properties:
 variable: "sameAsLast"
 value: "No"
 transitions:
 actions:
 equal: "resolvesize"
 notequal: "load"
...

 load:
 component: "System.CopyVariables"
 properties:
 from: "user.lastsize,user.lasttype,user.lastcrust"
 to: "size,type,crust"
 transitions: {}

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-13

Defining User-Scoped Variables
As with other variable definitions in your flow, you enable the components to access
the value through value expressions like “${user.age.value}”. Using these expressions
with the following built-in components, can among other things, set a value to the
stored user value. See Built-In Components: Properties, Transitions, and Usage.

Component Uses

System.SetVariable Sets the stored user value.

System.ResetVariables Resets a stored user value.

System.CopyVariables Copies in the stored user value.

System.Output Outputs the stored user value as text.

System.ConditionExists Checks if the user-scoped variable is already
in context.

System.ConditionEquals Checks for the user-scoped variable.

System.Switch Uses the stored value to switch from one state
to another.

Getting the User Context
The profile property enables your bot to recognize a user’s name, local, and local
time. For example:

 Greeting:
 component: System.Output
 transitions:
 next: Intent
 properties:
 text: "Hello ${profile.firstName}, how can I help you today?"

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-14

Use these pre-defined variables to output context-specific for the bot user.

To do this... Do this

Get the first name of the bot user. ${profile.firstName}

Get the last name of the bot user. ${profile.lastName}

Get the bot user’s locale. ${profile.locale}

Get the user’s time zone (offset in seconds). ${profile.timezoneOffset}

Test the Dialog Flow
Once you have a valid dialog flow, you can test your bot as a whole. Be sure to
validate the syntax before you test the bot.

To test the dialog flow:

1. Click Test ().

2. Click Bot.

3. Enter an utterance and then click Send. Click to test an attachment response
rendered by the System. CommonResponse component.

Chapter 7
How Do I Write Dialog Flows in OBotML?

7-15

8
Localization

Even though NLP support is in English, you can still add multi-language support for
your bot. Using resource bundles and autotranslation services, your bot can
automatically translate the users messages that it receives and its own prompts and
replies to and from English.

Resource Bundles
Resource bundles allow you to localize your bot based on the language set for
messaging channel currently in use. They not only allow your bot to output messages
in the user’s language, but in the user’s dialect as well. When you don’t want to rely on
the text provided by the translation service, and instead want to control the wording for
your bot’s responses in one or several languages, you can opt for resource bundles.

Create Resource Bundle
You define a single bundle for each bot that’s made up of various keys that identify the
output text that needs to be translated.

To create a resource bundle:

1. Click Resource Bundle in the left navbar ().

2. Click Add Bundle.

3. Enter the key and the and its text . For example, to localize the user prompt, How
old are you?, you’d enter HowOld in the Key field and then How old are you? in
the Text field .

8-1

4. Click Create Entry.

5. By default, the language for your first key is English. To add a foreign language
version of the string, click. Add Language.

6. Complete the Create Entry dialog:

• Language—Add an IETF BCP 47 language tag like fr for French, de for
German, or en-US for U.S. English.

• Text—The output string. For example, for a French translation (fr) of the
HowOld key, you’d add a string like quel âge avez-vous ?

Chapter 8
Resource Bundles

8-2

Note:

If the bot can’t match the language set for the browser with a
language tag defined in the bundle, it defaults to a less-specific tag
(if one is available). For example, it uses fr (a subtag) if the bundle
has no entry for fr-CA. If none of the entries match the browser’s
language, the bot uses the default entry, English. For more
information on this fallback to the most generic entry, see Resource
Bundle Entry Resolution

•

7. If you want to translate other strings, click Add Key to create another entry in the
resource bundle.

8. Reference the resource bundle in the in the dialog flow.

Tip:

You can define the entity prompts as a resource bundle. See Create
Entities.

Reference Resource Bundles in the Dialog Flow
To set the output for a built-in component, you need to add a resource bundle context
variable and then reference both it and the message key. In the following OBotML
snippet for a pizza bot, the resource bundle is declared as the variable, rb, in the

Chapter 8
Resource Bundles

8-3

context section. Further down, value expressions define the text property for the
System.Output components reference the rb variable and the keys, WhatType and
OnTheWay. The first outputs a simple string and the other uses dynamic values.

context:
 variables:
 rb: "resourcebundle"
...

pizzaType:
 component: "System.Output"
 properties:
 text: "${rb('WhatType'}" # rb refers to the variable, WhatType is the key to the
message in the resource bundle.
 transitions: {}
...

done:
 component: "System.Output"
 properties:
 text: "${rb('OnTheWay',size.value,type.value)}" # size.value and type.value are
the arguments for the 'OnTheWay' message code.
 transitions:
 return: "done"

For simple messages, you can also reference resource bundles using dot notation ($
{rb.WhatType}).

Tip:

To test your resource bundles using the Tester, set your browser to another
language.

Enabling Complete Translation When Using Resource Bundles

If you’re returning the user’s language from the browser, then simply setting the
resource bundle variable and then referencing both it and the message key in an
output component is all you need to do. Keep in mind that using this approach requires
users to first enter something in English (like “Hello, Pizzabot!”). To start the session in
the user’s language, you need to enable the translation service for the bot and
configure the dialog flow accordingly. The following snippet shows this hybrid
approach, which enables your bot to detect the user’s language. After the input is
translated and the intent is resolved to English, the resource bundles handle the rest.
In the following snippet, the rb context variable is set, but in this PizzaBot, it’s
accompanied by another variable called translated. Because both the
System.DetectLanguage and System.TranslateInput components are positioned before
the System.Intent component, they enable the initial user input to be translated into
English before it can be used by the System.Intent component and resolved to one of
the intents.

metadata:
 platformVersion: "1.0"
main: true
name: "PizzaBot"
parameters:
 age: 18
context:

Chapter 8
Resource Bundles

8-4

 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 rb: "resourcebundle"
 translated: "string" # holds the user's text that's translated into English.
states:
 # add DetectLanguage and TranslateInput components
 detect:
 component: "System.DetectLanguage"
 properties: {}
 transitions: {}

 # translate the user text and store it in the translated variable
 translate:
 component: "System.TranslateInput"
 properties:
 variable: "translated"
 transitions: {}

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "translated" # this variable now would holds the translated
text
 confidenceThreshold: 0.4
 transitions:
 actions:
 OrderPizza: "resolvesize"
 CancelPizza: "cancelorder"
 unresolvedIntent: "unresolved"
 ...

Resource Bundle Entry Resolution
To find out the users language, you can add a ${profile.locale} to the dialog flow
definition. Bots will look up the right message based on the user’s locale. For example,
if the ${profile.locale} returns en-AU-sydney as the value for the languageTag variable
that’s set in the context section, Bots returns the bundle entry by first searching for an
exact match. If it can’t return a match, it broadens its search. In this case, Bots does
the following to localize the output as Australian English:

1. Searches the bundle using a language-country-variant criteria. In this case, it
searches for en-AU-sydney.

2. If it can’t find that, it searches the bundle by language and country (en-AU).

3. Failing that, it broadens its search for language (en).

4. If it can’t locate any entries, then it returns the default language, which is English
(en).

Autotranslation
Autotranslation uses services like Microsoft Translator and the Google Translation API
to enable the built-in components like System.Text and System.Output to output their
prompts in the user’s language.

Chapter 8
Autotranslation

8-5

When a user enters a non-English request or response, the translation service allows
the bot to convert this input to English. Once it’s translated, the NLP engine can
resolve it to an intent and match the entities. Using both a translation service and an
OBotML definition that includes the System.DetectLanguage and
System.TranslateInput components, you can enable your bot to automatically detect
the user’s language and translate your bot’s messages.

Enable Autotranslation
To enable your bot to use autotranslate:

1. First, configure a translation service for your instance of Intelligent Bots. To do
this, enter the URL and Authorization token for the Microsoft Translator service or
the Google Translation API in the Translation Services dialog.

Refer to the documentation for Microsoft Translator and Google Translation API to
find out how to get the URL and access token.

You can open this dialog from the menu on the landing page or from the Settings
page.

2. Next, click Settings in the left navbar and then choose a translation service for
your bot.

Chapter 8
Autotranslation

8-6

3. Finally, configure the dialog flow:

a. Add autoTranslate: "boolean" to the context node. This variable is common to
all bots (or at least the ones that use translation services). As such, you can’t
change its name or define it as string, another type of primitive, or an entity.
You can override the autotranslated output generated for the System.Output,
System.Text, and System.List components when you set their translate
property to false.

Note:

Do not set the autoTranslate variable to true if you’re translating text
using a resource bundle.

b. Generally, you’d first add a state with a System.Intent component at the
beginning of the states node. But since the NLP engine can only recognize
English, you need to begin the states node with a set of language-specific
components and variables to translate the user input so that it can be resolved
by System.Intent component. The first of these states uses the
System.SetVariable component. As shown in the following snippet, its variable
property is defined by the autoTranslate context variable. To enable
translation, it’s set to true.

 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value: true
 transitions: {}

c. Next, add the System.DetectLanguage component:

 detect:
 component: "System.DetectLanguage"
 properties: {}
 transitions: {}

d. Add the System.TranslateInput component:

 translate:
 component: "System.TranslateInput"
 properties:

Chapter 8
Autotranslation

8-7

 variable: "translated"
 transitions: {}

e. Finally, add the System.Intent component. Set sourceVariable to hold the
translated input.

 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "translated" # this variable holds the English
translation of the user input.
 confidenceThreshold: 0.4

Important:

While the Add Components menu adds template state nodes for
these translation components, it doesn’t insert the autoTranslate:
“boolean” variable into the context node. You’ll need to add it
yourself.

The following segment shows the PizzaBot equipped for autotranslation. Note that
along with the autoTranslate variable, this definition also includes a variable that
stores the translated output called translated (translated: “string”) in the context
node. The variable property for the System.TranslateInput component names this
component, as does the sourceVariable property for the System.Intent component.
For example, the System.TranslateInput component would store its English
translation (“I want pizza”) in this variable when a user enters “je voudrais
commander une pizza.” Because sourceVariable names translated, it holds “I
want pizza,” which the System.Intent component can resolve to one of the intents.

metadata:
 platformVersion: "1.0"
main: true
name: "AutoTranslatePizzaBot"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"
 autoTranslate: "boolean"
 translated: "string"
states:
 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value: true
 transitions: {}
 detect:
 component: "System.DetectLanguage"
 properties: {}
 transitions: {}
 translate:
 component: "System.TranslateInput"
 properties:

Chapter 8
Autotranslation

8-8

 variable: "translated"
 transitions: {}
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "translated"
 confidenceThreshold: 0.4

Chapter 8
Autotranslation

8-9

9
Components

Components give your bot the functionality that lets it interact with users and carry out
their requests.

Each state within your flow calls a component to perform actions that can range from
basic interactions like taking user input and outputting response text to some service-
specific action like fulfilling an order or booking a flight. We provide a set of built-in
components that support basic actions like setting variables, allowing OAuth, and
enabling user input. If your bot calls for a specific action that’s outside of these
functions, you’ll need to use a custom component. These components let your bot call
REST APIs that implement business logic and channel-specific rendering.

The Custom Component Service
Configuring a custom component service makes custom components available to your
bot’s dialog flow.

A custom component service defines name of the custom component service
implementation that provides the bot with its custom components. This configuration
also includes that URL that invokes this service and the basic authentication settings
that allow the bot to access the service itself. Each bot can have one or more of these
custom component services configured for it. By configuring a custom component
service, you allow Bots to query the service for its metadata and display this
information in the custom components registry.

Note:

Every custom component that you’ve declared in your OBotML definition
needs a corresponding custom component service configuration. In other
words, your bot can’t work without this configuration, which allows Bots to
call the custom code service implementation that defines the components.

Refer to the components page () when you define the dialog to ensure
the component names and properties are correct.

9-1

Create a Service
The Custom Component Service authenticates the bot with the service using basic
auth. You can implement this on your authentication mechanism, or if you use the
node.js SDK, your bot can authenticate through a mobile backend. To create this
service:

1. In the left navbar, click Components ().

2. Click Add Service to open the Create Service dialog.

3. Add the name for the custom component service and an optional description.

4. Choose an authentication option:

• Mobile Cloud—For authentication handled by a backend in OMCe.
This is the default setting. If your service is handled by a backend, then you
need to reference the Settings page for the backend that hosts the API that
implements the Custom Component Service. Backend Authentication and
Connection Info in Developing Applications with Oracle Mobile Cloud
Enterprise Describes this page.

Chapter 9
Create a Service

9-2

Option Description

Backend ID The unique identifier assigned to a mobile
backend. This ID is passed in the REST
header of every call made from the bot.

MetadataURL The URL that points to the endpoint of the
components service. This URL points to
the root, which means it should always be
appended with /components.

Use Anonymous Access Select this option if the component service
allows anonymous login. If you choose
this option, enter the Anonymous Key, a
unique string that allows your app to
access anonymous APIs without sending
an encoded username and password
combination. The Anonymous Access Key
is passed to instead.
Tip: Click Show to reveal the Anonymous
Key in the Settings page.

If the component service requires a login
(meaning no anonymous access), enter
the username and password.

• Other—For non-backend authentication. For this option, define the following
options:

Option Description

Metadata URL The URL that points to the endpoint of the
components service. This URL points to
the root, which means it should always be
appended with /components.

Username The username for the service.

Password The service’s password.

5. If the service requires specific parameters, click Add HTTP Header and then
define the key-value pairs for the headers.

6. Click Create.

The Components page is populated with the component name and properties,
which you can then reference in the dialog flow definition. Remember: unlike the
built-in components, custom components do not begin with System. For example:

 checkage:
 component: "AgeChecker"
 properties:
 minAge: 18
 transitions:
 actions:
 allow: "crust"
 block: "underage"

How Do Custom Components Work?
Your bot uses custom components when it needs to return data, execute some kind of
business logic, or render channel-specific UI components like the carousel in
Facebook Messenger.

Chapter 9
How Do Custom Components Work?

9-3

Like the built-in components, the custom components are re-usable units of work that
you define within each state node of your dialog flow. But unlike the built-in
components, custom components perform actions that are specific to your bot. They
execute functions that the system components can’t. While the FinancialBot uses
system components for generic tasks like setting variables and outputting text, it uses
custom components for the operations that are unique to banking transactions, such
as returning account balances (BalanceRetrieval in the following state node,
printBalance).

printBalance:
 component: "BalanceRetrieval"
 properties:
 accountType: "${accountType.value}"
 transitions:
 return: "printBalance"

Custom components don’t reside within Bots. Their functionality is provided through
backend services that are accessed through calls made to, and returned from, a REST
service called the Component Service. As the Dialog Engine enters a state in the
dialog flow, it assesses the component. When it encounters one of the built-in
components (noted by System.), it executes one of the generic tasks described in Built-
In Components: Properties, Transitions, and Usage. When the Dialog Engine
discovers a custom component, however, it calls the Component Service, which hosts
one or more custom components.

The Component Service is like a shim. It first finds and then invokes the custom
component on behalf of the Dialog Engine. When a custom component is invoked, it
can pass input parameters to a backend service and return the result. The Dialog
Engine then resumes, moving on to the next sate in the dialog flow (or to the state
dictated by the action described in the returned JSON payload).

The Component Service assists the bot through two methods: GET and POST. The
GET method returns the metadata for all of the components hosted by the Component
Service. This is a design time call, one that returns the names of the components
along with their properties and actions that you include in your dialog flow definition. At
runtime, the POST method invokes the component named in the state definition.

The JSON payload of the call made by the Dialog Engine includes input parameters,
variable values, user-level context, and the user’s message text. When the component
gets this input from the Component Service, it mutates the variable values, and then
returns the call. The Dialog Engine parses the returned payload and proceeds.

The Component Service
The Component Service doesn’t reside within Bots, but is instead hosted in a separate
Node container. Because the Component Service is a REST service, you can
implement using any language.

As pictured here, the Node container can be part of OMCE, but it can be part of any
other REST infrastructure. If you opt for OMCE as the container for your custom
components, you can integrate them with remote services using various connectors.
Because they are implemented as custom code APIs, they can access the OMCE
platform APIs (such as the Analytics API) through the OMCE SDK. There’s another
advantage to implementing the Component Service in OMCE: you can get it up and
running with minimal coding using the Bots SDK because it provides you with a starter
application that gives you everything you need. To find out about the artifacts included
in the SDK, see How Do I Implement the Component Service in OMCe?.

Chapter 9
How Do Custom Components Work?

9-4

Note:

You can still integrate them with remote services if you use another Node
container, but keep in mind that direct REST calls can give rise to additional
concerns and tasks. With no backend to manage the connection, for
example, you’ll need to update the code whenever the connection changes.

The Shell
The Shell routes the GET and POST requests. It produces a list of components in
response to the GET call made by Bots when you register a Component Service. The
Shell also invokes the component using the component name that’s appended to the
POST call (POST uri/components/{ComponentName}). To respond to these requests, the
Shell component references a file in the Registry component that maps the component
names to their corresponding JavaScript implementation files.

The Registry
The Registry component maps each component to its implementation.

Within the Registry.js file, a JSON object definition surfaces the components to the
Shell. Each component is described by a name-value pair in which the name is the
name of the component (like ‘Balance Retrieval’ in the following import statement)
and the value is a return function with a reference to the JavaScript module location
relative to the Registry.js file (./). In this snippet, the three components,
BalanceRetrieval, TrackSpending, and Payments are custom components, each of
which map to a separate JavaScript module. The require function includes these
separate modules in the Registry.js file.

'use strict';

module.exports = {

'BalanceRetrieval':

Chapter 9
How Do Custom Components Work?

9-5

require('./banking/balance_retrieval'),

'TrackSpending':
 require('./banking/track_spending'),

'Payments':
require('./banking/payments')}

Tip:

Declare strict mode (‘use strict’) at the beginning of the Registry.js file to
safeguard against the inadvertent creation of global variables from erroneous
user input. The strict mode improves error checking by throwing exceptions
for errors that would otherwise occur silently, like values set on a read-only
property.

Because the Shell.js component assumes that it shares the same file location as the
Registry.js , the Shell.js file uses the following import statement:

var registry = require('./registry');

Remember that you don’t need to edit the Shell.js file. You just need to make sure
that it’s in the same directory with the Registry.js module (and if you’re using , the
SDK.js module as well).

Component Modules
Each component is written as JavaScript module. If you’re writing one of these
modules, then you need to include two functions that mirror the GET and POST calls
in the Component Service REST contract: metadata and invoke. You also need to
conclude the module with the callback function,done.

The metadata function provides the component descriptions that you use when you
define your dialog flow. It includes a name (which must be unique), and the names and
types of the input parameters that it expects. It also includes the actions supported by
the component. For example:

metadata: () => ({
 "name": "helloWorld",
 "properties": {
 "properties": {
 "name": {
 "type": "string",
 "required": false"
 }
 },
 "supportedActions": ["nameFound", "nameNotFound"]
 }),

The invoke function executes the REST call. It includes two arguments: conversation,
which is a reference to the SDK and done, a callback invoked by the component when
it has finished processing. The done function tells the Shell to create the component’s
response payload and send it back to the bot.

Chapter 9
How Do Custom Components Work?

9-6

Important:

Always include the done() callback at the end of each component. The
component can’t send its response without it and as a result, the bot will time
out.

module.exports = {
 metadata: () => (
 {
 "name": "BalanceRetrieval", },
 "properties": {
 "accountType": { "type": "string", "required": true }
 },
 "supportedActions": []
 }
 },
...

invoke: (conversation, done) => {
 var accountType = conversation.properties().accountType;
...

 var accounts = AccountService.account(accountType);

...
 done();

 }
};

Along with the component name and properties that get returned during design time by
the invoke function, this code sample shows how the invoke function uses one of the
SDK’s helper methods (conversation.properties) to retrieve the value of the
accountType from the payload of the POST request. With the value retrieved, the
custom code can use it to call connectors or other APIs running in OMCe.

Note:

The invoke function enables access to the OMCE platform APIs using the
conversation.OracleMobile object. To find out how to instrument the custom
component code to call the Analytics API
(conversation.oracleMobile.analytics.postEvent), see Setting up the
PizzaBot Custom Component.

The SDK
If you implement the Component Service with OMCe, you can also leverage the SDK,
whose helper methods enable the components to access the context of a bot’s request
messages, which can be comprised of elements that describe the variable values, the
language processing results, the extracted entities, and any input parameters that
have been defined for the component. The SDK also enables the components to
return a response to the bot.

Chapter 9
How Do Custom Components Work?

9-7

The Shell passes the SDK to the custom components with each call to the invoke
function. To access the SDK’s methods, the invoke function uses an argument called
conversation, which is automatically passed with each request along with the essential
done () callback that signals the Shell when the component has completed its work.

invoke: (conversation, done) => {

 var listdata =
 "item1, item2, item3";

 conversation.variable("listDataVar", listdata);
 conversation.transition();
 conversation.keepturn(true);

 done();

The Message Model
The Message Model is a utility class that creates and validates the message structure.
An instance of this class is instantiated with the payload that represents the message
so that the message can be parsed and validated.

Note:

Version 1.1 of the Bots SDK lets you leverage the Conversation Message
Model (the CMM), a framework that defines various platform-agnostic
templates for the messages sent between the bot and its users. Not only
does the CMM allow your bot to output messages as loops of cards that
have actions configured for both the images and buttons that display within
each of them, it also gives your bot other capabilities as well, such displaying
context- specific messages and allowing users to share locations or upload
audio, video, file, or image attachments. The Bots SDK documentation
describes how you integrate the CMM into the code for your custom
components, the methods for different types of message formats, and how
you can upgrade your custom component service to use the CMM.

How Do I Implement the Component Service in OMCe?
While you can use the Shell and Registry components in any REST framework that
produces a JSON object from the incoming request, you can only use the SDK’s
helper methods if you implement the Component Service in OMCe. To use the SDK
and get ready-made versions of the Shell and Registry, you need the Bots SDK.

Accessing the Bots SDK

You can get the Bots SDK (omce-bots-sdk-<version_number>.zip) from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page. You can also
access this page by clicking Downloads in the left navbar.

After you unzip the file, open the api_implementation folder. It contains the following
artifacts that you modify to build your service. It includes JavaScript files for the Shell,
Registry and the SDK (shell.js, registry.js, and sdk.js). It also includes the
following:

Chapter 9
How Do Custom Components Work?

9-8

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

• mcebots.js—Contains the generic component logic. You copy and paste this into
your own component service.

• package.json—Contains the node.js module dependencies required for the
project’s package.json file.

• mcsbots.raml—A template for creating the OMCe custom API.

Creating the Component Service in OMCe

You can find out more in Custom APIs in Developing Applications with Oracle Mobile
Cloud Enterprise, but the process in terms of the custom components is as follows:

1. Define the GET and POST endpoints—You can define these endpoints on your
own, or use the starter RAML template (mcebots.raml).

a. In OMCe, click New API.

b. Enter the API name, a description, and a short description.

c. Drag mcebots.raml into the dialog and then click Create.

2. If you want to enable anonymous access, click Security in the left navbar and
then switch off Login Required.

3. Click Save.

4. Download the JavaScript scaffold:

a. Click Implementation in the left navabr.

b. Choose Download JavaScript Scaffold.

c. Unzip the scaffold file. This file contains the following:

• The component service file—This file, which is named after your API,
contains the REST endpoints defined for OMCe custom code APIs.

• package.json—The project configuration file. It includes a list of module
dependencies.

5. Implement the Custom Component:

a. Within the scaffold file, add a directory with the SDK, Registry, MessageModel
and Shell modules.

Note:

The Shell, Registry, MessageModel and SDK components must
reside within the same directory as the Component Service.

b. Implement the scaffold’s JavaScript to add the custom component logic. To do
this, you’re going to replace most of the contents of the component service file
with those of the mcebots.js file from the Bots SDK:

i. Open the component service file in the JavaScript editor of your choice.

ii. Note the service.get function URI. It looks something like /mobile/custom/
MyFirstComponentService/components.

iii. Delete all of the contents of the file except for the comments at the top of
the file.

Chapter 9
How Do Custom Components Work?

9-9

iv. Open the mcebots.js file and then copy its contents to the component
service file.

v. Replace the value of const apiURL = ‘/mobile/custom/bots/components’;
with the value of the service.get function. For example, const apiURL =
‘//mobile/custom/MyFirstComponentService/components’;.

vi. Point to the shell.js file. Because the component service file and the
directory containing the Bots SDK artifacts (which includes the shell.js
file) are not located in the same folder, you need to modify the Shell
variable’s ./shell parameter to reference the location of the shell.js file.
For example, if shell.js resides in a directory called js, you would change
the default parameter from this:

var shell = require('./shell')();

to this:

var shell = require('./js/shell')();

vii. Save the file.

c. Edit the package.json file in the scaffold file with the Bot SDK dependencies in
the package.json file from the Bots SDK:

i. Open the Bots SDK’s package.json file in the text editor of your choice and
then copy and paste its dependencies definition to a clipboard:

 "dependencies": {
 "joi": "^9.2.0"
 },

ii. In the scaffold’s package.json file, paste the definition on its own line, one
directly after the “main”: attribute.

6. Create the custom component module by creating a JavaScript file. This file
includes the metadata and invoke functions described in Component Modules. The
scaffold for the file looks like this:

"use strict";

module.exports = {
 metadata: () => (
 {
 "name": "sample.hello",
 "properties": {
 "name": { "type": "string", "required": true }
 },
 "supportedActions": []
 }
),
 invoke: (conversation, done) => {
 const name = conversation.properties().name ?
conversation.properties().name : '';
 conversation.reply({ text: 'Hello ' + name });
 conversation.transition();
 done();
 }
};

Use the functions exposed by the SDK to allow interactions with the bot’s request
payload. See The SDK Helper Methods.

Chapter 9
How Do Custom Components Work?

9-10

Important:

All custom component files must reside within the same directory. Also,
make sure that all of your component files all have the .js extension.

7. Edit the registry.js file with the name and location the component file.

8. Install the node modules.

9. Package the scaffold and upload the node project to OMCe.

10. Associating APIs with a Backend in Developing Applications with Oracle Mobile
Cloud Enterprise and then test your API.

11. Register the component service with Bots so that it can be discovered by the

Dialog Engine. To do this first click Components () in the left navbar and then
Add Service. Complete the dialog by adding a name, selecting Mobile Cloud,
and then by providing the following:

• Backend ID—This value is generated when you create a mobile backend. It’s
listed on the Settings page.

• Metadata URL—The is custom API URL, which is displayed in the Overview
panel of the API Designer when you click the GET method in the

Important:

Be sure to append this URL with /components so that it can return the
component information in the Bot Builder’s Components page.

• The user name and password. If you selected Use anonymous Access, you
need to provide the Anonymous Key. This value is generated when you create
a backend. It’s displayed on the Settings page for the backend that manages
your API.

You’re now ready to add the custom components to your OBotML definition.

Chapter 9
How Do Custom Components Work?

9-11

10
Channels

To introduce your bot to the users of these services, you need to configure a channel.

We provide a channel for Facebook Messenger and a generic channel called
Webhook that you can use for other messaging services. Your bots are limited to
messaging services; using one of our SDKs, you can integrate them in web pages, or
the Android and iOS messaging platforms.

Tip:

Check out the Developer Resources to find out about configuring other
channels and setting up different types of chat clients and the sample chat
server.

Your bot can run on any messaging service that supports webhooks, calls that allows
real-time messaging without polling. You don’t need to implement a webhook to get
your bot running on Facebook Messenger: all you need to configure the Facebook
channel are the keys that are generated by both Facebook and Bots. Setting up the
Webhook channel for other messaging services require you to perform a few more
tasks in addition to the channel configuration, like setting up an HTTP server with a
webhook for sending and receiving your bot’s messages.

Running Your Bot on Facebook Messenger
You’ll need the following to configure the channel for Facebook Messenger:

• A Facebook Page

• A Facebook App

• A Page Access Token

• An App Secret ID

• The webhook URL

• A Verify Token

Note:

You also need a Facebook Developer account.

To run your bot on Facebook Messenger, you need to set up a Facebook page and a
Facebook App. You can find out more about this from the Facebook Messaging
Platform documentation, but in a nutshell, the Facebook page hosts your bot. Users
chat with your bot through this page when they use chat window in a desktop browser.
When they use a mobile device, users interact with your bot directly through Facebook

10-1

https://developers.facebook.com/docs/messenger-platform
https://developers.facebook.com/docs/messenger-platform

Messenger itself. In this scenario, the Facebook App allows your bot to get the
messages that are handled by Facebook Messenger.

To create a Facebook Messenger channel, you need artifacts that are generated by
both Bots and by Facebook Messenger. From Bots, you’ll need the webhook URL that
connects your bot to Facebook messenger and the Verify Token that enables
Facebook Messenger to identify the bot. From Facebook Messenger, you’ll need the
Page Access Token and the App Secret ID. Because you need transfer these artifacts
between Bots and Facebook Messenger, you’ll need to switch between these two
platforms as you configure the channel.

Step 1: Set Up Facebook Messenger
Start off by generating the App Secret and the Page Access token in Facebook
Messenger.

1. Log into your Facebook developer’s account.

2. Create a Facebook page that hosts your bot. The description, images, and cover
page you add to the page will identify your bot to its users.

3. Next, create the Facebook app that you’ll link to this page. Because this is a
Messenger app, choose Apps for Messenger and then click Create App ID.

If you didn't choose the Apps for Messenger option in this dialog (for example, if
you’re creating a test app), then click Add Product in the left navbar, choose
Messenger from the Product Setup page, and then click Get Started.

Chapter 10
Running Your Bot on Facebook Messenger

10-2

Note:

You’ll need the App Secret to complete your Facebook channel
configuration in the Bot Builder.

4. In the Dashboard for your app, generate the Page Access Token by selecting your
Facebook page. You’ll use this token, which gives your Facebook App access to
Facebook’s Messaging API, to complete your channel definition.

Step 2: Add the Facebook Keys
Complete the Create Channel dialog by providing the Page Access Token and App
Secret keys from Facebook.

1. In Bots, click Settings () in the left navbar and then choose the Channels tab.

Chapter 10
Running Your Bot on Facebook Messenger

10-3

2. Next, click Add Channel to open the Create Channel dialog.

3. Give your channel a name.

4. Choose Facebook Messenger as the channel type.

5. Copy and the Page Access Token from Facebook and paste it into the Page
Access Token field in the Create Channel Dialog. You can find this key in the
Facebook Messenger Platform settings page.

6. Copy the App Secret —You can find this in the Facebook Messenger Platform
dashboard for your Facebook App.

Chapter 10
Running Your Bot on Facebook Messenger

10-4

7. Click Create.

8. In the Channels page, note the Verify Token and WebHook URL. You’ll need
these to configure the Facebook webhook.

Step 3: Configure the Facebook Messenger Webhook
Define the Callback URL by adding the Webhook URL generated by Bots to Facebook
Messenger. Refer to the Channels page in the Bot Builder for these two values.

1. In Facebook Messenger, be sure that you’ve selected the project that you initially
created for the webhook.

2. Click Messenger and then choose Settings .

Chapter 10
Running Your Bot on Facebook Messenger

10-5

3. Click Setup Webhooks to open the New Page Subscription dialog.

4. Copy the Webhook URL from the Bots Channels page and paste it in the CallBack
URL field in the New Page Subscription dialog.

5. Copy the Verify Token generated by Bots and paste it into the Verify Token field.

6. Subscribe to only the messages and messaging_postbacks callback events.
The messages event is triggered whenever someone sends a message to your
Facebook page.

Chapter 10
Running Your Bot on Facebook Messenger

10-6

7. Subscribe to the page:

a. Choose your bot’s Facebook page.

b. Click Subscribe.

.

Tip:

You might need to bounce your webhook by first clicking Unsubscribe
then Subscribe.

Step 4: Enable the Facebook Channel
With the configuration complete, you’re ready to activate the Facebook channel by
switching on Channel Enabled in Bots. You can now test out your bot.

Chapter 10
Running Your Bot on Facebook Messenger

10-7

Step 5: Testing Your Bot on Facebook Messenger
With the Facebook Channel and messaging configuration complete, you can test your
simultaneously using your Facebook page, Facebook Messenger (https://

www.messenger.com/) and the Facebook Messenger app on your phone (). Once you
locate your bot in the search, you’re ready to start chatting with it. You can see the
changes that you make to the dialog flow in real time.

Chapter 10
Running Your Bot on Facebook Messenger

10-8

Running Your Bot on Other Messaging Services
To allow your bot to talk to users who aren’t subscribed to Facebook Messenger, you
need to configure the Webhook channel.

To create a Webhook channel, you need the following:

• A publicly accessible HTTP messaging server that relays messages between the
user device and your bot using a webhook.

Chapter 10
Running Your Bot on Other Messaging Services

10-9

You implement this webhook with:

1. A POST call that enables the server to receive messages from your bot.

2. A POST call that enables the server to send messages to your bot.

• Because your bot needs to know where to send its message, you need the URI of
the webhook call that receives your bot’s messages.

• Likewise, the message server needs to know how to find your bot, so you need the
Webhook URL that’s generated for your bot after you complete the Create
Channel dialog.

To assemble these pieces into a webhook:

1. Set up the server.

2. To receive messages from your bot, publish the POST call on the server.

3. In the Create Channel dialog, enter a name and then:

• Choose Webhook as the channel type.

• Set Platform Version to 1.1 (Conversation Model).

• Register the server as the recipient of your bot’s messages by entering the
URI to this POST call in the Outgoing Webhook URI field.

• If needed, enter the session expiry and switch on Channel Enabled.

4. After you click Create, Bots generates the webhook URL for your bot and its
Secret Key for encrypting messages. Keep the webhook URL handy, because it’s
the pointer that your messaging server needs to send messages back to your bot.

Chapter 10
Running Your Bot on Other Messaging Services

10-10

5. On your server, publish the second POST API, one that sends messages to your
bot using the webhook URL.

6. Switch the Channel Enabled option on.

Outbound Messages

You need to publish the calls in the JSON format that Bots expects, along with the
authorization header.

The call for your bot’s outbound messages includes:

1. An X-Hub-Signature header containing the SHA256 value of the payload,
calculated using the Secret Key as the key.

Note:

Bots uses the X-Hub-Signature header to allow the recipient to
authenticate your bot as the sender and validate the integrity of the
payload.

2. A JSON payload containing the userID, a unique identifier that’s specified by the
inbound message, the type, which can be text,attachment, and card. As shown in
the following examples, both the text and card response types can have
associated actions. Any of the response types can also include global actions.

Chapter 10
Running Your Bot on Other Messaging Services

10-11

Response Type Example Payload

text {
 "userId":"22343248763458761287
 "messagePayload": {
 "type": "text",
 "text": "Hello, how are you?"
 }
}

The following snippet show a text response
with actions:

{
 "userId":"22343248763458761287
 "messagePayload": {
 "type": "text",
 "text": "What do you want to do?",
 "actions": [
 {
 "type": "postback",
 "label": "Order Pizza",
 "postback": {
 "state": "askAction",
 "action": "orderPizza"
 }
 },
 {
 "type": "postback",
 "label": "Cancel A Previous
Order",
 "postback": {
 "state": "askAction",
 "action": "cancelOrder"
 }
]
 }
}

Chapter 10
Running Your Bot on Other Messaging Services

10-12

Response Type Example Payload

card
...
{
 "type": "card",
 "layout": "horiztonal",
 "cards": [
 {
 "title": "Hawaiian Pizza",
 "description": "Ham and
pineapple on thin crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "hawaiian",
 "pizzaCrust": "thin",
 "pizzaSize": "large"
 }
 }
 }
]
 },
 {
 "title": "Cheese Pizza",
 "description": "Cheese pizza
(i.e. pizza with NO toppings) on thick
crust",
 "actions": [
 {
 "type": "postback",
 "label": "Order Small",
 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "small"
 }
 }
 },
 {
 "type": "postback",
 "label": "Order Large",

Chapter 10
Running Your Bot on Other Messaging Services

10-13

Response Type Example Payload

 "postback": {
 "state": "GetOrder",
 "variables": {
 "pizzaType": "cheese",
 "pizzaCrust": "thick",
 "pizzaSize": "large"
 }
 }
 }
]
 }
],
 "globalActions": [
 {
 "type": "call",
 "label": "Call for Help",
 "phoneNumber": "123456789"
 }
]
}

attachment The attachment response type can an
image, audio file, or a video:

...
{
 "type": "attachment",
 "attachment": {
 "type": "video",
 "url": "https://www.youtube.com/
watch?v=CMNry4PE93Y"
 }
}

Inbound Messages

The call for sending messages to your bot must have:

1. An X-Hub-Signature header containing the SHA256 value of the payload. The call
includes functions that create this hash using Secret Key as the key.

const body = Buffer.from(JSON.stringify(messageToBot), 'utf8');
 const headers = {};
 headers['Content-Type'] = 'application/json; charset=utf-8';
 headers['X-Hub-Signature'] = buildSignatureHeader(body, channelSecretKey);

...

function buildSignatureHeader(buf, channelSecretKey) {
 return 'sha256=' + buildSignature(buf, channelSecretKey);
}

function buildSignature(buf, channelSecretKey) {
 const hmac = crypto.createHmac('sha256', Buffer.from(channelSecretKey,
'utf8'));
 hmac.update(buf);

Chapter 10
Running Your Bot on Other Messaging Services

10-14

 return hmac.digest('hex');
}

2. A JSON obect with userId, userProfile, and messagePayload properties:

{
 "userid: "33c0bcBc8e-378c-4496-bc2a-b2b9647de2317"
 "userProfile": {
 "firstName": "Bob",
 "lastName": "Franklin",
 "age": 45
 },
 "messagePayload: {....}
}

Property Description Type Required?

userId A unique identifier for
the user. This ID is
specific to the caller.

String Yes

userProfile Properties that
represent the user,
like firstName and
LastName.

JSON object No

Chapter 10
Running Your Bot on Other Messaging Services

10-15

Property Description Type Required?

messagePayload The messagePayload
can be text,
postback,
attachment, and
location:
• text

{
 "type":
"text",
 "text":
hello, world!"
 }

• postback

{
 "type":
"postback",

"postback": {
 "state":
"orderPizza",

"action":
"deliverPizza",

"variables": {

"pizzaSize":
"Large",

"pizzaCrust":
"Thin",

"pizzaType":
"Hawaiian"
 }
 }
 }

• attachment

{
 "type":
"attachment",

"attachment": {
 "type":
"image",
 "url":
"https://
image.freepik.c
om/free-icon/
attachment-
tool-ios-7-
interface-
symbol_318-3553
9.jpg"
 }
}

JSON object Yes

Chapter 10
Running Your Bot on Other Messaging Services

10-16

Property Description Type Required?

• location

{
 "type":
"location",

"location": {

"longitude":
-122.265987

"latitude":
37.529818
 }
 }

Running Your Bot Within Client Messaging Apps and Web
Pages

We provide SDKs that enable you to integrate your bot with iOS apps, Android apps,
and web pages. For any of these integrations, you need to generate the App Id by
creating a Web, iOS, or Android channel.

After you create the App Id, you copy and paste it into the client app code or, if you’re
integrating your bot into a web page, the <script> tag.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-17

Bots Client SDKs

Bots Client SDK for Android
• Adding the Bots Client SDK for Android to Your App

• Localization

• Permissions

Adding the Bots Client SDK for Android to Your App
The Bots Client SDK for Android library is distributed in both AAR and JAR formats. If
you are using Android Studio, follow the instructions for installation of the AAR
package.

Note:

Compile your app using API Level 26 (Android Oreo) or higher. Level 19
(Android 4.4, Kitkat) is the lowest version that can support the Bots client
SDK for Android. If your app needs to support even earlier versions, keep in
mind that we haven’t tested these and therefore can’t guarantee their
compatibility.

Adding the SDK and AAR Files

1. Download the Bots Client SDK for Android 18.2.3.0 module from the Oracle
Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Import the core and UI files (bots-client-sdk-android-core-v18.2.3.aar and bots-
client-sdk-android-ui-v18.2.3.aar into your Android Studio project by going to
File > New > New Module > Import .JAR/.AAR Package.

3. Add the following lines to the project’s build.gradle file:

 compile project(':bots-client-sdk-android-core-1.2.1')
 compile project(':bots-client-sdk-android-ui-1.2.1')

 compile 'com.google.firebase:firebase-messaging:11.0.4'
 compile 'com.google.firebase:firebase-core:11.0.4'
 compile 'com.google.code.gson:gson:2.4'
 compile 'com.squareup.okhttp3:okhttp:3.4.1'
 compile 'com.android.support:support-annotations:26.0.2'
 compile 'com.android.support:appcompat-v7:26.0.2'
 compile 'com.android.support:recyclerview-v7:26.0.2'
 compile 'com.nostra13.universalimageloader:universal-image-loader:1.9.5'
 compile 'com.davemorrissey.labs:subsampling-scale-image-view:3.5.0'
 compile 'com.google.android.gms:play-services-location:11.0.4'

Initialize the Bots Android SDK in Your App

Before your code can invoke the SDK’s functionality, you’ll have to initialize the library
using your app’s ID.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-18

https://docs.smooch.io/guide/native-android-sdk/#android-studio-with-gradle
https://docs.smooch.io/guide/native-android-sdk/#android-studio-with-gradle
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

To get this unique ID, first click Add Channel to open the Add Channel dialog.
Complete the dialog by adding a channel name and then choosing Android as the
channel type. After you click OK, Bots generates the App ID.

After you obtain this ID, use the following to initialize the SDK.

Bots.init(this, new Settings("YOUR_APP_ID"), newBotsCallback() {
 @Override
 public void run(Response response) {
 // Your code after init is complete
 }
});

Note:

Make sure to replace YOUR_APP_ID with your app ID.

To ensure that the SDK is always initialized properly, copy the following snippet and
save it to your application package.

package your.package;

import android.app.Application;
import oracle.cloud.mobile.core.Bots;

public class YourApplication extends Application {
 @Override
 public void onCreate() {
 super.onCreate();
 Bots.init(this, new Settings("YOUR_APP_ID"), new BotsCallback() {
 @Override
 public void run(Response response) {
 // Your code after init is complete
 }
 });
 }

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-19

Note:

You need to declare this in the Application class because it’s the class that’s
required by Bots.init(this, new Settings("YOUR_APP_ID"). If you declare this
class elsewhere (say, AppCompatActivity), then add the following snippet,
which uses getApplication() as the first argument:

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Bots.init(getApplication(), new Settings("YOUR_APP_ID"), new
BotsCallback() {
 @Override
 public void run(Response response) {
 // Your code after init is complete
 }
 });
 }

You also need to declare your newly created class in the <application> tag in your
AndroidManifest file.

<application
 android:name="your.package.YourApplication">
 ...
</application>

Note:

Remember to replace your.package, YourApplication, YOUR_APP_ID with the
appropriate names and the App Id for the Android channel.

Displaying the Bots Android SDK User Interface

Once you’ve initialized Bots Android SDK, you’re ready to try it out.

Find a suitable place in your app’s interface to invoke the SDK and use the code below
to display the Android Messenger user interface. You invoke up the Bots Android SDK
whenever your user needs access to help or needs to contact you.

ConversationActivity.show(getApplicationContext());

Calling Other Functions

You can call various functions when the SDK has been initialized successfully. As
shown in the following snippet, you can update user properties before your app calls
the ConversationActivity class:

if (Bots.getInitializationStatus() == InitializationStatus.Success) {
 Log.d(TAG,"Already Initialized with App ID "+ mAppID);
 User.getCurrentUser().setFirstName("John");
 User.getCurrentUser().setLastName("Smith");
 User.getCurrentUser().setEmail("john.smith@example.com");
 User.getCurrentUser().setSignedUpAt(new Date());

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-20

 final Map<String, Object> customProperties = new HashMap<>();
 customProperties.put("premiumUser", true);
 customProperties.put("numberOfPurchases", 20);
 customProperties.put("itemsInCart", 3);
 customProperties.put("couponCode", "PREM_USR");
 User.getCurrentUser().addProperties(customProperties);

 ConversationActivity.show(getApplicationContext(), Intent.FLAG_ACTIVITY_NEW_TASK);
}

Replacing the FileProvider

If you do not have a FileProvider entry in your AndroidManifest.xml file, you can safely
ignore this section. These steps will fix the Manifest merger failed : Attribute
provider#android.support.v4.content.FileProvider@authorities compile error

To replace the FileProvider with your own, please do the following:

1. Add tools:replace="android:authorities" to the <provider> entry.

2. Add the following path to your android.support.FILE_PROVIDER_PATHS
resource file:

<external-path name="dcim" path="DCIM"/>

3. When initializing the SDK, call
settings.setFileProviderAuthorities(authoritiesString); on the settings object.

Settings settings = new Settings(appId);
settings.setFileProviderAuthorities(authoritiesString);
Bots.init(this, settings, myInitCallback);

Localization
Every string you see in Bots can be customized and localized. Bots provides a few
languages out of the box, but adding new languages is easy to do. When localizing
strings, Bots looks for values in the strings.xml in your app first then in the Bots UI
bundle, enabling you to customize any strings and add support for other languages.

Adding More Languages

To enable other languages beside the provided ones, first copy the English
strings.xml file from the Bots UI bundle to the corresponding values folder for that
language. Then, translate the values to match that language.

Customization
• Strings Customization

• Styling the Conversation Interface

Strings Customization

Bots lets you customize any strings it displays by overwriting its keys. To do this,
simply add res/values-<your-language-code>/strings.xml file in your Android project
and specify new values for the keys used in Bots. You can find all of the available keys
by browsing to the artifacts:bots-client-sdk-android-ui-x.x.x/res/values/values.xml
file in the External Libraries in Android Studio.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-21

Dates shown in the conversation view are already localized to the user’s device.

For example, if you wanted to override strings for English, you would create a file
called res/values-en/strings.xml and include the following in that file:

<resources>
<string name="Bots_activityConversation">Messages</string>
<string name="Bots_startOfConversation">This is the start of your conversation with
the team.</string>
<string name="Bots_welcome">Feel free to leave us a message about anything that\'s
on your mind.</string>
<string name="Bots_messageHint">Type a message…</string>
</resources>

Note:

if you want to specify new strings for the default fallback language, you must
override them in the res/values/string.xml file.

Styling the Conversation Interface

Using a colors.xml file in your res/values folder, you can change the colors used by
Bots:

<resources>
<color name="Bots_accent">#9200aa</color>
<color name="Bots_accentDark">#76008a</color>
<color name="Bots_accentLight">#be7cca</color>

<color name="Bots_backgroundInput">#ffffff</color>

<color name="Bots_btnSendHollow">#c0c0c0</color>
<color name="Bots_btnSendHollowBorder">#303030</color>

<color name="Bots_header">#989898</color>

<color name="Bots_messageDate">@color/Bots_header</color>
<color name="Bots_messageShadow">#7f999999</color>

<color name="Bots_remoteMessageAuthor">@color/Bots_header</color>
<color name="Bots_remoteMessageBackground">#ffffff</color>
<color name="Bots_remoteMessageBorder">#d9d9d9</color>
<color name="Bots_remoteMessageText">#000000</color>

<color name="Bots_userMessageBackground">@color/Bots_accent</color>
<color name="Bots_userMessageBorder">@color/Bots_accentDark</color>
<color name="Bots_userMessageFailedBackground">@color/Bots_accentLight</color>
<color name="Bots_userMessageText">#ffffff</color>
</resources>

If you need to update the image of the Send button, simply add an image with the
following name to your drawables:

bots_btn_send_normal.png

You can find the original resources by browsing external libraries through Android
Studio.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-22

Permissions
The Bots Client SDK for Android library includes the following permissions by default:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.VIBRATE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

• WRITE_EXTERNAL_STORAGE is used to take photos and to store downloaded
pictures locally to avoid needless re-downloading.

• ACCESS_FINE_LOCATION is used in order to access the customer’s location
when requested using location request buttons.

If you do not intend to request the user’s location at any point, it is safe to remove the
ACCESS_FINE_LOCATION using the following override:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"
tools:node="remove" />

All other permissions are necessary for Bots to function as intended.

Bots Client SDK for iOS
• Adding the Bots Client SDK for iOS to Your App

• Updating the SDK

• Localization of iOS Apps

• Customization

Adding the Bots Client SDK for iOS to Your App
1. Download the Bots Client SDK for iOS 18.2.3.0 module from the Oracle

Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Unzip the file. This creates a directory called Bots.framework (the framework).

3. Add the framework to your Xcode project by selecting File > Add Files to
My_Project and then selecting Bots.framework in the file picker.

4. In your project settings, add Bots.framework to the list of Embedded Binaries in the
General tab for your application target.

You can now import the framework (#import <Bots/Bots.h>) and start using it in
your code.

Import the Bots Header File

Import the Bots file into the your app delegate’s .m file and any other places you plan to
use it.

• Objective-C:

#import <Bots/Bots.h>

• Swift:

import Bots

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-23

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html

Add Required Keys in Your App’s info.plist

The Bots Client SDK for iOS may need to ask users permission to use certain
features. Depending on the feature, you must provide a description in your app’s
Info.plist to explain why access is required. These descriptions will be displayed the
moment it prompts the user for permission.

Images

The Bots Client SDK for iOS allows users to send images. To support this feature, you
need to provide a description for the following keys:

• NSCameraUsageDescription—Describes the reason your app accesses the camera
(for example: camera permission is required to send images to ${PRODUCT_NAME}).
For more information, see the iOS documentation about NSCameraUsageDescription.

• NSPhotoLibraryUsageDescription—Describes the reason your app accesses the
photo library (for example: photo library permission is required to send images to $
{PRODUCT_NAME}). For more information, see the iOS documentation about
NSPhotoLibraryUsageDescription.

Note:

Beginning with iOS 10, these values are required. If they are not present in
your app's Info.plist, the option to send an image will not be displayed.

Location

The Bots Client SDK for iOS also allows users to send their current location. To
support this feature, you must provide a description for any of the following keys
depending on your app’s use of location services. The SDK will ask the user for the
location depending on the key you provide:

• NSLocationWhenInUseUsageDescription—Describes the reason for your app to
access the user’s location information while your app is in use (for example:
location services is required to send your current location to ${PRODUCT_NAME}). This
permission is recommended if your app does not use location services. The SDK
will default to it if both keys are included. See the iOS documentation about
NSLocationWhenInUseUsageDescription.

• NSLocationAlwaysUsageDescription—Describes the reason for your app to access
the user’s location information at all times (for example: location services is
required to send your current location to ${PRODUCT_NAME}). See the iOS
documentation about NSLocationAlwaysUsageDescription.

Note:

If you don't provide one of these keys, any attempt from the user to send
their current location will fail.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-24

https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW24
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW24
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW26
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html#//apple_ref/doc/uid/TP40009251-SW18

Initialize the Bots Client SDK for iOS in Your App
Before your code can invoke the SDK, you’ll have to initialize the library using the App
Id that’s generated for your Bot when you add an iOS channel. To get this ID, click
Add Channel to open the Create Channel dialog. Add a name for the iOS channel
and then choose iOS as the channel type. After you click Create, Bots generates the
App Id. Next, use this ID to replace YOUR APP ID in the
applicationDidFinishLaunchingWithOptions: method:

• Objective-C

[Bots initWithSettings:[OMCSettings settingsWithAppId:@"YOUR_APP_ID"]
completionHandler:^(NSError * _Nullable error, NSDictionary * _Nullable
userInfo) {
 // Your code after init is complete
}];

• Swift:

Bots.initWith(OMCSettings(appId: "YOUR_APP_ID")) { (error: Error?, userInfo:
[AnyHashable : Any]?) in// Your code after init is complete}

You can show the Bots UI anywhere in your app after it finishes loading by adding the
following line::

• Objective-C:

[Bots show];

• Swift:

Bots.show();

Calling Other Functions

You can call other functions after the SDK has been initialized successfully. For
example, you can update the user's first name, last name, and email address:

// Update first name and last name
 [Bots setUserFirstName:@"John"
 lastName:@"Smith"];

// Update email address
 [OMCUser currentUser].email = @"john.smith@example.com";

Updating the SDK
Run the following to update Carthage dependencies:

$ carthage update

Localization of iOS Apps
Every string you see in your bot can be customized and localized. Bots provides a few
languages out of the box, but adding new languages is easy to do. When localizing
strings, Bots looks for BotsLocalizable.strings in your app bundle first then in the Bots
bundle, enabling you to customize any strings and add support for other languages.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-25

Enabling Localization in Your iOS App

For Bots to display a language other than English, your app needs to first enable
support for that language. You can enable a second language in your Xcode project
settings:

Once you have this, Bots will display itself in the device language for the supported
language.

These languages are included with the Bots Client SDK for iOS: Arabic, English,
Finnish, French, German, Italian, Japanese, Korean, Mandarin Chinese (traditional
and simplified), Persian, Portuguese (Brazil and Portugal), Russian, Slovenian,
Spanish, and Swedish.

Note:

Localization is subject to caching. If you can't see your changes, cleaning
your project, resetting the simulator, deleting your app from your test devices
are good measures.

Customization
• Strings Customization

• Styling the Conversation Interface

Strings Customization

Bots lets you customize any strings it displays via Apple’s localization mechanism. To
override one or more strings, add an empty string file named BotsLocalizable.strings

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-26

in your Xcode project and specify new values for the keys you would like to override.
For example, to change the “Messages” header, and the “Done” button create a file with
these contents:

"Messages" = "My Messages"

"Done" = "I'm Done"

To enable string customization across languages, make sure you localize your
BotsLocalizable.strings file in Xcode.

The BotsLocalizable.strings File

Here is the full set of keys:

/* Nav bar button, action sheet cancel button */
"Cancel" = "...";

/* Conversation title */
"Messages" = "...";

/* Conversation header. Uses CFBundleDisplayName */
"This is the start of your conversation with the %@ team. We'll stay in touch to
help you get the most out of your app.\nFeel free to leave us a message about
anything that’s on your mind. We’ll get back to your questions, suggestions or

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-27

anything else as soon as we can." = "...";

/* Conversation header when there are previous messages */
"Show more..." = "...";

/* Conversation header when fetching previous messages */
"Retrieving history..." = "...";

/* Error message shown in conversation view */
"No Internet connection" = "...";

/* Error message shown in conversation view */
"Could not connect to server" = "...";

/* Error message shown in conversation view */
"An error occurred while processing your action. Please try again." = "...";

/* Error message shown in conversation view */
"Reconnecting..." = "...";

/* Fallback used by the in app notification when no message author name is found */
"%@ Team" = "...";

/* Conversation send button */
"Send" = "...";

/* Conversation text input place holder */
"Type a message..." = "...";

/* Conversation nav bar left button */
"Done" = "...";

/* Failure text for chat messages that fail to upload */
"Message not delivered. Tap to retry." = "...";

/* Status text for chat messages */
"Sending..." = "...";

/* Status text for sent chat messages */
"Delivered" = "...";

/* Status text for chat messages seen by the appMaker */
"Seen" = "...";

/* Timestamp text for recent messages */
"Just now" = "...";

/* Timestamp text for messages in the last hour */
"%.0fm ago" = "...";

/* Timestamp text for messages in the last day */
"%.0fh ago" = "...";

/* Timestamp text for messages in the last week */
"%.0fd ago" = "...";

/* Action sheet button label */
"Take Photo" = "...";

/* Action sheet button label */
"Use Last Photo Taken" = "...";

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-28

/* Action sheet button label */
"Choose from Library" = "...";

/* Photo confirmation alert title */
"Confirm Photo" = "...";

/* Action sheet button label */
"Resend" = "...";

/* Action sheet button label */
"View Image" = "...";

/* Error displayed in message bubble if image failed to download */
"Tap to reload image" = "...";

/* Error displayed as message if location sending fails */
"Could not send location" = "...";

/* Error title when user selects "use latest photo", but no photos exist */
"No Photos Found" = "...";

/* Error description when user selects "use latest photo", but no photos exist */
"Your photo library seems to be empty." = "...";

/* Error title when user attempts to upload a photo but Photos access is denied */
"Can't Access Photos" = "...";

/* Error description when user attempts to upload a photo but Photos access is
denied */
"Make sure to allow photos access for this app in your privacy settings." = "...";

/* Error title when user attempts to take a photo but camera access is denied */
"Can't Access Camera" = "...";

/* Error description when user attempts to take a photo but camera access is denied
*/
"Make sure to allow camera access for this app in your privacy settings." = "...";

/* Generic error title when user attempts to upload an image and it fails for an
unknown reason */
"Can't Retrieve Photo" = "...";

/* Generic error description when user attempts to upload an image and it fails for
an unknown reason */
"Please try again or select a new photo." = "...";

/* Error title when user attempts to send the current location but location access
is denied */
"Can't Access Location" = "...";

/* Error description when user attempts to send the current location but location
access is denied */
"Make sure to allow location access for this app in your privacy settings." = "...";

/* UIAlertView button title to link to Settings app */
"Settings" = "...";

/* UIAlertView button title to dismiss */
"Dismiss" = "...";

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-29

/* Title for payment button */
"Pay Now" = "...";

/* Title for message action when payment completed */
"Payment Completed" = "...";

/*
 Instructions for entering credit card info. Parameters are as follows:
 1. Amount (e.g. 50.45)
 2. Currency (e.g. USD)
 3. App name (Uses CFBundleDisplayName)
*/
"Enter your credit card to send $%@ %@ securely to %@" = "...";

/* Error text when payment fails */
"An error occurred while processing the card. Please try again or use a different
card." = "...";

/* Button label for saved credit card view */
"Change Credit Card" = "...";

/*
 Information label for saved credit card view. Parameters are as follows:
 1. Amount (e.g. 50.45)
 2. Currency (e.g. USD)
 3. App name (Uses CFBundleDisplayName)
 */
"You're about to send $%@ %@ securely to %@" = "...";

/* Title for user notification action */
"Reply" = "...";

/* Date format used for message grouping headers on the conversation screen */
"MMMM d, h:mm a" = "MMMM d, h:mm a";

/* Date format used for message timestamps on the conversation screen */
"hh:mm a" = "hh:mm a";

/* Error message when the content of a webview fails to load */
"Failed to open the page" = "...";

Styling the Conversation Interface

The style of the conversation user interface can be controlled through two techniques:

• Using the UIAppearance proxy of UINavigationBar to style the navigation bar’s color
and appearance.

• The OMCSettings class provides access to the status bar and the color of the
message bubbles.

Suppose you wanted the conversation UI to have a black navigation bar and red
message bubbles. First, you’d use UINavigationBar's appearance proxy to set up the
navigation bar. Then, you’d use OMCSettings to finish styling the UI:

• Objective C

OMCSettings* settings = [OMCSettings settingsWithAppId:@"YOUR_APP_ID"];
settings.conversationAccentColor = [UIColor redColor];
settings.conversationStatusBarStyle = UIStatusBarStyleLightContent;

[[UINavigationBar appearance] setBarTintColor:[UIColor blackColor]];

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-30

[[UINavigationBar appearance] setTintColor:[UIColor redColor]];
[[UINavigationBar appearance]
setTitleTextAttributes:@{ NSForegroundColorAttributeName : [UIColor redColor] }];

• Swift

var settings = OMCSettings(appId: "YOUR_APP_ID");
settings.conversationAccentColor = UIColor.red();
settings.conversationStatusBarStyle = UIStatusBarStyle.LightContent
UINavigationBar.appearance().barTintColor = UIColor.black();
UINavigationBar.appearance().tintColor = UIColor.red();
UINavigationBar.appearance().titleTextAttributes =
[NSForegroundColorAttributeName : UIColor.red()];

Bots Client SDK for JavaScript
The Bots Client SDK for JavaScript module is a highly customizable messaging widget
that can be added to any web page.

• Configuring the Library

• Deploying the SDK Files

• Adding Bots Client SDK for JavaScript to Your Site

• Customization

Configuring the Library
The Bots library is composed of multiple assets that get fetched at runtime for better
performance. For that reason, the public path (the URL where the static files are
hosted) is hardcoded in multiple places.

To configure the library for your environment, run:

./configure

The script generates a folder with the configured project in it.

Setup Examples

Local Testing Setup

If the static files are hosted at http://localhost:8000/static/ and you run the following
script from the /home/your-name/ folder:

./configure http://localhost:8000/static/

then the files will be available at /home/your-name/http:__localhost:8000_static_/.

Production Setup

If the static files are hosted at https://cdn.acme.org/ and you run the following script
from the /home/your-name/ folder:

./configure https://cdn.acme.org/

then the files will be available at /home/your-name/https:__cdn.acme.org_/.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-31

Deploying the SDK Files
1. Download the Bots Client SDK for JavaScript 18.2.3.0 module from the Oracle

Technology Network’s Oracle Mobile Cloud Enterprise download page.

2. Put all of the files from the generated folder at the root of the storage within
https://placeholder.public.path/. For example if your files are hosted at http://
localhost:8000/static/, copy all the files to the static folder on your local server.

3. If your storage is behind a CDN (Content Delivery Network), issue a cache
invalidation for https://placeholder.public.path/loader.json.

4. Make sure your server allows CORS requests.

5. Test your deployment by initializing the SDK as described in Adding Bots Client
SDK for JavaScript to Your Site.

Adding Bots Client SDK for JavaScript to Your Site
You include the Bots Client SDK for JavaScript by editing the <script> tag. You need
an App Id to do this, so if don’t have one already for the Web channel, start off by
clicking Add Channel. In the Create Channel dialog, add a name for the channel and
then choose Web as the channel type. When you click Create, Bots generates the
App Id. You then substitute this value for <app-id> in the code.

Updating the Script Tag

Step 1: Include the Bots Client SDK for JavaScript in Your Web Page

Add the following code towards the end of the head section on your page and replace
<sdk-folder-url> with the URL where the SDK is hosted.

<script>
 !function(e,t,n,r){
 function s(){
 try{
 var e;
 if((e="string"==typeof this.response?
JSON.parse(this.response):this.response).url){
 var n=t.getElementsByTagName("script")[0],r=t.createElement("script");
 r.async=!0,r.src=e.url,n.parentNode.insertBefore(r,n)
 }
 }
 catch(e){}}var o,p,a,i=[],c=[];e[n]={init:function(){o=arguments;
 var e={then:function(t){
 return c.push({type:"t",next:t}),e
 } ,catch:function(t){return c.push({type:"c",next:t}),e}};
 return e},on:function(){
 i.push(arguments)},render:function(){p=arguments},destroy:function()
{a=arguments}
 } ,e.__onWebMessengerHostReady__=function(t){
 if(delete e.__onWebMessengerHostReady__,e[n]=t,o)for(var
r=t.init.apply(t,o),s=0;s<c.length;s++){
 var u=c[s];
 r="t"===u.type?r.then(u.next):r.catch(u.next)
 } p&&t.render.apply(t,p),a&&t.destroy.apply(t,a);
 for(s=0;s<i.length;s++)t.on.apply(t,i[s])};
 var u=new XMLHttpRequest;u.addEventListener("load",s),u.open("GET",r+"/
loader.json",!0),u.responseType="json",u.send()

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-32

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-suite-3636471.html
https://enable-cors.org/server.html

 }
 (window,document,"Bots", "<sdk-folder-url>");
</script>

Step 2: Initialize the Bots Client SDK for JavaScript with Your New App ID

Next, initialize the SDK by adding the following snippet near the end of the body section
of your page. and replace <app-id> with your App Id for the Web channel found in your
app settings page.

<script>
 Bots.init({appId:'<app-id>'});
</script>

Customization
• Embedded Mode

• Strings Customization

• Date Localization

• Sound Notification

Embedded Mode

To embed the widget in your existing markup, you need to pass embedded: true when
calling Bots.init. By doing so, you are disabling the auto-rendering mechanism and
you will need to call Bots.render manually. This method accepts a DOM element which
will be used as the container where the widget will be rendered.

Bots.init({
 appId: '<app-id>',
 embedded: true
});

Bots.render(document.getElementById('chat-container'));

Note:

The embedded widget will take full width and height of the container. You
must give it a height, otherwise, the widget will collapse.

Strings Customization

Bots lets you customize any strings it displays by overwriting its keys. Simply add the
customText key in your Bots.init() call and specify new values for the keys used in
Bots. You can find all available keys here. If some text is between {}, or if there is an
html tag such as <a>, it needs to stay in your customized text.

For example:

Bots.init({
 appId: <'app-id'>,
 customText: {
 actionPostbackError: 'An error occurred while processing your action. Please
try again.',

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-33

 clickToRetry: 'Message not delivered. Click to retry.',
 conversationTimestampHeaderFormat: 'MMMM D YYYY, h:mm A',
 fetchHistory: 'Load more',
 fetchingHistory: 'Retrieving history...',
 headerText: 'How can we help?',
 inputPlaceholder: 'Type a message...',
 invalidFileError: 'Only images are supported. Choose a file with a supported
extension (jpg, jpeg, png, gif, or bmp).',
 introductionText: 'We\'re here to talk, so ask us anything!',
 locationNotSupported: 'Your browser does not support location services or
it’s been disabled. Please type your location instead.',
 locationSecurityRestriction: 'This website cannot access your location.
Please type your location instead.',
 locationSendingFailed: 'Could not send location',
 locationServicesDenied: 'This website cannot access your location. Allow
access in your settings or type your location instead.',
 messageError: 'An error occurred while sending your message. Please try
again.',
 messageIndicatorTitlePlural: '({count}) New messages',
 messageIndicatorTitleSingular: '({count}) New message',
 messageRelativeTimeDay: '{value}d ago',
 messageRelativeTimeHour: '{value}h ago',
 messageRelativeTimeJustNow: 'just now',
 messageRelativeTimeMinute: '{value}m ago',
 messageTimestampFormat: 'hh:mm A',
 messageSending: 'Sending...',
 messageDelivered: 'Delivered',
 sendButtonText: 'Send',
 settingsHeaderText: 'Settings',
 tapToRetry: 'Message not delivered. Tap to retry.',
 unsupportedMessageType: 'Unsupported message type.',
 unsupportedActionType: 'Unsupported action type.'
 }
});

Date Localization

When you translate the user interface by customizing strings, you might also want to
show the date and time in the target language as well. To do this, pass locale at
initialization time. You might also want to override the timestamp format to match your
language.

Bots.init({
 appId: <'app-id'>,
 locale: 'fr-CA',
 customText: {
 // ...
 conversationTimestampHeaderFormat: 'Do MMMM YYYY, hh:mm',
 // ...
 }
});

The locale options is using the language-COUNTRY format. You can find language
codes here and country codes here. The country part is optional, and if a country is
either not recognized or supported, it will fallback to using the generic language. If the
language isn't supported, it will fallback to en-US. A list of supported locales can be
found on the date—nfs Github repository.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-34

https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://github.com/date-fns/date-fns/tree/master/src/locale

Note:

The locale option only affects date and time localization, not the strings.

Sound Notification

By default, a sound notification will be played when a new message comes in and the
window is not in focus.

To disable this feature, you need add the soundNotificationEnabled option to the
Bots.init call, like this:

Bots.init({
 appId: <'app-id>',
 soundNotificationEnabled: false // Add this line to your 'Bots.init' call
});

Creating a Custom User Interface with the Bots Client SDK for JavaScript
While the SDK’s widget provides a rich, prebuilt UI, you can build your own using the
SDK’s APIs for sending messages and its callback event interface for receiving
messages. Using the following snippet as a starting point, you can build a simple user
interface that looks something like this.

You’ll update the <body> and <script> elements of this snippet to enable the app to do
the following:

• Initialize the Bots Client SDK for JavaScript in Embedded Mode

• Fetch the Initial Data

• Send Messages

• Receive Messages

• Add Postback Actions

You can see the complete code sample here. This app outputs a simple text message.
You can find out how to add more complex message types and actions, see Message
Types.

Note:

You need to update SDK_FOLDER_URL with the URL where the SDK is hosted.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-35

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Document</title>
 </head>
 <body>
 <script>
 !function(e,t,n,r){
 function s(){try{var e;if((e="string"==typeof this.response?
JSON.parse(this.response):this.response).url){var n=t.getElementsByTagName("script")
[0],r=t.createElement("script");r.async=!
0,r.src=e.url,n.parentNode.insertBefore(r,n)}}catch(e){}}var
o,p,a,i=[],c=[];e[n]={init:function(){o=arguments;var e={then:function(t){return
c.push({type:"t",next:t}),e},catch:function(t){return
c.push({type:"c",next:t}),e}};return e},on:function()
{i.push(arguments)},render:function(){p=arguments},destroy:function()
{a=arguments}},e.__onWebMessengerHostReady__=function(t){if(delete
e.__onWebMessengerHostReady__,e[n]=t,o)for(var r=t.init.apply(t,o),s=0;s<c.length;s+
+){var u=c[s];r="t"===u.type?
r.then(u.next):r.catch(u.next)}p&&t.render.apply(t,p),a&&t.destroy.apply(t,a);for(s=0
;s<i.length;s++)t.on.apply(t,i[s])};var u=new
XMLHttpRequest;u.addEventListener("load",s),u.open("GET",r+"/loader.json",!
0),u.responseType="json",u.send()
 }
(window,document,"Bots", "<SDK_FOLDER_URL>");
 </script>
 </body>
 </html>

Initialize the Bots Client SDK for JavaScript in Embedded Mode

To initialize the SDK but prevent the default UI from displaying:

1. Create a container that prevents the widget from displaying. In the <body> element,
define the <div> tag that hides the default widget.

<div id="no-display" style="display:none;"></div>

2. In the <script> element, initialize the Bots Client SDK for JavaScript in embedded
mode and render the “no-display” element:

Bots.init({ appId: appId, embedded: true });
Bots.render(document.getElementById('no-display'));

Fetch the Initial Data

To determine the initial state of the UI, use the SDK’s Bots.getConversation method.
This method provides access to things like the unread message count and the
conversation history.

1. Display the conversation by adding the following tag in the <body>:

<ul id="conversation">

2. Within the <script> tag, define a function that when called, displays a message in
the custom UI.

function displayMessage(message) {
 var conversationElement = document.getElementById('conversation');
 var messageElement = document.createElement('li');
 messageElement.innerText = message.name + ' says "' + message.text + '"';

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-36

 conversationElement.appendChild(messageElement);
}

3. To display the initial conversation state after the initialization of the SDK, replace
the Bots.init call with the following:

Bots.init({ appId: appId, embedded: true }).then(function() {
 // displays initial messages
 var conversation = Bots.getConversation();
 conversation.messages.forEach(displayMessage);
});

Send Messages

To enable the widget to send messages:

1. Create a text input element in the <body> that allows the widget to accept plain text
messages:

<input type="text" id="text-input" placeholder="text"

2. In the <script> tag, add the following element that calls Bots.sendMessage function
right after the Bots.init call. When the text input element is active, this function,
which enables users to send plain text or structured messages, gets called
whenever a user taps Enter:

var inputElement = document.getElementById('text-input');

inputElement.onkeyup = function(e) {
 if (e.key === 'Enter') {
 Bots.sendMessage(inputElement.value)
 .then(function() {
 inputElement.value = '';
 });
 }
}

Receive Messages

To update the UI with the new message content, use the SDK’s Bots.on event
interface to bind the message:received event (inbound messages) and the message:sent
event (outbound messages) to the displayMessage function. To call this function
whenever these message events occur, add the following somewhere after the
Bots.init call.

Bots.on('message:sent', displayMessage);
Bots.on('message:received', displayMessage);

Add Postback Actions

You can add actions to the bot’s reply message by updating the displayMessage
function.

function displayMessage(message) {
 var conversationElement = document.getElementById('conversation');
 var messageElement = document.createElement('li');
 messageElement.innerText = message.name + ' says "' + message.text + '"';

 if(message.actions && message.actions.length > 0){
 var wrapperElement = document.createElement('div');
 for(var i = 0; i < message.actions.length; i++){
 var action = message.actions[i];

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-37

 var btnElement = createButtonElement(action);
 wrapperElement.appendChild(btnElement);
 }
 messageElement.appendChild(wrapperElement);
 }
 conversationElement.appendChild(messageElement);
}

function createButtonElement(action) {
 var btnElement = document.createElement('button');
 var btnTitle = document.createTextNode(action.text);
 btnElement.appendChild(btnTitle);
 btnElement.onclick = function(e){Bots.triggerPostback(action._id);};
 return btnElement;
}

Calling Other Functions

You can call other functions after the SDK has been initialized successfully. For
example, you can update a user profile by calling updateUser.

Bots.updateUser({

 "givenName":"John",
 "surname":"Smith",
 "email": "john.smith@example.com",
 "properties": {
 "BotsCustomVariable1":"Lord",
 "BotsCustomVariable2":"Commander"
 }
 }).catch(function (err) {
 console.error(err);
 });

Sample Code for the Custom UI

<!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="UTF-8">
 <title>Document</title>
 </head>
 <body>
 <div id="no-display" style="display:none;"></div>
 <p>User ID: </p>
 <ul id="conversation">
 <input type="text" id="text-input" placeholder="text">

 <script>
 var appId = '<APP_ID>';
 !function(e,t,n,r){
 function s(){try{var e;if((e="string"==typeof this.response?
JSON.parse(this.response):this.response).url){var n=t.getElementsByTagName("script")
[0],r=t.createElement("script");r.async=!
0,r.src=e.url,n.parentNode.insertBefore(r,n)}}catch(e){}}var
o,p,a,i=[],c=[];e[n]={init:function(){o=arguments;var e={then:function(t){return
c.push({type:"t",next:t}),e},catch:function(t){return
c.push({type:"c",next:t}),e}};return e},on:function()
{i.push(arguments)},render:function(){p=arguments},destroy:function()
{a=arguments}},e.__onWebMessengerHostReady__=function(t){if(delete
e.__onWebMessengerHostReady__,e[n]=t,o)for(var r=t.init.apply(t,o),s=0;s<c.length;s+

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-38

+){var u=c[s];r="t"===u.type?
r.then(u.next):r.catch(u.next)}p&&t.render.apply(t,p),a&&t.destroy.apply(t,a);for(s=0
;s<i.length;s++)t.on.apply(t,i[s])};var u=new
XMLHttpRequest;u.addEventListener("load",s),u.open("GET",r+"/loader.json",!
0),u.responseType="json",u.send()
 }
(window,document,"Bots", "<SDK_FOLDER_URL>");

 inputElement.onkeyup = function(e) {
 if (e.key === 'Enter') {
 Bots.sendMessage(inputElement.value)
 .then(function() {
 inputElement.value = '';
 });
 }
 }
 // display new messages
 Bots.on('message:sent', displayMessage);
 Bots.on('message:received', displayMessage);

 // initialize Bots and render the UI in a hidden element
 Bots.init({ appId: appId, embedded: true })
 .then(function () {

 // displays initial messages
 var conversation = Bots.getConversation();
 conversation.messages.forEach(displayMessage);

 Bots.render(document.getElementById('no-display'));

 function displayMessage(message) {
 var conversationElement = document.getElementById('conversation');
 var messageElement = document.createElement('li');
 messageElement.innerText = message.name + ' says "' + message.text + '"';
 conversationElement.appendChild(messageElement);
 }
 </script>
 </body>
 </html>

Message Types

The custom UI supports the these messaging types:

• Text Message

• Carousel Message

• Image Message

• File Message

• Location Message

Text Message
A text type message is sent with text and/or actions.

{
 /**
 * The text content of the message. Optional only if actions are provided.
 */
 text?: string,
 /**

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-39

 * Message type
 */
 type: 'text',
 /**
 * Message role can be 'appUser' or 'appMaker'
 * Added by SDK when send through the sendMessage method
 */
 role?: 'appMaker',
 /**
 * Array of action buttons.
 */
 actions?: MessageAction[],
 /**
 * Url to the avatar for this message sender
 */
 avatarUrl?: string
}

Carousel Message
Carousel messages are a horizontally scrollable set of items, each of which can
contain combinations of text, images, and action buttons.

{
 /**
 * Message type
 */
 type: 'carousel',
 /**
 * Message role can be 'appUser' or 'appMaker'
 * Added by SDK when send through the sendMessage method
 */
 role?: 'appMaker',
 /**
 * Url to the avatar for this message sender
 */
 avatarUrl?: string,
 /**
 * Array of message items. The array is limited to 10 items.
 */
 items: Item[],
 /**
 * Settings to adjust the carousel layout.
 */
 displaySettings?: {
 imageAspectRatio: 'horizontal' | 'square'
 }
}

Image Message
An image type message is a message that is sent with an image, and, optionally, text
and/or actions.

{
 /**
 * Message type
 */
 type: 'image',
 /**
 * Message role can be 'appUser' or 'appMaker'
 * Added by SDK when send through the sendMessage method
 */

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-40

 role?: 'appMaker',
 /**
 * Url to the avatar for this message sender
 */
 avatarUrl?: string,
 /**
 * The text content of the message. Optional only if actions are provided.
 */
 text?: string,
 /**
 * The media type is defined here, for example image/jpeg. If mediaType is not
specified, the media type will be resolved with the mediaUrl.
 */
 mediaType?: string;
 /**
 * The image URL used for the image message.
 */
 mediaUrl: string;
 /**
 * Array of action buttons.
 */
 actions?: MessageAction[]
}

File Message
A file type message is a message that is sent with a file attachment.

{
 /**
 * Message type
 */
 type: 'file',
 /**
 * Message role can be 'appUser' or 'appMaker'
 * Added by SDK when send through the sendMessage method
 */
 role?: 'appMaker',
 /**
 * Url to the avatar for this message sender
 */
 avatarUrl?: string,
 /**
 * The text content of the message. Optional only if actions are provided.
 */
 text?: string,
 /**
 * The media type is defined here, for example application/pdf. If mediaType is
not specified, the media type will be resolved with the mediaUrl.
 */
 mediaType?: string;
 /**
 * The URL of the file attachment.
 */
 mediaUrl: string;
}

Location Message
A location type message includes the location coordinates (latitude and longitude).
Typically, these messages are sent in response to a location request.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-41

{
 /**
 * Message type
 */
 type: 'location',
 /**
 * Message role can be 'appUser' or 'appMaker'
 * Added by SDK when send through the sendMessage method
 */
 role?: 'appMaker',
 /**
 * Url to the avatar for this message sender
 */
 avatarUrl?: string,
 /**
 * The coordinates of the location.
 */
 coordinates?: {
 /**
 * A floating point value representing the latitude of the location
 */
 lat: number,
 /**
 * A floating point value representing the longitude of the location
 */
 long: number
 }
}

Message Actions

• Postback Action

• Link Action

• Location Request Action

• Reply Action

• Webview Action

• Share Action

Postback Action
A postback action posts the action payload when tapped.

{
 _id: string,
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'postback',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-42

 metadata?: any,
 /**
 * A string payload to help you identify the action context. You can also use
metadata for more complex needs.
 */
 payload: string
}

Link Action
A link action opens the provided URI when tapped.

{
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'link',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */
 metadata?: any,
 /**
 * The action URI. This is the link that will be used in the clients when
clicking the button.
 */
 uri: string
 /**
 * Extra options to pass directly to the channel API.
 */
 extraChannelOptions?: any
}

Location Request Action
A location request action prompts users to share their location.

{
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'locationRequest',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */
 metadata?: any,
}

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-43

Reply Action
A reply action echoes the user’s choice as a message.

Tip:

You can also specify an iconURL which renders as an icon for each option.

{
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'reply',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */
 metadata?: any,
 /**
 * A string payload to help you identify the action context. Used when posting
the reply. You can also use metadata for more complex needs.
 */
 payload: string,
 /**
 * An icon to render next to the reply option
 */
 iconUrl?: string
}

Webview Action
When a user taps or clicks a webview action, the URL is loaded in the webview.

{
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'webview',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */
 metadata?: any,
 /**
 * The webview URI. This is the URI that will open in the webview when clicking
the button.
 */

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-44

 uri: string,
 /**
 * The webview fallback URI. This is the link that will be opened when not
support webviews.
 */
 fallback: string,
 /**
 * Controls the webview height.
 */
 size?: 'compact' | 'tall' | 'full',
 /**
 * Extra options to pass directly to the channel API.
 */
 extraChannelOptions?: any
}

Share Action
A share button.

{
 /**
 * The button text.
 */
 text: string,
 /**
 * Type of the action
 */
 type: 'share',
 /**
 * Value indicating whether the action is the default action for a message item.
 */
 default: boolean,
 /**
 * Flat object containing any custom properties associated with the action.
 */
 metadata?: any
}

Message Item

{
 /**
 * The image URL to be shown in the carousel/list item.
 */
 mediaUrl?: string,
 /**
 * The text description, or subtitle.
 */
 description?: string,
 /**
 * The title of the carousel item.
 */
 title: string,
 /**
 * If a mediaUrl was specified, the media type is defined here, for example
image/jpeg. If mediaType is not specified, the media type will be resolved with the
mediaUrl.
 */
 mediaType: string,
 /**
 * Array of action buttons. At least 1 is required, a maximum of 3 are allowed.

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-45

link and postback and share actions are supported.
 */
 actions: IBotsSDKMessageAction[],
 /**
 * The size of the image to be shown in the carousel/list item
 */
 size: 'compact' | 'large'
}

Display Style Options

You can style the UI by adding these options after Bots.init.

Option Description Default Value Required

displayStyle How the messenger
widget appears on
your website. This is
defined as either a
button or tab. You can
style the button’s size
and icon:

• buttonIconUrl

• buttonWidth

• buttonHeight

For example:

Bots.init({ appId:
appId, embedded:
true });
 // ...

displayStyle:
"button",
buttonIconUrl:
https://myimage.png,
buttonWidth: '90',
buttonHeight: '90'
...
}).then(function() {
 // Your code
after init is
complete
});

button No

buttonIconUrl The URL that points to
the button icon. The
icon image must be:

• At least 200 x 200
pixels

• JPG, PNG, or GIF
format

No

buttonWidth The button width, in
pixels.

8px No

buttonHeight The button height, in
pixels.

58px No

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-46

Option Description Default Value Required

businessName The business name.
For example:
businessName:
“Oracle”

No

businessIconUrl The URL that points to
the business’ icon
image. This image
must be:

• At least 200 x 200
pixels

• JPG, PNG, or GIF
format

For example:

Bots.init({ appId:
appId, embedded:
true });
 //...
 businessName:
"Acme Corporation",

businessIconUrl:
"https://
example.com/image/
thumb/thatimage.jpg/
1200x630bb.jpg"
 //...
}).then(function() {
 // Your code
after init is
complete
});

No

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-47

Option Description Default Value Required

backgroundImageUrl The URL that points to
the image that
appears in the
background of the
conversation. This
image is tiled to fit the
chat window.

For example:

Bots.init({ appId:
appId, embedded:
true });
 // ...

backgroundImageUrl:
"https://a-nice-
texture.png"
 // ...
}).then(function() {
 // Your code
after init is
complete
});

No

integrationOrder An array of integration
IDs. When set, only
integrations from this
list will be displayed. If
the array is empty,
then , no integrations
will be displayed.

Note: Listing an
integration in the array
doesn't guarantee that
it will be displayed in
the widget.

No

customColors The colors used in the
Web Messenger UI.

The three-to-six
character hexadecimal
colors used for the
brandColor,
conversationColor,
and actionColor
options.

No

brandColor The color used in the
messenger header
and for the button or
tab in idle state

65758e No

conversationColor This color used for
customer messages,
quick replies and
actions in the footer.

0099ff No

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-48

Option Description Default Value Required

actionColor The color used to
change the appears of
selected actions inside
your messages, like
tapped buttons or
links.

This color is also used
for the Send button
when it is in active
state.

0099ff No

Chapter 10
Running Your Bot Within Client Messaging Apps and Web Pages

10-49

11
Quality Reports

Bots that can distinguish between its intents easily will have fewer intent resolution
errors and better user adoption. The quality reports can help you reach these goals.

You can use these reports when you’re forming your training data and later on, when
you’ve published your bot and want to find out how your intents are fielding customer
messages at any point in time.

How Do I Use the Data Quality Reports?
Using the Utterances, Suggestions, and History pages, you can find out if your bot has
a sufficient number of intents in the first place, and if so, if these intents overlap, need
editing, or if they’re behaving as expected in a production environment.

• Utterances—Assigns quality rankings to pairs of intents as follows:

– High—The intents are distinct.

– Medium—The intents have similar utterances.

– Low—The intent pairs aren’t differentiated enough.

You can edit or delete utterances from this page.

• Suggestions—Tells you if your bot is viable. You can find out if you’ve added
enough intents and if you defined a sufficient number of utterances for each intent.

• History—Shows your bot’s resolution history, so that you can identify when the
intents worked as expected and when they didn’t. You can use this feedback to
retrain your bot.

Utterances
When you’re building your training corpus, you can gauge how distinct your intents are
from one another by running an utterance quality report. This report shows you
different combinations of intent pairs, each rated on the similarity of their respective
utterances. It generates these results by randomly splitting the utterances into two
sets: training and testing. It builds and trains a model from 80% of the utterances and
then uses the remaining 20% to test this model. If you don’t already have a lot of
training data, you can build high-quality intents by combining this report with the
utterance guidelines.

11-1

Run an Utterance Quality Report
Use this report to find out which utterances are too alike or can be potentially
misclassified (associated with the wrong intent).

Important:

Before you run a report, you need to train your bot with Trainer Tm.

1. After the training completes, click Quality () in the left navbar.

2. Click Run Report. The report scores the intent pairs in terms of their utterances
that are too alike.

Score What Does this Mean? (And What Do I
Do?)

High While your bot can easily distinguish
between these intents, they still may have
utterances that are too alike, so you should
continue to edit and add training data.

Medium The utterances are so similar that they
potentially blur the meanings of these
intents. Because your bot may have trouble
distinguishing between these intents, edit or
delete these utterances.

Chapter 11
How Do I Use the Data Quality Reports?

11-2

Score What Does this Mean? (And What Do I
Do?)

Low The utterances are too alike, so the bot can’t
distinguish between them. To fix this, edit or
delete these utterances and then retrain the
bot. You can also add more utterances to
your intent.

3. If needed, click Show All. By default, this switch is toggled off (), so the
report shows only the medium and low-ranking intent pairs. Keep in mind that just
because a report ranks an intent pair as high quality, doesn’t mean that your
corpus is complete, or doesn’t need more utterances.

4. If needed, choose a sorting option to view the intent pairs.

5. Click an intent pair to see the similar utterances. By hovering over an utterance,
you an edit or delete it.

6. If needed, adjust the utterances.

Based on the score of the similar entities, your typical course of action is:

• Adding new utterances.

• Modifying the similar utterances.

• Deleting similar utterances.

• Leaving the utterances alone, even if they clash.

• Collapsing the two intents into a single intent if they have too many utterances
in common. This common intent uses entities (such as list value entities with
synonyms) to recognize the distinctions in the user input.

Important:

Keep your sights on how modifying the data improves your bot’s
coverage, not the report results. While you can increase accuracy within
the context of this report by adding similar utterances to an intent, you
should instead focus on anticipating real-world user input maintaining a
diverse set of utterances for each intent. If you pad your intents to suit
the report, your bot won’t perform well.

7. After you’ve made your changes, retrain your bot again and then click Rerun
Report.

Chapter 11
How Do I Use the Data Quality Reports?

11-3

Troubleshooting Utterance Quality Reports

Why does the report show similar utterances for high-quality intent pairs?

The report not only compares utterances, but also looks at an intent as a whole. So if
most of the utterances for an intent pair are distinct, a low number of similar ones
won’t detract from the overall quality rating. For example, if you have two intents called
FAQ and Balances which each have 100 utterances each. They’re easily
distinguished, but there are still one or two utterances that belong to each.

Why doesn’t the report show similar utterances for low-quality pairs?

This can happen because, on the whole, the report can’t distinguish between the intent
pair even though they don’t share any utterances. Factors like a low number of
utterances, or vague and general wording can cause this.

Why does the report continue to show my utterances as similar, even after I
edited them?

Whenever you delete or edit and utterance, you need to retrain the bot with Trainer TM
before you run the report again.

Suggestions
When you’re starting out with your data set, check the Suggestions page to find out if
your bot meets the minimum standards of having at least two intents, each of which

Chapter 11
How Do I Use the Data Quality Reports?

11-4

has two or more utterances.

History
While the Utterance and Suggestion pages help you evaluate your bot as you develop
it, you’d use the History page when your training data is robust. The reports that you
run from this page return user messages along with the intents that resolved them
ranked by win margin and confidence level.

Chapter 11
How Do I Use the Data Quality Reports?

11-5

The report is designed to help you look for:

• Complete failures (unresolved intents)—When your bot can’t classify the user
comment to any of its intents.

• Potentially misclassified user messages—When the top intent is separated from
the second intent by only a narrow margin.

• Low confidence levels—When the intended intent resolves the message, but just
barely, as indicated by a low confidence level.

How Do I Run a History Report?
1. Choose the time period. You can use one of the preset periods, like Today,

Yesterday, or Last 90 Days, or add your own by first choosing Custom and then
by setting the collection period using the date picker.

Chapter 11
How Do I Use the Data Quality Reports?

11-6

Tip:

If you don’t want to filter this data any further, then just delete the filter

criteria () and then click Search.

2. If you want to use the report to find out about intents that resolve the messages
correctly but with only a low confidence level or by a thin margin, first chose one of
the operators (All or Any) and then apply your search criteria.

3. Click Search. For each message within the time frame, the report shows you
which intent your bot used to resolve the message along with the second-runner
up. To reflect the intent ranking, the report shows you the intents’ confidence
ranking and, for the top intent, it’s win margin, the difference, in terms of
confidence, between it and the second intent.

Tip:

In general, you set the win margin at around 10%.

If you click Show All, you can see the lower-ranking intents (if any).

By expanding the General section of page, you can see which entities played a
role in resolving the message and the channel (which you can set as a filter).

4. If you think the message improves your corpus by say, widening the win margin
between the top two intents, select the intent’s confidence level radio button and

Chapter 11
How Do I Use the Data Quality Reports?

11-7

then click Add Example. Remember that since you’ve now added a new utterance
to your corpus, you need to retrain your bot.

Running Failure Reports
To identify all of the messages that your bot treated as unresolved because the
resolution fell below the confidence threshold, set Top Intent Confidence to a value
lower than the one set for the System.Intent’s confidenceThreshold property. You can
add the messages returned by this report to an existing intent, or if they indicate that
users want your bot to perform some other action entirely, you can use them to define
a new intent.

Running Low Confidence Reports
When the top intent resolves the message, but only with a low confidence might
indicate that you might need to revise the utterances that belong to the intents
because they’re potentially misclassified. To run a report of low confidence intents, set
Top Intent Confidence equal to a value that’s just above the one set for the
System.Intent’s confidenceThreshold property.

Troubleshooting Narrow Win Margins
Thin win margins might indicate where user messages fall in between your bot’s
intents. Review these messages to make sure that they are getting resolved by the
right intent. You can also configure the System.Intent’s confidenceWinMargin property
to help your bot respond to vaguely worded or compound user messages.

Viewing the Resolution History as a CSV File
If you prefer to analyze the report results using spreadsheet, then you can export the
report as a CSV file when you click Export. The CSV sorts the report data for the top
two intents using these columns:

• text

• topInent

• topScore

• secondIntent

• secondScore

• winMargin

• createdOn

• entityMatches

• channelId

Chapter 11
How Do I Use the Data Quality Reports?

11-8

Chapter 11
How Do I Use the Data Quality Reports?

11-9

12
Bots Analytics

Use the Analytics Collector API to send events to an analytics app via a Bots custom
component.

Adding Analytics to the PizzaBot Sample Bot
OMCe platform APIs, including the Analytics API, are available to a custom
component via the conversation.oracleMobile object.

Use conversation.oracleMobile.analytics.postEvent() to send data about your bot and
how it's being used to OMCe Analytics. You just need to make sure that the OMCe
Analytics application is associated with the backend that's running the custom
component, and that you configure a custom schema for the Analytics application to
handle the data.

To demonstrate how to add Analytics to a bot, we'll use the PizzaBot sample bot.

Setting up the PizzaBot Analytics Application
Set up the Analytics application in OMCe Analytics and attach it to the backend that
runs the custom component.

1. Open OMCe Analytics and create an application with the name PizzaAnalytics.

2. Add a new property of type Metric, and give it the name age.

Note:

For more information about custom schemas, see Custom Schemas in
Developing Applications with Oracle Mobile Cloud Enterprise.

3. Click Settings then click Application and copy the Application ID.

4. Open OMCe Mobile Apps and open the backend that runs the custom
components for the PizzaBot bot.

5. Click Settings and in the Applications ID field, paste the Application ID that you
copied earlier.

After the Analytics application and the backend are configured, set up your custom
code to post an event to the Analytics application. You do this by modifying the
existing age_checker.js custom component code.

Setting up the PizzaBot Custom Component
Add analytics to the AgeChecker custom component by modifying the code in
age_checker.js. You add code that takes the data that comes from the bot, and
uses the Analytics API to send it to the analytics application.

12-1

1. Open OMCe and go to Mobile Apps then APIs.

2. Open the API that contains the custom components that the PizzaBot sample bot
uses. If you're not sure which API it is, open the backend that runs the custom
components for the bot, and expand the Dependencies section where you'll see
the API that contains the custom components.

3. Click Implementation. When the Implementation panel opens click
bots_samples and save the downloaded api_implementation.zip file in a
convenient location on your hard drive. Keep this page open because you'll need it
in a later step when you upload the modified implementation.

4. Extract the files from api_implementation.zip and open
api_implementation/sample_bots/pizza/age_checker.js.

5. Add the following two functions, postEvent and postCustomAnalyticEvents, to the
bottom of age_checker.js:

/**
 * Posts a single custom analytics event, with a single custom property.
 * @param {object} analytics the custom code SDK analytics object,
 usually obtained from conversation.oracleMobile.analytics
 * @param {string} eventName the name of the custom event
 * @param {string} customProperty the name of the custom property
 * @param {string} customValue the value of the custom property
 * @returns {object} a Promise
 */
var postEvent = function (analytics, eventName, customProperty, customValue) {
 const timestamp = (new Date()).toISOString();
 return postCustomAnalyticEvents(
 analytics,
 {
 "name": eventName,
 "type": "custom",
 "timestamp": timestamp,
 "properties": { [customProperty] : customValue.toString() } //
custom values must be passed as String
 },
 timestamp
);
};

/**
 * Posts custom analytics events.
 * @param {object} analytics the custom code SDK analytics object,
 usually obtained from conversation.oracleMobile.analytics
 * @param {object} customEvents either a single custom event
 object or an Array of custom event objects
 * @param {string} sessionStartTimestamp ISO formated String
 representation of a Date object
 * @param {string} [sessionEndTimestamp] ISO formated String
 representation of a Date object
 * @returns {object} a Promise
 */
var postCustomAnalyticEvents = function (analytics, customEvents,
 sessionStartTimestamp,
sessionEndTimestamp) {
 const events = [];
 events.push(
 {
 "name": "sessionStart",
 "type": "system",

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

12-2

 "timestamp": sessionStartTimestamp
 }
);
 Array.isArray(customEvents) ? Array.prototype.push.apply(events,
customEvents) : events.push(customEvents);
 events.push(
 {
 name: "sessionEnd",
 type: "system",
 "timestamp": sessionEndTimestamp ? sessionEndTimestamp :
sessionStartTimestamp
 }
);
 return analytics.postEvent(events);
};

Tip:

The functions are generic enough that you can use them unchanged in
any custom code, not just the PizzaBot bot.

6. Next, modify the invoke method in age_checker.js to call the postEvent
function that you just added. Notice the use of
conversation.oracleMobile.analytics in postEvent().

invoke: (conversation, done) => {
 // Parse a number out of the incoming message
 const text = conversation.text();
 const matches = text.match(/\d+/);
 var age = 0;
 if (matches) {
 age = matches[0];
 }

 console.info('AgeChecker: using age=' + age);

 // Set action based on age check
 conversation.transition(age >= 18 ? 'allow' : 'block');

 // Original code until here. Analytics logic below.

 // captures age in a custom analytics event.
 postEvent(
 conversation.oracleMobile.analytics,
 "pizzaEvent",
 "age",
 age
).then(
 function (result) {
 done();
 },
 function (error) {
 console.warn('AgeChecker: error posting analytics.',
 error.statusCode, error.error);
 done();
 }
);
}

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

12-3

7. Zip up the api_implementation folder. Make sure the zip file has the same
internal structure as the one that you downloaded.

8. On the Implementation panel, click Upload an implementation archive and
upload the new api_implementation.zip file.

After the implementation is successfully uploaded, the bot is ready for testing.

Chapter 12
Adding Analytics to the PizzaBot Sample Bot

12-4

13
Instant Apps

Natural language conversations are, by their very nature, free-flowing. But they may
not always be the best way for your bot to collect information from its users. For
example, some situations, like entering credit card or passport details, require users to
enter specific information (and enter it precisely). To help your bot’s users to enter this
type of information easily, your bot can call an instant app, which provides forms with
labels, options, choices, check boxes, data fields, and other UI elements.

The FinancialBot calls an instant app for the fictitious Standard Bank that walks users
through a series of steps to resolve disputed charges. The FinancialBot and the instant
app show you how your bot transitions to an instant app, how bots pass variable
values to an instant app, and how the instant app returns the user to the bot. See
System.Interactive to find out how to embed an instant app in the dialog flow.

You can try this out this wizard-like app using the phrases like the ones defined for the
bot’s Dispute intent. For example, after querying the checking account balance, you
can enter “I want to dispute a charge” to receive a link which in turn opens the instant
app in a webview. When the instant app opens, it’s populated with values that are
passed from the bot: the date, merchant, amount, and description.

13-1

The instant app itself provides a wizard-like experience. When you’ve finished with it,
the instant app executes a callback to relocate you from the webview to your bot,
where it displays a confirmation message detailing your transaction. The confirmation
message includes the reason for the dispute and the dispute number, both of which
are values returned from the instant app.

The Instant App Builder

You can build these apps using the Instant App Builder, which you access by clicking
Instant Apps in the Bots landing page.

Chapter 13

13-2

Instant apps are made up of sets of panes, which display one at a time. You populate
these panes with various elements that can display charts or images and collect
customer data using widgets like checkboxes, radio buttons, and file upload functions.

To get you started, you can customize the templates that display in the landing page.
You can also use the Standard Bank instant app, which is invoked by the FinancialBot,
as a reference. You can also start from scratch by clicking the New Instant App tile.
See System.Interactive to find out how to integrate your instant app into the OBotML
definition.

Chapter 13

13-3

Creating an Instant App from Scratch

App Settings
App Settings is where you manage general information about your instant app.

Name

The instant app name is your internal way of identifying this instant app among all your
others on the instant apps main page. The name can include letters, numbers, and
special characters. The name is not exposed to the end user, as you can see in the
image Internal Description below.

ID

The instant app ID is how you reference the instant app if you need to call it from
somewhere, like from a bot, an API, or a JavaScript Snippet. When you create a new
instant app, the ID itself is derived from the instant app name that you enter. The ID
cannot contain special characters or spaces. You can edit the ID at any point, but if
you do change it, you will need to update any references to the previous ID.

Icon

An icon is the image that shows up on the instant app tile on the main instant apps
page. Remove unwanted icons by clicking on the red X in the top right corner. Then
you can drag and drop an icon, add an icon via regular file lookup, or input a URL.

Internal Description

The internal description is what shows up on the instant app’s tile on the main instant
apps page as a reminder of the particular instant app’s function.

Chapter 13
Creating an Instant App from Scratch

13-4

Initially Active

When you create a new instant app, you can set the instant app to be Initially Active
before you save it. If you set it to active, the instant app can be activated from the bot.
If you do not set it to Initially Active, then you can always set it to Active from the
instant app tile on the main menu. You can see which apps are inactive by the
Inactive display next to the instant app name.

Invite Message and Link

The Invite Message is a preconfigured message that is sent to customers inviting them
to use the instant app, and it is the first thing a customer sees. Include the {link} in the
position where you want the instant app link, and do not change anything else. The
message, including the link, cannot exceed 160 characters.

Laying Out an Instant App
Laying out an instant app includes selecting panes, elements, and adding identifying
information such as Pane IDs with the instant app builder. Instant app layouts are
highly customizable to suit your business needs.

Panes
Panes are essentially the pages of your instant app. Some scenarios require just a
single pane experience, where a customer clicks into the instant app, engages, and
then is taken back to the bot conversation. More complex instant apps will have
multiple panes to minimize the amount of information on a single screen. Panes are
flexible and allow you to optimize your customers’ experience based on the content
you’re delivering

When you first click to build out the layout of your instant app, you will see a single
pane as a starting point. Before jumping into adding Elements, make sure to edit Pane

Chapter 13
Creating an Instant App from Scratch

13-5

ID. Renaming Pane ID to describe the function or purpose of the pane will make it
easier to identify when modifying your instant app in the future.

Note:

Pane IDs can only contain letters and numbers. No spaces or special
characters are allowed.

Elements
Elements are the components within each pane that make up your instant app.
Element types are essentially templates for the types of components in an instant app.

All elements and functions are highly configurable with JSON. Element types are really
just templated JSON. They can capture everything from text inputs and labels, to
image galleries, photo uploads, and signature captures. This section includes tips on
using elements followed by a look into each element type.

Adding, Moving, and Deleting Elements
To add a single element, click on the element. When you add a single element, you
are taken into the configuration menu options for that element.

To move an element, click on it and drag and drop to the desired location. Elements
can be moved within a pane or across panes

Chapter 13
Creating an Instant App from Scratch

13-6

There are two ways to delete an element. When you click on an element and drag it,
you will notice a Delete bar on the bottom of your screen. Drag and drop the element
to the Delete bar to delete it.

OR, click on the ellipsis next to the element name and click Delete.

Chapter 13
Creating an Instant App from Scratch

13-7

Cloning Elements
If you’re using the same element multiple times across an instant app, you can easily
clone the element. To do so, click on the ellipsis to the right of the element name, and
choose Clone.

Note:

When an element is cloned, all associated configuration, style, and validation
is cloned to the new element, but any associated events and actions are not
cloned.

Shortkey for Adding Multiple Elements
While building your Instant App, there may be times when you know what Elements
you want to include and want to add them quickly in bulk. To do this, use Command +
Shift and click on each Element you want to add. This will add Elements to your active
Pane in the order they’re clicked. From there, you can go through each Element to
configure it as needed.

Common Configuration

Many elements have some common configurations. Here are the commonalities
between elements, followed by specifics for each element type.

Element ID

The Element ID is the name on the left list of elements. This ID is referenced
anywhere you are using JavaScript to affect this element.

Chapter 13
Creating an Instant App from Scratch

13-8

Initially Visible

You can make each element visible or invisible when the instant app pane loads. If it’s
invisible when loaded, then a user would not see it unless you create an action to
make it visible.

Initially Enabled

You can make an element enabled or disabled when the instant app pane loads. If it’s
not enabled when loaded, then a user could not input anything into or affect the
element. If you would like a user to be able to interact with it, then you would need to
set up an action to enable the element.

Label

Generally, a label is what you would see above an element that describes what it is or
its function. A few elements have unique label behavior which are called out in the
specific element. Labels can use HTML.

Display Label Inline

For Elements where the label is listed above it, you can select Display label inline, to
make the label appear on the same line as the element.

Placeholder

You will see a configuration for placeholder in a few different elements, primarily the
text input elements. Any text configured here will show in gray, inside the text input
box. Once a customer inputs any text into the field, the placeholder will disappear. A
common use for placeholders is to configure an empty label, but be sure to set a label/
description as the placeholder.

Chapter 13
Creating an Instant App from Scratch

13-9

Tool Tip

Tool tips can be used to show help text. The tool tip will show when users interact with
the element.

Styles

Styles are fairly similar across elements, with only a few variations.

Font

Text fonts and features within elements can be adjusted in these ways:

• Size: In Pixels

• Weight: Normal, Bold, Light

• Style: Normal, Italic, Oblique

• Alignment: Left, Center, Right, Justified

Layout

The Layout section of the Style Tab varies between elements. Input for the following
options can be given in pixels or as a percent

• Element Width: This is the width of the entire element. Different elements have
different defaults. For example, a label defaults to 100%. Setting the element width
to a smaller number allows for more than one element to show up on the same
line.

• Top Margin: The distance between the previous element and the element you are
editing.

• Left Margin: The space between the left edge of the instant app and where the
element begins.

• Right Margin: The space between the right edge of the instant app and where the
element ends.

Chapter 13
Creating an Instant App from Scratch

13-10

• Bottom Margin: The distance between the element you are editing and the
element which follows.

The Inner Dimensions control the used portion of the width of an element, given the
constraints you’ve created on element width, left and right margins, and the height of
the element. For example, if you set the element width of a button to 75 percent and
then set the Inner Dimension width to 100 percent, the button will expand to fill the
entire 75 percent. As another example, if you set the element width of a Label to be 50
percent the left margin to be 20 px, and the Inner Dimension width to be 50 percent it
would result in the label starting 20 px to the right, and only filling up half of the text
box, or 25 percent of the width of the instant app since the element width had already
been set to 50 percent (50 percent of 50 percent = 25 percent).

Foreground Color and Background Color

The Foreground Color generally controls the text in an element and the Background
Color generally controls the area of the element behind the text. They can differ
somewhat between elements because of the variety of element types, so specifics are
called out in each element. However, for any of the elements that have buttons
embedded in them (like Upload, Location, Signature), the button color can’t be
changed.

Border

For most elements, you can control whether there is a border around the element or
not, and how the border looks. You can adjust the width, whether it is solid, dotted, or
dashed, the shape of the corners, and the color. In some element types, for example
Images, if you increase the corners sufficiently and adjust the Layout, you can create
oval and round shapes.

Element Types
Element types influence validation options described here:

Text Inputs

Single Line Input

Single Line Input is one of the most common elements, and it can also be found in the
Common Elements section of your instant app layout pane. This element is used for
any text input and can accept letters, numbers, and special characters. A common use
for this element is to collect a customer’s name. Here are some things to remember
about Single Line Input:

• These elements have a maximum length of 256 characters.

• They can have several forms of validation. They can be required, have min/max
character validations, match a regular expression, or have JavaScript validation. If
you want to match a regular expression, add it in the Regular Expression field,
and if it fails, the user will receive the failure message. You can find more help with
Regular Expressions at https://regex101.com/

Multi-line Input

Use a Multi-line Input element for lengthier text. This element is similar to the Single
Line Input but with a few different configurations:

• Multi-line Input elements have a maximum input character length of 1000.

Chapter 13
Creating an Instant App from Scratch

13-11

• You can specify how many rows are shown in the display of this element.

• These elements can have several forms of validation. They can be required, have
min/max character validations, match a regular expression, or have JavaScript
validation. If you want to match a regular expression, add it in the Regular
Expression field. If it fails, the user will receive a failure message.

Email

Use this element to capture an email address. A customer must include @ and a
completed domain to avoid an error message. Email elements can have several forms
of validation. They can be required, match a regular expression, or have JavaScript
validation. If you want to match a regular expression, add it in the regular expression
field.

Number

Use this element to collect integers, currency values, percentages, or decimals. Phone
numbers have their own element, described below. The type of number you choose
affects the element display in the Instant App and enforces the number type during
text input. You can include, or exclude, a common separator for the thousands’ place.
Number elements can have several forms of validation. They can be required, match a
regular expression, or have JavaScript validation.

Phone

This element provides a stylized input field for phone numbers. Customers can use the
drop-down menu to set the default country code before entering their phone number.
Phone number elements can have several forms of validation. They can be required,
match a regular expression, or have JavaScript validation.

Chapter 13
Creating an Instant App from Scratch

13-12

Website Address

Use this element when you need to collect website information from your customers.
Website inputs must begin with http:// or https:// to be valid, otherwise users will see a
malformed url error message. Website address elements can have several forms of
validation. They can be required, match a regular expression, or have JavaScript
validation.

Rich Text

The Rich Text Element is similar to the Multi-Line Input element, but it allows agents
and customers to add HTML formatting inside the text field. Below the element are
three icons: the edit, preview, and help icons.

The help icon displays supported formats and samples. These formats include:

•
 line break

• bold text

• <i>italic text</i>

• <u>underlined text</u>

• <center>centered text</center>

• <h1>header text</h1>

Rich Text Elements can have several forms of validation. They can be required, have
min/max character validations, match a regular expression, or have JavaScript
validation.

Choice Inputs

Checkbox

The Checkbox Element is typically used for acknowledgement and offer a way for the
user to provide confirmation. For multiple confirmations, you can add multiple
checkbox elements or use the Pick List Element. The validation used is required/not
required.

Radio Buttons

Radio buttons allow users to specify a choice from a list of options. Configure the
options available for the user to choose from and specify the Value associated with the
Option, which you can link to an action. You should have a minimum of two options,
but you can add more as needed.

Chapter 13
Creating an Instant App from Scratch

13-13

If you check the box to Load Options with Action, you need to specify the values by
either adding an Execute JavaScript Snippet action in the App Sent event, or by
retrieving the values from a call to an external web API. In either case, the values must
be expressed as a JSON object with the following structure

{"options":
[{ "label": "Label One", "value": "value1" },
{ "label": "Label Two", "value": "value2" },
{ "label": "Label three", "value": "value3" }
]}

The validation supported is required/not required.

Picklist

A Picklist Element is used when you want a user to choose multiple options. You can
configure as many items in the Picklist as needed. If you check the box to Load
Options with Action, you need to specify the values by either adding an Execute
JavaScript Snippet action in the App Sent event, or by retrieving the values from a call
to an external web API. In either case, the values must be expressed as a JSON
object with the following structure:

{"options": [
{ "label": "Label One", "value": "value1" },
{ "label": "Label Two", "value": "value2" },
{ "label": "Label three", "value": "value3" }
]}

Select Menu

Select Menu Elements allow users to choose from a drop-down menu. In addition to
setting the options for the menu, you also have the ability to set a label inside of the
Select Menu box.

If you check the box to Load Options with Action, you need to specify the values by
either adding an Execute JavaScript Snippet action in the App Sent event, or by
retrieving the values from a call to an external web API. In either case, the values must
be expressed as a JSON object with the following structure:

Chapter 13
Creating an Instant App from Scratch

13-14

{"options": [
{ "label": "Label One", "value": "value1" },
{ "label": "Label Two", "value": "value2" },
{ "label": "Label three", "value": "value3" }
]}

The validation supported is required/not required.

Special Inputs

Buttons

Buttons are one of the most common elements in instant apps and are typically used
at the end of a pane, linked with an event and/or an action. They help a user navigate
within an instant app, or to end an instant app experience. You can style your button
and adjust button size in style layout. The inner dimension of a button should be set to
100 percent if you want the button to be the width of the device screen.

Upload Photo or File

The Upload Photo or File element allows users to upload an image or a file into the
instant app. Here is what the choices mean:

• Upload Label: If you enter text in the upload label, you will see it appear above
the Waiting for Upload message. This message can not be changed.

• Button Text: Set the upload text here that will appear on the button.

• Show Filename: Select this option if you want the user to see the name of their
uploaded file.

• File Size Limit: You can set the limit of the file size you would like to accept. You
must enter it in bytes and it defaults to 10000000 (10MB).

• Show a Preview of the Uploaded Image: Select this if you would like your user
to see their image after it is uploaded. Note: When you are building the Instant App
and using either the preview or test mode, you aren’t able to actually upload an
image. During those simulations, you will just see a placeholder for an image/file.

• Preview Height Max and Preview Width Max: you may set the size of the
preview in pixels. The default is height 200 px, width 300 px .

• The size, weight, and style of the upload label, the message Waiting for Upload,
and the button text are controlled by the size, weight, and style in the style tab.
The Foreground Color controls the color of the upload label text and the Waiting
for Upload message. The color of the button and button text cannot be changed.
 The Background Color controls the area of the upload element, behind the
upload label, Waiting for Upload message, and the button.

Chapter 13
Creating an Instant App from Scratch

13-15

• The validation supported is required/not required.

Date

The Date element lets users easily select a date from a dropdown calendar. Since the
date is not manually input you don’t need to worry about formatting; it will always be
formatted the same.

• Placeholder: That is the text that will appear in the area a user would touch/click
into to select the date. It will be replaced by the date when selected.

• Get Time: Select Get Time, if you would like the user to be able to select a time as
well as the date.

• Minimum Date and Maximum Date: When these are set, a user will not be
permitted to select a date earlier than the Minimum or later than the Maximum. If
you are manually entering the date in the Instant App Builder instead of using the
drop-down calendar, it must be in the format MM/DD/YYYY.

• The size, alignment, weight, and style of the placeholder text is controlled on the
Style Tab. Placeholder text color cannot be adjusted. The width and margins of the
Date Element can be adjusted using pixels or percentage, but if you make the
width too small, the user will not be able to see the full date and time. The area of
the Date Element behind the placeholder text is controlled by the background
color.

• Date elements can be required/not required and you can also write a JavaScript
snippet to validate the element.

Signature

The Signature element allows you to capture the user’s signature. The user can sign
and then clear or confirm their signature. You can adjust the text on the Confirm button
(using the Confirm Button Label), but not the Clear button. Both the Clear and Confirm
buttons will always be initially disabled and are enabled when a user writes a
signature. If the user clears the signature, then both buttons will become disabled
again.

• The style aspects of the Signature element that can be controlled through are the
background color of the signature box and the foreground color of the signature .

• The validation supported is required/not required.

Star Rating

The Star Rating element allows you collect a rating from your user. This element is
very flexible. You are able to set the number of stars, and can change them from stars
to any other Font Awesome icon. You are also able to set icons to go at the left and
right of the stars; they default to frowning and smiling faces, but they can be replaced
by any Font Awesome icon, or you can remove them altogether.

• From a style perspective, the font size controls the size of the Font Awesome icon,
foreground color controls the color of the Font Awesome icon, and the background
color controls the color behind the icons.

• The validation supported is required/not required.

Slider

The Slider element allows a user to move a selector along a numeric spectrum and
pick a number within the range. You can set the minimum value (Min Value input field)

Chapter 13
Creating an Instant App from Scratch

13-16

and the maximum value (Max Value input field); both must be integers and the Max
Value must be equal or greater than the Min. You may also set the amount by which
the slider will increment as a user slides it along (Step input). For example, if your Min
Value is set to 0, your Max Value to 10, and your Step value to 2, then as the user
moves the slider along, it would increase from 2 to 4 to 6, and continuing on.

• To change the right, left, top, and bottom margins, you can enter the value as a
percentage or in number of pixels. The area behind the Slider can be adjusted by
using the Background Color.

• There is no validation for a slider.

Location

The Location element can be used to capture the location of a user. In order for the
Location element to be set up, you need to have a Google Maps API Key. For it to
work with a user, their device needs to support location services and be enabled.

• The Location element can be used to capture the location of a user. In order for
the Location element to be set up, you need to have a Google Maps API Key. For
it to work with a user, their device needs to support location services and be
enabled.

• The Location element can be used to capture the location of a user. To set up the
Location element, you need to have a Google Maps API Key. For it to work with a
user, their device needs to support location services and must be enabled.

• Show Map: If enabled and the user’s location is received, the user will see a map
of their location.

• Google Maps API Key: If you are currently have a usable Google Maps API key,
paste that key in the indicated input field. If you do not have a Google Maps API
key and would like to use the location feature, you can go to the Google Maps site.
Once you have the key, you can paste it in the input field.

Chapter 13
Creating an Instant App from Scratch

13-17

• Destination: If you provide a destination in this field, then, after the location of the
user has been discovered, the map will render with directions from the user’s
location to the destination. For example:

• Font Size, Foreground Color, Weight, and Style control the size, color, weight,
and style of the label text on the button; Background Color controls the color of
the button itself. To change the right, left, top, and bottom margins, you can enter
the value as a percentage , for example 10%, or in number of pixels, for example,
20px.

• The only supported validation for Location Elements is required.

Barcode Entry

The Barcode element allows a user to take a picture of a barcode. From that image,
the barcode numbers are extracted and displayed. If a barcode is not detected in the
uploaded image, there’s a message that alerts the user and they can re-upload. Note
that in Preview and Test Mode, a real image will not be uploaded; you will only see a
placeholder image.

• Instructions: The Instructions are what displays within the barcode box, above
the button. Note that the text on the button, “Select Image”, and the text beneath
the button can’t be changed.

• Allow Manual Barcode Entry and Manual Input Label: If you select Allow
Manual Barcode Entry, a user could enter in the barcode number if they decide
not to upload a photo of the barcode or if there are challenges in character
recognition from the photo. The Manual Input Label controls the text that is seen
for the input if you do want the manual entry option to be available.

• Clear Button Label: After an image is uploaded, a “Clear” button appears. This is
used to clear an exiting image if the image isn’t readable or the user wants to
provide a different image. The Clear Button Label sets the text on that button. Its
color cannot be changed.

• Show Preview Image: When checked, this will show the uploaded image.

• Error Message: Barcode Not Detected: If an image is uploaded where no
barcode can be detected, this message will display. This message can be
customized.

Chapter 13
Creating an Instant App from Scratch

13-18

• The Foreground Color controls the instructions text and or Drag and Drop text.
The Background Color and Border control the background color and the border
of the barcode box where the instruction text, Select Image button and or Drag
and Drop text are.

• Barcode elements can have several forms of validation. They can be required, the
barcode entry can be set to match a regular expression, and you can also set a
JavaScript validation function to validate it.

Images and Layout

Image

You can upload a static image to your instant app. Do this by dragging and dropping
any image on your desktop, or by entering an image URL to upload. Styling is limited
on images and is restricted to layout, where you can adjust dimensions and border
color.

Image Gallery

An Image Gallery allows users to see a set of images in a carousel. You can add
images by drag and drop or by looking up a file. You can control the way the carousel
looks and interacts via a series of checkboxes, for example, Show Index, and Show
Play Button; see image below for a complete set. You can also set the rate at which
the images advance (in milliseconds) by setting the Play Interval. There are no style
or validation options with the Image Gallery.

Divider

The Divider Element creates a line in the instant app. Through the Style Tab, you can
control the height of the bar (in pixels only) as well as its color. The divider is a fixed
length, which is the full width of the instant app. There are no validation options.

Content

Label / Text

The Label element allows you to add static text anywhere within your instant app. This
element is often used to create headers for sections or to write lines of text between
other elements. You can format this element using markdown.

Chapter 13
Creating an Instant App from Scratch

13-19

HTML

The HTML element gives you a place to write your own HTML, using a limited subset
of supported HTML:

• <div></div>

•

• <center></center>

• <u></u>

•

• <i></i>

•

•

• Font Awesome icons can also be used. If you click out of the HTML box, you see
your text appear in the preview.

• The options in the style tab will not override your HTML. For instance, suppose
you write this HTML:

<center> Hello !</center>

 How are you?

• On the style tab, if you select weight light, only “Hello!” is light. If you select
alignment right, only “How are you?” is aligned right. If you select italic, both are
italicized, but “How are you?” remains bold.

• There are no validations for the HTML element.

Social Buttons

The Social Buttons Element provides you the option to display Facebook, Twitter,
LinkedIn, and Instagram icons in the instant app. When the user clicks on one of the
icons, it takes them to the URL you provided on the Configure Tab. If you do not input
a link for a particular social network, the icon does not show up. For instance, if you do
not want to have an icon for Instagram show up on your instant app, simply leave the
Instagram input field blank.

• On the Style tab, the background circle and the actual icon, for example the bird
for Twitter, are controlled separately. The icon’s size and color are controlled by
the font size and foreground color. The color of the circle around the icon is
controlled by the background color. A circle is the default shape because the inner
dimensions are set to equal numbers (50px, 50px). If those are not equal, it will
result in an oval. Also, the border of the circle has rounded corners set to 50%. If
that is changed, you create shapes other than a circle, depending on the
percentage set and on the inner dimensions.

• There are no validations for social buttons.

YouTube

The YouTube element will show the user an image link to a YouTube video. When the
user clicks on a video, it plays within the instant app; the user is not be taken out of
the instant App.

Chapter 13
Creating an Instant App from Scratch

13-20

• Label: The label displays text above the image link to the video

• Video URL: In the video URL field, you input the URL to the YouTube movie.

• Show URL: If you enable show URL, the video’s URL displays below the image
link.

• For the style, you can configure the top, bottom, right, and left margins of the
image of the video using pixels or percentage.

• There are no validations for the YouTube element.

Embedded Website

The Embedded Website Element allows you to iFrame a website to your instant app
with a fixed height and width. You might do this, for example, if you want to be able to
process a payment for a user. You would input the URL in the website URL and if you
want the URL to be visible (it renders above the iFrame), you select Display URL. For
privacy or other reasons, uncheck Show the Website to Sender if the user is the only
one who should be able to see the website. If the website you are embedding has data
that you want to pass back to the instant app, you should select Append Callback
URL. Following our example of processing a payment, if a payment succeeds, you
may want the user to have one experience, and if it fails, you may want the user to
have a different experience. In order to set element values and drive different instant
app behaviors, select Append Callback URL. These instructions detail how callback
URLs work:

• You can set the fixed height of the iFramed website by adjusting the inner
dimension height in pixels, and the width by the left margin and right margin (in
pixels or percentage).

• There are no validations for the embedded website element.

PDF Viewer

The PDF Viewer Element allows your user to read through a PDF within the instant
app. You can provide the file via drag and drop or file upload, and also set the page
number you want displayed first. The user can navigate to the document using the
next and previous buttons. However, these buttons are not configurable.

• You can adjust the size of the PDF display, but if you input an inner dimension
greater than 100%, you risk not displaying parts of the file, because there is no
horizontal scroll bar. The default inner dimension is 90%.

• There is no validation for the PDF viewer.

Chart

The Chart Element allows you to create four different chart types (bar, pie, line, and
scatter chart) that render in your user’s instant app. For each, you can manually input
data in the chart element UI or dynamically pull in data from an external source using
JavaScript snippets or parameters.

Note:

If you do use JavaScript or parameters, those override any static values you
have entered.

Chapter 13
Creating an Instant App from Scratch

13-21

• Single series only is permitted and each chart type has a specific data format and
maximum number of recommended data points.

• When you first look at the chart element, each chart type is pre-populated with
static values. This allows you to switch between the different chart types to see
how a chart renders. If you want to use JavaScript or parameters to create the
chart, that data does not render a chart in preview or test mode. To see how your
chart will look with dynamic data, configure and style it with static data and then
uncheck Enter static values manually . If you change the static values of a bar,
pie, or line chart, the changed values are maintained if you switch between those
chart types. Scatter charts have a different data input format; any changes to the
static values of bar, pie, or line charts are not preserved if you change to a scatter
chart.

Bar Chart

• Bar chart values must be entered as: Label,Value. Labels cannot contain a
comma. Values are numbers that contain "+", "-", and ".", but no commas, spaces,
or other special characters.

• Bar charts support a maximum of 40 data values, but render best with 20 or fewer.
The colors of the bars can be set on the style tab using the five color palette
options.

• Data labels: You can chose to whether to show or hide data labels. If you show
them, the number value for each bar shows on the graph. Via the style tab, you
can adjust the label placement of the data label up or down in pixels, and you can
control the label color with the label fill color.

• The chart title, horizontal (x) axis title, and vertical (y) axis title are set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and chart and axis title color. Their style is the same; you cannot
control them separately.

• The labels default to horizontal alignment along the horizontal (x) axis. To make
them angled and permit more labels, use the style tab’s horizontal axis label angle.
The angle can be entered as a positive or negative value:

• By default, the vertical (y) axis minimum and maximum will be inferred from the
data. if you want to set them yourself, you can uncheck Infer from Data and enter
your own minimum and maximum values. These values can be positive or
negative.

• You can toggle to show or hide the legend using the Display Chart Legend
checkbox.

Line Chart

• Line chart values must be entered as: Label, Value. Labels cannot contain
commas. Values are numbers that can contain "+", "-", and ".", but no commas,
spaces, or other special characters are accepted.

Chapter 13
Creating an Instant App from Scratch

13-22

• Line charts support a maximum of 40 data values, but render best with 20 or
fewer. The color of the line can be set on the style tab using the data color option.

• Data labels: You can chose to show or hide data labels on your chart. If you show
them, you see the number value for each point on the graph. Via the style tab,
you can adjust the label placement of the data label in pixels, and you can control
the label color with Label Fill Color.

• The chart title, horizontal (x) axis title, and vertical (y) axis title can be set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and the chart and axis title color options. The title style is the
same; you cannot control title styles separately.

• the labels default to a horizontal display along the horizontal (x) axis. To make
them angled and permit more labels, use the style tab’s horizontal axis label angle.
As in the bar chart, the angle can be entered as a positive or negative value.

• By default, the vertical (y) axis minimum and maximum will be inferred from the
data provided. If you want to set them yourself, uncheck Infer from Data and
enter your own minimum and maximum values. These can be positive or negative
values.

Scatter Chart

• Scatter chart values must be entered as: xValue,yValue. Values are numbers that
can contain "+", "-", and ".", but no commas, spaces, or other special characters.

• Scatter charts support a maximum of 200 data value pairs, but render best with
100 or fewer. The color and size of the points can be set on the style tab using the
data color and scatter size options.

• Data labels: You can chose to show or hide data labels on your chart. If you show
them, the Y-value for each point shows on the graph. Via the style tab, you can
adjust the label placement of the data label up or down, and you can control the
label color with the label fill color.

• The chart title, horizontal (x) axis title, and vertical (y) axis title are set on the
configuration tab and their size, weight, and color are controlled on the style tab
via size, weight, and chart and axis title color. Their style is the same; you cannot
control them separately.

• The labels themselves default to horizontal placement along the horizontal (x)
axis. To make them angled and permit more labels, use the style tab’s horizontal
axis label angle. As in the bar chart, the angle can be a positive or negative value.

• By default, the vertical (y) axis min and max and the horizontal (x) axis min and
max are inferred from the data provided. If you want to set them yourself, you can
uncheck Infer from Data and enter your own minimum and maximum values.
These can be positive or negative values.

Pie Chart

• Pie chart values must be entered as: Label,Value. Labels cannot contain a
comma. Values are numbers that can contain "+", "-", and ".", but no commas,
spaces, or other special characters are allowed.

• Pie charts support a maximum of 20 data values, but render best with 10 or fewer.
The colors of the chart components can be set on the Style Tab using the five
Color Palette options. The Style Tab also allows you to create a donut chart by
adjusting the inner radius and add padding between the slices by using Pad
Angle . By default, the pie chart will be 360 degrees. However, you can adjust

Chapter 13
Creating an Instant App from Scratch

13-23

these angles using the start angle and end angle by entering the desired degrees
(positive or negative).

• Data labels: You can chose to show or hide data labels on the pie chart slice. If
you show them, you can select any combination of the value itself (the value part
of the Label, Value), the percent that the value represents of the whole, and/or the
slice name (the value part of the Label, Value). On the configuration tab, you can
adjust the data label placement, moving it in or out from the center of the pie. Via
the style tab, you can control the label color with the label fill color.

• The chart title is set on the configuration tab and its size, weight, and color are
controlled on the style tab via size, weight, and chart and axis title color.

• You can toggle the show or hide the legend using the Display chart legend
checkbox.

Pane Validation
Each pane in an instant app has two main validation options:

1. Validate individual input Elements as they are edited as well as all when
submitted—This means that if a customer enters data that’s not valid (for
example, a phone number that does not conform to the prescribed regex), then
they would immediately see an error message. The instant app will also check that
everything is valid before moving on to the next pane.

2. Validate all inputs only when submitted—When you set this condition, a
customer doesn’t see an error message immediately after entering data that’s not
valid. In this case, the customer could continue to fill out the other fields and
wouldn’t be confronted with the error message until the problematic data gets
submitted.

Add the messages that display under either of these conditions in the Pane Error
Message field. This message appears directly above the element (typically, a button)
that triggered the submission of the invalid data. Using the Validation tab for an
individual element, you can create an additional error message that displays next to
the error-causing element(s).

You can also validate a pane by writing your own JavaScript. The message included in
the code is triggered when the pane is submitted. See The Validator Object.

Chapter 13
Creating an Instant App from Scratch

13-24

The Validator Object

Use the Validator Object to set and clear element errors for complex validation
scenarios. For example:

if (element.value == "Phil") {
 validator.displayElementError("input", "Can't be Phil");
} else {
 validator.clearElementError("input");

As shown in this snippet, the object surfaces two functions:

• validator.displayElementError(<ElementId>,<errorMsg>

Note:

If the snippet does not call displayElementError during execution, then
that element is considered valid.

• validator.clearElementError(<ElementId>);

You can define Validator object from the Validator tab when you select the Execute
JavaScript Validation option for an input element.

Events and Actions
In the Events and Actions section for an instant app, you specify actions that will occur
when the events fire. For instance, when the customer clicks a radio button, the instant
app fires the event associated with the radio button’s changed event. Or, when the

Chapter 13
Creating an Instant App from Scratch

13-25

instant app is sent to the customer, the App Sent event is fired. This event might be
used to set up the initial element values, hit an external web API to collect data, or
make certain elements invisible or disabled. In summary, the Events and Actions
section is where you make your instant apps dynamic.

Events with associated actions are displayed with a green dot in the upper right
corner. Events without any associated actions will not have a dot. For example, in the
following illustration, the input element firstNameInput has configured actions, while
the shippingOption radio button element does not.

App Events

• App Sent Event—This event and any associated actions are fired the very first
time the instant app is sent to the recipient (a customer). Typically, you use this
event for disabling or hiding elements, calling an external web API to retrieve data
that is used in the instant app, and for instantiating input elements with their initial
values.

• Customer Connected Event—This event and any associated actions are fired
every time the customer opens the instant app. Most often, you can use this event
to refresh data from an external web source, ensure consistency and validity of the
various values, and to reset the active pane.

• Customer Disconnected Event—This event and any associated actions are fired
when the recipient disconnects from the app. In general, you would use this event
is to pipe partially completed data to an external web source or to the bot.

• App Locked and Unlocked Events—This event and any associated actions are
fired when the instant app is locked or unlocked. The instant app can be locked or
unlocked using actions, a JavaScript snippet, or by a manual action by the sender.

• Input Value Changed and Button Pressed Events—When instant Apps have
input or button elements, an event is automatically created for that element. An
element’s input events are arranged by pane. For example, the following
illustration shows the events that were created for two separate panes. On the first
pane (PANE_1 Events), there is an event for the single line input element named
firstNameInput. This element has a green dot, which indicates that actions have
been configured for it. On the second pane (PANE_2 Events), there are two

Chapter 13
Creating an Instant App from Scratch

13-26

events: one for the descriptionInput , a multi-line Input element and another for the
submitButton Button Press event.

The Choice elements (Radio Buttons, Checkbox, Pick List, Select Menu, Button
List) support Conditional Action Lists. For these events, you can build action lists
that execute when a specific condition is met. For example, the following
illustration shows a radio button with Conditional Action Lists. The conditions are
tested and then executed sequentially. One of the options for the Condition is
value changes. By selecting this option, you enable the actions to fire whenever
the value changes for the element.

Chapter 13
Creating an Instant App from Scratch

13-27

You can delete a condition by clicking the X icon in the upper right corner
associated with the condition. Deleting a condition will delete any and all
associated actions.

Actions
Actions can be configured for each event. These actions can modify the state of the
app, for example, by setting an element value, showing or hiding elements or
activating a pane. You can also use them to call external web APIs or to execute
JavaScript snippets.

For actions that require an element to operate on (for instance, the action), you specify
the element by dragging and dropping them from the Layout section. See Adding,
Moving, and Deleting Elements.

You can create actions using the Instant App Builder, or specify them
programmatically and execute them as a JavaScript Snippet.

Event Action JavaScript Function
Signature

Computation JavaScript Snippet N/A

Element Operations Set Element Value app.setElementValue(Elemen
tId, value)

N/A Make Elements Visible app.makeElementsVisible(El
ements)

Chapter 13
Creating an Instant App from Scratch

13-28

Event Action JavaScript Function
Signature

N/A Make Elements Invisible app.makeElementsInvisible(
Elements)

N/A Enable Elements app.enableElements(Element
s)

N/A Disable Elements app.disableElements(Elemen
ts)

N/A Toggle Visibility app.toggleVisibility(Eleme
nts)

N/A Toggle Enabled app.toggleEnabled(Elements
)

N/A Set Element Label app.setElementLabel(Elemen
tId, textOrHTML)

N/A Set Element Properties app.setElementProperties(e
lementId, properties)

External Data Call External Web API chatbox.callExternalWebAP
I(dataKey, eventName,
method, URL) and other
variants.

Pane Operations Activate and Show Pane app.activatePane(PaneName)

N/A Reset Elements app.resetElements(ElementN
ame) and
app.resetElements(PaneName
)

Interaction Play Sound app.playSound(soundNameOrU
RL, volume)

N/A Show Alert Dialog app.showAlertDialog(dialog
TextOrHTML)

N/A Focus Element app.focusElement(ElementNa
me)

N/A Open Website chatbox.openWebsite(url,
dialogMessage)

N/A Open Handset SMS chatbox.openHandsetSMS(mes
sage, phoneNumber,
dialogMessage)

Audit/Console Set App Status app.setAppStatus(statusStr
ing)

N/A Post Audit Trail app.postAuditTrail(string)
;

App Lifecycle Lock App app.lock()

N/A Unlock App app.unlock()

N/A Launch Another Instant App chatbox.launchInstantApp(s
chemaId, [params])

N/A Exit to Bot app.exitToBot({key: value,
key: value})

Chapter 13
Creating an Instant App from Scratch

13-29

JavaScript Snippet
This action, which executes JavaScript on the server, broadens your options for
configuration and error checking. You can also use it to create dynamic customer
experiences.

Each JavaScript Snippet is instantiated with a function signature.

• Button Press Events (for Button Elements)—function buttonPressed(app, chatbox,

customer, element) {}

• Value Changed Events (for Input Elements)—function valueChanged(app,chatbox,

customer, element, oldValue, newValue) {}

• App Sent Event—function appSent(app, chatbox, customer) {}

• Customer Connected Event—function customerConneted(app, chatbox, customer,

count) {}

• Customer Disconnected Event—function customerDisconnected(app, chatbox,

customer) {}

• App Locked Event—function appLocked(app,chatbox,customer) {}

• App Unlocked Event—function appUnlocked(app.chatbox.customer) {}

• Input Validation Event (on an Input Element’s Validation tab)—function

validateElement(appData, chatboxData, customerData, Element, validator) {}

When the function is called on the server, function parameters are instantiated with
objects that can be accessed and used along with functions that perform actions that
are the equivalent to the actions that you configure with the Instant App Builder.

Function Parameters Description

app.appId The unique identifier for this instance

app.schemaId The schema number for this Instant App

app.createdTimestamp The number of milliseconds since 1/1 1970

Chapter 13
Creating an Instant App from Scratch

13-30

Function Parameters Description

app.status A string denoting the app’s current state as set
by app.setAppStatus(str).

app.locked A boolean indicating if app is locked/unlocked

app.activePane A string indicating name of the current Pane

app.tags

app.parameters A key-value list of parameters passed to the
Instant App at launch

App.Elements

[
 {
 id
 type
 visible
 enabled
 label
 properties
 value
 }
]

A list of elements and all their associated
information.
• id—String indicating Element ID or name
• type—Element Type (button, chart, etc.)
• visible—Boolean indicating current

visibility
• enabled—Boolean indicating current

enablement
• label—String indicating current label
• properties—Element properties (type

varies by Element)
• value—Element value (type varies by

Element)

customer.customerId A unique customer ID for current customer

customer.name The customer name, if known

JavaScript Snippet Execution

• Limited Run time and Length—JavaScript Snippets are limited to a total server run
time of 1s. If your snippet exceeds that time, an error will be posted and the
snippet will fail to execute. Snippets are limited to 10000 characters in total length.

• External Resources—The only way to access external resources is to use the
app.callExternalWebAPI() function, which executes asychronously and returns data
to a named callback event for further processing.

• Asynchronous, Server-side Execution—The code that is executed on the server-
side. No client side injection is possible and each snippet is sandboxed to avoid
data integrity issues. Snippets execute asynchronously; blocking operations are
not allowed or supported.

• Actions Performed Post-Execution—Values that are changed through a function
call are not immediately reflected in the objects that were passed to the function.
For instance, calling app.hideElements(“input”) will not affect the value of
app.elements.input.visible within the scope of the function. For example:

print(app.elements.input.visible);
app.hideElements("input");
print("After hiding: " + app.elements.input.visible);

The following illustration shows how the Console reflects this action, with the
visibility remaining unchanged. See Test Mode.

Chapter 13
Creating an Instant App from Scratch

13-31

Commonly Used JavaScript Snippets

Here are some common JavaScript snippets and guidelines.

How to Change the Value of an Element

function valueChanged(app, chatbox, customer, element, oldValue, newValue) {

 if (newValue) {
 var capitalized = newValue[0].toUpperCase() + newValue.slice(1);
 app.setElementValue(element.id, capitalized);
 }
}

How to Change the Behavior of the Instant App Based on a Selection of a Radio
Button or Select Element

function valueChanged(app, chatbox, customer, element, oldValue, newValue) {
 switch(newValue) {
 case "shippingIssue":
 app.showElements("description");
 app.hideElements("starRating");
 break;
 case "return":
 app.showElements("starRating");
 app.hideElements("description");
 break;
 case "changeAddress":
 app.activatePane("changeAddressPane");
 break;
 }
}

Set Element Value
This action sets the value of an input element. To configure this action, drag and drop
the element and then specify a value. You can define this as a static value, but you
can access other element values or parameters using brace notation. For example:

• The following illustration shows setting the fullName element to a static value.

Chapter 13
Creating an Instant App from Scratch

13-32

• In this illustration, the fullName element is set to the value of the {firstName} and
{lastName} values.

• This illustration shows setting value of Picklist element to check options
corresponding to value1 and value2.

JavaScript Action

app.setElementValue(“ElementId”, value);

Important:

You’ll get an error if you use setElementValue to change the label or other
properties of an element.

Make Elements Visible
This action displays one or more hidden elements.

Chapter 13
Creating an Instant App from Scratch

13-33

JavaScript Action

app.showElements("ElementName"); // single element
app.showElements("ElementName", "ElementName2"); // comma-separated Elements
app.showElements(["ElementName", "ElementName2"]); // list of Elements

Make Elements Invisible
This action hides one or more hidden elements.

JavaScript Action

app.hideElements("ElementName"); // single element
app.hideElements("ElementName", "ElementName2"); // comma-separated elements
app.hideElements(["ElementName", "ElementName2"]); // list of elements

Enable Elements
This action enables the input of the elements that you drag and drop from the Layout
category. The elements enabled by this action still respect the Element Usability
setting, meaning that the element remains disabled when you’ve enabled an element
for a target that can’t use it. See Common Configuration.

JavaScript Action

app.enableElements("ElementName"); // single element
app.enableElements("ElementName", "ElementName2"); // comma-separated elements
app.enableElements(["ElementName", "ElementName2"]); // list of elements

Disable Elements
Use this action to disable input for the elements that you drag and drop from the
Layout category. When you disable an element, it’s grayed out and in this state, can’t
accept a customer’s input or manual updates.

Chapter 13
Creating an Instant App from Scratch

13-34

JavaScript Action

app.disableElements("ElementName"); // single element
app.disableElements("ElementName", "ElementName2"); // comma-separated elements
app.disableElements(["ElementName", "ElementName2"]); // list of elements

Toggle Visibility
This action toggles the visibility for the elements that you drag and drop from the
Layout category. If an element is invisible, it will become visible (and vice versa).

JavaScript Action

app.toggleVisibility("ElementName"); // single element
app.toggleVisibility("ElementName", "ElementName2"); // comma-separated elements
app.toggleVisibility(["ElementName", "ElementName2"]); // list of elements

Toggle Enabled
This action toggles the input state for the elements that you drag and drop from the
Layout category. If an element is enabled, it will become disabled. Likewise, if an
element is disabled, it will become enabled.

JavaScript Action

app.toggleEnabled("ElementName"); // single element
app.toggleEnabled("ElementName", "ElementName2"); // comma-separated elements
app.toggleEnabled(["ElementName", "ElementName2"]); // list of elements

Set Element Label
Use this action to set a label value for an element. To configure this action, drag and
drop the element from the Layout category and then specify the value. You can add a

Chapter 13
Creating an Instant App from Scratch

13-35

static value, a brace notation (if you need the label to access values from other
elements and parameters) or a combination of both. You can format the label using a
subset for HTML.

• As shown by the InputField Element in this image, you can set the set the label
value as a static value (My new label).

• This image shows using static values and brace notation for stored values (Welcome
{firstName}).

• This image shows a combination of a static value, HTML tags and value
replacement through brace notation (Welcome <span style=’color:
red’>{firstName}).

The following image shows how this combination renders the label at runtime.

JavaScript Action

app.setElementLabel(“ElementId”, “new Label (supporting {} and HTML)”);

Note:

Using setElementLabel on a Checkbox Element also changes the text that’s
next to the checkbox.

Chapter 13
Creating an Instant App from Scratch

13-36

Set Element Properties
This action is currently only used to set the properties for the Chart Element. The way
chart data is read is app.chartElement.properties.data. This is set as:

app.setElementProperties("chartElement", { "data": d });

app.element.properties is an object that stores properties that are settable with the
app.setElementProperties() function. It supports only the data property. For example:

var chartData = app.elements.chartElement.properties.data

app.setElementProperties(elementId, properties) sets a collection of properties on the
given element. The properties parameter is a key-value map of the properties to
update and their updated value. It supports only the data property. For example:

app.setElementProperties("chartElement", { data: chartData })

Call External Web API
Use this action to call an external API endpoint. To configure this action, specify the
API method (GET, DELETE, PATCH, POST, or PUT) and the URL endpoint.

Data from the external web API will be sent to the event that you specify in the Event
Name field. To process the returned values, you’ll need to create a Named Callback
Event whose name matches the value that you enter in this field.

Note:

All external web API calls are asynchronous in that they don’t block and wait.
Instead, they execute any subsequent actions immediately. When the data is
returned from the API call, the specified Named Callback Event will then fire
and execute.

If you provide a value in the Data Key field, use brace notation to make the API return
data addressable. For example, if your Data Key is called myCurlyData, you can add
{myCurlyData.x} to the Elements in the JavaScript that support the curly notation format.

To test various scenarios without actually having to hit the specified endpoint, you can
also specify test response and the status code. In Test Mode, when the action is
executed, this test response and status code are sent to the named callback event.
See Test Mode.

Chapter 13
Creating an Instant App from Scratch

13-37

JavaScript Action

There are six variants of the chatbox.callExternalWebAPI Action:

chatbox.callExternalWebAPI(dataKey, eventName, method, url);
chatbox.callExternalWebAPI(dataKey, eventName, method, url, value);
chatbox.callExternalWebAPI(dataKey, eventName, method, url, value, contentType);

// value and contentType are optional (needed where method equals POST or PUT)
// contentType defaults to application/json if not specified.

chatbox.callExternalWebAPI(dataKey, eventName, method, url, testModeStatusCode,
testModeResponse);
chatbox.callExternalWebAPI(dataKey, eventName, method, url, value,
testModeStatusCode, testModeResponse);
chatbox.callExternalWebAPI(dataKey, eventName, method, url, value, contentType,
testModeStatusCode, testModeResponse);

Activate and Show Pane
This action switches the pane that’s currently active. Using this action, you can switch
context and also add wizard-like behavior to your app.

To configure this action, drag and drop a pane from the Layout category.

JavaScript Action

app.activatePane("PaneName");

Reset Elements
Use this action to reset elements (along with their visibility, label, and value attributes)
to their original state. For example, you can configure this action for a form reset
button by dragging and dropping the elements that the button resets.

JavaScript Action

app.resetElements("ElementName"); // single element
app.resetElements("PaneName"); // all elements on the specifiedPane
app.resetElements(["ElementName", "ElementName2"]); // list of elements

Chapter 13
Creating an Instant App from Scratch

13-38

Play Sound
This action enables your instant app to play a specified sound at a specified volume.

You can configure this action by selecting one of the built-in sounds or, by choosing
the Specify URL option, you can use an external sound file that’s accessed via https.
For the latter, you need to enter the URL where the file is hosted (https://example.com/
sound.mp3, for example).

Note:

There are a few things to keep in mind if you opt for an external sound file:

• The instant app can only access the file through https.

• The instant app can’t play a sound if you don’t specify a sound file, or if
the file is unavailable or can’t be reached.

• The file types vary by browser. Typically, browsers support mp3, mpeg,
opus, ogg, oga, wav, aac, caf, m4a, mp4, weba, webm, dolby, and flac.

• For the broadest browser coverage and compatibility, use an mp3–
formatted file.

You can test any sound (built-in and external file) by clicking Preview see Preview
Mode.

Built-in Sounds

• AscendingTone

• BellTwinkle

• DoubleBlip

Chapter 13
Creating an Instant App from Scratch

13-39

• HappyChime

• OptionChange

• PercussionBlipsNotic

• PercussionBlipsPop

• SlipperyStuttering

• SuccessAle

• SuccessChime

JavaScript Action

// supports all the tones from the drop down menu
app.playSound("AscendingTone", 100); // play at full volume

// play a sound from an external website at half volume
app.playSound("https://example.com/sounds/yahoo.mp3", 50);

Show Alert Dialog
This action enables your instant app to display a modal dialog message to its
customers.

Your message definition can include both a limited set of HTML tags and brace
notation. For example, Thank you!
your order is confirmed, {firstName}.

JavaScript Action

app.showAlertDialog("Thank you!");
app.showAlertDialog("Thank you {firstName}"); // use {} value replacement
app.showAlertDialog("Thank you!"); //use of limited HTML

Focus Element
Use this action to move the keyboard focus to a specified element.

Chapter 13
Creating an Instant App from Scratch

13-40

JavaScript Action

app.focusElement(“ElementName”); // unlock the app and allow input changes

Open Website
This action enables your app to launch a confirmation dialog, one that opens a URL in
a new window after the customer clicks the confirmation button.

To configure this message, enter a message and a website URL using one of the
following schemes:

Scheme Example

http http://example.com

https https://example.com

sms sms:+12065551212

mailto mailto:support@acme.co

tel tel:+12065551212

ftp ftp://myftp.com

Note:

Some URLs, like sms and tel, are not supported by desktop browsers while
others (ftp) are not supported by mobile browsers.

JavaScript Action

chatbox.openWebsite("http://example.com", "Let us take you to example.com");

Open Handset SMS
Use this action to display a message dialog, one that opens a phone number when the
mobile device user taps a confirmation button with a pre-populated message. You can
use brace notation in both the Message and Dialog Message fields to access
element values (Thank you, {firstName}.

Return to SMS).

Chapter 13
Creating an Instant App from Scratch

13-41

Note:

Some URLs, like sms and tel, are not supported by desktop browsers while
others (ftp) are not supported by mobile browsers.

Important:

Some older mobile phones may not fully support the pre-instantiation of the
message

JavaScript Action

chatbox.openHandsetSMS(“MENU”, “12065551212”, “Return to SMS?”);

Set App Status
Use this action to post the app status to the customer record’s audit trail. Each instant
app uses a string to indicate its current state. For instance, suppose you have an
instant app that is a form. For this, you can add two Set App Status actions, one with a
Form Sent string in the Status field and the other with a Form Completed string in its
Status field. Users can’t see these status strings, but they get posted to the audit trail
and can be searched for analytics.

Tip:

Your string definitions can include brace notation ({ElementOrParameterName}).

JavaScript Action

app.setAppStatus("Form Submitted");

Post Audit Trail
Use this action to post a timestamped line of text to the customer record.

Chapter 13
Creating an Instant App from Scratch

13-42

Your string that specifies the audit trail message can access element or parameter
values using the brace notation ({ElementOrParameterName}). For example, First Name
Updated {firstName}.

JavaScript Action

app.postAuditTrail("Something happened");
app.postAuditTrail("First Name Updated: {firstName}");

Lock App
Use this action to lock the instant app and prevent users from making any further
changes. When this action is fired, the instant app displays an indicator that the instant
app has been locked. At this point, your users can no longer click buttons or change
any input field. After this action is called, the App Locked Event will fire if any actions
are configured for that event.

JavaScript Action

app.lock(); // lock the app from further changes

Unlock App
Use this action to unlock the instant app and allow users to resume with the instant
app. In other words, your users can continue to click buttons and change and input
values. After this action is called, the App Unlocked Event will fire if any actions are
configured for that event.

JavaScript Actions

app.unlock(); // unlock the app and allow input changes

Launch Another Instant App
Use this action to immediately launch another instant app. To configure this action,
specify the ID of target instant app.

Chapter 13
Creating an Instant App from Scratch

13-43

Tip:

Use the value in the App ID field in the App Settings page.

JavaScript Action

// launch an instant app with no parameters specified
chatbox.launchInstantApp("schemaId", null);

// launch with specified parameters comma-separated
chatbox.launchInstantApp(
 "schemaId",
 { name: "paramName1", value: "paramValue1" },
 { name: "paramName2", value: "paramValue2" }
);

// launch with specified parameters in an array
var array = [];
array.push({ name: "paramName1", value: "paramValue1" });
array.push({ name: "paramName2", value: "paramValue2" })

chatbox.launchInstantApp("schemaId", array);

Important:

You can’t launch another instant app with parameters.

Exit to Bot
Use this action to enable the instant app to return values to the bot. The instant app
remains visually active for the customer even after it returns its values to the bot
unless you set actions that enable it to behave otherwise.

Note:

Returning values to the bot does not alter the visual state or usability of the
bot in any way.

Chapter 13
Creating an Instant App from Scratch

13-44

While you can define these values as static values, you’re more likely to specify them
using curly bracket notation like Hello {nameInput} or {location.longitude} so that they
can return values from other elements. For example, the payload returned to the bot
would look like this because of the value substitution:

{
"name": "Phil Gordon",
"city": "Seattle",
"longitude": "-32.33221156",
"msg": "Hello Phil Gordon"
}

JavaScript Action

app.exitToBot(); // no parameters
app.exitToBot({"name":"value", "name":"value"}); // exit and send data

Parameters
Parameters are used to pass data from a bot into an instant app. This data can then
be used both in elements and as part of the JavaScript snippets.

You can define a parameter in the Parameters section along the left, using the +Add
Parameter function. When you create a parameter, you need to give it an ID, which is
used as follows:

• When passing in a parameter to the instant app. This happens when an instant
app is launched from a bot, or when you enter the parameters manually as part of
testing. See Test Mode.

• Inside an instant app with the {parameterID} notation.

• Inside an instant app (and within a JavaScript snippet through
app.parameters.parameterName).

Chapter 13
Creating an Instant App from Scratch

13-45

To give your parameter some context, you can add a description, which is optional.
The text that you add in the Description field is for internal use only. It doesn’t display
in the instant app and isn’t passed in the parameter.

Here is an example of how to use a parameter to set a label and how to see it work in
Test Mode.

1. Create the parameter. In this case, it’s called CustomerName.

2. Add a Label element. In the Text field, enter {CustomerName}.

3. On the right side of the Instant App Builder (where the phone is), select Test and
then click Start as Recipient.

4. As the admin, you’ll see the Parameter popup, where you can add a name like
Jane Doe. Click OK.

Chapter 13
Creating an Instant App from Scratch

13-46

You’ll see Jane Doe show up on your instant app as your Label element text.

Using Brace Notation in Element and Parameter Values
When specifying a value for an action, you can both access and use parameters and
other element values using brace notation:

• {ElementName}

• {parameterName}

When elements have complex object values, you can access their individual key
values using the {ElementName.key} notation.

Barcode Element

• {barCodeName.barcode} —The numeric barcode

• {barCodeName.barcode.type}—The type of the barcode (AZTEC, CODABAR,
CODE_39, CODE_93, or CODE_128)

• {barCodeName.url}—The URL of the barcode image

• {barCodeName.html}—The barcode and image as a HTML fragment

Upload Element

• {uploadElementName.url}—The URL of the uploaded data

• {uploadElementName.html}—The uploaded data as a HTML fragment

• {uploadElementName.filename}—The uploaded data’s filename

Chapter 13
Creating an Instant App from Scratch

13-47

Location Element

• {locationElementName.latitude}

• {locationElementName.longitude}

• {locationElementName.url.google}—The URL for a Google Maps location

• {locationElementName.url.bing}—The URL for a Bing location

• {locationElementName.url.openStreetMap}—The URL for an Open Street Map
location

• {locationElementName.url.hereMap}—The URL for a Here Map location

Date Element

• {dateElementName.day}

• {dateElementName.month} — 0 = January, 11 = December

• {dateElementName.year}

• {dateElementName.hour}

• {dateElementName.minute}

• {dateElementName.epoch} —The number of milliseconds that have elapsed since
1/1/1970

Tip:

The epoch value is the easiest way to convert back to the JavaScript date:

var d = new Date(app.Elements.date.value.epoch)

Modes
While you’re developing your instant app, you can see your work in progress and find
out how your instant app behaves at runtime using the following viewing modes that
are located at the left of the Instant App Builder:

• Preview Mode

• Test Mode

• JSON

Preview Mode
The Preview mode provides you with the following visual guidelines and functions:

• The elements that you configure as initially invisible are shown with the hatch
marks.

• The current element that you’ve selected or are editing is outlined in green.

• Panes are separated by name.

Chapter 13
Modes

13-48

• Clicking an element in the Preview highlights that element in the Layout section
and opens the element’s editor.

Note:

Changing values in Preview mode has no effect on the instant app and
will not trigger events to fire.

Test Mode
In Test Mode (which you activate by clicking Test), you’ll see a full preview as well as
the Console, which is a running commentary on events and actions as they occur.

Chapter 13
Modes

13-49

There are two choices when Test Mode starts: Start as Recipient and Start as
Sender. Because an app can behave differently depending on sender or recipient role,
you need to pick one of these options before testing the app so that you can assess a
particular user experience. For example, you can configure an element’s usability
setting that limits the ability to edit a field to only the customer (the recipient).

Print to Console in JavaScript Snippets

The Test Mode execution comes to a halt whenever you update the instant app (for
example, when you edit JavaScript, change an element property or style, etc.), so
you’ll need to restart.

print(“Hello World”);

Chapter 13
Modes

13-50

Limitations of Test Mode

There are few things to keep in mind while using Test Mode:

• The Call External Web API action can’t call the target resource. Instead, it uses
test data that you’ve provided in the Test Response field. You also need to
provide a response code.

• You can’t use the Lock App and Unlock App actions.

• If the instant app requires any parameter data, you’ll be prompted it when Test
Mode starts. See Parameters.

JSON
The JSON tab displays the complete specification for this instant app as expressed in
JSON. While you can export this JSON, modify it using any code editor that you want,
and then import it to the Instant App Builder, you can avoid the validation errors and
other problems (like creating or improper or inconsistent schemas) the you might
encounter if you take this route if you create the app entirely with the Instant App
Builder. See Exporting and Importing.

Starting an Instant App from a Template
If you’re not sure exactly where to start on your instant app, you can use template that
you can customize to your business needs.

Similar to starting a new instant app from scratch, you click the New Instant App tile.
But instead of choosing a blank instant app, you can scroll through the templates and
choose the one that’s most relevant to your use case. From there, the Instant App
Builder opens for the template, allowing you to both customize it and save it to your
library.

Chapter 13
Starting an Instant App from a Template

13-51

Instant App Lifecycle
You can manage your library of instant apps by activating and deactivating them,
deleting them, making clones that you can edit, or by editing the app directly.

You access these management functions from hamburger menu on the bottom right of
an instant app tile.

Editing
You can edit any instant app in your library in one of two ways: simple Edit, or Edit a
Copy.

Simple editing takes you into the existing instant app to make changes. Once you’ve
completed your changes, clicking Save overwrites the existing version. If you choose
to Edit a Copy, your instant app will be cloned. Any changes that you make will be
saved to a new instant app, with the default name Copy of (original instant app name).
Rename, make edits, and save your new instant app.

Chapter 13
Instant App Lifecycle

13-52

Publishing
Any inactive instant app displays with its name and description grayed out and
italicized. If you an inactive instant app in your library, you can reactivate them by
choosing Activate from the menu in the tile.

Deactivating
Similar to activating an instant app from your library, you can use the hamburger menu
to deactivate an active instant app.

Deleting and Restoring
You can remove an instant app from your library by choosing Trash from the instant
app’s tile menu.

Chapter 13
Instant App Lifecycle

13-53

The Trash option doesn’t permanently delete an instant app. Once you’ve trashed it,
you will see options related to trashed items display at the top of the instant app
library.

Clicking the Delete (#) in Trash permanently deletes any instant apps in your trash.

You can restore an instant app anytime by first selecting Show Trashed, identifying
the instant app that you want to restore, and then clicking Un-trash.

Exporting and Importing
You can export any instant app into a JSON file. By doing this, you can edit the JSON
directly using some other framework instead of the Instant App Builder. You can also
export and import across different instances.

Chapter 13
Instant App Lifecycle

13-54

To import a JSON file into the Instant App Builder, click the green plus icon (+) to add
a new instant app. Next, click Import an Instant App. From there, drag and drop the
JSON file into the Instant App Builder, where you can modify and save your instant
app.

Chapter 13
Instant App Lifecycle

13-55

14
Reference

• Built-In Components: Properties, Transitions, and Usage

• Apache FreeMarker Reference

• The SDK Helper Methods

• Navigation with keepTurn and transition

• The Custom Component Payload

Built-In Components: Properties, Transitions, and Usage
• Control Components

• Language

• Security

• User Interface Components

• Variable Components

Control Components
The control components route the flow based on whether the user input matches a
predetermined value.

System.ConditionEquals
Use this component to check if the variable matches a value that has been passed in.
To route the dialog according to the value, define the transitions key using equal and
notequal actions.

Properties Description Required?

variable The first value to be
compared.

No

14-1

Properties Description Required?

source In place of the variable
property, you can name the
source to be compared
against the values properties.
You can define this using a
FreeMarker expression that
compares a specific property
of the system entity with the
values property. For example:

conditionEquals:

component:"System.Condition
Equals"
 properties:
 source: "$
{addressVar.value.state}
- $
{addressVar.value.country}"
 value: "CA - USA"
 transitions:
 actions:
 equal:
goCalfifornia
 notequal:
goSomewhereElse

Using FreeMarker expressions
enables you to use
System.ConditionEquals for
other types of comparisons.
For example:

 conditionEquals2:
 component:
"System.ConditionEquals"
 properties:
 source: “<#if
age.value gt
18>true<#else>false</#if>"
 value: true
 transitions:
 actions:
 equal: oldEnough
 notequal: tooYoung

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-2

Properties Description Required?

value The second value to be
compared. You can define this
property with a FreeMarker
expression:

verifyCode:
 component:
"System.ConditionEquals"
 properties:
 variable: "code"
 value: "$
{userEnteredCode.value}"
 transitions:
 actions:
 equal: "wrongCode"
 notequal: "$
{flow.value}"

Yes

How Do I Use This?

This example shows how the System.ConditionEquals component can fork the dialog
based on the value.

main: true
name: "Shoppingbot"
context:
 variables:
 yesnoVar: "YES_NO"

...

 confirmBuy:
 component: "System.ConditionEquals"
 properties:
 source: "${yesnoVar.value.yesno}"
 value: "YES"
 transitions:
 actions:
 equal: "deviceDone"
 notequal: "cancelOrder"
 deviceDone:
 component: "System.Output"
 properties:
 text: "Your ${devices.value} is on its way."
 transitions:
 return: "done"
 cancelOrder:
 component: "System.Output"
 properties:
 text: "Thanks for your interest."
 transitions:
 return: "done"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-3

System.ConditionExists
Use this component to check for the existence of a specified variable. To route the
dialog according to the value, define the transitions key using exists and notexist
actions.

Properties Description Required?

variable The name of the variable Yes

value The value that the Dialog
Engine checks for.

Yes

main: true
name: "HelloKids"
context:
 variables:
 foo: "string"
 lastQuestion: "string"
 lastResponse: "string"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 Talk: "checkUserSetup"
 unresolvedIntent: "checkUserSetup"
 checkUserSetup:
 component: "System.ConditionExists"
 properties:
 variable: "user.lastQuestion"
 value: "unneccessary"
 transitions:
 actions:
 exists: "hellokids"
 notexists: "setupUserContext"
 setupUserContext:
 component: "System.CopyVariable"
 properties:
 from: "lastQuestion,lastResponse"
 to: "user.lastQuestion,user.lastResponse"
 transitions: {}

...

System.Switch
Use this component to switch states based on variable value.

Similar to the System.ConditionEquals component, you can define the state that you
want to navigate to as a variable. See System.ConditionExists

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-4

Property Description Required?

variable The name of the variable
that’s compared against the
values properties. For
example:

switchOnCategory:
 component:
"System.Switch"
 properties:
 variable: "category"
 values:
 - "Vehicle"
 - "Property"
 - "Other"
 transitions:
 actions:
 Vehicle:
"getVehicleQuote"
 Property:
"getPropertyQuote"
 Other:
"getOtherQuote"

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-5

Property Description Required?

source In place of the variable
property, you can name the
source to be compared
against the values properties.
You can define this using a
FreeMarker expression that
compares a specific property
of the system entity with the
values property. For example:

switch1:
 component:
"System.Switch"
 properties:
 source: "$
{yesnoVar.value.yesno}"
 values:
 - "YES"
 - "NO"
 transitions:
 actions:
 YES: goYes
 NO: goNo

 switch2:
 component:
"System.Switch"
 properties:
 source: "$
{startDate.value.date?
string('dd-MM-yyyy')}"
 values:
 - "17-12-2017"
 - "18-12-2017"
 transitions:
 actions:
 ¿17-12-2017":
goToday
 ¿18-12-2017":
goTomorrow

No

values The list of values that the
Dialog Engine checks for.

Yes

Language
• System.Intent

• System.MatchEntity

• System.DetectLanguage

• System.TranslateInput

• System.TranslateOutput

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-6

System.Intent
This component detects the user intent and extracts all of the entities and then triggers
a subsequent state.

Property Description Required?

variable Holds the value that the Intent
Engine resolves from the user
input. You can define this
property as variable=iResult
(with iResult: "nlpresult"
defined as one of the context
variables). The response from
the Intent Engine is stored in
the iResult variable.

Yes

confidenceThreshold The minimum confidence level
required to match an intent.
When your bot’s confidence in
matching any of its intents with
the user message falls below
this minimum value, the
component triggers its
unresolvedIntent action.

Yes

optionsPrompt The title for the list of intents
when the
confidenceWinmargin is set.
By default, this string value is
Do you want to.

No

confidenceWinMargin Sets the maximum level for
the win margin, which is the
delta between the respective
confidence levels for the top
intents that bot uses to resolve
vague or compound user
requests. The value that you
set for this property should be
greater than or equal to this
delta. The intents separated
by this delta are presented in
a select list. To be included in
the list, the intents must
exceed the value set for the
confidenceThreshold. The
default value for the
confidenceWinMargin
property is 0.0.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-7

Property Description Required?

botName The name of the bot that
resolves the intent. Use this
property when you have a
reusable bot that holds all of
the intent and entity
definitions. To support multiple
languages, you can define this
property with a variable
expression that evaluates to a
bot name based on the current
language.

No

sourceVariable The NLP engine resolves the
intent using the
sourceVariable as the input.
You can combine this with the
System.TranslateInput
component and assign its
value to a variable that’s used
as the input to the NLP
engine. See
System.TranslateInput to find
out how.

No

translate You can override the boolean
value of the autoTranslate
context variable here. If
autoTranslate is not set, or
set to false, you can set this
property to true to enable
autotranslation for this
component only. If the
autotranslate context
variable is set to true, you can
set this property to false to
exclude this component from
autotranslation.

No

How Do I Use This?

This component can be used to detect the user intent from free text input and can be
used anywhere in the flow, as shown in the following snippet:

metadata:
 platformVersion: "1.0"
main: true
name: "FinancialBotMainFlow"
context:
 ...

states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 Balances: "startBalances"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-8

 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"
...

 askPaymentAmount:
 component: "System.Text"
 properties:
 prompt: "What's the payment amount?"
 variable: "paymentAmount"
 maxPrompts: 1
 transitions:
 actions:
 cancel: "intentCheck"
...

 intentCheck:
 component: "System.Intent"
 properties:
 variable: "iResult2"
 confidenceThreshold: 0.4
 transitions:
 actions:
 Balances: "startBalances2"
 unresolvedIntent: "askPaymentAmount2"

...

The confidenceThreshold Property
When you add the confidenceThreshold property, you can steer the conversation by the
confidence level of the resolved intent, which is held in the iResult variable.

If the intent’s ranking exceeds the confidenceThreshold property (which, by default is
40%), then the action defined for that intent is triggered, setting the path for the Dialog
Engine. In the opposite case—when the value for the confidenceThreshold property is
higher than the ranking for the resolved intent—the Dialog Engine moves to the state
defined for System.Intent’s unresolvedIntent action. See The Intent Tester.

Taking the PizzaBot as an example, testing its intents with I want to order pizza
resolves to 100%. When you enter the same phrase in the tester’s Bots tab, however,
the bot replies with How Old Are You?, a seemingly inappropriate response. Within the
context of the PizzaBot dialog flow definition, however, this is the expected response
for an intent whose ranking (100%) exceeds the confidence threshold (40%). When
you enter 18, the checkage state’s allow: "crust" action directs the Dialog Engine to
the crust state. (Because there were no entities to extract from the initial user input,
the Dialog Engine bypassed the resolveSize and resolveCrust states and ended up
here after the age confirmation instead of completing the order.)

If you entered a wholly inappropriate phrase for the PizzaBot like I want to buy a car ,
the intent testing window will rank the top intent at only 25%, which is below the 40%
threshold. Because neither the OrderPizza nor the CancelPizza intents can resolve the
user input satisfactorily, the Dialog Engine moves to the state defined for the
unresolvedIntent action (unresolvedIntent: "unresolved"). As a result, the bot
responds with "I don't understand, what do you want to do?"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-9

 unresolved:
 component: "System.Output"
 properties:
 text: "I don't understand. What do you want to do?"
 transitions:
 return: "unresolved"

The confidenceWinMargin Property
Adding the confidenceWinMargin property enables your bot to prompt users to pick an
intent when it can’t pick one. For example, if a user asks the FinancialBot, “I want to
check balance or send money,” the bot responds with a select list naming the top
intents, Check Balances and Send Money.

The bot offers these two intents because its confidence in them exceeds 30%
(confidenceThreshold: 0.30 in the following snippet) and they’re separated by a win
margin—the difference between their respective confidence levels— that’s within 15%
(confidenceWinMargin: 0.15).

states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 optionsPrompt: "What do you want to do?"
 confidenceThreshold: 0.30
 confidenceWinMargin: 0.15

For example, the bot’s confidence for the Check Balances intent is 38.1%. For the
Send Money intent, it’s 35.8%. The win margin is 2.3%, well within the 15% configured
for the System.Intent component.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-10

System.MatchEntity
The System.MatchEntity calls the Intent Engine to extract entity information from the
text held by the sourceVariable property. If a match exists for the variable entity type,
the variable is set with this entity value.

Property Description Required?

sourceVariable The variable that holds the
input value.

Yes

variable The name of the context
variable. The value of this
variable can be used in a
subsequent
System.SetVariable
component to extract a
specific entity using a
FreeMarker expression. For
example, to extract an EMAIL
entity value: $
{userInputEntities.value.e
ntityMatches['EMAIL'][0]}

Yes

This component also has two predefined transitions, match and nomatch

Transition Description

match Directs the Dialog Engine to go a state when
the entities match.

nomatch Defines the Dialog Engine to go to a state
when the entities don’t match.

In the following snippet, System.MatchEntity component matches the user-provided
value stored in the mailInput variable against the EMAIL entity type that’s been
defined for the mailEntity variable. If the user input satisfies the entity type by being an
e-mail address, then the System.MatchEntity component writes this value to the
mailEntity variable that’s echoed back to the bot user ("You entered $

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-11

{mailEntity.value.email}"). When the values don’t match, the Dialog Engine moves to
the nomatch state.

Note:

The System.MatchEntity component resolves a single value.

context:
 variables:
 iResult: "nlpresult"
 mailInput: "string"
 mailEntity: "EMAIL"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 displayMailAdresses: "askMail"
 unresolvedIntent: "dunno"
 askMail:
 component: "System.Text"
 properties:
 prompt: "Please provide a valid email address"
 variable: "mailInput"
 transitions: {}
 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "mailInput"
 variable: "mailEntity"
 transitions:
 actions:
 match: "print"
 nomatch: "nomatch"
 print:
 component: "System.Output"
 properties:
 text: "You entered ${mailEntity.value.email}"
 transitions:
 return: "done"
 nomatch:
 component: "System.Output"
 properties:
 text: "All I wanted was a valid email address."
 transitions:
 return: "done"
 dunno:
 component: "System.Output"
 properties:
 text: "I don't know what you want"
 transitions:
 return: "done"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-12

System.DetectLanguage
Use this component to detect the user’s language.

This component stores the language detected in a variable named
profile.languageTag, so, if you want to find out which language has been detected, you
can use ${profile.languageTag} or ${profile.languageTag.value}. Because this is a
string variable, you don’t necessarily need to add the value suffix.

context:
 variables:
 autoTranslate: "boolean"
 translated: "string"
 someTranslatedText: "string"
states:
 setAutoTranslate:
 component: "System.SetVariable"
 properties:
 variable: "autoTranslate"
 value: true
 transitions: {}
 detect:
 component: "System.DetectLanguage"
 properties: {}
 transitions: {}

System.TranslateInput
Use this component when you’ve activated a translation service, but you want to
explicitly translate user input and not rely on the autotranslate facility.

This component takes the user input, translates it to English and then stores the
translated text into a variable.

Property Description Required?

variable The variable that holds the
translated text.

Yes.

source Specifies the text values to be
translated.

No

In the following code snippet, this variable that holds the text string is called
translated. It holds the English translation of the user's input, which the NLP engine
uses as the source for the Intent resolution. Note that the autoTranslate: “boolean”
context variable, which is required for autotranslation services, is defined.

context:
 variables:
 autoTranslate: "boolean"
 translated: "string"
...

states:
 translate:
 component: "System.TranslateInput"
 properties:
 source: "${somevar.value}" or // "Besoin de pizza"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-13

 variable: "translated"
 transitions: {}

Using the sourceVariable Property

Because the System.Intent’s sourceVariable property holds the value processed by the
component, you can use it with the System.TranslateInput component to insert
translated text. The following snippet shows assigning the translated variable value so
that it can be processed by the NLP engine.

translate:
 component: "System.TranslateInput"
 properties:
 variable: "translated"
 transitions: {}
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 sourceVariable: "translated"
 confidenceThreshold: 0.4

System.TranslateOutput
The System.TranslateOutput component allows you to translate text manually.

The System.TranslateOutput component takes the value defined for the source
property. It translates the text into the language detected by the System.DetectLanguage
component and then stores it in the variable property.

Properties Description Required?

source The text to be translated, or a
FreeMarker expression that
references a variable whose
value needs to be translated.

Yes

variable Holds the translated text. Yes

In this example, the System.Output component, which would otherwise display
autotranslated text, still outputs translated text, but here it outputs the translation of the
text defined for the source property.

 unresolvedTranslate:
 component: "System.TranslateOutput"
 properties:
 source: "Sorry I don't understand"
 variable: "someTranslatedText"
 transitions: {}
 unresolved:
 component: "System.Output"
 properties:
 text: "${someTranslatedText}"
 transitions:
 return: "unresolved"

Security

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-14

System.OAuthAccountLink
The System.OAuthAccountLink component enables the bot to make calls to a third-party
service on behalf of the user.

This component first directs a user to a third-party OAuth provider’s login page. After a
successful login, the bot then receives the access token, which it stores as a variable
that’s used by the custom component API. To handle the subsequent calls made
through the channel, the custom component API exchanges the access token and a
client secret for an OAuth 2 token. It makes another REST call to the OAuth2 provider,
which accesses the secured API.

Property Description Required?

prompt A text string that prompts the
user to login.

Yes

authorizeURL The login URL. See The
authorizeURL Property.

Yes

translate You can override the boolean
value of the autoTranslate
context variable here. If
autoTranslate is not set, or
set to false, you can set this
property to true to enable
autotranslation for this
component only. If the
autotranslate context
variable is set to true, you can
set this property to false to
exclude this component from
autotranslation.

No

variable The name of the variable. You
can declare it in the context
node as a variable, a string, or
another supported variable
type. It can also be a user
variable.

Yes

You can use this component to return access tokens from OAuth providers like Twitter,
Google, Microsoft, or as shown in the following example, LinkedIn. This example
shows the required properties that you need to define for the System.OAuthAccountLink
component: prompt, which outputs the message, variable, which holds the returned
code, and authorizeURL which defines both the provider’s OAuth URL and the redirect
URL that receives the token used by the bot to access the user’s LinkedIn profile.

login:
 component: "System.OAuthAccountLink"
 properties:
 prompt: "Please login now."
 authorizeURL: "https://www.linkedin.com/uas/oauth2/authorization?
response_type=code&client_id=75k0vq4&scope=r_basicprofile&redirect_uri= https://
myBotsinstance/connectors/v1/callback"
 variable: "code"
 transitions:{}

When the Dialog Engine encounters this component, the bot prompts users to with two
links, Login and Cancel.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-15

The channel then renders the OAuth provider’s login page or its authentication dialog
as a webview.

Note:

The test window doesn’t render webviews, so you need to cut and paste the
link text into your browser.

The authorizeURL Property

To configure this property, you begin with the OAuth provider URL, such as https://
www.linkedin.com/oauth/authorization/ in the example. Next, you need to append the
following OAuth parameters to this URL:

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-16

1. response_type—Set to code since the bot expects an authorization code.

2. client_id—An API key value that you get when you register your app with the
OAuth provider.

3. scope—A list of permissions to access resources on the user’s behalf. These are
the permissions that you set when you register your app with the provider. They
can vary by provider: for LinkedIn, these include r_basicprofile (shown in the
example) and r_emailadress; for Microsoft, they’re defined using openid email and
openid profile.

4. redirect_uri—This is the redirect URI that you used to register your app with the
OAuth provider that tells it where it needs to redirect users. This parameter, which
is the Bots service host name appended with connectors/v1/callback, is the
endpoint that receives the OAuth provider’s token and then associates it with the
active channel. The redirect_uri property is based on the Webhook URL that’s
generated when you create a channel. See Channels

Important:

Be sure that the value you enter for the redirect_uri matches the
redirect URI that you provided when you registered your app exactly. In
both instances, the URI must be appended with connectors/v1/callback.

User Interface Components
Use these components to display text:

• System.Text—Prompts the user to enter text.

• System.List—Prompts the user with a list option.

• System.Output—Displays a message.

• System.CommonResponse—Outputs content-rich messages.

• System.Interactive—Integrates your bot with an Instant App.

System.Text
The System.Text component enables your bot to set a context or user variable by
asking the user to enter some text.

When the Dialog Engine enters a System.Text state for the first time, it prompts the
user to enter some text. When the user enters a value, the Dialog Engine returns to
this state. The component processes the user response and if it can convert the user
input to the variable type, it stores the value in the variable. The Dialog Engine moves
on to another state when this variable has a value.

Note:

The Dialog Engine skips over the System.Text state of the variable already
has a value.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-17

Property Description Required?

prompt A text string that describes the
input required from the user.
You can dynamically add
values to it using a value
expression. For example:
Hello $
{profile.firstName}, how
many pizzas do you want?

Yes

variable The name of the variable,
which can be either a user
variable or one of the
variables declared in the
context node.

Yes

nlpResultVariable Use this property when the
variable property references
some type of entity (custom or
built-in). If the variable
property initially holds a null
value but the
nlpResultVariable holds an
entity that matches the entity
type that you’ve set for the
variable property, then
variable property is set with
this entity value and the dialog
flow will then transition to the
next state. You can obtain this
entity match by simply adding
the nlpResultVariable
property; you don’t need to
create a separate
SetVariable state to set the
entity value.

No

maxPrompts The number of times that
component prompts the user
for valid input. See Limiting
the Number of User Prompts.

No

translate Use this property to override
the boolean value that you’ve
set for the autotranslate
context variable. If you haven’t
set this variable, or if you set it
to false, then you can set this
property to true to enable
autotranslation for this
component only. If you set the
autotranslation variable is
set to true, you can set this
property to false to exclude
this component from
autotranslation. See
Autotranslation.

No

See Transitions for the predefined action types that you can use with this component.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-18

How Do I Use This?

In this example, the type variable holds the values expected by the PizzaType entity,
like cheese, Veggie Lover, and Hawaiian. When this information is missing from the user
input, the bot can still get it because its dialog flow transitions to the type state, whose
Text component prompts them to explicitly state what they want. Keep in mind that
even at this point, the user input still needs to resolve to the PizzaType entity to
transition to the next state.

main: true
name: "PizzaBot"
parameters:
 age: 18
context:
 variables:
 size: "PizzaSize"
 type: "PizzaType"
 crust: "PizzaCrust"
 iResult: "nlpresult"

...

 type:
 component: "System.Text"
 properties:
 prompt: "What Type of Pizza do you want?"
 variable: "type"
 transitions: {}

System.List
Your bot can use the System.List component to set a user or context variable or set a
transition action. The mode depends on whether a value can be set for the
component’s variable property (or if you configure a variable property in the first
place).

When the Dialog Engine enters a System.List state for the first time, your bot displays
a message containing a list of options. When the user clicks one of these options, the
Dialog Engine returns to the System.List state to process the user response. If the
component can convert the selected option to a user variable or one of the variables
that you’ve defined in the context node, the System.List’s variable property it sets the
variable property with this value. When this property can’t be set (or hasn’t been
defined), the Dialog Engine triggers a transition action instead.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-19

Property Description Required?

options You can specify the options
using comma-separated text
strings, FreeMarker value
expressions, and as a list of
maps.

Yes

prompt The text string that prompts
the user.

Yes

variable The name of the context or
user variable that’s populated
when the user enters free text
as a response instead of
choosing a list option. When
the user taps on a button
rather than entering free text,
the button payload determines
which variable(s) are set and
this property is ignored. When
the Dialog Engine enters this
state and the variable already
has a value, then the state is
skipped.

Yes (for value lists only)

maxPrompts The number of times that
component prompts the user
for valid input. See Limiting
the Number of User Prompts.

No

nlpResultVariable Set this property when the
variable property references
an entity. If the referenced
variable is null and this
property has an entity match
of the same type as the
variable property, then the
variable will be set with this
entity value and the dialog
flow will then transition to the
next state. To get the match
for this entity, add this
property. You don’t need to
create a separate state for the
System.SetVariable
component to set the entity
value.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-20

Property Description Required?

translate Use this property to override
the boolean value that you’ve
set for the autotranslate
context variable. If you haven’t
set this variable, or if you set it
to false, then you can set this
property to true to enable
autotranslation for this
component only. If you set the
autotranslation variable is
set to true, you can set this
property to false to exclude
this component from
autotranslation. See
Autotranslation.

No

See Transitions for the predefined action types that you can use with this component.

Value Lists
You can use the System.List component to return a value that satisfies a context
variable that’s defined as a primitive (like greeting: "string" in the dialog flow
template) or as an entity, as shown in the following snippet. In this dialog flow, the
options: "Thick,Thin,Stuffed,Pan" definition returns a value that matches crust
variable. The options property defined for size is a value expression ($
{size.type.enumValues}) that returns the Large, Medium, Small, and Personal list
values as options. See Accessing Variable Values with Apache FreeMarker FTL.

This example also shows how the nlpResultVariable property’s iResult definition
allows the component to set the entity values for the variable properties for the crust
and size states when these values haven’t been previously set. Like the Text
component, the System.List component doesn’t require any transitions ({}).

main: true
name: "PizzaBot"

...

context:
 variables:
 size: "PizzaSize"
 crust: "PizzaCrust"
 iResult: "nlpresult"

...

states:

...

crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your pizza?"
 variable: "crust"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-21

main: true
name: "PizzaBot"

...

context:
 variables:
 size: "PizzaSize"
 crust: "PizzaCrust"
 iResult: "nlpresult"
...

states:

...

crust:
 component: "System.List"
 properties:
 options: "Thick,Thin,Stuffed,Pan"
 prompt: "What crust do you want for your pizza?"
 variable: "crust"
 nlpResultVariable: "iresult"
 transitions: {}
size:
 component: "System.List"
 properties:
 options: "${size.type.enumValues}"
 prompt: "What size Pizza do you want?"
 variable: "size"
 nlpResultVariable: "iresult"
 transitions: {}

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-22

Note:

Users aren’t limited to the options displayed in the list. They can resolve the
entity by entering a word that the entity recognizes, like a synonym. Instead
of choosing from among the pizza size options in the list, for example, users
can instead enter big, a synonym defined for the PizzaSize entity’s Large
option. See Custom Entities.

The options Property
You can set the options property using any of the following:

• A list of maps—While you can set the options property as a text string or value
expression, you can also configure the options property as list of maps. Each one
has a label property, a value property, and an optionalkeyword property. You can
localize your list options when you follow this approach because, as noted by the
following example, you can reference a resource bundle. See Resource Bundles
to find out more about using the dot notation. When users enter a value that
matches one the values specified in the keyword property, the bot reacts in the
same way that it would if the user tapped the list option itself.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: What size do you want?"
 options:
 - value: "small"
 label: "${rb.pizza_size_small}"
 keyword: "1"
 - value: "medium"
 label: "${rb.pizza_size_medium}"
 keyword: "2"
 - value: "large"
 label: "${rb.pizza_size_large}"
 keyword: "3"
 variable: "pizzaSize"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-23

• A text string of comma-separated options, like “small, medium, large” in the
following snippet. You can’t add label and value properties when you define
options as a string.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: "What size do you want?"
 options: "small, medium, large"
 variable: "pizzaSize"

• An Apache FreeMarker value expression that loops over either a list of strings, or
a list of maps, where each map must contain both the label and value properties
and optionally, a keyword property.

askPizzaSize:
 component: "System.List"
 properties:
 prompt: "What size do you want?"
 options: "${pizzaSize.value.enumValues}"
 variable: "pizzaSize"

Refer to the Apache FreeMarker Manual to find out more about the syntax.

Action Lists
You don’t need to define the variable property for a System.List option when you’re
configuring a list of actions. In this case, the component sets a transition action based
on the option selected by the user. For example:

showMenu:
 component: "System.List"
 properties:
 prompt: "Hello, this is our menu today"
 options:

 - value: "pasta"
 label: "Pasta"
 - value: "pizza"
 label: "Pizza"

 transitions:
 actions:
 pasta: "orderPasta"
 pizza: "orderPizza"

Tip:

Not only can you use this approach to configure conditional navigation, you
can use an action list in place of a System.Switch component.

System.Output
Use the System.Output component to output a message that doesn't require a user
response, or doesn't require your bot to process the user's response. If you need to
process the user’s message, use either the System.Text or the Systen.CommonResponse
component.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-24

https://freemarker.apache.org/docs/index.html

Your System.Output component definition requires the text property. As illustrated in the
following example of a confirmation message, you can add value expressions to this
string.

done:
 component: "System.Output"
 properties:
 text: "Your ${size.value}, ${type.value} pizza with ${crust.value} crust is on
its way. Thank you for your order."

By default, the Dialog Engine waits for user input after it outputs a statement from your
bot. If you override this behavior, add the optional property called keepTurn to the
System.Output component definition and set it to true to direct the Dialog Engine to the
next state as defined by the transitions property. When no transition as been defined,
the Dialog Engine moves to the next state in the sequence.

 wait:
 component: "System.Output"
 properties:
 text: "Please wait, we're reviewing your order"
 keepTurn: true
 transitions:
 next: "ready"
 waitmore:
 component: "System.Output"
 properties:
 text: "Almost done..."
 keepTurn: true
 transitions:
 next: "done"
 done:
 component: "System.Output"
 properties:
 text: "Your ${size.value}, ${type.value} pizza with ${crust.value} crust is on
its way. Thank you for your order."
 transitions:
 return: "done"

Use the keepTurn option when you want output multiple statements in quick succession
and without user interruptions.

Autotranslation

You can suppress or enable the System.Output component’s autotranslated text on a
per-component basis using the translate property. By setting it to false, as in the
following snippet, the components outputs the text as is, with no translation. By setting
this property to true , you can enable autotranslation when the autoTranslate variable
is either set to false or not defined. See Autotranslation.

Note:

Typically, you would not set the autoTranslate variable to true if you’re
translating text with resource bundles. We do not recommend this approach.

setAutoTranslate:
 component: "System.SetVariable"
 properties:

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-25

 variable: "autoTranslate"
 value: "true"
 transitions: {}
...
pizzaType:
 component: "System.Output"
 properties:
 text: "What type of pizza do you want?"
 translate: false
 transitions: {}

Defining Value Expressions for the System.Output Component
You can define one or more value expressions for the text property, as in the following
snippet that uses different expressions for outputting the text for an order confirmation
(pizza size and type).

confirmation:
 component: "System.Output"
 properties:
 text: "Your ${size.value} ${type.value} pizza is on its way."
 transitions:
 return: "done"

Your bot outputs raw text when these expressions return a null value for the variable. If
you’re defining the text property with multiple expressions, each one must return a
value. Otherwise, your bot users will see output text like:

Your ${size.value} ${type.value} is on its way.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-26

It’s all or nothing. To make sure that your bot always outputs text that your users can
understand, substitute a default value for a null value using the Apache Freemarker
default value operator: ${size.value!\”piping\”} ${type.value!\”hot\”}. The double
quotes indicate that the default value is a not a variable reference, but is instead the
constant value that the operator expects. For example:

text: "Your ${size.value!\"piping\"} ${type.value!\"hot\"} pizza is on its way."

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-27

Important:

Always escape the quotation marks (\"...\") that enclose the default value
when you use the Freemarker operator. Your dialog flow’s OBotML syntax
won’t be valid unless you use this escape sequence whenever you define a
default value operation, or set off output text with double quotes. For
example, the following System.Output component definition lets bot users see
You said, “Cancel this order.”

confirmCancel:
 component: "System.Output"
 properties:
 text: "You said, \"Cancel this order.\""
 transitions:
 return: "cancelOrder"

System.CommonResponse
The System.CommonResponse component enables you to build a specialized user
interface that can include text, action buttons, images, and cards without having to
write custom code. Instead, you define the component’s properties and metadata.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-28

You can see an example of using the System.CommonResponse component in the
CrcPizzaBot, one of the sample bots. In this spin on the PizzaBot, you can display an
image-rich menu with quick action “Order Now” buttons.

Within the context of the System.CommonResponse component, the different types of
messages are known as “response types” and the CrcPizzaBot shows you how,
among other things, they allow the bot users to respond to prompts using action
buttons and view the pizza menu as a cascade of card items.

Adding a System.CommonResponse Component to Your Dialog Flow
Use the Add Components menu to add template System.CommonResponse states for the
text, card, and attachment responses to your OBotML definition. These templates
include the properties that are common to all of these response types as well as the
ones that particular to each one. While the Add Components menu adds separate
states for each response type, you can combine one or more response types into a
single state. The CrcPizzaBot shows you examples of both in its ShowMenu (text

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-29

response) and OrderPizza (text and card responses) states.

The Component Properties
As shown in the following OBotML snippet from the CrcPizzaBot, configuring the
System.CommonResponse component includes setting properties that direct the Dialog
Engine along with metadata properties that describe not only how the component
delivers messages (as text prompts, cards, or attachments), but also sets the content
and behavior for the messages themselves.

 AskPizzaSize:
 component: "System.CommonResponse"
 properties:
 variable: "pizzaSize"
 nlpResultVariable: "iresult"
 maxPrompts: 2
 metadata:
 responseItems:
 - type: "text"
 text: "<#if system.invalidUserInput == 'true'>Invalid size, please try
again.\
 \ </#if>What size do you want?"
 name: "What size"
 separateBubbles: true
 actions:
 - label: "${enumValue}"
 type: "postback"
 payload:
 action: ""
 variables:
 pizzaSize: "${enumValue}"
 name: "size"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-30

 iteratorVariable: "pizzaSize.type.enumValues"
 processUserMessage: true
 transitions:
 actions:
 cancel: "Intent"
 next: "AskLocation"

Tip:

The text property in this snippet is defined using Apache FreeMarker
Template Language (FTL). To find out how to add FTL expressions and use
FreeMarker built-in operations to transform variable values, see Accessing
Variable Values with Apache FreeMarker FTL.

Name Description Required?

metadata The chat response created by
this component is driven by
the contents of the metadata
property. See The Metadata
Property.

Yes

processUserMessage Set this property to true to
direct the Dialog Engine to
return to the state after the
user enters text or taps a
button. Set this property to
false if no user input is
required (or expected). When
you set this property to false,
the System.CommonResponse
component behaves like the
System.Output component.

Yes

variable This variable holds the name
of the context or user variable
that gets populated when a
user responds by entering free
text instead of tapping a
button. This property is
ignored when a user taps a
button, because the button’s
payload determines which
variables values get set. If the
variable property has already
been set when the Dialog
Engine enters this state, then
the state is skipped.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-31

Name Description Required?

nlpResultVariable This property only applies
when you set the variable as
an entity-type variable. If the
variable is null and the
nlpResultVariable has an
entity match that’s the same
type as the variable property,
then the variable will be set
with this entity value and the
dialog flow will then transition
to the next state. You can get
this entity match by simply
adding the
nlpResultVariable property;
you don’t need to create a
separate System.SetVariable
state to set the entity value.

No

maxPrompts Before the
System.CommonResponse
component can populate the
variable value that you’ve
specified for the variable
property from the text entered
by the user, it validates the
value against the variable
type. This can be entity-type
validation, or in the case of a
primitive type, it’s a value that
can be coerced to the primitive
type.
When the component can’t
validate the value, the Dialog
Engine sends the message
text and options again. (You
can modify this message to
reflect the validation failure.)
To avoid an endless loop
resulting from the user’s
inability to enter a valid value,
set a limit on the number of
attempts given to the user with
the maxPrompts property.
When the user exceeds this
allotment, the
System.CommonResponse
component transitions to the
cancel action. See Limiting
the Number of User Prompts.

No

keepTurn The keepTurn property only
applies when you set the
processUserMessage property
to false. See System.Output
to find out how to set this
property.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-32

Name Description Required?

translate Use this property to override
the boolean value that you’ve
set for the autotranslate
context variable. If you haven’t
set this variable, or if you set it
to false, then you can set this
property to true to enable
autotranslation for this
component only. If you set the
autotranslation variable is
set to true, you can set this
property to false to exclude
this component from
autotranslation. See
Autotranslation.

No

The Metadata Property

You define the metadata at two levels for the System.ComponentResponse component: at
the root level, where you define the output and actions specific to the component itself,
and at the response item level, where you define the display and behavior particular to
the text, list, card, or attachment messages that are displayed by this component.

The component-level metadata describes the component’s overall output in terms of
the type of items, or messages, that it sends to the user along with any actions that
particular to the component itself (and are independent of the message processing
actions configured for the list items).

 AskLocation:
 component: "System.CommonResponse"
 properties:
 variable: "location"
 metadata:
 responseItems:
 - text: "To which location do you want the pizza to be delivered?"
 type: "text"
 name: "What location"
 separateBubbles: true
 globalActions:
 - label: "Send Location"
 type: "location"
 name: "SendLocation"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-33

Property Description Required?

responseItems A list of response items, each
of which results in a new
message sent to the chat
client (or multiple messages
when you set iteration for the
response item using the
iteratorVariable property).
Define these response items
using these values:
• text—Text bubbles (the

text property) that can
include a list of buttons
that typically display as
buttons

• cards—A series of cards
that scroll horizontally or
vertically.

• attachment—An image,
audio, video, or file
attachment.

Yes

globalActions A list of actions that are not
related to the specific
response item. These actions
are typically displayed at the
bottom of the chat window. In
Facebook Messenger, for
example. these options are
called quick replies.

No

You also configure the metadata for the various response items, such the text, card, or
attachment messages.

Property Description Required?

type The type of response item that determines the
message format. You can set a message as
text, attachment, or cards.

Yes

name A name for the response item that’s used for
identification within the Bots platform. It’s not
used at runtime.

No

visible Display properties. No

Property Description

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-34

Property Description Required?

expression A boolean FreeMarker
expression for
conditionally showing
or hiding text, a card,
or attachment. For
example, the
CrcPizzaBot’s
OrderPizza state
defines this property
as follows:

expression: "<#if
cardsRangeStart?
number+4 <
pizzas.value?
size>true<#else>fals
e</#if>"

channels:
 include:
 exclude:

For include and
exclude, enter a
comma-separated list
of channel types for
which the text, card, or
attachment should be
shown (include) or
hidden (exclude). The
valid channel values
are:
• facebook

• webhook

• web

• android

• ios

• twilio

• kakaotalk

• test

onInvalidUserInput A boolean flag that
shows the text item or
attachment either
when the user enters
valid input
(value=false) or
when the user enters
input that’s not valid
(value=true).

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-35

Property Description Required?

iteratorVariable Dynamically adds
multiple text items to
the response by
iterating over the items
stored in the variable
that you specify for
this property. Although
you define the variable
as a string, it holds
JSON array when it’s
used as an iterator
variable. You can
reference properties in
an object of the array
with an expression
like $
{iteratorVarName.pr
opertyName}. For
example, with an
iterator variable
named pizzas, the
name property of a
pizza can be
referenced using the
expression: $
{pizzas.name}.

N
o

rangeStart If you’ve specified an iteratorVariable, you
can stamp out a subset of response items by
specifying the rangeStart property in
combination with the rangeSize property. You
can enter a hardcoded value or use a
FreeMarker expression that references a
context variable that holds the range start. By
using a rangeStart variable, you can then
page to the next set of data by setting the
rangeStart variable in the payload of the
browse option. You can see an example of the
rangeStart and rangeSize properties in the
CrcPizzaBot’s OrderPizza state.

No

rangeSize The number of response items that will be
displayed as specified by the
iteratorVariable and rangeStart properties.

No

channelCustomProper
ties

A list of properties that trigger functions that
are particular to a channel. Because these
functions are platform-specific, they’re outside
of the System.CommonResponse component
and as such, can’t be controlled by either the
component’s root-level or response item-level
properties. You can find an example of this
property in the CrcPizzaBot’s OrderPizza
state.

channelCustomProperties:
 - channel: "facebook"
 properties:
 top_element_style: "large"

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-36

The Action Metadata Properties

You can assign various actions to the response items.

Property Description Required?

type The action type:
• postback—Sends the payload of the

action back to the Dialog Engine.
• share—Opens a share dialog in the

messenger client, enabling users to share
message bubbles with their friends.

• call—Calls the phone number that’s
specified in the payload.

• url—Opens the URL that’s specified in
the payload in the browser. For Facebook
Messenger, you can specify
thechannelCustomProperties property
with webview_height_ratio,
messenger_extensions and
fallback_url.

• location—Sends the current location. On
Facebook Messenger, current location is
not supported for text or card responses.
It’s only supported using a Quick Reply.
For more information, see the Facebook
Messenger Platform documentation.

Yes

label A label for the action. To localize this label,
you can use a FreeMarker expression to
reference an entry in your bot’s resource
bundle.

Yes

iteratorVariable Use this option to stamp out multiple actions
by iterating over the items stored in the
variable that you specify for this property. You
can’t use this property with the share and
location actions.

No

imageUrl The URL of image used for an icon that
identifies and action. You can use this property
to display an icon for the Facebook quick reply
button (which is a global action).

No

channelCustomProper
ties

A list of properties that some trigger channel-
specific functionality that isn’t controlled by the
standard action properties. You can find an
example in the CrcPizzaBot’s OrderPizza
state.

No

payload A nested payload object that has the following
properties.

Payload Property Description
action The transition action

set by the Dialog
Engine when the user
taps this action. You
can only use this
property for the
postback action type.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-37

Property Description Required?

variables When you set the
action type to
postback, the payload
may have additional
properties named after
context variable or
user variable. When
the user taps this
action, the variables
are set to the values
specified in this
property.
For the
unexpectedAction
transition, you can
store the value for the
unexpected action in
the
user.botsUnexpected
Action variable so
that it’s included in the
postback payload.
See Transitions.

No

url The URL of the
website that opens
when users tap this
action.

Yes (only for the url
action type)

phoneNumber The phone number
called when a user
taps this action.

Yes (only for the call
action type)

name A name that identifies the action on the Bots
platform. This name is used internally and
doesn’t display in the message.

No

visible Display properties. No

Property Description
expression A boolean FreeMarker

expression for
conditionally showing
or hiding an action.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-38

Property Description Required?

channels:
 include:
 exclude:

For include and
exclude, enter a
comma-separated list
of channel types for
which the action can
be shown (include) or
hidden (exclude). The
valid channel values
are:
• facebook

• webhook

• web

• android

• ios

• twilio

• kakaotalk

• test

onInvalidUserInput A boolean flag that
shows the action
either when the user
enters valid input
(value=false) or
when the user enters
input that’s not valid
(value=true).

The Text Response Item

After you add a textResponse state to your dialog flow, you can rename it and then
either replace the placeholder properties with your own definitions, or delete the ones
that you don’t need. The template state includes properties the following text-specific
properties.

Property Description Required?

text The text that prompts the user. Yes

iteratorVariable Dynamically adds multiple text items to the
response by iterating over the items stored in
the variable that you specify for this property.
Although you define the variable as a string, it
holds JSON array when it’s used as an iterator
variable. You can reference properties in an
object of the array with an expression like $
{iteratorVarName.propertyName}. For
example, with an iterator variable named
pizzas, the name property of a pizza can be
referenced using the expression: $
{pizzas.name}.

No

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-39

Property Description Required?

separateBubbles You can define this property if you also define
the iteratorVariable property. When you set
this property to true, each text item is sent as
separate message, like Pizzas and Pastas in
the CrcPizzaBot’s ShowMenu and OrderPizza
states. If you set it to false, then a single text
message is sent, one in which each text item
starts on a new line.

No

visible Text display properties No

Property Description
expression A boolean FreeMarker

expression for
conditionally showing
or hiding tex. For
example, the
CrcPizzaBot’s
OrderPizza state
defines this property
as follows:

expression: "<#if
cardsRangeStart?
number+4 <
pizzas.value?
size>true<#else>fals
e</#if>"

channels:
 include:
 exclude:

For include and
exclude, enter a
comma-separated list
of channel types for
which the text should
be shown (include) or
hidden (exclude). The
valid channel values
are:
• facebook

• webhook

• web

• android

• ios

• twilio

• kakaotalk

• test

onInvalidUserInput A boolean flag that
shows the text item
when the user enters
valid input
(value=false) or
when the user enters
input that’s not valid
(value=true).

In addition to the metadata properties, you can assign the following actions for a text
response item.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-40

• Postback

• Share

• Call

• URL

• Location

If you want to see an example of text response item, take a look at the CrcPizzaBot’s
showMenu state.

Because it names postback as an action, it enables the bot to handle unexpected user
behavior, like selecting an item from an older message instead of selecting one from
the most recent message.

 ShowMenu:
 component: "System.CommonResponse"
 properties:
 metadata:
 responseItems:
 - type: "text"
 text: "Hello ${profile.firstName}, this is our menu today:"
 name: "hello"
 separateBubbles: true
 actions:
 - label: "Pizzas"
 keyword: "1"
 type: "postback"
 payload:
 action: "pizza"
 name: "Pizzas"
 - label: "Pastas"
 keyword: "2"
 type: "postback"
 payload:
 action: "pasta"
 name: "Pastas"
 processUserMessage: true

The Card Response Item

Like the textResponse state, you can rename the cardResponse state that’s added to
your dialog flow and then update the properties with your own definitions. Specifically,
you can configure a card response item by defining the following properties. You can
delete the properties that you don’t need.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-41

Property Description Required?

cardLayout The card layout: horizontal (the default) and
vertical.

Yes

title The card title Yes

description The card description, which displays as a
subtitle.

No

imageUrl The URL of the image that displays beneath
the subtitle.

No

cardUrl The URL of a website. It displays as a
hyperlink on the card that user open by
tapping on it.

No

iteratorVariable Dynamically adds multiple cards to the
response by iterating over the items stored in
the variable that you specify for this property.
Although you define the variable as a string, it
holds a JSON array when it’s used as an
iterator variable. You can reference properties
in an object of the array with an expression
like ${iteratorVarName.propertyName}. For
example, with an iterator variable named
pizzas, the name property of a pizza can be
referenced using the expression: $
{pizzas.name}.

No

visible Card display properties No

expression A boolean FreeMarker
expression for
conditionally showing
or hiding tex. For
example, the
CrcPizzaBot’s
OrderPizza state
defines this property
as follows:

expression: "<#if
cardsRangeStart?
number+4 <
pizzas.value?
size>true<#else>fals
e</#if>"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-42

Property Description Required?

channels:
 include:
 exclude:

For include and
exclude, enter a
comma-separated list
of channel types for
which the card should
be shown (include) or
hidden (exclude). The
valid channel values
are:
• facebook

• webhook

• web

• android

• ios

• twilio

• kakaotalk

• test

onInvalidUserInput A boolean flag that
shows the text item
when the user enters
valid input
(value=false) or
when the user enters
input that’s not valid
(value=true).

rangeStart If you’ve specified an iteratorVariable, you
can stamp out a subset of cards by specifying
the rangeStart property in combination with
the rangeSize property. You can enter a
hardcoded value or use a FreeMarker
expression that references a context variable
that holds the range start. Using a rangeStart
variable, you can then page to the next set of
data by setting the rangeStart variable in the
payload of a browse option.

No

rangeSize The number of cards that will be displayed as
specified by the iteratorVariable and
rangeStart properties.

No

You can assign a set of actions that are specific to a particular card, or a list of actions
that are that are attached to the end of the card list.

The CrcPizzaBot’s OrderPizza state includes a card response item definition, as shown
in the following snippet:

cards:
 - title: "${pizzas.name}"
 description: "${pizzas.description}"
 imageUrl: "${pizzas.image}"
 name: "PizzaCard"
 iteratorVariable: "pizzas"
 rangeStart: "${cardsRangeStart}"
 rangeSize: "4"
 actions:
 - label: "Order Now"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-43

 type: "postback"
 payload:
 action: "order"
 variables:
 orderedPizza: "${pizzas.name}"
 orderedPizzaImage: "${pizzas.image}"
 name: "Order"

The Attachment Response Item

The attachmentResponse state includes the following properties.

Property Description Required?

attachmentType The type of attachment: image,
audio, video, and file.

Yes

attachmentURL The attachment’s download
URL or source.

Yes

The CrcPizzaBot’s Confirmation state uses an attachment response item to display
picture of the order, one that’s different from the item pictured in the menu.

 Confirmation:
 component: "System.CommonResponse"
 properties:
 metadata:
 responseItems:
 - text: "Thank you for your order, your ${pizzaSize} ${orderedPizza} pizza\
 \ will be delivered in 30 minutes at GPS position $
{location.value.latitude},${location.value.longitude}!"
 type: "text"
 name: "conf"
 separateBubbles: true
 - type: "attachment"
 attachmentType: "image"
 name: "image"
 attachmentUrl: "${orderedPizzaImage}"
 processUserMessage: false

User Message Validation

The System.CommonResponse, System.Text, and System.List components validate the
user-supplied free-text value that gets set for the variable property. For example,
when the variable property is defined as a primitive type (string, boolean, float,
double), these components try to reconcile the value to one of the primitive types.
When the variable property is defined for an entity-type variable, these components
call the NLP Engine to resolve the value to one of the entities. But when these
components can’t validate a value, your bot can display an error message.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-44

By referencing the system.invalidUserInput variable, you can add a conditional error
message to your bot’s replies. This variable is a boolean, so you can use it as a
condition with the FreeMarker if directive to display the message only when a user
enters an invalid value. Otherwise, the message is hidden. The CrcPizzaBot’s
AskPizzaSize state in the following snippet demonstrates this by adding this variable as
condition within a FreeMarker template that’s evaluated by the if directive. Because
it’s set to true, the bot adds an error message to the standard message (What size do
you want?) when the user enters an invalid value.

 AskPizzaSize:
 component: "System.CommonResponse"
 properties:
 variable: "pizzaSize"
 nlpResultVariable: "iresult"
 maxPrompts: 2
 metadata:
 responseItems:
 - type: "text"
 text: "<#if system.invalidUserInput == 'true'>Invalid size, please try
again.\
 \ </#if>What size do you want?"
 name: "What size"
 separateBubbles: true

System.Interactive
Instant apps are rich, interactive widgets that you can embed as web links in your
dialog. Your bot can transition to an instant app when it needs to data using structured
forms.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-45

After you create one with the Instant App Builder, you can integrate it into your
OBotML definition using the System.Interactive component. See Instant Apps.

When you add this component using the Add Components menu, it generates a state
called interactive, which has placeholders for the following properties.

Property Description Required?

sourceVariableList A comma-separated list of
context or user variable
names. These variable names
are the parameters that are
that’s sent to the instant app.
You can set each variable by
adding a series of
System.SetVariable states
before the
System.Interactive state. To
get an idea, take a look at the
setDate, setAmount,
setMerchant, and
SetDescription states in the
FinancialBot.

Yes

variable The name of the variable (a
string value) that identifies the
instant app’s callback payload.
When the bot user completes
the instant app, it sends a
callback with a payload which
is stored by this variable. At a
later point in your OBotML
definition, you can use this
payload in a System.Output
component.

Yes

id The id of the instant app
schema that gets instantiated.
Enter the ID from the App
Settings page of the Instant
App Builder. See App
Settings.

Yes

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-46

Property Description Required?

prompt A text string. By default, this
component outputs “Please
tap on the link to proceed.”

No

linkLabel The label for the button that
invokes the instant app. The
default string is Link.

No

cancelLabel The label for the Cancel
button that lets users leave the
state without invoking the
instant app. By default, the
string is Cancel.

No

translate Use this property to override
the boolean value that you’ve
set for the autotranslate
context variable. If you haven’t
set this variable, or if you set it
to false, then you can set this
property to true to enable
autotranslation for this
component only. If you set the
autotranslation variable is
set to true, you can set this
property to false to exclude
this component from
autotranslation. See
Autotranslation.

No

How Do I Use This?

The FinancialBotWithQnA uses an intent called startDispute to trigger an instant app.
At runtime, when the Dialog Engine moves to the System.Interactive state called
startDispute, the bot returns a link to the user. (This is the URL that’s configured for
the Invite Message in the Instant App Builder. See App Settings.) The component
identifies the instant app (Bank_Transaction_Interactive_With_Verify). The
sourceVariableList names the variables whose values get passed to the instant app,
namely date, merchant, amount, and description.

Note:

For the purposes of this reference bot, the values for these variables are
populated with sample data through the System.SetVariable component.

The instant app defines parameter counterparts for each of these variables called
inputDate, inputDescription, inputMerchant, and inputDescription. See Parameters
and Using Brace Notation in Element and Parameter Values.

The snippet also shows how the bot returns the reason and dispute ID from the instant
app’s return action. See Exit to Bot.

context:
 variables:
...
 dispute: "string"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-47

 amount: "string"
 merchant: "string"
 date: "string"
 description: "string"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 Balances: "startBalances"
 Transactions: "startTxns"
 Send Money: "startPayments"
 Track Spending: "startTrackSpending"
 Dispute: "setDate"
 unresolvedIntent: "unresolved"
...

Populate the required variables
 setDate:
 component: "System.SetVariable"
 properties:
 variable: "date"
 value: "2017-10-25T11:34:31Z"
 transitions: {}
 setAmount:
 component: "System.SetVariable"
 properties:
 variable: "amount"
 value: "$60"
 transitions: {}
 setMerchant:
 component: "System.SetVariable"
 properties:
 variable: "merchant"
 value: "PizzaUGotcha"
 transitions: {}
 setDescription:
 component: "System.SetVariable"
 properties:
 variable: "description"
 value: "restaurants"
 transitions: {}
Call instant app
 startDispute:
 component: "System.Interactive"
 properties:
 sourceVariableList: "date, merchant, amount, description"
 variable: "dispute"
 id: "Bank_Transaction_Interactive_With_Verify"
 transitions: {}
Use the callback payload data
 instantAppOutput:
 component: "System.Output"
 properties:
 text: "Successfully filed dispute, your reference number is '$
{dispute.value.disputeID}'\
 \ and reason is '${dispute.value.reason}'"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-48

 transitions:
 return: "instantAppOutput"

Transitions
The System.CommonResponse , System.List, and System.Text component use these
transitions. See Message Handling for Output Components to find out how these
transitions get triggered.

Transition Description

cancel Set this transition when a user exceeds the
allotted attempts set by the maxAttempts
property.

textReceived Set this when users send text or emojis. For
example:

 ShowMenu:
 component: "System.CommonResponse"
 ...
 processUserMessage: true
 transitions:
 actions:
 pizza: "OrderPizza"
 pasta: "OrderPasta"
 unexpectedAction:
"HandleUnexpectedAction"
 textReceived: "Intent"

attachmentReceived Set this when a user sends an image, audio,
video, or file attachment.

locationReceived Set this when the user sends a location.

unexpectedAction Set this to circumvent unexpected user
behavior. Specifically, when a user doesn’t tap
an action item in the current message, but
instead taps an action belonging to an older
message in the chat session. You can access
the unexpected action by referencing the
system.botsUnexpectedAction variable.

Message Handling for Output Components
Typically, a user might respond to a message in the following ways:

• By entering free text.

• By sending their location.

• Using a multi-media option to send an image, audio file, video, or file attachment.

• Tapping one of the postback buttons displayed in the most recent message output
by the bot.

• By scrolling to a previous message in the conversation and tapping one of its
buttons.

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-49

Handling Free Text
When a user enters free text, the System.CommonResponse, System.List and System.Text
components first validate the value. For valid values, the components trigger the
textReceived transition. You don’t have to set this transition in the OBotML definition; if
you don’t define this transition, then the Dialog Engine transitions to the next state, or
performs the default transition.

Tip:

Use textReceived to handle unexpected user messages when you expect the
user to tap a button, send an attachment, or a location.

Handling Multimedia Messages
When a users sends a file, image, video, or audio file, the System.CommonResponse,
System.List, and System.Text component stores the attachment information as a JSON
object in the variable property that’s specified for the component. This object has the
following structure:

{
 "type": "video",
 "url": "https://www.youtube.com/watch?v=CMNry4PE93Y"
}

For example, if a video attachment is stored in a variable called myVideo, you can
access the video using the FreeMarker expression, ${myVideo.value.url}. It also sets
the transition action to attachmentReceived. You don’t have to specify this transition in
your OBotML definition. If you don’t define this transition, then the Dialog Engine
transitions to the next state, or performs the default transition.

Tip:

Use attachmentReceived to handle situations where users send an attachment
unexpectedly.

Handling Location Messages
When a user sends his or her current location, the System.CommonResponse, System.List,
and System.Text components store the location information as a JSON object in the
variable property specified for the component. This object has the following structure:

{
 "title": "Oracle Headquarters",
 "url": "https://www.google.com.au/maps/place/…",
 "longitude": -122.265987,
 "latitude": 37.529818
}

For example, if the location is stored in a variable called location, you can access the
latitude using the FreeMarker expression, ${location.value.latitude}. It also triggers
the locationReceived action, so you don’t have to specify this transition in your OBotML

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-50

definition. If you don’t define this transition, then the Dialog Engine transitions to the
next state, or performs the default transition.

Tip:

Include locationReceived transition to handle situations where users send a
location unexpectedly, or when you want to ensure that a user sends a
location at the point where it’s expected.

Handling Button Postback Actions
When a user taps a button in the most recent message, that button’s payload gets
processed. This payload is a JSON object which can hold an action property and one
or more payload variables (all of which are optional). The payload’s action is set as a
transition action. Each user or context variable that’s included in the payload is set to
the value that’s included in the payload. For example, when a user taps the Order Now
button for a pepperoni pizza, the System.List or System.CommonResponse components
receive the payload as a stringified JSON object:

{
 "action": "order",
 "state": "OrderPizza",
 "variables": {
 "orderedPizza": "PEPPERONI",
 "orderPizzaImage": "http://pizzasteven/pepperoni.png"
 }

In this example, the component parses the payload object with the order value, sets
the transition to order, and sets the orderedPizza and orderedPizzaImage variables to
the value specified in the payload.

Handling Button Postback Actions for an Older Message
A user might ignore the most recent message and instead scroll up and tap a button
that’s part of an earlier message. For example, user might tap the Order Now button
for a pepperoni pizza, but is now asked which size. At this point, he might change his
mind and click the Order Now button for another type of pizza, or he might decide on
pasta rather than pizza, so he scrolls further up to a previous message and clicks
Order Now for a pasta dish. When this happens, the component processes the button
payload and sets any user or context variables as a postback action. But in this case,
if the payload action has been specified, the action is not used to set the conversation
transition. Instead, the unexpectedAction transition is triggered and the action value is
stored in the system.unexpectedAction variable. This allows you to have one generic
state to handle all of the unexpected user actions and messages.

...
defaultTransitions:
 unexpectedAction: "HandleUnexpectedAction"
states:
 OrderPizza:
 component: "System.CommonResponse"
 properties:
 metadata:
 responseItems:
 - type: "text"
 text: "Here are our pizzas you can order today"

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-51

...

 processUserMessage: true
 transitions:
 actions:
 order: "AskPizzaSize"
 more: "OrderPizza"
 textReceived: "Intent"

...

 HandleUnexpectedAction:
 component: "System.Switch"
 properties:
 variable: "system.unexpectedAction"
 values:
 - "pizza"
 - "pasta"
 - "order"
 transitions:
 actions:
 NONE: "ActionNoLongerAvailable"
 pizza: "OrderPizza"
 pasta: "OrderPasta"
 order: "AskPizzaSize"

Detecting Unexpected Actions

Because the built-in components that send bot messages with postback actions store
the name of the state in the state property of the postback payload, they allow your bot
to detect when a user does the unexpected by tapping a button from a previous
message, essentially traversing backwards through the dialog flow. When a user taps
this button, the name of the state is set for the postback’s state property. The bot
compares the payload’s state name against the current state. When the two no longer
match, the bot fires the unexpectedAction transition.

Note:

Only components that set the state property in the payload can enable the
bot to respond when the user skips back in the flow. The
SystemOAuthAccountLink doesn’t set this property, so tapping the button on an
older message can’t trigger the unexpectedAction transition.

Limiting the Number of User Prompts
The maxPrompts property limits the number of times that the output components can
prompt the user when they can’t match the input value to any of the values defined for
the entity or input type that’s referenced by the variable property. While this is an
optional property, adding it can prevent your dialog from going in circles when users
repeatedly enter invalid values. You can set the maximum number of prompts using an
integer (like 2 in the following snippet). The dialog moves onto the next state if the user
enters a valid value before reaching this limit. Otherwise, the dialog transitions to the
state defined by the cancel action. In the following sample, the dialog moves to the
setDefaultSize state when users run out of chances. At this point, the bot makes their

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-52

choice for them, because the System.SetVariable component sets the pizza size to
large.

 size:
 component: "System.List"
 properties:
 prompt: "What size Pizza do you want?"
 options: "${size.type.enumValues}"
 variable: "size"
 maxPrompts: 2
 transitions:
 actions:
 cancel: "setDefaultSize"
 setDefaultSize:
 component: "System.SetVariable"
 properties:
 variable: "size"
 value: "Large"
 transitions: {}

Note:

Setting the maxPrompts property to a negative number is same as not entering
a value, or not including the property at all: the bot will continue to prompt the
user until it receives a valid value.

Variable Components

System.SetVariable
The System.SetVariable component sets the value of a pre-defined variable. For
example, you can set the value for an entity variable because this component can
extract the entity match that's held by the iResult variable that's set for the
System.Intent component.

Property Description Required?

variable The name of the variable
that’s defined as one of the
context properties. This can
be a variable defined for an
entity or a predetermined
value, like a string.

Yes

value The target value, which you
can define as a literal or as a
expression that references
another variable.

Yes

The startTxns state in the following code snippet shows how you can define the target
value using an expression that references another entity variable. In this case, "$
{iResult.value.entityMatches['AccountType'][0]” references the iResult variable
that’s resolved earlier in the flow by the System.Intent component. This variable sets
the accountType variable if the AccountType entity is associated with the intent that’s
resolved by the System.Intent component. For example, if a user enters, “I want to

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-53

transfer money to checking,” then this expression sets the accountType variable value
to “checking.” If the System.SetVariable component can’t find matches, then the Dialog
Engine moves on to the next state in the dialog flow (declared by transitions: {}).

main: true
name: "FinancialBotMainFlow"
context:
 variables:
 accountType: "AccountType"
 txnType: "TransactionType"
 txnSelector: "TransactionSelector"
 toAccount: "ToAccount"
 spendingCategory: "TrackSpendingCategory"
 paymentAmount: "string"
 iResult: "nlpresult"
states:

...

 startTxns:
 component: "System.SetVariable"
 properties:
 variable: "accountType"
 value: "${iResult.value.entityMatches['AccountType'][0]}"
 transitions: {}
...

Besides entity variables, you can set a predetermined value for a variable using an
Apache FreeMarker expression or, as shown in the following snippet, a literal. You can
find out more about FreeMarker here.

setOAuthRedirectURL:
 component: "System.SetVariable"
 properties:
 variable: "redirectURL"
 value: "https://thatcompany.io/connectors/v1/tenants/5c824-45fd-b6a2-8ca/
listeners/facebook/channels/78B5-BD58-8AF6-F54B141/redirect"
 transitions: {}

See System.OAuthAccountLink

System.ResetVariables
This component resets the values of the variables to null. This component doesn’t
require any transitions (use transitions :{}).

Property Description Required?

variableList A comma-separated list of
variable names.

Yes

System.CopyVariables
Copies the variable values.

Define this component using from and to properties as in the following snippet, where
the value is copied to a user context:

Chapter 14
Built-In Components: Properties, Transitions, and Usage

14-54

https://freemarker.apache.org/docs/index.html

setupUserContext:
 component: "System.CopyVariables"
 properties:
 from: "lastQuestion,lastResponse"
 to: "user.lastQuestion,user.lastResponse"

This component needs both of these properties, but their definitions don’t have to
mirror one-another. While you can define both from and to as lists of variables, you
can also define from with a single variable and to as a list. If you set an additional to
property, it inherits the variable value of the proceeding from property.

Apache FreeMarker Reference
• Built-In String FreeMarker Operations

• Built-In FreeMarker Number Operations

• Built-In FreeMarker Array Operations

• Built-In FreeMarker Date Operations

Built-In String FreeMarker Operations
The following table shows you how to use some of the built-in string operations using a
string variable called tester as an example. As shown in the following snippet, its
value is set to "hello world " (with three trailing blank spaces):

context:
 variables:
 tester: "string"
…
states:
 setVariable:
 component: "System.SetVariable"
 properties:
 variable: "tester"
 value: "hello world "

Note:

The following text property definition allows the bot to output either the
tester value, or, no string found if no value has been set for the variable.

printVariable:
 component: "System.Output"
 properties:
 text: "${tester.value!'no string found'}"
 transitions: {}

Built-In Operation Usage Output

capitalize ${tester.value?capitalize} Hello World

last_index_of ${tester.value?
last_index_of('orld')}

7

Chapter 14
Apache FreeMarker Reference

14-55

https://freemarker.apache.org/docs/ref_builtins_string.html

Built-In Operation Usage Output

left_pad ${tester.value?
left_pad(3,'_')}

___hello world

length ${tester.value?length} 14

lower_case ${tester.value?lower_case} hello world

upper_case ${tester.value?upper_case} HELLO WORLD

replace ${tester.value?
replace('world',
'friends')}

hello friends

remove_beginning ${tester.value?
remove_beginning('hello')}

world

trim ${tester.value?trim} hello world (the trailing three
spaces are removed)

ensure_starts_with ${tester.value?
ensure_starts_with('brave
new ')}

brave new hello world

ensure_ends_with ${tester.value?
ensure_ends_with(' my
friend')}$

hello world my friend

contains ${tester.value?
contains('world')?string
('You said world', 'You
did not say world')}

You said world
The contains('world')
expressions returns either
true or false. These boolean
values are replaced with a
string using the string
('string1','string2')
function.

ends_with ${tester.value?
ends_with('world')?string
('Ends with world',
'Doesn't end with world')}

Ends with world

starts_with ${tester.value?
starts_with('world')?
string ('Starts with
world', 'Doesn't start
with world')}

Doesn't start with world

matches (regular expression
returns true or false)

${tester.value?
matches('^([^0-9]*)$')}

The regular expression returns
true or false depending on
whether the value contains a
number (in which case the
boolean value is returned as
false). The tester value
returns true.

Chapter 14
Apache FreeMarker Reference

14-56

Built-In Operation Usage Output

matches (regular expression
returns a string)

${tester.value?
matches('^([^0-9]*)$')?}

Same as above, but this time,
true is returned as a string.
The matches('regular
expression') function returns
true or false as boolean
types. To print true or false
in a System.Output
component, use ?string to
perform a to-string conversion.
Note: regular expressions
can’t be used in expressions
that return groups. Use them
in expressions that returns a
single match or no match.

Example: Improving the Confidence Level with Casing
While The casing of the user input can impact the confidence level of the intent
resolution. For example, May might refer to the month or the verb and user input can
be erratic (Pizza, piZza, PIZZA). Instead of catching all of the possible case variations
as synonyms in the entity definition, you can make the casing uniform using the an
FTL operator like lower_case in the following snippet.

getIntent:
 component: "System.Text"
 properties:
 prompt: "Hi, I am a the Pizza Palace bot. How can I help?"
 variable: "userstring"
 transitions: {}
toLowercase:
 component: "System.SetVariable"
 properties:
 variable: "userstring"
 value: "${userstring.value?lower_case}"
 transitions: {}
intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.8
 sourceVariable: "userstring"
 transitions:
 actions:
 orderPizza: "orderPizza"
 cancelOrder: "cancelOrder"
 unresolvedIntent: "handleUnresolved"

To implement this, you first ask the for the user input using the System.Text
component. In this example, the System.Text component saves the user input in the
userstring variable. The Sytem.SetVariable uses FTL to change the case of the user
input string to lower case and saves the modified string to the same userstring
variable. Finally, the userstring variable is referenced by the System.Intent component
using the sourceVariable property to run the modified user string against the intent
engine.

Chapter 14
Apache FreeMarker Reference

14-57

Example: Transforming Case with the System.Switch Component
Another component that can be simplified with FTL is System.Switch.

In the following snippet shows different states that get called depending on the user
input (wine or beer), which is stored in the choice variable.

switch:
 component: "System.Switch"
 properties:
 variable: "choice"
 values:
 - "wine"
 - "beer"
 transitions:
 actions:
 wine: "serverWine"
 beer: "serveBeer"
 NONE: "serveWater"

The casing of the input collected using the System.Text component may inconsistent,
even within a word (WiNE). Instead of adding all possible variations to the
System.Switch definition, use an FTL operation like upper_case to make the casing
uniform:

switch:
 component: "System.Switch"
 properties:
 source: "${choice.value?upper_case}"
 values:
 - "WINE"
 - "BEER"
transitions:
 actions:
 WINE: "serveWine"
 BEER: "serverBeer"
 NONE: "serveWater"

Example: Concatenating FTL Expressions
The following snippet shows how concatenating FTL expressions transforms user
input UA1234 and UA 1234, to simply 1234.

normalizeFlightNumber:
 component: "System.SetVariable"
 properties:
 variable: "flight"
 value: "${flight.value?trim?lower_case?remove_beginning('ua ')
 ?remove_beginning('ua')}"

Built-In FreeMarker Number Operations
The following table lists the built-in number operations and shows how they output the
value set for the negativeValue (-2.5) and positiveValue (0.5175) context variables in
the following snippet.

context:
 variables:

Chapter 14
Apache FreeMarker Reference

14-58

https://freemarker.apache.org/docs/ref_builtins_number.html

 negativeValue: "float"
 positiveValue: "float"
states:
 setNegativeValue:
 component: "System.SetVariable"
 properties:
 variable: "negativeValue"
 value: -2.5
setPositiveValue:
 component: "System.SetVariable"
 properties:
 variable: "positiveValue"
 value: 0.5175

Operation Example Output

abs ${negativeValue.value?abs} 2.5
The operator turns the
negative numeric value into a
positive value.

string (used with a numerical
value)

${negativeValue.value?abs?
string.percent}

250%
The operator first changes the
negative value to a positive.
Then it converts it into
percent, implicitly multiplying
the value by 100.

string (with the decimal
format value and various
currencies)
Tip: Check out Charbase for
other currency symbols.

${positiveValue.value?
string['###.##']}

0.51

${positiveValue.value?
string['###.##%']}

51%
The operator adds adding a
percentage character after
multiplying the value by 100.

${positiveValue.value?
string['##.###\u00A4']}

0.51 $

${positiveValue.value?
string['##.###\u20AC']}

0.51 €

${positiveValue.value?
string['##.###\u00A3']}

0.51 £

round ${negativeValue.value?
round}

-2
The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

${positiveValue.value?
round}

1
The operator rounds to the
nearest whole number. If the
number ends with .5, then it
rounds upwards.

floor ${positiveValue.value?
floor}

0
The operator rounds
downwards.

ceiling ${positiveValue.value?
ceiling}

1
The operator rounds upwards.

Chapter 14
Apache FreeMarker Reference

14-59

http://www.charbase.com/block/currency-symbols

Operation Example Output

lower_abc ${negativeValue.value?abs?
round?lower_abc}

c
The operator turns the
negative value into a positive,
then rounds it to 3. It returns c,
the third letter of the alphabet.

upper_abc ${negativeValue.value?abs?
round?upper_abc}

C
The operator turns the
negative value into a positive,
then rounds it to 3. It returns
C, the third letter of the
alphabet.

is_infinite ${positiveValue.value?
is_infinite?string}

false
The operator returns false,
because a float value is not
infinite according to IEEE 754
(Standard for Floating-Point
Arithmetic).

Note: The returned value
would be a boolean without ?
string.

Built-In FreeMarker Array Operations
Array (or sequence) operations enable your bot to, among other things, determine the
size of an array, sort arrays, or find content within an array.

Arrays return the results from the intent and entity processing. For example:

• ${iResult.value.entityMatches[‘name of entity’]} returns an array of entities
found in a user string that’s passed to the System.Intent component and stored in
the iResult: nlpresult variable.

• ${iResult.value.intentMatches.summary} returns an array of intents and the
confidence level for the given user input.

You can save an array in a custom component, in a user-scoped variable, or as shown
in the following snippet, a context variable. In it, there are arrays set for the person and
colors variables.

context:
 variables:
 person: "string"
 colors: "string"
...

setPerson:
 component: "System.SetVariable"
 properties:
 variable: "person"
 value:
 - firstName: "Frank"
 lastName: "Normal"
 - firstName: "Grant"
 lastName: "Right"
 - firstName: "Geoff"
 lastName: "Power"

Chapter 14
Apache FreeMarker Reference

14-60

https://freemarker.apache.org/docs/ref_builtins_sequence.html

 - firstName: "Marcelo"
 lastName: "Jump"

...

setColors:
 component: "System.SetVariable"
 properties:
 variable: "colors"
 value:
 - "yellow"
 - "blue"
 - "red"
 - "black"
 - "white"
- "green"

These colors and person arrays are used to illustrate the array operations and in
Example: Iterating Arrays.

You can use arrays with different components like the System.Output and
System.SetVariable to accomplish different things:

• To create mock data for testing.

• To define data structures that persist beyond user sessions.

You can define array properties for different components, like System.Output or
System.SetVariable (illustrated in the following snippet).

Operator Example Output

size ${person.value?size?
number}

4—The size (four members) of
the person array

array index $
{person.value[1].firstName
}

Grant—It’s the value of the
second firstName property in
the person array.

$
{person.value[1].firstName
!'unknown'}

Same as the above, but in this
case, the bot outputs unknown
if the second firstName
property has no value.

first ${person.value?
first.firstName}

Frank—The first entry of the
person array. This operation
doesn’t use the array index.

last ${person.value?
last.firstName}

Marcelo—The final lastName
value in the person array.

Chapter 14
Apache FreeMarker Reference

14-61

Operator Example Output

sort_by ${person.value?
sort_by('lastName')
[0].firstName}

Marcelo
This operator sorts the person
array by the lastName property
in ascending order. It then
prints the value of the
corresponding firstName
property for final entry in the
person array:
• Jump, Marcelo
• Normal, Frank
• Power, Geoff
• Right, Grant

Note: Unless you save the
sorted array in a variable
using System.SetVariable,
the data remains sorted for a
single request only.

${person.value?
sort_by('lastName')?
reverse[0].firstName}

Grant—the values are sorted
in descending order:
• Right, Grant
• Power, Geoff
• Normal, Frank
• Jump, Marcelo

seq_index_of ${colors.value?
seq_index_of('red')}

2—The index value for red in
the colors array.

seq_last_index_of ${colors.value?
seq_last_index_of('red')}

2—The last index value for red
in the

join ${colors.value?join(',')} Returns the colors array as a
comma-separated string:
yellow, blue, red, black,
white, green

seq_contains ${colors.value?
seq_contains('red')?

Returns Yes because the array
contains red.
Note: ?seq_contains returns
a boolean value. This value is
then replaced by a string using
the ?string(‘...’.’...’)
expression.

sort ${colors.value?sort?
join(',')}

Returns the colors array as a
comma-separated string in
ascending order: black,
blue, green, red, white,
yellow

reverse ${colors.value?sort?
reverse?join(',')}

Returns the colors array as a
comma-separated string in
descending order: yellow,
blue, red, black, white,
green

Chapter 14
Apache FreeMarker Reference

14-62

Example: Iterating Arrays
Arrays determine the number of entities in the user input. The following snippet shows
how to determine the size of the array held in the person variable and then iterate over
its elements so that the bot outputs something like:

 component: "System.CommonResponse"
 properties:
 metadata:
 responseItems:
 - type: "text"
 text: "${person?index+1}. ${person.firstName} ${person.lastName}"
 name: "Sorry"
 separateBubbles: true
 iteratorVariable: "person"
 processUserMessage: false

Note:

The output described in this code is not sorted (that is, no sort_by operation
is used).

Built-In FreeMarker Date Operations
The following snippet derives the current date using the FreeMarker special variable
reference, .now and the built-in date operator.

PrintToday:
 component: "System.Output"
 properties:
 text: "${.now?date}"
 keepTurn: false

The following table lists some of the built-in date operations that you can use to define
properties and manipulate entity values.

Chapter 14
Apache FreeMarker Reference

14-63

https://freemarker.apache.org/docs/ref_builtins_date.html

Operation(s) Example Output

date ${.now?date} The current date

time ${.now?time} The time of day, like 5:46:09
PM

datetime ${.now?datetime} Prints current date and time,
like Jan 17, 2018 5:36:13 PM.

long and number_to_date ${(.now?long + 86400000)?
number_to_date }

Adds 24 hours to the current
date. If the call is made on
January 17, 2018, FreeMarker
outputs January 18, 2018.

string (with formatting styles) ${.now?string.full} Converts the current date to
string formatted as
Wednesday, January 17, 2018
6:35:12 PM UTC.

${.now?string.long} Converts date to string with
the following formatted output:
January 17, 20186:36:47 PM
UTC.

${.now?string.short} Converts date to string with
the following formatted output:
1/17/18 6:37 PM

${.now?string.medium} Converts date to string with
the following formatted output:
Jan 17, 2018 6:38:35.

${.now?string.iso} Prints the date in the ISO
8601 standard like
2018-01-17T18:54:01.129Z.

string (with specified output
formats)

${.now?string['dd.MM.yyyy,
HH:mm']}

Prints the current date in a
custom format, like
17.01.2018, 18:58.

${.now?string['yyyy']} 2018

datetime (with string and
formatting style)

${date_variable?datetime?
string.short}

Converts the date to a string
formatted as 1/17/18 6:37 PM.
The datetime operator
enables FreeMarker to tell if
the variable holds a date that
contains both date and time
information. Similarly, you can
use the date or time operators
to indicate if the date value
contains only the date or only
the time, but using datetime?
string avoids errors.

Converting the entity value to
a string using
• date

• long

• number_to_date

• formatting styles
• custom date formats

${dateVar.value.date?long?
number_to_date?date?
string.short}

Converts the date from the
entity extraction to a string
formatted as 11/17/18.
The date operator tells
FreeMarker that the variable
only holds a date, not time
information. Using this format
avoids errors.

Chapter 14
Apache FreeMarker Reference

14-64

Operation(s) Example Output

${dateVar.value.date?long?
number_to_date?
string.medium}

Converts the date that’s
derived from entity extraction
to a string formatted as Jan
17, 2018.
Note: All other formats like
full, short, long and iso
work the same with dates
derived from entity extraction.

${dateVar.value.date?long?
number_to_date?
string['dd.MM.yyyy']}

Prints the date in custom
format. For example:
17.01.2018, 18:58.

${dateVar.value.date?long?
number_to_date?
string['yyyy']}

Prints the date derived from
entity in a custom format.

Example: Extracting Dates from User Input
The following snippet is from a bot that manages appointments. When a user asks it,
Can you arrange a meeting with Mr. Higgs a day later than tomorrow?, the bot uses a
complex entity, DATE, to extract tomorrow from the request. It outputs the requested
date using ${(theDate.value.date?long + 86400000)?number_to_date} to add 24 hours
(or 86,400,000 milliseconds) to the current date.

Chapter 14
Apache FreeMarker Reference

14-65

OBotML Code Output

context:
 variables:
 iResult: "nlpresult"
 theDate : "DATE"
states:
 intent:
 component: "System.Intent"
 properties:
 variable: "iResult"
 confidenceThreshold: 0.4
 transitions:
 actions:
 unresolvedIntent: "dunno"
 Appointment: "printToday"
printToday:
 component: "System.Output"
 properties:
 text: "Today is: ${.now}"
 keepTurn: true
startAppointement:
 component: "System.SetVariable"
 properties:
 variable: "theDate"
 value: "$
{iResult.value.entityMatches['DATE'][0]}"
printDateFound:
 component: "System.Output"
 properties:
 text: "Date found is: $
{theDate.value.date}"
 keepTurn: true
printDayAfter:
 component: "System.Output"
 properties:
 text: "A day later is $
{(theDate.value.date?long + 86400000)?
number_to_date}"
 transistions:
 return: "done"

Example: Setting a Default Date (When No Date Value Is Set)
If the user message doesn’t include any date information, your bot can prompt users
for the date, or provide a default date, as shown by the following snippet (which
augments the dialog flow in the previous example). To perform the latter, your bot
needs to check if date variable has been set after the NLP engine extracts entities
from the user input.

 conditionEquals:
 component: "System.ConditionEquals"
 properties:
 variable: "theDate"
 value: null
 transitions:
 actions:

Chapter 14
Apache FreeMarker Reference

14-66

 equal: "setDefaultDate"
 notequal: "printDateFound"

If no date value has been set, the System.SetVariable component defines a default
value in a variable and transform it into a string.

 setDefaultDate:
 component: "System.SetVariable"
 properties:
 variable: "defaultDateInput"
 value: "${.now?datetime?string.long}"

The System.MatchEntity component verifies that this value is a date and then sets
thetheDATE variable:

 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "defaultDateInput"
 variable: "theDate"
 transitions:
 actions:
 match: "printDateFound"
 nomatch: "exit"

Chapter 14
Apache FreeMarker Reference

14-67

OBotML Output

context:
 variables:
 iResult: "nlpresult"
 theDate : "DATE"
 #need extra variable for default
date input
 defaultDateInput: "string"
states:
 ...

#try to extract date information from
user sentence
 startAppointement:
 component: "System.SetVariable"
 properties:
 variable: "theDate"
 value: "$
{iResult.value.entityMatches['DATE'][0]}"
#set default date if none found
 conditionEquals:
 component: "System.ConditionEquals"
 properties:
 variable: "theDate"
 value: null
 transitions:
 actions:
 equal: "setDefaultDate"
 notequal: "printDateFound"
 setDefaultDate:
 component: "System.SetVariable"
 properties:
 variable: "defaultDateInput"
 value: "${.now?datetime?
string.long}"
 matchEntity:
 component: "System.MatchEntity"
 properties:
 sourceVariable: "defaultDateInput"
 variable: "theDate"
 transitions:
 actions:
 match: "printDateFound"
 nomatch: "exit"
 printDateFound:
 component: "System.Output"
 properties:
 text: "Date found is:
 ${theDate.value.date?long?
number_to_date?date?string.medium}"
 keepTurn: true
 printDayAfter:
 component: "System.Output"
 properties:
 text: "A day later is $
{(theDate.value.date?long + 86400000)?
number_to_date}"

Chapter 14
Apache FreeMarker Reference

14-68

OBotML Output

 transistions:
 return: "done"

The SDK Helper Methods

Function Usage

conversation.payload() Retrieves the payload of the current user
message. The payload contains the message
text and other information, like the user ID.

conversation.text() Accesses the text string.

conversation.attachment() Accesses an attachment message.

conversation.location() Accesses a location message.

conversation.postback() Accesses a postback message.

Chapter 14
The SDK Helper Methods

14-69

Function Usage

conversation.transition(“action”) and
conversation.transition()

Directs the Dialog Engine to the next state in
the dialog flow. The custom component can
influence the navigation by returning an action
string that you’ve mapped to state in the dialog
flow.
• Component-controlled navigation

(conversation.transition(“action”))—
To set the target state, pass a string
argument that matches one of the
supportedActions strings in the
component module’s metatdata function,
like nameFound and nameNotFound in the
following snippet:

metadata: () => ({
 "name": "helloWorld",
 "properties": {
 "properties": {
 "name": {
 "type": "string",
 "required": false"
 }
 },
 "supportedActions":
["nameFound", "nameNotFound"]
 }),

• Dialog flow-controlled navigation
(conversation.transition())—You can
call this function with no arguments when
the component module has no
supportedActions definition (and
therefore, no arguments to pass). In this
case, the dialog flow definition sets the
transition, not the component. For
example, depending on the dialog flow
definition, the Dialog Engine might move
to the next state in the flow after
transition method executes
(transitions: {}) or on to a specific
state:

transitions:
 next: "newState"

The dialog flow will also determine the
transition when the component module
has a supportedActions definition, but
the function itself has no arguments.

conversation.channelType() Allows you to determine the messaging
channel.

Chapter 14
The SDK Helper Methods

14-70

Function Usage

conversation.keepTurn(boolean) Enables your bot to retain control of the
conversation. keepTurn essentially decides
who provides input or a response: the bot or
its user. So before you call done, you can
indicate who goes next by calling either
conversation.keepTurn(true) or
convesationkeepTurn(false).
• conversation.keepTurn(true)—Set to

true to allow the bot to control the
conversation. This is essentially the bot
(through the component) asserting “It’s
still my turn to speak.” Use this setting
when the component doesn’t require user
input or when it needs to send multiple
replies in quick succession while
suppressing user input.

• conversation.keepTurn(false)—Set to
false (the default) to enable the user to
reply. This setting essentially hands
control back to the user until the next
reply from the component. It enables a
typical back-and-forth conversation.

conversation.reply({text: "..."}) Returns the response from the messaging
client. This response can be a simple text
message, or a a more complex response with
a rich UI that uses the functions of the
MessageModel class in the Custom Component
SDK. This function enables you to build more
a complex response, such as a scrolling
carousel on Facebook. For this type of
response, you need to structure the JSON
payload appropriately.

Important:

You must call
done() to send
the response,
regardless of the
number of calls
made to
conversation.r
eply.

conversation.properties() Provides access to the component input
properties
(conversation.properties().accountType).

conversation.error Indicates that there was an error in the
processing.

conversation.botId() Returns the ID of the bot that sent the request.

conversation.platformVersion() Returns the version of the message platform
(such as Facebook 1.0).

Chapter 14
The SDK Helper Methods

14-71

Function Usage

conversation.text() Provides access to the NLP text message that
triggered the invocation of the intent and the
component.

conversation.variable(“name”,value) Provides read or write access to variables
defined in the current flow. This function takes
the following arguments:
• variable(name)—Reads the name

variable and returns its value.
• variable(name, value)—Writes the

value of the value variable to the name
variable. Only enclose the value in quotes
when it’s a string.

This function also creates a variable at
runtime, one that can be used to track the
state of component. You can use this when
component needs to track its internal state
because it doesn’t transition to the next state
in the dialog flow.

conversation.nlpResult() Returns an NLPResult helper object for
nlpresult variables. For example, you can
find the value of an entity that was extracted
from the user input by calling
conversation.nlpResult.entityMatches(ent
ity name). You can use this value to update
an entity type variable.

conversation.request() Accesses the JSON object body that’s sent by
the bot. Use this function to parse the payload
for any information that's not directly exposed
by one of the SDK functions.

conversation.response() Grants access to the HTTP response payload
(a JSON object) that’s sent back to the bot
when you call done().

Navigation with keepTurn and transition
Use different combinations of the keepTurn and transition functions to define how the
conversation continues once the component has finished processing.

invoke: (conversation, done) ==> {
 ...
 conversation.keepTurn(true);
 conversation.transition ("success");
 done();
 }

Chapter 14
Navigation with keepTurn and transition

14-72

Use Case Values Set for keepTurn and transition

A custom component’s reply that doesn’t
require any user interaction.

• Set keepTurn to true:
conversation.keepTurn(true).

• Set transition with a supportedActions
string(conversation.transition("succe
ss")) or with no arguments
(conversation.transition()).

For example, a custom component updates a
context variable with a list of values that is
then displayed by a System.List component
that’s defined for the next state in the dialog
flow definition.

invoke: (conversation, done) => {
 const listVariableName =
conversation.properties().variableName;
 ...

 //
write list of options to a context
variable

conversation.variable(listVariableName,
list);

 //navigate to next state. No user
interaction.
 conversation.keepTurn(true);
 conversation.transition();
 done();
 }

Note:

When
component
doesn’t transition
to the next state,
it needs to track
its own state by
creating a
runtime variable
using the
conversation.v
ariable
(“name”,
variable)
method.

Chapter 14
Navigation with keepTurn and transition

14-73

Use Case Values Set for keepTurn and transition

A sequential user conversation in which the
user provides input, the bot replies, and so on.

• Set keepTurn to false.
• Set transition with a supportActions

string
For example:

conversation.keepTurn(false);
conversation.transition("success");

The bot to passes control back to the user
without navigating to the next dialog state.
This allows the component to process the user
input. Here are a couple of examples:
• A component passes the user input to

query a backend search engine. If the
chatbot can only accommodate a single
result, but the query instead returns
multiple hits, the component can then
prompt the user more input to filter the
results. In this case, the custom
component continues to handle the user
input; it holds the conversation until the
search engine returns a single hit. When
the backend system is satisfied, the
component calls
conversation.transition() to move on
to the next state as defined in the dialog
flow definition.

• A questionnaire, wherein a custom
component handles all of the questions
and only transitions to the next state when
each of them gets answered.

• Do not call transition.
• Set keepTurn to false.
For example:

conversation.reply("text");
conversation.keepTurn(false);
done();

The custom component goes into a loop,
which can’t be stopped by user input. For
example, a component pings a remote service
for the status of an order until the status is
returned as accepted or when the component
times out. If the accepted status is not
returned after the fifth ping, then the
component transitions to a failedOrder state,
which is defined in the dialog flow.

• Do not call transition.
• Set keepTurn to true:

conversation.keepTurn(true).
For example:

conversation.reply("text");
conversation.keepTurn(true);
done();

Note:

Always call
keepTurn after
reply and not
before, because
reply implicitly
sets keepTurn to
false.

Chapter 14
Navigation with keepTurn and transition

14-74

The Custom Component Payload

Taking a Look at the Metadata Retrieval

The response payload for the GET endpoint is made up of properties that are required
to call the component along the name of the component itself. You can shape this
payload by defining the state machine transitions (that is, the possible actions returned
by this component). As illustrated by the array in this example, you can add as many
components as you need.

{
 "version": "1.0",
 "components": [{
 "name": "AgeChecker",
 "properties": {
 "minAge": {
 "type": "integer",
 "required": true
 }
 },
 "supportedActions": [
 "success",
 "fail"
]
 }, {
 "name": "PizzaBaker",
 "properties": {
 "size": {
 "type": "string",
 "required": true
 },
 "crust": {
 "type": "string",
 "required": true
 },
 "type": {
 "type": "string",
 "required": true
 }
 },
 "supportedActions": [
 "pizzaReady",
 "fail"
]
 }
]
}{

Taking a Look at the Invocation Request and Response Payloads

For the POST, the request contains the bot’s GUID, the platform version of Bots, and a
context definition for the dialog flow variables, the state’s properties, the original
message, the channel that delivered it, and the tenant.

Chapter 14
The Custom Component Payload

14-75

The POST response payload also includes the context definition for all of the variable
values, including those that have been mutated by the component. The response
payload can also control the routing through properties like exit, done, and error. You
don’t have to parse the JSON if you use our SDK. Instead, you just need to set the
variables. See The SDK Helper Methods.

Chapter 14
The Custom Component Payload

14-76

Chapter 14
The Custom Component Payload

14-77

	Contents
	Preface
	Audience
	Documentation Accessibility
	Conventions

	1 Overview
	What Are Intelligent Bots?
	Why Use Oracle Bots?

	2 The Basics
	Bot Concepts
	How Do I Create a Bot?

	3 Quick Reference
	Managing Your Bots

	4 The Sample Bots
	5 Intents
	Create an Intent
	Add Entities to Intents
	Import Intents from a CSV File
	Export Intents to a CSV File
	Intent Training and Testing
	Test Sets
	The Intent Tester
	Testing Intents
	The Intent Testing History
	Export Intent Data
	Batch Testing Intents

	Which Training Model Should I Use?
	Guidelines for Building Your Training Corpus

	Reference Intents in the Dialog Flow

	6 Entities
	Built-In Entities
	Simple Entities
	Complex Entities

	Custom Entities
	Custom Entity Types
	Create Entities
	Import Value List Entities from a CSV File
	Export Value List Entities to a CSV File

	7 The Dialog Flow Definition
	The Dialog Flow Structure
	How Do I Write Dialog Flows in OBotML?
	Dialog Flow Syntax
	Flow Navigation
	Conifguring the Dialog Flow for Unexpected Actions

	Accessing Variable Values with Apache FreeMarker FTL
	User-Scoped Variables
	Defining User-Scoped Variables

	Getting the User Context
	Test the Dialog Flow

	8 Localization
	Resource Bundles
	Create Resource Bundle
	Reference Resource Bundles in the Dialog Flow
	Resource Bundle Entry Resolution

	Autotranslation
	Enable Autotranslation

	9 Components
	The Custom Component Service
	Create a Service
	How Do Custom Components Work?
	The Component Service
	The Shell
	The Registry
	Component Modules
	The SDK
	The Message Model
	How Do I Implement the Component Service in OMCe?

	10 Channels
	Running Your Bot on Facebook Messenger
	Step 1: Set Up Facebook Messenger
	Step 2: Add the Facebook Keys
	Step 3: Configure the Facebook Messenger Webhook
	Step 4: Enable the Facebook Channel
	Step 5: Testing Your Bot on Facebook Messenger

	Running Your Bot on Other Messaging Services
	Running Your Bot Within Client Messaging Apps and Web Pages
	Bots Client SDKs
	Bots Client SDK for Android
	Adding the Bots Client SDK for Android to Your App
	Adding the SDK and AAR Files
	Initialize the Bots Android SDK in Your App
	Displaying the Bots Android SDK User Interface
	Calling Other Functions
	Replacing the FileProvider

	Localization
	Customization
	Strings Customization
	Styling the Conversation Interface

	Permissions

	Bots Client SDK for iOS
	Adding the Bots Client SDK for iOS to Your App
	Import the Bots Header File
	Add Required Keys in Your App’s info.plist

	Initialize the Bots Client SDK for iOS in Your App
	Calling Other Functions

	Updating the SDK
	Localization of iOS Apps
	Enabling Localization in Your iOS App

	Customization
	Strings Customization
	Styling the Conversation Interface

	Bots Client SDK for JavaScript
	Configuring the Library
	Setup Examples

	Deploying the SDK Files
	Adding Bots Client SDK for JavaScript to Your Site
	Updating the Script Tag

	Customization
	Embedded Mode
	Strings Customization
	Date Localization
	Sound Notification

	Creating a Custom User Interface with the Bots Client SDK for JavaScript
	Initialize the Bots Client SDK for JavaScript in Embedded Mode
	Fetch the Initial Data
	Send Messages
	Receive Messages
	Add Postback Actions
	Calling Other Functions
	Sample Code for the Custom UI
	Message Types
	Text Message
	Carousel Message
	Image Message
	File Message
	Location Message

	Message Actions
	Postback Action
	Link Action
	Location Request Action
	Reply Action
	Webview Action
	Share Action

	Message Item
	Display Style Options

	11 Quality Reports
	How Do I Use the Data Quality Reports?
	Utterances
	Run an Utterance Quality Report
	Troubleshooting Utterance Quality Reports

	Suggestions
	History
	How Do I Run a History Report?
	Running Failure Reports
	Running Low Confidence Reports
	Troubleshooting Narrow Win Margins
	Viewing the Resolution History as a CSV File

	12 Bots Analytics
	Adding Analytics to the PizzaBot Sample Bot
	Setting up the PizzaBot Analytics Application
	Setting up the PizzaBot Custom Component

	13 Instant Apps
	Creating an Instant App from Scratch
	App Settings
	Laying Out an Instant App
	Panes
	Elements
	Adding, Moving, and Deleting Elements
	Cloning Elements
	Shortkey for Adding Multiple Elements
	Common Configuration
	Styles

	Element Types
	Text Inputs
	Choice Inputs
	Special Inputs
	Images and Layout
	Content

	Pane Validation
	The Validator Object

	Events and Actions
	App Events
	Actions
	JavaScript Snippet
	Commonly Used JavaScript Snippets

	Set Element Value
	Make Elements Visible
	Make Elements Invisible
	Enable Elements
	Disable Elements
	Toggle Visibility
	Toggle Enabled
	Set Element Label
	Set Element Properties
	Call External Web API
	Activate and Show Pane
	Reset Elements
	Play Sound
	Show Alert Dialog
	Focus Element
	Open Website
	Open Handset SMS
	Set App Status
	Post Audit Trail
	Lock App
	Unlock App
	Launch Another Instant App
	Exit to Bot

	Parameters
	Using Brace Notation in Element and Parameter Values

	Modes
	Preview Mode
	Test Mode
	JSON

	Starting an Instant App from a Template
	Instant App Lifecycle
	Editing
	Publishing
	Deactivating
	Deleting and Restoring
	Exporting and Importing

	14 Reference
	Built-In Components: Properties, Transitions, and Usage
	Control Components
	System.ConditionEquals
	System.ConditionExists
	System.Switch

	Language
	System.Intent
	The confidenceThreshold Property
	The confidenceWinMargin Property

	System.MatchEntity
	System.DetectLanguage
	System.TranslateInput
	System.TranslateOutput

	Security
	System.OAuthAccountLink

	User Interface Components
	System.Text
	System.List
	Value Lists
	The options Property
	Action Lists

	System.Output
	Defining Value Expressions for the System.Output Component

	System.CommonResponse
	Adding a System.CommonResponse Component to Your Dialog Flow
	The Component Properties
	The Metadata Property
	The Action Metadata Properties
	The Text Response Item
	The Card Response Item
	The Attachment Response Item
	User Message Validation

	System.Interactive
	Transitions
	Message Handling for Output Components
	Handling Free Text
	Handling Multimedia Messages
	Handling Location Messages
	Handling Button Postback Actions
	Handling Button Postback Actions for an Older Message
	Detecting Unexpected Actions

	Limiting the Number of User Prompts

	Variable Components
	System.SetVariable
	System.ResetVariables
	System.CopyVariables

	Apache FreeMarker Reference
	Built-In String FreeMarker Operations
	Example: Improving the Confidence Level with Casing
	Example: Transforming Case with the System.Switch Component
	Example: Concatenating FTL Expressions

	Built-In FreeMarker Number Operations
	Built-In FreeMarker Array Operations
	Example: Iterating Arrays

	Built-In FreeMarker Date Operations
	Example: Extracting Dates from User Input
	Example: Setting a Default Date (When No Date Value Is Set)

	The SDK Helper Methods
	Navigation with keepTurn and transition
	The Custom Component Payload

