Oracle® Cloud

Migrating Oracle SOA Cloud Service Instances to Oracle Cloud Infrastructure

19.2.1
F15009-02
April 2019
Contents

Preface

- Audience v
- Documentation Accessibility v
- Related Resources v
- Conventions v

1 Learn About Migrating to Oracle Cloud Infrastructure

- Why Migrate to Oracle Cloud Infrastructure 1-1
- About the Migration Scope 1-1
 - Understand Migration for Oracle SOA Cloud Service 1-2
- Compare Oracle Cloud Infrastructure to Classic 1-2
- About the Migration Task Flow 1-3

2 Prepare to Migrate Oracle SOA Cloud Service to Oracle Cloud Infrastructure

- About Downtime Requirements 2-1
- Select Oracle Cloud Infrastructure Shapes 2-1
- Design the Oracle Cloud Infrastructure Network 2-2

3 Migrate an Oracle SOA Cloud Service Instance to Oracle Cloud Infrastructure

- Create Infrastructure Resources 3-1
- Provision Oracle SOA Cloud Service 3-2
- Prepare Clients for Migration 3-2
- Prepare Your Source for Migration 3-3
- Prepare Your Target Environment 3-4
- Transition from Old Deployment to New Deployment 3-5
- Re-configure Configuration Parameters and Tune in Oracle SOA Cloud Service 3-6
- Migrate Data Components 3-7
 - Move LDAP Data 3-7
Move OPSS Data 3-8
Move OWSM Data 3-9
Move ESS Metadata 3-9
Move B2B Metadata 3-10
Move OSB Projects 3-10
Move SOA Projects 3-10
Transition Inbound Adapters/Transports 3-10

4 Complete the Post-Migration Tasks

Test Your Target Environment 4-1
Migrate FastConnect and VPN Connections to Oracle Cloud Infrastructure 4-1
Configure Load Balancer 4-2
Clean Up Resources in Oracle Cloud Infrastructure Classic 4-2
Preface

Migrating Oracle SOA Cloud Service Instances to Oracle Cloud Infrastructure describes how to migrate an existing Oracle SOA Cloud Service instance from an Oracle Cloud Infrastructure Classic region to an Oracle Cloud Infrastructure region.

Topics:

- Audience
- Documentation Accessibility
- Related Resources
- Conventions

Audience

Migrating Oracle SOA Cloud Service Instances to Oracle Cloud Infrastructure is intended for users who need to migrate existing Oracle SOA Cloud Service instances to Oracle Cloud Infrastructure.

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Related Resources

For more information, see these Oracle resources:

- Oracle SOA Cloud Service documentation in the Oracle Cloud Library on the Oracle Help Center.

Conventions

The following text conventions are used in this document:
<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
Learn About Migrating to Oracle Cloud Infrastructure

Learn about the benefits to migrating your existing Oracle SOA Cloud Service instances to Oracle Cloud Infrastructure, and get an overview of the migration process and tools.

Topics:
- Why Migrate to Oracle Cloud Infrastructure
- About the Migration Scope
- Compare Oracle Cloud Infrastructure to Classic
- About the Migration Task Flow

Why Migrate to Oracle Cloud Infrastructure

Oracle encourages you to migrate your existing cloud resources from Oracle Cloud Infrastructure Classic regions. You can gain several advantages by doing so.

In Oracle Cloud, you provision resources in specific regions, which are localized to geographic locations. A region supports either the Oracle Cloud Infrastructure Classic or Oracle Cloud Infrastructure platform.

Oracle Cloud Infrastructure is Oracle's more modern infrastructure platform that's based on the latest cloud technologies and standards. It typically provides better performance than Oracle Cloud Infrastructure Classic. Oracle Cloud Infrastructure also has more predictable pricing and lower costs in terms of Oracle Compute Units (OCPUs) per hour. Most importantly, Oracle continues to invest in Oracle Cloud Infrastructure, including the addition of new regions, services, and features. See Data Regions for Platform and Infrastructure Services.

You can benefit from these additional administrative features in Oracle Cloud Infrastructure when you migrate your cloud resources from Oracle Cloud Infrastructure Classic:
- Organize cloud resources into a hierarchy of logical compartments.
- Create fine-grained access policies for each compartment.

About the Migration Scope

There are certain pre-requisites that you should be aware of before you begin migration to Oracle Cloud Infrastructure.

Before migration, ensure the following:
- The source version of SOA for migration in the cloud is 12.1.3 or later.
• It is assumed that disaster recovery is not configured for the source environment. Note that appropriate changes have to be made to the instructions if disaster recovery is configured.
• It is assumed that the production environment has a load balancer. Otherwise, the steps have to be modified and adapted accordingly.

Understand Migration for Oracle SOA Cloud Service

For the migration of Oracle SOA Cloud Service to Oracle Cloud Infrastructure, you'll provision a new cloud instance of Oracle SOA Cloud Service, migrate or recreate configurations from the old source environment and then transition to the newly provisioned cloud instance.

You have to keep the following details in mind for a migration to Oracle Cloud Infrastructure:

• The source version of the cloud SOA instance that you want to migrate can be 12.1.3 or later.
• SOA Cloud Service uses internal LDAP.
• SOA Cloud Service uses OTD.
• SOA Cloud Service uses KSS.
• You can directly copy and import security information between the source and the target SOA Cloud Service instances.
• The target version of the cloud SOA instance that you'll migrate to is 12.2.1.3.

Compare Oracle Cloud Infrastructure to Classic

Get familiar with basic Oracle Cloud Infrastructure security, network, and storage concepts, and their equivalent concepts in Oracle Cloud Infrastructure Classic.

Cloud resources in Oracle Cloud Infrastructure are created in logical compartments. You also create fine-grained policies to control access to the resources within a compartment.

You create instances within an Oracle Cloud Infrastructure region. You also specify an availability domain (AD), if supported in the selected region. Oracle Cloud Infrastructure Classic does not use availability domains.

A virtual cloud network (VCN) is comprised of one or more subnets, and an instance is assigned to a specific subnet. In Oracle Cloud Infrastructure Classic, you assign instances to IP networks or the shared network. Typically, you create one subnet for the shared network, and create a separate subnet for each IP network in Oracle Cloud Infrastructure Classic. Note that unlike Oracle Cloud Infrastructure Classic, Oracle Cloud Infrastructure does not allow you to reserve IP addresses for platform services.

A subnet's security lists permit and block traffic to and from specific IP addresses and ports. In Oracle Cloud Infrastructure Classic, an instance's access rules provide similar capabilities, although security lists are configured at the subnet level.

Instances can communicate with resources outside of Oracle Cloud by using Oracle Cloud Infrastructure FastConnect, which provides a fast, dedicated connection to your on-premises network. This service is equivalent to Oracle Cloud Infrastructure FastConnect Classic. Alternatively, use IPSec VPN in Oracle Cloud Infrastructure as a
replacement for VPN as a Service (VPNaaS) or Corente in Oracle Cloud Infrastructure Classic.

A bucket in Oracle Cloud Infrastructure Object Storage can be used to store files and share them with multiple instances. A user’s generated authentication token (auth token) is required to access the bucket. Oracle Cloud Infrastructure Object Storage Classic provides the same service in Oracle Cloud Infrastructure Classic, but does not use auth tokens.

To learn more, see Key Concepts and Terminology in the Oracle Cloud Infrastructure documentation.

About the Migration Task Flow

Get an overview of the process that you use to migrate your existing Oracle SOA Cloud Service instances to Oracle Cloud Infrastructure.

Note:
As an alternative to performing the procedures described in this guide, you can use Rubicon Red’s MyST platform to migrate Oracle SOA Cloud Service instances on Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure. Contact Rubicon Red for information about their free trial promotion. Use of MyST after the trial period completes would require payment directly to Rubicon Red.

https://myst.cloud/oracle

The following diagram shows the migration topology for a typical Oracle SOA Cloud Service instance.

At a high level, the migration process is comprised of these tasks:

1. Prepare for the migration and perform any prerequisite tasks in Oracle Cloud Infrastructure.
2. Create the target Oracle SOA Cloud Service in an Oracle Cloud Infrastructure region.
3. Use Oracle Data Guard to migrate any application databases in Oracle Cloud Infrastructure Classic regions to Oracle Cloud Infrastructure Database.
4. Use the Oracle WebLogic Server Deploy Tooling to discover and export the domain configuration, applications and other supporting files from your source Oracle SOA Cloud Service instance.

5. Use the Oracle WebLogic Server Deploy Tooling to update the domain configuration on your target Oracle SOA Cloud Service instance and to deploy your applications.

6. Test your applications on the target instance, and perform any other post-migration tasks.
Prepare to Migrate Oracle SOA Cloud Service to Oracle Cloud Infrastructure

Before you migrate your service instances from Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure, understand how the migration affects your existing instances, identify the necessary compute shapes, and create the network to support your migrated service instances.

Topics:
- About Downtime Requirements
- Select Oracle Cloud Infrastructure Shapes
- Design the Oracle Cloud Infrastructure Network

About Downtime Requirements

The migration process does not affect the availability of your existing Oracle SOA Cloud Service instance in Oracle Cloud Infrastructure Classic. The instance continues to run and can serve client requests during this process.

After a service instance is migrated successfully, you can reroute clients to the new instance in Oracle Cloud Infrastructure.

Select Oracle Cloud Infrastructure Shapes

Identify compute shapes that provide similar IaaS resources in Oracle Cloud Infrastructure to the shapes that you’re currently using for your service instances on Oracle Cloud Infrastructure Classic.

A compute shape defines the IaaS resources, such as OCPUs and memory, that are available to a specific node in a service instance. Oracle Cloud Infrastructure and Oracle Cloud Infrastructure Classic each has its own set of standard compute shapes. See:
- About Shapes in Using Oracle Cloud Infrastructure Compute Classic
- Compute Shapes in the Oracle Cloud Infrastructure documentation

To ensure that a migrated service instance has the same performance characteristics as the original instance, and can support an equivalent workload, choose Oracle Cloud Infrastructure shapes that most closely map to the Oracle Cloud Infrastructure Classic shapes that you specified when you created the instance.

You must also confirm that the chosen shapes are available in your Oracle Cloud tenancy. Oracle configures shape limits for an Oracle Cloud Infrastructure region, or for a specific availability domain within a region. You can use the console to view the current shape limits for your tenancy, and to request a limit increase if necessary. See Service Limits in the Oracle Cloud Infrastructure documentation.
Design the Oracle Cloud Infrastructure Network

Before you migrate your service instances from Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure, you must design and implement a virtual cloud network (VCN) to support your migrated service instances.

You can create new Oracle Cloud Infrastructure compartments, VCNs, and subnets for your service instances, or you can use existing ones. See these topics in the Oracle Cloud Infrastructure documentation:

- Managing Compartments
- VCNs and Subnets
- Security Lists

Consider the following guidelines when you create or select a network for your service instances:

- If instances communicate using the default shared network in Oracle Cloud Infrastructure Classic, then use a single subnet for these instances.
- If instances are on separate IP networks in Oracle Cloud Infrastructure Classic, then use separate subnets for these instances.
- A VCN should have an address range that includes all of the IP networks in Oracle Cloud Infrastructure Classic that need to communicate. Alternatively, configure peering between multiple VCNs.
- A subnet should have at least the same number of addresses as the corresponding IP network in Oracle Cloud Infrastructure Classic.
- If an instance was created in Oracle Cloud Infrastructure Classic without public IP addresses, then use a private subnet for this instance.
- If custom access rules were created for an instance in Oracle Cloud Infrastructure Classic to control communication to or from the instance, then create a security list in Oracle Cloud Infrastructure and assign the security list to the appropriate subnets. To use custom security lists, you must assign the instance to a custom subnet, and not the default subnet.

Before you create service instances in Oracle Cloud Infrastructure that use your new network resources, you must create policies that grant your service access to these resources. See Prerequisites for Oracle Platform Services in the Oracle Cloud Infrastructure documentation.
Migrate an Oracle SOA Cloud Service Instance to Oracle Cloud Infrastructure

Create a new Oracle SOA Cloud Service instance in Oracle Cloud Infrastructure, and then use the WebLogic Deploy Tooling to migrate your WebLogic Server domain resources and applications from your existing instance in Oracle Cloud Infrastructure Classic.

Topics:

- Create Infrastructure Resources
- Provision Oracle SOA Cloud Service
- Prepare Clients for Migration
- Prepare Your Source for Migration
- Prepare Your Target Environment
- Transition from Old Deployment to New Deployment
- Re-configure Configuration Parameters and Tune in Oracle SOA Cloud Service
- Migrate Data Components
- Transition Inbound Adapters/Transports

Create Infrastructure Resources

Before you create an Oracle SOA Cloud Service instance in an Oracle Cloud Infrastructure region, you must create the required infrastructure and database resources.

1. Create the following Oracle Cloud Infrastructure resources if they don't already exist:
 - A compartment
 - A virtual cloud network (VCN) and at least one subnet
 - A storage bucket for backups
 - A user authentication token (auth token)
 - Policies that allow Oracle SOA Cloud Service to access the resources in your compartment

 See Prerequisites for Oracle Platform Services in the Oracle Cloud Infrastructure documentation.

2. Create a database in Oracle Cloud Infrastructure Database if one doesn't already exist.

 Oracle SOA Cloud Service will provision the required infrastructure schema to this database. See Create an Oracle Cloud Infrastructure Native Database for Use
Provision Oracle SOA Cloud Service

Provision a new Oracle SOA Cloud Service instance before starting the other migration related tasks. You'll migrate or recreate configurations from your old source environment into this newly provisioned instance of Oracle SOA Cloud Service.

See Provision Oracle SOA Cloud Service Instances in Oracle Cloud Infrastructure of Administering Oracle SOA Cloud Service in a Customer-Managed Environment.

Create a simple hello world application (SOA composite/OSB proxy service/B2B agreement) and test to check that it works.

Prepare Clients for Migration

Configure and prepare your clients such that the transition of HTTP clients from the old deployment to the new deployment is smooth and happens by switching the Domain Name System (DNS) entry.

These changes can be done gradually over time because after these changes are completed everything continues to work as before the changes. This includes some changes to the source environment.

To prepare clients:

1. Get a DNS name issued from DNS issuing authority. Point this DNS name to the source environment load balancer.
 If you are already using a DNS name in clients skip this step.

2. Create a new port in the source environment load balancer that matches the target Oracle SOA Cloud Service port number. Add routing rule to this new port to route to the original load balancer port in the source environment.
 Note that on-premises SOA applications can use a different port number than the target Oracle SOA Cloud Service environment. This makes it impossible to switch clients during transition from the old to the new deployment by switching the DNS.

3. Change all clients to use the DNS name and new port.
 For SSL, it might be required that the trust certificate for the target environment server has to be pre-configured at the client so that transition from the source to the target environment works smoothly.

4. If you were already set up to use a global DNS name, ensure that the Oracle WebLogic Server front end host points to the load balancer and not the DNS name.
 Ensure that the loopback HTTP invokes point to the Oracle WebLogic Server front end host/port. For SOA, also ensure that the loopback abstract WSDL/Schema references point to the WebLogic FE host/port.

These changes ensure that:
- Callbacks come back to the source domain that issued the request, after transitioning to the target.
• Loopbacks in the source domain come back to the source domain after transitioning to the target.

Prepare Your Source for Migration

You have to migrate the Integrated Development Environment (IDE) projects and export or capture needed artifacts from the source environment to prepare your source for migration.

To prepare your source:

1. Migrate IDE projects to the 12c IDE that matches the Oracle SOA Cloud Service version for SOA/Oracle Service Bus (OSB).

2. Export metadata from the source environment for B2B/OSB, where the IDE is not used.
 For B2B, export the full repository. See Importing and Exporting the Design-Time Repository in User’s Guide for Oracle B2B.

3. Grab the domain file system artifacts such as custom XPath functions, B2B java callouts, SOA token mapping file and any script scheduled with Oracle Enterprise Scheduler (ESS) for OSB/SOA.

4. Ensure that there are no hard-coded URLs in the job definitions for Oracle Enterprise Scheduler. Use tokens instead.
 See Using Token Substitution in Developing Applications for Oracle Enterprise Scheduler.

5. Export the shared artifacts which are stored in MetaData Services (MDS) schemas in the source environment by using the offline WLST command:
 sca_exportSharedData(serverURL, JARfile, pattern, [user], [password]).

6. Export /oracle/apps/ess/custom namespace in the ESS partition: essUserMetadata for Oracle Enterprise Scheduler. Do this export using MDS export in the application essnativehostingapp in MDS.

7. Export /oracle/as/ess/essapp/custom namespace in the ESS partition: essapp-internal-partition for Oracle Enterprise Scheduler. Do this export using MDS export in the application ESSAPP in MDS.

8. Note the token values in URLs for Oracle Enterprise Scheduler. You will need this later.
 Note the token values to be used for cloud, if different.

9. For SOA, if there are references to Schemas and abstract WSDLs that are different in the cloud, change the source environment for composites or capture it in the configuration plan.

10. For OSB/SOA, adjust the customization files/configuration plans for deployment to the target SOA Cloud Service. Change URLs to values appropriate for SOA Cloud Service.

11. Use the t3 syntax cluster:t3://<clusternamespace> for local loopback t3 references in configurations.
 Some products like Oracle Service Bus do not support this syntax. For loopback WebLogic JMS URL, use jms://connection_factory/...
Prepare Your Target Environment

Prepare your target environment by importing or recreating all the configurations of your source. This will ensure successful deployment of the target Oracle SOA Cloud Service instance.

To prepare your target environment:

1. Create the required WLS artifacts.
 WLS artefacts can be: Java Message Service (JMS) queue, Java EE Connector Architecture (JCA) adapter configurations, data source, work managers, J2EE app deployment, JMS servers, JMS topics and so on.

2. Implement any security configurations.
 Security configurations can be: custom Oracle Web Service Manager (OWSM) policies, Credential Store Framework (CSF) keys, certificates, users, groups, custom Oracle Platform Security Service (OPSS) roles, custom OPSS permissions, group memberships, role memberships, enterprise roles, OPSS credentials and so on.

 For information on OPSS commands to migrate keystores, see Managing Keystores with WLST in Securing Applications with Oracle Platform Security Services.

 For information on OPSS commands to migrate credentials, see Managing Credentials with WLST in Securing Applications with Oracle Platform Security Services.

 For information on OWSM commands to migrate custom policies, see Migrating Policies in Administering Web Services.

3. Test that your security configurations work.
 • Create a simple application comprising of SOA composite, OSB proxy service, B2B agreement, ESS job.
 • Ensure that the application uses at least one of the keys/certificates/credentials.
 • Test to check if the application works.
 • Check if you can view an imported user in LDAP.

4. Import shared artifacts in MetaData Services (MDS) schemas for SOA.

5. Deploy projects from the console for SOA/Oracle Service Bus.
 Use the prepared customization file/configuration plan. Ensure loopback abstract WSDL/Schema references and loopback HTTP invokes point to the target environment Load Balancer and not the DNS name.

Note:

If the source environment is Oracle SOA Cloud Service, the internal LDAP data can be migrated into the target environment Oracle SOA Cloud Service instance. Migration is supported for Oracle SOA Cloud Service 12.1.3, 12.2.1, 12.2.1.2, and 12.2.1.3.
For inbound adapters, if the address for both deployments is the same, ensure that it doesn’t start processing production messages by externally blocking it from accessing inbound endpoints. Then, if possible, you can deactivate the SOA adapter.

6. Import artifacts for B2B.
 The inbound channels are disabled by default. If required, add URLs in the console for the cloud and deploy all artifacts.

8. Enter the token values noted earlier for Oracle Enterprise Scheduler.

9. Rebind work assignments to the cluster or managed server for Oracle Enterprise Scheduler.

 See Managing Work Assignments and Workshifts in *Administering Oracle Enterprise Scheduler*.

10. Add file system artifacts captured from the source environment, such as custom XPath functions, SOA token mapping file, B2B java callouts.

11. Test the endpoints.

 Use the endpoints in the application (SOA composite, OSB proxy service, B2B agreement, ESS job) created for testing and check if it works. After testing, change it back to the original endpoints.

12. Add scripts scheduled with Oracle Enterprise Scheduler.

13. Set your tuning settings if they are available.

14. Redo all the SOA Composer customizations manually.

15. Redo any Enterprise Manager configuration steps manually.

 For details, see *Re-configure Configuration Parameters and Tune in Oracle SOA Cloud Service*.

16. If Oracle SOA Cloud Service is going to access endpoints on-premises then you may need VPN.

 You can setup VPN through VPNaaS.

17. Apply UMS configuration manually to the target environment.

Transition from Old Deployment to New Deployment

After you have prepared your source and target environments for the migration, you can transition your production system from old deployment to new deployment. You can do this by transitioning: HTTP Clients, inbound adapters where address is the same for old and new, clients of inbound adapters where address is different for old and new, and clients who are reading from the old environment (such as a jms queue) but now need to read from the target environment.

Note that the transition from old to new deployment will not work if the following are used:

- BPEL correlation sets or message ordering.
- Mid-process receives from clients in BPEL.
• If SOA composites have human workflow elements.

To transition from old to new deployment:

1. De-activate the inbound composite/adapter/channel/transport in the old deployment if the inbound address in both old and new deployment is same.
 For FTP inbound, delete any processed file left behind after processing.

2. Switch the DNS.
 The DNS switch is not instantaneous and may take a while (depending on TTL settings in routers) to propagate across the internet.

3. Enable inbound composite/adapter/channel/transport in the target environment system.
 For some inbound adapters like WLS Java Messaging Service (JMS), the address is different and clients have to change the address and switch.

4. Terminate all ESS jobs in the source environment and schedule them in the target environment.

5. Ensure that callback and loopback invokes in SOA must come to the domain that initiated it. So the old deployment continues processing callbacks/loopbacks while new requests are processed by the new deployment.
 When all callbacks/loopbacks are processed and all backlog messages are processed and there is no need for a rollback, then you can destroy the old deployment. External clients who read from, for example, local weblogic JMS queues in the source deployment will switch to the target deployment after all messages are processed.

Re-configure Configuration Parameters and Tune in Oracle SOA Cloud Service

Re-configure any Enterprise Manager tuning and configuration parameters that you had previously set in the source environment or you need to change in the target environment.

You’ll perform these steps as part of preparing your target environment for transitioning from the old to the new environment.

SOA

• Lazy loading
• Modularity profile
• Autopurge
• Timeouts (transaction, Enterprise JavaBeans, HTTP)
• Work managers
• SOA data source connection pool
• Resiliency
• In-memory
• EDN
Migrate Data Components

Migrate your data components such as LDAP, OPSS, OWSM, ESS, B2B, OSB and SOA from the source to the target environment.

You'll perform these tasks as part of preparing your target environment for transitioning from the old environment to the new.

Migrate your data components in the following order:

1. Migrate LDAP Data
2. Migrate OPSS Data
3. Migrate OWSM Data
4. Migrate the remaining data (ESS, B2B, OSB and SOA) in any order.

Move LDAP Data

LDAP data includes the Oracle WebLogic Server specified user, group, enterprise role and security policies (predefined Oracle WebLogic configurations and configurations that users have added to internal LDAP). Import and move the LDAP data from your source to your target environment.

Keep in mind that SOA Cloud Service uses internal LDAP.

The WebLogic console has commands to export and import internal LDAP. This can be used to move users/groups/group memberships/enterprise roles etc. By default, LDAP import will not overlay users and groups, and other artifacts that are already there. This is the desired behavior. For details, see Exporting and Importing Information in the Embedded LDAP Server in Administering Security for Oracle WebLogic Server.
When you export the whole LDAP, information which the integration does not use such as XACML policies and default credential mapper, also gets exported. This information may get seeded by WebLogic and exporting/importing this information can have issues. So do not export/import this information.

For information on how to handle the WebLogic OOTB security provider data migration, see:

- Security Data Migration in *Developing Security Providers for Oracle WebLogic Server*.
- Migrating Security Data in *Administering Security for Oracle WebLogic Server*.

You can navigate to any security provider that supports the migration functions and invoke the import() and/or export() MBean operation such that this security provider’s data can be addressed outside of any other security provider data. See Migrating Data with WLST in *Administering Security for Oracle WebLogic Server*.

Here is an example with direct lookup vs navigation:

```java
$ java weblogic.WSLT
% connect()
% serverConfig()
% realm = cmo.getSecurityConfiguration().getDefaultRealm()
% atn = realm.lookupAuthenticationProvider('DefaultAuthenticator')
% atn.exportData('DefaultAtn', 'myFile', None)
% disconnect()
```

You can use WLST if you decide that you need any data beyond the default Authenticator (Embedded LDAP users/groups). It is recommended that you also export roles.

Move OPSS Data

Move OPSS data by exporting from the source, and then copy the exported file to the newly provisioned target environment and import.

OPSS consists of the following:

- **OPSS policies application roles and permissions**
 These are mostly seeded automatically but in some cases customers can create their own roles and policies. Also, customers will define role memberships.

- **Keys, certificates and trust certificates**
 These are used for authentication, signing, encryption and SSL. Trust certificates are public certificates of certificate issuing authorities to establish the trust chain.

- **Credentials**

Note the following when you move OPSS data:

- **Bootstrap credentials and bootstrap keys must be preserved in the target environment domain and should not be overlayed with import and export.**
 If nothing was done to specifically import/export keys into the system keystore in the source system, it is recommended that you do not migrate the source system keystore since the same contents will get seeded when the destination domain is created.
• Migration of the OPSS audit service is not required.
• Server SSL key must be preserved in the target environment domain and should not be overlayed with import and export.

Note:

Source environment deployment server certificates with host names in the certificates cannot be reused.

Move OWSM Data

Move OWSM data by exporting it from the source and importing it to the target environment.

OWSM has the following artifacts of interest:

• CSF keys: There are references to CSF keys in OWSM policies/policy overrides. There is no change required as long as actual values are available in the credential store owned by OPSS. CSF keys must be available in the target environment.
• certs and keys: OWSM supports two types of keystores: JKS (file based) and KSS (owned by OPSS). The certificates/aliases in the source environment should be made available in the target environment. There are references to keys/certificates in OWSM policies/policy overrides.
• Custom OWSM authorization policies: These are same as custom policies.
• Custom OWSM policies

See Exporting Documents from the Repository Using WLST in Securing Web Services and Managing Policies with Oracle Web Services Manager.
See Importing Documents into the Repository Using WSLT in Securing Web Services and Managing Policies with Oracle Web Services Manager.
• Additional configurations that may be required: trust config and OAuth config

The exportWSMRepository command exports all custom policies from the repository, the trust configuration, OAuth configuration, and any other configuration documents.

Move ESS Metadata

Since we need to export tip versions of metadata in MDS in a specific package, we can use the exportMetadata WLST command with docs parameter as */oracle/apps/ess/custom/** and */oracle/as/essapp/custom/** to an archive. Then we can import from the archive to the target MDS repository using the importMetadata WLST command.

To ensure the metadata is independent of environment, we need to tokenize URLs in job definitions first. Users have to define the new token values in the target environment (if required).

For MDS importMetadata and exportMetadata commands, see exportMetadata and importMetadata in WLST Command Reference for Infrastructure Components.
Move B2B Metadata

Move B2B metadata from your source to your target environment.

For detail instructions, see Importing and Exporting Data in User's *Guide for Oracle B2B*.

Move OSB Projects

The easiest way to export and import Service Bus metadata is through the console. You can export all the projects with one export.

See How to Export Resources to a Configuration JAR File in the Console in *Developing Services with Oracle Service Bus*.

Move SOA Projects

The SOA composite SAR archive can be generated easily in JDeveloper 12.2.1.3 by generating a SAR archive (instead of deploying to the server). This can be deployed to the target SOA Cloud Service 12.2.1.3 server from the console, ant script or WLST script.

See Deploying SOA Composite Application in Oracle JDeveloper in *Developing SOA Applications with Oracle SOA Suite*.

Transition Inbound Adapters/Transports

For successful migration, you need to transition inbound adapters/transports.

There are two use cases to consider for transitioning inbound adapters/transports. During transition, you disable the inbound adapters/transport at the source and enable it on the target environment. Also, when you first deploy the projects to the target environment, you do not want inbound adapters/transports to process production messages right away until you are ready for the transition. To solve both the use cases, you can do any of the following:

- Change the etc/host file or add/remove permissions for the file directory.
- Change to composite or adapter activate/deactivate.

 SOA supports adapter activate/deactivate only in 12.1.3. In B2B, the inbound channel is disabled by default on import. OSB does not support this.
- Change the inbound endpoints to test or true endpoints.

 This requires a redeployment.
Complete the Post-Migration Tasks

After successfully migrating your Oracle SOA Cloud Service instances from Oracle Cloud Infrastructure Classic to Oracle Cloud Infrastructure, test your applications thoroughly, and then perform cleanup and other optional configuration tasks.

Topics:

• Test Your Target Environment
• Migrate FastConnect and VPN Connections to Oracle Cloud Infrastructure
• Configure Load Balancer
• Clean Up Resources in Oracle Cloud Infrastructure Classic

Test Your Target Environment

You can test your target environment at this point to check if everything is working as expected after the migration. It is assumed that you have already tested in a stage system (test environment).

To test your target environment:

1. Use endpoints to test in the configuration plans of the steps that you have completed till now.
2. Test and check if everything is working as expected.
3. Switch to production endpoints.
 This may require projects to be redeployed with appropriate configuration plans.

Migrate FastConnect and VPN Connections to Oracle Cloud Infrastructure

Use Oracle Cloud Infrastructure to create a connection between your private, on-premises network and a network in Oracle Cloud.

A Virtual Private Network (VPN) uses a public network to create a secure connection between two private networks. Oracle supports two connectivity solutions for a Virtual Cloud Network (VCN) in Oracle Cloud Infrastructure:

• Oracle Cloud Infrastructure FastConnect - Create dedicated, high-speed, virtual circuits for production systems that communicate with your on-premises network using the Border Gateway Protocol (BGP). This service is equivalent to Oracle Cloud Infrastructure FastConnect Classic.
• IPSec VPN - Create secure connections with your on-premises network using the IPSec protocol. This solution replaces VPN as a Service (VPNaaS) and Corente in Oracle Cloud Infrastructure Classic.
When migrating from Oracle Cloud Infrastructure Classic, update the existing BGP or VPN configuration in your on-premises network to use either Oracle Cloud Infrastructure FastConnect or IPSec VPN. Alternatively, if you require connectivity to instances in both Oracle Cloud Infrastructure and Oracle Cloud Infrastructure Classic during the migration process, create a separate BGP or VPN configuration in your on-premises network.

In Oracle Cloud Infrastructure, creating a connection to your on-premises network includes these tasks:

- Create a Dynamic Routing Gateway (DRG) in the VCN.
- Create a route table in the VCN that directs external traffic to the DRG.
- Assign the route table to a subnet in the VCN.

Refer to these topics in the Oracle Cloud Infrastructure documentation:

- FastConnect
- IPSec VPN

Configure Load Balancer

Register your domain name, import a CA-issued SSL certificate, and associate the SSL certificate with the load balancer.

Configure the load balancer as follows:

1. Register your domain name by using verisign.com or register.com.
2. Resolve the domain name to the IP address of the SOA load balancer.
3. Import a CA-issue SSL certificate to the load balancer.
4. Associate the SSL certificate with the load balancer.

Clean Up Resources in Oracle Cloud Infrastructure Classic

After testing your target Oracle SOA Cloud Service instance, you can delete the source instance and supporting cloud resources in Oracle Cloud Infrastructure Classic.

Delete these Oracle Cloud Infrastructure Classic resources to avoid costs for services that you no longer use.

1. Access the Oracle SOA Cloud Service console.
2. Delete the source Oracle SOA Cloud Service instances that you created in Oracle Cloud Infrastructure Classic.
 a. Click **Manage this instance** for the service instance, and then select **Delete**.
 b. Enter the Database Administrator User Name and Database Administrator User Password for the infrastructure schema database. Alternatively, select **Force Delete** if you plan to delete this database as well.
 c. Click **Delete**.
3. Click **IP Reservations**.
4. Delete any IP reservations that you created for your source Oracle SOA Cloud Service instances.
 a. Click **Delete** for the IP reservation.
 b. When prompted for confirmation, click **OK**.
5. Access the Oracle Database Cloud Service console (Database Classic).
6. Delete the Oracle Database Cloud Service instances that you created in Oracle Cloud Infrastructure Classic to support your source Oracle SOA Cloud Service instances.
 Do not delete a database if it is still in use by other services.
 a. Click **Manage this instance** for the database instance, and then select **Delete**.
 b. When prompted for confirmation, click **Delete**.
7. Click **IP Reservations**.
8. Delete any IP reservations that you created for your Oracle Database Cloud Service instances.
 a. Click **Delete** for the IP reservation.
 b. When prompted for confirmation, click **OK**.
9. Access the Oracle Cloud Infrastructure Object Storage Classic console (Storage Classic).
10. Delete the object storage containers that you created in Oracle Cloud Infrastructure Classic to support your source Oracle SOA Cloud Service instances.
 Do not delete a container if it is still in use by other services.
 a. Click the delete icon for the container.
 b. When prompted for confirmation, click **OK**.