
Oracle® Cloud
Developing Integrated Spreadsheets Using
Oracle Visual Builder Add-in for Excel

Version 3.8
F89592-02
February 2024

Oracle Cloud Developing Integrated Spreadsheets Using Oracle Visual Builder Add-in for Excel, Version 3.8

F89592-02

Copyright © 2021, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 What's New in Release 3.8.0

New and Changed Features 1-1

2 Introduction to Oracle Visual Builder Add-in for Excel

Key Concepts, Components, and Terms 2-1

Installation 2-2

Next Steps 2-3

3 Install Oracle Visual Builder Add-in for Excel

Install Using the All Users Installer 3-1

Install Using the Current User Installer 3-2

Run the Installer from the Command Line 3-4

Upgrade to the Latest Version 3-4

Check for Updates 3-5

Upgrade Policy 3-6

Uninstall the Oracle Visual Builder Add-in for Excel 3-7

Software Dependencies 3-8

Supported Platforms 3-8

4 Create Layouts in an Excel Workbook

Create a Table Layout in an Excel Workbook 4-2

Work with Service Path Parameters in a Table Layout 4-7

Create a Form-over-Table Layout in an Excel Workbook 4-8

Manage Fields in a Form or Table 4-14

Create Layouts for Attachment Business Objects 4-17

Use Polymorphic Business Objects and Fields 4-21

About Polymorphic Business Objects 4-21

Check the Cardinality of Child Polymorphic Business Objects 4-21

Create a Layout Using Descriptive Flexfields 4-22

Add Descriptive Flexfields to a Layout 4-25

iii

Show or Hide Context-Sensitive Columns in a Table Layout 4-27

Refresh Polymorphic Business Object Metadata 4-28

Polymorphic Support Limitations 4-29

Manage Layout Capabilities 4-29

Layout Limitations 4-30

5 Manage Catalogs and Business Objects

Add Business Objects to an Existing Catalog 5-2

Import a Business Object Catalog 5-3

Create a Business Object Catalog from a Data Sample 5-6

Configure Business Object Fields 5-7

Set an Authentication Method for a REST Service 5-11

Override a Business Object's Base Path 5-12

Manage Metadata Path Information 5-13

Configure Pagination for a Business Object 5-14

Configure Row Finders for a Business Object 5-16

Use Row Variables for a Business Object 5-19

Configure a Row Variable for a Layout 5-19

Configure GZIP Compression for Request Payloads 5-21

Refresh a Business Object Catalog 5-21

Configure the REST-Framework-Version 5-23

6 Configure Search Options for Download

Use Search to Find Required Data 6-1

Use Row Finders to Limit Downloaded Data 6-4

Use Search Parameters to Limit Downloaded Data 6-6

Use Workbook Parameters in a Search 6-8

Create a Search Using Embedded Values 6-9

Embedding Workbook Parameters in a Workbook 6-11

7 Download Data

Table Download 7-1

Form-over-Table Download 7-3

Dependent Layout Download 7-3

Configure Download to Use a Single Payload 7-5

Notes and Limitations of Single Payload Downloads 7-6

Notes on Download Behavior 7-7

iv

8 Custom Actions

Edit Custom Actions 8-2

Add Custom Action Fields to a Table Layout 8-4

Service Metadata for Custom Actions 8-5

Multi-Row Mode for Custom Actions 8-7

Notes on Custom Actions 8-7

9 Use Lists of Values in an Excel Workbook

About Lists of Values 9-1

Configure a List of Values with a Business Object 9-3

Configure a Filter for a List of Values 9-7

Configure a Filter for a Search Term Only 9-7

Configure a Filter to Limit Available Choices 9-8

Configure a Filter with a Dynamic Parameter 9-9

Configure a Cascading List of Values 9-13

Notes on Filters 9-16

Create a Local Data Source for a List of Values 9-17

Configure a List of Values with a Local Data Source 9-20

List of Values for Descriptive Flexfields 9-23

Configure the Bind Parameters for a Descriptive Flexfield's List of Values 9-25

Clear Cache for a List of Values 9-26

Refresh Parameter Definitions for a Lists of Values 9-26

Notes and Limitations for Lists of Values 9-27

10

Appearance of an Integrated Excel Workbook

Reset Workbook Styles 10-1

Choose Field Formats 10-2

Set a Default Value for a Business Object Field 10-3

Add Help Text to Your Workbook 10-5

Copy Descriptions to Help Text 10-7

11

Data Validation

About Custom Field Validation Rules 11-2

Create Field Validation Rules 11-5

Notes on Custom Field Validation Rules 11-6

v

12

Upload Changes

Upload Changes from a Table Layout 12-1

Upload Changes from a Form-Over-Table Layout 12-3

Invoke Custom Actions via Upload 12-4

Upload Table Changes Using Separate Requests for Each Row 12-6

Upload Changes Using Multi-Row Requests 12-7

About Multi-Row Processing 12-7

Configure Multi-Row Uploads 12-8

Disable Multi-Row Requests for Upload 12-10

EffectiveOf Headers in Multi-Row Requests 12-11

Upload Parent and Child Changes in the Same Payload 12-11

Notes and Limitations of Single Payload Uploads 12-14

Upload Changes Using Upsert Mode 12-16

Omit Empty Values During Upload 12-17

Send Only Changed Data During Upload 12-18

Data Consistency 12-21

Enable Parallel Requests During Upload 12-22

13

Use Multiple Layouts for Multi-level Business Objects

Create a Set of Dependent Layouts 13-4

Add a Layout to a Set of Dependent Layouts 13-7

Add Ancestor Columns to Dependent Layouts 13-9

Add a Parent Column to Support Row Creation 13-9

Add Ancestor Columns to Provide Additional Context 13-11

Filter Data for a Set of Dependent Layouts 13-12

Download, Upload, and Clear Operations on Dependent Layouts 13-13

Delete a Dependent Layout 13-16

Requirements for Dependent Layouts 13-16

14

Use Macros in an Integrated Excel Workbook

15

Publish an Integrated Excel Workbook

Differences Between a Published and a Source Workbook 15-4

Publish an Unlocked Copy 15-5

vi

16

REST Service Support

Service Types 16-1

Oracle ADF REST Resource 16-1

Visual Builder Business Objects 16-2

Oracle REST Data Services 16-2

NetSuite SuiteTalk REST Web Services 16-3

About NetSuite Services 16-3

Configure a NetSuite Catalog for Parent-Child Business Objects 16-5

Add NetSuite Reference Fields for a Table Layout 16-8

NetSuite Support Limitations and Known Issues 16-10

Other Services 16-11

Supported Data Types 16-12

Business Objects Harvested from OpenAPI Metadata 16-13

Required Fields 16-14

REST Operations 16-14

REST Request Headers 16-15

Configure a Request Header 16-15

Notes on REST Request Headers 16-17

Natural Language Support 16-18

Object-typed Fields and Subfields 16-18

REST Service Support Limitations 16-19

17

Internationalization

Manage Workbook Translations 17-3

Translate Your Integrated Workbook 17-3

About Translation Files 17-4

Change the Add-in's Language 17-5

Internationalization Notes 17-7

18

Security

Security Guidelines 18-1

Microsoft Components 18-1

Authentication Options 18-1

Basic Authentication 18-2

Oracle Fusion Applications Token Relay Authentication 18-2

What Happens During the Login Sequence? 18-2

Token Relay Authentication Test 18-4

Configure Token Relay Authentication for a Catalog 18-4

Requirements for Token Relay Authentication 18-6

vii

OAuth 2.0 Authorization Code Flow with PKCE 18-6

OAuth 2.0 Authorization Properties 18-6

OAuth 2.0 Authorization Code Flow Steps 18-7

Configure OAuth 2.0 Authorization for a Catalog 18-8

OAuth Limitations and Known Issues 18-9

Service Authorization and User Privileges 18-9

Transport Layer Security 18-10

The Digital Certificate 18-10

19

Troubleshoot Excel Workbooks

Check Your Environment 19-1

Apply Microsoft Updates 19-2

Network Monitor 19-3

Installation Logs 19-4

Logging 19-5

Log Console 19-5

Diagnostic Report 19-6

Re-Enable Oracle Visual Builder Add-in for Excel 19-6

Resolve Workbook Issues 19-7

20

Migrating an Excel Workbook to Version 3.8

Backward Compatibility 20-1

21

Use Expressions in an Integrated Workbook

About Expressions 21-1

Numbers in Expressions 21-2

Dates in Expressions 21-3

String Representations 21-5

Reserved Words Used in Expressions 21-5

Literal Values in Expressions 21-6

Operators in Expressions 21-7

Examples of Expressions 21-8

22

The Embedded Browser

The WebView2 Control 22-1

Clear the Embedded Browser Cache 22-2

viii

23

Accessibility Support

24

Third Party Licenses

ix

Preface

Developing Integrated Spreadsheets Using Oracle Visual Builder Add-in for Excel
describes how to develop Excel workbooks that can retrieve and modify business data
exposed by a REST service and send modified data back to the service.

Topics:

• Audience

• Documentation Accessibility

• Diversity and Inclusion

• Related Resources

• Conventions

Audience
Developing Integrated Spreadsheets Using Oracle Visual Builder Add-in for Excel is
intended for developers who want to create and publish Excel workbooks that
integrate with enterprise applications that they use.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at https://www.oracle.com/corporate/
accessibility/.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit https://support.oracle.com/
portal/ or visit Oracle Accessibility Learning and Support if you are hearing
impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Audience

10

https://www.oracle.com/corporate/accessibility/
https://www.oracle.com/corporate/accessibility/
https://support.oracle.com/portal/
https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab

Third-Party Content, Products, and Services Disclaimer
This software or hardware and documentation may provide access to or information about
content, products, and services from third parties. Oracle Corporation and its affiliates are not
responsible for and expressly disclaim all warranties of any kind with respect to third-party
content, products, and services unless otherwise set forth in an applicable agreement
between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any
loss, costs, or damages incurred due to your access to or use of third-party content, products,
or services, except as set forth in an applicable agreement between you and Oracle.

Related Resources
For more information, see these Oracle resources:

• Oracle Visual Builder Add-in for Excel homepage.

• Introduction to Accessing Business Objects in Accessing Business Objects Using REST
APIs

• View and Edit Data Using an Excel Workbook in Managing Data Using the Oracle Visual
Builder Add-in for Excel

Conventions
The following text conventions are used in this document.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Third-Party Content, Products, and Services Disclaimer

11

https://docs.oracle.com/en/cloud/paas/visual-builder-addin/index.html

1
What's New in Release 3.8.0

Here’s an overview of new features and enhancements added to Oracle Visual Builder Add-in
for Excel in Release 3.8.0.

New and Changed Features
• Ability to use a Table layout as the primary layout for a nested upload. See Upload Parent

and Child Changes in the Same Payload.

• Support for Row Variables. See Use Row Variables for a Business Object.

• Support for date values in expressions. See Dates in Expressions.

• Support for default value on date-type fields. See Set a Default Value for a Business
Object Field.

• Support for FA Token Relay properties. See Configure Token Relay Authentication for a
Catalog.

• Custom actions: improved handling of non-trivial results. See Notes on Custom Actions.

1-1

2
Introduction to Oracle Visual Builder Add-in
for Excel

Oracle Visual Builder Add-in for Excel integrates Excel spreadsheets with REST services to
retrieve, analyze, and edit business data from the service. You download your data to an
Excel spreadsheet, work with it, then upload your changes back to the service.

Desktop

Excel

Integrated
Workbook

Visual Builder
Add-in for

Excel

REST

Oracle Cloud

Cloud
Security

Oracle Cloud
Applications

Oracle
Visual Builder

Oracle REST
Data Services

Content/Data

Key Concepts, Components, and Terms
Before you use Oracle Visual Builder Add-in for Excel, it helps to become familiar with these
key concepts, components, and terms.

Term Description

Integrated workbook An Excel workbook configured to work with one or more business objects.

2-1

Term Description

Service A web service that provides access to application data. The add-in works with REST
services. Throughout this book, REST service is implied whenever "service" is
mentioned. "Web resources" is another equivalent term. See Representational state
transfer for an overview of REST.

OpenAPI The OpenAPI Specification defines a standard, language-agnostic interface to
RESTful APIs which allows both humans and computers to discover and understand
the capabilities of the service without access to source code, documentation, or
through network traffic inspection. Refer to the OpenAPI specification here: https://
swagger.io/specification/.

Business object A resource - like a purchase order or invoice - that has fields to hold your application's
data. A business object includes a collection path, an item path, a set of fields, and
other properties.

Business object catalog A set of one or more business objects with a common host and base path.

Path A path identifies the specific resource in the host that a web client requests access to,
for example: /fscmRestApi/resources/11.13.18.05/
draftPurchaseOrders.

Collection path A service path (endpoint) that can be used to fetch multiple rows of data from the
business object and/or to perform operations on the collection.

Item path A service path (endpoint) that can be used to fetch, or operate on, a single row from
the business object.

Metadata path A service path (endpoint) that can be used to fetch the service metadata for the
business object.

Layout A way to display a business object in an Excel worksheet. Each worksheet supports
one of two layouts: Table or Form-over-Table. Layouts are created by workbook
developers and are visible to business users in published workbooks.

REST Frameworks

For simplicity, the add-in guides use these short forms for the REST frameworks the
add-in supports.

REST Framework Short Form More Information

NetSuite SuiteTalk REST web
services

NetSuite About NetSuite Services

Oracle ADF REST Resource ADF REST Oracle ADF REST Resource

Oracle REST Data Services ORDS Oracle REST Data Services

Visual Builder Business
Objects

VBBO Visual Builder Business
Objects

Installation
To install the latest version of Oracle Visual Builder Add-in for Excel, download and run
the installer.

You can find the latest version of the installer at the Downloads page on Oracle.com.

For more information, refer to Install Oracle Visual Builder Add-in for Excel.

Chapter 2
Installation

2-2

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
https://swagger.io/specification/
https://swagger.io/specification/
https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html

Next Steps
After you install the add-in, a new Oracle Visual Builder ribbon tab appears in Microsoft
Excel. As a workbook developer, you use the options in this ribbon tab to configure a
worksheet to integrate with a service and download data to a data table that you create in the
worksheet. Once the data table is created and populated with data, you can review, modify,
and create data, then upload your changes to the service.

This image shows a worksheet that is integrated with an REST service that manages
employees:

Here are the high-level steps you'll need to follow to create a similar data table in a
worksheet:

1. In the Oracle Visual Builder tab, click Designer.

2. Provide the URL of a service metadata document that complies with the OpenAPI
specification.

3. Pick a business object.

4. Download data.

Review subsequent sections in this guide to understand available layout types and other add-
in capabilities. For Excel specifications and limits, see Microsoft documentation.

Chapter 2
Next Steps

2-3

https://support.microsoft.com/en-us/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3?ui=en-us&rs=en-us&ad=us

3
Install Oracle Visual Builder Add-in for Excel

To install Oracle Visual Builder Add-in for Excel, download and run one of the two available
installers. You can download these installers from the Oracle Downloads page.

There are two available installers for the add-in: a "Current User" installer and an "All Users"
installer. Use the Current User installer to install the add-in on your local desktop for your own
use. The All Users installer is intended for IT administrators.

The add-in runs in Excel on a Windows environment and requires some additional Microsoft
components. Check out the Software Dependencies topic for details.

Installer Types

The Current User installer installs the add-in for the current user’s Windows profile only. If
there are other people using this computer, they will need to install the add-in for their own
Windows profile.

When you use the All Users installer, the add-in is installed in the Programs Files folder and
is available for all users on the target Windows machine.

Refer to this table for a full comparison of the two installers:

Comparison Current User All Users

File name vbafe-installer-current-
user.msi

vbafe-installer-all-
users.msi

Installation Location Current Windows user profile Program Files

Target Audience Business users IT administrators

Windows Registry Entries HKEY_CURRENT_USER HKEY_LOCAL_MACHINE
Elevated Privileges Not required Required

Install Using the All Users Installer
To install Oracle Visual Builder Add-in for Excel for all users, download the All Users installer
from the Oracle Downloads page and run the installer.

If any required software is missing, the installation terminates without installing the add-in.
Refer to Software Dependencies for details including information on how to check for and
install required components.

You must have elevated privileges for this installation.

The add-in includes designer tools for developing workbooks by default. If the user doesn't
need these tools, you can disable them when you install the add-in. If these tools are needed
later on, simply rerun the installer and enable them.

This installation is available to all users on the Windows machine. You do not need to install
the add-in separately for each user profile.

3-1

https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html
https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html

1. Double-click the vbafe-installer-all-users.msi file that you downloaded
previously to launch the installation wizard.

If you are not logged in with elevated privileges, you’ll be prompted to provide
credentials with elevated privileges.

2. To install the add-in without the available developer tools, click Developer
Options and select Disabled.

If you need to enable these tools after initial installation, re-run the installer,
choose the option to repair your installation, and select Enabled.

3. Click Install to install the add-in.

When the installation is complete, click Close.

4. Start Excel and open a new workbook.

A new Oracle Visual Builder ribbon tab appears, with commands to integrate the
Excel spreadsheet with a REST service. If you disabled the design tools during
installation, you won't see the Design options in the first pane on the ribbon.

Note:

If you are unable to install the add-in, refer to the installation log. See
Installation Logs.

Install Using the Current User Installer
To install Oracle Visual Builder Add-in for Excel for the current user’s profile, download
the Current User installer (vbafe-installer-current-user.msi) from the
Oracle Downloads page and run the installer.

If any required software is missing, the installation terminates without installing the
add-in. Refer to Software Dependencies for details including information on how to
check for and install required components.

The add-in includes designer tools for developing workbooks. These tools are included
by default. If you are an application developer, make sure to install the designer tools
with the add-in. If you need these tools but don’t have them, simply rerun the installer
and enable the designer tools.

This installation is specific to the current Windows user profile. If multiple users on a
Windows machine need the add-in, consider using the All Users installer instead. See
Install Using the All Users Installer.

Chapter 3
Install Using the Current User Installer

3-2

https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html

Note:

Running both the All Users installer and the Current User installer on the same
machine is not recommended. If you do install the add-in using both installers,
Excel loads the add-in installed in the Program Files folder ("All Users") and not the
version in the current user’s Windows profile ("Current User"). If you decide to
switch the installation type, the best practice is to uninstall the previous add-in
installation type first to avoid confusion.

To install the add-in:

1. Sign in to the Windows user profile that will be using the add-in with Excel.

2. Quit Excel before you begin installation.

3. Double-click the vbafe-installer-current-user.msi file that you downloaded
previously to launch the installation wizard.

4. To install the add-in without the available developer tools, click Developer Options and
select Disabled.

Tip:

If you need these tools after initial installation, re-run the installer, choose the
option to repair your installation, and select Enabled.

5. Click Install to install the add-in.

When the installation is complete, click Close.

6. Start Excel and open a new workbook.

A new Oracle Visual Builder ribbon tab appears with commands to integrate the Excel
spreadsheet with a REST service. If you disabled the design tools during installation, you
won't see the Design options in the first pane on the ribbon.

When you first run Excel after the current-user installation, you may be prompted to
confirm the installation of the "Office customization". This prompt generally appears the
first time for each profile and whenever the digital certificate (used to sign the add-in) is
changed.

Note:

If you are unable to install the add-in, refer to the installation log. See
Installation Logs.

Chapter 3
Install Using the Current User Installer

3-3

Run the Installer from the Command Line
Since both installers are standard Windows Installer Packages (MSI), you can run
msiexec on the command line to install Oracle Visual Builder Add-in for Excel.

msiexec includes a number of options that let you control or customize your
installation. See Standard Installer Command-Line Options on the Microsoft web site.

Examples

The following example shows a silent installation with logging enabled:

msiexec /package vbafe-installer-all-users.msi /quiet /log vbafe-install-
log.txt
The following example shows a silent uninstall:

msiexec /uninstall vbafe-installer-all-users.msi /quiet

Unsupported Options

Not all msiexec options are relevant or supported for Add-in installation. Unsupported
options include /j and /a.

Enable Designer Tools

The installers define a public property, “DESIGNER”, that can be used to enable or
disable designer tools during command-line installation. To disable designer tools from
the command-line, set DESIGNER=0. Refer to the msiexec documentation for details
on how to set public properties during installation.

When performing an upgrade or repair, the installer uses the previously set value if this
property is omitted.

Upgrade to the Latest Version
To take advantage of all the latest Oracle Visual Builder Add-in for Excel features,
make sure you are running an up-to-date version of the add-in. To upgrade to a new
version, simply download and run the installer.

When a new version is available, the add-in automatically prompts you to upgrade.
You can also manually check for a new version from the Advanced menu. See Check
for Updates.

For recommendations on when you should upgrade, check the Upgrade Policy.

You do not need to uninstall the previous version unless the installer instructs you to
do so.

If you want to upgrade from one installation type to the other, uninstall the existing
instance of the add-in first.

To determine which type of installation you have, run a diagnostic report and check the
"Code Base" property under Properties. If the path is under the current user profile, the
add-in was installed using the Current User installer. If the path is under Program
Files, the add-in was installed using the All Users installer.

Chapter 3
Run the Installer from the Command Line

3-4

https://docs.microsoft.com/en-us/windows/win32/msi/standard-installer-command-line-options

To run the diagnostic report, select Diagnostic Report from the Advanced menu on the
Oracle Visual Builder ribbon.

To ensure a clean upgrade, follow these instructions when upgrading your installation.

1. Before you upgrade the add-in:

a. Upload any pending changes using the current add-in version.

b. Save changes in open workbooks, then close Excel.

2. Run the installer for the new version and follow the instructions in the wizard. The
installer automatically replaces the previous version with the new version.

3. After you upgrade:

a. Launch Excel to complete any final installation steps.

b. Open your integrated workbook.

c. Clear any layouts of old data and download data again as required.

Check for Updates
Oracle Visual Builder Add-in for Excel automatically checks for updates once per Excel
session when the first integrated workbook is opened. If there is an update available, you are
prompted to upgrade.You can also check for a newer version of the add-in using the Check
for Updates command available from the Advanced menu. If there is a newer version, you
can get the latest version of the add-in from the Downloads page.
If prompted to upgrade, you can choose to get the latest version right away or instead skip
the upgrade.

If you choose to skip an upgrade, you'll be reminded again based on the duration you set in
the Remind me list. If you select "Next Session", you'll be prompted to upgrade when you
next launch Excel and open an integrated workbook.

To check for an update manually:

1. From the Advanced menu in your existing installation, select Check for Updates.

Chapter 3
Upgrade to the Latest Version

3-5

https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html

2. If a newer version is available, when prompted to open the downloads page in
your browser, click Go.

3. Download the installer for the latest version, then install the update. Before you
update, be sure to review best practices as described in the previous section.

Security

• The add-in does not send any information about the user or computer to Oracle (or
anyone else) during the upgrade check.

• To perform the upgrade check, the add-in fetches this static resource: https://
www.oracle.com/a/ocom/docs/vbafe-info.json.

• The resource request does include a User-Agent header whose value includes the
current version of the Excel add-in (as with any request from the add-in).

• Default system credentials may be provided to proxy servers for authentication (as
with any request from the add-in).

Upgrade Policy
When a new version of Oracle Visual Builder Add-in for Excel is released publicly,
customers should upgrade at their earliest opportunity to take advantage of the latest
fixes and improvements.

However, IT departments may need some time to evaluate and deploy a new version
to business user desktops. The Oracle upgrade policy allows some flexibility to
accommodate this process.

Customers may defer the add-in upgrade by up to six months from the time a new
version becomes publicly available. After six months, the old version of the add-in is

Chapter 3
Upgrade to the Latest Version

3-6

no longer supported and must be upgraded. So, if the latest version is released on May 15,
customers may defer upgrading from the previous version until November 15 at the very
latest. After this date, upgrade is mandatory.

Limitations

This upgrade deferral policy is limited in several ways:

• Fixes for defects: To obtain a fix for an issue, it is necessary to install a new version of the
add-in.

• Troubleshooting: When investigating a potential problem, one step in the troubleshooting
process is to upgrade to the latest version. Deferral is not an option during the support
process.

• New Workbooks: Frequently, new versions of the add-in offer new functionality. If your
business users have integrated workbooks that leverage new functionality available only
in the latest version of the add-in, then add-in upgrade becomes mandatory since the
new functionality is not available in the previous version of the add-in.

Uninstall the Oracle Visual Builder Add-in for Excel
Uninstall either version of the add-in (Current-User or All-Users) from the Windows Settings
app.

To uninstall the add-in:

1. If you're uninstalling the current user version, sign in to the Windows user profile where
the add-in is installed.

2. From the Start Menu, select Settings, then Apps.

3. From the Apps & Features page, select Oracle Visual Builder Add-in for Excel from the
list of programs.

Tip:

Type "Oracle" in the search box to filter on Oracle applications.

4. Click Uninstall and follow the instructions.

5. If you have performed a current user installation for multiple Windows user profiles and
you want to uninstall them all, repeat these steps for each profile.

Chapter 3
Uninstall the Oracle Visual Builder Add-in for Excel

3-7

Software Dependencies
Oracle Visual Builder Add-in for Excel runs in Excel on a Windows environment and
requires some Microsoft components to operate.

Note:

Oracle Visual Builder Add-in for Excel relies on a number of Microsoft
technologies. These Microsoft technologies are subject to Microsoft's privacy
policies and other Microsoft terms. By installing and using this add-in, you
are agreeing to those policies and terms and this add-in's direct or indirect
usage of these technologies. See the Microsoft Privacy Statement.

Components Notes

Microsoft .NET Framework 4.8 The .NET Framework 4.8 is included since the
May 2019 update of Windows 10.
You can download NET Framework 4.8 here:
https://dotnet.microsoft.com/en-us/download/
dotnet-framework/net48.

Microsoft Visual Studio 2010 Tools for Office
(VSTO) Runtime

The VSTO Runtime is included with most
recent versions of Excel.
You can download VSTO Runtime here:
https://www.microsoft.com/en-us/download/
details.aspx?id=105522.

Microsoft Edge WebView2 The add-in requires Microsoft Edge WebView2
for use as an embedded browser for displaying
log-in pages. See The Embedded Browser.

The installer checks your system for required software and quits without installing the
add-in if any required software is missing.

To install the WebView2 embedded browser, download one of the "evergreen"
installers here and run it: Download Microsoft Edge WebView2.

Note:

For information about supported Excel and Windows versions, see
Supported Platforms.

Supported Platforms
Oracle Visual Builder Add-in for Excel runs in Excel on Windows. This section provides
details on which versions are supported. Review this topic carefully to make sure your
configuration is supported.

Microsoft Excel

Refer to this table for supported versions of Excel.

Chapter 3
Software Dependencies

3-8

https://privacy.microsoft.com/en-us/privacystatement
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://dotnet.microsoft.com/en-us/download/dotnet-framework/net48
https://www.microsoft.com/en-us/download/details.aspx?id=105522
https://www.microsoft.com/en-us/download/details.aspx?id=105522
https://developer.microsoft.com/en-us/microsoft-edge/webview2/consumer/

Note:

Oracle recommends the 32-bit version of Excel whenever possible, as the 64-bit
editions have been found to be less stable. Refer to the Microsoft article, 64-bit
editions of Office 2013.

Version Support Expires

Excel for Microsoft 365 (desktop
installation only) *

Refer to Microsoft's Modern Lifecycle Policy.

Excel 2021 2026

Excel 2019 2025

Excel 2016 2025

* Please make sure that your version of Microsoft 365 Apps is still supported. If not, take
steps to upgrade to a supported version. See Update history for Microsoft 365 Apps.

The following editions of Excel don't support VSTO/COM add-ins and are, therefore, not
supported:

• Excel Online

• Excel for Microsoft 365 installed from the Microsoft Store

Microsoft 365 "Beta" and "Preview" update channels provide experimental versions of Excel.
Oracle cannot provide support for the add-in when used with software from these channels.

Microsoft Windows

The add-in is supported on Windows 10 and Windows 11.

Note:

Please ensure that your version (or "feature update") of Windows is still in service
according to the Microsoft policy. Oracle cannot provide support for versions
beyond Microsoft's end of servicing date. See Windows 10 Lifecycle Policy.

The add-in isn't supported on:

• Windows server editions

• MacOS, iOS, Linux, or any other operating system

Virtual Desktop Infrastructure

The Visual Builder Add-in for Excel was designed and tested to work on regular Windows
desktop and laptop computers. A number of vendors offer virtual desktop infrastructure (VDI)
solutions to provide virtual machines that mimic a standard Windows desktop environment.
Some VDI implementations reproduce the standard desktop very closely whereas others are
significantly different. Refer to Desktop Virtualization for an overview of this technology.

Oracle does not test the add-in with VDI products formally. VDI products are not supported on
an official basis.

Chapter 3
Supported Platforms

3-9

https://technet.microsoft.com/en-us/library/ee681792.aspx
https://technet.microsoft.com/en-us/library/ee681792.aspx
https://docs.microsoft.com/en-us/lifecycle/policies/modern
https://docs.microsoft.com/en-us/officeupdates/update-history-microsoft365-apps-by-date
https://docs.microsoft.com/en-us/lifecycle/faq/windows#windows-10
https://en.wikipedia.org/wiki/Desktop_virtualization

Even though it may be possible to run the add-in on some virtual machines
successfully, doing so is strictly at your own risk. If you run into problems, you’ll have
to reproduce the problem on a standard desktop computer before Oracle Support can
assist you. If the problem appears to be a VDI issue, contact your VDI vendor for help.

Microsoft Application Virtualization

Microsoft Application Virtualization (App-V) is not supported in any version at this time.

Notes

• If a software application or version isn't listed here, it is not supported.

• Later versions of Excel and Windows are not automatically supported when they
become available. Support can only be added through an enhancement request.

• Oracle doesn't support the add-in on unsupported software. If a vendor drops
support for a given software version, Oracle support ends at the same time. This is
true even if the software is listed here.

• Microsoft may not support all possible combinations of their software and
operating systems listed here. If Microsoft doesn't support a given combination,
Oracle doesn't either. If you're unsure if your versions of Excel and Windows are
compatible, consult your software or operating system documentation.

• Support expiration dates for Windows and Excel are determined by Microsoft
support policies. See Microsoft Lifecycle Policy.

Chapter 3
Supported Platforms

3-10

https://docs.microsoft.com/en-us/lifecycle/

4
Create Layouts in an Excel Workbook

To integrate a workbook with a REST service, create a layout for a business object on a new
worksheet. You can then download data for the business object to the layout and start
working with it.

You create a layout by clicking Designer in the Oracle Visual Builder tab to launch the New
Layout Setup wizard, as described in subsequent sections.

When you create a layout in a new workbook, you'll need to provide the service metadata for
the REST service you want to use. This service metadata must comply with the OpenAPI
specification. You can provide a URL to the service metadata at the REST service metadata
endpoint or import a local service metadata file instead. You can find more information about
service metadata URLs in Create a Table Layout in an Excel Workbook.

The service metadata that you provide helps generate a business object catalog for the
workbook. A business object catalog is essentially a list of business objects. As a workbook
developer, you can edit portions of the business catalog as desired, or use it as is to create
layouts.

You can provide the service metadata when you create a layout. You can also provide the
service metadata by clicking Manage Catalogs in the Oracle Visual Builder tab (see Manage
Catalogs and Business Objects).

You create one layout per worksheet in your Excel workbook.

Layouts

Oracle Visual Builder Add-in for Excel provides two different kinds of layouts you can use to
work with data in an Excel worksheet: Table layouts and Form-over-Table layouts.

Use a Table layout to view and edit data from a REST service in a tabular format. Use a
Form-over-Table layout when a parent-child relationship exists in the business objects used
by your web application.

Here's an example of a worksheet showing employee data in a Table layout:

Here's an example showing purchase order and line data in a Form-over-Table Layout, where
the parent object's data (Purchase Orders) is shown in the form and the child object's data
(Lines) is shown in the table:

4-1

Create a Table Layout in an Excel Workbook
Create a Table layout in the Excel worksheet when you want to view and edit data
from a REST service in a tabular format.

When you create a Table layout, you'll be prompted to point to the service metadata.
The service metadata document can be stored on your local drive or accessed
remotely using a URL.

These sample URLs return the service metadata the add-in needs to create a
business object catalog and then a table layout.

REST Framework Sample URL

ADF REST (including many REST APIs for
Oracle Cloud Applications)

https://<host>/fscmRestApi/
resources/11.13.18.05/
purchaseRequisitions/describe

VBBO https://<host>/ic/builder/design/
<app>/1.0/resources/data/
ExpenseReports/describe

ORDS https://<host>/ords/<app>/open-api-
catalog/employees/

NetSuite https://
<account>.suitetalk.api.netsuite.com
/services/rest/record/v1/metadata-
catalog?select=contact

Note:

You cannot use a data endpoint to create a business object catalog. The
metadata endpoint is required at this stage.

Chapter 4
Create a Table Layout in an Excel Workbook

4-2

You'll also have the option to provide authentication details for accessing your REST service.
Consult with your REST service owner for access requirements.

To create a Table layout:

1. Create a blank Excel workbook using the standard .XLSX file format or the macro-
enabled .XLSM format. Other Excel formats (.XLS and so on) are not supported.

2. Click the cell where you want to locate the data table.

3. Open the Oracle Visual Builder tab from the Excel ribbon.

4. Click Designer to launch the New Layout Setup wizard.

5. From the first screen, provide the service metadata document using one of these options:

• Web Address option (the default) if you access the service metadata from a URL.
Note that you can't provide a data URL (a URL that returns data) as the starting point
to creating a layout.

• Select a file option if the service metadata document is a local file on your computer.

6. Select the authentication method for your service from the Authentication list and click
Next.
See Authentication Options for more information.

Chapter 4
Create a Table Layout in an Excel Workbook

4-3

7. If you selected OAuth 2.0 Authorization Code, enter the required properties and
click Next.
Required fields are outlined in red. Refer to OAuth 2.0 Authorization Code Flow
with PKCE for descriptions of the fields.

8. If the service includes five or more business objects, select the business objects
you want to include in the catalog, then click Next.
The wizard displays details of the newly-created catalog, such as the catalog
name, service host and base path, and number of business objects.

9. Review the new catalog details.

Note:

If there are any errors in the service metadata document, click Save
Report to save the report to your local drive. Share this report with the
service owner.

10. Click Next to proceed.

11. Select a business object and click Next.

12. Select Table Layout and click Next.

Chapter 4
Create a Table Layout in an Excel Workbook

4-4

The next screen prompts you to select child business objects if you are creating a set of
dependent layouts. See Create a Set of Dependent Layouts.

If there are any available descriptive flexfields, these are displayed in the list and are

indicated by the Information icon ().

Chapter 4
Create a Table Layout in an Excel Workbook

4-5

If you select this business object, the descriptive flexfields are added as fields to
the respective parent layout. See Create a Layout Using Descriptive Flexfields.

13. For a standalone Table layout, click Next without selecting any child business
objects.

14. Review the Table layout details and then click Finish.
The add-in creates a Table layout in the Excel workbook that includes column
headers and a placeholder data row. The Layout Designer opens in the Excel Task
Pane.

Note:

If the origin cell of the layout is in the first 10 rows, the header row is
frozen so that you always see the column headers when you scroll up
and down in the worksheet. If desired, you can unfreeze the header row
from Excel's View tab.

Before you proceed to publishing your workbook, you may want to configure the
workbook in various ways to make it easier for your business users to use. For
example, you might consider:

• Configuring the workbook to limit the data that the add-in downloads. See
Configure Search Options for Download.

• Adding, removing, or reordering columns in your layout. See Manage Fields in a
Form or Table.

• Modifying a field associated with a column to, for example, show help text or
display a list of input values for your business users. See Configure Business
Object Fields and Configure a List of Values with a Business Object.

Before you publish, it's a good idea to perform various data operations, such as
download, update, and upload, to test the workbook before you distribute it to users.

Chapter 4
Create a Table Layout in an Excel Workbook

4-6

For information on managing data, see View and Edit Data Using an Excel Workbook in
Managing Data Using Oracle Visual Builder Add-in for Excel.

Work with Service Path Parameters in a Table Layout
Some service paths include path parameters. The add-in provides support for configuring a
Table layout using a parameterized service path. It automatically extracts the path
parameters and prompts the user to provide the corresponding values at download time.

To configure a Table layout with a parameterized service path, first provide an OpenAPI-
compliant service metadata document. When prompted, choose a child business object or
any parameterized path from the business object picker.

Tip:

When working with Oracle ADF REST Resource services, you should start with the
web address to the parent business object description (and not the child address).
For example, for a parameterized service path such as /ExpenseReports/
{ExpenseReports_Id}/child/Expenses/, provide the address to the
ExpenseReports description (not Expenses). Oracle ADF REST Resource
services cannot provide OpenAPI service metadata documents for parameterized
service paths.

Complete the layout configuration. When users click Download Data in the Oracle Visual
Builder tab, the add-in displays the Service Path Parameter Editor where users provide the
required path parameter values that enables the download of data to complete.

Path parameters of type string or integer are supported; other data types are not supported.
For string-typed path parameters, values that users enter in the Service Path Parameter
Editor are used verbatim when the add-in constructs the request to the service. For integer-
typed values, certain culture-specific formatting is removed (for example, commas for
thousands separators, parentheses for negative). In all cases, the values used on the URL
path are not URL-encoded, so the values entered must be acceptable by the REST service.

Here is an example of a service path with an embedded parameter:

/ExpenseReports/{ExpenseReports_Id}/child/Expenses/
Note {ExpenseReports_Id} is in the middle of the service path.

Chapter 4
Work with Service Path Parameters in a Table Layout

4-7

Using the Service Path Parameter Editor, you provide the proper value for
{ExpenseReports_Id}, for example, 123456, which results in the add-in using the
following path:

/ExpenseReports/123456/child/Expenses/
Accessing this service path will provide all the expenses for expense report 123456.

The Service Path Parameter Editor does not validate the value(s) that users enter. The
value(s) that users provide must be valid. If the path includes multiple embedded
parameters, the Service Path Parameter Editor prompts the user to provide a value for
each embedded parameter.

The add-in remembers the values provided at download time. These values are used
again at upload time to construct the upload requests. If you upload without having
done a previous download (for example, when exclusively creating new rows), you'll
be prompted for the path parameter values at the beginning of the upload.

Note:

Since business users may not know the path parameter values at download
time, consider using a Form-over-Table layout or a set of dependent layouts
instead. See Create a Form-over-Table Layout in an Excel Workbook or Use
Multiple Layouts for Multi-level Business Objects.

Create a Form-over-Table Layout in an Excel Workbook
You can create a Form-over-Table layout in an Excel worksheet when a parent-child
relationship exists in the chosen service.

A Form-over-Table layout can only be created for the top-level business object in a
business object hierarchy. Suppose you have a hierarchy with three levels:
purchaseOrders, lines, and schedules. In this hierarchy, purchaseOrders is a
collection of top-level purchase orders each with one or more lines for managing the
details of each order. Each of these lines may include one or more schedules for
tracking shipping details.

In this scenario, you can only create a Form-over-Table layout for the
purchaseOrders and lines business objects. You can't use lines for the form
and schedules for the table in a Form-over-Table layout. See Use Multiple Layouts
for Multi-level Business Objects.

Note:

You can create a layout that references polymorphic business objects and
includes descriptive flexfields. If the business object includes descriptive
flexfields, they are appended with "DFF" (for example, "EmployeesDFF") and
included in the list of descendant business objects. See Use Polymorphic
Business Objects and Fields.

A parent-child relationship at the service level requires:

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-8

• A parent service path, for example, fscmRestApi/resources/1.0/
purchaseOrders

• A child service path with a parameter, for example, fscmRestApi/resources/1.0/
purchaseOrders/{purchaseOrder-id}/child/lines

In your workbook, both business objects must be declared in the same catalog. Continuing
our example, lines must appear as a child of purchaseOrders. To allow for data retrieval,
updates, creation, deletion, and action invocation with the parent and child business objects
using this layout, the service must expose the corresponding GET, PUT/PATCH, POST, and
DELETE operations on these paths.

When you create a Form-over-Table layout, you may be prompted to point to the service
metadata document. The service metadata document can be stored on your local drive or
accessed remotely using a URL.

You'll also have the option to provide authentication details for accessing your REST service.
Consult with your REST service owner for access requirements.

Before you begin, review these support topics for your REST service:

• For Oracle REST Data Services (ORDS), see the notes on ORDS support in
Requirements for Dependent Layouts.

• For NetSuite SuiteTalk REST web services, see Configure a NetSuite Catalog for Parent-
Child Business Objects.

To create a Form-over-Table layout:

1. Create a blank Excel workbook using the standard .XLSX file format or the macro-
enabled .XLSM format. Other Excel formats (.XLS and so on) are not supported.

2. Click the cell where you want to locate the form and table.

3. Open the Oracle Visual Builder tab from the Excel ribbon.

4. Click Designer to launch the New Layout Setup wizard.

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-9

5. From the first screen, provide the service metadata document using one of these
options:

• Web Address option (the default) if you access the service metadata from a
URL. Note that you can't provide a data URL (a URL that returns data) as the
starting point to creating a layout.

• Select a file option if the service metadata document is a local file on your
computer.

Tip:

If you are working with Oracle ADF REST Resource services, the URL
for the service metadata usually ends with /describe, for example,
https://my-service-host/fscmRestApi/resources/1.0/
purchaseOrders/describe.

6. Select the authentication method for your service from the Authentication list and
click Next.
See Authentication Options for more information.

7. If you selected OAuth 2.0 Authorization Code, enter the required properties and
click Next.
Required fields are outlined in red. Refer to OAuth 2.0 Authorization Code Flow
with PKCE for descriptions of the fields.

8. If the service includes five or more business objects, select the business objects
you want to include in the catalog, then click Next.
The wizard displays details of the newly-created catalog, such as the catalog
name, service host and base path, and number of business objects.

9. Review the new catalog details.

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-10

Note:

If there are any errors in the service metadata document, click Save Report to
save the report to your local drive. Share this report with the service owner.

10. Click Next to proceed.

11. Choose the top-level business object for the form (in this case, purchaseOrders), and
click Next.

12. Choose Form-over-Table Layout, and click Next.

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-11

The Form-over-Table layout option is unavailable if you didn't select the top-level
business object or there is no available child business object.

13. Choose a child business object for the table part of your Form-over-Table layout
(in this case, lines), and click Next.

If there are any available descriptive flexfields, these are displayed in the list and
display a "DFF" ending.

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-12

If you select this business object, the descriptive flexfields are added as fields to the
parent layout. See Create a Layout Using Descriptive Flexfields.

Note:

You can select additional child business objects if you want to create a set of
dependent layouts. If you select more than one, you'll be prompted to select the
business object you want to show in the table of the root layout. See Create a
Set of Dependent Layouts.

14. Confirm the details of your Form-over-Table layout, and click Finish.
The add-in creates a Form-over-Table in the Excel worksheet and opens the Layout
Designer that you use to modify the newly-inserted form and table, as shown here:

If the form business object (in this case, purchaseOrders) supports a create action, a
Create Form Row option appears in the Form Changes menu, as shown in the image.
Use this option to create a new form row during your next upload (see Create a Parent
Row in a Form-over-Table Layout in Managing Data Using Oracle Visual Builder Add-in
for Excel).

Before you proceed to publishing your workbook, you may want to configure the workbook in
various ways to make it easier for your business users to use. For example, you might
consider:

• Configuring a search for the workbook to allow your business users to specify an item for
the form, as described in Configure Search Options for Download. If you do not specify a
value for the Search field or Row Finder property, the add-in downloads the first parent

Chapter 4
Create a Form-over-Table Layout in an Excel Workbook

4-13

item it encounters in the REST service to the form, and the child items, if any, to
the table.

• Adding, removing, or reordering form fields or columns in your layout. See Manage
Fields in a Form or Table.

• Modifying a field associated with a column to, for example, show help text or
display a list of input values for your business users. See Configure Business
Object Fields and Configure a List of Values with a Business Object.

Before you publish, it's a good idea to test the workbook before you publish and
distribute it to users. For information on managing data in a Form-over-Table layout,
see Manage Data in Form-over-Table Layouts in Managing Data Using Oracle Visual
Builder Add-in for Excel.

Manage Fields in a Form or Table
When you create a layout, Oracle Visual Builder Add-in for Excel adds most but not all
fields to your form or table. If desired, you can add or remove fields or change the
order they appear in the layout.

Besides adding business object and custom payload fields to a layout, you can also
add fields from a parent or higher business object to a layout in a set of dependent
layouts. These fields are referred to as "ancestor" fields. For example, you might want
to add an ancestor column to a layout to help your business users track which child
items are associated with which higher-level items. See Add Ancestor Columns to
Provide Additional Context.

If there are any descriptive flexfields (DFFs) available your layout, these are also
included in the list of available fields. For more information about DFFs, see Add
Descriptive Flexfields to a Layout.

This task shows you how to add, remove, and reorder columns in a Table layout but
the steps are the same for form fields and table columns in a Form-over-Table layout.

To manage the columns in a Table layout:

1. Select the layout, then click Designer from the Oracle Visual Builder tab to open
the Layout Designer.

2. For a Table layout, click the Columns tab in the Layout Designer.

For a Form-over-Table layout, click either the Form or Table tab.

The tab displays the table columns in the order they appear in the layout.

Chapter 4
Manage Fields in a Form or Table

4-14

3. Perform one or more of these actions as required:

• To change the order of the columns, drag a column to another location in the list.

Tip:

You can also right-click a column and select an action (Move Up, Move
Down, and so on) from the popup menu.

• To delete a column, select a column and then click the Delete icon ().

Tip:

You can use the Shift and Ctrl keys to select multiple columns for deletion.

• To edit the field, double-click the column in the list to open the Business Object Field
Editor.

4. If you want to add columns to your layout, click Manage Columns () to open the Table
Column Manager.

Chapter 4
Manage Fields in a Form or Table

4-15

If the business object supports custom actions or is a child object in a hierarchy of
business objects, you'll see additional tabs (such as Custom Actions and
Ancestors) in the Available Fields pane.

5. Click the appropriate tab for the type of field you want to add from the Available
Fields pane.

Available ancestor columns are grouped by business object. So ancestor columns
available for a grandchild layout are grouped by parent and child.

6. In the Selected Fields pane, select the location where you want the columns to be
added.

7. Select the columns you want to add from the Available Fields pane.

The columns are inserted before the selected field.

In this example, you may want to add Hire Date and Salary to the table before
Manager Id. To do this, select Manager Id in the Selected Fields pane, then
select the Hire Date and Salary check boxes in the Available Fields pane.

Chapter 4
Manage Fields in a Form or Table

4-16

Note:

If you are adding a column that is referenced by a list of values in another
column, make sure the added column is positioned before the field with the list
of values. See Configure a Filter with a Dynamic Parameter for more
information.

8. You can also perform one or more of these actions if required:

• To add or remove all columns, select or deselect Select All.

• To remove a column, deselect the column's check box.

• To change the order in the layout, drag a column in the Selected Fields pane to
another location in the list.

Tip:

You can also move a column by right-clicking it, then selecting an action
(Move Up, Move Down, and so on) from the popup menu.

• To edit the field, double-click the column in the Selected Fields pane to open the
Business Object Field Editor.

9. When you have made all your changes, click Done.

Create Layouts for Attachment Business Objects
Create a Table layout using an attachment business object that lets your business users
upload and download attachments.

You can create a standalone Table layout, the Table layout of a Form-over-Table layout, or a
Table layout in a set of dependent layouts based on an attachment business object. You
cannot use the form in a Form-over-Table layout.

Service Requirements

Oracle Visual Builder Add-in for Excel supports attachments in integrated workbooks if the
REST service has:

• An Attachment Record Business Object that contains the metadata for attachments, such
as the attachment type, file name, and file size.

• The following fields in the Attachment Record Business Object:

– Type: A string field representing the attachment type. Valid values for this field are
TEXT, FILE, and WEB_PAGE. These values are case-sensitive.

– File Name: A string field representing the attachment file name. This field is used by
text and file type attachments.

– Url: A string field representing the attachment URL. This field is used by web page
type attachments.

• An Attachment Data Business Object that is a child of the attachment record business
object and allows for the sending and receiving of attachments

Chapter 4
Create Layouts for Attachment Business Objects

4-17

When you create a Table layout based on an attachment business object, the add-in
can properly configure the layout as long as the attachment record business object
includes:

• An Attachment Data Business Object as a child business object with a path ending
in /enclosure/FileContents; and,

• Fields with field Ids of DatatypeCode (for the Type field), FileName (File Name),
and Url (Url).

Configure an Attachment

If the workbook was created before version 2.8 of the add-in or the naming does not
match, configure the attachment record business object manually from the Business
Object Editor.

1. Open the Business Object Editor for an attachment business object and click the
Attachments tab.

2. Select Is attachment.

3. Click the Edit icon () next to Data Business Object to open the Choose a
Business Object dialog.
The dialog displays the paths for all child business objects for the Attachment
Record Business Object.

4. Select the required child Attachment Data Business Object from the list, then click
OK.

Chapter 4
Create Layouts for Attachment Business Objects

4-18

The child business object must support sending and receiving attachment data. This
means that the child endpoint has a collection path that supports:

• GET to retrieve attachment data

• PUT to send attachment data

• Request content type of application/octet-stream
The path may be similar to this: {parent attachment record item path}/
enclosure/FileContents.

5. Click the Edit icon () next to Type Field to open the Available Business Object Fields
dialog.

6. Select the field to represent the attachment type, then click OK.

This field must be a string field with valid values of TEXT (text type attachment), FILE (file
type attachment), and WEB_PAGE (web url-based attachment). Typically, the field ID for this
field is DatatypeCode.

Chapter 4
Create Layouts for Attachment Business Objects

4-19

7. Use the available Edit icons to set the File Name and URL fields.

Field Description

File Name Field A string field representing the attachment file name.
This field is used for text and file type attachments.
Typically the field ID for this field is FileName.

URL Field A string field representing the attachment URL. This
field is used by web page type attachments.
Typically the field ID for this field is Url.

8. When finished, close the open editors using the Done buttons.

If properly configured, the resulting Table layout includes a Local File Path column
that keeps track of the location of local copies of attachments. Selecting cells in the
table opens an attachment pop-up that can be used to interact with attachments. See
Manage Attachments in Managing Data Using Oracle Visual Builder Add-in for Excel.

Known Limitations

• See Service Requirements in this topic for the limitations on services that support
this feature.

• Binding an attachment record business object to the form portion of a Form-over-
Table layout is not supported.

• The only supported attachment types are file, text, and web page. The specific
supported values for the field are TEXT, FILE, and WEB_PAGE. These values are
case sensitive. Unknown attachment types are treated as file type attachments.

• File download is not asynchronous and may make the UI appear frozen for large
attachment files.

• It is not possible to change the position of the Local File Path column in the table.
It always appears at the end of the table before the Key column.

• Manually editing the file path in the Local File Path column is not supported. The
attachment pop-up should always be used to specify the local file location.

• For some services, create may fail for text-based attachments. Ensuring all
required attachment metadata, such as the Title, is present and resubmitting the
record generally resolves this issue.

• Attachment metadata records may have additional fields, such as DmDocumentId,
UploadedFileContentType, that should generally be managed by the service and
not altered by the business user. It is recommended that you mark these fields as
read-only in the Business Object Editor if they aren't already or omit them from the
Table layout.

Chapter 4
Create Layouts for Attachment Business Objects

4-20

Use Polymorphic Business Objects and Fields
Oracle Visual Builder Add-in for Excel supports using polymorphic business objects from ADF
REST services in Table and Form-over-Table layouts you create for an integrated workbook.
Where and how a polymorphic business object can be used in a layout depends on its
relationship with other business objects in the service.

If a polymorphic business object is a top-level business object or is a child business object
with a "one-to-many" relationship with its parent, it can be used directly in a layout.

In this case, you create a layout for polymorphic business objects as you do for any other
business objects. See Create a Table Layout in an Excel Workbook and Create a Form-over-
Table Layout in an Excel Workbook.

If a child polymorphic business is in a "one-to-one" relationship with its parent, descriptive
flexfields from the child can be added as fields to a layout bound to its parent business object
during layout creation. See Create a Layout Using Descriptive Flexfields.

You can also add descriptive flexfields to an existing layout as described in Add Descriptive
Flexfields to a Layout.

To determine the relationship of a child business object to its parent, see Check the
Cardinality of Child Polymorphic Business Objects.

About Polymorphic Business Objects
A polymorphic business object is a business object where the set of fields for a particular
record differs based on the value of a discriminator field (also known as a context
segment). In addition, a polymorphic business object includes a number of fields
representing global or context-sensitive segments. Global segments are available for all
values of the discriminator field, while context-sensitive segments are dynamic based on the
value of the discriminator field. Descriptive flexfields (DFFs) are a type of polymorphic
business object.
For example, an "Employees" business object may include a child polymorphic "Regional
Information" business object that defines region-specific information for employee records.
The Regional Information business object contains a "Region" field that acts as a
discriminator field. It also contains global segments for all records, such as "Site" and "Time
Zone", as well as context-sensitive segments such as a "Postal Code/Zip Code" for
employees in the North American region.

Check the Cardinality of Child Polymorphic Business Objects
You can determine if a child business object is in a "one-to-one" or "one-to-many" relationship
with its parent by checking the "cardinality" setting for a child business object.

Child polymorphic business objects with a "one-to-many" relationship can be used directly in
a layout. For those child business objects in a "one-to-one" relationship, you can add
descriptive flexfields from the child to the parent business object layout.

To check the cardinality setting for a child business object, open the Business Object Editor
for the parent business object, then click the Children tab.

Chapter 4
Use Polymorphic Business Objects and Fields

4-21

Cardinality options are "One", "Many", or "Unknown". Child business objects with a
cardinality of "Many" (one-to-many relationship) can be used directly in a layout. Those
with a cardinality of "One" can be added as fields to the parent business object layout.
See Create a Layout Using Descriptive Flexfields.

Note:

For workbooks created before Oracle Visual Builder Add-in for Excel version
3.2, the cardinality is set to "Unknown". This value behaves identically to a
value of "One" for polymorphic business objects. The cardinality value does
not impact the behavior of non-polymorphic business objects.

Create a Layout Using Descriptive Flexfields
When you create a Table or Form-over-Table layout, you can add descriptive flexfields
(DFF) from a child business object to the parent layout if the child is in a "one-to-one"
relationship with the parent. DFFs are indicated in the New Layout Setup wizard by an

Information icon ().

Top-level polymorphic business objects as well as child business objects with a "one-
to-many" relationship with their parent can also be added to the layout as you would
any other business object. See Create a Table Layout in an Excel Workbook and
Create a Form-over-Table Layout in an Excel Workbook.

To determine the relationship of a child business object to its parent, check its
Cardinality setting. See Check the Cardinality of Child Polymorphic Business Objects.

To create a layout with DFFs:

1. Create a new worksheet for your Table or Form-over-Table layout and click
Designer to launch the New Layout Setup wizard.

Chapter 4
Use Polymorphic Business Objects and Fields

4-22

2. Follow the instructions in the wizard, selecting the DFF's ancestor business object when
prompted in the second screen.

In this example, the Employees business object is selected for the parent layout.

3. When prompted, select either Table Layout or Form-over-Table.

4. When you reach the fourth screen of the wizard, you are prompted to select descendant
business objects for your layout or layouts.

In this example, both Direct Reports and EmployeesDFF are selected. EmployeesDFF
represents a DFF that is in a one-to-one relationship with Employees, as indicated by the

Information icon ().

Chapter 4
Use Polymorphic Business Objects and Fields

4-23

If you select EmployeesDFF, the add-in adds the flexfields to the parent layout,
Employees.

If you choose to create a Form-over-Table layout, the add-in creates a layout with
Employees in the form and Direct Reports in the table. If you instead choose Table
layout, the add-in creates a dependent Table layout for Direct Reports.

5. When you reach the final screen in the wizard, review the details of the new
layout, then click Finish.

Chapter 4
Use Polymorphic Business Objects and Fields

4-24

In this example, the add-in creates a Form-over-Table layout with Employees in the form and
Direct Reports in the table as shown in this image:

The add-in also adds the Region flexfields from EmployeesDFF to the form (bordered in red).
The flexfields include a "discriminator" field ("Region"), two global segments ("Site" and "Time
Zone"), and two context-sensitive segments ("Zip Code" and "State"). The context-sensitive
segments are dependent on the value of the Region field (in this case, "United States").

If the required flexfields do not appear in the layout by default, you can add them to your form
or table from the Layout Designer. See Add Descriptive Flexfields to a Layout.

You can also show or hide context-sensitive segments based on the discriminator value. For
example, you could choose to show the context-sensitive segments for Canada ("Postal
Code" and "Province"), rather than the U.S. segments, ("Zip Code" and "State"). See Show or
Hide Context-Sensitive Columns in a Table Layout.

Add Descriptive Flexfields to a Layout
You can add descriptive flexfields (DFF) to forms and tables using the Form Field Manager or
Table Column Manager and place them anywhere in the form or table.Descriptive flexfields
are a type of polymorphic business object that has a one-to-one relationship with its parent.
See Overview of Descriptive Flexfields for more information on DFFs.

Note:

For polymorphic business objects in a one-to-many relationship, refer to Create a
Layout Using Descriptive Flexfields instead.

1. Open the worksheet with the layout that you want to modify.

2. Click either the Form or Columns tab in the Layout Designer as needed.

3. Click the Manage Form Fields or Manage Columns button () to add your DFF.

Chapter 4
Use Polymorphic Business Objects and Fields

4-25

https://docs.oracle.com/en/cloud/saas/applications-common/23a/oaext/overview-of-descriptive-flexfields.html

Available DFFs are identified by the title of the discriminator field (in this case,
"Region") and appear at the bottom of the list of available fields. The field ID is the
discriminator field ID ("__FLEX_Context").

4. Select the DFF from the Available Fields list.

You can also change the order of fields in the form or table by dragging and
dropping fields in the Selected Fields list.

5. Click Done.
The associated segments appear in the layout in the following order: global
segments, the discriminator, and context-sensitive segments.

Context-sensitive columns for all possible discriminator values are included in the
table. However, only those cells in a row that are relevant to the value in the
discriminator field are editable. All other context-sensitive cells are read-only (grayed
out).

In a form, the context-sensitive form fields relevant to the current discriminator value
appear after the discriminator field. Context-sensitive fields that are not relevant are

Chapter 4
Use Polymorphic Business Objects and Fields

4-26

not included in the form. If you change the value in the discriminator field, the form
automatically updates to include the relevant context-sensitive field for that value.

Show or Hide Context-Sensitive Columns in a Table Layout
You can select which context-sensitive columns you want to display for a polymorphic
business object, using the Polymorphic Information tab of the Business Object Field Editor.

All context-sensitive columns are shown by default. You may want to use this task to hide
columns in a layout. For example, in the case of a Region polymorphic business object, you
may choose to show regional information only for U.S. employees and hide it for all others.

To show or hide context-sensitive columns:

1. Open the worksheet with the layout that you want to modify.

2. From the Layout Designer, click the Edit icon () next to the Business Object field.

3. From the Business Object Editor, click the Fields tab and then select the business
object's field.

4. Click the Edit icon () in the Business Object Editor to open the Business Object Field
Editor.

5. From the Polymorphic Information tab, select Limit discriminator values.

6. To ensure you see all available discriminator values, click the Refresh icon () to fetch
the latest polymorphic metadata from the service.

This icon may be disabled if a refresh has already been performed during the current
session.

7. From the Discriminator Values list, select the discriminator values for the context-
sensitive segment columns that you want to display. For example, to show zip code and
state columns in your Table layout, select the United States check box and deselect all
others.

Chapter 4
Use Polymorphic Business Objects and Fields

4-27

8. After you select or deselect discriminator values, close the open editors.

The layout displays the context-sensitive segment columns you selected.

Refresh Polymorphic Business Object Metadata
Clear polymorphic metadata when you publish a workbook to ensure the workbook
gets the latest metadata. Oracle Visual Builder Add-in for Excel refreshes the
polymorphic business object metadata during the first download operation performed
after you open the published workbook.

Because polymorphic business object segments are configurable by customers and
subject to change, metadata stored in the workbook may become stale.

To clear metadata when publishing a workbook, select Clear all layouts from the
Publish Workbook window. See Publish an Integrated Excel Workbook.

Chapter 4
Use Polymorphic Business Objects and Fields

4-28

Polymorphic Support Limitations
Before creating layouts for polymorphic business objects or adding descriptive flexfields to a
layout, review the limitations here:

• Polymorphic business objects are only supported for ADF REST services.

• A polymorphic business object is assumed to only contain a single discriminator field.
Multiple discriminators are not supported.

• The discriminator field must be a string.

• When a polymorphic column or form field expands, the order is global segments, the
discriminator, and then context-sensitive segments. Note that:

– Changing the order of the global segments or context-sensitive segments is not
supported.

– Hiding specific global or context-sensitive segments is not supported.

• In order to bind a polymorphic business object to a layout, it must expose polymorphic
business object metadata. In an OpenAPI metadata document, this means that it must
contain a "discriminator" and "oneOf" syntax in the schema for the business object. The
"anyOf" polymorphic business object syntax is not supported.

• Hierarchical polymorphic business objects are not supported. All polymorphic segments
must be defined directly on the polymorphic business object in the OpenAPI metadata
document.

• Extensible Flexfields (EFFs) that define polymorphic segments on array-based subfields
are not supported.

• When a layout contains a polymorphic business object, the "fields" and "expand" query
parameters should not be manually configured in the "Search Parameters" in the "Query"
tab of the designer.

• The case where a child business object's fields are determined by a parent business
object's discriminator value is not yet supported.

• Limiting discriminator values for a polymorphic business object displayed in a Table
layout does not limit:

– The set of values that can be chosen in a list of values (LOV) for a discriminator field

– The values users can provide for a discriminator field

• Polymorphic segments with a DISPLAYHINT value of Hide in the metadata cannot be used
in a layout.

Manage Layout Capabilities
Each layout in Oracle Visual Builder Add-in for Excel enables you to perform various standard
and custom actions in an Excel workbook, so long as the operation is supported by your
service. You can enable or disable these supported capabilities to control their availability in a
layout.

1. In the Excel ribbon, click Designer to open a workbook's Layout Designer.

2. Click Advanced to see the layout's capabilities. Here's an example of a Form-over-Table
layout, indicating form capabilities and table capabilities:

Chapter 4
Manage Layout Capabilities

4-29

3. Select or deselect options as required. If the business object doesn't support an
action, it won't be available for selection (like Custom Actions Enabled for the
table as shown in this image). See REST Operations for more information about
the REST support required for these options.

Layout Limitations
Here are some things to keep in mind when creating layouts for your integrated
workbook using Oracle Visual Builder Add-in for Excel:

• Excel table objects, such as those created from the Excel ribbon using Insert >
Table, are incompatible with the Table layouts used by the add-in.

• Do not save your workbook to the Excel 97-2003 workbook (.XLS) file format.
Only the .XLSX and .XLSM file formats are supported. If you save to the .XLS
format, the add-in disables commands in the Oracle Visual Builder ribbon.

Chapter 4
Layout Limitations

4-30

5
Manage Catalogs and Business Objects

When you create a layout, you provide the service metadata document for the REST service
which Oracle Visual Builder Add-in for Excel uses to generate the Business Object catalog for
your workbook. If required, you can use the available editors to modify the catalog in a variety
of ways to enhance the overall user experience. For example, you can use the Business
Object Field Editor to add help text to business object fields.
When you edit the details of business objects in your workbook, you're only telling the add-in
how the service operates, you are not telling the service what it should do. Service behavior
cannot be changed from the workbook. So any changes you make to the catalog in the
workbook must be compatible with the service.

To view the editors progressively, start by clicking Manage Catalogs from the Oracle Visual
Builder tab. This opens the Manage Business Object Catalogs editor. From here, you can
choose a catalog and open the Business Object Catalog Editor, and so on.

You can also open the business object and business object field editors from the Layout
Designer. Both options (using Manage Catalogs and the Layout Designer) are shown here:

Use these editors to perform tasks such as these:

• Manage Business Object Catalogs: Import, open, and refresh a catalog

• Business Object Catalog Editor: Configure the host and base paths for a catalog, as well
as configure the business objects in the catalog. You can also configure more advanced
settings such as authentication, GZIP, and the REST API Framework.

5-1

• Business Object Editor: Override the base path of the object, manage metadata
path information, configure pagination, and configure row finders. You can also
find Download and Upload tabs for configuring download and upload operations.

• Business Object Field Editor: Edit field titles, change when a field is editable,
adjust the field data types (Advanced), and configure Help text. You can also
configure the list of values for a field.

Note:

When reading through the topics in this section, you'll come across many
terms such as OpenAPI, REST service, and path. Before you begin, refer to
Key Concepts, Components, and Terms to familiarize yourself with some of
these terms.

Add Business Objects to an Existing Catalog
If your catalog is missing one or more business objects, you can add new business
objects to the catalog using the Business Object Catalog Editor. These new business
objects must be available at the same host as the other business objects in that
catalog.

Note:

The REST API type of the new business object must match the catalog. For
example, you can't add an ORDS business object to an ADF REST catalog.

This is particularly useful when configuring a list of values.

1. Click Manage Catalogs.

2. In the Manage Business Object Catalogs window, select your existing catalog
and click the Edit Business Object Catalog () icon.

3. From the Business Object Catalog Editor, click Business Objects.

4. From the Business Objects tab, click + Add, then select Import Additional
Business Objects from Service Metadata from the menu.

Chapter 5
Add Business Objects to an Existing Catalog

5-2

5. Provide the URL or a file that contains the OpenAPI metadata of the new business
objects and click Next.

6. Select the business objects you want to add, then click Next. If the list is large, type text
in the Filter field to filter the list.

The add-in only harvests the metadata for the selected business objects as well as any
business objects referenced in any configured lists of values. The add-in also checks for
and skips any duplicate business objects.

When the add-in has imported the selected business objects, the wizard displays details
of the action.

7. Review the details of the new business object, then click Finish.

If there are any errors in the service metadata document, click Save Report to save the
report to your local drive. Share this report with the service owner.

8. Click Done first in the Business Object Catalog Editor, then in the Manage Business
Object Catalogs window.

Import a Business Object Catalog
You can import a business object catalog by providing Oracle Visual Builder Add-in for Excel
with the catalog's service metadata document.

You may also want to import an additional catalog if you need to use a different service at a
different host or framework type.

Caution:

If you want to add an additional business object to your workbook, you should
generally add it to your existing catalog. See Add Business Objects to an Existing
Catalog for the steps.

To import a catalog:

1. Open the workbook where you want to import the catalog, then click Manage Catalogs
from the Oracle Visual Builder ribbon.

2. From the Manage Business Object Catalogs editor, click + Add, then select Import
Business Object Catalog From Service Metadata from the menu.

Chapter 5
Import a Business Object Catalog

5-3

3. Provide the URL for the service metadata document.

Note:

If you are importing an Oracle ADF REST Resource catalog, it is
recommended that you use minimal mode to limit the amount of
metadata retrieved for an application.

To use minimal mode, append the metadataMode=minimal query
parameter to your URL like this: .../fscmRestApi/resources/latest/
describe?metadataMode=minimal

4. If required, provide authentication details, then click Next.

For more information about authentication settings, refer to the authentication
configuration steps in Create a Table Layout in an Excel Workbook.

5. If the service includes five or more business objects, select the business objects
you want to include in the catalog, then click Next.

Chapter 5
Import a Business Object Catalog

5-4

The add-in only harvests the metadata for the selected business objects as well as any
business objects referenced in any configured lists of values.

The wizard displays details of the newly-created catalog, such as the catalog name,
service host and base path, and number of business objects.

6. Review the new catalog details.

Note:

If there are any errors in the service metadata document, click Save Report to
save the report to your local drive. Share this report with the service owner.

7. Click Finish to close the Business Object Catalog Editor wizard.

Once the catalog has been created, review other topics in this and other chapters to see how
you can improve the catalog for your workbook's layouts. For example, you may want to add
help text or lists of values to fields in the new catalog's business objects. See Add Help Text
to Your Workbook or Use Lists of Values in an Excel Workbook.

You may also want to edit the name of the catalog in the Business Object Catalog Editor to
make it easier to understand its purpose. Very often, the title that the add-in displays for the
catalog in the Excel workbook is the name of one of the business objects that the service
exposes. For example, this image shows a catalog in which the default value for the Title
property is "Employees". This catalog exposes an Employees business object, so to avoid
confusion, you can change the title that the catalog uses in the Excel workbook to something
like Human Resources Services.

Chapter 5
Import a Business Object Catalog

5-5

Note:

Certain OpenAPI document properties, such as Description, can contain
formatting hints. The add-in displays the description text as is, with no
interpretation of such hints.

Create a Business Object Catalog from a Data Sample
Use Oracle Visual Builder Add-in for Excel to create a business object catalog from a
data sample when you don't have an OpenAPI-compliant service metadata document.

If you have the host, base path, and resource name for the service metadata, the add-
in can form the REST endpoint URL and send a GET request to the service to fetch a
sample of data. The add-in can then use this sample to produce a list of fields
available for that REST resource.

The add-in does this by first analyzing the JSON response to find the first JSON array
available. It then selects the first JSON object in that array and, from this object,
produces a list of business object fields. The add-in then creates a new business
object in the catalog with that list of fields.

This new business object includes best guesses for the following:

• The Collection Path including GET and POST (create) operations

• Item Path including GET, PATCH (update), and DELETE operations

• Field properties such as data type

Note:

These guesses may not match the actual capabilities of the service. It is
recommended that you review the business object definition and make sure
it matches the service.

1. Click Manage Catalogs from the Oracle Visual Builder ribbon.

2. Open the desired catalog or create a new one.
Make sure the Host and Base Path properties are set correctly.

3. From the Business Objects tab, click + Add, then select Create a New Business
Object from a Data Sample from the list.

Chapter 5
Create a Business Object Catalog from a Data Sample

5-6

4. Type in the name of the desired resource and click OK.

5. Review the business object definition to ensure it matches the service.
Here are some things to watch for:

• If the service does not support delete, remove that operation from the item path or
turn off delete in any layout that uses this business object.

• If a given field is required or read-only, update the field settings from the General tab
of the Business Object Field editor. Date fields may appear as string fields. Adjust the
data type of fields as needed.

• The add-in can't determine the data type of fields with null values. In these cases, the
data type is set to "unsupported". These fields are not eligible for layouts, search, and
so on. For these fields, correct the data type using the Business Object Field editor.

• The add-in guesses that the primary key field is named "id". If the primary key field
has a different name, use the Business Object Editor to update the item path as well
as the parameter on each operation in the item path.

Configure Business Object Fields
Use the Business Object Field Editor to view and modify field settings as required.

Many of these settings control the appearance and behavior of the fields in your workbook
and can be modified as desired. For example, you can enhance the usability of your
workbook by:

• Changing a field title to something more intuitive.

• Overriding the default format for a field.

• Adding help text to help your business users understand the purpose of the field.

• Defining custom field validation rules.

• Requiring the business user to provide a value for a field in the search prompt.

• Adding a list of values to ensure your business users can only enter a valid value for the
field.

WARNING:

Some settings in the editor come from the service metadata and reflect how the
REST service behaves. Changing these settings in the workbook cannot change
the behavior of the service and may result in errors from your REST service. Refer
to the notes in the table for recommendations for each field.

Chapter 5
Configure Business Object Fields

5-7

To modify the settings for a business object field:

1. Open the business object that includes the field in the Business Object Editor.

You can navigate to the Business Object Editor from the Layout Designer or by
clicking Manage Catalogs, then opening first the catalog and then the business
object.

2. From the Business Object Editor, click the Fields tab.

3. Select the field you want to modify, then click the Edit icon () to open the field in
the Business Object Field Editor.

4. From the General tab, view or modify the settings as appropriate.

Setting Description

ID The ID for the field.

WARNING:

Do not modify the ID. The ID
value must match the JSON
member name expected by the
service. JSON member names
are case-sensitive.

Title The name of this field. This value is used in
various places, such as for the column
header or form field label. This value can be
localized.

Provide a short value that is meaningful to
your business users.

Help Text A description of the field intended for
business users. This value appears near the
title where possible. This value can be
localized.

Provide a brief explanation of what values
are expected for this field.

See Add Help Text to Your Workbook

Chapter 5
Configure Business Object Fields

5-8

Setting Description

Data Type The data type for the field, used for
encoding and decoding data from the
service, as well as data validation and cell
formatting.

Data types include values such as:

• Boolean
• Date (no time)
• Date-Time
• Integer
• Number
• String
See Supported Data Types.

WARNING:

Do not modify the data type
without consulting the service
owner.

Format The cell formatting setting for the field.

The default setting (Default) indicates that
the field uses the standard formatting for the
data type, for example, mm/dd/yyyy for date
fields.

To use a different format style, select an
option from the list such as Long Date for a
date field. This option displays "7/15/2022"
as "Friday, July 15, 2022".

See Choose Field Formats.

Description An internal technical description for the field.

This value only appears in the designer. It is
not localizable.

Subfields The subfields for a object-typed field such as
those available in NetSuite SuiteTalk REST
web services.

To make changes to a subfield, select it from
the Subfields table, then click the Edit Field
() to open the Business Object Field Editor
for the subfield. See Object-typed Fields and
Subfields.

5. From the Constraints tab, view or modify the settings as appropriate.

Chapter 5
Configure Business Object Fields

5-9

Setting Description

Required for update and Required for create Ensures a value is provided for the field
during create or update:

• If the check box is selected, the add-in
checks that there is a value in the field
cell and displays a data entry error if
there is no value. The business user
won't be able to upload the new or
updated row until a value is provided.
See Understanding Data Validation in
Managing Data Using Oracle Visual
Builder Add-in for Excel.

• If the check box is not selected, the
add-in doesn't require a value. The
business user can upload the new or
updated row without a value for this cell.

WARNING:

Don't deselect these check boxes
without first consulting with the
REST service owner. These
settings come from the service
metadata and reflect
requirements of the REST
service.

If you deselect these check
boxes, the add-in attempts to
upload the new or changed row. If
the field is required and no value
is provided, the service may
return an error similar to a "(400)
Bad Request" error.

See Required Fields.

Editable on update and Editable on create Allows or prevents write operations on the
field during create or update:

• If the check box is selected, the
business user can provide a value
during create or update.

• If the check box is not selected, the field
cells are set to read-only.

See Understanding Read-Only Behavior in
Managing Data Using Oracle Visual Builder
Add-in for Excel.

Chapter 5
Configure Business Object Fields

5-10

Setting Description

Searchable Determines if a field can be used in a
search.

If selected, the field is available when
creating a search for the workbook. See Use
Search to Find Required Data.

WARNING:

The default value depends on the
service metadata. Make sure that
the service supports searching on
the field before selecting this
check box.

Required for search Determines if a value is required for the field
during a search:

• If the check box is selected, a value
must be provided for the field on
download. Required fields are indicated
by an asterisk (*) in the Search Editor.

• If the check box is not selected, no
value is required. If none is provided,
the add-in ignores the field when
retrieving data.

See Use Search to Find Required Data.

Omit from payload if value is empty Determines if the field is omitted from the
payload if the cell value is empty.

If the check box is selected, empty values
are omitted. See Omit Empty Values During
Upload.

6. Define a custom field validation rule using the Validation Rule and Validation Failure
Message fields as described in Create Field Validation Rules.

7. To configure a list of values on the field, click the List of Values tab and configure it as
described in Configure a List of Values with a Business Object.

Set an Authentication Method for a REST Service
Configure authentication for Oracle Visual Builder Add-in for Excel when connecting to the
REST service.

When you create a new catalog from a URL, you can configure the authentication method
depending on the service. The add-in provides five authentication options: Default, Basic
Access Authentication, Oracle Fusion Applications Token Relay, OAuth 2.0 Authorization
Code (PKCE), and No Authentication.

At log in, the add-in uses this setting to determine how to log in. If required, you can change
the authentication method using the Advanced tab of the Business Object Catalog Editor.

See Authentication Options for more information.

1. Click Manage Catalogs.

Chapter 5
Set an Authentication Method for a REST Service

5-11

2. In the Manage Business Object Catalogs window, select your existing catalog
and click the Edit Business Object Catalog icon.

3. In the Business Object Catalog Editor, click Advanced.

4. Select an authentication method from the Authentication list:

• Default: At login, the add-in pings an Oracle Cloud Application anti-CSRF
servlet endpoint. If the ping succeeds, Token Relay is used. If the ping fails,
Basic authentication is used instead.

• Basic Access Authentication: See Basic Authentication.

• Oracle Fusion Applications Token Relay: See Oracle Fusion Applications
Token Relay Authentication.

• OAuth 2.0 Authorization Code (PKCE): See OAuth 2.0 Authorization Code
Flow with PKCE.

• No Authentication: There is no prompt for credentials. No authentication-
related headers are added to requests.

Caution:

Be sure to choose an authentication method that is compatible with your
catalog.

5. If the authentication method includes configuration properties, the Edit
Authentication Properties button is enabled. Click the button to edit those
properties.

Override a Business Object's Base Path
You can configure a business object to use a different base path than the rest of the
catalog. The Oracle Visual Builder Add-in for Excel then uses this base path when
making REST requests for the business object.

Typically, a business object catalog holds business objects that share a base path
(say, /abcRestApi-context-root/resources/v1). But if a business object
needs to use a different base path (for example, your list of values come from /
123RestApi-context-root/resources/v1), you can provide a new base path
for the business object through the Business Object Editor.

To configure a business object to use a base path different from the one shared by
business objects in the Catalog:

1. Add a business object to your Business Object Catalog. See Add Business
Objects to an Existing Catalog.

2. Click the General tab in the Business Object Editor, enter the different base path
in Base Path Override to override the base path used by all business objects in
the Catalog, and click Done.

Chapter 5
Override a Business Object's Base Path

5-12

The add-in assumes that no extra authentication is required by business objects with a base
path override.

You can now use the newly created business object as the data source business object for a
list of values if required. See Configure a List of Values with a Business Object.

Manage Metadata Path Information
When you provide a service metadata document, Oracle Visual Builder Add-in for Excel
captures the path to the service metadata document relative to the service host and base
path of the catalog. You can view this path and other path settings from the Business Object
Editor.

This relative path is displayed in the Metadata Path field on the General page of the
Business Object Editor. The add-in uses this path when you refresh the business object
catalog. See Refresh a Business Object Catalog.

The add-in also captures path information such as REST API methods and parameters and
displays these details in a couple of editors: the Path Editor and the Operation Editor. Open
the Path Editor by clicking the Edit button next to the Metadata Path field.

Chapter 5
Manage Metadata Path Information

5-13

The Path Editor lists all the available methods. To view settings for a method,
including headers and parameters, select a method from the list and click the Edit
Operation icon () to open the Operation Editor.

The values seen in this image are correct for an Oracle ADF REST Resource service.
Other service frameworks may require other values. For example, Oracle REST Data
Services (ORDS) might have a metadata path of "/open-api-catalog/employees" and
a content type of "application/json". Refer to Oracle REST Data Services for more
details.

Caution:

The metadata path should include a GET method that specifies the correct
request content type that the service expects for a metadata request. If you
need to modify these settings, be sure to provide values that will result in the
service returning a proper OpenAPI service metadata document.

Consult the REST API owner for the required values.

Configure Pagination for a Business Object
If the REST service supports pagination, you can download a large number of rows
using multiple requests.

Imagine you need to download 10,000 rows of data. Downloading one row at a time is
too time-consuming, and attempting to download all 10,000 rows in one request might
result in a timeout error. Instead, download one page at a time where the page
contains, for example, 500 rows.

Chapter 5
Configure Pagination for a Business Object

5-14

Note:

Pagination does not limit the total number of rows downloaded. All available rows
are downloaded with or without pagination. Pagination controls how many rows are
downloaded *per request*. In the example here, there would be 20 requests of 500
rows to download all 10,000 rows.

You can configure the pagination behavior using the Download tab in the Business Object
Editor.

Configure the following as required:

• Offset Parameter Name: The name of the URL parameter that controls where to start
the next page. When fetching the first page, the add-in uses a value of zero. When
fetching the second page, the add-in uses a value of 499, assuming the limit value is 499.

• One-Based Offset: Controls whether the service starts counting from one. If this check
box is unselected, the service assumes the service starts counting from zero.

• Limit Parameter Name: The name of the URL parameter that controls how many rows to
fetch for each page.

• Limit Parameter Value: Controls the page size (number of rows that the add-in
downloads).

Chapter 5
Configure Pagination for a Business Object

5-15

For example, using the defaults for an ADF REST service, the add-in appends ?
offset=0&limit=499 for the first download request.

For other service types, pagination may or may not be supported. If supported, the
service may use parameter names like offset and limit or it may use other
parameter names for the same purpose.

Consult the service API documentation to determine which parameters to use.

Refer to Download Data for more information.

Configure Row Finders for a Business Object
Row finders are predefined filters available through Oracle ADF REST Resource
services that allow you to download a specific subset of records. If the service owner
has included row finders with the service, you can view and configure them through
the Finders tab of the Business Object Editor.

For example, if your service includes a row finder that filters expense reports by
"unapproved" status and assigned to the "current user", you can use the row finder to
download only those expense reports that require your approval. See Use Row
Finders to Limit Downloaded Data.

Row finders are defined through the service. You can't add or configure them through
Oracle Visual Builder Add-in for Excel. However, you can configure how they appear in
the add-in. For example, you can

• Remove unwanted row finder variables so that they don't appear in the prompt at
download time

• Give row finders or row finder variables a more readable title

• Add some help text to help your business users understand what a row finder
does or what should go in a row finder variable

• Configure a list of values for a row finder variable

Note:

Any changes you make must be compatible with the service. If your changes
are incompatible, you will likely see errors during a download.

To configure row finders:

1. In the Excel ribbon, click Designer.

2. In the Layout Designer, click the Edit icon () next to the Business Object field.

3. Click the Finders tab in the Business Object Editor to view a list of available row
finders. Remove row finders if required.

Note:

The Finders tab is only displayed for Oracle ADF REST Resource
services.

Chapter 5
Configure Row Finders for a Business Object

5-16

4. To edit a row finder's details, select it from the list and click the Edit icon ().

5. Use the Row Finder Editor to edit the row finder.

Caution:

When editing a row finder, take care to not change the row finder's ID.

You might want to change the value for the Title property to be more readable. You can
also add descriptions of the row finder using the Help Text and Description properties.

The Help Text property is intended to give your business users more information about
the row finder. This text is displayed in a popup next to the row finder title in the Search
Editor. The Description property is intended for workbook developers. This text is
displayed only in the designer UI, like the Finders tab of the Business Object Editor. You
can use this property, for example, to provide technical details of the row finder to
workbook developers.

Chapter 5
Configure Row Finders for a Business Object

5-17

Note:

The values for the Title and Help Text properties can be translated. See
Manage Workbook Translations.

6. If a row finder supports variables that act as arguments or parameters for the
finder, click the Variables tab to update or delete variables. For example, you can
change the row finder variable's title (but not the ID) or set the variable as required
to force the user to provide a value at download time, as shown here:

As with a row finder, you can use the Help Text and Description properties to
provide useful descriptions of the variable. The Help Text value is displayed as a
popup next to the row finder variable in the Search Editor.

Note:

The values for the Title and Help Text properties can be translated. See
Manage Workbook Translations.

Chapter 5
Configure Row Finders for a Business Object

5-18

7. If required, configure a list of values for a row finder variable from the List of Values page
in the Row Finder Variable Editor.

Note:

A list of values is a drop-down list populated with values from a referenced
business object or a local data source. Filters can also be defined to further limit
the values to those required by the business user. These filters can contain
expressions that are resolved at runtime. See Configure a List of Values with a
Business Object and About Expressions.

8. Click Done until you return to the Layout Designer.
Once you are done making changes, the row finders become available to you as an
option to limit downloaded data, as described in Use Row Finders to Limit Downloaded
Data.

Use Row Variables for a Business Object
A row variable is a custom field you can add to a layout that allows business users to capture
details for a row, such as a range start date for a date effective object. The row variable
feature is intended to provide improved support for date effective objects.

When creating an integrated workbook for a date effective business object, you'll need to
configure additional REST request headers of type Effective-Of. These headers may
include a range attribute, such as RangeStartDate, that requires a date. See Support for Date
Effective Objects.

The row variable feature provides a way for the business user to capture an appropriate date
for a row that can be used in the header during upload.

Configure a Row Variable for a Layout
Create a row variable for a business object and add it to your layout. A row variable is similar
to a business object field and allows business users to capture details for a row, such as a
range start date for a date effective object.

Unlike a business object field, a row variable is not defined in the service metadata and the
value of a row variable isn’t included in upload request payloads.

This feature is intended to provide support for workbooks with date effective objects. If you
create a layout for a date effective object, you may need to create a REST request header of
type Effective-Of that includes a range start date. This header can use an expression to
reference a date value stored in the row variable you create.

This task uses the example of a row variable to capture the RangeStartDate range attribute
that will be referenced in an Effective-Of REST request header. See EffectiveOf Headers in
Multi-Row Requests for more information.

To configure a row variable for a layout:

1. Open the Business Object Editor for the data effective object.

2. Click the Variables tab in the Business Object Editor.

Row variables are not defined in service metadata so the Row Variables list is empty
until you create one.

Chapter 5
Use Row Variables for a Business Object

5-19

3. Click Add Row Variable ().

4. Select the new variable, then click Edit Row Variable () to open the Row
Variable Editor.

5. Type an ID and title for the row variable, then select a data type from the Data
Type list.

In this case, choose Date (no time) for the date effective object's new row
variable.

6. Click Done to close the Business Object Editor.

7. From the Layout Designer, click the Columns tab, then click Manage Columns
().

8. From the Table Column Manager, click the Variables tab from the Available
Fields pane, then select the new row variable—in this case, Range Start Date.

Chapter 5
Use Row Variables for a Business Object

5-20

If required, drag the row variable to another position in the Selected Fields list.

Now that you've created a row variable and added it to your layout, your business users can
use this row variable to select a range start date for an updated row.

If you've created the row variable for a date effective object, go ahead and configure a REST
request header that references this row variable. See Configure a Request Header

Configure GZIP Compression for Request Payloads
For a POST, PUT, or PATCH request to the service that takes payloads, you can choose to
compress the payload body using GZIP if the service accepts compressed request payloads.

When the Supports gzip compression for request payloads option is selected, the
Content-Encoding: gzip header is added to the request. This option (found in the Business
Object Catalog Editor's Advanced tab) is selected by default for Oracle ADF REST Resource
services.

Refresh a Business Object Catalog
If a service owner makes significant changes to the service metadata–especially its business
object definition–after the workbook is integrated with the service, you can refresh the
workbook's business object catalog to take advantage of the latest changes.

Refreshing a catalog is useful when changes to the service metadata are extensive–for
example, when new fields, custom actions, or row finders are added to the service–and

Chapter 5
Configure GZIP Compression for Request Payloads

5-21

updating the business objects to incorporate these changes would take considerable
time and effort. You can also refresh the catalog when a new version of Oracle Visual
Builder Add-in for Excel improves the metadata harvesting.

Your catalog might be based on a single service metadata document that defines one
or more business objects. But a catalog can also include business objects that you
have imported separately and that have their own service metadata documents. When
you refresh a catalog, Oracle Visual Builder Add-in for Excel reads the metadata path
for each business object and issues a request that returns the business object details
from the service metadata document.

You can only refresh a catalog with URL-based service metadata documents. Catalogs
with file-based service metadata documents cannot be refreshed from a file.

Caution:

A refresh overwrites any changes that you've made locally to the business
object catalog. If you've spent a lot of time customizing the business object
(especially field titles), consider whether it's worth redoing those changes; it
might be simpler to manually add that new field or custom action. Before
refreshing a catalog, back up the workbook in case you want to revert your
changes.

To refresh a business object catalog:

1. Click Manage Catalogs in the Oracle Visual Builder tab.

2. Select the catalog to refresh in the Manage Business Object Catalogs window.

3. Click the Refresh Business Object Catalog icon ().

4. Click OK, then Yes when prompted to confirm the overwrite.

If a service host is missing or you have not logged in, you'll be prompted to provide
the required details. If you cancel either of these prompts, the catalog refresh ends
without completing.

If, once the catalog refresh is complete, you see this warning, then the add-in was
unable to refresh one or more business objects in the catalog.

To troubleshoot the error, open the log console and repeat the process to discover
the cause. See Log Console.

If the catalog refresh ends successfully, the add-in displays a message that all
business objects were successfully refreshed.

5. When the refresh is complete, click OK to close the message, then Done to close
the Manage Business Object Catalogs window.

During the catalog refresh:

Chapter 5
Refresh a Business Object Catalog

5-22

• Existing business objects are refreshed based on the response from the metadata path.
New business objects are not added to the catalog. No business objects are removed.

• For existing business objects, new fields, finders, custom actions, and so on are added
and existing items are refreshed. No existing items are removed.

• When an existing item is refreshed, the item's new properties replace the older
properties. For example, a field's title, required, and editable properties are copied from
the newer version to the older version, except when a new property is empty. If a field's
newer version has a list of values configured, the newer list of values replaces the older
list of values. If the newer version doesn't have a list of values, the previous list of values
is left unchanged.

• A refresh does not change any field formats, as those are always set manually.

If you want a new field in your layout, use the Table Column Manager to add the field after
refreshing the catalog:

1. In the Layout Designer, click Columns.

2. Click Manage Columns () and select the new field. Click Done.

Configure the REST-Framework-Version
You can change the value of the REST-Framework-Version request header, set to version 6
by default for Oracle ADF REST Resource services. The REST framework version
determines functionality for accessing business objects.

To configure a specific REST-Framework-Version that overrides the default framework
version:

1. In the Oracle Visual Builder tab, click Manage Catalogs.

2. Select the business object catalog, then click the Edit Business Object Catalog icon.

3. In the Business Object Catalog Editor, click the Advanced tab.

4. Specify the framework version you want to use in the REST API Framework Version
property. This property is available only for Oracle ADF REST Resource services (not
ORDS or other REST services).

The default value is version 6 (the only supported value). If the value is empty or lower
than 6, it is set to the default. Framework versions higher than 6 are not certified.

5. Click Done.

Once you specify a framework version, it stays in effect until you manually change it again.
Every request sent to any endpoint that belongs to this catalog includes the REST-
Framework-Version header with the specified value. For details on framework versions, see
About REST API Framework Versions.

Chapter 5
Configure the REST-Framework-Version

5-23

6
Configure Search Options for Download

You can configure the search options for a layout, which are used when the user clicks
Download in the Oracle Visual Builder tab.

Search Option Available for Benefits Limitations

Graphical Search Editor ADF REST, ORDS, and
NetSuite services

• Provides a
graphical user
interface for building
a search

• Allows business
user to provide
values and modify
the search

Some limits on search
syntax

Row Finders ADF REST • Provides access to
powerful,
complicated
searches defined by
the service

• Allows the business
user to provide
values

Only available for ADF
REST services

Search Parameters Any service type Developers can use any
syntax the service
supports

Business users cannot
provide values or
change the search at
download time

Use Search to Find Required Data
You can configure each layout of the workbook to allow a user to specify search values for
filtering the data Oracle Visual Builder Add-in for Excel downloads to the layout.

Search is supported for workbooks that integrate with ADF REST, ORDS, or NetSuite
services.

For example, you might have a Form-over-Table layout that displays a purchase order in the
form and associated lines in the table. In this scenario, you'll want to create a search that
allows business users to enter the order number for a specific purchase order that they want
to view.

You create a search for a layout by setting one or more search conditions. A search condition
consists of a business object field, a query operator, and a value. A query operator
determines how items are matched based on the given value and is based on the field's data
type. For example, available operators for strings include "starts with", "contains", and "ends
with". Those for numbers include "greater than" and "less than". For dates: "before" and
"after".

To download data for employees making over $95,000, for example, you'd choose the
"Salary" field, select the "greater than" operator, and type "95000" in the value field.

6-1

If you configure more than one condition, the add-in always inserts the logical AND
operator between each one. So, if you have two conditions such as "Job Title =
Software Developer" and "Salary > 95000", the add-in downloads only those items that
match both these conditions.

The add-in supports lists of values (LOV), including ones with dynamic filters, in the
Search Editor. Let's suppose you want to download data for employees based on
department and job title and have added the Department and Job Title fields to your
search in order to do so. If the Department field has a LOV, you can choose the
required department from the list. If the second field, Job Title, has a dynamic filter
based on the Department field, the Job Title list shows only those job titles that are
associated with the department you selected in the first field.

Note that there are two business object field settings in the Business Object Field
Editor related to search:

• Searchable: If Searchable is selected for a field, the field is available for you to
choose from. You can adjust which fields show by selecting or deselecting
Searchable in the Business Object Field Editor. Before you set a field as
searchable, make sure that the service supports searching on that field.

• Required for Search: If you want to require your business users to provide a
value for a field when downloading data, select Required for Search for the field
in the Business Object Field Editor. Required fields are indicated by an asterisk (*)
in the Search Editor.
If a field is required, the business user must provide a value before proceeding. If
a field isn't required and the business user leaves it blank, the corresponding
condition is omitted from the search.

See Configure Business Object Fields for more information.

To create a search query for a layout:

1. Select the layout you want to create the search for, then click Designer from the
Excel ribbon.

2. In the Layout Designer's Query tab, click the Edit icon () next to the Search
property.
If no search conditions have been defined, the add-in opens the Available
Business Object Fields window.

3. To configure a search condition:

a. From the Available Business Object Fields window, select the business
object field that you want to enable users to enter search terms for. If this
window is not open, click Add field from the Search Editor first.
For example, select Department Name if you want to enable users to search
on employees by department, as shown here:

Chapter 6
Use Search to Find Required Data

6-2

b. Select a query operator from the list beside the field name. For example, select
"equals" to return employees from a department that matches the value in the value
field or "not equals" to return only employees from other departments.
The available operators depend on the data type. For example, string fields have
filters such as "starts with", "contains", and "ends with".

c. If required, select or type a value in the value field you want to use to match items on
download. For example, to download employees from the research department,
select "Research". You can only specify a single value for this field.
You can leave the value field blank if you want your business user to provide a value.
If you do provide a value here, the business user can always change or clear the
value when downloading.

4. To add more fields for complex searches, click Add Field, then select a field from the
Available Business Object Fields dialog.
For example, you might want to search for employees with a job title of Software
Developer, but only those who earn more than $95,000. In this case, first select Job
Title, then click Add Field and select Salary. Finally, define the search parameters as
follows:

Note:

When configuring your search, make sure the field your dynamic list of values is
based on is added before the field with the dynamic list. So, to filter the Job Title
list based on the Department value, add the Department field before the Job
Title field in the Search Editor. See Configure a Filter with a Dynamic
Parameter.

Chapter 6
Use Search to Find Required Data

6-3

Tip:

To change the order of the conditions, right-click the label and choose
the desired option.

5. Select Editor enabled at download to allow business users to edit the search
when downloading data. Deselect this check box to provide a simplified Search
prompt instead.
If this check box is selected, the business user can add and delete search fields as
well as change search filters, as shown on the left:

If the check box is unselected, only the values are editable, as shown on the right.

6. Click OK.

Notes on Search

• For Boolean fields, the only acceptable values are "true" and "false", regardless of
the current language preference. If desired, you can use a local data source (LDS)
to convert Boolean values to other labels.

Use Row Finders to Limit Downloaded Data
For workbooks that integrate with Oracle ADF REST Resource services, you may
select one of the predefined row finders if any are associated with the layout's
business object.

1. In the Excel ribbon, click Designer.

2. In the Layout Designer's Query tab, click the Edit icon next to the Row Finder
property to see the row finders configured for the service in the Available Row
Finders window:

Chapter 6
Use Row Finders to Limit Downloaded Data

6-4

For details on modifying how row finders appear in the add-in (including how to add titles
and help text for row finders and variables), see Configure Row Finders for a Business
Object.

3. Select a row finder and click OK.
When you download data to your workbook, the row finder filters the data based on the
filter criteria. If the row finder requires input from the user, you'll be prompted to provide a
value for the row finder parameter.

For more information about configuring a Oracle ADF REST Resource service that supports
finders, refer to these resources in Developing Fusion Web Applications with Oracle
Application Development Framework:

• About RESTful Web Services and ADF Business Components

• Filtering a Resource Collection with a Row Finder

Chapter 6
Use Row Finders to Limit Downloaded Data

6-5

Use Search Parameters to Limit Downloaded Data
Create a search query that determines which data get returned from the REST service
when a business user invokes a download. For example, if a user only needs to
access records for a specific location, you can create a query that includes a search
parameter for that location.

For example, to retrieve employee items where the managerId field is empty, you
would create a search on the Employees business object with a search parameter of
"managerId is null". The GET request would then include the following in the query
string portion of the URL:

GET…/Employees?q=managerId+is+null
where:

• q is a query parameter supported by the Employees service

• managerId is the name of a field that supports the query parameter

• null is the search value

When the user clicks the Download Data button, the add-in appends the search query
to the REST endpoint URL of the GET request. If search or row finder settings have
also been configured, the user is prompted to provide values for the configured
parameters that will further filter the returned results.

Note:

The Search Parameters property works in combination with the other two
properties (where applicable). They are not mutually exclusive. However,
some combinations may work where others may not. If you choose to
configure multiple search options, you must ensure that the service supports
that combination.

For example, some services such as Oracle ADF REST Resource services
do not support using more than one "q" parameter in a REST call. If you
define a "q" search parameter for a layout, it may not work if you already
have a search defined using the Search Editor.

If the service supports complex searches, you can create complex searches in the
layout, as shown in the following example:

q=((firstName LIKE '*es*') or ((hireDate< "2001-01-13") and (department =
10)))
Each service defines which parameters can be used for search. Likewise, each
service defines the required and supported syntax for the expression that appears on
the right-hand side of the assignment operator (=).

There is no validation in this editor or at download time. The add-in cannot determine
which parameters are useful for search. Likewise, the add-in can't determine the
proper syntax for the parameter values. If you enter invalid information, you may get a
bad request error. Consult the API documentation for the service you are using to

Chapter 6
Use Search Parameters to Limit Downloaded Data

6-6

identify whether to use "q" for the parameter name and how to formulate the search
expression properly.

The add-in applies URL encoding to the parameter value at download time. Don't enter URL-
encoded values. The search parameter name is not encoded.

Note:

You can configure search parameters for each layout in a set of dependent layouts.
See Filter Data for a Set of Dependent Layouts.

To add search parameters to your layout:

1. In the Excel ribbon, click Designer.

2. In the Layout Designer's Query tab, click the Add or Edit Search Parameter icon next to
the Search Parameters property to open the Search Parameter Editor where you add or
edit search parameters.

3. Select Allow expressions in Parameter Value if you include an expression that
references a workbook parameter in the Parameter Value field. See Use Workbook
Parameters in a Search.
Selecting this check box ensures Oracle Visual Builder Add-in for Excel evaluates the
value as an expression.

4. Click OK to close the editor.

Tip:

To troubleshoot a particular combination of search settings, open the Network
Monitor and download data. Then, inspect request details in the Network Monitor's
window. This information may help you refine search settings.

Chapter 6
Use Search Parameters to Limit Downloaded Data

6-7

Use Workbook Parameters in a Search
You can create a search query that references workbook parameters stored in your
workbook. Workbook parameters are name-value pairs that are embedded in your
workbook programmatically, typically by a web developer.
An organization may choose to embed different values in an integrated workbook—for
example, when it is downloaded—based on the context. Let's consider an example.
Suppose your organization has a web app that includes an Employees page and that
this page includes a button for downloading an integrated workbook. The web
developer could use a server-side mechanism to write the same filter values to the
workbook used by the business user in the web app.

For example, a business user may filter the employees list in the web app to show only
employees in the Sales department with a salary greater than or equal to $7000. If this
user then clicks the download button on the page, the web server embeds the filter
values— Dept=Sales and MinSal=7000—in the integrated workbook before sending it
to the user.

If the workbook has a search parameter that references these workbook parameters,
then the user sees the same data as in the web page when they open the downloaded
workbook and click Download Data.

The search parameter for a "q" query that references these workbook parameters
might look like this:

DepartmentId={ Workbook.Parameters['Dept'].Value } AND Salary >=
{ Workbook.Parameters['MinSal'].Value }
During download, Oracle Visual Builder Add-in for Excel constructs the GET URL by
resolving the expressions in the Search Parameter value property. If the values of the
Dept and MinSal parameters of a workbook are "80" and "7000" respectively, then the
resulting GET request URL would look like this:

.../Employees?q=DepartmentId=80 AND Salary >=7000

Note:

The specific GET URL query string syntax is governed by the REST service.
Consult with your service owner if required.

How these workbook parameters are written to the workbook is up to you. However, if
your organization plans to take advantage of this technology, your web developers will
need to know where to write these workbook parameters and in what format. You can
point them to Embedding Workbook Parameters in a Workbook for these details.

To create a search parameter that references workbook parameters, see Create a
Search Using Embedded Values.

Chapter 6
Use Workbook Parameters in a Search

6-8

Create a Search Using Embedded Values
If your workbook includes workbook parameters, you can create a search query based on the
values stored in these parameters.

For example, an Employees workbook may include a couple of workbook parameters for
storing department and salary values: Dept=Sales and MinSal=7000. If these workbook
parameters are included, you can create a search query to return items based on these
values.

To reference a workbook parameter, use this syntax: Workbook.Parameters['name'].Value
where name is the name of a workbook parameter.

To use a "q" query that returns sales employees with salaries greater than or equal to $7000,
configure the search parameter like this:

DepartmentId={ Workbook.Parameters['Dept'].Value } AND Salary >=
{ Workbook.Parameters['MinSal'].Value }
Your parameter must be within curly braces ({ and }). To use the curly brace characters as
literals in the property value, escape them using a backslash (\). For more information, see
About Expressions.

To use a workbook parameter in a search parameter:

1. In the Excel ribbon, click Designer.

2. In the Layout Designer's Query tab, click the Add Search Parameter icon () next to the
Search Parameters property to open the Search Parameter Editor.

3. Enter a parameter name and parameter value for your search parameter.

In this image, the search parameter uses a q search parameter with a search value that
references two workbook parameters, Dept and MinSal.

4. Select Allow expressions in Parameter Value to ensure the add-in evaluates the value
as an expression.

Chapter 6
Use Workbook Parameters in a Search

6-9

WARNING:

If this check box is not selected, the parameter value is used as a
verbatim string when the add-in creates the GET URL. In this example,
this would result in a 400 Bad Request error.

5. Click OK to close the editor.

During download for the layout, Oracle Visual Builder Add-in for Excel resolves the
expressions in the Search Parameter value property and builds the GET URL. If a
workbook parameter is missing from the workbook or the syntax is incorrect, the add-
in can't evaluate the expression. This will likely result in a 400 Bad Request error.

Before you distribute the workbook, it is recommended that you test the search
behavior by opening the Network Monitor and clicking the Download Data button from
the Oracle Visual Builder ribbon. The Network Monitor shows the URLs that the add-in
constructs using the Search Parameters. See Network Monitor.

If you experience issues, try modifying the value of the workbook parameter and then
clicking Download Data again. The next download will reflect any changes made to
these parameters.

To view or modify workbook parameters for testing purposes, open the Edit Workbook
Parameters window from the Advanced menu:

Note:

The Edit Workbook Parameters menu command is only available when the
designer tools are enabled.

Chapter 6
Use Workbook Parameters in a Search

6-10

To change a value, select the workbook parameter from the list and click the Edit icon ().

Embedding Workbook Parameters in a Workbook
Write workbook parameters to a workbook using a custom solution such as a J2EE servlet or
browser-based JavaScript. Workbook parameters are name-value pairs that are stored in a
hidden worksheet of the workbook using a packed string-value format. Workbook developers
can create search queries that reference these parameters.
Workbook parameters might be name-value pairs that correspond to URL arguments passed
when the workbook is downloaded from a web app. They may also represent some state
from a web app page. Or they might be arbitrary named values.

Oracle Visual Builder Add-in for Excel does not include functionality for embedding workbook
parameters programmatically. An organization that wants to use this functionality must
provide their own custom solution for embedding these parameters in a given workbook. This
topic is intended for the programmer or web developer tasked with coding this solution.

Workbook parameters must be written to a specific location and in a specific format. Before
you proceed, review the parameter requirements carefully to make sure you embed your
workbook parameters correctly.

Chapter 6
Use Workbook Parameters in a Search

6-11

Sample Methods

Here are some possible methods to consider when planning a solution:

• A server-side mechanism using a J2EE servlet or filter to examine and update the
workbook during download

• A client-side/browser-based (JavaScript) mechanism that can examine and update
the contents of the workbook after it is retrieved from the server and before it is
written to the local computer file system

Location

All workbook parameters are stored as a string on a hidden worksheet named
_VBCS_WorkbookInfo at cell address B15.

Format

The format for the packed string is:

<paramName1>=<paramValue1>/<paramName2>=<paramValue2>/...
with these conditions:

• Each paramName and paramValue must be separately URL-encoded.

• Each name must be separated from its value using the equals character (=).

• When there are multiple name and value pairs in the string, each name value pair
is separated from others by the forward slash (/) character.

• The equals (=) and forward slash (/) characters must not be encoded.

• The name portion must not be empty and must match the name used in the
search parameter expressions. See Use Workbook Parameters in a Search.

Notes

• The total size for the packed string format for the set of embedded parameters is
limited to 32,759 characters.

• The specific worksheet cell (_VBCS_WorkbookInfo!B15) may:

– Be empty (no parameters)

– Contain a packed string of 1 or more parameter name and value pairs

– Contain the special placeholder string, $$VbafeWorkbookParameters$$
This value is set by default when a workbook is first integrated using the add-
in, and also when the workbook is published.

The add-in treats this value, if found, the same as an empty string (no
parameters available)

Chapter 6
Use Workbook Parameters in a Search

6-12

7
Download Data

When a business user clicks Download Data from the Oracle Visual Builder tab, Oracle
Visual Builder Add-in for Excel fetches data from the REST service and displays that data in
the integrated workbook's layouts. This action generally involves one or more GET requests
on the business object's collection path.

How the add-in manages a download depends on the type of layout, whether there are
dependent layouts, and the add-in's download settings. For example, you can configure the
add-in to retrieve descendant rows in a single payload. See Configure Download to Use a
Single Payload.

To gain a better understanding of how the add-in behaves during a download, refer to the
appropriate section:

• Table Download

• Form-over-Table Download

• Dependent Layout Download

• Notes on Download Behavior

Note:

The Download Data icon is disabled if the Download Enabled check box is not
selected in the Layout Designer. See Manage Layout Capabilities. It may also be
disabled if the GET operation is not configured on the collection path for the
business object. See Manage Metadata Path Information.

Table Download
When a business user invokes a download for a Table layout, Oracle Visual Builder Add-in for
Excel performs a number of actions including clearing existing data from the table, sending a
GET request on the business object collection path, processing the response, and writing
values to the worksheet.

Here is a detailed breakdown of what happens when the business user clicks Download
Data for a Table layout:

1. If the business user is not logged in, they are prompted to log in.

2. If polymorphic business objects are used in the layout(s), then the polymorphic metadata
is refreshed.

3. The add-in may display one or more prompts in this order. If any of the prompts are
canceled, the download operation is terminated.

a. If the table has any pending changes, a warning is displayed and the business user
can cancel to avoid losing changes.

b. If path parameter values are required, the business user is prompted for these.

7-1

c. If a row finder is configured and the finder includes row finder variables, the
business user is prompted to provide values for the variables.

d. If a graphical search is configured, the business user is prompted to provide
values for the search conditions.

4. When the final prompt has been accepted, a progress window is displayed. The
business user may cancel the download at any time.

5. During download:

a. If there are any worksheet filters, these are cleared.

b. All existing data is cleared from the table.

c. Table, including headers, is fully redrawn.
All polymorphic field sets are expanded at this time to include the global
segments, discriminator (context segment), and context-sensitive segments.

6. List of values (LOV) columns are initialized.
If a given LOV already has choices cached, that cache is used at this point. If a
given LOV has no cache, a REST request is sent for the first 300 choices.

7. The first page of items is requested from the REST service.
The add-in issues a GET request on the business object collection path. This
request includes various query parameters and request headers.

8. The add-in uses a single background thread to request the second page of items
while processing the response from the first page.

9. For each row received, the add-in:

a. Prepares the values to be written to the worksheet.

b. Determines the appropriate cell styling.

c. For LOVs, the identity values are exchanged for display values using the
cache. Missing identity values are captured for later.

10. If there are more rows to download after the first page is processed, the add-in
prompts the business user to continue.
If the business user clicks Stop Now, the download operation stops immediately. If
they click Download All, the operation continues to retrieve additional pages until
no more pages are available.

11. For each page of rows, the add-in:

a. Issues additional GET requests on the LOV data source for LOV cache
misses, and completes the swap of identity values for display values.

b. Writes blocks of values to the worksheet.

c. Applies appropriate styling to blocks of cells.

12. The add-in continues to fetch page after page until there are no more items to
fetch.

13. The columns are resized to fit the current content.

14. The table row height is reset to the add-in's standard height.

15. If the table is not visible, the upper-left corner is selected to make it visible.

16. A post-download macro is invoked, if configured.

During the download operation:

Chapter 7
Table Download

7-2

• The add-in populates a special column called the "Key" column. The content of the cells
in the key column is not human-readable. This columns contains "housekeeping"
information for each row. This information is essential to the proper working of the table
features. You should never edit or attempt to remove the key column. If you sort the table,
you must include the key column in the range of sorted cells. Otherwise, you may get
data corruption.

• The status viewer is updated at various stages.

Note:

Problems communicating with the REST service may interrupt the download
process. You can use the Network Monitor to see details of each request and
response. See Network Monitor.

Form-over-Table Download
When a business user invokes a download for a Form-over-Table layout, Oracle Visual
Builder Add-in for Excel downloads the form data first, then downloads the child rows for the
current form row.

The download process is similar to the table download with these differences:

• For the form download:

– The add-in sets the count/limit query parameter to "1" (one) since only one row is
displayed in the form.

– There is no pagination at the form level.

– The add-in populates the form region with data from the first row in the response from
the GET request on the collection path.

• For the table download, the path parameters for the child collection path are managed
automatically by the add-in based on the current parent row.

• The post-download macro is invoked, if configured, when the form and table downloads
have completed successfully.

Dependent Layout Download
When a business user invokes a download for a set of dependent layouts, Oracle Visual
Builder Add-in for Excel starts with the primary layout and then progresses through the
hierarchy.

The download process for a set of dependent layouts is similar to the other processes with
these differences:

• When a download is invoked on any layout in a set of dependent layouts, the download
process applies to all the layouts in the set.

• A download always starts with the primary layout even if a different worksheet is currently
active.

• The check for pending changes applies to all layouts in the hierarchy.

• The entire hierarchy is cleared of current data.

Chapter 7
Form-over-Table Download

7-3

• Query prompts are only available for the primary layout.

• Additional search parameters, if configured, are applied at each respective level.
See Filter Data for a Set of Dependent Layouts.

• The prompt to continue after the first page appears once only for the primary
layout.
If the parent layout is a Form-over-Table layout, this prompt applies to the child
table. There is no prompt for descendant layouts.

• Each layout in the hierarchy uses the specific pagination settings, such as Limit
and Offset, from their respective business objects. See Configure Pagination for a
Business Object.

Descendant Table Layout Download

For descendant table layouts, the rows the add-in downloads depend on the rows in
the direct parent table layout. For each row in the direct parent table layout, the add-in
retrieves and processes all relevant child rows. If there are search parameters defined
on the descendant table layout, the search criteria may limit the number of child rows
retrieved for each parent row. See Filter Data for a Set of Dependent Layouts.

By default, the add-in sends separate GET requests to retrieve descendant rows. So
to retrieve child rows, the add-in starts by making a single GET request to retrieve the
first page of child rows for a given parent.

Writing the child rows to the worksheet takes place in order: all child rows for parent
row 1 are written, then the rows for parent 2, and so on.

If ancestor columns, including direct parent columns, are present in the descendant
table, those cells are populated with the appropriate values. These cells are read-only.

Much like the standard download, the add-in processes the retrieved rows for the
page, requests the next page in the background, and writes the page's rows to the
worksheet. It keeps iterating over pages until all children for the parent row are
retrieved and processed.

Note:

Up to 4 GET requests may be made on background threads, in parallel.

Instead of downloading with separate requests, you can configure the add-in download
descendant rows in a single payload. See Configure Download to Use a Single
Payload. In this scenario:

1. The add-in makes one or more GET requests to retrieve the business object items
for the table rows.
The number of parent rows per request is determined by the value of the Limit
Parameter Value field on the Download tab of the Business Object Editor. See
Configure Pagination for a Business Object.

The GET request is configured to include all descendant rows.

2. The service sends a response payload that includes the set of parent rows for the
table as well as all descendant items for those parent rows.

3. The add-in writes the returned parent items data into the table and captures the
descendant rows.

Chapter 7
Dependent Layout Download

7-4

4. The add-in repeats these steps until all parent items have been retrieved and written into
the table.

5. The add-in writes the descendant rows for or each descendant layout in the hierarchy to
the respective table without making any more REST requests.

Configure Download to Use a Single Payload
If you have a set of dependent layouts, you can configure Oracle Visual Builder Add-in for
Excel to download all relevant descendant rows in a single payload. Use of a single payload
can significantly improve performance.

This feature is only available for ADF REST services.

If your primary layout is a Form-over-Table layout, the add-in first makes a single GET
request to retrieve field values for the form part of the layout. It then makes requests to
retrieve blocks of rows for the table part of the layout as well as all relevant rows for the
dependent layouts.

If the primary layout is a Table layout, the add-in makes one or more GET requests to retrieve
the business object items for the table rows. All descendent items for those parent rows are
also included in the response payload.

Note:

This feature will not scale to handle large, enterprise-level volumes. If you enable
this feature, test the download behavior to ensure that all required use cases will
succeed in all customer environments and scenarios. Review Notes and Limitations
of Single Payload Downloads for more information about scalability.

To enable this feature:

1. Select the primary layout, then click Designer from the Oracle Visual Builder tab to open
the Layout Designer.

2. Click the Advanced tab in the Layout Designer.

3. From the Advanced tab, expand Download Options, then select Retrieve Descendant
Rows in Single Payload.

Chapter 7
Dependent Layout Download

7-5

Notes and Limitations of Single Payload Downloads
Single payload downloads (also referred to as "nested" downloads) are only supported
for Oracle ADF REST Resource services. Review this section to see if the feature is
suitable for your integrated workbook.

Scalability

Be aware that this feature will not scale to handle large, enterprise-level volumes. If
you enable this feature for your workbook, you are responsible for any scalability
issues that arise. Make sure to test your workbook to verify that all required use cases
will succeed in all customer environments and scenarios.

Chapter 7
Dependent Layout Download

7-6

Use of CPU, memory, and network bandwidth resources could exceed acceptable levels,
depending on the business object hierarchy and the data volume at each level in the
hierarchy. Potential issues include:

• Complex business logic or the processing of large numbers of nested descendant items
could push the request duration beyond what some load balancers and other network
components, such as Akamai, support. This could result in the request failing due to a
timeout.

• Large response payload sizes will likely consume large amounts of memory and CPU.
This could potentially affect other clients working against the same endpoint, virtual
machine, or container. It could also affect Excel and other programs running on the
business user's computer.

Limitations

• ADF REST services only

• This feature is not compatible with the use of the fields search parameter.

• The add-in uses the expand query parameter on the GET request for the top-most
business object. The GET request includes all the descendant business objects (child,
grandchild, and so on), by name for the expand query parameter value. The REST
service implementation must support this.

• In the current implementation, there are limitations on the number of descendants
retrieved for a given parent row. The limit is imposed by the ADF REST framework for a
given GET on the parent collection that uses the expand query parameter to include
descendant items in the response payload.
In cases where the number of descendants for a given parent item exceeds the limit
(hasMore=true), the add-in displays a message in the Status Viewer that not all rows
were downloaded for the affected worksheet.

Notes on Download Behavior
Review these notes for more on Oracle Visual Builder Add-in for Excel download behavior:

• NetSuite services do not return full row details when responding to a GET request on the
collection path. As a result, the add-in must issue individual GET requests on the item
path for each item returned from the collection path.

• For Oracle ADF REST Resource and Visual Builder Business Objects services, the add-
in sends additional GET requests to the LOV data source to get rows with missing
identity values only. For other service types, the add-in may get all rows in the LOV data
source to fix the cache miss.
If the add-in still can't find the display value for an identity value, the identity value is
written to the worksheet without the swap.

• REST services are stateless. As a result there are several issues to consider:

– The query is re-executed for each page request

– REST services cannot guarantee "read consistency" across multiple requests. If the
data is changed during a multi-page download, it is possible for some rows to be
missed entirely or downloaded more than once.

Chapter 7
Notes on Download Behavior

7-7

Note:

If pagination is not configured for a given business object, the add-in
attempts to fetch and process all available rows in a single request. For
larger volumes, such requests may time out.

• If Send Only Changed Data During Upload is enabled, the add-in caches a copy
of the data during download to be used for comparisons later on during upload.

For more information how some features affect the add-in's download behavior, see:

• Configure Search Options for Download

• Configure Pagination for a Business Object

• Work with Service Path Parameters in a Table Layout

• Use Polymorphic Business Objects and Fields

• Use Lists of Values in an Excel Workbook

• Use Macros in an Integrated Excel Workbook

• Use Multiple Layouts for Multi-level Business Objects

Chapter 7
Notes on Download Behavior

7-8

8
Custom Actions

Oracle Visual Builder Add-in for Excel supports custom actions defined by Oracle ADF REST
Resource services. A custom action is a function defined by the REST service that is callable
by external systems using REST POST requests.

What a custom action does when invoked by the add-in is determined by the service. The
add-in simply sends a POST on the collection or item path that includes the action name,
such as /contextRoot/v1/myBusObj/{itemId}/action/doMyAction for a business
object item.

This post can include payload field values, known as "parameters", to the service. The
service then takes the passed parameters and performs the custom action. This action may
act on a single row when defined at the row level. When the action is defined at the business
object level, the REST service determines which rows, if any are affected.

A custom action may accept zero or more parameters of simple types such as a String or
Integer and returns a single value to the add-in, which is then displayed in the Status Viewer.
This result returned by the service may be a simple scalar value like a string or a more
complex non-scalar value like an array.

Let's look at a couple of examples of custom actions at the business object (BO) level and
BO item level. For example, a REST service may have a custom action defined at the BO
level such as the one described here in REST API for Oracle Fusion Cloud Project
Management. When triggered, this custom action reprocesses all the project budget versions
which are showing as failed and brings these back into a working state.

Examples of custom actions at the BO item level might be a couple of custom actions,
"Approve" and "Reject", that operate on the items of a expense report business object. A
business user can download one or more expense reports, approve or reject each one, and
then update them all in a single upload.

If a given REST API supports custom actions, they are described in the service's OpenAPI
service metadata. The add-in can analyze this service metadata, harvest custom action
definitions, and include them in the workbook's corresponding business objects. No further
configuration is required. However, you may want to change the title and add help text for a
better user experience.

Business users perform custom actions using the buttons and menu commands from the
Oracle Visual Builder ribbon tab. See Perform Custom Actions in Table and Form-over-Table
Layouts in Managing Data Using Oracle Visual Builder Add-in for Excel.

Item level custom actions can be performed on items in either the form or the table of a Form-
over-Table layout, as well as on rows in a Table layout. BO level custom actions can be
performed on BOs in a Table layout and the form in a Form-over-Table layout. They are not
supported on the BO in the table of a Form-over Table layout. See Notes on Custom Actions
for information on other custom action limitations.

8-1

https://docs.oracle.com/en/cloud/saas/project-management/23c/fapap/op-projectbudgets-action-reprocessfailedprojectbudgets-post.html

Edit Custom Actions
Custom actions exposed by the service that your workbook uses can be viewed and
edited in the Custom Actions tab of the Business Object Editor.

Oracle Visual Builder Add-in for Excel populates this editor with the custom action
properties as described in the service's OpenAPI service metadata.

In this example, the add-in shows the properties for a "Reject" custom action on an
ExpenseReports business object (BO) item path (/ExpenseReports/
{ExpenseReports_Id}/action/reject). The Applies to a single row check box
indicates that the custom action operates at the business object (BO) item level. If this
check box is unselected, the custom action operates at the BO level.

Custom Action Properties

The Title, Help Text, and Description properties can be edited as needed in the
Custom Action Editor. The other properties, ID, Path, and Request Media Type,
reflect the service configuration and should be left as is.

• Title: The name of this custom action. Provide a short value that is meaningful to
your business users. This value appears wherever business users can invoke the
action. This value can be localized.

• Help Text: Provide a brief explanation of what the custom action does. This value
appears near the title when possible. This value can be localized.

• Description: This is an internal technical description. This value only appears in
the designer. It is not localizable.

Note:

When the Help Text value is displayed to your business users, the label next
to that value is "Description".

Chapter 8
Edit Custom Actions

8-2

For information on the Supports Multi-Row Requests check box, refer to Multi-Row Mode
for Custom Actions.

Payload Field Properties

Payload fields can be edited on the Payload Fields tab of the Custom Action Editor.
Properties such as the Title, Data Type, and Required can be changed. For example, you
can change the data type of a payload field from String to Integer, as long as the change is
compatible with the service. You can also update the Required property to mark the payload
field as required or not:

As with the custom action, the Title, Help Text, and Description properties can be edited as
needed in the Custom Action Field Editor. The other properties, ID and Data Type reflect the
service configuration and should be left as is.

• Title: The name of this custom action field. Provide a short value that is meaningful to
your business users. This value can be localized.

• Help Text: Provide a brief description of the custom action field. This value can be
localized.

• Description: This is an internal technical description. This value only appears in the
designer. It is not localizable.

Chapter 8
Edit Custom Actions

8-3

For single row custom actions, this help text appears in a popup when the business
user selects the column header for a payload field in a Table layout, as shown on the
left in this image:

For BO-level custom actions, the help text appears in a popup when you hover over

the help icon () next to a payload field in the Perform Action wizard, as shown on
the right.

You can also configure a payload field with a custom field validation rule as well as a
list of values. See About Custom Field Validation Rules and Configure a List of Values
with a Business Object.

Add Custom Action Fields to a Table Layout
If the service your workbook uses includes custom actions on individual items of a
business object, you can add defined custom action payload fields to your Table layout
or the table part of your Form-over-Table layout.

Let's take as an example a "reject" custom action that's exposed by an expense
report business object to reject expenses.

This task assumes you have a Table layout for an expense report business object that
includes a "reject" custom action. You can also add custom actions to the table of a
Form-over-Table layout.

To add custom action table columns to a layout:

1. Select the layout, then click Designer from the Oracle Visual Builder tab to open
the Layout Designer.

2. Click the Columns tab in the Layout Designer.

3. Click Manage Columns () to open the Table Column Manager.

4. From the Table Column Manager, click Custom Actions in the Available Fields
pane.

5. In the Selected Fields pane, select the location where you want the payload field
columns to be added. The columns will be inserted before the selected field.

6. In the Available Fields pane, select the payload fields you want to add.

In this example, we'll select Reason and Notes to add these columns to the
layout.

Chapter 8
Add Custom Action Fields to a Table Layout

8-4

7. Click Done.

Once you add custom action fields to a layout in your integrated workbook, your business
users can mark rows for the custom action by entering values in the payload field columns or
by using the ribbon command. See Perform Custom Actions in Table and Form-over-Table
Layouts in Managing Data Using Oracle Visual Builder Add-in for Excel.

When they click Upload Changes, Oracle Visual Builder Add-in for Excel sends their
changes to the REST endpoint and invokes the custom action on the marked rows.

Service Metadata for Custom Actions
If a given REST API supports custom actions, they are described in the OpenAPI service
metadata generated by the Oracle ADF REST Resource service. For example, a reject
item-level custom action would appear in the paths collection:

// Note: some JSON content has been omitted for brevity/clarity

"/ExpenseReports/{ExpenseReports_Id}/action/reject": {
 "parameters": [
 {
 "$ref": "#/components/parameters/ExpenseReports_Id"
 }
],
 "post": {
 "summary": "reject",
 "description": "reject",
 "operationId": "do_reject_ExpenseReports",
 "responses": {
 "default": {
 "description": "The following table describes the default response
for this task.",

Chapter 8
Service Metadata for Custom Actions

8-5

 "content": {
 "application/vnd.oracle.adf.actionresult+json": {
 "schema": {
 "type": "object",
 "properties": {
 "result": {
 "type": "string"
 }
 },
 "required": [
 "result"
],
 "additionalProperties": false
 }
 }
 }
 }
 },
 "requestBody": {
 "description": "The following table describes the body
parameters in the request for this task.",
 "content": {
 "application/vnd.oracle.adf.action+json": {
 "schema": {
 "type": "object",
 "properties": {
 "rejectionReasonCode": {
 "type": "string",
 "nullable": true
 },
 "notes": {
 "type": "string",
 "nullable": true
 }
 },
 "additionalProperties": false
 }
 }
 }
 }
 }
 }

Note the following:

• For a item-level custom action, the path entry contains a path parameter for the
row/item ID, for example, /ExpenseReports/{ExpenseReports_Id}/action/
reject"
In the case of a business object-level custom action, the path (such as /
ExpenseReports/action/sendToAuditor) doesn't include a path parameter for the
row/item.

• The end of the path entry (reject) matches the name of the custom method
defined in the service (see Publishing Custom Service Methods to UI Clients)

• The presence of a POST operation for the action path entry is required

Chapter 8
Service Metadata for Custom Actions

8-6

• In the requestBody schema, there are properties that match the parameters defined in
the custom method signature from the service. In this document, these properties are
referred to as custom action payload fields.

Multi-Row Mode for Custom Actions
If a custom action supports multi-row mode, Oracle Visual Builder Add-in for Excel can
process custom actions and other types of changes in batches.

Multi-row mode is only relevant for custom actions defined on the item path since custom
actions on individual items are sent as separate requests. A custom action on an entire
business object may update multiple items in the business object but is accomplished using a
single request.

To enable the add-in to process changes in batches, select the Supports Multi-Row
Requests check box in the Custom Action Editor. If the check box is not selected, the add-in
invokes the custom action one row at a time.

If you attempt to use multi-row processing on a custom action that does not support it, you
may get an error from the service. If the custom action doesn't work properly in batches,
deselect the check box to disable multi-row processing.

For more information, see Upload Changes Using Multi-Row Requests.

Note:

The "batchEnabled" : false property in the service metadata only determines
the default value of the Supports Multi-Row Requests check box in the Custom
Action Editor. If the property is not configured, the check box is selected by default.

After the catalog is created, the check box setting controls how the add-in behaves.

Notes on Custom Actions
Here are some things to keep in mind when using custom actions:

• Custom actions are not supported for pending Create rows or form in Create mode.

• Custom actions defined in the OpenAPI service metadata document that have request
payload schema members that match business object fields are unlikely to function
properly.

• Oracle ADF REST Resource service OpenAPI service metadata documents do not
indicate which custom action request payload fields are required. You can use the
Business Object Editor to adjust the Required property on payload fields. See Edit
Custom Actions.

• Oracle ADF REST Resource services do not return the updated row. As a result, you
need to download before making further changes.

• Custom action payload fields must be simple scalar types. Complex objects or maps are
not supported.

• The add-in handles custom action results automatically. It processes the "result" member
of the REST response this way:

Chapter 8
Multi-Row Mode for Custom Actions

8-7

– Simple scalar values are displayed verbatim

– The first level of JSON objects and arrays are unpacked

– Deeper levels of JSON are displayed verbatim

– If there is a null value in an object or array, a "null" string is shown in the
results. If the value of the result member is null, then the action result is
suppressed.

• To use custom actions with the VBBO REST framework, you will need to define an
Object Function for each custom action in the business object. In those Object
functions, be sure to enable Callable by External System. See Object
Functions for Business Objects.

Chapter 8
Notes on Custom Actions

8-8

https://docs.oracle.com/en/cloud/paas/app-builder-cloud/visual-builder-developer/working-business-objects1.html#GUID-BEB654A7-F946-4F8F-9D3C-527CF2AA82C4
https://docs.oracle.com/en/cloud/paas/app-builder-cloud/visual-builder-developer/working-business-objects1.html#GUID-BEB654A7-F946-4F8F-9D3C-527CF2AA82C4

9
Use Lists of Values in an Excel Workbook

You can configure a list of values (LOV) for a field in your workbook to allow business users
to select a valid value from a drop-down list. You can also allow users to enter a search term
in a search box to filter this list to find the value they want.

Oracle Visual Builder Add-in for Excel supports LOVs on business object fields including
custom action payload fields and descriptive flexfields with parameter and segment type
client binds. The add-in also supports lists of values for search fields and row finder variables.

Lists of values also manage the conversion of internal ID or code values to and from user-
friendly display values.

About Lists of Values
When you configure a list of values in your workbook, Oracle Visual Builder Add-in for Excel
displays a drop down list of values when a business user selects the field.

If a filter with a search term parameter is configured, a business user can also search for
values in the list by typing a search term in the search-and-select window and clicking the
Search icon.

In this image, the search-and-select window on the left is populated with a list of values
drawn from a Jobs business object. The search-and-select window on the right shows the
result of entering S in the search box and clicking the Search icon.

9-1

When a business user clicks the Search icon, the list of values displays only job titles
that begin with S such as "Sales Manager", "Sales Representative", and so on.
Business users can also enter the full value in the search box, assuming it's a valid
value such as "Sales Manager".

Lists of values can also be configured to show more than one display field in the
search-and-select window. The add-in shows all the display fields, in separate
columns, in the search-and-select window but concatenates those values configured
for display when shown in the Excel cell.

In this image, the search-and-select window on the left shows separate columns for
first and last names. The search-and-select window on the right shows the result of
entering Jo in the search box and clicking the Search icon.

Chapter 9
About Lists of Values

9-2

The list of values displays all first or last names that match the string. In this example, the
add-in matches the search string "Jo" to the first name "Joshua" but also the last name
"Johnson".

Each item in the list of values has a display value (which appears in the Excel workbook)
and an identity value that is retrieved and posted to the business object field. For example,
the Jobs business object used for the list of values might contain these display and identity
values:

Display value
(jobTitle)

Identity value (jobId)

President PRES

Finance Manager FIN_MGR

Sales Manager SAL_MGR

On download, the identity values are replaced by the display values; On upload, the display
values are replaced by the identity values.

Configure a List of Values with a Business Object
Configure a list of values that uses values from another business object. List of values are
supported for business object fields, custom action payload fields, and row finder variables.

When you create a list of values, you can associate the selected field with the values from
another business object. For example, you may have two business objects: Employees and
Jobs. If the Employees layout includes a JobId column, you may want to add a list of values
that references the jobId field from the Jobs business object.

When a business user selects a cell from the Job Title column in the Employees layout, a
search-and-select window shows a list of values drawn from the Jobs business object for the
user to choose from.

You can configure a list of values to show more than one display field in the search-and-
select window. The add-in shows all the display fields, in separate columns, in the search-
and-select window but only those you configure are shown in the Excel cell. If you choose to
show more than one field in the cell, the values are concatenated.

Chapter 9
Configure a List of Values with a Business Object

9-3

For business object sources, you can configure a filter to restrict the results to a given
subset of values. You can also configure it to let business users filter the list based on
a search term they type in a search box. See Configure a Filter for a List of Values.

If the catalog is missing the desired business object, you can add a new business
object to an existing catalog (see Add Business Objects to an Existing Catalog).

If you want to reference a business object with a different base path, you can create or
import a business object into the current catalog and then override the base path (see
Override a Business Object's Base Path).

Note:

This procedure takes you through the steps to create a list of values for a
business object field used in a form, table, or search. The steps are the same
for custom action payload fields and row finder variables except for the
navigation. To open the List of Values page for a custom action payload field
or row finder variable, open the Business Object Editor and go to the
Custom Action or Row Finder page. From there, select the appropriate
field or variable.

To create a list of values based on a local data source instead, see Configure
a List of Values with a Local Data Source.

To create a list of values:

1. From the Layout Designer, click the Edit () icon next to the Business Object field.

2. From the Business Object Editor, click the Fields tab, then select the business
object's field.

3. Click the Edit () icon to open the Business Object Field Editor, then click the List
of Values tab.

Chapter 9
Configure a List of Values with a Business Object

9-4

4. Select the Enabled check box on the List of Values page.

5. Click the Edit () icon next to the Data Source field, then pick an appropriate data
source. Only business objects from the current catalog are displayed in the Choose a
Data Source window.
This data source provides the display values for the corresponding identity values.

6. Click the Edit () icon next to the Identity Field field, then choose the appropriate
identity field from the data source.
This is the field used to look up the display values for the identity values in the current
field.

7. Click the Add Field () icon to open the Available Business Object Fields Editor,
then choose the desired display field.
These fields come from the data source and are shown instead of the identity values
where this field is used in a layout.

You can choose multiple display fields for one list of values. Repeat this step to add
additional display values.

8. For each display field, select either Picker and cell or Picker only from the Display
Type list.
If you configured only one display field, use Picker and cell to display the value in both
the Excel cell and the search-and-select window. For additional display fields, use Picker
only if you don't want to display the value in the Excel cell.

Chapter 9
Configure a List of Values with a Business Object

9-5

Note:

When configuring the display values, make sure the information in the
cell is unique and meaningful for your business users. Take for example
a Contact field in your layout. To ensure your business users have
enough information to determine the right contact for a purchase order,
you may want to include the contact name, company, and email as
display fields in the Excel cell. In this case, ensure that the display type
for these display fields are set to Picker and cell.

9. To configure a filter, click the Add Query Parameter () icon next to Filter Query
Parameters, then set a name and parameter value.
If the parameter requires a search term, select Omit if SearchTerm is empty.

If you want the add-in to retrieve the latest query parameter definitions from the
service metadata on refresh, deselect Preserve on metadata refresh. See
Refresh Parameter Definitions for a Lists of Values.

Repeat this step to create additional parameters.

In this image, a list of values is configured for the jobTitle field that is populated
with values from the position field of the Job business object. A filter query
parameter has been configured that allows a business user to return positions that
start with the business user's search term.

10. Click Done.

Once you define a list of values, the choice list will appear wherever that business
object or payload field appears. For the row finder variable, the choice list will appear
wherever that row finder variable appears during download.

Chapter 9
Configure a List of Values with a Business Object

9-6

On first download and before showing all or filtered values in the search-and-select window,
the add-in may send requests to download data from the data source. This downloaded data
is cached.

After you modify the configuration of any list of values, clear the cached data by clicking
Clear List of Values Cache from the Advanced menu. See Clear Cache for a List of Values.

Configure a Filter for a List of Values
Configure a filter for your list of values to determine which items from the business object
used as the data source are included in the list. A filter is a set of one or more URL query
parameters that are appended to a REST request to the referenced business object.

Filters are not available for lists of values that use a local data source.

The filter query parameters are added to all requests to the referenced business object.
These include the request to fetch the initial set of values as well as the one sent when the
business user clicks the Search icon after entering a search term.

You should always configure a filter with a search term parameter since the search option is
always available to the business user.

There are a few basic filter scenarios you may want to consider when configuring a list of
values:

• Search term parameter only: You don't need to use a filter parameter for the initial set
of values if you want your business users to access all values from the referenced
business object. In this case, just configure a search term parameter and let your
business user filter the list based on a search term. See Configure a Filter for a Search
Term Only.

• Filter and search term parameters: To limit the choices available from the referenced
business object, consider using a filter parameter such as a finder. Also, add a search
term parameter to let your business user search from within the list. See Configure a
Filter to Limit Available Choices.

• Dynamic and search term parameters: A dynamic filter parameter limits the number of
values in a list of values based on a field value in the current layout or search box. For
example, you may filter a Job Title list of values based on the selected employee's
department so that only job titles for this department are displayed. See Configure a Filter
with a Dynamic Parameter.

• Cascading lists of values: A cascading list of values uses dynamic filters where the
value selected in one list determines the range of values that users can select from
subsequent lists. See Configure a Cascading List of Values.

See About Expressions for more information about expressions in lists of values.

Consult the API documentation for your service to determine the appropriate search syntax to
use in the Value column. For example, if you use an Oracle ADF REST Resource service,
consult Understanding Framework Support for Query Syntax in Accessing Business Objects
Using REST APIs.

Configure a Filter for a Search Term Only
Configure a filter with a search term parameter to allow your business users to search for
values using a search term.

Chapter 9
Configure a Filter for a List of Values

9-7

For example, let's say you have a list of values that displays job titles for your
company. To allow the business user to filter this list, you can use a "q" parameter
value to return job titles that start with the business user's search term:

Note:

Select Omit if SearchTerm is empty to ensure this parameter is only
applied when there is a value in the search box.

In this example, a business user can type "ma" in the search box and click the Search
icon to display job titles such as "Manager" and "Marketing Specialist".

You should always configure a search term parameter for your filter since the search
option is always available to your business users.

If you have more than one display field in your list of values, you can use the "OR"
operand to search on each of the fields. For example, to match text to either the
employee's first or last name, create a parameter like this:

When a user types in the search box and clicks the Search icon, the add-in displays
all first or last names that match the string. In this example, the add-in would match the
search string "Jo" to the first name "Joshua" but also the last name "Johnson".

Note:

The syntax for the filter query varies based on the REST service type and
expected query syntax for a business object.

Configure a Filter to Limit Available Choices
Configure a filter with multiple query parameters to limit the choices that are fetched
from the referenced business object.

For example, you may have a referenced business object that stores values for a
number of different lists of values and you need a way to retrieve only the values for
the current field.

Let's consider a business object, StandardLookupsLOV, that stores immigration details
for a company's employees such as immigration status (I_Status) and type (I_Type).

Chapter 9
Configure a Filter for a List of Values

9-8

You may want to use a finder, for example, to return just the immigration status (I_Status)
values, such as "Not Applicable", "Pending", "Accepted" and so on, for your list of values.

You'll also want to create a search term parameter to allow your business users to find the
value they are looking for.

To do this, configure your filter as shown here:

In this case, the initial set of values is determined by the finder configuration. If the business
user types a search term and clicks the Search icon, the list is further limited to status values
whose DisplayValue starts with the search term.

Configure a Filter with a Dynamic Parameter
You can configure a list of values that is dynamically filtered based on another value in a
layout, search field, or row finder variable. To do this, configure a filter for your list of values
that uses an expression that references another business object field or row finder variable.

Referencing Business Object Fields in a Dynamic Filter

Let's say you have a Table layout for an Employees business object that includes two
columns: "Department" and" Job Title". You may want to configure a list of values on the Job
Title column that includes a filter that filters the list based on the value in the Department cell
in the same row. When configured, your business users will see only those job titles that are
relevant for the department that they have selected.

Of course, you can also use these fields in a search. Again, when a business user selects a
department, Oracle Visual Builder Add-in for Excel shows only relevant job titles in the Job
Title field.

As you can see on the left in this image, the list of values (in this example, "Job Title") is
based on the value of another field ("Department"). When used in a search as shown on the
right, the Job Title list is filtered based on the value in the first search field ("Department").

Chapter 9
Configure a Filter for a List of Values

9-9

To configure a dynamic filter for the Job Title list, use a parameter that filters based on
the department Id. If you have a row finder that filters job titles by department, you can
use an expression like this:

The expression in the form,
{ this.BusinessObject.Fields['FieldId'].Value }, where FieldId is the
ID property of another field in the current business object or search—in this case,
DepartmentId.

Since this expression refers to another field in the currently selected row or search,
make sure this field ("DepartmentId", in this case) has been added to your layout or
added before the field with the dynamic filter when it is used in a search. See Use
Search to Find Required Data for information about how to use these lists of values in
a search.

The Oracle Visual Builder Add-in for Excel replaces this expression with the
corresponding field value (specifically, the identity value) when sending the request for
the referenced business object's list of values. When business users select the Job
Title field for an employee in the marketing department, the list includes only job titles
associated with Marketing.

Likewise when using a dynamic list of values in a search. When business users select
the Job Title field, the list includes only job titles associated with the department they
first chose from the Department field.

If the corresponding field value is missing or invalid, the expression evaluation fails
and an error is reported.

Tip:

Remember to include a search term parameter, such as jobTitle LIKE
'{ SelectWindow.SearchTerm }*', to allow your business users to
filter the list to jobs based on a search term they provide.

Referencing Ancestor Business Object Fields in a Dynamic Filter

For a list of values that you plan to use in a layout, you can also refer to a parent or
higher ("ancestor") business object in your expression using one or more Parent
terms. For example, to create a list of values that refers to a field in the parent
business object, you would use
ByDeptFinder;DepartmentId={ this.BusinessObject.Parent.Fields['
DepartmentId'].Value }.

To refer to a grandparent business object, use two Parent terms instead:
this.BusinessObject.Parent.Parent.Fields['DepartmentId'].Value.

Chapter 9
Configure a Filter for a List of Values

9-10

Note:

Do not refer to an ancestor business object if you plan to use your list of values in a
search. Such a configuration will result in an error at runtime.

Tip:

When using a dynamic filter in a layout, it is recommended that you add an ancestor
column for the field ("DepartmentId", in this case) to the current layout. The
ancestor field must be positioned before the column ("Job Title") that references it.
This makes it easier for the add-in to find the correct value during runtime and
improves performance.

If there is no matching ancestor column in the current layout, the add-in uses other
ancestor columns to map the current row to its parent row. It repeats this process
until it finds the ancestor row and reads the field value. This can take some time if
there are a large number of parent rows. See Add a Parent Column to Support Row
Creation.

Referencing Row Finder Variables in a Dynamic Filter

Just as you do for a business object field, you can also define a list of values on a row finder
variable and use it in a search. Like our business object field example, you can also define a
parameter that filters the list of values based on the value selected from another variable in
the same row finder.

Consider a row finder, "Employees By Country, State, and City", that filters employees by
country, state, and city. This row finder includes three row finder variables: CountryId,
StateId, and CityId.

You may want to configure lists of values on the each of these variables. For the first one,
CountryId, you don't need a dynamic parameter. But for the other two, you would want to
configure a parameter that filters the list of values based on the value selected in the previous
variable. So, the values in the StateId variable would be based on the value of CountryId
and those of the CityId variable would be based on the value of StateId.

Here's how this would look when configured:

Chapter 9
Configure a Filter for a List of Values

9-11

In this image, the Search Editor uses our sample row finder and includes three fields
for the row finder variables. The list of values in the State field is filtered based on the
value entered in the Country field. In this case, the business user has selected "USA"
from the Country list, and so the add-in is displaying only US states in the State list.

To configure a list of values on the StateId row finder variable, use a States business
object as your data source, then define a "q" query that filters based on the value in
CountryId variable, like this:

Chapter 9
Configure a Filter for a List of Values

9-12

The first filter parameter uses the expression,
CountryId={ this.Finder.Variables['CountryId'].Value }, where:

• this represents the currently selected row finder variable (StateId, in our example);

• Finder is the row finder to which this finder variable belongs
(EmployeesByCountryStateCity);

• Variables['CountryId'] is the finder variable (CountryId) whose value determines the
available choices of the current finder variable; and

• Value is the value of the field.

This expression sets the value of the variable, CountryId, used in the q query to the value of
the CountryId row finder variable—"USA" in our example. See About Expressions.

This value is then used to filter values from the States business object and populate the list of
values with just US states.

Note:

A finder variable can only depend on the values of variables from the same finder. It
cannot depend on values from the Form-over-Table or Table layout.

To use the row finder in a download filter, use the row finder as part of a search as described
in Use Row Finders to Limit Downloaded Data. When configured, the business user will see
the Search Editor when they click Download Data where they can select values for each
finder variable.

Tip:

By default, row finder variables are added to the Search Editor in the alphabetical
order (City, Country, and State in our example). For a better user experience,
consider changing the order so that the dependent ones appear after those they
depend on (Country, State, and City).

Configure a Cascading List of Values
Just as you configure a single list of values with a dynamic parameter, you can also configure
a cascading list of values of two or more lists using dynamic parameters. In a cascading list
of values, the value selected in one list determines the range of values in the next list, and so
on.
Let's suppose you have an Employees layout with three columns to capture an employee's
location: Country, State, and City. To make sure only appropriate values are entered for an

Chapter 9
Configure a Filter for a List of Values

9-13

employee, you decide to use dynamic parameters to filter the State list of values
based on the Country value, and the City list of values based on the Country and
State.

Note:

Keep in mind that you can define dynamic parameters on business object
fields used in a layout or search, as well as on row finder variables. The
principle is the same when you define parameters for a cascading list of
values but, in this scenario, you create additional lists of values each one
dependent on the previous one(s). For more information about dynamic
parameters, see Configure a Filter with a Dynamic Parameter.

Here's how you configure the lists of values to do this:

1. Start by creating a list of values for the first field, "CountryId", with just a search
term filter (Name LIKE '{ SelectWindow.SearchTerm }*'). See Configure
a Filter for a Search Term Only.
This filter allows the business user to type in the CountryId field to find the country
they want.

2. Then, create a list of values for the second field, "StateId", that filters the list of
values by the current country, as shown in this image:

This example uses a finder query, "ByCountryFinder", that filters based on the
value in the CountryId field in the row. If the business user selects "USA" from the
CountryId list, Oracle Visual Builder Add-in for Excel displays only US states in
the StateId list.

As with the first list of values, this list also includes a search term filter so that the
business user can type in the field to find the state they want.

Chapter 9
Configure a Filter for a List of Values

9-14

3. Finally, create a list of values on the third field, "CityId", and filter the list of values by
CountryId and StateId, as shown in this image:

This example uses another finder query, "ByCountryAndStateFinder", that filters based
on the values in both the CountryId and StateId field in the same row. Now, if the
business user selects "California" from the StateId list, the add-in displays only cities in
California in the CityId list.

In a scenario like this with three fields ("fieldA", "fieldB", and "fieldC"), remember that
fieldC depends on both fieldB and fieldA. So when you create the filter for fieldC's list of
values, also include fieldA's value expression. In general, all of fieldB's dependencies
must also be fieldC's dependencies.

Note the following name-value parameters under Filter Query Parameters:

Table 9-1 Example Name-Value Parameters in Filter

Field Name Value

StateId finder ByCountryFinder;CurrentCountry={ this.BusinessObjec
t.Fields['CountryId'].Value }

CityId finder ByCountryAndStateFinder;CurrentCountry={ this.Busin
essObject.Fields['CountryId'].Value },CurrentState
={ this.BusinessObject.Fields['StateId'].Value }

4. If you need to add business object fields to your layout, you can open the appropriate tab
in the Layout Designer, then click the Manage Form Fields or Manage Columns button

() to add and reorder fields.
For a Form-Over-Table layout, open the Form or Table tab. For a Table layout, open the
Columns tab.

Chapter 9
Configure a Filter for a List of Values

9-15

Note:

If the service is an Oracle ADF REST Resource service and has complete
metadata for a cascading list of values, the filter query parameters of the
corresponding field's list of values are automatically configured.

If the service does not have complete metadata for a list of values but you
know it supports search syntax that makes for a cascading list of values, you
can manually configure a list of values by adding filter query parameters. See
Configure a Filter for a List of Values.

Notes on Filters

Refer to these notes when configuring filters for lists of values:

• Oracle Visual Builder Add-in for Excel does not validate your filter configuration. If
you provide invalid information, the add-in will make invalid requests that return
errors.

• The query parameters are applied in the order that they are configured.

• The add-in applies URL encoding to the final resolved value of each filter query
parameter before sending the request.

• Expressions like { this.BusinessObject.Fields['FieldId'].Value }
can't be used in the filter for:

– Row finder variable's list of values

– Custom action payload fields if the field referred to is not added to the layout

• If your list of values includes more than one display field, you can configure a
search query that returns matches from any of the display fields. See Configure a
Filter for a Search Term Only for an example of a search term parameter that
includes the OR operand.

• If you configure multiple values with the same parameter name, the last value that
is not "omitted" (Omit if SearchTerm is empty is enabled) is used by default.
For example, in this filter configuration, the first query parameter is used if there is
no search term; the second parameter is used if there is a search term.

• Filters are not available for list of values based on local data sources

Chapter 9
Configure a Filter for a List of Values

9-16

Create a Local Data Source for a List of Values
You can create local data source that provides the values for the list of values (LOV). This
data source stores these values in your integrated workbook as a set of name-value pairs.

Local data sources have a couple of key benefits. They convert field codes to user-friendly
display values automatically to improve the user experience. They also provide the business
user with a drop-down list that restricts the choices to a fixed set of appropriate values.

Let's consider an example. You may have a business object, Computer, with a Boolean field,
personal, that captures whether the device is a business or personal one. In this case, the
field expects only "True" and "False" values.

You may want to create an LOV on the personal field that displays "Yes" and "No" values in
the list. To do this, create a new local data source in the catalog that includes these values,
then configure an LOV for the personal field that uses this data source.

To create a local data source for a list of values:

1. From the Oracle Visual Builder tab, click Manage Catalogs.

2. In the Manage Business Object Catalogs window, select the catalog where you want to
define the data source and click the Edit Business Object Catalog icon.

3. From the Business Object Catalog Editor, click Local Data Sources.

4. From the Local Data Sources tab, create a new data source:

a. Click the Add icon () to create a new data source.

b. Select the new data source from the list, then click the Edit icon () to open the new
data source in the Local Data Source Editor.

c. From the General tab, enter a title, description, and key field ID for the data source.

Chapter 9
Create a Local Data Source for a List of Values

9-17

• Title: Identifies the local data source when creating a list of values. The
title only appears in designer windows, such as the List of Values tab in
the Business Object Field Editor.

• Description: (Optional) Helps workbook developers understand the
purpose and use of the data source. The description only appears in the
designer.

• Key Field ID: The unique key for identifying the data in the local data
source. In this example, the key field ID is flag. You'll create this key field
from the Field tab, as described in the next steps.

When exporting strings for translation, rows are identified by their key field
values. Key field values themselves are not translated.

5. From the Fields tab, create fields for the data source.

In this example, you will create two fields: one with a Boolean data type (flag) and
the other with a string data type (display). flag is the key field ID in our example.
display stores the values that appear in the list.

Note:

In some cases, you may want to show just the identity values ("True" and
"False" instead of "Yes" and "No") to your business users. In this
situation, create one field and use it later as both the identity field and
display field in your LOV.

a. Click the Add icon ().

Chapter 9
Create a Local Data Source for a List of Values

9-18

b. Select the new field from the list, then click the Edit icon () to open the field in the
Local Data Source Field Editor.

c. Provide details for the field, then click Done.

The value you type into the ID field should match the value you entered into the Key
Field ID field previously. In this example, type in flag for the ID field and choose
"Boolean" from the "Data Type" list.

Also, provide a title and description for the field. These values help workbook
developers identify the field when displayed in designer windows.

Note:

The ID, Title, and Data Type fields are required. The Description field is
optional.

d. Repeat these steps for the next field. In this example, create the display field for
your data source, using "String" for the data type.

Note:

Make sure all the fields are configured properly before opening the Data tab, as
described in the next step. If you make any changes in the Fields tab, any data
entered in the Data tab is cleared.

6. From the Data tab, add values to your data source in the newly-created fields.

Chapter 9
Create a Local Data Source for a List of Values

9-19

In this example, the Flag (key ID) field has a Boolean data type and displays
check boxes for the expected values. Select the check box for "True" and leave it
unselected for "False".

Then, enter the user-friendly value (for example, "Yes" for the selected check box)
in the Display field, as shown in this image.

To add a row, select the last row and press Enter. To delete a row, select it and
press Delete. To select more than one row, use the Shift key.

7. Click Done.

Now that you have created a local data source, you are ready to use it as the data
source for an LOV. See Configure a List of Values with a Local Data Source.

Configure a List of Values with a Local Data Source
Configure a list of values that references a local data source. List of values are
supported for business object fields, custom action payload fields, and row finder
variables.

A local data source is a set of name-value pairs stored in the workbook that can be
used in a list of values. These local data sources can be created by Oracle Visual
Builder Add-in for Excel to store enums, if the service includes these. You can also
create your own local data sources if required. See Create a Local Data Source for a
List of Values.

Let's consider an example. Suppose you have a layout for a computer business object
that includes a "personal" column for indicating whether the device is the employee's
personal property. You may want to create an LOV on this field that displays "Yes" and
"No" values in the list. To do this, create a new local data source in the catalog that

Chapter 9
Configure a List of Values with a Local Data Source

9-20

includes these values, then configure an LOV for the personal field that uses this data
source.

When a business user selects a cell from the personal column in the Computer layout, a
popup window shows a list of values drawn from your local data source for the user to
choose from.

You can configure a list of values to show more than one display field in the popup window.
The add-in shows all the display fields, in separate columns, in the popup window but only
those you configure are shown in the Excel cell. If you choose to show more than one field in
the cell, the values are concatenated.

Note:

Lists of values based on local data sources do not support filters or search in the
drop-down list.

To create a list of values with a local data source:

1. From the Layout Designer, click the Edit () icon next to the Business Object field.

2. From the Business Object Editor, click the Fields tab, then select the business object's
field.

3. Click the Edit () icon to open the Business Object Field Editor, then click the List of
Values tab.

4. Select the Enabled check box on the List of Values page.

5. Click the Edit () icon next to the Data Source field, then pick an appropriate local data
source.

Chapter 9
Configure a List of Values with a Local Data Source

9-21

This data source provides the display values for the corresponding identity values.

6. Click the Edit () icon next to the Identity Field field, then choose the appropriate
identity field from the local data source.

This is the field used to look up the display values for the identity values in the
current field.

7. Click the Add Field () icon to open the Available Business Object Fields
Editor, then choose the desired display field.

These fields come from the data source and are shown instead of the identity
values where this field is used in a layout.

You can choose multiple display fields for one list of values. Repeat this step to
add additional display values.

8. For each display field, select either Picker and cell or Picker only from the
Display Type list.

If you configured only one display field, use Picker and cell to display the value in
both the Excel cell and the popup window. For additional display fields, use Picker
only if you don't want to display the value in the Excel cell.

Chapter 9
Configure a List of Values with a Local Data Source

9-22

Note:

When configuring the display values, make sure the information in the cell is
unique and meaningful for your business users. Take for example a Contact
field in your layout. To ensure your business users have enough information to
determine the right contact for a purchase order, you may want to include the
contact name, company, and email as display fields in the Excel cell. In this
case, ensure that the display type for these display fields are set to Picker and
cell.

9. Click Done.

During runtime, the business user sees the user-friendly values from the display field of the
data source in the LOV, as shown here:

The choice list will appear wherever that business object or payload field appears. For the
row finder variable, the choice list will appear wherever that row finder variable appears
during download.

The add-in caches the data of list of values in the workbook. After you modify the
configuration of any list of values, click Clear List of Values Cache from the Advanced
menu.

List of Values for Descriptive Flexfields
Oracle Visual Builder Add-in for Excel supports lists of values (LOV) for descriptive flexfields
(DFF) in ADF REST services in some scenarios.

About DFFs

DFFs are a feature of ADF REST polymorphic business objects. A DFF is a set of fields for a
particular record that differs based on the value of a discriminator field (also known as a
context segment). There are three types of fields in a DFF field set:

• Global fields. Global fields are available for all values of the discriminator field.

• The discriminator field or "context segment". The discriminator field determines which
context-sensitive fields are displayed in the layout.

Chapter 9
List of Values for Descriptive Flexfields

9-23

• Context-sensitive fields. Context-sensitive fields are dynamic based on the value
of the discriminator field.

Let's suppose you have an Employee polymorphic business object that you are using
in a layout and that this business object includes a DFF for the employee's location.
This DFF may include a couple of global fields ("Site" and "Time Zone"), a
discriminator field ("Region"), and context-sensitive fields ("Zip Code", "Postal Code",
"State", and "Province").

The global fields are available for all values of the discriminator field but the context-
sensitive fields are either available or unavailable depending on this value. If the
business user selects "United States" from the Region field, only "Zip Code" and
"State" are available.

LOVs and DFFs

LOVs are supported on all three field types—global, discriminator, and context-
sensitive fields—and for both LOV types—independent and dependent—with some
restrictions. Dependent LOVs are based on a dynamic filter so that the values in the
LOV depend on the value of another field. For example, a dependent LOV may display
a list of cities based on the U.S. state selected in another field. Independent LOVs do
not have a dynamic filter.

Independent LOVs are supported for all three types of fields and are automatically
configured based on the service's OpenAPI service metadata document. However,
only LOVs for the discriminator field are visible in the designer and configurable by the
workbook developer.

Dependent LOVs are supported in these scenarios:

• On a global field based on the value in another global field. These LOVs are
automatically configured based on the OpenAPI service metadata document.

• On a context-sensitive field based on another context-sensitive field. These LOVs
are automatically configured based on the OpenAPI service metadata document.
Typically, these LOVs use segment-type client binds.

Client Binds

There are two types of client bind: segment-type and parameter-type.

Segment-type client binds are supported automatically as long as the service's
OpenAPI service metadata document provides all the proper metadata. If the
metadata is present, the add-in configures the list of values at runtime.

Parameter-type client binds must be configured from the Polymorphic Information tab
of the Business Object Field editor before they become available. See Configure the
Bind Parameters for a Descriptive Flexfield's List of Values.

Keep in mind these limitations:

• Client binds are only supported for context-sensitive fields and not global fields.

• Only binds of data type string and number are supported. Binds of other date
types are not supported.

• The add-in uses client binds if and only if the OpenAPI service metadata
document provides proper metadata.

Chapter 9
List of Values for Descriptive Flexfields

9-24

Configure the Bind Parameters for a Descriptive Flexfield's List of Values
Configure parameter-type client binds used by fields in a descriptive flexfield (DFF) using the
Business Object Field Editor.

Oracle Visual Builder Add-in for Excel currently only supports configuring the polymorphic
bind parameters (also known as "flex bind variables"). Other details of the list of values for
DFFs must come from the metadata and are not configurable.

To configure a bind parameter:

1. From the Layout Designer, click the Columns tab and then select the polymorphic field
set (the Context Value column in this example).

2. Click the Edit icon () to open the Business Object Field Editor.

3. From the Polymorphic Information tab, configure the bind parameters, as shown in the
following image:

This example uses a bind parameter, BusinessUnit, for the list of values based on the
value of the RequisitioningBUId field.

The value of a bind parameter can be a literal value like 100001, Requisition001, or a
string that contains one or more expressions surrounded by curly braces ({ }).

An expression can refer to the value of a field in any business object in the current business
object hierarchy. The field referred to must be exposed in an existing layout.

In this example, the value is a single expression, where

• this is the polymorphic field set

Chapter 9
List of Values for Descriptive Flexfields

9-25

• this.BusinessObject is the business object that owns the polymorphic field set (the
DFF business object)

• Parent gets the parent business object in the hierarchy (bottom-up:
RequisitionDistributions/projectDFF, RequisitionDistributions,
RequisitionLines, PurchaseRequisitions)

• this.BusinessObject.Parent.Parent.Parent is the PurchaseRequisitions business
object that owns the field. RequisitioningBUId

• Fields['<field ID>'].Value gets the current field value of the field with the given field
ID. Note the single quotes (required) around the ID.

Note:

Expression syntax is limited to what's shown in the example (key parts: this,
BusinessObject, Parent, Fields[<field ID>].Value). See About Expressions for
more information.

Clear Cache for a List of Values
A list of values' choices are always cached in the workbook.

The cache for a list of values based on a business object can contain up to 300 items,
plus all used items. It is populated during the first download or the first time the search-
and-select window is used. The search-and-select window shows the cached list of
values, if available. An upload also uses cached data.

As a workbook developer, remember to click Clear List of Values Cache from the
Advanced menu:

• Whenever you change any list of values configuration, and always when you
publish the workbook

• When the service host is changed.

• When cached data is not what the user expects.

Refresh Parameter Definitions for a Lists of Values
When you create a list of values (LOV), you can configure whether or not Oracle
Visual Builder Add-in for Excel refreshes the LOV's query parameter definitions used
in an LOV filter.

The add-in refreshes service metadata, including LOV query parameter definitions,
when you refresh a catalog from the Manage Business Object Catalogs window. See
Refresh a Business Object Catalog.

It also refreshes polymorphic metadata, including LOV query parameter definitions on
polymorphic fields, on the first download after opening a saved workbook. See Refresh
Polymorphic Business Object Metadata.

Whether this metadata is maintained or discarded on refresh is controlled by the
Preserve on metadata refresh check box on the List of Values tab.

Chapter 9
Clear Cache for a List of Values

9-26

If Preserve on metadata refresh is enabled, the add-in keeps the existing LOV query
parameter definition during the refresh.

If Preserve on metadata refresh is disabled, the add-in instead discards the existing
definition in favor of the new version from the service. Keep in mind that any changes you
have made to the parameter definition—such as the Value and Omit if SearchTerm is
empty settings—is replaced by a copy from the service.

Note:

If the Preserve on metadata refresh check box is deselected but there is no
parameter definition defined in the service metadata, the add-in removes it from the
LOV.

Preserve on metadata refresh is enabled by default when you configure a filter query
parameter for an LOV.

Notes and Limitations for Lists of Values
Review the notes and limitations listed here when planning to use lists of values (LOV):

• For Oracle ADF REST Resource services, "row context" lists of values are not supported.
A row context list of values is one whose data source is a child resource instead of a top-
level resource.

• Only one identity field is supported in a list of values.

Chapter 9
Notes and Limitations for Lists of Values

9-27

• LOVs support strings, Boolean values, and integers. Decimal numbers, dates, and
date-time values are not supported.

• Excel drop-down lists using data validation may not be compatible with the add-in.

• For Oracle ADF REST Resource services, if the catalog includes metadata for an
LOV, the add-in reads the metadata and configures the LOV automatically.
Supported ControlTypeHints: "combo_lov", "choice", and "input_text_lov".

• For any read-only field (column or form), the add-in still swaps identity values for
display values. However, the search-and-select window does not appear when the
cell is selected.

• When using an expression that refers to a field in an ancestor layout, ensure:

– The referenced field is present in the ancestor layout.

– The ancestor column in the current layout is configured properly so that the
add-in can map a row to its ancestor row.

• A field's LOV can be dependent on an ancestor field as long as that ancestor field
does not have an LOV that is dependent on another field.

• Dependent LOVs are not supported on ancestor columns.

• When creating a cascading set of LOVs, you can use a "local" LOV (one based on
a local data source) as the initial list, but not as one of the subsequent lists. A
"remote" LOV (one based on a business object as the data source), however, can
depend on a value in a local LOV.
In a cascading list of values, the value selected in one list determines the range of
values that users can select from subsequent lists.

Chapter 9
Notes and Limitations for Lists of Values

9-28

10
Appearance of an Integrated Excel Workbook

Oracle Visual Builder Add-in for Excel automatically manages the appearance of an
integrated Excel workbook through built-in styles and data format types.

The add-in automatically formats cells in a workbook by creating a set of named Excel styles
when the workbook is first initialized. The styles created by the add-in are consistent with
Oracle Alta UI standards and Oracle accessibility guidelines. The format portion of the styles
is sensitive to the user's preferences as defined in the Windows region settings. So a US user
will see US dates and a French user will see French dates.

Once the styles are initialized, the add-in applies those styles to the integrated cells,
according to the field's properties, at key points (such as during a data download). Typically,
the styles are created once for a workbook and are never updated, but you can take
advantage of the options described in this chapter.

Reset Workbook Styles
You have the option to reset styles in an Excel workbook when a new add-in version has
updated style definitions and you want to use those styles in an older workbook, or when a
user has changed style definitions in a workbook and wants to revert to the current
definitions.

To reset the style definitions in a workbook, select Reset Styles from the Advanced menu.

Note:

The Reset Styles command is only available when the designer tools have been
enabled.

10-1

You are prompted to confirm. After confirmation, each style definition used by the add-
in is updated. The list of styles includes any style that would be created by the current
add-in, including the Normal style.

Choose Field Formats
Cell formats in an Excel workbook are applied by the add-in according to a field's data
type and based on whether the field is editable (create or update). While this behavior
works for most scenarios, sometimes you might want to extend a field's formatting
options.

Let's consider the example of an employee workbook that includes ID and Salary
fields, both of which are integers. A value of 10,000 for the Salary field can be
formatted with the thousands separator (10,000 versus 10000). But an ID value of,
say, 12300 seems odd with the thousands separator (12,300). In this case, you can
override the ID field's default format to choose a format without the thousands
separator.

To override the default format for a field:

1. In the Layout Designer's Columns tab, select the field you want to update and click
the Edit icon.

2. In the Business Object Field Editor that appears, select an option in the Format
drop-down. The default value is Default, which tells the add-in to apply the usual
automatic styles without any override.
Remember, the format types shown to you are based on what's appropriate for the
field's data type. In this image of an employee's workbook, the ID field uses the
Integer data type and the available options let you format the ID with or without the
thousands separator. The options also follow user preferences as defined in the
Windows Region settings, so a US user will see a decimal point (π = 3.14) while a
French user will see a decimal comma (π = 3,14).

Chapter 10
Choose Field Formats

10-2

3. Click Done.

4. Click Download Data to process the change.

Set a Default Value for a Business Object Field
You can set a default value for a field so that cell has this value when a business user creates
a new row. Configuring default values for your integrated workbook can save business users
time by automatically populating cells with pre-set values.

Consider an integrated workbook with a table layout for a Sales Orders business object. This
business object may include a Boolean field, "SubmittedFlag", that indicates if the sales order
has been submitted. Since a new sales order is not going to be submitted yet, it makes sense
for Oracle Visual Builder Add-in for Excel to create the new row with a value of "False" in the
SubmittedFlag cell.

If a salesperson needs to add a large number of sales orders, having an initial value of
"False" can save a lot of time.

You can set a default value for a business object field with a data type of integer, decimal
number, Date (no time), Boolean, and string. A default value can be a constant or an
expression. Expressions must follow the add-in's expression rules, in particular the escaping
({ }) and literal values rules. Reserved words are not supported. See About Expressions.

Chapter 10
Set a Default Value for a Business Object Field

10-3

Note:

This feature is available for business object fields and row variables. It is not
available for other fields (such as custom action payload fields, row finder
variables, list of values fields, and ancestor column fields) and data types
(Date-time and Object).

To set a default value for a business object field, open the Business Object Field Editor
for the desired field, then type a value in the Default Value field.

This image shows the Business Object Field editor for the Boolean field,
"SubmittedFlag":

Note:

Default values must match the data type of the configured field. For example,
the default value for a Boolean field must be either "True" or "False".

Chapter 10
Set a Default Value for a Business Object Field

10-4

When a business user creates new rows in an integrated workbook, the add-in populates the
Submitted Flag column with the default value.

Add Help Text to Your Workbook
You can add help text for business object fields you use in forms and tables in your workbook
to provide help to your business users. Your users will see a popup with this help when they
select a form field or column header in a layout.

You can also add help to:

• Custom actions

• Custom action payload fields

• Row finders

• Row finder variables

• Row variables

You can add help text for an individual field using the editor for that field. You can also copy
descriptions included in the service metadata document to the relevant Help Text properties.
For the steps to copy descriptions to help text, see Copy Descriptions to Help Text.

To add help text for an individual field, open the editor for the field and type help text in the
Help Text field on the General tab, as shown here:

Chapter 10
Add Help Text to Your Workbook

10-5

Help Text values, as well as Title values, can be localized. See Manage Workbook
Translations.

Once configured, help text for business object and item-level custom action payload
fields is displayed when the user selects the form field label or table column header in
a layout.

Help text for custom actions and business object-level payload fields is displayed in
the custom action wizard, either in the Description field for custom actions or in a
popup when you hover over the payload field. Help text for row finders and variables is
displayed in the Search Editor when you hover over the finder or variable label.

Chapter 10
Add Help Text to Your Workbook

10-6

Copy Descriptions to Help Text
If desired, you can copy the Description property values to the Help Text properties for a
given catalog.

When Oracle Visual Builder Add-in for Excel creates a catalog, it can harvest descriptions
from the service's metadata and populate the description properties for various elements
such as business object fields, custom actions and their payload fields, and row finders and
their variables.

These descriptions may be technical in nature and might not be suitable for business users.
As a result, these descriptions are not displayed to business users and are not "localizable".

OpenAPI does not specify any property that corresponds to "help text". Furthermore, none of
the supported REST frameworks provide help text or "tooltips" using x-hints, for example. As
a result, the Help Text properties are empty for new catalogs.

If your REST service provides business-user friendly descriptions in the metadata, you can
copy these values to the help text properties in one go.

Before you begin, make a backup copy of the source workbook in case you don't like the
results.

To copy descriptions for a catalog to the help text properties:

1. Click Manage Catalogs.

2. From the Manage Business Object Catalogs window, select the desired catalog from the
list.

3. Click the Menu icon (), then select "Copy Descriptions to Help Text" from the popup
menu.

4. When prompted to confirm the operation, click Yes.

5. When the copying is complete, review the Help Text values in the catalog to make sure
they are appropriate for your workbook's users.

Note:

You may need to remove markup since the help text values are displayed as is.

When you've copied the descriptions over and refined the Help Text values as you see fit, you
might want to consider translating these text strings into other languages. See Manage
Workbook Translations.

Chapter 10
Add Help Text to Your Workbook

10-7

11
Data Validation

Oracle Visual Builder Add-in for Excel provides data validation during data entry based on
business object field, custom action payload field, and row variable definitions as well as
custom validation rules. Data validation catches errors during data entry when it's easy to
correct a mistake rather than after a failed upload attempt.
When a business user works with data in a workbook, the add-in validates data in new and
updated fields and raises a data entry error if it detects an invalid value. Business users will
need to fix all data entry errors before they can upload successfully.

Cells that fail validation are marked with a red border. Rows that contain validation errors are
also flagged as Invalid in the Status column. The add-in displays an error message in a
popup if the business user selects the cell with the error.

The add-in validates data at these key points when the business user is working in a layout:

• On required fields in a row when the row is added to the form or table of a layout

• When the business user completes an edit on a field. At this point, the add-in validates all
editable fields in that row.

• At the beginning of an upload

Local field properties are used for validation. Validation that is enforced by the REST service
is not triggered at the points mentioned here. REST service validation is generally triggered
by the requests sent during upload. For details on upload failure handling, see Upload
Changes.

When a row is marked for a custom action, the custom action's payload fields also receive
the same validation. See Custom Actions.

Here are the validation conditions the add-in checks for:

11-1

Condition Description

The entered value matches the data type of
the field.

If a value doesn't match the data type, the add-
in displays a popup with the validation failure
message. For example, if the business user
enters a string, such as one thousand), in
a field with a Number data type, the add-in
displays the message: "The value is
not valid for the expected data
type: Number" .

Data types include String, Date-Time,
Integer, Number, and Boolean. A field's data
type is defined in the Business Object Field
Editor for the field. See Configure Business
Object Fields.

A value has been entered for a field that is
required for update or create.

If no value is entered, the add-in displays a
popup with the validation failure message.
During table or form row creation, the add-in
automatically flags all required fields. Whether
a field is required for update or create depends
on the Required for update and Required for
create check boxes on the Constraints tab of
the Business Object Field Editor. See
Configure Business Object Fields.

The value of a field with a list of values is a
value available from that list.

If, rather than selecting a value from the list,
the business user types in a value that is not in
the list, the add-in displays a validation failure
message.

The value of the field matches the criteria
configured for the field in a custom field
validation rule.

A custom field validation rule is an expression
that restricts the range of allowable values
during data entry. When a business user
enters a value, the add-in evaluates the
expression based on the value and, if the
expression evaluates to true, the value is
judged to be valid. If the expression evaluates
to false, the value is invalid, and the add-in
displays the validation failure message
configured for the rule. See About Custom
Field Validation Rules.

About Custom Field Validation Rules
A custom field validation rule is an expression you define for a business object or
custom action payload field that restricts the range of allowable values during data
entry. When a business user enters a value in a form field or table cell, Oracle Visual
Builder Add-in for Excel checks the value against the configured rule and raises a data
entry error if the value does not match the set criteria.
These rules can catch invalid values during data entry when it's easy to correct a
mistake rather than having to find errors during upload.

Custom rules are expressions using the add-in's expression language that evaluate to
true or false. When a business user enters a value, the add-in evaluates the
expression based on the value and, if the expression evaluates to true, the value is
judged to be valid. If the expression evaluates to false, the value is invalid, and the
add-in displays a popup with the validation failure message instead.

Chapter 11
About Custom Field Validation Rules

11-2

You can define a rule that compares the value the business user enters with a constant or
with the result of an expression involving other field values in the same row. Expressions
must compare values that match the field's data type. For example, an expression on a
integer field such as { this.Value <= 500 } compares an integer entered by the business
user (this.Value) with an integer constant (500).

Custom rules are supported on business object and custom action payload fields.

Supported Expressions

When constructing a custom field validation rule, these expressions are supported:

• this.Value returns the current field value, where "this" is a regular business object field
or custom action payload field.

• this.BusinessObject.Fields['<FieldID>'].Value retrieves another field value in the
same row as the current field, where:

– this refers to the current field;

– BusinessObject refers to the business object (the same row) of the current field;

– Fields['<FieldID>'] refers to the ID of a field (<FieldID>) in the set of fields for the
business object; and

– Value refers to the value of the given field (<FieldID>).

• this.CustomAction.PayloadFields['<FieldID>'].Value gets a given payload field
value (PayloadFields['<FieldID>'].Value) in the same custom action
(this.CustomAction).

The custom field validation rule does not support:

• The Parent keyword (for example,
this.BusinessObject.Parent.Fields['<FieldID>'].Value) to get a field value from a
parent or other ancestor business object

• Accessing field values from child and other descendant business objects

• The CustomActions keyword (for example,
this.BusinessObject.CustomActions['CustomActionID']) to access a custom action
from a regular field

Sample Validation Rule Expressions

Custom rules use the add-in expression language. See About Expressions for more
information.

Expression Use

{ this.Value <= 500 } This rule compares the value in the cell
(this.Value) to a constant (500) and displays
the validation failure message if the value is more
than this amount.

You would use this rule for the Amount field of an
Expenses layout to limit the amount for each
expense in an expense report to $500 or less.

Chapter 11
About Custom Field Validation Rules

11-3

Expression Use

{ this.BusinessObject.Fields["UnpaidAmo
unt"].Value > 10000 ? this.Value ==
"Group 1" : this.Value == "Group 2" }

This rule checks the value in an Invoice Group cell
(either this.Value == "Group 1" or
this.Value == "Group 2") to ensure the
correct value is provided based on the value in the
Unpaid Amount cell
(this.BusinessObject.Fields["UnpaidAmo
unt"].Value > 10000) in the same row.

If the unpaid amount is over $10,000, then the
invoice group should be "Group 1"; otherwise, the
invoice group should be "Group 2". If the wrong
group is selected, the add-in displays the
validation failure message.

You would use this rule for the Invoice Group field
of an Invoices layout to require the business user
to enter the correct invoice group based the
unpaid amount of an invoice.

{ this.Value > 0 && this.Value < 50 } This rule checks the value in the cell and displays
the validation failure message if the value is
outside a given range (between 0 and 50).

You would use this rule for a Commission
Percentage field to ensure the commission is
larger than zero but less than 50%.

{ (this.Value -
this.BusinessObject.Fields['OldSalary']
.Value) /
this.BusinessObject.Fields['OldSalary']
.Value * 100 < 5 }

This rule compares the value in the cell
(this.Value) to the value in another cell
(this.BusinessObject.Fields['OldSalary'
].Value) and displays the validation failure
message if the increase is 5% or greater.

You would use this rule on the New Salary field to
ensure an employee's raise is within your
company's salary cap.

Default Values

During the evaluation of rules, empty cells are treated as:

• zero (0) for numeric fields (Integer and Number data types)

• empty strings ('') for string type fields

• False for Boolean type fields

Note:

It is not possible to distinguish an empty cell from the default value for
validation rules evaluation.

Chapter 11
About Custom Field Validation Rules

11-4

Create Field Validation Rules
You can define custom field validation rules to ensure your business users are entering valid
values when they create or update a row or form in a layout.

For example, you may want to limit the amount for each expense in an expense report
to $500 or less. To do this, you can enter a rule for the "Amount" field like this: { this.Value
<= 500 } where this.Value refers to the value of the currently-selected cell. During data
entry, the add-in marks the row as "Invalid" if the value entered exceeds $500.

If the business user selects the cell with the error, the add-in displays a popup with a
description of the error. You can also provide a custom error message when you define a
rule.

For help on the add-in expression language, see About Expressions.

To create a custom field validation rule:

1. Open the Business Object Field Editor of the field you want to set a validation rule for,
then click the Constraints tab.

Chapter 11
About Custom Field Validation Rules

11-5

Note:

For a custom action payload field, navigate to the Custom Action
Payload Field Editor instead.

2. Type in your validation rule in the Validation Rule field using the add-in
expression language. The expression must comply with the add-in's expression
language and evaluate to true or false.

For example, to limit the value in an Amount field to $500 or less, type:
{ this.Value <= 500 }

3. To provide a custom error message, type your message in the Validation Failure
Message field.

Use this field to provide a brief explanation for your business users of what values
are expected for this field. This value can be localized.

At runtime, if a business user enters a value that violates the validation rule, the add-in
marks the row as invalid and displays a red outline around the invalid cell. If selected,
the add-in displays an error popup with the validation failure message.

Notes on Custom Field Validation Rules

Here are some things to keep in mind when creating custom field validation rules.

Supported Fields

Fields with these data types are supported: String, Number, Integer, and Boolean.

Unsupported Fields

These fields are not supported:

Chapter 11
About Custom Field Validation Rules

11-6

• Fields with Object, Date (no time), Date-time, or Unsupported data types

• Fields with a configured list of values. The add-in already performs validation on these
fields to ensure the value is a valid entry from the list.

• Discriminator fields from a polymorphic business object

• Ancestor fields

Limitations

• A rule expression for a field cannot refer to a field value from a different row or from a
different layout.

• Multiple validation rules on one field are not allowed. However, you can use logical
operators, && and ||, in one validation rule to the same purpose.

Validation Behavior

• Validation rules are not evaluated on download. So, if the downloaded data includes
values that violate the rules, the violations are not highlighted after download completes.

• When a cell is modified, all editable cells in that row are validated.

Chapter 11
About Custom Field Validation Rules

11-7

12
Upload Changes

When you are done editing data in an Excel workbook, you are ready to upload the changes
to the REST service.

Upload Changes from a Table Layout
When you click the Upload Changes button for a Table layout, here's what happens:

1. The add-in checks the table for pending changes. If there are no pending changes,
upload is skipped.

2. If a Pre-Upload macro is configured, it is invoked. If the macro throws an exception or
returns any value other than true, the upload process quits.

3. For pending Create and Update operations, the rows are first validated locally, for
example, data type, required, and so on. See Data Validation. Any failures are marked as
failed and skipped (these rows do not produce requests on the business object service).

4. Pending changes are generally processed as follows:

a. Updates result in a PATCH or PUT request on the item path.

b. Creates result in a POST request on the collection path.

c. Deletes result in a DELETE request on the item path.

d. Rows marked for action result in a POST request on the item action path.

For more details on how rows are sent in separate requests, see Upload Table Changes
Using Separate Requests for Each Row.

Note:

Multi-Row processing is handled differently. See Upload Changes Using Multi-
Row Requests.

5. Success and failure is noted in the Status column. Rows with warnings are indicated with
a warning icon.

12-1

Errors and warnings are cached and displayed in the Status Viewer when the
business user selects a row. Here is a sample of the Status Viewer showing three
warnings on 8 successful changes.

6. Successful Create rows are updated from the service if possible. These rows are
converted into existing rows that can be edited.

Note:

If the service does not return the updated row, you will need to download
again.

7. Successful Delete rows are removed from the Excel worksheet.

For Create and Update operations, the request payload only includes values for
editable cells in a new or updated row. Read-only fields and custom action payload
fields are not included. Whether a value is included for an editable cell depends on
your add-in settings:

• For updated rows, the request payload includes a value for each editable field
unless Send Only Changed Data for Updates is enabled in the Layout Designer.
When enabled, only values that have changed since the last download or upload
are included in the payload. See Send Only Changed Data During Upload.

• For new and updated rows, the request payload includes a null value for each
empty cell in the row unless Omit from payload if value is empty is enabled for a
field in the Business Object Field Editor.

Chapter 12
Upload Changes from a Table Layout

12-2

When this check box is enabled and the corresponding cell is empty, the field is not
included in the request payload. When this check box is not checked and the
corresponding cell is empty, the field is included in the request payload with a null value.
See Omit Empty Values During Upload.

The add-in may send up to four requests to the service at a time for improved performance
(on different threads). As a result, the order in which the rows are sent to the server is non-
deterministic. It is not guaranteed to be in the same order as in the table. See Enable Parallel
Requests During Upload.

Upload Changes from a Form-Over-Table Layout
When a user clicks the Upload Changes button for a Form-Over-Table layout, here's what
happens:

1. The add-in checks the form for a pending Update or pending Create operation and the
table for pending changes. If there are no pending form or table changes, upload is
skipped.

2. If a Pre-Upload macro is configured, it is invoked. If the macro throws an exception or
returns any value other than true, the upload process quits.

3. When the form has a pending Update or pending Create operation:
For a pending Update:

a. A GET request is sent to the parent's item path.

b. Form field values (for example, data type, required, and so on) are validated; read-
only fields are skipped. If validation failures exist, the upload is stopped and no
subsequent REST requests are made.

c. When all form fields are valid, a request (PATCH/PUT) is sent to the parent's item
path. The payload for this request contains the values of all form fields that have
been changed. If configured, empty values are skipped. See Omit Empty Values
During Upload.

For a pending Create:

a. Form field values (for example, data type, required, and so on) are validated (see
Data validation in Managing Data Using the Oracle Visual Builder Add-in for Excel);
read-only fields are skipped. If validation failures exist, the upload is stopped and no
subsequent REST requests are made.

b. A POST request is sent to the parent's collection path. The payload for this request
contains a value (possibly empty) for every editable form field in the form. If
configured, empty values are skipped. See Omit Empty Values During Upload.

The child table is not involved in this step.

4. The results of the form upload are reflected in the status viewer immediately.

5. If the form upload fails, the add-in stops and does not attempt an upload on the child
table.

6. If the form upload succeeds, the add-in proceeds with the child table as follows:

a. Checks the child table for pending changes, creates, deletes, custom actions, etc.

b. If changes are found, the child table upload proceeds in the same manner as a Table
layout upload with one important difference: the child business object's paths are
used for each request.

Chapter 12
Upload Changes from a Form-Over-Table Layout

12-3

The number of requests used in the upload depends on the scope of the changes as
well as the state of the Send Descendant Rows in Parent Payload check box. If this
check box is selected, the add-in sends parent changes and all child changes in a
single request. See Upload Parent and Child Changes in the Same Payload.

If this check box is deselected and the form and table both have pending changes,
then the add-in sends the changes using a minimum of two requests: one for the form
and one (or more) for the child table.

For the form changes, notification of success and failure is noted in the Status Viewer.

For table changes, success and failure is noted in the table's Status column and well
as in the Status Viewer. See Upload Changes from a Table Layout for more
information about table status after Upload.

Invoke Custom Actions via Upload
For services that support custom actions that correspond to the item path, the user
can mark rows so that the custom action is called on those rows during the upload. For
custom actions that require payload fields, table columns that correspond to those
fields must be added. See Custom Actions.
During the upload operation (which may also include update, create, and delete tasks),
the add-in performs the following steps for each row marked for action:

1. Creates the payload by collecting the cell values for each custom action field
column and adding the value to a simple JSON object (member name/value pairs)
in the payload. If configured, empty values are skipped. See Omit Empty Values
During Upload.
The entire payload body follows this example format:

{
 "rejectionReasonCode": "Other: contact approver",
 "notes": "Details with manager"
}

• There is no other content in the POST request body (no action name, no array
of argument values).

• If any values from these columns are invalid (missing when required, incorrect
data type, Excel formula error), the row is omitted from the Upload and marked

Chapter 12
Invoke Custom Actions via Upload

12-4

as failed. See Data validation in Managing Data Using Oracle Visual Builder Add-in
for Excel

2. Prepares the request:

• REST-Framework-Version header added (see Configure the REST-Framework-
Version)

• Content-Type header added based on each custom action's Request Media Type
property on the Custom Action Editor (available from the Business Object Editor
> Custom Actions tab)

3. Makes the request:

• Sends the POST to the custom action path (POST is the only HTTP method
supported for invoking custom actions)

4. Processes the response:

• For 200 response status, the row is marked as succeeded.

• For 400 response status, the row is marked as failed and the response payload is
parsed for Oracle ADF REST Resource service error content. Error details can be
seen in the Status Viewer pane.

• A 412 response status indicates that the row was modified by some other agent or
user after it was downloaded to the Excel table; such a status is treated as a row-
level error

Cell values in action rows are not refreshed. If the custom method logic in the service has
altered any values in the row, those changes will not be reflected in the table row until the
next download.

If the response payload for the Custom Action request includes a "result" member with a
simple value such as a string or number, then the add-in displays that result in the Status
Viewer. The response payload for a successful invocation should have a result member
in the following format:

{
 "result": "<return-value-from-custom-action-method>"
}

For example, after invoking the custom action "Reject" on an Expense Report table row,
the REST service may return a result such as "result": "Your confirmation code is
26281.". This result is displayed in the Status Viewer, as shown here:

See Executing a Custom Action in the Developing Fusion Web Applications with Oracle
Application Development Framework.

For information on custom actions, see Custom Actions.

Chapter 12
Invoke Custom Actions via Upload

12-5

https://docs.oracle.com/middleware/1221/adf/develop/GUID-589F3905-5A8D-402D-B2D2-3BEEB2D7DDD4.htm#ADFFD54201

Upload Table Changes Using Separate Requests for Each
Row

For REST services (including ADF REST services with multi-row processing turned
off), Oracle Visual Builder Add-in for Excel sends each changed row in a separate
request ("row-wise" processing) during upload. For ADF REST services, the default is
to send multiple rows' worth of changes in a single POST request. This is referred to
as "multi-row" processing. See Upload Changes Using Multi-Row Requests.
Row-wise processing is also used when either:

• Multi-row support has been disabled by the workbook developer for a specific ADF
REST business object.

• When the set of pending changes includes a row marked for a custom action that
does not support multi-row requests. See Multi-Row Mode for Custom Actions.

Row-wise Behavior

When a user clicks the Upload Changes button (and multi-row processing is not
supported or enabled), here's what happens:

1. The add-in divides all changed rows into sequential collections (blocks) of 25 rows
each.
For example, block 1 has changed rows 1-25, block 2 has rows 26-50, and so on.

Note:

Each block may contain a mixture of kinds of changed rows such as
Update, Create, Delete, and custom action invocation.

2. The add-in creates up to 4 background threads, if the Supports Parallel
Requests check box is enabled, and assigns each thread a block as a unit of
work. See Enable Parallel Requests During Upload.

3. Each background thread then processes the block by:

• Sending a separate REST request for each of the 25 changed rows in the
block (PATCH or PUT for update, POST for create, DELETE, or POST for invoking a
custom action).

• Waiting for the response for each row before sending the next request.

4. When the add-in has received responses from the REST service, it processes the
responses for each block, in order.
The add-in updates the Change and Status columns. If the REST service returns
the row's field values in the response, the add-in writes these values for changed
rows back into the table rows.

5. The add-in repeats these steps for the entire set of changed rows, processing up
to 4 blocks of 25 changed rows at a time, until all changed rows have been
processed.

Chapter 12
Upload Table Changes Using Separate Requests for Each Row

12-6

Upload Changes Using Multi-Row Requests
By default, Oracle Visual Builder Add-in for Excel uses multi-row requests to upload changes
from a table layout to an ADF REST service.

During an upload operation, the add-in sends multiple rows per request using a batch API.
Rows marked for Update, Create, Delete, and custom actions are included in the multi-row
requests.

If required, you can adjust multi-row processing settings to improve performance. See
Configure Multi-Row Uploads. You can also disable multi-row requests if your service
requires a separate request per row. See Disable Multi-Row Requests for Upload.

If your ADF REST service includes date effective objects, you can add the Effective-Of
header for each of the required REST operations. See EffectiveOf Headers in Multi-Row
Requests.

Multi-row requests are only supported on ADF REST services. For other REST service types,
the add-in sends just one row per request. See Upload Table Changes Using Separate
Requests for Each Row.

About Multi-Row Processing
Oracle Visual Builder Add-in for Excel uses an algorithm to determine the optimal size of the
payload (number of rows) for a multi-row request as the upload operation proceeds. This is
done to optimize performance and avoid timeouts.

The add-in's adaptive multi-row upload algorithm for table layouts use two configurable
settings: "Target Response Time" and "Initial Row Count". The default target response time is
10 seconds. The default initial row count is 10 rows. For more information about these
settings, see Configure Multi-Row Uploads.

Based on these values, the upload algorithm dynamically adapts to the REST service's
request-processing performance by sending more or fewer rows for each multi-row request. It
works like this:

1. The add-in sends an initial set of multi-row requests using a batch size based on the
initial row count.

2. The add-in measures the response times for those initial requests and calculates the
approximate number of rows that can be processed in the target response time.

3. Using the new value for number of rows per batch, the add-in sends one or more batches
to the service.

4. After receiving the responses from each set of requests to the service, the add-in
recalculates of the number of rows, and sends another set of requests until all rows have
been processed.

Note:

The target response time is not guaranteed, since actual response times vary
depending on the REST service business logic, server load, network latency, and
so on.

Chapter 12
Upload Changes Using Multi-Row Requests

12-7

If a multi-row request contains one or more errors, no changes are made by the
service. In that case, a second multi-row request containing only the rows that
succeeded during the first request is sent. If the second request fails, the add-in falls
back to sending one row per request. For more information, see Making Batch
Requests in Developing Fusion Web Applications with Oracle Application
Development Framework.

If a set of changes includes custom actions and those actions have multi-row requests
enabled, the changes are included in a multi-row request. However, if one or more
rows is marked for a custom action that has multi-row requests disabled, the add-in
reverts to sending the changes row by row. (See also Multi-Row Mode for Custom
Actions.)

If you configure the add-in for parallel requests, it sends up to four multi-row requests
in parallel. See Enable Parallel Requests During Upload.

If you configure the add-in to send descendant rows in the parent payload, then multi-
row requests are not used when a Form-over-Table layout is the primary layout. See
Upload Parent and Child Changes in the Same Payload.

Configure Multi-Row Uploads
If required, you can configure how Oracle Visual Builder Add-in for Excel uploads
multiple rows of data for an Oracle ADF REST Resource business object.

You can access multi-row processing settings from the Upload tab of the business
object's Business Object Editor. This tab includes a check box, Supports Multi-Row
Requests, to enable and disable multi-row requests. This check box is selected by
default for ADF REST business objects.

The tab also includes two fields for configuring multi-row processing: Initial Row
Count and Target Response Time.

By default, the add-in's adaptive multi-row upload algorithm uses a target response
time of 10 seconds and an initial row count of 10 rows. It is strongly recommended that
you do not change the default values for these properties. They should provide good
functionality, UI responsiveness, and overall good performance. See About Multi-Row
Processing.

However, there may be scenarios where you would want to adjust these properties.
For example, your REST service may require that all of a small number of rows be
included in a single multi-row request. In this scenario, you could increase the initial
row count value something like 100, then instruct your business users to limit changes
to sets of 100 at a time.

Another example might be a slow REST endpoint where a row-processing KPI needs
to be achieved. In this scenario, you may want to tune these properties to balance UI
responsiveness and the ability to process a targeted number of rows in a certain time.

Chapter 12
Upload Changes Using Multi-Row Requests

12-8

WARNING:

Modifying these properties may negatively affect performance and UI
responsiveness. Performance may degrade if there are too many smaller requests,
or timeouts may occur with fewer, very large requests.

You should thoroughly test the affect of your changes in a realistic environment
before distributing the integrated workbook.

To configure multi-row processing:

1. Open the Business Object Editor for the target business object. then click the Upload
tab.

This image shows the Upload tab for an Employees business object with the Supports
Multi-Row Requests check box as well as the Initial Row Count and Target Response
Time fields.

You'll also find check boxes for parallel requests and upsert mode. For information about
these features, see Enable Parallel Requests During Upload and Upload Changes Using
Upsert Mode.

2. To enable multi-row processing, select Supports Multi-Row Requests.

If this check box is not selected, Initial Row Count and Target Response Time are not
available.

3. Provide valid values for these fields:

• Initial Row Count: Specifies the number of rows that the add-in includes in the initial
set of multi-row request(s). After the initial set of requests, the number of rows per
request is determined dynamically. Enter a value of 1 or more.

Chapter 12
Upload Changes Using Multi-Row Requests

12-9

• Target Response Time: Specifies the duration of a single response in
seconds that the add-in tries to achieve during upload. Enter a valid value
between 1 to 180 seconds.

The add-in validates the entered values and displays a red border on the field if
the value is not valid. The add-in also displays a pop-up message describing the
issue.

When enabled, the add-in sends multiple rows per request using a batch API during
an upload. For information about multi-row processing behavior, see About Multi-Row
Processing.

Disable Multi-Row Requests for Upload
Some Oracle ADF REST Resource services require a separate REST request for
each changed row. For services with this requirement, you'll experience issues if the
add-in uses multi-row requests. In this scenario, you can disable multi-row requests
from the Business Object Editor.

If your business object doesn't require separate REST requests, it is strongly
recommended that you use the default multi-row request behavior as described in
Upload Changes Using Multi-Row Requests.

To disable multi-row requests for a business object, deselect the Supports Multi-Row
Requests check box from the business object's Business Object Editor as shown
here:

This check box is selected by default for Oracle ADF REST Resource business
objects. This check box is not present for other REST service types.

When you disable multi-row requests for a business object, the add-in uploads each
changed row using a single request as it does for other service types. See Upload
Table Changes Using Separate Requests for Each Row.

Chapter 12
Upload Changes Using Multi-Row Requests

12-10

Specifically, the add-in sends:

• A row marked for Update using a PATCH request.

• A pending Create row using a POST request.

• A row marked for DELETE using a single DELETE request.

• A row marked for a custom action using a single POST request even if the Supports
Multi-Row Requests check box is selected for the custom action. See Multi-Row Mode
for Custom Actions.

Depending on network characteristics and REST service overhead and performance,
disabling multi-row requests may result in a negative effect on performance, such as adding
significant wait time for the business user.

When multi-row requests are enabled, the add-in can adjust the number of rows in the multi-
row request based on the REST service's responsiveness. When disabled, each changed
row is instead sent using a separate REST request, resulting in many more REST requests
per upload operation.

Workbook owners are responsible for any performance issues that arise. Make sure to test
that your use cases will succeed in all customer environments and scenarios, if multi-row
requests are disabled.

EffectiveOf Headers in Multi-Row Requests
If your ADF REST service includes date effective objects, you can add the Effective-Of
header for each of the required REST operations. Oracle Visual Builder Add-in for Excel
evaluates these headers when preparing each part of a multi-row request.

The add-in does not add the defined extra request headers to the header during a multi-row
upload. Instead, the add-in checks for the Effective-Of header and, if defined, it adds it to
the multi-row part using the effectiveOf member.

To support date effective objects when uploading using multi-row requests, define
Effective-Of headers for the different REST operations configured for a business object.
See REST Request Headers.

For more information on these objects, refer to Manage Date Effective Objects.

Upload Parent and Child Changes in the Same Payload
Some services require that parent and child row changes be uploaded using the same REST
request payload. If your service requires this, you can configure your integrated workbook to
upload all changes in a single, "nested" upload.

This feature is only available for Oracle ADF REST Resource services and should only be
enabled if the service requires that parent and child changes be included in a single request.
For example, your REST service may include logic that requires you to create at least one
child (for example, a "Line" item) when you create a parent item (for example, a "Supplier
Negotiations" item). In this case, the REST service enforces this by requiring the POST
request that includes a new Supplier Negotiations item to also include at least one new Line
item.

Likewise for updates. Your REST service may include back-end logic that requires operating
on all changed child items at once and so all changes must be included in a single request.

Chapter 12
Upload Parent and Child Changes in the Same Payload

12-11

https://docs.oracle.com/en/cloud/saas/human-resources/23c/farws/Manage_Date_Effective_Objects.html

If the service doesn't have this requirement, it is strongly recommended that you use
the standard upload logic. See either Upload Changes from a Form-Over-Table Layout
or Upload Changes from a Table Layout.

When enabled on a Form-over-Table layout, Oracle Visual Builder Add-in for Excel
includes changes to parent (form fields) and child (table rows) in the payload of a
single REST request.

You can also enable this for a set of dependent layouts. When you do this, all
descendant rows ("children", "grandchildren", "great-grandchildren", and so on) of a
parent are included in a single REST request. See Use Multiple Layouts for Multi-level
Business Objects.

Note:

Read-only table layouts (and any descendant layouts) are skipped.

Before you continue, please review Notes and Limitations of Single Payload Uploads
to determine if you should enable this feature.

To configure your workbook to use nested upload:

1. Open the worksheet with the top-level layout for the parent and child business
objects that need to be uploaded together.

This could be a standalone Form-over-Table or the primary (Form-over-Table or
Table) layout of a set of dependent layouts.

2. In the Oracle Visual Builder tab, click Designer to open the Layout Designer in the
Excel Task Pane.

3. From the Advanced tab of the Layout Designer, expand Upload Options, then
select Send Descendant Rows in Parent Payload.

When you select this check box, the add-in deselects these options for the table
layout as well as any descendant table layouts:

• Send Only Changed Data for Updates

• Delete Enabled

• Custom Actions Enabled

Chapter 12
Upload Parent and Child Changes in the Same Payload

12-12

4. If you use this feature for a set of dependent layouts, add primary key columns in the
child and descendant table layouts to support updates.

As with other dependent layouts, add ancestor (direct parent) columns to support
creates. See Create a Table Layout in an Excel Workbook and Add a Parent Column to
Support Row Creation.

When a business user performs an upload, the add-in sends parent and child changes in a
single REST request and then reports the success or failure of the upload operation. If there
are read-only table layouts, these layouts and their descendants are skipped.

If the upload was a success, the add-in makes these updates for each changed row:

• The Change column in the table is cleared.

• The Status column displays an appropriate success status message, such as "Create
Succeeded" or "Update Succeeded".

• The Status Viewer displays notification messages for the successful form and table
operations.

Chapter 12
Upload Parent and Child Changes in the Same Payload

12-13

Note:

Uploaded child and grandchild table rows are not refreshed automatically
after the upload. The Status Viewer indicates this with a message: "This row
may not contain the latest information from the service. Download to refresh
the information for this row.". The business user will need to download data
again to see the latest complete row data.

If the upload fails for any row at any level in a hierarchy, all associated rows in the
hierarchy—starting at the top-level parent row and cascading down to its child rows,
grandchild rows, and so on—are marked as failed.

In this scenario:

• The Change column in the table is left as is for all failed rows, either because the
row itself failed or was part of a row hierarchy that included a failure.

• The Status column displays an appropriate failure status message for each failed
row, such as "Created Failed" or "Update Failed".

• The Status Viewer displays the same notification messages for failed rows. The
messages contain any parent failure messages along with the failure messages
for descendant rows.

Note:

Each row from the primary table is treated separately, so a failure in one
does not affect the success or failure of another. If there are other top-level
parent rows with nested changes, these are re-sent following the failure and
should succeed.

When an error occurs, the business user may have to visit each layout and scan the
rows to find which row caused the failure.

Notes and Limitations of Single Payload Uploads
Single payload uploads (also referred to as "nested" uploads) are only supported for
Oracle ADF REST Resource services. They can be enabled on standalone Form-over-
Table layouts or on the primary layout (Form-over-Table or Table layout) for a set of
dependent layouts. Review this section to see if the feature is suitable for your
integrated workbook.

Note:

If your service doesn't require that parent and child changes are included in a
single request, it is strongly recommended that you use the standard upload
logic described in Upload Changes from a Table Layout or Upload Changes
from a Form-Over-Table Layout.

Chapter 12
Upload Parent and Child Changes in the Same Payload

12-14

Requirements

• The service must support request payload structures that include child and descendant
rows included with the parent fields. Rows for child business objects are included as
array-typed members as peers of the parent's fields. These child rows in turn include the
child fields along with arrays of grandchild rows, and so on.

• The business object must support the use of Upsert mode when uploading both new and
changed rows in the same upload request.
This requirement refers to the service itself. Oracle Visual Builder Add-in for Excel does
not have to be configured to use Upsert mode for the business object to support this
feature.

Form and Table Capabilities

Form rows marked for deletion or custom action are not affected by this feature. These
changes are sent in separate DELETE and POST requests and are not included in a "nested"
upload request.

Some Table capabilities are incompatible with the nested upload feature. When this feature is
enabled, these capabilities are disabled for the table in a Form-over-Table layout, the Table
layout used as the primary layout in a set of dependent layouts, and any descendant table
layouts:

• Send Only Changed Data for Updates

• Delete Enabled

• Custom Actions Enabled

The following are not supported as part of a nested upload:

• "Read-only" (or "download only") tables. Read-only tables are those that do not have
create, update, delete, or custom actions enabled.

• Tables for attachment business objects

Scalability

Be aware that this feature will not scale to handle large, enterprise-level volumes. If you
enable this feature for your workbook, you are responsible for any scalability issues that
arise. Make sure to test your workbook to verify that all required use cases will succeed in all
customer environments and scenarios.

Potential scalability issues include:

• Complex business logic or the processing of large numbers of nested items could push
the request duration beyond what some load balancers and other network components,
such as Akamai, support. This could result in the request failing due to a timeout.

• Large request payload sizes will likely consume large amounts of memory and CPU. This
could potentially affect other clients working against the same endpoint, virtual machine,
or container.
For example, consider a set of dependent layouts with a Table as a primary layout that
has a large number of changes. If all parent rows and associated descendant rows are
sent in a single request, the payload size and processing time for the request may be
significantly larger than if you sent each parent row and associated descendant rows
separately.

Chapter 12
Upload Parent and Child Changes in the Same Payload

12-15

• Large request payload sizes could exceed the maximum supported by the
endpoint. In this case, the endpoint could reject the request as a potential "Denial
of Service" attack.

Data Consistency and Conflict Detection

When this feature is enabled, requests with parent and child changes in the payload
may result in changes previously uploaded by another user being overwritten without
notification. This can occur when multiple users are acting on the same business
object rows using different workbooks.

Consider a scenario where two users, user A and user B, both download data at the
same time. If user A uploads their changes to child or descendant rows and then later
user B uploads their changes to the same rows, user B's changes will overwrite user
A's changes.

Also note that the "Upsert" scenario, where an existing parent item is uploaded with
new child rows, does not currently support conflict detection.

Child and Descendant Primary Keys Included in Tables

Additional configuration may be needed by the workbook developer to support cases
where descendant rows are updated. To ensure that updates succeed, you must
include primary/alternate key fields as columns in child and other descendant Table
layouts.

The child items' key values must appear in the payload, in the array of child items. The
service must be able to locate the existing child item in order to update it.

REST Request Headers

Sending configured REST request headers is only supported for the primary table
rows during nested upload. Rows from child and descendant tables will not include
such headers, even if configured. See REST Request Headers and EffectiveOf
Headers in Multi-Row Requests.

Upload Changes Using Upsert Mode
Oracle ADF REST Resource services support an optional "upsert" mode that you can
use when uploading changes to your REST service.

Ensure that your REST services business object supports upsert mode before you
enable it.

When upsert mode is enabled, the REST service should behave as follows: first, it
examines the incoming payload of a create row request. Next, if the payload contains
enough information to match an existing row, the operation updates that existing item.
If there is no match, the operation should create a new row. See Updating or Creating
Resource Items (Upsert) for more information.

The exact behavior of upsert mode is determined by the service.

You enable upsert mode by selecting the Use Upsert Mode for Create from the
Upload tab of the Business Object Editor.

Chapter 12
Upload Changes Using Upsert Mode

12-16

Note:

This check box is only available for Oracle ADF REST Resource services and is
hidden for all other service types.

When upsert mode is enabled, the add-in sends the HTTP header, Upsert-Mode: true, with
POST requests for single-row creates. For multi-row requests, the add-in sets the operation
value for each batch part to "upsert" instead of "create".

Omit Empty Values During Upload
You can configure Oracle Visual Builder Add-in for Excel to omit fields with empty values
during upload.

Request payloads for Create and Update operations normally include a value for every
column in the table (except those for read-only fields and custom action payload fields) even
if the cell value is empty. For empty cell values, a null value is included for that field in the
payload. Null values can potentially cause validation errors.

To avoid these errors, you can configure the add-in to omit fields with null values from the
payload by selecting the Omit from payload if value is empty check box in the Business
Object Field Editor.

Chapter 12
Omit Empty Values During Upload

12-17

When selected, the add-in won't include the field in the payload during upload if the
value in the field is empty.

The add-in sets the default value for the Omit from payload if value is empty check
box based on the "nullable" property in the OpenAPI document for this field. If
"nullable" is true, the check box is deselected and cells with empty values are
uploaded; if "nullable" is false (or the property is missing), then the check box is
selected and cells with empty values are omitted from the upload.

Note:

If this check box is selected (empty cell values are skipped), you won't be
able to change a "non-empty" value to an empty value for a field in an
existing row.

Send Only Changed Data During Upload
You can configure Oracle Visual Builder Add-in for Excel to send only changed data
from a Table layout or the table part of a Form-over-Table layout during an upload. The
add-in always sends only changed values from the form area of a Form-over-Table
layout.

Request payloads for Update operations normally include a value for every editable
cell in a row marked for update even if the value hasn't changed since the last
download or upload operation. For some REST services, sending data that has not
been modified in a PATCH, PUT, or multi-row update request can cause issues.

Chapter 12
Send Only Changed Data During Upload

12-18

To avoid these issues, you can configure the add-in to send only changed values in the
payload by selecting the Send Only Changed Data for Updates check box for your table.
When this is enabled, cells that are unchanged are not included in the payload.

Note:

This feature is not available for NetSuite.

To enable this feature, select the layout, then open the Advanced tab of the Layout Designer.
The Send Only Changed Data for Updates check box can be found under Table
Capabilities.

When the check box is enabled, the add-in caches a copy of all of the data in the table during
download. Then, when the business user triggers an upload, the add-in compares values in
editable cells in rows marked for update to the cached values, and only includes fields that
are different in the request payload.

If a row is marked for "Update" in the Change column, but no values have been changed, the
row is omitted and the Status column displays "Skipped" after the upload. The Status viewer
also displays the results of the upload.

Chapter 12
Send Only Changed Data During Upload

12-19

On a successful Create or Upload of a row, the cache is updated with all the current
values to be compared during the next upload, if the service provides the row in the
response.

Note:

If a field in a table is required for update (the Required for Update check
box is selected in the Business Object Field Editor), the value is included in
the payload even if it is unchanged.

Performance

Please note that this feature may affect performance during download and upload,
since the add-in must capture and store a duplicate set of downloaded table data. You
can expect workbooks using this feature to increase in size. Also, you may see a slow
down in downloads and uploads since the add-in must read from, and write to, the
cache.

If you choose to use this feature, it is recommended that you run relative performance
tests in realistic environments and assess the performance impact before delivering
workbooks with this feature enabled.

REST Request Payload

Let's suppose a business user changes the salary value for an employee named
Steven King. When this check box is not selected, the add-in includes both changed
and unchanged data in the payload, like this:

{
 "FirstName": "Steven",
 "LastName": "King",
 "Email": "SKING",
 "HireDate": "2003-06-17T04:00:00Z",
 "JobId": "AD_PRES",
 "Salary": 120000,
 "CommissionPct": null,
 "ManagerId": null,
 "DepartmentId": 90
}

Chapter 12
Send Only Changed Data During Upload

12-20

When the check box is selected, only the salary data is included:

{
"Salary": 120000
}

Data Consistency
When a workbook uses a compatible REST API service that supports data consistency
verification using an entity tag (Etag) mechanism, the add-in detects and reacts to the
following scenario:

1. Person A downloads information from a business object into a table in their integrated
workbook.

2. Person B downloads the same information into a table in their integrated workbook, edits
it, and uploads changes.

3. Person A then edits the same information (downloaded in Step 1) and uploads the
changes.

4. The add-in provides the service with the necessary information (entity tags) to prevent
Person A's changes from overwriting those changes made by Person B.

The add-in sends an If-Match request header containing the entity tag for single row
requests or includes the entity tag along with the row changes as part of a multi-row
request. See Upload Changes Using Multi-Row Requests.

When the server inspects the entity tag and detects such a change, its response (either
an HTTP Status 412, or an error code of 11412) allows the add-in to display an error
message for any such rows in the table like this:

This row has been modified by another user. Please download before editing.

If you see this message, you'll have to discard your changes by downloading the latest
data and then redoing your changes as needed.

Note:

Some services do not support this conflict detection functionality. If the service does
not, then Person A's changes will replace Person B's changes with no warning.
Contact the service owner for more information.

For information about the entity tag (ETag) mechanism, see Data Consistency Tasks in
Accessing Business Objects Using REST APIs.

If your workbook uses other types of REST services, the last writer wins. So, for the scenario
just outlined, Person A’s changes in Step 3 will overwrite the changes of Person B in Step 2.

Chapter 12
Data Consistency

12-21

Enable Parallel Requests During Upload
You can enable Oracle Visual Builder Add-in for Excel to send multiple requests in
parallel during upload to improve performance and shorten the overall time to upload a
large set of changes.

Parallel requests behave differently than multi-row requests. With a multi-row request,
the add-in sends the changes for multiple rows in each request; With parallel requests,
the add-in sends multiple requests at the same time, regardless of whether the request
contains one row or multiple rows. See Upload Changes Using Multi-Row Requests.

Note:

While the add-in collects batches of rows in "table order" (from top to
bottom), the threading used for parallel requests may result in batches of
rows arriving at the REST service endpoint "out of order". For example,
batch 7 may arrive at the endpoint before batch 6.

To enable parallel requests, open the Business Object Editor for the target business
object, then click the Upload tab and select Supports Parallel Requests.

Note:

Previous releases of the add-in included a slider on the Advanced tab of the
Layout Designer that allowed you to select the number of parallel requests.
This slider has been removed in this release.

Chapter 12
Enable Parallel Requests During Upload

12-22

13
Use Multiple Layouts for Multi-level Business
Objects

When business objects have a parent-child relationship, you can create a set of dependent
layouts and then perform operations, such as downloading data and uploading your changes,
on all your layouts with a single gesture.

Business Object Hierarchies

Consider an example hierarchy of business objects where purchaseOrders is the parent,
lines is the child, and schedules is the grandchild.

In this hierarchy, purchaseOrders is a collection of top-level purchase orders each with one
or more lines for managing the details of each order. Each of these lines may include one or
more schedules for tracking shipping details.

A hierarchy of business objects can go to even more levels ("great-grandchildren" and "great-
great-grandchildren") or have more than one business object at each level ("siblings"). For
example, the following hierarchy has "sibling" grandchildren (attachments and schedules)
and a "great-grandchild" (distributions) under schedules.

13-1

Configuring Dependent Layouts

When you create a set of dependent layouts, you create either a Form-over-Table or a
Table layout as your top-level or "primary" layout on the first worksheet, as well as
Table layouts for each subordinate level on separate worksheets. See Create a Set of
Dependent Layouts.

If you want to show a single purchase order and all its associated lines and schedules,
create a Form-over-Table layout for the first two levels (purchaseOrders and lines)
and a Table layout for the third level (schedules). You can then configure a search to
prompt the user to enter a purchase order ID.

When the layouts are populated, the form part of the Form-over-Table layout displays
details for the purchase order, the table part shows all the lines for the purchase order,
and the dependent Table layout shows all the schedules for the associated lines.

Chapter 13

13-2

You can also use a Table layout as your primary layout instead of a Form-over-Table layout.
In this case, create Table layouts for each level in the hierarchy (purchaseOrders, lines, and
schedules) on separate worksheets. As before, link each dependent layout back to its
parent.

In this configuration, you can display one or more purchase orders in the primary Table
layout, and all associated lines and schedules in the subsequent Table layouts.

Note:

Keep in mind that a single parent may have multiple children with each of these
having multiple grandchildren. Consequently, a large number of results in the
primary layout may result in very large volumes of data in the subordinate layouts.
To avoid performance issues when downloading and uploading data, Oracle
recommends that you configure an appropriate query to limit the number of results
in the primary layout. See Configure Search Options for Download.

"Siblings" are business objects at the same level and can be at the second level or deeper in
your hierarchy. For example, you may have a parent business object (Expenses) at the top
level and two children (Itemizations and Distributions) at the second level. In this example,
Itemizations and Distributions are siblings of each other.

To create a set of dependent layouts for this hierarchy, you have two options. You can create
a Form-over-Table layout for the parent and one of the children (for example, Expenses and
Itemizations) on one worksheet and a Table layout for the other child (Distributions) on a
second worksheet. Or you can create Table layouts for each business object (Expenses,
Itemizations, and Distributions) on separate worksheets. Again, use a Form-over-Table
layout if you want to show a single expense record in the form and list all associated
itemizations and distributions in the tables.

Once the dependencies are established, download, upload, and clear operations act on all
the linked layouts, starting from the primary layout, followed by the child layouts, the
grandchildren layouts, and so on.

Chapter 13

13-3

Create a Set of Dependent Layouts
Create a set of dependent layouts for a hierarchy of business objects and link the
layouts together.

Note:

Before you create a set of dependent layouts, ensure your REST service
meets the requirements as set out in Requirements for Dependent Layouts.

To create a set of dependent layouts, run the New Layout Setup wizard on the first
worksheet and select the parent and child business objects you want to include. If you
choose to create a Form-over-Table layout as the primary layout, you'll need to
indicate which child business object you want to use for table part of the layout. When
you finish, Oracle Visual Builder Add-in for Excel creates a new worksheet with a Table
layout for each additional descendant business object in your hierarchy.

When you have created your layouts, you can configure appropriate queries to limit
the number of rows to display in your layouts.

If you create a set of layouts but later decide you want to add another descendant
business object, simply create a Table layout for the descendant business object and
then link the new dependent layout to its immediate parent layout. See Add a Layout
to a Set of Dependent Layouts.

When you create a dependent layout, you can choose to include columns from the
parent or higher layout to help your business users track which child rows are
associated with which higher-level rows. See Add a Parent Column to Support Row
Creation.

To enable the creation of items in a Table layout, you may need to add one or more
columns to the layout from the layout's immediate parent. Including parent columns in
the layout allows your business users to specify a unique parent for any new rows they
create.

Let's use the example in this section to create a hierarchy of dependent layouts that
mirrors your business object hierarchy.

The primary layout in a set of dependent layouts can be a Form-over-Table layout or a
Table layout. This topic covers how to create a set of dependent layouts that uses a
Form-over-Table as the primary layout, but the principle is the same for using a Table
layout as the primary layout.

To create a set of dependent layouts:

1. Select the cell in a blank worksheet where you want to locate the primary layout.

2. In the Oracle Visual Builder tab, click Designer to launch the New Layout Setup
wizard.

3. When prompted, provide the service metadata document.

If the service includes five or more business objects, select the business objects
you want to include in the catalog, then click Next.

Chapter 13
Create a Set of Dependent Layouts

13-4

4. Choose a top-level business object, then click Next. In our example, select
purchaseOrders for a Form-over-Table layout showing purchase orders over lines (the
first two levels in our hierarchy).

5. Select the desired layout type for the primary layout, then click Next.

6. Choose the child business objects you want to include in the set of dependent layouts,
then click Next. In our example, select lines, attachments, schedules, and
distributions.

Chapter 13
Create a Set of Dependent Layouts

13-5

If you are creating a Form-over-Table layout as your primary layout and you
selected more than one direct child of the primary business object, you will be
prompted to select which business object you want to show in the table of the
primary layout. Select a business object, then click Next.

The add-in then displays a review of your choices. In this case, the add-in will
create a Form-over-Table layout with purchaseOrders in the form and lines in the
table. It will also create three linked Table layouts for attachments, schedules, and
distributions.

Chapter 13
Create a Set of Dependent Layouts

13-6

7. Review the layout details and then click Finish.

The add-in creates a Form-over-Table layout for purchaseOrders and lines on the first
worksheet as well as Table layouts for attachments, schedules, and distributions on
separate worksheets in the workbook.

After you have created the set of dependent layouts, you can continue to configure your
layouts as required.

Here are some of the changes you might want to consider making:

• If you want to allow your business users to create new rows in a dependent layout, you
must add a parent column to the layout. See Add a Parent Column to Support Row
Creation.

• Even if Create is disabled on a table layout, you might still want to add an ancestor
column to a layout to help your business users track which child rows are associated with
which higher-level rows. To add ancestor columns to a layout, see Manage Fields in a
Form or Table.

• You may want to configure search parameters on each dependent layout for downloading
data. See Filter Data for a Set of Dependent Layouts.

Note:

Before you publish and distribute your workbook to users, test the workbook to
ensure that download, upload, or clear operations work on all layouts in the
hierarchy as expected. See Manage Data in a Dependent Layout in Managing Data
Using Oracle Visual Builder Add-in for Excel.

Add a Layout to a Set of Dependent Layouts
You can add a Table layout based on a descendant business object to an existing set of
dependent layouts by linking it to the parent business object's layout.

Let's suppose you have created a set of dependent layouts for a hierarchy of business
objects that includes purchaseOrders (parent), lines (child), and schedules (grandchild).
Now, you want to add another business object, distributions, which is the child business
object of schedules and the great-grandchild of purchaseOrders.

To do this, start by creating a new worksheet and then adding a Table layout for distributions.
When you create your Table layout, ensure that you select the same business object catalog
that is used by your primary layout. When you've finished, use the Layout Designer to choose
a parent layout for your new Table layout.

To add a new layout to a set of dependent layouts:

1. Click the New Sheet icon to add a new worksheet.

2. Click Designer to launch the New Layout Setup wizard.

3. From the first screen of the wizard, choose the business object catalog and click Next.

4. Choose the business object that's next in the hierarchy—for example, distributions—
and click Next.

The next screen of the wizard displays the layout type for the new layout. Because
distributions is not a top-level business object in the hierarchy, only the Table Layout
option is available.

Chapter 13
Create a Set of Dependent Layouts

13-7

5. Click Next.

6. Review the layout details and then click Finish.

A new Table layout is created for the selected descendant business object in your
hierarchy. Notice the Parent Layout field in the Layout Designer's General tab,
shown here for a distributions layout. This field is only displayed in layouts where
the business object is a child of another business object in the same business
catalog.

7. To set the parent layout for the new Table layout, click the Choose Parent Layout
icon () in the Layout Designer's General tab.

8. Select the appropriate layout from the Dependent Layouts window and click OK. If
there is only one possible parent layout, a prompt appears asking you to confirm a
parent for the layout. Click Yes to confirm the parent layout in the hierarchy, for
example:

Chapter 13
Create a Set of Dependent Layouts

13-8

Note:

If you see a message, "No layouts found that this layout can depend on", it may
mean the layout is not part of the same catalog or that the sibling business
object you are trying to link has already been used in the table part of a Form-
over-Table layout.

Add Ancestor Columns to Dependent Layouts
When you create a dependent layout, you can choose to include columns from parent or
higher layout. Columns from these higher-level layouts are referred to as "ancestor" columns.

You might choose to add at least one column from the layout's immediate parent if you want
to allow your business users to create rows in the dependent layout. See Add a Parent
Column to Support Row Creation.

You might also just add an ancestor column to a dependent layout to help your business
users track which child rows are associated with which higher-level rows. See Add Ancestor
Columns to Provide Additional Context.

Add a Parent Column to Support Row Creation
When a business user adds a row to a dependent layout, they need to indicate the parent
row that the child row should be associated with. To ensure they can do this, include columns
from the parent layout to the dependent layouts in the set.
Which layouts need parent columns depends on the type of layout used for your primary
layout. Let's start with the Form-over-Table case. Let's suppose you have a business object
hierarchy where purchaseOrders is the parent, lines is the child, and schedules is the
grandchild. For this hierarchy, you create a Form-over-Table with purchaseOrders in the
form and lines in the table, as well as a separate Table layout for schedules.

When you download data for this set of dependent layouts, you download a single purchase
order for the form, all associated lines for the Form-over-Table's table, and all schedules
associated with these lines in the Table layout.

Now let's suppose you want to create a new line for the purchase order. Because the Form-
over-Table layout shows only one purchase order in the form and only associated lines in the
Table, any line you create is automatically associated with the selected purchase order. You
don't have to enter a purchase order number to associate it with the selected one.

But what if you want to create a schedule and associate it with one of the lines? The
Schedules layout may include schedules from different lines in the purchase order. To make
sure the schedule you create is associated with the right line, you'll need to specify an
existing line for the new schedule. Therefore, you need to have at least one parent column
showing in the Schedules layout that uniquely identifies the line (for example, LineNumber).

Likewise for any descendant level below the second level. Suppose our sample hierarchy
includes a business object, distributions that is the child of schedules. A Distributions
layout will need to include at least one parent column (for example, ScheduleNumber) so that
you can specify which schedule a new distribution should be associated with.

Chapter 13
Add Ancestor Columns to Dependent Layouts

13-9

Note:

If you have a sibling business object at the second level in this scenario, you
don't need to add fields from the parent level. Suppose our sample hierarchy
includes an attachments business object that is the child of purchaseOrders
and the sibling of lines. If you create a Table layout for attachments that you
link to the primary layout, then the add-in only downloads attachment rows
that are associated with the selected purchase order. If you create a new
attachment, it is automatically associated with this purchase order.

Now let's look at the second case: when the primary layout is a Table layout. In this
scenario, the primary Table layout may display multiple purchase orders. The second-
level Table layouts (attachments and lines) may then include rows for each of the
purchase orders downloaded in the primary layout. Similarly, the third and fourth-level
layouts (Schedules and Distributions) will include schedules and distributions from
different purchase order and lines.

If you want to create a new line for a purchase order, you'll need to specify an existing
purchase order. Therefore, you'll need to have at least one parent column showing in
the Lines layout that uniquely identifies the purchase order (for example, the PO
Header Id field).

Here are a few things to keep in mind when adding parent columns:

• The parent column you choose must uniquely identify the parent record and must
be exposed in the parent layout.

• If no parent columns are configured, the table cannot support row creation and
rows inserted into the table are ignored during upload.

• If a desired parent field is already displayed as a column in the child layout,
remove that column from the layout and instead add it as a parent column as
described in this task.

Note:

If a grandparent or higher field is already exposed as a column and is
required for create or update, do not remove it.

To add a parent ancestor column to your layout:

1. Open the Table Column Manager from the Layout Designer.

2. Click the Ancestors tab from the Available Fields pane.
Available ancestor columns are grouped by business object. In this image, fields
for the lines business object are shown under lines.

Chapter 13
Add Ancestor Columns to Dependent Layouts

13-10

Note:

The field must be exposed as a column or form field in one of the higher-level
layouts. If you don't see the field you want, you'll need to add it to the ancestor
layout.

3. Expand the list if necessary, then select the parent field you want to add to your layout.

Note:

To add a parent field before an existing column in the table, select the existing
column in Selected Fields list, then select the parent field check box. For
example, to display an parent field first in the table layout right after the Status
column, select the first column.

4. Click Done to close the Table Column Manager.

Oracle Visual Builder Add-in for Excel redraws the table in the layout to include the parent
column. The table header for the parent column uses the format "<field title> (<business
object title>)" such as "Line Number (lines)".

Refer to Manage Fields in a Form or Table for more information.

Add Ancestor Columns to Provide Additional Context
You can add an ancestor column to a dependent layout for tracking purposes.

Let's suppose you have a set of dependent layouts where purchaseOrders is the parent,
lines is the child, and schedules is the grandchild. When a business user is looking at rows
in the schedules layout, it may not be readily apparent which schedule is attached to which
line.

To help them sort out which is which, you could add a column from the parent layout (lines)
to the child layout (schedules), such as LineNumber.

Chapter 13
Add Ancestor Columns to Dependent Layouts

13-11

Note:

The field must be exposed as a column or form field in the ancestor layouts.
If you don't see the field you want, you'll need to add it to the ancestor layout.

To add an ancestor column to your layout, open the Table Column Manager from the
Layout Designer, then select an appropriate ancestor field from the Ancestors tab.

Tip:

To add an ancestor column before an existing column in the table, select the
existing column in Selected Fields list, then select the ancestor column
check box. For example, to display an ancestor column first in the table
layout right after the Status column, select the first column.

See Manage Fields in a Form or Table for more details.

Filter Data for a Set of Dependent Layouts
You can create search and search parameter queries on a set of dependent layouts to
determine which data get returned from the REST service when a business user
invokes a download. There are two search features: a graphical Search Editor and a
Search Parameter Editor.

Use the Search Editor to configure a search query that retrieves data for your set of
dependent layouts. Use the Search Parameter Editor to define a separate search
parameter query for each form and table in your set of dependent layouts. These
search parameter queries further restrict the rows that are displayed when the
business user invokes a download.

Take our example of a hierarchy where purchaseOrders is the parent, lines is the
child, and schedules is the grandchild. In this scenario, you may have a Form-over-
Table layout as the primary layout with purchaseOrders in the form and lines in the

Chapter 13
Filter Data for a Set of Dependent Layouts

13-12

table. You also then have a subordinate Table layout for your schedules business object.

To show a single purchase order in the form, you would configure a search in the Layout
Designer that prompts the user to enter an order number like this:

Without any other search parameters, Oracle Visual Builder Add-in for Excel populates the
form with the user-provided purchase order, and the two tables with all available lines and
schedules associated with this purchase order.

To limit the lines and schedules, you can configure search parameter queries on each table
using the Layout Designer. For example, to show all schedules with the same transaction
business category, create a search parameter for the schedules Table layout, such as
q=TransactionBusinessCategoryId=100. On download, the add-in returns all schedules with
the same transaction business category (in this case, with an ID of "100").

Note:

Some query parameters may not produce the desired result on dependent layout
download. For example, using a "order by" parameter will not work as expected
since the add-in sends multiple separate requests for child resources. Parameters
such as "order by" should not be used.

Refer to Use Search to Find Required Data and Use Search Parameters to Limit Downloaded
Data.

Download, Upload, and Clear Operations on Dependent
Layouts

When you download, upload, or clear data for a layout in a dependent hierarchy, the
operation takes effect on all layouts in the hierarchy, starting with the primary layout,

Chapter 13
Download, Upload, and Clear Operations on Dependent Layouts

13-13

progressing to the next layout in the hierarchy, and continuing down until the last level
in the hierarchy.

If the layout is not part of a set of dependent layouts, the operation is performed on the
active layout only.

Settings such as those for macros only apply to the primary layout and are not
enforced on other layouts in the hierarchy.

Downloading Data

On download, Oracle Visual Builder Add-in for Excel first checks all layouts in the
hierarchy for any pending changes. If there are changes pending, the user is prompted
to confirm the download operation. If the user chooses to proceed, all pending
changes are lost.

During download, the add-in first retrieves the values for the primary layout from the
REST service. After the primary layout is populated, the add-in makes the next
worksheet in the hierarchy active and retrieves all the appropriate items.

All matching items for all rows from the parent layout are downloaded at each level.
For example, when Sheet 1 in your workbook contains Purchase Orders as the parent
and Lines as the child (containing, say, 10 Lines) and Sheet 2 contains Schedules as
the grandchild, the Schedules table is populated with all Schedule items for all Lines. If
each of the 10 Lines had two Schedules, the Schedules table would download 20
Lines.

The download operation proceeds through the rest of the Table layouts in the
hierarchy, retrieving all matching items for all rows from the parent layout.

When the operation finishes, the primary layout becomes active and the Status Viewer
shows results for the primary layout as well as a summary for each layout in the
dependent hierarchy, as shown in this example for a download operation:

Chapter 13
Download, Upload, and Clear Operations on Dependent Layouts

13-14

Following a download, you can edit data much as you would in a Table or a Form-over-Table
layout.

Uploading Changes

On upload, the add-in makes the primary layout active and sends all updates. If the primary
layout is a Form-over-Table layout, changes are sent first from the form and then from the
table. The add-in then moves to the worksheet with the first dependent Table layout and
uploads changes before proceeding to the next layout.

Pending changes may include creation of new items, update or deletion of existing items, and
invocation of actions on items. For rows pending Update, values in the ancestor column cells
are not uploaded.

For new items on layouts below the primary layout, values in a parent column must match a
row in the parent layout. For example, to create a new distribution, you must specify an
existing schedule in the parent column with which to associate the new item. Grandparent
and higher columns are read-only and can't be updated. Empty parent column cells in the
dependent layout or in its immediate parent layout result in creation failing.

The match is performed across all parent column cells using the local cell values from the
parent table only. The service is not contacted while doing this matching. If one row in the
parent table matches, it is used as the parent row. If more than one row matches, the first
matching row is used. If no rows match, then the row is marked as "Create Failed".

When the operation finishes, the primary layout becomes active and the Status Viewer shows
results for the primary layout as well as a summary for each layout in the dependent
hierarchy.

Chapter 13
Download, Upload, and Clear Operations on Dependent Layouts

13-15

Clear

When the clear operation is invoked, data is cleared from all the layouts in the
dependent hierarchy.

Delete a Dependent Layout
When your layout is part of a hierarchy of dependent layouts, the layout cannot be
deleted without first removing its dependency in the layout hierarchy.

To delete a dependent layout:

1. Open the Layout Designer of the Excel worksheet whose layout you want to
delete.

2. In the General tab, click the Remove Dependency icon () next to Parent Layout.

3. When prompted, click Yes to remove the dependency.

4. Click Delete Layout, then confirm your selection.

Requirements for Dependent Layouts
To ensure that your dependent layouts function without error, Oracle Visual Builder
Add-in for Excel requires that the REST service complies with the requirements set out
here.

URL Path Requirements

To ensure all operations of dependent layouts can be done without errors, the add-in
requires the following:

• Parent business object:

– Collection path: /{parentResource}

Chapter 13
Delete a Dependent Layout

13-16

– Item path: /{parentResource}/{parentResource_Id}
• Child business object

– Collection path: /{parentResource}/{parentResource_Id}/{childResource}
– Item path: /{parentResource}/{parentResource_Id}/{childResource}/

{childResource_Id}
• Grandchild business object

– Collection path: /{parentResource}/{parentResource_Id}/{childResource}/
{childResource_Id}/{grandchildResource}

– Item path: /{parentResource}/{parentResource_Id}/{childResource}/
{childResource_Id}/{grandchildResource}/{grandchildResource_Id}

This example shows the collection and item paths for the parent, child, and grandchild
business objects in the following three-level hierarchy:

Parent paths:

• Collection path: /PurchaseOrders
• Item path: /PurchaseOrders/{PurchaseOrders_Id}
Child paths:

• Collection path: /PurchaseOrders/{PurchaseOrders_Id}/lines
• Item path: /PurchaseOrders/{PurchaseOrders_Id}/lines/{lines_Id}
Grandchild paths:

• Collection path: /PurchaseOrders/{PurchaseOrders_Id}/lines/{lines_Id}/schedules
• Item path: /PurchaseOrders/{PurchaseOrders_Id}/lines/{lines_Id}/schedules/

{schedules_Id}

GET and POST Response Requirements

GET and POST responses must contain self links that uniquely identify a record. For
example:

"links": [
 {
 "rel": "self",
 "href": "http://localhost:8888/ords/hr_rest/ExpenseReports/15001"
 }
]

Notes on Oracle REST Data Services Support

• Support for Oracle REST Data Services (ORDS) requires version 22.1.0 or later.
Previous versions of ORDS are known to have an issue with an incorrect payload
definition for the POST handler. See ORDS Release Notes 22.1.0.

Chapter 13
Requirements for Dependent Layouts

13-17

https://www.oracle.com/tools/ords/ords-relnotes-221.html

• ORDS AutoRest does not provide service paths as described in this section.
However, you can write custom ORDS using SQL and PL/SQL to satisfy these
requirements. See ORDS RESTful Web Services Architecture Diagrams and
Manually Creating RESTful Services Using SQL and PL/SQL.

Chapter 13
Requirements for Dependent Layouts

13-18

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-EF02529D-79C3-4FB3-89A8-06329878C71B
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-C9D763FD-9B74-4A27-9B80-6E500756E464

14
Use Macros in an Integrated Excel Workbook

You can configure macros that Oracle Visual Builder Add-in for Excel runs at specific points in
the lifecycle of an integrated Excel workbook.

Use of this functionality requires you to use the Excel macro-enabled workbook type (.XLSM)
and create your macros in a macro module. For more information about creating macros, see
Microsoft documentation; describing how to create macros in an Excel workbook is outside
the scope of this guide.

Some companies block the usage of Excel macros because they do not think macros are
sufficiently secure. Consider your intended audience before you add a macro. You are also
responsible for the security risks involved in using macros. So research the risks thoroughly
before you deliver an integrated workbook to your customers. After creating a macro, take
steps to protect the macro both from malicious and accidental alterations that might produce
unexpected or harmful results. If a macro results in changes that are incompatible with the
add-in or results in undesirable behavior, change the macro to avoid this behavior.

The Layout Designer’s Advanced tab provides two properties where you can specify macros:
the Post-Download Macro to run after download completes and the Pre-Upload Macro to
run before an upload begins. Provide your macro names as the values of these properties.
For example, when you've created a Refresh macro that you want to run after an upload,
enter Refresh as the value of the Post-Download Macro property.

Tip:

Do not include the parentheses when specifying the name of the macro.

14-1

The macro that you specify for the Post-Download Macro property is not used if the
user cancels download, if the table or form is empty, or in the event of an unexpected
error. The macro that you specify for the Pre-Upload Macro property is used just
before an upload. If the macro returns any value other than true, the upload operation
quits and a notification appears in the Status Viewer. If the macro returns true, upload
proceeds normally. To return a true or false value from a macro, define a Boolean
Function. See Microsoft documentation for details.

Here's example logic of an IsUploadReady function for a Pre-Upload Macro:

Function IsUploadReady() As Boolean
 Dim returnVal As Boolean

 On Error GoTo ErrHandler:

 Dim table As Range
 Set table = Sheets("Sheet1").Range("TBL349543489")
 ' The named range, TBL349543489, is managed automatically by the
add-in

 returnVal = True

 Dim cRows As Long
 cRows = table.Rows.Count
 Dim currentTableRow As Long
 Dim amount As Long
 For currentTableRow = 2 To cRows ' start with 2 to skip header row
 amount = table(currentTableRow, 10) ' Amount is the tenth
column in the table
 If amount < 0 Then
 returnVal = False
 Debug.Print "Found negative amount = "; amount
 End If
 Next

 IsUploadReady = returnVal
 Exit Function

ErrHandler:
 Dim failureMessage As String
 failureMessage = Err.Description
 MsgBox failureMessage
 IsUploadReady = False
 Exit Function
End Function

When an error occurs during the execution of a macro, Excel displays a Microsoft
Visual Basic window to the user. We recommend that you implement a robust error
handling strategy so that the window displays a useful message to the user who
encounters an error during macro execution. The following is a simplistic example. The

Chapter 14

14-2

appropriate error handling strategy for a given macro depends on the logic in the macro.

Sub Refresh()

 On Error GoTo ErrHandler:

 ActiveWorkbook.RefreshAll
 Exit Sub

ErrHandler:
 Dim failureMessage As String
 failureMessage = Err.Description
 MsgBox "Unable to refresh. Details: " & failureMessage
 Exit Sub
End Sub

Tip:

The add-in creates and maintains named ranges for the data table. Your macros
should never modify these named ranges. However, your macros can access the
named range to locate the data table on a dynamic basis.

Note:

Macro recording is incompatible with add-in features such as download and upload
and is not supported. Do not attempt to record any add-in features. In some cases,
you may see unexpected exceptions.

Do not leave the Excel Visual Basic editor’s break mode on when you use
Download Data or Upload Changes. It is not supported and can result in an
unexpected exception.

Chapter 14

14-3

15
Publish an Integrated Excel Workbook

Once you complete configuring an Excel workbook, you can publish it for users who perform
data entry. Publishing creates a copy of the workbook and prepares it for distribution; for
example, it lets you hide the Design tools and turn on worksheet protection for each
worksheet with a layout.

Alternately, you can use publish to create a clean, unlocked copy. See Publish an Unlocked
Copy.

Publishing is optional. All data editing features of an integrated workbook are available in
both published and unpublished copies of the workbook.

To publish an Excel workbook:

1. Complete configuration of the workbook.

2. Test the configuration thoroughly.

3. Use Excel’s Inspect Workbook feature to review and remove personal information from
the workbook.
Access the Inspect Workbook feature from Excel's File menu. When you use the
Document Inspector to choose content to inspect and potentially remove, ensure that the
Hidden Worksheets check box is not selected. You must not remove hidden worksheets
from workbooks that you distribute because the add-in uses hidden worksheets to
integrate the Excel workbook with the REST service.

4. In the Oracle Visual Builder tab, click Publish.

15-1

The Publish Workbook window opens. If the name of the original workbook ended
with -source (for example, employees-source.xlsx), the add-in will offer the
same name without -source.

5. To change the published workbook's directory and file name, enter the desired
name and location in the Publish Workbook window, or click Browse.
Make sure the published workbook doesn't use the same name as any open
workbook (Excel won't let you use the same name for different workbooks, even if
the file paths are different).

Note:

You cannot publish to a location that starts with http such as OneDrive.

6. In the Publish Workbook window, choose other options for your published
workbook:

Chapter 15

15-2

Check Box Use

Remove the service host from each catalog This check box is selected by default. Leave it
selected to ensure that users must enter the
service host when they open the published
workbook.

This option lets users connect to another
service host to access the REST service.

Clear all authentication properties Select this check box to remove authentication
configuration from the published copy of the
workbook.

If you are distributing a sample workbook
outside of your organization, you may want to
select this option to avoid exposing potentially
sensitive information. You should always choose
this option if the workbook is posted in a public
place.

However, if you are distributing a fully-
configured workbook to business users inside
your organization, you may want to deselect this
option so that the target business users can log
in using the properties you have chosen.

See Authentication Options.

Clear all layouts Select this check box to clear data downloaded
to each layout in the published workbook.

This option lets users download the latest data
from the REST service in the published
workbook.

Clear List of Values Cache Select this check box to clear the list of values
cache in the published workbook.

This option is important if users might have
different choices for a list of values in the
published workbook.

Disable Designer tools Select this check box if you don't want users of
the published workbook to modify its layout.

This option hides the design tools in the
published workbook.

If the add-in was installed with the design tools
already disabled, this option has no additional
effect.

Note:

This check box is disabled if the
workbook uses OAuth2
authentication and Clear all
authentication properties is
selected.

Chapter 15

15-3

Check Box Use

Enable protection for worksheet with layouts Select this check box if you want to prevent
users from modifying read-only fields and
performing Excel actions in the published
workbook.

This option enables Excel's worksheet
protection for each worksheet with a layout.

7. When you have adjusted the settings as required, click Publish.
You'll see a notification in the Status Viewer that the workbook has been published
to the specified directory.

8. Save the source version of the workbook, in case you need to make configuration
changes post-publication.

Now that your workbook is published, you can distribute it to users for data entry.

Differences Between a Published and a Source Workbook
There are a number of differences with respect to the source workbook:

• If the service host value was removed for a workbook, users who open that
workbook and perform an action that requires access to the REST service are
prompted to enter the service host value, as shown here:

Actions that require access to the service include the Download Data and Upload
Changes commands.

Tip:

To change the URL of the service host when you don't have the Design
tools installed, use the Edit Service Host option in the Advanced menu.

• If the Designer tools were disabled, tools such as the Designer, Delete Layout, and
Publish do not appear in the Oracle Visual Builder tab, as shown here:

Chapter 15
Differences Between a Published and a Source Workbook

15-4

• If worksheet protection was enabled and a user tries to modify a read-only field, a
message similar to the following image is shown:

Worksheet protection also prevents the user from performing Excel actions that might
disrupt the workbook's integration with the service. See Understanding Read-Only
Behavior in Managing Data Using Oracle Visual Builder Add-in for Excel.

Publish an Unlocked Copy
If you are distributing a sample integrated workbook and expect the target audience to modify
the configuration, you may want to publish a copy with these settings:

Chapter 15
Publish an Unlocked Copy

15-5

16
REST Service Support

This chapter provides additional technical details about how Oracle Visual Builder Add-in for
Excel supports integration with REST services. It also provides information about technical
known issues and limitations.

Service Types
Oracle Visual Builder Add-in for Excel provides support for the following REST service
frameworks:

• Oracle ADF REST Resource

• Visual Builder Business Objects

• Oracle REST Data Services (ORDS)

• NetSuite SuiteTalk REST Web Services

• Other services

Oracle ADF REST Resource
ADF REST services provide rich service metadata that Oracle Visual Builder Add-in for Excel
can analyze to provide a business object catalog with many details already filled out.

ADF REST services include many services offered by Oracle Cloud Applications. When the
add-in integrates an Excel workbook with ADF REST services, it supports special features
such as:

• Graphical search editor

• Row finders

• Multi-row upload

• Polymorphic business objects

• Custom actions

• Upsert mode

• Business object hierarchies

See Consuming ADF RESTful Web Services.

Support for Date Effective Objects

If you are working with a REST service that includes Date Effective objects, you can
configure a row variable that allows your business users to specify a start date and an
Effective-Of REST request header that references that start date. See Configure a Row
Variable for a Layout and REST Request Headers.

For more information about Data Effective objects in ADF REST services, see Manage Date
Effective Objects in the REST API for Oracle Fusion Cloud HCM guide.

16-1

https://docs.oracle.com/en/cloud/saas/human-resources/23d/farws/Manage_Date_Effective_Objects.html
https://docs.oracle.com/en/cloud/saas/human-resources/23d/farws/Manage_Date_Effective_Objects.html

Visual Builder Business Objects
Oracle Visual Builder Add-in for Excel supports catalogs that consist of custom
business objects from Visual Builder applications that use the Visual Builder Business
Objects (VBBO) API.

Prior to version 3.6, VBBO catalogs were included with ADF REST catalogs as "Oracle
business object REST API" catalogs.

When the add-in integrates an Excel workbook with VBBO, it supports special features
such as:

• Multi-row upload

• Custom actions (known as Object Functions in Visual Builder)

• Graphical search editor

These features are not supported for VBBO:

• Automatic configuration of filter parameters for Lists of Values

• Oracle Fusion Applications Token Relay Authentication

• Row finders

• Polymorphic business objects

See Accessing Business Objects Using REST APIs.

Compatibility

Workbooks with a catalog of type VBBO cannot be used with add-in versions before
3.6.

VBBO catalogs created with versions 3.5 and earlier display an API type of "ADF
REST" in version 3.6 and later. If desired, you can update the API type from the
Advanced tab of the Business Object Catalog Editor.

Oracle REST Data Services
Oracle Visual Builder Add-in for Excel supports Oracle REST Data Services (ORDS)
when you provide OpenAPI service metadata for an ORDS service. ORDS with
AutoREST can provide an OpenAPI service metadata document.

For example, use http(s)://myhost.example.com:8888/ords/hr_demo/open-api-
catalog/employees/ where:

• myhost.example.com:8888 is the host and domain portion

• hr_demo is the schema/application

• employees is the database table

For information about AutoREST, see Automatic Enabling of Schema Objects for
REST Access (AutoREST) in the Oracle REST Data Services Developer's Guide.

For manually-created REST services using ORDS, you'll need to define modules,
templates, and handlers in order to get an OpenAPI service metadata document. See
Manually Creating RESTful Services Using SQL and PL/SQL in the Oracle REST Data
Services Developer's Guide.

Chapter 16
Service Types

16-2

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-4CE630AA-2F06-41D9-96F6-DA77AB1E6395
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-4CE630AA-2F06-41D9-96F6-DA77AB1E6395
https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-C9D763FD-9B74-4A27-9B80-6E500756E464

After importing ORDS service metadata, you can use the Business Object Field Editor to
provide additional information about each field to improve the overall user experience. For
example:

• Edit the field titles

• Designate certain fields as required

• Define lists of values. See Use Lists of Values in an Excel Workbook.

Known Issues with ORDS

Refer to these known issues when planning to use Oracle REST Data Services:

• In some cases, the ORDS server returns Create Failed for rows, when in fact the Create
operation was successful. Re-downloading rows into the table will show the created rows.

• With an ORDS service, the PUT operation on the item path performs an "upsert" (see
Update/Insert Table Row in Oracle REST Data Services Developer's Guide). So if you
are about to update an existing row and someone else deletes that row, your update
attempt may re-create that row. There's no warning or notice when this behavior occurs.

NetSuite SuiteTalk REST Web Services
Oracle Visual Builder Add-in for Excel provides limited support for integrating Excel
workbooks with NetSuite services.

Unlike other services, you'll need to do some manual configuration to the NetSuite catalog to
get up and running.

For layouts that reference parent-child business objects, you'll need to import a catalog and
add required child business objects before you create your layout. If you try to create a layout
without first doing these tasks, the generated catalog will be missing the child business
objects. See Configure a NetSuite Catalog for Parent-Child Business Objects.

You may also be required to configure some fields following Table layout creation. See Add
NetSuite Reference Fields for a Table Layout.

About NetSuite Services
When you create a layout, you'll need to provide an appropriate NetSuite URL for the service
metadata document. You'll also need to provide a config file with OAuth 2.0 settings for your
account since NetSuite services require OAuth 2.0 to authenticate.

To support OAuth 2.0 authentication with the add-in, you'll also need to create a NetSuite
integration record to use with your integrated workbook.

Review this topic for information about NetSuite service metadata, OAuth2 authentication,
and integration records.

NetSuite Concepts

Here are some key NetSuite concepts you should be familiar with:

• Record: The NetSuite concept of a "Record" is roughly equivalent to the concept of
"Business Object" used in this document.

• Reference Field: NetSuite records support a concept known as a "Reference Field"
where a field in one business object can reference a row in a different business object.

Chapter 16
Service Types

16-3

https://docs.oracle.com/en/database/oracle/oracle-rest-data-services/23.4/orddg/developing-REST-applications.html#GUID-A323AA4F-32BE-47B7-9CC2-C0F4C8F4DFBE

For example, the NetSuite "contact" record has a field called "company". The
company field can refer to a customer, partner, vendor, and so on.

For more information on NetSuite services, see SuiteTalk REST Web Services
Overview and Setup in the NetSuite Applications Suite documentation.

NetSuite Service Metadata

NetSuite provides support for retrieving OpenAPI service metadata for NetSuite
records available via REST. For example, to obtain the service metadata for "contact",
use a URL similar to:

https://<YOURACCOUNT>.suitetalk.api.netsuite.com/services/rest/
record/v1/metadata-catalog?select=contact

Note:

The add-in can retrieve and process the entire NetSuite catalog
using ...services/rest/record/v1/metadata-catalog (without ?
select). However, it is very large and takes a long time. So, selecting a
specific record is recommended.

For information on OpenAPI metadata with NetSuite services, see Working with
OpenAPI 3.0 Metadata.

OAuth2 Authentication

NetSuite services require OAuth 2.0 authentication. When you import a catalog or
create a layout, you'll select OAuth 2.0 Authorization Code (PKCE) from the first
screen of the wizard. The add-in then displays a screen for entering the required

authentication properties. This screen includes an Import icon () you can use to
import a JSON configuration file with the required values for your workbook. See
Configure OAuth 2.0 Authorization for a Catalog.

Here is a sample OAuth2 config file for NetSuite:

{
 "type": "oauth2",
 "authorizationCode": {
 "clientId": "<value provided by your account admin>",
 "authorizationEndpoint": "https://
<YOUR_ACCOUNT>.suitetalk.api.netsuite.com/app/login/oauth2/
authorize.nl",
 "redirectionEndpoint": "<value provided by your account admin>",
 "accessTokenScope": "rest_webservices",
 "tokenEndpoint": "https://
<YOUR_ACCOUNT>.suitetalk.api.netsuite.com/services/rest/auth/oauth2/v1/
token"
 }
}

Copy this sample, paste it into a plain text file, then save it with a file name such as
NetSuite-OAuth2-Config.json. You can then ask your NetSuite account admin
to fill in the missing values and return it to you.

Chapter 16
Service Types

16-4

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/chapter_1540391670.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1545126526.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1545126526.html

Note:

If your NetSuite account admin needs some pointers on the missing values, see
#unique_28/
unique_28_Connect_42_GUID-1390C97B-5BE9-4E69-9523-67BA8802F2A1.

Integration Records

If you have not yet created an appropriate NetSuite Integration Record to use with your
integrated workbook, refer to Integration Record Overview and Create Integration Records for
Applications to Use OAuth 2.0 in the NetSuite Applications Suite documentation.

To support OAuth 2.0 authentication with the add-in, the integration record must have these
configuration settings enabled:

• Public Client check box. This is required since the add-in is considered a public client.

• REST Web Services check box

Note:

Make sure to capture the client ID during this process.

Once you have an appropriate integration record, it can be used with multiple different
integrated workbooks that are integrated with NetSuite services that use this account.

For more information on how the add-in supports OAuth2, see OAuth 2.0 Authorization Code
Flow with PKCE.

Configure a NetSuite Catalog for Parent-Child Business Objects
Before you can create a layout or layouts from a NetSuite service that references parent and
child business objects, you'll first need to import the catalog and manually add the required
child business objects. The NetSuite service metadata document does not provide child
paths.

You'll need to complete this task if you want to create a Form-over-Table layout or a Table
layout with one or more dependent layouts at the child level.

Suppose you want to create a Form-over-Table layout with a "Sales Order" business object in
the form and the child business object, "Items", in the table. Because the NetSuite service
metadata document doesn't provide the child path, you won't see the Items child object in the
New Layout Setup wizard when you try to create your Form-over-Table layout.

Instead, you need to start by importing the catalog, then adding the child object. When you do
this, you'll provide the collection and item paths as well as configure path parameters. You'll
also need to add all required fields for the child object.

For more information about parent and child path requirements, see Requirements for
Dependent Layouts.

Chapter 16
Service Types

16-5

https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_4389727047.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157771733782.html
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_157771733782.html

Note:

This task covers adding a child business object, configuring it, and then
adding fields. Before you begin, import your catalog as described in Import a
Business Object Catalog.

To configure a child business object for a NetSuite catalog:

1. Add a child business object to the catalog:

a. Open your new catalog, then open the Business Object Editor for the parent
object, "Sales Order".

b. From the Children tab, click Add Child Business Object ().

2. Configure your new child object:

a. Open the new child business object in the Business Object Editor, then
provide details such as a title and description for the business object.

b. Enter the collection and item paths for the child object.

The collection and item paths may look like this for an Item object.

c. Click the Edit buttons for each path, then edit the path parameters from the
Path Editor.

Add all REST request methods that are supported by the services. This image
shows the GET method configured for the collection path.

Chapter 16
Service Types

16-6

d. From Download tab, make these changes:

• Leave the Offset Parameter Name and Limit Parameter Name fields empty.

• Enter "items" in the Response Payload Items Member Name" field.

3. Add fields for the child object from the Fields tab of the editor. For information about
available fields, see NetSuite REST API Browser.

This image shows configured fields for the Items child object.

Chapter 16
Service Types

16-7

https://system.netsuite.com/help/helpcenter/en_US/APIs/REST_API_Browser/record/v1/2023.1/index.html

When you are finished, create your layouts in the usual way. You'll see the nearly-
added child business object in the New Layout Setup wizard when prompted to
choose a child business object for the table part of a Form-over-Table layout or for a
dependent layout. See Create a Table Layout in an Excel Workbook or Create a Form-
over-Table Layout in an Excel Workbook.

Note:

When the business user edits the form, the downloaded data may be marked
as invalid. If these two conditions are met, then clear the value and upload
changes:

• The cell value is not changed after download but is still marked as
invalid.

• The field's Omit from payload if value is empty check box is selected.

Add NetSuite Reference Fields for a Table Layout
When you create a Table layout for a NetSuite business object, some fields may be
missing due to limitations in the service metadata. Here are the steps to add a
"Company" field for a "contact" business object.

Before you begin, create a Table layout for the contact business object. You'll be
prompted to provide the URL to a service metadata document as well as an OAuth2
configuration file. See About NetSuite Services.

To add a NetSuite reference field:

Chapter 16
Service Types

16-8

1. Open the Business Object Editor for the "contact" business object, then click the Fields
tab.

2. Click Add Field (), then provide details for the Company field:

• ID: company

• Type: Object

• Subfields: Add two subfields of type string with ID values of "company/refName" and
"company/id".

Note:

Keep in mind that IDs are case sensitive and must match the NetSuite
JSON member names exactly.

• Provide Title and Help Text values as desired.

3. Return to the table layout.

Chapter 16
Service Types

16-9

4. From the Layout Designer, click the Columns tab, then click Manage Columns
().

5. From the Table Column Manager, add the subfields to the layout as needed. For
example, you might find it useful to add the "company/refName" to your contact
layout.

Note:

There is no support for including additional fields from the referred record in
the referring table. So, using the example above, you cannot include
additional company (customer, partner, vendor, etc.) fields in the contact
table.

For more information about the contact record, see contact in NetSuite REST API
Browser: Record API v1. See also Format of Selects and References in the NetSuite
Applications Suite documentation.

NetSuite Support Limitations and Known Issues
Here are some things to keep in mind when using creating layouts for NetSuite
records.

Limitations

These NetSuite features are not supported by the add-in:

• Record actions

• Transforming records

• Upsert operation

These add-in features are not currently available for integrated workbooks connected
to NetSuite services:

• Send only changed data

Known Issues

Feature Area Issue Description

Mandatory Properties The add-in cannot properly set
default values for the
"Required for Update" and the
"Required for Create"
properties for a field.

The OA3 service metadata
document does not provide
the "Required" property for
schema members (fields).
You can manually configure
these properties using the
Business Object Field Editor.
See Configure Business
Object Fields.

Chapter 16
Service Types

16-10

https://system.netsuite.com/help/helpcenter/en_US/APIs/REST_API_Browser/record/v1/2023.1/index.html#/definitions/contact
https://docs.oracle.com/en/cloud/saas/netsuite/ns-online-help/section_1545142037.html

Feature Area Issue Description

Data Download Download performance is
suboptimal.

A separate GET request is
needed for each row because
there is no way to get all fields
for several rows in a single
GET request. This limitation
causes performance to suffer.

The GET request for a single
item does not include some of
the expected fields in the
response payload.

For example, "Last Sale Date"
and "Opening Balance" in a
"customer" business object.

Query by Internal ID field
returns an error

Data Upload Some fields in some NetSuite
services do not accept a null
value in a POST/PATCH
request even though the
service metadata document
describes them as "nullable".

Workaround: Review the error
message details to identify the
fields causing the error, then
configure these fields to omit
empty values from the
payload. See Omit Empty
Values During Upload.

After a successful upload to
add or update a row, the row's
values in the layout does not
reflect changes made on the
server.

In this case, the response
does not include the updated
fields.
The user will need to re-
download to see any changes.

When uploading Create/
Update rows, the error
message returned by the
service is missing specific
details.

You instead see a generic
message such as "Error while
accessing a resource. Field
must contain a value." is
returned without indicating
which field it is.

Conflict detection is not
supported

If a user uploads changes to
the service that overwrite
another user's recent
changes, the upload succeeds
with no notification of the
conflict.

Lists of Values List of values are not
configured automatically on
business object fields.

Configure fields with list of
values using a local data
source. See Create a Local
Data Source for a List of
Values and Configure a List of
Values with a Local Data
Source.

Other Services
Oracle Visual Builder Add-in for Excel can also be used with other service types as long as
the service behaves as the add-in expects.

When using another REST service, provide an OpenAPI service metadata document as you
would for other service types. See REST Service Support Limitations for more information on
the add-in's expectations for any service.

Chapter 16
Service Types

16-11

Note:

The graphical search editor is not available for these services but search
parameters can be used. See Use Search Parameters to Limit Downloaded
Data.

Supported Data Types
The add-in supports a variety of data types exposed by business objects in web
applications developed using Visual Builder and data types exposed by REST
services.

The add-in supports the following OpenAPI data types (derived from the JSON
Schema Specification). This table shows how OA3 (JSON) data types are mapped to
the Data Type property for Business Object fields as shown in the Business Object
Field Editor.

JSON Type Business Object Field Data
Type

Notes

boolean Boolean

integer Integer integer is defined as a
JSON number without a
fraction or exponent part.

object Object See the Subfields description
in Configure Business Object
Fields.

number Number

string String

string Date-time When the OA3 format
property is "date-time"

string Date(no time) When the OA3 format
property is "date"

array n/a Not supported

For OA3 properties with type "string", the following format values are explicitly
unsupported:

• time

• binary

• byte

• long-text

Other format values are ignored and the field is mapped to the String data type.

The add-in ignores fields with unsupported data types when you create a Table layout
or Form-over-Table layout in the Excel workbook. If, for example, a service that you
use to retrieve data includes the binary attribute data type, the add-in ignores it and
does not create a column in the data table for this attribute type.

Chapter 16
Supported Data Types

16-12

Note:

File, text, and web page type attachments are supported. See Create Layouts for
Attachment Business Objects.

For more information, refer to the following OpenAPI and JSON resources:

• OpenAPI: https://swagger.io/specification/#dataTypes and https://github.com/OAI/
OpenAPI-Specification/blob/main/versions/3.0.0.md#dataTypes

• JSON: https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00#section-4.2

Business Objects Harvested from OpenAPI Metadata
Oracle Visual Builder Add-in for Excel identifies business objects in an OpenAPI document
primarily by examining the paths defined in the service metadata.

The add-in creates a business object for each collection path defined in the OpenAPI
document. A valid collection path:

• Does not end with a path parameter replacement token like {department_id}
• Defines GET and/or POST operations

Examples of valid collection paths are:

• /Departments
• /Departments/{department_id}/child/Employees
The add-in associates the collection path with any related paths. For example, the add-in
associates an item path with a collection path if the path value is identical with the addition of
a path parameter replacement token at the end. This comparison is case sensitive. An item
path value of /Departments/{department_id} would be correctly associated with a
collection path value of /Departments. In contrast, /Departments and /departments/
{department_id} would not be associated with each other.

A business object is then defined by its collection path, item path (if present), and any other
associated paths (custom actions, for example).

Note:

Certain paths may be ignored by the add-in depending on the service type.

Relationships between business objects are also determined by comparing the path
information. A business object is considered a descendant of another business object if the
collection path value starts with the collection and/or item path of another business object.
This comparison is case sensitive. A business object with collection path /Departments/
{department_id}/child/Employees is a valid child of a business object with collection
path /Departments and item path /Departments/{department_id}.

Chapter 16
Business Objects Harvested from OpenAPI Metadata

16-13

https://swagger.io/specification/#dataTypes
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#dataTypes
https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.0.md#dataTypes
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00#section-4.2

Required Fields
When a business object field is created from service metadata, the initial values of the
Required for update and Required for create properties are set based on the
following OpenAPI property:

• The Required for update value is determined by the request body schema of the
PUT (or PATCH) operation for the item path, along with the OpenAPI Required
array property.

• The Required for create value is determined by the request body schema of the
POST operation for the collection path, along with the OpenAPI Required array
property.

When these PUT/PATCH or POST operations are not available, the Required
properties are set using the response body schema of the collection GET operation
and the OpenAPI Required array property. If the OpenAPI Required array property is
not present in a schema, the corresponding Required property defaults to false.

You can always edit the Required for update and Required for create values in the
Business Object Field Editor. See Configure Business Object Fields.

REST Operations
Table and Form-over-Table capabilities are enabled for GET, PUT, PATCH, POST, and
DELETE operations as follows:

• Download is enabled if there is a GET operation on the collection path. Note that
you must first download rows before you can perform operations on the item path.
Therefore, GET on the collection path is a prerequisite for operations on the item
path such as PUT, PATCH, or DELETE.

• Existing row updates are enabled if the item path has either a PUT or PATCH
operation.
Depending on your configuration, the add-in includes either all data values or just
changed values in editable cells for the changed row(s) on upload. For information
about how to send only changed values, see Send Only Changed Data During
Upload.

• Create new rows is enabled if the collection path has a POST operation.

• Delete existing rows is enabled if the item path has a DELETE operation.

Note:

Even if the business object supports an operation, you can still choose to
disable a layout's capability by deselecting it in the Layout Designer's
Advanced tab.

Chapter 16
Required Fields

16-14

https://json-schema.org/understanding-json-schema/reference/object.html#required-properties
https://json-schema.org/understanding-json-schema/reference/object.html#required-properties

REST Request Headers
If required, you can add HTTP header fields to REST requests used in an upload operation.
You can do this with any REST framework unless noted otherwise.

You can only add request headers to PUT, PATCH, POST, and DELETE operations. Additional
request headers are not supported at download (GET operation).

During an upload, the add-in prepares the REST request as usual with the standard HTTP
header fields. If the corresponding operation has additional headers defined, these values are
evaluated and the headers added.

Reserved headers are skipped with no error. See Notes on REST Request Headers.

The add-in does not validate the header names or values. Be sure to consult the
documentation for your target service before attempting to use request headers. An incorrect
header may result in "Bad Request" errors.

Configure a Request Header
You can add required REST request headers using the Operation Editor available from a
business object’s Business Object Editor.

The value you enter should be a string. If you want to use a non-string value, such as a date
value, consult the REST service documentation to determine how the header should be
formatted.

Header values can also include an expression. If you use an expression, make sure to follow
the Oracle Visual Builder Add-in for Excel expression rules, in particular the rules for
escaping ({ }) and using literal values. Reserved words, other than RowVariables, are not
supported. See About Expressions.

You can define headers for child business objects as well. But keep in mind that, if the child
data is sent in the parent payload, any child headers are ignored since the add-in does not
send requests at the descendent level. See Upload Parent and Child Changes in the Same
Payload.

This feature supports the use of date effective objects in a workbook. Changes to date
effective objects are uploaded to the service based on a range start date. To support this,
you'll need to add a date field, called a "row variable", to your layout that your business users
can use to enter the start date for a row. See Use Row Variables for a Business Object.

To ensure that the add-in only uploads changed rows based on the date in the row variable,
you'll need to create an Effective-Of header for the PATCH operation that uses an
expression to reference the date value in the row variable. See EffectiveOf Headers in Multi-
Row Requests for more information about the use of Effective-Of headers by the add-in.

This task uses the example of an Effective-Of header on the PATCH operation that refers to
a row's row variable, rangeStartDate.

To add an HTTP Request header to a business object:

1. Open the Business Object Editor for the business object. You can open the editor from
the Layout Designer or by clicking Manage Catalogs from the Visual Builder ribbon.

Chapter 16
REST Request Headers

16-15

2. From the General tab, click the Edit button next to the Collection Path or the
Item Path to open the Path Editor. See REST Operations for more information on
paths and operations.

3. From the Path Editor, select the desired operation and click the Edit Operation
icon ().

4. From the Headers tab of the Operation Editor, click Add a new header ().

5. Select the desired header name (or type the name if it is not in the list); for
example, effective-Of. Note that header names are case-insensitive.

6. Type the desired value; for example,
RangeMode=UPDATE;RangeStartDate={ this.BusinessObject.RowVariables['ra
ngeStartDate'].Value }.

Chapter 16
REST Request Headers

16-16

In this example, the RangeStartDate attribute is set to the value of the row variable,
rangeStartDate, in the selected layout.

7. Click Done.

Once you add a header, the workbook can no longer be used with versions 3.6 or earlier.

Before you distribute the workbook, it is recommended that you test the defined headers by
opening the Network Monitor and upload a change using the Upload Changes Data button
from the Oracle Visual Builder ribbon. The Network Monitor shows the add-in's requests and
the service's responses. See Network Monitor.

If you experience issues, try modifying the request header value and then clicking Upload
Changes again.

Notes on REST Request Headers
Review this section for more information on reserved headers and limitations.

Reserved Headers

Some HTTP header fields are reserved by the add-in. If you use one of these headers for a
REST request, the add-in will ignore it.

The reserved HTTP header fields are:

• User-Agent
• Authorization
• Accept
• Content-Encoding
• Host
• Content-Length
• REST-Framework-Version

Chapter 16
REST Request Headers

16-17

• Accept-language
• Accept-Encoding
• Content-Type

Limitations

• Headers defined for GET operations are ignored. These include operations for
download, lists of values (LOV), describe, and so on.

• Request headers are not supported for ADF REST multi-row requests except for
the Effective-Of header. See EffectiveOf Headers in Multi-Row Requests.

• Headers are not supported for attachment business objects.

• Headers are not supported for custom actions.

• For ADF REST services, do not add the Upsert-Mode header on the POST
operation for the collection path. Instead, enable Upsert Mode from the Upload
tab of the Business Object Editor. See Upload Changes Using Upsert Mode.

Natural Language Support
For every request that the add-in makes to the REST service, Oracle Visual Builder
Add-in for Excel automatically adds the accept-language header.

By default, the value sent with the accept-language header is the language/culture
code that Excel is currently configured to use. You can change the language as
described in Change the Add-in's Language.

Each REST service determines how and whether it will react to the accept-
language header.

Object-typed Fields and Subfields
Oracle Visual Builder Add-in for Excel supports fields of type Object. These fields may
expose subfields, also known as "nested" fields.

Consider, for example, an Employee business object with the following fields:

• First Name (type: String)

• Last Name (String)

• Address: (Object)

– Street (String)

– City (String)

– State (String)

– Zip (String)

– GPS Coordinates (Object)

* Latitude (Number)

* Longitude (Number)

• Hire Date (Date)

Chapter 16
Natural Language Support

16-18

In this example, the type of the Address field is Object and it contains subfields. Object fields
should not be confused with arrays. In this example, an Employee has only one Address. The
add-in does not support fields that are typed as arrays.

The add-in handles Object fields and their subfields in the following manner:

1. First, in the Business Object editor Fields tab, only the top-level fields are listed. In this
example, the top-level fields are: First Name, Last Name, Address, and Hire Date. To edit
the properties for subfields of Address, edit Address and find the Subfields list on the
Field Editor window. The direct subfields for Address are Street, City, State, Zip, and GPS
Coordinates. Since GPS Coordinates is of type Object, its field editor will show its
subfields (Latitude, Longitude).

2. Next, when creating a Table layout from a business object's fields, the add-in promotes
the subfields and creates columns for each (leaf) subfield. This maintains a regular,
rectangular structure for the table in the worksheet. So, the above example generates a
table with these columns:

• First Name

• Last Name

• Address / Street

• Address / City

• Address / State

• Address / Zip

• Address / GPS Coords / Latitude

• Address / GPS Coords / Longitude

• Hire Date

REST Service Support Limitations
Refer to these limitations when planning to integrate a workbook with a REST service using
Oracle Visual Builder Add-in for Excel.

Caution:

Many different request and response schema types are possible and we cannot list
all that are compatible with the add-in. If a particular structure is not listed explicitly
as supported, it may not work.

• The add-in supports REST response payloads up to 1 billion characters in size.

• Only REST API services that return application/json media types as response
payloads are supported. The add-in supports application/octet-stream for
attachments. Other media types such as XML are not supported.

• Asymmetrical field lists. Since download, editing, and upload all occurs in the same Excel
rectangular grid, the add-in counts on having a single set of field IDs (JSON member
names) for both download and upload. If the REST service uses different field IDs for the
same information when completing different operations, it cannot be used effectively with
the add-in.

Chapter 16
REST Service Support Limitations

16-19

• Fields with forward slash ('/') in the member name:

– OpenAPI documents contain schema properties that are represented in JSON
as something like "memberName" : { . . . properties describing the
field ... }

– When creating the business object field from the JSON member, the add-in
uses the member name as the field ID.

– Field IDs that include the / character are incompatible with the add-in, so such
members will not be represented as fields in the business object.

• URLs longer than 8000 bytes may fail due to limitations in various network devices
between the add-in and the server.

If a REST service owner makes significant changes to the service after the workbook
is configured to integrate with the service, the integration may not function as
expected. In such cases, you can either re-import the service metadata and create a
new layout, or refresh the business object catalog. If the change is minor, you can
update the business object details to match the change in the service. See Manage
Catalogs and Business Objects.

Chapter 16
REST Service Support Limitations

16-20

17
Internationalization

Oracle Visual Builder Add-in for Excel includes several features that support distributing your
integrated workbook to other locales and in other languages.

These features include:

• A localized add-in

• Support for a user's preferred regional data formats

• Support for translating the integrated workbook using resource bundle files

If a business user opens an integrated workbook in the Chinese edition of Excel, the add-in
displays all add-in labels such as icon labels, menu items, and buttons in the Chinese
language.

If the workbook itself has been translated, the add-in can display Chinese text for strings such
as business object field titles, the form label in a Form-over-Table layout, and workbook's help
text.

Languages and Formats

Refer to this table for the settings used for Add-in, workbook, and REST languages and
formats.

Area Description Controlled By Notes

Add-in labels: language Preferred Add-in
Language

Add-in windows: text
orientation

Add-in windows include
designer windows, task
panes, and pop-ups
displayed to business
users such as Search.

Text orientation is left-to-
right or right-to-left.

Preferred Add-in
Language

17-1

Area Description Controlled By Notes

Workbook labels:
language

Workbook labels include
column headers, help
text, and so on.

This does not include
data from the services.

Preferred Add-in
Language

If translations are
available. See Manage
Workbook Translations.

REST requests: accept-
language header

Preferred Add-in
Language

Results depend on the
service.

Worksheet Cells: non-
string formats

Cell styles and Windows
Regional formats

See Appearance of an
Integrated Excel
Workbook.

Add-in windows: non-
string formats

Add-in windows include
designer windows, task
panes, and pop-ups
displayed to business
users such as Search

Windows Regional
formats

Add-in installer:
language

Windows display
language

Login web browser:
language

Preferred Add-in
Language

You may need to clear
the browser cache when
the preferred language
is changed.

Refer to the following table for internationalization/localization terms and definitions.

Language or Format Definition

Preferred Add-in Language The preferred Add-in Language defaults to
Excel's display language. Users may change
the preferred language. See Change the Add-
in's Language.

Windows Regional formats The Windows Regional format is set from the
Region page. Open Settings and search for
"Region".

Windows display language Windows display language is set from the
Language page. Open Settings and search
for "Language".

Add-in Localization

The add-in is available in over 30 languages. By default, it automatically detects the
user's preferred language from Microsoft Excel and uses that language where
possible. When a business user opens an integrated workbook in Excel, everything in
the add-in is displayed in the desired language—from the Oracle Visual Builder
ribbon's icon labels and menu commands to add-in windows such as the Status
Viewer and the Network Monitor.

The date, date-time, and number formats used by the add-in are also culture-sensitive.
These data format types depend on the business user's preferences as defined in the
Windows region settings. So a US user will see US dates and a French user will see
French dates. See Appearance of an Integrated Excel Workbook.

Chapter 17

17-2

REST Service Localization

The add-in also supports retrieving localized text from your REST service if the service
supports it.

Every request the add-in makes to the service includes the accept-language header. The
language setting specified for Excel is used for requests, including the describe requests that
fetch the initial business object field titles.

Workbook Translations

The add-in also supports localizing text strings in the integrated workbook, such as business
object field titles, variable names, and help text for fields and finders. See Manage Workbook
Translations.

Manage Workbook Translations
If you plan to distribute your integrated workbook in another language, you can extract the
base language file from the workbook and send it for translation. This translation file includes
workbook-specific text strings such as field titles and help text for you to translate into your
target language.
Once translated, simply import translation files for each required language through the add-in.
When you distribute your localized workbook to your business users, the add-in displays the
translated strings if the preferred language is available.

Translate Your Integrated Workbook
To translate your integrated workbook into another language, extract the workbook’s
translation file using Oracle Visual Builder Add-in for Excel and send it for translation. When
you get the translated files back, import them into your workbook.

The extracted translation file only includes text strings that are currently used in your
workbook’s layouts. Field titles, variable names, and help text for fields and finders that are
not in use are not included in the translation file. If you change the configuration of the
workbook, extract the translation file again to pick up any new strings.

Note:

Fields included dynamically from polymorphic business objects are not included in
the translation file.

To translate your workbook:

1. Open the workbook you want to translate.

2. Click the Oracle Visual Builder tab from the Excel ribbon.

3. Choose Manage Translations from the Advanced menu to open the Translation
Manager.

Chapter 17
Manage Workbook Translations

17-3

4. From the Translation Manager, click Extract and save the translation JSON file to
your local drive.

5. Submit the file to your translation team for translation.

When creating a translation file for a specific locale, your translators will translate
the strings and set the locale for the file before sending it back.

6. When you get the translated files back, open the Translation Manager and click
Import.

7. From the Import Translations dialog, navigate to the location of the translated file
or files, then select them.

You can use the Shift and Ctrl keys to select multiple files for import.

8. Click Open to import the files.

9. Save and publish the workbook before distributing it to your business users.

Note:

If business users have a different add-in language setting than the one used
for the integrated workbook, they are prompted to redraw all layouts when
they open the workbook for the first time. If they choose to redraw the
workbook, any data and changes to the layouts are discarded.

Clearing all layouts when the language changes is recommended since
some data, such as lists of values, may be language-sensitive. Downloading
in one language and uploading in a different language may not succeed.

If they choose to skip the redraw, they can manually redraw the workbook
later using either the Clear Layout or Download Data icons from the Oracle
Visual Builder tab.

About Translation Files
A translation file is a JSON file in Application Resource Bundle (ARB) format that
stores the workbook’s translatable strings for a given language. Each translatable
string is stored in a key-value pair and includes additional attributes that help you and
your translators understand the context.

Chapter 17
Manage Workbook Translations

17-4

Here’s an example of an entry for a Business Object field, "First Name", in an Employees
workbook:

 "50689d80-c95c-4353-9032-cf4251d4abec.Title": "First Name",
 "@50689d80-c95c-4353-9032-cf4251d4abec.Title": {
 "context": "layout: TBL731992735, business object: Employees, field:
firstName",
 "description": "The field title used as a column header or a form
label.",
 "source_text": "First Name"
 },

The first line contains the translation key (50689d80-c95c-4353-9032-cf4251d4abec.Title)
and translatable string value (First Name) separated by a colon. The key is a unique ID for
the string in the workbook. The value is the string that your translator will translate into the
target language, for example, “Prénom” for French.

Keep in mind that translation keys are different for each workbook. Two workbooks may have
the same translatable string—say, “First Name”—but these strings will have different keys.
For this reason, you can’t share translation files between workbooks.

Each key-value pair also includes some additional attributes that help translators understand
how to translate the text string: context, description, and source_text. The context and
description provide information about where in the workbook the string is used.

The source text is the original value for the string in the base language. In the base language
file, the source text is always the same as the value. In the translated files, the value is
translated but the source value remains unchanged. The source text value allows someone
to inspect the translations and compare the strings easily.

The translation file also includes some global attributes (prefixed with @@) that apply to the
translation file as a whole. Here is an example of the global attributes (locale, context, and
last_modified) for an Employees workbook:

{
 "@@locale": "en-US",
 "@@context": "Integrated Excel Workbook: employees.xlsx",
 "@@last_modified": "2022-12-07T15:19:16.8664548-05:00",

The locale attribute provides the language code for the text strings stored in this file; in this
case U.S. English (en-US). This is the value that you’ll need to change to indicate the new
language when you translate the file. For Brazilian Portuguese, you’d use the value “pt-BR”.
The locale attribute requires an IETF BCP 47 language tag.

On import, the add-in relies on the value of @@locale to identify the language for the
translation file. The file name is not used for this purpose.

Change the Add-in's Language
You can change the language that the Excel add-in uses. Do this if you want to evaluate your
integrated workbook with different languages.

To change the add-in language:

1. In Excel, click the Oracle Visual Builder tab.

Chapter 17
Change the Add-in's Language

17-5

2. Choose Select Language from the Advanced menu.

3. From the Add-in Language list that appears, select the language you want to use.
The list displays the languages that the add-in supports.

4. Click OK.

5. Clear the embedded browser cache. See Clear the Embedded Browser Cache.

6. Restart Excel to make your changes take effect.

The add-in's user interface elements (Download Data and so on) now use the
language you selected. If the workbook has been localized for the preferred language,
the add-in uses that localization as well.

If the preferred language uses a right-to-left writing system, the add-in's windows
appear in right-to-left mode. The language that Excel uses remains unchanged, as
does the format used for dates, times, and numbers. See Excel or Windows options to
change Excel’s language and formats for dates, times, and numbers. See also Natural
Language Support.

During development, the add-in displays localized text for read-only property values in
the design editors and dialogs. If a property is editable, the add-in displays the default
language (or "base" language) value instead. When working in a language other than
the base language, you may see localized values in some places and base values in
others. When editing a property in the designers, you edit the base value. There is no
change to the translated value already imported regardless of the current preferred
culture.

The language that you choose for the add-in language is stored in a local file in the
Windows user profile. You can select the Use Excel’s Language Setting option in the
Add-in Language drop-down list to remove this setting for the current user.

Chapter 17
Change the Add-in's Language

17-6

Internationalization Notes
• Some login pages used by some services may include a language selector. The

language selector may have some influence over the login page for that service.
However, it has no influence over the language choices for the add-in in general.

• If you change Windows Regional formats, you must restart Excel for the add-in to use the
new settings.

Chapter 17
Internationalization Notes

17-7

18
Security

When using Oracle Visual Builder Add-in for Excel, refer to this topic for security information
including security-related best practices and recommendations.

Security Guidelines
Follow these best practices:

• Update the add-in to the latest version available.

• Restrict access to Excel documents containing sensitive data.

• Consider adding passwords to workbooks to further reduce exposure.

• Always use HTTPS endpoints instead of HTTP.

• Do not use basic authentication.

• Ensure that the latest Windows updates and security patches have been applied to the
computers where you install the add-in.

• Disable deprecated transport layer protocols, such as SSL, TLS 1.0, and TLS 1.1. Refer
to KB5017811—Manage Transport Layer Security (TLS) 1.0 and 1.1 after default
behavior change on September 20, 2022 on the Microsoft Support site.

• Consider using Excel's Inspect Workbook feature (available on Excel's File menu) to
review and remove personal information from the workbook before you distribute it. When
you use the Document Inspector, make sure the Hidden Worksheets check box is not
selected. You must not remove hidden worksheets, because the add-in uses hidden
worksheets to integrate a workbook with the REST service.

Microsoft Components
Oracle Visual Builder Add-in for Excel relies on a number of Microsoft technologies. These
Microsoft technologies are subject to Microsoft's privacy policies and other Microsoft terms.

By installing and using this add-in, you are agreeing to those policies and terms and this add-
in's direct or indirect usage of these technologies. See the Microsoft Privacy Statement.

See also Software Dependencies.

Authentication Options
At log in, the add-in uses the catalog's authentication setting to determine how to log in.

The add-in supports five authentication options:

• Default: At login, the add-in pings an Oracle Cloud Application anti-CSRF servlet
endpoint. If the ping succeeds, Oracle Fusion Applications Token Relay is used. If the
ping fails, Basic authentication is used instead.

• Basic Access Authentication: See Basic Authentication.

18-1

https://support.microsoft.com/en-us/topic/kb5017811-manage-transport-layer-security-tls-1-0-and-1-1-after-default-behavior-change-on-september-20-2022-e95b1b47-9c7c-4d64-9baf-610604a64c3e
https://support.microsoft.com/en-us/topic/kb5017811-manage-transport-layer-security-tls-1-0-and-1-1-after-default-behavior-change-on-september-20-2022-e95b1b47-9c7c-4d64-9baf-610604a64c3e
https://privacy.microsoft.com/en-us/privacystatement

• Oracle Fusion Applications Token Relay: See Oracle Fusion Applications Token
Relay Authentication.

• OAuth 2.0 Authorization Code (PKCE): See OAuth 2.0 Authorization Code Flow
with PKCE.

• No Authentication: There is no prompt for credentials. No authentication-related
headers are added to requests.

You can choose an authentication method when creating a new catalog. You can also
change it later.

For information about how to configure your authentication settings, see Set an
Authentication Method for a REST Service.

Basic Authentication
Oracle Visual Builder Add-in for Excel supports basic authentication.

• When a catalog is configured to use Basic Access Authentication, the business
user is prompted for basic credentials before the first request is sent to that
catalog's endpoints. See Authentication Options.

• The add-in sends the user credentials in the Authorization header for REST
requests to the endpoint. See RFC 7617 for more information.

• When used with HTTP, basic authentication is not secure. Basic authentication
should only be used with HTTPS, and preferably only in non-production
environments.

• Valid credentials for a given service using Basic authentication may be different
from valid credentials for Token Relay.

Oracle Fusion Applications Token Relay Authentication
Oracle Visual Builder Add-in for Excel supports authentication for REST services
exposed by Oracle Cloud applications that use the Oracle Fusion Applications Token
Relay servlet. Refer to this section for technical details on the Token Relay
authentication mechanism.

Topics:

• What Happens During the Login Sequence?

• Token Relay Authentication Test

• Configure Token Relay Authentication for a Catalog

• Requirements for Token Relay Authentication

What Happens During the Login Sequence?
The add-in performs the authentication process just prior to any business operation
initiated by the business user that requires access to the REST service. The add-in
uses an embedded web browser control to host the login interaction sequence
between the workbook user and the Fusion Application (FA) authentication provider.

During a successful login, the add-in captures the necessary authentication tokens
and then uses them with subsequent REST requests. In particular, the access token is

Chapter 18
Authentication Options

18-2

https://datatracker.ietf.org/doc/rfc7617/

sent using the Bearer authentication scheme in the Authorization header. For more
information, see RFC 6750.

The add-in uses these endpoints to get the authentication token:

Endpoint Example

UI home page https://<my-service-host>/fscmUI/
faces/FuseWelcome

Anti-CSRF endpoint https://<my-service-host>/
fscmRestApi/anticsrf

Token relay servlet endpoint https://<my-service-host>/
fscmRestApi/tokenrelay.

Note:

In most cases, <my-service-host> is the catalog host. If a Token Relay Host is
configured, it is used instead. See Configure Token Relay Authentication for a
Catalog.

The login sequence:

1. If the catalog is configured to use the "Default" authentication method, the add-in makes
an initial ping request to the anti-CSRF endpoint.

• If the request returns a 404 or other error, then the add-in abandons the Token Relay
authentication mechanism and falls back to using Basic authentication.

• If the request returns a 200, with content-type application/json, and the payload
contains a non-empty xsrftoken member, then the add-in proceeds with the login
sequence.

Note:

If the catalog is configured to use the "Oracle Fusion Application Token Relay"
authentication method, the initial ping to the anti-CSRF endpoint is skipped.
The ping occurs later during page navigation.

2. The add-in displays a modal pop-up login window that contains an embedded browser
control, and directs the browser control to navigate to the UI Home Page URL. See The
Embedded Browser.

3. Since the business user has not yet successfully logged in, the browser is redirected to a
page with a login form. This form typically contains user name and password fields and a
Submit button.
The login user interface pages are controlled by the FA environment. There could be
multiple steps involved, such as SSO, multi-factor authentication, and so on.

4. Each time a user's gesture or login page logic causes a page navigation event in the
browser, the add-in's event handler is notified and the add-in performs an authentication
test to see whether the user has logged in. See Token Relay Authentication Test.

Chapter 18
Authentication Options

18-3

https://datatracker.ietf.org/doc/html/rfc6750#section-2.1

• If the user has successfully logged in, the login sequence is complete. The
add-in automatically closes the login window and can continue with the REST
request that triggered the login sequence using the harvested authentication
tokens.

• If the user has not yet logged in, the login window remains visible and the add-
in continues listening for page navigation events.

• If the user closes the login window before logging in successfully, the
operation that initiated the authentication process is canceled.

Token Relay Authentication Test
The add-in watches for page transitions in the embedded browser and performs a
Token Relay authentication test to see if the user has successfully logged in. If the
add-in can get a token from the Token Relay servlet using cookies from the embedded
browser, then the user has successfully authenticated.

Details about the test:

1. When each page navigation event is raised from the browser, the add-in sends a
GET request to the anti-CSRF endpoint in order to get an anti-CSRF token.
Once an anti-CSRF token is obtained, the add-in skips this step on subsequent
page navigation events.

2. The add-in then makes a GET request to the Token Relay servlet endpoint. This
request includes the ScopesFQ value, if configured. If the request is denied, the
test fails. Otherwise, on a 200 OK with a response payload of content-type
application/json:

a. The payload is parsed and validated. The access_token member must be
present and non-empty.

b. The value for access_token is captured in memory and used for subsequent
REST requests.

c. If the parsing succeeds, the test is considered to have passed. The login
window is closed, and the target REST request continues.

d. Otherwise, the test is considered to have failed and the login window remains
open.

Configure Token Relay Authentication for a Catalog
When you configure token relay authentication, you're prompted to provide values for
two optional configuration properties: Token Relay Host and ScopesFQ. If your REST
service doesn't require values for these settings, you can leave them blank.

Provide a Token Relay Host value if the Fusion Applications token relay service is
located on a different host than your REST service. If these services are both hosted
on the same pod, you can leave this field blank and Oracle Visual Builder Add-in for
Excel will use the catalog's host instead.

Provide a ScopesFQ value if you want to append a scopesfq query parameter value
when calling the token relay service. If you leave this field blank, the add-in does not
include the scopesfq query parameter.

Consult with your REST service owner or refer to the documentation for your target
REST service to determine the appropriate values for these properties.

Chapter 18
Authentication Options

18-4

These optional authentication properties can be configured when you create a catalog during
layout creation. They can also be configured for an existing catalog from the Business Object
Catalog Editor.

To configure token relay authentication during new layout creation:

1. Launch the New Layout Setup wizard as described in either Create a Table Layout in an
Excel Workbook or Create a Form-over-Table Layout in an Excel Workbook.

2. From the first screen of the wizard, select Oracle Fusion Applications Token Relay
from the Authentication list, then click Next.

The wizard displays a screen for entering token relay properties. This image shows the
screen with sample values in the screen's fields.

Note:

You can also access this screen for an existing catalog from the Advanced
page of the Business Object Catalog Editor. To open this screen, select Oracle
Fusion Applications Token Relay from the Authentication list, then click Edit
Authentication Flow Properties. See Set an Authentication Method for a
REST Service.

3. If the Fusion Applications token relay service is located on a different host than the REST
service, type the token relay host in the Token Relay Host field.

The host should use this format: <protocol>://<host>:<port>. For example:

https://my-pod.fa.ocs.oraclecloud.com:443

Chapter 18
Authentication Options

18-5

Note:

Do not include the path to the Fusion Applications token relay service.

4. If you want to include a scopesfq query parameter, type it in the ScopesFQ field.

If include a value here, the add-in URL-encodes this value and adds it as the
scopesfq query parameter value when calling the token relay service.

5. Click Next to proceed through the New Layout Setup wizard.

The sample values in the image results in this URL (with URL encoding omitted for
readability):

https://my-pod.fa.ocs.oraclecloud.com:443/fscmRestApi/
tokenrelay?scopesfq=urn:opc:resource:fusion:xxx:erp/

Requirements for Token Relay Authentication
Before configuring Token Relay Authentication for an integrated workbook's catalog,
review these requirements:

• The UI Home Page must be protected in such a way that an unauthenticated
request in a browser redirects the browser and initiates a login sequence by
redirecting to a login page.

• The /anticsrf endpoint should allow anonymous ("unauthenticated") access.
The response payload must contain the token in the xsrftoken member.

• The /tokenrelay endpoint must be protected so that only authenticated users,
identified by cookies issued during the browser login sequence, may access it.

• Oracle Fusion Applications Token Relay is only supported for Oracle Cloud
Application deployments that include standardized /anticsrf and /tokenrelay
endpoints with standardized payloads.

OAuth 2.0 Authorization Code Flow with PKCE
Oracle Visual Builder Add-in for Excel supports authentication for REST services using
OAuth 2.0 Authorization Code flow with Proof Key for Code Exchange (PKCE). This
authentication method allows clients like the add-in to authenticate and get an access
token which can then be used to make REST requests to service endpoints.
This authentication method is required by some services such as NetSuite.

The easiest way to configure OAuth is to fill in and import a JSON configuration file
with the required OAuth properties. See Configure OAuth 2.0 Authorization for a
Catalog for the steps to configure OAuth for your workbook.

To configure your workbook to use OAuth 2.0 Authorization Code flow, you'll need to
obtain some authentication details from your REST service owner. See OAuth 2.0
Authorization Properties.

OAuth 2.0 Authorization Properties
In order to configure your workbook to use OAuth 2.0 Authorization Code flow, you'll
need to obtain a client identifier from the security administrator for the service you are

Chapter 18
Authentication Options

18-6

using. You'll also need to provide other details such as required endpoint URLs. Consult with
the REST service owner for help.

Here are the required OAuth properties:

• Client Identifier: The identifier set up for the add-in to use when executing the
authorization flow. Obtain this value from the security administrator for your service.

• Authorization Endpoint: The authorization server endpoint used by the client to obtain
authorization from the resource owner via user-agent redirection.

• Redirection Endpoint: The client endpoint used by the authorization server to return
responses containing the authorization code to the client using the resource owner user-
agent.

• Access Token Scope: The authorization and token endpoints allow the client to specify
the scope of the access request using the "scope" request parameter.

• Token Endpoint: The authorization server endpoint used by the client to exchange an
authorization grant for an access token, typically with client authentication.

Note:

The add-in does not require the Client Secret.

For more information on these properties, see OAuth 2.0 Authorization Framework.

OAuth 2.0 Authorization Code Flow Steps

The authorization flow follows these steps:

1. The add-in starts the login sequence by validating the OAuth2 configuration properties. If
the properties are valid, the flow proceeds.
If the properties are missing or otherwise invalid, then the login attempt is aborted and an
error is reported. For example, an endpoint property that is not an absolute URL is invalid
and results in an aborted login.

2. The add-in constructs a Uniform Resource Identifier (URI) using the Authorization
Endpoint property, along with Client Id and other values saved in the OAuth 2.0
Authorization Code (PKCE) screen.

3. The add-in displays the login browser window and instructs the browser to navigate to
that authorization Uri. See The Embedded Browser.

4. The add-in watches for page transitions and redirects in the browser. All other browser
and user interactions are governed by the logic and configuration of the authorization
server.
There could be multiple pages and steps necessary for the user to provide credentials,
get consent, and so on.

5. When the authorization server redirects the browser back to the Redirection Endpoint,
the add-in closes the browser.
If the Redirect indicates an error, the add-in reports it and aborts the login flow. On a
successful redirect, the add-in performs some validation on the returned values. If that
succeeds, the add-in proceeds with the flow.

6. After a successful redirect, the add-in harvests the authorization code and sends it, along
with other key values, in a POST request to the Token Endpoint.

Chapter 18
Authentication Options

18-7

https://datatracker.ietf.org/doc/html/rfc6749

The Token Endpoint returns an access token, which the add-in then includes in the
Authorization header using the Bearer scheme, when making subsequent REST
requests.

Refer to Authorization Code Grant for information on authorization code flow. See also
Proof Key for Code Exchange by OAuth Public Clients for information on PKCE.

Configure OAuth 2.0 Authorization for a Catalog
You can configure your integrated workbook to authenticate with the REST service
using OAuth 2.0 Authorization code flow. You can provide the required authentication
properties when you create a catalog during the creation of a layout.

You can also configure an existing catalog to use this authentication method from the
Business Object Catalog Editor.

The easiest way to configure this authentication method is to export a blank JSON file
from Oracle Visual Builder Add-in for Excel, fill in the required values, and import the
completed configuration file.

Before you proceed, obtain the required properties from the REST service owner. See
OAuth 2.0 Authorization Properties.

To import a configuration file during new layout creation:

1. Launch the New Layout Setup wizard as described in either Create a Table Layout
in an Excel Workbook or Create a Form-over-Table Layout in an Excel Workbook.

2. From the first screen of the wizard, select "OAuth 2.0 Authorization Code (PKCE)"
from the Authentication list, then click Next.

The wizard displays a screen for entering OAuth 2.0 properties. This image shows
the screen with sample values in the screen's fields.

Chapter 18
Authentication Options

18-8

https://datatracker.ietf.org/doc/html/rfc6749#section-4.1
https://datatracker.ietf.org/doc/html/rfc7636

Note:

You can also access this screen for an existing catalog from the Advanced
page of the Business Object Catalog Editor. To open this screen, select
"OAuth 2.0 Authorization Code (PKCE)" from the Authentication list, then click
Edit Authentication Flow Properties. See Set an Authentication Method for a
REST Service.

3. Click the Export icon () to save a blank JSON file with the required properties to your
local drive.

4. Provide this file to the service owner to fill in.

Here is an example of the JSON file showing sample values:

{
 "type": "oauth2",
 "authorizationCode":
 {
 "clientId": "31415926",
 "authorizationEndpoint": "https://demo/oauth2/v1/authorize",
 "redirectionEndpoint": "https://demo/authorization-redirect",
 "accessTokenScope": "scope1 scope2",
 "tokenEndpoint": "https://demo/oauth2/v1/token"
 }
}

5. When you get the JSON file back with the required values, click the Import icon () to
import the file to the add-in.

6. Click Next to proceed through the New Layout Setup wizard.

OAuth Limitations and Known Issues

Before configuring OAuth 2.0 for an integrated workbook's catalog, review the limitations
here:

• PKCE support is required. See RFC 7636.

• There is currently no support for token Refresh logic.

• For the first step in the OAuth2 flow, the code_challenge is set using
code_challenge_method=S256. "Plain" is not supported.

Service Authorization and User Privileges
In addition to authentication ("who am I"), REST services often enforce authorization ("what
am I allowed to do") on every service request (GET, POST, PATCH, and so on). REST
services may require business users to have specific privileges in order for them to view and
update data.
Oracle Visual Builder Add-in for Excel does not have access to the user identity or any kind of
privilege/role/authorization information and can't check authorization prior to an operation.
Instead, it is the service that enforces authorization and returns an error if the current user is
not authorized to perform the requested operation.

Chapter 18
Service Authorization and User Privileges

18-9

https://datatracker.ietf.org/doc/html/rfc7636

If the workbook is configured to allow an operation the business user is not authorized
for, the user may see an error such as an 403 Forbidden error. For these cases, the
business user should follow up with the REST service owner or system administrator
in order to be granted the appropriate privileges.

Transport Layer Security
When the add-in connects to a REST endpoint using HTTPS, the add-in relies on the
system default behavior for Transport Layer Security (TLS) to determine which TLS
protocol is to be used.

Because the add-in runs within the Excel process, it cannot rely entirely on the .NET
Framework 4.8 default setting to do this. To ensure that the system default behavior is
in effect, the add-in sets the AppContext.DontEnableSystemDefaultTlsVersions
property to false for the current app domain.

See the following Microsoft documentation:

• If your app targets .NET Framework 4.7 or later versions

• Configuring security via AppContext switches (for .NET Framework 4.6 or later
versions)

The Digital Certificate
The artifacts that make up the Oracle Visual Builder Add-in for Excel are signed with a
digital certificate. The digital signature proves the authenticity of these artifacts and
verifies the identity of the publisher, Oracle. Digital signatures are created using
certificates issued from trusted certificate authorities.

Certificates are used to sign artifacts during the product build process. All "sign-able"
artifacts are signed starting with the installer (MSI) file and including all the DLLs that
make up the add-in.

Note:

This topic provides the procedures in Windows Explorer to view and install
the certificate as well as copy the certificate's public key. Be aware that the
steps may be different for different editions and versions of Windows. Check
the documentation for your version of Windows for more information.

Can I inspect the certificate?

You can inspect these certificates before and after installation to verify the authenticity
of the add-in's artifacts.

To do so, navigate to the installer file (vbafe-installer-all-users.msi for the
all-users installer), open the Properties window, then select the Digital Signatures tab.

Chapter 18
Transport Layer Security

18-10

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls#if-your-app-targets-net-framework-47-or-later-versions
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls#configuring-security-via-appcontext-switches-for-net-framework-46-or-later-versions
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls#configuring-security-via-appcontext-switches-for-net-framework-46-or-later-versions

Caution:

If the Digital Signatures tab is missing on the installer, discard the file. It may not be
authentic.

Expired Signatures

An expired certificate doesn't mean that the signature is invalid. A properly timestamped
signature remains valid well after the "valid from/to" date range shown in the certificate.

To get the latest certificate, upgrade to the latest available version of the add-in.

Trusted Publishers

Microsoft Excel offers an optional trust center setting called Require Application Add-ins to
be signed by Trusted Publisher.

To use this feature, install the certificate:

1. From the Digital Signatures tab, select the signature from the Signature list and click
Details.

2. From the Digital Signature Details dialog, select the General tab, then click View
Certificate.

3. From the General tab of the Certificate dialog, click Install Certificate....

4. From the Certificate Import Wizard, choose either Local Machine for the all users
installer or Current User for the current user installer.

5. Click Next.

6. Select Place all certificates in the following store and then click Browse.

7. From the Select Certificate Store dialog, select "Trusted Publisher" and then click OK.

8. Click Next, then Finish to close the wizard.

The certificate now appears in Excel's Trust Center.

Please consult Microsoft documentation for more information.

The Public Key

To get a copy of the public key associated with the add-in's digital certificate:

1. From the Digital Signatures tab, select the signature from the Signature list and click
Details.

2. From the Digital Signature Details dialog, select the General tab, then click View
Certificate.

3. From the Certificate dialog, select the Details tab, then select Public Key from the list.

4. Click Copy to file....

5. Follow the instructions in the Certificate Export Wizard.

The Add-in's Certificate Update Cycle

Oracle acquires a new digital certificate approximately every two years. Once available,
subsequent releases of the add-in are signed with the new certificate.

Chapter 18
The Digital Certificate

18-11

If you have installed the certificate and public key previously, you may need to repeat
that process after you upgrade to a new version of the add-in signed with a new
certificate.

Chapter 18
The Digital Certificate

18-12

19
Troubleshoot Excel Workbooks

If you experience issues with Oracle Visual Builder Add-in for Excel, follow the steps here to
identify and resolve issues. If you still can't resolve your issue, contact Oracle Support.

• Review the documentation to make sure the desired operation is supported.

• Download and run the Client Health Check Tool.

• Make sure you're on a supported platform.

• Upgrade to the latest version of the add-in.

• Apply available Microsoft updates.

• Close all workbooks, exit Excel, and try again with simple steps.

• Generate an add-in log for review. See Logging. If you contact Oracle Support, you may
be asked to provide this log.

• Generate a diagnostic report if required. See Diagnostic Report.

• If you are having an issue with a login page, try clearing the browser cache. See Clear
the Embedded Browser Cache.

• If some Oracle Visual Builder ribbon commands are disabled after you open a
workbook, check the Workbook Info window for details on the issue. See Resolve
Workbook Issues.

Note:

If you are experience network issues such as "bad request" errors during normal
operations, there may be an issue with the REST service. Contact the owners of the
REST service to determine whether the service is providing the expected response.
You can use the Network Monitor to capture details of the request-response pairs to
share with the REST service owners. See Network Monitor for the steps.

For more information about Excel, see Excel specifications and limits.

Check Your Environment
Run the Client Health Check Tool to check if the desktop configuration and environment are
suitable for Oracle Visual Builder Add-in for Excel and to resolve issues.

Download the latest version of the Client Health Check tool (vbafe-health-check.exe)
from the Oracle Downloads page.

1. Run vbafe-health-check.exe and review the result for each examined item.

19-1

https://support.oracle.com/portal/
https://support.microsoft.com/en-au/office/excel-specifications-and-limits-1672b34d-7043-467e-8e27-269d656771c3
https://www.oracle.com/downloads/cloud/visual-builder-addin-downloads.html

Select each failed item () for more details, including the steps necessary to
resolve the issue. If the add-in can resolve the issue, the Fix Problems button is
enabled.

Note:

The Client Health Check tool may also show warnings () if it finds
something that is not optimal. You don't have to resolve warnings in
order to use the add-in but it is recommended. Select each item with a
warning to display information on how to resolve the warning.

2. Click Fix Problems if available or follow the instructions to resolve the issue.

3. If Oracle Support requests a copy of the report:

a. click Save Report As... and choose a name and location for the report.

b. Review the report and remove any sensitive information.

c. Send the report to Oracle Support.

Apply Microsoft Updates
When troubleshooting issues with Oracle Visual Builder Add-in for Excel, we
recommend first applying all pending updates for Windows and Excel before
reproducing the issue. A Microsoft patch may resolve your problem.

1. From the Windows Start menu, select Settings, Update & Security, and then
Windows Update.

2. If updates are available on the Windows Update page, review the updates and
click Install Now.

Chapter 19
Apply Microsoft Updates

19-2

Note:

The details of applying Windows updates can vary from version to version and
also according to your company's IT policy. Check with your system
administrator for assistance, if needed.

Network Monitor
Use the Network Monitor window to inspect the content of REST service calls between your
Excel workbook and the REST service if you encounter unexpected behavior.

The Network Monitor window provides information such as the start time, the elapsed time,
and response for each REST call that originates from the workbook. In addition, it provides
the headers and payloads of each request sent from Oracle Visual Builder Add-in for Excel
and the corresponding response from the service. The window shows up to 100 request-
response events. Older events are discarded as new ones are added.

If you encounter issues with the REST service such as "bad request" errors, you can capture
information about the error in the Network Monitor window and share this information with the
owner of the REST service.

The Network Monitor window generally goes to the background while you perform the steps
of your use case. Bring the window forward to see the details of each request and response.

1. In Excel, click the Oracle Visual Builder tab.

2. Select Network Monitor to open the Network Monitor window.

3. Repeat the steps that led to the issue.

Chapter 19
Network Monitor

19-3

4. Select each request and response line from the upper table to display more details
on the request and response in the panes below.

5. To save the details of a request and response, select an entry for a REST service
call in the upper table, click Save.

Caution:

Request and response payloads may include sensitive information,
including actual data and personally identifiable information. Be sure to
handle these payloads with due care.

Installation Logs
The Oracle Visual Builder Add-in for Excel installer is a Windows installer that
produces standard Microsoft Windows installer logs. If you are having trouble installing
Oracle Visual Builder Add-in for Excel, you can generate and view an installation log
file.

To generate an installation log file, run the installer from the command line and
include /log <log file path>. See Run the Installer from the Command Line.

Chapter 19
Installation Logs

19-4

Add-in log files may include some personal information from the user's computer including,
but not limited to, the computer's name and the end user's Windows profile name. When
uploading files with personal information to a service request, be sure to select the
appropriate option so that the file access can be restricted as needed.

Logging
When reporting an issue about the add-in, generate a detailed log file that captures the steps
that lead to the problem you want to report.

The log file that you generate captures information about steps during an Excel session.

1. In Excel, click the Oracle Visual Builder tab.

2. Select Log Activity from the Advanced menu to specify a directory location and file
name for the log file. This starts the logging session.

3. Repeat the steps that lead to the issue.

4. Exit Excel completely to stop the logging session and before you access the log file.

Note:

The next time you run Excel logging will no longer be enabled.

Caution:

Log files may include personal information from the user's computer including, but
not limited to, the computer's name and the end user's Windows profile name. Be
sure to select the appropriate option when uploading files with personal information
to a service request so that file access can be restricted as needed.

Log Console
The Log Console displays log messages based on the actions performed. If you encounter
any issues, view the logging messages to troubleshoot and diagnose issues.

Note:

If you are trying to provide a log file to support, refer to Logging to generate a log
file, rather than trying to copy log entries from the Log Console.

To review logged messages in the Log Console:

1. In Excel, click the Oracle Visual Builder tab.

2. Select Log Console.
The Logging Console window displays.

3. Repeat the steps that led to the issue.

4. Review the logged messages.

Chapter 19
Logging

19-5

5. Do one or more of the following as required:

• Type a word or phrase in the Filter box to display matching log entries.

• To display more details such as Time, Thread, and Level, click Show Event
Details.

• For verbose logging, click Enable Verbose Output and repeat the steps that
led to the issue.

• Click Clear to discard all log entries.

Diagnostic Report
The diagnostic report contains information that can help resolve issues. Provide a
diagnostic report when reporting a problem with Oracle Visual Builder Add-in for Excel.

1. In Excel, click the Oracle Visual Builder tab.

2. Select Diagnostic Report from the Advanced menu.

3. Save the diagnostic report to a directory location with a file name of your choice.

Note:

The report may include some personal information from the user's computer
including, but not limited to, the computer's name and the end user's
Windows profile name. Be sure to select the appropriate option when
uploading files with personal information to a service request so that the file
access can be restricted as needed.

Re-Enable Oracle Visual Builder Add-in for Excel
If your add-in becomes disabled and you are unable to use the client health check tool,
you can re-enable Oracle Visual Builder Add-in for Excel through Microsoft Excel.

1. In Excel, click File > Options > Add-Ins.

2. Select COM Add-ins in the Manage drop-down list and click Go.

3. Deselect the Oracle Visual Builder Add-in for Excel check box and click OK.

4. Restart Excel.

5. Enable the add-in by repeating the steps and instead selecting the Oracle Visual
Builder Add-in for Excel check box from the Add-ins available list in the COM

Chapter 19
Diagnostic Report

19-6

Add-ins dialog.

Resolve Workbook Issues
If you see an error message when you open a workbook or find that some Oracle Visual
Builder ribbon commands are disabled, Oracle Visual Builder Add-in for Excel has detected
an issue with your workbook. Use the Workbook Info window to troubleshoot these issues.

Your workbook may be unusable for a number of reasons such as if it is marked as final in
Excel or has been saved to an incompatible file type.

To check the status of your workbook, open the Workbook Info viewer by choosing
Workbook Info from the Advanced menu of the Oracle Visual Builder ribbon. This viewer
shows information such as the name, location, and status of your workbook.

Chapter 19
Resolve Workbook Issues

19-7

Check the status for the description of the issue and for any troubleshooting steps.
Issue-free workbooks have a status of "Integrated". Workbooks that are not integrated
with the add-in will show a status of "Not integrated".

In a scenario where a workbook is marked as "final", you'll need to clear the Mark as
Final setting (under File>Info>Protect Workbook), then save and reopen the
workbook.

Note:

Do not use Excel's Edit Anyway button in the yellow message bar to try to
edit the workbook. This command will not re-enable the Oracle Visual
Builder ribbon.

Chapter 19
Resolve Workbook Issues

19-8

20
Migrating an Excel Workbook to Version 3.8

You can migrate an Excel workbook created or modified with version 2.x or 3.x of Oracle
Visual Builder Add-in for Excel to use version 3.8 of the add-in.

This migration is seamless: No special steps are required, other than the usual upgrade
recommendations (see Upgrade to the Latest Version).

In general, your workbook should continue to function after the upgrade as before. If you
want to take advantage of new add-in features, you may need to make some changes to the
workbook configuration.

Note:

Once you configure your workbook to use the latest features, it may no longer be
compatible with the older version of the add-in. Before distributing your updated
workbook, make sure your target audience has access to a compatible version of
the add-in.

Backward Compatibility
Workbooks created with or modified by the latest version of Oracle Visual Builder Add-in for
Excel may not be compatible with earlier versions of the add-in. Refer to this topic for
compatibility restrictions.

A workbook created or modified in version 3.8 is:

• Compatible with versions 3.5 to 3.7 unless a particular incompatible feature was used in
that workbook.

• Incompatible with versions 3.4 and earlier.

If a workbook uses a feature that is incompatible with the installed version, you'll see a
message like this:

20-1

21
Use Expressions in an Integrated Workbook

You can use expressions in search queries, REST request headers, and lists of values to
determine which items are downloaded or uploaded or included in a list of values.

About Expressions
An expression is a string enclosed in curly braces ({ }) that can be evaluated to a single
value at runtime. Expressions can reference configuration properties and dynamic runtime
data.

The value of an operand or an intermediate result in an expression can be a Boolean value,
string, or integer. However, the results of expressions may be converted to strings and
concatenated if needed when resolving the entire property value. See String
Representations.

For any given configuration property that supports expressions, you must escape any curly
braces (\{ or \}) that you wish to use literally.

Let's consider an example of a list of values for an employee JobId field that displays all job
titles from the jobId field from the Jobs business object. To list only the job titles for a given
department based on the DepartmentId of the current row, you could use a query parameter
with the following expression:

DepartmentId={ this.BusinessObject.Fields['DepartmentId'].Value }

where:

• this represents the currently selected field;

• BusinessObject represents the business object to which this field belongs;

• Fields['DepartmentId'] is the field (DepartmentId) associated with the business object;
and

• Value is the value of the field.

You can also use Parent in an expression to refer to an ancestor business object ("parent" or
higher) in a business object hierarchy. For example, to refer to a field in the parent business
object you might use something like this:

ProjectNumber={ this.BusinessObject.Parent.Fields['ProjectNumber'].Value }

Parent can appear multiple times in the expression depending on the level you want to refer
to in your business object hierarchy. To refer to the current business object's great
grandparent business object, you'd use it three times:

ProjectNumber={ this.BusinessObject.Parent.Parent.Parent.Fields['ProjectNumbe
r'].Value }

21-1

Expressions can refer to a:

• Business object field (BusinessObject.Fields['DepartmentId'])

• Row finder variable (Finder.Variables['CountryId'])

• Workbook parameter (Workbook.Parameters['Dept'])

• Row variable (BusinessObject.RowVariables['rangeStartDate'])

Note:

Some workbook configuration properties support expressions and others do
not. Those properties that support expressions may support all reserved
words or only a subset of them. Consult the documentation for each property
to determine what is, and is not, supported.

A Note on Spaces in Expressions

Keep in mind that spaces outside curly braces in an expression are included in the
final string. So, for example, DepartmentId=
{ this.BusinessObject.Fields['DepartmentId'].Value } (space after the equals
sign) would, given a department ID of 100, yield DepartmentId= 100.

The extra space may or may not be important to the service.

Spaces immediately inside curly braces are not significant. For example,
{ this.BusinessObject.Fields['DepartmentId'].Value } is equivalent to
{this.BusinessObject.Fields['DepartmentId'].Value}.

Numbers in Expressions
Some number formats are not supported in expressions. Refer to this table for
supported and unsupported formats.

Here are some examples of how numbers are supported in expressions:

Supported Not Supported

0.123 0,123
.123

123
123.0

123.

-456 +456 (part of literal value instead of doing
addition)

1234 1,234
1 234

1234.567 1,234.567

3.14E2 03.14E2

1.0e10 1e10

Chapter 21
Numbers in Expressions

21-2

Dates in Expressions
Oracle Visual Builder Add-in for Excel supports the use of date type values in expressions.
So, for example, you can pass date values to lists of values filters or REST request header
fields with this support.

Operations

The following operators are supported: +, -, <, <=, >, >=, ==, and !=.

Supported +/- operations are:

• Date + Integer

• Integer + Date

• Date - Date (returns the difference in days as an integer value)

• Date - Integer

Here are some examples of expressions using supported operators. Resulting dates are in
the default yyyy-MM-dd format.

Operation Expression Result

Date + Integer {d'2023-10-24' + 2} 2023-10-26

Integer + Date {-2 + d'2023-10-24'} 2023-10-22

Date - Date {d'2023-10-24' -
d'2023-10-20'}

4

Date - Integer {d'2023-10-24' - 2} 2023-10-22

Date >= Date {d'2023-10-24' >=
d'2023-10-22'}

True

Date != Date {d'2023-10-24' !=
d'2023-10-22'}

True

Literals

A date type literal value must start with a prefix letter d followed by a single-quoted ISO 8601
date ('yyyy-MM-dd'), such as:

d'2020-10-24' or d'2000-01-01'

Functions in Expressions

The add-in supports a couple of functions:

• Today ()
• Format(object obj, string formatString)

Note:

Function names are case-sensitive.

Chapter 21
Dates in Expressions

21-3

The Today () function returns today's date.

Suppose you want to create an expression for a search parameter that returns rows
with hire dates that are later than 90 days before today's date. You would create a
search parameter with a parameter name "q" and a parameter value of:

HireDate > '{ Today() - 90 }'

Note:

In this example, you would select the Allow expressions in Parameter
Value check box.

The Format function returns the string representation of the given date in a given
format using "invariant" culture (a culture that is culture-insensitive). See
InvariantCulture.

It includes two arguments:

• obj is a date. This can be a literal, a cell value from a field whose data type is Date
(no time), the result of Today(), or the result of +/- operations (see the
Operations section in this topic).

• formatString is the date format. Supported formats are:

– yyyy-MM-dd (default)

– MM-dd-yyyy

– dd-MM-yyyy

Take, for example, a service that requires a date in the dd-MM-yyyy format. You would
use the Format function to provide this format rather than the default format, yyyy-MM-
dd, like this:

HireDate > { Format(this.BusinessObject.Fields['HireDate'].Value, 'dd-
MM-yyyy') }

If the HireDate value for the current row is "2023-10-24", the final value of the line is:

HireDate > 24-10-2023

Note:

The resulting string does not include quotation marks. If the service requires
quotes, add them explicitly. For example, to return a value with quotes, like
HireDate > '24-10-2023', use:

HireDate >
'{ Format(this.BusinessObject.Fields['HireDate'].Value, 'dd-MM-
yyyy') }'

Chapter 21
Dates in Expressions

21-4

https://learn.microsoft.com/en-us/dotnet/api/system.globalization.cultureinfo.invariantculture?view=net-7.0

Notes on Dates in Expressions

• Once you configure a property with an expression that relies on date values or date
operations, the workbook is no longer compatible with add-in versions prior to 3.8.

• Date values do not have a time part. Date values do not have a time zone.

• Literal input, operations, and Format () are NOT supported for date-time values (from
fields whose data type is Date-time).

• There is no function that parses a string and returns a date.

String Representations
When Oracle Visual Builder Add-in for Excel evaluates an expression that includes non-string
values—such as Boolean values, dates, and numbers—it converts these values into strings.
Review this table for information on how each data type value is represented as a string.

Data Type String Representation Example

Boolean true or false (note that Excel may
capitalize the first letter or
convert to other values)

false

Date-time Full UTC string representation
(ISO 8601)

2023-10-24T12:33:19Z

Date (no time) Date-only string representation
(ISO 8601)

2023-10-24

Integer No thousand separator 12300000

Number No thousand separator; period
as decimal separator

0.123

Reserved Words Used in Expressions
The Oracle Visual Builder Add-in for Excel expression language includes some reserved
words. Refer to this table for some of the reserved words used in add-in expressions. Please
note that this list is not exhaustive.

Reserved Word Note

this Represents the property owner depending on the
configuration context. For example, when defining
a field's configuration property, "this" represents
the field.

See specific configuration properties for details.

BusinessObject Represents the business object to which the
currently selected field belongs

Parent Represents the parent business object of the
currently selected field's business object in a
business object hierarchy.

Use additional instances in your expression to
refer to higher level business objects, such as
Parent.Parent for the grandparent business
object and so on.

Value Value of a parameter or a field

Chapter 21
String Representations

21-5

Reserved Word Note

SelectWindow Search-and-select window in a list of values

Finder Represents the row finder to which the currently
selected variable belongs

RowVariables Represents a row variable configured for a
business object

Workbook Represents the integrated workbook

Parameters Represents a workbook parameter stored in the
workbook

Literal Values in Expressions
Literal values of certain data types are supported in expressions.

Support is included for these data types:

• Boolean

• String

• Integer or floating-point number

• Date

Boolean and number literal values must be in the form described here. For example, if
you are in a country that uses a decimal comma (,), you must still use a decimal point
or period in your expression.

Data Type Description

Boolean Supported values (case-sensitive, no quotes):
• TRUE
• True
• true
• FALSE
• False
• false

Note:

It's
recommended
that you use
capital case only
(TRUE and
FALSE).

String String literals inside expressions must be
enclosed in single quotes ('). Single quotes
inside string literals must be escaped (\').

Chapter 21
Literal Values in Expressions

21-6

Data Type Description

Integer or Floating-Point Number Only the Western Arabic numerals (0-9) can
be used. Other digits are not supported.

These symbols are supported:

• Leading negative sign (-)
• Decimal separator (.)
• Exponent (E or e followed by an optional

sign and exponential digits)

Note:

This is allowed only when a
decimal separator is present;
for example, when the value is
a floating-point number.

These symbols are not supported:

• Leading positive sign (+)

Note:

The plus sign when used as an
operator is supported.

• Thousand separator such as a space,
period, comma, or underscore

• No digit after the decimal separator

Date A date type literal value must start with a prefix
letter d followed by a single-quoted ISO 8601
date ('yyyy-MM-dd'), such as:

d'2020-10-24' or d'2000-01-01'

Note:

These rules only apply to literal values used in expressions. They do not apply to
data formats used in an Excel cell. For example, you must write 135000 without
thousand separator in this validation rule { this.Value > 135000 } but that validation
rule can be used on an integer field that shows 150,000 or 150.000 in cell.

Operators in Expressions
The Oracle Visual Builder Add-in for Excel expression language supports a number of
operators. Refer to this table for details.

Operator precedence is high to low.

Operator Note

[] . Collection access, object member access

Chapter 21
Operators in Expressions

21-7

Operator Note

() Grouping to change precedence

- ! Unary minus, negation

* / Math (multiplicative)

+ - Math (additive), also + for string concatenation

< > <= >= Relational

== != Equality

&& Logical AND

|| Logical OR

? : Ternary conditional

Examples of Expressions
Here are some sample 'q'-type filter query parameters for use in list of values
configurations.

Parameter Value Use Sample Value Final Parameter
Value

DepartmentId={ th
is.BusinessObject
.Fields['Departme
ntId'].Value }

This string sets the
value of
DepartmentId in the
query to the current
row item's department
Id value.

Department Id is 101 DepartmentId=101

DepartmentId={ th
is.BusinessObject
.Parent.Parent.Fi
elds['DepartmentI
d'].Value }

This string sets the
value of
DepartmentId in the
query to the
department Id value in
the current row item's
"grandparent" layout.

Department Id is 101 DepartmentId=101

FirstName LIKE
'{ SelectWindow.S
earchTerm }*'

This string matches
employees whose first
name begins with the
user-provided search
term entered in the
Search-and-Select
window.

Search term is Steve FirstName LIKE
'Steve*'

CountryId={ this.
Finder.Variables[
'CountryId'].Valu
e }

This string sets the
value of CountryId in
the query to the value
of the current row
finder's CountryId
variable.

Country Id is USA CountryId=USA

DepartmentId={ th
is.BusinessObject
.Fields['Departme
ntId'].Value }
{ SelectWindow.Se
archTerm == '' ?
'' : 'AND

This string includes
two expressions. The
second expression
uses the ternary
operator. It returns
results based on
whether there is a

Department id is 101
and there is no search
term

DepartmentId=101

Chapter 21
Examples of Expressions

21-8

Parameter Value Use Sample Value Final Parameter
Value

FirstName LIKE
\'' +
SelectWindow.Sear
chTerm + '*\'' }

search term in the
search box.
If there is no search
term, the parameter
returns values
matching the current
row item's department
Id value.
If there is a search
term, the parameter
returns results that
match the department
Id and the search
term.
The quotes are all
single quotation
marks. Note also the
enclosed empty
strings and escaped
single quotes.

Department id is 101
and the search term is
Steve

DepartmentId=101
AND FirstName
LIKE 'Steve*'

DepartmentId={ Wo
rkbook.Parameter
s['Dept'].Value }
AND Salary >=
{ Workbook.Parame
ters['MinSal'].Va
lue }

This string sets the
value of
DepartmentId in the
query to the value of
the Dept workbook
parameter and the
value of Salary to the
MinSal workbook
parameter.

The workbook
parameter Dept is 80
and MinSal is 7000.

DepartmentId=80
AND Salary >=7000

Chapter 21
Examples of Expressions

21-9

22
The Embedded Browser

Oracle Visual Builder Add-in for Excel uses the Microsoft WebView2 control as an embedded
web browser to display web pages from inside Microsoft Excel. WebView2 is based on Edge/
Chromium.

The embedded web browser is used to display the log-in web page when authenticating
using Oracle Fusion Applications Token Relay or OAuth 2.0 Authorization Code Flow. See
Authentication Options.

Your default web browser setting in Windows Settings has no effect on the add-in.

The WebView2 Control
Microsoft Edge WebView2 is an embedded web browser based on Edge/Chromium. In order
for Oracle Visual Builder Add-in for Excel to use WebView2, the WebView2 runtime must be
installed on each computer where the add-in runs.

Installation

You can download the runtime from here: https://developer.microsoft.com/en-us/microsoft-
edge/webview2/consumer/.

Note:

The WebView2 runtime may already be present on your computer if you have
Microsoft 365 Apps installed. See Microsoft Edge WebView2 and Microsoft 365
Apps.

Technical Notes

• When installing the WebView2 runtime, choose one of the "evergreen" installers. Do not
choose the "Fixed Version" option.

• Using the WebView Refresh page function in the WebView2 browser can interrupt the
login sequence, particularly if it is performed early in the login sequence. Users should
avoid using Refresh.

• If you encounter a problem with the log-in web page, please contact the page owner.
Such pages are outside the scope of the add-in. Let the page owner know that the page
needs to be compatible with Edge/Chromium. Refer to Feature differences between
Microsoft Edge and WebView2 on the Microsoft web site for more information.

• When the add-in uses the WebView2 browser control, the browser's SmartScreen feature
is disabled. See the Microsoft Defender SmartScreen Frequently Asked Questions or the
documentation for more information.

• The WebView2 browser control uses a user data folder on the local computer to store
browser data, such as cookies, permissions, and cached resources. This folder can be

22-1

https://developer.microsoft.com/en-us/microsoft-edge/webview2/consumer/
https://developer.microsoft.com/en-us/microsoft-edge/webview2/consumer/
https://docs.microsoft.com/en-us/deployoffice/webview2-install
https://docs.microsoft.com/en-us/deployoffice/webview2-install
https://docs.microsoft.com/en-us/microsoft-edge/webview2/concepts/browser-features
https://docs.microsoft.com/en-us/microsoft-edge/webview2/concepts/browser-features
https://fb.smartscreen.microsoft.com/smartscreenfaq.aspx
https://docs.microsoft.com/en-us/windows/security/threat-protection/microsoft-defender-smartscreen/microsoft-defender-smartscreen-overview

found under %LocalAppData%\Oracle\Visual Builder\. For example,
C:\Users\username\AppData\Local\Oracle\Visual
Builder\EBWebView.
To clear the browser cache for the WebView2 browser control, refer to Clear the
Embedded Browser Cache.

See also Manage the User Data Folder in the Microsoft Edge documentation.

• When the add-in uses the WebView2 browser control, it enables some Microsoft
capabilities relating to single sign-on (SSO) with Azure Active Directory, such as
the AllowSingleSignOnUsingOSPrimaryAccount property. See the
AllowSingleSignOnUsingOSPrimaryAccount property in the Microsoft API
Reference.

Clear the Embedded Browser Cache
If required, you can clear the cache for the embedded browser to get rid of all browser
data including profile data such as history, bookmarks, and cookies. You may want to
try clearing the browser cache if, for example, you are having an issue with a login
page.

To clear the cache for the embedded browser, choose Clear Embedded Browser
Cache from the Advanced menu.

Chapter 22
Clear the Embedded Browser Cache

22-2

https://docs.microsoft.com/en-us/microsoft-edge/webview2/concepts/user-data-folder
https://docs.microsoft.com/en-us/microsoft-edge/webview2/reference/winrt/microsoft_web_webview2_core/corewebview2environmentoptions?view=webview2-winrt-1.0.1108.44#allowsinglesignonusingosprimaryaccount

Note:

You can also clear this cache by simply deleting the EBWebView folder at
%localappdata%\Oracle\Visual Builder\EBWebView. The browser
recreates the folder when the add-in next accesses the browser.

Chapter 22
Clear the Embedded Browser Cache

22-3

23
Accessibility Support

Oracle Visual Builder Add-in for Excel supports the use of assistive technologies to read
status information, such as progress bar messages, without receiving keyboard focus. To
enable this functionality, you need to modify Excel's configuration.

To enable this accessibility functionality, you'll need to create an excel.exe.config file in
the same folder as the Excel executable (excel.exe).

Note:

If the Excel executable is installed in a location that requires elevated permissions—
for example: C:\Program Files (x86)\Microsoft
Office\root\Office16—get an administrator to create the file.

The excel.exe.config file should look like this:

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <runtime>
 <AppContextSwitchOverrides
value="Switch.UseLegacyAccessibilityFeatures=false;Switch.UseLegacyAccessibil
ityFeatures.2=false;Switch.UseLegacyAccessibilityFeatures.3=false;Switch.UseL
egacyAccessibilityFeatures.4=false;Switch.UseLegacyAccessibilityFeatures.5=fa
lse" />
 </runtime>
</configuration>

WARNING:

Creating or changing the contents of the excel.exe.config file could have
unintended consequences on the operation of Excel and other installed add-ins.

23-1

24
Third Party Licenses

Oracle Visual Builder Add-in for Excel includes third-party software which requires the user to
reproduce all copyright notices, permission notices, conditions, and disclaimers. The
following third-party software license information is reproduced here in compliance with the
terms of these licenses.

Microsoft.OpenApi, Version 1.6.10

Copyright (c) Microsoft Corporation. All rights reserved.

MIT License

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Microsoft.Web.WebView2, Version: 1.0.1774.30

Copyright (c) Microsoft Corporation. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• The name of Microsoft Corporation, or the names of its contributors may not be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

24-1

SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

NewtonSoft.Json, Version 13.0.3

The MIT License (MIT)

Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

SharpYaml, Version 2.1.0

Copyright (c) 2013-2022 SharpYaml - Alexandre Mutel

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Chapter 24

24-2

SharpYaml is a fork of YamlDotNet https://github.com/aaubry/YamlDotNet published with the
following license:

Copyright (c) 2008, 2009, 2010, 2011, 2012 Antoine Aubry

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

The following is additional License Text from the file CharHelper.cs at the root of SharpYaml
folder in the source folder

==
===

// Code from coreclr with MIT License // https://github.com/dotnet/coreclr/blob/
e3eecaa56ec08d47941bc7191656a7559ac8b3c0/src/mscorlib/shared/System/
Char.cs#L1018 // Licensed to the .NET Foundation under one or more agreements. //
The .NET Foundation licenses this file to you under the MIT license. // See the LICENSE file
in the project root for more information.

Content of License Text from the License.txt file at the root folder of the sources at https://
github.com/dotnet/coreclr

===

The MIT License (MIT)

Copyright (c) .NET Foundation and Contributors

All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

Chapter 24

24-3

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Content of Patents.txt file at the root folder of the sources at https://github.com/dotnet/
coreclr

===

Microsoft Patent Promise for .NET Libraries and Runtime Components

Microsoft Corporation and its affiliates ("Microsoft") promise not to assert any .NET
Patents against you for making, using, selling, offering for sale, importing, or
distributing Covered Code, as part of either a .NET Runtime or as part of any
application designed to run on a .NET Runtime.

If you file, maintain, or voluntarily participate in any claim in a lawsuit alleging direct or
contributory patent infringement by any Covered Code, or inducement of patent
infringement by any Covered Code, then your rights under this promise will
automatically terminate.

This promise is not an assurance that (i) any .NET Patents are valid or enforceable, or
(ii) Covered Code does not infringe patents or other intellectual property rights of any
third party. No rights except those expressly stated in this promise are granted,
waived, or received by Microsoft, whether by implication, exhaustion, estoppel, or
otherwise. This is a personal promise directly from Microsoft to you, and you agree as
a condition of benefiting from it that no Microsoft rights are received from suppliers,
distributors, or otherwise from any other person in connection with this promise.

Definitions:

"Covered Code" means those Microsoft .NET libraries and runtime components as
made available by Microsoft at https://github.com/dotnet/coreclr, https://github.com/
dotnet/corefx and https://github.com/dotnet/corert.

".NET Patents" are those patent claims, both currently owned by Microsoft and
acquired in the future, that are necessarily infringed by Covered Code. .NET Patents
do not include any patent claims that are infringed by any Enabling Technology, that
are infringed only as a consequence of modification of Covered Code, or that are
infringed only by the combination of Covered Code with third party code.

".NET Runtime" means any compliant implementation in software of (a) all of the
required parts of the mandatory provisions of Standard ECMA-335 – Common
Language Infrastructure (CLI); and (b) if implemented, any additional functionality in
Microsoft's .NET Framework, as described in Microsoft's API documentation on its
MSDN website. For example, .NET Runtimes include Microsoft's .NET Framework and
those portions of the Mono Project compliant with (a) and (b).

"Enabling Technology" means underlying or enabling technology that may be used,
combined, or distributed in connection with Microsoft's .NET Framework or other .NET
Runtimes, such as hardware, operating systems, and applications that run on .NET
Framework or other .NET Runtimes.

Chapter 24

24-4

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Third-Party Content, Products, and Services Disclaimer
	Related Resources
	Conventions

	1 What's New in Release 3.8.0
	New and Changed Features

	2 Introduction to Oracle Visual Builder Add-in for Excel
	Key Concepts, Components, and Terms
	Installation
	Next Steps

	3 Install Oracle Visual Builder Add-in for Excel
	Install Using the All Users Installer
	Install Using the Current User Installer
	Run the Installer from the Command Line
	Upgrade to the Latest Version
	Check for Updates
	Upgrade Policy

	Uninstall the Oracle Visual Builder Add-in for Excel
	Software Dependencies
	Supported Platforms

	4 Create Layouts in an Excel Workbook
	Create a Table Layout in an Excel Workbook
	Work with Service Path Parameters in a Table Layout
	Create a Form-over-Table Layout in an Excel Workbook
	Manage Fields in a Form or Table
	Create Layouts for Attachment Business Objects
	Use Polymorphic Business Objects and Fields
	About Polymorphic Business Objects
	Check the Cardinality of Child Polymorphic Business Objects
	Create a Layout Using Descriptive Flexfields
	Add Descriptive Flexfields to a Layout
	Show or Hide Context-Sensitive Columns in a Table Layout
	Refresh Polymorphic Business Object Metadata
	Polymorphic Support Limitations

	Manage Layout Capabilities
	Layout Limitations

	5 Manage Catalogs and Business Objects
	Add Business Objects to an Existing Catalog
	Import a Business Object Catalog
	Create a Business Object Catalog from a Data Sample
	Configure Business Object Fields
	Set an Authentication Method for a REST Service
	Override a Business Object's Base Path
	Manage Metadata Path Information
	Configure Pagination for a Business Object
	Configure Row Finders for a Business Object
	Use Row Variables for a Business Object
	Configure a Row Variable for a Layout

	Configure GZIP Compression for Request Payloads
	Refresh a Business Object Catalog
	Configure the REST-Framework-Version

	6 Configure Search Options for Download
	Use Search to Find Required Data
	Use Row Finders to Limit Downloaded Data
	Use Search Parameters to Limit Downloaded Data
	Use Workbook Parameters in a Search
	Create a Search Using Embedded Values
	Embedding Workbook Parameters in a Workbook

	7 Download Data
	Table Download
	Form-over-Table Download
	Dependent Layout Download
	Configure Download to Use a Single Payload
	Notes and Limitations of Single Payload Downloads

	Notes on Download Behavior

	8 Custom Actions
	Edit Custom Actions
	Add Custom Action Fields to a Table Layout
	Service Metadata for Custom Actions
	Multi-Row Mode for Custom Actions
	Notes on Custom Actions

	9 Use Lists of Values in an Excel Workbook
	About Lists of Values
	Configure a List of Values with a Business Object
	Configure a Filter for a List of Values
	Configure a Filter for a Search Term Only
	Configure a Filter to Limit Available Choices
	Configure a Filter with a Dynamic Parameter
	Configure a Cascading List of Values
	Notes on Filters

	Create a Local Data Source for a List of Values
	Configure a List of Values with a Local Data Source
	List of Values for Descriptive Flexfields
	Configure the Bind Parameters for a Descriptive Flexfield's List of Values

	Clear Cache for a List of Values
	Refresh Parameter Definitions for a Lists of Values
	Notes and Limitations for Lists of Values

	10 Appearance of an Integrated Excel Workbook
	Reset Workbook Styles
	Choose Field Formats
	Set a Default Value for a Business Object Field
	Add Help Text to Your Workbook
	Copy Descriptions to Help Text

	11 Data Validation
	About Custom Field Validation Rules
	Create Field Validation Rules
	Notes on Custom Field Validation Rules

	12 Upload Changes
	Upload Changes from a Table Layout
	Upload Changes from a Form-Over-Table Layout
	Invoke Custom Actions via Upload
	Upload Table Changes Using Separate Requests for Each Row
	Upload Changes Using Multi-Row Requests
	About Multi-Row Processing
	Configure Multi-Row Uploads
	Disable Multi-Row Requests for Upload
	EffectiveOf Headers in Multi-Row Requests

	Upload Parent and Child Changes in the Same Payload
	Notes and Limitations of Single Payload Uploads

	Upload Changes Using Upsert Mode
	Omit Empty Values During Upload
	Send Only Changed Data During Upload
	Data Consistency
	Enable Parallel Requests During Upload

	13 Use Multiple Layouts for Multi-level Business Objects
	Create a Set of Dependent Layouts
	Add a Layout to a Set of Dependent Layouts

	Add Ancestor Columns to Dependent Layouts
	Add a Parent Column to Support Row Creation
	Add Ancestor Columns to Provide Additional Context

	Filter Data for a Set of Dependent Layouts
	Download, Upload, and Clear Operations on Dependent Layouts
	Delete a Dependent Layout
	Requirements for Dependent Layouts

	14 Use Macros in an Integrated Excel Workbook
	15 Publish an Integrated Excel Workbook
	Differences Between a Published and a Source Workbook
	Publish an Unlocked Copy

	16 REST Service Support
	Service Types
	Oracle ADF REST Resource
	Visual Builder Business Objects
	Oracle REST Data Services
	NetSuite SuiteTalk REST Web Services
	About NetSuite Services
	Configure a NetSuite Catalog for Parent-Child Business Objects
	Add NetSuite Reference Fields for a Table Layout
	NetSuite Support Limitations and Known Issues

	Other Services

	Supported Data Types
	Business Objects Harvested from OpenAPI Metadata
	Required Fields
	REST Operations
	REST Request Headers
	Configure a Request Header
	Notes on REST Request Headers

	Natural Language Support
	Object-typed Fields and Subfields
	REST Service Support Limitations

	17 Internationalization
	Manage Workbook Translations
	Translate Your Integrated Workbook
	About Translation Files

	Change the Add-in's Language
	Internationalization Notes

	18 Security
	Security Guidelines
	Microsoft Components
	Authentication Options
	Basic Authentication
	Oracle Fusion Applications Token Relay Authentication
	What Happens During the Login Sequence?
	Token Relay Authentication Test
	Configure Token Relay Authentication for a Catalog
	Requirements for Token Relay Authentication

	OAuth 2.0 Authorization Code Flow with PKCE
	OAuth 2.0 Authorization Properties
	OAuth 2.0 Authorization Code Flow Steps
	Configure OAuth 2.0 Authorization for a Catalog
	OAuth Limitations and Known Issues

	Service Authorization and User Privileges
	Transport Layer Security
	The Digital Certificate

	19 Troubleshoot Excel Workbooks
	Check Your Environment
	Apply Microsoft Updates
	Network Monitor
	Installation Logs
	Logging
	Log Console
	Diagnostic Report
	Re-Enable Oracle Visual Builder Add-in for Excel
	Resolve Workbook Issues

	20 Migrating an Excel Workbook to Version 3.8
	Backward Compatibility

	21 Use Expressions in an Integrated Workbook
	About Expressions
	Numbers in Expressions
	Dates in Expressions
	String Representations
	Reserved Words Used in Expressions
	Literal Values in Expressions
	Operators in Expressions
	Examples of Expressions

	22 The Embedded Browser
	The WebView2 Control
	Clear the Embedded Browser Cache

	23 Accessibility Support
	24 Third Party Licenses

