
Oracle® Cloud
Using Oracle WebLogic Server for OKE

F48259-50
May 2024

Oracle Cloud Using Oracle WebLogic Server for OKE,

F48259-50

Copyright © 2020, 2024, Oracle and/or its affiliates.

Primary Author: Oracle Corporation

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation Accessibility x

Diversity and Inclusion x

1 Get Started

About Oracle WebLogic Server for OKE 1-1

About the Components of Oracle WebLogic Server for OKE 1-2

Oracle WebLogic Server 1-5

JRF Domain 1-5

Marketplace 1-6

Resource Manager 1-6

Container Engine for Kubernetes 1-6

Registry 1-7

WebLogic Server Kubernetes Operator 1-8

Helm 1-8

Verrazzano 1-8

Jenkins 1-9

Compute 1-9

Storage 1-10

Virtual Cloud Network 1-11

Load Balancer 1-12

Database 1-13

Vault 1-14

Identity 1-14

About the Application Lifecycle with Oracle WebLogic Server for OKE 1-15

About Oracle WebLogic Server for OKE Versions and Retirement Policy 1-16

About Jenkins Pipeline 1-16

Pipeline Jobs 1-17

Pipeline Jobs With Verrazzano Installation 1-19

2 Create a Stack

About Creating a Stack 2-1

iii

Prerequisites to Create a Stack 2-2

Understand Service Requirements 2-2

Create a Compartment 2-3

Create Compartment Policies 2-3

Create Root Policies 2-5

Create an Auth Token 2-5

Create an Encryption Key 2-5

Create an SSH Key 2-6

Create a Virtual Cloud Network 2-6

Create a Subnet for the Kubernetes Cluster 2-7

Create a Subnet for the Administration Host 2-7

Create a Subnet for the Bastion Host 2-8

Create a Subnet for the Load Balancer 2-9

Create a Subnet for the File System 2-10

Validate Existing Network Setup 2-10

Using the Validation Script 2-11

Create Dynamic Groups and Policies 2-12

Create a Dynamic Group 2-12

Create Policies for the Dynamic Group 2-13

Create a Stack 2-13

Launch a Stack 2-14

Configure Stack Information 2-14

Configure WebLogic Server on Container Cluster 2-15

Configure Verrazzano 2-15

Configure the Network 2-17

Configure the Container Cluster 2-20

Create a Container Cluster 2-21

Use an Existing Cluster 2-22

Configure the Container Cluster with Verrazzano 2-22

Configure the Administration Instances 2-24

Configure the File System 2-25

Configure the Registry 2-25

Create OCI Policies 2-26

Create the Stack 2-26

Troubleshoot a Stack 2-26

View the Cloud Resources for a Stack 2-27

About the Resources in a Stack 2-27

Compute Instances 2-28

Network Resources 2-28

Load Balancers 2-29

Kubernetes Resources 2-29

File System Resources 2-30

iv

Registry Resources 2-30

Identity Resources for Dynamic Group and Root Policies 2-31

3 Manage WebLogic Domains

About Managing a WebLogic Domain 3-1

About WebLogic Deploy Tooling 3-1

Project Components 3-2

Access Resources 3-3

Access the Administration Instance 3-3

Access the Jenkins Console 3-4

Access the WebLogic Console 3-6

Create a WebLogic Domain 3-8

About Creating a Domain 3-8

Prerequisites to Create a Domain 3-9

Create Policies for the Dynamic Group 3-9

Create a Database 3-10

Create a Confidential Application 3-11

Approve Scripts to View Parameters 3-12

Validate Existing Network Setup 3-12

Create a Domain 3-14

Provision a Non-JRF Domain 3-15

Provision a JRF Domain 3-20

Update a WebLogic Domain 3-22

Create a Custom Base Image 3-22

Update a Domain Configuration 3-24

Update a Model in Image Domain 3-24

Update a Domain on a Persistent Volume 3-27

Update the Base Image 3-27

Patch a Domain 3-27

Apply a WebLogic Server Patch 3-28

Automatic Patching 3-29

Step 1: Subscribe or unsubscribe domains for automatic patching 3-29

Step 2: Schedule automatic patching 3-30

Troubleshoot a WebLogic Domain 3-30

Terminate a WebLogic Domain 3-30

Create a JRF Domain on a Persistent Volume Manually 3-31

About Domain on Persistent Volume 3-32

Prerequisites to Create a Domain on a Persistent Volume 3-32

Obtain the Base Image to Create the JRF Domain 3-32

Create a Kubernetes Namespace for the JRF Domain 3-33

Create the Kubernetes Secrets for the JRF Domain 3-33

v

Create the Persistent Volume and the Persistent Volume Claim 3-34

Create the JRF Domain 3-35

Download the Scripts 3-36

Create the RCU Schema 3-36

Use the Scripts to Create the JRF Domain 3-36

Verify the Domain 3-41

Rebase the Existing Base Image for the JRF Domain 3-41

Apply the Patched Images to the Running JRF Domain 3-42

Delete the Generated Domain Home 3-42

4 Manage WebLogic Domains in Verrazzano

About Managing a WebLogic Domain 4-1

About WebLogic Deploy Tooling 4-1

Project Components 4-2

About Verrazzano WebLogic Components and Application Configuration 4-3

Access Resources 4-4

Access the Administration Instance 4-4

Access the Jenkins Console 4-5

Access the Verrazzano Consoles 4-7

Access the WebLogic Console 4-9

Create a WebLogic Domain 4-11

About Creating a Domain 4-11

Prerequisites to Create a Domain 4-11

Create Policies for the Dynamic Group 4-12

Validate Existing Network Setup 4-13

Create a Domain 4-14

Create a Domain as a Component 4-15

Register a Component 4-17

Create an Application Configuration 4-17

Register an Application 4-17

Update a WebLogic Domain 4-18

Create a Custom Base Image 4-18

Update a Domain Configuration 4-20

Rebase a Component Image 4-22

Upgrade Verrazzano 4-22

Troubleshoot a WebLogic Domain 4-24

Terminate a WebLogic Domain 4-24

Unregister an Application 4-25

Unregister a Component 4-25

Terminate a Component 4-25

vi

5 Managing Resources

About Data Sources 5-1

Prerequisites to Create a Data Source 5-2

Create a Data Source for an ATP Database 5-2

Download the ATP Wallet 5-4

Create a Data Source for a DB System Database 5-5

Create a Multi Data Source for a RAC Database 5-6

Create an Active GridLink Data Source for a RAC Database 5-9

Authenticate by using an External LDAP Server 5-10

Prerequisites 5-10

Add a new OpenLDAP Authenticator to the Domain 5-11

Enable SSL Support 5-12

Verify the Authenticator 5-15

Create JMS Resources 5-15

Configure SSL Certificate for a Load Balancer 5-16

Set the JVM Arguments Definition 5-17

Session Persistence Considerations 5-18

Enabling session affinity or sticky sessions at the ingress controller 5-18

Monitor a WebLogic Domain 5-21

About the Security Checkup Tool 5-21

Component Health Check 5-23

Check the Health of a Cluster 5-23

Check the Health of a Load Balancer 5-24

Check the Health of a WebLogic Domain 5-26

Start and Stop Servers 5-27

Scale a WebLogic Cluster 5-28

Scale the Node Pools 5-28

Update the Repository Schema Utility Password using Secrets 5-29

Update the Oracle Cloud Infrastructure Registry Auth Token Credentials 5-32

Upgrade the Kubernetes Version 5-34

Determine the Version of the Cluster and Node Pools 5-35

Upgrade Cluster and Node Pool Using Script 5-35

Upgrade the NGINX Image Version 5-37

Template Files 5-41

Upgrade the WebLogic Kubernetes Operator 5-51

Upgrade the WebLogic Kubernetes Operator to 3.4.4 5-51

Upgrade the WebLogic Kubernetes Operator to 4.0.5 5-53

Log File and Script Files 5-56

Upgrade the Tools in Oracle WebLogic Server for OKE 5-79

Upgrade WebLogic Deploy Tooling 5-79

Back Up and Restore a Model in Image Domain 5-79

vii

Back Up and Restore a Domain on PV 5-81

Back Up the Domain 5-81

Back Up the Domain Home Directory 5-81

Back Up the JRF Domain 5-82

Restore the Domain 5-83

Restore the Domain From the Backup 5-83

Restart the Domain After the Restore 5-84

Back Up the File Storage 5-85

6 Delete a Stack

7 Troubleshoot and Known Issues

Troubleshoot a Stack 7-1

Stack Creation Failed 7-1

Nodepools are not Recreated with the Latest Kubernetes Version 7-3

Load Balancer Creation Failed 7-3

Check the Status of the Load Balancers 7-4

Reinstall the Load Balancer 7-4

Troubleshoot a WebLogic Domain 7-5

Patching Job Fails 7-6

Provisioning Fails at a Specific Stage 7-7

Unable to View Jenkins UI Input Parameters 7-7

Cleanup Resources Manually for a Failed Domain 7-8

Terminate Domain Job Is Stuck at Finish_cleanup Phase 7-8

Introspection Failed when Running Pipeline Jobs 7-9

New Data Source Incorrectly Deployed 7-11

WebLogic Server Pod Fails to Start 7-11

Unable to Access the Console or the Application 7-12

Load Balancer Creation Failed 7-13

Jenkins Installation Fails 7-13

Check if Jenkins Install Failed During Provisioning 7-13

Install Jenkins Manually 7-14

T3 RMI Communication Between Domains Fails 7-15

Unrecognized Arguments When Using the Patching Utility Tool 7-17

Security Checkup Tool Warnings 7-17

Revert the Jenkins Installation to the Original State 7-20

Troubleshoot a WebLogic Domain in Verrazzano 7-21

Patching Job Fails 7-21

Provisioning Fails at a Specific Stage 7-23

Unable to View Jenkins UI Input Parameters 7-23

viii

Cleanup Resources Manually for a Failed Domain 7-23

Verrazzano Installation Failed 7-24

Unable to Access the Verrazzano Console 7-24

Introspection Failed when Running Pipeline Jobs 7-24

New Data Source Incorrectly Deployed 7-26

WebLogic Server Pod Fails to Start 7-26

Load Balancer Creation Failed 7-28

Jenkins Installation Fails 7-28

Check if Jenkins Install Failed during Provisioning 7-28

Install Jenkins Manually 7-29

T3 RMI Communication Between Domains Fails 7-30

Unrecognized Arguments When Using the Patching Utility Tool 7-32

Security Checkup Tool Warnings 7-32

Get Additional Help and Contact Support 7-35

8 Patches

About Patching Utility Tool 8-5

Patch Management Using Patching Utility 8-5

View Patching Tool Version 8-6

Configure Initial Setup 8-6

List Patches 8-7

View Patch Details 8-9

Download Patches 8-9

Upgrade Patching Tool 8-10

A Oracle Cloud Identifiers and Listings

B License Information

C Script Files

Script File To Validate Network Setup C-1

Script File to Update SSL Certificate for Load Balancer C-13

Script File To Upgrade Cluster and Node Pool C-15

ix

Preface

Using Oracle WebLogic Server for OKE explains how to create a stack in Oracle Cloud
Infrastructure Marketplace, and then use the Jenkins CI/CD pipeline jobs to create a domain
for developing Java Enterprise Edition (Java EE) applications, and deploy and integrate these
applications to build the domain.

Topics:

• Documentation Accessibility

• Diversity and Inclusion

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility
Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My
Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having a
diverse workforce that increases thought leadership and innovation. As part of our initiative to
build a more inclusive culture that positively impacts our employees, customers, and partners,
we are working to remove insensitive terms from our products and documentation. We are also
mindful of the necessity to maintain compatibility with our customers' existing technologies and
the need to ensure continuity of service as Oracle's offerings and industry standards evolve.
Because of these technical constraints, our effort to remove insensitive terms is ongoing and
will take time and external cooperation.

Preface

x

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

1
Get Started

Learn about the architecture and features of Oracle WebLogic Server for Oracle Cloud
Infrastructure Container Engine for Kubernetes (Oracle WebLogic Server for OKE), and
perform any prerequisite tasks.

Note:

If you are using Oracle WebLogic Server for OKE (Release 21.3.2 or earlier), see
Using Oracle WebLogic Server for OKE (Release 21.3.2 or earlier).

Topics:

• About Oracle WebLogic Server for OKE

• About the Components of Oracle WebLogic Server for OKE

• About the Application Lifecycle with Oracle WebLogic Server for OKE

• About Oracle WebLogic Server for OKE Versions and Retirement Policy

• About Jenkins Pipeline

About Oracle WebLogic Server for OKE
Use Oracle WebLogic Server for OKE to quickly create your Java Enterprise Edition (Java EE)
application environment in Oracle Cloud Infrastructure in a fraction of the time it would normally
take on-premises.

Oracle WebLogic Server for OKE is available as a set of applications in the Oracle Cloud
Infrastructure Marketplace. After launching one of these applications, you use a simple wizard
interface to configure a stack along with any supporting cloud resources like Kubernetes
clusters, file systems, administration instances, networks and private load balancers. Then,
use a Jenkins CI/CD pipeline job to create a domain with the required resources.

Oracle WebLogic Server for OKE uses multi-domain source type. Multi-domain enables you to
create multiple domains in a single Kubernetes cluster with the ability to automatically patch
the domains. You can create additional domains in the existing Kubernetes cluster using
Jenkins CI/CD pipeline jobs

You can track and monitor the progress of an Oracle WebLogic Server for OKE stack in
Resource Manager. A stack also provides a convenient method of deleting the cloud resources
for a domain when you no longer require them.

After creating an Oracle WebLogic Server stack, you can use various tools in Oracle WebLogic
Server for OKE to update the domain configuration and deploy your applications. When you
apply any domain changes to a Kubernetes cluster, it deletes the existing pods and creates a
new one.

Oracle WebLogic Server for OKE can install Verrazzano on the Kubernetes cluster node pool.
See Configure Verrazzano.

1-1

Oracle WebLogic Server for OKE uses Jenkins to automate the creation of custom images for
your WebLogic Server domain, and the deployment of these images to the Kubernetes cluster.
See Jenkins.

Oracle WebLogic Server for OKE supports these Oracle WebLogic Server editions:

• Oracle WebLogic Server Enterprise Edition

• Oracle WebLogic Suite

Oracle WebLogic Server for OKE supports these Oracle WebLogic Server releases:

• Oracle WebLogic Server 14c (14.1.1.0) - See Understanding Oracle WebLogic Server

• Oracle WebLogic Server 12c (12.2.1.4) - See Understanding Oracle WebLogic Server

Oracle WebLogic Server for OKE supports these billing options:

• Universal Credits (also called UCM), where you are billed for the cost of the Oracle
WebLogic Server Enterprise Edition or Oracle WebLogic Suite license (based on OCPUs
per hour), for VMs running in the WebLogic node pool, in addition to the cost of the
compute resources.

• Bring Your Own License (BYOL), which allows you to reuse your existing on-premise
Oracle WebLogic Server Enterprise Edition and Oracle WebLogic Suite licenses in Oracle
Cloud.

About the Components of Oracle WebLogic Server for OKE
Learn about the Oracle Cloud Infrastructure components that comprise Oracle WebLogic
Server for OKE.

Topics

• Oracle WebLogic Server

• JRF Domain

• Marketplace

• Resource Manager

• Container Engine for Kubernetes

• Registry

• WebLogic Server Kubernetes Operator

• Helm

• Verrazzano

• Jenkins

• Compute

• Storage

• Virtual Cloud Network

• Load Balancer

• Database

• Vault

• Identity

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-2

https://www.oracle.com/middleware/weblogic/enterprise-edition.html
https://www.oracle.com/middleware/weblogic/suite.html

Figure 1-1 Components of a typical Oracle WebLogic Server for OKE deployment

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-3

Figure 1-2 Components of a typical Oracle WebLogic Server for OKE deployment in
Verrazzano

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-4

Oracle WebLogic Server
An Oracle WebLogic Server domain consists of one administration server and one or more
managed servers to host your Java application deployments.

Oracle WebLogic Server for OKE supports these Oracle WebLogic Server editions:

• Oracle WebLogic Server Enterprise Edition

– Includes clustering for high availability and scalability of Java resources and
applications

– Includes Oracle Java SE Advanced (Java Mission Control and Java Flight Recorder)
for diagnosing problems in development and production

• Oracle WebLogic Suite

– Includes all features and benefits of Oracle WebLogic Server Enterprise Edition

– Includes Verrazzano for managing WebLogic workloads

– Includes Oracle Coherence for increased performance and scalability

– Includes Active Gridlink for RAC for advanced database connectivity

Oracle WebLogic Server for OKE supports Oracle WebLogic Server 12.2.1.4.0 and 14.1.1.0.0
releases. See About Oracle WebLogic Server for OKE for specific version information.

Oracle WebLogic Server for OKE can create these domain configurations:

• A basic domain that does not require a database.

• A domain that includes the Java Required Files (JRF) components and also requires a
database.

Domains created with Oracle WebLogic Server for OKE do not utilize the Node Manager.
Server health monitoring and lifecycle operations are performed by the WebLogic Server
Kubernetes Operator.

JRF Domain
The Java Required Files (JRF) option must be selected if your applications were developed
with Oracle Application Development Framework (ADF) or use Oracle Web Services Manager
(WSM) to access and secure REST and SOAP endpoints.

For more information about ADF, see Faster and Simpler Java-based Application
Development. For more information about WSM, see the documentation for Oracle Web
Services Manager.

Note:

These Fusion Middleware components are considered part of Oracle JRF: Oracle
Application Development Framework, Oracle Fusion Middleware Audit Framework,
Fabric Common, Infrastructure Security, Java Object Cache, JMX Framework, JPS,
MDS, OJSP.Next, Oracle Web Services, Oracle Web Services Manager, Oracle
TopLink, UCP, and XDK.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-5

https://www.oracle.com/middleware/weblogic/enterprise-edition.html
https://www.oracle.com/middleware/weblogic/suite.html
https://www.oracle.com/database/technologies/developer-tools/adf/
https://www.oracle.com/database/technologies/developer-tools/adf/
https://docs.oracle.com/en/middleware/fusion-middleware/ws-manager/12.2.1.4/index.html
https://docs.oracle.com/en/middleware/fusion-middleware/ws-manager/12.2.1.4/index.html

Marketplace
Oracle WebLogic Server for OKE is accessed as a collection of applications in the Oracle
Cloud Infrastructure Marketplace.

Oracle Cloud Infrastructure Marketplace is an online store that's available in the Oracle Cloud
Infrastructure console. When you launch an Oracle WebLogic Server for OKE application from
Marketplace, it prompts you for some basic information, and then directs you to Resource
Manager to complete the configuration of your Oracle WebLogic Server stack and supporting
cloud resources.

Choose an Oracle WebLogic Server for OKE application that meets your functional and
licensing requirements.

See Overview of Marketplace in the Oracle Cloud Infrastructure documentation.

Resource Manager
Oracle WebLogic Server for OKE uses Resource Manager in Oracle Cloud Infrastructure to
provision the Kubernetes cluster, networks and other cloud resources that support your Oracle
WebLogic Server stack.

Resource Manager is an Oracle Cloud Infrastructure service that uses Terraform to provision,
update, and destroy a collection of related cloud resources as a single unit called a stack.
Resource Manager supports most resource types in Oracle Cloud Infrastructure, but a stack in
Oracle WebLogic Server for OKE is comprised of these components:

• A Kubernetes cluster running the WebLogic Server stack and Jenkins

• An administration compute instance that includes kubectl and other domain management
tools

• A bastion compute instance that provides public access to the administration compute
instance

• A virtual cloud network (VCN), including subnets, route tables, and security lists (optional)

• Load balancers

See Overview of Resource Manager in the Oracle Cloud Infrastructure documentation.

Container Engine for Kubernetes
Oracle WebLogic Server for OKE uses Oracle Container Engine for Kubernetes for container
management and orchestration.

Kubernetes is an open-source system for automating the deployment, scaling, and
management of containerized applications across a cluster of hosts. A Kubernetes cluster is
comprised of a controller node and one or more agent nodes. The worker nodes create and
manage containers. Kubernetes groups the containers that make up an application into logical
units called pods for easy management and discovery.

Oracle Container Engine for Kubernetes is an Oracle Cloud Infrastructure service that allows
you to easily create, manage, and deploy applications to Kubernetes clusters. The nodes in a
Kubernetes cluster are Oracle Cloud Infrastructure compute instances.

You can access the Kubernetes API on the cluster control plane through a private endpoint
hosted in a subnet of an existing VCN. This Kubernetes API endpoint subnet is assigned a
private IP address. See Kubernetes Cluster Control Plane and Kubernetes API.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-6

https://docs.cloud.oracle.com/iaas/Content/Marketplace/Concepts/marketoverview.htm
https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengclustersnodes.htm#processes

When you create a stack and then a domain with Oracle WebLogic Server for OKE, it
provisions two node pools: WebLogic node pool and non-WebLogic node pool. By default,
each node pool is created with one worker node. However, during provisioning, you can
specify the number of worker nodes you want in each node pool.

It also creates and deploys the following pods to the Kubernetes cluster:

Note:

All other pods can run on either of the two node pools and are not restricted to a
node pool. Only the following listed pods are restricted to run on the specified node
pool.

• WebLogic node pool:

– A pod running the domain's administration server

– A pod running each managed server in the domain (maximum is 9)

– A pod running the Jenkins agent

• Non-WebLogic node pool:

– A pod running the Jenkins controller

When you scale a WebLogic cluster:

• You can add a maximum of four managed servers in the node pool for the WebLogic
Server node pods that does not contain an administration server. If you want to add
another managed server, you must add a node in the node pool for the WebLogic Server
node pods.

Note:

If you set the Java Virtual Machine (JVM) heap size in the WebLogic Server
pods, you must decide on the number of managed servers to be added in the
node pool. See Set the JVM Arguments Definition to set the JVM heap size.

• You cannot add more than three managed servers in the node pool for the WebLogic
Server node pods that contains an administration server.

Oracle WebLogic Server for OKE also creates a separate compute instance that includes the
kubectl command line utility. You can use kubectl to manage and monitor the cluster and
your pods.

See Overview of Container Engine for Kubernetes in the Oracle Cloud Infrastructure
documentation.

Registry
Oracle WebLogic Server for OKE manages the container images for your domain in Oracle
Cloud Infrastructure Registry.

Oracle Cloud Infrastructure Registry lets developers store, share, and manage development
artifacts like container images. An image is a read-only template with instructions for creating a
container.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-7

During the deployment of an application to a Kubernetes cluster, each pod's configuration can
specify which images to pull from the registry. You provide the credentials that Kubernetes
uses to access the registry.

The images in the registry are organized into named repositories. Repositories can be private
or public. Any user with Internet access and knowledge of the appropriate URL can pull images
from a public repository. When an image is pushed to the registry, a new private repository is
created automatically if it doesn't already exist.

When you create a domain, Oracle WebLogic Server for OKE pushes a default image to the
registry, which is used to provision the pods for your domain. From the administration compute
instance, you can update this default image and then apply those changes using Kubernetes.

See Overview of Registry in the Oracle Cloud Infrastructure documentation.

WebLogic Server Kubernetes Operator
Your Oracle WebLogic Server for OKE domain includes the open-source WebLogic Server
Kubernetes Operator, which has several key features to assist you with managing domains in a
Kubernetes environment.

A WebLogic Server domain is modeled as a custom resource in the Kubernetes configuration
file. The operator uses this configuration and the Kubernetes API to automate WebLogic
Server operations such as provisioning, starting or stopping servers, patching, scaling, and
security.

Oracle WebLogic Server for OKE installs and configures the operator in the Kubernetes
cluster, and you can use the operator with kubectl on the administration compute instance.

The operator supports the use of Kubernetes persistent volumes to store your domain files in
an external file system. However, in Oracle WebLogic Server for OKE all of the files that are
required to run your domain are stored in the container image for your domain. With this
approach, you can easily share the domain with your entire development team, and also
ensure that everyone uses a consistent configuration. You also don't need to manually
replicate changes in different environments, like testing and production.

See WebLogic Kubernetes Operator documentation.

Helm
Helm is a package manager for Kubernetes. Use it to quickly install and manage Kubernetes
applications, tools, and services for a Kubernetes cluster.

A chart is a package in Helm. A release is a running instance of a chart in a Kubernetes
cluster.

When you create your Oracle WebLogic Server for OKE instance, the Helm client is installed
on the administration compute instance, and uses Helm to install the chart for the Oracle
WebLogic Server Kubernetes Operator.

See the Helm Documentation.

Verrazzano
Oracle WebLogic Server for OKE allows easy installation of Verrazzano on the Kubernetes
cluster for both BYOL and UCM billing modes. The Verrazzano version installed is 1.5.2.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-8

https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

Note:

You can configure Verrazzano installation for WebLogic Suite Edition only.

Oracle Verrazzano is a container deployment and management platform that allows you to
deploy and manage container workloads in Kubernetes. It leverages the Open Application
Model (OAM) specification for building platform-agnostic container applications. See
Verrazzano documentation.

Oracle WebLogic Server for OKE installs Verrazzano and creates a private load balancer to
access the Verrazzano consoles. You can also create and manage your WebLogic domains in
Verrazzano using the Jenkins Pipeline jobs. Verrazzano is configured to use Jenkins with
Kubernetes plugin.

See Configure Verrazzano, Pipeline Jobs With Verrazzano Installation, and Manage WebLogic
Domains in Verrazzano.

Jenkins
Oracle WebLogic Server for OKE uses Jenkins to automate the creation of custom images for
your WebLogic Server domain, and the deployment of these images to the Kubernetes cluster.

If Verrazzano is installed on the Kubernetes cluster, Oracle WebLogic Server for OKE uses
Jenkins to deploy WebLogic Open Application Model (OAM) components on Verrazzano. See
Pipeline Jobs in Verrazzano.

Jenkins is an open-source automation engine that facilitates a development workflow based on
Continuous Integration and Continuous Delivery (CI/CD). You create projects that perform a
series of steps like checking out files from a source control system, compiling code, or running
a script. Pipelines are a type of project that organize complex activities into stages, like
building, testing, and deploying applications.

Oracle WebLogic Server for OKE provisions the Jenkins primary server on a pod in the
Kubernetes cluster. Jenkins is also configured to use the Kubernetes plugin. When you launch
or schedule a job, the Jenkins server creates another pod in the Kubernetes cluster, and this
agent pod is used to run the job.

Note:

The agent pod runs in the WebLogic node pool.

See Jenkins User Documentation.

Compute
In addition to the Kubernetes cluster, Oracle WebLogic Server for OKE creates Oracle Cloud
Infrastructure Compute instances to provide access to the cluster and for other administration
tasks.

A Oracle WebLogic Server for OKE instance is comprised of these compute instances:

• The Kubernetes cluster compute instances host the worker nodes.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-9

• The administration compute instance hosts kubectl and other tools to update and manage
your domain in Kubernetes.

• The bastion compute instance provides external network access to the Kubernetes cluster
and the administration instance, which are provisioned on private subnets.

During domain creation, the administration compute instance is also used to configure the new
Kubernetes cluster and to deploy the pods for the domain.

When you create a domain, you assign a shape to each of the compute instances. The shape
determines the number of CPUs and the amount of memory allocated to the compute instance.
Oracle Cloud Infrastructure offers a variety of bare metal (BM) and virtual machine (VM)
shapes. However, Oracle WebLogic Server for OKE only supports the standard shapes,
VM.Standard2.x, VM.Standard.E2.x, BM.Standard2.x, BM.Standard.E2.x, and
BM.Standard3.64, and the flexible shapes, VM.Standard.E3.Flex, VM.Standard.E4.Flex,
VM.Standard3.Flex, and VM.Optimized3.Flex. Some shapes might not be available in all
regions.

For the flexible shapes, the maximum number of OCPUs are:

• VM.Standard.E3.Flex and VM.Standard.E4.Flex - 64

• VM.Standard3.Flex - 32

• VM.Optimized3.Flex - 18

The memory, network bandwidth, and number of Virtual Network Interface Cards (VNICs) scale
proportionately with the number of OCPUs. See Flexible Shapes.

You also assign a secure shell (SSH) public key to the compute instances for a domain. You
can access and administer the operating system on the compute instances by using an SSH
client and the matching private key.

An availability domain (AD) represents a data center within an Oracle Cloud Infrastructure
region. Each availability domain contains three fault domains. The administration and bastion
compute instances are created in a single availability domain. Oracle Container Engine for
Kubernetes automatically distributes the worker nodes across all availability domains and fault
domains in a region for high availability.

See Overview of the Compute Service and Regions and Availability Domains in the Oracle
Cloud Infrastructure documentation.

Storage
Your domain's files are stored locally within each pod in the Kubernetes cluster, but Oracle
WebLogic Server for OKE also uses Oracle Cloud Infrastructure File Storage to support certain
administration use cases.

When you create a stack, Oracle WebLogic Server for OKE also creates a shared file system
and mounts it to the following components:

• The WebLogic Server pods in the Kubernetes cluster use it to store WebLogic Server log
files.

• The Jenkins pods in the Kubernetes cluster use it to store pipeline data.

• The administration compute instance uses it to access the Jenkins pipeline data.

• The administration compute instance uses it during the creation of a domain to deploy the
WebLogic Server operator to the Kubernetes cluster.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-10

https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm#flexible

Oracle WebLogic Server for OKE exports the file system to a mount target in a specified
availability domain, which can be a different availability domain than the one used for the
domain's compute instances. If you don't have a mount target in the selected availability
domain, the File Storage service creates one automatically. Also, the mount target and
compute instances can be in different compartments or in a different compartment where the
stack is available.

Clients access the file system using the Network File System version 3.0 (NFSv3) protocol.
The File Storage service uses synchronous replication to provide high availability for all file
systems.

See Overview of File Storage in the Oracle Cloud Infrastructure documentation.

Virtual Cloud Network
Oracle WebLogic Server for OKE assigns a domain's resources to specific subnets in a virtual
cloud network (VCN).

A VCN in Oracle Cloud Infrastructure covers a single, contiguous CIDR block of your choice. A
VCN includes one or more subnets, route tables, security lists, gateways, and DHCP options.
A subnet is a subdivision of a VCN that consists of a contiguous range of IP addresses and
does not overlap with other subnets in the VCN.

The following diagram illustrates the VCN for a domain created with Oracle WebLogic Server
for OKE.

A subnet can be public or private. Any resources assigned to a private subnet can not be
directly accessed from outside of Oracle Cloud. A service gateway allows resources in a
private subnet to access other cloud services like Key Management and Autonomous
Database, without using the public Internet. A NAT gateway allows outbound access to
services that are not in Oracle Cloud.

A domain in Oracle WebLogic Server for OKE consists of the following subnets:

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-11

• A private subnet for the worker nodes in the Kubernetes cluster

• A private subnet for the administration compute instance

• A private subnet for the shared file system

• A public subnet for the bastion compute instance

• A public subnet for the load balancers

Oracle WebLogic Server for OKE can automatically create a VCN and subnets for a new
domain, or you can create your own VCN and subnets before creating a domain. By default
subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can create
subnets that are specific to one availability domain (AD) in a region.

See Overview of Networking in the Oracle Cloud Infrastructure documentation.

Load Balancer
Oracle WebLogic Server for OKE uses the load balancing capabilities of Oracle Cloud
Infrastructure Load Balancing and Oracle Container Engine for Kubernetes.

When you create a domain, Oracle WebLogic Server for OKE creates and configures two load
balancers in Oracle Cloud Infrastructure:

• The public load balancer distributes traffic across the managed servers in your domain.

• The private load balancer provides access to the WebLogic Server administration console
and the Jenkins console.

A load balancer consists of primary and standby instances but it is accessible from a single IP
address. If the primary instance fails, traffic is automatically routed to the standby instance.

A private load balancer is not assigned a public IP address and cannot be accessed from
outside of Oracle Cloud. You use the bastion compute instance to get access to the private
load balancer for your domain.

Note:

By default, the reserved public IP address that you specify as the loadBalancerIP
property of the LoadBalancer service in the manifest file is expected to be a resource
in the same compartment as the cluster. If you want to specify a reserved public IP
address in a different compartment, add the following policy to the tenancy:

Allow any-user to read public-ips in tenancy where
request.principal.type = 'cluster'
Allow any-user to manage floating-ips in tenancy where
request.principal.type = 'cluster'

See Specifying Load Balancer Reserved Public IP Addresses.

If your region includes multiple availability domains (AD), the load balancer supports two
networking options:

• Assign the load balancer to one regional subnet

• Assign the load balancer to two AD-specific subnets

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-12

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm

Oracle WebLogic Server for OKE also creates an NGINX ingress controller in the Kubernetes
cluster. NGINX is an open-source reverse proxy that controls the flow of traffic to pods within
the Kubernetes cluster.

See the following topics in the Oracle Cloud Infrastructure documentation:

• Overview of Load Balancing

• Setting Up an Ingress Controller on a Cluster

Database
To create an Oracle WebLogic Server domain that includes the Java Required Files (JRF)
components, you must provide an existing database in Oracle Cloud Infrastructure.

Note:

You cannot create an Oracle WebLogic Server domain that includes the Java
Required Files (JRF) components for Oracle WebLogic Server 14.1.1.0 as this
version does not support JRF.

When you create a domain and associate it with an existing database, Oracle WebLogic
Server for OKE does the following:

• Provisions the schemas to support the JRF components in the selected database

• Provisions data sources in the domain that provide connectivity to the selected database

• Deploys the JRF components and libraries to the domain

Oracle WebLogic Server for OKE supports the following database options for a JRF-enabled
domain:

• Oracle Autonomous Database (ATP)

• Oracle Cloud Infrastructure Database (bare metal, virtual machine, and Exadata DB
systems)

• Shared Infrastructure (ATP-S), which is accessible from all public IPs or VCNs.
ATP with VCN support is not supported, where the database is accessible with traffic only
from the VCN. See About Network Access Options in Using Oracle Autonomous Database
on Shared Exadata Infrastructure.

Note:

Free-Tier autonomous database is not recommended for production environments.

For Autonomous Database, Oracle WebLogic Server for OKE supports serverless databases
only. Dedicated deployment databases are not supported.

For a 1-node VM DB system, you cannot use the fast provisioning option to create the
database.

Oracle WebLogic Server for OKE supports the same database versions and drivers as those
for on-premise WebLogic Server installations. Refer to the following documents at Oracle
Fusion Middleware Supported System Configurations:

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-13

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

• System Requirements and Supported Platforms for Oracle Fusion Middleware 14c
(14.1.1.0.0)

• System Requirements and Supported Platforms for Oracle Fusion Middleware 12c
(12.2.1.4.0)

If you use an Oracle Cloud Infrastructure Database, the type of data sources that are created
in the domain depend on the WebLogic Server edition and the number of database nodes.

• GridLink data sources for Oracle WebLogic Suite and a 2-node RAC DB system

• Multi data sources for Oracle WebLogic Server Enterprise Edition and a 2-node RAC DB
system

• Generic data sources for all other configurations

The service gateway or NAT gateway in your VCN is used by the pods in the Kubernetes
cluster to access the database. For an existing VCN, at least a NAT or service gateway is
required.

See these topics in the Oracle Cloud Infrastructure documentation:

• Overview of the Autonomous Database

• Overview of the Database Service

• Access to Oracle Services: Service Gateway

See Understanding JDBC Resources in WebLogic Server in Administering JDBC Data
Sources for Oracle WebLogic Server.

Vault
Oracle Cloud Infrastructure Vault enables you to manage sensitive information when creating
an Oracle WebLogic Server domain.

A vault is a container for encryption keys and secrets. You create secrets for a domain's
required passwords, and then Oracle WebLogic Server for OKE uses the same vault to decrypt
the secrets when creating the domain.

Parameters for a new domain include the password for the default Oracle WebLogic Server
administrator.

A standard vault is hosted on a hardware security module (HSM) partition with multiple
tenants, and uses a more cost-efficient, key-based metric for billing purposes. A virtual private
vault provides greater isolation and performance by allocating a dedicated partition on an
HSM.

In order for the domain's Kubernetes cluster, compute instances, and file system to use your
secrets, Oracle WebLogic Server for OKE automatically creates a dynamic group and policies
in Oracle Cloud Infrastructure.

See these topics in the Oracle Cloud Infrastructure documentation:

• Overview of Vault

• Oracle Cloud Infrastructure Vault FAQ

Identity
Oracle Identity Cloud Service provides Oracle Cloud administrators with a central security
platform to manage the relationships that users have with your applications.

Chapter 1
About the Components of Oracle WebLogic Server for OKE

1-14

https://cloud.oracle.com/cloud-security/kms/faq

By default, the Oracle WebLogic Server domain is configured to use the local WebLogic Server
identity store to maintain administrators, application users, groups, and roles. These security
elements are used to authenticate users, and to also authorize access to your applications and
to tools like the WebLogic Server Administration Console.

Oracle WebLogic Server for OKE can configure a domain running WebLogic Server 12c to use
Oracle Identity Cloud Service for authentication.

This configuration is supported only for Oracle Cloud accounts that include Oracle Identity
Cloud Service 19.2.1 or later.

Oracle WebLogic Server for OKE configures an App Gateway in Oracle Identity Cloud Service.
The App Gateway acts as a reverse proxy, intercepts HTTP requests to the domain, and
ensures that the users are authenticated with Oracle Identity Cloud Service.

Oracle WebLogic Server for OKE creates two security applications in Oracle Identity Cloud
Service to support the domain. A confidential application allows the domain to securely access
the identity provider using the OAuth protocol. An enterprise application defines the URLs that
are protected by the App Gateway.

See About Oracle Identity Cloud Service Concepts in Administering Oracle Identity Cloud
Service.

About the Application Lifecycle with Oracle WebLogic Server for
OKE

Learn about deploying and managing applications for a domain that was created with Oracle
WebLogic Server for OKE.

A common practice is to create separate Oracle WebLogic Server domains to support
development, testing, and production. A traditional development workflow typically includes the
following tasks:

1. Update the development domain, including patches, data sources, and applications.

2. Apply the same changes to the test domain. You might use a combination of OPatch, the
WebLogic Server administration console, and the WebLogic Scripting Tool (WLST).

3. After testing, apply the same changes to the production domain using the same tools.

Oracle WebLogic Server for OKE promotes a different workflow based on the principles of
Continuous Integration and Continuous Delivery (CI/CD).

When you create a Model in Image domain with Oracle WebLogic Server for OKE, all the files
required to run the domain in Kubernetes (binaries, patches, configuration, applications, and so
on) are stored in the container image for the Model in Image domain. If you want to change the
domain, you must update the container image. Any temporary changes you make to the
running domain will be lost if you restart the pods in the Kubernetes cluster.

When you create a domain on a Persistent Volume (PV) with Oracle WebLogic Server for
OKE, all the binary files required to run the domain in Kubernetes (binaries, patches) are
stored in the container image for your PV domain. The domain configuration (applications, and
so on) are stored on the persistent volume. If you want to change the binaries, you must
update the container image. Any changes you make to the domain configuration using tools
such as the WebLogic Server Administration Console, WLST script, and so on, are stored on
PV. Therefore, the domain configuration will be persisted if you restart the pods in the
Kubernetes cluster.

Chapter 1
About the Application Lifecycle with Oracle WebLogic Server for OKE

1-15

Oracle WebLogic Server for OKE deploys Jenkins to the Kubernetes cluster along with the
domain, and configures a sample project in Jenkins to implement the recommended
development workflow. This workflow includes the following tasks:

1. Updating the domain image with applications, resources, libraries, WebLogic patches, and
JDK updates.

2. Building a test domain with the updated domain image, and then validating the test
domain.

3. Applying the updated domain image to replace the current domain, and then validating the
domain.

4. If applying the update domain image to the current running domain fails, then it
automatically rolls back to the previous working domain image.

With this approach, you can easily share the latest domain with your entire development team,
and also ensure that everyone uses a consistent configuration. You also don't need to
manually replicate changes in different environments, such as testing and production.

You can customize the sample Jenkins project to meet your specific CI/CD requirements.

About Oracle WebLogic Server for OKE Versions and Retirement
Policy

Oracle WebLogic Server for OKE versions adopt the standard Oracle multiple digits system for
version numbering.

A version number for Oracle WebLogic Server for OKE has the following format:

YY.Q.M-OKEKubernetesVersion-iteration
where, YY is the calendar year, Q is the quarter, M is the month, OKEKubernetesVersion is the
Kubernetes version supported for OKE.

For example:

22.4.3-oke_v1.24.1-1

Oracle WebLogic Server for OKE releases do not retire based on any fixed time range.
Instead, only the last two product release versions are retained. That is, if n is the current
version, then n and n-1 versions are retained.

Note the following about all retained Oracle WebLogic Server for OKE versions and images:

• The Oracle WebLogic Server for OKE image of a version is retained as-is, including the
WebLogic Server binaries, the VM image contents, and any bugs that were inherent to the
Oracle WebLogic Server for OKE scripts on the VM.

• Bugs fixed in a later version are not back ported into an earlier version.

• A version may be pulled without notice if there is a very serious security or functional issue.

About Jenkins Pipeline
Oracle WebLogic Server for OKE deploys Jenkins to the Kubernetes cluster along with your
stack, and uses the Jenkins Pipeline to provision a domain, deploy applications, automatic
patches, and update the domain images.

Chapter 1
About Oracle WebLogic Server for OKE Versions and Retirement Policy

1-16

Jenkins Pipeline, also referred to as Pipeline, is a suite of plug-ins that supports
implementation and integration of continuous delivery (CI/CD) pipelines into Jenkins. The
definition of the Pipeline is written in a Jenkinsfile, a text file that can be committed to a
project's source control repository.

The CI/CD Pipeline uses Oracle WebLogic Deploy Tooling (WDT) and Oracle WebLogic Image
Tool (WIT) to update the domain to deploy applications, libraries, and resources; apply JDK
and WebLogic Server patches; and update an existing image.

See Oracle WebLogic Server Deploy Tooling and Oracle WebLogic Image Tool.

The images are pushed and pulled within the same regions as deployments using the Oracle
Cloud Infrastructure Registry (OCIR) service. See Overview of Registry.

The features of Pipeline are:

• Pipelines can be implemented in code and version controlled.

• Pipelines can be paused at any stage for user inputs or approval.

• Pipelines support complex CD requirements that enables forking or joining, looping and
executing stages in parallel.

• Pipelines support domain-specific language (DSL) extension.

Jenkins Pipeline jobs are used to deploy applications and patches. See:

• Pipeline Jobs

• Pipeline Jobs With Verrazzano Installation

Pipeline Jobs
Oracle WebLogic Server for OKE has a set of preconfigured jobs to deploy applications and
patches.

Table 1-1 Preconfigured Jobs

Job Type Job Name Description

Main create domain on pv Creates an Oracle WebLogic
Server domain home in a
Kubernetes Persistent Volume
(PV) using the domain creation
images. You can use the Domain
on PV domain home source type
to create a non-Java Required
Files (JRF) domain or a Java
Required Files domain.

Main create mii domain Creates an Oracle WebLogic
Server domain using the Model in
Image (MII) domain home source
type with auxillary images. You
can use the Model in Image
domain home source type to
create a non-Java Required Files
(JRF) domain.

Chapter 1
About Jenkins Pipeline

1-17

https://docs.cloud.oracle.com/en-us/iaas/Content/Registry/Concepts/registryoverview.htm

Table 1-1 (Cont.) Preconfigured Jobs

Job Type Job Name Description

Main update mii domain Updates the domain configuration
for the Model in Image domain.
Deploys and undeploys
applications, shared libraries and
resources such as Java
Messaging Service (JMS) and
datasources to a Model in Image
domain.
Note: If you are using the Domain
on PV approach to set up a
WebLogic domain, you can
update the domain using the
WebLogic Server Administration
Console or the WebLogic
Scripting Tool (WLST).

Main automatic patching Automatically applies patches on
the selected domains, as per the
schedule.

Main apply patch Applies OPatches on the base
image of the domain for both
Model in Image domain and
Domain on PV.

Main create base image Creates a new base image from
Fusion Middleware installer, JDK
installer, and JDK patches. Used
to create the base image for both
Model in Image domain and
Domain on PV.

Main update base image Updates a base image of a
domain with a different base
image. Used to update the base
image for both Model in Image
domain and Domain on PV.

Main terminate mii domain Deletes the IDCS, external load
balancer, WebLogic domain, and
the Kubernetes namespaces that
were created for the Model in
Image domain. Additionally, the
job also deletes the node pool
associated with the domain if you
opt to delete the nodepool at the
time of terminating the domain.
See Terminate a WebLogic
Domain.

Main terminate pv domain Deletes the IDCS, external load
balancer, WebLogic domain, and
the Kubernetes namespaces that
were created for the Domain on
PV. Additionally, the job also
deletes the node pool associated
with the domain if you opt to
delete the nodepool at the time of
terminating the domain. See
Terminate a WebLogic Domain.

Chapter 1
About Jenkins Pipeline

1-18

Table 1-1 (Cont.) Preconfigured Jobs

Job Type Job Name Description

Child backup and deploy domain Creates a backup of the Yaml file
of the running domain and
deploys the changes on the
running domain. This job is used
by other pipeline jobs and cannot
be activated manually.
This is a child job for the update
mii domain, update base
image, and apply patch jobs.

Child create wls nodepool This is a child job for the create
mii domain and create pv
domain jobs.

Pipeline Jobs With Verrazzano Installation
Oracle WebLogic Server for OKE has a set of preconfigured jobs to deploy applications.

The following table lists the preconfigured jobs for Oracle WebLogic Server for OKE stack with
Verrazzano. These preconfigured jobs are main job type.

Table 1-2 Preconfigured Jobs in Verrazzano

Job Name Description

create domain as component Creates an empty WebLogic domain with a
container image and component.yaml file using the
selected base image. This image can be used to
register the Verrazzano WebLogic component and
deploy applications.

update domain in component Deploys and undeploys applications, shared
libraries and resources such as Java Messaging
Service (JMS) and datasources to a domain.

create base image Creates new image from Fusion Middleware
installer, JDK installer, and JDK patches. This new
image can be used to create a new domain or
update an existing domain..

rebase component image Updates a base image of a Verrazzano WebLogic
component with a different base image.

register component Creates a domain definition using component.yaml.
This job is used to create new empty WebLogic
domain or update an existing WebLogic domain.

configure application Deploys a Verrazzano application with WebLogic
workloads.

terminate component Deletes the Verrazzano component, RCU,
WebLogic domain, Kubernetes namespaces,
persistent volume that we created for the domain.

unregister component Deletes the Verrazzano WebLogic component.

unregister application Deletes the application configuration of the
Verrazzano WebLogic component.

Chapter 1
About Jenkins Pipeline

1-19

2
Create a Stack

Learn how to create a stack with Oracle WebLogic Server for OKE.

Topics:

• About Creating a Stack

• Prerequisites to Create a Stack

• Create a Stack

• Troubleshoot a Stack

• View the Cloud Resources for a Stack

About Creating a Stack
Learn about the options you have when creating a stack with Oracle WebLogic Server for
OKE.

You have several options to choose from when you create a stack:

• Virtual Cloud Network (VCN)

Oracle WebLogic Server for OKE can create a VCN for you when you create a stack, or
you can specify a VCN that you have already created.

If you let Oracle WebLogic Server for OKE create a new VCN, you must specify a
contiguous CIDR block of your choice when you create the stack.

If you use an existing VCN, you can let Oracle WebLogic Server for OKE create the
subnets for you, or you can specify subnets that you have already created.

• Subnets

Oracle WebLogic Server for OKE can create regional public and private subnets for the
domain resources, or you can specify subnets that you have already created.

If you let Oracle WebLogic Server for OKE create new subnets, you must specify a
contiguous CIDR block of your choice for each subnet when you create the stack.

If using existing subnets, you can specify either regional or availability domain-specific
subnets that are scoped to one availability domain in the region.

• Network Access

Oracle WebLogic Server for OKE creates private subnets for the Kubernetes cluster,
administration compute instance, and the file system and mount target, and creates public
subnets for the bastion instance and the WebLogic cluster load balancer. If using existing
subnets, we recommend that you use the same architecture.

• Load Balancers

When you create a stack, Oracle WebLogic Server for OKE creates a private load balancer
to access administration consoles.

2-1

The load balancers are assigned to a public subnet, for which you must specify a CIDR
block if you let Oracle WebLogic Server for OKE create new subnets during stack
provisioning. You must also specify shapes for the private load balancer.

Prerequisites to Create a Stack
Before you create a stack with Oracle WebLogic Server for OKE, you must complete one or
more prerequisite tasks.

Some tasks are required for any type of Oracle WebLogic Server stack that you create with
Oracle WebLogic Server for OKE. Other tasks are optional or only applicable for specific
domain configurations.

Note:

Before you create a stack, you can estimate the cost of the resources and services to
use in your instance. See Oracle Cloud Cost Estimator.

Required Tasks

• Understand Service Requirements

• Create a Compartment

• Create Compartment Policies

• Create Root Policies

• Create an Auth Token

• Create an Encryption Key

• Create an SSH Key

Optional Tasks

• Create a Dynamic Group

• Create Policies for the Dynamic Group

• Create a Virtual Cloud Network

• Create a Subnet for the Kubernetes Cluster

• Create a Subnet for the Administration Host

• Create a Subnet for the Bastion Host

• Create a Subnet for the Load Balancer

• Create a Subnet for the File System

• Validate Existing Network Setup

Understand Service Requirements
You require access to several Oracle Cloud Infrastructure services in order to use Oracle
WebLogic Server for OKE.

• Identity and Access Management (dynamic groups and policies)

• Compute

Chapter 2
Prerequisites to Create a Stack

2-2

https://www.oracle.com/cloud/cost-estimator.html

• Network

• Block Storage

• File Storage and Mount targets

• Container Engine

• Registry

• Vault

• Resource Manager

• Load Balancing

• Database (optional)

• Cloud Shell (optional)

• Tagging (optional)

To use Oracle WebLogic Server for OKE, you need at least the following limits available in your
tenancy or region or availability domain as applicable:

• 1 OKE Cluster

• 4 Compute instances

• 2 Load Balancers

• 1 File System Service

• 1 Mount Target

Check the service limits for these components in your Oracle Cloud Infrastructure tenancy and,
if necessary, request a service limit increase. See Service Limits in the Oracle Cloud
Infrastructure documentation.

Create a Compartment
Create compartments in Oracle Cloud Infrastructure for your Oracle WebLogic Server for OKE
resources, or use existing compartments.

When you create a stack with Oracle WebLogic Server for OKE, by default the Kubernetes
cluster, compute instances, networks, and load balancers are all created within a single
compartment. You can, however, choose to use a separate compartment for the network
resources that are created for the stack, including load balancers, virtual cloud network,
subnets, security lists, route tables and gateways.

See Managing Compartments in the Oracle Cloud Infrastructure documentation.

Create Compartment Policies
If you are not an Oracle Cloud Infrastructure administrator, you must be given management
access to resources in the compartment in which you want to create a stack using Oracle
WebLogic Server for OKE.

Access to Oracle Cloud Infrastructure resources in a compartment is controlled through
policies. Your Oracle Cloud Infrastructure user must have management access for Marketplace
applications, Resource Manager stacks and jobs, Kubernetes clusters, compute instances, file
systems, block storage volumes, load balancers, Key Management vaults and keys, and IAM
policies. If you want Oracle WebLogic Server for OKE to create network resources for a stack,
then you must also have management access for these network resources.

Chapter 2
Prerequisites to Create a Stack

2-3

A sample policy is shown below:

Where, MyCompartment is the compartment in which you created the stack.

Allow group MyGroup to manage instance-family in compartment MyCompartment
Allow group MyGroup to manage orm-family in compartment MyCompartment
Allow group MyGroup to manage mount-targets in compartment MyCompartment
Allow group MyGroup to manage file-systems in compartment MyCompartment
Allow group MyGroup to manage export-sets in compartment MyCompartment
Allow group MyGroup to manage cluster-family in compartment MyCompartment
Allow group MyGroup to use subnets in compartment MyCompartment
Allow group MyGroup to use vnics in compartment MyCompartment
Allow group MyGroup to inspect compartments in compartment MyCompartment
Allow group MyGroup to read metrics in compartment MyCompartment
Allow group MyGroup to manage virtual-network-family in compartment
MyCompartment

If you need to allow a user who is not an administrator to create secrets with the passwords
required during provisioning, ensure that you grant manage access to the vaults, keys, and
secret-family. For example:

Allow group MyGroup to manage vaults in compartment MyCompartment
Allow group MyGroup to manage keys in compartment MyCompartment
Allow group MyGroup to manage secret-family in compartment MyCompartment

If you need to allow a user who is not an administrator to use the secrets created by
administrator, make sure you grant the following policy. For example:

Allow group MyGroup to inspect secrets in compartment id <Compartment OCID>

If you use a separate compartment for network resources, ensure that you set up the
appropriate policy for the network compartment. For example:

Allow group MyGroup to manage virtual-network-family in compartment
MyNetworkCompartment

If you use a separate compartment for FSS resources, ensure that you set up the appropriate
policy for the FSS compartment. For example:

Allow group MyGroup to manage mount-targets in compartment MyFSScompartment
Allow group MyGroup to manage file-systems in compartment MyFSScompartment
Allow group MyGroup to manage export-sets in compartment MyFSScompartment

If you intend to create a domain that includes the Java Required Files (JRF) components, then
you must set up the policy for the database compartment. For example:

Allow group MyGroup to inspect autonomous-transaction-processing-family in
compartment MyDBCompartment
Allow group MyGroup to inspect database-family in compartment MyDBCompartment

See Common Policies in the Oracle Cloud Infrastructure documentation.

Chapter 2
Prerequisites to Create a Stack

2-4

Create Root Policies
Certain root-level policies must exist in order to use Oracle WebLogic Server for OKE.

Identity and Access Management (IAM) policies let you control what type of access a group of
users has and to which specific resources. Your Oracle Cloud Infrastructure administrator sets
up the groups, compartments, and policies. Most IAM policies are set at the compartment
level, while some are at the tenancy (root) level:

• Delegate IAM tasks, including the creation of dynamic groups

• Use the Cloud Shell to quickly run the Oracle Cloud Infrastructure command line interface
(CLI)

• Inspect tag namespaces and apply defined tags from those namespaces to cloud
resources

The following sample root policy grants other relevant permissions to a group of users who are
not administrators:

Allow group MyGroup to inspect tenancies in tenancy
Allow group MyGroup to use tag-namespaces in tenancy

See these topics in the Oracle Cloud Infrastructure documentation:

• Common Policies

• Managing Dynamic Groups

• Cloud Shell

• Managing Tags and Tag Namespaces

• Policy Configuration for Cluster Creation and Deployment

Create an Auth Token
In order for Oracle WebLogic Server for OKE to push and pull container images to and from
Oracle Cloud Infrastructure Registry, you must provide an auth token.

Oracle WebLogic Server for OKE can access the registry as the same user that creates a
stack, or as a different user.

Every user in Oracle Cloud Infrastructure can be associated with up to two auth tokens. You
can create a new auth token for a user with access to Oracle Cloud Infrastructure Registry, or
use an existing auth token. When creating an auth token, be sure copy the token string
immediately. You can't retrieve it again later using the console.

See Managing User Credentials in the Oracle Cloud Infrastructure documentation.

Create an Encryption Key
Create an encryption key in Oracle Cloud Infrastructure Vault. This will allow you to encrypt the
passwords required for Oracle WebLogic Server for OKE.

Oracle WebLogic Server for OKE uses a single key to decrypt all passwords for a single stack.

Chapter 2
Prerequisites to Create a Stack

2-5

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingdynamicgroups.htm
https://docs.cloud.oracle.com/iaas/Content/API/Concepts/cloudshellintro.htm
https://docs.cloud.oracle.com/iaas/Content/Tagging/Tasks/managingtagsandtagnamespaces.htm
https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengpolicyconfig.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingcredentials.htm#create_swift_password

Create an SSH Key
Create a secure shell (SSH) key pair so that you can access the compute instances in your
Oracle WebLogic Server instances.

A key pair consists of a public key and a corresponding private key. When you create a stack
using Oracle WebLogic Server for OKE, you specify the public key. You then access the
compute instances from an SSH client using the private key.

On a UNIX or UNIX-like platform, use the ssh-keygen utility. For example:

ssh-keygen -b 2048 -t rsa -f mykey
cat mykey.pub

On a Windows platform, you can use the PuTTY Key Generator utility. See Creating a Key Pair
in the Oracle Cloud Infrastructure documentation.

Create a Virtual Cloud Network
Oracle WebLogic Server for OKE can create a Virtual Cloud Network (VCN) in Oracle Cloud
Infrastructure for a new Oracle WebLogic Server instance, or you can create your own VCN
before creating a stack.

A VCN includes one or more subnets, route tables, security lists, gateways, and DHCP
options.

By default subnets are public. Any resources assigned to a private subnet cannot be directly
accessed from outside of Oracle Cloud. We recommend that you use private subnets for the
Kubernetes cluster, administration compute instance, and file system.

If you create a VCN before creating a stack, then the VCN must meet the following
requirements:

• The VCN must use DNS for hostnames.

• The VCN must include an Internet gateway.

• If you want to create a public subnet for the stack, then the VCN must include a route table
that directs traffic to the Internet gateway.

• The VCN must include a service gateway so that resources in private subnets can access
other cloud services like Key Management, Oracle Cloud Infrastructure Registry, and
Oracle Autonomous Database.

• If you want to create a private subnet for the stack, then the VCN must include a route
table that directs traffic to the service gateway.

• If you want resources in private subnets to access services outside of Oracle Cloud, then
the VCN must include a Network Address Translation (NAT) gateway.

• If your VCN includes a NAT gateway and you want to create a private subnet for the stack,
then the VCN must include a route table that directs traffic to the NAT gateway.

If you use an existing VCN for a stack, and also choose for Oracle WebLogic Server for OKE to
create new subnets for the stack, then Oracle WebLogic Server for OKE will also create the
required route tables in the VCN.

Chapter 2
Prerequisites to Create a Stack

2-6

If you use an existing VCN and existing subnets in Oracle WebLogic Server for OKE, you can
certify the existing network setup using helper scripts. See Validate Existing Network Setup
and Script File To Validate Network Setup.

See these topics in the Oracle Cloud Infrastructure documentation:

• VCNs and Subnets

• Access to Oracle Services: Service Gateway

Create a Subnet for the Kubernetes Cluster
Oracle WebLogic Server for OKE can create a subnet for the Kubernetes cluster that hosts
your Oracle WebLogic Server instance, or you can create your own subnet before creating a
stack.

A subnet is a component of a Virtual Cloud Network (VCN). When you create a stack with
Oracle WebLogic Server for OKE, the worker nodes in the Kubernetes cluster are assigned to
a subnet. We recommend that you use a private subnet for the Kubernetes cluster.

By default subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can
create multiple subnets that are each specific to one availability domain (AD) in a region.
Oracle WebLogic Server for OKE supports both regional and AD-scoped subnets.

If you want to use an existing subnet for the Kubernetes cluster when creating a stack, the
subnet must meet the following requirements:

• The subnet must use DNS for hostnames.

• The subnet must have a security list that enables inbound access to the SSH port (22)
from the subnet that you plan to use for the administration compute instance.

• The subnet must have a security list that enables inbound access to all ports from the
subnet that you plan to use for the load balancer.

• The subnet must have a security list that enables outbound access to the NFS port (2049)
on the file system subnet.

If you use an existing subnet, you can specify the subnet compartment that is different than the
VCN compartment.

Network security groups are an alternative to security lists. After creating a stack with an
existing subnet, you can update the compute instances and assign them to a security group
that has the required rules (inbound access to port 22, and so on).

If you use an existing subnet, you can certify the existing network setup using helper scripts.
See Validate Existing Network Setup and Script File To Validate Network Setup.

See VCNs and Subnets and Network Resource Configuration for Cluster Creation and
Deployment in the Oracle Cloud Infrastructure documentation.

Create a Subnet for the Administration Host
Oracle WebLogic Server for OKE can create a subnet for your stack's administration compute
instance, or you can create your own subnet before creating a stack.

A subnet is a component of a Virtual Cloud Network (VCN). When you create a stack with
Oracle WebLogic Server for OKE, the administration compute instance is assigned to a subnet.
We recommend that you use a private subnet.

Chapter 2
Prerequisites to Create a Stack

2-7

https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengnetworkconfig.htm
https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengnetworkconfig.htm

By default subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can
create multiple subnets that are each specific to one availability domain (AD) in a region.
Oracle WebLogic Server for OKE supports both regional and AD-scoped subnets.

If you want to use an existing subnet for the administration compute instance when creating a
stack, the subnet must meet the following requirements:

• The subnet must use DNS for hostnames.

• The subnet must have a security list that enables inbound access to the SSH port (22)
from the subnet that you plan to use for the bastion compute instance.

• The subnet must have a security list that enables outbound access to the SSH port (22) on
the subnet that you plan to use for the Kubernetes cluster.

• The subnet must have a security list that enables outbound access to the WebLogic
administration server ports (by default, 7001 and 7002) on the subnet that you plan to use
for the Kubernetes cluster.

• The subnet must have a security list that enables outbound access to the NFS port (2049)
on the file system subnet.

If you use an existing subnet, you can specify the subnet compartment that is different than the
VCN compartment.

Network security groups are an alternative to security lists. After creating a stack with an
existing subnet, you can update the compute instances and assign them to a security group
that has the required rules (inbound access to port 22, and so on).

If you use an existing subnet, you can certify the existing network setup using helper scripts.
See Validate Existing Network Setup and Script File To Validate Network Setup.

See VCNs and Subnets in the Oracle Cloud Infrastructure documentation.

Create a Subnet for the Bastion Host
Oracle WebLogic Server for OKE can create a public subnet in Oracle Cloud Infrastructure for
the bastion compute instance that is used to access your private Oracle WebLogic Server
instance, or you can create your own subnet before creating a stack.

A subnet is a component of a Virtual Cloud Network (VCN). When you create a stack in Oracle
WebLogic Server for OKE, we recommend that you use a private subnet for the Kubernetes
cluster and the administration compute instance. Because these resources can not be directly
accessed from outside of Oracle Cloud, Oracle WebLogic Server for OKE creates a bastion
compute instance on a public subnet.

By default subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can
create subnets that are specific to one availability domain (AD) in a region. Oracle WebLogic
Server for OKE supports both regional and AD-scoped subnets.

If you want to use an existing subnet for the bastion compute instance when creating a stack,
then the subnet must meet the following requirements:

• The subnet must use DNS for hostnames.

• The subnet must be public.

• The subnet must have a security list that enables inbound access to the SSH port (22).

• The subnet must have a security list that enables outbound access to the SSH port (22) on
the subnet that you plan to use for the administration compute instance.

Chapter 2
Prerequisites to Create a Stack

2-8

If you use an existing subnet, you can specify the subnet compartment that is different than the
VCN compartment.

Network security groups are an alternative to security lists. After creating a stack with an
existing subnet, you can update the bastion compute instance and assign it to a security group
that has the required rules (inbound access to port 22, and so on).

If you use an existing subnet, you can certify the existing network setup using helper scripts.
See Validate Existing Network Setup and Script File To Validate Network Setup.

See VCNs and Subnets in the Oracle Cloud Infrastructure documentation.

Create a Subnet for the Load Balancer
Oracle WebLogic Server for OKE can create a subnet for the load balancer that is used to
access an Oracle WebLogic Server instance, or you can create your own subnet before
creating a stack.

A subnet is a component of a Virtual Cloud Network (VCN). When you create a stack, Oracle
WebLogic Server for OKE creates a private load balancer and assigns them to a public subnet.
The private load balancer is used to access the WebLogic Server administration console and
the Jenkins console. It is not assigned a public IP address from the subnet.

By default subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can
create subnets that are specific to one availability domain (AD) in a region. Oracle WebLogic
Server for OKE supports both regional and AD-scoped subnets.

If you want to use an existing subnet for the load balancer when creating a stack, then the
subnet must meet the following requirements:

• The subnet must use DNS for hostnames.

• The subnet can be public or private.

• The subnet must have a security list that enables inbound access to ports 80 and 443.

• The subnet must have a security list that enables outbound access to the WebLogic
administration server ports (by default, 7001 and 7002) on the subnet that you plan to use
for the Kubernetes cluster.

• The subnet must have a security list that enables outbound access to the WebLogic
managed server ports (by default, 7003 and 7004) on the subnet that you plan to use for
the Kubernetes cluster.

• The subnet must have a security list that enables outbound access to the Jenkins port (80)
on the subnet that you plan to use for the Kubernetes cluster.

If you use an existing subnet, you can specify the subnet compartment that is different than the
VCN compartment.
Network security groups are an alternative to security lists. After creating a stack with an
existing subnet, you can update the load balancer and assign it to a security group that has the
required rules (inbound access to port 80, and so on).

If you use an existing subnet, you can certify the existing network setup using helper scripts.
See Validate Existing Network Setup and Script File To Validate Network Setup.

See VCNs and Subnets in the Oracle Cloud Infrastructure documentation.

Chapter 2
Prerequisites to Create a Stack

2-9

Create a Subnet for the File System
Oracle WebLogic Server for OKE can create a subnet for the shared file system that you use to
manage your Oracle WebLogic Server instance, or you can create your own subnet before
creating a stack.

A subnet is a component of a Virtual Cloud Network (VCN). When you create a stack with
Oracle WebLogic Server for OKE, the file system is assigned to a subnet. We recommend that
you use a private subnet for the file system.

By default subnets span an entire region in Oracle Cloud Infrastructure. Alternatively, you can
create multiple subnets that are each specific to one availability domain (AD) in a region.
Oracle WebLogic Server for OKE supports both regional and AD-scoped subnets.

If you want to use an existing subnet for the file system when creating a stack, the subnet must
meet the following requirements:

• The subnet must use DNS for hostnames.

• The subnet must have a security list that enables inbound access to the NFS port (2049)
from the private subnet that you plan to use for the Kubernetes cluster.

• The subnet must have a security list that enables inbound access to the NFS port from the
private subnet that you plan to use for the administration compute instance.

If you use an existing subnet, you can specify the subnet compartment that is different than the
VCN compartment.

Network security groups are an alternative to security lists. After creating a stack with an
existing subnet, you can update the file system and assign it to a security group that has the
required rules (inbound access to port 2049, and so on).

If you use an existing subnet, you can certify the existing network setup using helper scripts.
See Validate Existing Network Setup and Script File To Validate Network Setup.

See VCNs and Subnets in the Oracle Cloud Infrastructure documentation.

Validate Existing Network Setup
You can use helper scripts from the Oracle Cloud Infrastructure Cloud shell to certify the
existing network setup (existing VCN and existing WebLogic Server subnet) in Oracle
WebLogic Server for OKE. See Using Cloud Shell in Oracle Cloud Infrastructure
documentation.

The helper scripts perform the following validations and functions:

• Validates if the service gateway or the NAT gateway is created for the administration
instance private subnet and the worker nodes private subnets.

• Validates if internet gateway is created for public bastion, file shared system and load
balancer subnets.

• Checks if port 22 in WebLogic Server Subnet is open for access to the CIDR of the bastion
instance subnet or bastion host IP.

• Checks if the private subnet for the Oracle WebLogic Server compute instances using the
service gateway route rule has All <Region> Services In Oracle Services Network as
the destination.

• Checks if the existing subnet for the load balancer has a security list that enables inbound
access to ports 80 and 443.

Chapter 2
Prerequisites to Create a Stack

2-10

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellgettingstarted.htm

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
Worker CIDR range.

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
VCN CIDR range.

• Validates if the file shared system has a security list that enables outbound access to ports
111 and 2048 (both TCP and UDP).

• Validates if the database port is accessible from WebLogic Server subnets.

Using the Validation Script
You can run the helper scripts to perform validations for existing private subnets, existing public
subnets, and existing VCN peered subnets.

You must run the commands on the validation script file to check the existing network setup.
For example, in this case, let's run the commands on the validation script file named
validateoke.sh. See Script File To Validate Network Setup to create the validateoke.sh file.

1. Set execute permission to the validateoke.sh file.

chmod +x validateoke.sh
2. Run the validateoke.sh command.

./validateoke.sh [OPTIONS]
The following table lists the options that can be used with the validateoke.sh comand.

Parameter Description

Short Form Long Form

-b --bastionsubnet Bastion Subnet OCID

-a --adminsubnet Administration Host Subnet
OCID

-w --workersubnet Worker Subnet OCID

-f --fsssubnet File Shared System Subnet
OCID

-l --lbsubnet Load Balancer Subnet OCID

-i --bastionipcidr Bastion Host IP CIDR
The bastion host IP CIDR must
have /32 suffix.

- --debug Runs script in BASH debug
mode (set -x)

-h --help Displays help and exits

- --version Displays output version
information and exits

3. Run the following command prior to creating a stack:

./validateoke.sh -b <Bastion Subnet OCID> -a <Administration Host Subnet
OCID> -w <Worker Subnet OCID> -f <File Shared System Subnet OCID> -l <Load
Balancer Subnet OCID>

Chapter 2
Prerequisites to Create a Stack

2-11

Create Dynamic Groups and Policies
When you create a stack, by default the OCI Policies check box is selected and Oracle
WebLogic Server for OKE creates the dynamic groups and policies.

The following policies are required when OCI Policies check box is selected:

Allow group MyGroup to manage dynamic-groups in tenancy
Allow group MyGroup to manage policies in tenancy

If you do not belong to a group that has the policies listed above, then you need to clear the
OCI Policies check box and create a dynamic group and the required polices.

These tasks are typically performed by any user that belongs to a group that has the policies
listed above or a tenancy administrator:

• Create a Dynamic Group

• Create Policies for the Dynamic Group

Create a Dynamic Group
Create a dynamic group in Oracle Cloud Infrastructure whose members are the compute
instances that Oracle WebLogic Server for OKE will create for a stack.

The dynamic group is necessary for the compute instances to access encryption keys in Key
Management, and also to access the database wallet if you're using Oracle Autonomous
Database.

During stack creation for a domain, Oracle WebLogic Server for OKE creates compute
instances in a compartment you select. This compartment's OCID must be listed in a dynamic
group before users who are not administrators can create resources for the stack in the
specified compartment.

One or more compartments can be listed in a dynamic group.

1. Access the Oracle Cloud Infrastructure console.

2. From the navigation menu, select Identity & Security. Under the Identity group, click
Compartments.

3. Copy the OCID for the compartment that you plan to use for the Oracle WebLogic Server
compute instances.

If you use another compartment just for network resources, copy also the OCID of the
network compartment.

4. Click Dynamic Groups.

5. Click Create Dynamic Group.

6. Enter a Name and Description.

7. For Rule 1, create a rule that includes all instances in the selected compartment in this
group.

ALL {instance.compartment.id = 'WLS_Compartment_OCID'}
Provide the OCID for the compartment you copied in step 3.

8. Click Create Dynamic Group.

Chapter 2
Prerequisites to Create a Stack

2-12

See Managing Dynamic Groups in the Oracle Cloud Infrastructure documentation.

Create Policies for the Dynamic Group
Create policies in Oracle Cloud Infrastructure so that the compute instances in Oracle
WebLogic Server for OKE can access your encryption key.

When you create a stack, compute instances in Oracle WebLogic Server for OKE need to
access Oracle Cloud Infrastructure Vault secrets. If a load balancer is enabled, access to
network resources is required.

The following sample policy grants the relevant permissions to a dynamic group:

Allow dynamic-group MyInstancesPrincipalGroup to manage all-resources in
compartment MyCompartment
Allow service oke to read app-catalog-listing in compartment MyCompartment
Allow dynamic-group MyInstancesPrincipalGroup to read secret-bundles in
compartment VaultCompartment where target.secret.id = '<OCID for OCIR token
secret>'
Allow dynamic-group MyInstancesPrincipalGroup to use dynamic-groups in tenancy

The following sample policy grants the relevant permissions to a dynamic group, and is
required if your network compartment is different than the stack compartment:

Allow dynamic-group MyInstancesPrincipalGroup to use subnets in compartment
MyNetworkCompartment
Allow dynamic-group MyInstancesPrincipalGroup to use vnics in compartment
MyNetworkCompartment
Allow dynamic-group MyInstancesPrincipalGroup to inspect instance-family in
compartment MyNetworkCompartment

The following sample policy grants access to the OS Management service:

Allow dynamic-group MyInstancesPrincipalGroup to use osms-managed-instances
in compartment MyCompartment
Allow dynamic-group MyInstancesPrincipalGroup to read instance-family in
compartment MyCompartment

See these topics in the Oracle Cloud Infrastructure documentation:

• Common Policies

• Writing Policies for Dynamic Groups

Create a Stack
Use Oracle WebLogic Server for OKE to create a stack that includes a basic Oracle WebLogic
Server instance with network resources, Kubernetes cluster, compute instances, and private
load balancers.

Launch a new stack from Marketplace.

Before you create a stack, ensure that all the prerequisites are completed. See Prerequisites to
Create a Stack.

Chapter 2
Create a Stack

2-13

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/managingdynamicgroups.htm
https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm#Writing

Tutorial

Topics:

• Launch a Stack

• Configure Stack Information

• Configure WebLogic Server on Container Cluster

• Configure Verrazzano

• Configure the Network

• Configure the Container Cluster

• Configure the Administration Instances

• Configure the File System

• Configure the Registry

• Create OCI Policies

• Create the Stack

Launch a Stack
Sign in to Marketplace and specify initial stack information.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu and select Marketplace.

3. Select an application that matches the edition of Oracle WebLogic Server that you want to
provision.

• Oracle WebLogic Server Enterprise Edition for OKE BYOL

• Oracle WebLogic Server Enterprise Edition for OKE UCM

• Oracle WebLogic Suite for OKE BYOL

• Oracle WebLogic Suite for OKE UCM

4. Select a required Oracle WebLogic Server for OKE release version to use from the list.

5. Select the compartment in which to create the stack.

By default the stack compartment is used to contain the compute instances and network
resources. If later on you specify a network compartment on the Configure Variables page
of the Create Stack wizard, then the compute instances and load balancers are created in
the stack compartment that you select here.

6. Select the Oracle Standard Terms and Restrictions check box, and then click Launch
Stack.

The Create Stack wizard is displayed.

Configure Stack Information
Specify the name, description, and tags for the stack.

1. On the Stack Information page of the Create Stack wizard, enter a name for your stack.

2. Enter a description for the stack (optional).

Chapter 2
Create a Stack

2-14

3. Specify one or more tags for your stack (optional).

4. Click Next.

The Configure Variables page opens.

Configure WebLogic Server on Container Cluster
Specify the parameters needed to configure the WebLogic Server in a Kubernetes cluster.

1. In the WebLogic Server on Container Cluster section of the Configure Variables page,
enter the resource name prefix.

The maximum character length is 16.

This prefix is used by all the created resources, except load balancers.

2. Enter the SSH public key, by either uploading the SSH key file or copy-pasting the SSH
key information.

Configure Verrazzano
Specify the parameters to configure Verrazzano installation based on the Verrazzano profile.

For Verrazzano, when you configure the Container Cluster, Oracle recommends you select
VM.Standard.E4.Flex shape with four OCPU count and three nodes for the WebLogic Server
node pool. See Configure the Container Cluster for Verrazzano Integration.

Note:

You can configure Verrazzano installation for WebLogic Suite Edition only.

When you enable Verrazzano, the default settings are:

• Free wildcard DNS service nip.io

• Self-signed CA certificate

• Flexible shape with minimum bandwidth size of 10 Mbps and maximum bandwidth of 100
Mbps for Administrative load balancer and Application Load Balancer

• Three master replicas (with 50Gi storage) and two data replicas (with 50Gi storage) for
OpenSearch for prod profile, and one master replica (with 50Gi storage) and one data
replica (with 50Gi storage) for OpenSearch for dev profile

• 50 Gi persistent volume storage for the components, OpenSearch, Prometheus, Grafana,
and Keycloak

To configure Verrazzano:

1. Click Enable Verrazzano.

2. Optional: Enter the Environment Name for the Verrazzano installation.

If specified, the environment name is displayed in the endpoint access URLs of the
installation.

Chapter 2
Create a Stack

2-15

Examples of endpoint access URL formats:

http://jenkins.<environment_name>.<internal_lb_ip>.<dns_wildcard_service>/
jenkins

http://
verrazzano.<environment_name>.<internal_lb_ip>.<dns_wildcard_service>

See Access the Jenkins Console and Access the Verrazzano Consoles.

3. Select a profile for the Verrazzano installation. The default value is prod.

For Verrazzano profiles, see Installation Profiles.

4. To customize the Verrazzano installation, select one or multiple options as required:

• Click Customize DNS, and under DNS (Domain Name System) Configuration, select
one of the DNS type:

– Select Wildcard, and then select the wildcard DNS service in the Wildcard DNS
Type field.

– Select OCI, and then select the compartment in which you have defined the OCI
DNS Service Zone and specify the OCID of the OCI DNS Service Zone.

If you already provisioned an Oracle WebLogic Server for OKE stack with Verrazzano
using the OCI DNS type, and if you create a new Oracle WebLogic Server for OKE
stack with Verrazzano using the same environment name as the already provisioned
stack, to avoid conflicts with the new records that are added for the OCI DNS instance
during provisioning of the new stack, you must either remove the DNS instance
records from the DNS zone of the already provisioned stack or use a different
environment name in the new stack.

If you use a private DNS zone, see Add a DNS view to the DNS Resolver.

• Click Customize Certificates, and under Certificates Configuration, select one of the
Certificate Type:

– Select Verrazzano self-signed CA.

– Select Custom CA (Certificate Authority) and then specify the OCID of the secret
that contains the signing key and OCID of the secret that contains the custom CA
certificate.

– Select LetsEncrypt and specify a valid email address for the LetsEncrypt account
and select the LetsEncrypt environment type.

Note:

To use LetsEncrypt, you must configure OCI DNS type.

• Click Customize Administrative Load Balancer, and under Administrative Load
Balancer Configuration, do one of the following:

– Select flexible load balancer shape, and then select a minimum and maximum
flexible shape for the private load balancer.
By default, the minimum bandwidth size is set to 10 Mbps and maximum to 100
Mbps.

– Select the bandwidth size for the private load balancer shape.

Chapter 2
Create a Stack

2-16

• Click Customize Application Load Balancer, and under Application Load Balancer
Configuration, do one of the following:

– Select flexible load balancer shape, and then select a minimum and maximum
flexible shape for the load balancer.
By default, the minimum bandwidth size is set to 10 Mbps and maximum to 100
Mbps.

– Select the bandwidth size for the load balancer shape.
By default, the Application Load balancer is public. If you want to use a private
load balancer to access applications, select Private Application Load Balancer.

• Click Customize OpenSearch, and under OpenSearch Configuration, select the
following based on your configuration:

– Select the number of master node replicas, ingest node replicas, and data
replicas.

– Select Advanced OpenSearch Configuration and specify the values for the
following as a Quantity:

* Select the memory request amount for master node, ingest node, and data
replica.

* Select the storage request amount.

• Click Customize Persistent Storage, and under Persistent Volume Configuration,
specify the values for the following as a Quantity:

– Specify the global persistent volume storage.

– Specify the persistent volume storage for Keycloak.

Add a DNS view to the DNS Resolver

When you configure Verrazzano installation for your Oracle WebLogic Server for OKE stack
using a private DNS zone and an existing VCN, you need to configure the DNS resolver of the
VCN to use the DNS view of the DNS zone.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. From the navigation menu, click Networking, and then select Virtual Cloud Networks.

3. From the list of Virtual Cloud Networks, click the name of the VCN.

4. On the VCN Information tab, click the name of the DNS Resolver for the VCN.

5. From the Associated Private Views section, click Manage Private Views.

6. In the Private Manage Views window, select the Private View from the compartment
where the private view of the private DNS zone is located.
If a Private View is already associated with the resolver, click Additional Private View to
select the private view of the private DNS zone.

7. Click Save Changes.

Configure the Network
Define the Virtual Cloud Network (VCN) and the subnets configuration for the stack.

1. In the Network section of the Configure Variables page, select the Network Compartment
in which to create the network resources for this stack.

If you don't specify a network compartment, then all the network resources and compute
instances are created in the stack compartment that you selected earlier upon launching

Chapter 2
Create a Stack

2-17

the stack. Select a network compartment if you want the network resources to be in a
different compartment than the compute instances.

2. You can either create a new VCN, use an existing VCN but create new subnet resources,
or an existing VCN and existing subnets.

For an existing VCN and existing subnet, you can configure a bastion compute instance to
provide access to the WebLogic Server compute instances on a private subnet. However,
creating the bastion node on public subnet is optional.

• To create resources in a new VCN, select Create New VCN from the Virtual Cloud
Network Strategy dropdown, and then specify the following:

– A CIDR for the new VCN

– A shape for the private load balancer

• To use an existing VCN but create new subnet resources, select Use Existing VCN
from the Virtual Cloud Network Strategy dropdown, then do the following:

a. From the Existing Network dropdown, select the name of an existing VCN.

b. Do not select the Use Existing Subnet check box.

c. Specify public subnet CIDRs for the bastion host and load balancers.

d. Specify private subnet CIDRs for administration host, file system and mount target
(storage) host, Kubernetes cluster and node pool, and Kubernetes cluster and API
endpoint.

e. Enter the Oracle Cloud Identifier (OCID) for an existing NAT gateway or service
gateway.

f. Select a minimum and maximum flexible shape for a private load balancer.
By default, the minimum bandwidth size is set to 10 Mbps and maximum to 100
Mbps.

Note:

You can update the shape to a maximum of 8000 Mbps. Before you
select the maximum bandwidth, ensure to check the available service
limit for the flexible private load balancer bandwidth.

• To use an existing VCN and existing subnets with bastion configuration, select Use
Existing VCN from the Virtual Cloud Network Strategy dropdown, then do the
following:

a. From the Existing Network dropdown, select the name of an existing VCN.

b. Select the Use Existing Subnet check box.

c. Select the Subnet Compartment to use for the existing subnet.
The subnet compartment is different than the VCN compartment. The subnets for
the bastion host, load balancers, Kubernetes cluster and node pool, Kubernetes
cluster and API endpoint, administration host, and the file system and mount target
host, use this same subnet compartment.

Chapter 2
Create a Stack

2-18

Note:

You can specify the subnet compartment only if you're using an existing
subnet.

d. Keep the default selection for Provision Bastion node on Public Subnet check
box.

e. Select the name of an existing public subnet for the bastion host.

f. Select the names of existing private subnets for the Kubernetes cluster and node
pool, Kubernetes cluster and API endpoint, administration host, and the file system
and mount target (storage) host.

g. Select the name of an existing subnet for the load balancer.

h. Enter the Oracle Cloud Identifier (OCID) for an existing NAT gateway or service
gateway.

i. Select a minimum and maximum flexible shape for a private load balancer.
By default, the minimum bandwidth size is set to 10 Mbps and maximum to 100
Mbps.

Note:

You can update the shape to a maximum of 8000 Mbps. Before you
select the maximum bandwidth, ensure to check the available service
limit for the flexible private load balancer bandwidth.

• To use an existing VCN and existing subnets without bastion configuration, select Use
Existing VCN from the Virtual Cloud Network Strategy dropdown, then do the
following:

a. From the Existing Network dropdown, select the name of an existing VCN.

b. Select the Use Existing Subnet check box.

c. Select the Subnet Compartment to use for the existing subnet.
The subnet compartment is different than the VCN compartment. The subnets for
the bastion host, load balancers, Kubernetes cluster and node pool, Kubernetes
cluster and API endpoint, administration host, and the file system and mount target
host, use this same subnet compartment.

Note:

You can specify the subnet compartment only if you're using an existing
subnet.

d. Deselect the Provision Bastion node on Public Subnet check box.

Chapter 2
Create a Stack

2-19

Note:

– It is recommended to deselect the Provision Bastion Node on
Public Subnet check box only in network with fast connect setup.

– In this case, no status is returned for provisioning, then you must
check the status of provisioning in the Logs under Application
Information of the stack, and view the error or success messages in
the /u01/logs/provisioning.log file on the administration instance.

– To get the internal and external load balancer IP addressesfor
accessing the Jenkins Console, WebLogic Console, and the
WebLogic Cluster Load Balancer, run the following command:

kubectl get svc -A

The private load balancer is listed with the namespace wlsoke-
ingress-nginx and name okename-internal.

The public load balancers are listed with the namespace wlsoke-
ingress-nginx and name <domain-name>-lb-external.

e. Select the names of existing private subnets for the Kubernetes cluster and node
pool, Kubernetes cluster and API endpoint, administration host, and the file system
and mount target (storage) host.

f. Select the name of an existing subnet for the load balancer.

g. Enter the Oracle Cloud Identifier (OCID) for an existing NAT gateway or service
gateway.

h. Select a minimum and maximum flexible shape for a private load balancer.
By default, the minimum bandwidth size is set to 10 Mbps and maximum to 100
Mbps.

Note:

You can update the shape to a maximum of 8000 Mbps. Before you
select the maximum bandwidth, ensure to check the available service
limit for the flexible private load balancer bandwidth.

Configure the Container Cluster
You can specify the parameters needed to create a container cluster or configure the
WebLogic Server domain to use an existing container cluster for an existing VCN and an
existing subnet only.

Note:

If you configure Verrazzano installation, then to configure the container cluster, see
Configure the Container Cluster with Verrazzano.

Chapter 2
Create a Stack

2-20

• Create a Container Cluster

• Use an Existing Cluster

Create a Container Cluster
1. In the Container Cluster Configuration section of the Configure Variables page, enter a

Kubernetes Version to run on the cluster nodes.

Note:

The latest Kubernetes version is displayed by default. Check the Kubernetes
version that is certified and compatible with WebLogic Server Kubernetes
Operator. See Oracle WebLogic Server Kubernetes Operator.

If you enter a Kubernetes version that is not available, the stack provisioning
fails.

2. Select a shape for each node in the Kubernetes cluster node pool, for non-WebLogic node
pools.

If you select a flexible shape, move the slider to specify the OCPU count and amount of
memory for the non-WebLogic node pool shape.

Note:

By default, for the flexible shape, the OCPU count is 1 and the amount of
memory is 1 GB.

WARNING:

If you do not select a shape, the stack creation is stuck on the Review page of
the Create Stack wizard, or the stack creation fails.

3. Select the number of nodes in the node pool, for non-WebLogic node pools.

4. Specify a CIDR for the pods in the Kubernetes cluster.

5. Select the preferred WebLogic Server node pool shape.

If you select a flexible shape, move the slider to specify the OCPU count and amount of
memory for the WebLogic node pool shape.

Note:

By default, for the flexible shape, the OCPU count is 1 and the amount of
memory is 1 GB.

Chapter 2
Create a Stack

2-21

WARNING:

If you do not select a shape, the stack creation is stuck on the Review page of
the Create Stack wizard, or the stack creation fails.

6. Specify the number of nodes required in the WebLogic Server node pool.

7. Specify a CIDR for the Kubernetes services that are exposed.

8. Optional: To encrypt the Kubernetes secrets at rest in etcd by using the master encryption
key in the OCI vault service, select Kubernetes Secret Encryption. Then, select the
compartment where you have the vault, the vault where you have the key, and the key.

If you do not select this option, then the standard block storage encryption is used for etcd.

Caution:

• If you use Kubernetes Secret Encryption, then ensure that you do not
disable or delete the vault key, which you used to encrypt the Kubernetes
secrets.

• If you disable or delete the vault key, you cannot perform any administrative
commands on the administration server. like, kubectl get pods -A. The
only option is to destroy and recreate the domain.

• If you disable the vault key, the changes are immediate and you would not be
able to access the stack.

• If you have scheduled the key for deletion, it is in the Pending Deletion
state until it is deleted permanently on the scheduled deletion date. You can
cancel the key deletion schedule to restore access to the Kubernetes
secrets. See Managing Secrets.

Use an Existing Cluster
1. In the Container Cluster Configuration section of the Configure Variables page, select the

Use existing cluster check box.

2. Enter the OCID of the existing Kubernetes cluster.

Ensure that this Kubernetes cluster exists in the compartment that you selected upon
launching the stack, and in the specified existing VCN.

You must not use the same Kubernetes cluster to create multiple Oracle WebLogic Server
for OKE instances. If you want to use the cluster for multiple instances, you must delete
the resources and the stack. See Delete a Stack .

Configure the Container Cluster with Verrazzano
Specify the parameters needed to create a container cluster if you configured Verrazzano
installation.

1. In the Container Cluster Configuration section of the Configure Variables page, enter a
Kubernetes Version to run on the cluster nodes.

Chapter 2
Create a Stack

2-22

Note:

The latest Kubernetes version is displayed by default. Check the Kubernetes
version that is certified and compatible with WebLogic Server Kubernetes
Operator. See Oracle WebLogic Server Kubernetes Operator.

If you enter a Kubernetes version that is not available, the stack provisioning
fails.

2. Select the WebLogic Server node pool shape.

If you select a flexible shape, move the slider to specify the OCPU count and amount of
memory for the WebLogic node pool shape.

Note:

By default, for the flexible shape, the OCPU count is 1 and the amount of
memory is 1 GB.

Oracle recommends you select VM.Standard.E4.Flex shape with four OCPU
counts.

WARNING:

If you do not select a shape, the stack creation is stuck on the Review
page of the Create Stack wizard, or the stack creation fails.

3. Specify the number of nodes required in the WebLogic Server node pool.

Note:

You must select a minimum of three nodes for the selected shape.

4. Specify a CIDR for the pods in the Kubernetes cluster.

5. Specify a CIDR for the Kubernetes services that are exposed.

6. Optional: To encrypt the Kubernetes secrets at rest in etcd by using the master encryption
key in the OCI vault service, select Kubernetes Secret Encryption. Then, select the
compartment where you have the vault, the vault where you have the key, and the key.

If you do not select this option, then the standard block storage encryption is used for etcd.

Chapter 2
Create a Stack

2-23

Caution:

• If you use Kubernetes Secret Encryption, then ensure that you do not
disable or delete the vault key, which you used to encrypt the Kubernetes
secrets.

• If you disable or delete the vault key, you cannot perform any administrative
commands on the administration server. like, kubectl get pods -A. The
only option is to destroy and recreate the domain.

• If you disable the vault key, the changes are immediate and you would not be
able to access the stack.

• If you have scheduled the key for deletion, it is in the Pending Deletion
state until it is deleted permanently on the scheduled deletion date. You can
cancel the key deletion schedule to restore access to the Kubernetes
secrets. See Managing Secrets.

Configure the Administration Instances
Specify where you want to create the administration instances and select the shapes to use.

1. In the Administration Instances section of the Configure Variables page, select the
availability domain in which to create the bastion and Kubernetes administration compute
instances.

2. Select a shape for the Kubernetes administration compute instance.

If you select a flexible shape, move the slider to specify the OCPU count and amount of
memory for the administration compute instance.

Note:

By default, for the flexible shape, the OCPU count is 1 and the amount of
memory is 1 GB.

WARNING:

If you do not select a shape, the stack creation is stuck on the Review page of
the Create Stack wizard, or the stack creation fails.

3. Select a shape for the bastion compute instance.

If you select a flexible shape, move the slider to specify the OCPU count and amount of
memory for the bastion compute instance.

Chapter 2
Create a Stack

2-24

Note:

By default, for the flexible shape, the OCPU count is 1 and the amount of
memory is 1 GB.

You cannot select a shape for the bastion compute instance if you deselect the
Provision Bastion Node check box.

WARNING:

If you do not select a shape, the stack creation is stuck on the Review page of
the Create Stack wizard, or the stack creation fails.

Configure the File System
Specify where you want to create the shared file system.

1. Select the availability domain where you want to create the shared file system and the
mount target.

Note:

Shared file system and mount target can be in a different availability domain than
the WebLogic instances.

2. Select the compartment for the mount target.

If you want to use an existing subnet to set up an Oracle WebLogic Server for OKE cluster,
you have the option to create the mount target in a compartment different from that of the
stack compartment. Similarly, you can also use an existing mount target from a different
compartment than that of the stack compartment. If you are provisioning a new subnet, the
mount target is created in the stack compartment by default.

3. Optional: If you want to use an existing subnet to provision an Oracle WebLogic Server for
OKE cluster, you have the option to select Add Existing Mount Target, and then select an
existing mount target from the list of mount targets available for the selected availability
domain and compartment. This mount target should be in the same subnet where the new
file system is created.

If you do not select an existing mount target, a new mount target is automatically created
for the file system in the chosen compartment for the mount target.

Configure the Registry
Specify the credentials that Oracle WebLogic Server for OKE uses to access container images
in the Oracle Cloud Infrastructure Registry (OCIR).

1. In the Registry_Username field, enter a user name that Kubernetes uses to access the
image in the registry.

The registry user name format is tenancy_namespace/<username>. If your tenancy is
federated with Oracle Identity Cloud Service, then the registry user name format is
tenancy_namespace/oracleidentitycloudservice/<username>.

Chapter 2
Create a Stack

2-25

You can choose either to include the tenancy_namespace or remove the
tenancy_namespace in the user name format. For example, you can either use
tenancy_namespace/<username> or <username>.

Note:

If you choose to include tenancy_namespace in the user format, ensure that you
use the correct namespace for your tenancy.

2. In the Registry_Authentication_Token field, select the compartment where you have the
OCI Secret that contains the auth token.

3. In the Validated Secret for OCIR Auth Token field, select the secret that contains the
OCIR auth token. To generate an auth token, see Getting an Auth Token in the Oracle
Cloud Infrastructure documentation.

For information about how to create a container registry, see Overview of Registry in the
Oracle Cloud Infrastructure documentation.

Create OCI Policies
When you create stack, by default the OCI Policies check box is selected and Oracle
WebLogic Server for OKE creates a dynamic group and relevant root-level (tenancy) policies
for you.

If you are not an administrator, the necessary groups and policies must be in place before you
can create a stack.

Before you deselect the check box, ask your administrator to create the required dynamic
group and relevant policies, as described in Create a Dynamic Group and Create Policies for
the Dynamic Group.

Create the Stack
After you have specified the parameters for your stack, finish creating the stack.

On the Review page of the Create Stack wizard, review the information you have provided,
and then click Create. This runs the stack creation job.

The Job Details page of the stack in Resource Manager is displayed. A stack creation job
name has the format ormjobyyyymmddnnnnnn. For example, ormjob20200922125850.
Periodically monitor the progress of the job until it is finished. If an email address is associated
with your user profile, you will receive an email notification.

Troubleshoot a Stack
Identify common problems in a Oracle WebLogic Server for OKE stack and learn how to
diagnose to solve them.

Topics

• Stack Creation Failed

• Load Balancer Creation Failed

• Get Additional Help and Contact Support

Chapter 2
Troubleshoot a Stack

2-26

https://docs.cloud.oracle.com/iaas/Content/Registry/Tasks/registrygettingauthtoken.htm
https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

View the Cloud Resources for a Stack
Use Resource Manager to view the Oracle Cloud Infrastructure compute instances, networks,
and other resources that are provisioned by Oracle WebLogic Server for OKE for your stack.

Note:

Load balancers created for your stack are not listed in the Resource Manager. See
Load Balancers.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment that contains your stack.

4. Click the name of your stack.

5. From the Jobs section, click the latest successful job that has the Apply type.

6. Click Application Information.

A list of details displays, including Kubernetes cluster, bastion and administration instance
OCIDs, bastion and administration instance IP addresses, and administration console
URLs.

You can click Logs to find the private load balancer IP addresses.

7. Click a resource OCID to view the compute instance page for the resource. You can
manage the resource on the Instance Details page (for example, reboot the instance).

8. Under Resources on the left, click Associated Resources.

A list of resources in this stack displays. The list includes compute instances, virtual cloud
networks (VCN), subnets, security lists, gateways, dynamic groups, and policies.

9. Click Show next to a resource name to show the resource attributes.

You can also find your stack's resources by using the search field at the top of the console. For
example, if you assigned tags to the resources in the stack, you can enter these tags in the
search field.

About the Resources in a Stack
Learn about the compute instances, load balancers, network, and other resources in a stack
created by Oracle WebLogic Server for OKE for an Oracle WebLogic Server domain.

To obtain a list of associated resources created for a specific stack, see View the Cloud
Resources for a Stack.

Topics:

• Compute Instances

• Network Resources

• Load Balancers

Chapter 2
View the Cloud Resources for a Stack

2-27

• Kubernetes Resources

• File System Resources

• Registry Resources

• Identity Resources for Dynamic Group and Root Policies

Compute Instances
Oracle WebLogic Server for OKE creates Oracle Cloud Infrastructure compute instances for
your Oracle WebLogic Server domain and Kubernetes cluster.

In the Oracle Cloud Infrastructure Console, use the navigation menu and select Compute.
Under the Compute group, click Instances. When you select the compartment you specified
to use for Oracle WebLogic Server when you created the stack, you'll see the following
compute instances provisioned for your stack and Kubernetes cluster:

• Bastion instance - Has the name resourceprefix-bastion
• Administration instance - Has the name resourceprefix-admin
• A Kubernetes worker node - Has the name oke-generated-alphanumeric-string-n
Note: resourceprefix is the resource name prefix you provided during stack creation. n is the
number 0 or 1.

Network Resources
Oracle WebLogic Server for OKE creates several network resources such as route tables,
security lists, and gateways for your Oracle WebLogic Server stack and Kubernetes cluster in
Oracle Cloud Infrastructure.

Additional network resources are created if you specify a new virtual cloud network (VCN) or
new subnets for an existing VCN during stack creation.

In the Oracle Cloud Infrastructure Console, click Networking and select a compartment to
view network resources. For example, click Virtual Cloud Networks to view all the virtual
cloud networks (VCN) created in a compartment. If you created a new VCN for your stack
during stack creation you'll find the VCN and its related resources in the compartment you
specified to use for network resources.

Your stack configuration determines the type and number of network resources created. With
the exception of load balancers, the names of those network resources begin with the resource
name prefix you provided during stack creation. For example, resourceprefix-admin and
resourceprefix-bastion.

The following table provides a summary of the resources that can be created for your domain.

Resource Name Type

resourceprefix-vcn WebLogic VCN (if create a new VCN)

resourceprefix-lb Subnet for public and private load balancers

resourceprefix-workers Private subnet for Kubernetes worker nodes

resourceprefix-admin Private subnet for Kubernetes administration
instance

resourceprefix-fss Private subnet for file shared system

resourceprefix-bastion Public subnet for bastion instance

Chapter 2
View the Cloud Resources for a Stack

2-28

Resource Name Type

resourceprefix-admin-seclist Security list for the administration instance private
subnet

resourceprefix-pub-lb Security list for the load balancer public subnet

resourceprefix-private-workers Security list for the worker nodes private subnet

resourceprefix-fss-seclist Security list for the file shared system private
subnet

resourceprefix-bastion Security list for the bastion instance public subnet

Default Security List for resourceprefix-vcn Default security list for the WebLogic VCN

Default Route Table for resourceprefix-vcn Default route rules in the WebLogic VCN

resourceprefix-nat-route Route rules table in the WebLogic VCN for NAT
and service gateways

resourceprefix-ig-route Route rules table in the WebLogic VCN for internet
gateway

resourceprefix-ig-gw Internet gateway in the WebLogic VCN

Default DHCP Options for resourceprefix-vcn Default set of Dynamic Host Configuration Protocol
(DHCP) options for the WebLogic VCN

resourceprefix-nat-gateway-gw NAT gateway in the WebLogic VCN

resourceprefix-service-gateway-gw Service gateway in the WebLogic VCN

Load Balancers
Oracle WebLogic Server for OKE creates a private load balancer for your Oracle WebLogic
Server stack and Kubernetes cluster in Oracle Cloud Infrastructure.

Private load balancer is provisioned when you create a stack.

In the Oracle Cloud Infrastructure Console, use the navigation menu under the Core
Infrastructure group to go to Networking and click Load Balancers. When you select the
compartment you specified to use for the stack, you'll see the private load balancer provisioned
for your WebLogic Server stack and Kubernetes cluster.

Unlike network resources, note that the names of load balancers created by Oracle WebLogic
Server for OKE do not begin with the resource name prefix you provided during stack creation.
Oracle WebLogic Server for OKE load balancer names are generated, hyphenated
alphanumeric strings. For example, 1x1x1x1x-1x1x-1x1x-1x1x1x1x1x1x.

The private load balancer provides access to the WebLogic Server administration console and
the Jenkins console. The private load balancer resource is provisioned with the following:

• A private IP address

• A backend set, which is identified by the name TCP-80. The backend set configures the
load balancing policy.

• A listener named TCP-80. The listener handles traffic on port 80.

Kubernetes Resources
Oracle WebLogic Server for OKE provisions a Kubernetes cluster for your Oracle WebLogic
Server stack in Oracle Cloud Infrastructure.

To view the Kubernetes cluster provisioned for your WebLogic Server stack:

Chapter 2
View the Cloud Resources for a Stack

2-29

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu and select Developer Services.

3. Under the Containers group, click Kubernetes Clusters.

4. Select the compartment you specified to use for the stack.

The cluster and node resource names are as follows:

• The Kubernetes cluster name begins with the resource name prefix you provided during
stack creation. For example, resourceprefix-cluster.

• A node pool named resourceprefix-non-wls-np, with one or more worker nodes for each
node pool

• The worker nodes are compute instances with the names oke-generated-alphanumeric-
string-0 and oke-generated-alphanumeric-string-1.

File System Resources
Oracle WebLogic Server for OKE creates a shared file system that is made available through a
mount target.

In the Oracle Cloud Infrastructure Console, use the navigation menu and select Storage.
Under the File Storage group, click File Systems or Mount Targets. When you select the
compartment you specified to use during stack creation, you'll see the resources created for
the shared file system and mount target:

• resourceprefix-fss
• resourceprefix-mntTarget
Note that both resource names begin with the resource name prefix you provided during stack
creation.

Registry Resources
During stack creation, Oracle WebLogic Server for OKE pushes a default image to the registry.
The default image is used to provision the WebLogic Server and Jenkins pods for your domain.

After the stack is created, you can use Kubernetes in the administration compute instance to
apply any changes you make to the default image.

In the Oracle Cloud Infrastructure Console, use the navigation menu and select Developer
Services. Under the Containers and Artifacts group, click Container Registry, and then
select the required Compartment. The registry resources for your stack begin with the
resource name prefix you provided during stack creation.

The list of registry resources provisioned include:

• resourceprefix/infra/cisystem-jenkins-controller
• resourceprefix/infra/cisystem-jenkins-agent
• resourceprefix/infra/nginx-ingress-controller
• resourceprefix/infra/oraclelinux
• resourceprefix/infra/weblogic-kubernetes-operator
• resourceprefix/wls-base-image/12214

Chapter 2
View the Cloud Resources for a Stack

2-30

Identity Resources for Dynamic Group and Root Policies
Oracle WebLogic Server for OKE creates a dynamic group and one policy for your domain
when you create a stack.

The dynamic group and root-level (tenancy) policy allows compute instances in the domain to
access keys and secrets in Oracle Cloud Infrastructure Vault.

The name of the dynamic group and root-level policy are:

• servicename-admin-instance-principal-group (dynamic group)

• servicename-oke-encryption-key-principal-group
• servicename-oke-policy
Where servicename is the resource name prefix you provided during stack creation.

For a single compartment, the matching rule created in the dynamic group is:

instance.compartment.id='ocid1.compartment.oc1..alongstring'
The rule states that all instances created in the compartment (identified by the compartment
OCID) are members of the dynamic group.

The osms policy has the following statement:

Allow dynamic-group servicename-admin-instance-principal-group to use osms-
managed-instances in tenancy
The oke-policy policy at the root level (tenancy) has the following statements that are scoped
to the compartent IDs, resource IDs, or both compartment and resource IDs:

• Allow dynamic-group servicename-admin-instance-principal-group to use dynamic-
groups in tenancy where target.group.id = <dynamic_group_ocid>

• Allow dynamic-group servicename-admin-instance-principal-group to manage all-
resources in compartment id <stack_compartment_ocid>

• Allow service oke to read app-catalog-listing in compartment id
<stack_compartment_ocid>

• Allow dynamic-group servicename-admin-instance-principal-group to read secret-
bundles in tenancy where target.secret.id = <OCID for OCIR token secret>

• Allow dynamic-group servicename-admin-instance-principal-group to use vnics in
compartment id <network_compartment_ocid>

• Allow dynamic-group servicename-admin-instance-principal-group to inspect
instance-family in compartment id <network_compartment_ocid>

• Allow dynamic-group servicename-admin-instance-principal-group to use subnets
in compartment id <network_compartment_ocid>

• Allow dynamic-group servicename-admin-instance-principal-group to use keys in
tenancy where target.key.id = <oke_encryption_key_ocid>
This policy applies if cluster encryption is selected.

Chapter 2
View the Cloud Resources for a Stack

2-31

3
Manage WebLogic Domains

Learn how to manage a WebLogic domain after creating it with Oracle WebLogic Server for
OKE.

Topics:

• About Managing a WebLogic Domain

• About WebLogic Deploy Tooling

• Project Components

• Access Resources

• Create a WebLogic Domain

• Update a WebLogic Domain

• Patch a Domain

• Troubleshoot a WebLogic Domain

• Terminate a WebLogic Domain

• Create a JRF Domain on a Persistent Volume Manually

About Managing a WebLogic Domain
Learn how to create and deploy custom domain images, and access the different consoles.

In general, you configure, manage, and maintain an Oracle WebLogic Server for OKE domain
just like an on-premise domain. For example, to deploy an application, see Roadmap for
Deploying Applications in WebLogic Server (12.2.1.4)

About WebLogic Deploy Tooling
Learn about the WebLogic Deploying Tool (WDT) to manage a WebLogic domain in Oracle
WebLogic Server for OKE.

WebLogic Deploy Tooling automates the domain creation and application deployment tasks
using the metadata model that describes the domain and applications (with their dependent
resources). WebLogic Deploy Tooling also provides single-purpose tools that perform domain
lifecycle operations based on the content of the model.

WebLogic Deploy Tooling is used to create the container image and represent the WebLogic
configuration. It makes use of a model Yaml file, an archive zip, and a properties file.

When you have multiple WDT files, the WebLogic Deploy Tooling merges them together and
create a single WebLogic domain configuration represented by a single model Yaml file.

The model Yaml file that represents your WebLogic configuration is located in /u01/shared/
location.

3-1

Following is an example of a model Yaml file that has the name of the application as my-
application and target cluster as my-WebLogic-domain-cluster:

appDeployments:
 Application:
 my-application :
 SourcePath: wlsdeploy/applications/my-application
 Target: my-WebLogic-domain-cluster
 ModuleType: ear

Following is an example of a model Yaml file that has only WebLogic credentials:

domainInfo:
 AdminUserName: '@@SECRET:__weblogic-credentials__:username@@'
 AdminPassword: '@@SECRET:__weblogic-credentials__:password@@'

Following is an example of a model Yaml file that has RCU database connection information:

domainInfo:
 RCUDbInfo:
 rcu_prefix: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-access:rcu_prefix@@'
 rcu_schema_password: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_schema_password@@'
 rcu_db_conn_string: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_db_conn_string@@'
 rcu_db_user: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-access:rcu_db_user@@'
 rcu_admin_password: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_admin_password@@'

To know more, see Metadata Model in WebLogic Deploy Tooling.

Project Components
Learn about the different tools and files that you can use to build Jenkins projects for your
domain.

Oracle WebLogic Server for OKE creates a private load balancer for your domain, which you
use to access the Jenkins console running on the Kubernetes cluster. An NGINX ingress
controller is used to route traffic from the private load balancer to Jenkins.

All Jenkins files are found on the shared file system.

• /u01/shared/var/jenkins_home - The Jenkins controller server configuration

• /u01/shared/scripts/pipeline - The resources used to run the sample Jenkins job,
including scripts and metadata files

• /u01/shared/scripts/pipeline/samples - Sample domain metadata files for deploying
applications, applying patches, and so on.

To access or modify these files, use the administration compute instance for your domain. This
compute instance also includes the following software:

• kubectl - Deploy and manage pods in the Kubernetes cluster for this domain.

Chapter 3
Project Components

3-2

• docker - Download, modify, and update container images in Oracle Cloud Infrastructure
Registry. Use the login command to connect to the registry.

• oci - View, create and update resources in Oracle Cloud Infrastructure.

Access Resources
Learn how to access the administration console using the tools provided with Oracle WebLogic
Server for OKE.

Topics:

• Access the Administration Instance

• Access the Jenkins Console

• Access the WebLogic Console

Access the Administration Instance
Access the administration compute instance for a Oracle WebLogic Server for OKE.

From the administration compute instance, you can access the shared file system at /u01/
shared. It also includes the following software:

• kubectl - Deploy and manage pods in the Kubernetes cluster for this stack.

• docker - Download, modify and update container images in Oracle Cloud Infrastructure
Registry. Use the login command to connect to the registry.

• oci - View, create and update resources in Oracle Cloud Infrastructure.

This compute instance is on a private subnet and cannot be directly accessed from the public
Internet. You can use the bastion instance, which is on a public subnet, and the proxy option of
a secure shell (SSH) utility.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

5. Click Jobs.

6. In the Jobs table, click the Apply job for the stack.

7. Click Application Information.

8. Identify and make a note of the following IP addresses:

• Bastion Instance Public IP - The public IP address of the bastion compute
instance

• Admin Instance Private IP - The private IP address of the administration
compute instance

9. From your computer, create an SSH connection to the administration instance's IP
address, and also specify the bastion instance's IP address as a proxy.

Connect as the opc user.

Chapter 3
Access Resources

3-3

Provide the path to the private key that corresponds to the public key that you specified
when you created the stack.

The SSH command format is:

ssh -i <path_to_private_key> -o ProxyCommand="ssh -W %h:%p –i
<path_to_private_key> opc@<bastion_public_ip>" opc@<admin_ip>

For example:

ssh -i ~/.ssh/mykey.openssh -o ProxyCommand="ssh -W %h:%p -i ~/.ssh/
mykey.openssh opc@203.0.113.13" opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

10. If prompted, enter the passphrase for the private key.

Access the Jenkins Console
Access the Jenkins build engine for a stack that you created with Oracle WebLogic Server for
OKE.

Jenkins runs as a pod in the Kubernetes cluster and is accessible from a private load balancer.
This load balancer cannot be directly accessed from the public Internet. You can use the
bastion instance on a public subnet and dynamic port forwarding with a secure shell (SSH)
utility.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

5. Click Jobs.

6. Click the Apply job for the stack.

7. Click Outputs.

8. Identify the public IP address of the bastion compute instance,
bastion_instance_public_ip.

9. Click Logs.

10. Search for the attribute jenkins_console_url. Copy the URL.

The URL format is:

jenkins_console_url=http://<internal_lb_ip>/jenkins

where, internal_lb_ip is the internal load balancer IP address.

Chapter 3
Access Resources

3-4

Note:

If you provision a domain without a bastion instance, you must obtain the internal
load balancer IP address to use in the Jenkins URL.

To get the internal load balancer IP address, access the administration instance
for your stack (see Access the Administration Instance) and run the following
command:

kubectl get svc -A

The private load balancer is listed with the namespace wlsoke-ingress-nginx
and name okename-internal.

11. From your computer, open an SSH tunnel to an unused port on the bastion compute
instance as the opc user.

For example, you can use port 1088 for SOCKS proxy.

Specify the -D option to use dynamic port forwarding. Provide the path to the private key
that corresponds to the public key that you specified when you created the domain.

The SSH command format is:

ssh -D <port_for_socks_proxy> -fCqN -i <path_to_private_key>
opc@<bastion_public_ip>

For example:

ssh -D 1088 -fCqN -i ~/.ssh/mykey.openssh opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

12. In your browser settings, set up the SOCKS (version 5) proxy configuration. Specify your
local computer and the same SOCKS port that you used in your SSH command.

13. Browse to the Jenkins console URL.

14. If this is the first time using the Jenkins console, you are prompted to create a new admin
user.

Chapter 3
Access Resources

3-5

Access the WebLogic Console
Access the WebLogic Server Administration Console for a domain that you created with Oracle
WebLogic Server for OKE.

Note:

• Before you access the WebLogic console, you must have created a WebLogic
domain. See Create a WebLogic Domain.

• Do not use the WebLogic console to make any configuration changes. All
configuration changes should be should done through jobs, this ensure that the
changes are persistent.

• Security check warnings are displayed at the top of the console. See About the
Security Checkup Tool for the warnings and how to handle them.

The domain's administration server runs as a pod in the Kubernetes cluster and is accessible
from a private load balancer. This load balancer cannot be directly accessed from the public
Internet. You can use the bastion instance on a public subnet and dynamic port forwarding with
a secure shell (SSH) utility.

Note:

Any modifications you make to a running domain will be lost when you redeploy the
pods for the domain in the Kubernetes cluster.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

5. Click Jobs.

6. In the Jobs table, click the Apply job for the stack.

7. Click Outputs.

8. Identify and make a note of the public IP address of the bastion compute instance,
bastion_instance_public_ip.

9. Click Logs.

10. Search for the attribute weblogic_console_url. Copy the URL.

The URL format is:

weblogic_console_url=http://<internal_lb_ip2>/<domain-name>/console

Chapter 3
Access Resources

3-6

where, <internal_lb_ip2> is the internal load balancer IP address that is used to access
the Jenkins console.

Note:

If you provision a domain without a bastion instance, you must obtain the internal
load balancer IP address to use in the WebLogic Console URL.

To get the internal load balancer IP address, access the administration instance
for your stack (see Access the Administration Instance) and run the following
command:

kubectl get svc -A

The private load balancer is listed with the namespace wlsoke-ingress-nginx
and name okename-internal.

Example: This example will help you obtain the WebLogic Console URL.

After you access the administration instance for your stack, run the following command:

kubectl get svc -A

The output appears as follows:

NAMESPACE NAME TYPE
CLUSTER-IP EXTERNAL-IP PORT(S) AGE
default kubernetes ClusterIP
10.96.0.1 <none> 443/TCP,12250/TCP 9d
service1-operator-ns weblogic-operator-webhook-svc ClusterIP
10.96.30.88 <none> 8083/TCP,8084/TCP 9d
domain1-ns domain1-cluster-domain1-cluster ClusterIP
10.96.40.171 <none> 8001/TCP 2d23h
domain1-ns domain1-domain1-adminserver ClusterIP
None <none> 30012/TCP,7001/TCP 2d23h
domain1-ns domain1-domain1-managed-server1 ClusterIP
None <none> 8001/TCP 2d23h
domain1-ns domain1-domain1-managed-server2 ClusterIP
None <none> 8001/TCP 2d23h
jenkins-ns jenkins-service ClusterIP
10.96.13.193 <none> 8080/TCP,50000/TCP 9d
kube-system kube-dns ClusterIP
10.96.5.5 <none> 53/UDP,53/TCP,9153/TCP 9d
wlsoke-ingress-nginx service1-internal LoadBalancer
10.96.190.50 10.10.6.13 80:31149/TCP 9d

Now, look for the EXTERNAL-IP field for the service with the following details:

• NAMESPACE = wlsoke-ingress-nginx
• NAME = <service-name>-internal = service1_internal
• TYPE = LoadBalancer

Chapter 3
Access Resources

3-7

For this example, service1 is the service name and domain1 is the domain name. The
WebLogic Console URL format is http://<internal_lb_ip>/<domain-name>/console.
Therefore, as per this example, the console URL is http://10.10.6.13/domain1/console.

11. From your computer, open an SSH tunnel to an unused port on the bastion compute
instance as the opc user.

For example, you can use port 1088 for SOCKS proxy.

Specify the -D option to use dynamic port forwarding. Provide the path to the private key
that corresponds to the public key that you specified when you created the stack.

The SSH command format is:

ssh -C -D port_for_socks_proxy -i path_to_private_key opc@bastion_public_ip

For example:

ssh -C -D 1088 -i ~/.ssh/mykey.openssh opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

12. In your browser settings, set up the SOCKS (version 5) proxy configuration. Specify your
local computer and the same SOCKS port that you used in your SSH command.

13. Browse to the console URL.

14. Sign in using the administrator credentials for your domain.

Create a WebLogic Domain
Create a WebLogic domain by using the tools provided with Oracle WebLogic Server for OKE.

Topics:

• About Creating a Domain

• Prerequisites to Create a Domain

• Create a Domain

About Creating a Domain
Learn about the options you have when creating a domain.

• Domain Type

A Non-JRF domain does not require an existing database.

A JRF-enabled domain includes the Java Required Files (JRF) components and requires
access to an existing database in Oracle Autonomous Database or Oracle Cloud
Infrastructure Database (DB System). If using a DB System database, note that the DB
System and the Kubernetes cluster must be in the same Virtual Cloud Network (VCN). See
Create a Database.

• Load Balancers

When you create a domain, Oracle WebLogic Server for OKE creates a public load
balancer to distribute application traffic to the WebLogic cluster.

Chapter 3
Create a WebLogic Domain

3-8

The public load balancer consists of primary and standby nodes but it is accessible from a
single IP address. If the primary node fails, traffic is automatically routed to the standby
node. The public load balancer is configured for SSL connections (the HTTPS protocol)
that terminate at the load balancer.

The load balancers are assigned to a public subnet, for which you must specify a CIDR
block if you let Oracle WebLogic Server for OKE create new subnets during stack
provisioning. You must also specify shapes for the private and public load balancers.

Note:

By default, the reserved public IP address that you specify as the
loadBalancerIP property of the LoadBalancer service in the manifest file is
expected to be a resource in the same compartment as the cluster. If you want to
specify a reserved public IP address in a different compartment, add the following
policy to the tenancy:

Allow any-user to read public-ips in tenancy where
request.principal.type = 'cluster'
Allow any-user to manage floating-ips in tenancy where
request.principal.type = 'cluster'

See Specifying Load Balancer Reserved Public IP Addresses.

Prerequisites to Create a Domain
Complete the prerequisites before you create a domain.

Required Tasks

• Create Policies for the Dynamic Group

• Create a Database

• Create a Confidential Application

• Approve Scripts to View Parameters

• Validate Existing Network Setup

Create Policies for the Dynamic Group
Create policies in Oracle Cloud Infrastructure so that the compute instances in Oracle
WebLogic Server for OKE can access your encryption key.

When you create a domain, compute instances in Oracle WebLogic Server for OKE need to
access specific components in Oracle Cloud Infrastructure.

The following sample policy grants the relevant database permissions to a dynamic group:

Allow dynamic-group MyInstancesPrincipalGroup to use autonomous-transaction-
processing-family in compartment ATP_Database_Compartment
Allow dynamic-group MyInstancesPrincipalGroup to inspect db-systems in
compartment id OCIDBCompartmentID
Allow dynamic-group MyInstancesPrincipalGroup to inspect databases in
compartment id OCIDBCompartmentID

Chapter 3
Create a WebLogic Domain

3-9

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm

See these topics in the Oracle Cloud Infrastructure documentation:

• Common Policies

• Writing Policies for Dynamic Groups

Create a Database
If you are using Domain on PV, a WebLogic Kubernetes Operator (WKO) domain home source
type, to create an Oracle WebLogic Server Java Required Files (JRF) domain, then, before
creating the domain that includes the JRF components, you must create a database in Oracle
Cloud Infrastructure.

A JRF-enabled domain is used by Fusion Middleware products. The JRF domain has database
requirements. The database components are created using the Repository Creation Utility
(RCU); a new RCU schema is created before creating a JRF-based domain.

A JRF-enabled domain includes the Java Required Files (JRF) components and requires
access to an existing database in Oracle Autonomous Database or Oracle Cloud Infrastructure
Database (DB System). If using a DB System database, ensure that the DB System and the
Kubernetes cluster are in the same Virtual Cloud Network (VCN).

Note:

For each schema that is created in the database, a data source is created in
WebLogic Server. These data sources should not be used by applications deployed
to the WebLogic domain after provisioning is complete. Instead, you must create
independent data sources. See About Data Sources.

Choose one of these database options:

• Oracle Autonomous Database

– Create a serverless database. Oracle WebLogic Server for OKE does not yet support
using a dedicated deployment database.

– See Creating an Autonomous Database in the Oracle Cloud Infrastructure
documentation.

Note:

Oracle Application Express (APEX) autonomous database is not supported.

• Oracle Cloud Infrastructure Database

– Create a bare metal, virtual machine (VM), or Exadata DB system.

– The Virtual Cloud Network (VCN) of the Oracle Cloud Infrastructure database must be
same as the WebLogic Server VCN.

– See Creating Bare Metal and Virtual Machine DB Systems or Managing Exadata DB
Systems in the Oracle Cloud Infrastructure documentation.

The database must allow your domain to access its listen port (1521 by default):

• Oracle Autonomous Database - Update your access control list (ACL), if necessary.

Chapter 3
Create a WebLogic Domain

3-10

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm#Writing

• Oracle Cloud Infrastructure Database - Update the network security group that is assigned
to the database, or update the security lists for the subnet on which the database was
created, if necessary.

To create a JRF-enabled domain with Oracle WebLogic Server for OKE, you need the following
information about the database:

• Administrator credentials

• Oracle Cloud Identifier (OCID) of the Oracle Cloud Infrastructure Database database
system or the Autonomous Transaction Processing (ATP) database. This information is
optional if you use a database connection string.

Oracle WebLogic Server for OKE supports the same database versions and drivers as those
for on-premise WebLogic Server installations. Refer to the following documents at Oracle
Fusion Middleware Supported System Configurations:

• System Requirements and Supported Platforms for Oracle Fusion Middleware 14c
(14.1.1.0.0)

• System Requirements and Supported Platforms for Oracle Fusion Middleware 12c
(12.2.1.4.0)

Create a Confidential Application
Before creating an Oracle WebLogic Server for OKE domain that integrates with Oracle
Identity Cloud Service, you must create a confidential application, and then identify its client ID
and client secret.

This configuration is supported only for Oracle Cloud accounts that include Oracle Identity
Cloud Service 19.2.1 or later.

When creating a new domain, Oracle WebLogic Server for OKE provisions an App Gateway
and other security components in Oracle Identity Cloud Service. In order for Oracle WebLogic
Server for OKE to perform these tasks, you must provide the following information:

• Your Oracle Identity Cloud Service instance ID, which is also referred to as your tenant
name. This ID is typically found in the URL you use to access the Oracle Identity Cloud
Service console, and has the format idcs-<GUID>.

• The client ID of a confidential application in Oracle Identity Cloud Service

• The client secret of the confidential application.

Create a confidential application for Oracle WebLogic Server for OKE, or use an existing one.
You can use a single confidential application in Oracle Identity Cloud Service to create multiple
domains.

1. From the Oracle Identity Cloud Service Console, click the navigation menu, and then
select Applications.

2. Click Add.

3. Select Confidential Application.

4. Enter a Name, and then click Next.

5. Click Configure this application as a client now.

6. For Allowed Grant Types, select Client Credentials.

7. Below Grant the client access to Identity Cloud Service Admin APIs, click Add.

8. Select Identity Domain Administrator, and then click Add.

Chapter 3
Create a WebLogic Domain

3-11

https://www.oracle.com/middleware/technologies/fusion-certification.html
https://www.oracle.com/middleware/technologies/fusion-certification.html

9. (Optional) For a WebLogic Server 12.2.1.4 domain only, add Cloud Gate App Role. You
can add this role after you create your WebLogic Server domain but you may need to
restart the domain.

Caution:

Add Cloud Gate App Role only if you need to open and log in to the Fusion
Middleware Control Console from the Internet. While enabling this role means
the Fusion Middleware Control Console is accessible from the Internet, it also
means any application would be allowed to look up users.

10. Complete the Add Confidential Application wizard. Record the values of Client ID and
Client Secret.

11. Select the check box for your application, click Activate, and then click OK.

12. In the Oracle Cloud Infrastructure console, create a secret in a vault to store the client
secret of your confidential application.

See Add a Confidential Application in Administering Oracle Identity Cloud Service.

Approve Scripts to View Parameters
At times, the Jenkins UI input parameters in a list are not rendered. So, you need to approve
groovy scripts to view all the parameters in a list.

Complete the following steps to approve the scripts:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. Go to Dashboard > Manage Jenkins.

3. Under Security, click In-process Script Approval.

4. Click Approve against all the groovy scripts.
All the parameters are now listed in the pipeline jobs.

Validate Existing Network Setup
You can use helper scripts from the Oracle Cloud Infrastructure Cloud shell to certify the
existing network setup (existing VCN and existing WebLogic Server subnet) in Oracle
WebLogic Server for OKE. See Using Cloud Shell in Oracle Cloud Infrastructure
documentation.

The helper scripts perform the following validations and functions:

• Validates if the service gateway or the NAT gateway is created for the administration
instance private subnet and the worker nodes private subnets.

• Validates if internet gateway is created for public bastion, file shared system and load
balancer subnets.

• Checks if port 22 in WebLogic Server Subnet is open for access to the CIDR of the bastion
instance subnet or bastion host IP.

• Checks if the private subnet for the Oracle WebLogic Server compute instances using the
service gateway route rule has All <Region> Services In Oracle Services Network as
the destination.

• Checks if the existing subnet for the load balancer has a security list that enables inbound
access to ports 80 and 443.

Chapter 3
Create a WebLogic Domain

3-12

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellgettingstarted.htm

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
Worker CIDR range.

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
VCN CIDR range.

• Validates if the file shared system has a security list that enables outbound access to ports
111 and 2048 (both TCP and UDP).

• Validates if the database port is accessible from WebLogic Server subnets.

Using the Validation Script
You can run the helper scripts to perform validations for existing private subnets, existing public
subnets, and existing VCN peered subnets.

You must run the commands on the validation script file to check the existing network setup.
For example, in this case, let's run the commands on the validation script file named
validateoke.sh. See Script File To Validate Network Setup to create the validateoke.sh file.

1. Set execute permission to the validateoke.sh file.

chmod +x validateoke.sh
2. Run the following command prior to creating a domain:

• Basic domain

./validateoke.sh -b <Bastion Subnet OCID> -a <Administration Host Subnet
OCID> -w <Worker Subnet OCID> -f <File Shared System Subnet OCID> -l <Load
Balancer Subnet OCID>

Note:

If you restricted the bastion compute instance to access port 22 in WebLogic
subnet, you can validate using the Bastion Host IP CIDR rather than the entire
bastion subnet CIDR.

./validateoke.sh -b <Bastion Subnet OCID> -i <Bastion Host IP CIDR> -
a <Administration Host Subnet OCID> -w <Worker Subnet OCID> -f <File
Shared System Subnet OCID> -l <Load Balancer Subnet OCID>

validateoke.sh

example_user@cloudshell:~ (us-phoenix-1)$./validateoke.sh -b <Bastion Subnet
OCID>
-a <Administration Host Subnet OCID> -w <Worker Subnet OCID> -f <File Shared
System Subnet OCID>
-l <Load Balancer Subnet OCID>
ERROR: SSH port 22 is not open for access by [0.0.0.0/0] in <Bastion Subnet
OCID>
WARNING: SSH port 22 is not open for access by Bastion Subnet CIDR
[10.0.0.0/24] in private Admin Host Subnet [<Administration Host Subnet OCID>]
ERROR: Missing Service or NAT gateway in the VCN of the private ADMIN_SUBNET
Host subnet ocid [<Administration Host Subnet OCID>]
WARNING: Missing internet gateway in the VCN of the BASTION_SUBNET subnet
[<Bastion Subnet OCID>]
WARNING: Missing internet gateway in the VCN of the LB_SUBNET subnet [<Load
Balancer Subnet OCID>]

Chapter 3
Create a WebLogic Domain

3-13

WARNING: Missing internet gateway in the VCN of the FSS_SUBNET_OCID subnet
[<File Shared System Subnet OCID>]
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 31474
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 10256
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 31804
WARNING: All Ports are not open for LB Subnet CIDR
WARNING: All Ports are not open for LB Subnet CIDR
WARNING: All Ports are not open for LB Subnet CIDR
ERROR: All Protocols are not open for WORKER's Subnet CIDR
ERROR: All Protocols are not open in WORKER's Subnet for VCN CIDR
ERROR: TCP -- 111 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2048 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2049 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2050 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 111 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2048 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2049 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2050 -- Port is not open in FSS Subnet for VCN CIDR

Create a Domain
After you create a stack, use the Jenkins job to create a domain for Oracle WebLogic Server
for OKE.

You can locate a WebLogic domain either on a persistent volume (Domain on PV) or inside the
container (Model in Image). For a comparison between the two types, see Choose a Domain
Home Source Type.

• Model in Image:
With Model in Image, you do not need to create your WebLogic domain home beforehand.
This tool uses a WebLogic Deploy Tooling (WDT) model to define the WebLogic
configuration. It supports standard WebLogic Server domains. For more information, see
Model in Image.

You can create a Model in Image within the container image using the create mii domain
job.

When you create a domain with the create mii domain job, a new non-Java Required
Files (JRF) domain that has a basic configuration with no custom applications or libraries,
called the primordial domain, is created. This domain contains:

– Base WebLogic Server image that has the WebLogic installer, JDK installer, and
WebLogic patches for Oracle WebLogic Server for OKE.

– Primordial Auxiliary image that has WebLogic domain resources (server, cluster,
JDBC, and other resources).

To know about the primordial domain and auxiliary images, see Mutate the Domain Layer
and Auxiliary Images in WebLogic Kubernetes Operator documentation.

• Domain on Persistent Volume (PV):
Domain on PV creates the domain on a persistent volume. Domain on PV is applicable for
two types of domains: a standard Oracle WebLogic Server (WLS) domain and an Oracle
Fusion Middleware Infrastructure, Java Required Files (JRF) domain. For more
information, see Domain on Persistent Volume (PV).

You can create and deploy a domain on persistent volume (Domain on PV) using the
create pv domain job. With this job, you can create both a non-Java Required Files (JRF)
domain or a Java Required Files (JRF) domain, depending on your requirement.

Chapter 3
Create a WebLogic Domain

3-14

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/choosing-a-model/
https://oracle.github.io/weblogic-kubernetes-operator/samples/domains/model-in-image/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/

Before you create a domain, ensure that all the prerequisites are completed. See Prerequisites
to Create a Domain.

Topics:

• Provision a Non-JRF Domain

• Provision a JRF Domain

Provision a Non-JRF Domain
You can use the Jenkins pipeline job create mii domain or create domain on pv to automate
the deployment of a non-JRF WebLogic Server doamin. The job you choose will depend on
whether you want to use Model in Image domain home source type or the Domain on
Persistent Volume domain home source type for deploying a domain.

Complete the following steps to create a non-JRF domain using create mii domain or create
domain on pv, based on your requirement.

Topics:

• Configure WebLogic Server

• Configure the Registry

• Configure the Container Cluster

• Configure the Load Balancer

• Configure the Domain

• Configure Identity Cloud Service Integration

• Create the Domain

Configure WebLogic Server
Specify the parameters required to configure a WebLogic server on a container cluster.

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click create domain.

3. Click Build with Parameters.

4. For Domain_Name, specify a WebLogic name.

5. For WebLogic_Version, select a version of Oracle WebLogic Server.

The available versions are 12.2.1.4.0, 14.1.1.0.0 running on JDK 8, and 14.1.1.0.0 running
on JDK 11.

6. Optional: Select the required base image from the Base_Image list.

The images are displayed based on the Weblogic Server version. For example, if you
select 12.2.1.4.0, 12.2.1.4.0 images are displayed, and if you select 14.1.1.0.0,
14.1.1.0.0_jdk8 and 14.1.1.0.0_jdk11 images are displayed.

Chapter 3
Create a WebLogic Domain

3-15

Note:

For 14.1.1.0.0., make sure that the base image you select should have the same
WebLogic Server and JDK version as in step 5.

The custom base images and uploaded images are also listed in the
Base_Image list. See Create a Custom Base Image.

7. Enter a user name for the WebLogic Server administrator.

8. Enter the password for the WebLogic Server administrator.

9. Select the number of running managed servers in the domain you want to create. You can
specify up to 9 manged servers.

The number of running managed servers is also the number of WebLogic Server pods in
the Kubernetes cluster. Each managed server runs in a separate pod in the Kubernetes
cluster.

Managed servers are members of a WebLogic Server cluster.

10. Specify the time in minutes to wait for the WebLogic Domain Server pods to start in the
running state. The default wait time is 40 minutes.

11. Select Patch_Automatically, if you want the domain to be subscribed for automatic
patching.

Once subscribed, the domain is patched periodically with the latest patches available in the
patching repository. See Automatic Patching.

12. If your previous create domain job failed, then select Cleanup_Domain_Resources to
cleanup any existing domain resources.

Configure the Registry
Specify the credentials to access container images in the Oracle Cloud Infrastructure Registry
(OCIR).

Note:

If you want to use another user credentials, other than the one specified when
creating a stack, then specify the credentials that Oracle WebLogic Server for OKE
must use to access container images in the Oracle Cloud Infrastructure Registry
(OCIR).

1. In the Registry_Username field, enter a user name that Kubernetes uses to access the
image in the registry.

The registry user name format is tenancy_namespace/<username>. If your tenancy is
federated with Oracle Identity Cloud Service, then the registry user name format is
tenancy_namespace/oracleidentitycloudservice/<username>.

You can choose either to include the tenancy_namespace or remove the
tenancy_namespace in the user name format. For example, you can either use
tenancy_namespace/<username> or <username>.

Chapter 3
Create a WebLogic Domain

3-16

Note:

If you choose to include tenancy_namespace in the user format, ensure that you
use the correct namespace for your tenancy.

2. In the Registry_Authentication_Token field, select the compartment where you have the
OCI Secret that contains the auth token.

For information about how to create a container registry, see Overview of Registry in the
Oracle Cloud Infrastructure documentation.

Configure the Container Cluster
Specify the parameters required to either create a node pool or select an existing node pool for
the WebLogic nodes.

• Use an Existing Node Pool

• Create a Node Pool

Use an Existing Node Pool

To use an existing node pool:

1. From WebLogic_Node_Pool_Type, select Existing_Node_Pool.

2. From Existing_Node_Pool, select the required node pool.

Note:

In the Existing_Node_Pool list, the node pools, if any, created during stack
creation, and the node pools that are idle, that is, do not have any domains
running in them and which are created using the create mii domain or the
create domain on pv job are listed.

Create a Node Pool

To create a node pool:

1. From WebLogic_Node_Pool_Type, select Create_Node_Pool.

2. For Node_Count, specify the number of nodes your want for the WebLogic node pool.

3. For Node_Pool_Name, specify the name of the node pool.

4. From WebLogic_Node_Pool_Shape, select a shape for each node in the Kubernetes
cluster node pool, for the WebLogic node pools.

For 2 or more running managed servers, select a shape with 2 or more OCPUs. For
example, VM.Standard2.2 instead of VM.Standard2.1.

If you select a flexible shape, specify the OCPU count and the amount of memory for the
WebLogic node pool shape. The amount of memory is based on the number of OCPUs.

Chapter 3
Create a WebLogic Domain

3-17

https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

Note:

If you specify the amount of memory that is not allowed for the number of
OCPUs, the node pool creation fails. See Flexible Shapes.

5. Optional: For SSH_Public_Key, specify the contents of the SSH public key to access the
nodes in the WebLogic server node pool in this domain.

If you want to use another SSH public key for this domain, other than the one specified
when creating a stack, then enter the SSH public key by copy-pasting the SSH key
information.

Note:

If you use another SSH public key, the new SSH public key is used to access the
nodes in the WebLogic server node pool. The SSH key for accessing the
Administrator node is not changed, which you specified when creating a stack.

6. Optional: For NodePool_Subnet_ID, if you want the node pool to be created in a specific
private subnet, then specify the Oracle Cloud Identifier (OCID) of that private subnet.

Note:

• Ensure that the private subnet exists in the same VCN as the Kubernetes
cluster.

• If you want the node pool in another subnet, then you must to set following
additional security rules:

– In the oke_endpoint security list, allow access on ports 6443 and 12550
for the subnets where you want the nodepool created.

– In the workers_subnet security list, allow access for all protocols for the
destination subnet. This must be an ingress rule with the destination
subnet CIDR being the source CIDR.

Configure the Load Balancer
Specify the parameters required to create a public load balancer for the application. The public
load balancer is used to access applications on the WebLogic managed servers.

1. For External_Lb_Shape_Min and External_Lb_Shape_Max, specify the minimum and
maximum flexible shape for a public load balancer.

By default, the minimum bandwidth size is set to 10 Mbps and maximum to 400 Mbps.

Note:

You can update the shape to a maximum of 8000 Mbps. Before you select the
maximum bandwidth, ensure to check the available service limit for the flexible
public load balancer bandwidth.

Chapter 3
Create a WebLogic Domain

3-18

https://docs.cloud.oracle.com/iaas/Content/Compute/References/computeshapes.htm#flexible

2. Optional: Enter the LB_Subnet_ID of the load balancer subnet.

Note:

Ensure that the subnet exists in the same VCN as the Kubernetes cluster. If you
do not specify the OCID, the load balancer is created in the same subnet as the
load balancer subnet you specified during stack creation.

3. Select Private_Load_Balancer, if you want to create a private load balancer for your
applications.

4. If you want to use a public load balancer with a reserved public IP, then in
Reserved_Public_IP, specify the public IP for the load balancer.

WARNING:

If you create a load balancer in a private subnet, you must not specify the
reserved public IP address, else the domain creation fails.

Note:

By default, the reserved public IP address that you specify as the
loadBalancerIP property of the LoadBalancer service in the manifest file is
expected to be a resource in the same compartment as the cluster. If you want to
specify a reserved public IP address in a different compartment, add the following
policy to the tenancy:

Allow any-user to read public-ips in tenancy where
request.principal.type = 'cluster'
Allow any-user to manage floating-ips in tenancy where
request.principal.type = 'cluster'

See Specifying Load Balancer Reserved Public IP Addresses.

Configure Identity Cloud Service Integration
You have the option to use IDCS to authenticate application users for your domain. To enable
IDCS, specify the parameters required to configure WebLogic Authentication with Oracle
Identity Cloud Service (IDCS).

To use Oracle Identity Cloud Service for authentication:

1. From IDCS_Enabled, select YES.

2. For IDCS_Host_Name, specify the required host name.

The default value of the port name is displayed. If required, you can override the port that
you use to access Oracle Identity Cloud Service.

3. For IDCS_Tenant, specify your IDCS tenant name, which is also referred to as the
instance ID.

Chapter 3
Create a WebLogic Domain

3-19

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm

This ID is usually found in the URL that you use to access IDCS, and has the format idcs-
<GUID>

4. For IDCS_Client_ID and IDCS_Client_Secret, specify the client ID and the password.

The client ID and secret are from the confidential application that you created as a
prerequisite to create a domain. See Create a Confidential Application.

5. In IDCS_Redirect_Port, the default port used for the IDCS App Gateway is displayed. If
required, you can override the default port.

Configure the Domain
If you are using the create domain on pv job to deploy a non-JRF domain, in the Provision
with JRF section of the page, keep the default selection for Domain_Type as Non_JRF.

Create the Domain

Click Build to run the job.

After the job is successful, you can access the WebLogic Console. See Access the WebLogic
Console.

Provision a JRF Domain
You can use the create domain on pv job to provision a JRF domain. The Oracle WebLogic
Server domain includes the Java Required Files (JRF) components, network resources,
Kubernetes cluster, compute instances, and load balancers. For more information about JRF
domains, see JRF Domain.

Creating a JRF-enabled domain is similar to creating a basic domain; however, a database in
Oracle Cloud Infrastructure is required. You can specify a database in Oracle Autonomous
Database or Oracle Cloud Infrastructure Database (DB System). If you plan to use a DB
System database, note that the DB System and the Oracle WebLogic Server for OKE compute
instances must be in the same virtual cloud network (VCN).

Note:

• For each schema that is created in the database, a data source is created in
WebLogic Server. These data sources should not be used by applications
deployed to the WebLogic domain after provisioning is complete. Instead, you
must create independent data sources. See About Data Sources.

• Oracle WebLogic Server 14c does not support JRF, so you cannot create a JRF
domain using Oracle WebLogic Server 14.1.1.0.0.

The steps to provision a JRF domain is the same as those used for provisioning a non-JRF
domain. See Provision a Non-JRF Domain.

Additionally, you should specify a database. See:

• Provision a JRF Domain with an Autonomous Database

• Provision a JRF Domain with an OCI Database

Chapter 3
Create a WebLogic Domain

3-20

Provision a JRF Domain with an Autonomous Database
To create a JRF domain with an autonomous database:

1. From Domain_Type, select JRF_with_ATP.

2. For Database_OCID, specify the OCID of the autonomous database.

3. For Database_Password, enter the database administrator password.

4. For ATP_DB_LEVEL, specify the service level that the domain should use to connect to
the selected autonomous database.

Provision a JRF Domain with an OCI Database
To create a JRF domain with an OCI database:

1. From Domain_Type, select JRF_with_OCIDB.

2. For Database_OCID, specify the OCID of the OCI database.

3. For Database_Password, enter the database administrator password.

4. For Database_Connection_String, enter the connect string to connect to the database:

If you use Database_Connection_String, then you can skip specifying Database_OCID.

WARNING:

Do not use the database connect string example provided in the Oracle
Database Connection String field , instead use the format specified in the
following table.

Table 3-1 Database Connect String for Database Version and Type

Database Version Database Type Database Connection String

12c and above VM //<db_hostname>-
scan.<db_domain>:<db_port>/
<pdb_name>.<db_domain>

12c and above Bare Metal //
<db_hostname>.<db_domain>:<db_port>/
<pdb_name>.<db_domain>

Chapter 3
Create a WebLogic Domain

3-21

Note:

If you use database connect string, then Oracle WebLogic Server for OKE
creates a single instance datasource. However, you can update the data source
for Oracle WebLogic Suite with Active GridLink data source and data source for
Oracle WebLogic Server Enterprise Edition with multi data source. See
Configuring Active GridLink Connection Pool Features and Configuring JDBC
Multi Data Sources.

If using Database System with connect string, security list is not created to
access the database. You must ensure that the ports are open to access the
database.

Update a WebLogic Domain
Learn how to update a domain by using the tools provided with Oracle WebLogic Server for
OKE.

You can update a Model in Image domain by using the Jenkins pipeline job update mii
domain. To update a domain created with the Domain on PV approach, you should use the
WebLogic Server Administration Console.

Topics:

• Create a Custom Base Image

• Update a Domain Configuration

• Update the Base Image

Create a Custom Base Image
Use the Jenkins job create base image to create a custom base WebLogic image from
WebLogic installer, JDK installer, and WebLogic patches for Oracle WebLogic Server for OKE.

You can use one of the following sources to specify the location of the JDK installer file,
WebLogic installer file, and WebLogic patch file:

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

For JDK installer file, you must specify the location of a JDK that uses the Linux x64
compressed archive format (.tar.gz).

• Shared File System - Uses the path of the shared file storage.

The NFS shared file system path is mounted on /u01/shared location on the
administration host.

Chapter 3
Update a WebLogic Domain

3-22

Important:

You can get your own preferred WebLogic base image and upload them to the OCIR.
You must upload the images to the following location:

<region>/<tenancy>/<servicename>/wls-base-image/12214

To create a custom base image:

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click create base image.

3. Click Build with Parameters.

4. Select the source of the JDK installer file from the JDK_Installer list.

5. For JDK_Location, specify the http pre-authenticated URL or the path of the zip file on the
shared file system.

6. From FMW_Installer, select the source of the Fusion Middleware installer file.

7. For FMW_Installer_Location, specify the http pre-authenticated URL or the path of the
JAR file on the shared file system.

8. Optional: Select patches.

a. Select the source of the Weblogic patch file from the WLS_Opatches list.
WLS_Opatches refers to any patch that may be required to patch WLS, ADF/JRF, or
Coherence product binaries (including ADR patches, JRF patches, OPSS, OWSM,
OPatches).

b. If you selected a Weblogic patch file: For Opatches_Location, specify the http pre-
authenticated URL or the path of the zip file on the shared file system.
For multiple patches, specify the location in separate lines.

9. Optional: Configure the Registry.

If you want to use another user credentials, other than the one specified when creating a
stack, then specify the credentials that Oracle WebLogic Server for OKE must use to
access container images in the Oracle Cloud Infrastructure Registry (OCIR).

a. In the Registry_Username field, enter a user name that Kubernetes uses to access
the image in the registry.

If your tenancy is federated with Oracle Identity Cloud Service, use the format:
oracleidentitycloudservice/<username>, else use <username>.

b. In the Registry_Authentication_Token field, enter the OCID of the secret for the auth
token generated for the registry user.

10. Click Build to run the pipeline job.

The custom base image is created and is available in the following location.

<region>/<tenancy>/<servicename>/wls-base-image/12214

The created custom base images and uploaded images are listed when you create a domain,
in the Base_Image list. See Create a Domain .

Chapter 3
Update a WebLogic Domain

3-23

Update a Domain Configuration
For information about updating the two domain types, see:

• Update a Model in Image Domain

• Update a Domain on a Persistent Volume

Update a Model in Image Domain
You can use the update mii domain job to deploy or undeploy applications, shared libraries
and resources to the new domain using a sample application or user-provided artifacts

When you run the update mii domain job, the primordial domain created using the create
mii domain job is used as the base domain, and updates are applied to this domain.

Therefore, if you run the update mii domain job for the first time and deploy an application-A
in this job, the resulting primordial domain will have application-A deployed. Then, if you run
the update mii domain job for the second time and deploy only application-B in the job, the
resulting primordial domain will have only application-B deployed. That is, the state on top of
the primordial domain is not stored within the image and this allows you to use the source
control system to store WebLogic Deploy Tooling (WDT) model to persist any configuration
changes on top of the primordial domain.

To know about the primordial domain, see Mutate the Domain Layer in WebLogic Kubernetes
Operator documentation.

You can extend your model Yaml file with new definitions using the update mii domain job.
For model Yaml file, see About WebLogic Deploy Tooling.

Tip:

To deploy and undeploy an application, see Tutorial.

To update the WebLogic domain you can provide a WDT model file, a WDT properties file, or
an archive file. The archive file can contain applications, libraries, model file along with other
artifacts. For the structure of the archive file, see archive file in WebLogic Deploy Tooling
documentation.

When you are updating the domain, if you provide a model through the WDT model field and
within the archive, the model specified in the field takes precedence.

You can use one of the following sources to specify the location of the archive zip file, domain
model Yaml file, and the variables properties file:

• File Upload - Uploads the file from the local system.

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

• Shared File System - Uses the path of the shared file storage.
The NFS shared file system path is mounted on /u01/shared location on the
administration host.

Chapter 3
Update a WebLogic Domain

3-24

Note:

Ensure that you specify the full path of the location of the zip file on the shared
file system.

To update a domain and deploy sample applications, shared libraries, and resources to the
domain:

Chapter 3
Update a WebLogic Domain

3-25

Note:

Every time you update a domain, you have to provide a model containing all the
resources (applications, libraries, and so on) you want your domain to have. If your
domain currently have application-A installed, and you update your domain with a
model with application-B, then the domain will have only application-B. If you want to
have both applications, you have to use a model with both application-A and
application-B.

If you are running the update domain job for the first time, then to deploy the
application, you must manually approve new java.io.File java.lang.String and
method java.io.File under jenkins/scriptApproval/. See Approve Scripts to
View Parameters.

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click update mii domain.

3. Click Build with Parameters.

4. From Domain_Name, select the domain that you want to update.

5. Optional: To update the base image, select the Update_Base_Image check box,
and then from Base_Image, select the image that you want to apply to the
selected domain.

6. Select the source of the archive zip file from the Archive_Source list.

Note:

In case of files larger than one MB, use the Object Storage or Shared
File System option.

7. For Archive_File_Location, either browse to select the zip file, specify the http
pre-authenticated URL, or specify the path of the zip file on the shared file
system.
For the structure of the archive file, see archive file in WebLogic Deploy Tooling
documentation.

8. Select the source of the domain model Yaml file from the
Domain_Model_Source list.
If the archive zip file contains the domain model Yaml file, you can skip this step.

9. For Model_File_Location, either browse to select the Yaml file, specify the http
pre-authenticated URL, or specify the path of the Yaml on the shared file system.
To deploy the sample application, browse and select Yaml file:
deploy_sample_app.yaml or specify the path, /u01/shared/scripts/pipeline/
samples/deploy_sample_app.yaml.
See model YAML file in WebLogic Deploy Tooling documentation.

10. Select the source of the variable properties file from the Variable_Source list.

11. For Variable_File_Location, either browse to select the file, specify the http pre-
authenticated URL, or specify the path of the properties file on the shared file
system.

12. Deselect the Rollback_On_Failure check box if you do not want to rollback to
the previous working domain image (optional).

Chapter 3
Update a WebLogic Domain

3-26

If you deselected this check box, you can rollback to the previous image later
from the backup.

Note:

The Rollback_On_Failure check box is selected by default.

13. Click Build to run the Pipeline job.

You can use the WebLogic Server Administration Console to verify that the domain is updated
with all the specified parameters. See Access the WebLogic Console.

Update a Domain on a Persistent Volume
The operator creates the domain on a persistent volume when the domain resource is first
deployed. Typically, after the initial domain is created, you use tools such as the following for
subsequent domain lifecycle operations:

• Fusion Middleware Control Console

• WebLogic Server Administration Console

• WebLogic Remote Console

• Product-specific WLST functions

• JDeveloper

Update the Base Image
Use the Jenkins job update base image to update the base image of a domain with a different
base image for Oracle WebLogic Server for OKE. You can either use an existing base image
or update the base image for your domain. If you created a new base image to apply patches
to the JDK and WebLogic binaries, or to apply new set of OS packages, you can update the
existing base image in your domain. You can use the update base image job to update the
base image for both Model in Image and Domain on PV domains.

Patch a Domain
Learn how to patch a domain by using the tools provided with Oracle WebLogic Server for
OKE. You can either run a Jenkins job to apply patches to a specific domain or automatically
schedule patching for the required domains.

When you apply patches to a domain, the base image of a domain is automatically updated to
a different base image.

You can apply patches also by creating a custom base image from WebLogic installer, JDK
installer, and any set of WebLogic patches. See Create a Custom Base Image.

Topics:

• Apply a WebLogic Server Patch

• Automatic Patching

Chapter 3
Patch a Domain

3-27

Apply a WebLogic Server Patch
Use the Jenkins job to apply patches to a WebLogic Server installation that you created with
Oracle WebLogic Server for OKE.

You can use one of the following sources to specify the location of the WebLogic patch file:

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

• Shared File System - Uses the path of the shared file storage.

The NFS shared file system path is mounted on /u01/shared location on the
administration host.

To apply the WebLogic patch file:

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click apply patch.

3. Click Build with Parameters.

4. From Domain_Name, select the domain to which you want to apply patches.

5. In Domain_Restart_Timeout, specify the time in minutes to wait for the WebLogic Domain
Server pods to restart and be back in the running state. The default wait time is 40
minutes.

6. Select the source of the Weblogic patch file from the WLS_Opatches list.

WLS_Opatches refers to any patch that may be required to patch WLS or Coherence
product binaries (including ADR patches, OPSS, OWSM, OPatches).

7. For Opatches_Location, specify the http pre-authenticated URL or the path of the zip file
on the shared file system.

For multiple patches, specify the location in separate lines.

8. Deselect the Rollback_On_Failure check box if you do not want to rollback to the
previous working domain image (optional).

If you deselected this check box, you can rollback to the previous image later from the
backup.

Note:

The Rollback_On_Failure check box is selected by default.

9. Optional: Configure the Registry.

If you want to use another user credentials, other than the one specified when creating a
stack, then specify the credentials that Oracle WebLogic Server for OKE must use to
access container images in the Oracle Cloud Infrastructure Registry (OCIR).

a. In the Registry_Username field, enter a user name that Kubernetes uses to access
the image in the registry.

If your tenancy is federated with Oracle Identity Cloud Service, use the format:
oracleidentitycloudservice/<username>, else use <username>.

b. In the Registry_Authentication_Token field, enter the OCID of the secret for the auth
token generated for the registry user.

Chapter 3
Patch a Domain

3-28

10. Click Build to run the Pipeline job.

Automatic Patching
Use the Jenkins job to automatically schedule patching for the required domains.

Following are the steps that you need to complete to utilize all the advantages of using
automatic patching:

1. Subscribe or unsubscribe domains for automatic patching

2. Schedule automatic patching

Step 1: Subscribe or unsubscribe domains for automatic patching
To select a domain for automatic patching:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click automatic patching.

3. Click Build with Parameters.

4. From Domain_Names, select the domains for automatic patching.

5. Subscribe or unsubscribe domains.

• Subscribe domains: Select Patch_Automatically, if you want to run automatic
patching on the selected domains.

Note:

The Patch_Automatically option is selected by default.

• Unsubscribe domains: Deselect the Patch_Automatically option, if you do not want to
run automatic patching on the selected domains.

6. Run the automatic patching job.

• If you subscribe a domain and click Build, then:

– If applicable, the latest patches are applied on the selected domain.

– The default schedule for automatic patching is enabled. By default, your local time
zone is used and the automatic patching schedule is set to midnight of that time
zone. To change the default schedule, see Schedule automatic patching.

– A corresponding Topic is created in the Notifications application in Oracle Cloud
Infrastructure.
By default, the Topic name is: <domain-name>-patching-topic
After the Topic is created. You can create subscriptions as required. See Creating
a Subscription.

• If you unsubscribe a domain and click Build, then:

– The selected domains are removed from the automatic patching list.

– The related Topic is deleted in the Notifications application in Oracle Cloud
Infrastructure.

Chapter 3
Patch a Domain

3-29

https://docs.oracle.com/en-us/iaas/Content/Notification/Tasks/create-subscription.htm#top
https://docs.oracle.com/en-us/iaas/Content/Notification/Tasks/create-subscription.htm#top

Step 2: Schedule automatic patching
To schedule automatic patching:

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click automatic patching.

3. Click Configure > Build Triggers.

4. By default, the Build periodically is selected with the required parameters.

Update the parameters to set the preferred patching schedule.

Note:

• Click the help icon next to the Build periodically field, to view information
about the parameters you can use to schedule automatic patching.

• When you schedule automatic patching, by default, your local time zone is
used and the automatic patching schedule is set to midnight of that time
zone.

5. Click Save.

Troubleshoot a WebLogic Domain
Learn about the common issues when creating and managing a domain and then how to
diagnose to solve them.

Topics

• Patching Job Fails

• Provisioning Fails at a Specific Stage

• Unable to View Jenkins UI Input Parameters

• Cleanup Resources Manually for a Failed Domain

• Terminate Domain Job Is Stuck at Finish_cleanup Phase

• Introspection Failed when Running Pipeline Jobs

• New Data Source Incorrectly Deployed

• WebLogic Server Pod Fails to Start

• Unable to Access the Console or the Application

• Load Balancer Creation Failed

• Jenkins Installation Fails

• Security Checkup Tool Warnings

Terminate a WebLogic Domain
Depending on the domain type, you can use the Jenkins jobs terminate mii domain or
terminate pv domain to terminate a domain that you created with Oracle WebLogic Server for

Chapter 3
Troubleshoot a WebLogic Domain

3-30

OKE. The terminate domain job deletes the IDCS, external load balancer, WebLogic domain,
and the Kubernetes namespaces that were created for the domain.

For Oracle WebLogic Server for OKE domains created in release 22.2.2 (May, 2022), you must
update the Jenkins node label before you terminate a domain. See Terminate Domain Job Is
Stuck at Finish_cleanup Phase.

To terminate a domain:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click terminate mii domain or terminate pv domain.

3. Click Build with Parameters.

4. From Domain_Name, select the domain that you want to terminate.

5. Select Delete_Node_Pool, if you want to delete the node pool in the domain you selected
to terminate.

If you do no select Delete_Node_Pool, then the node pool in the selected domain is not
deleted. And, the node pool is set as idle, which is listed under Existing_Node_Pool when
you create a domain. See Create a Domain .

Note:

• The WebLogic node pool is not deleted if any existing domain pods are
running on the node pool.

• If the domain you terminate is subscribed for automatic patching, then, if
applicable, the domain is automatically unsubscribed from the automatic
patching list and the corresponding notification topics are deleted.

After the terminate job is complete, it displays a log that includes information about the actions
that were performed by the terminate job.

Create a JRF Domain on a Persistent Volume Manually
You can create a JRF WebLogic domain using the tools provided with Oracle WebLogic Server
for OKE on an existing Kubernetes Persistent Volume with the Domain on PV WebLogic
domain home source type.

Note:

The steps provided in this section do not apply to WebLogic Kubernetes Operator
version 4.0 and later.

For creating JRF domain on a persistent volume using the Jenkins pipeline job, see Provision
a JRF Domain.

Topics:

• About Domain on Persistent Volume

• Prerequisites to Create a Domain on a Persistent Volume

• Create the JRF Domain

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-31

• Rebase the Existing Base Image for the JRF Domain

• Apply the Patched Images to the Running JRF Domain

• Delete the Generated Domain Home

For more information, see Domain Home on a PV.

About Domain on Persistent Volume
The Domain on Persistent Volume (PV) WebLogic domain home source type lets you locate a
WebLogic domain on a persistent volume with the PV residing either in a Network File System
(NFS) or in other Kubernetes volume types. With Domain on a PV, you should populate the PV
with a domain home before deploying the domain resource.

Domain on PV is supported on two types of domains:

• A standard Oracle WebLogic Server domain.

• An Oracle Fusion Middleware Infrastructure, Java Required Files (JRF) domain.

For more information about this domain home source type, see Domain on Persistent Volume
(PV) .

Prerequisites to Create a Domain on a Persistent Volume
Before you create a JRF domain on a persistent volume with Oracle WebLogic Server for OKE,
you must complete the following prerequisite tasks.

• Ensure that the WebLogic Kubernetes Operator is in a running state.

• Obtain the Base Image to Create the JRF Domain

• Create a Kubernetes Namespace for the JRF Domain

• Create the Kubernetes Secrets for the JRF Domain

• Create the Persistent Volume and the Persistent Volume Claim

Obtain the Base Image to Create the JRF Domain
To create a JRF domain on PV, you will require a base image or a container image with
WebLogic Server or Fusion Middleware infrastructure to run the WebLogic domains in
Kubernetes. You can obtain the base image using one of the following options:

• From Oracle Container Registry (OCR). For example: container-registry.oracle.com/
middleware/weblogic:12.2.1.4.

• From Oracle WebLogic Server for OKE administration host. For example,
<ocir_tenancy_name>/<namespace>/<domain_name>/wls-base-image/
12214:12.2.1.4.230117-230117.

• By creating a new base image using the Oracle WebLogic Server for OKE Jenkins Pipeline
job create base image. See Pipeline Jobs.

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-32

https://oracle.github.io/weblogic-kubernetes-operator/3.4/samples/domains/domain-home-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/

Create a Kubernetes Namespace for the JRF Domain

Note:

Oracle recommends that you create a namespace and all the JRF domain resources
in the format ${domain_name}-<resource_name>. For example: jrf00001-ns
(namespace), jrf00001-property-configmap (configmap), and so on.

You should create a Kubernetes namespace for the JRF domain resource if you do not want to
use the default namespace. Let the WebLogic Kubernetes Operator manage this namespace.

To create a namespace, run the following command:

kubectl create namespace <domain_name>-ns

For example:

kubectl create namespace jrf00001-ns

To allow the Operator to manage the namespace:

kubectl label namespace <domain_name>-ns weblogic-operator=enabled

Create the Kubernetes Secrets for the JRF Domain
The WebLogic Kubernetes Operator expects the secret key names to be username and
password of the administrative account in the same Kubernetes namespace as the domain
resource.

You should create the following secret key names:

• A Kubernetes docker-registry secret containing the registry credentials.

$ kubectl create secret docker-registry ocirsecret1 \
 -n <domain_name>-ns \
 --docker-server=container-registry.oracle.com \
 --docker-username=<YOUR_USERNAME> \
 --docker-password=<YOUR_PASSWORD> \

• The WebLogic domain administrator credentials.

$ kubectl create secret generic <domain_name>-weblogic-credentials \
 --from-literal=username=<ADMIN_USERNAME> --from-
literal=password=<ADMIN_PASSWORD> \
 -n <domain_name>-ns

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-33

• The domain runtime encryption secret.

$ kubectl -n <domain_name>-ns create secret generic \
 <domain_name>-runtime-encryption-secret \
 --from-literal=password=<my_runtime_password>

• The secret to access the Repository Creation Utility (RCU):
If you are using the Oracle Autonomous Database:

$ kubectl create secret generic <domain_name>-rcu-access
 --from-literal=rcu_db_name=<RCU_DB_NAME>
 --from-literal=rcu_prefix=<RCU_PREFIX>
 --from-literal=rcu_schema_password=<RCU_SCHEMA_PASSWORD>
 --from-literal=rcu_wallet_password=<RCU_WALLET_PASSWORD>
 -n <domain_name>-ns

If you are using a database deployed on Oracle Cloud Infrastructure (OCI):

$ kubectl create secret generic <domain_name>-rcu-access
 --from-literal=rcu_db_user=<RCU_DB_USER>
 --from-literal=rcu_prefix=<RCU_PREFIX>
 --from-literal=rcu_schema_password=<RCU_SCHEMA_PASSWORD>
 --from-literal=rcu_admin_password=<RCU_ADMIN_PASSWORD>
 --from-literal=rcu_db_conn_string=<RCU_CONN_STRING>
 -n <domain_name>-ns

• The wallet password secret for Oracle Platform Security Service (OPSS).

$ kubectl create secret generic <domain_name>-opss-wallet-password-secret
 --from-literal=walletPassword=<WALLET_PASSWORD>
 -n <domain_name>-ns

Create the Persistent Volume and the Persistent Volume Claim
The Kubernetes Persistent Volume (PV) and Persistent Volume Claim (PVC) are used as
storage locations for the WebLogic domain homes and log files.

PVs and PVCs are described in YAML files. For each PV, you should create one PV YAML file
and one PVC YAML file. In the following example, you will find two YAML file samples, one for
the volume and one for the claim.

pv.yaml

apiVersion: v1
kind: PersistentVolume
metadata:
 name: <domain_name>-oke-pv
 namespace: <domain_name>-ns
spec:
 storageClassName: <service_name>-oke-fss
 capacity:
 storage: 100Gi
 accessModes:
 - ReadWriteMany
 mountOptions:

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-34

 - nosuid
 nfs:
 server: <MOUNT_IP>
 path: "/<service_name>"
 readOnly: false

Here:

• <MOUNT_IP> is the IP of NFS server that is created as part of the stack.

• <service_name> is the resource_prefix of the stack.

pvc.yaml

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: <domain_name>-oke-pvc
 namespace: <domain_name>-ns
spec:
 storageClassName: <service_name>-oke-fss
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 100Gi
 volumeName: <domain_name>-oke-pv

Use the pv.yaml file to create a PV by running the following command:

$ kubectl apply -f pv.yaml

Use the pvc.yaml file to create a PVC by running the following command:

kubectl apply -f pvc.yaml

Use the following commands to verify:

kubectl get pvc

kubectl get pv

To view the list of storage classes in your cluster, run the following command:

$ kubectl get storageclass

Create the JRF Domain
After you complete the prerequisite tasks, you can use the sample scripts provided by the
WebLogic Kubernetes Operator (WKO) to create the JRF domain on an existing Kubernetes
Persistent Volume (PV) and Persistent Volume Claim (PVC).

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-35

Topics:

• Download the Scripts

• Create the RCU Schema

• Use the Scripts to Create the JRF Domain

• Verify the Domain

Download the Scripts
Download and copy the sample scripts provided by WebLogic Kubernetes Operator to create
the JRF domain on PV. The scripts are available at https://github.com/oracle/weblogic-
kubernetes-operator/tree/release/3.4/kubernetes/samples/scripts/create-weblogic-domain/
domain-home-on-pv.

Use the git clone command to copy the scripts into a newly created directory on your
machine, as shown in the following example:

git clone git@github.com:oracle/weblogic-kubernetes-operator.git

You will find all the scripts ready for your use in this newly created directory weblogic-
kubernetes-operator.

Create the RCU Schema
One of the sample scripts provided by the WebLogic Kubernetes Operator is the create-
rcu-schema.sh script that creates the RCU (Repository Creation Utility) schema for the JRF
domain on PV.

Use the following command to run this script on the administration VM:

$ scripts/create-rcu-schema/create-rcu-schema.sh -s <rcuSchemaPrefix> -d
<rcuDatabaseURL> -n <domain_name>-ns -c <domain_name>-rcu-access

Use the Scripts to Create the JRF Domain
To create the JRF domain, use the sample script create-domain.sh provided by WebLogic
Kubernetes Operator. This script takes the create-domain-inputs.yaml file as the input.

Here is a sample of the create-domain-inputs.yaml file for your reference:

Copyright (c) 2023, Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.

The version of this inputs file. Do not modify.
version: create-weblogic-domain-inputs-v1

Port number for admin server
adminPort: 7001

Name of the Admin Server
adminServerName: <domain_name>-adminserver

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-36

https://github.com/oracle/weblogic-kubernetes-operator/tree/release/3.4/kubernetes/samples/scripts/create-weblogic-domain/domain-home-on-pv
https://github.com/oracle/weblogic-kubernetes-operator/tree/release/3.4/kubernetes/samples/scripts/create-weblogic-domain/domain-home-on-pv
https://github.com/oracle/weblogic-kubernetes-operator/tree/release/3.4/kubernetes/samples/scripts/create-weblogic-domain/domain-home-on-pv

Unique ID identifying a domain.
This ID must not contain an underscore ("_"), and must be lowercase and
unique across all domains in a Kubernetes cluster.
domainUID: <domain_name>

Home of the WebLogic domain
If not specified, the value is derived from the domainUID as /shared/
domains/<domainUID>
domainHome: /u01/shared/weblogic-domains/<domain_name>

Determines which OracleFMWInfrastructure Servers the operator will start up
Legal values are "Never", "IfNeeded", or "AdminOnly"
serverStartPolicy: IfNeeded

Cluster name
clusterName: cluster-1

Number of managed servers to generate for the domain
configuredManagedServerCount: 5

Number of managed servers to initially start for the domain
initialManagedServerReplicas: 2

Base string used to generate managed server names
managedServerNameBase: <domain_name>-managedserver

Port number for each managed server
managedServerPort: 8001

WebLogic Server image.
The operator requires WebLogic Server 12.2.1.3.0 with patch 29135930
applied or 12.2.1.4.0.
The existing WebLogic Server image, `container-registry.oracle.com/
middleware/fmw-infrastructure:12.2.1.3`,
has all the necessary patches applied.
#
NOTE:
This sample uses General Availability (GA) images. GA images are suitable
for demonstration and
development purposes only where the environments are not available from the
public Internet;
they are not acceptable for production use. In production, you should
always use CPU (patched)
images from OCR or create your images using the WebLogic Image Tool.
Please refer to the `OCR` and `Manage FMW infrastructure domains` pages in
the WebLogic
Kubernetes Operator documentation for details.
image: container-registry.oracle.com/middleware/fmw-infrastructure:12.2.1.4

Image pull policy
Legal values are "IfNotPresent", "Always", or "Never"
imagePullPolicy: IfNotPresent

Name of the Kubernetes secret to access the container registry to pull the
WebLogic Server image

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-37

The presence of the secret will be validated when this parameter is enabled.
#imagePullSecretName:

Boolean indicating if production mode is enabled for the domain
productionModeEnabled: true

Name of the Kubernetes secret for the Admin Server's username and password
The name must be lowercase.
If not specified, the value is derived from the domainUID as <domainUID>-
weblogic-credentials
weblogicCredentialsSecretName: <domain_name>-weblogic-credentials

Whether to include server .out to the pod's stdout.
The default is true.
includeServerOutInPodLog: true

The in-pod location for domain log, server logs, server out, Node Manager
log, introspector out, and
HTTP access log files. If not specified, the value is derived from the
domainUID as
/shared/logs/<domainUID>.
logHome: /u01/shared/logs/<domain_name>

Set this value to 'false' to have HTTP access log files written to the
directory
configured in the WebLogic domain home.
The default is 'true', which means HTTP access log files will be written to
the logHome directory.
httpAccessLogInLogHome: true

Port for the T3Channel of the NetworkAccessPoint
t3ChannelPort: 30012

Public address for T3Channel of the NetworkAccessPoint. This value should
be set to the
kubernetes server address, which you can get by running "kubectl cluster-
info". If this
value is not set to that address, WLST will not be able to connect from
outside the
kubernetes cluster.
#t3PublicAddress:

Boolean to indicate if the channel should be exposed as a service
exposeAdminT3Channel: false

NodePort to expose for the admin server
adminNodePort: 30701

Boolean to indicate if the adminNodePort will be exposed
exposeAdminNodePort: false

Name of the domain namespace
namespace: <domain_name>-ns

#Java Option for WebLogic Server
javaOptions: -Dweblogic.StdoutDebugEnabled=false

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-38

Name of the persistent volume claim
If not specified, the value is derived from the domainUID as <domainUID>-
weblogic-sample-pvc
persistentVolumeClaimName: <domain_name>-oke-pvc

Mount path of the domain persistent volume.
domainPVMountPath: /u01/shared

Mount path where the create domain scripts are located inside a pod
#
The `create-domain.sh` script creates a Kubernetes job to run the script
(specified in the
`createDomainScriptName` property) in a Kubernetes pod to create a WebLogic
home. Files
in the `createDomainFilesDir` directory are mounted to this location in the
pod, so that
a Kubernetes pod can use the scripts and supporting files to create a
domain home.
createDomainScriptsMountPath: /u01/weblogic

Script that the create domain script uses to create a WebLogic domain
#
The `create-domain.sh` script creates a Kubernetes job to run this script
to create a
domain home. The script is located in the in-pod directory that is
specified in the
`createDomainScriptsMountPath` property.
#
If you need to provide your own scripts to create the domain home, instead
of using the
built-it scripts, you must use this property to set the name of the script
that you want
the create domain job to run.
createDomainScriptName: create-domain-job.sh

Directory on the host machine to locate all the files to create a WebLogic
domain
It contains the script that is specified in the `createDomainScriptName`
property.
#
By default, this directory is set to the relative path `wlst`, and the
create script will
use the built-in WLST offline scripts in the `wlst` directory to create the
WebLogic domain.
It can also be set to the relative path `wdt`, and then the built-in WDT
scripts will be
used instead.
#
An absolute path is also supported to point to an arbitrary directory in
the file system.
#
The built-in scripts can be replaced by the user-provided scripts or model
files as long
as those files are in the specified directory. Files in this directory are
put into a

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-39

Kubernetes config map, which in turn is mounted to the
`createDomainScriptsMountPath`,
so that the Kubernetes pod can use the scripts and supporting files to
create a domain home.
createDomainFilesDir: wlst

Resource request for each server pod (Memory and CPU). This is minimum
amount of compute
resources required for each server pod. Edit value(s) below as per pod
sizing requirements.
These are optional.
Please refer to the kubernetes documentation on Managing Compute
Resources for Containers for details.
serverPodMemoryRequest: "1280Mi"
serverPodCpuRequest: "500m"

Uncomment and edit value(s) below to specify the maximum amount of compute
resources allowed
for each server pod.
These are optional.
Please refer to the kubernetes documentation on Managing Compute
Resources for Containers for details.
serverPodMemoryLimit: "2Gi"
serverPodCpuLimit: "1000m"

#
RCU configuration details
#
The schema prefix to use in the database, for example `SOA1`. You may want
to make this
the same as the domainUID in order to simplify matching domains to their
RCU schemas.
rcuSchemaPrefix: <rcuSchemaPrefix>

The database URL
rcuDatabaseURL: <rcuDatabaseURL>

The kubernetes secret containing the database credentials
rcuCredentialsSecret: <domain_name>-rcu-access

FMW Infrastructure Domain Type. Legal values are JRF or RestrictedJRF
fmwDomainType: JRF

Note:

For rcuSchemaPrefix, use the same value that you used to run the create-rcu-
schema.sh script for creating the RCU schema.

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-40

You should make a copy of the create-domain-inputs.yaml file, and then run the
create-domain.sh by pointing it to this file and an output directory, as shown in the
following command:

scripts/create-fmw-infrastructure-domain/domain-home-on-pv/create-domain.sh -
i create-domain-inputs.yaml -o output

The script will complete the following tasks:

• Create a directory for the generated Kubernetes YAML files for this domain if it does not
already exist. The path name is /<path to output-directory>/weblogic-
domains/<domainUID>. If the directory already exists, ensure that you remove its
contents before using this script.

• Create a Kubernetes job that will start up a utility WebLogic Server container and run
offline WLST scripts or WebLogic Deploy Tooling (WDT) scripts, to create the domain on
the shared storage.

After the Kubernetes job is complete, use the domain.yaml file to create the Kubernetes
resource using the kubectl apply command, as shown in the following example:

kubectl apply -f <outputdir>/weblogic-domains/<domain_name>/domain.yaml

Verify the Domain
To confirm that the domain has been created, use the following command:

$ kubectl describe domain <domain_name> -n <domain_name>-ns

To see the services associated with the domain, use the following command:

$ kubectl get services -n <domain_name>-ns

To verify the domain folder on the FSS mount, use the following command:

$ ls /u01/shared/weblogic-domains/<domain_name>/

To view the content of the JDBC folder, use the following command:

$ ls /u01/shared/weblogic-domains/<domain_name>/config/jdbc/

Rebase the Existing Base Image for the JRF Domain
You can use the Jenkins job rebase domain image to update a base image of a JRF domain
with a different base image for Oracle WebLogic Server for OKE. This target base image can
be an existing base image or a new base image created using the Jenkins job create base
image. The rebase domain image job removes the domain definition from the existing domain
and rebases the existing domain with the selected target base image.

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-41

Apply the Patched Images to the Running JRF Domain
For Domain in PV domains, the container image contains only the JDK and the WebLogic
Server binaries, and its domain home that gets created is located in a persistent volume. For
this domain home source type, you can create your own patched images using the following
steps or you can obtain the patched images from Oracle Container Registry. See Obtain
Images From the Oracle Container Registry.

1. Add the patch to the WebLogic Image Tool (WIT) cache.

$ /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId=<patch_id> --path=<path>

2. Check if the patch is added correctly to the WIT cache.

$ /u01/shared/tools/imagetool/bin/imagetool.sh cache listItems

3. Create the container image with all the patches.

/u01/shared/tools/imagetool/bin/imagetool.sh update --fromImage
<primordial_domain_image> --tag <tag_for_the_final_build_image> --patches
<patch_ids>

4. Update the domain's configmap with the new base image.

kubectl edit configmap <configmap_name> -n <domain_ns>

This command will open the Vim editor where you can replace the value of
primordial_domain_image with the new image.

To apply the patched image:

1. Edit the domain resource image reference with the new image name in domain.yaml. For
example:

output/weblogic-domains/<domin_name>/domain.yaml

2. Execute the kubectl apply command to create the domain resource YAML file.

kubectl apply -n <domain_name>_ns -f domain.yaml

The Operator automatically performs a rolling restart of the WebLogic domain to update
the Oracle Home of the servers.

Delete the Generated Domain Home
Sometimes in production, but most likely in the testing environment, you may want to remove
the domain home that is generated using the create-domain.sh script. This script creates
the delete-domain-job.yaml file in the /<path to output-directory>/weblogic-
domains/<domainUID> directory. For example:

outputdir/weblogic-domains/domainmb2/delete-domain-job.yaml

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-42

https://oracle.github.io/weblogic-kubernetes-operator/base-images/ocr-images/#obtain-images-from-the-oracle-container-registry
https://oracle.github.io/weblogic-kubernetes-operator/base-images/ocr-images/#obtain-images-from-the-oracle-container-registry

You can delete the domain by running the generated delete-domain-job.yaml file in the /
<path to output-directory>/weblogic-domains/<domainUID> directory, as shown
in the following example:

$ kubectl create -f delete-domain-job.yaml

Chapter 3
Create a JRF Domain on a Persistent Volume Manually

3-43

4
Manage WebLogic Domains in Verrazzano

Learn how to manage a WebLogic domain in Verrazzano after creating it with Oracle WebLogic
Server for OKE.

Topics:

• About Managing a WebLogic Domain

• About WebLogic Deploy Tooling

• Project Components

• About Verrazzano WebLogic Components and Application Configuration

• Access Resources

• Create a WebLogic Domain

• Update a WebLogic Domain

• Upgrade Verrazzano

• Troubleshoot a WebLogic Domain

• Terminate a WebLogic Domain

About Managing a WebLogic Domain
Learn how to create and deploy custom domain images, and access the Jenkins and
Verrazzano consoles.

In general, you configure, manage, and maintain an Oracle WebLogic Server for OKE domain
just like an on-premise domain. For example, to deploy an application, see Roadmap for
Deploying Applications in WebLogic Server (12.2.1.4)

About WebLogic Deploy Tooling
Learn about the WebLogic Deploying Tool (WDT) to manage a WebLogic domain in Oracle
WebLogic Server for OKE.

WebLogic Deploy Tooling automates the domain creation and application deployment tasks
using the metadata model that describes the domain and applications (with their dependent
resources). WebLogic Deploy Tooling also provides single-purpose tools that perform domain
lifecycle operations based on the content of the model.

WebLogic Deploy Tooling is used to create the container image and represent the WebLogic
configuration. It makes use of a model Yaml file, an archive zip, and a properties file.

When you have multiple WDT files, the WebLogic Deploy Tooling merges them together and
create a single WebLogic domain configuration represented by a single model Yaml file.

The model Yaml file that represents your WebLogic configuration is located in /u01/shared/
location.

4-1

Following is an example of a model Yaml file that has the name of the application as my-
application and target cluster as my-WebLogic-domain-cluster:

appDeployments:
 Application:
 my-application :
 SourcePath: wlsdeploy/applications/my-application
 Target: my-WebLogic-domain-cluster
 ModuleType: ear

Following is an example of a model Yaml file that has only WebLogic credentials:

domainInfo:
 AdminUserName: '@@SECRET:__weblogic-credentials__:username@@'
 AdminPassword: '@@SECRET:__weblogic-credentials__:password@@'

Following is an example of a model Yaml file that has RCU database connection information:

domainInfo:
 RCUDbInfo:
 rcu_prefix: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-access:rcu_prefix@@'
 rcu_schema_password: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_schema_password@@'
 rcu_db_conn_string: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_db_conn_string@@'
 rcu_db_user: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-access:rcu_db_user@@'
 rcu_admin_password: '@@SECRET:@@ENV:DOMAIN_UID@@-rcu-
access:rcu_admin_password@@'

To know more, see Metadata Model in WebLogic Deploy Tooling.

Project Components
Learn about the different tools and files that you can use to build Jenkins projects for your
domain.

Oracle WebLogic Server for OKE creates an Administration load balancer (private) for your
domain, which you use to access the Jenkins console and the Verrazzano consoles running on
the Kubernetes cluster. Oracle WebLogic Server for OKE also creates an Application load
balancer for your domain that you can use to access the applications. An NGINX ingress
controller is used to route traffic from the private load balancer to Jenkins.

All Jenkins files are found on the shared file system.

• /u01/shared/var/jenkins_home - The Jenkins controller server configuration

• /u01/shared/scripts/pipeline - The resources used to run the sample Jenkins job,
including scripts and metadata files

To access or modify these files, use the administration compute instance for your domain. This
compute instance also includes the following software:

• kubectl - Deploy and manage pods in the Kubernetes cluster for this domain.

• docker - Download, modify, and update container images in Oracle Cloud Infrastructure
Registry. Use the login command to connect to the registry.

Chapter 4
Project Components

4-2

• oci - View, create and update resources in Oracle Cloud Infrastructure.

About Verrazzano WebLogic Components and Application
Configuration

Verrazzano supports application definition using Open Application Model (OAM). Verrazzano
applications are composed of OAM components and OAM application configurations.

See Verrazzano.

A Verrazzano OAM Component is a Kubernetes Custom Resource that describes an
application’s general composition and environment requirements. A Verrazzano application
configuration is a Kubernetes Custom Resource which provides environment specific
customizations.

A containerized WebLogic workload is modeled as a component.

An application configuration assembles a set of component instances, their traits, and the
application scopes in which they are placed, combined with configuration parameters and
metadata.

You can deploy one or more yaml files that has Verrazzano components and applications with
the Verrazzano application generated by Oracle WebLogic Server for OKE.

Following is an example of the structure of a component:

apiVersion: core.oam.dev/v1alpha2
kind: Component
metadata:
 name: todo-domain
spec:
 workload:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: WebLogicWorkload
 metadata:
 name: todo-workload
 labels:
 app: todo
 spec:
 deploymentTemplate:
 metadata:
 name: todo-deployment
 podSpec:
 containers:
 - name: todo-container
 image: "myrepo/myuser/hello-world"
 ports:
 - containerPort: port-number
 name: http

Following is an example of the structure of an application configuration:

apiVersion: core.oam.dev/v1alpha2
kind: ApplicationConfiguration
metadata:

Chapter 4
About Verrazzano WebLogic Components and Application Configuration

4-3

 name: todo-appconf
 namespace: todo-list
 annotations:
 version: v1.0.0
 description: "ToDo List example application"
spec:
 components:
 - componentName: todo-domain
 traits:
 - trait:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: MetricsTrait
 spec:
 scraper: verrazzano-system/vmi-system-prometheus-0
 - trait:
 apiVersion: oam.verrazzano.io/v1alpha1
 kind: IngressTrait
 spec:
 rules:
 - paths:
 - path: "/todo"
 pathType: Prefix

To know more, see Application deployment in Verrazzano documentation.

Access Resources
Learn how to access the administration console, Jenkins, and the Verrazzano consoles using
the tools provided with Oracle WebLogic Server for OKE.

Topics:

• Access the Administration Instance

• Access the Jenkins Console

• Access the Verrazzano Consoles

• Access the WebLogic Console

Access the Administration Instance
Access the administration compute instance for a Oracle WebLogic Server for OKE.

From the administration compute instance, you can access the shared file system at /u01/
shared. It also includes the following software:

• kubectl - Deploy and manage pods in the Kubernetes cluster for this stack.

• docker - Download, modify and update container images in Oracle Cloud Infrastructure
Registry. Use the login command to connect to the registry.

• oci - View, create and update resources in Oracle Cloud Infrastructure.

This compute instance is on a private subnet and cannot be directly accessed from the public
Internet. You can use the bastion instance, which is on a public subnet, and the proxy option of
a secure shell (SSH) utility.

Chapter 4
Access Resources

4-4

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

5. Click Jobs.

6. In the Jobs table, click the Apply job for the stack.

7. Click Application Information.

8. Identify and make a note of the following IP addresses:

• Bastion Instance Public IP - The public IP address of the bastion compute
instance

• Admin Instance Private IP - The private IP address of the administration
compute instance

9. From your computer, create an SSH connection to the administration instance's IP
address, and also specify the bastion instance's IP address as a proxy.

Connect as the opc user.

Provide the path to the private key that corresponds to the public key that you specified
when you created the stack.

The SSH command format is:

ssh -i <path_to_private_key> -o ProxyCommand="ssh -W %h:%p –i
<path_to_private_key> opc@<bastion_public_ip>" opc@<admin_ip>

For example:

ssh -i ~/.ssh/mykey.openssh -o ProxyCommand="ssh -W %h:%p -i ~/.ssh/
mykey.openssh opc@203.0.113.13" opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

10. If prompted, enter the passphrase for the private key.

Access the Jenkins Console
Access the Jenkins build engine for a stack in which you configured Verrazzano with Oracle
WebLogic Server for OKE.

Jenkins runs as a pod in the Kubernetes cluster and is hosted on the Verrazzano's private load
balancer. This load balancer cannot be directly accessed from the public Internet. Jenkins is
and can be accessed through socks proxy securely.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

Chapter 4
Access Resources

4-5

5. Click Jobs.

6. Click the Apply job for the stack.

7. Click Outputs.

8. Identify the public IP address of the bastion compute instance,
bastion_instance_public_ip.

9. Click Logs.

10. Search for the attribute jenkins_console_url. Copy the URL.

The URL format is:

http://
jenkins.<resource_name_prefix>.<internal_lb_ip>.<wildcard_DNS_provider>/
jenkins

If you specify the environment name during stack creation with Verrazzano, the URL
format is:

http://jenkins.<environment_name>.<internal_lb_ip>.<wildcard_DNS_provider>/
jenkins

Examples:

• http://jenkins.abc.<internal_lb_ip>.nip.io/jenkins

where, abc is the specified environment name for the Verrazzano installation and nip.io
is the default wildcard DNS service.

• http://jenkins.abc.<internal_lb_ip>.sslip.io/jenkins

where, abc is the specified environment name for the Verrazzano installation and
sslip.io is the wildcard DNS service that is configured during Verrazzano installation.

To know more about the DNS services, see Customize DNS.

Note:

If you provision a domain without a bastion instance, you must obtain the internal
load balancer IP address to use in the Jenkins URL.

To get the internal load balancer IP address, access the administration instance
for your stack (see Access the Administration Instance) and run the following
command:

kubectl get svc -A

The private load balancer is listed with the namespace wlsoke-ingress-nginx
and name okename-internal.

11. From your computer, open an SSH tunnel to an unused port on the bastion compute
instance as the opc user.

Chapter 4
Access Resources

4-6

For example, you can use port 1088 for SOCKS proxy.

Specify the -D option to use dynamic port forwarding. Provide the path to the private key
that corresponds to the public key that you specified when you created the domain.

The SSH command format is:

ssh -D <port_for_socks_proxy> -fCqN -i <path_to_private_key>
opc@<bastion_public_ip>

For example:

ssh -D 1088 -fCqN -i ~/.ssh/mykey.openssh opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

12. In your browser settings, set up the SOCKS (version 5) proxy configuration. Specify your
local computer and the same SOCKS port that you used in your SSH command.

13. Browse to the Jenkins console URL.

14. If this is the first time using the Jenkins console, you are prompted to create a new admin
user.

Access the Verrazzano Consoles
Access the Verrazzano consoles for a stack in which you configured Verrazzano with Oracle
WebLogic Server for OKE.

Verrazzano installs several consoles. To access these consoles:

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

3. Select the Compartment in which your domain is created.

4. Click the stack for your domain.

5. Click Jobs.

6. Click the Apply job for the stack.

7. Click Outputs.

8. Identify the public IP address of the bastion compute instance,
bastion_instance_public_ip.

9. Click Logs.

10. Search for the attribute consoleUrl.

The following are the console URL formats with the default wildcard DNS provider, nip.io:

Note:

If you do not specify the environment name during stack creation with
Verrazzano, the resource name prefix is used as the environment name.

Chapter 4
Access Resources

4-7

• Verrazzano - https://
verrazzano.<resource_name_prefix>.<internal_lb_ip>.nip.io

• ElasticSearch - https://
elasticsearch.vmi.system.<resource_name_prefix>.<internal_lb_ip>.nip.io

• Grafana - https://
grafana.vmi.system.<resource_name_prefix>.<internal_lb_ip>.nip.io

• KeyCloak - https://keycloak.<resource_name_prefix>.<internal_lb_ip>.nip.io
• Kiali - https://

kiali.vmi.system.<resource_name_prefix>.<internal_lb_ip>.nip.io
• Kibana - https://

kibana.vmi.system.<resource_name_prefix>.<internal_lb_ip>.nip.io
• Prometheus - https://

prometheus.vmi.system.<resource_name_prefix>.<internal_lb_ip>.nip.io
• Rancher - https://rancher.<resource_name_prefix>.<internal_lb_ip>.nip.io
where, internal_lb_ip is the internal load balancer IP address.

An example of Verrazzano console URL format with abc environment name and default
wildcard DNS provider, nip.io:

https://verrazzano.<environment_name>.<internal_lb_ip>.nip.io

An example of ElasticSearch console URL format with abc environment name and sslip.io
wildcard DNS provider configured during Verrazzano installation.

https://elasticsearch.vmi.system.abc.<internal_lb_ip>.sslip.io

Note:

If you provision a domain without a bastion instance, you must obtain the internal
load balancer IP address to use in the Verrazzano console URLs.

To get the internal load balancer IP address, access the administration instance
for your stack (see Access the Administration Instance) and run the following
command:

kubectl get svc -A

The private load balancer is listed with the namespace wlsoke-ingress-nginx
and name okename-internal.

11. From your computer, open an SSH tunnel to an unused port on the bastion compute
instance as the opc user.

For example, you can use port 1088 for SOCKS proxy.

Specify the -D option to use dynamic port forwarding. Provide the path to the private key
that corresponds to the public key that you specified when you created the domain.

Chapter 4
Access Resources

4-8

The SSH command format is:

ssh -D <port_for_socks_proxy> -fCqN -i <path_to_private_key>
opc@<bastion_public_ip>

For example:

ssh -D 1088 -fCqN -i ~/.ssh/mykey.openssh opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

12. In your browser settings, set up the SOCKS (version 5) proxy configuration. Specify your
local computer and the same SOCKS port that you used in your SSH command.

13. Browse to the console URLs.

To know the preconfigured users and to get the password for the consoles, see Get
Console Credentials.

Access the WebLogic Console
Access the WebLogic Server Administration Console for a domain that you created with Oracle
WebLogic Server for OKE with Verrazzano.

Note:

• Before you access the WebLogic console, you must have created a WebLogic
domain. See Create a WebLogic Domain.

• Do not use the WebLogic console to make any configuration changes. All
configuration changes should be should done through jobs, this ensure that the
changes are persistent.

• Security check warnings are displayed at the top of the console. See About the
Security Checkup Tool for the warnings and how to handle them.

You must have installed OCI CLI and kubectl in your local computer. If you do not have them
installed, see Install CLI and Install kubectl.

Note:

The following instructions are applicable only if your local computer has access to the
Kubernetes API endpoint.

1. From your computer, create an SSH connection to the administration instance's IP
address, and also specify the bastion instance's IP address as a proxy.

Connect as the opc user.

Provide the path to the private key that corresponds to the public key that you specified
when you created the stack.

Chapter 4
Access Resources

4-9

https://docs.oracle.com/en-us/iaas/Content/API/SDKDocs/cliinstall.htm
https://kubernetes.io/docs/tasks/tools/

The SSH command format is:

ssh -i <path_to_private_key> -o ProxyCommand="ssh -W %h:%p –i
<path_to_private_key> opc@<bastion_public_ip>" opc@<admin_ip>

For example:

ssh -i ~/.ssh/mykey.openssh -o ProxyCommand="ssh -W %h:%p -i ~/.ssh/
mykey.openssh opc@203.0.113.13" opc@198.51.100.1

On a Windows platform, you can use Windows PowerShell to run the SSH command.

2. Navigate to the .kube/config folder.

3. Open the config file and copy the contents of the config file.

4. In your local computer, under $HOME/.kube directory, create a config folder, and copy the
contents of the config file.

Note:

If you do not have the directory to contain the kubeconfig file, then create the
directory using the following command:

$ mkdir -p $HOME/.kube

5. Sign in to the Oracle Cloud Infrastructure Console.

6. Click the navigation menu , select Developer Services. Under Containers, click
Kubernetes Clusters (OKE).

7. Select the Compartment containing the cluster.

8. On the Cluster List page, click the name of the cluster you want to access using kubectl.
The Cluster page shows details of the cluster.

9. Click Access Cluster.

10. On the Access Your Cluster dialog box, click Local Access.

11. Run the Oracle Cloud Infrastructure CLI command to set up the kubeconfig file and save it
in a location accessible to kubectl.

For example, on Linux, enter the following command (or copy and paste it from the Access
Your Cluster dialog box) in a local terminal window:

oci ce cluster create-kubeconfig --cluster-id <OCID of the current
cluster> --file /.kube/config --region <region_name> --token-version 2.0.0
--kube-endpoint PRIVATE_ENDPOINT

12. Set the value of the KUBECONFIG environment variable to point to the name and location
of the kubeconfig file.

export KUBECONFIG=$HOME/.kube/config

Chapter 4
Access Resources

4-10

13. Set up port forwarding to the administration server that you want to connect.

$ kubectl port-forward pods/<admin_server_pod_name> 7001:7001 -n
<namespace>

Example:

$ kubectl port-forward pods/oci-domain-uid-ocidomain-adminserver 7001:7001
-n <namespace>

14. Browse to the WebLogic Server Administration Console URL.

http://localhost:7001/<domain_name>/console

15. Sign in using the administrator credentials for your domain.

Create a WebLogic Domain
Create a WebLogic domain for Oracle WebLogic Server for OKE stack with Verrazzano by
using the tools provided with Oracle WebLogic Server for OKE.

Topics:

• About Creating a Domain

• Prerequisites to Create a Domain

• Create a Domain

• Configure RAC Infra Datasources

About Creating a Domain
Learn about the options you have when creating a domain.

• Domain Type

A Non-JRF domain does not require an existing database.

Prerequisites to Create a Domain
Complete the prerequisites before you create a domain.

Required Tasks

• Create Policies for the Dynamic Group

• Create a Database

• Validate Existing Network Setup

Chapter 4
Create a WebLogic Domain

4-11

Create Policies for the Dynamic Group
Create policies in Oracle Cloud Infrastructure so that the compute instances in Oracle
WebLogic Server for OKE with Verrazzano can access your encryption key.

When you create a stack with Verrazzano, depending on your custom setup, compute
instances in Oracle WebLogic Server for OKE need to access specific components in Oracle
Cloud Infrastructure.

If you are creating a stack with Verrazzano that uses custom OCI DNS, then the following
sample policy grants access to the OCI DNS:

Allow dynamic-group MyInstancesPrincipalGroup to inspect dns-zones in
compartment id DNS_Zone_CompartmentID
Allow dynamic-group MyInstancesPrincipalGroup to use dns-zones in compartment
id DNS_Zone_CompartmentID where target.dns-zone.id='<dns_zone_ocid>'
Allow dynamic-group MyInstancesPrincipalGroup to manage dns-records in
compartment id DNS_Zone_CompartmentID where target.dns-
zone.id='<dns_zone_ocid>'

If you are creating a stack with Verrazzano that uses OCI private DNS and a new VCN, then
the following sample policy grants access to the required resources:

Allow dynamic-group MyInstancesPrincipalGroup to inspect vcns in compartment
id NetworkCompartmentID where target.vcn.id='<vcn_id>'
Allow dynamic-group MyInstancesPrincipalGroup to use dns-resolvers in
compartment id NetworkCompartmentID where target.dns-resolver.display-
name='<label_prefix-vcn>'
Allow dynamic-group MyInstancesPrincipalGroup to inspect dns-views in
compartment id DNS_Zone_CompartmentID

If you are creating a stack with Verrazzano that uses custom CA, then the following sample
policy grants access to the Custom CA certificates:

Allow dynamic-group MyInstancesPrincipalGroup to read secret-bundles in
tenancy where target.secret.id = '<custom_ca_cert_secret_ocid>'
Allow dynamic-group MyInstancesPrincipalGroup to read secret-bundles in
tenancy where target.secret.id = '<custom_ca_signing_key_secret_ocid>'

If you are creating a stack with Verrazzano that uses OCIR repository, then the following
sample policy grants access to the OCIR repository:

Allow dynamic-group MyInstancesPrincipalGroup to manage repos in compartment
id OCI_Identity_CompartmentID

See these topics in the Oracle Cloud Infrastructure documentation:

• Common Policies

• Writing Policies for Dynamic Groups

Chapter 4
Create a WebLogic Domain

4-12

https://docs.cloud.oracle.com/iaas/Content/Identity/Tasks/callingservicesfrominstances.htm#Writing

Validate Existing Network Setup
You can use helper scripts from the Oracle Cloud Infrastructure Cloud shell to certify the
existing network setup (existing VCN and existing WebLogic Server subnet) in Oracle
WebLogic Server for OKE. See Using Cloud Shell in Oracle Cloud Infrastructure
documentation.

The helper scripts perform the following validations and functions:

• Validates if the service gateway or the NAT gateway is created for the administration
instance private subnet and the worker nodes private subnets.

• Validates if internet gateway is created for public bastion, file shared system and load
balancer subnets.

• Checks if port 22 in WebLogic Server Subnet is open for access to the CIDR of the bastion
instance subnet or bastion host IP.

• Checks if the private subnet for the Oracle WebLogic Server compute instances using the
service gateway route rule has All <Region> Services In Oracle Services Network as
the destination.

• Checks if the existing subnet for the load balancer has a security list that enables inbound
access to ports 80 and 443.

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
Worker CIDR range.

• Validates if all protocols are open in private subnet for Kubernetes worker node for the
VCN CIDR range.

• Validates if the file shared system has a security list that enables outbound access to ports
111 and 2048 (both TCP and UDP).

• Validates if the database port is accessible from WebLogic Server subnets.

Using the Validation Script
You can run the helper scripts to perform validations for existing private subnets, existing public
subnets, and existing VCN peered subnets.

You must run the commands on the validation script file to check the existing network setup.
For example, in this case, let's run the commands on the validation script file named
validateoke.sh. See Script File To Validate Network Setup to create the validateoke.sh file.

1. Set execute permission to the validateoke.sh file.

chmod +x validateoke.sh
2. Run the following command prior to creating a domain:

• Basic domain

./validateoke.sh -b <Bastion Subnet OCID> -a <Administration Host Subnet
OCID> -w <Worker Subnet OCID> -f <File Shared System Subnet OCID> -l <Load
Balancer Subnet OCID>

Chapter 4
Create a WebLogic Domain

4-13

https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/cloudshellgettingstarted.htm

Note:

If you restricted the bastion compute instance to access port 22 in WebLogic
subnet, you can validate using the Bastion Host IP CIDR rather than the entire
bastion subnet CIDR.

./validateoke.sh -b <Bastion Subnet OCID> -i <Bastion Host IP CIDR> -
a <Administration Host Subnet OCID> -w <Worker Subnet OCID> -f <File
Shared System Subnet OCID> -l <Load Balancer Subnet OCID>

validateoke.sh

example_user@cloudshell:~ (us-phoenix-1)$./validateoke.sh -b <Bastion Subnet
OCID>
-a <Administration Host Subnet OCID> -w <Worker Subnet OCID> -f <File Shared
System Subnet OCID>
-l <Load Balancer Subnet OCID>
ERROR: SSH port 22 is not open for access by [0.0.0.0/0] in <Bastion Subnet
OCID>
WARNING: SSH port 22 is not open for access by Bastion Subnet CIDR
[10.0.0.0/24] in private Admin Host Subnet [<Administration Host Subnet OCID>]
ERROR: Missing Service or NAT gateway in the VCN of the private ADMIN_SUBNET
Host subnet ocid [<Administration Host Subnet OCID>]
WARNING: Missing internet gateway in the VCN of the BASTION_SUBNET subnet
[<Bastion Subnet OCID>]
WARNING: Missing internet gateway in the VCN of the LB_SUBNET subnet [<Load
Balancer Subnet OCID>]
WARNING: Missing internet gateway in the VCN of the FSS_SUBNET_OCID subnet
[<File Shared System Subnet OCID>]
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 31474
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 10256
WARNING: For LB CIDR - Ports are not open in Workers Subnet CIDR 31804
WARNING: All Ports are not open for LB Subnet CIDR
WARNING: All Ports are not open for LB Subnet CIDR
WARNING: All Ports are not open for LB Subnet CIDR
ERROR: All Protocols are not open for WORKER's Subnet CIDR
ERROR: All Protocols are not open in WORKER's Subnet for VCN CIDR
ERROR: TCP -- 111 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2048 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2049 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2050 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 111 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2048 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2049 -- Port is not open in FSS Subnet for VCN CIDR
ERROR: TCP -- 2050 -- Port is not open in FSS Subnet for VCN CIDR

Create a Domain
After you create a stack, use the Jenkins job to create a domain for Oracle WebLogic Server
for OKE.

When you create a domain with the create domain job, a new domain that has a basic
configuration with no custom applications or libraries, called the primordial domain, is created.

Chapter 4
Create a WebLogic Domain

4-14

This domain contains the base WebLogic Server image that has the WebLogic installer, JDK
installer, and WebLogic patches for Oracle WebLogic Server for OKE.

To know about the primordial domain, see Mutate the Domain Layer in WebLogic Kubernetes
Operator documentation.

To create a domain, you must create a domain as a component, register the component, and
register the application.

Topics:

• Create a Domain as a Component

• Register a Component

• Create an Application Configuration

• Register an Application

Create a Domain as a Component

Before you create a domain as component, ensure that all the prerequisites are completed.
See Prerequisites to Create a Domain.

Perform the following tasks:

• Configure WebLogic Server

• Configure the Registry

• Configure the Domain

• Run the Pipeline Job

Configure WebLogic Server

Specify the parameters required to configure a WebLogic server on a container cluster.

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click create domain as component.

3. Click Build with Parameters.

4. For Domain_Name, specify a WebLogic name.

5. For WebLogic_Version, select a version of Oracle WebLogic Server.
The available versions are 12.2.1.4.0, 14.1.1.0.0 running on JDK 8, and 14.1.1.0.0 running
on JDK 11.

6. Optional: Select the required base image from the Base_Image list.
The images are displayed based on the Weblogic Server version. For example, if you
select 12.2.1.4.0, 12.2.1.4 images are displayed, and if you select 14.1.1.0.0,
14.1.1.0.0_jdk8 and 14.1.1.0.0_jdk11 images are displayed.

Chapter 4
Create a WebLogic Domain

4-15

Note:

For 14.1.1.0.0., make sure that the base image you select should have the same
WebLogic Server and JDK version as in step 5.

The custom base images and uploaded images are also listed in the
Base_Image list. See Create a Custom Base Image.

7. Enter a user name for the WebLogic Server administrator.

8. Enter the password for the WebLogic Server administrator.

9. Select the number of running managed servers in the domain you want to create. You can
specify up to nine manged servers.
The number of running managed servers is also the number of WebLogic Server pods in
the Kubernetes cluster. Each managed server runs in a separate pod in the Kubernetes
cluster. Managed servers are members of a WebLogic Server cluster.

Configure the Registry

Specify the credentials to access container images in the Oracle Cloud Infrastructure
Registry(OCIR).

Note:

If you want to use another user credentials, other than the one specified when
creating a stack, then specify the credentials that Oracle WebLogic Server for OKE
must use to access container images in the Oracle Cloud Infrastructure Registry
(OCIR).

1. In the Registry_Username field, enter a user name that Kubernetes uses to access the
image in the registry.
The registry user name format is tenancy_namespace/<username>. If your tenancy is
federated with Oracle Identity Cloud Service, then the registry user name format is
tenancy_namespace/oracleidentitycloudservice/<username>.

You can choose either to include the tenancy_namespace or remove the
tenancy_namespace in the user name format. For example, you can either use
tenancy_namespace/<username> or <username>.

Note:

If you choose to include tenancy_namespace in the user format, ensure that you
use the correct namespace for your tenancy.

2. In the Registry_Authentication_Token field, enter the OCID of the secret for the auth
token generated for the registry user.

For information about how to create a container registry, see Overview of Registry in the
Oracle Cloud Infrastructure documentation.

Configure the Domain

In the Provision with JRF section, keep the default selection for Domain_Type as Non_JRF.

Chapter 4
Create a WebLogic Domain

4-16

https://docs.cloud.oracle.com/iaas/Content/Registry/Concepts/registryoverview.htm

Run the Pipeline Job

Click Build to run the Pipeline job.

After the job is successful, you can access the WebLogic Console. See Access the WebLogic
Console.

Register a Component
Use the Jenkins job to specify the Verrazzano WebLogic component to register for the
WebLogic domain.

See About Verrazzano WebLogic Components and Application Configuration.

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click register component.

3. Click Build with Parameters.

4. From Component_Names, select the Verrazzano component to register.

5. Click Build to run the Pipeline job.

Create an Application Configuration

Use this job to select a component, which allows to generate the basic application
configuration with an IngressTrait and a MetricsTrait.

Perform the following tasks:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click create application configuration.

3. Click Build with Parameters.

4. For Component_Name, select the Verrazzano component for which you want to create
the application configuration.

5. Click Build to run the Pipeline job.

Register an Application
Use the Jenkins job to deploy the Verrazzano application to a Verrazzano system.

See About Verrazzano WebLogic Components and Application Configuration.

You can use one of the following sources to specify the location of the application configuration
file:

• Application Name - The Verrazzano application to register.

• File Upload - Uploads the file from the local system.

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

• Shared File System - Uses the path of the shared file storage.

The NFS shared file system path is mounted on /u01/shared location on the
administration host.

In the job you should select either an application or provide a custom application yaml.

Chapter 4
Create a WebLogic Domain

4-17

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click register application.

3. Click Build with Parameters.

4. Select either one of the following:

• Select the application from the Application_Name list.

• Select the source of the application configuration file from the Application_Source
list.

Note:

• If both the application name and a custom application yaml is provided, the
application name selection is ignored.

• For the Application_Source option, if the files are larger than one MB, then
use the Object Storage or Shared File System option.

5. If you have select the Application_Source option:

For Application_Source_Location, either browse to select the zip file, specify the http
pre-authenticated URL, or specify the path of the configuration Yaml file on the shared file
system.

6. Click Build to run the Pipeline job.

Update a WebLogic Domain
Learn how to update a domain for Oracle WebLogic Server for OKE stack with Verrazzano by
using the tools provided with Oracle WebLogic Server for OKE.

Topics:

• Create a Custom Base Image

• Update a Domain Configuration

• Rebase a Component Image

Create a Custom Base Image
Use the Jenkins job to create a custom base WebLogic image from WebLogic installer, JDK
installer, and WebLogic patches for Oracle WebLogic Server for OKE.

You can use one of the following sources to specify the location of the JDK installer file,
WebLogic installer file, and WebLogic patch file:

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

For JDK installer file, you must specify the location of a JDK that uses the Linux x64
compressed archive format (.tar.gz).

• Shared File System - Uses the path of the shared file storage.

The NFS shared file system path is mounted on /u01/shared location on the
administration host.

Chapter 4
Update a WebLogic Domain

4-18

Important:

You can get your own preferred WebLogic base image and upload them to the OCIR.
You must upload the images to the following location:

<region>/<tenancy>/<servicename>/wls-base-image/12214

To create a custom base image:

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click create base image.

3. Click Build with Parameters.

4. Select the source of the JDK installer file from the JDK_Installer list.

5. For JDK_Location, specify the http pre-authenticated URL or the path of the zip file on the
shared file system.

6. From FMW_Installer, select the source of the Fusion Middleware installer file.

7. For FMW_Installer_Location, specify the http pre-authenticated URL or the path of the
JAR file on the shared file system.

8. Optional: Select patches.

a. Select the source of the Weblogic patch file from the WLS_Opatches list.
WLS_Opatches refers to any patch that may be required to patch WLS or Coherence
product binaries (including ADR patches, OPSS, OWSM, OPatches).

b. If you selected a Weblogic patch file: For Opatches_Location, specify the http pre-
authenticated URL or the path of the zip file on the shared file system.
For multiple patches, specify the location in separate lines.

9. Optional: Configure the Registry.

If you want to use another user credentials, other than the one specified when creating a
stack, then specify the credentials that Oracle WebLogic Server for OKE must use to
access container images in the Oracle Cloud Infrastructure Registry (OCIR).

a. In the Registry_Username field, enter a user name that Kubernetes uses to access
the image in the registry.

b. In the Registry_Authentication_Token field, enter the OCID for the secret for the
auth token generated for the registry user.

10. Click Build to run the pipeline job.

The custom base image is created and is available in the following location.

<region>/<tenancy>/<servicename>/wls-base-image/12214

The created custom base images and uploaded images are listed when you create a domain,
in the Base_Image list. See Create a Domain as a Component.

Chapter 4
Update a WebLogic Domain

4-19

Update a Domain Configuration
Use the Jenkins job to update a domain that you created with Oracle WebLogic Server for
OKE.

When you run the update domain job, the primordial domain created using the create
domain job is used as the base domain, and updates are applied to this domain.

Therefore, if you run the update domain job for the first time and deploy an application-A in
this job, the resulting primordial domain will have application-A deployed. Then, if you run the
update domain job for the second time and deploy only application-B in the job, the resulting
primordial domain will have only application-B deployed. That is, the state on top of the
primordial domain is not stored within the image and this allows you to use the source control
system to store WebLogic Deploy Tooling (WDT) model to persist any configuration changes
on top of the primordial domain.

To know about the primordial domain, see Mutate the Domain Layer in WebLogic Kubernetes
Operator documentation.

You can extend your model Yaml file with new definitions using the update domain job. For
model Yaml file, see About WebLogic Deploy Tooling.

Tip:

To deploy and undeploy an application, see Tutorial.

To update the WebLogic domain you can provide a WDT model file, a WDT properties file, or
an archive file. The archive file can contain applications, libraries, model file along with other
artifacts. For the structure of the archive file, see archive file in WebLogic Deploy Tooling
documentation.

When you are updating the domain, if you provide a model through the WDT model field and
within the archive, the model specified in the field takes precedence.

You can use one of the following sources to specify the location of the archive zip file, domain
model Yaml file, and variables properties file:

• File Upload - Uploads the file from the local system.

• Object Storage - Uses the pre-authenticated URL on the Object Storage.

• Shared File System - Uses the path of the shared file storage.

The NFS shared file system path is mounted on /u01/shared location on the
administration host.

To update the domain configuration:

• The model Yaml file must contain the required secrets like WebLogic Admin Password,
runtime encryption secret, and Repository Schema Utility (RCU) schema user password.

• In case of Oracle Cloud Infrastructure Database (DB system), the model Yaml file must
include the datasource secret and in case of Oracle Autonomous Database, the model
Yaml file must include the datasource secret and wallet with the keystore passwords. See
About Data Sources.

See RCU Connection Information in WebLogic Deploy Tooling documentation.

Chapter 4
Update a WebLogic Domain

4-20

To update a domain and deploy applications, shared libraries, and resources to the domain:

Note:

Every time you update a domain, you have to provide a model containing all the
resources (applications, libraries, and so on) you want your domain to have. If your
domain currently have application-A installed, and you update your domain with a
model with application-B, then the domain will have only application-B. If you want to
have both applications, you have to use a model with both application-A and
application-B.

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click update domain in component.

3. Click Build with Parameters.

4. From WebLogic_Component, select the component that you want to update.

5. Select the source of the archive zip file from the Archive_Source list.

Note:

In case of files larger than one MB, use the Object Storage or Shared File
System option.

6. For Archive_File_Location, either browse to select the zip file, specify the http pre-
authenticated URL, or specify the path of the zip file on the shared file system.

To know about the structure of the archive file, see archive file in WebLogic Deploy Tooling
documentation.

7. Select the source of the domain model Yaml file from the Domain_Model_Source list.

If the archive zip file contains the domain model Yaml file, you can skip this step.

8. For Model_File_Location, either browse to select the Yaml file, specify the http pre-
authenticated URL, or specify the path of the Yaml on the shared file system.

See model YAML file in WebLogic Deploy Tooling documentation.

9. Select the source of the variable properties file from the Variable_Source list.

10. For Variable_File_Location, either browse to select the file, specify the http pre-
authenticated URL, or specify the path of the properties file on the shared file system.

11. Optional: Configure the Registry.

Note:

If you want to use another user credentials, other than the one specified when
creating a stack, then specify the credentials that Oracle WebLogic Server for
OKE must use to access container images in the Oracle Cloud Infrastructure
Registry (OCIR).

a. In the Registry_Username field, enter a user name that Kubernetes uses to access
the image in the registry.

Chapter 4
Update a WebLogic Domain

4-21

b. In the Registry_Authentication_Token field, enter the OCID for the secret for the
auth token generated for the registry user.

12. Click Build to run the Pipeline job.

You can use the WebLogic Server Administration Console to verify that the domain is updated
with all the specified parameters. See Access the WebLogic Console.

After you update the domain, you must register the component and register the application.
See Register a Component and Register an Application.

You need not register the application if the application pods are running on the node pool.

Rebase a Component Image
Use the Jenkins job to update the Verrazzano component with a different base image for
Oracle WebLogic Server for OKE.

If you created a new base image to apply patches to the JDK and WebLogic binaries, or to
apply new set of OS packages, you can update the existing base image in your Verrazzano
component with the rebase domain job.

To update a base image (JDK and Fusion Middleware) of the Verrazzano component with a
different base image:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click rebase component image.

3. Click Build with Parameters.

4. From Component_Name, select the Verrazzano component that you want to update.

5. From Base_Image, select the image that you to apply to the selected component.

6. Optional: Configure the Registry.

If you want to use another user credentials, other than the one specified when creating a
stack, then specify the credentials that Oracle WebLogic Server for OKE must use to
access container images in the Oracle Cloud Infrastructure Registry (OCIR).

a. In the Registry_Username field, enter a user name that Kubernetes uses to access
the image in the registry.

b. In the Registry_Authentication_Token field, enter the OCID for the secret for the
auth token generated for the registry user.

7. Click Build to run the Pipeline job.

This job removes the domain definition from the existing domain and rebases the Verrazzano
component with the selected base image.

After you rebase the component image, you must register the component and register the
application. See Register a Component and Register an Application.

You need not register the application if the application pods are running on the node pool.

Upgrade Verrazzano
You can upgrade to the latest available Verrazzano version for a Oracle WebLogic Server for
OKE stack with Verrazzano.

You can upgrade the Verrazzano version using private registry (offline upgrade) or using the
internet (online upgrade).

Chapter 4
Upgrade Verrazzano

4-22

Upgrade Using Private Registry

To upgrade the Verrazzano version:

1. Download the latest version of the Verrazzano zip file from Oracle Software Delivery
Cloud.

Note:

For patched versions, go to Oracle Support and raise a service request for the
latest version of the Verrazzano zip file.

a. In your browser, go to Oracle Software Delivery Cloud and log in with your credentials.

b. Click the drop-down next to the search bar and select Download Package.

c. In the search bar, enter Verrazzano Enterprise Container Platform and click Search.

d. Select the DLP: Oracle Verrazzano Enterprise Edition <version> link. This adds the
link to your download queue.

e. Select the Continue link.

f. Accept the license agreement and click Continue.

g. Download the file:

• To download the zip file directly, select the file link in the list.

• To download the zip file using Oracle Download Manager, click Download and run
the Oracle Download Manager executable file.

2. Place the zip file in /u01/shared location on the administration host.

3. Run the following upgrade script from the administration host:

/u01/scripts/verrazzano/utils/upgrade-verrazzano.sh -v <latest_version> -p
-a <path_to_Verrazzano_archive(zip)_file>

Upgrade Using Internet

Ensure that a NAT gateway is created for the administration instance private subnet and the
worker nodes private subnet.

To upgrade the Verrazzano version using internet, run the following upgrade script from the
administration host:

/u01/scripts/verrazzano/utils/upgrade-verrazzano.sh -v <latest_version>

Chapter 4
Upgrade Verrazzano

4-23

https://edelivery.oracle.com/osdc/faces/Home.jspx
https://edelivery.oracle.com/osdc/faces/Home.jspx
https://edelivery.oracle.com/osdc/faces/Home.jspx

Note:

If you installed the current Verrazzano version in your Kubernetes cluster using
private registry, before you upgrade Verrazzano, perform the following steps:

1. Get the name of the verrazzano-platform-operator helm chart.

helm list -o json | jq -r '.[] | select(.chart |
contains("verrazzano-platform-operator")) | .name'

2. Uninstall the verrazzano-platform-operator helm chart.

helm uninstall <verrazzano-platform-operator>

Troubleshoot a WebLogic Domain
Learn about the common issues when creating and managing a domain and then how to
diagnose to solve them.

Topics

• Patching Job Fails

• Provisioning Fails at a Specific Stage

• Unable to View Jenkins UI Input Parameters

• Cleanup Resources Manually for a Failed Domain

• Verrazzano Installation Failed

• Unable to Access the Verrazzano Console

• Introspection Failed when Running Pipeline Jobs

• New Data Source Incorrectly Deployed

• WebLogic Server Pod Fails to Start

• Load Balancer Creation Failed

• Jenkins Installation Fails

• Security Checkup Tool Warnings

Terminate a WebLogic Domain
Use the Jenkins job to terminate a domain that you created for Oracle WebLogic Server for
OKE with Verrazzano.

To terminate a domain, you must unregister the application, unregister the component, and
then terminate the component.

Topics:

• Unregister an Application

• Unregister a Component

Chapter 4
Troubleshoot a WebLogic Domain

4-24

• Terminate a Component

Unregister an Application
Use the Jenkins job to stop the application pods that are running on the node pool.

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click unregister application.

3. Click Build with Parameters.

4. From Application_Names, select the Verrazzano application to unregister.

5. Click Build to run the Pipeline job.

Unregister a Component
Use the Jenkins job to specify the Verrazzano component to unregister for the WebLogic
domain.

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click unregister component.

3. Click Build with Parameters.

4. From Component_Names, select the Verrazzano component to unregister.

5. Click Build to run the Pipeline job.

Terminate a Component
Use the Jenkins job to terminate the Verrazzano component and associated resources such as
RCU, external load balancer, and the Kubernetes namespaces that we created for the domain.

To terminate a component:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click terminate component.

3. Click Build with Parameters.

4. From Component_Name, select the component that you want to terminate.

5. Click Build to run the Pipeline job.

After the terminate job is complete, it displays a log that includes information about the actions
that were performed by the terminate job.

Chapter 4
Terminate a WebLogic Domain

4-25

5
Managing Resources

Learn how to stop, start, back up, scale, and perform other management operations on your
domain.

For information about scaling, see Scaling in WebLogic Kubernetes Operator documentation.

Topics:

• About Data Sources

• Create JMS Resources

• Authenticate by using an External LDAP Server

• Configure SSL Certificate for a Load Balancer

• Set the JVM Arguments Definition

• Session Persistence Considerations

• Monitor a WebLogic Domain

• Start and Stop Servers

• Scale a WebLogic Cluster

• Scale the Node Pools

• Update the Repository Schema Utility Password using Secrets

• Update the Oracle Cloud Infrastructure Registry Auth Token Credentials

• Upgrade the Kubernetes Version

• Upgrade the WebLogic Kubernetes Operator

• Back Up and Restore a Model in Image Domain

About Data Sources
Learn about creating and adding additional data sources after you create an Oracle WebLogic
Server for OKE domain.

For mutable values such as database user names, passwords, and URLs, you must use model
macros to reference arbitrary secrets from model Yaml files. All password fields in the model
Yaml must use secret macros; passwords should not be directly included in the model Yaml
files. So, to create the data source for the database, you must create data source secrets.

Before creating data sources, you must set up the database to create a schema user. See
Prerequisites to Create a Data Source.

You can create data sources that enable you to connect to either an Oracle Autonomous
Database or an Oracle Cloud Infrastructure Database (DB System) database. You can also
create multi data sources and Active GridLink (AGL) data source when using Oracle Real
Application Clusters (RAC) database.

5-1

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/scaling/

Topics:

• Prerequisites to Create a Data Source

• Create a Data Source for an ATP Database

• Create a Data Source for a DB System Database

• Create a Multi Data Source for a RAC Database

• Create an Active GridLink Data Source for a RAC Database

Prerequisites to Create a Data Source
Before you create a data source, you must set up the database to create a schema user.

Complete the following step to create a schema user:

1. Create a schema user for the datasource.

For example, let's create hello schema user:

create user hello identified by "<password>";

GRANT CONNECT TO hello;
GRANT RESOURCE TO hello;
GRANT DBA TO hello;

GRANT CREATE SESSION TO hello;
GRANT UNLIMITED TABLESPACE TO hello;

ALTER SESSION SET CURRENT_SCHEMA = hello;

CREATE TABLE products
(product_id number(10) not null,
product_name varchar2(50) not null,
CONSTRAINT products_pk PRIMARY KEY (product_id)
);

insert into products values
(1, 'lamp');

commit;

2. Add the schema user that you created in step 1 to the model Yaml template.

Example:

Properties:
 user:
 Value:<schema user name>

Create a Data Source for an ATP Database
Use the model Yaml templates to create a data source for an Oracle Autonomous Database.

Following is an example of model Yaml template for app deployment with ATP datasource
properties:

Chapter 5
About Data Sources

5-2

Note:

The template files are located at /u01/shared/scripts/pipeline/templates on the
administration host.

resources:
 JDBCSystemResource:
 hellods:
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 JDBCDataSourceParams:
 JNDIName:
 JDBCDriverParams:
 DriverName: oracle.jdbc.OracleDriver
 URL: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-secret:url@@'
 PasswordEncrypted: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-
secret:password@@'
 Properties:
 user:
 Value:
 javax.net.ssl.keyStore:
 Value:
 javax.net.ssl.keyStoreType:
 Value: JKS
 javax.net.ssl.keyStorePassword:
 Value: '@@SECRET:@@ENV:DOMAIN_UID@@-keystore-secret:password@@'
 javax.net.ssl.trustStore:
 Value:
 javax.net.ssl.trustStoreType:
 Value: JKS
 javax.net.ssl.trustStorePassword:
 Value: '@@SECRET:@@ENV:DOMAIN_UID@@-keystore-secret:password@@'
 oracle.net.ssl_version:
 Value: '1.2'
 oracle.net.ssl_server_dn_match:
 Value: true
 oracle.net.tns_admin:
 Value:
 oracle.jdbc.fanEnabled:
 Value: false
 JDBCConnectionPoolParams:
 InitialCapacity: 1
 MaxCapacity: 1
 TestTableName: SQL ISVALID
 TestConnectionsOnReserve: true

You must set up the database to create a schema user before you create the data source. See
Prerequisites to Create a Data Source.

When you create a data source for an ATP database, you need the ATP client credentials or
wallet files. So, you must run the download script before you create the data source. See
Download the ATP Wallet.

To create a data source for an ATP database:

Chapter 5
About Data Sources

5-3

1. Update the Properties section in the model Yaml template.

For example, update keyStore and trustStore file locations from the downloaded ATP
wallet, tns_admin to point to the directory of the ATP wallet, and the schema user you
created in Prerequisites to Create a Data Source.

Properties:
 user:
 Value: <schema user>
 javax.net.ssl.keyStore:
 Value: /u01/shared/atp_wallet/keystore.jks
 javax.net.ssl.trustStore:
 Value: /u01/shared/atp_wallet/truststore.jks
 oracle.net.tns_admin:
 Value: /u01/shared/atp_wallet

2. Create the data source secrets in the model Yaml file as follows:

a. Create <domainuid>-datasource-secret with password and url using the kubectl
command.

Example:

kubectl create secret generic <domainuid>-datasource-secret --from-
literal=password=<password>
--from-literal=url='jdbc:oracle:thin:@(description=(retry_count=20)
(retry_delay=3)(address=(protocol=tcps)(port=1522)(host=adb.us-
ashburn-1.oraclecloud.com))(connect_data=(service_name=<service_name>))
(security=(ssl_server_dn_match=yes)))' -n <domainname>-ns

b. Create the <domainuid>-keystore-secret with the password used to download the
ATP wallet using the kubectl command.

For example:

kubectl create secret generic <domainuid>-keystore-secret --from-
literal=password=<password> -n <domainname>-ns

Note:

You must use single quotes ' ' to escape special characters such as $, \, *, =,
and ! in your strings. Otherwise, your shell will interpret these characters and
the create secret command will fail.

Download the ATP Wallet
The download script unpacks and copies the ATP wallet contents to a node.

1. Open an SSH connection to the stack's Administration Server node as the opc user.

ssh -i <path_to_private_key> opc@<node_public_ip>

Chapter 5
About Data Sources

5-4

2. Download the ATP wallet to the administration host using the following wallet script:

python3 /u01/scripts/utils/download_atp_wallet.shutils/oci_api_utils.py
<atp_database_ocid>
 <atp_wallet_password> <path_to_extract_wallet_files>

Example:

python3 /u01/scripts/utils/oci_api_utils.py download_atp_wallet_with_pwd
ocid1.autonomousdatabase.oc1.phx.abyhqljtzrr25tfpdyzbjq5udz3lz2hkb5txvtfejc
kwd25z6hjg6qbxm4ta <password>
/u01/shared/atp_wallet

Eight files are extracted to the subdirectory. The following is an example of the script
response:

<Apr 29, 2021 09:51:35 PM GMT> <INFO> <oci_api_utils> <(host:ly2-
admin.okeworkdersregi.paasdevjcsphx.oraclevcn.com) - <WLSOKE-VM-
INFO-0100> : ATP Wallet downloaded>
Archive: /tmp/atp_wallet.zip
 inflating: /u01/shared/atp_wallet/README
 inflating: /u01/shared/atp_wallet/cwallet.sso
 inflating: /u01/shared/atp_wallet/tnsnames.ora
 inflating: /u01/shared/atp_wallet/truststore.jks
 inflating: /u01/shared/atp_wallet/ojdbc.properties
 inflating: /u01/shared/atp_wallet/sqlnet.ora
 inflating: /u01/shared/atp_wallet/ewallet.p12
 inflating: /u01/shared/atp_wallet/keystore.jks

Create a Data Source for a DB System Database
Use the model Yaml templates to create a data source for an Oracle Cloud Infrastructure
Database.

Following is an example of model Yaml template for app deployment with single-instance (SI)
DB System data source properties:

Note:

The template files are located at /u01/shared/scripts/pipeline/templates on the
administration host.

resources:
 JDBCSystemResource:
 hellods:
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 JDBCDataSourceParams:
 JNDIName: jdbc/hellods
 JDBCDriverParams:
 DriverName: oracle.jdbc.OracleDriver

Chapter 5
About Data Sources

5-5

 URL: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-secret:url@@'
 PasswordEncrypted: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-
secret:password@@'
 Properties:
 user:
 Value:
 oracle.net.CONNECT_TIMEOUT:
 Value: '120000'
 SendStreamAsBlob:
 Value: true
 JDBCConnectionPoolParams:
 InitialCapacity: 1
 MaxCapacity: 1
 TestTableName: SQL ISVALID
 TestConnectionsOnReserve: true

You must set up the database to create a schema user before you create the data source and
update . See Prerequisites to Create a Data Source.

1. Update the schema user that you created in the Properties section in the model Yaml
template.

See Prerequisites to Create a Data Source.

For example:

Properties:
 user:
 Value: <schema user>

2. Create the data source secrets in the model Yaml file as follows:

a. Obtain the tns connect string using the python script.

python3 /u01/shared/scripts/pipeline/create_domain/scripts/
precheck_utils.py "get_oci_db_connect_string" "<database_ocid>"

b. Create <domainuid>-datasource-secret with password and url using the kubectl
command.

For example:

kubectl create secret generic <domainuid>-datasource-secret --from-
literal=password=<password>
--from-literal=url='jdbc:oracle:thin:@//wrdb19-
scan.subnet2ad2phx.paasdevjcsphx.oraclevcn.com:1521/
WRPDB.SUBNET2AD2PHX.PAASDEVJCSPHX.ORACLEVCN.COM'
-n <domainname>-ns

Create a Multi Data Source for a RAC Database
Use the model Yaml templates to create a multi data source for an Oracle Real Application
Cluster (RAC) database with WebLogic Enterprise Edition.

Following is an example of model Yaml template for app deployment with multi data source
(RAC as infra DB with WebLogic Enterprise Edition) properties:

Chapter 5
About Data Sources

5-6

Note:

The template files are located at /u01/shared/scripts/pipeline/templates on the
administration host.

resources:
 JDBCSystemResource:
 'db1-hellods':
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 JDBCDataSourceParams:
 GlobalTransactionsProtocol: None
 JNDIName: ['jdbc/db1-hellods']
 JDBCDriverParams:
 DriverName: oracle.jdbc.OracleDriver
 URL: '@@SECRET:@@ENV:DOMAIN_UID@@-db1datasource-secret:url@@'
 PasswordEncrypted: '@@SECRET:@@ENV:DOMAIN_UID@@-db1datasource-
secret:password@@'
 Properties:
 user:
 Value:
 JDBCConnectionPoolParams:
 StatementCacheSize: 0
 TestTableName: SQL ISVALID
 InitialCapacity: 1
 MaxCapacity: 1
 'db2-hellods':
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 JDBCDataSourceParams:
 GlobalTransactionsProtocol: None
 JNDIName: ['jdbc/db2-hellods']
 JDBCDriverParams:
 DriverName: oracle.jdbc.OracleDriver
 URL: '@@SECRET:@@ENV:DOMAIN_UID@@-db2datasource-secret:url@@'
 PasswordEncrypted: '@@SECRET:@@ENV:DOMAIN_UID@@-db2datasource-
secret:password@@'
 Properties:
 user:
 Value:
 JDBCConnectionPoolParams:
 StatementCacheSize: 0
 TestTableName: SQL ISVALID
 InitialCapacity: 1
 MaxCapacity: 1
 'hellods':
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 DatasourceType: MDS
 JDBCDataSourceParams:
 AlgorithmType: 'Load-Balancing'
 DataSourceList: ['db1-hellods','db2-hellods']
 JNDIName: [jdbc/hellods]

Chapter 5
About Data Sources

5-7

You must set up the database to create a schema user before you create the data source. See
Prerequisites to Create a Data Source.

1. Update the schema user that you created in the Properties section in the model Yaml
template.

See Prerequisites to Create a Data Source.

For example:

Properties:
 user:
 Value: <schema user>

2. Create the data source secrets in the model Yaml file as follows:

a. Open an SSH connection to the domain's Administration Server node as the opc user.

ssh -i <path_to_private_key> opc@<node_public_ip>

b. Go to /u01/shared/helper-scripts location and obtain the connect string for each
node using the following commands:

./url.sh
URL1 = jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=<host_name>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service_name>)
(INSTANCE_NAME=<instance1_name>)))
URL2 = jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
(HOST=<host_name>)(PORT=1521))
(CONNECT_DATA=(SERVICE_NAME=<service_name>)
(INSTANCE_NAME=<instance2_name>))

c. Create <domainuid>-db1datasource-secret/<domainuid>-db2datasource-secret
with password and url using the kubectl commands.

kubectl create secret generic <domainuid>-db1datasource-secret --from-
literal=password=<password>
--from-
literal=url='jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
HOST=<host1_name>)(PORT=1521))CONNECT_DATA=(SERVICE_NAME=<service_name>)
(INSTANCE_NAME=<instance_name>)))'
-n <domainname>-ns

kubectl create secret generic <domainuid>-db2datasource-secret --from-
literal=password=<password>
--from-
literal=url='jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
HOST=<host2_name)(PORT=1521))CONNECT_DATA=(SERVICE_NAME=<service_name>)
(INSTANCE_NAME=<instance_name>)))'
-n <domainname>-ns

Chapter 5
About Data Sources

5-8

Create an Active GridLink Data Source for a RAC Database
Use the model Yaml templates to create an Active GridLink (AGL) data source for an Oracle
Real Application Cluster (RAC) database with WebLogic Suite Edition.

Following is an example of model Yaml template for app deployment with AGL datasource
(RAC as infra DB with WebLogic Enterprise Edition) properties:

Note:

The template files are located at /u01/shared/scripts/pipeline/templates on the
administration host.

resources:
 JDBCSystemResource:
 'hellods':
 Target: '@@ENV:RESOURCE_PREFIX@@-cluster'
 JdbcResource:
 DatasourceType: AGL
 JDBCConnectionPoolParams:
 StatementCacheSize: 0
 TestTableName: SQL ISVALID
 JDBCDataSourceParams:
 GlobalTransactionsProtocol: None
 JNDIName: [jdbc/hellods]
 JDBCDriverParams:
 DriverName: oracle.jdbc.replay.OracleDataSourceImpl
 URL: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-secret:url@@'
 PasswordEncrypted: '@@SECRET:@@ENV:DOMAIN_UID@@-datasource-
secret:password@@'
 Properties:
 user:
 Value:
 JDBCOracleParams:
 FanEnabled: true
 ActiveGridlink: true
 OnsNodeList:

You must set up the database to create a schema user before you create the data source. See
Prerequisites to Create a Data Source.

1. Update the Properties section in the model Yaml template to set OnsNodeList.

a. Open an SSH connection to a node as the opc user.

ssh -i <path_to_private_key> opc@<node_public_ip>

b. Go to /u01/shared/helper-scripts location and invoke the following script:

./scan_address.sh
<db_hostname>-scan.subnet2ad2phx.paasdevjcsphx.oraclevcn.com:6200

Chapter 5
About Data Sources

5-9

2. Create the data source secrets in the model YAML file as follows:

a. Obtain the tns connect string using the python script.

python3 /u01/shared/scripts/pipeline/create_domain/scripts/
precheck_utils.py "get_oci_db_connect_string" "<database_ocid>"

b. Create <domainuid>-datasource-secret with password and url using the kubectl
command.

For example:

kubectl create secret generic <domainuid>-datasource-secret --from-
literal=password=<password>
--from-literal=url='jdbc:oracle:thin:@//<db_hostname>-
scan.subnet2ad2phx.paasdevjcsphx.oraclevcn.com:1521/<service_name>'
-n <domainname>-ns

Authenticate by using an External LDAP Server
This section describes the steps required to add authenticators for external systems, like
OpenLDAP. This helps you to use the groups and users defined in the system for your
applications deployed in the Oracle WebLogic Server for OKE domain. Also, it provides
information about how to use an OpenLDAP server.

In Oracle WebLogic Server for OKE, you cannot add users and groups to the WebLogic
embedded LDAP server for your applications. As the embedded LDAP has limited use when
using the domain home in the image model, if you add users to the embedded LDAP through
the Administration console, the users are not persisted in the image and disappear when you
restart the admin server pod. Also, it is not recommended to change the domain from the
administration console.

Prerequisites
Before you authenticate by using an external LDAP sever, ensure that you have completed the
required prerequisites.

1. You must have created a domain with Oracle WebLogic Server for OKE instance. See
Create a Stack .

2. You must have an OpenLDAP server, which is ready to use.
The OpenLDAP server must be accessible from the Oracle WebLogic Server for OKE
nodes, where your WebLogic domain is running and from the admin host. That is,
OpenLDAP server must connect to the OpenLDAP host (either by name or IP address)
and use the port where the LDAP server is listening.

Default ports are 389 for LDAP and 636 for LDAPS (LDAP over SSL).

If the LDAP server is on premises, then connect the VCN where the stack was created with
your datacenter, by using either FastConnect or VPN connect. See Access to Your On-
Premises Network.

Chapter 5
Authenticate by using an External LDAP Server

5-10

https://docs.cloud.oracle.com/en-us/iaas/Content/Network/Concepts/connectivityonprem.htm
https://docs.cloud.oracle.com/en-us/iaas/Content/Network/Concepts/connectivityonprem.htm

Add a new OpenLDAP Authenticator to the Domain
Define the authenticators that you want to add to your WebLogic domain in a WDT model file,
and then apply this model by using the update-domain pipeline job.

1. Create an OpenLDAP_authenticator.yaml file.
The following is an example of a model file specifying an OpenLDAP authenticator and
helps to connect to an OpenLDAP server by using LDAP protocol, that is with SSL
disabled. This model is based on the models presented in Modeling Security Providers.

Note:

You must create a secret for the administrator password, and you use this secret
when you run the update-domain pipeline job.

Example of an OpenLDAP_authenticator.yaml file:

topology:
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 My OpenLDAP authenticator:
 OpenLDAPAuthenticator:
 ControlFlag: SUFFICIENT
 PropagateCauseForLoginException: True
 EnableGroupMembershipLookupHierarchyCaching:
True
 Host: myldap.example.com
 Port: 389
 UserObjectClass: inetOrgPerson
 GroupHierarchyCacheTTL: 600
 SSLEnabled: False
 UserNameAttribute: cn
 Principal: 'cn=foo,ou=users,dc=example,dc=com'
 CredentialEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-secret:password@@'
 UserBaseDn: 'ou=users,dc=example,dc=com'
 UserSearchScope: subtree
 UserFromNameFilter: '(&(cn=%u)
(objectclass=inetOrgPerson))'
 GroupBaseDN: 'ou=groups,dc=example,dc=com'
 StaticGroupObjectClass: groupofnames
 StaticGroupNameAttribute: cn
 StaticMemberDNAttribute: member
 StaticGroupDNsfromMemberDNFilter:
'(&(member=%M)(objectclass=groupofnames))'
 UseRetrievedUserNameAsPrincipal: True
 KeepAliveEnabled: True
 GuidAttribute: uuid
 DefaultAuthenticator:
 DefaultAuthenticator:
 ControlFlag: SUFFICIENT

Chapter 5
Authenticate by using an External LDAP Server

5-11

 DefaultIdentityAsserter:
 DefaultIdentityAsserter:

In order to keep DefaultAuthenticator and DefaultIdentityAsserter while changing or
adding providers, they must be specified in the model with any non-default attributes, as in
the example. The order of providers in the model will be the order the providers set in the
WebLogic security configuration. See Modeling Security Providers.

2. Run the update-domain pipeline job to add the authenticators. See Update a Domain
Configuration.

Enable SSL Support
To enable SSL support, you need to perform a few additional steps. Here you need to
configure both a trust keystore and an identity keystore, although only trust keystore is required
for one-way SSL connection to the LDAP server. You must also configure SSL with the host
name verifier.

1. Obtain the root Certificate Authority (CA) certificate for the LDAP server.

2. Create a trust keystore by using the preceding certificate or if you already have an existing
trust keystore, import the certificate to the trust keystore.
Following is an example to create the keystore myTrust.jks with the root CA certificate
rootca.pem, by using the keytool command:

keytool -import -keystore ./myTrust.jks -trustcacerts -alias oidtrust -
file rootca.pem -storepass TrustKeystorePwd -noprompt

3. Create an identity keystore, if you do not have an existing identity keystore.
Following is an example to create the identity keystore:

keytool -genkeypair -alias server_cert -keyalg RSA -sigalg SHA256withRSA -
keysize 2048 -dname
"CN=example.com,OU=Support,O=Example,L=Reading,ST=Berkshire,C=GB" -
keystore ./myIdentity.jks

4. Copy the trust and identity keystores to the u01 shared location, and specify the location of
these files in the model.yaml file.

5. Create a model.yaml file, specifying the OpenLDP Authentication Provider with SSL
enabled, the DefaultAuthenticator and DefaultIdentityAsserter information, and the
custom keystores for admin server and the servers that are part of the dynamic cluster
configured in the domain.

Note:

You must create a secret for the administrator password, and provide this secret
in the model.yaml file; this secret is used when you run the update-domain job.
For information see, Update a Domain Configuration.

You must use ENV macros for server names as specified in the following
model.yaml example files for non-JRF domain.

Following is a sample of the model.yaml file for a non-JRF domain:

Chapter 5
Authenticate by using an External LDAP Server

5-12

In this model.yaml file, ServerPrivateKeyAlias, refers to the alias used when you created
the DemoIdentity keystore and ServerPrivateKeyPassPhraseEncrypted refers to the
password set for ServerPrivateKeyAlias.

topology:
 Server:
 '@@ENV:RESOURCE_PREFIX@@-adminserver':
 KeyStores: CustomIdentityAndCustomTrust
 CustomIdentityKeyStoreType: jks
 CustomIdentityKeyStoreFileName: '/u01/shared/DemoIdentity.jks'
 CustomIdentityKeyStorePassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-demosecret:password@@'
 CustomTrustKeyStoreType: jks
 CustomTrustKeyStoreFileName: '/u01/shared/myTrust.jks'
 CustomTrustKeyStorePassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-trustsecret:password@@'
 SSL:
 ServerPrivateKeyAlias: DemoIdentity
 ServerPrivateKeyPassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-demokeysecret:password@@'
 ServerTemplate:
 '@@ENV:RESOURCE_PREFIX@@-cluster-template':
 KeyStores: CustomIdentityAndCustomTrust
 CustomIdentityKeyStoreType: jks
 CustomIdentityKeyStoreFileName: '/u01/shared/DemoIdentity.jks'
 CustomIdentityKeyStorePassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-demosecret:password@@'
 CustomTrustKeyStoreType: jks
 CustomTrustKeyStoreFileName: '/u01/shared/myTrust.jks'
 CustomTrustKeyStorePassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-trustsecret:password@@'
 SSL:
 ServerPrivateKeyAlias: DemoIdentity
 ServerPrivateKeyPassPhraseEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-demokeysecret:password@@'
 SecurityConfiguration:
 Realm:
 myrealm:
 AuthenticationProvider:
 My OpenLDAP authenticator:
 OpenLDAPAuthenticator:
 ControlFlag: SUFFICIENT
 PropagateCauseForLoginException: True
 EnableGroupMembershipLookupHierarchyCaching:
True
 Host: 'pg-openldap'
 Port: 636
 UserObjectClass: inetOrgPerson
 GroupHierarchyCacheTTL: 600
 SSLEnabled: True
 UserNameAttribute: cn
 Principal: 'cn=admin,dc=wlsoketest-ldap,dc=com'
 CredentialEncrypted:
'@@SECRET:@@ENV:DOMAIN_UID@@-ldap-secret:password@@'
 UserBaseDn: 'ou=people,dc=wlsoketest-
ldap,dc=com'

Chapter 5
Authenticate by using an External LDAP Server

5-13

 UserSearchScope: subtree
 UserFromNameFilter: '(&(cn=%u)
(objectclass=inetOrgPerson))'
 GroupBaseDN: 'ou=groups,dc=wlsoketest-
ldap,dc=com'
 StaticGroupObjectClass: groupofnames
 StaticGroupNameAttribute: cn
 StaticMemberDNAttribute: member
 StaticGroupDNsfromMemberDNFilter:
'(&(member=%M)(objectclass=groupofnames))'
 UseRetrievedUserNameAsPrincipal: True
 KeepAliveEnabled: True
 GuidAttribute: entryuuid
 DefaultAuthenticator:
 DefaultAuthenticator:
 ControlFlag: SUFFICIENT
 DefaultIdentityAsserter:
 DefaultIdentityAsserter:

6. Apply the model and archive to the running WebLogic Server domain.
To run the update-domain CI/CD pipeline to update the running domain and add the
Authentication Providers and custom keystores, complete the following steps:

a. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

b. On the Dashboard page, click update domain.

c. From Domain_Name, select the domain that you want to update.

d. Click Build with Parameters.

e. Select Shared File System from the Archive_Source list.

f. For Archive_File_Location, browse to select the archive zip file or specify the path of
the zip file on the shared file system.

g. Select Shared File System from the Domain_Model_Source list.

h. For Model_File_Location, browse to select the YAML file or specify the path of the
YAML on the shared file system.

i. Select None from the Variable_Source list.

j. Select the Rollback_On_Failure check box if you do not want to rollback to the
previous working domain image (optional).
If you deselected this check box, you can rollback to the previous image later from the
backup.

The Rollback_On_Failure check box is selected by default.

k. Click Build to run the Pipeline job.

Configure SSL with host name verifier

1. In the model.yaml file, for the non-JRF domain, add the SSL configuration with custom
HostnameVerifier class in the admin sever and managed server.

Following is a sample model.yaml file for a non-JRF domain:

topology:
 Server:
 '@@ENV:RESOURCE_PREFIX@@-adminserver':

Chapter 5
Authenticate by using an External LDAP Server

5-14

 SSL:
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly
 ServerTemplate:
 '@@ENV:RESOURCE_PREFIX@@-cluster-template':
 ListenPort: 8001
 Cluster: '@@ENV:RESOURCE_PREFIX@@-cluster'
 SSL:
 ListenPort: 8100
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly

2. Apply the model.yaml to the running WebLogic Server domain. See step 6 in Enable SSL
Support.

Verify the Authenticator
Verify that the authentication provider is created successfully and the expected LDAP provider
users and groups are synced.

Create JMS Resources
Java Messaging Service (JMS) resources can be created using the provided templates.

JMS resources can be added to non-JRF domains. It is recommended to use JDBC persistent
stores for JMS and Transaction stores to be in the database. So, we need to create a
datasource and corresponding leasing table for JDBC store for the non-JRF domain.

Complete the following steps:

1. Create a table for database leasing:

2. Format of the tablename should be: <datasourceschemausername>.<tablename>
Example:

create table mydbuser.mytable
(
SERVER VARCHAR2(255) NOT NULL,
INSTANCE VARCHAR2(255) NOT NULL,
DOMAINNAME VARCHAR2(255) NOT NULL,
CLUSTERNAME VARCHAR2(255) NOT NULL,
TIMEOUT DATE,
PRIMARY KEY (SERVER, DOMAINNAME, CLUSTERNAME)
);

3. The tablename has to be specified in the model template yaml for
AutoMigrationTableName

The sample model template yaml file, non_jrf_domain_jms_resources.yaml is located
at /u01/shared/scripts/pipeline/templates.

Chapter 5
Authenticate by using an External LDAP Server

5-15

These are basic sample template model yaml files that can be used and has to be modified
according to your requirement. These are not the final model template.

Note:

Irrespective of the number of managed servers, increase the initial and max capacity
of mydatasource to a higher value.

For best practices about creating JMS resources, see Best Practices for JMS Beginners and
Advanced Users in Administering JMS Resources for Oracle WebLogic Server.

Configure SSL Certificate for a Load Balancer
If you add an SSL certificate manually using the Oracle Cloud Infrastructure console to the
load balancer created in Oracle WebLogic Server for OKE, when you update the domain using
the update domain job, the certificate you configured in the console is reverted to the default
certificate.

To retain the SSL certificate, you must configure the SSL certificate for the load balancer using
the update_lb_ssl_cert.sh script located in /u01/scripts/utils in the administration
instance. After configuring the load balancer, you can verify the SSL certificate configuration.
See Verify SSL Certificate Configuration.

Note:

For stacks created prior to 22.3.1 (July, 2022), before you configure SSL certificate
for the load balancer, you must create the update_lb_ssl_cert.sh script and copy
the script in the administration instance. See Script File to Update SSL Certificate for
Load Balancer.

Perform the following steps to configure SSL certificate for the load balancer:

1. Access the administration compute instance for your stack.
See Access the Administration Instance.

2. Store the SSL certificate and private key in the administration instance.
For example, you can store the SSL certificate and private key in the /tmp/tls.crt
and /tmp/tls.key location in the administration instance.

3. Navigate to /u01/scripts/utils directory, and set execute permission to the
update_lb_ssl_cert.sh file.

chmod +x update_lb_ssl_cert.sh

4. Run the following command:

./update_lb_ssl_cert.sh -d <WebLogic_ Domain_Name> -s
<Kubernetes_Secret_Name> -k <SSL_Certificate_Key_File> -c
<SSL_Certificate_File>

Chapter 5
Configure SSL Certificate for a Load Balancer

5-16

Example:

./update_lb_ssl_cert.sh -d domain1 -s lbsslcert -k tls.key -c tls.cert

5. After the load balancer is updated with the certificates, delete the tls.key and tls.cert.
For example, if your SSL certificate file is located in /tmp directory, run the following
command to delete the certificate:

rm /tmp/tls.cert

Verify SSL Certificate Configuration

Perform the following steps to verify the SSL certificate configuration:

1. Run the following command to verify that the tls secret field was updated to the secret
name you provided in the script:

kubectl describe svc -n wlsoke-ingress-nginx <domain_name>-lb-external |
grep tls-secret

Example:

kubectl describe svc -n wlsoke-ingress-nginx domain1-lb-external | grep
tls-secret

The command output looks like:

service.beta.kubernetes.io/oci-load-balancer-tls-secret: lbsslcert

2. Access the Oracle Cloud Infrastructure console.

3. From the navigation menu , click Networking and then click Load Balancers.

4. Select the Compartment that contains your stack.

5. Click the name of the load balancer.

6. Under Resources, click Listeners. The list of listeners is displayed.

7. Click the Actions icon () associated with the listener set and click Edit.

8. Check if the Certificate Name is the same as the secret name that you provided in the
script in step 4.

9. Run the update domain job and repeat steps 3 through 8 to verify if the SSL certification
is retained for load balancer.
See Defining Kubernetes Services of Type LoadBalancer in Oracle Cloud Infrastructure
documentation.

Set the JVM Arguments Definition
To explicitly set the Java Virtual Machine (JVM) heap size in the WebLogic Server pods that
are created, modify the domain and specify the JVM settings in the domain YAML file.

To set the JVM heap size:

Chapter 5
Set the JVM Arguments Definition

5-17

https://docs.cloud.oracle.com/iaas/Content/ContEng/Tasks/contengcreatingloadbalancer.htm

1. Access the administration compute instance for your stack.

See Access the Administration Instance.

2. Modify the domain using the kubectl command.

kubectl edit domain <domain_name> -n <domain-namespace> -o yaml

This command opens the Domain definition in an editor.

3. Specify the following configuration for the USER_MEM_ARGS variable:

name: USER_MEM_ARGS
value: '-Xms256M -Xmx512M -XX:+UseG1GC -Djava.security.egd=file:/dev/./
urandom
-Dweblogic.security.SSL.ignoreHostnameVerification=true '

Session Persistence Considerations
You can configure session persistence when deploying Java EE applications to a WebLogic
cluster. You must configure session persistence by updating the weblogic.xml deployment
descriptor's session-descriptor element, specifically the persistent-store-type element,
whose default value is memory.

To edit the weblogic.xml deployment descriptor's session-descriptor element, see session-
descriptor.

For applications deployed to a cluster, use a value suitable for clustered applications, for
example, replicated_if_clustered. For information, see Using Sessions and Session
Persistence.

For ADF applications, see additional considerations at High Availability Checklist for ADF
Applications.

Enabling session affinity or sticky sessions at the ingress controller

To send all client requests of a session to the same Oracle WebLogic Server, you must edit the
Kubernetes ingress wls-cluster-ingress and add session affinity annotations.

To ensure session affinity annotations work, we also need to specify a host in the ingress wls-
cluster-ingress. You can edit the kubectl to set session affinity.

Run the following command to view the contents of your wls-cluster-ingress file:

kubectl get ingress -n <domainname>-ns wls-cluster-ingress -o yaml

Sample output:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: nginx-applications
 meta.helm.sh/release-name: ingress-controller
 meta.helm.sh/release-namespace: default

Chapter 5
Session Persistence Considerations

5-18

https://support.oracle.com/knowledge/Middleware/1468116_1.html
https://support.oracle.com/knowledge/Middleware/1468116_1.html

 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 creationTimestamp: "2020-11-30T20:28:48Z"
 generation: 1
 labels:
 app.kubernetes.io/managed-by: Helm
 name: wls-cluster-ingress
 namespace: <domainname>-ns
 resourceVersion: "2414741"
 selfLink: /apis/extensions/v1beta1/namespaces/<domainname>-ns/ingresses/wls-
cluster-ingress
 uid: f5aa919c-7e93-4ca8-a4ca-ddf791c126dd
spec:
 rules:
 - http:
 paths:
 - backend:
 serviceName: mydomain-test-cluster-myoke-cluster
 servicePort: 8001
 path: /
status:
 loadBalancer:
 ingress:
 - ip: <public_ip>

Complete the following steps:

1. Run the following command to enable session affinity:

kubectl edit ingress -n <domainname>-ns wls-cluster-ingress

2. Add the session affinity annotations and the host.

Note:

The minimum set of annotations to add is: nginx.ingress.kubernetes.io/
affinity

You can add more annotations to modify the default behavior. For example, you can add
nginx.ingress.kubernetes.io/affinity-mode and for maximum stickiness set its value
to persistent, or nginx.ingress.kubernetes.io/session-cookie-name to change the
default name of the cookie.

For information about session affinity annotations, see Sticky sessions and Session
Affinity.

3. Save the contents.

4. Run the following command to view the contents of your wls-cluster-ingress file:

kubectl get ingress -n <domainname>-ns wls-cluster-ingress -o yaml

Chapter 5
Session Persistence Considerations

5-19

https://kubernetes.github.io/ingress-nginx/examples/affinity/cookie/
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#session-affinity
https://kubernetes.github.io/ingress-nginx/user-guide/nginx-configuration/annotations/#session-affinity

In the following sample output, the text with comments show the modifications of the
ingress. In this case, we enabled session affinity and configured the expiration time for the
session cookie:

[opc@myoke-admin templates]$ kubectl get ingress -n <domainname>-ns wls-
cluster-ingress -o yaml
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
 annotations:
 kubernetes.io/ingress.class: nginx-applications
 meta.helm.sh/release-name: ingress-controller
 meta.helm.sh/release-namespace: default
 nginx.ingress.kubernetes.io/affinity: cookie # New annotation
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 nginx.ingress.kubernetes.io/session-cookie-expires: "172800" #New
annotation
 nginx.ingress.kubernetes.io/session-cookie-max-age: "172800" #New
annotation
 creationTimestamp: "2020-11-30T20:28:48Z"
 generation: 2
 labels:
 app.kubernetes.io/managed-by: Helm
 name: wls-cluster-ingress
 namespace: <domainname>-ns
 resourceVersion: "2419743"
 selfLink: /apis/extensions/v1beta1/namespaces/<domainname>-ns/ingresses/
wls-cluster-ingress
 uid: f5aa919c-7e93-4ca8-a4ca-ddf791c126dd
spec:
 rules:
 - host: my-server #New host
 http:
 paths:
 - backend:
 serviceName: mydomain-test-cluster-myoke-cluster
 servicePort: 8001
 path: /
status:
 loadBalancer:
 ingress:
 - ip: <public_ip>

Note:

If you set the host name in the ingress, you will not be able to access your
applications by using the load balancer public IP. To access your applications use the
host name you specified in the ingress. That is, you need to add the host name to
your DNS servers, or manually map the host name to the public IP of the load
balancer. For example, by editing the /etc/hosts file.

Chapter 5
Session Persistence Considerations

5-20

Monitor a WebLogic Domain
Learn how to monitor a domain by using the tools provided with Oracle WebLogic Server for
OKE

Topics:

• About the Security Checkup Tool

• Component Health Check

About the Security Checkup Tool
Oracle WebLogic Server Administration console includes a security checkup tool that displays
security check warnings.

In case of Oracle WebLogic Server for OKE instances created after July 20, 2021, or the
instances on which the July 2021 PSUs are applied, the message Security warnings
detected. Click here to view the report and recommended remedies is displayed at the
top of the Oracle WebLogic Server Administration console. When you click the message, a list
of security warnings are displayed as listed in the following table.

The warning messages listed in the table are examples.

Security Warnings

Warning Message Resolution

The configuration for
key stores for this
server are set to Demo
Identity and Demo Trust.
Trust Demo certificates
are not supported in
production mode domains.

Configure the identity and trust keystores for each server and the name
of the certificate in the identity keystore that the server uses for SSL
communication. See Configure Keystore Attributes for Identity and
Trust.

Note: This warning is displayed for Oracle WebLogic Server for OKE
instances created after October 20, 2021, or the instances on which the
October PSUs are applied.

Production mode is
enabled but the file or
directory
<directory_name>/
startWebLogic.sh is
insecure since its
permission is not a
minimum of umask 027.

Run the following command in the administration server as oracle
user:

chmod 640 /u01/data/domains/<domain_name>/bin

Remote Anonymous RMI T3
or IIOP requests are
enabled. Set the
RemoteAnonymousRMIT3Enab
led and
RemoteAnonymousRMIIIOPEn
abled attributes to
false.

Set the java properties for anonymous RMI T3 and IIOP requests
during server start up. See Set the Java Properties.

Chapter 5
Monitor a WebLogic Domain

5-21

Note:

For existing Oracle WebLogic Server for OKE instances (created before July 20,
2021), you see the SSL host name verification warnings. For details, see Security
Checkup Tool Warnings.

After you address the warnings, you must click Refresh Warnings to see the warnings
removed in the console.

For Oracle WebLogic Server for OKE instances created after July 20, 2021, though the java
properties to disable anonymous requests for preventing anonymous RMI access are
configured, the warnings still appear. This is a known issue in Oracle WebLogic Server.

Set the Java Properties

To set the java properties for anonymous RMI T3 and IIOP requests:

1. Edit the domain.yaml located in /u01/shared/weblogic-domains/<domain_name>/
domain.yaml for all instances of serverPod definitions as follows:

serverPod:
 env:
 - name: USER_MEM_ARGS
 #admin server memory is explicitly set to min of 256m and max of
512m and GC algo is G1GC
 value: "-Xms256m -Xmx512m -XX:+UseG1GC -
Djava.security.egd=file:/dev/./urandom"
 - name: JAVA_OPTIONS
 value: "-Dweblogic.store.file.LockEnabled=false
 -Dweblogic.rjvm.allowUnknownHost=true
 -Dweblogic.security.remoteAnonymousRMIT3Enabled=false
 -Dweblogic.security.remoteAnonymousRMIIIOPEnabled=false"

2. Apply the domain.yaml using the kubectl command:

kubectl -f <path_to_domain.yaml>

Configure Keystore Attributes for Identity and Trust

To configure the identity and trust keystore files and the name of the certificate in the identity
keystore in the WebLogic Server Administration console:

1. Locate the Change Center and click Lock & Edit to lock the editable configuration
hierarchy for the domain.

2. Under Domain structure, select Environment and then select Servers.

3. In the Servers table, select the server you want to configure.

4. On the Configuration tab, click Keystores, and then click Change.

5. Select Custom Identity and Custom Trust, and then click Save.

6. Under Identity, provide the following details:

a. Enter the full path of your identity keystore.

For example: /u01/data/keystores/identity.jks

Chapter 5
Monitor a WebLogic Domain

5-22

b. For Custom Identity Keystore Type, enter JKS.

c. For Custom Identity Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Identity Keystore Passphrase.

7. Under Trust, provide the following details:

a. Enter the full path of your identity keystore.

For example, /u01/data/keystores/trust.jks
b. For Custom Trust Keystore Type, enter JKS.

c. For Custom Trust Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Trust Keystore Passphrase.

8. Click Save.

9. Click the SSL tab.

10. Under Identity, provide the following details:

a. For Private Key Alias, enter the name of the certificate (private key) in the
identitykeystore, server_cert.

b. For Private Key Passphrase, enter the password for this certificate in the keystore.
Enter the same value for Confirm Private Key Passphrase.

By default, the password for the certificate is the same as the identity keystore
password.

11. Click Save.

After saving the changes, return to Change Center and click Activate Changes.

12. Repeat steps 3 to 9 to configure each server in the domain.

Component Health Check
Monitor the health of key components of the service in Oracle WebLogic Server for OKE.

The following topic describes how to check the health of such components:

• Check the Health of a Cluster

• Check the Health of a Load Balancer

• Check the Health of a WebLogic Domain

Check the Health of a Cluster
Learn how to view cluster metrics that help you to monitor the health, capacity, and
performance of the instance's Kubernetes cluster manged by Oracle WebLogic Server for
OKE.

Check the Metrics for Clusters
You can view metrics information for the clusters in your domain.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu and select Developer Services. Under the Containers
group, click Kubernetes Clusters.

3. Select the Compartment containing the cluster for which you want to view metrics.

Chapter 5
Monitor a WebLogic Domain

5-23

4. Click the name of the cluster for which you want to view metrics.

5. Under Resources on the left, click Metrics.

The Metrics tab displays a chart for each metric for the cluster that is emitted by the metric
namespace. For more information about the displayed metrics, see Available Metrics:
oci_oke.

Check the Metrics for Node Pool Clusters
You can view metrics information of the node pools of the instance's Kubernetes cluster and
also view the metrics information for each node.

1. Sign in to the Oracle Cloud Infrastructure Console.

2. Click the navigation menu and select Developer Services. Under the Containers
group, click Kubernetes Clusters.

3. Select the Compartment containing the cluster for which you want to view metrics.

4. Click the name of the cluster for which you want to view metrics.

5. Under Resources on the left, click Node pools.

6. On the Node Pools tab, click the name of a node pool for which you want to see detailed
status.

7. Under Resources on the left, click Metrics.

This displays more granular information about the health, capacity, and performance of the
node pool.

8. Under Resources on the left, click Nodes.

This displays the summary status of each worker node in the node pool

9. Click View Mertics beside the node to view more granular information about the health,
capacity, and performance of that node.

For more information about the displayed metrics, see Available Metrics: oci_oke.

Check the Health of a Load Balancer
Learn how to view the status of a load balancers associated with the instance's Kubernetes
cluster managed by Oracle WebLogic Server for OKE.

1. Access the administration compute instance for your domain.

See Access the Administration Instance.

2. Run the following command:

kubectl get services --all-namespaces

Sample output of services:

NAMESPACE NAME
TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
default kubernetes
ClusterIP 10.96.0.1 <none>
443/TCP 27h
wlsoke-ingress-nginx okename-internal

Chapter 5
Monitor a WebLogic Domain

5-24

https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Reference/contengmetrics.htm#availablemetrics
https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Reference/contengmetrics.htm#availablemetrics
https://docs.cloud.oracle.com/en-us/iaas/Content/ContEng/Reference/contengmetrics.htm#availablemetrics

LoadBalancer 10.96.185.81 100.121.170.271
80:32144/TCP 27h
jenkins-ns jenkins-service
ClusterIP 10.96.121.100 <none> 8080/
TCP,50000/TCP 27h
kube-system kube-dns
ClusterIP 10.96.7.5 <none> 53/UDP,53/
TCP,9153/TCP 27h
kube-system tiller-deploy
ClusterIP 10.96.76.135 <none>
44134/TCP 27h
okename-domain-ns mydomain-cluster-okename-cluster
ClusterIP 10.96.143.98 <none>
8001/TCP 27h
okename-domain-ns mydomain-okename-adminserver
ClusterIP None <none> 30012/
TCP,7001/TCP 27h
okename-domain-ns mydomain-okename-managed-server1
ClusterIP None <none>
8001/TCP 27h
okename-domain-ns mydomain-okename-managed-server2
ClusterIP None <none>
8001/TCP 27h
wlsoke-ingress-nginx mydomain-lb-external
LoadBalancer 10.96.162.263 144.25.10.101 80:32148/
TCP,443:31808/TCP 27h
okename-operator-ns internal-weblogic-operator-svc
ClusterIP 10.96.92.254 <none>
8082/TCP 27h

Sample output of services when Verrazzano is enabled:

NAMESPACE NAME TYPE
CLUSTER-IP EXTERNAL-IP PORT(S)
AGE
cattle-system rancher
ClusterIP 10.96.233.56 <none> 80/
TCP,443/TCP 27h
cattle-system rancher-webhook
ClusterIP 10.96.46.145 <none>
443/TCP 27h
cert-manager cert-manager
ClusterIP 10.96.17.222 <none>
9402/TCP 27h
cert-manager cert-manager-webhook
ClusterIP 10.96.237.157 <none>
443/TCP 27h
default kubernetes
ClusterIP 10.96.0.1 <none>
443/TCP 27h
fleet-system gitjob
ClusterIP 10.96.195.224 <none>
80/TCP 27h
ingress-nginx ingress-controller-ingress-nginx-controller
LoadBalancer 10.96.220.49 10.0.5.242

Chapter 5
Monitor a WebLogic Domain

5-25

443:32231/TCP 27h
ingress-nginx ingress-controller-ingress-nginx-controller-metrics
ClusterIP 10.96.60.166 <none>
10254/TCP 27h
ingress-nginx ingress-controller-ingress-nginx-defaultbackend
ClusterIP 10.96.154.132 <none>
80/TCP 27h
istio-system istio-egressgateway
ClusterIP 10.96.255.249 <none> 80/
TCP,443/TCP 27h
istio-system istio-ingressgateway
LoadBalancer 10.96.47.34 129.80.253.214 15021:32050/TCP,80:31611/
TCP,443:30082/TCP 27h

Make a note of the IP address of the services with type LoadBalancer and in the
EXTERNAL-IP column.

3. Disconnect from the administration compute instance.

4. Sign in to the Oracle Cloud Infrastructure Console.

5. Click the navigation menu and select Networking > Load Balancers.

6. Select the Compartment that contains your stack.

7. Find the required load balancer by searching with the IP addresses that you noted in
Step2.

8. Click the name of the load balance against the IP address you searched for.

9. Under Resources on the left, click Metrics.

The Metrics tab displays a default set of charts for the selected load balancer.

Check the Health of a WebLogic Domain
Learn how to view the status of a WebLogic domain manged by Oracle WebLogic Server for
OKE.

Each server that is part of the domain runs in a pod. You can run kubectl commands to check
the status of the pods that are part of the domain.

1. Access the administration compute instance for your domain.

See Access the Administration Instance.

2. Run the following commands:

kubectl get pods -n <service>-domain-
ns # list all the pods in the
domain namespace
kubectl describe pod -n <service>-domain-ns <domain>-<service>-
adminserver # get details of admin server.
kubectl describe pod -n <service>-domain-ns <domain>-<service>-managed-
server1 # get details of managed server 1.

Where, <service> is the name of the domain and <domain> is the domain name.

Chapter 5
Monitor a WebLogic Domain

5-26

Output example for command kubectl get pods -n <service>-domain-ns:

NAME READY STATUS RESTARTS AGE
mydomain-nameoke-adminserver 1/1 Running 0 1d4h
mydomain-nameoke-managed-server1 0/1 Running 0 1d4h
mydomain-nameoke-managed-server2 1/1 Running 0 1d4h

See the READY column to know the status of the respective server.

• 1/1: servers are running and ready to accept request.

• 0/1: pod is running, but is not ready to accept request.

Start and Stop Servers
Oracle WebLogic Server for OKE provides utilities to manage the servers in your domain.

With these utilities you can start and stop the admin server and the managed servers in your
domain.

Note:

Do not use the WebLogic Server Administration Console to start or stop servers.

1. Identify the following IP address of the node in your domain:

• The public IP address to the Administration Server node.

• The public IP address of the bastion and the private IP address of the compute
instance.

2. From your computer, run the ssh command to connect to the domain's Administration
Server node as the opc user.

ssh -i <path_to_private_key> -o ProxyCommand="ssh -W %h:%p -i
<path_to_private_key> opc@<bastion_public_ip>" opc@<node_private_ip>

3. Run the following command:

cd /u01/scripts/wls-domain-lifecycle
The scripts to run the lifecycle operations on the WebLogic pods are displayed.

4. Run the following commands:

Command Result

sh startServer.sh -h
This help command can be used with all the
scripts that are available in wls-domain-
lifecycle.

Displays the help information that includes the
command format and the parameters that can be
used with the script.

sh stopServer.sh -s <server name> -n
<namespace> -d <domain uid>

Stops the managed server

sh startServer.sh -s <server name> -n
<namespace> -d <domain uid>

Starts the managed server

Chapter 5
Start and Stop Servers

5-27

Command Result

sh stopCluster.sh -n <namespace> -d
<domain uid> -c <cluster name>

Stops all the managed servers running in your
domain

sh startCluster.sh -n <namespace> -d
<domain uid> -c <cluster name>

Starts all the managed servers running in your
domain

sh stopDomain.sh -n <namespace> -d
<domain uid>

Stops the admin server and the managed
servers running in your domain

sh startDomain.sh -n <namespace> -d
<domain uid>

Starts the admin server and the managed
servers running in your domain

For additional information on the scripts, see the readme file in WebLogic Kubernetes Operator
documentation.

There are fields on the Domain that specify which servers should be running, which servers
should be stopped, and the desired initial state. You can also modify these fields on the
Domain to start and stop servers. See Starting and stopping servers in WebLogic Kubernetes
Operator documentation.

Scale a WebLogic Cluster
You can change the number of cluster pods or nodes in your Oracle WebLogic Server for OKE
stack to increase performance or to reduce costs.

Add pods to scale out, or remove pods to scale in.

1. Access the administration compute instance for your stack.

See Access the Administration Instance.

2. Use kubectl to modify the domain.

kubectl edit cluster <domain_name>-cluster -n [namespace]

Where, <domain_name> is the domain that you want to scale.

This opens the cluster definition in an editor.

3. Edit the replicas value to the desired number of pods.

4. Save and commit the cluster definition.

You will be notified of the change and the domain immediately scales the corresponding
cluster by reconciling the number of running pods with the replicas value you specified.

For more information about scaling, see Scaling in WebLogic Kubernetes Operator
documentation.

Scale the Node Pools
You can change the number of nodes in the node pool to optimize your resource usage.

Add nodes to a node pool to scale out, or remove nodes from a node pool to scale in.

To scale out the node pool:

1. Access the Oracle Cloud Infrastructure Console.

Chapter 5
Scale a WebLogic Cluster

5-28

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/startup/#starting-and-stopping-servers
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/scaling/

2. From the navigation menu, select Developer Services. Under Containers & Artifacts,
click Kubernetes Cluster (OKE).

3. From the Compartment dropdown, select the compartment where your cluster is located.

4. Click the name of the cluster you want to modify.

5. Under Resources, click Node Pools, and then click the node pool that you want to scale
out.

6. On the Node Pool details page, click Scale and edit the number of the nodes in the node
pool.

7. Click Scale to save the changes.

To scale in the node pool:

1. Access the Oracle Cloud Infrastructure Console.

2. From the navigation menu, select Developer Services. Under Containers & Artifacts,
click Kubernetes Cluster (OKE).

3. From the Compartment dropdown, select the compartment where your cluster is located.

4. From the list of clusters, click the name of the cluster you want to modify.

5. Under Resources, click Node Pools.

6. From the list of node pools, click the name of the node pool.

7. Under Resources, click Nodes.

8. Click the arrow on the right, and under Actions, click Delete Node. In the Confirm page,
do the following:

a. Click Show advanced options.

b. Under Cordon and drain, before terminating the node, specify the time to allow to
cordon and drain the node.

c. Select the Force terminate after grace period check box, if you want to terminate the
node at the end of the eviction grace period.
If this check box is selected, the nodes are terminated even if they have not been
successfully cordoned and drained.

9. Repeat steps 2 to 8 for each node that you want to remove.

Update the Repository Schema Utility Password using Secrets
If you modified the Repository Schema Utility (RCU) password, then you must update the
schema password in the domain.

During initial provisioning, we create a secret named <resource_prefix>-rcu-access, which
contains all the RCU related information, like db_connect_String, schema prefix, and schema
password.

Complete the following steps to update the schema password in the domain:

1. Shutdown the domain.

Run the following command:

kubectl edit domain -n <domain_ns> -o yaml

Chapter 5
Update the Repository Schema Utility Password using Secrets

5-29

Sample output:

kind: Domain
 metadata:
 name: domain1
 spec:
 serverStartPolicy: "NEVER"

Change the serverStartPolicy value, from IF_NEEDED to NEVER. See Starting and
stopping servers.

2. If you have not changed the RCU schema password on the database, then complete this
step.

a. In the administration server, run the rcu_secret.sh script, which is located at /u01/
scripts/pipeline/helper-scripts. This displays the existing schemaPrefix
information.

b. Connect to the database as sysdba user using sqlplus.

connect sys/<password>@//dbhost.subnet1.vcn1.oraclevcn.com:1521/
pdbName.subnet1.vcn1.oraclevcn.com as sysdba

Example:

connect sys/<password>@//sidb19-
scan.admin.existingnetwork.oraclevcn.com:1521/
sipdb.admin.existingnetwork.oraclevcn.com as sysdba

c. Set the login attempts for the DEFAULT profile to UNLIMITED and then check the limit for
the DEFAULT profile.

ALTER PROFILE DEFAULT LIMIT FAILED_LOGIN_ATTEMPTS UNLIMITED;
select limit from dba_profiles where profile='DEFAULT' /
and resource_name='FAILED_LOGIN_ATTEMPTS';
LIMIT
–---
UNLIMITED

d. List all the dba users where username like <schema_prefix>__%.

select username from dba_users where username like '<schema_prefix>__%';

USERNAME

<schema_prefix>_STB
<schema_prefix>_IAU_APPEND
<schema_prefix>_OPSS
<schema_prefix>_WLS
<schema_prefix>_IAU
<schema_prefix>_WLS_RUNTIME
<schema_prefix>_IAU_VIEWER

Chapter 5
Update the Repository Schema Utility Password using Secrets

5-30

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/startup/#starting-and-stopping-servers
https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-lifecycle/startup/#starting-and-stopping-servers

<schema_prefix>_UMS
<schema_prefix>_MDS

For example:

select username from dba_users where username like 'SP1601029287_%';

All user names are prefixed with SP1601029287 as in SP1601029287_STB.

e. Change the password for the following users:

alter user <schema_prefix>_STB identified by <new_password>;
alter user <schema_prefix>_IAU_APPEND identified by <new_password>;
alter user <schema_prefix>_OPSS identified by <new_password>;
alter user <schema_prefix>_WLS identified by <new_password>;
alter user <schema_prefix>_IAU identified by <new_password>;
alter user <schema_prefix>_WLS_RUNTIME identified by <new_password>;
alter user <schema_prefix>_IAU_VIEWER identified by <new_password>;
alter user <schema_prefix>_UMS identified by <new_password>;
alter user <schema_prefix>_MDS identified by <new_password>;

For example:

alter user SP1601029287_STB identified by <new_password>;

f. Connect to the database for the MDS user.

connect <schema_prefix>_MDS/<password>//dbhost.example.com:1521
Connected

g. List the table names in the database for the current user.

select table_name from user_tables;

h. Exit SQL.

exit

3. Delete the existing kubernetes secret: <resource_prefix>-rcu-access
4. Run the following command to obtain the name of the secret:

kubectl get secrets -n <domain_namespace> |grep rcu-access

For example, run kubectl get secrets -n domain10-ns |grep rcu-access. The name
of the secret obtained is <resource_prefix>-rcu-access>

5. Recreate the secret with the same name. The name that you obtained in the previous step.

The <resource_prefix>-rcu-access secret has certain fields other than the schema
password, which also needs to be specified based on the database type. When you run
the rcu_secret.sh script, located at /u01/scripts/pipeline/helper-scripts/, it outputs
all the other required fields in addition to the schema password for recreating the secret.

Chapter 5
Update the Repository Schema Utility Password using Secrets

5-31

For ATP database:

[opc@wrjrf1-admin helper-scripts]$./rcu_secret.sh
rcu_db_name = <atp_db_name_low>
rcu_prefix = <prefix>
rcu_wallet_password = <password>
[opc@wrjrf1-admin helper-scripts]$kubectl create secret generic -n
<domain_ns> '<resource_prefix>-rcu-access' --from-
literal=rcu_db_name=<atp_db_name_low> --from-literal=rcu_prefix=<prefix> --
from-literal=rcu_wallet_password=<password> --from-
literal=rcu_schema_password=<new_password>

For OCI, SI, or RAC database:

[opc@wrjrf1-admin helper-scripts]$./rcu_secret.sh
rcu_admin_password = <admin_password>
rcu_db_conn_string = <connect_String>
rcu_db_user = sys
rcu_prefix = <prefix>
[opc@wrjrf1-admin helper-scripts]$kubectl create secret generic -n
<domain_ns> '<resource_prefix>-rcu-access' --from-
literal=rcu_admin_password=<admin_password> --from-
literal=rcu_db_conn_string=name-
scan.subnet2ad2phx.paasdevjcsphx.oraclevcn.com:1521/
db0409_pdb1.subnet2ad2phx.paasdevjcsphx.oraclevcn.com --from-
literal=rcu_db_user=sys --from-literal=rcu_prefix=<prefix> --from-
literal=rcu_schema_password=<new_password>

6. Change the serverStartPolicy value, from NEVER to IF_NEEDED, and then increment the
restartVersion.

kind: Domain
 metadata:
 name: domain1
 spec:
 serverStartPolicy: "IF_NEEDED"
 restartVersion: "3"

7. Wait for the domain to start for a rolling restart. Then, verify that the datasource mds-owsm
tests okay in the WebLogic Server administration console.

Update the Oracle Cloud Infrastructure Registry Auth Token
Credentials

If you update the registry user name and Oracle Cloud Infrastructure Registry (OCIR) auth
token credentials for your Oracle WebLogic Server for OKE stack, you must remove the
existing OCIR secrets, recreate the secrets, and update the registry user name.

Chapter 5
Update the Oracle Cloud Infrastructure Registry Auth Token Credentials

5-32

1. Create a config.json file with the updated OCIR token password.

{"auths": {"phx.ocir.io": {"Username": "tenancy_object_storage_namespace/
ociruser", "Password": "XXX"}}}

Where phx.ocir.io is the container registry and Password is the password in clear text
used for docker login to container registry.

You can get the user name using the following command:

curl -H "Authorization:Bearer Oracle" -L http://169.254.169.254/opc/v2/
instance/metadata | grep ocir_user

2. List the secrets created with previous auth token.

kubectl get secrets -A | grep ocirsecrets

3. Remove all OCIR secrets obtained in step 2.

Example commands to remove the following OCIR secrets:

kubectl delete secret ocirsecrets -n jenkins-ns
kubectl delete secret ocirsecrets -n <domain_name>-ns
kubectl delete secret ocirsecrets -n <service_prefix_name>-operator-ns
kubectl delete secret ocirsecrets -n wlsoke-ingress-nginx

Note:

If you have created multiple domains, you must delete the secrets for all
domains.

4. Recreate the OCIR secrets you deleted in step 3 for each of the namespaces.

Example commands to recreate OCIR secrets:

kubectl create secret generic ocirsecrets -n jenkins-ns --from-
file=.dockerconfigjson=config.json --type=kubernetes.io/dockerconfigjson
kubectl create secret generic ocirsecrets -n <domain_name>-ns --from-
file=.dockerconfigjson=config.json --type=kubernetes.io/dockerconfigjson
kubectl create secret generic ocirsecrets -n <service_prefix_name>-
operator-ns --from-file=.dockerconfigjson=config.json --type=kubernetes.io/
dockerconfigjson
kubectl create secret generic ocirsecrets -n wlsoke-ingress-nginx --from-
file=.dockerconfigjson=config.json --type=kubernetes.io/dockerconfigjson

Note:

If you have created multiple domains, you must recreate the secrets for all
domains.

Chapter 5
Update the Oracle Cloud Infrastructure Registry Auth Token Credentials

5-33

5. In wlsoke-metadata-configmap, update ocir_user.

kubectl edit configmap wlsoke-metadata-configmap -n jenkins-ns
kubectl delete secret ocirtokensecret -n jenkins-ns
kubectl create secret generic ocirtokensecret -n jenkins-ns --from-
literal=username="tenancy_object_storage_namespace/ociruser" --from-
literal=password="XXX"

Where, Password is the password in clear text used for docker login to container registry.

Upgrade the Kubernetes Version
Learn how to upgrade the Kubernetes version of the cluster and the node pools in your Oracle
WebLogic Server for OKE stack.

Note:

You can upgrade the cluster and node pool only for Oracle WebLogic Server for OKE
instances created from June 2022 (release 22.2.3).

For an Oracle WebLogic Server for OKE stack created with an older Kubernetes version,
Oracle recommends you upgrade the Kubernetes cluster and the node pool to new Kubernetes
version that is supported by Oracle Container Engine for Kubernetes. The current Kubernetes
version supported for Oracle WebLogic Server for OKE is 1.28.2. To know the Kubernetes
versions, see Currently Supported Kubernetes Versions in the Oracle Cloud Infrastructure
documentation.

If your Kubernetes cluster and the node pool is three minor versions behind the current
supported version, you must upgrade the cluster to at least one minor version higher than the
existing cluster version. However, you can either continue to use the node pool running the
older version of Kubernetes or upgrade the node pool version also to the Kubernetes cluster
version.

Note:

The older node pool version must be compatible with the Kubernetes cluster version.

Note:

If your Kubernetes cluster and node pool version is 1.21 or lower, after you upgrade
the cluster and node pool to version 1.28, you must upgrade the nginx-ingress image
to 1.3.1 version and then reinstall the ingress-controllers. See Upgrade the NGINX
Image Version.

Topics:

• Determine the Version of the Cluster and Node Pools

• Upgrade Cluster and Node Pool Using Script

Chapter 5
Upgrade the Kubernetes Version

5-34

https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengaboutk8sversions.htm#supportedk8sversions

• Upgrade the NGINX Image Version

Determine the Version of the Cluster and Node Pools
You must identify versions of the Kubernetes cluster and the node pools before performing the
upgrade.

1. Access the Oracle Cloud Infrastructure Console.

2. From the navigation menu, select Developer Services. Under Containers & Artifacts,
click Kubernetes Cluster (OKE).

3. From the Compartment dropdown, select the compartment where your cluster is located.

4. From the list of clusters, click the name of the cluster you want to modify.

5. In the Cluster Details tab, the Kubernetes version of the cluster is displayed and
information, if upgrade is available.

6. Under Resources, click Node pools.

7. From the list of node pools, click the name of the node pool.

8. In the Node pool details tab, the Kubernetes version of the node pool is displayed and
information, if upgrade is available.

9. Navigate to the Cluster details page, and repeat step 6 through step 8 for each node pool
in the cluster.

Upgrade Cluster and Node Pool Using Script
You can use the upgrade_cluster.py script to upgrade the Kubernetes version of the cluster
and the node pools in your Oracle WebLogic Server for OKE stack.

The script upgrades the cluster and the node pool to the specified target version.

After you upgrade the cluster to 1.24, it is recommended to upgrade the kubectl version to
1.23.

Prerequisites:

Complete the following steps before you run the upgrade script:

1. Access the administration instance. See Access the Administration Instance.

2. Install OCI Python SDK on the administration instance.

Note:

To install OCI Python SDK, a NAT gateway must be configured for the
administration instance private subnet.

sudo bash
python3 -m pip install oci==2.90

If the pip command fails, then use the yum command to install OCI Python SDK.

yum install python36-oci-sdk

Chapter 5
Upgrade the Kubernetes Version

5-35

3. In the OCI Console, delete the nodes for each node pool in the cluster.

a. Access the Oracle Cloud Infrastructure Console.

b. From the navigation menu, select Developer Services. Under Containers &
Artifacts, click Kubernetes Cluster (OKE).

c. From the Compartment dropdown, select the compartment where your cluster is
located.

d. From the list of clusters, click the name of the cluster you want to modify.

e. Under Resources, click Node Pools.

f. From the list of node pools, click the name of the node pool.

g. Under Resources, click Nodes.

h. Make a note of the node count for the node pool.
You have to create the same number of nodes that you have noted, after upgrading
the cluster and node pool.

i. Click the arrow on the right, and under Actions, click Delete Node. In the Confirm
page, click Delete.

See Delete a worker node in the Oracle Cloud Infrastructure documentation.

Upgrade the cluster and node pool using the script

You can use the script to upgrade the cluster, the node pool, or both cluster and node pool.

1. Access the administration instance. See Access the Administration Instance.

2. Go to /u01/scripts/utils location and create a file, upgrade_cluster.py.

3. Copy and paste the script specified in Script file for Upgrade Cluster and Node Pool to the
upgrade_cluster.py file.

4. Run the following commands:

Note:

The current Kubernetes version supported for Oracle WebLogic Server for OKE
is 1.28.x. To know the Kubernetes versions, see Currently Supported Kubernetes
Versions in the Oracle Cloud Infrastructure documentation.

When you are running the script to upgrade the cluster and node pool, you will
see a downtime for the domain pods and Jenkins.

• To upgrade the cluster and node pool:

python3 /u01/scripts/utils/upgrade_cluster.py <target_k8s_version>

• To upgrade only the cluster:

python3 /u01/scripts/utils/upgrade_cluster.py <target_k8s_version>
cluster

Chapter 5
Upgrade the Kubernetes Version

5-36

https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/contengdeletingworkernodes.htm#:~:text=Under%20Resources%2C%20click%20Node%20Pools,node%20permanently%20deletes%20the%20node
https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengaboutk8sversions.htm#supportedk8sversions
https://docs.cloud.oracle.com/iaas/Content/ContEng/Concepts/contengaboutk8sversions.htm#supportedk8sversions

• To upgrade only the node pool:

python3 /u01/scripts/utils/upgrade_cluster.py <target_k8s_version>
nodepool

5. In the OCI Console, add the nodes for each node pool in the cluster. See step 3h to know
the number of nodes to be added.

a. Access the Oracle Cloud Infrastructure Console.

b. From the navigation menu, select Developer Services. Under Containers &
Artifacts, click Kubernetes Cluster (OKE).

c. From the Compartment dropdown, select the compartment where your cluster is
located.

d. From the list of clusters, click the name of the cluster you want to modify.

e. Under Resources, click Node Pools, and then click the node pool that you want to
scale out.

f. On the Node Pool details page, click Scale and edit the number of the nodes in the
node pool.

g. Click Scale to save the changes.

6. Wait for the Node State of the nodes in the node pool to change to Active.

7. Verify if the domain pods are up and running for each namespace.

kubectl get po -n <domain_name>-ns

If you are reusing the namespaces, use the following command to verify if the domain pods
are up and running:

kubectl get po -n <namespace>

8. Verify if Jenkins is up and running by accessing the Jenkins console. See Access the
Jenkins Console.

Upgrade the NGINX Image Version
Upgrade the nginx-ingress image to 1.3.1 version and reinstall the ingress-controllers.

1. From your computer, run the SSH command to connect to the domain's Administration
Server node as the opc user.

ssh -i <path_to_private_key> opc@<node_IP_address>

2. List the existing domains ingress and jenkins ingress, and delete the existing ingress.

#List all the existing domains ingress and jenkins ingress
kubectl get ing -A
#This will list the existing domains ingress and jenkins ingress

#Delete all the existing domain and jenkins ingress
kubectl delete ing wls-admin-ingress -n nonjrf-ns
kubectl delete ing wls-cluster-ingress -n nonjrf-ns

Chapter 5
Upgrade the Kubernetes Version

5-37

kubectl delete ing wls-console-help-ingress -n nonjrf-ns
kubectl delete ing jenkins-dashboard-ingress -n jenkins-ns

3. List the existing deployments, and delete the old internal and external deployments.

#List all the existing deployments in wlsoke-ingress-nginx namespace
kubectl get deploy -n wlsoke-ingress-nginx
Example output:
wlsoke-ingress-nginx nginx-ingress-controller
0/1 1 0 2h
wlsoke-ingress-nginx nginx-ingress-controller-nonjrf-external
0/1 1 0 2h

#Delete all the existing deployments for wlsoke-ingress-nginx namespace
kubectl delete deployment.apps/nginx-ingress-controller -n wlsoke-ingress-
nginx
kubectl delete deployment.apps/nginx-ingress-controller-nonjrf-external -n
wlsoke-ingress-nginx

4. List the existing services, delete the services for load balancer and Jenkins.

#List all the existing services in wlsoke-ingress-nginx namespace
kubectl get svc -n wlsoke-ingress-nginx
Example output:
wlsoke-ingress-nginx nonjrf-lb-external LoadBalancer 10.96.26.2
152.0.0.1 443:30118/TCP 2h
wlsoke-ingress-nginx wlsokeprefix-internal LoadBalancer
10.96.20.239 10.0.0.1 80:32686/TCP 2h

#Delete all the existing services
kubectl delete svc nonjrf-lb-external -n wlsoke-ingress-nginx
kubectl delete svc wlsokeprefix-internal -n wlsoke-ingress-nginx

#Delete the jenkins service
kubectl delete svc jenkins-service -n jenkins-ns

5. Uninstall ingress controller helm chart and Jenkins charts.

helm uninstall ingress-controller
helm uninstall jenkins-oke

6. Copy files to the tmp directory

cp /u01/provisioning-data/*.yaml /tmp

7. Replace the files, _nginx-ingress.tpl and _nginx-role.tpl in /u01/scripts/ingress-
controller.

To view the contents of the files, _nginx-ingress.tpl and _nginx-role.tpl located
in /u01/scripts/ingress-controller, see NGINX Ingress Template File and NGINX Role
Template File.

8. Replace the file _nginx-ingress.tpl in /u01/shared/scripts/pipeline/create_domain/
ingress-controller.

Chapter 5
Upgrade the Kubernetes Version

5-38

To view the contents of the file _nginx-ingress.tpl located in /u01/shared/scripts/
pipeline/create_domain/ingress-controller, see NGINX Ingress Template File.

9. Replace the file jenkins-role.tpl in /u01/scripts/jenkins/charts/templates.

To view the contents of the file, jenkins-role.tpl located in /u01/scripts/jenkins/
charts/templates, see Jenkins Role Template File.

10. Pull the ingress controller image 1.3.1.

#https://newreleases.io/project/github/kubernetes/ingress-nginx/release/
controller-v1.3.1
docker pull registry.k8s.io/ingress-nginx/
controller:v1.3.1@sha256:54f7fe2c6c5a9db9a0ebf1131797109bb7a4d91f56b9b362bd
e2abd237dd1974

11. Tag the image.

#Tag the image corresponding to your region and service name
docker tag <image_identifier> <region_key>.ocir.io/<tenancy_namespace>/
<repository_name>:<tag>

Example:

docker tag 8e6k1kebb869 phx.ocir.io/mytenancy/wlsokeprefix/infra/nginx-
ingress-controller:1.3.1

12. Push the tagged image.

docker push <region_key>.ocir.io/<tenancy_namespace>/
<repository_name>:<tag>

Example:

docker push phx.ocir.io/mytenancy/wlsokeprefix/infra/nginx-ingress-
controller:1.3.1

13. Update the value for ocir_ingress_image_tag in /tmp/ingress-controller-input-
values.yaml to point to the new image.

Example of an ingress-controller-input-values.yaml file in tmp directory:

{
 "jenkins_service": "jenkins-service",
 "jenkins_service_port": "8080",
 "ocir_ingress_image_tag":"iad.ocir.io/mytenancy/wlsokeprefix/infra/
nginx-ingress-controller:1.3.1",
 "ingress_namespace":"wlsoke-ingress-nginx",
 "ingress_ocir_secret_name":"ocirsecrets",
 "ingress_lb_service_name":"wlsokeprefix-internal",
 "ingress_lb_shape":"flexible",
 "ingress_lb_shape_min":"10",
 "ingress_lb_shape_max":"100",
 "ingress_enable_http_port":true,
 "ingress_enable_https_port":false,
 "ingress_http_port":"80",

Chapter 5
Upgrade the Kubernetes Version

5-39

 "ingress_https_port":"443",
 "jenkins_namespace":"jenkins-ns",
 "cert_secret_name": "oke-ssl-secret"
 }

14. Install ingress controller again using the following command:

helm upgrade --install ingress-controller /u01/scripts/ingress-controller
--values /tmp/ingress-controller-input-values.yaml -n default --wait

15. Install the Jenkins charts.

#get the container image for jenkins controller
docker images |grep jenkins-controller
#Example output:
phx.ocir.io/mytenancy/wlsokeprefix/infra/cisystem-jenkins-controller
1.0.5_2.235.11 369269139728 10 months ago 2.16GB

helm upgrade --install jenkins-oke /u01/scripts/jenkins/charts/ --set
image.repository=phx.ocir.io/mytenancy/wlsokeprefix/infra/cisystem-jenkins-
controller:1.0.5_2.235.11
--values /tmp/jenkins-inputs.yaml -n default --wait

16. Add the value for ocir_ingress_image_tag in /u01/shared/weblogic-domains/
domain1/ingress-controller-inputs.yaml to point to the new image.

Example of an ingress-controller-input-values.yaml file in /u01/shared/weblogic-
domains/<domain_name> directory:

{
 "domain_name": "domain1",
 "admin_service": "domain1-domain1-adminserver",
 "admin_service_port": "8765",
 "cluster_service": "domain1-cluster-domain1-cluster",
 "cluster_service_port": "9765",
 "ingress_namespace":"wlsoke-ingress-nginx",
 "ingress_ocir_secret_name":"ocirsecrets",
 "wls_domain_namespace":"domain1-ns",
 "cert_secret_name": "oke-ssl-secret",
 "lb_name": "domain1-lb-external",
 "lb_namespace": "domain1-ns",
 "lb_shape": "flexible",
 "lb_shape_min": "10",
 "lb_shape_max": "40",
 "service_ssl_port": "443",
 "is_idcs_selected": false,
 "is_private_lb": false,
 "reserved_public_ip": "",
 "ocir_ingress_image_tag": "iad.ocir.io/mytenancy/wlsokeprefix/infra/
nginx-ingress-controller:1.3.1"
 }

17. Install ingress controller for all the existing domains.

#Run the following command for each existing domain by replacing the
domain name in location /u01/shared/weblogic-domains/<domain_name>/ingress-

Chapter 5
Upgrade the Kubernetes Version

5-40

controller-inputs.yaml
helm upgrade --install ingress-controller /u01/shared/scripts/pipeline/
create_domain/ingress-controller
--values /u01/shared/weblogic-domains/domain1/ingress-controller-
inputs.yaml -n default --wait

18. Edit the configmap to change the kubernetes version and new ingress controller image
value.

#edit the cm wlsoke-metadata-configmap in jenkins namespace for the
attributes, kubernetes_version and
ocir_ingress_controller_repokubernetes_version
kubectl edit cm wlsoke-metadata-configmap -n jenkins-ns -o yaml
kubernetes_version: v1.24
ocir_ingress_controller_repo: phx.ocir.io/mytenancy/wlsokeprefix/infra/
nginx-ingress-controller:1.3.1
#save the configmap

Template Files
This section lists all the template files required when you upgrade the Kubernetes version of
your cluster to 1.24 and your node pools to 1.24.

Topics:

• NGINX Ingress Template File located in /u01/scripts/ingress-controller directory

• NGINX Ingress Template File located in /u01/shared/scripts/pipeline/create_domain/
ingress-controller directory

• NGINX Role Template File

• Jenkins Role Template File

NGINX Ingress Template File
The contents of the NGINX ingress template file, _nginx-ingress.tpl located in /u01/
scripts/ingress-controller directory is provided below.

#
Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
#

{{- define "nginx.ingress" }}

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: jenkins-dashboard-ingress
 namespace: {{ .jenkins_namespace }}
 annotations:
 helm.sh/resource-policy: keep
 kubernetes.io/ingress.class: "nginx"
spec:
tls:
- secretName: {{ .cert_secret_name }}
 rules:

Chapter 5
Upgrade the Kubernetes Version

5-41

 - http:
 paths:
 - path: /jenkins
 pathType: Prefix
 backend:
 service:
 name: {{ .jenkins_service }}
 port:
 number: {{ .jenkins_service_port }}
{{- end }}

NGINX Ingress Template File
The contents of the NGINX ingress template file, _nginx-ingress.tpl located in /u01/shared/
scripts/pipeline/create_domain/ingress-controller directory is provided below.

#
Copyright (c) 2021, 2022, Oracle and/or its affiliates. All rights reserved.
#

{{- define "nginx.ingress" }}

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: wls-admin-ingress
 namespace: {{ .wls_domain_namespace }}
 annotations:
 helm.sh/resource-policy: keep
 kubernetes.io/ingress.class: "nginx"
spec:
 rules:
 - http:
 paths:
 - path: {{ "/" }}{{ .domain_name }}{{ "/console" }}
 pathType: Prefix
 backend:
 service:
 name: {{ .admin_service }}
 port:
 number: {{ .admin_service_port }}

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: wls-console-help-ingress
 namespace: {{ .wls_domain_namespace }}
 annotations:
 helm.sh/resource-policy: keep
 kubernetes.io/ingress.class: "nginx"
spec:
 rules:
 - http:
 paths:
 - path: {{ "/" }}{{ .domain_name }}{{ "/consolehelp" }}

Chapter 5
Upgrade the Kubernetes Version

5-42

 pathType: Prefix
 backend:
 service:
 name: {{ .admin_service }}
 port:
 number: {{ .admin_service_port }}

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: wls-cluster-ingress
 namespace: {{ .lb_namespace }}
 annotations:
 helm.sh/resource-policy: keep
 kubernetes.io/ingress.class: "{{ .domain_name }}-nginx-applications"
 nginx.ingress.kubernetes.io/configuration-snippet: |
 more_clear_input_headers "WL-Proxy-Client-IP" "WL-Proxy-SSL";
 more_set_input_headers "X-Forwarded-Proto: https";
 more_set_input_headers "WL-Proxy-SSL: true";
 more_set_input_headers "is_ssl:ssl";
 nginx.ingress.kubernetes.io/affinity: cookie
 nginx.ingress.kubernetes.io/session-cookie-name: "JSESSIONID"
spec:
 rules:
 - http:
 paths:
 - path: /
 pathType: Prefix
 backend:
 {{ if .is_idcs_selected }}
 service:
 name: {{ .domain_name }}-idcsappgateway-service
 port:
 number: 80
 {{ else }}
 service:
 name: {{ .cluster_service }}
 port:
 number: {{ .cluster_service_port }}
 {{ end }}
{{- end }}

NGINX Role Template File
The contents of the NGINX role template file, _nginx-role.tpl is provided below.

#
Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
#

{{- define "nginx.role" }}

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:

Chapter 5
Upgrade the Kubernetes Version

5-43

 name: nginx-ingress-clusterrole
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 annotations:
 helm.sh/resource-policy: keep
rules:
 - apiGroups:
 - ""
 resources:
 - configmaps
 - endpoints
 - nodes
 - pods
 - secrets
 verbs:
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - nodes
 verbs:
 - get
 - apiGroups:
 - ""
 resources:
 - services
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - ""
 resources:
 - events
 verbs:
 - create
 - patch
 - apiGroups:
 - "extensions"
 - "networking.k8s.io"
 resources:
 - ingresses
 - ingressclasses
 verbs:
 - get
 - list
 - watch
 - apiGroups:
 - "extensions"
 - "networking.k8s.io"
 resources:
 - ingresses/status
 verbs:
 - update

Chapter 5
Upgrade the Kubernetes Version

5-44

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: nginx-ingress-role
 namespace: {{ .ingress_namespace }}
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 annotations:
 helm.sh/resource-policy: keep
rules:
 - apiGroups:
 - ""
 resources:
 - configmaps
 - pods
 - secrets
 - namespaces
 verbs:
 - get
 - apiGroups:
 - ""
 resources:
 - configmaps
 resourceNames:
 # Defaults to "<election-id>-<ingress-class>"
 # Here: "<ingress-controller-leader>-<nginx>"
 # This has to be adapted if you change either parameter
 # when launching the nginx-ingress-controller.
 - "ingress-controller-leader-nginx"
 verbs:
 - get
 - update
 - apiGroups:
 - ""
 resources:
 - configmaps
 verbs:
 - create
 - update
 - delete
 - apiGroups:
 - ""
 resources:
 - endpoints
 verbs:
 - get

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: nginx-ingress-role-nisa-binding
 namespace: {{ .ingress_namespace }}
 labels:
 app.kubernetes.io/name: ingress-nginx

Chapter 5
Upgrade the Kubernetes Version

5-45

 app.kubernetes.io/part-of: ingress-nginx
 annotations:
 helm.sh/resource-policy: keep
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: nginx-ingress-role
subjects:
 - kind: ServiceAccount
 name: nginx-ingress-serviceaccount
 namespace: {{ .ingress_namespace }}

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: nginx-ingress-clusterrole-nisa-binding
 labels:
 app.kubernetes.io/name: ingress-nginx
 app.kubernetes.io/part-of: ingress-nginx
 annotations:
 helm.sh/resource-policy: keep
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: nginx-ingress-clusterrole
subjects:
 - kind: ServiceAccount
 name: nginx-ingress-serviceaccount
 namespace: {{ .ingress_namespace }}
 - kind: ServiceAccount
 name: provisioning-sa
 namespace: {{ .ingress_namespace }}
{{- end }}

Jenkins Role Template File
The contents of the Jenkins role template file, jenkins-role.tpl is provided below.

#
Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
#
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
 name: jenkins-clusterrole
rules:
 - apiGroups:
 - ""
 resources:
 - endpoints
 - nodes
 - pods
 - services
 - secrets
 - namespaces

Chapter 5
Upgrade the Kubernetes Version

5-46

 - deployments
 - ingresses
 - persistentvolumes
 - persistentvolumeclaims
 - serviceaccounts
 - configmaps
 - events
 - pods
 - pods/log
 - pods/exec
 verbs:
 - list
 - watch
 - get
 - create
 - delete
 - update
 - patch
 - deletecollection
 - apiGroups:
 - apps
 resources:
 - endpoints
 - nodes
 - pods
 - services
 - secrets
 - deployments
 - ingresses
 - replicasets
 verbs:
 - list
 - watch
 - get
 - create
 - delete
 - update
 - patch
 - apiGroups:
 - "weblogic.oracle"
 resources:
 - domains
 verbs:
 - get
 - create
 - list
 - watch
 - delete
 - patch
 - apiGroups:
 - extensions
 resources:
 - ingresses
 verbs:
 - get
 - create

Chapter 5
Upgrade the Kubernetes Version

5-47

 - list
 - watch
 - delete
 - patch
 - apiGroups:
 - rbac.authorization.k8s.io
 resources:
 - rolebindings
 - clusterroles
 - clusterrolebindings
 - roles
 verbs:
 - get
 - list
 - watch
 - update
 - create
 - patch
 - delete
 - apiGroups:
 - batch
 resources:
 - jobs
 verbs:
 - list
 - watch
 - get
 - create
 - delete
 - update
 - patch
 - deletecollection
 - apiGroups:
 - core.oam.dev
 resources:
 - components
 - applicationconfigurations
 - nodes
 - pods
 - services
 - secrets
 - namespaces
 - deployments
 - ingresses
 - persistentvolumes
 - persistentvolumeclaims
 - configmaps
 - events
 - pods
 - pods/log
 - pods/exec
 verbs:
 - list
 - watch
 - get
 - create

Chapter 5
Upgrade the Kubernetes Version

5-48

 - delete
 - update
 - patch
 - deletecollection
 - apiGroups:
 - networking.istio.io
 resources:
 - gateways
 verbs:
 - list
 - watch
 - get
 - update
 - delete
 - patch
 - create
 - apiGroups:
 - networking.k8s.io
 resources:
 - ingresses
 verbs:
 - get
 - create
 - delete
 - update

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
 name: jenkins-role
 namespace: {{ .Values.service.namespace }}
rules:
 - apiGroups:
 - ""
 resources:
 - configmaps
 - pods
 - pods/log
 - pods/exec
 - secrets
 verbs:
 - create
 - update
 - patch
 - list
 - watch
 - get
 - delete

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: jenkins-rolebinding
 namespace: {{ .Values.service.namespace }}
roleRef:
 apiGroup: rbac.authorization.k8s.io

Chapter 5
Upgrade the Kubernetes Version

5-49

 kind: Role
 name: jenkins-role
subjects:
 - kind: ServiceAccount
 name: jenkins-serviceaccount
 namespace: {{ .Values.service.namespace }}

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
 name: default-rolebinding
 namespace: {{ .Values.service.namespace }}
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: Role
 name: jenkins-role
subjects:
 - kind: ServiceAccount
 name: default
 namespace: {{ .Values.service.namespace }}

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: default-clusterrole-binding
 namespace: {{ .Values.service.namespace }}
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: jenkins-clusterrole
subjects:
 - kind: ServiceAccount
 name: default
 namespace: {{ .Values.service.namespace }}

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
 name: jenkins-clusterrole-binding
 namespace: {{ .Values.service.namespace }}
roleRef:
 apiGroup: rbac.authorization.k8s.io
 kind: ClusterRole
 name: jenkins-clusterrole
subjects:
 - kind: ServiceAccount
 name: jenkins-serviceaccount
 namespace: {{ .Values.service.namespace }}

Chapter 5
Upgrade the Kubernetes Version

5-50

Upgrade the WebLogic Kubernetes Operator
Learn how to upgrade the WebLogic Kubernetes operator version for an Oracle WebLogic
Server for OKE domain, if your domain uses an older operator version, or if your Kubernetes
cluster version is not compatible with the WebLogic Server Kubernetes Operator version.

You can use Cloud Shell or the administration host to perform the upgrade. However, some of
the upgrade steps must be performed on the administration host only.

If the subnet for the administration host does not have a NAT gateway configured, you must
use Cloud Shell to perform the upgrade.

Before you perform the upgrade:

• Access the Oracle Cloud Infrastructure console and open Cloud Shell.

• Connect to the Administration Server node as the opc user.
The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

To SSH using Windows, see To connect to a Linux instance from a Windows system using
PuTTY in Connecting to Your Linux Instance Using SSH in Oracle Cloud Infrastructure
documentation.

Topics:

• Upgrade the WebLogic Kubernetes Operator to 3.4.4

• Upgrade the WebLogic Kubernetes Operator to 4.0.5

Upgrade the WebLogic Kubernetes Operator to 3.4.4

Perform the following steps to upgrade the operator on the administration host:

1. Download the operator image.

docker pull ghcr.io/oracle/weblogic-kubernetes-operator:3.4.4

Note:

If the subnet for the admin host does not have a NAT gateway configured, you
must use Cloud Shell to download the operator image.

2. Run the following command, and from the command output, make a note of the docker
image ID and repository name that is tagged to 3.4.4 version:

docker images | grep weblogic-kubernetes-operator

Sample output:

REPOSITORY
TAG IMAGE ID CREATED SIZE

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-51

https://docs.oracle.com/en-us/iaas/Content/GSG/Tasks/testingconnection.htm#connecting

ghcr.io./oracle/weblogic-kubernetes-operator
3.4.2 g568900tt73 1 week ago 222MB
phx.ocir.io/<tenancy_name>/<stack-name>weblogic-kubernetes-operator
3.4.4 568900gtt73 3 days ago 231MB

In case of Cloud Shell, use the following command:

docker images | grep weblogic-kubernetes-operator | grep 3.4.4

3. Tag the downloaded docker image.

docker tag <image_ID> <region_name>.ocir.io/<tenancy_name>/
<resource_prefix>/infra/weblogic-kubernetes-operator:3.4.4

4. Push the image into the OCIR repository.

a. Log in to the OCIR repository.

source /u01/scripts/utils/provisioning_functions.sh ocir_login

In case of Cloud Shell, use the following command and provide the username and
password when prompted:

docker login <region_name>.ocir.io

Example command to log in to the OCIR repository for phoenix region is:

docker login phx.ocir.io

b. Push the docker image.

docker push <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/
infra/weblogic-kubernetes-operator:3.4.4

5. Copy the operator values yaml to the /tmp directory.

cp /u01/provisioning-data/wls-operator-values.yaml /tmp

6. Open the file /tmp/wls-operator-values.yaml in vi editor and change the image to point
to 3.4.4 version.

For example, if you are upgrading the operator version from 3.4.2 to 3.4.4, change

image: <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/infra/
weblogic-kubernetes-operator:3.4.2

to

image: <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/infra/
weblogic-kubernetes-operator:3.4.4

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-52

7. Install the operator 3.4.4 version using the helm upgrade command.

helm upgrade <resource_prefix>-weblogic-operator \
/u01/shared/scripts/wls-operator-charts/ \
--reuse-values \
--set image=<region_name>.ocir.io/<tenancy_name>/<resource_prefix>/infra/
weblogic-kubernetes-operator:3.4.4 \
--namespace <resource_prefix>-operator-ns \
--values /tmp/wls-operator-values.yaml
--wait

8. Update the configmap file.

a. Open the configmap file in vi editor.

kubectl edit configmap wlsoke-property-configmap -n jenkins-ns

b. Search weblogic-kubernetes operator image and change the value to point to 3.4.4
version.

9. After upgrade, verify the operator version is updated to 3.4.4 version, and the existing
WebLogic domain PODs are running and using 3.4.4 version.

#Verify the operator version
docker images | grep weblogic-kubernetes-operator
#Verify existing Pods are running and using the 3.4.4 version
kubectl get po -n <domain name-space>
kubectl describe po <server-pod-name> -n <domain_name_space>

Upgrade the WebLogic Kubernetes Operator to 4.0.5

If you upgrade the cluster and node pools to 1.25.x using the Oracle Cloud Infrastructure
console, you must upgrade the WebLogic Server Kubernetes Operator version to 4.0.5. else
domain-related operations fail.

Perform the following steps to upgrade the operator on the administration host:

1. List all namespaces.

helm list -A

2. Uninstall the operator.

helm uninstall <resource_prefix>-weblogic-operator -n <resource_prefix>-
operator-ns

3. Download the operator image.

docker pull ghcr.io/oracle/weblogic-kubernetes-operator:4.0.5

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-53

Note:

If the subnet for the admin host does not have a NAT gateway configured, you
must use Cloud Shell to download the operator image.

4. Tag the downloaded docker image to <region_name>.ocir.io/<tenanacy_name>/
<resource_prefix>/infra/weblogic-kubernetes-operator:4.0.5

docker tag ghcr.io/oracle/weblogic-kubernetes-operator:4.0.5
<region_name>.ocir.io/<tenanacy_name>/<resource_prefix>/infra/weblogic-
kubernetes-operator:4.0.5

5. Push the image into the OCIR repository.

a. Log in to the OCIR repository.

source /u01/scripts/utils/provisioning_functions.sh ocir_login

In case of Cloud Shell, use the following command and provide the username and
password when prompted:

docker login <region_name>.ocir.io

Example command to log in to the OCIR repository for phoenix region is:

docker login phx.ocir.io

b. Push the docker image.

docker push <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/
infra/weblogic-kubernetes-operator:4.0.5

6. Copy the operator values yaml to the /tmp directory.

cp /u01/provisioning-data/wls-operator-values.yaml /tmp

7. Open the file /tmp/wls-operator-values.yaml in vi editor and change the image to point
to 4.0.5 version.

For example, if you are upgrading the operator version from 3.4.4 to 4.0.5, change

image: <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/infra/
weblogic-kubernetes-operator:3.4.4

to

image: <region_name>.ocir.io/<tenancy_name>/<resource_prefix>/infra/
weblogic-kubernetes-operator:4.0.5

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-54

8. Navigate to /u01/shared/scripts folder, create a backup of the existing operator, and
download the operator 4.0.5.

cd /u01/shared/scripts
mv wls-operator-charts wls-operator-charts-bkp
mkdir wls-operator-charts
wget https://github.com/oracle/weblogic-kubernetes-operator/archive/refs/
tags/v4.0.5.zip

9. Extract the contents of the zip file.

unzip v4.0.5.zip

The contents are extracted to weblogic-kubernetes-operator-4.0.5.

10. Copy the operator to the /u01/shared/scripts/ location.

cp /u01/shared/scripts/weblogic-kubernetes-operator-4.0.5/kubernetes/
charts/weblogic-operator /u01/shared/scripts/

11. Set the following properties:

scriptsDir="/u01/scripts"
domain_operator_namespace=<resource_prefix>-operator-ns
weblogic_operator_name=$(python3 ${scriptsDir}/metadata/databag.py
weblogic_operator_name)
weblogic_operator_name=$(echo "$weblogic_operator_name"| awk '{print
tolower($0)}')
wls_operator_charts=/u01/shared/scripts/weblogic-operator/
wls_operator_values_file="/tmp/wls-operator-values.yaml"

12. Install the operator 4.0.5 using the following command:.

helm install $weblogic_operator_name $wls_operator_charts --
namespace $domain_operator_namespace --values $wls_operator_values_file

13. After upgrade, verify the operator version is updated to 4.0.5 version, and the existing
WebLogic domain PODs are running and using 4.0.5 version.

#Verify the operator version
docker images | grep weblogic-kubernetes-operator
#Verify existing Pods are running and using the 4.0.5 version
kubectl get po -n <domain name-space>
kubectl describe po <server-pod-name> -n <domain_name_space>

14. Replace the following files on the administration host:

WARNING:

If you do not replace the files, the update domain job fails.

• log_messages.json located in /u01/shared/scripts/pipeline/clogging with
log_messages.json.

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-55

• domain_builder_utils.py and pipeline_utils.sh in /u01/shared/scripts/
pipeline/common with domain_builder_utils.py and pipeline_utils.sh.

Log File and Script Files
This section lists the log file and the script files that need to be replaced on the administration
host after you upgrade the WebLogic Server Kubernetes Operator to 4.0.5.

Topics:

• log_messages.json

• domain_builder_utils.py

• pipeline_utils.sh

log_messages.json
Copy the following content in log_messages.json located in /u01/shared/scripts/pipeline/
clogging directory.

{
 "WLSOKE-VM-CRITICAL": {

 },
 "WLSOKE-VM-ERROR": {
 "0001": "Error - executing check_versions.sh: [%s]",
 "0002": "TF scripts version does not match the scripts on the vm",
 "0003": "Unable to login to custom OCIR [%s]",
 "0004": "Docker unable to download [%s] image from custom repository.
Exit Code= [%s]",
 "0005": "Error in docker initialization. Exit code[%s].",
 "0006": "Cluster info file is not found.",
 "0007": "OKE Cluster info file is missing.",
 "0008": "OKE Cluster worker nodes are not yet available.",
 "0009": "Error executing status check for OKE worker nodes.",
 "0010": "Error creating namespace [%s]. Error [%s]",
 "0011": "Error creating weblogic operator service account. Exit code[%s]",
 "0012": "Error decrypting the value[%s]",
 "0013": "Error installing weblogic operator. Exit code[%s]",
 "0014": "Weblogic Operator values yaml is not available. Unable to
install operator.",
 "0015": "Error mounting FSS on admin host at mount point [%s]. [exit code
= %s]",
 "0016": "Error creating ocir secrets [%s] in oke [namespace=%s]. Error
[%s]",
 "0017": "Pod [%s] condition [%s]",
 "0018": "Error installing public LB for weblogic cluster. [exit_code
=%s]",
 "0019": "Usage: /u01/scripts/bootstrap/install_wls_operator.sh
<operator_ns> <wls_domain_ns>",
 "0020": "Error executing %s. Exit code [%s]",
 "0021": "Error create weblogic credential secrets. Exit code [%s]",
 "0022": "Usage: /u01/scripts/domain/create_domain_image.sh <wls_domain>
<wls_domain_ns>",
 "0023": "Error uploading image [%s] to the OCIR repo. Exit code [%s]",
 "0024": "Error in kubectl apply for domain: %s",

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-56

 "0025": "Error: Failed to retrieve secret using secret ocid: %s ",
 "0026": "Error: Weblogic domain is not ready after waiting for [%s]
seconds.",
 "0027": "Error executing command [%s] exit code [%s] and output [%s]",
 "0028": "Exception executing command [%s] is [%s]",
 "0029": "Error creating domain in home image. exit code[%s]",
 "0030": "Error writing load balancer details in file[%s]. [%s]",
 "0031": "Failed to provision domain [%s].[Exception :%s]",
 "0032": "Failed to execute command [%s]. exit_cod[%s]",
 "0033": "Process handled not saved for asynchronous polling",
 "0034": "Timed out waiting for the process [%s] to complete.",
 "0035": "Error: Credential file path not set.",
 "0036": "Error: timed out waiting for the credential file.",
 "0037": "Error: executing provisioner scripts. [exit_code=%s]",
 "0038": "Error: unable to push the domain container image to OCIR. exit
code [%s]",
 "0039": "Failed to save to verified markers file",
 "0040": "Failed to read verified marker file.",
 "0041": "Error running wait-for-all-markers check. [%s]",
 "0042": "Error creating domain in home image after retry. exit code[%s]",
 "0043": "Provisioning failed marker found. Aborting provisioning check.",
 "0044": "Failed to get attribute [%s]: [%s]",
 "0045": "Execute error: [cmd=%s] [exit_code=%s] [error=%s] [output=%s]",
 "0046": "Error deploying persistent volume claim for OKE cluster.",
 "0047": "Error: Persistent volume claim is not bound.[bound = %s]",
 "0048": "Error: Failed to change permission on persistent volume claim.",
 "0049": "Error mounting shared FSS on admin host.[exit code = %s]",
 "0050": "Error loading all attributes: [%s]",
 "0051": "Usage: /u01/scripts/bootstrap/install_jenkins.sh
<path_to_inputs_file>",
 "0052": "Error installing jenkins charts. Exit code[%s]",
 "0053": "Error installing fss charts for jenkins. Exit code[%s]",
 "0054": "Error deploying persistent volume claim for OKE cluster in
jenkins pod.",
 "0055": "Error: Persistent volume claim is not bound in jenkins pod.
[bound = %s]",
 "0056": "Error: Docker images metadata file does not exists.",
 "0057": "Exception: [%s]",
 "0058": "Error installing ingress controller with Helm. Exit code [%s]",
 "0059": "Error generating metadata file exception=[%s]",
 "0060": "Error writing provisioning metadata file exception=[%s]",
 "0061": "Error updating the dynamic group for admin.",
 "0063": "Error updating kube config at [%s] with exit code [%s].",
 "0064": "Error updating jenkins configuration. [%s]",
 "0065": "Error Response code for adding request header to load balancer:
[%s]",
 "0066": "Error Response code for getting load balancer details: [%s]",
 "0067": "Error : [%s]. Exception [%s]",
 "0070": "Usage: /u01/scripts/bootstrap/install_ingress_controller.sh
<path_to_inputs_file>",
 "0071": "Error: Failed to install WebLogic Deploy Tool - [%s] Admin Mount
Path not available.",
 "0072": "Error: Failed to install WebLogic Deploy Tool - [%s] WebLogic
Deploy Tool zip not found.",
 "0073": "Error: Failed to install WebLogic Image Tool - [%s] WebLogic
Image Tool zip not found.",

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-57

 "0074": "Error: Failed vulnerability scan of image: [%s]",
 "0075": "Error: [%s]. Exit code [%s]",
 "0076": "Error loading all attributes with v2 endpoint: [%s]",
 "0077": "Unable to create kubeconfig file for cluster: [%s]",
 "0078": "Unable to create kubeconfig file for cluster",
 "0079": "Unable to download atp wallet: [%s]",
 "0080": "ATP download response code: [%s]",
 "0081": "Error while creating IDCS applications in host %s for tenant %s:
[%s]",
 "0082": "Creation of IDCS applications and app gateway failed. Please
check the logs",
 "0083": "Usage: /u01/scripts/bootstrap/install_idcs_services.sh
<path_to_inputs_file>",
 "0084": "Error creating ConfigMap weblogic_conf [%s]",
 "0085": "Error creating ConfigMap for cwallet.sso [%s]",
 "0086": "File [%s] not found after generation.",
 "0087": "Failed to create IDCS Deployment. Please check the logs.",
 "0088": "Status code [%s] while getting cluster info",
 "0089": "Error getting cluster info [%s]",
 "0090": "OKE cluster belongs to different compartment/vcn [%s / %s] than
stack compartment/vcn [%s / %s]",
 "0091": "Error updating the dynamic group for os management.",
 "0092": "Failed to patch domain",
 "0093": "Introspector job is in failed state in weblogic domain namespace
[%s]. [exit_code : %s]. Please check the introspector logs at location /u01/
shared/logs.",
 "0094": "Failed to create repository [%s] in compartment [%s]. Reason:
[%s]",
 "0095": "Error installing patching tool. [%s]",
 "0096": "Error pushing Verrazzano images to OCIR repo. Exit code: [%s]",
 "0097": "Failed to create Docker registry secret for Verrazzano container
images. Exit code: [%s]",
 "0098": "Failed to install Verrazzano operator. Exit code: [%s]",
 "0099": "Failed to install Verrazzano. Exit code: [%s]",
 "0100": "Failed to install ingress for Jenkins. Exit code [%s]",
 "0101": "Failed to make the repository [%s] public. Please make the repo
public manually.",
 "0102": "Failed to get node pools [%s]",
 "0103": "Failed to get node pool ID [%s]",
 "0104": "Failed to get node pool details [%s]",
 "0105": "Unknown DNS type for Jenkins ingress: [%s]",
 "0106": "Failed to create secret [%s] in namespace [%s] for OCI DNS in
Verrazzano. Exit code: [%s]. Output: [%s]",
 "0107": "Could not retrieve OCID of DNS resolver for VCN [%s]",
 "0108": "Could not retrieve OCID of DNS view for DNS zone [%s]",
 "0109": "Failed to update DNS resolver [%s] with DNS view [%s].
Exception: [%s]",
 "0110": "Failed to create secret [%s] in namespace [%s] for Custom CA in
Verrazzano. Exit code: [%s]. Output: [%s]",
 "0111": "Failed to configure prerequisites for certificates in
Verrazzano. Exit code: [%s]. Output: [%s]",
 "0112": "Failed to configure prerequisites for DNS in Verrazzano. Exit
code: [%s]. Output: [%s]",
 "0113": "Failed to configure prerequisites for Verrazzano. Exit code:
[%s]. Output: [%s]"
 },

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-58

 "WLSOKE-VM-WARNING": {
 "0001": "Failed to delete RCU schemas for prefix = [%s]",
 "0002": "Retrying create domain as earlier attempt failed.",
 "0003": "Warning while trying to format message %s with provided
arguments %s. [%s]",
 "0004": "Warning found failure marker created. Exiting provisioning
flow.",
 "0005": "Retrying create namespace as earlier attempt failed.",
 "0006": "Error running provisioning status check. Please check the
provisioning logs for status of provisioning",
 "0007": "Warning missing life cycle management scripts",
 "0008": "The node [%s] does not have IP addresses",
 "0009": "Verrazzano install did not finish in 30 minutes. Login to the
admin host and check if the install has succeeded."
 },
 "WLSOKE-VM-INFO": {
 "0001": "Executing check_versions script",
 "0002": "VM scripts version: [%s]",
 "0003": "TF scripts version: [%s]",
 "0004": "Executed check_versions script with exit code [%s]",
 "0005": "Executing docker_init script",
 "0006": "Docker login into OCIR [%s]",
 "0007": "Docker downloading image [%s] from ocir",
 "0008": "OKE Cluster information [%s]",
 "0009": "Found [%s] node pools in OKE Cluster",
 "0010": "OKE Node pools statuses : [%s]",
 "0011": "Waiting for the workers nodes to be Active. Retrying...",
 "0012": "Installing weblogic operator",
 "0013": "Created operator namespace [%s]",
 "0014": "Creating operator service account",
 "0015": "Successfully created operator service account [%s]",
 "0016": "Creating RBAC policy for service account.",
 "0017": "Checking pod [%s] type [%s] status[%s]",
 "0018": "Creating weblogic operator values yaml file",
 "0019": "Successfully created weblogic operator values yaml file",
 "0020": "Installing weblogic operator in namespace [%s]",
 "0021": "Successfully installed weblogic operator.",
 "0022": "Writing operator parameter file",
 "0023": "Operator Parameters: %s",
 "0024": "Domain attributes: %s",
 "0025": "Creating domain yaml file: %s",
 "0026": "Creating namespace: %s",
 "0027": "Creating ocir secrets in oke: %s",
 "0028": "Executing create weblogic domain script...",
 "0029": "Create weblogic credential secrets...",
 "0030": "Create weblogic domain inputs yaml file...",
 "0031": "Uploading container image [%s]",
 "0032": "Docker initialised for provisioning",
 "0033": "Retrieving secret content for OCID %s",
 "0034": "Executing create domain scripts",
 "0035": "Applying domain yaml to OKE cluster",
 "0036": "Waiting pods in domain [%s] to be running",
 "0037": "Successfully created weblogic OKE cluster",
 "0038": "Applying Load balancer yaml file",
 "0039": "Waiting for load balancer service details",
 "0040": "Successfully created load balancer",

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-59

 "0041": "Successfully created model in image",
 "0042": "Successfully executed command [%s]",
 "0043": "Successfully applied domain yaml[%s]",
 "0044": "Executing provisioner scripts",
 "0045": "Successfully completed provisiong [%s]",
 "0047": "Returning status code for marker verification [%s]",
 "0048": "Successfully verified all the markers. WebLogic for OKE
provisioning is successful.",
 "0049": "Successfully created the namespace [%s].",
 "0050": "Mounting share FSS on the admin host.",
 "0051": "Successfully mounted share FSS on the admin host",
 "0052": "Executing the mount fss script on admin.",
 "0053": "Successfully executed the mount fss script on admin.",
 "0054": "Executing helm install for fss on OKE cluster.",
 "0055": "Updating the dynamic group for the Admin instance",
 "0056": "Installing jenkins %s",
 "0057": "Successfully installed jenkins in namespace [%s]",
 "0058": "Installing ingress controller charts for jenkins [%s]",
 "0059": "Successfully installed ingress controller",
 "0060": "Successfully downloaded image [%s] from ocir",
 "0061": "Successfully written file to FSS",
 "0062": "Successfully updated the dynamic group for the Admin",
 "0064": "Executing docker pull on oke nodes",
 "0065": "Executing docker pull on node [%s]",
 "0066": "Executed docker pull on node [%s]",
 "0067": "Successfully executed docker pull on all nodes",
 "0068": "Running post provisioning clean up scripts",
 "0069": "Executing clean up scripts",
 "0070": "Unzipping lcm and pipeline scripts to FSS.",
 "0071": "Executed clean up scripts",
 "0072": "Oke node init status [exit_code= %s], [output=%s]",
 "0073": "Executing script command [%s]",
 "0074": "Executing ssh key update on oke node[%s]",
 "0075": "Successfully executed ssh key update on oke node[%s]",
 "0076": "Creating provisioning service account [%s]",
 "0077": "Creating clusterrolebinding with cluster administration
permissions",
 "0078": "Getting provisioning service account token name",
 "0079": "Updating kubeconfig with provisioning service account token
value",
 "0080": "Setting the provisioning service account in the kubeconfig file
for the current context",
 "0081": "Successfully updated kubeconfig with provisioning service
account token.",
 "0082": "Updating jenkins configuration.",
 "0083": "Found [%s] out [%s] pods in namespace [%s].",
 "0084": "Waiting for command [%s] to finish",
 "0087": "Creating ssl certificate secret in weblogic domain and jenkins
namespaces",
 "0088": "Successfully created certificate secret [%s:%s] in namespace
[%s]",
 "0089": "Successfully added header for Weblogic SSL termination [%s]",
 "0090": "Configuring [%s] load balancer [%s]",
 "0091": "Updating Jenkins job files in shared directory [%s]",
 "0092": "Successfully configured [%s] load balancer for SSL [%s]",
 "0093": "Creating File [%s]",

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-60

 "0095": "Successfully updated the Jenkins job files in shared directory
[%s]",
 "0096": "Successfully installed WebLogic Deploy Tool [%s]",
 "0097": "Successfully installed WebLogic Image Tool [%s]",
 "0098": "Creating configmap [%s]",
 "0099": "Successfully created kubeconfig file for cluster",
 "0100": "ATP Wallet downloaded",
 "0101": "Creating confidential IDCS application %s in host %s for tenant
%s",
 "0102": "Writing confidential IDCS application details to %s...",
 "0103": "Created confidential IDCS application [%s] in host [%s] for
tenant [%s]",
 "0104": "Creating enterprise IDCS application %s in host %s for tenant
%s",
 "0105": "Writing enterprise IDCS application details to %s...",
 "0106": "Created enterprise IDCS application [%s] in host [%s] for tenant
[%s]",
 "0107": "Creating IDCS Application Gateway %s in host %s for tenant %s",
 "0108": "Writing IDCS Application Gateway details to %s...",
 "0109": "Creating IDCS Application Gateway server %s in host %s for
tenant %s",
 "0110": "Creating IDCS Application Gateway mapping with description %s",
 "0111": "Activating IDCS Application Gateway with id %s",
 "0112": "Created IDCS Application Gateway [%s] in host [%s] for tenant
[%s]",
 "0113": "Creating IDCS applications and app gateway",
 "0114": "Deactivating App Gateway [%s] with id [%s]",
 "0115": "Deleting App Gateway [%s] with id [%s]",
 "0116": "The IDCS Application Gateway %s already exists. Deleting it...",
 "0117": "Deactivating IDCS Application Gateway %s.",
 "0118": "Deleting IDCS Application Gateway %s.",
 "0119": "The IDCS Application Gateway server %s already exists. Deleting
it...",
 "0120": "Deleting IDCS Application Gateway server %s.",
 "0121": "The IDCS application %s already exists. Deleting it...",
 "0122": "Deactivating IDCS application %s.",
 "0123": "Deleting IDCS application %s.",
 "0124": "Obtaining information for IDCS app role [%s]",
 "0125": "Adding app role [%s] to application with app id [%s]",
 "0126": "Creating IDCS app gateway config files",
 "0127": "Skipping IDCS Applications creation as IDCS is not selected",
 "0128": "Installing IDCS Service charts for [%s]",
 "0129": "Successfully installed IDCS Services",
 "0130": "Starting cwallet generation ...",
 "0131": "Removing client id and secret from [%s]",
 "0132": "The cwallet file generated in [%s]",
 "0133": "OKE cluster passed compartment and vcn validation",
 "0134": "Successfully updated the dynamic group for the os management",
 "0135": "Successfully patched domain",
 "0136": "Successfully created domain yaml",
 "0137": "Successfully updated domain yaml",
 "0138": "Successfully completed status check for Introspector job in
weblogic domain namespace [%s]. [return_code : %s]",
 "0139": "Successfully created OCIR repo %s in compartment %s",
 "0140": "Successfully installed patching tool [%s]",
 "0141": "Loading Verrazzano images into OCIR",

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-61

 "0142": "Finished loading Verrazzano images into ocir",
 "0143": "Created docker registry secret to allow access to required
images",
 "0144": "Successfully installed Verrazzano operator",
 "0145": "Successfully installed Verrazzano",
 "0146": "Successfully installed Jenkins ingress on Verrazzano ingress
controller",
 "0147": "Making image [%s] public",
 "0148": "Submitted Verrazzano installation task",
 "0149": "Node pool created successfully. Node pool id [%s]",
 "0150": "Using DNS type [%s] for Verrazzano",
 "0151": "Creating secret [%s] in namespace [%s] for OCI DNS in
Verrazzano",
 "0152": "Updated DNS resolver [%s] with DNS view [%s]",
 "0153": "Creating the secret for provisioning service account"
 },

 "WLSOKE-VM-DEBUG": {
 "0001": "OKE nodes : [%s]",
 "0002": "Successfully executed command [%s]",
 "0003": "Executing %s: [%s]",
 "0004": "Pod:%s is not ready. Waiting for %s before retrying",
 "0005": "Pods in namespace [%s] is not ready. Waiting for %s before
retrying",
 "0006": "Waiting for service [%s] external IP. Waiting for %s before
retrying",
 "0007": "Found following markers created during provisioning: %s",
 "0008": "Saved verified markers to status file [markers=%s]",
 "0009": "Provisioning status check found pending markers[%s].",
 "0010": "Verified markers list: %s",
 "0011": "Error getting metadata attribute [%s]: [%s]",
 "0012": "Failed to get metadata from v2 endpoint [attribute=%s] [%s] ",
 "0013": "Error getting attribute [%s]: [%s]",
 "0014": "Failed to get attributes from v2 endpoint [attribute=%s] [%s] ",
 "0015": "Wallet file configmap in namespace [%s] is not available.
Waiting for [%s] before retrying"
 }
}

domain_builder_utils.py
Copy the following content in domain_builder_utils.py located in /u01/shared/scripts/
pipeline/common directory.

"""
Copyright (c) 2020, 2021, Oracle Corporation and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.
"""
import yaml
import sys
import json
import os

def usage(args):

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-62

 """
 Prints usage.

 :param args:
 :return:
 """
 print('Args passed: ' + args)
 print("""
 Usage: python3 domain_builder_utils.py <operation>
 where,
 operation = create-test-domain-yaml
 args = <running_domain_yaml> <test_domain_yaml_file> <new domain
image>

 operation = check-pods-ready
 args = sys.stdin

 operation = get-replica-count
 args = <domain_yaml_file>

 """)
 sys.exit(1)

def get_replica_count(domain_yaml_file):
 """
 Get replica count from domain yaml
 :param domain_yaml_file:
 :return:
 """
 replica_count = 0
 try:
 with open(domain_yaml_file) as f:
 domain_yaml = yaml.full_load(f)
 replica_count = domain_yaml["status"]["clusters"][0]["replicas"]
 except Exception as ex:
 print("Error in parsing json file [%s]: %s" % (domain_yaml_file,
str(ex)))

 print(str(replica_count))

def create_running_domain_yaml(running_domain_yaml_file, new_domain_img,
secrets):
 """
 Create test domain YAML file.

 :param running_domain_yaml_file: YAML for currently running domain
 :param new_domain_img: New image to be updated
 :param secrets: List of user defined secrets
 :return:
 """

 existing_secrets = []

 with open(running_domain_yaml_file) as f:

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-63

 running_domain_yaml = yaml.full_load(f)

 running_domain_yaml["spec"]["image"] = new_domain_img
 existing_secrets.extend([running_domain_yaml["spec"]["configuration"]
["model"]["runtimeEncryptionSecret"], running_domain_yaml["spec"]
["webLogicCredentialsSecret"]["name"]])
 if running_domain_yaml["spec"]["configuration"]["model"]["domainType"] ==
"JRF":
 existing_secrets.extend([running_domain_yaml["spec"]["configuration"]
["opss"]["walletPasswordSecret"], running_domain_yaml["spec"]["configuration"]
["opss"]["walletFileSecret"]])

 new_secrets = [name for name in secrets if name not in existing_secrets]
 if new_secrets:
 running_domain_yaml["spec"]["configuration"]["secrets"] = new_secrets

 with open(running_domain_yaml_file, 'w') as f:
 yaml.dump(running_domain_yaml, f)

 print("Successfully created running domain yaml [%s]" %
running_domain_yaml_file)

def get_model_secrets(running_domain_yaml_file):
 """
 Get the list of secrets present in the running domain yaml
 :param running_domain_yaml_file: Running domain yaml file
 :return:
 """

 existing_secrets = []

 with open(running_domain_yaml_file) as f:
 running_domain_yaml = yaml.full_load(f)

 existing_secrets.extend([running_domain_yaml["spec"]["configuration"]
["model"]["runtimeEncryptionSecret"], running_domain_yaml["spec"]
["webLogicCredentialsSecret"]["name"]])
 if running_domain_yaml["spec"]["configuration"]["model"]["domainType"] ==
"JRF":
 existing_secrets.extend([running_domain_yaml["spec"]["configuration"]
["opss"]["walletPasswordSecret"], running_domain_yaml["spec"]["configuration"]
["opss"]["walletFileSecret"]])

 if "secrets" in running_domain_yaml["spec"]["configuration"]:
 existing_secrets.extend(running_domain_yaml["spec"]["configuration"]
["secrets"])

 secrets = ''
 for name in existing_secrets:
 secrets += str(name) + ' '
 print(secrets)

def check_pods_ready(file):
 """
 Check if pods are ready and print the count of pods that are in ready

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-64

state
 :param file: stdin file descriptor
 :return:
 """
 count = 0
 try:
 a = json.load(file)

 for i in a['items']:
 for j in i['status']['conditions']:
 if j['status'] == "True" and j['type'] == "Ready" and
i['status']['phase'] == 'Running':
 # print(i['metadata']['name'])
 count = count + 1
 except:
 print("The data from stdin doesn't appear to be valid json. Fix
this!")
 sys.exit(1)
 print(count)

def get_ocir_user(ocir_url, file):
 """
 Get OCIR user from the input ocirsecrets auths json.

 :param ocir_url: e.g. phx.ocir.io
 :param file: stdin from kubectl command to read ocirsecrets json.
 :return:
 """
 try:
 a = json.load(file)
 if 'Username' in a['auths'][ocir_url]:
 print(a['auths'][ocir_url]['Username'])
 else:
 print(a['auths'][ocir_url]['username'])
 except:
 print("The data from stdin doesn't appear to be valid json. Fix
this!")
 sys.exit(1)

def get_ocir_auth_token(ocir_url, file):
 """
 Get OCIR auth token from the input ocirsecrets auths json.

 :param ocir_url: e.g. phx.ocir.io
 :param file: stdin from kubectl command to read ocirsecrets json.
 :return:
 """
 try:
 a = json.load(file)
 if 'Password' in a['auths'][ocir_url]:
 print(a['auths'][ocir_url]['Password'])
 else:
 print(a['auths'][ocir_url]['password'])
 except:
 print("The data from stdin doesn't appear to be valid json. Fix

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-65

this!")
 sys.exit(1)

def get_metadata_attribute(attr):
 """
 Get Metadata attribute.
 Assumes that the metadata attributes are loaded from configmap and
exposed in the pod as environment variables.

 :param attr: Attribute to look for.
 :return:
 """
 return os.environ[attr]

def main():
 if len(sys.argv) < 2:
 usage(sys.argv)
 try:
 operation = sys.argv[1]

 if operation == 'create-running-domain-yaml':
 if len(sys.argv) < 5:
 usage(sys.argv)
 running_domain_yaml_file = sys.argv[2]
 new_domain_img = sys.argv[3]
 secrets = sys.argv[4:]

 create_running_domain_yaml(running_domain_yaml_file,
new_domain_img, secrets)
 elif operation == 'check-pods-ready':
 check_pods_ready(sys.stdin)
 elif operation == 'get-ocir-user':
 ocir_url = sys.argv[2]
 get_ocir_user(ocir_url, sys.stdin)
 elif operation == 'get-ocir-auth-token':
 ocir_url = sys.argv[2]
 get_ocir_auth_token(ocir_url, sys.stdin)
 elif operation == 'get-replica-count':
 if len(sys.argv) < 3:
 usage(sys.argv)
 domain_yaml_file = sys.argv[2]
 get_replica_count(domain_yaml_file)
 elif operation == 'get-secrets-list':
 running_domain_yaml_file = sys.argv[2]
 get_model_secrets(running_domain_yaml_file)

 except Exception as ex:
 print("Error: " + str(ex))
 sys.exit(1)

if __name__ == "__main__":
 main()

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-66

pipeline_utils.sh
Copy the following content in pipeline_utils.sh located in /u01/shared/scripts/pipeline/
common directory.

#!/usr/bin/env bash
Copyright (c) 2020, 2022, Oracle Corporation and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.

This script defines functions that are called across different pipeline
stages.

script="${BASH_SOURCE[0]}"
scriptDir="$(cd "$(dirname "${script}")" && pwd)"
fileName=$(basename $BASH_SOURCE)

source ${scriptDir}/pipeline_constants.sh

Function: Get metadata attribute.
metadata_file: path to metadata file
attribute: metadata attribute
get_metadata_attribute() {
 val=$(printenv $1)
 if [[-z $val]]; then
 val=$(kubectl get cm wlsoke-metadata-configmap -n jenkins-ns -o
jsonpath="{.data.$1}")
 fi
 echo $val
}

Function: Get OCIR Username
ocir_url: OCIR url e.g. phx.ocir.io
domain_ns: domain namespace
ocirsecret_name: Name of imagePullSecrets[0] defined in domain.yaml
get_ocir_user() {
 local ocir_url=$(get_metadata_attribute 'ocir_url')
 local ocirsecret_name=$1
 local domain_ns=$(get_metadata_attribute 'wls_domain_namespace')

 local auths_json=$(kubectl get secret ${ocirsecret_name} -n ${domain_ns} -
o jsonpath="{.data.\.dockerconfigjson}" | base64 -d)

 result=$(echo ${auths_json} | python3 ${scriptDir}/
domain_builder_utils.py 'get-ocir-user' ${ocir_url})

 echo ${result}
}

Function: Get OCIR Auth Token
ocir_url: OCIR url e.g. phx.ocir.io
domain_ns: domain namespace
ocirsecret_name: Name of imagePullSecrets[0] defined in domain.yaml
get_ocir_auth_token() {

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-67

 local ocir_url=$(get_metadata_attribute 'ocir_url')
 local ocirsecret_name=$1
 local domain_ns=$(get_metadata_attribute 'wls_domain_namespace')

 local auths_json=$(kubectl get secret ${ocirsecret_name} -n ${domain_ns} -
o jsonpath="{.data.\.dockerconfigjson}" | base64 -d)

 result=$(echo ${auths_json} | python3 ${scriptDir}/
domain_builder_utils.py 'get-ocir-auth-token' ${ocir_url})

 echo ${result}
}

Function: Generate updated domain image tag for WLS-OKE.
metadata_file: metadata file
timestamp: build timestamp to be used for image tagging
generate_domain_img_tag() {
 local timestamp=$1
 local tag=""
 # Generate a tag for new domain image
 if [[-n ${DOMAIN_NAME}]]; then
 #BASE_IMAGE: <ocir-url>/<tenancy>/okestack/wls-base-image/
14110:14.1.1.0.230117-230117
 local ocir_domain_image_repo=$(get_domain_property "${DOMAIN_NAME}"
"BASE_IMAGE")
 # repo_path=<ocir-url>/<tenancy>/mytest/wls-base-image/12214
 local repo_main_path=$(echo ${ocir_domain_image_repo} | cut -d ":" -f 1)
 # repo_path=<ocir-url>/mytenancy/myserv/wls-base-image
 repo_path=$(dirname ${repo_main_path})
 # wls_base_version = 12.2.1.4.191220-200203
 local wls_base_version=$2
 if [[-z $wls_base_version]]; then
 wls_base_version=$(echo ${ocir_domain_image_repo} | cut -d ":" -f 2)
 fi
 # tag = <ocirurl>/mytenancy/myserv/wls-base-image/mydomain/
12214:12.2.1.4.191220-200203-<timestamp>
 wls_version=$(echo $(echo ${ocir_domain_image_repo} | cut -d ":" -f 1)
| cut -d "/" -f5-)
 tag="$repo_path/$DOMAIN_NAME/${wls_version}:${wls_base_version}-$
{timestamp}"
 else
 wls_base_version=$2
 #iad.ocir.io/idivyfxzwa6h/mystack1411/wls-base-image
 local ocir_domain_image_repo=$(get_metadata_attribute
'ocir_domain_repo')
 # Create Domain Base Image job. This does not act on a given domain.
 wls_version=$(echo "${wls_base_version}" | sed 's/\.//g')
 #wls_version=14.1.1.0.0, need to exclude the last zero for the base
image wls version
 tag=$ocir_domain_image_repo"/"${wls_version::5}":"${wls_base_version}-$
{timestamp}
 fi
 echo ${tag}
}

Function: Generate updated domain image tag for Verrazzano.

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-68

metadata_file: metadata file
timestamp: build timestamp to be used for image tagging
vz_generate_domain_img_tag() {
 local timestamp=$1
 if [[$# == 2]]; then
 DOMAIN_NAME=$2
 fi
 # Generate a tag for new domain image for Verrazzano
 #<ocir-url>/<tenancy>/mytest/wls-base-image:12.2.1.4.210420-210502
 local ocir_domain_image_repo=$(get_domain_property "${DOMAIN_NAME}"
"BASE_IMAGE")
 # repo_path=<ocir-url>/<tenancy>/mytest/wls-base-image/12214
 local repo_main_path=$(echo ${ocir_domain_image_repo} | cut -d ":" -f 1)
 # repo_path=<ocir-url>/mytenancy/myserv/wls-base-image
 repo_path=$(dirname ${repo_main_path})
 # wls_base_version = 12.2.1.4.191220-200203
 wls_base_version=$(echo ${ocir_domain_image_repo} | cut -d ":" -f 2)
 local tag=""
 if [[-n ${DOMAIN_NAME}]]
 then
 # tag = <ocirurl>/mytenancy/myserv/wls-base-image/mydomain/
12214:12.2.1.4.191220-200203-<timestamp>
 wls_version=$(echo $(echo ${ocir_domain_image_repo} | cut -d ":" -f 1)
| cut -d "/" -f5-)
 tag="$repo_path/$DOMAIN_NAME/$wls_version:${DOMAIN_NAME}-${timestamp}"
 else
 # Create Domain Base Image job. This does not act on a given domain.
 # tag = <ocir-url>/mytenancy/myserv/mydomain/wls-domain-
base:12.2.1.4.191220-200203-<timestamp>
 tag=$repo_main_path":"${wls_base_version}-${timestamp}
 fi
 echo ${tag}
}

Function: Update running domain yaml file.
metadata_file:
running_domain_yaml: path to the running domain.yaml file to be updated
build_timestamp: timestamp used for the new configmap
update_running_domain_yaml() {
 local running_domain_yaml=$1
 local build_timestamp=$2
 local secrets=()
 local i=0

 for name in `kubectl get secrets -n ${DOMAIN_NS} |grep Opaque|awk
'{print $1}'` ;
 do
 secrets[$i]=$name
 i=`expr $i + 1`
 done

 python3 ${scriptDir}/domain_builder_utils.py 'create-running-domain-
yaml' ${running_domain_yaml} ${build_timestamp} "${secrets[@]}"
}

#Function: Check introspector pod status

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-69

#domain_ns: domain namespace
#domain_uid: domain UID
#max_wait_time: timeout duration for pods in the domain to come to ready state
check_introspector_status(){
 set -x
 local domain_ns=$1
 local domain_uid=$2
 local max_wait_time=$3
 local interval=30
 local status=2

 local consistent_result_count=0
 local max_consistency_count=6

 local count=0
 let max_retry=${max_wait_time}/${interval}
 mkdir -p /tmp/intro
 cd /tmp/intro

 $log Info "0116" $fileName

 # Checking the domain status and admin server image is updated with the
latest image.
 sleep ${interval}s
 status_type=$(kubectl get domain ${domain_uid} -n ${domain_ns} -o
jsonpath="{..status.conditions[0].type}")
 get_admin_server_image=$(kubectl get po ${domain_uid}-${domain_uid}-
adminserver -n ${domain_ns} -o jsonpath="{.spec.containers[0].image}")
 message=$(kubectl get domain ${domain_uid} -n ${domain_ns} -o
jsonpath="{..status.conditions[0].message}")

 #Checking and throwing error either status message contains Failed/failed
string or status type is Failed.
 if [[${message} =~ "ailed" || "${status_type}" == "Failed"]]; then
 $log Error "0092" $fileName
 ((status=-1))
 else
 # Waiting for Admin pod to come up with the new image.
 while [["${NEW_DOMAIN_IMAGE}" != "$get_admin_server_image" && $
{consistent_result_count} -ne ${max_consistency_count}]] ; do
 ((consistent_result_count++))
 $log Info "0117" $fileName
 sleep ${interval}s
 status_type=$(kubectl get domain ${domain_uid} -n ${domain_ns} -o
jsonpath="{..status.conditions[0].type}")
 get_admin_server_image=$(kubectl get po ${domain_uid}-${domain_uid}-
adminserver -n ${domain_ns} -o jsonpath="{.spec.containers[0].image}")
 message=$(kubectl get domain ${domain_uid} -n ${domain_ns} -o
jsonpath="{..status.conditions[0].message}")

 if [[-n ${message}]] && [["${status_type}" == "Failed"]]; then
 $log Error "0092" $fileName
 $log Error "0093" $fileName "${message}"
 ((status=-1))
 break
 elif [["${status_type}" == "Available"]] && [[-z ${message}]];

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-70

then
 continue
 fi
 done

 #Waiting for all pods to be updated with the new image.
 if [[$status -eq 2]]; then
 while [[$count -lt ${max_retry}]] ; do
 $log Info "0119" $fileName
 sleep ${interval}s
 #Getting the latest status of the serves.
 get_admin_server_image=$(kubectl get po ${domain_uid}-${domain_uid}-
adminserver -n ${domain_ns} -o jsonpath="{.spec.containers[0].image}")
 admin_pod_status=$(kubectl get po ${domain_uid}-${domain_uid}-
adminserver -n ${domain_ns} -o jsonpath="{..status.phase}")
 get_managed_server_image=$(kubectl get po ${domain_uid}-$
{domain_uid}-managed-server1 -n ${domain_ns} -o
jsonpath="{.spec.containers[0].image}")
 managed_server_pod_status=$(kubectl get po ${domain_uid}-$
{domain_uid}-managed-server1 -n ${domain_ns} -o jsonpath="{..status.phase}")

 # Checking Admin and Managed servers are updated with the new
domain image and both are running or not?
 if [["${NEW_DOMAIN_IMAGE}" == "$get_admin_server_image" &&
"$admin_pod_status" == "Running"]]; then
 if [["${NEW_DOMAIN_IMAGE}" == "$get_managed_server_image" &&
"$managed_server_pod_status" == "Running"]]; then
 $log Info "0118" $fileName
 status=0
 break;
 fi
 else
 ((count++))
 continue;
 fi
 done
 fi
 fi

 if [[${status} -eq 0]]
 then
 return 0
 else
 return 1
 fi
}

Function: Check pod status is ready
check_pods_ready() {
 result=$(python3 ${scriptDir}/domain_builder_utils.py 'check-pods-ready')
 echo ${result}
}

Function: Wait for pods to be ready
domain_yaml: domain yaml

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-71

max_wait_time: timeout duration for pods in the domain to come to ready
state
domain_ns: domain namespace
num_pods_to_run: how many pods are there in the domain
wait_for_pods() {
 set +x
 local domain_yaml=$1
 local max_wait_time=$2
 local domain_ns=$3
 local num_pods_to_run=$4

 local count=0
 local interval=30
 let max_retry=${max_wait_time}/${interval}

 # Ensure the check_pods_ready count remains consistent over 4*30secs =
2mins
 # This is needed for the case when we are doing rolling restart of the
domain (default case)
 #
 local consistent_result_count=0
 local max_consistency_count=4

 echo "Waiting for domain server pods [$num_pods_to_run] to be ready
(max_retries: $max_retry at interval: $interval seconds) ..."
 local START=$(date +%s)

 count_pods_ready=$(kubectl get pods -n ${domain_ns} -o json |
check_pods_ready)
 while [[(${count_pods_ready} -ne ${num_pods_to_run} || $
{consistent_result_count} -ne ${max_consistency_count}) && $count -lt $
{max_retry}]] ; do
 sleep ${interval}s
 count_pods_ready=$(kubectl get pods -n ${domain_ns} -o json |
check_pods_ready)

 # Check if all pods are ready then the result remains consistent for
sometime
 while [[${consistent_result_count} -ne ${max_consistency_count}]]
&& [[${count_pods_ready} -eq ${num_pods_to_run}]] ; do
 let consistent_result_count=consistent_result_count+1

 echo "Consistent result count: ${consistent_result_count}"
 echo "[$count_pods_ready of $num_pods_to_run] are ready"

 sleep ${interval}s
 count_pods_ready=$(kubectl get pods -n ${domain_ns} -o json |
check_pods_ready)
 done
 if [[${consistent_result_count} -eq ${max_consistency_count}]] &&
[[${count_pods_ready} -eq ${num_pods_to_run}]] ; then
 break
 else
 let consistent_result_count=0
 fi
 let count=count+1

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-72

 done

 echo "Exiting wait_for_pods: [$count_pods_ready of $num_pods_to_run] are
ready"
 echo "consistent_result_count: [$consistent_result_count] of
[$max_consistency_count]"
 echo "retries: [$count] of [$max_retry]"

 local END=$(date +%s)
 echo "Domain startup took:"
 echo $((END-START)) | awk '{print int($1/60)"m:"int($1%60)"s"}'

 if [[${count_pods_ready} -eq ${num_pods_to_run}]]
 then
 return 0
 else
 return 1
 fi
 set -x
}

Function: Login to OCIR.
metadata_file: provisioning metadata file
ocir_user: OCIR username
ocir_auth_token: OCIR user auth token
ocir_login() {
 set +x
 local ocir_url=$(get_metadata_attribute 'ocir_url')
 local ocir_user=$1
 local ocir_auth_token=$2

 $log Info "0120" $fileName "$ocir_url" "$ocir_user"
 echo ${ocir_auth_token} | docker login ${ocir_url} --username $
{ocir_user} --password-stdin
 exit_code=$?

 if [[$exit_code -ne 0]]; then
 $log Error "0094" $fileName "$ocir_url"
 exit 1
 fi
}

#Function: Select the OS Linux Base Image
#linux_version: Linux version used for base image
os_base_image() {
 set +x
 local version=`echo ${1} | cut -d '-' -f2`
 local result

 images=(`docker images| tail -n +2`)

 for ((x=0;x<${#images[@]};x++)); do
 if [[${images[$x]} =~ "oraclelinux"]]; then
 name="${images[$x]}"
 ((x++))
 if [[${images[$x]} =~ $version]]; then

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-73

 result=$name:"${images[$x]}"
 break
 fi

 fi
 done

 echo ${result}
}

#
Uploads image to ocir repo
param: ocir_image_tag
param: exit code to return for error
function ocir_image_upload() {
 set -x
 ocir_image_tag=$1
 return_exit_code=$2

 if [[${return_exit_code} == ""]]; then
 return_exit_code=1
 fi

 python3 /u01/shared/scripts/pipeline/clogging/shellLogging.py Info
"0016" $fileName $ocir_image_tag

 #Pushing the docker image to compartment level instead of root compartment
 repo_path=$(echo $(echo "${ocir_image_tag}" | cut -d ":" -f 1) | cut -d
"/" -f3-)
 #Creating the repo at compartment level to push the pipeline images
 compartment_id=$(kubectl get cm wlsoke-metadata-configmap -n jenkins-ns -
o jsonpath="{.data.\oke_cluster_compartment_id}")
 python3 ${pipeline_common}/create_repo.py "$compartment_id" "$repo_path"
 exit_code=$?

 if [[$exit_code -ne 0]]; then
 $log Error "0150" $fileName "$docker_repo_path"
"$compartment_id" $exit_code
 exit 2
 fi

 cmd_output=$(docker push $ocir_image_tag 2>&1)
 exit_code=$?
 echo "${cmd_output}"

 if [[${exit_code} -ne 0]]; then
 docker images
 python3 /u01/shared/scripts/pipeline/clogging/shellLogging.py Error
"0021" $fileName $ocir_image_tag $exit_code
 exit $return_exit_code
 fi

}

Function: Validate the Domain is running and server PODs are in RUNNING
state.

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-74

validate_running_domain() {
 set -x
 local running_domain_yaml=/tmp/running-domain-${BUILD_TIMESTAMP}.yaml
 local is_idcs_selected=$(get_domain_property $DOMAIN_NAME
IS_IDCS_SELECTED)

 # Get running domain yaml
 kubectl get domain ${DOMAIN_NAME} -n ${DOMAIN_NS} -o yaml > $
{running_domain_yaml}
 exit_code=$?
 if [[$exit_code -ne 0]]; then
 $log Error "0089" $fileName "${DOMAIN_NAME}" "${DOMAIN_NS}"
 exit_with_cleanup 7
 fi

 # Get replica count in domain yaml
 local replica_count=$(python3 /u01/shared/scripts/pipeline/common/
domain_builder_utils.py 'get-replica-count' ${running_domain_yaml})
 if [[${is_idcs_selected} == "YES"]]; then
 let num_pods_to_run=replica_count+2
 else
 let num_pods_to_run=replica_count+1
 fi

 # Max wait time 120 mins for pods to be ready
 let max_wait_time=120*60

 wait_for_pods ${running_domain_yaml} ${max_wait_time} ${DOMAIN_NS} $
{num_pods_to_run}

 if [[$? -ne 0]]; then
 $log Error "0090" $fileName
 exit_with_cleanup 7
 else
 $log Info "0111" $fileName
 fi
 set +x
}

Function: Deploy updated domain image to the running domain.
deploy_domain_img() {
 set -x
 local tag=${NEW_DOMAIN_IMAGE}

 # Apply the domain image to running domain if publish is selected
 $log Info "0108" $fileName "$tag"
 local running_domain_yaml=/tmp/running-domain-${BUILD_TIMESTAMP}.yaml

 # Get running domain yaml
 kubectl get domain ${DOMAIN_UID} -n ${DOMAIN_NS} -o yaml > $
{running_domain_yaml}
 exit_code=$?
 if [[$exit_code -ne 0]]; then
 $log Error "0085" $fileName "${DOMAIN_UID}" "${DOMAIN_NS}"
 exit_with_cleanup 3
 fi

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-75

 # Back it up
 mkdir -p /u01/shared/weblogic-domains/${DOMAIN_UID}/backups/$
{BUILD_TIMESTAMP}
 cp ${running_domain_yaml} /u01/shared/weblogic-domains/${DOMAIN_UID}/
backups/${BUILD_TIMESTAMP}/prev-domain.yaml

 # Update domain.yaml with the new image and secrets.
 update_running_domain_yaml ${running_domain_yaml} ${tag}

 # Apply the changes
 kubectl apply -f ${running_domain_yaml}
 exit_code=$?

 if [[$exit_code -ne 0]]
 then
 exit_with_cleanup 4
 fi

 # Replace the domain.yaml file in shared filesystem
 cp ${running_domain_yaml} /u01/shared/weblogic-domains/${DOMAIN_UID}/
domain.yaml

 # Back up the new domain.yaml in backup directory
 cp ${running_domain_yaml} /u01/shared/weblogic-domains/${DOMAIN_UID}/
backups/${BUILD_TIMESTAMP}/domain.yaml

 set +x
}

Function: Validate if the introspector has completed successfully
validate_introspector() {
 set -x
 max_wait_time=5*60

 local is_apply_jrf=$(get_domain_property $DOMAIN_NAME IS_APPLY_JRF)
 if [[${is_apply_jrf} == "true"]]
 then
 max_wait_time=15*60
 fi

 check_introspector_status ${DOMAIN_NS} ${DOMAIN_NAME} ${max_wait_time}
 if [[$? -ne 0]]; then
 $log Error "0088" $fileName "${DOMAIN_NAME}"
 cp /u01/shared/weblogic-domains/${DOMAIN_NAME}/backups/$
{BUILD_TIMESTAMP}/prev-domain.yaml /u01/shared/weblogic-domains/$
{DOMAIN_NAME}/domain.yaml
 exit_with_cleanup 6
 else
 $log Info "0110" $fileName
 fi

 set +x
}

Function: Rollback domain

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-76

rollback_domain() {
 set -x
 local running_domain_yaml=/tmp/running-domain-${BUILD_TIMESTAMP}.yaml
 local prev_domain_yaml=/u01/shared/weblogic-domains/${DOMAIN_NAME}/
backups/${BUILD_TIMESTAMP}/prev-domain.yaml

 if [[-f ${prev_domain_yaml}]]; then
 #Get running domain yaml
 kubectl get domain ${DOMAIN_NAME} -n ${DOMAIN_NS} -o yaml > $
{running_domain_yaml}
 exit_code=$?
 if [[$exit_code -eq 0]]; then
 old_mii_image=`echo $(sed -n '/image:/p' ${prev_domain_yaml} |
cut -d':' -f2-) | sed 's/ *$//g'`
 cp ${running_domain_yaml} ${prev_domain_yaml}
 # Update domain.yaml with the old mii image
 sed -i -e "s|\(image: \).*|\1 \"${old_mii_image}\"|g" $
{prev_domain_yaml}
 $log Info "0112" $fileName "${prev_domain_yaml}" "$
{old_mii_image}"
 cat ${prev_domain_yaml}
 # Apply the domain yaml with old domain image
 kubectl apply -f ${prev_domain_yaml}
 else
 #In case there is no domain (which should not happen) we will try
to apply the file that was backup when the new domain image was applied
 $log Error "0091" $fileName "${DOMAIN_UID}" "${DOMAIN_NS}" "$
{prev_domain_yaml}"
 # Apply the domain yaml backed up when the image was applied.
 kubectl apply --force -f ${prev_domain_yaml}
 fi
 validate_running_domain
 # Replace current domain.yaml with most current domain
 kubectl get domain ${DOMAIN_UID} -n ${DOMAIN_NS} -o yaml > /u01/
shared/weblogic-domains/${DOMAIN_UID}/domain.yaml
 else
 $log Info "0113" $fileName
 fi
 # Cleanup the earlier image from OCIR repo. TODO: automate this step
 $log Info "0114" $fileName "${NEW_DOMAIN_IMAGE}"
 set +x
}

Function: Rollback to specified domain image.
Param: rollback_to_image - domain image to rollback to.
rollback_domain_to_image() {
 set -x
 local rollback_to_image=$1

 timestamp=$(date +"%y-%m-%d_%H-%M-%S")
 local running_domain_yaml=/tmp/running-domain-${timestamp}.yaml

 # Get running domain yaml
 kubectl get domain ${DOMAIN_UID} -n ${DOMAIN_NS} -o yaml > $
{running_domain_yaml}

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-77

 exit_code=$?
 if [[$exit_code -ne 0]]; then
 $log Error "0089" $fileName "${DOMAIN_UID}" "${DOMAIN_NS}"
 exit_with_cleanup 2
 fi

 # Update domain.yaml with the old domain image
 sed -i -e "s|\(image: \).*|\1 \"${rollback_to_image}\"|g" $
{running_domain_yaml}
 $log Info "0112" $fileName "${running_domain_yaml}" "${rollback_to_image}"
 cat ${running_domain_yaml}

 # Apply the domain yaml with old domain image
 kubectl apply -f ${running_domain_yaml}
 exit_code=$?
 if [[$exit_code -ne 0]]
 then
 exit_with_cleanup 3
 fi

 validate_running_domain

 # Remove the temp running domain yaml
 rm -f ${running_domain_yaml}
 set +x
}

Copy this function here because this might be called from auto-patching
flow where pipeline_common.sh is not sourced.
exit_with_cleanup() {
 set -x
 local exit_code=$1

 # Get out of the build context directory so we can delete it
 cd "$(pwd)"
 # Remove the temp domain image build directory
 rm -rf /tmp/deploy-apps
 # Temp domain yaml files created
 rm -f /tmp/test-domain-${BUILD_TIMESTAMP}.yaml
 rm -f /tmp/running-domain-${BUILD_TIMESTAMP}.yaml
 # Remove patching files created
 rm -f /tmp/apply_opatches.log
 rm -f /tmp/finalbuild.txt
 rm -f /tmp/oraInst.loc
 rm -rf /tmp/opatch_updated_tag.txt
 # Scan image cleanup
docker stop ${BUILD_TIMESTAMP}-clair
docker stop ${BUILD_TIMESTAMP}-db
rm -f /tmp/clair-${BUILD_TIMESTAMP}.log
 set +x
 exit ${exit_code}
}

Chapter 5
Upgrade the WebLogic Kubernetes Operator

5-78

Upgrade the Tools in Oracle WebLogic Server for OKE
Learn how to upgrade the tools used in Oracle WebLogic Server for OKE.

Topic:

• Upgrade WebLogic Deploy Tooling

Upgrade WebLogic Deploy Tooling
To upgrade WebLogic Deploy Tooling (WDT), download the latest version of the WebLogic
Deploy Tooling (WDT) from GitHub.

1. Access the administration compute instance for your stack. See Access the Administration
Instance.

2. Go to /u01/shared/tools/ location.

3. Create a backup of existing WDT file.

mv weblogic-deploy weblogic-deploy_backup
mv weblogic-deploy.zip weblogic-deploy.zip_backup

4. Browse to the URL, https://github.com/oracle/weblogic-deploy-tooling/releases/latest.

5. Download the weblogic-deploy.zip file to the /u01/shared/tools/ location on the
administration host.

wget <location of weblogic-deploy.zip file>

Example:

wget https://github.com/oracle/weblogic-deploy-tooling/releases/download/
release-2.3.2/weblogic-deploy.zip

If the download fails due to connection time out issue, configure the proxy settings using
the following commands:

export http_proxy=<proxy_server_ip_address>
export https_proxy=$http_proxy

6. Extract the contents of the WDT zip file.

unzip weblogic-deploy.zip

You can now create a domain and update an domain using the upgraded WDT file.

Back Up and Restore a Model in Image Domain
Oracle WebLogic Server for OKE provides the ability to backup and restore your domain.

Back up a domain:

Chapter 5
Upgrade the Tools in Oracle WebLogic Server for OKE

5-79

https://github.com/oracle/weblogic-deploy-tooling/releases/latest

• By default, every time you run a job, a back up of the domain is created automatically.

• There is no job available to periodically back up your domain.

• You can also manually take a backup by copying the current yaml file to your preferred
location. A yaml file has information about the current setup of the domain.

The backups are location at: /u01/shared/weblogic-domains/<domain_name>/backups
A sample backup:

[opc@oracle-admin oracledomain]$ pwd
/u01/shared/weblogic-domains/oracledomain
[opc@oracle-admin oracledomain]$ ll -tR
.:
total 25
-rwxr-xr-x. 1 opc opc 3728 Sep 24 16:14 domain.yaml
drwxr-xr-x. 3 opc opc 1 Sep 24 16:14 backups
-rw-rw-r--. 1 opc opc 4642 Sep 23 17:16 provisioning_metadata.json
-rw-rw-r--. 1 opc opc 1495 Sep 23 16:55 create-domain-inputs.yaml

./backups:
total 1
drwxr-xr-x. 2 opc opc 2 Sep 24 16:14 20-09-24_15-57-44

./backups/20-09-24_15-57-44:
total 16
-rw-r--r--. 1 opc opc 3728 Sep 24 16:14 domain.yaml
-rw-r--r--. 1 opc opc 3725 Sep 24 16:14 prev-domain.yaml

Where:

• prev-domain.yaml, is the previous domain that was running before the current job was
completed.

• domain.yaml, is the existing domain after the current job was completed.

Restore a domain:

1. Access the administration compute instance for your stack.
See Access the Administration Instance.

2. Go to the backup location, where the domain yaml that you want to apply is located.

3. Open the domain yaml and make a note of the image id.
For example:

image: "phx.ocir.io/ax8cfrmecktw/oracle/oracle_domain/wls-domain-
base:12.2.1.4.200714-200819-20-09-23_14-51-16"

4. Run the following commands to set the required environment variables:

export wls_domain_namespace=<domain namespace>
export wls_domain_uid=<domain UID>
export ocir_url=<region>.ocir.io

5. Run the following command:

/u01/shared/scripts/pipeline/common/pipeline_common.sh -i <image_id>

Chapter 5
Back Up and Restore a Model in Image Domain

5-80

Where, <image_id> is the image id you noted in step 2.

For example:

/u01/shared/scripts/pipeline/common/pipeline_common.sh -i phx.ocir.io/
ax8cfrmecktw/oracle/oracle_domain/wls-domain-
base:12.2.1.4.200714-200819-20-09-23_14-51-16

Back Up and Restore a Domain on PV
Oracle recommends that you back up the domain home directory (and the JRF database for
the JRF domain) after you have created the initial domain. You can then continue to take
periodic backups, ensuring that all the latest changes are backed up.

You may update the domain on PV domain configuration after its initial deployment. For
example, you may want to add new applications. However, after the update, the original WDT
model files used to create the initial domain may not match the current state of the domain.

Oracle recommends that you periodically back up the domain home with the latest changes.
The domain can be restored from the backup copy if you want to revert the changes made to
the domain home directory. If the domain home is not properly backed up, there is a possibility
of losing existing data if the domain home becomes corrupt or gets deleted.

Topics:

• Back Up the Domain

• Restore the Domain

Back Up the Domain
The back up procedure comprises the following steps:

• Back Up the Domain Home Directory

• Back Up the JRF Domain

Back Up the Domain Home Directory
You can use the following script to back up the domain home to the /u01/shared backup
location. This script is available in the /u01/scripts/utils/backup.sh on the
administration instance.

#!/bin/bash -x
if [-z "$1"]; then
 echo "Usage: backup.sh <domain_name>"
 exit 1
fi

domain_name=$1
timestamp=`date '+%Y-%m-%dT%T.%3N'`
domain_dir=/u01/shared/data/domains/$domain_name
domain_uid_dir=${domain_dir}-uid

backup_dir=/u01/shared/data/domains.backup/$domain_name/$timestamp/
mkdir -p $backup_dir
echo backup_dir: $backup_dir

Chapter 5
Back Up and Restore a Domain on PV

5-81

echo "backing up $domain_dir"
cp -r $domain_dir $backup_dir

echo "backing up $domain_uid_dir"
cp -r $domain_uid_dir $backup_dir

echo "backup created: $timestamp"

Execute the script using the following command:

bash /u01/scripts/utils/backup.sh <domain_name>

This is an example of the output:

$ bash backup.sh pvdomain
backup_dir: /u01/shared/data/domains.backup/pvdomain/2023-12-04T18:53:24.381/
backing up /u01/shared/data/domains/pvdomain
backing up /u01/shared/data/domains/pvdomain-uid
backup created: 2023-12-04T18:53:24.381

The last line of the backup directory path is the backup timestamp (in the above example, it is
2023-12-04T18:53:24.381). The timestamp string is used to restore the backup. See Restore
the Domain From the Backup.

Back Up the JRF Domain
A JRF domain has a one-to-one relationship with the RCU schema. After you create a domain
using a particular RCU schema, you should back up the JRF database with the RCU schema
and the associated wallet. For more information, see JRF Domains.

The back up procedure comprises the following steps:

• Back Up the JRF Schema Database

• Back Up the OPSS Wallet

Back Up the JRF Schema Database
After you create the JRF schema, create a backup of the JRF database. You can use the
Oracle Database Backup Cloud Service or any database restore and back up method you
prefer. For more information about Oracle Database Backup Cloud Service, see Getting
Started with Oracle Database Backup Cloud Service.

Back Up the OPSS Wallet
After you create domain, the WebLogic Kubernetes Operator automatically exports the OPSS
wallet and stores it in an introspector ConfigMap. The name of the ConfigMap follows this
pattern: <domain uid>-weblogic-domain-introspect-cm with the key ewallet.p12. Save the
OPSS wallet file in a safe, backed-up location immediately after the initial JRF domain gets
created. This will allow the secret to be available when you want to recover the domain.

Chapter 5
Back Up and Restore a Domain on PV

5-82

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/domain-on-pv/jrf-domain/

Execute the following commands on the administration instance:

mkdir -p /u01/shared/data/domains.backup/<domain>/

bash opss-wallet.sh -n <domain>-ns -d <domain> -s -wf /u01/shared/data/
domains.backup/<domain>/ewallet.p12

For example:

$ mkdir -p /u01/shared/data/domains.backup/pvdomain/

$ bash /u01/scripts/wls-domain-lifecycle/opss-wallet.sh -n pvdomain-ns -d
pvdomain -s -wf /u01/shared/data/domains.backup/pvdomain/ewallet.p12
@@ Info: Running 'opss-wallet.sh'.
@@ Info: Saving wallet from from configmap 'pvjrf2-weblogic-domain-introspect-
cm' in namespace 'pvjrf2-ns' to file '/u01/shared/data/domains.backup/
pvdomain/ewallet.p12'.

Restore the Domain
The restore procedure comprises the following steps:

• Restore the Domain From the Backup

• Restart the Domain After the Restore

Restore the Domain From the Backup
To revert the domain updates, or to recover from the lost domain home directory, restore the
domain from a backup copy of the domain home directory.

You can use the following script to restore the domain home from the backup location
on /u01/shared. The script is available in the /u01/scripts/utils/restore.sh on the
administration instance.

#!/bin/bash -x
if [[-z $1 || -z $2]]; then
 echo "Usage: restore.sh <domain_name> <timestamp>"
 exit 1
fi

domain_name=$1
timestamp=$2
domain_dir=/u01/shared/data/domains/$domain_name
domain_uid_dir=${domain_dir}-uid

backup_dir=/u01/shared/data/domains.backup/$domain_name/$timestamp
backup_domain_dir=${backup_dir}/$domain_name
backup_domain_uid_dir=${backup_dir}/${domain_name}-uid

if ! [-d ${backup_domain_dir}]; then
 echo ${backup_domain_dir} not found !
 exit 2

Chapter 5
Back Up and Restore a Domain on PV

5-83

fi

if ! [-d ${backup_domain_uid_dir}]; then
 echo ${backup_domain_uid_dir} not found !
 exit 3
fi

echo "Contents of the domain $domain_name at $domain_dir will be replaced by
the backup contents at $backup_domain_dir"
echo "Contents of the domain $domain_name at $domain_uid_dir will be replaced
by the backup contents at $backup_domain_uid_dir"
read -r -p "Continue? [y/N] " response
case "$response" in
 [yY][eE][sS]|[yY])
 :
 ;;
 *)
 echo "Aborting. No changes were done"
 exit 4
 ;;
esac

echo "restoring $domain_dir"
cp -r $backup_domain_dir $domain_dir

echo "restoring $domain_uid_dir"
cp -r $backup_domain_uid_dir $domain_uid_dir

echo "Domain Restored: $timestamp"

For example, to restore from the earlier backup that you created (see Back Up the Domain
Home Directory), execute the script using the following command:

bash /u01/scripts/utils/restore.sh <domain_name> <backup_timestamp>

The output will be as follows:

$ bash restore.sh pvdomain 2023-12-04T18:53:24.381

Contents of the domain pvdomain at /u01/shared/data/domains/pvdomain will be
replaced by the backup contents at /u01/shared/data/domains.backup/pvdomain/
2023-12-04T18:53:24.381/pvdomain
Contents of the domain pvdomain at /u01/shared/data/domains/pvdomain-uid will
be replaced by the backup contents at /u01/shared/data/domains.backup/
pvdomain/2023-12-04T18:53:24.381/pvdomain-uid
Continue? [y/N] y
restoring /u01/shared/data/domains/pvdomain
restoring /u01/shared/data/domains/pvdomain-uid
Domain Restored: 2023-12-04T18:53:24.381

Restart the Domain After the Restore
After restoring the backup, you should restart the domain in a rolling manner.

Chapter 5
Back Up and Restore a Domain on PV

5-84

1. Execute the following command on the administration instance:

bash /u01/scripts/wls-domain-lifecycle/rollDomain.sh -n <domain-namespace>
-d <domain>

2. Wait for all the server pods of the domain to terminate, and then restart the domain.

For example:

[opc@wlsoke-admin ~]$ bash /u01/scripts/wls-domain-lifecycle/rollDomain.sh
-n pvdomain-ns -d pvdomain
[2023-12-04T22:53:32.889498983Z][INFO] Patching restartVersion for domain
'pvdomain' to '2'.
domain.weblogic.oracle/pvdomain patched
[2023-12-04T22:53:34.763168023Z][INFO] Successfully patched restartVersion
for domain 'pvdomain'!

k get pods -n pvdomain-ns -w

This is an example of the output:

NAME READY STATUS RESTARTS AGE
pvdomain-pvdomain-adminserver 1/1 Running 0 4h17m
pvdomain-pvdomain-managed-server1 1/1 Running 0 4h13m
pvdomain-pvdomain-managed-server2 1/1 Running 0 4h10m

Back Up the File Storage
Just as you back up and restore a domain, it is also important to back up the entire shared file
system, which contains other domains, Jenkins pipeline configurations, pipeline scripts,
supporting tools, Jenkins job logs, and so on. You can then use this back up to restore the
sytem if the original data gets corrupt or is destroyed.

Ensure that you regularly back up the shared file storage using Snapshot any other preferred
mechanism. For information about using Snapshot, see Creating a Snapshot.

Chapter 5
Back Up the File Storage

5-85

https://docs.oracle.com/en-us/iaas/Content/File/Tasks/create-snapshot.htm

6
Delete a Stack

You can delete the stack your created for Oracle WebLogic Server for OKE.

Note:

Before you delete a stack, ensure that you have deleted all the resources of your
domain. See Terminate a WebLogic Domain in Manage WebLogic Domains.
If you enabled Verrazzano for the stack, see Terminate a WebLogic Domain in
Manage WebLogic Domains in Verrazzano.

1. Access the administration compute instance for your domain.

See Access the Administration Instance.

2. Run the following command to delete the resources:

/u01/shared/scripts/lcm/delete_resources.sh -p <OCIR Auth Token> -l

This deletes the OCIR repos created during provisioning and the OCI Load Balancer
associated with the internal and external ingress services.

3. Sign in to the Oracle Cloud Infrastructure Console.

4. Click the navigation menu , select Developer Services. Under the Resource
Manager group, click Stacks.

5. Click the stack you want to delete.

6. Click Terraform Actions, and then select Destroy.

7. When prompted for confirmation, click Destroy.

8. Periodically monitor the progress of the Destroy job until it is finished.

If an email address is associated with your user profile, you will receive an email
notification.

Ensure that all the resources of the stack are deleted successfully.

9. Click Delete Stack.

6-1

7
Troubleshoot and Known Issues

Identify common problems in Oracle WebLogic Server for OKE and learn how to diagnose and
solve them.

Topics

• Troubleshoot a Stack

• Troubleshoot a WebLogic Domain

• Troubleshoot a WebLogic Domain in Verrazzano

Troubleshoot a Stack
Identify common problems in a Oracle WebLogic Server for OKE stack and learn how to
diagnose to solve them.

Topics

• Stack Creation Failed

• Load Balancer Creation Failed

Stack Creation Failed
Troubleshoot a failed Oracle WebLogic Server domain that you created using Oracle WebLogic
Server for OKE.

Failed to install WebLogic Operator

Stack provisioning might fail when you create a domain with Oracle WebLogic Server for OKE
in a new subnet for an existing VCN due to error in installation of WebLogic Server Kubernetes
Operator.

Example message:

module.provisioner.null_resource.check_provisioning_status_1 (remote-exec):
<Aug 27, 2020 07:01:31 PM GMT> <INFO> <install_wls_operator.sh>
<(host:sample-admin.admin1.existingnetwork.oraclevcn.com) - <WLSOKE-VM-
INFO-0020> :
Installing weblogic operator in namespace [wrjrf8-operator-ns]>
module.provisioner.null_resource.check_provisioning_status_1 (remote-exec):
<Aug 27, 2020
07:02:12 PM GMT> <ERROR> <install_wls_operator.sh>
<(host:sample-admin.admin1.existingnetwork.oraclevcn.com) - <WLSOKE-VM-
ERROR-0013> : Error
installing weblogic operator. Exit code[1]>

Run a Destroy job on the stack and apply the job again to recreate the resources using the
same database.

7-1

Failed to create service account

Stack provisioning might fail with HTTP 409 conflict error if the service account creation fails.

Example message:

module.provisioner.null_resource.check_provisioning_status_1 (remote-exec):
HTTP response body: {"kind":"Status","apiVersion":"v1","metadata":
{},"status":"Failure","message":
"Operation cannot be fulfilled on serviceaccounts \"default\": the object has
been modified;
please apply your changes to the latest version and try
again","reason":"Conflict","details":
{"name":"default","kind":"serviceaccounts"}

,"code":409}

Run a Destroy job on the stack and apply the job again to recreate the resources using the
same database.

Failed to login to OCIR

Stack provisioning might fail if the docker login to OCI registry is not succcesful.

Example message:

[phx.ocir.io]>module.provisioner.null_resource.check_provisioning_status_1
(remote-exec):
<Sep 22, 2020 02:33:46 PM GMT> <ERROR> <docker_init.sh> <(host:sample-
admin.admin.existingnetwork.oraclevcn.com)
- <WLSOKE-VM-ERROR-0003> : Unable to login to custom OCIR
[phx.ocir.io]>module.provisioner.null_resource.check_provisioning_status_1
(remote-exec):
]>module.provisioner.null_resource.check_provisioning_status_1 (remote-exec):
<Sep 22, 2020 02:33:46 PM GMT> <ERROR> <docker_init.py> <(host:sample-
admin.admin.existingnetwork.oraclevcn.com)
- <WLSOKE-VM-ERROR-0020> : Error executing sh /u01/scripts/bootstrap/
docker_init.sh. Exit code [1]>

Run a Destroy job on the stack and apply the job again to recreate the resources using the
same database.

Failed to verify OKE cluster node status

Stack provisioning fails if the OKE cluster worker nodes are inactive when you create the
WebLogic domain with Oracle WebLogic Server for OKE.

Example message:

<INFO> <oke_worker_status.py>
<(host:sample-admin.nokeadmin.okevcn.oraclevcn.com) - <WLSOKE-VM-INFO-0011> :
Waiting
for the workers nodes to be Active. Retrying...><Dec 17, 2020 04:47:56 PM
GMT> <ERROR>
<markers.py> <(host:sample-admin.okeadmin.okevcn.oraclevcn.com) - <Dec 17,
2020

Chapter 7
Troubleshoot a Stack

7-2

16:47:56> - <WLS-OKE-ERROR-003> - Failed to verify oke cluster nodes status.
[Exit code : Status
check timed out]>

Run a Destroy job on the stack and apply the job again to recreate the resources using the
same database.

Nodepools are not Recreated with the Latest Kubernetes Version
Issue: If you upgrade an existing Kubernetes cluster and scale out a nodepool, the new nodes
are created with Kubernetes version 1.20 or later.

Note:

This topic is applicable for instances provisioned prior to release 22.1.2.

Workaround:

1. Sign in to the Jenkins console for your domain. See Access the Jenkins Console.

2. On the Dashboard page, click create domain.

3. Click on the pipeline for groovy pipeline definition.

4. Search for agent-label-jenkins and replace it with agent-label.

5. On the Dashboard page, click create wls nodepool, and then complete the step 3 and
step 4.

6. On the Dashboard page, click create base image, and then complete the step 3 and step
4.

7. Sign in to the Oracle Cloud Infrastructure Console.

8. Go to the recreated nodepools and make a note of the IP address of the nodes which are
on Kubernetes version 1.20 or later.

9. Log in to each node as an opc user.

10. Run the following command on each node:

sudo yum install docker-engine-19.03.11.ol-4.el7
systemctl start docker

Load Balancer Creation Failed
After creating a stack, you might encounter an issue where the internal Load Balancer (LB) is
missing.

When you run the following command, the internal IP for the LB would is displayed as
<pending>:

kubectl get svc -n <domain-name>-internal

Following are the reasons the load balancer creation fails:

1. Lack of quota for the selected LB shapes.

Chapter 7
Troubleshoot a Stack

7-3

2. Lack of available private IPs in the VCN or subnets selected during provisioning.

Complete the following steps:

1. Check the Status of the Load Balancers

2. Reinstall the Load Balancer

Check the Status of the Load Balancers
You can view the status of the load balancers by checking the load balancer services and the
provisioning logs.

Load Balancer Services:

To check the load balancer services, run the following command:

kubectl get svc -n wlsoke-ingress-nginx

If the output lists any of the load balancer services as <pending>, under the EXTERNAL-IP
column, then the load balancers are not created.

Sample output:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
okename-internal LoadBalancer 10.96.185.81 <pending>
443:30618/TCP 11m

Provisioning logs:

If the internal load balancer is not created successfully, the /u01/logs/provisioning.log file
would include an error message.

Sample of the error message:

<WLSOKE-VM-INFO-0058> : Installing ingress controller charts for jenkins
[ingress-controller]>
<WLSOKE-VM-ERROR-0058> : Error installing ingress controller with Helm. Exit
code [1]>

And, in the /u01/logs/provisioning_cmd.out file, you would see the following error message:

<install_ingress_controller.sh> - Error: timed out waiting for the condition

Reinstall the Load Balancer
After identifying and fixing the cause of the failure, like increased quota for the selected LB
shape, you can reinstall the private load balancer in the stack.

1. Run the following command to bounce the Jenkins service:

kubectl delete deployment.apps/nginx-ingress-controller -n wlsoke-ingress-
nginx

Chapter 7
Troubleshoot a Stack

7-4

2. Run the following command to delete the load balancer that has an issue:

kubectl delete service/<service-prefix>-internal -n wlsoke-ingress-nginx

3. Run the following command to remove the existing helm release:

helm uninstall ingress-controller

4. Copy the YAML file to the temporary folder:

cp /u01/provisioning-data/*.yaml /tmp

5. Run the following command to install the load balancer:

/u01/scripts/bootstrap/install_ingress_controller.sh /tmp/ingress-
controller-input-values.yaml

6. Run the following command to verify if load balancer services are created and have an IP
addresses:

kubectl get svc -n wlsoke-ingress-nginx

Sample output:

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
domain_name-internal LoadBalancer 10.0.0.1 100.0.0.1
80:30605/TCP 12m

Troubleshoot a WebLogic Domain
Learn about the common issues when creating and managing a domain and then how to
diagnose to solve them.

Topics

• Patching Job Fails

• Provisioning Fails at a Specific Stage

• Unable to View Jenkins UI Input Parameters

• Cleanup Resources Manually for a Failed Domain

• Terminate Domain Job Is Stuck at Finish_cleanup Phase

• Introspection Failed when Running Pipeline Jobs

• New Data Source Incorrectly Deployed

• WebLogic Server Pod Fails to Start

• Unable to Access the Console or the Application

• Load Balancer Creation Failed

• Jenkins Installation Fails

• T3 RMI Communication Between Domains Fails

Chapter 7
Troubleshoot a WebLogic Domain

7-5

• Unrecognized Arguments When Using the Patching Utility Tool

• Security Checkup Tool Warnings

• Revert the Jenkins Installation to the Original State

Patching Job Fails
When you perform an apply patch, create base image, or automatic patching, the job fails.

Note:

This is applicable only if you use the WebLogic Server version 21.3.3 (September
2021).

To solve this issue, you must update the pipeline_common.sh and apply_latest_psu.sh
scripts:

1. Go to the /u01/shared/scripts/pipeline/common location and open the
pipeline_common.sh file.

2. Remove the lines 347 to 348 and 526 to 530.

3. Add the following code at line 347.

if [["$PATCH_NEW" != *"28186730"*]]
 then
 patch_array[counter++]=${PATCH_NEW}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${PATCH_NEW}_${wls_version}".0" --path ${OPATCH_PATCH}
 else
 unzip -j -p ${OPATCH_PATCH} */version.txt > /tmp/version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${PATCH_NEW}_${version} --path ${OPATCH_PATCH}
 SKIP_OPATCH_UPDATE=false
 fi

4. Add the following variable at line 314:

local SKIP_OPATCH_UPDATE=true

5. Add the following code at line 547.

if [["$PATCH_NEW" != *"28186730"*]]
 then
 patch_array[counter++]=${PATCH_NEW}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache
addPatch --patchId ${PATCH_NEW}_${wls_version}".0" --path ${OPATCH_PATCH}
 else
 unzip -j -p ${OPATCH_PATCH} */version.txt > /tmp/
version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache

Chapter 7
Troubleshoot a WebLogic Domain

7-6

addPatch --patchId ${PATCH_NEW}_${version} --path ${OPATCH_PATCH}
 fi

6. Save and close the pipeline_common.sh file.

7. Go to the /u01/shared/scripts/pipeline/auto-patch/scripts location and open the
apply_latest_psu.sh file.

8. Remove the lines 69 to 73.

9. Add the following code at line 69.

if [["$patch_id" != *"28186730"*]]
 then
 patch_array[counter++]=${patch_id}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${patch_id}_${wls_version}".0" --path ${patch_dir}/${patch_zip}
 else
 unzip -j -p ${patch_dir}/${patch_zip} */version.txt > /tmp/
version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${patch_id}_${version} --path ${patch_dir}/${patch_zip}
 fi

10. Save and close the apply_latest_psu.sh file.

Provisioning Fails at a Specific Stage
When you create a domain, the provisioning might fail at the specific stage. After you fix the
issue, you must continue to create the domain from the previously failed stage only.

To restart provisioning from the previously failed stage:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click create domain.

3. Click Status.

4. From the Stage View page, click on the job number that failed.

5. Click Restart from Stage.

6. From Stage Name, select the stage that first failed.

7. Click Run to run the job from the selected stage.

After the job is successful, you can access the WebLogic Console. See Access the
WebLogic Console.

Unable to View Jenkins UI Input Parameters
You need to approve groovy scripts to view all the parameters in a list.

Issue: At times, the Jenkins UI input parameters in a list are not rendered as you need to
approve the scripts.

Workaround:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

Chapter 7
Troubleshoot a WebLogic Domain

7-7

2. Go to Dashboard > Manage Jenkins.

3. Under Security, click In-process Script Approval.

4. Click Approve against all the groovy scripts.
All the parameters are now listed in the pipeline jobs.

Cleanup Resources Manually for a Failed Domain
When the domain creation for a WebLogic domain with domain name, domain_1, fails and you
create another WebLogic domain with the same name, domain_1, this domain creation also
fails.

As the resources created for the domain, domain_1 cannot be deleted using the terminate
domain job, you must clean up the resources manually for domain_1 using the following
command:

/u01/shared/scripts/pipeline/helper-scripts/domain_resource_cleanup.sh
<domain_name>
For example, to clean up the resources for domain_1, run the following command:

/u01/shared/scripts/pipeline/helper-scripts/domain_resource_cleanup.sh domain_1
You can now create the WebLogic domain with the domain name, domain_1.

Terminate Domain Job Is Stuck at Finish_cleanup Phase
Troubleshoot the problem to terminate a domain created for Oracle WebLogic Server for OKE.

Note:

This topic is applicable for Oracle WebLogic Server for OKE domains created in
release 22.2.2 (May, 2022).

Issue:

The terminate domain job gets stuck at the Finish_cleanup phase waiting for the pods to
come up, and does not terminate the domain.

Workaround:

You must update the Jenkins template details before you terminate a domain.

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click Manage Jenkins.

3. Under System Configuration, click Manage Nodes and Clouds, and then click
Configure Clouds.

4. On the Configure Clouds page, click Pod Templates.

5. For pod-template-jenkins, click Pod Template details.

6. Locate the Node Selector field and update the node label to usage-jenkins=jenkins.

Chapter 7
Troubleshoot a WebLogic Domain

7-8

Introspection Failed when Running Pipeline Jobs
In some instances, the Kubernetes job (DOMAIN_UID-introspector) created for the
introspection fails. When the initial introspection fails, the operator does not start any WebLogic
Server instances. If there are already WebLogic Server instances running, then a failed
introspection leaves the existing WebLogic Server instances running without making any
changes to the operational state of the domain. The introspection is periodically retried and
then eventually timeout with the Domain status indicating the processing failed. To recover
from a failed state, you need correct the underlying problem and update the
introspectVersion or restartVersion.

Check the introspector job

If your introspector job failed, then examine the kubectl describe of the job and its pod. Also,
examine its log, located at /u01/shared/weblogic-domains/<domain-name>/logs/
introspector_script.out.

For example, assuming your domain UID is sample-domain1 and your domain namespace is
sample-domain1-ns, following is a failed introspector job pod among the domain's pods:

$ kubectl -n sample-domain1-ns get pods -l weblogic.domainUID=sample-domain1

NAME READY STATUS RESTARTS AGE
sample-domain1-admin-server 1/1 Running 0 19h
sample-domain1-introspector-v2l7k 0/1 Error 0 75m
sample-domain1-managed-server1 1/1 Running 0 19h
sample-domain1-managed-server2 1/1 Running 0 19h

Let us look at the job's describe:

$ kubectl -n sample-domain1-ns describe job/sample-domain1-introspector
Now, let us look at the job's pod describe, in particular look at its events:

$ kubectl -n sample-domain1-ns describe pod/sample-domain1-introspector-v2l7k
Finally, let us look at the job's pod's log:

$ kubectl -n sample-domain1-ns logs job/sample-domain1-introspector
Alternative log command (will have same output as previous):

$ kubectl -n sample-domain1-ns logs pod/sample-domain1-introspector-v2l7k
A common reason for the introspector job to fail is because of an error in a model file.
Following is a sample log output from an introspector job that displays such a failure:

...
SEVERE Messages:
 1. WLSDPLY-05007: Model file /u01/wdt/models/model1.yaml,/weblogic-
operator/wdt-config-map/..2020_03_19_15_43_05.993607882/datasource.yaml
contains an
unrecognized section: TYPOresources. The recognized sections are domainInfo,
topology, resources, appDeployments, kubernetes

Initiating Rolling Restart

Chapter 7
Troubleshoot a WebLogic Domain

7-9

If a model file error references a model file in your spec.configuration.model.configMap file,
then you can correct the error by redeploying the ConfigMap with a corrected model file and
then initiating a domain restart or roll. Similarly, if a model file error references a model file in
your model image, then you can correct the error by deploying a corrected image, modifying
your Domain YAML file to reference the new image under spec.image, and then initiating a
domain restart or roll.

To continue to use the pipeline jobs to update the running domain, we need to ensure that the
introspector is in Success status, which can be achieved by rolling the domain to the previous
successful image.

To rollback to the previous previous successful image, run the following command:

/u01/shared/scripts/pipeline/common/pipeline_common.sh -i <image_name>
Where, <image_name> is the image ID in the prev-domain.yaml file, located in the backup
directory at /u01/shared/weblogic-domains/<domain_name>/backups.

Note:

prev-domain.yaml is the previous domain that was running before the current job
completed.

As the introspector was in the failure status, the domain pods did not restart and would be in
the previous image. Once the above function is invoked, introspector succeeds and the
pipeline jobs can be reused.

If the error is due to configmap, initiate the rolling restart by completing the following steps:

1. Rectify the error in the yaml file.

2. Increment the value of spec.restartVersion.

a. Perform a kubectl edit domain -n <domain_ns> -o yaml.
This opens the yaml file in the VI editor.

b. Under spec, search for the restartVersion flag and increment the value.

3. Save the yaml file.

Run the following command to verify the fix:

kubectl get pods -A

The age for the pod must not correspond to the time when the update-domain job completed.

Sample output:

NAME READY STATUS RESTARTS AGE
sample-domain1-admin-server 1/1 Running 0 19h
sample-domain1-managed-server1 1/1 Running 0 19h
sample-domain1-managed-server2 1/1 Running 0 19h

Chapter 7
Troubleshoot a WebLogic Domain

7-10

New Data Source Incorrectly Deployed
This section covers the known issue when you create data sources in your Oracle WebLogic
Server for OKE domain.

If the user adds a new data source and deploys the data source to a cluster only, by default,
the data source is deployed to both the managed server and the administration server in the
cluster.

WebLogic Server Pod Fails to Start
By default, the WebLogic stores are mount to the shared file system, which use Network File
System (NFS) version 3 and is disabled. Therefore, the file locks on the different WebLogic
stores and may not release if the VM of any node pool in the WebLogic Node pool is abruptly
shut down. This is encountered in different scenarios, like, when a VM is stopped, restarted, or
terminated, and there are WebLogic pods assigned to the worker node that is being
terminated.

Issue: The WebLogic Server Pod (Admin Server or any manged server) fails to start and
displays the following error in the WebLogic logs:

[Store:280105]The persistent file store "_WLS_myinstance-admin-server" cannot
open file _WLS_<instanceName>-<ServerName>000000.DAT.

Workaround:

To solve this issue, complete the following steps:

Note:

Even if you are using an earlier version of WebLogic Server you need to complete
these steps.

1. Apply patch 32471832 by using the apply patch job, which is available in July 2021 PSUs.

2. For administration and managed server pods in the cluster, update the domain.yaml file by
adding the Dweblogic.store.file.LockEnabled=false parameter.
Following is an example, where the Dweblogic.store.file.LockEnabled=false
parameter is added:

serverPod:
 env:
 - name: USER_MEM_ARGS
 #Default to G1GC algo
 value: "-XX:+UseContainerSupport -XX:+UseG1GC -
Djava.security.egd=file:/dev/./urandom"
 - name: JAVA_OPTIONS
 value: "-Dweblogic.store.file.LockEnabled=false -
Dweblogic.rjvm.allowUnknownHost=true -
Dweblogic.security.SSL.ignoreHostnameVerification=true -
Dweblogic.security.remoteAnonymousRMIT3Enabled=false -
Dweblogic.security.remoteAnonymousRMIIIOPEnabled=false"

Chapter 7
Troubleshoot a WebLogic Domain

7-11

3. Run the following command to apply domain.yaml.

kubectl -f <domain.yaml-file-path>

Note:

If you have created Oracle WebLogic Server for OKE instances created after July 20,
2021, or the instances on which the July 2021 PSUs are applied, a few Security
warnings are displayed. See About the Security Checkup Tool.

Unable to Access the Console or the Application
Troubleshoot problems accessing the console or the application after the Oracle WebLogic
Server for OKE domain is successfully created.

Error accessing the console or the application

If you receive 502 bad gateway error when accessing the Jenkins console and WebLogic
Server console, or the application using load balancer, use the kubectl command to get the
node ports that are used by the system and ensure that these node ports are open for access
via the load balancer subnet.

For example:

kubectl describe service --all-namespaces | grep -i nodeport
NodePort: http 32062/TCP
NodePort: https 30305/TCP

To check port access:

1. Access the Oracle Cloud Infrastructure console.

2. From the navigation menu, select Networking, and then click Virtual Cloud Networks.

3. Select the compartment in which you created the domain.

4. Select the virtual cloud network in which the domain was created.

5. Select the subnet where the WebLogic Server compute instance is provisioned.

6. Select the security list assigned to this subnet.

7. For an Oracle WebLogic Server for OKE cluster using a private and public subnet, make
sure the following ingress rules exist:

Source: <LB Subnet CIDR>
IP Protocol: TCP
Source Port Range: All
Destination Port Range: 32062

Source: <LB Subnet CIDR>
IP Protocol: TCP
Source Port Range: All
Destination Port Range: 30305

Chapter 7
Troubleshoot a WebLogic Domain

7-12

For a domain on a private and public subnet, set the Source to the CIDR of the load balancer
subnet.

Load Balancer Creation Failed
After creating a domain, you might encounter an issue where the external Load Balancer (LB)
is missing.

Issue: When you run the following command, the external IP for the LB would is displayed as
<pending>:

kubectl get svc -n <domain-name>-lb-external

Sample output:

NAMESPACE NAME TYPE CLUSTER-
IP EXTERNAL-IP PORT(S) AGE
wlsoke-ingress-nginx mydomain-lb-external LoadBalancer 10.0.0.1
<pending> 80:32148/TCP,443:31808/TCP 27h

The load balancer creation fails because there is a lack of available private IPs in the VCN or
subnets selected during provisioning.

Workaround: Clean up any unwanted resources to release the IPs.

Jenkins Installation Fails
When you create a Oracle WebLogic Server for OKE instance, Jenkins is installed by installing
a Helm release called jenkins-oke. During provisioning, Jenkins installation may fail, but
provisioning is not stopped, because Jenkins can be installed after provisioning. This section
explains how to install Jenkins manually, if Jenkins installation has failed during provisioning.

Check if Jenkins Install Failed During Provisioning
You can know if the Jenkins install failed by trying to access the Jenkins console, checking the
provisioning logs, and checking the Kubernetes resources (pods, services, and so on) under
the jenkins-ns namespace.

Access the Jenkins console:

Access the Jenkins console, as described in Access the Jenkins Console.

If you are not able to access the console, then continue to the next section to check the logs.

Provisioning logs:

If Jenkins is not installed successfully, then the /u01/logs/provisioning.log file would
include an error message.

Sample of the error:

<WLSOKE-VM-INFO-0056> : Installing jenkins jenkins-ns>
<WLSOKE-VM-ERROR-0052> : Error installing jenkins charts. Exit code[1]>

And, you would see the details of the failure in the /u01/logs/provisioning_cmd.out file.

Chapter 7
Troubleshoot a WebLogic Domain

7-13

Kubernetes resources:

To check the Kubernetes resources in the jenkins-ns namespace, run the following
command:

kubectl get all -n jenkins-ns

Following is a sample output, where Jenkins was installed correctly:

NAME READY STATUS RESTARTS AGE
pod/jenkins-deployment-5bb8596b9-abcd 1/1 Running 0 26m

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/jenkins-service ClusterIP 10.0.0.1 <none> 8080/
TCP,50000/TCP 26m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/jenkins-deployment 1/1 1 1 26m

NAME DESIRED CURRENT READY
AGE
replicaset.apps/jenkins-deployment-5bb55586b9 1 1 1
26m

Install Jenkins Manually
After identifying and fixing the cause of the failure, install Jenkins in your instance.

1. Check if the provisioning_metadata.properties file exists, at the /u01/shared/
weblogic-domains/<domain> directory.

Does the provisioning_metadata.properties file exist?

• Yes: Continue with the next step.

• No: Run the following command:

python /u01/scripts/metadata/provisioning_metadata.py

Continue with the next step.

2. Run the following command to remove the existing helm release:

helm uninstall jenkins-oke

3. Run the following command to install Jenkins:

/u01/scripts/bootstrap/install_jenkins.sh /u01/provisioning-data/jenkins-
inputs.yaml

Where, jenkins-inputs.yaml file contains the required variables.

Chapter 7
Troubleshoot a WebLogic Domain

7-14

Sample Output:

<Nov 23, 2020 05:10:07 PM GMT> <INFO> <install_jenkins.py>
<(host:host_name) - updated /u01/provisioning-data/jenkins-inputs.yaml>
<Nov 23, 2020 05:10:07 PM GMT> <INFO> <install_jenkins.sh>
<(host:host_name) - <WLSOKE-VM-INFO-0098> : Creating configmap [wlsoke-
metadata-configmap]>
<Nov 23, 2020 05:10:09 PM GMT> <INFO> <install_jenkins.sh>
<(host:host_name) - <WLSOKE-VM-INFO-0056> : Installing jenkins jenkins-ns>
<Nov 23, 2020 05:10:22 PM GMT> <INFO> <install_jenkins.sh>
<(host:host_name) - <WLSOKE-VM-INFO-0057> : Successfully installed jenkins
in namespace [jenkins-ns]>

You have successfully installed the Jenkins console. Try accessing the Jenkins console, as
described in Access the Jenkins Console.

T3 RMI Communication Between Domains Fails
You might encounter a T3 communication error between domains in Oracle WebLogic Server
for OKE.

Issue:

When you try to establish an RMI communication between two domains, Domain A and
Domain B, in different namespaces within the same cluster, using the T3 protocol, the
connection fails.

Workaround:

You must set up the WebLogic custom channel on Domain B. To configure the WebLogic
custom channel, see Configuring a WebLogic custom channel in WebLogic Kubernetes
Operator documentation.

Before you set up the WebLogic custom channel, perform the following steps:

1. Run the following command to obtain the cluster service names:

kubectl get svc -n <domain_namespace>

Sample output:

NAMESPACE NAME TYPE
CLUSTER-IP EXTERNAL-IP PORT (S) AGE
domainB-ns domainB-cluster-domainB-cluster ClusterIP
10.96.37.63 <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-cluster-domainB-cluster ClusterIP
10.96.37.63 <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-domainB-adminserver ClusterIP
None <none> 30012/TCP,7001/TCP 10d
domainB-ns domainB-domainB-managed-server1 ClusterIP
None <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-domainB-managed-server2 ClusterIP
None <none> 7999/TCP,8001/TCP 3d1h

2. Use the cluster service name and domain namespace from step 1 to obtain the cluster
address.

Chapter 7
Troubleshoot a WebLogic Domain

7-15

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/external-clients/#configuring-a-weblogic-custom-channel

The cluster address format is:

t3://<name of the cluster service>.<domain namespace>:ListenPort

For example:

t3://domainB-ns domainB-cluster-domainB-cluster.domainB-ns:7999

3. Run the update-domain job on Domain B using the following model yaml file. See Update
a Domain Configuration.
In the model Yaml file, under the NetworkAccessPoint section, specify the cluster address
from step 2.

Example of a model Yaml file.

topology:
 Cluster:
 '@@ENV:OKE_DOMAIN_NAME@@-cluster':
 WeblogicPluginEnabled: true
 DynamicServers:
 ServerNamePrefix: '@@ENV:OKE_DOMAIN_NAME@@-managed-server'
 MaxDynamicClusterSize: 9
 CalculatedListenPorts: false
 ServerTemplate: '@@ENV:OKE_DOMAIN_NAME@@-cluster-template'
 DynamicClusterSize: 9
 Server:
 '@@ENV:OKE_DOMAIN_NAME@@-adminserver':
 RestartDelaySeconds: 10
 GracefulShutdownTimeout: 120
 RestartMax: 20
 NetworkAccessPoint:
 T3Channel:
 PublicPort: 30012
 ListenPort: 30012
 SSL:
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly
 WebServer:
 HttpsKeepAliveSecs: 310
 KeepAliveSecs: 310
 ListenPort: 7001
 ServerTemplate:
 '@@ENV:OKE_DOMAIN_NAME@@-cluster-template':
 ListenPort: 8001
 Cluster: '@@ENV:OKE_DOMAIN_NAME@@-cluster'
 SSL:
 ListenPort: 8100
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly
 WebServer:
 HttpsKeepAliveSecs: 310

Chapter 7
Troubleshoot a WebLogic Domain

7-16

 KeepAliveSecs: 310
 NetworkAccessPoint:
 MyT3Channel:
 Protocol: 't3'
 ListenPort: 7999
 PublicAddress: '@@ENV:DOMAIN_UID@@-@@ENV:DOMAIN_UID@@-
managed-server${id}.@@ENV:NAMESPACE@@'
 HttpEnabledForThisProtocol: true
 TunnelingEnabled: true
 OutboundEnabled: false
 Enabled: true
 ClusterAddress: t3://<name of the cluster service>.<domain
namespace>:ListenPort
 TwoWaySSLEnabled: false
 ClientCertificateEnforced: false

Unrecognized Arguments When Using the Patching Utility Tool
When you run the patching utility tool with some of the documented arguments, you see the
unrecognized arguments message.

Issue:

Run the patching utility tool to list latest patches and download latest patches using patch-
utils with the following arguments:

#List patches
patch-utils list -L
#Download latest patches
patch-utils download -L -p /tmp/<Location to download>

The following message is displayed:

usage: patch-utils <action> [options]
patch-utils: error: unrecognized arguments:

The listed arguments correspond to latest features added to the patching utility tool for Oracle
WebLogic Server for OKEinstances created after December 14, 2022 (22.4.3). So, if you are
using Oracle WebLogic Server for OKE instances created before release December 14, 2022,
you see the unrecognized arguments message.

Workaround:

Run patch-utils upgrade to upgrade the patching tool, if you are using the latest features of
the patching utility tool for your existing instances (created before release December 14, 2022).
See Upgrade Patching Tool.

Security Checkup Tool Warnings
Learn about the security check warnings that are displayed in the Oracle WebLogic Server
Administration console and how to troubleshoot them.

At the top of the WebLogic Server Administration console, the message Security warnings
detected. Click here to view the report and recommended remedies is displayed for

Chapter 7
Troubleshoot a WebLogic Domain

7-17

Oracle WebLogic Server for OKE instances created after July 20, 2021, or the instances on
which the July 2021 PSUs are applied.

When you click the message, a list of security warnings are displayed as listed in the following
table.

The warning messages listed in the table are examples.

Security Warnings

Warning Message Resolution

The configuration for
key stores for this
server are set to Demo
Identity and Demo Trust.
Trust Demo certificates
are not supported in
production mode domains.

Configure the identity and trust keystores for each server and the name
of the certificate in the identity keystore that the server uses for SSL
communication. See Configure Keystore Attributes for Identity and
Trust.

Note: This warning is displayed for Oracle WebLogic Server for OKE
instances created after October 20, 2021, or the instances on which the
October PSUs are applied.

SSL hostname
verification is disabled
by the SSL
configuration.

Review your applications before you make any changes to address
these SSL host name security warnings.

For applications that connect to SSL endpoints with a host name in the
certificate, which does not match the local machine's host name, the
connection fails if you configure the BEA host name verifier in Oracle
WebLogic Server.

For applications that connect to Oracle provided endpoints such as
Oracle Identity Cloud Service (for
example,*.identity.oraclecloud.com), the connection fails if you
did not configure the wildcard host name verifier or a custom host name
verifier that accepts wildcard host names. If you are not sure of the SSL
configuration settings you should configure to address the warning,
Oracle recommends that you configure the wildcard host name verifier.

You see the SSL host name verification warnings in case of existing
Oracle WebLogic Server for OKE instances (created before July 20,
2021). To address this warning, you must configure SSL with host name
verifier. See Configure SSL with host name verifier.

Production mode is
enabled but the file or
directory
<directory_name>/
startWebLogic.sh is
insecure since its
permission is not a
minimum of umask 027

Run the following command in the administration server as oracle
user:

chmod 640 /u01/data/domains/<domain_name>/bin

Remote Anonymous RMI T3
or IIOP requests are
enabled. Set the
RemoteAnonymousRMIT3Enab
led and
RemoteAnonymousRMIIIOPEn
abled attributes to
false.

Set the java properties for anonymous RMI T3 and IIOP requests
during server start up. See Set the Java Properties.

After you address the warnings, you must click Refresh Warnings to see the warnings
removed in the console.

Chapter 7
Troubleshoot a WebLogic Domain

7-18

For Oracle WebLogic Server for OKE instances created after July 20, 2021, though the java
properties to disable anonymous requests for preventing anonymous RMI access are
configured, the warnings still appear. This is a known issue in Oracle WebLogic Server.

Set the Java Properties

To set the java properties for anonymous RMI T3 and IIOP requests:

1. Edit the domain.yaml located in /u01/shared/weblogic-domains/<domain_name>/
domain.yaml for all instances of serverPod definitions as follows:

serverPod:
 env:
 - name: USER_MEM_ARGS
 #admin server memory is explicitly set to min of 256m and max of
512m and GC algo is G1GC
 value: "-Xms256m -Xmx512m -XX:+UseG1GC -
Djava.security.egd=file:/dev/./urandom"
 - name: JAVA_OPTIONS
 value: "-Dweblogic.store.file.LockEnabled=false
 -Dweblogic.rjvm.allowUnknownHost=true
 -Dweblogic.security.remoteAnonymousRMIT3Enabled=false
 -Dweblogic.security.remoteAnonymousRMIIIOPEnabled=false"

2. Apply the domain.yaml using the kubectl command:

kubectl -f <path_to_domain.yaml>

Configure Keystore Attributes for Identity and Trust

To configure the identity and trust keystore files and the name of the certificate in the identity
keystore in the WebLogic Server Administration console:

1. Locate the Change Center and click Lock & Edit to lock the editable configuration
hierarchy for the domain.

2. Under Domain structure, select Environment and then select Servers.

3. In the Servers table, select the server you want to configure.

4. On the Configuration tab, click Keystores, and then click Change.

5. Select Custom Identity and Custom Trust, and then click Save.

6. Under Identity, provide the following details:

a. Enter the full path of your identity keystore.

For example: /u01/data/keystores/identity.jks
b. For Custom Identity Keystore Type, enter JKS.

c. For Custom Identity Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Identity Keystore Passphrase.

7. Under Trust, provide the following details:

a. Enter the full path of your identity keystore.

For example, /u01/data/keystores/trust.jks
b. For Custom Trust Keystore Type, enter JKS.

Chapter 7
Troubleshoot a WebLogic Domain

7-19

c. For Custom Trust Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Trust Keystore Passphrase.

8. Click Save.

9. Click the SSL tab.

10. Under Identity, provide the following details:

a. For Private Key Alias, enter the name of the certificate (private key) in the
identitykeystore, server_cert.

b. For Private Key Passphrase, enter the password for this certificate in the keystore.
Enter the same value for Confirm Private Key Passphrase.

By default, the password for the certificate is the same as the identity keystore
password.

11. Click Save.

After saving the changes, return to Change Center and click Activate Changes.

12. Repeat steps 3 to 9 to configure each server in the domain.

Revert the Jenkins Installation to the Original State
When you create a Oracle WebLogic Server for OKE instance, it also provisions the Jenkins
primary server on a pod in the Kubernetes cluster by installing a Helm release called jenkins-
oke. Oracle WebLogic Server for OKE uses the Jenkins pipeline to update the domain to
deploy applications, libraries, and resources; apply JDK and WebLogic Server patches; and
update an existing image. If you encounter any errors in these tasks, you can revert the
Jenkins installation to its original state.

Note:

Oracle recommends you to not update the Jenkins plug-ins using the Jenkins
console (at http://internal_lb_ip/jenkins/pluginManager/) because some plug-
in updates may break the current Oracle WebLogic Server for OKE pipeline jobs due
to incompatibilities.

Here are the steps to revert the Jenkins installation to the original state. These steps revert any
plug-in updates while preserving the pipeline job logs.

1. Move all the Jenkins files and directories from the Jenkins Home directory to another
directory (with a new name) as shown in the following example:

mv /u01/shared/var/jenkins_home /u01/shared/var/jenkins_home.old

2. Create a new Jenkins Home directory.

mkdir /u01/shared/var/jenkins_home

3. Copy the jobs directory that you moved in Step 1 (to jenkins_home.old) to the newly
created Jenkins Home directory (jenkins_home) you created in Step 2.

cp -R /u01/shared/var/jenkins_home.old/jobs /u01/shared/var/jenkins_home/

4. Reinstall Jenkins manually. For instructions, see Install Jenkins Manually.

Chapter 7
Troubleshoot a WebLogic Domain

7-20

5. Sign in to the Jenkins console for your stack and create the first Jenkins administration
user again. See Access the Jenkins Console.

6. If everything appears fine, you may delete the /u01/shared/var/jenkins_home.old
directory.

Troubleshoot a WebLogic Domain in Verrazzano
Learn about the common issues when creating and managing a domain in Verrazzano and
then how to diagnose to solve them.

The following topics are also applicable for Oracle WebLogic Server for OKE domains with
Verrrazzano.

Topics

• Patching Job Fails

• Provisioning Fails at a Specific Stage

• Unable to View Jenkins UI Input Parameters

• Cleanup Resources Manually for a Failed Domain

• Verrazzano Installation Failed

• Unable to Access the Verrazzano Console

• Introspection Failed when Running Pipeline Jobs

• New Data Source Incorrectly Deployed

• WebLogic Server Pod Fails to Start

• Load Balancer Creation Failed

• Jenkins Installation Fails

• T3 RMI Communication Between Domains Fails

• Unrecognized Arguments When Using the Patching Utility Tool

• Security Checkup Tool Warnings

Patching Job Fails
When you perform an apply patch, create base image, or automatic patching, the job fails.

Note:

This is applicable only if you use the WebLogic Server version 21.3.3 (September
2021).

To solve this issue, you must update the pipeline_common.sh and apply_latest_psu.sh
scripts:

1. Go to the /u01/shared/scripts/pipeline/common location and open the
pipeline_common.sh file.

2. Remove the lines 347 to 348 and 526 to 530.

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-21

3. Add the following code at line 347.

if [["$PATCH_NEW" != *"28186730"*]]
 then
 patch_array[counter++]=${PATCH_NEW}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${PATCH_NEW}_${wls_version}".0" --path ${OPATCH_PATCH}
 else
 unzip -j -p ${OPATCH_PATCH} */version.txt > /tmp/version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${PATCH_NEW}_${version} --path ${OPATCH_PATCH}
 SKIP_OPATCH_UPDATE=false
 fi

4. Add the following variable at line 314:

local SKIP_OPATCH_UPDATE=true

5. Add the following code at line 547.

if [["$PATCH_NEW" != *"28186730"*]]
 then
 patch_array[counter++]=${PATCH_NEW}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache
addPatch --patchId ${PATCH_NEW}_${wls_version}".0" --path ${OPATCH_PATCH}
 else
 unzip -j -p ${OPATCH_PATCH} */version.txt > /tmp/
version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache
addPatch --patchId ${PATCH_NEW}_${version} --path ${OPATCH_PATCH}
 fi

6. Save and close the pipeline_common.sh file.

7. Go to the /u01/shared/scripts/pipeline/auto-patch/scripts location and open the
apply_latest_psu.sh file.

8. Remove the lines 69 to 73.

9. Add the following code at line 69.

if [["$patch_id" != *"28186730"*]]
 then
 patch_array[counter++]=${patch_id}_${wls_version}".0"
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${patch_id}_${wls_version}".0" --path ${patch_dir}/${patch_zip}
 else
 unzip -j -p ${patch_dir}/${patch_zip} */version.txt > /tmp/
version.txt
 version=$(cat /tmp/version.txt)
 /u01/shared/tools/imagetool/bin/imagetool.sh cache addPatch --
patchId ${patch_id}_${version} --path ${patch_dir}/${patch_zip}
 fi

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-22

10. Save and close the apply_latest_psu.sh file.

Provisioning Fails at a Specific Stage
When you create a domain, the provisioning might fail at the specific stage. After you fix the
issue, you must continue to create the domain from the previously failed stage only.

To restart provisioning from the previously failed stage:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. On the Dashboard page, click create domain.

3. Click Status.

4. From the Stage View page, click on the job number that failed.

5. Click Restart from Stage.

6. From Stage Name, select the stage that first failed.

7. Click Run to run the job from the selected stage.

After the job is successful, you can access the WebLogic Console. See Access the
WebLogic Console.

Unable to View Jenkins UI Input Parameters
You need to approve groovy scripts to view all the parameters in a list.

Issue: At times, the Jenkins UI input parameters in a list are not rendered as you need to
approve the scripts.

Workaround:

1. Sign in to the Jenkins console for your stack. See Access the Jenkins Console.

2. Go to Dashboard > Manage Jenkins.

3. Under Security, click In-process Script Approval.

4. Click Approve against all the groovy scripts.
All the parameters are now listed in the pipeline jobs.

Cleanup Resources Manually for a Failed Domain
When the domain creation for a WebLogic domain with domain name, domain_1, fails and you
create another WebLogic domain with the same name, domain_1, this domain creation also
fails.

As the resources created for the domain, domain_1 cannot be deleted using the terminate
domain job, you must clean up the resources manually for domain_1 using the following
command:

/u01/shared/scripts/pipeline/helper-scripts/domain_resource_cleanup.sh
<domain_name>
For example, to clean up the resources for domain_1, run the following command:

/u01/shared/scripts/pipeline/helper-scripts/domain_resource_cleanup.sh domain_1
You can now create the WebLogic domain with the domain name, domain_1.

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-23

Verrazzano Installation Failed

Issue:

When you create a stack with Verrazzano that has shape lower than VM.Standard2.4 and less
than three nodes for the node pool, the Verrazzano installation fails.

Workaround:

Run the reinstall script to clean up the existing node pool and recreate a new node pool with
the provided shape and nodes, and reinstall Verrazzano.

The reinstall script is located at: /u01/scripts/utils
Run the following command:

sh verrazzano_reinstall_util.sh <node_pool_shape> <node_pool_size>

For example:

sh verrazzano_reinstall_util.sh VM.Standard2.4 3

Unable to Access the Verrazzano Console
Troubleshoot the problem accessing the Verrazzano console for an Oracle WebLogic Server
for OKE stack with Verrazzano configuration.

Issue:

For an Oracle WebLogic Server for OKE stack with Verrazzano configuration that uses
LetsEncrypt certificates, you receive a connection failure message when accessing the
Verrazzano console.

Workaround:

Verify the pods running in the cluster and then restart all the authproxy pods.

kubectl get pods -A | grep auth
kubectl delete pod verrazzano-authproxy_<pod_name> -n verrazzano-system

Introspection Failed when Running Pipeline Jobs
In some instances, the Kubernetes job (DOMAIN_UID-introspector) created for the
introspection fails. When the initial introspection fails, the operator does not start any WebLogic
Server instances. If there are already WebLogic Server instances running, then a failed
introspection leaves the existing WebLogic Server instances running without making any
changes to the operational state of the domain. The introspection is periodically retried and
then eventually timeout with the Domain status indicating the processing failed. To recover
from a failed state, you need correct the underlying problem and update the
introspectVersion or restartVersion.

Check the introspector job

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-24

If your introspector job failed, then examine the kubectl describe of the job and its pod. Also,
examine its log, located at /u01/shared/weblogic-domains/<domain-name>/logs/
introspector_script.out.

For example, assuming your domain UID is sample-domain1 and your domain namespace is
sample-domain1-ns, following is a failed introspector job pod among the domain's pods:

$ kubectl -n sample-domain1-ns get pods -l weblogic.domainUID=sample-domain1

NAME READY STATUS RESTARTS AGE
sample-domain1-admin-server 1/1 Running 0 19h
sample-domain1-introspector-v2l7k 0/1 Error 0 75m
sample-domain1-managed-server1 1/1 Running 0 19h
sample-domain1-managed-server2 1/1 Running 0 19h

Let us look at the job's describe:

$ kubectl -n sample-domain1-ns describe job/sample-domain1-introspector
Now, let us look at the job's pod describe, in particular look at its events:

$ kubectl -n sample-domain1-ns describe pod/sample-domain1-introspector-v2l7k
Finally, let us look at the job's pod's log:

$ kubectl -n sample-domain1-ns logs job/sample-domain1-introspector
Alternative log command (will have same output as previous):

$ kubectl -n sample-domain1-ns logs pod/sample-domain1-introspector-v2l7k
A common reason for the introspector job to fail is because of an error in a model file.
Following is a sample log output from an introspector job that displays such a failure:

...
SEVERE Messages:
 1. WLSDPLY-05007: Model file /u01/wdt/models/model1.yaml,/weblogic-
operator/wdt-config-map/..2020_03_19_15_43_05.993607882/datasource.yaml
contains an
unrecognized section: TYPOresources. The recognized sections are domainInfo,
topology, resources, appDeployments, kubernetes

Initiating Rolling Restart

If a model file error references a model file in your spec.configuration.model.configMap file,
then you can correct the error by redeploying the ConfigMap with a corrected model file and
then initiating a domain restart or roll. Similarly, if a model file error references a model file in
your model image, then you can correct the error by deploying a corrected image, modifying
your Domain YAML file to reference the new image under spec.image, and then initiating a
domain restart or roll.

To continue to use the pipeline jobs to update the running domain, we need to ensure that the
introspector is in Success status, which can be achieved by rolling the domain to the previous
successful image.

To rollback to the previous previous successful image, run the following command:

/u01/shared/scripts/pipeline/common/pipeline_common.sh -i <image_name>

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-25

Where, <image_name> is the image ID in the prev-domain.yaml file, located in the backup
directory at /u01/shared/weblogic-domains/<domain_name>/backups.

Note:

prev-domain.yaml is the previous domain that was running before the current job
completed.

As the introspector was in the failure status, the domain pods did not restart and would be in
the previous image. Once the above function is invoked, introspector succeeds and the
pipeline jobs can be reused.

If the error is due to configmap, initiate the rolling restart by completing the following steps:

1. Rectify the error in the yaml file.

2. Increment the value of spec.restartVersion.

a. Perform a kubectl edit domain -n <domain_ns> -o yaml.
This opens the yaml file in the VI editor.

b. Under spec, search for the restartVersion flag and increment the value.

3. Save the yaml file.

Run the following command to verify the fix:

kubectl get pods -A

The age for the pod must not correspond to the time when the update-domain job completed.

Sample output:

NAME READY STATUS RESTARTS AGE
sample-domain1-admin-server 1/1 Running 0 19h
sample-domain1-managed-server1 1/1 Running 0 19h
sample-domain1-managed-server2 1/1 Running 0 19h

New Data Source Incorrectly Deployed
This section covers the known issue when you create data sources in your Oracle WebLogic
Server for OKE domain.

If the user adds a new data source and deploys the data source to a cluster only, by default,
the data source is deployed to both the managed server and the administration server in the
cluster.

WebLogic Server Pod Fails to Start
By default, the WebLogic stores are mount to the shared file system, which use Network File
System (NFS) version 3 and is disabled. Therefore, the file locks on the different WebLogic
stores and may not release if the VM of any node pool in the WebLogic Node pool is abruptly
shut down. This is encountered in different scenarios, like, when a VM is stopped, restarted, or

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-26

terminated, and there are WebLogic pods assigned to the worker node that is being
terminated.

Issue: The WebLogic Server Pod (Admin Server or any manged server) fails to start and
displays the following error in the WebLogic logs:

[Store:280105]The persistent file store "_WLS_myinstance-admin-server" cannot
open file _WLS_<instanceName>-<ServerName>000000.DAT.

Workaround:

To solve this issue, complete the following steps:

Note:

Even if you are using an earlier version of WebLogic Server you need to complete
these steps.

1. Apply patch 32471832 by using the apply patch job, which is available in July 2021 PSUs.

2. For administration and managed server pods in the cluster, update the domain.yaml file by
adding the Dweblogic.store.file.LockEnabled=false parameter.
Following is an example, where the Dweblogic.store.file.LockEnabled=false
parameter is added:

serverPod:
 env:
 - name: USER_MEM_ARGS
 #Default to G1GC algo
 value: "-XX:+UseContainerSupport -XX:+UseG1GC -
Djava.security.egd=file:/dev/./urandom"
 - name: JAVA_OPTIONS
 value: "-Dweblogic.store.file.LockEnabled=false -
Dweblogic.rjvm.allowUnknownHost=true -
Dweblogic.security.SSL.ignoreHostnameVerification=true -
Dweblogic.security.remoteAnonymousRMIT3Enabled=false -
Dweblogic.security.remoteAnonymousRMIIIOPEnabled=false"

3. Run the following command to apply domain.yaml.

kubectl -f <domain.yaml-file-path>

Note:

If you have created Oracle WebLogic Server for OKE instances created after July 20,
2021, or the instances on which the July 2021 PSUs are applied, a few Security
warnings are displayed. See About the Security Checkup Tool.

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-27

Load Balancer Creation Failed
After creating a domain, you might encounter an issue where the external Load Balancer (LB)
is missing.

Issue: When you run the following command, the external IP for the LB would is displayed as
<pending>:

kubectl get svc -n <domain-name>-lb-external

Sample output:

NAMESPACE NAME TYPE CLUSTER-
IP EXTERNAL-IP PORT(S) AGE
wlsoke-ingress-nginx mydomain-lb-external LoadBalancer 10.0.0.1
<pending> 80:32148/TCP,443:31808/TCP 27h

The load balancer creation fails because there is a lack of available private IPs in the VCN or
subnets selected during provisioning.

Workaround: Clean up any unwanted resources to release the IPs.

Jenkins Installation Fails
When you create a Oracle WebLogic Server for OKE instance, Jenkins is installed by installing
a Helm release called jenkins-oke. During provisioning, Jenkins installation may fail, but
provisioning is not stopped, because Jenkins can be installed after provisioning. This section
explains how to install Jenkins manually, if Jenkins installation has failed during provisioning.

Check if Jenkins Install Failed during Provisioning
You can know if the Jenkins install failed by trying to access the Jenkins console, checking the
provisioning logs, and checking the Kubernetes resources (pods, services, and so on) under
the jenkins-ns namespace.

Access the Jenkins console:

Try accessing the Jenkins console, as described in Access the Jenkins Console.

If you are not able to access the console, then continue to the next section to check the logs.

Provisioning logs:

If Jenkins is not installed successfully, then the /u01/logs/provisioning.log file would
include an error message.

Sample of the error:

<WLSOKE-VM-INFO-0056> : Installing jenkins jenkins-ns>
<WLSOKE-VM-ERROR-0052> : Error installing jenkins charts. Exit code[1]>

And, you would see the details of the failure in the /u01/logs/provisioning_cmd.out file.

Kubernetes resources:

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-28

To check the Kubernetes resources in the jenkins-ns namespace, run the following
command:

kubectl get all -n jenkins-ns

Following is a sample output, where Jenkins was installed correctly:

NAME READY STATUS RESTARTS AGE
pod/jenkins-deployment-5bb8596b9-abcd 1/1 Running 0 26m

NAME TYPE CLUSTER-IP EXTERNAL-IP
PORT(S) AGE
service/jenkins-service ClusterIP 10.0.0.1 <none> 8080/
TCP,50000/TCP 26m

NAME READY UP-TO-DATE AVAILABLE AGE
deployment.apps/jenkins-deployment 1/1 1 1 26m

NAME DESIRED CURRENT READY
AGE
replicaset.apps/jenkins-deployment-5bb55586b9 1 1 1
26m

Install Jenkins Manually
After identifying and fixing the cause of the failure, install Jenkins in your instance.

1. Check if the provisioning_metadata.properties file exists, at the /u01/shared/
weblogic-domains/<domain> directory.
Does the provisioning_metadata.properties file exist?

• Yes: Continue with the next step.

• No: Run the following command:

python /u01/scripts/metadata/provisioning_metadata.py

Continue with the next step.

2. Run the following command to remove the existing helm release:

helm uninstall jenkins-oke

3. Run the following command to install Jenkins:

/u01/scripts/bootstrap/install_jenkins.sh /u01/provisioning-data/jenkins-
inputs.yaml

Where, jenkins-inputs.yaml file contains the required variables.

Sample Output:

<Nov 23, 2020 05:10:07 PM GMT> <INFO> <install_jenkins.py>
<(host:host_name) - updated /u01/provisioning-data/jenkins-inputs.yaml>
<Nov 23, 2020 05:10:07 PM GMT> <INFO> <install_jenkins.sh>

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-29

<(host:host_name) - <WLSOKE-VM-INFO-0098> : Creating configmap [wlsoke-
metadata-configmap]>
<Nov 23, 2020 05:10:09 PM GMT> <INFO> <install_jenkins.sh>
<(host:host_name) - <WLSOKE-VM-INFO-0056> : Installing jenkins jenkins-ns>
<Nov 23, 2020 05:10:22 PM GMT> <INFO> <install_jenkins.sh>
<(host:host_name) - <WLSOKE-VM-INFO-0057> : Successfully installed jenkins
in namespace [jenkins-ns]>

You have successfully installed the Jenkins console. Try accessing the Jenkins console, as
described in Access the Jenkins Console.

T3 RMI Communication Between Domains Fails
You might encounter a T3 communication error between domains in Oracle WebLogic Server
for OKE.

Issue:

When you try to establish an RMI communication between two domains, Domain A and
Domain B, in different namespaces within the same cluster, using the T3 protocol, the
connection fails.

Workaround:

You must set up the WebLogic custom channel on Domain B. To configure the WebLogic
custom channel, see Configuring a WebLogic custom channel in WebLogic Kubernetes
Operator documentation.

Before you set up the WebLogic custom channel, perform the following steps:

1. Run the following command to obtain the cluster service names:

kubectl get svc -n <domain_namespace>

Sample output:

NAMESPACE NAME TYPE
CLUSTER-IP EXTERNAL-IP PORT (S) AGE
domainB-ns domainB-cluster-domainB-cluster ClusterIP
10.96.37.63 <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-cluster-domainB-cluster ClusterIP
10.96.37.63 <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-domainB-adminserver ClusterIP
None <none> 30012/TCP,7001/TCP 10d
domainB-ns domainB-domainB-managed-server1 ClusterIP
None <none> 7999/TCP,8001/TCP 3d1h
domainB-ns domainB-domainB-managed-server2 ClusterIP
None <none> 7999/TCP,8001/TCP 3d1h

2. Use the cluster service name and domain namespace from step 1 to obtain the cluster
address.
The cluster address format is:

t3://<name of the cluster service>.<domain namespace>:ListenPort

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-30

https://oracle.github.io/weblogic-kubernetes-operator/managing-domains/accessing-the-domain/external-clients/#configuring-a-weblogic-custom-channel

For example:

t3://domainB-ns domainB-cluster-domainB-cluster.domainB-ns:7999

3. Run the update-domain job on Domain B using the following model yaml file. See Update
a Domain Configuration.
In the model Yaml file, under the NetworkAccessPoint section, specify the cluster address
from step 2.

Example of a model Yaml file.

topology:
 Cluster:
 '@@ENV:OKE_DOMAIN_NAME@@-cluster':
 WeblogicPluginEnabled: true
 DynamicServers:
 ServerNamePrefix: '@@ENV:OKE_DOMAIN_NAME@@-managed-server'
 MaxDynamicClusterSize: 9
 CalculatedListenPorts: false
 ServerTemplate: '@@ENV:OKE_DOMAIN_NAME@@-cluster-template'
 DynamicClusterSize: 9
 Server:
 '@@ENV:OKE_DOMAIN_NAME@@-adminserver':
 RestartDelaySeconds: 10
 GracefulShutdownTimeout: 120
 RestartMax: 20
 NetworkAccessPoint:
 T3Channel:
 PublicPort: 30012
 ListenPort: 30012
 SSL:
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly
 WebServer:
 HttpsKeepAliveSecs: 310
 KeepAliveSecs: 310
 ListenPort: 7001
 ServerTemplate:
 '@@ENV:OKE_DOMAIN_NAME@@-cluster-template':
 ListenPort: 8001
 Cluster: '@@ENV:OKE_DOMAIN_NAME@@-cluster'
 SSL:
 ListenPort: 8100
 OutboundCertificateValidation: BuiltinSSLValidationOnly
 HostnameVerifier:
weblogic.security.utils.SSLWLSWildcardHostnameVerifier
 InboundCertificateValidation: BuiltinSSLValidationOnly
 WebServer:
 HttpsKeepAliveSecs: 310
 KeepAliveSecs: 310
 NetworkAccessPoint:
 MyT3Channel:
 Protocol: 't3'
 ListenPort: 7999

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-31

 PublicAddress: '@@ENV:DOMAIN_UID@@-@@ENV:DOMAIN_UID@@-
managed-server${id}.@@ENV:NAMESPACE@@'
 HttpEnabledForThisProtocol: true
 TunnelingEnabled: true
 OutboundEnabled: false
 Enabled: true
 ClusterAddress: t3://<name of the cluster service>.<domain
namespace>:ListenPort
 TwoWaySSLEnabled: false
 ClientCertificateEnforced: false

Unrecognized Arguments When Using the Patching Utility Tool
When you run the patching utility tool with some of the documented arguments, you see the
unrecognized arguments message.

Issue:

Run the patching utility tool to list latest patches and download latest patches using patch-
utils with the following arguments:

#List patches
patch-utils list -L
#Download latest patches
patch-utils download -L -p /tmp/<Location to download>

The following message is displayed:

usage: patch-utils <action> [options]
patch-utils: error: unrecognized arguments:

The listed arguments correspond to latest features added to the patching utility tool for Oracle
WebLogic Server for OKEinstances created after December 14, 2022 (22.4.3). So, if you are
using Oracle WebLogic Server for OKE instances created before release December 14, 2022,
you see the unrecognized arguments message.

Workaround:

Run patch-utils upgrade to upgrade the patching tool, if you are using the latest features of
the patching utility tool for your existing instances (created before release December 14, 2022).
See Upgrade Patching Tool.

Security Checkup Tool Warnings
Learn about the security check warnings that are displayed in the Oracle WebLogic Server
Administration console and how to troubleshoot them.

At the top of the WebLogic Server Administration console, the message Security warnings
detected. Click here to view the report and recommended remedies is displayed for
Oracle WebLogic Server for OKE instances created after July 20, 2021, or the instances on
which the July 2021 PSUs are applied.

When you click the message, a list of security warnings are displayed as listed in the following
table.

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-32

The warning messages listed in the table are examples.

Security Warnings

Warning Message Resolution

The configuration for
key stores for this
server are set to Demo
Identity and Demo Trust.
Trust Demo certificates
are not supported in
production mode domains.

Configure the identity and trust keystores for each server and the name
of the certificate in the identity keystore that the server uses for SSL
communication. See Configure Keystore Attributes for Identity and
Trust.

Note: This warning is displayed for Oracle WebLogic Server for OKE
instances created after October 20, 2021, or the instances on which the
October PSUs are applied.

SSL hostname
verification is disabled
by the SSL
configuration.

Review your applications before you make any changes to address
these SSL host name security warnings.

For applications that connect to SSL endpoints with a host name in the
certificate, which does not match the local machine's host name, the
connection fails if you configure the BEA host name verifier in Oracle
WebLogic Server.

For applications that connect to Oracle provided endpoints such as
Oracle Identity Cloud Service (for
example,*.identity.oraclecloud.com), the connection fails if you
did not configure the wildcard host name verifier or a custom host name
verifier that accepts wildcard host names. If you are not sure of the SSL
configuration settings you should configure to address the warning,
Oracle recommends that you configure the wildcard host name verifier.

You see the SSL host name verification warnings in case of existing
Oracle WebLogic Server for OKE instances (created before July 20,
2021). To address this warning, you must configure SSL with host name
verifier. See Configure SSL with host name verifier.

Production mode is
enabled but the file or
directory
<directory_name>/
startWebLogic.sh is
insecure since its
permission is not a
minimum of umask 027

Run the following command in the administration server as oracle
user:

chmod 640 /u01/data/domains/<domain_name>/bin

Remote Anonymous RMI T3
or IIOP requests are
enabled. Set the
RemoteAnonymousRMIT3Enab
led and
RemoteAnonymousRMIIIOPEn
abled attributes to
false.

Set the java properties for anonymous RMI T3 and IIOP requests
during server start up. See Set the Java Properties.

After you address the warnings, you must click Refresh Warnings to see the warnings
removed in the console.

For Oracle WebLogic Server for OKE instances created after July 20, 2021, though the java
properties to disable anonymous requests for preventing anonymous RMI access are
configured, the warnings still appear. This is a known issue in Oracle WebLogic Server.

Set the Java Properties

To set the java properties for anonymous RMI T3 and IIOP requests:

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-33

1. Edit the domain.yaml located in /u01/shared/weblogic-domains/<domain_name>/
domain.yaml for all instances of serverPod definitions as follows:

serverPod:
 env:
 - name: USER_MEM_ARGS
 #admin server memory is explicitly set to min of 256m and max of
512m and GC algo is G1GC
 value: "-Xms256m -Xmx512m -XX:+UseG1GC -
Djava.security.egd=file:/dev/./urandom"
 - name: JAVA_OPTIONS
 value: "-Dweblogic.store.file.LockEnabled=false
 -Dweblogic.rjvm.allowUnknownHost=true
 -Dweblogic.security.remoteAnonymousRMIT3Enabled=false
 -Dweblogic.security.remoteAnonymousRMIIIOPEnabled=false"

2. Apply the domain.yaml using the kubectl command:

kubectl -f <path_to_domain.yaml>

Configure Keystore Attributes for Identity and Trust

To configure the identity and trust keystore files and the name of the certificate in the identity
keystore in the WebLogic Server Administration console:

1. Locate the Change Center and click Lock & Edit to lock the editable configuration
hierarchy for the domain.

2. Under Domain structure, select Environment and then select Servers.

3. In the Servers table, select the server you want to configure.

4. On the Configuration tab, click Keystores, and then click Change.

5. Select Custom Identity and Custom Trust, and then click Save.

6. Under Identity, provide the following details:

a. Enter the full path of your identity keystore.

For example: /u01/data/keystores/identity.jks
b. For Custom Identity Keystore Type, enter JKS.

c. For Custom Identity Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Identity Keystore Passphrase.

7. Under Trust, provide the following details:

a. Enter the full path of your identity keystore.

For example, /u01/data/keystores/trust.jks
b. For Custom Trust Keystore Type, enter JKS.

c. For Custom Trust Keystore Passphrase, enter your keystore password. Enter the
same value for Confirm Custom Trust Keystore Passphrase.

8. Click Save.

9. Click the SSL tab.

10. Under Identity, provide the following details:

Chapter 7
Troubleshoot a WebLogic Domain in Verrazzano

7-34

a. For Private Key Alias, enter the name of the certificate (private key) in the
identitykeystore, server_cert.

b. For Private Key Passphrase, enter the password for this certificate in the keystore.
Enter the same value for Confirm Private Key Passphrase.

By default, the password for the certificate is the same as the identity keystore
password.

11. Click Save.

After saving the changes, return to Change Center and click Activate Changes.

12. Repeat steps 3 to 9 to configure each server in the domain.

Get Additional Help and Contact Support
Use online help, email, customer support, and other tools if you have questions or problems
with Oracle WebLogic Server for OKE.

For customer support, you can create support tickets using the Oracle Cloud Infrastructure
(OCI) console or My Oracle Support.

Create Support Ticket Using OCI Console

Use the Support Center in Oracle Cloud Infrastructure console to create a support ticket for
your technical issues for Oracle WebLogic Server for OKE service in the Marketplace.

Note:

Make sure to provision your support account before you create a support request.
See Configuring Your Oracle Support Account in Oracle Cloud Infrastructure
documentation.

To create a support ticket:

1. Sign in to the Oracle Cloud Infrastructure console.

2. Click the navigation menu , and select Governance & Administration. Under
Support, click Support Center.

3. Click Create Support Request.
The Technical Support tab on the Support Options page is displayed.

4. For Issue Summary, enter the a title that summarizes your issue.

5. For Describe Your Issue, enter a brief description of your issue.

6. Select the severity level of the issue based on the impact of service.

7. Select Marketplace from the Select Service list.

8. Select Oracle WebLogic Server for OKE from the Select Category list.

9. Select the type of issue you are experiencing.

10. Click Create Support Request.

After you submit the request, My Oracle Support sends a confirmation email to the address
provided in the primary contact details. A follow-up email is sent if additional information is
required.

Chapter 7
Get Additional Help and Contact Support

7-35

http://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/usingsupport.htm

Optionally, you can create a support ticket using the Help menu and the Support button
in Oracle Cloud Infrastructure console. See Support Ticket Management in Oracle Cloud
Infrastructure documentation.

However, when you a create support ticket using these options, the support ticket may not be
assigned to a specific service or component for resources like compute instances, networks
and load balancers. So, it is recommended to use Support Center in Oracle Cloud
Infrastructure console to create support tickets.

Create Support Ticket Using My Oracle Support

Use the Service Request in My Oracle Support to create a support ticket for your technical
issues for Oracle WebLogic Server for OKE service in the Marketplace.

Note:

Make sure you have a Support Identifier which verifies your eligibility for Support
services, and an account at My Oracle Support.

To create a support ticket:

1. Sign in to My Oracle Support.

2. On the Service Requests tab, click Create Technical SR.

3. Enter the Problem Summary and the Problem Description.

4. Under Where is the Problem, click Cloud.

5. Select Oracle WebLogic Server for OCI Container Engine from the Service Type list.

6. Select the tenancy from the Service list.

7. Select a Problem Type and provide the Support Identifier details.

8. Click Next until you have provided all the mandatory information.

9. Click Submit.
Your service request is created.

For general help with Oracle Cloud Marketplace, see How Do I Get Support in Oracle Cloud
Infrastructure documentation.

Chapter 7
Get Additional Help and Contact Support

7-36

http://docs.cloud.oracle.com/iaas/Content/GSG/Tasks/contactingsupport_topic-Creating_a_Service_Request_Using_the_Console.htm
https://support.oracle.com/portal/
https://docs.oracle.com/en/cloud/marketplace/marketplace-cloud/appst/how-do-i-get-support-if-i-have-questions.html

8
Patches

Each Oracle WebLogic Server for OKE release includes patches from several products,
namely, Oracle WebLogic Server, Oracle JDeveloper, Oracle Java Development Kit, Oracle
Platform Security Services, and Oracle Web Services Manager.

Note:

If you are using Oracle WebLogic Server for OKE (Release 21.3.2 or earlier), see
Using Oracle WebLogic Server for OKE (Release 21.3.2 or earlier).

You can use the Automatic Patching Jenkins job to automatically schedule patching for the
required domains. See Automatic Patching.

The following table shows the patches in the Oracle WebLogic Server for OKE releases that
use multi-domain source type. Use your Oracle Support account to locate and download the
patch you want to apply.

Tip:

For a list of new features and enhancements that were added recently to improve
your Oracle WebLogic Server for OKE experience, see What’s New for Oracle
WebLogic Server for OKE.

Oracle WebLogic
Server for OKE
Version

Patches Patch List

24.2.2-oke_v1.28.2-1 14.1.1.0.0
• 36410357 - Coherence 14.1.1.0 Cumulative Patch 17 (14.1.1.0.17)
• 36454290 - WLS patch set update 14.1.1.0.240328
opatch version:
• 28186730 - Opatch 13.9.4.2.15 for EM 13.5 and FMW/WLS

12.2.1.4.0 and 14.1.1.0.0

April 2024 PSUs

24.2.2-oke_v1.28.2-1 12.2.1.4.0
• 36348444 - ADF BUNDLE PATCH 12.2.1.4.240228
• 36410345 - Coherence 12.2.1.4 Cumulative Patch 21 (12.2.1.4.21)
• 36402397 - OWSM BUNDLE PATCH 12.2.1.4.240313
• 36468190 - FMW Thirdparty Bundle Patch 12.2.1.4.240401
• 36440005 - WLS patch set update 12.2.1.4.240325
• 36316422 - OPSS Bundle Patch 12.2.1.4.240220

opatch version:
• 28186730 - Opatch 13.9.4.2.15 for EM 13.5 and FMW/WLS

12.2.1.4.0 and 14.1.1.0.0

April 2024 PSUs

8-1

Oracle WebLogic
Server for OKE
Version

Patches Patch List

24.1.1-oke_v1.26.7-1 14.1.1.0.0
• 36068072 - Coherence 14.1.1.0 Cumulative Patch 16 (14.1.1.0.16)
• 36124787 - WLS Patch Set Update 14.1.1.0.231220
• 35965633 - ADR for Weblogic Server 14.1.1.0 Size Optimized for

Jan 2024
opatch version:
• 28186730 - Opatch 13.9.4.2.14 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

January 2024 PSUs

24.1.1-oke_v1.26.7-1 12.2.1.4.0
• 36068046 - Coherence 12.2.1.4 Cumulative Patch 20 (12.2.1.4.20)
• 36155700 - WLS Patch Set Update 12.2.1.4.240104
• 36074941 - ADF Bundle Patch 12.2.1.4.231205
• 36086980 - FMW Thirdparty Bundle Patch 12.2.1.4.231207
• 35965629 - ADR for Weblogic Server 12.2.1.4.0 Size Optimized for

Jan 2024
• 35868571 - OWSM Bundle Patch 12.2.1.4.231003
opatch version:
• 28186730 - Opatch 13.9.4.2.14 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

January 2024 PSUs

23.4.1-oke_v1.26.7-1 14.1.1.0.0
opatch:
• 35778872 - Coherence 14.1.1.0 Cumulative Patch 15 (14.1.1.0.15)
• 35904051 - WLS Patch Set Update 14.1.1.0.231012
• 35476075 - ADR for Weblogic Server 14.1.1.0 CPU OCT 2023

opatch version:
• 28186730 - Opatch 13.9.4.2.14 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

October 2023 PSUs

23.4.1-oke_v1.26.7-1 12.2.1.4.0
opatch:
• 35778804 - Coherence 12.2.1.4 Cumulative Patch 19 (12.2.1.4.19)
• 35893811 - WLS Patch Set Update 12.2.1.4.231010
• 35735469 - ADF Bundle Patch 12.2.1.4.230823
• 35882299 - FMW Thirdparty Bundle Patch 12.2.1.4.231006
• 35476067 - ADR for Weblogic Server 12.2.1.4.0 CPU OCT 2023
• 34302154 - oracle.security.restsec.jwt.JwtToken has reference to

jackson 1.x

opatch version:
• 28186730 - Opatch 13.9.4.2.14 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

October 2023 PSUs

23.3.2-oke_v1.26.2-1 14.1.1.0.0
opatch:
• 35505236 - Coherence 14.1.1.0 Cumulative Patch 14 (14.1.1.0.14)
• 35560771 - WLS Patch Set Update 14.1.1.0.230703

opatch version:
• 28186730 - Opatch 13.9.4.2.13 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

July 2023 PSUs

Chapter 8

8-2

Oracle WebLogic
Server for OKE
Version

Patches Patch List

23.3.2-oke_v1.26.2-1 12.2.1.4.0
opatch:
• 35505207 - Coherence 12.2.1.4 Cumulative Patch 18 (12.2.1.4.18)
• 35557681 - WLS Patch Set Update 12.2.1.4.230702
• 35503128 - ADF Bundle Patch 12.2.1.4.230615
• 35547646 - FMW Thirdparty Bundle Patch 12.2.1.4.230628
• 32471832 - System prop to disable all file store locks.

opatch version:
• 28186730 - Opatch 13.9.4.2.13 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

July 2023 PSUs

23.3.1-oke_v1.26.2-1 14.1.1.0.0
opatch:
• 35505236 - Coherence 14.1.1.0 Cumulative Patch 14 (14.1.1.0.14)
• 35560771 - WLS Patch Set Update 14.1.1.0.230703

opatch version:
• 28186730 - Opatch 13.9.4.2.13 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

July 2023 PSUs

23.3.1-oke_v1.26.2-1 12.2.1.4.0
opatch:
• 35505207 - Coherence 12.2.1.4 Cumulative Patch 18 (12.2.1.4.18)
• 35557681 - WLS Patch Set Update 12.2.1.4.230702
• 35503128 - ADF Bundle Patch 12.2.1.4.230615
• 35547646 - FMW Thirdparty Bundle Patch 12.2.1.4.230628

opatch version:
• 28186730 - Opatch 13.9.4.2.13 for EM 13.4, 13.5 and FMW/WLS

12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0

July 2023 PSUs

23.2.2-oke_v1.25.4-1 14.1.1.0.0
opatch:
• 35227385 - WLS patch set update 14.1.1.0.230328
• 35122412 - Coherence 14.1.1.0 Cumulative Patch 13 (14.1.1.0.13)
opatch version:
• 28186730 - Opatch 13.9.4.2.12 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

April 2023 PSUs

Chapter 8

8-3

Oracle WebLogic
Server for OKE
Version

Patches Patch List

23.2.2-oke_v1.25.4-1 12.2.1.4.0
opatch:
• 35226999 - WLS patch set update 12.2.1.4.230328
• 35122398 - Coherence 12.2.1.4 Cumulative Patch 17 (12.2.1.4.17)
• 35159582 - OWSM Bundle Patch 12.2.1.4.230308
• 35162846 - FMW Third party Bundle Patch 12.2.1.4.230309
• 35148842 - ADF BUNDLE PATCH 12.2.1.4.230306
• 33093748 - FMW Platform 12.2.1.4.0 SPU for APR CPU 2021
• 30385564 - Oracle XML Developers Kit patch
• 33950717 - OPSS Bundle Patch 12.2.1.4.220311
• 31544353 - ADR for WebLogic Server 12.2.1.4.0 July CPU 2020
• 33903365 - FMW consoles fail after applying JDK 1.80.331 (April

Java CPU) or later
• 34542329 - Merge request on top of 12.2.1.4.0 for bugs 34280277,

26354548, 26629487, 29762601
opatch version:
• 28186730 - Opatch 13.9.4.2.12 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

April 2023 PSUs

23.2.1-oke_v1.24.1-2 14.1.1.0.0
opatch:
• 35227385 - WLS patch set update 14.1.1.0.230328
• 35122412 - Coherence 14.1.1.0 Cumulative Patch 13 (14.1.1.0.13)
opatch version:
• 28186730 - Opatch 13.9.4.2.12 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

April 2023 PSUs

23.2.1-oke_v1.24.1-2 12.2.1.4.0
opatch:
• 35226999 - WLS patch set update 12.2.1.4.230328
• 35122398 - Coherence 12.2.1.4 Cumulative Patch 17 (12.2.1.4.17)
• 35159582 - OWSM Bundle Patch 12.2.1.4.230308
• 35162846 - FMW Third party Bundle Patch 12.2.1.4.230309
• 35148842 - ADF BUNDLE PATCH 12.2.1.4.230306
• 33093748 - FMW Platform 12.2.1.4.0 SPU for APR CPU 2021
• 30385564 - Oracle XML Developers Kit patch
• 33950717 - OPSS Bundle Patch 12.2.1.4.220311
• 31544353 - ADR for WebLogic Server 12.2.1.4.0 July CPU 2020
• 33903365 - FMW consoles fail after applying JDK 1.80.331 (April

Java CPU) or later
• 34542329 - Merge request on top of 12.2.1.4.0 for bugs 34280277,

26354548, 26629487, 29762601
opatch version:
• 28186730 - Opatch 13.9.4.2.12 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

April 2023 PSUs

23.1.2-oke_v1.24.1-1 14.1.1.0.0
opatch:
• 34890864 - WLS patch set update 14.1.1.0.221213
• 34845949 - Coherence 14.1.1.0 Cumulative Patch 12 (14.1.1.0.12)
opatch version:
• 28186730 - Opatch 13.9.4.2.11 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

January 2023 PSUs

Chapter 8

8-4

Oracle WebLogic
Server for OKE
Version

Patches Patch List

23.1.2-oke_v1.24.1-1 12.2.1.4.0
opatch:
• 34883826 - WLS patch set update 12.2.1.4.221210
• 34845927 - Coherence 12.2.1.4 Cumulative Patch 16 (12.2.1.4.16)
• 34839859 - OWSM Bundle Patch 12.2.1.4.221128
• 34879707 - FMW Third party Bundle Patch 12.2.1.4.221209
• 34944256 - ADF Bundle Patch 12.2.1.4.230103
• 33093748 - FMW Platform 12.2.1.4.0 SPU for APR CPU 2021
• 30385564 - Oracle XML Developers Kit patch
• 33950717 - OPSS Bundle Patch 12.2.1.4.220311
• 31544353 - ADR for WebLogic Server 12.2.1.4.0 July CPU 2020
• 33903365 - FMW consoles fail after applying JDK 1.80.331 (April

Java CPU) or later
• 34542329 - Merge request on top of 12.2.1.4.0 for bugs 34280277,

26354548, 26629487, 29762601
opatch version:
• 28186730 - Opatch 13.9.4.2.11 for EM 13.4, 13.5 and for

FMW/WLS 12.2.1.4.0, and 14.1.1.0.0

January 2023 PSUs

About Patching Utility Tool
Oracle WebLogic Server for OKE provides the patching utility tool to download the patches for
the WebLogic Server instances. This utility can be used if you do not have access to the
support portal to download the required patches.

You can use this patching utility tool on the Administration host and the bastion instance.

Patch Management Using Patching Utility
Use the patching utility tool in Oracle WebLogic Server for OKE to list and download the
patches, and view the patching tool version and upgrade the patching tool.

To apply the patches, see Apply a WebLogic Server Patch.

You can perform the following tasks using the patching utility tool:

Note:

If you want to use some of the new features, which were added to the patching utility
tool in December 14, 2022, for your existing Oracle WebLogic Server for OKE
instances (created before December 14, 2022), then ensure that you upgrade the
patching tool. See Upgrade Patching Tool.

• View Patching Tool Version

• Configure Initial Setup

• List Patches

• View Patch Details

Chapter 8
About Patching Utility Tool

8-5

• Download Patches

• Upgrade Patching Tool

View Patching Tool Version
Use the patching tool to view the build version along with the Oracle license and copyright
information.

1. Connect to the Administration Server node as the opc user.

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. Print the build version.

patch-utils -v

Sample output:

Weblogic Cloud Patch-Utils <Patch version number>)
Copyright (c) 2020, Oracle Corporation and/or its affiliates.Licensed
under the Universal Permissive License v 1.0 as shown at
https://oss.oracle.com/licenses/upl.

Configure Initial Setup
Use the patching tool to configure the region from where to download the patches and create
the configuration file in the specified Middleware Home.

Currently, the regions: us-phoenix-1, us-ashburn-1, eu-frankfurt-1, ap-mumbai-1, ap-tokyo-1,
and sa-saopaulo-1 are supported.

Note:

You must set up the configuration before you run the patching tool on any
provisioned VM.

1. Connect to the Administration Server node as the opc user.

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. Set up the configuration.

patch-utils setup

Sample output:

Enter middleware home (default: /u01/app/oracle/middleware):
Choose oci region for patch download

Chapter 8
Patch Management Using Patching Utility

8-6

['us-ashburn-1', 'eu-frankfurt-1', 'ap-mumbai-1', 'ap-tokyo-1', 'us-
phoenix-1', 'sa-saopaulo-1']: us-phoenix-1
Created config file [/home/opc/.patchutils/config]

List Patches
Use the patching tool to list all the available patches in the patch catalog. You can also list
current patches and latest patches that are available in the patching tool repository.

Note:

You must set up the configuration file before running the patch-utils list
command. See Configure Initial Setup.

1. Connect to the Administration Server node as the opc user.

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. Run the following commands to list patches:

• List all patches in the patch catalog for the applicable WebLogic Server version.

patch-utils list

Sample output:

<Patch number> ADF Bundle Patch for Bug: <Bug number>, WLS version:
<WLS version number>
<Patch number> OPSS Patch Bundle Patch for Bug:<Bug number>, WLS
version: <WLS version number>
<Patch number> PATCH <Patch number>- OPATCH <OPatch version number>FOR
FMW/WLS <WLS version number>AND <WLS version number>
<Patch number> Oracle Coherence Patch Bundle Patch for Bug:<Bug
number>, WLS version: <WLS version number>
<Patch number>Weblogic Service Patch Bundle Patch for Bug:<Bug number>,
WLS version: <WLS version number>

• List all the current patches based on OPatch utility for 12c.

patch-utils list -a

Sample output:

Listing current patches
Oracle Interim Patch Installer version <Patch version number>)
Copyright (c) 2020, Oracle Corporation. All rights reserved
Oracle Home : /u01/app/oracle/middleware
Central Inventory : /u01/app/oraInventory from : /u01/app/oracle/
middleware/oraInst.loc
OPatch version : <OPatch Version number>

Chapter 8
Patch Management Using Patching Utility

8-7

OUI version : <OUI Version number>
Log file location : /u01/app/oracle/middleware/cfgtoollogs/opatch/
<opatchtimestamp>.log
OPatch detects the Middleware Home as "/u01/app/oracle/middleware"
Lsinventory Output file location : /u01/app/oracle/middleware/
cfgtoollogs/opatch/lsinv/<lsinventoryopatchtimestamp>.txt
Local Machine Information:
Hostname: testwls-wls-0.wlssubnet.subnet1.oraclevcn.com
ARU platform id: <ID number>
ARU platform description:: Linux x86-64
Interim patches (1):
Patch <WebLogic 12c version number>: applied on <day month date time>
Unique Patch ID: <Patch ID number>
Patch description: "Bundle patch for Oracle Coherence Version <WebLogic
12c version number>"
Created on <date month year time>
Bugs fixed:<Bug number>
OPatch succeeded.

• List the latest patches and other component patches for the relevant WebLogic Server
version, from the available patches in catalog.
In case of multiple Middleware Homes for WebLogic Server compute instances,, you
can use the patch-utils setup command to change the Middleware Home.

patch-utils list -L

Sample output on the WebLogic Server compute instance:

Patch Id Description

--

<Patch number> FMW Thirdparty Bundle Patch 12.2.1.4.220915
<Patch number> Opatch 13.9.4.2.11 for EM 13.4, 13.5 and FMW/WLS
12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0
<Patch number> WLS Patch Set Update 12.2.1.4.220929
<Patch number> Merge Request on Top of 12.2.1.4.0 for Bugs <Bug
number> <Bug number> <Bug number> <Bug number>
<Patch number> Coherence 12.2.1.4 Cumulative Patch 15 (12.2.1.4.15)

Sample output on the administration instance:

Choose wls type ['WLS', 'FusionMiddleware', 'Coherence', 'Forms',
'Database'] (default: ALL):

Patch Id Description

--

<Patch number> FMW Thirdparty Bundle Patch 12.2.1.4.220915
<Patch number> Opatch 13.9.4.2.11 for EM 13.4, 13.5 and FMW/WLS
12.2.1.3.0, 12.2.1.4.0 and 14.1.1.0.0
<Patch number> WLS Patch Set Update 12.2.1.4.220929
<Patch number> Merge Request on Top of 12.2.1.4.0 for Bugs <Bug

Chapter 8
Patch Management Using Patching Utility

8-8

number> <Bug number> <Bug number> <Bug number>
<Patch number> Coherence 12.2.1.4 Cumulative Patch 15 (12.2.1.4.15)

View Patch Details
Use the patching tool to view information of the specified patch.

The WebLogic Server patches include the readme file that provides the patch details and other
useful information about patching.

1. Connect to the Administration Server node as the opc user.

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. View the information for the selected patch.

patch-utils info -i <Patch ID>

By default, the first ten lines of the readme.txt file is displayed.

Sample output:

Patch Set Update (PSU) for Bug: <Bug number>
Date: Fri Feb 28 17:33:37 2020
Platform Patch for : Generic
Product Patched : ORACLE WEBLOGIC SERVER
Product Version : <WLS version number>
This document describes how to install patch for bug # 31985811.It
includes the following sections:
Section 1: Known Issues
.......
more
....

You can define the number of lines to be displayed using the -l parameter.

For example, to print 25 lines, run the following command:

patch-utils info -i <Patch ID> -n 25

Download Patches
Use the patching tool to download the patches to the specified location.

You can download the patches if NAT gateway is configured. However, if you provision an
instance in a private subnet without a bastion (without NAT gateway), you must create a
temporary bastion instance in the Oracle Cloud Infrastructure console, and then use the
patching tool to download the patches on the bastion host. The patches are encrypted and can
only be applied on the WebLogic Server VMs using the patching utility tool.

1. Connect to the Administration Server node as the opc user.

Chapter 8
Patch Management Using Patching Utility

8-9

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. Run the following commands to download patches:

• Download latest patches.

patch-utils download -L -p /tmp/<Location to download>

Sample output:

Successfully downloaded following patches.
Please copy them to weblogic hosts and apply them locally.['<Patch
ID_Generic.zip']

• Download patches using patch ID.
Sample output:

patch-utils download -l <Patch ID> -p /tmp/<Location to download>

Note:

To download multiple patches, specify the patch IDs as comma separated
values. Make sure to download the patches to an accessible location.

Sample output:

Successfully downloaded following patches.
Please copy them to weblogic hosts and apply them locally.['<Patch
ID_Generic.zip']

Upgrade Patching Tool
Use the patching tool to upgrade the patching tool utility to the latest version.

1. Connect to the Administration Server node as the opc user.

The SSH command format is:

ssh -i path_to_private_key opc@admin_ip

2. Upgrade patch-utils to the latest version.

patch-utils upgrade

Chapter 8
Patch Management Using Patching Utility

8-10

Note:

This command is used to upgrade VMs if the NAT Gateway is enabled on the
WebLogic Server subnet.
Sample output:

Successfully updated patch-utils to [<Patch Utils version
number>]. Please rerun patch-utils.

Chapter 8
Patch Management Using Patching Utility

8-11

A
Oracle Cloud Identifiers and Listings

Learn about the list of Oracle WebLogic Server for OKE images available on the Partner Image
Catalog that contains the entitlement to use the different versions of Oracle WebLogic software
for Oracle WebLogic Server for OKE UCM application. These images are priced at the same
rate as the Oracle WebLogic Server Enterprise Edition for OKE and Oracle WebLogic Suite for
OKE stacks.

See Oracle WebLogic Server Enterprise Edition for OKE and Oracle WebLogic Suite for OKE.

Note:

To view the pricing details, click the Get App link.

The following table shows the listings and the OCIDs for the different Oracle WebLogic Server
editions of Oracle WebLogic Server for OKE.

WebLogic Server
Edition

Image Name Image ID Listing ID Resource Version ID

Oracle WebLogic
Server Enterprise
Edition

wlsoke-custom-np-
image-ee-
UCM-20.4.1-20091703
0044

ocid1.image.oc1..a
aaaaaaaibbsg23uasf
77j4kdldnjnbmgkfjx
d5gqywabs3hwx2jw45
pj24q

ocid1.appcatalogli
sting.oc1..aaaaaaa
abw6dti6ejlfe4h5vc
dtuemmzcbxc6myje2t
4au6fox5excyiy2ma

20.4.1-200917030044-
092120202314

Oracle WebLogic Suite
Edition

wlsoke-custom-np-
image-suite-
UCM-20.4.1-20091703
0044

ocid1.image.oc1..a
aaaaaaaznbtycmdn77
47itt3qmipjvnui4xn
njgiztteszgghnjepj
rbknq

ocid1.appcatalogli
sting.oc1..aaaaaaa
aln2a5njbk3mtcqmok
jrptv62cqeoqrm4nty
jojko5lqypqbgucua

20.4.1-200917030044-
092120202313

A-1

https://cloudmarketplace.oracle.com/marketplace/en_US/listing/85494230
https://cloudmarketplace.oracle.com/marketplace/en_US/listing/85491286

B
License Information

Learn about the licensed third-party technology associated with Oracle WebLogic Server for
OKE.

Open Source or Other Separately Licensed Software

Required notices for open source or other separately licensed software products or
components distributed in Oracle WebLogic Server for OKE are identified in the following table
along with the applicable licensing information. Additional notices and/or licenses may be
found in the included documentation or readme files of the individual third party software.

Provider Component(s) Licensing Information

Docker Inc. Docker

19.03.11.ol-4.el7

Apache License Version 2

Jenkins CI Jenkins

2.235.5

MIT License

Jenkins CI Jenkins active choices-plugin

2.3

MIT License

Jenkins CI Jenkins Mask Passwords Plug-in

2.13

MIT License

Kubernetes kubectl

1.17.9

Apache License Version 2

NginX NGINX Ingress Controller

0.43.0

Apache License Version 2

Python Software Foundation Python

3.6.8-13.0.1.el7

Python License 2.0

The Helm Authors Helm

3.2.4

Apache License Version 2

The Kubernetes Authors Kubernetes Python Client

11.0.0

Apache License Version 2

The pip developers pip

20.1.1

MIT License

Yichun Zhang OpenResty

1.15.8.2

BSD License

B-1

https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://spdx.org/licenses/Python-2.0.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/MIT
https://opensource.org/licenses/BSD-2-Clause

C
Script Files

This section list all the required script files required for Oracle WebLogic Server for OKE.

Topics:

• Script File To Validate Network Setup

• Script File to Update SSL Certificate for Load Balancer

• Script File To Upgrade Cluster and Node Pool

Script File To Validate Network Setup
You must create a script file to validate if the existing WebLogic Server subnet and the
database subnets meet the prerequisites to provision the WebLogic instance in Oracle
WebLogic Server for OKE. You can copy the following scripts in Cloud Shell to perform the
validation. For example, copy the scripts and save the file as validateoke.sh.

Script to validate existing public, private and database subnets meet the
prerequisites
for provisioning and proper functioning of Oracle WebLogic Server for OKE.
#
version="1.0.0"

Set Flags

Flags which can be overridden by user input.
Default values are below

DB_PORT=1521
SSH_PORT=22
BASTION_SUBNET_OCID=""
ADMIN_SUBNET_OCID=""
WORKER_SUBNET_OCID=""
FSS_SUBNET_OCID=""
LB_SUBNET_OCID=""

DB_SUBNET_OCID=""
BASTION_HOST_IP_CIDR=""

debug=false
args=()

function ip_to_int() {
 local ip_addr="${1}"
 local ip_1 ip_2 ip_3 ip_4

 ip_1=$(echo "${ip_addr}" | cut -d'.' -f1)
 ip_2=$(echo "${ip_addr}" | cut -d'.' -f2)
 ip_3=$(echo "${ip_addr}" | cut -d'.' -f3)

C-1

 ip_4=$(echo "${ip_addr}" | cut -d'.' -f4)

 echo $((ip_1 * 256**3 + ip_2 * 256**2 + ip_3 * 256 + ip_4))
}

##
Determine whether IP address is in the specified subnet.
#
Args:
cidr_subnet: Subnet, in CIDR notation.
ip_addr: IP address to check.
#
Returns:
0|1
##
function in_cidr_range() {
 local cidr_subnet="${1}"
 local ip_addr="${2}"
 local subnet_ip cidr_mask netmask ip_addr_subnet subnet rval

 subnet_ip=$(echo "${cidr_subnet}" | cut -d'/' -f1)
 cidr_mask=$(echo "${cidr_subnet}" | cut -d'/' -f2)

 netmask=$((0xFFFFFFFF << $((32 - ${cidr_mask}))))

 # Apply netmask to both the subnet IP and the given IP address
 ip_addr_subnet=$((netmask & $(ip_to_int ${ip_addr})))
 subnet=$((netmask & $(ip_to_int ${subnet_ip})))

 # Subnet IPs will match if given IP address is in CIDR subnet
 ["${ip_addr_subnet}" == "${subnet}"] && rval=0 || rval=1

 return $rval
}

##
Validates if one of service or nat gateways exist in the specified private
subnet.
#
Returns:
0|1
##
function validate_service_or_nat_gw_exist() {
 local subnet_ocid=$1
 local vcn_ocid=""
 local vcn_compartment_ocid=""
 is_private_subnet=$(oci network subnet get --subnet-id "${subnet_ocid}" |
jq -r '.data["prohibit-public-ip-on-vnic"]')

 if [[$is_private_subnet = true]]
 then
 vcn_ocid=$(oci network subnet get --subnet-id "${subnet_ocid}" | jq -r
'.data["vcn-id"]')
 vcn_compartment_ocid=$(oci network vcn get --vcn-id "${vcn_ocid}" | jq -r
'.data["compartment-id"]')
 # Check if NAT gateway exists in the VCN

Appendix C
Script File To Validate Network Setup

C-2

 res=$(oci network nat-gateway list --compartment-id $
{vcn_compartment_ocid} --vcn-id ${vcn_ocid})
 nat_gw_found=$(if [[-n $res]]; then echo 0; else echo 1; fi)

 # Check if Service gateway exists in the VCN
 res=$(oci network service-gateway list --compartment-id $
{vcn_compartment_ocid} --vcn-id ${vcn_ocid})
 svc_gw_found=$(if [[-n $res]]; then echo 0; else echo 1; fi)

 # One of NAT or Service Gateway must exist
 if [[$nat_gw_found -ne 0]] && [[$svc_gw_found -ne 0]]
 then
 echo 1
 return
 fi

 # Admin subnet should be using either NAT or service gateway or both in
its routetable
 rt_ocid=$(oci network subnet get --subnet-id ${subnet_ocid} | jq -r
'.data["route-table-id"]')
 rt_rules=$(oci network route-table get --rt-id ${rt_ocid} | jq -r
'.data["route-rules"]')
 rt_rules_count=$(echo $rt_rules | jq '.|length')

 nat=""
 svc=""
 nat_gw_id=""
 svc_gw_id=""

 for ((i = 0 ; i < $rt_rules_count ; i++))
 do
 network_entity_ocid=$(echo $rt_rules | jq -r --arg i "$i" '.[$i|
tonumber]["network-entity-id"]')
 nat_id=$(echo $network_entity_ocid | grep natgateway)
 if [[-n $nat_id]]; then nat_gw_id=$nat_id; fi

 svc_id=$(echo $network_entity_ocid | grep servicegateway)
 if [[-n $svc_id]]; then svc_gw_id=$svc_id; fi
 done

 if [[(-z $nat_gw_id && -z $svc_gw_id)]]; then
 echo 2
 return
 fi

 # If WLS subnet route table has a rule to use service gateway then it
should be using
 # all-<region-code>-services-in-oracle-services-network destination
 echo ""
 if [[-n $svc_gw_id]]
 then
 is_all_services_name=$(oci network service-gateway get --service-
gateway-id $svc_gw_id | jq -r '.data.services[0]["service-name"]' | grep -i
"all.*services in oracle services network")
 if [[-z $is_all_services_name]]
 then

Appendix C
Script File To Validate Network Setup

C-3

 echo 3
 return
 fi
 for ((i = 0 ; i < $rt_rules_count ; i++))
 do
 network_entity_ocid=$(echo $rt_rules | jq -r --arg i "$i" '.[$i|
tonumber]["network-entity-id"]')
 res=$(echo $network_entity_ocid | grep servicegateway)
 if [[-n $res]]
 then
 all_services_destination=$(echo $rt_rules | jq -r --arg i "$i" '.
[$i|tonumber].destination' | grep -i "all-.*-services-in-oracle-services-
network")
 if [[-z $all_services_destination]]
 then
 echo 4
 return
 fi
 fi
 done
 fi
 fi
 echo 0
}

##
Validates if the internet gateway exists in the VCN of Admin subnet.
Without Internet gateway in Admin Subnet VCN, SSH access from ORM will not
work.
When using terraform CLI from within private network, internet gateway is
not required.
Hence this check will give a warning and not an error.
#
Returns:
0|1
##
function validate_internet_gw_exist() {
 local subnet_ocid=$1
 local vcn_ocid=""
 local vcn_compartment_ocid=""

 vcn_ocid=$(oci network subnet get --subnet-id ${subnet_ocid} | jq -r
'.data["vcn-id"]')
 vcn_compartment_ocid=$(oci network vcn get --vcn-id ${vcn_ocid} | jq -r
'.data["compartment-id"]')
 # Check if Service gateway exists in the VCN
 res=$(oci network internet-gateway list --compartment-id $
{vcn_compartment_ocid} --vcn-id ${vcn_ocid})
 if [[-n $res]]; then
 echo 0
 else
 echo 1
 fi
}

##

Appendix C
Script File To Validate Network Setup

C-4

Checks if specified port is open to specified source CIDR in the specified
seclist's ingress rules.
#
Args:
seclist_ocid: Security list OCID for the security list to check ingress
rules for.
port: destination port to check
source: Source CIDR (either block/range of IPs or single IP (with /32
suffix)
#
Returns:
0|1
##
function check_tcp_port_open_in_seclist() {
 local seclist_ocid=$1
 local port=$2
 local source=$3
 local port_is_open=false
 local tcp_protocol="6"

 ingress_rules=$(oci network security-list get --security-list-
id $seclist_ocid | jq -r '.data["ingress-security-rules"]')
 ingress_rules_count=$(echo $ingress_rules | jq '.|length')

 for ((i = 0 ; i < $ingress_rules_count ; i++))
 do
 ingress_protocol=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|
tonumber].protocol')
 ingress_source=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|
tonumber].source')
 tcp_options=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]
["tcp-options"]')
 port_min=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]["tcp-
options"]["destination-port-range"].min')
 port_max=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]["tcp-
options"]["destination-port-range"].max')

 source_in_cidr_range=1
 if [[$source = "0.0.0.0/0"]]
 then
 if [[$ingress_source = $source]]
 then
 source_in_cidr_range=0
 else
 source_in_cidr_range=1
 fi
 else
 source_in_cidr_range=$(in_cidr_range $ingress_source $source ; echo $?)
 fi

 if [[($ingress_protocol = "all" || $ingress_protocol = $tcp_protocol)
&& ($tcp_options = "null" || ($port -ge $port_min && $port -
le $port_max)) && $source_in_cidr_range -eq 0]]
 then
 port_is_open=true
 echo 0

Appendix C
Script File To Validate Network Setup

C-5

 return
 fi
 done
 echo 1
}

##
Validates if the specified TCP port is open for the WLS subnet CIDR.
#
Args:
port: Destination port
source_cidr: Source CIDR
#
Returns:
0|1
##
function validate_subnet_port_access() {
 local port_found_open=1
 local subnet=$1
 local port=$2
 local source_cidr=$3
 local protocol=$4 # Default protocol is TCP, if it is UDP then need to pass
this param
 sec_lists=$(oci network subnet get --subnet-id ${subnet} | jq -c
'.data["security-list-ids"]')
 # Convert to bash array
 declare -A seclists_array

 while IFS="=" read -r key value
 do
 seclists_array[$key]="$value"
 done < <(jq -r 'to_entries|map("\(.key)=\(.value|tostring)")|.[]' <<<
"$sec_lists")
 # Check the ingress rules for specified destination port is open for access
by source CIDR
 for seclist_ocid in "${seclists_array[@]}"
 do
 if [[$port_found_open -ne 0]]; then
 if [[-z $protocol]]; then # default is TCP
 port_found_open=$(check_tcp_port_open_in_seclist $seclist_ocid "$
{port}" "$source_cidr")
 else # protocol param is non empty then udp
 port_found_open=$(check_udp_port_open_in_seclist $seclist_ocid "$
{port}" "$source_cidr")
 fi
 fi
 done
 echo $port_found_open
}

##
Checks if specified UDP port is open to specified source CIDR in the
specified seclist's ingress rules.
#
Args:
seclist_ocid: Security list OCID for the security list to check ingress

Appendix C
Script File To Validate Network Setup

C-6

rules for.
port: destination port to check
source: Source CIDR (either block/range of IPs or single IP (with /32
suffix)
#
Returns:
0|1
##
function check_udp_port_open_in_seclist() {
 local seclist_ocid=$1
 local port=$2
 local source=$3
 local port_is_open=false
 local udp_protocol="17"

 ingress_rules=$(oci network security-list get --security-list-
id $seclist_ocid | jq -r '.data["ingress-security-rules"]')
 ingress_rules_count=$(echo $ingress_rules | jq '.|length')

 for ((i = 0 ; i < $ingress_rules_count ; i++))
 do
 ingress_protocol=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|
tonumber].protocol')
 ingress_source=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|
tonumber].source')
 udp_options=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]
["udp-options"]')
 port_min=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]["udp-
options"]["destination-port-range"].min')
 port_max=$(echo $ingress_rules | jq -r --arg i "$i" '.[$i|tonumber]["udp-
options"]["destination-port-range"].max')

 source_in_cidr_range=1
 if [[$source = "0.0.0.0/0"]]
 then
 if [[$ingress_source = $source]]
 then
 source_in_cidr_range=0
 else
 source_in_cidr_range=1
 fi
 else
 source_in_cidr_range=$(in_cidr_range $ingress_source $source ; echo $?)
 fi

 if [[($ingress_protocol = "all" || $ingress_protocol = $udp_protocol)
&& ($udp_options = "null" || ($port -ge $port_min && $port -
le $port_max)) && $source_in_cidr_range -eq 0]]
 then
 port_is_open=true
 echo 0
 return
 fi
 done
 echo 1
}

Appendix C
Script File To Validate Network Setup

C-7

##
Validates if CIDR is a valid single host IP (must end with /32 suffix).
#
Args:
ip_cidr: Single host IPv4 Address in CIDR format
#
Returns:
0|1
##
function is_valid_ip_cidr() {
 local ip_cidr=$1

 is_valid=$(echo ${ip_cidr} | grep -E '^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4]
[0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/
(32))$')
 if [[-n $is_valid]]; then
 echo 0
 else
 echo 1
 fi
}

############## Begin Options and Usage ###################

Print usage
usage() {
 echo -n "$0 [OPTIONS]...

 This script is used to validate existing subnets for OKE - Bastion, Admin,
Worker, FSS, LB subnets (and optionally database subnets) are setup correctly.
 ${bold}Options:${reset}
 -b, --bastionsubnet Bastion Subnet OCID (Required)
 -a, --adminsubnet Admin Subnet OCID (Required)
 -w --workersubnet Workers Subnet OCID (Required)
 -f --fsssubnet FSS Subnet OCID (Required)
 -l --lbsubnet LB Subnet OCID (Required)
 -d, --dbsubnet DB Subnet OCID
 -i, --bastionipcidr Bastion Host IP CIDR (should be suffixed with /32)
 --debug Runs script in BASH debug mode (set -x)
 -h, --help Display this help and exit
 --version Output version information and exit
 "
}

Iterate over options breaking -ab into -a -b when needed and --foo=bar into
--foo bar
optstring=h
unset options
while (($#)); do
 case $1 in
 # If option is of type -ab
 -[!-]?*)
 # Loop over each character starting with the second
 for ((i=1; i < ${#1}; i++)); do

Appendix C
Script File To Validate Network Setup

C-8

 c=${1:i:1}

 # Add current char to options
 options+=("-$c")

 # If option takes a required argument, and it's not the last char make
 # the rest of the string its argument
 if [[$optstring = *"$c:"* && ${1:i+1}]]; then
 options+=("${1:i+1}")
 break
 fi
 done
 ;;

 # If option is of type --foo=bar
 --?*=*) options+=("${1%%=*}" "${1#*=}") ;;
 # add --endopts for --
 --) options+=(--endopts) ;;
 # Otherwise, nothing special
 *) options+=("$1") ;;
 esac
 shift
done
set -- "${options[@]}"
unset options

Print help if no arguments were passed.
[[$# -eq 0]] && set -- "--help"

Read the options and set stuff
while [[$1 = -?*]]; do
 case $1 in
 -h|--help) usage >&2; exit 0 ;;
 --version) echo "$(basename $0) ${version}"; exit 0 ;;
 -b|--bastionsubnet) shift; BASTION_SUBNET_OCID=${1} ;;
 -a|--adminsubnet) shift; ADMIN_SUBNET_OCID=${1} ;;
 -w|--workersubnet) shift; WORKER_SUBNET_OCID=${1} ;;
 -f|--fsssubnet) shift; FSS_SUBNET_OCID=${1} ;;
 -l|--lbsubnet) shift; LB_SUBNET_OCID=${1} ;;
 -d|--dbsubnet) shift; DB_SUBNET_OCID=${1} ;;
 -i|--bastionipcidr) shift; BASTION_HOST_IP_CIDR=${1} ;;
 --debug) debug=true;;
 --endopts) shift; break ;;
 *) "invalid option: '$1'." ; usage >&2; exit 1 ;;
 esac
 shift
done

Store the remaining part as arguments.
args+=("$@")

############## End Options and Usage ###################

#############
MAIN SCRIPT BODY
##

Appendix C
Script File To Validate Network Setup

C-9

##
#############

Set IFS to preferred implementation
IFS=$'\n\t'

Exit on error. Append '||true' when you run the script if you expect an
error.
set -o errexit

Run in debug mode, if set
if ${debug}; then set -x ; fi

Bash will remember & return the highest exitcode in a chain of pipes.
This way you can catch the error in case mysqldump fails in `mysqldump |
gzip`, for example.
set -o pipefail

Validate all required params are present
if [[-z ${BASTION_SUBNET_OCID} || -z ${ADMIN_SUBNET_OCID} || -z $
{WORKER_SUBNET_OCID} || -z ${FSS_SUBNET_OCID} || -z ${LB_SUBNET_OCID}]]
then
 echo "One or more required params are not specified. Please provide either
bastion and Admin subnet OCIDs"
 usage >&2
 exit
fi

vcn_ocid=$(oci network subnet get --subnet-id "${BASTION_SUBNET_OCID}" | jq -
r '.data["vcn-id"]')
vcn_cidr=$(oci network vcn get --vcn-id "${vcn_ocid}" | jq -r '.data["cidr-
block"]')

Check if SSH port - 22 is open for access by Bastion Subnet
if [[-n ${BASTION_SUBNET_OCID} || -n ${BASTION_HOST_IP_CIDR}]]
then
 all_ips="0.0.0.0/0"
 res=$(validate_subnet_port_access "${BASTION_SUBNET_OCID}" "${SSH_PORT}" "$
{all_ips}")

 if [[${res} -ne 0]]
 then
 echo "ERROR: SSH port ${SSH_PORT} is not open for access by [$all_ips]
in -- ${BASTION_SUBNET_OCID}"
 fi

 # Check if bastion host IP is valid CIDR
 bastion_cidr_block=""
 if [[-n ${BASTION_HOST_IP_CIDR}]]
 then
 is_valid_cidr=$(is_valid_ip_cidr "${BASTION_HOST_IP_CIDR}")
 if [[$is_valid_cidr -ne 0]]
 then
 echo "Bastion host IP CIDR is not valid: [${BASTION_HOST_IP_CIDR}]"
 usage >&2
 exit

Appendix C
Script File To Validate Network Setup

C-10

 fi
 bastion_cidr_block=${BASTION_HOST_IP_CIDR}
 else
 bastion_cidr_block=$(oci network subnet get --subnet-id "$
{BASTION_SUBNET_OCID}" | jq -r '.data["cidr-block"]')
 fi

 # Check if bastion CIDR has access to SSH port on ADMIN subnet
 res=$(validate_subnet_port_access "${ADMIN_SUBNET_OCID}" "${SSH_PORT}" "$
{bastion_cidr_block}")

 if [[$res -ne 0]]
 then
 echo "WARNING: SSH port ${SSH_PORT} is not open for access by Bastion
Subnet CIDR [$bastion_cidr_block] in private Admin Subnet
[$ADMIN_SUBNET_OCID]"
 fi
fi

Check if service or NAT gateway exists in ADMIN & WORKER subnet's VCN.
if [[-n ${ADMIN_SUBNET_OCID} && -n ${WORKER_SUBNET_OCID}]]
then
 subnet_names=('ADMIN_SUBNET' 'WORKER_SUBNET')
 i=0
 for subnet_ocid in ${ADMIN_SUBNET_OCID} ${WORKER_SUBNET_OCID}; do
 res=$(validate_service_or_nat_gw_exist "${subnet_ocid}")
 if [[$res -eq 1]]
 then
 echo "ERROR: Missing Service or NAT gateway in the VCN of the private $
{subnet_names[i]} subnet ocid [$subnet_ocid]"
 elif [[$res -eq 2]]
 then
 echo "ERROR: Private ${subnet_names[i]} subnet [$subnet_ocid] does not
use NAT or Service gateway"
 elif [[$res -eq 3]]
 then
 echo "ERROR: Service Gateway in VCN of private ${subnet_names[i]}
subnet [$subnet_ocid] does not allow access to all services in Oracle
services network"
 elif [[$res -eq 4]]
 then
 echo "ERROR: Route Rule of private ${subnet_names[i]} subnet
[$subnet_ocid] does not use 'ALL Services in Oracle services network'
destination"
 fi
 done
fi

Check if internet gateway exists in BASTION & LB & FSS subnet's VCN.
subnet_names=('BASTION_SUBNET' 'LB_SUBNET' 'FSS_SUBNET_OCID')
i=0
for subnet_ocid in ${BASTION_SUBNET_OCID} ${LB_SUBNET_OCID} $
{FSS_SUBNET_OCID}; do
 res=$(validate_internet_gw_exist "${subnet_ocid}")

 if [[$res -ne 0]]

Appendix C
Script File To Validate Network Setup

C-11

 then
 echo "WARNING: Missing internet gateway in the VCN of the $
{subnet_names[i]} subnet [$subnet_ocid]"
 fi
 i=$((i+1))
done

Check if LB Subnet ports are open 0.0.0.0/0 all, 443, 80
all_ips="0.0.0.0/0"
for port in 'all' '443' '80'; do
 res=$(validate_subnet_port_access "${LB_SUBNET_OCID}" "${port}" "$
{all_ips}")

 if [[$res -ne 0]]
 then
 echo "WARNING: Port [$port] is not open for 0.0.0.0/0 in LB Subnet CIDR [$
{LB_SUBNET_OCID}]"
 fi
done

Check if Worker Subnet all protocols are open for workers subnet
worker_subnet_cidr=$(oci network subnet get --subnet-id "$
{WORKER_SUBNET_OCID}" | jq -r '.data["cidr-block"]')
res=$(validate_subnet_port_access "${WORKER_SUBNET_OCID}" "all" $
{worker_subnet_cidr})

if [[$res -ne 0]]
then
 echo "ERROR: All Protocols are not open for WORKER's Subnet CIDR [$
{worker_subnet_cidr}]"
fi

FSS subnet verification - Checking All TCP Ports are open in FSS SUBNET
OCID for VCN CIDR
for port in '111' '2048' '2049' '2050'; do
 res=$(validate_subnet_port_access "${FSS_SUBNET_OCID}" "${port}" "$
{vcn_cidr}")
 if [[$res -ne 0]]
 then
 echo "ERROR: TCP Port [${port}] is not open in FSS Subnet for VCN CIDR"
 fi
done

FSS subnet verification - UDP - '111' '2048' in FSS SUBNET OCID for VCN
CIDR"
for port in '111' '2048'; do
 res=$(validate_subnet_port_access "${FSS_SUBNET_OCID}" "${port}" "$
{vcn_cidr}" "UDP")
 if [[$res -ne 0]]
 then
 echo "ERROR: UDP Port [${port}] is not open in FSS Subnet for VCN CIDR"
 fi
done

Check if DB port is open for access by Worker's subnet CIDR in DB subnet
(only if DB subnet is provided)

Appendix C
Script File To Validate Network Setup

C-12

if [[-n ${DB_SUBNET_OCID}]]
then
 res=$(validate_subnet_port_access ${DB_SUBNET_OCID} ${DB_PORT} ${vcn_cidr})
 res1=$(validate_subnet_port_access ${DB_SUBNET_OCID} ${DB_PORT} $
{worker_subnet_cidr})

 if [[(${res} -ne 0) || (${res1} -ne 0)]]
 then
 echo "ERROR: DB port ${DB_PORT} is not open for access by VCN CIDR
[$vcn_cidr] or Worker Subnet CIDR [$worker_subnet_cidr] in DB Subnet
[$DB_SUBNET_OCID]"
 fi
fi

Script File to Update SSL Certificate for Load Balancer
You must create a script file, update_lb_ssl_cert.sh to update the OCI load balancer SSL
certificate, in the administration instance.

#!/bin/bash

Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
This software is dual-licensed to you under the Universal Permissive
License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache
License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may
choose either license.

This script provides a way to update the OCI load balancer ssl certificate.
#
The script will:
* Create a TLS secret in kubernetes
* Run Helm upgrade for ingress controller charts with new certificate
* Runs a check on the svc. Please check the annotations for the new
secret name.
#
Please refer to https://docs.oracle.com/en-us/iaas/Content/ContEng/Tasks/
contengcreatingloadbalancer.htm for more information

usage()
{
cat <<EOF
Usage: $0 [OPTION]
[Mandatory]
 -d WebLogic Domain Name
 -s Kubernetes secret name
 -k SSL Certificate Key file (e.g. tls.key)
 -c SSL Certificate file (e.g. tls.cert)
EOF
}

if ["$#" -eq 0]; then
 usage
 exit 1

Appendix C
Script File to Update SSL Certificate for Load Balancer

C-13

fi

while getopts ":d:s:k:c:h" opt; do
 case $opt in
 d) DOMAIN_NAME=$OPTARG >&2 ;;
 s) SSL_CERT_SECRET=$OPTARG >&2 ;;
 k) SSL_KEY_FILE=$OPTARG >&2 ;;
 c) SSL_CERT_FILE=$OPTARG >&2 ;;
 h) usage; exit 0 ;;
 \?) echo "Invalid option: -$OPTARG" >&2; usage; exit 1 ;;
 :) echo "Option -$OPTARG requires an argument." >&2; usage; exit 1 ;;
 esac
done

echo $DOMAIN_NAME $SSL_CERT_SECRET $SSL_KEY_FILE $SSL_CERT_FILE

if [[$DOMAIN_NAME == "" || $SSL_CERT_SECRET == "" || $SSL_KEY_FILE == ""
|| $SSL_CERT_FILE == ""]];then
 usage; exit 0;
fi

[[! -f $SSL_KEY_FILE]] && echo "Error:Cannot find $SSL_KEY_FILE." && exit 1

[[! -f $SSL_CERT_FILE]] && echo "Error:Cannot find $SSL_CERT_FILE." &&
exit 1

PROPERTIES_FILE="/u01/shared/provisioning_metadata.properties"
RELEASE_NAME="ingress-controller"
INGRESS_CHARTS=/u01/shared/scripts/pipeline/create_domain/ingress-controller
DEFAULT_VALUES=/u01/shared/weblogic-domains/$DOMAIN_NAME/ingress-controller-
inputs.yaml

[[! -f $PROPERTIES_FILE]] && echo "Error:Missing $PROPERTIES_FILE file." &&
exit 1;

[[! -f $DEFAULT_VALUES]] && echo "Error:Missing helm chart values file
[$DEFAULT_VALUES]" && exit 1;

INGRESS_NAMESPACE=$(cat $PROPERTIES_FILE| grep ingress_namespace | cut -d'=' -
f2)
OCIR_INGRESS_CONTROLLER_REPO=$(cat $PROPERTIES_FILE| grep
ocir_ingress_controller_repo | cut -d'=' -f2)

#1. Use the following command to create a TLS secret in Kubernetes, whose key
and certificate values are set by --key and --cert, respectively.
kubectl create secret tls $SSL_CERT_SECRET --key $SSL_KEY_FILE --
cert $SSL_CERT_FILE -n $INGRESS_NAMESPACE
kubectl create secret tls $SSL_CERT_SECRET --key $SSL_KEY_FILE --
cert $SSL_CERT_FILE -n $DOMAIN_NAME-ns

#2. Update helm charts with new SSL secret value
cmd_output=$(helm upgrade --install $RELEASE_NAME $INGRESS_CHARTS --
values $DEFAULT_VALUES --set cert_secret_name=$SSL_CERT_SECRET --set
ocir_ingress_image_tag=$OCIR_INGRESS_CONTROLLER_REPO --wait 2>&1)

Appendix C
Script File to Update SSL Certificate for Load Balancer

C-14

exit_code=$?
echo "${cmd_output}"

#3. Verify lb service is updated
kubectl describe svc "${DOMAIN_NAME}-lb-external" -n "${INGRESS_NAMESPACE}"

Script File To Upgrade Cluster and Node Pool
Use the script file in Oracle WebLogic Server for OKE to upgrade cluster and node pools. You
can upgrade either the cluster or the node pool, or both.

Note:

Ensure that you stop the domain before upgrading the nodepool, which contains the
domain pods running inside it. Run the following command to stop the domain:

/u01/scripts/wls-domain-lifecycle/stopDomain.sh -d <domain-name> -n
<domain-name>-ns

After you upgrade the nodepool, start the domain. Run the following command to
start the domain:

/u01/scripts/wls-domain-lifecycle/startDomain.sh -d <domain-name> -n
<domain-name>-ns

Copy the following script in a file named, upgrade_cluster.py, and then run the script on the
administration instance. See Upgrade Cluster and Node Pool Using Script .

#
Copyright (c) 2023, Oracle Corporation and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://
oss.oracle.com/licenses/upl.
#

import oci
import sys
import re
sys.path.append('/u01/scripts')
from metadata import databag

'''
A python class for upgrading kubernetes cluster and the node pools along with
the nodes to a given kubernetes version.

Note:
 - User is responsible to provide correct target Kubernetes version to
upgrade.

Prerequisites:
 - Requires python OCI SDK 2.90 or above. To install python OCI SDK, run the

Appendix C
Script File To Upgrade Cluster and Node Pool

C-15

following command as 'root' user in the
 WebLogic for OKE admin host
 python3 -m pip install oci==2.90

Description:
 - Recursively upgrades the kubernetes cluster till the target version (to be
provided by user) is reached
 (stops at the previous version if the target version is not available;
does not rollback to original version)
 - For each node pool ...
 -- Get the nodes and delete them
 -- Upgrade the node pool to target kubernetes version
 -- Create the nodes (the same number) in the node pool
 This script can be used to only upgrade the cluster or only upgrade the
nodepool. Caution should be exercised when
 providing the correct kubernetes target version. Current targets supported
are 1.24.x, 1.25.x and 1.26.x
'''

class UpgradeCluster():

 def __init__(self, target_k8s_version):
 self.k8s_version = target_k8s_version
 self.cluster_id = databag.get_oke_cluster_id()
 principal = oci.auth.signers.InstancePrincipalsSecurityTokenSigner()
 self.ce_client =
oci.container_engine.ContainerEngineClient(config={},signer=principal)
 self.ce_client_ops =
oci.container_engine.ContainerEngineClientCompositeOperations(self.ce_client)
 self.upgrade_complete = False

 def upgrade_cluster(self):
 if self.upgrade_complete:
 print ("OKE cluster upgrade completed.")
 return

 print ("Getting cluster information ...")
 response = self.ce_client.get_cluster(self.cluster_id)

 if response.status == 200:
 cluster = response.data
 available_k8s_upgrades = cluster.available_kubernetes_upgrades

 if len(available_k8s_upgrades) == 0:
 print ("The kubernetes cluster is already at the highest
available version")
 self.upgrade_complete = True
 return

 upgrade_version = available_k8s_upgrades[0]
 print ("Upgrading cluster to version %s" % upgrade_version)
 if not self.check_versions(upgrade_version):
 print ("The version %s is not available for upgrade for this
cluster." % self.k8s_version)
 sys.exit(1)

Appendix C
Script File To Upgrade Cluster and Node Pool

C-16

 # Upgrade the cluster
 update_cluster_details =
oci.container_engine.models.UpdateClusterDetails(
 kubernetes_version = upgrade_version)
 update_cluster_response =
self.ce_client_ops.update_cluster_and_wait_for_state (
 self.cluster_id, update_cluster_details,

wait_for_states=[oci.container_engine.models.WorkRequest.STATUS_SUCCEEDED,

oci.container_engine.models.WorkRequest.STATUS_FAILED])

 if update_cluster_response.status ==
oci.container_engine.models.WorkRequest.STATUS_FAILED:
 print ("Failed to upgrade cluster. %s" %
update_cluster_response.data)
 self.upgrade_complete = True
 sys.exit(1)

 print ("Upgraded cluster to version %s" % upgrade_version)
 if upgrade_version == self.k8s_version:
 self.upgrade_complete = True

 self.upgrade_cluster()
 else:
 print ("Failed to get the kubernetes cluster details. Response
[%s] " % response.status)
 sys.exit(1)

 def check_versions(self, available_version):
 # The version will be of the format v<major>.<minor>.<patch>. We
should check if <major>.<minor> matches the
 # target version (or less than target in which case we will upgrade
and get into next upgrade iteration).
 # If <major>.<minor> match with the target version, then compare the
available and target version as strings.
 available_version_split_list = available_version.split('.')
 target_version_split_list = self.k8s_version.split('.')

 # the major version should be less than or equal to the target
 major_version_available_str = available_version_split_list[0]
 major_version_desired_str = target_version_split_list[0]
 if major_version_available_str != major_version_desired_str:
 major_version_available_int = major_version_available_str[1:]
 major_version_desired_int = major_version_desired_str[1:]

 # available > desired. Skip the upgrade
 if major_version_available_int > major_version_desired_int:
 return False

 # Check the minor versions
 # If the available version is less than target, upgrade to the lower
version. Cluster upgrade is one version
 # at a time.
 if available_version_split_list[1] < target_version_split_list[1]:
 return True

Appendix C
Script File To Upgrade Cluster and Node Pool

C-17

 # Attempt to upgrade to a lower cluster version. Reject.
 elif available_version_split_list[1] > target_version_split_list[1]:
 return False
 # Minor versions match. Check the patch version
 elif available_version_split_list[1] == target_version_split_list[1]:
 if available_version_split_list[2] !=
target_version_split_list[2]:
 return False
 else:
 return True

 # Upgrade all the node pools to the target k8s version. This should be
done after the cluster upgrade.
 def upgrade_nodepools(self):
 print ("Upgrading node pools ...")
 # Get the list of nodepools
 comp_id =
self.ce_client.get_cluster(self.cluster_id).data.compartment_id
 node_pools_list = self.ce_client.list_node_pools(comp_id).data

 for node_pool_summary in node_pools_list:
 # check if the node pool kubernetes version is target version, if
yes, skip update
 if node_pool_summary.kubernetes_version == self.k8s_version or
node_pool_summary.cluster_id != self.cluster_id:
 continue

 # Delete the nodes in the nodepool. Update Node Pool will create
new nodes with the updated k8s version
 node_pool =
self.ce_client.get_node_pool(node_pool_summary.id).data
 for node in node_pool.nodes:
 print ("Deleting node %s from node pool %s" % (node.name,
node_pool.name))
 if node.lifecycle_state ==
oci.container_engine.models.Node.LIFECYCLE_STATE_ACTIVE:
 response =
self.ce_client_ops.delete_node_and_wait_for_state (
 node_pool.id, node.id,

wait_for_states=[oci.container_engine.models.WorkRequest.STATUS_SUCCEEDED,

oci.container_engine.models.WorkRequest.STATUS_FAILED])

 if response.status ==
oci.container_engine.models.WorkRequest.STATUS_FAILED:
 print ("Failed to delete nodes in the node pool %s.
Continuing with the upgrade..." % node_pool.name)

 # Make NodeConfigDetails object
 node_config_details =
oci.container_engine.models.UpdateNodePoolNodeConfigDetails(
 size = node_pool_summary.node_config_details.size
)
 # Make NodeSourceDetails object
 node_source_details =

Appendix C
Script File To Upgrade Cluster and Node Pool

C-18

oci.container_engine.models.NodeSourceViaImageDetails(
 source_type =
oci.container_engine.models.NodeSourceDetails.SOURCE_TYPE_IMAGE,
 image_id = node_pool_summary.node_image_id
)
 # Make the UpdateNodePoolDetails
 update_nodepool_details =
oci.container_engine.models.UpdateNodePoolDetails(
 kubernetes_version = self.k8s_version,
 node_config_details = node_config_details,
 node_source_details = node_source_details
)
 print ("Upgrading kuberenetes for node pool %s " % node_pool.name)
 response = self.ce_client_ops.update_node_pool_and_wait_for_state
(
 node_pool_summary.id, update_nodepool_details,

wait_for_states=[oci.container_engine.models.WorkRequest.STATUS_SUCCEEDED,

oci.container_engine.models.WorkRequest.STATUS_FAILED])

 if response.status ==
oci.container_engine.models.WorkRequest.STATUS_FAILED:
 print ("Failed to upgrade node pool %s" % node_pool.name)
 sys.exit(1)

 print ("Successfully upgraded node pools in cluster %s" %
self.ce_client.get_cluster(self.cluster_id).data.name)
 return

if __name__ == "__main__":
 if len(sys.argv) < 2:
 print("Usage: python3 upgrade_cluster.py <target_k8s_version>
[<cluster, nodepool>]")
 sys.exit(1)

 k8s_version = sys.argv[1]
 if not re.search("^(v1.)2[4-6]\.{1}[0-9]{1,5}$", k8s_version):
 print ("Invalid/Unsupported kubernetes version provided for upgrade.
Supported versions are "
 "[v1.24.1, v1.25.4, v1.26.2].")
 sys.exit(1)

 upgrade = UpgradeCluster(k8s_version)

 # If option 'cluster' is provided, just upgrade the cluster, if
'nodepool' is provided, upgrade only the nodepool
 if len(sys.argv) > 2:
 component = sys.argv[2]
 if component.lower() == 'cluster':
 upgrade.upgrade_cluster()
 elif component.lower() == 'nodepool':
 upgrade.upgrade_nodepools()
 else:
 print ("unrecognized parameter %s. Provide one of [cluster,

Appendix C
Script File To Upgrade Cluster and Node Pool

C-19

nodepool]." % component)
 sys.exit(1)

 # If second argument is not provided, upgrade both cluster and nodepool.
 upgrade.upgrade_cluster()
 upgrade.upgrade_nodepools()

Appendix C
Script File To Upgrade Cluster and Node Pool

C-20

	Contents
	Preface
	Documentation Accessibility
	Diversity and Inclusion

	1 Get Started
	About Oracle WebLogic Server for OKE
	About the Components of Oracle WebLogic Server for OKE
	Oracle WebLogic Server
	JRF Domain
	Marketplace
	Resource Manager
	Container Engine for Kubernetes
	Registry
	WebLogic Server Kubernetes Operator
	Helm
	Verrazzano
	Jenkins
	Compute
	Storage
	Virtual Cloud Network
	Load Balancer
	Database
	Vault
	Identity

	About the Application Lifecycle with Oracle WebLogic Server for OKE
	About Oracle WebLogic Server for OKE Versions and Retirement Policy
	About Jenkins Pipeline
	Pipeline Jobs
	Pipeline Jobs With Verrazzano Installation

	2 Create a Stack
	About Creating a Stack
	Prerequisites to Create a Stack
	Understand Service Requirements
	Create a Compartment
	Create Compartment Policies
	Create Root Policies
	Create an Auth Token
	Create an Encryption Key
	Create an SSH Key
	Create a Virtual Cloud Network
	Create a Subnet for the Kubernetes Cluster
	Create a Subnet for the Administration Host
	Create a Subnet for the Bastion Host
	Create a Subnet for the Load Balancer
	Create a Subnet for the File System
	Validate Existing Network Setup
	Using the Validation Script

	Create Dynamic Groups and Policies
	Create a Dynamic Group
	Create Policies for the Dynamic Group

	Create a Stack
	Launch a Stack
	Configure Stack Information
	Configure WebLogic Server on Container Cluster
	Configure Verrazzano
	Configure the Network
	Configure the Container Cluster
	Create a Container Cluster
	Use an Existing Cluster
	Configure the Container Cluster with Verrazzano

	Configure the Administration Instances
	Configure the File System
	Configure the Registry
	Create OCI Policies
	Create the Stack

	Troubleshoot a Stack
	View the Cloud Resources for a Stack
	About the Resources in a Stack
	Compute Instances
	Network Resources
	Load Balancers
	Kubernetes Resources
	File System Resources
	Registry Resources
	Identity Resources for Dynamic Group and Root Policies

	3 Manage WebLogic Domains
	About Managing a WebLogic Domain
	About WebLogic Deploy Tooling
	Project Components
	Access Resources
	Access the Administration Instance
	Access the Jenkins Console
	Access the WebLogic Console

	Create a WebLogic Domain
	About Creating a Domain
	Prerequisites to Create a Domain
	Create Policies for the Dynamic Group
	Create a Database
	Create a Confidential Application
	Approve Scripts to View Parameters
	Validate Existing Network Setup
	Using the Validation Script

	Create a Domain
	Provision a Non-JRF Domain
	Configure WebLogic Server
	Configure the Registry
	Configure the Container Cluster
	Use an Existing Node Pool
	Create a Node Pool

	Configure the Load Balancer
	Configure Identity Cloud Service Integration
	Configure the Domain
	Create the Domain

	Provision a JRF Domain
	Provision a JRF Domain with an Autonomous Database
	Provision a JRF Domain with an OCI Database

	Update a WebLogic Domain
	Create a Custom Base Image
	Update a Domain Configuration
	Update a Model in Image Domain
	Update a Domain on a Persistent Volume

	Update the Base Image

	Patch a Domain
	Apply a WebLogic Server Patch
	Automatic Patching
	Step 1: Subscribe or unsubscribe domains for automatic patching
	Step 2: Schedule automatic patching

	Troubleshoot a WebLogic Domain
	Terminate a WebLogic Domain
	Create a JRF Domain on a Persistent Volume Manually
	About Domain on Persistent Volume
	Prerequisites to Create a Domain on a Persistent Volume
	Obtain the Base Image to Create the JRF Domain
	Create a Kubernetes Namespace for the JRF Domain
	Create the Kubernetes Secrets for the JRF Domain
	Create the Persistent Volume and the Persistent Volume Claim

	Create the JRF Domain
	Download the Scripts
	Create the RCU Schema
	Use the Scripts to Create the JRF Domain
	Verify the Domain

	Rebase the Existing Base Image for the JRF Domain
	Apply the Patched Images to the Running JRF Domain
	Delete the Generated Domain Home

	4 Manage WebLogic Domains in Verrazzano
	About Managing a WebLogic Domain
	About WebLogic Deploy Tooling
	Project Components
	About Verrazzano WebLogic Components and Application Configuration
	Access Resources
	Access the Administration Instance
	Access the Jenkins Console
	Access the Verrazzano Consoles
	Access the WebLogic Console

	Create a WebLogic Domain
	About Creating a Domain
	Prerequisites to Create a Domain
	Create Policies for the Dynamic Group
	Validate Existing Network Setup
	Using the Validation Script

	Create a Domain
	Create a Domain as a Component
	Register a Component
	Create an Application Configuration
	Register an Application

	Update a WebLogic Domain
	Create a Custom Base Image
	Update a Domain Configuration
	Rebase a Component Image

	Upgrade Verrazzano
	Troubleshoot a WebLogic Domain
	Terminate a WebLogic Domain
	Unregister an Application
	Unregister a Component
	Terminate a Component

	5 Managing Resources
	About Data Sources
	Prerequisites to Create a Data Source
	Create a Data Source for an ATP Database
	Download the ATP Wallet

	Create a Data Source for a DB System Database
	Create a Multi Data Source for a RAC Database
	Create an Active GridLink Data Source for a RAC Database

	Authenticate by using an External LDAP Server
	Prerequisites
	Add a new OpenLDAP Authenticator to the Domain
	Enable SSL Support

	Verify the Authenticator
	Create JMS Resources

	Configure SSL Certificate for a Load Balancer
	Set the JVM Arguments Definition
	Session Persistence Considerations
	Enabling session affinity or sticky sessions at the ingress controller

	Monitor a WebLogic Domain
	About the Security Checkup Tool
	Component Health Check
	Check the Health of a Cluster
	Check the Metrics for Clusters
	Check the Metrics for Node Pool Clusters

	Check the Health of a Load Balancer
	Check the Health of a WebLogic Domain

	Start and Stop Servers
	Scale a WebLogic Cluster
	Scale the Node Pools
	Update the Repository Schema Utility Password using Secrets
	Update the Oracle Cloud Infrastructure Registry Auth Token Credentials
	Upgrade the Kubernetes Version
	Determine the Version of the Cluster and Node Pools
	Upgrade Cluster and Node Pool Using Script
	Upgrade the NGINX Image Version
	Template Files
	NGINX Ingress Template File
	NGINX Ingress Template File
	NGINX Role Template File
	Jenkins Role Template File

	Upgrade the WebLogic Kubernetes Operator
	Upgrade the WebLogic Kubernetes Operator to 3.4.4
	Upgrade the WebLogic Kubernetes Operator to 4.0.5
	Log File and Script Files
	log_messages.json
	domain_builder_utils.py
	pipeline_utils.sh

	Upgrade the Tools in Oracle WebLogic Server for OKE
	Upgrade WebLogic Deploy Tooling

	Back Up and Restore a Model in Image Domain
	Back Up and Restore a Domain on PV
	Back Up the Domain
	Back Up the Domain Home Directory
	Back Up the JRF Domain
	Back Up the JRF Schema Database
	Back Up the OPSS Wallet

	Restore the Domain
	Restore the Domain From the Backup
	Restart the Domain After the Restore

	Back Up the File Storage

	6 Delete a Stack
	7 Troubleshoot and Known Issues
	Troubleshoot a Stack
	Stack Creation Failed
	Nodepools are not Recreated with the Latest Kubernetes Version
	Load Balancer Creation Failed
	Check the Status of the Load Balancers
	Reinstall the Load Balancer

	Troubleshoot a WebLogic Domain
	Patching Job Fails
	Provisioning Fails at a Specific Stage
	Unable to View Jenkins UI Input Parameters
	Cleanup Resources Manually for a Failed Domain
	Terminate Domain Job Is Stuck at Finish_cleanup Phase
	Introspection Failed when Running Pipeline Jobs
	New Data Source Incorrectly Deployed
	WebLogic Server Pod Fails to Start
	Unable to Access the Console or the Application
	Load Balancer Creation Failed
	Jenkins Installation Fails
	Check if Jenkins Install Failed During Provisioning
	Install Jenkins Manually

	T3 RMI Communication Between Domains Fails
	Unrecognized Arguments When Using the Patching Utility Tool
	Security Checkup Tool Warnings
	Revert the Jenkins Installation to the Original State

	Troubleshoot a WebLogic Domain in Verrazzano
	Patching Job Fails
	Provisioning Fails at a Specific Stage
	Unable to View Jenkins UI Input Parameters
	Cleanup Resources Manually for a Failed Domain
	Verrazzano Installation Failed
	Unable to Access the Verrazzano Console
	Introspection Failed when Running Pipeline Jobs
	New Data Source Incorrectly Deployed
	WebLogic Server Pod Fails to Start
	Load Balancer Creation Failed
	Jenkins Installation Fails
	Check if Jenkins Install Failed during Provisioning
	Install Jenkins Manually

	T3 RMI Communication Between Domains Fails
	Unrecognized Arguments When Using the Patching Utility Tool
	Security Checkup Tool Warnings

	Get Additional Help and Contact Support

	8 Patches
	About Patching Utility Tool
	Patch Management Using Patching Utility
	View Patching Tool Version
	Configure Initial Setup
	List Patches
	View Patch Details
	Download Patches
	Upgrade Patching Tool

	A Oracle Cloud Identifiers and Listings
	B License Information
	C Script Files
	Script File To Validate Network Setup
	Script File to Update SSL Certificate for Load Balancer
	Script File To Upgrade Cluster and Node Pool

