
Using Oracle CPQ Features with Oracle CX
Commerce

F37074-01
January 2021

Using Oracle CPQ Features with Oracle CX Commerce,

F37074-01

Copyright © 1997, 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction

Objective 1-1

Audience 1-2

Prerequisites 1-3

Additional Resources 1-3

2 Configure the Integration

Configure the Integration Package 2-1

Configure the Oracle CX Commerce Connection 2-3

Activate the Integrations 2-4

Configure the Commerce Webhooks 2-4

Configure the Server Side Extensions 2-6

Enable the Integrations 2-16

3 Use the Integration Functionality

Configure an item 3-1

Request a Quote 3-2

Use account-specific pricing for configured items 3-4

Use multi-level items 3-9

Assign shipping groups to sub-items 3-13

Understand tax calculation and shipping charges when assigning shipping groups to
sub-items 3-16

Understand shipping charge and tax calculation when assigning costs to items sold
as a package 3-17

Understand how promotion discounts are applied to multi-level items 3-18

Add payment details to customer billing profile 3-19

Understand the Customer Account Model 3-23

Use Recurring Charge Items 3-25

Use Asset Based Ordering 3-27

Customize configurations in Commerce using the CPQ Configuration API 3-37

Implement configuration customization via the CPQ Configuration API. 3-42

iii

Control user interface look and feel using the CPQ Configuration API 3-46

Customize and reconfigure a product by direct use of the CPQ Configuration API 3-53

A Appendix A: Configurator Flow

B Appendix B: Request for Quote Flow

Index

iv

1
Introduction

Many important Oracle CPQ features are available via an integration solution between
Oracle CPQ andOracle CX Commerce.

This document is intended to provide the instructions on how to use Oracle CPQ
features with Oracle CX Commerce - via an integration supported by the two solutions.

Oracle CX Commerce is an eCommerce solution designed specifically to run in the
Oracle Cloud. The service provides you with a range of powerful tools to build a
flexible, feature-rich storefront for your shoppers.

Activities you can perform with Oracle CX Commerce include the following:

• Customize the design and layout of your storefront pages and preview your
changes

• Display your store content in different languages

• Create or import catalog items

• Manage inventory

• Offer promotions

• Manage shopper accounts

• Allow shoppers to set up wish lists

• View reports about your store

• Test the visual elements of your store to determine which design shoppers prefer

• Develop custom features for your store through the Oracle CX Commerce web
services API

Oracle CPQ is the only cloud solution to support the complete quote-to-cash process -
from shopper inquiry to order fulfillment. It guides users to optimal product options and
configurations from simple to complex, automatically applying discounts and relevant
up-sell and cross-sell opportunities.

Integrating these solutions brings together the capabilities of Oracle CX Commerce
and Oracle CPQ to provide a unified solution that enables businesses to offer
shoppers a method of interacting meaningfully with the business during the purchasing
process, and to provide agents with the means to be flexible with shoppers, improving
their contact experience and maximizing shopper satisfaction.

Objective
By integrating Oracle CX Commerce and Oracle CPQ, you increase the number of
supported available commerce shopper features.

The integration of Oracle CX Commerce and Oracle CPQ targets support for the
following shopper commerce activity:

1-1

• Product configuration: The shopper or agent can configure any product that has
been identified as configurable in the product catalog.

• Shopper quote request: The shopper can request a quote for an order.

• Agent quote request: An agent dealing with a shopper contact can request a
quote for a discount on behalf of the shopper.

• Asset Based Ordering - Asset based ordering (ABO) allows you to sell tangible
assets or subscription services delivered over a period of time; for example mobile
phone call and data plans, television and broadband packages, cloud storage
service, music streaming service, etc.

This document provides instructions on how to set up an integration between
Oracle CX Commerce and Oracle CPQ so that relevant Commerce information is
automatically passed to Oracle CPQ, ensuring that the decision process has all the
required information and increasing the speed at which a reply is delivered to the
shopper or agent.

This document describes the setup tasks that must be performed in Oracle CX
Commerce and Oracle Integration Cloud in order to use this integration flow. There are
additional setup tasks that must be performed in Oracle CPQ so that the integration
works as expected. Full information about these tasks that must be performed in
Oracle CPQ can be found in the Integrating Oracle CX Commerce with Oracle CPQ
article on My Oracle Support.

Chapter 2 – Configuring the Integration: provides technical instructions on the
following topics:

• How to download the Oracle Integration Cloud Integration Flows.

• How to configure the Oracle Integration Cloud Integration Flows.

• How to setup the connection to Oracle CPQ.

• How to setup the connection to Oracle CX Commerce.

• How to configure the webhooks to trigger the integration flows.

• How to configure the SSEs (Side-Server Extension) necessary for the integration
flows.

Chapter 3 – Using the Integration Functionality: provides instructions on how to use
the functionality supported by this integration.

Audience
You must follow product-provided documentation to set up and configure the
integration between Oracle CX Commerce and Oracle CPQ systems.

This document is written for Oracle CX Commerce and Oracle CPQ administrators
who need to set up and configure the integration between these two systems.

Readers of this document should have experience with Oracle CX Commerce, Oracle
CPQ and Oracle Integration Cloud (OIC) administration. This document does not
provide instructions on configuring aspects other than the integration for Oracle CX
Commerce and Oracle CPQ.

Chapter 1
Audience

1-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Prerequisites
In order to configure and use the Oracle CX Commerce/Oracle CPQ integration, there
are specific software, account, and data prerequisites that must be met.

For the purposes of this document, it is assumed that you already have:

• An Oracle CX Commerce account and access to the Oracle CX Commerce 19.1
or later with necessary SSEs enabled (see sections that follow).

• An Oracle CPQ account and access to Oracle CPQ 19.1 or later.

• An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service 18.4.5 or later.

• A synchronized product catalog to ensure that products in the Commerce catalog
map to corresponding items in the Oracle CPQ catalog.

• Pricing Base pricing data which is synchronized from the primary PIM (Product
Information Management)/ERP (Enterprise Resource Planning system to both
Oracle CX Commerce and Oracle CPQ.

• Profiles Shopper/Account data which is synchronized from the primary CRM
(Customer Relationship Management) system to both Oracle CX Commerce and
Oracle CPQ.

• An extension server to support any required Serve-Side Extensions for the
integration.

If you do not have one or more of these, please contact an Oracle sales representative
for information on how to acquire one: http://www.oracle.com/us/corporate/contact/
index.html.

Additional Resources
Addition information about Oracle CX Commerce can be found through the Oracle
Help Center page for Oracle CX Commerce.

If you require further information regarding Oracle CX Commerce, you can access the
latest product documentation and training videos through the Oracle Help Center page
for Oracle CX Commerce.

If you require further information regarding Oracle CPQ, you can access the latest
product documentation through the forOracle Help Center page Oracle CPQ.

The documentation mentioned contains links to blogs, developer communities, and
Support. (Please note that some of these resources require an account for access.)

Chapter 1
Prerequisites

1-3

http://www.oracle.com/us/corporate/contact/index.html
http://www.oracle.com/us/corporate/contact/index.html
https://docs.oracle.com/cloud/latest/cpq_gs/index.html

2
Configure the Integration

Several stages are required to configure this integration.

Five stages are required to configure the integration between Oracle CPQ and
Commerce. Each stage is covered in this chapter.

Configure the Integration Package
In order to use this integration, you must first download the integration package(s) and
then import the package(s) into Oracle Integration Cloud.

This section provides detail about where the integration package(s) can be
downloaded and how to import the integration package.

Importing the integration package in Oracle Integration Cloud (OIC) creates
connections between Oracle CX Commerce and Oracle CPQ in OIC. It also creates an
integration between Commerce and Oracle CPQ with some default mappings in place.

Download the integration package

Follow these steps to download the integration package:

1. Go to the Integrating Oracle CX Commerce and Oracle CPQ with Oracle CPQ
article on My Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle CPQ
Configurator, download OCCS-CPQ_CONFIGURATION_INTEGRATION_X.X.par
to a location where it is accessible from OIC.
Note: _X.X.par refers to the most recent version of all downloadable files
described.

3. If you want to implement the integration between Commerce and Oracle CPQ
Quoting, download OCCS-CPQ_QUOTE_INTEGRATION_X.X.par to a location
that is accessible from OIC.

4. If you want to enable Asset Based Ordering (ABO) through the integration
between Commerce and Oracle CPQ, download the following packages to a
location that is accessible from OIC:

• OCCS_CPQ_ASSET_INTEGRATION_X.X.par

• OCCS_CPQ_GETCONFIGBOM_X.X.par

• OCCS_CPQ_CONFIGURATION_INTEGRATION_X.X.par

• OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par

Import the integration package(s)

Import the OIC Integration Package into OIC to create an integration between
Commerce and Oracle CPQ through OIC.

To import the OIC Integration Package:

2-1

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

1. Log on to OIC as an admin user.

2. Click the Packages icon.

3. Click the Import button.

4. Click Browse to open a navigation pane.

5. Select the integration package archive (.PAR) file you want to import.

6. Click Import. The package is added to the Packages list.

The OCCS-CPQ_CONFIGURATION_INTEGRATION package includes the OCCS-CPQ
Get Configurations integration flow. The GetConfigurations integration flow is used for
the following Asset Based Ordering operations:

• Modify

• Upgrade

• Renew

• Resume

This integration is required for the configuration flow. The name of the target
connection for this integration is “Oracle CPQ”. The target connection identifier is
“Oracle_CPQ”, and the target connection description is “Oracle CPQ ICS Adapter
Connection.”
The OCCS-CPQ_QUOTE_INTEGRATION package includes the following three
integration flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-
CPQ Sync Quote.

• The OCCS-CPQ Create Quote integration sends quote request information to
Oracle CPQ.

• The OCCS-CPQ Update Quote integration sends information to Oracle CPQ
related to accepting, rejecting, or re-requesting a quote.

• The OCCS-CPQ Sync Quote integration allows Oracle CPQ to send information
to Commerce at the end of the quoting process and synchronize this information
in Commerce. This ensures that the order information in Commerce matches the
related order information in Oracle CPQ.

The OCCS_CPQ_ASSET_INTEGRATION package includes two integration flows:
OCCS-CPQ Get Assets and OCCS-CPQ Asset Actions. This integration is required for
Asset Based ordering. The name of the target connection for this integration is “Oracle
CPQ”. The target connection identifier is “Oracle_CPQ”, and the target connection
description is “Oracle CPQ ICS Adapter Connection.”

Note: The OCCS-CPQ Get Assets integration returns information about assets and
services associated with the shopper’s account(s).

The OCCS_CPQ_GETCONFIGBOM package contains the following OIC integration flow
which is also used in Asset Based ordering:

• GetConfigBom - This flow is invoked for the following Asset Based Ordering
operation flows:

– Suspend

– Terminate

GetConfigBom calls are required to be made for each configuratorID of these filtered
items to retrieve a saved Configuration BOM Instance of the item on Oracle CPQ.

Chapter 2
Configure the Integration Package

2-2

The name of the target connection for this integration is “Oracle CPQ”. The target
connection identifier is “Oracle_CPQ”, and the target connection description is “Oracle
CPQ ICS Adapter Connection.”

Configure the Oracle CX Commerce Connection
For the integration to run successful, you need to configure the connection from the
integrations imported to OIC to Commerce.

You must complete the following steps to configure the connection from the OIC
integrations to Commerce.

1. Log on to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle CX Commerce connection.

4. Click the Configure Connectivity button.

5. Enter the Connection base URL. The Connection base URL is derived using the
following structure where <siteURL> is the base URL and port number of the
Oracle CX Commerce site that integrates with OIC. For example:

Connection base URL: https://<siteURL>/ccadmin/v1

6. Click the Configure Security button.

7. The Oracle CX Commerce connection uses the OAuth security policy, so you
must enter a Security token for the connection. This token is generated in Oracle
CX Commerce. Instructions on generating the token can be found in the next
Generate a Security Token section of this document.

8. Click OK.

9. Click Test to test that the connection is working.

10. Click Save.

Your Oracle CX Commerce connection is now configured for the integration.

Generate a Security Token

This integration uses the Oracle CX Commerce REST web services APIs to access
Oracle CX Commerce data. You must register the integration within Oracle CX
Commerce and generate a security token in order for the integration to be granted
access to the data.

Follow these instructions in order to generate a security token:

1. Log onto Oracle CX Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Click Web APIs from the sidebar menu.

5. Click Registered Applications from the Web APIs panel.

6. Click the Register Application button.

Chapter 2
Configure the Oracle CX Commerce Connection

2-3

7. Enter a name for the integration. The application you are registering is OIC, so you
should choose a meaningful name that reflects this.

8. Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

9. Click on the name of the application you created.

10. Click on Click to reveal to display the application key. You can copy the
application key to use as the security token for the Oracle CX Commerce
connection.

For more information on managing an application within Oracle CX Commerce, please
refer to Register applications.

Activate the Integrations
Once your integrations are configured, you must activate them using the OIC admin
user interface.

Once the Oracle CPQ, Commerce, Oracle CPQ Quote, Oracle CPQ Configure, and
Oracle CPQ getConfigurations connections are configured, you must activate these
integrations.

Follow these instructions to activate the OIC integrations:

1. Log on to OIC as an admin user.

2. Click on the Integrations icon to display the Integrations list.

3. Click on the Activate button for the integration you wish to activate.

4. Decide whether you want to switch on detailed tracing, which collects information
about messages processed by the integration flow. Administrators may find
detailed tracing helpful when troubleshooting issues with the integration flow, but it
may impact performance.

To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate it and
activate it again to switch detailed tracing on or off.

5. Click Activate.

Configure the Commerce Webhooks
You must configure webhooks in Commerce Administration in order to support the
REST API generated by the activation of the OIC integration.

The REST API generated by activating the OIC integration can be configured as a
Webhook in Commerce Administration. These webhooks include the following:

• Request Quote: This webhook is triggered when a request or re-request for
a quote is submitted by a Commerce self-service user. This webhook pushes
notifications using the OCCS-CPQ Create Quote integration flow.

• Update Quote: This webhook is triggered when a response to a requested quote
is accepted, rejected, or the quote is canceled by a Commerce self-service
user. This webhook pushes notifications using the OCCS-CPQ Update Quote
integration flow.

Chapter 2
Activate the Integrations

2-4

• External Price Validation: This webhook is triggered at checkout when the order
contains one or more items configured by Oracle CPQ. This webhook should point
to the SSE app URL configured later. The webhook validates the configuration and
price provided for the configured items. It also includes the commerce item ID data
in the request payload and updates the external price information of the commerce
items. Finally, it invokes a re-pricing operation at order checkout.

• Contact Accounts Retrieval: This webhook has been deprecated. The
corresponding SSE endpoints are invoked from the widget. It returns a list of
service account IDs for the shopper. Formerly, this webhook called the Contact
Accounts Retrieval webhook, so that webhook also had to be configured for the
Services Retrieval webhook to function correctly.

• Services Retrieval: This webhook has been deprecated. The corresponding SSE
endpoints are invoked from the corresponding widget. Formerly, this webhook
returned information about a service or asset associated with the shopper and
used the OCCS-CPQ Get Assets integration flow. This webhook called the
Contact Accounts Retrieval webhook, so that webhook also had to be configured
for the Services Retrieval webhook to function correctly.

You must configure the Production and Preview version of these webhooks to ensure
that they work in all environments. The Production webhooks send information
from your live store to production environments of your live systems, while preview
webhooks send information from your preview environment to the test or sandbox
environments of your external systems.

Follow these instructions to configure the Request Quote, Update Quote, External
Price Validation, Services Retrieval, and Services webhooks:

1. Log on to OIC as an admin user.

2. Click on the Integrations icon.

3. Click on the Integration Details icon to display information about the integration
flow.

• If you are configuring the Request Quote webhook, you should display
information for the OCCS-CPQ Create Quote integration flow.

• If you are configuring the Update Quote webhook, you should display
information for the OCCS-CPQ Update Quote integration flow.

• If you are configuring the External Price Validation webhook, you should
display information for the OCCS-CPQ External Pricing integration flow. For
this webhook, you to configure the SSE app endpoint.

• If you are configuring the Services Retrieval webhook, you should display
information for the OCCS-CPQ Get Assets integration flow. This OIC flows
requires the Services SSE to be set up and invoked from there.

• If you are configuring the Services webhook, you should display information
for the OCCS-CPQ Asset Actions integration flow. This OIC flows requires the
Services SSE to be set up and invoked from there.

4. Copy the Endpoint URL for the integration.

5. Log into Commerce.

6. Click the Menu icon.

7. Select Settings from the menu.

8. Select Web APIs from the sidebar menu.

Chapter 2
Configure the Commerce Webhooks

2-5

9. Click the webhook you wish to configure.

10. Paste the Endpoint URL you copied into the URL field for the webhook.

11. Remove the “metadata” text from the end of the URL.

12. Enter the user name and Password for your OIC account.

13. Click the Save button.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

Note: It is not possible to edit webhooks differently for different sites. Updating
webhooks applies changes regardless of the site selected.

For more information on Oracle CX Commerce webhooks, please refer to Configure
webhooks.

Understand the Services SSE

Modify, renew, terminate, suspend, and resume actions performed on a service or
asset are done using the Services server side extensions, one set for Storefront
and one for Agent. Get Assets and Get Asset details are also performed using the
endpoints in the Services SSE.

See the topic Configure the Server Side Extensions for information.

Configure the Server Side Extensions
To perform specific functions relating to asset-based orders, you need to install and
configure the related Commerce server-side extensions (SSEs).

Available Commerce server-side extensions (SSEs) can be installed and configured to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for
use with Commerce, refer to Develop server-side extensions in Extending Oracle CX
Commerce found in the Commerce Help Library.

The next sections in this topic explain the purpose and configuration of each available
SSE as well as provide information on the inputs required for their respective
endpoints. Finally the last section of this topic, Understand the general procedure
for installing and configuring the integration SSEs , provides general instruction on
downloading, installing, and configuring the available SSEs.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

Chapter 2
Configure the Server Side Extensions

2-6

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit
checking system, the Credit Check SSE is used to connect to a third-party credit check
system so that you can perform a credit check on the logged-in shopper.

Note: This SSE is optional and can be used if you want a credit check to be done as
part of an order submit task.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-
agent.zip, by first downloading the SSE packages.

Note: As written, this SSE generates outbound calls to an external credit checking
system. This means that the Credit Check SSE calls out to an external system to
perform the credit check. In order to use this SSE to connect to the external checking
of your choice, you must modify the SSE code to provide the specific calls needed to
connect to the correct credit checking system.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by
Commerce.

The inputs for this endpoint are:

• Amount information

• Recurring amount frequency

• Recurring amount duration

• Recurring amount

• Contact information

• First Name

• Last Name

• Email Address

• Telephone Number

• Address information

• Address line 1

• Address line 2

• City

• State

• Country

• Postal code

Chapter 2
Configure the Server Side Extensions

2-7

The return for this endpoint is either a TRUE or FALSE value depending on whether
the shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a
registered shopper or to update the customer account model when required. In detail,
this SSE is meant to get account details from CDM masters like OEC Communications
and is required in Telco kind of installations

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts
for the shopper.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• Account Type

• Account Name

• Primary Contact

• Billing Profile(s)

• Address(es)

• Contact ID(s)

• Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles
now associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.

Understand the Query Accounts endpoint

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

Chapter 2
Configure the Server Side Extensions

2-8

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• The Account ID of the account to which the billing profile is linked.

• The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the assetable property is TRUE the quantity must
be 1 and, if not, return an error indicating that this item can only be purchased one at a
time. This check is done by looking to see if the root item has an assetKey value. For
more information, see the Use Asset Based Ordering section of this guide.

You can configure the available SSEs, OrderQualification-store.zip and
OrderQualification-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring integration SSEs section at the end of this
topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification endpoint

This endpoint is triggered by the Order Qualification webhook when any order
containing a configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

This SSE is used to ensure that an order is valid. It enables an order qualification step
in the purchasing process that can be invoked via the Order Qualification webhook.
The extension can be configured to execute custom order qualification processes
such as checking whether the shopper is eligible to purchase the items in the cart.
It contains a pre-built algorithm to validate that the Customer, Billing, and Service
accounts as well as the Billing Profile assigned to the items in the cart are valid for the

Chapter 2
Configure the Server Side Extensions

2-9

logged in shopper. It also contains a module to check if the cancel in-flight is allowed
for a given order.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification Pipeline endpoint

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:

• Contact record for the shopper

• Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can
be invoked via the Order Validation webhook. The extension can be configured to
execute any final checks particular to the purchasing model before the order payment
is authorized and the order is submitted to the downstream systems for fulfillment and
provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

Configure the Services SSE

The Services SSE is used to perform modify, renew, terminate, suspend, and resume
actions on a service or asset - one SSE for Storefront and one for Agent. The SSE
also contains a module to check if the cancel in-flight feature is allowed for a given
order and is also used to retrieve the assets and asset details

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by
first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Services SSE endpoints

The Server Side Extension Endpoints for the Services SSE are the following:

Chapter 2
Configure the Server Side Extensions

2-10

• Modify

• Renew

• Terminate

• Suspend

• Resume

These endpoints are triggered when a user performs an operation on an asset.

The inputs for these endpoints are:

• Logged in User Token

• AssetKey, the unique ID for the asset for this operation. This may be a root, branch
or leaf asset.

The returns for this endpoint are BOM (Bill of Materials) and Error.

Configure the Configuration Validation SSE

The Configuration Validation SSE plays an important role in Asset Based Ordering and
validating asset configuration. This specific SSE performs a configuration validation
between items in a shopper's cart and the items captured in response to configuration
validation end points. For more complete information on Asset Based Ordering, refer
to the Using the Integration Functionality section of this document.

To use this SSE, you should first have the External Pricing webhook set to /
ccstorex/custom/v1/validateCPQConfigurations. This is done on the Settings page
of the Administration user interface.

You should also have the following endpoints configured:

• GET_CONFIGBOM_URI

• GET_CONFIG_URI

The GET_CONFIGBOM_URI URL gets triggered for the Suspend and Terminate Services.
The GET_CONFIG_URI URL gets triggered for the Renew, Modify, and Resume Services.
The SSE does validation between items in cart and items captured in the response of
these two end points

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by
first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

Understand the general procedure for installing and configuring the integration
SSEs

To use this integration, you need to install and configure the integration server-side
extensions (SSEs). The SSE code logic allows communication between Commerce
and Oracle CPQ - via Oracle Integration Cloud as part of the data flow. The
Commerce and Oracle CPQ integration functionality/communication is provided
through the configuration of these server-side extensions.

In addition to providing REST APIs and webhooks for integrating with external systems
(as well as widgets for extending your storefront), Commerce also includes support for

Chapter 2
Configure the Server Side Extensions

2-11

developing server-side extensions written in JavaScript. For more information, refer to
Working with Commerce Server-Side Extensions

The general installation and configuration procedure for the integration SSEs uses the
following steps:

• Before you configure and install the integration server-side extensions, first make
sure your custom Node.js server is associated with your Commerce environment.

• Download the integration server-side extension (SSE) files locally, so that you can
install and configure them. Select and remember the desired location where you
want the SSE .ZIP file(s) to be downloaded. See Integrating Oracle CX Commerce
and Oracle CPQ (Doc ID 2214316.1) on the My Oracle Support site for more
information on the required integration SSE .ZIP files and for the links that let you
download these files.

• After downloading the required files, you need to install them. Use the POST /
ccadmin/v1/serverExtensions endpoint to do this. Specify the Content-Type as
multipart/form-data and include a reference to the file in the body of the
request. For example, your request header might look like the following:

POST /ccadmin/v1/serverExtensions HTTP/1.1
Content-Type: multipart/form-data
Authorization: Bearer <access_token>

• The request body should consist of the <YOUR_SSE_NAME>.zip file, uploaded as
multipart/form data. The response to the request should look similar to this:

{
 "result": {
 "unzipped": false,
 "failedImages": 0,
 "allImagesFailed": false,
 "failedImagesReasons": {},
 "modifiedImages": 0,
 "newImages": 1,
 "assignedImages": 0
 },
 "success": true,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
serverExtensions"
 }
],
 "token": "d63c663af7f15_cd3d"
}

• Make changes to each server-side extension’s config.json file by providing the
correct URLs to complete the SSE configuration portion of that integration. The
typical steps used for working with the SSE code and making changes to the
config.json file include the following:

– Obtain and download the correct SSE .ZIP file.

– Extract the SSE .ZIP file.

Chapter 2
Configure the Server Side Extensions

2-12

https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/07/21/working-with-commerce-cloud-server-side-extensions
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4

– Edit and save the config.json file.

– Zip the files using the original .ZIP file name as the original.

The following example shows some configuration information (in bold) that must
be added to the config.json file for both the store and agent models of the SSE:

"hostname": "yourhostname.example.com",
"port": "7003",
"timeout": 50000,
"username_env_var": "YOUR_USERNAME",
"password_env_var": "YOUR_PASSWORD",
"QUERY_CONTACTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_GET_PROFILE_SSE/1.0/contacts",
"CREATE_CONTACT": "/ic/api/integration/v1/flows/rest/
OCC_OEC_CONTACT_CREATE_SSE/1.0/contacts",
"QUERY_ACCOUNTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_GET_ACCNT_DETLS_PROF_SSE/1.0/accounts",
"CREATE_ACCOUNTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_ACOUNT_CREATE_SSE/1.0/contacts/{currentContactId}/accounts",
"UPDATE_ACCOUNT": "/ic/api/integration/v1/flows/rest/
OCC_OEC_ACCOUNT_UPDATE_SSE/1.0/contacts/{currentContactId}/accounts/
{accountId}"

All of the example endpoint URLs (paths) specified in the example, starting
from the "QUERY_CONTACTS" to the “UPDATE_ACCOUNT" keys, are coming from
Oracle Integration Cloud and are necessary for a successful integration activation
between Commerce and Oracle CPQ. The paths that you would use when editing
your config.json files would be the ones specific to your SSE endpoints. The
ones shown here are for example purposes only. Refer to each specific SSE
section in this topic to obtain the correct SSE and endpoint information.

• Upload the modified SSE .ZIP file. To upload the file, click Settings then
Extensions. On the Extensions page, click Installed and then Upload Extension.
Select the location and name of the ZIP file.

Understand the environment variables supported by the integration SSEs

When communicating with Commerce via its REST APIs, you need to authenticate
your requests using confidential information. The need to authenticate is not just
limited to Commerce as many 3rd party services require the same. It is recommended
that you do not store confidential information in extension files but that you use
environment variables to maintain value confidentiality. In the previous example
config.json file, environment variables are used to make username and password
information confidential. Commerce SSEs include the nconf package which provides
a hierarchical node.js configuration with files, environment variables, command-
line arguments, and atomic object merging. Use the hierarchy provided by nconf
to manage your configuration values and maintain different values for different
environments used in your integration. You can also use environment variables to pass
through API information you want protected. Refer to "REST API authentication" in the
Commerce REST API documentation for more info on how to authenticate Commerce
API calls.

The specific environment variables supported by the integration SSEs are the
following:

Chapter 2
Configure the Server Side Extensions

2-13

Table 2-1 Integration SSE environment variables

SSE name Supported variable name Description

CustomerAccountModel-
Store

CRM_USERNAME Specifies the basic
authentication username for
the accounts integration.
In this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

CRM_PASSWORD Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

CustomerAccountModel-
Agent

CRM_USERNAME Specifies the basic
authentication username. In
this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

CRM_PASSWORD Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

Services-Store OIC_USERNAME Specifies the basic
authentication username for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

OIC_PASSWORD Specifies the basic
authentication password for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Services - Agent OIC_USERNAME Specifies the basic
authentication username for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

OIC_PASSWORD Specifies the basic
authentication password for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

Chapter 2
Configure the Server Side Extensions

2-14

Table 2-1 (Cont.) Integration SSE environment variables

SSE name Supported variable name Description

CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Order Qualification Pipeline ORDER_QUALIFICATION_PI
PELINE_USERNAME

Specifies the basic
authentication username
for securing the /v1/
orderQualification route.

ORDER_QUALIFICATION_PI
PELINE_PASSWORD

Specifies the basic
authentication password
for securing the /v1/
orderQualification route.

VALIDATION_USERNAME Specifies the basic
authentication username for
accessing the /v1/crm/
accounts route in the
Customer Account Model to
retrieve accounts data.

VALIDATION_PASSWORD Specifies the basic
authentication password for
accessing the /v1/crm/
accounts route in the
Customer Account Model to
retrieve accounts data.

OIC_USER_NAME Specifies the basic
authentication username for
accessing the services
integration that integrates with
Oracle CPQ to retrieve asset/
services data.

OIC_PASSWORD Specifies the basic
authentication password for
accessing the services
integration that integrates with
Oracle CPQ to retrieve asset/
services data.

Order Validation Pipeline ORDER_VALIDATION_PIPELI
NE_USERNAME

Specifies the basic
authentication username
for securing the /v1/
orderValidation route.

ORDER_VALIDATION_PIPELI
NE_PASSWORD

Specifies the basic
authentication password for
the /v1/orderValidation
route

cpq-configurator-app-store CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

Chapter 2
Configure the Server Side Extensions

2-15

Table 2-1 (Cont.) Integration SSE environment variables

SSE name Supported variable name Description

CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

cpq-configurator-app-agent CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Note: Commerce provides the admin endpoint that can be used to set an environment
variable on the Commerce server. For additional information on each SSE's supported
environment variables, a README.TXT file is provided along with the config.json file
that has additional usage information.

Enable the Integrations
You need to enable the Oracle CPQ Configurator integration, the Oracle CPQ Request
For Quote integration, and the Asset Based Ordering (ABO) integration in Commerce
for the complete integration to work successfully.

You must complete the procedures in this section to enable the Oracle CPQ
Configurator integration, the Oracle CPQ Request For Quote integration, and the
Asset Based Ordering (ABO) integration in Commerce.

For additional information, refer to Appendix A: Configurator Flow and Appendix B:
Request for Quote Flow.

Enable Oracle CPQ Configuration Integration

Follow these steps to enable the Oracle CPQ Configuration Integration within Oracle
CX Commerce:

1. Log on to Commerce.

2. Click on the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Configuration from the dropdown menu.

6. Check the Enable Integration checkbox.

7. Enter the Configuration URL using the following structure:

https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

Chapter 2
Enable the Integrations

2-16

8. Enter the Reconfiguration URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

9. Enter the Modification URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

10. Click the Save button.

If you are using multiple sites you must follow these instructions for each site that you
operate that uses the Oracle CPQ Configuration integration.

Identify Configurable Products in the Product Catalog

Before a Commerce self-service user can use the Oracle CPQ configurator to
configure complex products for purchase in Commerce, you must identify the products
as configurable in the product catalog. Before doing so, it is important to have a
synchronized product catalog to ensure that products in the Commerce catalog map to
corresponding items in the Oracle CPQ catalog.

To identify a product as configurable:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Catalog from the menu.

4. Select the product you wish to identify as configurable.

5. Click on the SKUs tab of the product detail pop-up frame.

6. Select the SKU you wish to identify as configurable.

7. Check the Configurable checkbox. This displays three further fields you must
complete.

8. Enter the Model information. This should match the Model information of a
configurable product in the Oracle CPQ catalog.

9. Enter the Product Line information. This should match the Product Line
information of a configurable product in the Oracle CPQ catalog.

10. Enter the Product Family information. This should match the Product Family
information of a configurable product in the Oracle CPQ catalog.

11. Click Save. This returns you to the SKU frame where the SKU you updated should
be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the SKU
import program. From the Catalog page in Commerce, click Manage Catalog and
select Import. In the Import dialog, click Browse and locate the CSV file to import.
Click Upload File, click Validate, and then click Import.

Chapter 2
Enable the Integrations

2-17

Add Customize button to the Product Details Widget

Administrators must add a Customize button to the Product Details widget, so the
button is visible to Commerce self-service users from the Product Details page for a
customizable product.

To add a Customize button to the Product Details widget:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Design from the menu.

4. Select Product Layout from the layout list.

5. Delete the Product Details widget from the layout.

6. Place a new product details widget on the layout.

7. Click the Settings icon for the new Product Details widget.

8. From the Element Library, place a Customize button on the new Product Details
widget.

9. Publish the changes.

Enable Oracle CPQ Quoting Integration

Follow these steps to enable the Oracle CPQ Quoting Integration within Oracle CX
Commerce:

1. Log on to Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Quoting from the dropdown box.

6. Check the Enable Integration checkbox.

Add Quote Buttons to the Checkout and Order Details Pages

To make the Oracle CPQ quoting capability available to Commerce self-service users,
you must add the Request Quote widget to the Checkout layout and the Quote Details
widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote button
to the Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes
associated with the order to the Order Detail layout. The widget also adds a Reject
Quote, Request Re-Quote, and Accept Quote buttons to the to the Order Detail layout.

The Quote Details and Request Quote widgets do not display on the layouts by
default. You must first make the widgets available and then place them on the
Checkout and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

1. Log in to Commerce.

Chapter 2
Enable the Integrations

2-18

2. Click the Menu icon.

3. Select Design from the menu.

4. Select the Components tab on the Design page.

5. Click the Show Hidden button.

6. Click the Show icon for the Quote Details Widget and the Request Quote Widget.

7. Within the Design page, select the Layouts tab.

8. From the layout list, select Checkout Layout.

9. Drag and drop the Request Quote widget from the Components menu to the
desired location on the Checkout layout.

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.

Enable Asset Based Ordering

To enable Asset Based Ordering, you must make sure that you have set up the
right integration webhooks and/or SSEs mentioned in the Configure the Commerce
Webhooks and Configure the Server Side Extensions topics of this document.

Chapter 2
Enable the Integrations

2-19

3
Use the Integration Functionality

Oracle CPQ provides greater pricing and price quoting features for Oracle CX
Commerce when the two are used together in an integration.

This chapter provides the instructions on how to use this functionality in Oracle CX
Commerce that is supported by the integration with Oracle CPQ.

Configure an item
Items marked as configurable in your catalog can be configured either by an agent via
the Commerce Agent Console or by a shopper via the Commerce Storefront.

Items that have been marked as configurable in your catalog may be configured either
by an agent via the Commerce Agent Console, or by a shopper via the Commerce
Storefront. This section provides instructions for both methods of configuring an item.

Configure an Item by an Agent

These instructions detail how an agent can configure an item via the Agent Console.

1. Log onto Commerce.

2. Using Agent Console, search for the shopper for whom you wish to create a new
order.

3. Click New to create a new order.

4. Select a configurable product from the catalog.

5. Click on the Configure button to open the Oracle CPQ iFrame.
Note: The Oracle CPQ iFrame is optimized for desktop, laptop, or tablet-size
devices and is not recommended for mobile devices. If you need to display on
mobile devices, please contact your Oracle CPQ Implementation team and inquire
about the CPQ Mobile Layout.

6. Select the configuration options required for the order.

7. Click Add to Cart.

Once the configured item has been added to the cart, the agent can complete the
order by going through the normal checkout process.

There is a validation check before the order is processed to ensure that the
configuration options selected are valid. If they are valid, the order process completes
and the order is placed. If they are not valid, an error message is displayed to the
agent telling them that the configuration is invalid and that the order cannot be placed.

Configure an Item by a Shopper

These instructions detail how a shopper can configure an item via Commerce
Storefront.

1. Shopper selects a configurable item from the product catalog.

3-1

2. Shopper clicks on the Customize button which opens the CPQ iFrame.

3. Shopper selects their desired configuration options for the item.

4. Shopper adds customized item to their cart.

5. Shopper goes to checkout and provides shipping and payment details.

There is a validation before the order is processed to ensure that the configuration
options selected are valid. If they are valid, the order process completes and the order
is placed. If they are not valid, an error message is displayed to the shopper telling
them that the configuration is invalid and that the order cannot be place. The shopper
is then unable to place the order until the configuration options have been changed
and the configured item passes the validation check.

Request a Quote
With Oracle CPQ enabled in the integration price quotes may be requested for one or
more items.

Quotes may be requested for one or more items on an order either by an agent from
within the Agent Console, or by a shopper from the checkout page for their order. If
you are also using Oracle CPQ Configuration functionality, the order may contain a
combination of configured and non-configured items.

Request a Quote by an Agent

An agent can request a quote on one or more items in an order from the Commerce
Agent Console. The agent must follow these instructions to request a quote:

1. Log onto the Commerce Agent Console.

2. Search for the shopper for whom you wish to generate a new quote.

3. Click New to create a new order, or select an existing unfulfilled order for the
shopper.

4. Once you have an order with items in the cart, click on the Request Quote link
in the order edit page. You can switch between the Request Quote page and the
Create Order page by clicking on the appropriate link.

5. Add text to the Quote Notes text box as desired.

6. Click on the Request Quote button.
Once the agent has submitted the quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle CPQ for a decision on
the quote. The order status is changed to “Pending quote”. When an order is in
Pending status, the agent cannot perform any operations on the order.

A confirmation email is sent to the shopper informing them of the status of their
order.

7. Once a response is received, the order status changes to “This order is a quote”,
and the agent then has a number of options about how to proceed. The agent can:
The agent can:

• Accept the quote: If the shopper is satisfied with the quoted price returned
from Oracle CPQ, the agent can accept the quote on their behalf by clicking
on the Accept button and proceeding with the order as normal.
Once payment information has been entered and the order placed the order
status changes to “Submitted for fulfillment”. At this point the Update Quote

Chapter 3
Request a Quote

3-2

webhook is triggered and Oracle CPQ is informed that the quote has been
accepted.

At this stage the agent can click on the Edit Order button, but the only edits
allowed to the quote are changes to the shipping group, or the application of
shipping discounts or promotions. The agent may not add or remove items
from the cart, or change the quantities of items included in the order. The
order status changes to “Order being amended” until the agent clicks on the
Complete Order button.

• Request a requote: If desired, the agent can enter more details in the
Request Quote textbox and click on the Request Requote button to request an
updated quote. When the agent requests a requote the order status changes
to “Pending quote”. When an order is in Pending status, the agent cannot
perform any operations on the order.

• Reject the quote: The agent can click on the Reject Quote button to reject the
quote. This cancels the shopper’s order and the order status changes to “this
quote has been rejected”.
Note: The response to a quote request includes provision for an expiry date
for the quote. If the quote has expired the Accept Quote and Reject Quote
buttons are disabled, but an agent can request a requote for the order.

Once the agent responds to the quote a confirmation email is sent to the
shopper informing them of the status of their quote.

Order statuses relating to quotes are included in the dropdown list of order statuses in
the Order Details section of the Order Search page.

Request a Quote by a Shopper

A shopper can request a quote on one or more items in an order from the checkout
page. The shopper must follow these instructions to request a quote.

1. Add the desired items to the shopping cart.

2. Proceed to the checkout page.

3. On the checkout page, enter supporting details in the Request a Quote text box.

4. Click the Request Quote button.

Once the shopper has submitted their quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle CPQ for a decision on the
quote.

When a decision is made about the quote, the order is updated and the shopper then
has three options about how to proceed.

They can:

• Accept the quote: This means the shopper is satisfied with the quote and
they may continue through the purchase process with the prices provided. The
checkout page is displayed and the shopper may enter their shipping details and
proceed with payment.

• Reject the quote: This means that the shopper has rejected the quote provided
by CPQ Cloud, and the order is canceled.

• Request a requote: The shopper can use the Request Requote text box to
provide further information and request an updated quote.

Chapter 3
Request a Quote

3-3

Use account-specific pricing for configured items
Account-specific prices configured on Oracle CPQ can be displayed in Commerce.

Account-based shoppers can obtain account-specific prices configured on Oracle CPQ
and display these prices in Commerce. This topic explains the concepts behind this
feature.

Formerly, the Oracle CPQ iFrame would open in an item configuration as part of
anonymous session. All details in the Oracle CPQ page, then, were independent of the
logged in shopper/contact/account. Account-based shoppers can now obtain account-
specific prices configured on Oracle CPQ and display these prices in Commerce.
This is possible because the iFrame displayed on Commerce obtains the context of
the related account as well the contacts associated with it so that the correct account-
based pricing information is returned to Commerce.

For example, consider that an account-based shopper logs in and selects to purchase
a configurable computer package. The prices that Oracle CPQ returns to the shopper
are specific and unique to that shopper's account. The pricing that is specific for one
shopper is not visible to another shopper. The shopper then changes the configuration
of the computer package as needed, enters the quantities needed, and finally submits
the order. In the case of an Agent configuring the package, the agent also sees the
account-specific details when configuring a price.

With the Commerce/Oracle CPQ configuration integration enabled, Commerce sends
different criteria to determine and obtain the account-based price of the configuration
maintained on Oracle CPQ.

Understand a user case as well as the workflow used to obtain correct account-
based pricing

An example of a user case where a shopper (or agent) would want to obtain account-
based pricing could go something like this:

• The shopper selects a commerce site and browses through the items in the
catalog.

• The shopper selects a configurable item and clicks on the Customize button,
which opens an iFrame allowing them to customize/reconfigure the item.

• The shopper configures the item and expects to see the prices for the items which
only that customer would be allowed to see for that account.

• The shopper places the order with the customer-specific pricing. The shopper,
after submitting the order and within the designated remorse period, is able to
update the configurations of the items as well as receive the customer specific
pricing for those items.

• The shopper can cancel this order containing customer specific priced items
(within the remorse period).

• The shopper can carry out returns and refunds.

• The shopper can exchange within the same configured item(s).

Some variations to this use case could include:

• The shopper gets the account specific pricing but when shopper account details
change, the adjusted price specific to that account would appear.

Chapter 3
Use account-specific pricing for configured items

3-4

• An agent placing an order for an account based shopper gets the account specific
pricing specific to that shopper.

The workflow used to obtain the correct account-specific pricing is the following:

• The store sends the Account ID(Customer ID, Customer Name) through the
Configure Product iFrame. The shopper's accountId has been encrypted using
the SSE and the encrypted details are what is sent to the Oracle CPQ iFrame.
Other properties like model, product line, locale, currency are not encrypted.

• The calls made to Oracle CPQ at this point internally call the Oracle CPQ Price
API.

• The iFrame shows the account specific pricing for the account based on the
accountId.

• The Price API looks for any customer pricing rules defined in Oracle CPQ
and returns the correct account-specific pricing for that customer based on the
accountId. If there are no prices configured specifically for the customer, then they
are presented with the default prices.

• A sample widget can be customized by implementers to encrypt and pass
additional properties along with the accountId. The re-configuration flow works
as it already exists.

The main purpose of this workflow is to pass the customer account/organization
details to the Oracle CPQ system and calculate the customer-specific price (if any
pricing rules are defined).

The existing integration components should retain their existing functionality (i.e. the
customer/system implementer should be able to switch as to whether they are using
anonymous or customer specific pricing).

With this workflow, it is assumed that there is data synchronization of Customers
(Commerce account-based customer accounts) across Oracle CPQ and Commerce.
Oracle CPQ is the mechanism that has the ability to set up rule-based pricing which
can be customer specific. The customer specific pricing rule(s) should be the source
for the account-based pricing of the item. Finally, there is a check done that is part of
the integration which makes sure that the logged-in user is validated.

Note: A customer can use Oracle CDM (Oracle Customer Data Management) to
maintain that the accounts (organizations) are synchronized between Commerce and
Oracle CPQ or they can just use the Commerce accounts. The accountId that is
passed in the integration flow varies based on the implementation model.

Understand how Commerce and Oracle CPQ support account-specific pricing

To be able to obtain account-specific prices configured on Oracle CPQ and display it
on Commerce via the returned iFrame, you need the iFrame to be extended to handle
various attributes as part of getting the price from Oracle CPQ. By extending these
attributes, you can then display the account specific pricing given by the Oracle CPQ
system.

The cpq-config-validation-app SSE now validates the additional accountID from
the getConfiguration call made to Oracle CPQ to find the profile associated with
the order before calling the Submit Order endpoint. An appropriate error message is
returned if the accountId does not match the values of the orgId of the profile in
order.json. By passing these parameters from Commerce to Oracle CPQ during the
Configuration Page launch, the Pricing logic in Oracle CPQ can be triggered within the
Configuration user interface. Commerce provides the initial ability to pass the Account

Chapter 3
Use account-specific pricing for configured items

3-5

ID, but an implementer can extend this to pass any other parameters from Commerce
that Oracle CPQ can understand.

The integration takes an Access Token Based security approach to ensure that prices
meant for users of one account are not visible to users of a different account. The key
features of using this approach are the following:

• The authentication into Oracle CPQ continues to be an anonymous/ guest user
method as it is today.

• There is no need for user mapping between the Commerce user and Oracle CPQ
user as well as no need for additional user maintenance between Commerce and
Oracle CPQ.

• The approach follows an established approach based on Assets Modify Punch-In.

SSE flow for Store and Agent

The following describes the SSE flow for Store and Agent

• When an account-based customer clicks on Customize for a product, the SSE
endpoint gets triggered.

• The accountId of the account-based user and other configurable details like
model, product_line, product_family, etc. get passed to the SSE.

• The validation of the accountId takes place first whether the logged in customer is
associated with the accountId being passed or not.

• If the validation is successful, accessTokenData is generated containing the
accountId and the expiration time which is then encrypted and signed with the
private key to form the accessToken.

• A query string is formed using accessToken and another configurable list of
parameters. This is then appended to the base URL and the Oracle CPQ iFrame
that is launched with the account-based prices.

• The accountId is decrypted by Oracle CPQ using the Public key. The true
accountId is then determined and prices are shown as per the pricing rule setup
for this accountId.

The following illustrates a sample request:

{
 "accountId" : "or-100001",
 "configurableSkuDetails" : {
 "currency" : "USD",
 "locale" : "en",
 "model" : "sku50001",
 "product_line" : "laptopConfiguration",
 "product_family" : "Laptop"
 }
}

The following illustrates a sample response to that request:

{ "queryString":
"_bm_session_currency=USD&_bm_session_locale=en&model=sku50001&product_lin
e=laptopConfiguration&product_family=Laptop&segment=laptop&_from_partner=t
rue&accessTokenData=%7B%22expiryTime%22%3A%222019-11-06T15%3A40%3A49%2B05%

Chapter 3
Use account-specific pricing for configured items

3-6

3A30%22%2C+
%22configAttrPunchinValues%22%3A%7B%22accountId%22%3A%22or-100001%22%7D%7D
&publicKeyVarName=shagul_rsa_public&accessToken=xboKIL0YMl1R1IERTBKzzfFbyV
AWq5bZgkWX%2Bf71YOJYlBu1GZ5aZay%2B5FS338joCIs8C7B9RrJlRXXkmd1U4zgqfPD2NJnf
bYzxCelhFpbwdau6n88qVH6WI%2BPCLzUJKrwJdNxuTd9O78ZL4pKW8g9mFhpnZcNec%2FRxpH
MrV%2BYm4S2iS5IZt7apTkt%2Bd%2BDDvm3Y0cmyEyfwcbhTjxKho904dJId0pf%2BU3VKcNIh
MRMtoeFFCskhQNiqA8gyjUqamyB1y%2BgZQ9WKqo84rYsPnjCHvOF5z%2BAjMF5FysbGQxLJAF
PAczACuLhn1XrmDjjYMD6T26ey2d%2BQbKlzGgMIsg%3D%3D" }

SSE flow for validating the account ID

The cpq-config-validation-lib SSE has the functionality to validate the accountId
(part of External Data) from the getConfiguration call to Oracle CPQ with the
organization ID of the account-based profile associated with the order before calling
the Submit Order endpoint.

Understand best practices for using account-specific pricing

Although the integration allows for account-specific pricing, it does not, however, allow
for re-pricing of configured items, when any of the following conditions occur:

• The price list group (currency) is changed by the shopper

• An anonymous user logs in which results in a change of price list group (for
example, an anonymous shopper logs in as an account-based shopper)

• The account based shopper changes the current account in context

Simple (i.e., non-configured) items are re-priced but configured items are not. A
shopper cannot even re-configure the item to get the updated price. This is because
Oracle CPQ does not accept secure punch-in attributes during the process of re-
configuring an item. Unfortunately, the only available option is to delete the configured
item and add it again as a fresh configuration.

To avoid inconvenience to the shopper, it is recommended that you add an information
message to your custom widgets. The message should be seen when an anonymous
shopper tries to add a configured item to cart, (for example, when they click the
Customize button or when they are on the Product Details page. The message should
suggest that the shopper first login and then do the configuration.

Set up and configure Commerce and Oracle CPQ for account-specific pricing

Use the following procedures to set up and configure Commerce and Oracle CPQ for
the account-specific pricing feature:

Configure Oracle Integration for account-specific pricing

Use the following steps to configure Oracle Integration for account-specific pricing
while using the Commerce/Oracle CPQ integration:

• Download the Oracle Integration packages found in the OCCS-
CPQ_CONFIGURATION_INTEGRATION_4.0.par package file from Oracle Marketplace
or My Oracle Support.

• Import the package into the OIC Environment

• Configure the Oracle CPQ Connection in OIC.

• getConfigurations (4.0) is used to validate configuration and pricing from Oracle
CPQ.

Chapter 3
Use account-specific pricing for configured items

3-7

For more information on using Oracle Integration, refer to the product Help Library.

The next steps you need to complete are downloading and configuring the required
Server Side Extensions (SSEs) used for account-specific pricing. There are three
SSEs used by the integration to support this. These are the following:

• cpq-config-validation-app.zip

• cpq-config-punchin-store.zip

• cpq-config-punchin-agent.zip

The information that follows describes how to download and configure these SSEs.

Download and configure cpq-config-validation-app.zip

Use the following steps to download and configure the cpq-config-validation-
app.zip Server Side Extension for account-specific pricing while using the Commerce/
Oracle CPQ integration:

• Login as Administrator to Commerce

• From the Admin interface, download the Server Side Extension (SSE) cpq-
config-validation-app.zip by clicking Design - Developer - Server-Side
Extensions. This SSE triggers the Configuration integration just setup on Oracle
Integration.

• Unzip the file.

• Update the config.json file with the Oracle Integration Hostname and Port
information.

• Also, a the dd extension environment variables for OIC_USERNAME and
OIC_PASSWORD using the Admin endpoint

• Run the Node Package Manager to install in the .ZIP contents in the root folder

• Zip the contents in the root folder.

• Upload to the Extension Server using the serverExtension endpoint

Download and configure cpq-config-punchin-store.zip and cpq-config-
punchin-agent.zip

Use the following steps to download and configure the cpq-config-punchin-
store.zip and cpq-config-punchin-agent.zip Server Side Extensions for account-
specific pricing while using the Commerce/Oracle CPQ integration:

• From the Commerce Admin interface, download the cpq-config-punchin-
store.zip and cpq-config-punchin-agent.zip Server Side Extensions by
clicking Design - Developer - Server-Side Extensions. These use the CPQ
Punchin Lib to generate a query string with an encrypted accountID that is
passed to the CPQ iFrame. This enables CPQ to show account specific prices.

• Unzip the files.

• Generate a public and private key using the OpenSSL utility.

• Place the private key file in the Keystore folders.

• Specify the public key in the config.json files.

• The public key is also added to the CPQ Integration Center under Authentication
Certificate.

Chapter 3
Use account-specific pricing for configured items

3-8

• Run NMP to install the .ZIP files contents in the root folder

• Zip the contents in the root folder

• Upload to the Extension Server.

Configure Commerce for account-specific pricing with Oracle CPQ

Use the following steps configure Commerce for account-specific pricing while using
the Commerce/Oracle CPQ integration:

• Set up the external pricing validation webhook in Commerce: /ccstorex/
custom/v1/validateCPQConfigurations
Do this by going to Settings - Web APIS - Webhook in the Admin user interface.
Choose the External Price Validation function API and enter the requested
information.

• Enable and configure the Commerce/Oracle CPQ Configuration Integration by
going to Settings - Oracle Integrations in the Admin user interface. Select the
Oracle CPQ integration from the list.

• Modify widgets in the following layouts:

– Store layout: Product Details page

– Agent layout: B2B Checkout Layout - Accordion element: Search and Add
Items to Cart popup stack

These take the accountIDs of the user and display the appropriate prices for that
account.

You also need to have synchronized product catalogs between Oracle CPQ and
Commerce. The models available in Oracle CPQ need to have a corresponding
externally configurable SKU in Commerce. Also, make sure you have set up the
accounts and desired users in Commerce and have set up the proper pricing rules in
Oracle CPQ (since it is the provider of the prices to sent to Commerce).

Finally, double check that you have setup pricing rules on Oracle CPQ based on
a parameter (for example, Account Id) and have also added the public key to the
Integration Center - Authentication Certificate in Oracle CPQ.

Use multi-level items
This integration features support for a hierarchical structure for items available to
shoppers for purchase.

This integration provides support for a hierarchical structure for items available for
shoppers to purchase. Commerce supports an “n-level” hierarchical configuration
model. This means that a configured item can contain sub-items that are also
configurable items and that can in turn contain sub-items that are configurable items.

An example of this would be a bundled package for a cellphone. The bundle itself
would be the top-level item. The cellphone would be a configurable sub-item, but this
could then itself have configurable sub-items, such as an SD card. Commerce can
provide a top-level price for the bundle, but can also provide a price breakdown for
each configurable item within the bundle.

If a shopper adds a multi-level item to their cart, Commerce works with Oracle CPQ
to display the information about the multi-level item in the shopper’s cart. The cart
displays a total price and an item price for any configurable sub-items. If the shopper

Chapter 3
Use multi-level items

3-9

changes any of the configurable sub-items, the price displayed for that sub-item
changes and the total price is also amended accordingly.

When a shopper clicks on the Place Order button a validation check is carried out
to ensure that the prices displayed for the configured items is still applicable. If it is
then the order can proceed. If it is not, a message explaining this is displayed to the
shopper and the cart is reloaded with up-to-date price information included for the
configured items.

You can create a multi-level hierarchy in your catalog using either a recommended
items model or a bill of materials model. You must refer to the relevant Oracle CPQ
documentation for instructions on how to do this.

Use Quadplay/NPlay items

A standard, or single play, configured item represents a single service, such as Mobile
Phone or IPTV that has a single set of configuration information, i.e. is based on a
single configuration model in Oracle Oracle CPQ.

A Quadplay or NPlay configured item represents a package or bundle that combines
multiple services in a single purchase and contains multiple sets of configuration
information, i.e. is based on a single configuration model that also contains other
configuration models in Oracle CPQ.

As an example, consider a case where the configured bundle contains 4 separate
services (or ‘plays’) such as Landline, Internet, Mobile and IPTV. In this example, the
bundle is called the Get4 Bundle. Unlike a standard configured item, the Get4 Bundle,
as a Quadplay or NPlay configured item has configuration information at the following
levels:

• Root level - in this example, the Get4 Bundle level.

• Branch level - in this example, the Landline, Internet, Mobile and IPTV levels.

With the support of Quadplay/NPlay configured items, the shopper adds the Get4
Bundle to the Oracle CX Commerce cart as a standard multi-level hierarchical
configured item. This item also has the ability to be reconfigured if needed. The item
is then validated and checked out as usual. For more detailed information working
with Quadplay and NPlay items, refer to CX Communications - How to Customize
and Extend – Configure NPlay Bundles with Oracle CPQ System Configuration white
paper on the My Oracle Support site.

Understand Commerce Cloud Administration support for configuration metadata

In Oracle CPQ, a single model is also able to support multiple NPlay offers and
additional versions of those offers. For example the same Model, Product Line, and
Product Family might contain 3 variations on the same NPlay bundle such as the
following:

• Starter Home Bundle

• Total Home Bundle

• Friends and Family Bundle

The same model might also support multiple versions of those bundle variations such

• Starter Home Bundle

• Starter Home Bundle 2017

• Starter Home Bundle 2018

Chapter 3
Use multi-level items

3-10

and

• Total Home Bundle

• Total Home Bundle 2017

• Total Home Bundle 2018
and

• Friends and Family Bundle

• Friends and Family Bundle 2017

• Friends and Family Bundle 2018

To work with these types of variations, when the shopper selects a version of a
bundle in Commerce and chooses to configure it, the configuration request needs to
include extra information to allow the configurator to load the correct version of the
configuration model. This extra information is provided in what is called configuration
metadata. This data is passed along as a collection of key value pairs and aid in
helping to identify the correct bundle.

Understand configuration metadata details

Where a Oracle CPQ configuration model supports multiple products and product
variations, this information may not be sufficient to pre-load the order iframe with the
correct starting point. In such cases extra information (i.e., configuration metadata) can
included in the iframe URL created by Commerce.

Again, think of configuration metadata as a collection of one or more key value pairs
that identifies the correct starting point for the configuration model. Configuration
metadata can be static or dynamic. Static configuration metadata is manually entered
by the Commerce Cloud Administrator and stored on the SKU record in Commerce.
Dynamic configuration metadata can be captured by the PDP UI widget and can be
entirely implementation specific.

Note: Dynamic configuration metadata is not restricted to being captured on the PDP
UI widget. The dynamic configuration can be derived from any relevant information
such as shopper profile.

This means that merchants can decide what dynamic key value pair data they want
to capture and pass in the configuration request for any SKU. Dynamic configuration
metadata can be mandatory or optional (i.e., in some cases the shopper MUST enter a
value for a key and in some cases they may optionally enter a value for a key).

Configuration metadata lets merchants define a single model for all variants of a
configurable product and at purchase time pre-load the configuration model at the
appropriate starting point based on the shopper’s selection in Commerce.

The configuration metadata feature builds on the already existing support of the
NPlay feature. Earlier there was support of the purchase of NPlay products but only
where there is a one-to-one relationship between product and model (i.e., each NPlay
product had to have its own unique corresponding configuration model in Oracle
CPQ).

Enter configuration metadata via the administration user interface

To provide the configuration metadata needed for processing an order, the
configurationMetadata property is exposed so that you can enter the information
in the Commerce Cloud Administration interface. To get there click Catalogue then
Product and finally SKU. This Administration panel lets you view, add, delete, and

Chapter 3
Use multi-level items

3-11

edit the Configuration Metadata values as required. Any request from Commerce to
configure an item will include configuration metadata where it is available.

An example of using configuration metadata might be a case where a Commerce
Cloud Administrator receives an email from a colleague in Oracle CPQ to advise them
that the configuration model with the correct configuration metadata for the Family
Plan products SKUs is now complete. The email contains the information to further
configure the SKU. The SKU is called sku_fp_001 and the information provided is the
following:

• Product Family – mobile

• Product Line - bundles

• Model - sku_fp_001

• Bundle Version - 18.1

• Region - EMEA

The process for entering the configuration metadata via the Admin interface would go
something like the following:

1. Navigate to the Commerce Cloud administration user interface panel and select
Catalog.

2. Select the Family Plan product and select the SKU sku_fp_001 which is currently
flagged as inactive.

3. Click on Externally Configurable SKU. You see the text “Oracle CPQ can
configure this as a part of a complex product.”
Note: For any SKU where you want to add configuration metadata, you must
make sure that Externally Configurable SKU is checked when you first begin
entering data. A new input property will be displayed which will allow you to begin
to enter one or more key value pairs of data.

4. Slide the panel down until you see the Product Family, Product Line, and Model
fields appear on the panel. Enter all of the correct metadata details (the ones sent
to you in the email from your Oracle CPQ colleague) manually.

5. Slide the panel down to see the Configuration Metadata table, click the Add button
to add a row.

6. Add Bundle Version to the Name field. In the field next to Bundle Version, add
18.1 (as the bundle version number). You can press Tab or Enter to create a value
entry. Click the Add button when done. A new row in the metadata value table
appears.

7. Add Region to the Name field. In the field next to Region, add EMEA. You can
press Tab or Enter to create the value entry.

8. Slide the panel back up to the top of the SKU ID panel, click Active, and then click
Save.

At this point, you have entered all of the details received from your Oracle CPQ
contact. This information must be entered correctly. The details that are entered are
not seen by the customer. The information is designed to populate the config iframe
window with the correct information. As a final step you activate the SKU and save the
details.

Note: Since the configuration metadata must be entered manually via the Commerce
administration console, keep in mind the following rules:

Chapter 3
Use multi-level items

3-12

1. There is no support for versioning of configuration metadata so when an SKU
record is imported, make sure it does not contain any configuration metadata that
should replace any existing configuration metadata assigned to that SKU.

2. If the imported SKU record includes configuration metadata (columns present in
the import file) but there are no values included then any existing configuration
metadata will be deleted.

3. If the import SKU record does not include configuration metadata (no columns
present in the import file), then any existing configuration metadata should be
retained.

A Commerce administrator can view, delete, edit, or add Configuration Metadata
key value pairs for any SKU where the _Externally Configurable SKU_ property is
selected. A Configuration request from Commerce to Oracle CPQ always includes the
configuration metadata set in Commerce for that SKU.

To work with configuration metadata you must have the following prerequisites:

• Oracle CX Commerce account

• Oracle Integration Cloud account

• Oracle CPQ account

Assign shipping groups to sub-items
You can assign different shipping groups to product configuration sub-items and more.

With a configurable item, you have the ability to assign different shipping groups to
product configuration sub-items. Different shipping groups can be assigned to different
levels in a multi-level configurable item.

Previously, you could only assign a shipping group at the root level. Now, with a
configurable item you have the ability to assign different shipping groups to sub-items
of the root item. Different shipping groups can now be assigned to the following levels
in a multi-level configurable item:

• An item contained as the root item

• An item that may be contained at one or more branch items of the root item

• An item that may be contained at one or more of leaf items of a specific branch

Formerly, you assigned a shipping group at the root item level. The assumption was
that the integration layer managed updates to the "shipping group" relationship object.
The result of this was something where "if all sub-items are shipped then set the
shippingGroupItem status on the root item to the status SHIPPED."

The original method did not work if you sold configured items that are a combination of
goods and services and the services that needed to be assigned to separate shipping
groups. It is important that customers selling nPlay bundles be able to assign each
"play" to its own shipping group. As an example, you should reasonably expect to
be able to assign separate shipping groups to, say, a handset (shipped to your office
via priority mail), a router (shipped to your home via standard mail) and set top box
(shipped to your vacation House via standard mail).

The ability to assign different shipping groups at different levels is also important for
the Cancel In-flight order feature which lets you cancel In-Flight orders. An order which
has been submitted but not fulfilled is considered to be In-Flight. When an In-Flight
order is canceled, the process results in the creation of a new Cancel Order and may

Chapter 3
Assign shipping groups to sub-items

3-13

also result in the creation of a Return Request for items that may have already shipped
to the shopper and must be returned, or at least refunded. In order to determine which
items have to be returned, the system must be able to determine the shipping status of
each item in the configuration.

In summary, all items in a multi-item configuration hierarchy from the root to the leaf
level are assigned to a shipping group. You must also be aware that the assignment
of shipping groups is also dependent on other key Commerce product features that
directly impact the assignment of shipping groups.

For customers that are migrating to a release of Commerce that has this shipping
group feature, the assignment of the shipping group logic is not adapted automatically.
They will have to modify their ClientConfiguration settings. For first time users of the
new release, the logic is adapted automatically.

Finally, logic changes are adapted only when the customer is using the Commerce
user interface for all front-end behavior. If the customer is making endpoint calls
directly, then they can call the orders endpoint with the required payloads without
worrying about modifying ClientConfiguration.

Understand the details of assigning separate shipping groups to sub-items

When assigning shipping groups to sub-items, keep in mind the following:

• A shippable product property is provided and should be set to indicate that a
product, whether a hard good or service, can be physically shipped to a purchase.
When the shippable product property for a product is set to FALSE, it can be
assigned to a Virtual Shipping Group so that Oracle CX Commerce does not
attempt to calculate shipping charges for this product..

• If a product is a service then the physical address where the service is to be
provided is provided by the fulfillment system based on the service account
assigned to the item. This information is also provided by the client. Address
information is mandatory for virtual shipping groups as it is required for tax
calculations.

• If the product is a non-shippable good, (for example, a movie download, extended
warranty etc.), address information is again mandatory as it is required for tax
calculations.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Chapter 3
Assign shipping groups to sub-items

3-14

An assetable product property is provided which identifies those products that are
sold as a service or subscription (for example a mobile phone tariff, magazine
subscription etc). Assetable products must be assigned to the following when
purchased:

• Customer Account

• Service Account

• Billing Account

• Billing Profile

These type of products are then assigned to a Virtual Shipping Group. Even if the
product is a good (for example, a physical product), it must be assigned to a virtual
shipping group This is because in these circumstances the Commerce purchasing
process is not responsible for calculating shipping charges and the physical address
where the item must be shipped but will be based on the service account assigned to
the item.

The onlineOnly property is provided to identify products that can be purchased online
but cannot be picked up in store. This means that an item can only be assigned an
inStorePickupShippingGroup value if the onlineOnly property value for that product
is FALSE.

In summary, configured item shipping groups are assigned at all of the following levels
of the configured item:

• Root item of type configurableCommerceItem

• Branch items of type configurableSubSkuCommerceItem

• Leaf items of type subSkuCommerceItem

The assignment of shipping groups to configured items is then dependent on whether
individual products are one of (or a combination of) the following types:

• Shippable

• Assetable

• Available for purchase online only

• Being sold as a package (soldAsPackage SKU property). The soldAsPackage
property is available only where the configurable value for the SKU is TRUE.
When soldAsPackage = TRUE, this means that the configurable item is purchased,
shipped, returned, and exchanged as a single item.

Understand the store features related to assigning shipping groups to sub-items

The following store features are provided to support the assigning of shipping groups
to sub-items:

• The ability to assign all items in a configuration hierarchy to an appropriate
shipping group type.

• The ability to change the assignment of shipping groups at all levels in a
configuration hierarchy.

• The ability to update the tax calculation process to support shipping group
assignment at all levels of a configuration hierarchy.

• The ability to update the shipping charge calculation process to support shipping
group assignment at all levels of a configuration hierarchy.

Chapter 3
Assign shipping groups to sub-items

3-15

• The ability to update to the proportional application of promotion discounts to all
items in a configuration hierarchy

See the rest of the topics in this section for more information.

Understand tax calculation and shipping charges when
assigning shipping groups to sub-items

When assigning taxes and shipping charges for shipping groups assigned to sub-
items, you assign different calculating processes from normal customer calculation
processes.

Understand the tax calculation process when assigning shipping groups to sub-
items

The processes for calculating taxes and shipping charges for shipping groups
assigned to sub-items differ slightly than the normal customer calculation process.
In summary, the method used is that if sub-items are shipped separately, then the
root item and the child items are sent as different items to the taxation system which
contains the cost of that item alone and no additional item in the package.

This means that there are two ways that tax calculation occurs with a shipping group.
The first way is that the price of the fully configured package is sent to the taxation
system as all the items in the product configuration have to be delivered to a single
place.

In determining the correct amount of tax payable on a product, the four key
parameters passed to the tax calculator are the following:

• amount - the amount paid by the shopper

• quantity - the quantity of the item being purchases

• shipping charge - the shipping charge that has been calculated for the item

• taxCode - the tax code assigned to the product

For configured items, tax is calculated for each line item in the configuration hierarchy
but the amount passed to the tax calculator is always be the external price returned
from the configurator for that item, in the context of the overall configuration.

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the tax calculator would be zero.

The net result of this is that, although tax will be calculated for each item in the
configuration hierarchy, all of the appropriate data will be passed to the tax calculator.
It is possible, however, that the amount of tax paid by the shopper may be skewed in
circumstances where the configured item contains products with different tax codes.

Understand the shipping charge calculation process when assigning shipping
groups to sub-items

To determine the correct shipping charges payable on a product, the key parameters
passed to the shipping calculator are the following:

• shippingMethod - the shipping method selected for the item.

• quantity- the quantity of the item being shipped.

Chapter 3
Understand tax calculation and shipping charges when assigning shipping groups to sub-items

3-16

• amount - the amount paid by the shopper for the item.

For configured items, shipping charges are calculated for each line item in the
configuration hierarchy. The amount passed to the shipping calculator, however, will
always be the external price returned from the configurator for that item, in the context
of the overall configuration.

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the shipping calculator would be zero.

The net result of this is the following:

• Shipping charges are calculated for each item in the configuration hierarchy and
all of the appropriate data is passed to the shipping calculator. It is possible,
however, that the amount of shipping charges paid by the shopper may be skewed
in circumstances where the configured item price does not accurately reflect the
actual proportional amount paid for an item in the configuration hierarchy.

• Shipping surcharges are included for any item in the hierarchy where such
surcharges have been assigned to that product in Commerce.
Note: The charges are only included for the root item if the whole configuration is
sold as a package

• A merchant can always choose to apply a shipping surcharge for any item where
there is a risk that the shopper will be undercharged for shipping when a particular
product is purchased as part of a configured item.

• Shipping surcharges are not considered if any item presents itself in a virtual
shipping group as those items are non-shippable and are not required to have
shipping surcharges.

Understand shipping charge and tax calculation when
assigning costs to items sold as a package

When assigning costs to items sold as a package, you assign processes for
calculating shipping charges and taxes that differ slightly from normal customer
calculation processes.

Understand the shipping charge calculation process when assigning costs to
items sold as a package

The processes for calculating shipping charges and taxes when assigning costs to
items sold as a package differ slightly from normal customer calculation processes. To
determine the correct amount of shipping charges payable on an item configured as a
package, the following key parameters are passed to the shipping calculator:

• shippingMethod - the shipping method selected for the item

• quantity - the quantity of the item being shipped

• amount - the amount paid by the shopper for the item

For items sold as a single item (root item) configured as a package, the following
occurs:

• The amount passed to the shipping calculator is always the total price for the
configured item.

Chapter 3
Understand shipping charge and tax calculation when assigning costs to items sold as a package

3-17

• The shippingMethod passed to the shipping calculator will always be the shipping
method assigned to the root item.

• The quantity passed to the shipping calculator is always be the quantity of the
root item.

Shipping charges will be calculated accurately, given that you have decided that the
configured item must be shipped as a unit. Any shipping surcharges assigned to
a sub-item in the configuration hierarchy will not be included in the total shipping
charges.

Understand the tax calculation process when assigning costs to items sold as a
package

In summary, the way that tax calculation occurs with a shipping group sold as a
package is that the price of the fully configured package is sent to the taxation system
as all the items in the product configuration have to be delivered to a single place.

To determine the correct amount of taxes payable on an item configured as a package,
the following key parameters are passed to the tax calculator:

• amount - the amount paid by the shopper

• quantity - the quantity of the item being purchased

• shipping charge - the shipping charge that has been calculated for the package
item

• taxCode - the tax code assigned to the product.

For configured items sold as a package (i.e., where the soldAsPackage value for the
root item = TRUE), taxes are calculated based on the root item only. For configured
items sold as a package, the following occurs:

• The amount passed to the tax calculator is always the total price for the configured
item.

• The taxCode passed to the tax calculator is always the tax code for the root item.
This means that although taxes are calculated for the configured item, the amount
is based only on the tax code of the root item.

Understand how promotion discounts are applied to multi-
level items

Promotional discounts can be applied proportionally to multi-level items.

For a multi-level configured item, promotion discounts must be applied proportionally
across the root and all of the sub-items in the hierarchy.

In Commerce, order level discounts are applied proportionally across all items in the
order (unless an item is specifically excluded from benefiting from such a discount).
For a configured item, a proportional discount must be applied to all items in the
configuration hierarchy. For example if an order level promotion applies a 10%
discount then that 10% discount must be applied to any configured item in the order.

For a multi-level configured item, however, the promotion discount must be applied
proportionally across the root and all of the sub-items in the hierarchy. This applies
only to configured items that are not sold as a package (i.e. where the soldAsPackage
value on the root item = FALSE).

Chapter 3
Understand how promotion discounts are applied to multi-level items

3-18

Add payment details to customer billing profile
You must add payment details to customer billing profiles so that this information is
passed downstream to fulfillment and provisioning systems.

In Telco transactions there is critical contact information that must be passed
downstream to fulfillment and provisioning systems. Based on the Customer Account
Model, this information is the following:

• Customer Account

• Service Account

• Billing Account

• Billing Profile

This topic covers the processes involved in the updating of payment details in a Billing
Profile.

Understand how billing profiles are handled

A Contact (that is a user, shopper, or customer) may have the following information in
Oracle CX Commerce transactions:

• A Customer Account (Account of type “Customer”).

• A link to other Customer Accounts. This would occur where the merchant supports
account models such as “Family Account,” “Household,” or “Family and Friends.”

• A link to one or more Service Accounts (Accounts of type “Service”).

• A link to one or more Billing Accounts (Accounts of type “Billing”).

• A link to one or more Billing Profiles.

In this type of transaction model, Commerce has the important ability to create or
update a billing profile with payment details. This is important because the payment
information for the billing profile needs to be captured and passed on to the primary
CRM (Customer Relationship Management) system in a PCI compliant manner. For
the Oracle Telco CX Solution, the primary CRM system is Oracle Engagement Cloud
(OEC).

Note: In an integration like this, transaction payment details that are stored in the
CRM system are used for recurring payments. This info is pulled by the billing system
from CRM. To compare this with Commerce, Commerce handles one time/upfront
payments by interacting with payment gateways.

At this point in time, Commerce is PCI compliant whereas Oracle Integration Cloud
and Oracle Engagement Cloud are not. Commerce supports the storing of credit cards
against a shopper profile. The card details are captured, however, in the store as part
of the checkout flow and subsequently a tokenized version of the card is obtained
from an integrated payment system as part of the payment authorization process. This
token, along with a masked version of card number and the expiration date are then
stored against the shopper’s profile so that the shopper can easily use the same card
for future purchases.

A feature is now supported that offers a generic horizontal benefit to Commerce and
contributes to the Telco specific vertical requirement. This feature uses a store API
endpoint that allows a shopper to store credit cards as part of their profile without

Chapter 3
Add payment details to customer billing profile

3-19

actually purchasing an order. This endpoint can then be used to enable Commerce to
pass credit card information to Oracle Engagement Cloud as part of the shopper billing
profile when creating or for updating accounts in OEC.

Understand the Update Profile endpoint and Generic Payment webhook

As mentioned, Commerce provides an Admin and Agent Update Profile store API
endpoint that lets you add and store customer credit cards as part of a shopper Billing
Profile without actually purchasing an order.

The name of the endpoint is addCreditCard. The Admin URI for the endpoint
is POST /ccstoreui/v1/current/creditCards/. The Agent URI for the endpoint is
POST /ccagentui/v1/profiles/{id}/creditCards.

The endpoint can be used to invoke Add Card requests multiple times to let you add
more than one card to a shopper Profile. Each new card is then stored against the
profile. The inputs of this endpoint are:

• cardType

• nameOnCard

• cardNumber

• expiryMonth

• expiryYear

Both versions of this endpoint trigger the Generic Payment webhook for a Tokenize
operation on the payment system. The payment system is expected to return a
tokenized value of the card which is then saved against the billing profile. The endpoint
then returns back a stored card ID.

The Admin Get Profile endpoint can then be used to get the token value of the card
using the stored card ID. See Configure Payment Processing and Create a Generic
Payment Gateway Integration for more complete information on this subject.

Add and update a Billing Profile to include a card token

There are two processes/flows that Commerce uses to capture the billing profile
information that can be passed on to the primary CRM system. These are the
following:

• Commerce creates an account(s) for a contact which includes creating one or
more billing profiles.

• Commerce updates an existing billing profile.

To assist in these processes, Commerce provides a Customer Account Model Server
Side Extension (SSE). The sections that follow provide the details on the various
processes and flows that this SSE supports

Understand the OCC to OEC Account Create flow

The basic information on this flow is the following:

• SSE Name: Customer Account Model

• Endpoint Name: Create Accounts

• Flow Name: OCC to OEC Account Create flow

Chapter 3
Add payment details to customer billing profile

3-20

In this process, the SSE first identifies the payment type. If the payment type is Card,
a check is done to see if the token for the card has been passed in (i.e., an existing
card stored on the shopper’s Commerce profile). If the token has been passed in, then
a check is done to see that the basic card information has also been passed in the
form of maskedCardNumber and expiryMonth. If the token has not been passed in (i.e.,
a new card is being introduced), then a check is made to look for the following “full
card” information being passed in:

• Card Type

• Name on Card

• Card Number

• CVN (card verification number)

• Expiry Month

• Expiry Year

There is also a step in the SSE execution whereby an API call can be made to
the storefront Profiles/Update Profile endpoint to retrieve a tokenized version of the
card. The billing profile information passed to the OCC to OEC Account Create flow
includes:

• Payment Method=Card

• Masked Card Number

• Card Expiry Date

• Tokenized representation of the card

The next section provides details on an update process/flow that the SSE handles.

Understand the OCC to OEC Account Update flow

The basic information on this flow is the following:

• SSE: Customer Account Model

• Endpoint Name: Update Accounts

• Flow Name: OCC to OEC Account Update flow

In this process, the SSE first identifies the payment type. If the payment type is Card,
a check is made to see if the token for the card has been passed in (i.e., there is an
existing card stored on the shopper’s Commerce profile). If the token has been passed
in, then a check is made that the basic card information has also been passed in the
form of maskedCardNumber and expiryMonth.

If the token has not been passed in (i.e., a new card has been introduced), then a
check is made to look for the following “full card” information:

• Card Type

• Name on Card

• Card Number

• CVN (card verification number)

• Expiry Month

• Expiry Year

Chapter 3
Add payment details to customer billing profile

3-21

The billing profile information passed to the OCC to OEC Account Update flow
includes:

• Payment Method=Card

• Masked Card Number

• Card Expiry Date

• Tokenized representation of the card

Note: Keep in mind the following additional details regarding the OCC OEC Comms:
Account Update flow:

• A check is made to verify that the payment type is credit card/debit card. If it is
credit card/debit card, then a check is made to verify whether creditCardNumber is
masked or non-masked.

• If creditCardNumber is masked, an additional check is made to verify that the
masked creditCardNumber and creditCardId values provided are valid. If both
are valid, then only creditCardNickname is allowed to update. All other fields/
properties are not allowed to update.

• If creditCardNumber is unmasked, then the card is considered a new card.
Tokenization occurs with the provided card details is similar to the Create Account
flow. The process ends with the new card and token details stored in CDM.

Understand fields and properties supported by the billing profile

For the credit card or debit card payment type, the following fields/properties are
supported:

• paymentMethod: “debitcard”/”creditcard”

• creditCardNumber (mandatory field)

• creditCardExpiryMonth (mandatory field)

• creditCardExpiryYear (mandatory field)

• creditCardContactName (mandatory field)

• creditCardType (mandatory field)

• creditCardSecurityCode

• creditCardNickname

• creditCardIin

For the bank transfer payment type, the following fields/properties are supported:

• paymentMethod: “bankTransfer”

• bankAccountNumber (This is the only mandatory field for bankTransfer payment
type.)

• bankRoutingNumber

• bankAccountType

• bankAccountName

• bankSortCode

• bankName

• bankAddress

Chapter 3
Add payment details to customer billing profile

3-22

• bankIban

• bankSwiftCode

Understand the process changes as seen in the store interface

With a standard checkout flow where the shopper does not yet have a customer
account model and is purchasing a service, the store interface captures the payment
card details. This includes the following:

• The shopper is prompted to identify the payment type. If the payment type is
“Credit/DebitCard,” the shopper is prompted to select either an existing card or
enter new card details.

• If it is a new card the user interface captures the following required card
information:

– Card Type

– Name on Card

– Card Number

– CVN (card verification number)

– Expiry Month

– Expiry Year

For a billing profile update checkout flow where the shopper, who does not have a
customer account model and is purchasing a service, the store interface captures the
payment card details. These details include the following:

• The shopper is prompted to identify payment type.

• If the payment type is “Credit/DebitCard,” the user interface captures the following
the required card information:

– Card Type

– Name on Card

– Card Number

– CVN (card verification number)

– Expiry Month

– Expiry Year

Understand the Customer Account Model
For customers using the Customer Account Model SSE, there are a number of
different account types that can be associated with a shopper within the Oracle CX
Commerce/Oracle CPQ integration.

If you are using the Customer Account Model SSE, there are a number of different
account types that can be associated with a shopper within Oracle CX Commerce.
To configure the Customer Account model, use the provided SSE. To do this, click
the Design icon in the Administration user interface. Then click Developer and
Server-Side Extensions. Select the CustomerAccountModel-store SSE and/or the
CustomerAccountModel-agent SSE.

Chapter 3
Understand the Customer Account Model

3-23

Both SSEs enable integration with an external CRM system to retrieve and update the
following:

• Contacts

• Accounts (Customer Billing and Service accounts)

• Account Roles (Admin, Buyer and User)

• Billing Profiles

Finally, the SSEs serve as the API for the pre-built integration with Oracle Engagement
Cloud.

There are three account types available within Commerce relating to billable services,
Customer account, Service account, and Billing account.

The details for these three accounts are captured when an order is placed and their
relationship with the service is maintained after an order has been fulfilled.

In many instances these three accounts may all refer to the same person or
organization, but there may also be instances when they differ, and it is important
to understand the relationship between the different types of account.

In addition to the three account types, there is a Billing Profile, which includes
information such as billing preferences.

All of the information required for the Customer, Service, and Billing accounts, and for
the Billing Profile is captured during the order process in Commerce.

Customer Account

This type of account represents the person or organization that owns the service. It
includes basic customer information, such as name and address and can receive both
services and bills.

Customer accounts are the highest level in the account hierarchy and can perform all
customer, service, or billing functions.

Service Account

This type of account represents the person or organization that receives the service.

The address associated with the Service account defines the physical location where
the service must be delivered. This address is used to verify service and ordering
eligibility.

Service accounts are required when the location and/or party receiving the service
differ from the Customer account. If a Service account is required, it is always a child
of a Customer account. There can be multiple Service accounts associated with a
single Customer account.

A Service account cannot be used to perform any of the functions of a Customer or
Billing account.

Billing Account

This type of account represents the person or organization that pays for the service.

Billing accounts are required when the location and/or party paying for a service differ
from the Customer account. If a Billing account is required, it is always a child of a

Chapter 3
Understand the Customer Account Model

3-24

Customer account. There can be multiple Billing accounts associated with a single
Customer account.

A Billing account cannot be used to perform any of the functions of a Customer or
Service account.

Billing Profile

A billing profile may be associated with either a Customer account or a Billing account.
It captures information such as billing preferences, method of payment, and contact
details. There may be more than one billing profile associated with a Customer or
Billing account, and the shopper must choose which billing profile to use when placing
an order for a service.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Use Recurring Charge Items
This integration provides you with the ability to configure items with a recurring charge
that can be passed on in purchase.

This integration enables you to provide items that come with a recurring charge
available for shoppers to purchase. Examples of items that include a recurring charge
include a service such as a data/call minutes/ text message bundle for a cellphone, or
a subscription charge for a cable television package.

Items that include a recurring charge may have just a recurring charge or may have
a recurring charge and a price. If an item has a price and a recurring charge, it is
assumed that the item is not a service or subscription item. In this case the price
represents an upfront payment and the recurring charge is the means by which the
outstanding balance is paid.

Identification of items that include a recurring charge must be carried out through
your Oracle CPQ Admin account. Please refer to the Synchronize Oracle CPQ Cloud
Parts with Commerce SKUs section of the Implementation Guide contained in the
Integrating Oracle CX Commerce with Oracle CPQ article on My Oracle Support.

If a shopper adds a recurring charge item to their cart, Commerce works with Oracle
CPQ to display full information about the recurring charges associated with the order.
This includes how much the recurring charge is for, the frequency of the recurring
charge, and the duration for which the recurring charge will be made.

Chapter 3
Use Recurring Charge Items

3-25

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Note: The default value for frequency is monthly and the default value for duration is
open-ended. If either of these is not the right value for the item they must be corrected
in the Oracle CPQ Part for the item.

Items with a recurring charge are not included in order sub-total passed to the shipping
calculator. If a cart contains only recurring charge items the order sub-total passed to
the shipping calculator is zero, which means that no shipping charge is applied to the
order.

Configure payment for recurring charge items

Commerce includes several built-in integrations with payment gateways that let your
store accept credit cards, debit cards, gift cards, and PayPal payments. However,
these integrations do not currently support recurring charges. If you wish to sell items
with recurring charges you must use one of the methods set out below to configure
Commerce payment processing to support recurring charges.

Configure credit card payments

Follow these instructions to configure your credit card payment processing to handle
recurring charges:

1. Create a custom credit card payment extension.
For detailed instructions about performing this step, refer to Create a credit card
extension.

2. Install the custom credit card payment extension.
For detailed instructions about performing this step, refer to Install the extension
and configure the gateway.

3. Enable the payment gateway.
For detailed instructions about performing this task, refer to Create a Credit
Card Payment Gateway Integration and Create a Generic Payment Gateway
Integration, .

4. Add custom properties to the Credit Card Payment webhook.
For detailed instructions about performing this task, refer to Install the extension
and configure the gateway .

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Configure non-credit card payments

Follow these instructions to configure your generic gateway payment processing to
handle recurring charges:

1. Create a custom generic payment extension.
For detailed instructions on performing this task refer to the Supported payment
methods and transaction types section of Create a Generic Payment Gateway
Integration.

2. Install the generic payment extension.
For detailed instructions about performing this step, refer to the Install the
extension section of Create a Generic Payment Gateway Integration.

3. Enable the payment gateway.
For detailed instructions about performing this task, refer to Create a Credit
Card Payment Gateway Integration and Create a Generic Payment Gateway
Integration.

Chapter 3
Use Recurring Charge Items

3-26

4. Customize the payment details widget to capture payment information other than
card details.

5. Add custom properties to the Generic Payment webhook.
For detailed instructions about performing this task, refer to Send custom
properties to a payment gateway.

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Use Asset Based Ordering
The Commerce/Oracle CPQ integration features asset based ordering (ABO).

Understand asset definition and related properties

This integration supports an asset based ordering (ABO) model. Asset based ordering
lets you sell tangible assets or subscription services delivered over a period of time;
for example, mobile phone call and data plans, television and broadband packages.
When these orders are subsequently fulfilled, the fulfillment system notifies Oracle
CPQ via an asset API, and Oracle CPQ then creates an asset in the Oracle CPQ
asset repository. To better understand asset based ordering and its related services, it
is important that you first understand asset definition and the related properties.

In the Commerce/Oracle CPQ integration, Commerce acts as the first point of contact
for registered and account-based shoppers. Commerce lets a shopper review and
select their purchases as needed.

In Telco-related purchases, Oracle CPQ acts as the primary Asset system. Commerce
makes a call to Oracle CPQ to retrieve the assets for a particular profile or account.
Oracle CPQ then manages the retrieval of assets from multiple systems if necessary.

One of the underlying features of any Telco solution is the ability for a self-service
channel (in this case, Commerce) to retrieve and display the complete set of assets
owned by the shopper and then to allow the shopper to trigger operations on those
assets. In order for this to happen, Oracle Commercesupports the following asset-
related information properties at the order item level:

• Asset Key - the assetKey property (formerly assetID) is a unique identifier that
is assigned to potential assets when adding items to a cart. This value is used
throughout the asset life cycle by fulfillment, asset management, and order capture
systems. In this case, the term "potential" is used meaning that not every item
added to a cart gets completely fulfilled, a provisioning system may fail, etc. For
configured items, the assetKey value is assigned as part of the asset configuration
process in Oracle CPQ.

• Parent Asset Key - Some configured items in an order may be many levels deep
in a BOM structure. In order to ensure that the BOM hierarchy is consistent
throughout the asset life cycle, each item in the BOM hierarchy must be able to
identify its direct parent. The parentAssetKey property makes this possible. For
root items in a BOM hierarchy, the parentAssetKey value is NULL.

• Root Asset Key - Again, some configured items in an order may be many levels
deep in a BOM structure. In order to ensure that the BOM hierarchy is consistent
throughout the asset life cycle, each item in the BOM hierarchy must be able to
identify its root asset. The rootAssetKey property makes this possible. For root
items in a BOM hierarchy, the assetKey and the rootAssetKey value is the same.

Chapter 3
Use Asset Based Ordering

3-27

Understand the mapping of an asset key to an item

In Oracle Commerce, a configurable SKU may be flagged as "non-assetable" which
means that when this item is configured and purchased it will not be assigned a
customer, billing, or service account and will not become an asset for the shopper.
When this item is configured, however, Oracle CPQ returns asset key values for each
item in the BOM by default.

Note: The flag name is assetable and the default value is False.

Commerce only maps asset key values to commerce items that are actually
"assetable." The rules used in this process are the following:

• If the SKU selected for configuration is based on a product where the property
value for assetable = TRUE, map the asset key data.

• If the SKU selected for configuration is based on a product where the property
value for assetable = FALSE do not map the asset key data.

Understand the Asset Root

It is also important to point out that when a shopper chooses to configure a SKU in
Commerce, the root item of the BOM returned from Oracle CPQ may not always be
that same SKU, that is, the root item part number may not map directly to the selected
configurable SKU.

Say, for example, a mobile product bundle that is represented by the "Red Bundle"
SKU in Commerce is configured several ways. At the initial step of the configuration
process, the shopper may be asked to select either the Standard Package, Student
Package, or Value Package. Depending on the selection made, the root item of the
configuration will be different.

So, based on this example, it is possible that the SKU selected by the shopper to
configure the item will be based on a product where _assetable _= TRUE but the root
item for the resulting configuration may be based on a product where _assetable _=
FALSE.

The rule that decides whether a configured item should be assigned _assetKey _
property is based on whether the SKU that corresponds to the root item of the
configuration is "assetable" and not on whether the item that the shopper selected to
be configured in Commerce is "assetable".

Understand asset based ordering and related service operations

As already discussed, asset based ordering lets you sell assets or subscription
services delivered over a period of time. When these orders are subsequently fulfilled,
the fulfillment system notifies Oracle CPQ via an asset API, and Oracle CPQ then
creates an asset in the Oracle CPQ asset repository.

Once created, assets can subsequently be reviewed by shoppers in the My Services
management area within the shopper account. The shopper can then administer an
asset by creating and placing new commerce orders to perform a number of actions
on the asset. These include the following:

• Modify

• Renew

• Terminate

Chapter 3
Use Asset Based Ordering

3-28

• Suspend

• Resume

• Upgrade

A Services-store SSE and the Services-agent SSE can be configured from the
administrator’s user interface. To do this, click the Design icon in the Administration
user interface. Then click Developer and Server-Side Extensions. Select the name
of the SSE. Both SSEs enable integration with 3rd party asset management systems
to retrieve and execute operations and services on assets available to the shopper.
They also serve as the API for the pre-built integration with Oracle CPQ asset
management.

For each of these operations the operation flow is basically the following:

• The shopper views their list of assets.

• The shopper selects an asset.

• The shopper selects the desired operation:

– For a Modify operation, the system loads the Oracle CPQ hosted iFrame,
the shopper makes their modifications, and selects to add to cart. This is the
Oracle CPQ hosted iFrame presented to the shopper when they configure a
new purchase prior to adding it the cart, reconfigure a new purchase prior to
checking out, or modify an existing asset.

– For an Upgrade operation, all available upgrade options are displayed on
the Storefront Asset list and then the specific Asset Details pages. After you
have selected a specific Asset, you can select the Upgrade option to view its
upgrade details. When you click on an upgrade option, an iFrame is returned
and opens up in the context of the available upgrade options. You can then
choose your asset upgrade(s) and add them to your cart.

– For all other operations, the system only makes a call to Oracle CPQ to
execute the operation.

• Oracle CPQ asset records are updated.

• Oracle CPQ returns the required JSON representation of the terminated/renewed/
suspended/resumed/modified/upgraded asset.

• Commerce transforms the JSON returned to a commerce item and adds it the
cart.

– For the Modify and Upgrade operations, the transformation is executed in the
Commerce client layer.

– For all other operations the transformation occurs in the Services SSE which
uses the Asset Action OIC flow.

• The shopper continues shopping.

• When the shopper places the order, the cpq-config-validation-app SSE
is triggered through the External Pricing Webhook. This SSE invokes
getConfiguration for every flow except when the asset actions are Terminate
and Suspend. The response received from OIC gets transformed from the
cpq-config-validation-app SSE as the OIC flows, getConfigurations, and
getConfigBom return a flat structure of items which is converted to a hierarchical
structure. Validation is then done in the cpq-config-validation-app SSE to verify
that data is not manipulated on client-side.

Chapter 3
Use Asset Based Ordering

3-29

• The order items representing Asset Based Ordering operations are submitted
downstream and contain all of the information required to ensure that the
operation is fulfilled.

The specific Services actions are described in more detail later in this section. These
actions are important for maintaining an efficient self-service channel. When a shopper
performs any one of these actions on an asset, the Oracle CPQ asset repository is
updated accordingly.

Since Commerce serves as the first point of contact for shoppers, it allows shoppers
to review and select their purchases. In the case of a Telco commerce solution, the
Oracle CPQ asset repository acts as the primary Asset system in which Commerce
makes a call to Oracle CPQ to retrieve the assets for a particular profile or account.
Oracle CPQ manages the retrieval of assets from multiple systems.

The Commerce Telco solution gives the shopper the ability to retrieve and display
the complete set of Assets owned by the shopper/account as well as carry out the
mentioned administration operations that can be performed on those assets.

When a shopper opens the My Services management area within their account they
are presented with a list of the assets linked to their account. From here they can
select an asset and click on the Details button next to the desired asset to see the
detailed view of the service.

It is at this point that the shopper can choose between the Modify, Renew, Terminate,
Suspend, Resume, and Upgrade actions.

Modify

If the shopper chooses Modify, Commerce loads the current configuration for the
service in question and opens a screen that allows the shopper to modify the service
as required. The new monthly charge for the service is updated automatically as the
shopper makes their selections. The shopper can then add the modified service to
their cart.

When the shopper goes through checkout and completes their order, Commerce
submits a service modification request to the fulfillment system.

As mentioned, earlier the steps in this operation are typically the following:

• The shopper views their list of assets.

• The shopper selects an asset.

• The shopper selects a Modify operation. For a Modify operation, the system loads
an Oracle CPQ hosted iFrame. The shopper makes their asset modifications and
selects to add it to cart.

• Oracle CPQ asset records are updated and Oracle CPQ returns the required
JSON representation the terminated/renewed/suspended/resumed/modified asset.

• Commercetransforms the required JSON returned to a commerce item and adds it
the cart. This transformation is executed in the Commerce client layer.

• The shopper continues shopping and then checks out.

The order items representing ABO operations are submitted downstream and contain
all of the information required to ensure that the operation is fulfilled.

Chapter 3
Use Asset Based Ordering

3-30

Renew

If the shopper chooses Renew, Commerce determines the configuration ID that
represents a renewal of the service in its current configuration and then adds a
renewal instruction to the shopping cart and opens the Shopping Cart Details page.

When the shopper goes through checkout and completes their order, Commerce
submits a service renewal request to the fulfillment system. This is handled and
invoked via the Services SSE endpoint /services/{id}/renewService and the SSE
invokes the OIC flow.

Terminate a service

If the shopper chooses Terminate, a configuration ID is sent back by Oracle CPQ that
represents the termination of the service in question. A termination instruction is added
to the shopping cart and the Shopping Cart Details page is then opened

When the shopper goes through checkout and completes their order, Commerce then
submits the service termination request to the fulfillment system. This is handled
and invoked via the Services SSE endpoint /services/{id}/terminateService which
invokes the OIC flow.

Suspend a service

If the shopper chooses Suspend, it allows them to suspend a service. Commerce
provides an endpoint that is used to suspend a service. When a shopper selects to
suspend a service, they choose the Suspend action and then enter a valid suspend
date.

By clicking on the Suspend button, Commerce determines the configuration ID that
represents the suspension of the service in question, adds a suspension instruction to
the shopping cart, and opens the Shopping Cart Details page. When the shopper goes
through checkout and completes their order, Commerce submits a service suspension
request to the fulfillment system. Also, when the Suspend action is chosen from the
store user interface, the transaction date is set to current date (i.e., the date that the
shopper suspended the service. This suspension may be indefinite or for set for a
specific period of time by entering a date. A specific shopper use case example might
be letting a shopper suspend a data plan for 30 days.

The Services SSEs support the Suspend operation which returns either a Configured
Item or an Error. Services is part of the Oracle Integrated Cloud flow.

The Services API has an endpoint called Suspend Service. The endpoint can be
triggered when a shopper selects to suspend a service, enters a valid suspend date
and time, and selects to proceed. Inputs include the following:

• Asset Key

• Action - Suspend

• Transaction Date - The valid suspend date and time information that the shopper
entered. The Suspend date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Resume a Service

If the shopper chooses Resume, it allows them to resume a service that was
previously suspended. Commerce provides an endpoint that is used to resume a

Chapter 3
Use Asset Based Ordering

3-31

service. When a shopper selects to resume a service, they choose the Resume action
and then enter a valid resume date and time to resume the service.

By clicking on the Resume button, Commerce determines the configuration ID that
represents the service in question that is to be resumed, adds a resume instruction to
the shopping cart, and opens the Shopping Cart Details page. When the shopper goes
through checkout and completes their order, Commerce submits a resume service
request to the fulfillment system. Also, when the Resume action is chosen from the
store user interface, the transaction date is set to current date (i.e., the date that the
shopper resumed the service).

The Services SSEs also support this Resume operation which returns either a
Configured Item or an Error. Services is part of the Oracle Integrated Cloud flow.

The Services API has an endpoint called Resume Service. The endpoint can be
triggered when a shopper selects to resume a service, enters a valid resume date and
time and selects to proceed. Inputs include the following:

• AssetKey

• Action: Resume

• Transaction Date: The valid Resume date and time that the shopper entered. The
Resume date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Note: An action code of Renew, Terminate, Suspend, and Resume is assigned to an
item when that respective operation has been applied to that item.

Upgrade an Asset

With Asset Based Ordering, you have the ability to upgrade an existing asset. If
a shopper chooses the Upgrade operation, they can upgrade an asset to one of
the upgrades available for the product. Any Root asset may have one or more
upgrade options available at any time. Commerce SSE endpoints getServices and
getServices/{id} return the upgrade options for each of the asset if the query param
"expand=occ_upgradeOptions" is passed. Once the shopper selects the Upgrade
action and clicks the Upgrade button, this action invokes the upgradeService SSE
endpoint which gets the upgrade name as input and returns the query string that is to
be used as punchin URL to launch the Oracle CPQ iFrame. From the user interface
point of view, a shopper selects to upgrade an asset, choose the Upgrade action in the
Asset Details view and then select the asset upgrade that they desire.
Oracle CPQ maintains a custom upgrade options table for Commerce to query in order
to know which upgrades are available for a given asset. The key parameter controlling
the operation is the SKU of one or more items that are part of a current asset bundle.
The response received after initiating this operation includes all of the eligible SKUs
that an asset can be upgraded to.

Commerce has an Upgrade endpoint to fetch all available upgrade options. The input
for this endpoint is currentModel and currentOffer. The following presents the details
on the information needed to retrieve the upgrade options table from Oracle CPQ:

• Oracle CPQ Table Name: INT_UPGRADE_OPTIONS

• Input (via URL parameter): occ_Upgrade_options query parameter which is a
list of currentSku plus currentModel for the assets. Type: String. This query
parameter is passed from Commerce to the SSE endpoint (described further
in this section). After a getAssets call, you then pick the currentModel and
currentOffer from each asset and invoke the Oracle CPQ upgrade options table.

Chapter 3
Use Asset Based Ordering

3-32

• Output: upgradeName, upgradeProductId(OCC)

The following presents the details on the basic schema of the upgrade options table
maintained by Oracle CPQ that contains the specified upgrade information:

Table 3-1 Oracle CPQ Upgrade Table

Column Name Data Type and Description

currentSku String. This value defines the current offer.
This needs to be stored as an attribute
of an asset record. This value is sent
from Commerce while retrieving the upgrade
options.

currentModel String. The model name for which the upgrade
offer is valid.

upgradeName String. This value is passed to he Oracle
CPQ iFrame while upgrading and is used by
Oracle CPQ to default and render the upgrade
options. This is not be used by Commerce for
any purpose.

upgradeProductId String. This is used by Commerce to
identify the product corresponding to upgrade
option. The product display name, description,
images, etc. can be used to show upgrade
details to the shopper.

Note: A combination of currentSku and currentModel is used as the parameter to find
the matching upgrade options

The Oracle CPQ upgrade table is queried by Commerce to help identify the upgrades
that are available for a given asset. These upgrade options are then presented to
the shopper. An example of what the upgrade information would contain includes the
following:

Table 3-2 Example of upgrade options returned to Commerce

currentSku currentModel upgradeName upgradeProductID

4ForUDeal nPlay 4ForUDeal prod102

It is recommended that the currentSku column is indexed. The following presents
additional details on each returned upgrade option:

• currentOffer - Maps to a configurable attribute on the root config model in Oracle
CPQ. This needs to be stored as an attribute mapping onto the root asset as well.
This value is sent from Commerce while retrieving the upgrade options.

• currentModel - Maps to the variable name of the root config model in Oracle CPQ
which the upgrade offer applies to.

• upgradeName - Maps to the _config_upgrade_name that is passed from
Commerceto Oracle CPQ, which drives recommendation rules on the upgrade.
This is not used by Commerce for any other purpose.

• upgradeProductId - Maps to the Product Id of the upgrade offer in Commerce. This
is used to show upgrade details (product display name, description, images, etc)
to the shopper.

Chapter 3
Use Asset Based Ordering

3-33

As mentioned, Commerce provides an Upgrade endpoint that is used in the operation
to upgrade the asset. This endpoint is part of the Services SSE which works to
complete multiple service operations (already mentioned in the above sections) via the
Services API. For this operation, the Services API has an endpoint called Upgrade.
The following information provides more detail on what is required by the API to
upgrade an asset using this endpoint:

• SSE name: Services

• Endpoint name: Upgrade

• Endpoint trigger: The endpoint is triggered when the user clicks Upgrade against
an upgrade option

• Inputs:

– Logged in User Token

– AssetID

– upgradeName (returned from Oracle CPQ)

• Returns: Upgrade URL Query String. This is the string of data that is appended to
the base Modify URL to ensure that the upgrade iFrame is correctly pre-populated
based on the product that the shopper is upgrading from and the product that they
are upgrading to.

The activity that occurs at the store user interface level during the Upgrade operation
is the following:

• Select the Asset List view. This lets you view information about all of your assets/
services. This view will also show the upgrade options (if available) for the asset.
You cannot trigger an Upgrade operation from this view as the actual upgrade URL
is not yet determined until the asset details are retrieved.

• Select the asset you wish to view and click the Details button so that you can view
the asset details and as well as possible upgrade details.

• When you click the Details button of any asset, the asset details page is displayed
which shows all of the details associated with that asset along with available asset
action options.

• The asset details page also has a section showing the upgrade options available
for that asset. When you display the asset details page, the product details of that
SKU/Product are displayed. The Upgrade button is displayed next to any upgrade
available for that asset.

• Click the Upgrade button in the Asset view of the asset that you want upgraded.
Your upgrade option details are then displayed in the Asset Details view. You can
also get the same results by clicking the link for the available upgrade from the
Service list.

• Click Upgrade. When the Upgrade operation is initiated, the following occurs:

– If there are upgrades available for the asset, the SSE endpoint returns an
Upgrade URL Query String and creates the upgrade punch-in URL to load the
iFrame containing the information about the available upgrades.

– When you select to upgrade you are finally presented with a pre-configured
modification to your asset bundle.

– If the SSE endpoint returns an error, this means there are no upgrades
available for this asset and an appropriate error message is displayed.

Chapter 3
Use Asset Based Ordering

3-34

• Add the upgrade to your cart and submit the order to complete the upgrading
process.

Finally, each of the Asset Based Ordering services operations described earlier may
be carried out by a shopper or by an agent acting on the shopper’s behalf.

Additional information related to using the Upgrade feature with Commerce

The following additional details should be kept in mind when using the Upgrade
feature:

• In Commerce you can start a configuration upgrade from a configurable SKU (for
example, "4ForU Deal") which in turn maps to a model "nPlay" in Oracle CPQ.

• Configuration metadata is set with key "offer" and value "4ForU Deal" for the
above SKU and is passed to Oracle CPQ

• After the configuration upgrade is completed, the BOM returned from the Oracle
CPQ for that configuration may have a different rootSKU (i.e., "nPlay") and that is
what is added to cart. "4ForUDeal" may be a child of "nPlay".

• In Commerce, there is another SKU for "nPlay" that is configurable and maps to
the same model "nPlay" in Oracle CPQ.

• After the order is submitted, an asset with "nPlay" is created which has an asset
attribute of Offer. Offer then has a value of 4ForUDeal.

Also, via the CommerceAdmin, you can create products with an upgradeProductId as
the productId value, and mark them as 'notForIndividualSale.' This lets you do the
following:

• Have a unique name for each upgrade that can be displayed in the store

• Have a unique description to describe what the upgrade is

• Support locale specific translations

• Have the ability to upload images related to the upgradeOption.

Handle further upgrades to an asset that has already been upgraded

In some use cases, you may have a situation where you have an asset with
currentOffer=sku1234 that is being upgraded to Upgrade 101. When you then visit
the Asset Details page again you are presented with the same upgrade option of
Upgrade101. This can occur because the upgrade does not modify the currentOffer
and it is still sku1234 and its corresponding upgrade options are being fetched during
the getAssets/getAsset flow.

The following details show how you can solve this type of situation:

Table 3-3 Example of how to handle further upgrades to an asset

currentOffer currentModel upgradeName upgradeProductID

4ForUDeal nPlay 4ForUDealPlus 4ForUDealPlus

• Let's say a shopper starts an upgrade configuration from the SKU "4ForUDeal" by
passing the configuration metadata offer=4ForUDeal.

Chapter 3
Use Asset Based Ordering

3-35

• After upgrading the configuration, the BOM sent from Oracle CPQ may have a
different root SKU id such as "nPlay." "4ForUDeal" may be a child of it. It will also
contain an attribute "offer" with value "4ForUDeal"

• An asset with "nPlay" as the currentModel gets created and the
getAssets/getAsset flows return the asset details along with asset attribute
offer=4ForUDeal.

• The offer attribute is sent as the currentOffer to the Oracle CPQ while retrieving
the upgrade option 4ForUDealPlus.

• Once the upgrade has been performed by passing the upgrade name
4ForUDealPlus to Oracle CPQ in the queryString, the BOM returned from Oracle
CPQ will have the attribute "offer" with value "4ForUDealPlus".

• After submitting the order and updating the asset, the asset attribute "offer" value
now gets updated to "4ForUDealPlus".

• In subsequent getAssets and getAsset calls the asset attribute offer value will
be returned as "4ForUDealPlus", so that there are no matching records for that
currentOffer in upgrade options table in Oracle CPQ.

Understand the Disable Reconfiguration feature

Regarding these operations, the Oracle CX Commerce and Oracle CPQ integration
also has the ability to prevent shoppers from attempting to reconfigure items in their
cart that have been added by any of the following operations:

• Renew

• Terminate

• Suspend

• Resume

To assist in disabling reconfiguration on already configured items added by any of
these actions, an action code of Renew, Terminate, Suspend, and Resume is assigned
to an item when that respective operation has been applied to that item.

This code is assigned to make sure that shoppers are prevented from attempting
to reconfigure an asset. The purpose of the code is to make sure the reconfigure
session(s) fails, either at reconfiguration or order validation time.

Differentiate between new order items and ABO order items

To identify items in an order that are the result of an operation on an existing asset
(Terminate, Renew, Suspend, Resume, Modify, Upgrade), Commerce has checked to
see if there was an assetId value. If there was, Commerce assumed that the item
is the result of an ABO and not a net new purchase. This approach worked on the
assumption that an asset identifier would only be assigned when the asset record was
created in Oracle CPQ.

Asset identifier values are now assigned at the time when a shopper adds an item
to the cart. To ensure that Commerce can always reliably differentiate between new
order items and ABO order items when an ABO item is added to the cart, a lineType
property for each item in the configuration hierarchy is set to ASSET.

The rule used to differentiate between new order items and ABO order items is the
following: If assetKey value is present and _lineType = NULL then the item is a new
purchase and not an operation on an existing asset.

Chapter 3
Use Asset Based Ordering

3-36

Retrieve assets for an order with an asset key

For the cancel in-flight feature, Commerceneeds a mechanism for retrieving all of
the assets derived from a particular order. Commerce used to retrieve the assets
for a particular order based on assetID (stored on the asset record in Oracle CPQ).
Commerce now uses the assetKey value.

For any given order Commerce queries the Oracle CPQ assets API to retrieve the
assets for the order based on the collection of assetKey values. This query is limited to
the assetKey values for the root items in the order only

Understand restricting the quantity of assetable items

A shopper used to be able to increase the item quantity for a configured item in the
cart in the same way as any other purchase. This action does not work where an asset
key value has been assigned.

Asset keys are assigned to net new purchases as part of the configuration process.
Oracle CPQ assigns an assetKey for the root and all child items in the configuration. If
an item has been assigned an asset key then this asset key is used to identity a single
instance of this asset throughout the fulfillment, provisioning and asset management
processes. As a result, the quantity of an item cannot be greater than one.

Customize configurations in Commerce using the CPQ
Configuration API

You can customize the configurations of complex products in Oracle CX Commerce by
using the Oracle CPQ Configuration API to avoid being redirected to a Oracle CPQ
hosted iFrame.

You can now customize the configurations of complex products in Oracle CX
Commerce without being redirected to a Oracle CPQ hosted iFrame.

You can now customize the configurations of complex products in Commerce without
being redirected to a Oracle CPQ hosted iFrame which may have a separate and
distinct user interface look and feel that creates a disjointed user experience. This
capability, known as the Direct API Configuration feature, is provided to build out
support in Commerce for API driven product configurations where the user interface
experience is controlled by Commerce and can be customized by Commerce partners.
At a high level, this feature lets you do the following:

• Create brand specific configuration user interfaces and controls at the global level.

• Create a specific user interface experience for individual customizable products at
the product level.

The goal of this feature is to provide full support of the Oracle CPQ Configuration
API on Commerce Storefront frameworks. This includes providing a mechanism to
dynamically create user interface elements that let shoppers select customizable
products. It then presents them with the appropriate user interface elements to
complete the customization process and add the each item to the cart. These user
interface elements are generated dynamically in response to the selections made by
the shopper at each step of the customization. The functionality of this feature is fully
compliant with current Commerce Storefront frameworks.

The principal benefits of the Direct API Configuration feature are the following:

Chapter 3
Customize configurations in Commerce using the CPQ Configuration API

3-37

• iFrame is not required - The current functionality requires that the configuration
system (Oracle CPQ) perform all of the configuration tasks. This means that the
shopper's user interface experience is managed in 2 separate applications. Up to
the point where the shopper selects a customizable product, their user interface
experience is driven by Commerce. On the other hand, the configuration user
experience is managed by Oracle CPQ and when the shopper adds the configured
item to the cart the user experience reverts back to the control of Commerce.
The addition of this feature means that customers will not be required to execute
product configuration via an iFrame. This lets shoppers experience a consistent
user interface with common look and feel across their storefront.

• Decoupling of the user interface and the configuration process - This feature
ensures that the user interface framework is decoupled from the configuration
process. This lets customers do the following:

– Build configuration user interface components using the Commerce Design
Page based on the Store Front 1.0 Framework.

– Build configuration user interface components using a non-Commerce design
user interface framework.

• Performance improvements - The use of the iFrame pattern also creates a
performance concern. The former integration with Oracle CPQ functions well and
the disjointed user experience can be managed to some extent with user interface
customization. However, there is also no reliable evidence that this design
pattern performs at the levels required for high volume customer-based Telco
implementations, where hundreds of thousands of shoppers may be configuring
complex Telco bundles at the same time. This feature attempts to address this
concern.

The roles that Commerce and Oracle CPQ now take with this feature are the following:

• Oracle CPQ remains the primary configurator and controls the following:

– What needs to be configured

– The sequence in which components/attributes are presented

– The configuration values that are required or accepted

• The Commerce client is responsible for how the configurator is displayed (without
an iFrame).

Additional topics in the current chapter provide you with detailed use cases for this
feature.

Understand the support of the Oracle CPQ Configuration APIs

This feature provides a downloadable extension to the Commerce application
component that provides a collection of endpoints which lets the Storefront UI
(regardless of which user interface framework you are using) do the following:

• Retrieve the end to end UI flow for a given Oracle CPQ Configuration Model

• Retrieve sufficient metadata to identify the user interface elements required for
each attribute of the model. These elements include the following:

– Input Controls (Radio Buttons, List Boxes, Toggles, Date/Time Pickers etc.)

– Navigational Components (Breadcrumbs, Sliders, Image Carousels etc.)

– Information Components (Progress Bars, Tool Tips etc.)

– Containers such as accordion elements

Chapter 3
Customize configurations in Commerce using the CPQ Configuration API

3-38

• Retrieve data required to correctly populate each user interface element. This
includes Label Names, Selectable Options, and more

• Create a product configuration

• Update a product configuration

• Update user interface flow

• Update a user interface elements

• Modify a product configuration

• Upgrade a product configuration

• Save a product configuration

• Transform a BOM (bill of materials) to a Commerce cart item

• Reconfigure a saved product configuration

This extension also handles the following management tasks:

• Maintains the state of the configuration until such time as it is saved.

• Makes sure that calls made from the user interface framework to the Commerce
Extension are authorized.

• Makes sure that calls made from the Commerce Extension to Oracle CPQ
Configuration REST APIs are authorized.

• Ensures that connections are made from the user interface framework to
extension to Oracle CPQ REST APIs without OAIC (Oracle Integration) integration
flows.

• Manages BOM (Bill of Materials) data objects returned from Oracle CPQ when the
configuration is saved.

This Commerce Extension supports any user interface client, including those built on
Commerce Storefront 1.0.

Understand supported integration-specific configuration APIs

The Oracle CPQ (Configure, Price and Quote) Cloud solution supports the complete
quote-to-cash process from customer inquiry to order fulfillment. It guides users to
optimal product options and configurations from simple to complex, automatically
applying discounts and relevant up-sell and cross-sell opportunities. Oracle CPQ
exposes objects and data through REST APIs. By exposing objects and data through
REST APIs, Oracle CPQ promotes simpler API calls and more robust integration using
HTTP standards. For the Direct API Configuration feature and current Oracle CPQ
Integration support, the following configuration APIs are mostly used:

• Configuration Run-Time Data Services APIs - These endpoints expose information
and perform an action for a configuration model. All Configuration Run-Time
Data REST APIs follow a required product hierarchy starting with the product
family then product line followed by the model. A variable name for the product
entity is required. For example, /config{prodFamVarName}.(prodLineVarName}.
{modelVarName}/ is the standard Configuration Run-Time Data product path for an
endpoint URL.

• Configuration Administration REST APIs - These APIs provide product
configuration endpoints that expose configuration definition information for
Configuration Product Families, Product Lines, Models, attributes, array sets,
menu items, and translations. The information for these items is organized

Chapter 3
Customize configurations in Commerce using the CPQ Configuration API

3-39

in a hierarchical structure. The Configuration Administration REST API query
parameters are supported to include and exclude child resources in a given
resource. The response for each level in the hierarchy can include the details
of the sub resources based on the query parameter passed in the request.

Customer Configuration flows dictate how users go through the site pages and the
options available as they create a Transaction. Configuration flow rules consist of a
condition and flow attributes. Actions display based on which node in the flow that
the user has available based on defined criteria. Beginning in Oracle CPQ Release
18D,Oracle CPQ transformed the current configuration definition as REST endpoints
to support UI interfaces. These services are available v7 and higher RESTful services.

Refer to the Oracle CPQ REST API documentation for more complete information.

Understand how the Direct API Configuration feature enhances Asset
Operations

As mentioned, this feature provides Commerce with support of the Oracle CPQ
Configuration API Layer while using the Commerce and Oracle CPQ integration. This
means providing functionality that lets customers, using any user interface framework,
configure and/or reconfigure customizable products by invoking the following from
Oracle CPQ:

• Configuration Run-Time Data Services APIs

• Configuration Administration REST APIs

Building on this foundation, the feature further supports some asset-based operations
whereby the configuration model retrieved from Oracle CPQ represents an existing
asset. This lets the shopper execute the following configuration-related Asset
Operations via direct API calls to the Oracle CPQ Configuration API:

• Modify

• Upgrade

Available Storefront and Agent endpoints for this feature let you modify and upgrade
assets via direct API calls to Oracle CPQ thus removing the need to include an iFrame
in this part of the shopping experience as well. This feature is limited to API only and
customers will need to build their own UI elements to invoke these new endpoints.

By creating your own Modify and Upgrade user interface elements, you can deliver
a seamless and consistent user experience even when modifying or upgrading
complex products or services. The shopper user interface experience while modifying
or upgrading a service can then be consistent with the rest of the site navigation
experience as configuration user interface controls can be created in compliance with
the Site Theme and CSS being used.

To fully implement the Asset Operations portion of this feature you must:

• Download and install the CpqConfiguratorStoreApp and
CpqConfiguratorAgentApp SSEs

• Create a ‘Modify’ user interface element which can be coded into the Asset Details
widget (which is not elementized)

• Create an ‘Upgrade’ user interface element which can also be coded into the
Asset Details widget

Chapter 3
Customize configurations in Commerce using the CPQ Configuration API

3-40

The creation of the user interface elements should be a straightforward process for
any developer partner with a working knowledge of Commerce development and
knockout.js.

Refer to Use Asset Based Ordering for more information on these Asset Operations.

Understand Sys Config model support via Commerce and the Oracle CPQ
Configuration API

In Oracle CPQ, certain parts of customizable (configurable) products are based on
"Sys Config" models that are accessible via the Oracle CPQ Configuration API. The
"Sys Config" model consists of a hierarchy of components and associated classes that
are used to model the hierarchical nature of the Product and Promotion structure of
that configurable product.

When products in Oracle CPQ are structured hierarchically, Product Families are
created first. Families provide the broad classifications of products. The next parts
created are Product Lines which are used to describe more specific product areas of
Product Families. Finally, Models are created to provide detail about the most specific
product traits.

Note: In a "Sys Config" model, an attribute of a model can also be another model so it
is important that you fully understand the structured hierarchy of each product family.

Examples of the product hierarchies just described might look something like the
following:

• Product Family: "Business Laptop"

– Product Line: “EZCompute”

* Model: "EZ"

* Model: "EZ Pro"

• Product Family: ""Gamer Laptop""

– Product Line: "Avenger"

* Model: "Novice"

* Model: "EZ Pro"

Note: In a "Sys Config" model, an attribute of a model can also be another model so
it is important that you fully understand the structured hierarchy of each configured
product family. For example, the "Novice" model in the "Gamer Laptop" product family
could have its own "sub-model" that had a variation of the features (more memory,
better graphics card, and so on) offered in the basic configuration of the parent
"Novice" model. To summarize, this feature lets you reload the configurator with a
model which can be an attribute of the root/parent.

For more complete information on models and Oracle CPQ REST APIs, refer to the
Oracle CPQ documentation.

In the Commerce and Oracle CPQ Integration, Commerce works with the Oracle CPQ
Configuration API to let you execute the configuration of complex "Sys Config" models
via API calls to the Oracle CPQ Configuration API. The Commerce support of the
Oracle CPQ Configuration API lets you open and customize desired models within a
bundle configuration. An example of this might be a product bundle consisting of a
Mobile service attribute as well as a Cable TV service attribute. In this example, each
service attribute (Mobile and Cable TV) is its own model. Commerce support of the

Chapter 3
Customize configurations in Commerce using the CPQ Configuration API

3-41

https://docs.oracle.com/en/cloud/saas/configure-price-quote/index.html

Oracle CPQ Configuration API lets you open a product configurator directly on either
of those service models.

Note: Keep in mind that a shopper can only interact with a model starting from the
root asset of the configured product. Every Configure, Reconfigure, Modify, or Upgrade
operation is an operation carried out on the root asset. Having retrieved the root asset
(the complete product model), the shopper may then navigate to any attributes of the
root. In some cases, an attribute may well be an attribute that is a sub-model.

As far as user cases go, this feature lets you (the developer) build out specific user
interface experiences dealing with the configuration of customizable products from a
desired catalog. In doing so, it lets you apply global, site, or even product-specific
user interface template changes as well as control the user interface flow of the
configuration process for each product. For customers, this feature lets them enjoy
a seamless product customization experience without any indication that multiple
applications are working together as part of an integration to handle the product
configuration.

Implement configuration customization via the CPQ
Configuration API.

You need to complete some initial tasks to implement the functionality that directly
customizes configurations using the Oracle CPQ Configuration API for the first time on
a customer storefront.

The Direct API Configuration feature lets you directly customize configurations using
the Oracle CPQ Configuration API. This topic describes the tasks which a developer
and designer would work together to implement this functionality for the first time for a
customer storefront.

This feature lets you directly customize configurations using the Oracle CPQ
Configuration API. This topic describes the tasks which a developer and designer
would work together to implement this functionality for the first time for a customer
storefront. This would be the set of tasks that would be carried out first to allow you to
use the feature.

In this case, the customer does not want to use the hosted iFrame model for
executing product customization on their site but would prefer customization via the
Direct API Configuration feature. The specific reasons the customer is requesting the
implementation of this feature are the following:

• The customer wants the customization user experience to be as seamless as
possible.

• The customer wants their merchandising team to have as much control over the
customization user interface "look and feel" as possible.

• The customer would prefer that the merchandising team manage the user
interface experience in their design tools as much as possible.

The details for implementing and using the Oracle CPQ Configuration API feature
are described in the sections that follow. In these descriptions, it is assumed that the
Commerce and Oracle CPQ Integration is already configured and enabled.

Chapter 3
Implement configuration customization via the CPQ Configuration API.

3-42

Understand the role of the Commerce Configurator SSE in the Direct API
Configuration feature

The Direct API Configuration feature uses a Commerce server-side extension (SSE)
to provide a collection of endpoints which lets the storefront UI (regardless of the UI
framework used) to configure products and services. The SSE accepts a configurator
request, invokes the corresponding requests in Oracle CPQ, and processes the Oracle
CPQ response before returning an optimized payload.

The SSE performs the following configurator actions:

• Configure - This action corresponds to the Oracle CPQ _configure endpoint and
is the starting point for configuring a model. It returns all the necessary layout data,
attribute, and configuration state data for a user interface to display a configurator
model. Also, where a layout contains Pick Lists and/or Array Sets, it returns all
data required for those components to be rendered.

• Update - This action corresponds to the Oracle CPQ _update endpoint. It
will accept an updated configuration state from the client and return an new
configuration state based on the changes made.

• Next - This action corresponds to the Oracle CPQ _next endpoint. This action
is available when the model configuration is spanned across multiple nodes/
configuration flow layouts. It works similarly to the initial configure action as it
also returns all the necessary layout data, attributes, configuration state, and pick
list/array set data to display the particular layout for a stage in the flow.

• Previous - This action corresponds to the Oracle CPQ _next endpoint. This
action is available when the model configuration is spanned across multiple nodes/
configuration flow layouts. It works similarly to the initial configure action as it also
returns all the necessary layout data, attributes, configuration state, and pick list/
array set data to display the particular layout for a stage in the flow.

• Add to Cart - This action corresponds to the Oracle CPQ_integration_addToCart
endpoint. This action returns a Commerce commerce item (cart item). It
transforms a Configuration_Details response (returned from Oracle CPQ) to a
Commerce commerce item (cart item). With the embedded configurator, approach
the Configuration_Details response is returned to Commerce and it is the
responsibility of the Commerce client to transform the response to a Commerce
commerce item.

• Reconfigure - This action corresponds to the Oracle CPQ _reconfigureClient
endpoint. It is similar to the Configure action but rather than starting a brand
new configuration, it returns all the necessary layout data, attributes, configuration
state, and pick list/array set data for a user interface to display a configurator
model for an existing configuration. A configId parameter is used to identify the
existing configuration.

• Interact - This action corresponds to the Oracle CPQ _interact endpoint. It is
typically triggered by the user interface in response to a change to an attribute
value when ajaxEnabled has been set to true for the user interface component. It
takes the value for the attribute that has changed and returns a new configuration
state based on the change made.

• Array Set - The action supports the following:

– Add Row - This action corresponds to the Oracle
CPQ _set<arraySetVarName>/actions/_add endpoint. It accepts a
cacheInstanceId and adds a row to the arraySet.

Chapter 3
Implement configuration customization via the CPQ Configuration API.

3-43

– Delete Row - This action corresponds to the Oracle CPQ
_set<arraySetVarName>/actions/_delete endpoint. It accepts a
cacheInstanceId and removeIndex and removes the row from the supplied
index in the arraySet.

• Layout - This action retrieves the full layoutCache for a particular product and flow.

• Pick Lists - This action retrieves all options available for a particular pick list.

• UI Settings - This action retrieves all general/base user interface configuration
settings from Oracle CPQ.

• Templates - The action retrieves configuration templates that are to be used for
rendering a BOM table and a recommended parts table.

Implement the Direct API Configuration feature

To implement the Direct API Configuration feature in Commerce you must:

• Download and install the Oracle CPQ Configurator (Storefront/Agent) Server-Side
Extension in Commerce.

• Create a "Customize Button for Direct API" user interface element for direct API
configuration.

• Create a "Reconfigure Button for Direct API" user interface element for direct API
reconfiguration."

• Create a JavaScript Library of user interface components that will be used
to render the Layout response from Oracle CPQ (this could be Knockout
Components, React, Commerce elements etc.).

• Include the "Customize Button for Direct API" element (button) in the Product
Details widget in order to trigger a customization session.

• Include the "Reconfigure Button for Direct API" element (button) in the Shopping
Cart widget in order to trigger a reconfigure session.

• Bundle the user interface elements and JavaScript library into a single extension
that can be uploaded in a single step.

• Log in to Commerce Admin and navigate to Settings → Extensions.

• Upload the Oracle CPQ Configurator server-side extension.

• Upload the new extension containing the user interface elements and JavaScript
library.

Implement the Direct API Configuration feature for Configure

If you decide to implement the Direct API Configuration feature for Configure do the
following:

• Log in to Commerce Admin and navigate to Design → Layout → Product Layout
→ Layout Settings.

• Select Product Layout → Grid View and then select the Product Details widget.

• Select the Element Library. You should see three "Customize Button" user
elements available. These include the following:

– Customize Button - Supports the iFrame customization flow by using the
iFrame URL stored in Commerce Admin and appending values for Product

Chapter 3
Implement configuration customization via the CPQ Configuration API.

3-44

Line, Product Family and Model to load the iFrame and kick off the
configuration process.

– Customize Button with Configuration Metadata - Supports the iFrame
customization flow by using the iFrame URL stored in Commerce Admin and
appending values for Product Line, Product Family, Model and a collection of
one or more static or dynamic key value pairs of configuration metadata to
load the iFrame in the correct state and kick off the configuration process.

– Customize Button for Direct API - Supports the API driven customization flow.
Note: You created this as directed in the previous section as the "Customize
Button for Direct API" element.

• Add the Customize Button for Direct API to the Product Details widget.

• Save your changes.

• Navigate back to Layout → Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product that lets you buy services for Landline, Mobile, Internet and TV in a single
bundle at a steep discount.

• Save your changes. Select Product Layout → Preview. You are presented with a
preview of the product layout for the 4ForU Deal offer.

• Select to customize the offer. You are presented with the customizable options for
the offer in a combination of user interface components including the following:

– Panels

– Tabs

– Input fields

– Radio buttons

– Checkboxes

– Multi-select lists

– Single select lists

– Date pickers

– Pick Lists

These components are presented as the default mapping for the corresponding
Oracle CPQ model attributes and layout.

• Publish your changes.

Implement the Direct API Configuration feature for Reconfigure

If you decide to implement the Direct API Configuration feature for Reconfigure do the
following:

• Select Layout → Cart Layout → Grid View and select the Shopping Cart
widget.

• Select Go to widget code.

• Add the Reconfigure Button for Direct API to the Shopping Cart widget.
Note: You created this as directed in the earlier section as the "Reconfigure Button
for Direct API" element.

• Save your changes.

Chapter 3
Implement configuration customization via the CPQ Configuration API.

3-45

• Navigate back to Layout → Cart Layout → Layout Settings.

• Set the Layout Preview Product ID for the 4ForU Deal offer with a quantity of 1.
This is a configurable product which lets you buy services for Landline, Mobile,
Internet and TV in a single bundle at a steep discount.

• Save your changes.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• Select to customize the offer and add it to the cart.

• Select the cart and choose to edit the configurable item.

• You are presented with customizable options for the offer in a combination of user
interface components including the following:

– Panels

– Tabs

– Input fields

– Radio buttons

– Checkboxes

– Multi-select lists

– Single select lists

– Date pickers

– Pick Lists

These components are presented as per the default mapping for the
corresponding Oracle CPQ model attributes and layout.

• Publish your changes.

Commerce is now configured to use the direct API configuration process for
customizable products.

Control user interface look and feel using the CPQ
Configuration API

The Direct API Configuration feature lets you control user interface "look and feel"
using the Oracle CPQ Configuration API.

You can use the Direct API Configuration feature to control user interface "look and
feel" using the Oracle CPQ Configuration API. This ability lets you do things like the
following:

• Apply a site-specific "Look and Feel" product customization to the user interface
experience.

• Apply site-specific user interface components for a custom user interface
experience.

• Add a new UI component to the configuration flow.

• Remove tabs from the product customization user interface experience.

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-46

• Apply a product type specific set of user interface components to the configuration
flow.

Before you can accomplish these tasks, you must first make sure that the API driven
configuration feature has been implemented (described in the previous topic). Also,
it is assumed that the Commerce and Oracle CPQ Integration has already been
configured and enabled.

In the sections that follow, you are provided with details for using this feature to carry
out these customization tasks.

Apply a site-specific "Look and Feel" product customization to the user
interface experience

Consider this situation. Say a customer wants a new custom user interface look and
feel for their site. The customer's in-house design and brand management team have
provided specifications as to:

• Color Schemes

• Style Header and Footer

• Navigation

• Buttons, input fields, check boxes, Multi-select Lists, single select Lists, date
pickers, pick lists

• Component Sizes

• Component Styles

• Component Colors

• Component Fonts

You are instructed to change the user site interface look and feel so that it reflects
the customer product customization changes. This is done by completing the following
tasks:

• Refer to the Customizing your store layouts section on the Oracle Help Center.
You can see that it is possible to apply the required user in look and feel by cloning
and customizing a Commerce theme.
Note: The included version of the JavaScript Library of Knockout UI Components
used to render the Layout response from Oracle CPQ uses OOTB theme/styles,
(i.e., Bootstrap Forms and Components). Also, by making changes at the provided
Theme level, you can change the look and feel of the configuration UI experience
without making any changes directly to the UI elements or JS Library.

• Clone the provided the theme and apply the required specifications for:

– Backgrounds

– Buttons

– Navigation Menu

– Menu

– Typography

This is done directly in the Design page.

• Use the Design page to access the theme's CSS and apply all of the remaining UI
specifications.

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-47

• Save all your changes.

• Navigate to Layout → Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer, this is a configurable
product which allows shoppers to buy services for Landline, Mobile, Internet and
TV in a single bundle at a steep discount.

• Save your changes.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• The system displays the configurable options available in a combination of UI
components such as the following:

– Panels

– Tabs

– Input fields

– Radio buttons

– Checkboxes

– Multi -select lists

– Single select lists

– Date pickers

– Pick Lists

You can now see that all of the user interface components are displayed in accordance
with the new theme that you have created and are in accordance with the rest of the
site.

Apply site-specific user interface components for a custom user interface
experience

A case may arise where a customer wants the customization user interface experience
to be slightly different from the rest of the site to convey the feeling of personal design
when they are building their tailored product.

The customer's in-house design and brand management team has provided
specifications to make changes to the following user interface elements:

• Buttons - Primary Buttons should contain an icon

• Input Fields - Should all have labels

• Check boxes - Should be rendered as sliders

• Multi-select lists - Should be displayed as a collection of check boxes

• Single select lists - Should be displayed as drop down lists

• Date pickers - Should be displayed as Tumbler Scrolls

• Color pick list - Should be displayed as a swatch matrix with a tone slider

As a member of the SI user interface design team, you are instructed to implement
the new product customization user interface look and feel. You see that in order
to change how the Oracle CPQ model user interface components are rendered
inCommerce, changes must be made to the JavaScript Library of Knockout user
interface components used to render the Layout response from Oracle CPQ. This

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-48

JavaScript Library is part of the Oracle CPQ Configurator user interface extension
which was uploaded at feature implementation time.

To implement the new product customization user interface look and feel, complete the
following tasks:

• Log in to Commerce Admin and navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface extension. This extension
includes the Direct API versions of the Configure and Reconfigure user interface
elements as well as a common JavaScript Library that defines the mapping of
Oracle CPQ user interface components to Commerce Knockout Components.

• Create new versions of the following:

– Configure element (if you want the button to appear differently or launch the
configuration in a new widget)

– Reconfigure element (if you want the button to appear differently or launch the
configuration in a new widget)

– JavaScript Library (In the JavaScript library for each component that is to be
rendered differently modify the HTML, JavaScript and define new styles which
must also be added to the global stylesheet).

• Bundle the user interface elements and JavaScript library into a single extension
that can be uploaded in a single step.

• Navigate to Settings → Extensions and upload the new version of Oracle CPQ
Configurator user interface extension.

• Reapply the "Customize via direct API" for Configure by doing the following:

– Navigate to Design → Layout → Product Layout → Layout Settings.

– Select Product Layout → Grid View and select the Product Details widget.

– Select the Element Library.

– Add the Customize Button for Direct API to the Product Details Widget.

– Save your changes.

– Navigate back to Layout → Product Layout → Layout Settings.

– Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product which allows shoppers to buy services for Landline, Mobile, Internet,
and TV in a single bundle at a steep discount.

– Save your changes.

– Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

– Select to customize the offer. You are presented with the customizable options
for the offer in a combination of user interface components including the
following. These are presented as per the new Knockout user interface
components.

* Buttons

* Input Fields

* Checkboxes

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-49

* Multi-select lists

* Single select list

* Date pickers

* Color pick list

• Add the customized offer to the cart.

• Select the cart and chooses to edit the configure item. You are presented with the
customizable options for the offer in a combination of user interface components.
These are presented as per the new Knockout user interface components. These
include the following:

– Buttons

– Input Fields

– Checkboxes

– Multi-select lists

– Single select list

– Date pickers

– Color pick list

• Publish your changes.

Upon completing these tasks, you will see that the product customization user
interface look and feel and components are now distinct from the store design theme
and in accordance with the customer's specifications.

Add a new user interface component to the configuration user interface flow

Sometimes a customer may want new to add a new user interface component that
shoppers will use to select an image that will be imprinted on the shopper's mobile
phone case.

In this example, the customer's in-house design and brand management team have
developed a new "Image Carousel" user interface component that shoppers will use to
select the image to be imprinted. This new user interface component is used as the
user interface control for Oracle CPQ model attributes which require the shopper to
select an image.

As a member of the SI user interface design team, you are instructed to ensure that
this new user interface component is displayed correctly in Commerce. To add the new
user interface component to the configuration user interface experience via direct API,
complete the following tasks:

• Log in to Commerce Admin and navigate to Settings → Extensions and do the
following:

– Deactivate the Oracle CPQ Configurator user interface extension.

– Delete the Oracle CPQ Configurator user interface extension. This extension
includes the direct API versions of the Configure and Reconfigure user
interface elements as well as a common JavaScript Library of user interface
Components used to render the Layout response from Oracle CPQ.

• Create new versions of the JavaScript Library to include the new 'Image Carousel'
user interface component, including HTML, JavaScript and Style Definitions which
must also be added to the global stylesheet.

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-50

• Bundle the user interface elements and new JavaScript library into a single
extension that can be uploaded in a single step.

• Navigate to Settings → Extensions and upload the edited version of the Oracle
CPQ Configurator user interface extension.

• Reapply the '"Customize via direct API" for Configure.

• Preview the product layout and make sure that the new image carousel user
interface component renders correctly when customizing a product.

• Preview product layout and make sure that the new image carousel user interface
component renders correctly when reconfiguring a product.

• Publish your changes.

Upon completing these tasks, you should see that the product customization user
interface now includes a new user interface component in accordance with the
customer's specifications.

Remove tabs from the product customization user interface experience

In this case, the customer's in-house design and brand management team have
requested that all tabs be removed from the product customization user interface as
they have received feedback from customers that they are confusing.

As a member of the user interface design team, you are instructed to remove all tabs
from the customization user interfaces. To remove all tabs, complete the following
tasks:

• Login to Commerce Admin and navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface extension. This extension
includes the direct API versions of the Configure and Reconfigure user interface
elements as well as the JavaScript Library of user interface Components.

• Edit the JavaScript Library to change how tabs are rendered (stacked, side by side
etc.)

• Navigate to Settings → Extensions and upload the edited version of Oracle CPQ
Configurator user interface Extension.

• Reapply the "Customize via direct API" for Configure Preview the product layout
and make sure that there are no tabs displayed when customizing a product.

• Preview the product layout and make sure that there are no tabs displayed when
reconfiguring a product.

• Publish you changes.

Upon completion of these tasks, you will note that the product customization user
interface no longer displays any tabbed layout in accordance with the customer's
specifications.

Apply a product type specific set of user interface components to the
configuration flow

In this case the, the customer's in-house design and brand management team want
the shopper's configuration experience to be different when they customize shippable
goods (for example, "Build your own laptop") and when they customize services such
as the Phones4All offer.

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-51

For this, a new set of "Service Configuration user interface Components" has been
developed by the in-house design and brand management team for the following:

• Buttons

• Input Fields

• Checkboxes

• Multi-select lists

• Single select list

• Date pickers

• Color pick list

As a member of the user interface design team, you are instructed to ensure that
when a shopper is customizing a service these new user interface components will be
displayed. This is done by completing the following tasks:

• Log in to Commerce Admin.

• Navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface Extension. This extension
includes the direct API versions of the Configure and Reconfigure user interface
elements as well as the common JavaScript Library.

• Edit the JavaScript Library by adding conditional IF statements that map the
Oracle CPQ user interface components to the new "Service Configuration user
interface Components" where Product Type = Service.

• Navigate to Settings → Extensions and upload the edited version of Oracle CPQ
Configurator user interface extension.

• Reapply the "Customize via direct API" for Configure.

• Publish your changes.

• Create a new "Services Product Layout" for products where Product Type =
Service.

• Create a new "Service Product Details Widget."

• Add the "Customize Button for direct API" user interface element to the Product
Details Widget.

• Add the "Service Product Details Widget" to the "Services Product Layout."

• Save your changes.

• Navigate back to Layout → Services Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• Select to customize the offer. You are presented with the customizable options
for the offer in a combination of user interface components. This includes each
of the new "Service Configuration user interface Components." This includes the
following:

– Buttons

Chapter 3
Control user interface look and feel using the CPQ Configuration API

3-52

– Input Fields

– Checkboxes

– Multi-select lists

– Single select list

– Date pickers

– Color pick list

These are now presented correctly.

• Publish your changes.

Upon completing these tasks, the product customization user interface now displays
the new product type specific user interface components in the configuration flow.

Customize and reconfigure a product by direct use of the
CPQ Configuration API

You can customize and reconfigure a product by directly using of the Oracle CPQ
Configuration API.

You can use the Direct API Configuration feature to customize a product by
implementing and using the Oracle CPQ Configuration API. This feature give you the
ability to do the following:

• Customize a product where the "Customize via direct API" feature has
implemented in Commerce

• Reconfigure a product before checking out

Before you can accomplish these tasks, you must first make sure that the Direct
API Configuration feature has been implemented (described in a previous topic of
this section of the guide). Also, it is assumed that the Commerce and Oracle CPQ
Integration is already configured and enabled. In the section that follows, you are
provided with details for using the feature to carry out these specific customization
tasks as just described.

Apply customizations to a product by directly using the Oracle CPQ
Configuration API

The list of tasks that follow describe a situation where a shopper customizes a product
where the Direct API Configuration feature has been implemented in Commerce.

In this case, a System Integration Partner has already implemented the feature
and the SI user interface design team may have already done some user interface
customizations by directly using the Oracle CPQ Configuration API.

For this example, it is assumed that the Commerce and Oracle CPQ Integration is
already configured and enabled.

Use the following guidelines to accomplish the specified goals.

• As an example, let us say that the shopper has noticed a lot of web advertising by
their cell phone service for their new Phones4All offer which allows them to buy a
single deal with phones and plans for up to 6 people at huge savings on handsets,
accessories and monthly bills.

Chapter 3
Customize and reconfigure a product by direct use of the CPQ Configuration API

3-53

• The shopper navigates to their cell phone service and selects the Phones4All
offer. The shopper selects to customize the offer. The UI element Customize
Button for Direct API invokes the .../v1/configurations SSE endpoint
passing the following parameters:

– productFamily

– productLine

– model

– locale

– currency

– configurationMetadata

• The .../v1/configurations SSE endpoint triggers the following Oracle CPQ API
endpoints:

– GET_configUISettings

– GET_pageTemplates

– POST_config

– GET_Layout_ Cache

• The .../v1/configurations SSE collates the data returned from Oracle CPQ, strips
out all extraneous information, and returns a "combined configuration data
response."

• The shopper is presented with a set of customization options that they can use to
tailor the offer to their specific needs.

• The first option the shopper is presented with is the number of lines required.

• The shopper selects 4 lines.

• The shopper selects Next.

• The UI element Customize Button for Direct API invokes
the .../v1/configurations/{cacheInstanceId}/page SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
by passing the following parameters:

– productFamily

– productLine

– model

– locale

– currency

– op: next

• The .../v1/configurations/{cacheInstanceId}/page SSE endpoint triggers the
following Oracle CPQ API endpoints:

– POST_next

– GET_Layout_ Cache

• The .../v1/configurations/{cacheInstanceId}/page SSE collates the data
returned from Oracle CPQ, strips out all extraneous information, and returns a
"combined configuration data response."

Chapter 3
Customize and reconfigure a product by direct use of the CPQ Configuration API

3-54

• The shopper is presented with the configuration options for Handset and Plan for
Line 1 including:

– Handset - including Capacity, Color, Tablet, and Watch

– Plan - Silver or Gold

• The shopper selects the "Samsung S10" handset

• The UI element Customize Button for Direct API checks the isUpdatable
property for the handset attribute.

• The isUpdatable property value is TRUE (this means that when an option
is selected for this attribute, the configuration model must be updated as this
selection impacts other model attributes).

• The UI element Customize Button for Direct API invokes the .../v1/
configurations/{cacheInstanceId} SSE endpoint (where cacheInstanceId
represents the current reconfiguration instance in Oracle CPQ) passing the
following parameters:

– productFamily

– productLine

– model

– locale

• The .../v1/configurations/{cacheInstanceId} SSE endpoint triggers the
POST_update Oracle CPQ API endpoint.

• The .../v1/configurations/{cacheInstanceId} SSE collates the data returned
from Oracle CPQ, strips out all extraneous information and returns a "combined
configuration data response."

• The shopper sees that some of the options that were previously available for
capacity, color, table and watch have been updated and that they are now limited
to those compatible with their selected Samsung S10 handset.

• The shopper selects the 256GB capacity option for the handset.

• The UI element Customize Button for Direct API checks the isUpdatable
property for the handset attribute. The isUpdatable property value is FALSE (this
means that when an option is selected for this attribute the configuration model
need not be updated as this selection does not impact other model attributes).

• The shopper completes the customization for Line 1 and moves on to line 2.

• When the shopper is part way through the customization of Line 2, they decide
that they may need to make a change to the handset capacity for Line 1.

• The shopper selects Previous.

• The UI element Customize Button for Direct API invokes
the .../v1/configurations/{cacheInstanceId}/page SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
passing the following parameters:

– productFamily

– productLine

– model

– locale

Chapter 3
Customize and reconfigure a product by direct use of the CPQ Configuration API

3-55

– currency

– op: previous

• The .../v1/configurations/{cacheInstanceId}/page SSE endpoint triggers
the POST_previous and GET_Layout_ Cache Oracle CPQ API endpoints.

• The .../v1/configurations/{cacheInstanceId}/page SSE collates the data
returned from Oracle CPQ, strips out all extraneous information, and returns a
"combined configuration data response."

• The shopper is presented with the configuration options that they selected for Line
1.

• The shopper changes the capacity for the Line 1 handset and continues to
customize the rest of the lines.

• The shopper completes the customization of their Phones4All offer.

• The shopper selects Add to Cart.

• The UI element Customize Button for Direct API invokes the .../v1/
configurations/{cacheInstanceId}/add-to-cart SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
passing the following parameters:

– productFamily

– productLine

– model

• The .../v1/configurations/{cacheInstanceId}/add-to-cart SSE endpoint
triggers the POST_integration_add_to_cart Oracle CPQ API endpoint.

• The .../v1/configurations/{cacheInstanceId}/add-to-cart SSE transforms
the Oracle CPQ response to a Commerce cart item and adds the configured item
to the Commerce cart.

• The shopper proceeds to checkout.

When all of this has completed, a multi-level configured item is added to Commerce
cart.

Reconfigure a customized product before checking out

In this situation, a shopper decides to make a change to a customized product after
adding it to the cart but before checking out.

Say, for example, the customer has customized their Phones4All offer and has added
it to the cart. Before checking out, however, the shopper reviews their choices and
realizes that by including the Apple Watch with Line 4 the offer is more than $200 over
their budget. The following details illustrate what occurs if a typical shopper wishes to
reconfigure an already customized product before checking out:

• The shopper selects to edit the Phones4All item in her cart.

• The user interface Shopping Cart widget with a Reconfigure Button for Direct
API invokes the .../v1/configurations SSE endpoint passing the following
parameters:

– productFamily

– productLine

Chapter 3
Customize and reconfigure a product by direct use of the CPQ Configuration API

3-56

– model

– locale

– currency

– configId (identifies the specific instance of configuration in Oracle CPQ which
is to be reconfigured)

• The .../v1/configurations SSE endpoint triggers the following Oracle CPQ API
endpoints:

– GET_configUISettings

– GET_pageTemplates

– POST_config

– GET_Layout_ Cache

• The .../v1/configurations SSE collates the data returned from Oracle CPQ,
strips out all extraneous information, and returns a "combined configuration data
response."

• The shopper is presented with all of the customization options and selections that
they have made.

• The shopper navigates to Line 4 and removes the Apple Watch selection.

• The shopper selects to save and their cart is updated.

The Commerce cart is now updated with the newly reconfigured item.

Chapter 3
Customize and reconfigure a product by direct use of the CPQ Configuration API

3-57

A
Appendix A: Configurator Flow

A Configurator process flow occurs between Oracle CPQ and Commerce during the
integration.

The following presents a diagram of the integration Configurator Flow:

A-1

B
Appendix B: Request for Quote Flow

A Request for Quote process flow occurs between Oracle CPQ and Commerce during
the Quote integration.

The following presents a diagram of the Request for Quote integration flow between
Commerce, OIC, and Oracle CPQ Cloud when using theOracle CX Commerce-Oracle
CPQ Quote integration

B-1

Glossary

Glossary-1

Index

Index-1

	Contents
	1 Introduction
	Objective
	Audience
	Prerequisites
	Additional Resources

	2 Configure the Integration
	Configure the Integration Package
	Configure the Oracle CX Commerce Connection
	Activate the Integrations
	Configure the Commerce Webhooks
	Configure the Server Side Extensions
	Enable the Integrations

	3 Use the Integration Functionality
	Configure an item
	Request a Quote
	Use account-specific pricing for configured items
	Use multi-level items
	Assign shipping groups to sub-items
	Understand tax calculation and shipping charges when assigning shipping groups to sub-items
	Understand shipping charge and tax calculation when assigning costs to items sold as a package
	Understand how promotion discounts are applied to multi-level items
	Add payment details to customer billing profile
	Understand the Customer Account Model
	Use Recurring Charge Items
	Use Asset Based Ordering
	Customize configurations in Commerce using the CPQ Configuration API
	Implement configuration customization via the CPQ Configuration API.
	Control user interface look and feel using the CPQ Configuration API
	Customize and reconfigure a product by direct use of the CPQ Configuration API

	A Appendix A: Configurator Flow
	B Appendix B: Request for Quote Flow
	Glossary
	Index

