Extending Oracle CX Commerce

F37065-01

a January 2021
ORACLE

Extending Oracle CX Commerce,
F37065-01
Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1

Understand Extension Features

Use the REST APIs

Learn about the APIs 2-1
REST API authentication 2-2
Use the APIs on instances running multiple sites 2-6
CORS support 2-7
REST API query parameters 2-8
Response filters 2-12
Error messages 2-16
Register applications 2-17
Use Webhooks

Understand webhooks 3-1
Configure webhooks 3-5
Secure webhooks 3-5
Troubleshoot webhooks 3-7
Understand webhooks and PCI DSS compliance 3-7
Use the REST API to configure webhooks 3-10
Manage failed webhook calls 3-11
Manage Shopper Profiles

Understand shopper profiles and shopper types 4-1
View a shopper profile 4-1
Create a shopper profile 4-3
View a shopper type 4-10
Add custom properties to a shopper type 4-12
Set custom properties on a shopper profile 4-14
Create custom properties for addresses 4-15

ORACLE

Access custom properties using the UserViewModel 4-18

5 Access SKU Properties through Widgets

Understand APIs for accessing SKU properties 5-1
Create an element to display SKU properties 5-3
SkuPropertiesHandler example 5-5
) Create Custom Promotions
Understand PMDL discount rules 6-1
Create a promotion 6-4
View promotions created with the REST API 6-6
Sample promotions 6-7
Create custom properties for promotions 6-11
Assign and manage coupons 6-17
Set up promotion upsell messages 6-19
7 Manage Multiple Inventory Locations
Access inventory data 7-1
Create locations 7-4
Create inventory data for locations 7-7
Retrieve inventory data for locations 7-9
8 Manage Inventory for Preorders and Backorders
Understand inventory 8-1
Enable preorder and backorder functionality 8-1
Access and update inventory data 8-2
Update widgets for preorders and backorders 8-3
Customize email templates for preorders and backorders 8-3

o Manage Orders

Integrate with an order management system 9-1
Understand order states 9-11
Create custom properties for orders 9-14
Implement robust order capture 9-17
Support zero-cost orders 9-17
Support shopper-initiated order management 9-18
Enable returns on partially fulfilled orders 9-22

ORACLE iv

Support add-on products 9-24
10 Customize Order Line Iltems
Understand customization of order line items 10-1
Create custom properties for line items 10-2
Understand view model support for line items 10-4
Implement a custom cart summary widget 10-5
11 Ship an Order to Multiple Addresses
Understand view model support for split shipping 11-1
Implement split shipping Ul controls 11-3
Understand REST support for split shipping 11-16
Customize email templates for split shipping 11-17
Retaining shipping group information 11-22
Extending the Cartltem and ShippingGroupRelationship view models 11-23
12 Exclude Items from Shipping Methods and Costs
Exclude items from shipping methods 12-1
Exclude items from shipping cost calculations 12-1
Create collections for the excluded items 12-2
Update shipping methods 12-2
Update the Order Summary — Checkout widget 12-3
13 Manage Countries and Regions for Shipping and Billing Addresses
Understand countries and regions 13-1
Retrieve a list of countries and regions 13-2
Create and update countries and regions 13-3
Delete countries and regions 13-6
Customize address formats using the API 13-6
Work with address types 13-15
Customize address validation 13-17
14 Configure Buy Online Pick Up In Store
Understand buy online pick up in store 14-1
Manage inventory for in-store pick up 14-3
Configure layouts and widgets for in-store pick up 14-4
Configure products and SKUs for in-store pick up 14-7
ORACLE v

15

16

17

18

19

Customize email templates for in-store pick up 14-8

Configure payment processing for in-store pick up 14-8
Understand tax processing and in-store pick up 14-10
Configure the Picked Up Items webhook 14-11

Create Scheduled Orders

Configure an invoice payment gateway for scheduled orders 15-1
Configure the scheduled order service 15-2
Configure page layouts for scheduled orders 15-4
Update prices in a scheduled order 15-6
Notify shoppers about scheduled order activity 15-6
Understand shopper tasks for scheduled orders 15-6

Notify Shoppers When Items are Back in Stock

Understand back in stock notifications 16-1
Create and upload the notification extension 16-1
Add the Notify Me element to the Product Details widget 16-6
Configure the scheduler to send the back in stock emails 16-6

Enable Purchase Lists

Understand the difference between wish lists and purchase lists 17-1
Configure purchase lists 17-3
Work with the purchase list API 17-5
Share purchase lists 17-7

Enable Order Approvals

Allow a delegated administrator to control order approvals 18-1
Configure a deferred payment gateway for order approvals 18-2
Set the frequency of canceled order clean up 18-3
Configure page layouts for order approvals 18-4
Manage the checkout flow for orders requiring approval 18-6
Display a contact’s purchase limit in a widget 18-12
Integrate with an external system for order approvals 18-12

Assign Catalogs and Price Groups to Shoppers

Configure the External Price Group and Catalog webhook 19-1

ORACLE vi

Create a custom shopper context widget 19-3
20 Implement Storefront Single Sign-On
Understand storefront SSO message flow 20-1
Configure storefront SSO 20-2
Understand storefront SSO limitations 20-6
Implement storefront SSO for account-based shoppers 20-7
21 Implement Single Sign-On for Internal Users
Configure SSO with OpenID Connect 21-1
Configure SSO with SAML 2.0 21-5
22 Configure Sites
Understand site objects 22-1
Create a site 22-3
Update a site 22-6
Delete a site 22-7
23 Work with Loyalty Programs
Implement loyalty points 23-1
Create a custom currency for loyalty points 23-1
Configure a site to use loyalty programs 23-3
Understand tax and shipping calculations with loyalty programs 23-5
Display tax and shipping in currency for points-based orders 23-6
Redeem loyalty points 23-8
Understand currency exchange rates 23-12
Use custom properties in loyalty integration 23-13
24 Integrate with Oracle Content and Experience Cloud
Enable the integration with Oracle Content and Experience Cloud 24-1
Configure content items to display on the storefront 24-2
25 Integrate with External Shipping Calculators
Work with externally priced shipping methods 25-1
Upgrading from external shipping methods to externally priced shipping methods 25-6
Work with external shipping methods 25-6
ORACLE Vi

26

27

28

29

30

Enable fallback shipping methods 25-10
Integrate with an External Pricing System
Create the widget 26-1
Configure the webhook 26-6
Use promotions from an external system 26-7
Integrate with an External Product Configurator
Enable the integration 27-1
Mark products as configurable 27-1
Add Customize button to Product Details widget 27-2
Configure the webhooks 27-2
Integrate with Oracle Infinity to collect data
Integrate Commerce with Infinity 28-1
Understand the role of the Infinity platform in data ingestion 28-2
Tag site pages to use the Infinity data ingestion feature 28-3
Understand Infinity integration parameter mapping 28-3
Customize Email Templates
Download and edit email templates 29-1
Customize tax display in templates 29-2
Customize line-item display in templates 29-3
Add company name and logo to account-based email templates 29-5
Notify a contact of multiple account or role changes in a single email 29-6
Customize recommendations in templates 29-7
Add a site to a template 29-11
Upload Third-Party Files
Create folders for third-party files 30-1
Upload third-party files to folders 30-2
Upload a Google site ownership verification file 30-6
Upload an Apple Pay merchant identity certificate 30-6
Delete third-party files 30-7
Manage files on multiple sites 30-8
viii

ORACLE

31

32

33

34

35

36

37

Manage Guest Checkout

Example for restricting guest checkout 31-1
Note about preventing self-registration in account-based storefronts 31-3
Manage Saved Carts

Understand saved carts 32-1
Create a widget to support saved carts 32-2
Customize emails for saved carts 32-11
Manage the Use of Personal Data

Configure consent requests 33-1
Delete shopper information 33-12
Implement Role-based Access Control

Implement role-based access control for internal users 34-1
Implement role-based access control in business accounts 34-8
Understand role-based access control in the Agent Console 34-13
Understand role-based access control in Oracle Assisted Selling 34-14
Manage an Account-based Storefront

Manage account-based shopper profiles 35-1
Create custom properties for accounts 35-3
Add delegated administration to your storefront 35-10
Ensure PayPal shoppers provide first and last name 35-13
Integrate With a Procurement System

Understand punchout 36-1
Enable punchout for an account 36-2
Work with the punchout server-side extension 36-7
Configure your storefront for punchout shoppers 36-12
Perform Bulk Export and Import

Understand Bulk Exporting And Importing 37-1
Export data endpoints 37-3
Import data endpoints 37-5

ORACLE"

38

39

40

41

Understand export and import endpoint parameters 37-8
Export and import account data 37-10
Export and import profile data 37-14
Export and import product data 37-19
Export and import catalog data 37-23
Export and import category data 37-26
Export and import inventory data 37-29
Export and import promotion data 37-30
Export and import price data 37-32
Import address data 37-34
Import relationship data 37-37
Export and import CSV files 37-39
Delete bulk import or export files from repository 37-50
Convert registered shoppers to account-based shoppers 37-51
Improve performance in large bulk imports 37-56
Create a Credit Card Payment Gateway Integration
Understand the credit card payment gateway workflow 38-1
Create a credit card extension 38-2
Install the extension and configure the gateway 38-5
Credit card payment properties 38-6
Create a Generic Payment Gateway Integration
Understand the generic payment gateway architecture 39-1
Supported payment methods and transaction types 39-1
Send custom properties to a payment gateway 39-4
Incorporate 3D-Secure support 39-6
Support stored credit cards 39-15
Integrate with a Gift Card Payment Gateway
Understand the gift card payment gateway workflow 40-1
Create a gift card extension and configure the webhook 40-1
Customize the Gift Card widget 40-3
Gift card payment properties 40-4
Integrate with a Store Credit Payment Gateway
Create a store credit extension and configure the webhook 41-1
Add a Store Credit payment option to the checkout page 41-3
X

ORACLE

Store credit payment properties 41-3
47 Integrate with a Loyalty Point Payment Gateway
Understand the loyalty point payment gateway workflow 42-1
Create a loyalty point extension and configure the webhook 42-1
Add a loyalty point payment option to the checkout page 42-3
Loyalty point payment properties 42-3
Use Loyalty Points and Pay with alternate currency 42-16
43 Integrate with a Cash Payment Gateway
Understand the cash payment gateway workflow 43-1
Create a cash payment extension and configure the webhook 43-1
Cash payment properties 43-2
44 Integrate with an Invoice Payment Gateway
Understand the invoice payment gateway workflow 44-1
Create an invoice payment extension and modify the checkout page 44-1
Invoice payment properties 44-3
45 Integrate with a Web Checkout System
Overview of web checkout system integrations 45-1
Initiate the order 45-1
Retrieve the order 45-4
Complete the order 45-7
46 Integrate with Oracle Product Hub Cloud
Understand the Product Hub integration 46-1
Configure Oracle CX Commerce 46-3
Configure Oracle Product Hub 46-5
Install and Configure the Integration in OIC 46-5
Understand the integration flows 46-9
A7 Integrate with Customer Data Management
ORACLE Xi

48

49

50

Enable Split Payments

Understand split payments 48-1
Use the Split Payment widget 48-2
Use webhooks with split payments 48-3
Customize the Split Payment widget 48-3
Configure Tax Processors

Integrate with an external tax processor 49-1
Monitor tax processors 49-14
Configure Search Features

Understand which search features can be configured 50-1
Understand how to execute endpoints 50-2
Understand ZIP format and JSON format 50-2
HTTP methods for configuring search features 50-3
Delete resources 50-4
Understand system-generated object attributes 50-5
Export and import all search configuration 50-5
Configure individual resources using ZIP format 50-7
Back up and restore all application configuration 50-7
Migrate configuration of all search features 50-8
Apply configuration changes to your live storefront 50-8
Configure a thesaurus 50-9
Configure keyword redirects 50-12
Optimize URLs for search engines 50-23
View your changes 50-26
Specify which index fields are included in searches 50-26
Index and Query Popular Searches 50-39
Modify data structures to enhance searches and navigation 50-44
Configure which properties of aggregated records and their members are accessible

to front end applications 50-50
Configure the order of facets 50-52
Configure the order of facet values 50-54
Order facet values by statistical significance 50-57
Add metadata to facet values 50-61
Create custom range facets 50-62
Configure the ranking of records in search results 50-64
Link additional content to search results 50-77
Search non-catalog data 50-79

ORACLE

Xii

Machine learning for search 50-87
Sample Search and Navigation REST API requests using cCURL 50-88

51 Use Developer Utilities

Download the Commerce SDK 51-1
Develop server-side extensions 51-1
Use the Design Code Utility 51-5
Use the JavaScript Code Layering User Interface feature 51-24
Toggle JavaScript minification in preview 51-26
Reduce the size of page responses 51-26
View client-side error logs 51-28
Restore or upgrade the storefront framework version 51-29

52 Improve System Performance

Measure performance often 52-1
Monitor your Commerce environments 52-1
Improve performance in REST API Calls 52-2
Use cc-storage for Safari private browsing mode 52-2
Avoid console.log() statements 52-2
Avoid using ko.observable() 52-2
Update observable JavaScript arrays 52-3
Use Knockout data-binds syntax to attach events to DOM elements 52-3
Use onLoad and beforeAppear correctly 52-3
Use the fields parameter 52-4
Use persistent filters 52-4
Use minified versions of libraries and widget JavaScript 52-4
Localize endpoints 52-4
Enable queueing simultaneous endpoint calls 52-4
Improve performance in custom widgets 52-5
Optimize Search 52-5
Use preFilter parameter with fields parameter to improve endpoint performance 52-6
Speed up system response on Product Listing and Product Details 52-6
Enable asynchronous orders flow 52-8
Improve Storefront Performance for Large Carts 52-8
Prevent Site Traffic Slowdowns 52-15
Improve performance with large numbers of addresses for profiles or accounts 52-15

ORACLE Xiii

53 Improve Storefront Performance

Optimize First Meaningful Paint 53-1
Lazy load images 53-1
Improve Storefront Performance for Large Carts 53-3
Add a page level spinner 53-9
Enable prioritized loading of Storefront page content 53-9
Avoid synchronous AJAX calls 53-9
Avoid hiding elements with CSS styling 53-10
Remove unused Ul elements completely from layouts 53-10
Use viewport specific layouts for mobile 53-10
Keep contents of header and footer regions consistent 53-10
Limit DOM node creation 53-10
Use ccLink binding for quicker page loading 53-11
Resize images using the ccResizelmage binding 53-11

ORACLE Xiv

Understand Extension Features

ORACLE

Oracle CX Commerce provides several sets of tools that you can use to extend the
capabilities of the system. The primary ones are these:

An extensive set of REST APIs allows external applications to make calls into the
Oracle CX Commerce server. These APIs are supplemented by webhooks that
the server can use to make calls out to external applications. For example, you
can create an integration with an order management system in which Oracle CX
Commerce uses webhooks to send order data to your OMS, and the OMS uses
the Oracle CX Commerce REST APIs to update the order’s status information as
the order is processed.

Custom widgets allow you to extend the functionality of your storefront by
communicating with the Oracle CX Commerce server to access features that
are not exposed by default. Custom widgets can also enhance the storefront by
communicating with external systems such as social media sites.

Note that these tools are not mutually exclusive; you may need to use all of them to
accomplish your objectives. For example, a custom widget might make a REST call
to the Oracle CX Commerce server to request data for the storefront, and the server
might then execute a webhook to obtain that data from an external system.

This manual focuses on building specific customizations using REST APIs, webhooks,
custom widgets, and other tools. For general information about developing custom
widgets, see Create a Widget.

1-1

Use the REST APIs

Oracle CX Commerce includes REST web service APIs you can use to create
integrations with other products, and to build extensions to the administration interface
and the storefront.

Learn about the APIs

ORACLE

The Oracle CX Commerce REST APIs consist of several sets of endpoints.
The Commerce REST API endpoints include the following:

* The Store API endpoints provide access to store functionality on the storefront
server. A subset of the Store API endpoints, the Store Extension API, enables
integrations and server-side extensions to access data that is not exposed to
shoppers.

* The Admin API endpoints provide access to administrative functionality on the
administration server. Two subsets of the Admin API endpoints, the Search Admin
and Configuration and the Search Data and Indexing API endpoints, provide
access to search functionality on the search server.

* The Agent API endpoints provide access to agent functionality on the
administration server.

* The Social Wish Lists APl endpoints are used to configure wish list features. This
API is not described in this manual.

Each set of endpoints is different, although in many cases similar endpoints are
available in multiple APIs. For example, the Store, Agent, and Admin APIs all have
endpoints for working with orders, though they differ in the functions that they can
perform.

Note: You should not make calls to the Admin API or the Agent API from a storefront
application. If your application needs access to functionality or data provided by these
endpoints, you can use the Store Extension API endpoints instead. These endpoints
can be used by store integrations and server-side extensions, but should not be called
from a browser.

Authentication is handled separately for each API. For example, logging into the
Admin API does not give you access to the Agent endpoints. In addition, each API's
endpoints differ in terms of which user roles provide access to them. For example, an
account with CS Agent permissions does not necessarily also include Administrator
permissions. See Configure Internal User Accounts for more information.

Note that each API is available only in certain environments:
e The Admin API and Agent API are available on the administration server only.

e The Store APl is available primarily on the storefront server. It is also available on
the administration server for previewing unpublished changes to the store.

2-1

Chapter 2
REST API authentication

You can find information about individual endpoints in the REST API documentation
that is available through the Oracle Help Center:

http://docs.oracle.com/cloud/latest/commercecs_gs/CX0CC/

Be sure to select the version of the REST API documentation that matches the version
of Oracle CX Commerce you are using.

ccdebug REST client

In your test environment, the administration server includes a REST client for making
calls to the Commerce APIs. This client is available at the following URL:

http://adni n- server - host nane/ccdebug

Note that this client can make calls only to the administration server it is running on.
You can use it to access the Admin API and Agent API, and to access the Store API
in preview mode. If you want to access endpoints on other servers, you can use a
third-party client tool such as Postman.

REST API authentication

ORACLE

Oracle CX Commerce REST APIs use OAuth 2.0 with bearer tokens for
authentication.

The REST APIs support two authentication approaches:

* To enable an external application such as an integration or server-side extension
to be authenticated, the application must first be registered in the administration
interface, as described in Register applications. As part of the registration process,
an application key is generated. During authentication, the application key must
be passed to Oracle CX Commerce using a POST request to the appropriate login
endpoint.

e To authenticate an internal user or storefront shopper, the user login and password
must be passed to Oracle CX Commerce using a POST request to the appropriate
login endpoint.

In either case, if the authentication succeeds, the endpoint returns an access token
that must be supplied in subsequent requests. Note that application keys and access
tokens are long base64-encoded strings.

Use the application key for authentication

When you register an application, Oracle CX Commerce automatically generates a
JSON Web Token called an application key. You send the application key in the
authorization header of a POST request, and Oracle CX Commerce responds with an
access token that the application must supply in subsequent requests.

Note: Application keys should be stored securely and all requests that include them
must be sent via HTTPS. They should be used by integrations and server-side
extensions only, and should not be sent by a browser.

Send the authorization header in a POST request to the appropriate login endpoint:

2-2

ORACLE

Chapter 2
REST API authentication

e Use POST /ccadmin/vl/login if your application makes calls to the administration
server.

e Use POST /ccapp/vl/login if your application makes calls to the storefront server.

The Content-Type header value must be set to application/x-www-form-urlencoded,
and the body of the request must include the grant type client_credentials. For
example:

POST /ccapp/vl/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer <application_key>

grant_type=client_credentials

The following example shows the server’'s JSON response, which includes the access
token:

"access_token": "<access_token>",
"token_type": "bearer"

}

Now whenever the application needs to access a secured endpoint, it must issue a
request with an authorization header that contains the access token. The following
example shows an authorization header for a request that returns orders:

GET /ccapp/vl/orders HTTP/1.1
Authorization: Bearer <access_token>

Use login credentials for authentication

When you log in as an individual user (either a shopper or an internal user such as a
customer service agent), there is no application key, so you must instead supply the

user login and password in the body of the request. The following example illustrates
logging into a shopper account on the storefront server:

POST /ccstore/vl/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=johndoe@example.com&password=g4dEj3wl

The response includes an access token to use in subsequent requests. Each APl you
log into returns a separate access token. The following example shows the server’s
JSON response, which includes the access token:

{

"access_token': "'<access_t oken>",
"token_type": "bearer"

}

Multi-factor authentication (Admin API only)

2-3

ORACLE

Chapter 2
REST API authentication

Logging into the Admin API as an internal user involves multi-factor authentication. To
log in, you issue a POST request to the /ccadmin/vl/mfalogin endpoint, and include
the username, password, and passcode in the body of the request. For example:

POST /ccadmin/vl/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=adminl@example.com&password=A3ddj3w2&totp_c
ode=365214

To obtain passcodes, the login account must be registered with the Oracle Mobile
Authenticator app. See Access the Commerce administration interface for more
information.

Note that account passwords and passcodes may expire or be changed, so you must
make sure you have up-to-date values when you log in.

Refresh an access token

Each access token expires automatically after a predetermined period of time. Tokens
associated with an application key expire after 5 minutes. Tokens associated with user
credentials expire after 15 minutes.

To avoid being logged out of an API, you can replace the current token by issuing a
POST request to the API's refresh endpoint. Include the current access token in the
authorization header, just as you would for any other authenticated request. Oracle CX
Commerce generates and returns a new token and restarts the clock. You then use
the new token in the authorization headers of subsequent requests. Note that you may
need to refresh the token multiple times (every 5 minutes for a login with an application
key, every 15 minutes for a login with user credentials) if you need to remain logged in
for an extended period of time.

The following example is an authorization header that refreshes an access token for
the Admin API:

POST /ccadmin/vl/refresh HTTP/1.1
Authorization: Bearer <ol d_access_t oken>

The following example shows the body of the server’s response, which includes the
new token:

{

"access_token": '<new access_t oken>",
"token_type": "bearer"

}

Change the token expiration period (Admin API only)

As mentioned above, the expiration period for tokens associated with user credentials
is 15 minutes by default. For the Admin API, you can change the expiration period

2-4

ORACLE

Chapter 2
REST API authentication

using the saveAdminConfiguration endpoint. For example, to change the period to 30
minutes:

PUT /ccadmin/vl/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_t oken>
Content-Type: application/json

{
3

""sessionTimeout': 30

You can set sessionTimeout to any integer from 3 to 120. Note that the value you set
also specifies the session timeout period for the administration interface, which is the
period of inactivity after which the user is automatically logged out.

Access preview through the APIs

You can use the Store API on the administration server to access your store in preview
mode. This requires a multi-step authentication procedure.

First, log into the Admin API on the administration server using an account that has
the Administrator role. Issue a POST request to the /ccadmin/v1l/mfalogin endpoint,
and include the username, password, and passcode in the body of the request. For
example:

POST /ccadmin/vl/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=adminl@example.com&password=A3ddj3w2&totp c
0de=443589

The response returned includes an access token:

{

"token_type': "bearer",
"access_token': "<access_t oken>"

Next, create a new preview user by issuing a POST request to /ccstore/v1/profiles
on the administration server. (You can skip this step if you have previously created

a preview user.) In the authorization header field of the request, pass in the access
token that was returned by /ccadmin/vi/mfalogin:

POST /ccstore/vl/profiles HTTP/1.1
Authorization: Bearer <access_t oken>

In the body of the request, specify the values of the profile properties, as described in
Create a shopper profile.

Now log in as the preview user by issuing a POST request to the /ccstore/v1l/login
endpoint on the administration server. Include the username and password in the body

2-5

Chapter 2
Use the APIs on instances running multiple sites

of the request. In addition, in the authorization header field of the request, pass in the
access token that was returned by /ccadmin/v1l/mfalogin:

POST /ccstore/vl/login HTTP/1.1
Authorization: Bearer <access_t oken>
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=previewuser@example.com&password=Test1234

The response returned by /ccstore/v1/login includes a new access token:

{

"token_type': "bearer",
"access_token': "'<access_token_2>"

You can now make requests to the /ccstore/v1 endpoints on the administration
server, passing in <access_t oken_2> (the access token that was returned by /
ccstore/v1l/login). You can also use the original access token (returned by /
ccadmin/vl/mfalogin) to access /ccadmin/vl endpoints and to create preview users
with the /ccstore/v1/profiles endpoint.

Note that if your Commerce instance is running multiple sites, preview requires a
specific site context. You can specify the site when you log in as a preview user and in
subsequent calls to the Store API. If you do not specify a site, the default site is used.
See Use the APIs on instances running multiple sites for information about specifying
the site in API calls.

Use the APIs on instances running multiple sites

If you are running multiple sites on your Commerce instance, your REST calls need to
specify which sites they apply to.

There are two ways to specify the site:

e For calls to any of the APIs, you can specify the site using the x-ccsite header in
the request.

» For calls to the Store API, you can explicitly include the domain name of the
applicable site in the URL.

Note that if you do not specify a site in a call to the Store API, the call is directed

to the default site. (See Configure sites for a discussion of the default site.) If you do
not specify a site in a call to the Admin API or the Agent API, the call is applied to

the instance as a whole. For example, if you specify a site for the getOrders Admin
endpoint, only orders associated with that site are returned; if you do not specify a site,
orders associated with all sites are returned.

ORACLE 2-6

Chapter 2
CORS support

x-ccsi te header

You can use the x-ccsite header to specify the site for an API call. For example, if
you have two sites, siteA and siteB, you could use this call to return the orders for
siteB:

GET /ccadmin/vl/orders HTTP/1.1
Authorization: Bearer <access_t oken>
x-ccsite: siteB

CORS support

ORACLE

For security purposes, web browsers implement the same-domain policy, which
prevents JavaScript on a page served from one domain from accessing resources

on another domain. In some cases, you may want to selectively override this policy to
allow specific domains to access data on your stores.

Note: You can allow access to Admin and Agent endpoints as well. See Configure
CORS support for the Admin or Agent endpoints below for information.

To enable external domains to access your storefront environment, Commerce
supports CORS (cross-origin resource sharing), which is a standard mechanism for
implementing cross-domain requests. For a detailed description of CORS, see:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

You configure CORS support in Commerce by explicitly specifying the external
domains that are permitted to make requests to your sites. When a cross-domain
request is submitted, the web browser is responsible for determining if access is
permitted. In some cases, prior to sending the actual request, the browser first sends
an OPTIONS method preflight request with headers that specify the domain that the
request originates from and the expected HTTP method. In this situation, Commerce
responds to the preflight request by indicating whether the actual request can be sent.

You specify the domains and methods permitted to access a specific site by

using the PUT /ccadmin/vl/sites/{sitelD} endpoint to set the value of the
allowedOriginMethods property on the corresponding site object. For example, the
following call enables cross-domain access to the siteUS site from two external
domains and specifies which HTTP methods are permitted from each domain:

PUT /ccadmin/vl/sites/siteUS HTTP/1.1
Authorization: Bearer <access_t oken>
x-ccasset-language: en

{
"properties”: {
"allowedOriginMethods™: {
"http://www.examplel.com™: "GET,OPTIONS",
"http://www.example2.com": "GET,PUT,POST,OPTIONS"
}
}
}

2-7

Chapter 2
REST API query parameters

After setting the value of al lowedOriginMethods on the site object, publish the
changes so they apply to the live context.

Note that the domain entries for the al lowedOriginMethods property must be fully
qualified, and cannot include wildcards. You must provide a separate entry for each
domain or subdomain you want to enable access for. For example, if you want to
provide CORS access to a domain named www.examplel.com that has subdomains
named shoes.examplel.com and shirts.examplel.com, you need to create three
entries.

Also, even if you enable cross-domain requests, access to a resource from an allowed
domain may require authentication. For example, calls to the Admin API endpoints
require authentication, as described in REST API Authentication.

Configure CORS support for the Admin or Agent endpoints

You can enable external domains to access the Admin and Agent endpoints by

using PUT /ccadmin/v1/merchant/adminConfiguration (for configuring access to the
Admin API) or PUT /ccadmin/vl/merchant/agentConfiguration (for access to the
Agent API). Each of these calls has an associated al lowedOriginMethods property for
specifying the domains and HTTP methods.

For example, the following call enables access to the Admin API from two external
domains:

PUT /ccadmin/vl/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
"properties”: {
"allowedOriginMethods': {
"http://www.example3.com™: "GET,POST,OPTIONS",
"http://www.example4.com": "GET,PUT,POST,DELETE,OPTIONS"
}
}
}

Note that for the Admin and Agent endpoints, the al lowedOriginMethods values take
effect in the live context immediately. You do not need to publish the changes.

REST API query parameters

ORACLE

You can use query parameters to control what data is returned in endpoint responses.

The sections below describe query parameters that you can use to control the set of
items and properties in responses, and the order of the items returned.

Control the set of items returned

To prevent the response from becoming too large, the number of items returned
is limited by default to 250. You can override this value by using the Limit query

2-8

ORACLE

Chapter 2
REST API query parameters

parameter to specify a different number. For example, the following call limits the
number of orders returned to 5:

GET /ccadmin/vl1/orders?limit=5

To page through the results, you can use the offset parameter. For example, suppose
you have returned the first group of 250 orders using this call:

GET /ccadmin/vl1/orders

You can return the next group of 250 using the following call:

GET /ccadmin/v1/orders?offset=250

The default value of offset is 0, which means the listing begins with the first item. So
setting offset to 250 means the listing begins with the 2515t item.

You can use limit and offset together. For example, to return the 4015t through 600"
order:

GET /ccadmin/v1/orders?limit=200&offset=400

Control the set of properties returned

Another way to reduce the size of responses is to return only certain properties. For
example, products can have a large nhumber of properties, but you may need only
certain ones.

You can use the fields parameter to restrict the set of properties returned to only
those you explicitly specify. The properties are specified as a comma-separated list.
For example, to return only the id and displayName properties of products:

GET /ccadmin/vl/products?fields=items.id, items.displayName

Note that items is the key for the array of objects returned, so top-level properties are
referred to as items.propertyName (for example, items.displayName). Properties of
nested objects are specified using additional period delimiters. For example:

GET /ccadmin/vl/products?fields=items. listPrices.defaultPriceGroup

You can also use a special field, totalResults, to return the total number of items
available (such as the total number of products in the catalog). For example:

GET /ccadmin/vl/products?fields=items.id,totalResults

Note that if a call does not use the fields parameter, totalResults is included in
the response by default. For calls that use the fields parameter, totalResults is
suppressed unless it is explicitly listed as one of the fields to include.

As an alternative to the fields parameter, which explicitly specifies the properties
to include, you can use the exclude parameter to include all properties except

2-9

ORACLE

Chapter 2
REST API query parameters

the ones specified. For example, to return all of the properties of products except
longDescription:

As with the fields parameter, properties of nested objects can be specified
for the exclude parameter using additional period delimiters (for example,
items. listPrices.defaul tPriceGroup).

If you use both the fields and exclude query parameters in the same request, the
fields parameter is applied first to determine the initial list of properties to return, and
then the exclude parameter is applied to remove properties from that list.

You can also create persistent response filters that store a list of the properties to
include and the properties to exclude. See Response filters.

Control the order of items returned

By default, the items returned are sorted by a predetermined property that depends on
the type of item. For example, products are sorted by displayName.

You can use the sort parameter to specify a different property to sort by. For example:

GET /ccadmin/vl/products?sort=id

You can append :asc or :desc to the property name to specify sorting in ascending or
descending order. For example, to sort by id descending:

GET /ccadmin/vl/products?sort=id:desc

If you do not specify a sort order, it defaults to ascending.

You can specify multiple properties for sorting. The following call returns results
sorted first by listPrice, and then by displayName (for items with identical listPrice
values):

GET /ccadmin/vl/products?sort=listPrice,displayName

Note that sorting is done before applying limit and offset values, so it can affect

not only the order in which items appear in the response, but also which items are
returned. For example, if 1imit=200 and offset=400, items 401 to 600 are selected
from the sorted list of all items. If you change the sorting criteria, items 401 to 600 may
not be the same ones as before.

Filter results

Many endpoints that return a list of items support the q query parameter. This
parameter is used for specifying a filter expression that restricts the set of the items
returned, based on criteria such as numeric comparisons or string matching with the
values of the items’ properties. For example, the following call returns only those
products whose orderLimit property has a value of less than 10:

GET /ccadmin/vl/products?g=orderLimit It 10

For most endpoints that support it, the q parameter accepts filter expressions that
use the syntax described in Section 3.2.2.2 of the System for Cross-Domain Identity

2-10

ORACLE

Chapter 2
REST API query parameters

Management (SCIM) specification, which is available at https://tools.ietf.org/html/draft-
ietf-scim-api-12. A few endpoints accept filter expressions that use RQL syntax
instead, as discussed below.

Use SCIM expressions for filtering

The SCIM specification defines standardized services for managing user identities
in cloud environments. These services include a querying language for filtering the
results returned by REST endpoints.

In SCIM filtering expressions, text, date, and time values must be enclosed in
guotation marks, with date and time values using 1ISO-8601 format. (Numeric and
boolean values should not be quoted.) For example, the following call returns products
whose description property starts with pa:

GET /ccadmin/vl/products?g=description sw "pa"

The operators are case-insensitive, as are strings used for matching. So, for example,
the following calls return identical results:

GET /ccadmin/vl/products?g=displayName co "'shirt"
GET /ccadmin/vl/products?g=displayName CO "sHIrt"

Note that filter expressions must be URL encoded, so you must ensure that characters
such as the quotation mark (") are escaped properly.

SCIM also supports the logical operators AND, OR, and NOT. For example, the following
call returns products whose orderLimit property has a value between 5 and 10:

GET /ccadmin/vl/products?g=orderLimit gt 5 and orderLimit 1t 10

Restrictions on filtering

Not all properties can be used in filter expressions. The following are some limitations
you should be aware of:

* You can use only top-level properties of items in filter expressions. For example,
for product endpoints, you cannot include properties of subobjects such as child
SKUs.

* You can use a property in filter expressions only if it is returned by the endpoint
you are calling. For example, if a specific product property is not returned by the
GET /ccadmin/v1/products endpoint, then the property cannot be used with the g
parameter for that endpoint. Note, however, that equivalent endpoints in different
APIs (for example, GET /ccadmin/v1/products and GET /ccstore/v1/products)
may not return identical sets of properties, so a property that is not returned by
one of these endpoints may be returned by the other.

Also, if you have multiple custom product types, and two or more custom types

have a custom property with the same name, the property cannot be used in filter
expressions. For example, if you have two custom product types called Shoes and
Hats, and each has a custom property called material, then you cannot use material
in filter expressions. If only one custom product type has a material property, you can
use the property in filter expressions.

Use RQL expressions for filtering

2-11

https://tools.ietf.org/html/draft-ietf-scim-api-12
https://tools.ietf.org/html/draft-ietf-scim-api-12

Chapter 2
Response filters

As mentioned above, a few endpoints use RQL syntax for filtering instead of SCIM
syntax. These are:

GET /ccadmin/vl/exchangerates

GET /ccadmin/vl/orders

GET /ccadmin/vl/posts

GET /ccadmin/vl/serverExtensions

GET /ccadmin/v1/webhookFailedVMessages

You can find information about RQL syntax in the Oracle Commerce Platform
documentation:

https://www.oracle.com/technetwork/indexes/documentation/
atgwebcommerce-393465.html

See the Repository Query Language section of the Repository Guide.

For example, this call uses RQL syntax for a numeric comparison:

GET /ccadmin/vl/exchangerates?g=exchangeRate > 3.5

This call uses RQL syntax for a timestamp comparison:

GET /ccadmin/v1/webhookFailedVessages?g=savedTime=datetime(''2018-9-22
12:05:54 GMT™)

Note that the endpoints that use RQL syntax by default can optionally use SCIM
instead. To enable SCIM syntax for one of these endpoints, use the queryFormat
query parameter. For example:

GET /ccadmin/vl/orders?queryFormat=SCIM&qg=profileld eq "110658"

Response filters

ORACLE

Response filters provide an alternative way to use the fields and exclude query
parameters.

Rather than using fields or exclude to explicitly list properties in the URL of a REST
call, you can create persistent filters that store the set of properties to include or
exclude. You can then specify a filter by name in the URL using the filterKey query
parameter. For example, you could create a response filter named productSummary
that lists product properties to include, and then invoke the filter like this:

GET /ccadmin/vl/products?filterKey=productSummary

Note:A response filter is essentially a wrapper for the fields and exclude query
parameters, and the properties returned by a filter are the same as they would be

for equivalent fields and exclude expressions. If you include the filterKey query
parameter and either fields or exclude (or both) in an API call, filterKey is ignored,
and fields and exclude are applied.

2-12

https://www.oracle.com/technetwork/indexes/documentation/atgwebcommerce-393465.html
https://www.oracle.com/technetwork/indexes/documentation/atgwebcommerce-393465.html

Chapter 2
Response filters

To view a list of response filters, use the listFilters endpoint in the Admin API:

GET /ccadmin/vl/responseFilters HTTP/1.1
Authorization: Bearer <access_t oken>

Note that by default there are four response filters included with Commerce:

{
"links": [
{
"rel": "self",
"href": "http://myserver._example.com:7002/ccadmin/vl/
responseFilters"
}
]1
"items": [
{
"include":
"items.id,items.displayName, items.type, items.variantValuesOrder,
items.productVariantOptions, items.defaultProductListingSku,

items.dynamicPropertyMaplLong, items.route, items.primarySmallImageURL,

items._primarylmageAltText, items.primarylmageTitle,items.childSKUs,
items_listPrice,items.salePrice, items.relatedProducts,
category.displayName, items._description,totalResults,offset,
totalExpandedResults™,
"exclude':
"items.childSKUs. largelmage, items.childSKUs. largelmageURLs,
items.childSKUs.fullImageURLs, items.childSKUs. listPrices,

items.childSKUs.mediumImageURLs, items.childSKUs.primaryLargelmageURL,
items.childSKUs.primaryMediumimageURL,

items.childSKUs.primaryThumblImageURL, items.childSKUs.thumblImageURLs,
items.childSKUs.salePrices, items.childSKUs.thumbnaillmage,
items.childSKUs.barcode, items.childSKUs.denomination,
items.childSKUs.model, items.childSKUs.productFamily,
items.childSKUs.productLine, items.childSKUs.unitOfMeasure,
items.childSKUs.saleVolumePrices",
"key': "PLPData"
s
{

"include":
"childCategories(items).displayName,childCategories(items).route,
childCategories(items).id,
childCategories(items).childCategories.displayName,
childCategories(items).childCategories.route,
childCategories(items).childCategories.id,

childCategories(items).childCategories.childCategories.displayName,

childCategories(items).childCategories.childCategories.route,
childCategories(items).childCategories.childCategories.id,

ORACLE 2-13

ORACLE

Chapter 2
Response filters

childCategories(items).childCategories.childCategories.childCategories”,
"key': "categoryNavData"

}s
{

"include":
"items.id, items.displayName, items._productVariantOptions,
items.defaultProductListingSku, items.dynamicPropertyMaplLong,

items.route, items.primarySmall ImageURL, items.primarylmageAltText,
items.primarylmageTitle, items.childSKUs. listPrice,
items.childSKUs.salePrice, items.listPrice,items.salePrice,
items.relatedProducts, items.childSKUs.dynamicPropertyMaplLong,

items.childSKUs.repositoryld,category.displayName, items.description”,
"key": "collectionData"

}s
{

"include":
"id,active,saleVolumePrices, listVolumePrices, route,configurable,

dynamicPropertyMaplong, productVariantOptions,primaryThumbImageURL,
notForiIndividualSale,displayName,childSKUs. repositoryld,
childSKUs.active,childSKUs. listPrice,childSKUs.salePrice,
childSKUs.primaryThumblImageURL,childSKUs. listingSKuld,
childSKUs.saleVolumePrices,childSKUs. listVolumePrices,
childSKUs.dynamicPropertyMapLong™,
"key": "productData"
}
]

}

Each filter must have a key (which is used to identify the filter), and either an include
array (equivalent to the fields query parameter) an exclude array (equivalent to the
exclude query parameter), or both.

You can view an individual filter using the getFilter endpoint. For example:

GET /ccadmin/vl/responseFilters/productData HTTP/1.1
Authorization: Bearer <access_t oken>

Note that you should not modify or delete the default response filters, as they are used
by widgets provided with Commerce, and these widgets may not work properly if the
response filters are changed. For information about these response filters and how
they are used by widgets, see Filter REST Responses.

Create response filters

You can create your own response filters using the createFilter endpoint. For
example, the following call creates a new response filter named productLabels:

POST /ccadmin/vl/responseFilters HTTP/1.1
Authorization: Bearer <access_t oken>

{

2-14

ORACLE

Chapter 2
Response filters

"key": "productLabels",
"include: "items.id,items.displayName,items.description”

}

The following call uses the productLabels filter to restrict the set of properties returned
for products:

GET /ccadmin/vl/products?filterKey=productlLabels HTTP/1.1
Authorization: Bearer <access_t oken>

The following shows a portion of the response:

"items": [
{
"displayName': "A-Line Skirt",
"description": "The simple perfect A line",
"id": "xprod2535"
1.
{
"displayName": "Acadia Wood Chair",
"description": "Craftsman meets classic in this attractive wood
chair",
"id": "xprod2148"
s
{
"displayName': "Americana Nightstand",
"description": "Classic American design",
"id": "xprod2103"

}

Modify response filters

You can use the updateFi lter endpoint to modify response filters. For example, the
following call changes the set of properties returned by the productLabels filter shown
above:

PUT /ccadmin/vl/responseFilters/productLabels HTTP/1.1
Authorization: Bearer <access_t oken>

{
}

"include™: "items.displayName, items.description,items.listPrice"

Note that when you modify a response filter, the changes to the filter do not take
effect until your JSON cache is cleared. This cache is cleared each time you publish
changes on your Commerce instance. Changes to response filters themselves do
not require publishing, so to force the cache to be cleared, you need to modify a
publishable asset (such as an item in the product catalog) and then invoke publishing.

2-15

Chapter 2
Error messages

Delete response filters

You can use the deleteFilter endpoint to delete a response filter. For example:

DELETE /ccadmin/v1l/responseFilters/productlLabels HTTP/1.1
Authorization: Bearer <access_t oken>

Error messages

ORACLE

Commerce uses a standard format for REST errors.
REST calls that produce errors return the following response fields:

* message — the error message
* status —the HTTP status code
* errorCode — the system error code that uniquely identifies the error

For example:

{

"message': "Required header is missing: x-ccasset-language”,
"status": "400",
"errorCode': "82001"

Some errors use the multiple-error format instead, which encapsulates one or more
errors in an errors array object. Each entry in the array is a separate error, with its
own message, status, and errorCode values. In addition, the format includes top-level
message and status values that apply globally to all of the errors. For example:

{

"message': "Error while retrieving the products”,
"errors": [
{
"message': "Product Id xprodl00 is invalid or non-
existent.",
"status": 400",
"errorCode': "20031",

}s
{

"message': "Product Id xprodl02 is invalid or non-
existent.",

"status": 400",

"errorCode': "20031",

}
1.

"status": 400"

2-16

Chapter 2
Register applications

Register applications

ORACLE

External applications can use the Oracle CX Commerce REST web services APIs to
provide integrations or extensions to the administration interface or the storefront.

You must register an application in the administration interface before it can access
Oracle CX Commerce data. Registering an application automatically generates the
following:

e An application ID that identifies the application internally.
e An application key that you use to authenticate the application.

The application key is a JSON Web Token (JWT) from the Oracle CX Commerce
OAuth server. Your registered application exchanges the key for an access token as
part of the authentication flow. For more information, see Use the application key for
authentication.

To register an application:

Click the Settings icon.

Click Web APIs and display the Registered Applications tab.
Click the Register Application button.

Enter a name for the application.

Click Save.
The application ID and application key are automatically generated and the
application is added to the list on the Registered Applications page.

@ H W b P

To acquire the application key:

Click the Settings icon.

Click Web APIs and display the Registered Applications tab.
Click the name of the application whose key you want to get.

Click the Application Key box to reveal the key.

A S

Copy the key and provide it to the application developer.
See Use the application key for authentication for more information.

To reset the key for a registered application:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.
3. Click the name of the application whose key you want to reset.
4

Click Reset.
The new application key is automatically generated. The existing application key is
automatically revoked and can no longer be used to authenticate the application.

To unregister an application:
1. Click the Settings icon.
2. Click Web APIs and display the Registered Applications tab.

3. Click the name of the application you want to unregister.

2-17

Chapter 2
Register applications

4. Click Delete.

5. Click Save.
The application’s ID is removed from the system and its application key is
automatically revoked.

ORACLE 2-18

Use Webhooks

Oracle CX Commerce includes webhooks that enable the server to make calls to
external APIs. For example, you can configure the Order Submit webhook to send
data to an order management system every time a shopper successfully submits an
order.

There are two versions of each webhook, preview and production. Production
webhooks send information from your live store to production environments of

your external systems, while preview webhooks send information from your preview
environment to the test or sandbox environments of your external systems.

Understand webhooks

ORACLE

Oracle CX Commerce includes two types of webhooks, asynchronous event
webhooks and synchronous function webhooks:

* Event webhooks are asynchronous; they are triggered by JMS (Java Message
Service) events. An event webhook call returns an HTTP status code. An event
webhook request can be sent to multiple URLSs.

* Function webhooks are synchronous; they are invoked explicitly in code. A
successful function webhook call returns JSON data. A function webhook request
can be sent to only one URL.

Both types of webhooks are described below.

Understand event webhooks

An event webhook sends a POST request to URLs you specify each time a Commerce
event occurs. The body of the request contains the data associated with the event,

in JSON format. The external system that receives the POST request returns an HTTP
status code indicating whether the data was received successfully. A 200-level status
code indicates the POST was successful. Any other code indicates failure; if this occurs,
Commerce sends the POST request again. The webhook is executed up to five times
until it succeeds or gives up.

The external system can use the data from the webhook request body in requests to
the endpoints of the Commerce REST API endpoints. For example, you can configure
the Order Submit webhook to send a notification to your order management system
(OMS) every time a shopper successfully submits an order. When a change occurs to
an order in the OMS, the OMS can issue a PUT request to the Update Order endpoint
to modify the order in Commerce.

Commerce includes the following event webhooks:

Webhook Notification event

Account Create A new account was successfully created by
an administrator. See Configure Business
Accounts for more information.

3-1

ORACLE

Chapter 3
Understand webhooks

Webhook

Notification event

Account Update

Cart Idle

Export Complete
Import Complete
Inventory Update

Order Cancel
Order Cancel Without Payment Details

Order Submit

Order Submit Without Payment Details

Publish Complete
Remorse Period Start

Remorse Period Start Without Payment Details

Return Request Update

Return Request Update without Payment
Details

Shopper Profile Create
Shopper Profile Update

Shopper Profile Delete

An existing account was successfully updated
by an administrator. See Configure Business
Accounts for more information.

A cart that contains items has been inactive
for the number of minutes you specify on the
Abandoned Cart Settings page. See Configure
Abandoned Cart settings for more information.

A data export process successfully completed.
A data import process successfully completed.

Out-of-stock SKUs are back in stock.

See Understand inventory for information
about inventory data that determines whether
a SKU is in stock.

An agent canceled an order.
An agent canceled an order.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

An order was successfully submitted by a
customer or an agent.

An order has been successfully submitted by a
customer or an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Changes were successfully published.

An order’s customer remorse period has
started.

See Set the customer remorse periodSet the
customer remorse period for more information.

An order’s customer remorse period has
started.

See Set the customer remorse periodSet the
customer remorse period for more information.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

A return request was successfully processed
by an agent.

A return request was successfully processed
by an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

A new shopper registered on your instance.

A registered shopper changed their account
details.

A registered shopper’s account has been
deleted. See Delete Shopper Information for
more information.

3-2

ORACLE

Chapter 3
Understand webhooks

Webhook Notification event

Order Redact An order’s properties have been redacted.
See Delete Shopper Information for more
information.

Request Quote A shopper requested a quote for an order
on a store that supports an external product
configurator.

Update Quote A shopper accepted or rejected a quote, or the

guote was canceled on a store that supports
an external product configurator.

Account Request An account-based shopper has submitted an
account registration request. See Configure
Business Accounts for more information.

Contact Request An account-based shopper or anonymous
shopper has submitted a contact registration
request. See Configure Business Accounts for
more information.

Understand function webhooks

Like an event webhook, a function webhook sends a JSON notification to a URL you
specify each time something happens on your store. For example, you can configure
the Shipping Calculator webhook to send a natification to an external shipping service
every time a shopper requests shipping costs for an order.

While an external system only sends an HTTP status code in response to an event
webhook POST request, a system must respond to a function webhook POST request
with information in JSON format. You must implement the external system’s API to
write code that processes the request and sends a response to Commerce. For
example the Shipping Calculator webhook expects a set of shipping methods and
their prices, which are displayed to the shopper who has requested them.

Commerce includes the following function webhooks:

Webhook Description

Shipping Calculator Integrates shipping services (such as UPS,
USPS, or FedEXx) into your store. See Integrate
with External Shipping Calculators for more
information.

Credit Card Payment Integrates custom payment gateways that
let your store accept credit card payments.
See Create a Credit Card Payment Gateway
Integration for more information.

Generic Payment Integrates custom payment gateways that let
your store accept various payment types.
See Create a Generic Payment Gateway
Integration for more information.

External Price Validation Validates prices with an external pricing
system. See Integrate with an External Pricing
System for more information.

External Tax Calculation Integrates tax processors that calculate sales
tax in the shopping cart. See Configure Tax
Processors for more information.

3-3

ORACLE

Chapter 3
Understand webhooks

Webhook

Description

Order Approvals

Catalog and Price Group Assignment

Contact Accounts Retrieval
Services Retrieval
Service Actions

External Payment Property Metadata Retrieval

Custom Currency Payment

Return Request Validation

Return Request Validation Without Payment
Details

Order Qualification

Order Validation

Integrates systems that determine if an
order placed on an account-based store
requires approval. See Integrate with an
external system for order approvals for more
information.

Integrates systems that determine which
catalog and price group a shopper should
use to create orders. See Assign Catalogs
and Price Groups to Shoppers for more
information.

Returns a list of service account IDs for the
current user.

Returns information about a services or assets
associated with the current user.

Performs a modify, renew, or cancel action on
a service or asset.

Integrates custom payment gateways that
let Oracle Assisted Selling accept various
payment types.

Integrates custom payment gateways that let
your store accept loyalty points payments.

Validates whether items maintained in an
external order management system are
eligible for return.

Validates whether items maintained in an
external order management system are
eligible for return.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Performs order qualification operations prior to
submitting the order.

Validates the contents of the submitted order
after final pricing is performed.

Validate function webhook responses

As discussed in the previous section, you must ensure the system receiving a function
webhook POST responds by sending the appropriate JSON data to Commerce. To
determine whether the response data conforms to the correct schema, the ccdebug
REST client on the administration server in your test environment includes a validation
tool for function webhooks. To access this tool, go to the following URL:

http://<admin-server-hostname>/ccdebug

Select the Function Webhooks tab, and then log into the Admin API. Follow the
instructions on the screen to validate the format of your response payloads.

3-4

Chapter 3
Configure webhooks

Configure webhooks

This section describes how to configure webhooks in the Oracle CX Commerce
administration interface.

Before you configure the webhooks, you must identify the URLs of the web application
or third-party provider where the webhooks will send notifications. You must use
HTTPS URLs. See Troubleshoot SSL certificates for information about configuring the
SSL certificates you install on your external system’s web servers.

To configure a webhook:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.
3. Click the type of webhook you want to configure.
4

For a function webhook, enter the URL where you want to send the POST requests.
For an event webhook, enter one or more URLs. Separate multiple URLs with
commas.

(You must enter HTTPS URLSs. See Troubleshoot SSL certificates fo