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Understand Extension Features

ORACLE

Oracle CX Commerce provides several sets of tools that you can use to extend the
capabilities of the system. The primary ones are these:

An extensive set of REST APIs allows external applications to make calls into the
Oracle CX Commerce server. These APIs are supplemented by webhooks that
the server can use to make calls out to external applications. For example, you
can create an integration with an order management system in which Oracle CX
Commerce uses webhooks to send order data to your OMS, and the OMS uses
the Oracle CX Commerce REST APIs to update the order’s status information as
the order is processed.

Custom widgets allow you to extend the functionality of your storefront by
communicating with the Oracle CX Commerce server to access features that
are not exposed by default. Custom widgets can also enhance the storefront by
communicating with external systems such as social media sites.

Note that these tools are not mutually exclusive; you may need to use all of them to
accomplish your objectives. For example, a custom widget might make a REST call
to the Oracle CX Commerce server to request data for the storefront, and the server
might then execute a webhook to obtain that data from an external system.

This manual focuses on building specific customizations using REST APIs, webhooks,
custom widgets, and other tools. For general information about developing custom
widgets, see Create a Widget.
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Use the REST APIs

Oracle CX Commerce includes REST web service APIs you can use to create
integrations with other products, and to build extensions to the administration interface
and the storefront.

Learn about the APIs

ORACLE

The Oracle CX Commerce REST APIs consist of several sets of endpoints.
The Commerce REST API endpoints include the following:

* The Store API endpoints provide access to store functionality on the storefront
server. A subset of the Store API endpoints, the Store Extension API, enables
integrations and server-side extensions to access data that is not exposed to
shoppers.

* The Admin API endpoints provide access to administrative functionality on the
administration server. Two subsets of the Admin API endpoints, the Search Admin
and Configuration and the Search Data and Indexing API endpoints, provide
access to search functionality on the search server.

* The Agent API endpoints provide access to agent functionality on the
administration server.

* The Social Wish Lists APl endpoints are used to configure wish list features. This
API is not described in this manual.

Each set of endpoints is different, although in many cases similar endpoints are
available in multiple APIs. For example, the Store, Agent, and Admin APIs all have
endpoints for working with orders, though they differ in the functions that they can
perform.

Note: You should not make calls to the Admin API or the Agent API from a storefront
application. If your application needs access to functionality or data provided by these
endpoints, you can use the Store Extension API endpoints instead. These endpoints
can be used by store integrations and server-side extensions, but should not be called
from a browser.

Authentication is handled separately for each API. For example, logging into the
Admin API does not give you access to the Agent endpoints. In addition, each API's
endpoints differ in terms of which user roles provide access to them. For example, an
account with CS Agent permissions does not necessarily also include Administrator
permissions. See Configure Internal User Accounts for more information.

Note that each API is available only in certain environments:
e The Admin API and Agent API are available on the administration server only.

e The Store APl is available primarily on the storefront server. It is also available on
the administration server for previewing unpublished changes to the store.
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Chapter 2
REST API authentication

You can find information about individual endpoints in the REST API documentation
that is available through the Oracle Help Center:

http://docs.oracle.com/cloud/latest/commercecs_gs/CX0CC/

Be sure to select the version of the REST API documentation that matches the version
of Oracle CX Commerce you are using.

ccdebug REST client

In your test environment, the administration server includes a REST client for making
calls to the Commerce APIs. This client is available at the following URL:

http://adni n- server - host nane/ccdebug

Note that this client can make calls only to the administration server it is running on.
You can use it to access the Admin API and Agent API, and to access the Store API
in preview mode. If you want to access endpoints on other servers, you can use a
third-party client tool such as Postman.

REST API authentication

ORACLE

Oracle CX Commerce REST APIs use OAuth 2.0 with bearer tokens for
authentication.

The REST APIs support two authentication approaches:

* To enable an external application such as an integration or server-side extension
to be authenticated, the application must first be registered in the administration
interface, as described in Register applications. As part of the registration process,
an application key is generated. During authentication, the application key must
be passed to Oracle CX Commerce using a POST request to the appropriate login
endpoint.

e To authenticate an internal user or storefront shopper, the user login and password
must be passed to Oracle CX Commerce using a POST request to the appropriate
login endpoint.

In either case, if the authentication succeeds, the endpoint returns an access token
that must be supplied in subsequent requests. Note that application keys and access
tokens are long base64-encoded strings.

Use the application key for authentication

When you register an application, Oracle CX Commerce automatically generates a
JSON Web Token called an application key. You send the application key in the
authorization header of a POST request, and Oracle CX Commerce responds with an
access token that the application must supply in subsequent requests.

Note: Application keys should be stored securely and all requests that include them
must be sent via HTTPS. They should be used by integrations and server-side
extensions only, and should not be sent by a browser.

Send the authorization header in a POST request to the appropriate login endpoint:
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e Use POST /ccadmin/vl/login if your application makes calls to the administration
server.

e Use POST /ccapp/vl/login if your application makes calls to the storefront server.

The Content-Type header value must be set to application/x-www-form-urlencoded,
and the body of the request must include the grant type client_credentials. For
example:

POST /ccapp/vl/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer <application_key>

grant_type=client_credentials

The following example shows the server’'s JSON response, which includes the access
token:

"access_token": "<access_token>",
"token_type": "bearer"

}

Now whenever the application needs to access a secured endpoint, it must issue a
request with an authorization header that contains the access token. The following
example shows an authorization header for a request that returns orders:

GET /ccapp/vl/orders HTTP/1.1
Authorization: Bearer <access_token>

Use login credentials for authentication

When you log in as an individual user (either a shopper or an internal user such as a
customer service agent), there is no application key, so you must instead supply the

user login and password in the body of the request. The following example illustrates
logging into a shopper account on the storefront server:

POST /ccstore/vl/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=johndoe@example.com&password=g4dEj3wl

The response includes an access token to use in subsequent requests. Each APl you
log into returns a separate access token. The following example shows the server’s
JSON response, which includes the access token:

{

"access_token': "'<access_t oken>",
"token_type": "bearer"

}

Multi-factor authentication (Admin API only)
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Logging into the Admin API as an internal user involves multi-factor authentication. To
log in, you issue a POST request to the /ccadmin/vl/mfalogin endpoint, and include
the username, password, and passcode in the body of the request. For example:

POST /ccadmin/vl/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=adminl@example.com&password=A3ddj3w2&totp_c
ode=365214

To obtain passcodes, the login account must be registered with the Oracle Mobile
Authenticator app. See Access the Commerce administration interface for more
information.

Note that account passwords and passcodes may expire or be changed, so you must
make sure you have up-to-date values when you log in.

Refresh an access token

Each access token expires automatically after a predetermined period of time. Tokens
associated with an application key expire after 5 minutes. Tokens associated with user
credentials expire after 15 minutes.

To avoid being logged out of an API, you can replace the current token by issuing a
POST request to the API's refresh endpoint. Include the current access token in the
authorization header, just as you would for any other authenticated request. Oracle CX
Commerce generates and returns a new token and restarts the clock. You then use
the new token in the authorization headers of subsequent requests. Note that you may
need to refresh the token multiple times (every 5 minutes for a login with an application
key, every 15 minutes for a login with user credentials) if you need to remain logged in
for an extended period of time.

The following example is an authorization header that refreshes an access token for
the Admin API:

POST /ccadmin/vl/refresh HTTP/1.1
Authorization: Bearer <ol d_access_t oken>

The following example shows the body of the server’s response, which includes the
new token:

{

"access_token": '<new access_t oken>",
"token_type": "bearer"

}

Change the token expiration period (Admin API only)

As mentioned above, the expiration period for tokens associated with user credentials
is 15 minutes by default. For the Admin API, you can change the expiration period
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using the saveAdminConfiguration endpoint. For example, to change the period to 30
minutes:

PUT /ccadmin/vl/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_t oken>
Content-Type: application/json

{
3

""sessionTimeout': 30

You can set sessionTimeout to any integer from 3 to 120. Note that the value you set
also specifies the session timeout period for the administration interface, which is the
period of inactivity after which the user is automatically logged out.

Access preview through the APIs

You can use the Store API on the administration server to access your store in preview
mode. This requires a multi-step authentication procedure.

First, log into the Admin API on the administration server using an account that has
the Administrator role. Issue a POST request to the /ccadmin/v1l/mfalogin endpoint,
and include the username, password, and passcode in the body of the request. For
example:

POST /ccadmin/vl/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=adminl@example.com&password=A3ddj3w2&totp c
0de=443589

The response returned includes an access token:

{

"token_type': "bearer",
"access_token': "<access_t oken>"

Next, create a new preview user by issuing a POST request to /ccstore/v1/profiles
on the administration server. (You can skip this step if you have previously created

a preview user.) In the authorization header field of the request, pass in the access
token that was returned by /ccadmin/vi/mfalogin:

POST /ccstore/vl/profiles HTTP/1.1
Authorization: Bearer <access_t oken>

In the body of the request, specify the values of the profile properties, as described in
Create a shopper profile.

Now log in as the preview user by issuing a POST request to the /ccstore/v1l/login
endpoint on the administration server. Include the username and password in the body
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of the request. In addition, in the authorization header field of the request, pass in the
access token that was returned by /ccadmin/v1l/mfalogin:

POST /ccstore/vl/login HTTP/1.1
Authorization: Bearer <access_t oken>
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=previewuser@example.com&password=Test1234

The response returned by /ccstore/v1/login includes a new access token:

{

"token_type': "bearer",
"access_token': "'<access_token_2>"

You can now make requests to the /ccstore/v1 endpoints on the administration
server, passing in <access_t oken_2> (the access token that was returned by /
ccstore/v1l/login). You can also use the original access token (returned by /
ccadmin/vl/mfalogin) to access /ccadmin/vl endpoints and to create preview users
with the /ccstore/v1/profiles endpoint.

Note that if your Commerce instance is running multiple sites, preview requires a
specific site context. You can specify the site when you log in as a preview user and in
subsequent calls to the Store API. If you do not specify a site, the default site is used.
See Use the APIs on instances running multiple sites for information about specifying
the site in API calls.

Use the APIs on instances running multiple sites

If you are running multiple sites on your Commerce instance, your REST calls need to
specify which sites they apply to.

There are two ways to specify the site:

e For calls to any of the APIs, you can specify the site using the x-ccsite header in
the request.

»  For calls to the Store API, you can explicitly include the domain name of the
applicable site in the URL.

Note that if you do not specify a site in a call to the Store API, the call is directed

to the default site. (See Configure sites for a discussion of the default site.) If you do
not specify a site in a call to the Admin API or the Agent API, the call is applied to

the instance as a whole. For example, if you specify a site for the getOrders Admin
endpoint, only orders associated with that site are returned; if you do not specify a site,
orders associated with all sites are returned.
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x-ccsi te header

You can use the x-ccsite header to specify the site for an API call. For example, if
you have two sites, siteA and siteB, you could use this call to return the orders for
siteB:

GET /ccadmin/vl/orders HTTP/1.1
Authorization: Bearer <access_t oken>
x-ccsite: siteB

CORS support

ORACLE

For security purposes, web browsers implement the same-domain policy, which
prevents JavaScript on a page served from one domain from accessing resources

on another domain. In some cases, you may want to selectively override this policy to
allow specific domains to access data on your stores.

Note: You can allow access to Admin and Agent endpoints as well. See Configure
CORS support for the Admin or Agent endpoints below for information.

To enable external domains to access your storefront environment, Commerce
supports CORS (cross-origin resource sharing), which is a standard mechanism for
implementing cross-domain requests. For a detailed description of CORS, see:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

You configure CORS support in Commerce by explicitly specifying the external
domains that are permitted to make requests to your sites. When a cross-domain
request is submitted, the web browser is responsible for determining if access is
permitted. In some cases, prior to sending the actual request, the browser first sends
an OPTIONS method preflight request with headers that specify the domain that the
request originates from and the expected HTTP method. In this situation, Commerce
responds to the preflight request by indicating whether the actual request can be sent.

You specify the domains and methods permitted to access a specific site by

using the PUT /ccadmin/vl/sites/{sitelD} endpoint to set the value of the
allowedOriginMethods property on the corresponding site object. For example, the
following call enables cross-domain access to the siteUS site from two external
domains and specifies which HTTP methods are permitted from each domain:

PUT /ccadmin/vl/sites/siteUS HTTP/1.1
Authorization: Bearer <access_t oken>
x-ccasset-language: en

{
"properties”: {
"allowedOriginMethods™: {
"http://www.examplel.com™: "GET,OPTIONS",
"http://www.example2.com": "GET,PUT,POST,OPTIONS"
}
}
}
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After setting the value of al lowedOriginMethods on the site object, publish the
changes so they apply to the live context.

Note that the domain entries for the al lowedOriginMethods property must be fully
qualified, and cannot include wildcards. You must provide a separate entry for each
domain or subdomain you want to enable access for. For example, if you want to
provide CORS access to a domain named www.examplel.com that has subdomains
named shoes.examplel.com and shirts.examplel.com, you need to create three
entries.

Also, even if you enable cross-domain requests, access to a resource from an allowed
domain may require authentication. For example, calls to the Admin API endpoints
require authentication, as described in REST API Authentication.

Configure CORS support for the Admin or Agent endpoints

You can enable external domains to access the Admin and Agent endpoints by

using PUT /ccadmin/v1/merchant/adminConfiguration (for configuring access to the
Admin API) or PUT /ccadmin/vl/merchant/agentConfiguration (for access to the
Agent API). Each of these calls has an associated al lowedOriginMethods property for
specifying the domains and HTTP methods.

For example, the following call enables access to the Admin API from two external
domains:

PUT /ccadmin/vl/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
"properties”: {
"allowedOriginMethods': {
"http://www.example3.com™: "GET,POST,OPTIONS",
"http://www.example4.com": "GET,PUT,POST,DELETE,OPTIONS"
}
}
}

Note that for the Admin and Agent endpoints, the al lowedOriginMethods values take
effect in the live context immediately. You do not need to publish the changes.

REST API query parameters

ORACLE

You can use query parameters to control what data is returned in endpoint responses.

The sections below describe query parameters that you can use to control the set of
items and properties in responses, and the order of the items returned.

Control the set of items returned

To prevent the response from becoming too large, the number of items returned
is limited by default to 250. You can override this value by using the Limit query
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parameter to specify a different number. For example, the following call limits the
number of orders returned to 5:

GET /ccadmin/vl1/orders?limit=5

To page through the results, you can use the offset parameter. For example, suppose
you have returned the first group of 250 orders using this call:

GET /ccadmin/vl1/orders

You can return the next group of 250 using the following call:

GET /ccadmin/v1/orders?offset=250

The default value of offset is 0, which means the listing begins with the first item. So
setting offset to 250 means the listing begins with the 2515t item.

You can use limit and offset together. For example, to return the 4015t through 600"
order:

GET /ccadmin/v1/orders?limit=200&offset=400

Control the set of properties returned

Another way to reduce the size of responses is to return only certain properties. For
example, products can have a large nhumber of properties, but you may need only
certain ones.

You can use the fields parameter to restrict the set of properties returned to only
those you explicitly specify. The properties are specified as a comma-separated list.
For example, to return only the id and displayName properties of products:

GET /ccadmin/vl/products?fields=items.id, items.displayName

Note that items is the key for the array of objects returned, so top-level properties are
referred to as items.propertyName (for example, items.displayName). Properties of
nested objects are specified using additional period delimiters. For example:

GET /ccadmin/vl/products?fields=items. listPrices.defaultPriceGroup

You can also use a special field, totalResults, to return the total number of items
available (such as the total number of products in the catalog). For example:

GET /ccadmin/vl/products?fields=items.id,totalResults

Note that if a call does not use the fields parameter, totalResults is included in
the response by default. For calls that use the fields parameter, totalResults is
suppressed unless it is explicitly listed as one of the fields to include.

As an alternative to the fields parameter, which explicitly specifies the properties
to include, you can use the exclude parameter to include all properties except
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the ones specified. For example, to return all of the properties of products except
longDescription:

As with the fields parameter, properties of nested objects can be specified
for the exclude parameter using additional period delimiters (for example,
items. listPrices.defaul tPriceGroup).

If you use both the fields and exclude query parameters in the same request, the
fields parameter is applied first to determine the initial list of properties to return, and
then the exclude parameter is applied to remove properties from that list.

You can also create persistent response filters that store a list of the properties to
include and the properties to exclude. See Response filters.

Control the order of items returned

By default, the items returned are sorted by a predetermined property that depends on
the type of item. For example, products are sorted by displayName.

You can use the sort parameter to specify a different property to sort by. For example:

GET /ccadmin/vl/products?sort=id

You can append :asc or :desc to the property name to specify sorting in ascending or
descending order. For example, to sort by id descending:

GET /ccadmin/vl/products?sort=id:desc

If you do not specify a sort order, it defaults to ascending.

You can specify multiple properties for sorting. The following call returns results
sorted first by listPrice, and then by displayName (for items with identical listPrice
values):

GET /ccadmin/vl/products?sort=listPrice,displayName

Note that sorting is done before applying limit and offset values, so it can affect

not only the order in which items appear in the response, but also which items are
returned. For example, if 1imit=200 and offset=400, items 401 to 600 are selected
from the sorted list of all items. If you change the sorting criteria, items 401 to 600 may
not be the same ones as before.

Filter results

Many endpoints that return a list of items support the q query parameter. This
parameter is used for specifying a filter expression that restricts the set of the items
returned, based on criteria such as numeric comparisons or string matching with the
values of the items’ properties. For example, the following call returns only those
products whose orderLimit property has a value of less than 10:

GET /ccadmin/vl/products?g=orderLimit It 10

For most endpoints that support it, the q parameter accepts filter expressions that
use the syntax described in Section 3.2.2.2 of the System for Cross-Domain Identity
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Management (SCIM) specification, which is available at https://tools.ietf.org/html/draft-
ietf-scim-api-12. A few endpoints accept filter expressions that use RQL syntax
instead, as discussed below.

Use SCIM expressions for filtering

The SCIM specification defines standardized services for managing user identities
in cloud environments. These services include a querying language for filtering the
results returned by REST endpoints.

In SCIM filtering expressions, text, date, and time values must be enclosed in
guotation marks, with date and time values using 1ISO-8601 format. (Numeric and
boolean values should not be quoted.) For example, the following call returns products
whose description property starts with pa:

GET /ccadmin/vl/products?g=description sw "pa"

The operators are case-insensitive, as are strings used for matching. So, for example,
the following calls return identical results:

GET /ccadmin/vl/products?g=displayName co "'shirt"
GET /ccadmin/vl/products?g=displayName CO "sHIrt"

Note that filter expressions must be URL encoded, so you must ensure that characters
such as the quotation mark (") are escaped properly.

SCIM also supports the logical operators AND, OR, and NOT. For example, the following
call returns products whose orderLimit property has a value between 5 and 10:

GET /ccadmin/vl/products?g=orderLimit gt 5 and orderLimit 1t 10

Restrictions on filtering

Not all properties can be used in filter expressions. The following are some limitations
you should be aware of:

* You can use only top-level properties of items in filter expressions. For example,
for product endpoints, you cannot include properties of subobjects such as child
SKUs.

* You can use a property in filter expressions only if it is returned by the endpoint
you are calling. For example, if a specific product property is not returned by the
GET /ccadmin/v1/products endpoint, then the property cannot be used with the g
parameter for that endpoint. Note, however, that equivalent endpoints in different
APIs (for example, GET /ccadmin/v1/products and GET /ccstore/v1/products)
may not return identical sets of properties, so a property that is not returned by
one of these endpoints may be returned by the other.

Also, if you have multiple custom product types, and two or more custom types

have a custom property with the same name, the property cannot be used in filter
expressions. For example, if you have two custom product types called Shoes and
Hats, and each has a custom property called material, then you cannot use material
in filter expressions. If only one custom product type has a material property, you can
use the property in filter expressions.

Use RQL expressions for filtering
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As mentioned above, a few endpoints use RQL syntax for filtering instead of SCIM
syntax. These are:

GET /ccadmin/vl/exchangerates

GET /ccadmin/vl/orders

GET /ccadmin/vl/posts

GET /ccadmin/vl/serverExtensions

GET /ccadmin/v1/webhookFailedVMessages

You can find information about RQL syntax in the Oracle Commerce Platform
documentation:

https://www.oracle.com/technetwork/indexes/documentation/
atgwebcommerce-393465.html

See the Repository Query Language section of the Repository Guide.

For example, this call uses RQL syntax for a numeric comparison:

GET /ccadmin/vl/exchangerates?g=exchangeRate > 3.5

This call uses RQL syntax for a timestamp comparison:

GET /ccadmin/v1/webhookFailedVessages?g=savedTime=datetime(''2018-9-22
12:05:54 GMT™)

Note that the endpoints that use RQL syntax by default can optionally use SCIM
instead. To enable SCIM syntax for one of these endpoints, use the queryFormat
query parameter. For example:

GET /ccadmin/vl/orders?queryFormat=SCIM&qg=profileld eq "110658"

Response filters

ORACLE

Response filters provide an alternative way to use the fields and exclude query
parameters.

Rather than using fields or exclude to explicitly list properties in the URL of a REST
call, you can create persistent filters that store the set of properties to include or
exclude. You can then specify a filter by name in the URL using the filterKey query
parameter. For example, you could create a response filter named productSummary
that lists product properties to include, and then invoke the filter like this:

GET /ccadmin/vl/products?filterKey=productSummary

Note:A response filter is essentially a wrapper for the fields and exclude query
parameters, and the properties returned by a filter are the same as they would be

for equivalent fields and exclude expressions. If you include the filterKey query
parameter and either fields or exclude (or both) in an API call, filterKey is ignored,
and fields and exclude are applied.
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To view a list of response filters, use the listFilters endpoint in the Admin API:

GET /ccadmin/vl/responseFilters HTTP/1.1
Authorization: Bearer <access_t oken>

Note that by default there are four response filters included with Commerce:

{
"links": [
{
"rel": "self",
"href": "http://myserver._example.com:7002/ccadmin/vl/
responseFilters"
}
]1
"items": [
{
"include":
"items.id,items.displayName, items.type, items.variantValuesOrder,
items.productVariantOptions, items.defaultProductListingSku,

items.dynamicPropertyMaplLong, items.route, items.primarySmallImageURL,

items._primarylmageAltText, items.primarylmageTitle,items.childSKUs,
items_listPrice,items.salePrice, items.relatedProducts,
category.displayName, items._description,totalResults,offset,
totalExpandedResults™,
"exclude':
"items.childSKUs. largelmage, items.childSKUs. largelmageURLs,
items.childSKUs.fullImageURLs, items.childSKUs. listPrices,

items.childSKUs.mediumImageURLs, items.childSKUs.primaryLargelmageURL,
items.childSKUs.primaryMediumimageURL,

items.childSKUs.primaryThumblImageURL, items.childSKUs.thumblImageURLs,
items.childSKUs.salePrices, items.childSKUs.thumbnaillmage,
items.childSKUs.barcode, items.childSKUs.denomination,
items.childSKUs.model, items.childSKUs.productFamily,
items.childSKUs.productLine, items.childSKUs.unitOfMeasure,
items.childSKUs.saleVolumePrices",
"key': "PLPData"
s
{

"include":
"childCategories(items).displayName,childCategories(items).route,
childCategories(items).id,
childCategories(items).childCategories.displayName,
childCategories(items).childCategories.route,
childCategories(items).childCategories.id,

childCategories(items).childCategories.childCategories.displayName,

childCategories(items).childCategories.childCategories.route,
childCategories(items).childCategories.childCategories.id,
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childCategories(items).childCategories.childCategories.childCategories”,
"key': "categoryNavData"

}s
{

"include":
"items.id, items.displayName, items._productVariantOptions,
items.defaultProductListingSku, items.dynamicPropertyMaplLong,

items.route, items.primarySmall ImageURL, items.primarylmageAltText,
items.primarylmageTitle, items.childSKUs. listPrice,
items.childSKUs.salePrice, items.listPrice,items.salePrice,
items.relatedProducts, items.childSKUs.dynamicPropertyMaplLong,

items.childSKUs.repositoryld,category.displayName, items.description”,
"key": "collectionData"

}s
{

"include":
"id,active,saleVolumePrices, listVolumePrices, route,configurable,

dynamicPropertyMaplong, productVariantOptions,primaryThumbImageURL,
notForiIndividualSale,displayName,childSKUs. repositoryld,
childSKUs.active,childSKUs. listPrice,childSKUs.salePrice,
childSKUs.primaryThumblImageURL,childSKUs. listingSKuld,
childSKUs.saleVolumePrices,childSKUs. listVolumePrices,
childSKUs.dynamicPropertyMapLong™,
"key": "productData"
}
]

}

Each filter must have a key (which is used to identify the filter), and either an include
array (equivalent to the fields query parameter) an exclude array (equivalent to the
exclude query parameter), or both.

You can view an individual filter using the getFilter endpoint. For example:

GET /ccadmin/vl/responseFilters/productData HTTP/1.1
Authorization: Bearer <access_t oken>

Note that you should not modify or delete the default response filters, as they are used
by widgets provided with Commerce, and these widgets may not work properly if the
response filters are changed. For information about these response filters and how
they are used by widgets, see Filter REST Responses.

Create response filters

You can create your own response filters using the createFilter endpoint. For
example, the following call creates a new response filter named productLabels:

POST /ccadmin/vl/responseFilters HTTP/1.1
Authorization: Bearer <access_t oken>

{
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"key": "productLabels",
"include: "items.id,items.displayName,items.description”

}

The following call uses the productLabels filter to restrict the set of properties returned
for products:

GET /ccadmin/vl/products?filterKey=productlLabels HTTP/1.1
Authorization: Bearer <access_t oken>

The following shows a portion of the response:

"items": [
{
"displayName': "A-Line Skirt",
"description": "The simple perfect A line",
"id": "xprod2535"
1.
{
"displayName": "Acadia Wood Chair",
"description": "Craftsman meets classic in this attractive wood
chair",
"id": "xprod2148"
s
{
"displayName': "Americana Nightstand",
"description": "Classic American design",
"id": "xprod2103"

}

Modify response filters

You can use the updateFi lter endpoint to modify response filters. For example, the
following call changes the set of properties returned by the productLabels filter shown
above:

PUT /ccadmin/vl/responseFilters/productLabels HTTP/1.1
Authorization: Bearer <access_t oken>

{
}

"include™: "items.displayName, items.description,items.listPrice"

Note that when you modify a response filter, the changes to the filter do not take
effect until your JSON cache is cleared. This cache is cleared each time you publish
changes on your Commerce instance. Changes to response filters themselves do
not require publishing, so to force the cache to be cleared, you need to modify a
publishable asset (such as an item in the product catalog) and then invoke publishing.
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Delete response filters

You can use the deleteFilter endpoint to delete a response filter. For example:

DELETE /ccadmin/v1l/responseFilters/productlLabels HTTP/1.1
Authorization: Bearer <access_t oken>

Error messages

ORACLE

Commerce uses a standard format for REST errors.
REST calls that produce errors return the following response fields:

* message — the error message
* status —the HTTP status code
* errorCode — the system error code that uniquely identifies the error

For example:

{

"message': "Required header is missing: x-ccasset-language”,
"status": "400",
"errorCode': "82001"

Some errors use the multiple-error format instead, which encapsulates one or more
errors in an errors array object. Each entry in the array is a separate error, with its
own message, status, and errorCode values. In addition, the format includes top-level
message and status values that apply globally to all of the errors. For example:

{

"message': "Error while retrieving the products”,
"errors": [
{
"message': "Product Id xprodl00 is invalid or non-
existent.",
"status": 400",
"errorCode': "20031",

}s
{

"message': "Product Id xprodl02 is invalid or non-
existent.",

"status": 400",

"errorCode': "20031",

}
1.

"status": 400"
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Register applications

ORACLE

External applications can use the Oracle CX Commerce REST web services APIs to
provide integrations or extensions to the administration interface or the storefront.

You must register an application in the administration interface before it can access
Oracle CX Commerce data. Registering an application automatically generates the
following:

e An application ID that identifies the application internally.
e An application key that you use to authenticate the application.

The application key is a JSON Web Token (JWT) from the Oracle CX Commerce
OAuth server. Your registered application exchanges the key for an access token as
part of the authentication flow. For more information, see Use the application key for
authentication.

To register an application:

Click the Settings icon.

Click Web APIs and display the Registered Applications tab.
Click the Register Application button.

Enter a name for the application.

Click Save.
The application ID and application key are automatically generated and the
application is added to the list on the Registered Applications page.

@ H W b P

To acquire the application key:

Click the Settings icon.

Click Web APIs and display the Registered Applications tab.
Click the name of the application whose key you want to get.

Click the Application Key box to reveal the key.

A S

Copy the key and provide it to the application developer.
See Use the application key for authentication for more information.

To reset the key for a registered application:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.
3. Click the name of the application whose key you want to reset.
4

Click Reset.
The new application key is automatically generated. The existing application key is
automatically revoked and can no longer be used to authenticate the application.

To unregister an application:
1. Click the Settings icon.
2. Click Web APIs and display the Registered Applications tab.

3. Click the name of the application you want to unregister.
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4. Click Delete.

5. Click Save.
The application’s ID is removed from the system and its application key is
automatically revoked.
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Use Webhooks

Oracle CX Commerce includes webhooks that enable the server to make calls to
external APIs. For example, you can configure the Order Submit webhook to send
data to an order management system every time a shopper successfully submits an
order.

There are two versions of each webhook, preview and production. Production
webhooks send information from your live store to production environments of

your external systems, while preview webhooks send information from your preview
environment to the test or sandbox environments of your external systems.

Understand webhooks

ORACLE

Oracle CX Commerce includes two types of webhooks, asynchronous event
webhooks and synchronous function webhooks:

* Event webhooks are asynchronous; they are triggered by JMS (Java Message
Service) events. An event webhook call returns an HTTP status code. An event
webhook request can be sent to multiple URLSs.

* Function webhooks are synchronous; they are invoked explicitly in code. A
successful function webhook call returns JSON data. A function webhook request
can be sent to only one URL.

Both types of webhooks are described below.

Understand event webhooks

An event webhook sends a POST request to URLs you specify each time a Commerce
event occurs. The body of the request contains the data associated with the event,

in JSON format. The external system that receives the POST request returns an HTTP
status code indicating whether the data was received successfully. A 200-level status
code indicates the POST was successful. Any other code indicates failure; if this occurs,
Commerce sends the POST request again. The webhook is executed up to five times
until it succeeds or gives up.

The external system can use the data from the webhook request body in requests to
the endpoints of the Commerce REST API endpoints. For example, you can configure
the Order Submit webhook to send a notification to your order management system
(OMS) every time a shopper successfully submits an order. When a change occurs to
an order in the OMS, the OMS can issue a PUT request to the Update Order endpoint
to modify the order in Commerce.

Commerce includes the following event webhooks:

Webhook Notification event

Account Create A new account was successfully created by
an administrator. See Configure Business
Accounts for more information.
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Webhook

Notification event

Account Update

Cart Idle

Export Complete
Import Complete
Inventory Update

Order Cancel
Order Cancel Without Payment Details

Order Submit

Order Submit Without Payment Details

Publish Complete
Remorse Period Start

Remorse Period Start Without Payment Details

Return Request Update

Return Request Update without Payment
Details

Shopper Profile Create
Shopper Profile Update

Shopper Profile Delete

An existing account was successfully updated
by an administrator. See Configure Business
Accounts for more information.

A cart that contains items has been inactive
for the number of minutes you specify on the
Abandoned Cart Settings page. See Configure
Abandoned Cart settings for more information.

A data export process successfully completed.
A data import process successfully completed.

Out-of-stock SKUs are back in stock.

See Understand inventory for information
about inventory data that determines whether
a SKU is in stock.

An agent canceled an order.
An agent canceled an order.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

An order was successfully submitted by a
customer or an agent.

An order has been successfully submitted by a
customer or an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Changes were successfully published.

An order’s customer remorse period has
started.

See Set the customer remorse periodSet the
customer remorse period for more information.

An order’s customer remorse period has
started.

See Set the customer remorse periodSet the
customer remorse period for more information.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

A return request was successfully processed
by an agent.

A return request was successfully processed
by an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

A new shopper registered on your instance.

A registered shopper changed their account
details.

A registered shopper’s account has been
deleted. See Delete Shopper Information for
more information.
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Webhook Notification event

Order Redact An order’s properties have been redacted.
See Delete Shopper Information for more
information.

Request Quote A shopper requested a quote for an order
on a store that supports an external product
configurator.

Update Quote A shopper accepted or rejected a quote, or the

guote was canceled on a store that supports
an external product configurator.

Account Request An account-based shopper has submitted an
account registration request. See Configure
Business Accounts for more information.

Contact Request An account-based shopper or anonymous
shopper has submitted a contact registration
request. See Configure Business Accounts for
more information.

Understand function webhooks

Like an event webhook, a function webhook sends a JSON notification to a URL you
specify each time something happens on your store. For example, you can configure
the Shipping Calculator webhook to send a natification to an external shipping service
every time a shopper requests shipping costs for an order.

While an external system only sends an HTTP status code in response to an event
webhook POST request, a system must respond to a function webhook POST request
with information in JSON format. You must implement the external system’s API to
write code that processes the request and sends a response to Commerce. For
example the Shipping Calculator webhook expects a set of shipping methods and
their prices, which are displayed to the shopper who has requested them.

Commerce includes the following function webhooks:

Webhook Description

Shipping Calculator Integrates shipping services (such as UPS,
USPS, or FedEXx) into your store. See Integrate
with External Shipping Calculators for more
information.

Credit Card Payment Integrates custom payment gateways that
let your store accept credit card payments.
See Create a Credit Card Payment Gateway
Integration for more information.

Generic Payment Integrates custom payment gateways that let
your store accept various payment types.
See Create a Generic Payment Gateway
Integration for more information.

External Price Validation Validates prices with an external pricing
system. See Integrate with an External Pricing
System for more information.

External Tax Calculation Integrates tax processors that calculate sales
tax in the shopping cart. See Configure Tax
Processors for more information.
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Webhook

Description

Order Approvals

Catalog and Price Group Assignment

Contact Accounts Retrieval
Services Retrieval
Service Actions

External Payment Property Metadata Retrieval

Custom Currency Payment

Return Request Validation

Return Request Validation Without Payment
Details

Order Qualification

Order Validation

Integrates systems that determine if an
order placed on an account-based store
requires approval. See Integrate with an
external system for order approvals for more
information.

Integrates systems that determine which
catalog and price group a shopper should
use to create orders. See Assign Catalogs
and Price Groups to Shoppers for more
information.

Returns a list of service account IDs for the
current user.

Returns information about a services or assets
associated with the current user.

Performs a modify, renew, or cancel action on
a service or asset.

Integrates custom payment gateways that
let Oracle Assisted Selling accept various
payment types.

Integrates custom payment gateways that let
your store accept loyalty points payments.

Validates whether items maintained in an
external order management system are
eligible for return.

Validates whether items maintained in an
external order management system are
eligible for return.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Performs order qualification operations prior to
submitting the order.

Validates the contents of the submitted order
after final pricing is performed.

Validate function webhook responses

As discussed in the previous section, you must ensure the system receiving a function
webhook POST responds by sending the appropriate JSON data to Commerce. To
determine whether the response data conforms to the correct schema, the ccdebug
REST client on the administration server in your test environment includes a validation
tool for function webhooks. To access this tool, go to the following URL:

http://<admin-server-hostname>/ccdebug

Select the Function Webhooks tab, and then log into the Admin API. Follow the
instructions on the screen to validate the format of your response payloads.
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Configure webhooks

This section describes how to configure webhooks in the Oracle CX Commerce
administration interface.

Before you configure the webhooks, you must identify the URLs of the web application
or third-party provider where the webhooks will send notifications. You must use
HTTPS URLs. See Troubleshoot SSL certificates for information about configuring the
SSL certificates you install on your external system’s web servers.

To configure a webhook:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.
3. Click the type of webhook you want to configure.
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For a function webhook, enter the URL where you want to send the POST requests.
For an event webhook, enter one or more URLs. Separate multiple URLs with
commas.

(You must enter HTTPS URLSs. See Troubleshoot SSL certificates fo