
Oracle® Cloud
Integrating Oracle CX Commerce and Oracle
CPQ

Release 1
F37077-01

Oracle Cloud Integrating Oracle CX Commerce and Oracle CPQ, Release 1

F37077-01

Copyright © Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Documentation accessibility v

1 Introduction

2 Set Up OIC Integrations

Download the integration packages 2-1

Import the integration package 2-2

Configure Oracle CPQ connections 2-3

Generate security token for Commerce connections 2-4

Configure the Commerce connection 2-4

Activate the OIC integrations 2-5

Create Sync Quote Action in Oracle CPQ 2-5

Set up OIC integration on Oracle CPQ site 2-5

Create the Sync Quote Integration 2-6

Set Sync Quote Action to run Advanced Modify 2-6

Configure Commerce webhooks 2-7

Configure the Commerce server-side extensions 2-9

3 Set Up Oracle CPQ

Understand general set up for Oracle CPQ 3-1

Understand Oracle CX Commerce set up 3-5

Understand Oracle CPQ configuration set up 3-13

4 Set Up Subscription Ordering in Oracle CPQ

Create an authentication certificate integration type 4-1

Work with in-flight cancellations 4-2

Upgrade an asset 4-3

iii

5 Enable Integrations in Commerce

Enable Oracle CPQ configuration integration 5-1

Identify configurable products in the product catalog 5-2

Add Customize Button to the Product Details widget 5-3

Enable Oracle CPQ quoting integration 5-3

Add Quote Button to Checkout and Order Details pages 5-3

Enable Asset Based Ordering 5-4

Enable Subscription Cloud integration 5-4

A Appendix A: Understand the Configurator Flow

B Appendix B: Understand the Request for Quote Flow

C Appendix C: Understand the OIC Integration Mappings

D Appendix D: Understand the Add to Cart BML – Customized
Integrations (19C and Earlier)

E Appendix E: Understand the Add to Cart BML – Customized
Integrations and Multi-Site Set Up (19D and Later)

F Appendix F: Understand the SyncQuote BML

iv

Preface

This preface contains the following sections:

Documentation accessibility
For information about Oracle's commitment to accessibility, visit the
Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

v

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

1
Introduction

The Oracle CX Commerce/Oracle CPQ integration lets you configure complex
products for purchase in Commerce by using the Oracle CPQ configurator.

Self-service users in Oracle CX Commerce (formerly Oracle Commerce Cloud)
can configure complex products for purchase in Commerce using the Oracle CPQ
configurator.

They can also request an Oracle CPQ quote, thereby initiating an Oracle CPQ
Transaction a sales specialist can modify, reconfigure, or discount. Once finalized
in Oracle CPQ, the quote returns to Commerce for acceptance and ordering by
the self-service user. For additional information, refer toAppendix A: Understand the
Configurator Flow and Appendix B: Understand the Request for Quote Flow.

Note: The integration of Commerce with Oracle CPQ uses the Oracle Integration
Cloud Service (OIC) to provide pre-built integrations for the two user flows.

Purpose

The purpose of this implementation guide is to provide the steps that administrators
must complete in Oracle CPQ, OIC, and Oracle CX Commerce to prepare for a
Commerce and Oracle CPQ integration.

Audience

This implementation guide is for administrators who are setting up and configuring the
integration. The guide assumes administrators have prior Commerce, Oracle CPQ,
and OIC administration experience.

Prerequisites

The following is a list of integration prerequisites:

• A Commerce 19D or later site setup as described in this implementation guide.

• An Oracle CPQ 19C or later Base Ref App site set up as described in this
implementation guide. The integration between Commerce and Oracle CPQ adds
attributes to the Base Ref App site that correspond to required Commerce order
data.

• A synchronized product catalog to ensure that products in the Commerce catalog
map to corresponding items in the Oracle CPQ catalog.

• Oracle Integration Cloud Service (OIC) 18.3.5 or later.

• The latest Oracle CX Commerce and Oracle CPQ Reference Migration Package
and integration files can be downloaded from Integrating Oracle CX Commerce
and Oracle CPQ (Doc ID 2214316) on My Oracle Support.

Note: For information about how to obtain any of the above prerequisites, contact an
Oracle sales representative.

1-1

https://support.oracle.com/epmos/faces/DocumentDisplay?id=2214316.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=2214316.1

2
Set Up OIC Integrations

To begin setting up your integration, you must first import an OIC Integration Package
to the OIC environment that connects Commerce and Oracle CPQ through a common
configuration.

You must import an OIC Integration Package to an OIC environment that connects
Commerce and Oracle CPQ through a common configuration.

The OIC Integration Package creates web service connections that allow users
to adjust order and quote details in Oracle CPQ, approve or reject changes in
Commerce, and complete or cancel orders in Commerce. This section contains the
steps you must complete to set up and activate the OIC integrations.

Topics:

• Download the integration packages

• Import the integration package

• Configure Oracle CPQ connections

• Generate security token for Commerce connections

• Configure the Commerce connection

• Activate the OIC integrations

• Create Sync Quote Action in Oracle CPQ

• Set up OIC integration on Oracle CPQ site

• Set Sync Quote Action to run Advanced Modify

• Configure Commerce webhooks

• Configure the Commerce server-side extensions

Download the integration packages
To begin the OIC set up portion of the integration, you need to download the OIC
Integration Package.

Complete the following procedure to download the OIC Integration Package.

1. Go to the Integrating Oracle CX and Oracle CPQ article on My Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle CPQ
Configurator, download OCCS-CPQ_CONFIGURATION_INTEGRATION_X.X.par
to a location where it is accessible from OIC.
Note: OCCS_CPQ_GETCONFIGBOM_X.X.par is only needed if you are enabling
Asset Based ordering.

3. If you want to implement the integration between Commerce and Oracle CPQ
Quoting, download OCCS-CPQ_QUOTE_INTEGRATION_X.X.par to a location
that is accessible from OIC.

2-1

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

4. If you want to enable Asset Based Ordering
(ABO) through the integration between Commerce and
Oracle CPQ, download OCCS_CPQ_ASSET_INTEGRATION_X.X.par,
OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par, and
OCCS_CPQ_GETCONFIGBOM_1.0.par to a location that is accessible from OIC.
Note: OCCS_CPQ_GETCONFIGBOM_X.X.par is only needed if you are enabling
Asset Based ordering.

Import the integration package
You must import the OIC Integration Package into OIC to create an integration
between Commerce and Oracle CPQ.

To import the OIC Integration Package:

1. Log in to OIC as an admin user.

2. Click the Packages icon.

3. Click the Import button.

4. Click Browse.

5. Select the integration package archive (PAR) file you want to import.

6. Click Import. The package is added to the Packages list.

The OCCS-CPQ_CONFIGURATION_INTEGRATION package includes the OCCS-CPQ
Get Configurations integration flow. This flow is invoked for retrieving a list of
configurationIds fromOracle CPQ of regular configured items (non-ABO items) and
ABO items with actionCodes other than Suspend and Terminate. This integration is
required for the configuration flow and is available to import into OIC. The name of the
target connection for this integration is Oracle CPQ. The target connection identifier
is Oracle CPQ, and the target connection description is Oracle CPQ ICS Adapter
Connection.

The OCCS-CPQ_QUOTE_INTEGRATION package includes the following three
integration flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-
CPQ Sync Quote.

• The OCCS-CPQ Create Quote integration sends quote request information to
Oracle CPQ.

• The OCCS-CPQ Sync Quote integration allows Oracle CPQ to send information
to Commerce at the end of the quoting process and synchronize this information
in Commerce. This ensures that the order information in Commerce matches the
related order information in Oracle CPQ.

• The OCCS-CPQ Update Quote integration sends information to Oracle CPQ
related to accepting, rejecting, or re-requesting a quote.

The OCCS-CPQ_ASSET_INTEGRATION package includes two integration flows:
OCCS-CPQ Get Assets and OCCS-CPQ Asset Actions. This integration is required
for Asset Based ordering.

• The OCCS-CPQ Get Assets integration returns information about assets and
services associated with the shopper’s account(s)

• The OCCS-CPQ Asset Actions integration enables Commerce to modify, renew,
and terminate actions on assets and services associated with the shopper’s
account(s).

Chapter 2
Import the integration package

2-2

The OCC_CPQ_Get_Asset_Upgrade_Options package is needed to retrieve all
upgrade options that are available for an asset. If you want to show upgrade options
to an assets shopper, this integration needs to be configured. When a call is made for
the GetService(s) endpoint, this integration is called from the Services SSE to get all
upgrade options. This call can only be made if expand=occ_upgradeOptions is passed
as a queryparam for the GetService(s) endpoint.

The OCCS_CPQ_GETCONFIGBOM package contains the following OIC integration flow
which is also used in Asset Based ordering:

• GetConfigBom - If an item is an ABO item with actionCode of Terminate or
Suspend, getConfigBom calls are required to be made for each configuratorID
of these filtered items to retrieve a saved Configuration BOM Instance of the item
on Oracle CPQ.

Note: Importing and setting up the OIC Integration Package is a prerequisite
to completing the Sync Quote action in Oracle CPQ. After all setup procedures
are completed, regenerate the OCCS-CPQ Create Quote integration to ensure it
accurately reflects the current state of the Oracle Quote to Order process.

Configure Oracle CPQ connections
You must configure Oracle CPQ connections to correspond to different SOAP or REST
APIs for Oracle CPQ web services used in the integration.

Administrators must configure connections from the integrations referenced in the
previous section to Oracle CPQ.

The following Oracle CPQ connections are part of the integrations: Oracle CPQ,
Oracle CX Commerce, Oracle CPQ getConfigurations, Oracle CPQ Quote, Oracle
CPQ Get Assets, and Oracle CPQ Asset Actions. Each connection corresponds to
different SOAP or REST APIs for Oracle CPQ web services. Setting a connection to
use the wrong API will cause the integrations to fail.

To configure the Oracle CPQ connections:

1. Log in to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle CPQ connection.

4. Click Configure Connectivity.

5. Add the WSDL or REST metadata URL for the Oracle CPQ getConfigurations API.
Note: The Oracle CPQ Asset Actions, Get Assets, and GetConfigBom
connections are REST based and use the REST Catalog URL. The Oracle
CPQ getConfigurations and Oracle CPQ SOAP connections are SOAP based
and use WSDL URLs. The WSDL endpoint for getConfigurations is /v2_0/receiver/
configuration?wsdl and the endpoint for Oracle CPQ SOAP varies by Commerce
Process. For example, the Oracle Quotes and Orders endpoint is /v2_0/receiver/
commerce/oraclecpqo?wsdl.

6. Click OK.

7. Click Configure Security. The Oracle CPQ connection uses the Basic security
policy, so you must enter the login details for your Oracle CPQ account.

8. Click OK.

9. Click Test to test the connection.

Chapter 2
Configure Oracle CPQ connections

2-3

10. Click Save.
The Oracle CPQ connection is now configured for the integration. Repeat steps
1-10 for each of the remaining Oracle CPQ connections.

Generate security token for Commerce connections
A security token must be generated to support the Commerce REST web service APIs
used to access Commerce data.

You must generate a security token to support the Commerce REST web service APIs
used to access Commerce data in the integration. Use the following steps:

1. Log in to Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Click Web APIs from the sidebar menu.

5. Click Registered Applications from the Web APIs panel.

6. Click Register Application.

7. Enter a name for the integration. Since you are registering OIC, choose a
meaningful name that reflects the integration.

8. Click Save. The Application ID and Application Key are automatically generated.
The application displays on the Registered Applications page.

9. Click the name of the application you created.

10. Select Click to reveal to display the application key.

Note: You need the application key when configuring the Commerce connection in
OIC. Copy the registration key, so that it is available when you complete the Configure
the Commerce Connection procedure.

Configure the Commerce connection
You must configure the connection from the OIC integrations to Commerce for the
integration to run successfully.

An administrator must complete the following steps to configure the connection from
the OIC integrations to Commerce. Use the following steps to do this:

1. Log in to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle Commerce connection.

4. Click Configure Connectivity.

5. Enter the Connection base URL, which is derived using the below structure, where
<siteURL> is the base URL of the Commerce site that integrates with OIC.

Connection base URL: https://<hostname>:<port>/ccadmin/v1

6. Click Configure Security. The Commerce connection uses the OAuth security
policy, so you must enter the security token for the connection. The security token
was generated in the Generate Security Token section.

Chapter 2
Generate security token for Commerce connections

2-4

7. Click OK.

8. Click Test.

9. Click Save.
Your Commerce connection is now configured for the integration.

Activate the OIC integrations
Once your integrations are configured, you must activate them using the OIC admin
user interface.

Once the Oracle CPQ, Commerce, Oracle CPQ Quote, Oracle CPQ Configure, and
Oracle CPQ getConfigurations connections are configured, you must activate these
integrations.

To activate the OIC (Oracle Integration Cloud) integrations:

1. Log in to OIC as an admin user.

2. Click the Integrations icon to display the Integrations List.

3. Use the Activate slide switch to activate the integrations.

4. Decide whether you want to switch on detailed tracing, which collects information
about messages processed by the integration flow. Administrators may find
detailed tracing helpful when troubleshooting issues with the integration flow, but it
may impact performance.
To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate and then
reactivate the flow to switch detailed tracing on or off.

5. Click Activate.

Create Sync Quote Action in Oracle CPQ
The Sync Quote Action needs to be created for the Oracle CPQ/Commerce integration
to work successfully.

Use the following code to create the following Commerce action at the Commerce
quote level:

Label(Sync Quote), Variable Name(syncQuote), Action Type(Modify).

Set up OIC integration on Oracle CPQ site
You must complete some preliminary OIC integration setup steps on the Oracle CPQ
site for the integration to run successfully.

You must set up the OIC integration on the Oracle CPQ site by completing the
following steps:

1. Click Admin to go to the Admin Home page.

2. Navigate to Integration Platform > Integration Center. The Integration Center
opens.

3. From the Type drop-down menu, select Integration Cloud Service.

Chapter 2
Activate the OIC integrations

2-5

4. In the Name field, enter Sync Quote integration. The Variable Name field will
auto-populate.

5. In the Discovery URL field, enter the OIC domain.

6. In the Username field, enter a valid username.

7. In the Password field, enter a valid password.

8. Click Create Integration.

Create the Sync Quote Integration
You must configure the integration of the Sync Quote system.

Administrators must create the Sync Quote integration by completing the following
steps:

1. Click Admin to go to the Admin Home page.

2. Under the Navigation dropdown, select Integrations and click List.

3. Click Add.

4. For Select Integration Types, select Integration Cloud Service.

5. Click Next.

6. Name the action "Sync Quote" (varname:syncQuote)

7. Set timeout as 60000.

8. set Action as Import.

9. For Services, choose OCCS-CPQ Sync Quote from the dropdown.

10. Click Apply/Update.

Set Sync Quote Action to run Advanced Modify
You must set the Sync Quote action to run Advanced Modify for the integration to run
successfully.

Complete the following steps to set the Sync Quote action to run Advanced Modify:

1. Open the Admin Home page.

2. Navigate to Process and Documents > Process Definition. The Processes
page opens with Documents displaying by default in the Navigation drop-down
menu.

3. Click List. The Document List page opens.

4. From the Navigation drop-down menu, select Actions for the Transaction or
Transaction Line.

5. Click List. The Action List page opens.

6. Click the syncQuote link. The Admin Action page opens.

7. Under the General Tab > Advanced Modify > Before Formulas >, select Define
Advanced Modify - Before Formulas.

8. Click Define Function.

Chapter 2
Create the Sync Quote Integration

2-6

9. Select the attributes shown in the following tables:

Variable Name for
(Transaction)

Type Description

cC_LineItem_Data String CC_LineItem_Data

Variable Name for
(Transaction Line)

Type Description

_document_number String Document Number

_model_variable_name String Model Variable Name

cC_ProductId_l String Product ID

cC_CommerceItemId_l String Commerce Item ID

10. Insert the sample BML provided in Appendix F: SyncQuote BML.

11. Update and click Save.

12. Navigate to the Integration tab and move Sync quote above Modify Functions.

13. Update and click Save.

14. Place the “syncQuote” action on the layout.

Configure Commerce webhooks
You must configure webhooks in Commerce Administration in order to support the
REST API generated by the activation of the OIC integration.

The REST API generated by the activation of the OIC integration can be configured as
webhooks in Commerce Administration. These include the following:

• Request Quote: This webhook is triggered when a request or a re-request for
a quote is submitted by a Commerce self-service user. The webhook pushes
notifications using the OCCS-CPQ Create Quote integration flow.

• Update Quote: This webhook is triggered when a response to a requested quote
is accepted or rejected or the quote order is canceled by the Commerce self-
service user. This webhook pushes notifications using the OCCS-CPQ Update
Quote integration flow.

• External Price Validation: This webhook is triggered at check out when the order
contains one or more items configured by Oracle CPQ. The webhook validates the
configuration and the price provided for configured items.

• Contact Accounts Retrieval: This webhook returns a list of service account IDs
for the shopper.
Note: This webhook has been deprecated.

• Services Retrieval: This webhook returns information about a service or asset
associated with the shopper and uses the OCCS-CPQ Get Assets integration flow.
This webhook calls the Contact Accounts Retrieval webhook, so that webhook
must also be configured for the Services Retrieval webhook to function correctly.
Note: This webhook has been deprecated.

Note: Administrators must configure the Production and Preview versions of the
webhooks to ensure they work in all environments. The Production webhooks send
information from the live Commerce store to the production environments of your live

Chapter 2
Configure Commerce webhooks

2-7

systems. The Preview webhooks send information from the preview environment to
the test or sandbox environments of external systems.

To configure Request Quote, Update Quote, External Price Validation, Services
Retrieval (deprecated), or Services (deprecated) webhooks:

1. Log in to OIC as an admin user.

2. Click the Integrations icon.

3. Click the Integration Details icon to display information about the integration flow.

• If configuring the Request Quote webhook, display information for the OCCS-
CPQ Create Quote integration flow.

• If configuring the Update Quote webhook, display information for the OCCS-
CPQ Update Quote integration flow.

• If configuring the External Price Validation webhook, display information for
the OCCS-CPQ GetConfigurations integration flow.

• If configuring the Services Retrieval webhook, display information for the
OCCS-CPQ Get Assets integration flow.
Note: This webhook has been deprecated.

• If configuring the Services webhook, display information for the OCCS-CPQ
Asset Actions integration flow.

Note: This webhook has been deprecated.

4. Copy the Endpoint URL for the integration.

5. Log in to Commerce.

6. Click on the Menu icon.

7. Select Settings from the menu.

8. Select Web APIs from the sidebar menu.

9. Click the webhook you want to configure.

10. Paste the Endpoint URL that was copied into the URL field for the webhook.

11. Remove the “metadata” text from the end of the URL.

12. Enter your OIC user name and password.

13. Click Save.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

Note: It is not possible to edit webhooks differently for different sites. Updating
webhooks applies changes regardless of the site selected.

Understand the Services SSE

The Services SSE enables integration with third party asset management systems to
retrieve and execute operations available to a shopper. This SSE also serves as the
API for the integration with Oracle CPQ asset management.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions performed on
a service or asset are done using the Services SSEs (server side extensions); one set
for Storefront and one for Agent.

Chapter 2
Configure Commerce webhooks

2-8

The Services SSEs call the integrations
in OCCS_CPQ_ASSET_INTEGRATION_X.X.par and
OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par for the asset Upgrade feature.

See the section Configure the Commerce Server Side Extensions in this document for
more information on these actions.

For more information about Commerce webhooks, refer to the Use Webhooks chapter
of the Extending Oracle CX Commerce book.

For more information on understanding and using the asset Upgrade feature, refer to
the Use Asset Based Ordering section of the Using Oracle CPQ Features with Oracle
CX Commerce book.

Note: You can also customize configurations of complex assets in Commerce without
being redirected to an Oracle CPQ hosted iFrame which may have a separate and
distinct user interface look and feel that creates a disjointed user experience. This
capability is known as the Direct API Configuration feature and can be used as
another option for the Modify and Upgrade actions. For more information on the Direct
API configuration feature, refer to the Customize configurations in Commerce using
the Oracle CPQ Configuration API section of the Using Oracle CPQ Features with
Oracle CX Commerce book.

Configure the Commerce server-side extensions
To perform specific functions relating to asset-based orders, you need to install and
configure the related Commerce server-side extensions (SSEs).

Commerce includes some server-side extensions (SSEs) that you can configure to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for
use with Commerce, refer to Develop server-side extensions section in the Extending
Oracle CX Commerce book found in the Commerce Help Library.

The next sections in this topic explain the purpose and configuration of each available
SSE as well as provide information on the inputs required for their respective
endpoints.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Chapter 2
Configure the Commerce server-side extensions

2-9

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/develop-server-side-extensions.html

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit
checking system, the Credit Check SSE is used to connect to a third-party credit check
system so that you can perform a credit check on the logged-in shopper.

As written, this SSE generates outbound calls to a master credit checking system. This
means that the Credit Check SSE calls out to an external system to perform the credit
check. In order to use this SSE to connect to the external checking of your choice,
you must modify the SSE code to provide the specific calls needed to connect to the
correct credit checking system.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-
agent.zip, by first downloading the SSE packages.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by
Commerce. The inputs for this endpoint are:

• Amount information

• Recurring amount frequency

• Recurring amount duration

• Recurring amount

• Contact information

– First Name

– Last Name

– Email Address

– Telephone Number

• Address information

– Address line 1

– Address line 2

– City

– State

– Country

– Postal code

The return for this endpoint is either a TRUE or FALSE value depending on whether
the shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a
registered shopper or to update the customer account model when required.

Chapter 2
Configure the Commerce server-side extensions

2-10

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts
for the shopper.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• Account Type

• Account Name

• Primary Contact

• Billing Profile(s)

• Address(es)

• Contact ID(s)

• Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles
now associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.

Understand the Query Accounts endpoint

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

Chapter 2
Configure the Commerce server-side extensions

2-11

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html

• User Token for the logged-in shopper.

• The Account ID of the account to which the billing profile is linked.

• The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the assetable property is TRUE the quantity must
be 1 and, if not, return an error indicating that this item can only be purchased one at a
time. This check is done by looking to see if the root item has an assetKey value. For
more information, refer to the Use Asset Based Ordering section of the Using Oracle
CPQ Features with Oracle CX Commerce book.

You can configure the available SSEs, OrderQualification-store.zip and
OrderQualification-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification endpoint

This endpoint is triggered by the Order Validation webhook when any order containing
a configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

This SSE is used to ensure that an order is valid. It enables an order qualification step
in the purchasing process that can be invoked via the Order Qualification webhook.
The extension can be configured to execute custom order qualification processes
such as checking whether the shopper is eligible to purchase the items in the cart.
It contains a pre-built algorithm to validate that the Customer, Billing, and Service
accounts as well as the Billing Profile assigned to the items in the cart are valid for the
logged in shopper.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification Pipeline endpoint

Chapter 2
Configure the Commerce server-side extensions

2-12

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:

• Contact record for the shopper

• Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can
be invoked via the Order Validation webhook. The extension can be configured to
execute any final checks particular to the purchasing model before the order payment
is authorized and the order is submitted to the downstream systems for fulfillment and
provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

Configure the Services SSE

The Services SSE enables integration with third party asset management systems to
retrieve and execute operations available to a shopper. This SSE also serves as the
API for the integration with Oracle CPQ asset management. It can be used to retrieve
all the services/assets linked to a shopper’s profile or it can also be used to retrieve
details of just one asset at a time.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions on a service
or asset are performed using the Services SSEs (server side extensions), one set for
Storefront and one for Agent.

The Services SSEs call the integrations
in OCCS_CPQ_ASSET_INTEGRATION_X.X.par and
OCC_CPQ_Get_Asset_Upgrade_Options_1.0.par for the asset Upgrade feature.

You can configure the available SSEs, Services-store.zip and Services-
agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Services SSE endpoints

The endpoints for the Services SSE are the following:

• getServices - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This

Chapter 2
Configure the Commerce server-side extensions

2-13

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html

endpoint returns the list of services for the shopper based on their service
account(s) and any upgrade options available for those services.

• getService - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This
endpoint returns the details for a single service for the shopper based on their
services account(s) and any upgrade options available for that service.

• Terminate - Calls Get OEC Account Details for OCC Profile (to retrieve the
account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0)
OIC flow, and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Renew - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Suspend - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Resume - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Modify - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
retrieves iFrame URL from CPQ, and loads the Oracle CPQ hosted iFrame.

• Upgrade - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
retrieves iFrame URL from CPQ, and loads the Oracle CPQ hosted iFrame.

• Modify (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and CPQ /rest/v9/config{prodFamVarName}.{prodLineVarName}.
{modelVarName}/actions/_configure. This endpoint supports a directOracle CPQ
API Modify action and lets you bypass the use of an iFrame.

• Upgrade (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve the
account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0)
OIC flow, and Oracle CPQ /rest/v9/config{prodFamVarName}.{prodLineVarName}.
{modelVarName}/actions/_configure. This endpoint supports a direct Oracle CPQ
API Upgrade action and lets you bypass the use of an iFrame.

These endpoints are triggered when a shopper performs an operation on an asset.

Note: You can customize configurations of complex assets in Commerce without
being redirected to a an Oracle CPQ hosted iFrame which may have a separate
and distinct user interface look and feel that creates a disjointed user experience.
This capability is known as the Direct API Configuration feature and can be used as
another option for the Modify and Upgrade actions. For more information on the Direct
API configuration feature, refer to the Customize configurations in Commerce using
the Oracle CPQ Configuration API section of the Using Oracle CPQ Features with
Oracle CX Commerce book.

The inputs for these endpoints are:

• Logged in User Token.

• AssetKey, the unique ID for the asset for this operation. This may be a root,
branch or leaf asset.

Chapter 2
Configure the Commerce server-side extensions

2-14

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html

The returns for the endpoints are a BOM (Bill of Materials) or an Error.

Note: For more information about C endpoints, refer to the Use the REST APIs
chapter of the Extending Oracle CX Commerce book.

For more information about Commerce webhooks, refer to the Use Webhooks chapter
of the Extending Oracle CX Commerce book.

For more information on understanding and using the asset Upgrade feature, refer to
the Use Asset Based Ordering section of the Using Oracle CPQ Features with Oracle
CX Commerce book.

Configure the Configuration Validation SSE

The Configuration Validation SSE (cpq-config-validation-app) plays an important role in
Asset Based Ordering and validating asset configuration. This specific SSE performs
a configuration validation between items in a shopper's cart and the items captured
in response to configuration validation end points. For more complete information on
Asset Based Ordering, refer to the Using the Integration Functionality section of this
document.

To use this SSE, you should first have the External Pricing webhook set to /ccstorex/
custom/v1/validateCPQConfigurations. This is done on the Settings page of the
Administration user interface.

You should also have the following endpoints configured:

• GET_CONFIGBOM_URI – This is available when
OCCS_CPQ_GETCONFIGBOM is configured.

• GET_CONFIG_URI - This is available when OCCS-
CPQ_CONFIGURATION_INTEGRATION is configured.

The GET_CONFIGBOM_URI URL gets triggered for the Suspend and Terminate
Services. The GET_CONFIG_URI URL gets triggered for the Renew, Modify, and
Resume Services. The SSE does validation between items in cart and items captured
in the response of these two end points.

The SSE package is named cpq-config-validation-app and is downloadable by this
name from the Commerce Administration user interface.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section of the Using
Oracle CPQ Features with Oracle CX Commerce guide in the Commerce Help Library.

Chapter 2
Configure the Commerce server-side extensions

2-15

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-rest-apis1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/configure-server-side-extensions.html

3
Set Up Oracle CPQ

You must complete some general, configuration, and Commerce steps in Oracle CPQ
to begin working with your integration.

This section contains the general, configuration, and Commerce steps you must
complete in Oracle CPQ.

Topics:

• Understand general set up for Oracle CPQ

• Understand Oracle CX Commerce set up

• Understand Oracle CPQ configuration set up

Understand general set up for Oracle CPQ
Some general set up procedures for Oracle CPQ need to be completed for the
integration to run successfully.

You must complete the following Oracle CPQ general set up procedures:

• Enable Guest Access to Oracle CPQ

• Add Template Dependencies to File Manger

• Make Oracle CPQ Stylesheet Edits

• Synchronize Oracle CPQ Parts with Commerce SKUs

Enable Guest Access to Oracle CPQ

Administrators can allow multiple self-service users in Commerce to access an
Oracle CPQ site as a guest user from an iFrame displaying within Commerce.
When Commerce punches in to Oracle CPQ for configuring items, the system uses
sessions for unregistered users (i.e. guest users). When self-service users access
an Oracle CPQ site, their session parameters pass from Commerce to Oracle CPQ.
This provides a seamless user experience and eliminates the need for Commerce
self-service users to enter login credentials when entering an Oracle CPQ site from
Commerce.

Note: You can now customize the configurations of complex products in Commerce
without being redirected to an Oracle CPQ hosted iFrame. This capability, known as
the Direct API Configuration feature, builds out support in Commerce for direct API
driven product configurations where the user interface experience is controlled instead
by Commerce and can be customized by Commerce partners rather than relying on
the Oracle CPQ hosted iFrame. Refer to the Using Oracle CPQ Features with Oracle
CX Commerce guide in the Oracle CX Commerce Doc Library for complete details.

Session parameters include currency, language, and locale preferences such as
number format, units, and date format. For example: If a Commerce self-service user’s
language preference is set to German, the text in the Oracle CPQ interface displays

3-1

in German when the user accesses Oracle CPQ. The user’s currency and locale
preferences are also passed from Commerce and display in Oracle CPQ.

To enable guest access to Oracle CPQ:

1. Open the Admin Home page.

2. Under General, select General Site Options. The Options – General page
opens.

3. Under Options – Login, set Allow Guest Access to Yes.
This setting allows Commerce to punch in to Oracle CPQ.

4. If multi-currency support from Commerce is required, set Allow
Direct Login [Deprecated: Please use SSO feature] to Yes.

5. Under Options – General, set Occupy entire window when
the site is inside a frame to No. This setting improves
usability when punching in to Oracle CPQ from Commerce.

Add Template Dependencies to File Manager

The “Add to Cart” action sends items to a Commerce cart via an Add to Cart button,
which displays on the Commerce integrated Oracle CPQ site following configuration.
Use the information provided in this section to add payload template files to File
Manager. If Commerce requires additional information from Oracle CPQ during the
“Add to Cart” action, administrators can add the information by creating configurable
attributes and modifying the payload templates. Administrators can then export the
configurable attributes as key-value pairs from Oracle CPQ to Commerce.

Payload template files (i.e. Recommended_Items_Payload-Cloud.txt and
AddToCartPayload-Cloud.txt) form the payload structure for sending a
configured item to the Commerce shopping cart. The template files support the “Add
to Cart” action and include configuration information such as config id, quantity, and
BOM items. BML reads the template files and replaces the values in brackets, such as
{{bomitems}}, with dynamic values.

Complete the following steps to add the payload template files to File Manager:

1. Open the Admin Home page.

Chapter 3
Understand general set up for Oracle CPQ

3-2

2. Navigate to Utilities > File Manager. File Manager opens.

3. Create a new folder named CommerceCloud.

4. Under Add Files, click Browse. The Choose File to Upload dialog opens.

5. Navigate to the Recommended_Items_Payload-Cloud.txt file and click Open.

6. Click Add File. The Recommended_Items_Payload-Cloud.txt file displays in
File Manager.

7. Complete steps 1-6 for AddToCartPayload-Cloud.txt.

Shown below is the content of each of the payload template files.

Recommended_Items_Payload-Cloud.txt

{
 "quantity": "{{quantity}}",
 "catalogRefId": "{{part}}",
 "price": "{{price}}",
 "recurringCharge": { "amount":"{{recurringPrice}}",
 "frequency":"{{pricePeriod}}",
 "duration":"{{duration}}" }
}

AddToCartPayload-Cloud.txt

{
 "messageType": "Configuration_Details",
 "quantity": "1",
 "catalogRefId": "{{model}}",
 "amount": "{{totalPrice}}",
 "price": "{{basePrice}}",
 "currencyCode": "{{currency}}",
 "configurationId": "{{ConfigId}}",
 "childItems": [{{ChildItems}}],
 "bomItems": [{{BomItems}}]
}

Make Oracle CPQ Stylesheet Edits

Oracle recommends administrators hide Oracle CPQ navigation options outside the
scope of the integration from Commerce self-service users.

Hide the Oracle CPQ Home Button

By hiding the Oracle CPQ Home button, the Oracle CPQ configurator opens whenever
users access Oracle CPQ. Users cannot navigate away from the original model that
opens in the configurator, which prevents them from configuring a different model or
adding a different model to Commerce.

To hide the Oracle CPQ Home button:

1. Open the Admin Home page.

2. Under Style and Templates, select Stylesheet. The Stylesheet Manager page
opens.

Chapter 3
Understand general set up for Oracle CPQ

3-3

3. Select Download Alternate Stylesheet next to Click to Download Alternate
CSS from the CSS Upload/Download Center.

4. When the alternate CSS file opens, update the CSS to include the following CSS
snippet to hide the Home button within the iFrame.

.nav-links>a img[title="Home"]{
 display: none;
}

Note: If the Home button shows both a label and an icon, administrators cannot
hide the label using only CSS. From the Admin Home page, navigate to Style and
Templates > Navigation Menus > Subheader > Home > Edit. Choose Icon for
Display. The Home button is then hidden with the CSS change.

Hide Price Books

Oracle CPQ uses PriceBooks as a way to associate parts with a price. Oracle
recommends hiding Price Book information from users.

To hide Price Books:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition.The Supported Products page
opens.

3. From the Navigation drop-down menu, select Stylesheets.

4. Click List. The RegularStylesheets List page opens.

5. Download the DefaultRegular Stylesheet.

6. Copy the contents of the DefaultRegular Stylesheet.

7. Create a new stylesheet with a name indicative of the stylesheet’s purpose. For
example: Hide Price Books

Chapter 3
Understand general set up for Oracle CPQ

3-4

8. Paste the contents of the Default Regular Stylesheet into the new stylesheet and
add the following CSS:

.pricebook-container {
 display:
 none;
}

9. Save the stylesheet.

10. On the Regular Stylesheets List page, click Add Alternate. The Configuration
Stylesheet Editor opens.

11. Click Browse.

12. Use the File Upload dialog to locate and select the new stylesheet.

13. Click Open. The stylesheet displays in the Regular Stylesheets List page under
the list of Alternate Stylesheets.

Synchronize Oracle CPQ Parts with Commerce SKUs

In Commerce, SKUs represent a purchasable instance of a product on a Commerce
storefront. Administrators must synchronize Oracle CPQ parts with Commerce SKUs
to ensure the pricing information associated with a part is the same in both Oracle
CPQ and Commerce.

To synchronize Oracle CPQ parts with Commerce SKUs:

1. Open the Admin Home page.

2. Under Products, select Parts. The Part Administration page opens.

3. Add new parts in Oracle CPQ with part numbers that match SKUs in Commerce.

4. Add Part Custom fields for recurring charge price type, frequency, duration, and
cost.

Notes:

• The client-side BML sample included in the Configure Client-Side Integration,
Add To Cart Button, and JSON Response section of this implementation guide
assumes part custom fields 4, 5, 6, and 8 represent recurring period, cost,
duration, and type respectively. In order to use other part custom fields, the Add to
Cart BML and OIC mappings will have to be adjusted accordingly.

• If a non-configurable SKU is later added to Commerce and intended for use by the
Oracle CX Commerce and Oracle CPQ integration, repeat the above procedure to
add the corresponding part in Oracle CPQ.

• In addition toOracle CPQ parts, configurable models must also have a
corresponding SKU in Commerce. The SKU number in Commerce should match
the model’s label and variable name.

Understand Oracle CX Commerce set up
You must complete preliminary Commerce set up steps in Oracle CPQ for the
integration to run successfully.

Chapter 3
Understand Oracle CX Commerce set up

3-5

This topic contains the Commerce set up steps that you must complete in Oracle
CPQ.

Note: Request for Quote and Sync Quote flows do not currently support Asset/
Subscription based orders.

Create Commerce Attributes at the Transaction Level

You must create the Commerce attributes shown in the following table at the
Transaction level and can adjust the attribute labels, as desired.

Note: An asterisk (*) next to the attribute label indicates the attribute should already
exist as part of the Base Reference Application.

Attribute Label Variable Name Attribute Type Additional Settings

CC Order Id cC_OrderId_t Text Field none

Discount Info cC_DiscountInfo_t Text Field none

Requestor Note cC_RequesterNote_t Text Area none

Request Date cC_RequestDate_t Date Default Value:

System Variable:
Current Date

Customer* customer_t Additional Address
Set

none

Reject Explanation* rejectExplanation_t Text Area none

Rejection Date cC_RejectionDate_t Date none

Provider Note cC_ProviderNote_t Text Field none

Price Expiration Date* priceExpirationDate_t Date none

CC External Id cC_ExternalId_t Text Field none

CC External Order
Price

cC_ExternalOrderPric
e_t

Currency Auto Update: Yes
Modify: Revert to
Default
Default Value: Use
the formula provided
in the Apply Formulas
section.

CC External Order
Price Quantity

cC_ExternalOrderPric
eQuantity_t

Integer none

CC Expiration Date cC_ExpirationDate_t Date none

CC Agent Id cC_AgentId_t Text Field none

CC Subtotal cC_Subtotal_t Currency none

CC Order Discount cC_OrderDiscount_t Float Auto Update: Yes

Default Value:
Enter a non-blank
default value to ensure
the value sent to
Commerce during
Sync Quote (i.e.
externalOrderPrice) is
populated.

Chapter 3
Understand Oracle CX Commerce set up

3-6

Attribute Label Variable Name Attribute Type Additional Settings

CC Order Discount
Type

cC_OrderDiscountTyp
e_t

Menu Auto Update: Yes
Menu Options:
Percent Off, Amount
Off, Price Override
Default Value: Enter
a non-blank default
value to ensure
the value sent to
Commerce during
Sync Quote (i.e.
externalOrderPrice) is
populated.

CC_LineItem_Data cC_LineItem_Data_t Text Area none

CC Total Net Price cC_TotalNetPrice_t Currency Auto Update: Yes
Modify: Revert to
Default
Document View:
Hide
Default Value: Use
the formula provided
in the Apply Formulas
section.

Order Discount Total cC_OrderDiscountTota
l_t

Currency Auto Update: Yes
Document View:
Hide
Default Value: Use
the formula provided
in the Apply Formulas
section.

Total (Net)* totalOneTimeNetAmo
unt_t

Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

Total Discount* totalOneTimeDiscount
_t

Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

CC Order Total cC_Order_Total_t Currency none

CC Organization Id cC_OrgId_t Text Field none

CC Site Id cC_SiteId_t Text Field none

CC Site name cC_SiteName_t Text Field none

Ship To Attributes* shipTo_t Additional Address
Set

none

Invoice To Attributes* invoiceTo_t Additional Address
Set

none

Note: For all procedures and SSEs that require address information for endpoint
inputs, in addition to usingCommerce's default address formats, you can also use
the Commerce REST API to create multi-country custom address formats. Refer to
the Configure the Commerce Server-Side Extensions topic in this guide for more
information on address formatting.

Chapter 3
Understand Oracle CX Commerce set up

3-7

Modify the Existing “Status” Transaction Level Attribute

The Status (“status_t”) attribute is an existing Transaction-level attribute that should
already exist on Base Ref App environments. You must modify this attribute as
described below.

• Add the following options:

– Rejected [REJECTED]

– Synced [SYNCED]

• Under Modify, set the attribute to "Use Specified Value" for the following actions:

– Create Order: ORDERED

– Customer Rejection: REJECTED

– Save: CREATED

– Sync Quote: SYNCED

– Cancel Transaction: CANCELED

Create Attributes at the Commerce Line Level and Add Them to the Commerce
Layout

Create the Commerce attributes shown below at the Commerce line level. Once
created, add the attributes to the Commerce layout.

Attribute Label Variable Name Attribute Type Additional Settings

Commerce Item Id cC_CommerceItemId_
l

Text Field none

Product Id cC_ProductId_l Text Field none

Catalog Ref Id cC_CatalogRefId_l Text Field Default Value:
Function

if(_model_variable_na
me <> ""){

return
_model_variable_nam
e;

}

return _part_number;

Note: When creating
the Default value
Function,
_model_variable_n
ame and
_part_number need
to be selected from
the Variable Name for
that Transaction Line
tab.

External Price cC_ExternalPrice_l Currency none

External Price
Quantity

cC_ExternalPriceQua
ntity_l

Integer none

CC Net Price cC_NetPrice_l Currency none

Quantity* requestedQuantity_l Currency none

Chapter 3
Understand Oracle CX Commerce set up

3-8

Attribute Label Variable Name Attribute Type Additional Settings

Price (List)* listPrice_l Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

n/a oRCL_ABO_ActionCo
de_l

Single Select Menu This menu attribute
comes from the ABO
installation package
and is a requirement
for the Sync Quote
action.

Apply Formulas

The following Commerce attributes should already exist on Base Ref App
environments. Apply the listed formulas to the attributes.

Table 3-1 Attributes for Base Ref App environments

Variable Name Formula

cC_ExternalOrderPrice_t if((cC_OrderDiscountType_t = "amountOff"),
(cC_TotalNetPrice_t - cC_OrderDiscount_t),
if((cC_OrderDiscountType_t =
"percentOff"), (cC_TotalNetPrice_t -
(cC_TotalNetPrice_t * (cC_OrderDiscount_t /
100))), if((cC_OrderDiscountType_t
= "priceOverride"),
cC_OrderDiscount_t,cC_TotalNetPrice_t)))

totalOneTimeNetAmount_t* cC_ExternalOrderPrice_t

totalOneTimeDiscount_t* sumIf((priceType_l NOT= "Recurring"),
discountAmount_l) + cC_OrderDiscountTotal_t

cC_OrderDiscountTotal_t if((cC_OrderDiscountType_t = "amountOff"),
cC_OrderDiscount_t,if((cC_OrderDiscountTy
pe_t = "percentOff"),
(cC_ExternalOrderPrice_t -
(cC_OrderDiscount_t / 100)),
if((cC_OrderDiscountType_t =
"priceOverride"), (cC_ExternalOrderPrice_t -
cC_OrderDiscount_t), 0)))

cC_TotalNetPrice_t sumIf((priceType_l NOT= "Recurring"),
netAmount_l)

listPrice_l* if((_model_base_price NOT= 0),
_model_base_price,_price_list_price_each)

if((_model_base_price NOT= 0),
_model_base_price,if((_pricing_rule_price_e
ach NOT= 0),
_pricing_rule_price_each,_price_list_price_ea
ch))

Note: An asterisk (*) next to the variable name indicates that a formula for the attribute
already exists on Base Ref App environments. You must update the existing formulas
as opposed to creating new formulas.

Chapter 3
Understand Oracle CX Commerce set up

3-9

Set Up Commerce Actions

Complete the following steps to set up Commerce actions.

1. Create the following Commerce action at the Transaction level.

Table 3-2 Commerce action

Label Variable Name Action Type Integration Advanced
Modify (Before
Formulas)

Sync Quote cC_syncQuote Modify CPQ-OCCS
Sync Quote

Transaction
Attribute:CC_Li
neItem_Data

Transaction
Line
Attributes:_doc
ument_number

_model_variable
_name

cC_ProductId_l

cC_CommerceIt
emId_l

BML: Refer to
Appendix F:
SyncQuote BML

2. Place the Sync Quote action on the Commerce layout.

3. Set the quote level actions “cleanSave_t" and " _remove_transactionLine" to
define the following attributes based on their formula definitions:

• Quote Level Attributes:

– Total Contract Value

– Total Discount Per Month

– Total (List) Per Month

– Total (Net) Per Month

– Total Discount

– Total (List)

– Total (Net)

– Annual Contract Value

– Transaction Total

– Total Contract Discount

– Annual Contract Discount

– CC External Order Price

• Line Level Attributes

– Actual Amount

– Annual Value

Chapter 3
Understand Oracle CX Commerce set up

3-10

– Contract Value

– Amount (List)

– Amount (Net)

– Price (Net)

– Quantity

4. Set the line level action “save_l" to define the following line level attributes based
on their formula definitions:

• Actual Amount

• Annual Value

• Contract Value

• Amount (List)

• Amount (Net)

• Price (Net)

• Quantity

Notes:

• The “Save” action is already setup to use formulas for a majority of these attributes
in the Base Ref Application.

• The Request for Quote and Sync Quote flows do not support the “Copy Line
Items” action. The action is not accessible for Commerce integrated Transactions.

(Optional) Create Commerce Validation Rule

You have the option of creating a Commerce validation rule that blocks users from
editing the quantity of child items.

1. Open the Admin Home page.

2. Under Commerce and Documents, click Process Definition. The Processes
page opens with Documents displaying by default in the Navigation drop-down
menu.

3. Click List next to the Oracle Quote to Order Commerce process. The Document
List page opens.

4. At the Transaction Line level, select Rules from the Navigation drop-down menu.

5. Click List.

6. From the Add menu, select Validation. The Validation: New Rule page opens.

7. In the Name field, enter a name for the validation rule.

8. Click in the Variable Name field to auto-populate the field.

9. For the Condition Type, select Advanced.

10. Click Define Function. The Select Attributes dialog opens.

11. Select the attributes shown in the following tables.

Chapter 3
Understand Oracle CX Commerce set up

3-11

System Variable Name Type Description

_system_current_document_
number

String Current Document Number

Variable Name for
(Transaction Line)

Type Description

_model_variable_name String Model Variable Name

_price_quantity Integer Quantity

12. Click Next.

13. Enter the following BML:

oldvalue = getoldvalue("_price_quantity",
atoi(_system_current_document_number));

if((_model_variable_name == "") AND (_price_quantity <>
atoi(oldvalue))) {

return true;

}
return false;

14. Click Save and Close.

15. On the Validation: New Rule page, select Advanced as the Action Type.

16. Click Define Function. The Select Attributes dialog opens.

17. Select the Variable Name for (Transaction Line) tab.

18. Select the "_price_quantity" attribute.

19. Click Next.

20. Enter the following BML.

attributeDict = dict("dict<string>");

 // inner dictionary for attr2
 attr2ActionDict = dict("string");
 // assembling the constraint action
 put(attr2ActionDict, BM_CM_RULES_MESSAGE, "Please re-configure
the item to change quantity of sub-item");

 // put the inner dictionary into the outer dictionary
 put(attributeDict, "_price_quantity", attr2ActionDict);

// return the outer dictionary
return attributeDict;

21. Click Save and Close

22. In the Components list add the Quantity (_price_quantity) attribute.

23. Click Save to save the Validation Rule.

Chapter 3
Understand Oracle CX Commerce set up

3-12

Set Up Steps

You must use Oracle CPQ to create a Synced step as well as step transitions.

1. Create a new “Synced” step.

2. Create a step transition for the "Sync Quote" action to move from the "In Progress"
step to the "Synced" step.

3. Create a step transition for the “Save" action to move from the "Synced" step to
the "In Progress" step.

4. Create a step transition for the "Customer Rejection" action to move from the
"Synced" step to the "Rejected by Customer" step.

5. Create a step transition for the “Create Order” action to move from the “Synced”
step to the “Ordered” step.

6. Create a step transition for the “Cancel Transaction” action to move from the
“Synced” step to the “Canceled” step.

7. Hide the "Sync Quote" action from the following steps:

• Fulfilled

• Canceled

• Rejected By Customer

8. Hide all Modify actions from the “Synced” step EXCEPT the following:

• Save

• Customer Rejection

• Create Order

• Cancel Transaction

Notes:

• Make sure all of the attributes used in the Request for Quote flow have read/write
access at the Start step.

• For instructions on how to create Commerce attributes, actions, and step
transitions, refer to the Oracle CPQ Administration Help.

Modify Process Manager View

You must complete the following procedure to modify a process manager view.

1. Add a data column named "CC Order Id".

2. Map the data column to the "CC Order Id" quote level attribute.

3. Add a Process Manager column using the "CC Order Id" data column.

Understand Oracle CPQ configuration set up
Specific set up procedures must be completed for the Commerce/Oracle CPQ
Configuration integration to run successfully.

This topic contains the configuration set up procedures that you must complete in
Oracle CPQ.

Chapter 3
Understand Oracle CPQ configuration set up

3-13

Configure Client-Side Integration, Add To Cart Button, and JSON Payload
Response

You must configure a client-side integration to add the Add to Cart button on a
Commerce site. The client-side integration enables the sharing of data between Oracle
CPQ and Commerce.

Note: Ensure the appropriate Commerce Product Families and Product Lines are
created in Oracle CPQ prior to starting the Client-Side Integration. Refer to the
Configuration > Product Families articles within the Oracle CPQ Online Help for
instructions.

To configure a client-side integration:

1. Open the Admin Home page.

2. Under Products, click Catalog Definition. The Supported Products page
opens. Product Families displays by default in the Navigation drop-down menu.

3. Click List. The Supported Product Families page opens.

4. Click Integrations from the Navigation drop-down menu for the product of the
Commerce product family.

5. Click List. The Edit Integration page opens.

6. Use the Edit Integration page to create a “Client-side” integration using the
following settings:

• Name: Add To Cart

• Integration Type: Client-side

• Hide in Reconfiguration: No

• Action: Define Advanced Function

7. Click Define Function for the Action and use the sample BML from one of the
following to add the Add to Cart button to the Commerce site:

• Appendix D: Understand the Add to Cart BML – Customized Integrations
(19C and Earlier) - this sample BML is for legacy integration sites who
have previously customized their Add to Cart BML. This sample includes
site-specific reference file locations.

Appendix E: Understand the Add to Cart BML – Customized Integrations and
Multi-Site Set Up (19D and Later) – this sample BML is for new integrations and in
cases where the setup needs to be duplicated on multiple sites. This sample does
not reference site-specific file locations.

8. Select Simple for the End-Point URL.
Enter the URL of the Commerce site to integrate with Oracle CPQ. The
value entered should include the basic URL or Commerce’s storefront and
administration pages. You can add multiple Commerce sites for a single
integration by listing each site delimited by the pipe delimiter (|) character.

For example:

http://cc-store.oracle.com|http://cc-admin.oracle.com|http://
second-store.oracle.com|http://second-admin.oracle.com

9. Click Apply.

Chapter 3
Understand Oracle CPQ configuration set up

3-14

Note: Ensure that all partner site lists of allowed URLs are properly addressed within
Oracle CPQ. These include domains that are allowed to load the Oracle CPQ in
an iFrame and domains that Oracle CPQ is allowed to connect to in the Integration
Center. You may need to file a Service Request (SR) on My Oracle Support to include
these domains on the site list of allowed URLs.

Configure Oracle CPQ Models Corresponding to Products in Commerce

You must create Oracle CPQ models corresponding to SKUs in Commerce.

To configure models corresponding to products in Commerce:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition. The Supported Products page
opens with Product Families displaying by default in the Navigation drop-down
menu.

3. Click List. The Supported Product Families page opens with Product Lines
displaying by default in the Navigation drop-down menu.

4. Click List. The Product Line Administration List page opens with Models
displaying by default in the Navigation drop-down menu.

5. Click List. The Model Administration List page opens.

6. Click Add.

7. Use the Model Administration page to create a new model with both the variable
name and label matching the configurable root SKU in Commerce.

8. Create a pricing rule on the model with a price matching the root SKU in
Commerce.

Configure Child Line Items Corresponding to SKUs in Commerce

For information about setting up BOM Mapping items for a model, refer to the Oracle
CPQ Administrator Online Help.

Note: Quantity for the root BOM should use a configurable integer attribute in
BOM Attribute Mapping. Otherwise, incorrect quantities may be populated during
reconfigure.

Create Configurable Attributes

Configurable attributes define the characteristics of product families. Oracle CPQ
uses configurable attributes in search flows, Configuration flows, and every type of
Configuration rule.

To create configurable attributes:

1. While you can create the following configurable attributes at any level, Oracle
recommends creating the attributes at the Product Family level.

Label Variable Name Attribute Type Additional Settings

Currency Code currencyCode Text Field none

CC Site ID cC_SiteId_t Text Field none

Quantity quantity Integer Required, Default =
1, Positive Number
Validation

Chapter 3
Understand Oracle CPQ configuration set up

3-15

2. Create a recommendation rule configured as follows:

Condition Apply Rule
To

Action Type Action
Attribute

Values to
Set

Set Type

Always True Configuration Standard currencyCod
e

Edit Function:

return
_BM_USER_
CURRENCY;

Forced Set

3. Create any additional attributes that suit your organization’s needs and place them
on the Configuration flow layout.

• You must place “currencyCode”, “cC_SiteId_t”, and “quantity” on the layout,
but they do not need to display them.

• For information about configurable attributes and the steps to create them,
refer to the Oracle CPQ Administration Help.

4. Create a hiding rule configured as follows:

Condition Action Attribute

Advanced:

if (_transaction_id == "-1")
{ return true;}
 return false;

quantity

Chapter 3
Understand Oracle CPQ configuration set up

3-16

4
Set Up Subscription Ordering in Oracle
CPQ

The subscription ordering feature requires some set up when integrating Oracle CPQ
and Commerce.

The following features require specific attention when integrating Oracle CPQ and
Commerce and running the subscription ordering feature.

Topics:

• Create an authentication certificate integration type

• Work with in-flight cancellations

• Upgrade an asset

For information about setting up Subscription or asset based orders within Oracle
CPQ, refer to the ABO implementation guide and the Oracle CPQ Administrator Online
Help.

Create an authentication certificate integration type
You need to create an Authentication Certificate integration type in the Integration
Center to support access token-based authentication in the Commerce/Oracle CPQ
integration.

Oracle CPQ provides an Authentication Certificate integration type in the Integration
Center to support access token-based authentication. This integration type allows
Oracle CX Commerce self-service users to securely access Oracle CPQ to modify or
reconfigure a Subscription Ordering asset-based Configuration without an Oracle CPQ
user session.

When administrators create a new integration of type Authentication Certificate, they
provide a name and variable name for the authentication certificate and upload
the Commerce authentication certificate. A temporary session is created for the
Commerce self-service user, allowing the user to access theModel Configuration
page via an iFrame within Commerce to modify or reconfigure a specific asset.

To create an Authentication Certificate integration type, perform the following steps:

1. Open the Admin Home page.

2. Select Integration Center under Integration Platform. The Integration Center
opens.

3. Click Create Integration.

4. From the Type drop-down, select Authentication Certificate.

5. In the Name field, enter a name that describes the authentication certificate. For
example: Commerce

6. The Variable Name field auto-populates upon clicking in or tabbing to the field.

4-1

7. (Optional) In the Description field, enter a description of the authentication
certificate.

8. Click Browse next to the Authentication Certificate label.

9. Select the Oracle CX Commerce authentication certificate and click Open.

10. ClickSave. The Authentication Certificate integration appears in the left pane of
the Integration Center.

Notes:

• The Save button is disabled upon successfully saving the integration. If the
changes are made after the save is performed, the button is enabled.

• Administrators can modify the name of the integration but not the variable name.
They can also replace the authentication certificate but cannot remove it.

• A single Oracle CPQ site can have any number of Authentication Certificate
integrations. There is no limit.

Work with in-flight cancellations
Custom asset fields must be created in Oracle CPQ to support in-flight cancellations of
orders.

In order to support in-flight cancellations of orders, the following custom asset fields
must be created in Oracle CPQ

Note: Refer to the Custom Asset Attributes article within the Oracle CPQ Online Help
for instructions on adding a custom asset.

Label Variable Name Data Type

Order Id _asset_custom_orderId String

Line Id _asset_custom_lineId String

Source Site _asset_custom_source String

Chapter 4
Work with in-flight cancellations

4-2

Upgrade an asset
With Asset Based Ordering, the ability to upgrade an existing asset is supported when
you complete some preliminary set up work.

With Asset Based Ordering, the ability to upgrade an existing asset is supported.

Oracle CPQ maintains a custom upgrade options table for Commerce to query in order
to know which upgrades are available for a given asset. The sections that follow in this
topic provide information on how to set up the required tables and how to complete
some basic Oracle CPQ configuration steps to support asset based ordering.

Oracle CPQ Data Table Set Up

Create a data table named "INT_UPGRADE_OPTIONS" with the following schema:

Column Name Data Type

currentOffer String

currentModel String

upgradeName String

upgradeProductId String

The data table column mapping information for this data table is as follows:

• currentModel – Maps to the variable name of the root config model in Oracle
CPQ which the upgrade offer applies to.

• currentOffer – Maps to a configurable attribute on the root config model in Oracle
CPQ. This needs to be stored as an attribute mapping onto the root asset as well.
This value is sent from Oracle Commerce while retrieving the upgrade options.

• upgradeName – Maps to the _config_upgrade_name that is passed from Oracle
CX Commerce to Oracle CPQ, which drives recommendation rules on the
upgrade. Not used by Commerce for any other purpose.

• upgradeProductID – Maps to the Product Id of the upgrade offer in Commerce.
Used to show upgrade details (for example, product display name, description,
images, etc.) to the shopper.

Note: We recommend you index the currentModel and/or currentOffer columns.

The INT_UPGRADE_OPTIONS data table is queried by Oracle CX Commerce to help
identify what upgrades are available for a given asset and present those upgrade
options to the shopper.

For example:

currentOffer currentModel upgradeName upgradeProductId

4ForUDeal nPlay 4ForUDealPlus prod102

Oracle CPQ Upgrade Asset Configuration Set Up

1. Create a configurable text attribute named "currentOffer". This attribute should
have either a default value set or have its value recommended based on
specific criteria on the configuration; however, the value should not be editable

Chapter 4
Upgrade an asset

4-3

directly by the user. The value of the "currentOffer" attribute is used in the
INT_UPGRADE_OPTIONS data table that Commerce queries.

2. Use (Bulk) Recommendation Rules that run when the value of the
"_config_upgrade_name" attribute matches the value of the "upgradeName"
column in the "INT_UPGRADE_OPTIONS" data table. Part of the rule should update
the "currentOffer" attribute from its previous value to the "upgradeName" as
well. Unlike normal configurable attributes, the value of "_config_upgrade_name"
persists within all models of a system, so inter-model rules are not required to
reference "_config_upgrade_name" and use them in Recommendation Rules on
child models. The value of "_config_upgrade_name" also does not persist on the
configurations, like other attributes do, so whether "_config_upgrade_name" has a
value or not distinguishes asset upgrades from a typical asset modify.

Note: For more information on understanding and using the asset Upgrade feature in
Commerce, refer to the Use Asset Based Ordering section of the Using Oracle CPQ
with Oracle CX Commerce book (20A or greater version).

You can also customize configurations of complex assets in Commerce without being
redirected to an Oracle CPQ hosted iFrame which may have a separate and distinct
user interface look and feel that creates a disjointed user experience. This capability
is known as the Direct API Configuration feature and can be used as another
option for the Modify and Upgrade actions. For more information on the Direct API
configuration feature, refer to the Customize configurations in Commerce using the
Oracle CPQ Configuration API section of the Using Oracle CPQ Features with Oracle
CX Commerce book.

Chapter 4
Upgrade an asset

4-4

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html

5
Enable Integrations in Commerce

Some configuration procedures need to be completed in order to enable the features
of this integration.

You must complete the procedures in this section to enable the Oracle CPQ
Configurator integration, the Oracle CPQ Request For Quote integration, and the
Asset Based Ordering (ABO) integration in Commerce.

For additional information about these integrations, refer toAppendix A: Understand
the Configurator Flow and Appendix B: Understand the Request for Quote Flow.

Topics:

• Enable Oracle CPQ configuration integration

• Identify configurable products in the product catalog

• Add Customize Button to the Product Details widget

• Enable Oracle CPQ quoting integration

• Add Quote Button to Checkout and Order Details pages

• Enable Asset Based Ordering

Enable Oracle CPQ configuration integration
Some feature configuration procedures must be completed to enable the Oracle CPQ
Configuration integration.

To enable the Oracle CPQ Configuration integration, do the following:

1. Log in to Commerce.

2. Navigate to the Settings icons from the sidebar menu.

3. Select Oracle Integrations from the sidebar menu.

4. Select CPQ Configuration from the drop-down menu.

5. Select the Enable Integration check box.

6. Click Preview Confirmation. You need to do this to display the URL fields.

7. Enter the Configuration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

8. Enter the Reconfiguration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

9. Enter the Modification URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.

5-1

10. Click Product Configuration. You need to do this to display the URL fields.

11. Enter the Configuration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.

12. Enter the Reconfiguration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

13. Enter the Modification URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.
Note: Enter the Configuration URL and the Reconfiguration URL for both the
Production and Preview environments.

14. Click Save. If you are using a multisite environment you must follow these
instructions for each site that uses the Oracle CPQ Configuration integration.

Identify configurable products in the product catalog
It is important to understand which products are configurable in the product catalog to
use this integration..

Before a Commerce self-service user can use the Oracle CPQ Configurator to
configure complex products for purchase in Commerce, you must identify the products
as configurable in the product catalog.

Before doing so, it is important to have a synchronized product catalog to ensure that
products in the Commerce catalog map to corresponding items in the Oracle CPQ
catalog.

To identify a product as configurable:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select the product you wish to identify as configurable from the Catalog Settings
icon in the sidebar menu.

4. Click on the SKUs tab of the product detail pop-up frame.

5. Click on the SKU link of the product you wish to identify as configurable. You need
to do this in order to select the SKU and see the SKU details.

6. Check the Externally Configurable SKU checkbox. This displays three further
fields you must complete.

7. Enter the Model variable name. This should match the Model variable name of a
configurable product in the Oracle CPQ catalog.

8. Enter the Product Line variable name. This should match the Product Line
variable name of a configurable product in the Oracle CPQ catalog.

9. Enter the Product Family variable name. This should match the Product Family
variable name of a configurable product in the Oracle CPQ catalog.

10. Click Save. This returns you to the SKU frame where the SKU you updated should
be marked with an asterisk to identify it as a configurable SKU.

Chapter 5
Identify configurable products in the product catalog

5-2

Note: Administrators can also perform the above setup steps in bulk by using the
SKU import program. From the Catalog tab in Commerce, click Manage Catalog and
select Import. In the Import dialog, click Browse and locate the CSV file to import.
Click Upload File, click Validate, and then click Import.

Add Customize Button to the Product Details widget
A Customize button must be added to the Product details widget to allow product
customization.

You must add a Customize button to the Product Details widget so that the button
is visible to Commerce self-service users from the Product Details page for a
customizable product.

To add a Customize button to the Product Details widget:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Design from the menu.

4. Select Product Layout from the layout list.

5. Delete the Product Details widget from the layout.

6. Place a new product details widget on the layout.

7. Click the Settings icon for the new Product Details widget.

8. From the Element Library, place a Customize button on the new Product
Details widget.

9. Publish the changes.

Enable Oracle CPQ quoting integration
Some feature configuration procedures must be completed to enable the Oracle CPQ
Quoting integration.

To enable the Oracle CPQ quoting integration, do the following

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Quoting from the drop-down menu.

6. Select the Enable Integration check box.

If you are using a multi-site environment you must follow these instructions for each
site that uses the Oracle CPQ Quoting integration.

Add Quote Button to Checkout and Order Details pages
You must add a Quote button to the Checkout layout and the Quote Details widget to
make quoting capability available.

Chapter 5
Add Customize Button to the Product Details widget

5-3

To make the Oracle CPQ quoting capability available to Commerce self-service users,
you must add the Request Quote widget to the Checkout layout and the Quote Details
widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote
button to the Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes
associated with the order to the Order Detail layout. The widget also adds a Reject
Quote, Request Re-Quote, and Accept Quote buttons to the to the Order Detail
layout.

The Quote Details and Request Quote widgets do not display on the layouts by
default. The administrator must first make the widgets available and then place them
on the Checkout and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

1. Log in to Commerce.

2. Click the Menu icon.

3. Select Design from the menu.

4. Select the Components tab on the Design page.

5. Click Show Hidden.

6. Click the Show icon for the Quote Details Widget and the Request Quote
Widget.

7. Within the Design page, select the Layouts tab.

8. From the layout list, select Checkout Layout.

9. Drag and drop the Request Quote widget from the Components menu to the
desired location on the Checkout layout.

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.

Enable Asset Based Ordering
The asset based ordering feature of the integration needs to be enabled before it can
be used.

To enable Asset Based Ordering, you must make sure that you have set up the
right integration webhooks and/or SSEs mentioned in the Configure the Commerce
Webhooks and Configure the Commerce Server Side Extensions sections of this
document.

Enable Subscription Cloud integration
Information about the integration of Oracle CX Commerce and Subscription Cloud
using CPQ which supports Self-Service subscriptions for configurable products.

Chapter 5
Enable Asset Based Ordering

5-4

Integration includes using CPQ, OSS and OCC Support complex OCC-CPQ-OSS
subscription flows such as:

• Create Subscription

• View A Subscription

• Modify/Upgrade/Downgrade a Subscription

• Cancel/Termination a Subscription

• Renew Subscription - this feature is dependent on subscription management
system to provide the renewal details of the subscription products

For the above integration with Subscription Cloud, a Store user must be available in
Customer Data Management System (CDM). The reference which is PrimaryPartyId
would be shared with Subscription System in all functional conversations as
mentioned above. The primary party id is stored as a dynamic property in user profile.

Only the configured product, which has external recurring charge details is considered
as a subscription line items in OIC layer and the rest of the items in the order are
filtered out.

Chapter 5
Enable Subscription Cloud integration

5-5

A
Appendix A: Understand the Configurator
Flow

A Configurator process flow occurs between Oracle CPQ and Commerce during the
integration.

The following presents a diagram of the integration Configurator Flow:

A-1

B
Appendix B: Understand the Request for
Quote Flow

A Request for Quote process flow occurs between Oracle CPQ and Commerce during
the integration.

The following presents a diagram of the integration Request for Quote flow:

B-1

C
Appendix C: Understand the OIC
Integration Mappings

You must be able to understand the variable mappings for each integration as a
requirement to complete the Sync Quote action in Oracle CPQ.

Importing and setting up the OIC package is a prerequisite to completing the Sync
Quote action in Oracle CPQ.

After all Oracle CPQ setup is completed, regenerate the OIC integration flows
to ensure they accurately reflect the current state of the Oracle Quote to Order
Commerce process.

Note: Mappings in bold indicate complex, conditional mappings. Mappings in italics
indicate the mappings are a static text value instead of a source attribute.

Integration Flow Target Variable
Name

Mapping Comments

OCCS-CPQ Create Quote >
New_Transaction

* None

 cC_RequesterNote_t requesterNote None

 cC_OrgId_t organizationId None

 cC_OrderId_t id None

 cC_SiteId_t siteId None

 cC_RequesterNote_t requesterNote None

 currencyCode currencyCode None

 _customer_t_address shippingGroups
>address1

None

 _customer_t_state shippingGroups >
state

None

 _customer_t_address
_2

shippingGroups >
address2

None

 _customer_t_company
_name

shippingGroups >
companyName

None

 _customer_t_country shippingGroups >
country

None

 _customer_t_city shippingGroups >
city

None

 _customer_t_zip shippingGroups >
postalCode

None

 _customer_t_phone shippingGroups >
phoneNumber

None

 _customer_t_email email None

 _customer_t_last_na
me

lastName None

 _customer_t_first_na
me

firstName None

 items commerceItems None

C-1

Integration Flow Target Variable
Name

Mapping Comments

 _price_book_var_nam
e

_default_price_book None

 _configuration_id configuratorId None

 cC_CommerceItemId_
l

id None

 _part_number catalogRefId None

 cC_CatalogRefId_l catalogRefId None

 _price_quantity quantity None

 cC_ProductId_l productId None

 cC_NetPrice_l > value priceInfo > amount >
quantity

None

 cC_NetPrice_l >
currency

priceInfo >
currencyCode

None

 _modify_action cleanSave_t None

OCCS-CPQ Create Quote > Update_Quote None

 id id None

 externalId bs_id None

OCCS-CPQ Create Quote > Re-
Request_Quote

 None

 cC_RequesterNote_t requesterNote None

 id externalId None

OCCS-CPQ Sync
Quote

 None

 id cC_OrderId_t None

 providerNote cC_ProviderNote_t None

 agentId cC_AgentId_t None

 externalId id None

 expirationDate cC_ExpirationDate_t None

 externalPrice totalOneTimeNetAmo
unt_t

None

line-item None

 productId cC_ProductId_l None

 catalogRefId cC_CatalogRefId_l None

 configuratorId _configuration_id None

 externalPrice netPrice_l None

 externalPriceQuantity -1 None

 id cC_CommerceItemId_
l

None

 actionCode oRCL_ABO_ActionCo
de_l

None

 quantity requestedQuantity_l None

Appendix C

C-2

Integration Flow Target Variable
Name

Mapping Comments

 externalData configattrinfo XSL manipulations to
feed config attributes
as an array of maps.

Format:

<externalData>
<name></name>
<values>
<name></name>
<variableName></
variableName>
<label>Id</
label>
<displayValue></
displayValue>
<value></value>
</values>
</externalData>
< externalData>
<name></name>
<values>
<name></name>
<variableName></
variableName>
<label></label>
<displayValue></
displayValue>
<value></value>
</values>
</ externalData>

OCCS-CPQ Update Quote > Accept Quote None

 id externalId None

 cC_AgentId_t agentId None

OCCS-CPQ Update Quote > Reject Quote None

 id externalId None

 cC_AgentId_t agentId None

 cC_RejectionDate_t date None

 rejectExplanation_t note None

OCCS-CPQ Update Quote > Cancel Quote None

 id externalId None

 cC_AgentId_t agentId None

 cC_RejectionDate_t date None

 rejectExplanation_t note None

OCCS-CPQ Get Configurations None

 locale locale None

 currency currencyCode None

 configurationId configuratorId None

Appendix C

C-3

Integration Flow Target Variable
Name

Mapping Comments

 price true None

 spare true None

 bomMapping true None

OCCS-CPQ Get Assets
 limit limit None

 offset offset None

 q for-
each(id), for-
each(id), for-
each(recordId),
"{$and:[{$or:[",
"{id:{$eq:
"", recordId,
""}}", ""}},",
"]}", ",",
"{$and:[", "{$or:
[", "{customer:
{$eq:"", id,
""}}", ""}},",
"]}", ",",
"{$or:[",
"{serviceAccount:
{$eq:"", id,
""}}", ""}},",
"]}", "]}"

None

 expand descendantAssets None

OCCS-CPQ Asset Actions (for all flows)
 id recordId None

 sourceIdentifier sourceIdentifier None

 transactionDate transactionDate None

 transactionId transactionId None

OCCS-CPQ Asset Actions (CpqModifyAsset flow)
 productLine product_line None

 configContextKey configContextKey None

 configuratorUrl configuratorURL None

 bomKey bomkey None

 segment segment None

 model model None

OCCS-CPQ Asset Actions (CpqRenewAsset, CpqTerminateAsset, CpqSuspendAsset,
CpqResumeAsset flows)
 configId lineId None

 serviceAccountId serviceAccount None

 deactivationDate endDate None

 amount amount None

 quantity quantity None

 parentServiceId parentId None

 externalRecurringChar
ge

field5 Corresponds to part
custom field 5 in
Oracle CPQ

Appendix C

C-4

Integration Flow Target Variable
Name

Mapping Comments

 externalData attributes None

 billingAccountId billingAccount None

 externalRecurringChar
geFrequency

field4 Corresponds to part
custom field 4 in
Oracle CPQ

 childItems for-each(children), for-
each(partNumber)

None

 catalogRefId partNumber None

 configuratorId lineId None

 externalRecurringDura
tion

field6 Corresponds to part
custom field 6 in
Oracle CPQ

 externalPrice _price_unit_price_eac
h

None

 assetId id None

 actionCode oRCL_ABO_ActionCo
de_l

None

 serviceId id None

 activationDate startDate None

Appendix C

C-5

D
Appendix D: Understand the Add to Cart
BML – Customized Integrations (19C and
Earlier)

Users with legacy integration sites (19C and earlier) who have previously customized
their Add to Cart BML need to modify their BML to include site-specific reference file
locations.

The following provides the Add to Cart BML for Customized Integrations 19C and
Earlier:

// Rec Item Properties
part = String[1];
quantity = String[1];
price = String[1];
selected = String[1];
sparepaths = String[1];
sparepaths[0] = "/configuration/configureResponse/spare/rule/item/part";
sparepaths[1] = "/configuration/configureResponse/spare/rule/item/
quantity";
sparepaths[2] = "/configuration/configureResponse/spare/rule/item/
price";
sparepaths[3] = "/configuration/configureResponse/spare/rule/item/
selected";

// BOM Item Properties
bomItem = String[1];
bomItem[0] = "/configuration/configureResponse/bomItem";

// Model/Price Properties
models = string[1];
configIdSearch = string[1];
currpath = String[1];
totalPrices = string[1];
bomTotals = string[1];
models[0] = "/configuration/configureResponse/item/model";
configIdSearch[0] = "/configuration/configureResponse/item/
@configurationId";
currpath[0] = "/configuration/configureResponse/attributes/
attribute[@_variableName='currencyCode']/value";
totalPrices[0] = "/configuration/configureResponse/price/totalPrice";
bomTotals[0] = "/configuration/configureResponse/price/bomPrice";
priceTotal = 0.0;
baseModelPrice = 0.0;
recurringSubtotal = 0.0;

// Extract data from configXML
outputModel = readxmlsingle(configXML, models);

D-1

outputConfigIds = readxmlsingle(configXML, configIdSearch);
currXML = readxmlsingle(configXML, currpath);
currency = get(currXML, currpath[0]);
outputPrices = readxmlsingle(configXML, totalPrices);
bomPrices = readxmlsingle(configXML, bomTotals);
output1 = readxmlmultiple(configXML, sparepaths);
bomItemXMLDict = readxmlsingle(configXML, bomItem);
bomItemString = get(bomItemXMLDict, "/configuration/configureResponse/
bomItem");

payloadTemplate = urldatabyget("https://cpq-046.us.oracle.com/bmfsweb/
slc10xgj/image/CommerceCloud/AddToCartPayload-Cloud.txt", "", "");
model1 = "";
totalPrice1 = "";

// Get Model data
for model in models {
 model1 = get(outputModel, model);
}

// Get Price data
for totalPrice in totalPrices {
 totalPrice1 = get(outputPrices, totalPrice);
 totalPrice0 = replace(totalPrice1, ",", "");
 if (isnumber(substring(totalPrice0, 1))) {
 totalPrice2 = getcurrencyvalue(totalPrice1, currency);
 priceTotal = priceTotal + totalPrice2;
 }
}
baseModelPrice = priceTotal;

// Add BOM total price
if (containskey(bomPrices, bomTotals[0])) {
 for bomPrice in bomTotals {
 bomTotal = get(bomPrices, bomPrice);
 bomTotalReplace = replace(bomTotal, ",", "");
 if (isnumber(substring(bomTotalReplace, 1))) {
 bomTotalPrice = getcurrencyvalue(bomTotal, currency);
 priceTotal = bomTotalPrice + priceTotal;
 }
 }
}

// Get ConfigID
configId = "";
for id in configIdSearch {
 configId = get(outputConfigIds, id);
}

// Get Recommended Items
for sparepath in sparepaths {
 if (find(sparepath, "part") < > -1) {
 part = get(output1, sparepath);
 }
 elif(find(sparepath, "quantity") < > -1) {

Appendix D

D-2

 quantity = get(output1, sparepath);
 }
 elif(find(sparepath, "price") < > -1) {
 price = get(output1, sparepath);
 }
 elif(find(sparepath, "selected") < > -1) {
 selected = get(output1, sparepath);
 }
}

// Format Rec Items payload
recItemList = "";
if (isnull(part)) {
 print("No Recommended Items");
} else {
 recItems = sizeofarray(part);
 recItemsInt = integer[recItems];

 i = 0;
 for recItem in recItemsInt {
 if (selected[i] == "true") {
 //recurring price from parts BMQL
 part_num = part[i];
 partCustomFields = bmql("SELECT part_number, custom_field5,
custom_field4, custom_field6, custom_field8 FROM _parts WHERE
part_number = $part_num");
 recItemPayloadTemplate
= urldatabyget("https://cpq-046.us.oracle.com/bmfsweb/slc10xgj/image/
CommerceCloud/Recommended_Items_Payload-Cloud.txt", "", "");
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{quantity}}", quantity[i]);
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{part}}", part[i]);

 for each in partCustomFields {
 if (get(each, "custom_field8") == "Recurring") {
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{pricePeriod}}", get(each, "custom_field4"));
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{recurringPrice}}", get(each, "custom_field5"));
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{duration}}", get(each, "custom_field6"));
 //recurringSubtotal = recurringSubtotal + get(each,
"custom_field5");
 } else {
 childPayloadJson = json(recItemPayloadTemplate);
 jsonremove(childPayloadJson, "recurringCharge");
 recItemPayloadTemplate = jsontostr(childPayloadJson);
 }
 }

 //remove region specific formatting for price
 sPrice0 = substring(price[i], 1);
 sPrice0 = replace(sPrice0, ",", "");

Appendix D

D-3

 if (isnumber(sPrice0)) {
 priceTotal = priceTotal + atof(sPrice0);
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{price}}", sPrice0);
 } else {
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{price}}", "0");
 }
 if (recItemList == "") {
 recItemList = recItemPayloadTemplate;
 } else {
 recItemList = recItemList + "," + recItemPayloadTemplate;
 }
 }
 i = i + 1;
 }
}

// Get the BOM Items
if (isnull(bomItemString)) {
 print "No BOM Items";
 bomItemString = "";
 payloadTemplate = replace(payloadTemplate, "{{BomItems}}",
bomItemString);
} else {
 // Get part numbers for each BOM item, convert to string array for
bmql
 bomJson = json(bomItemString);

 // Remove extraneous BOM fields (may have to revert if CC was
expecting to use them)
 jsonpathremove(bomJson, "$..variableName");
 jsonpathremove(bomJson, "$..definition");
 jsonpathremove(bomJson, "$..category");

 // Replacing all 0 prices with actual number 0
 bomPriceArray = jsonpathgetmultiple(bomJson,
"$.._price_unit_price_each");
 replace_lookup = boolean[];
 bomPricesString = jsonarraytostr(bomPriceArray);
 bomPricesString = replace(replace(replace(bomPricesString, "\"", ""),
"[", ""), "]", "");
 bomPricesStringArray = split(bomPricesString, ",");

 i = 0;
 for each in bomPricesStringArray {
 append(replace_lookup, isnumber(each));
 i = i + 1;
 }

 i = 0;
 for each in replace_lookup {
 if (i == 0 and each == false) {
 jsonpathset(bomJson, "$.fields._price_unit_price_each", "0");
 }

Appendix D

D-4

 elif(each == false) {
 str = "$.children[" + string(i - 1) +
"].fields._price_unit_price_each";
 jsonpathset(bomJson, str, "0");
 }

 i = i + 1;
 }

 bomItemString = jsontostr(bomJson);
 bomPartsArray = jsonpathgetmultiple(bomJson, "$..partNumber");
 bomPartsString = jsonarraytostr(bomPartsArray);
 bomPartsString = replace(replace(replace(bomPartsString, "\"", ""),
"[", ""), "]", "");
 bomPartsStringArray = split(bomPartsString, ",");
 bomParts = bmql("SELECT part_number, custom_field5, custom_field4,
custom_field6, custom_field8 FROM _parts WHERE part_number IN
$bomPartsStringArray");

 // Get path for each part, add recurringCharge to them all
 for each in bomParts {
 partField = "\"partNumber\":\"" + get(each, "part_number") + "\",";
 recurringTemplate = "\"recurringCharge\":
{ \"amount\":,\"frequency\":,\"duration\":},";

 if (get(each, "custom_field8") == "Recurring") {
 recurringTemplate = replace(recurringTemplate, "frequency\":",
"frequency\":\"" + get(each, "custom_field4") + "\"");
 recurringTemplate = replace(recurringTemplate, "amount\":",
"amount\":\"" + get(each, "custom_field5") + "\"");
 recurringTemplate = replace(recurringTemplate, "duration\":",
"duration\":\"" + get(each, "custom_field6") + "\"");
 } else {
 recurringTemplate = "";
 }
 bomItemString = replace(bomItemString, partField, partField +
recurringTemplate);
 }

 // Unflatten
 bomItemString = replace(bomItemString, "\"partNumber\":",
"\"catalogRefId\":");
 bomItemString = replace(bomItemString, "On Request", "0"); // This
may only fix English users
 bomJson = convertbomtohier(json(bomItemString));
 payloadTemplate = replace(payloadTemplate, "{{BomItems}}",
jsontostr(bomJson));
}

// Format main template with subcomponents and properties
payloadTemplate = replace(payloadTemplate, "{{commerceItemId}}", "");
payloadTemplate = replace(payloadTemplate, "{{ConfigId}}", configId);
payloadTemplate = replace(payloadTemplate, "{{model}}", model1);
payloadTemplate = replace(payloadTemplate, "{{totalPrice}}",
string(priceTotal));

Appendix D

D-5

payloadTemplate = replace(payloadTemplate, "{{basePrice}}",
string(baseModelPrice));
payloadTemplate = replace(payloadTemplate, "{{currency}}", currency);
payloadTemplate = replace(payloadTemplate, "{{ChildItems}}",
recItemList);
return payloadTemplate;

Appendix D

D-6

E
Appendix E: Understand the Add to Cart
BML – Customized Integrations and Multi-
Site Set Up (19D and Later)

Users with customized integrations and multi-site set ups (19D and later) who have
previously customized their Add to Cart BML need to modify and update their BML.

The following provides the Add to Cart BML for Customized Integrations and Multi-Site
Set Up 19D and later:

// Initialize variables
MODEL_PATH = "/configuration/configureResponse/item/model";
CONFIG_ID_PATH = "/configuration/configureResponse/item/
@configurationId";
CURRENCY_CODE_PATH = "/configuration/configureResponse/attributes/
attribute[@_variableName='currencyCode']/value";
TOTAL_PRICE_PATH = "/configuration/configureResponse/price/totalPrice";
SPARE_PART_PATH = "/configuration/configureResponse/spare/rule/item/
part";
SPARE_QUANTITY_PATH = "/configuration/configureResponse/spare/rule/item/
quantity";
SPARE_PRICE_PATH = "/configuration/configureResponse/spare/rule/item/
price";
SPARE_SELECTED_PATH = "/configuration/configureResponse/spare/rule/item/
selected";
BOM_ITEM_PATH = "/configuration/configureResponse/bomItem";
BOM_PRICE_PATH = "/configuration/configureResponse/price/bomPrice";

CART_TEMPLATE_LOCATION = "$BASE_PATH$/CommerceCloud/AddToCartPayload-
Cloud.txt";
SPARE_TEMPLATE_LOCATION = "$BASE_PATH$/CommerceCloud/
Recommended_Items_Payload-Cloud.txt";

payload = "";
sparesList = "";
priceTotal = 0.0;
baseModelPrice = 0.0;
sparePart = String[1];
spareQuantity = String[1];
sparePrice = String[1];
spareSelected = String[1];
singleSpareDict = dict("string");
configDict = dict("string");

// Create array of XML paths:
pathArray = string[];
sparePathArray = string[];

E-1

// For Model/Price Properties
append(pathArray, MODEL_PATH);
append(pathArray, CONFIG_ID_PATH);
append(pathArray, CURRENCY_CODE_PATH);
append(pathArray, TOTAL_PRICE_PATH);

// For BOM Item Property
append(pathArray, BOM_ITEM_PATH);
append(pathArray, BOM_PRICE_PATH);

// For Rec Item Properties (needs its own array)
append(sparePathArray, SPARE_PART_PATH);
append(sparePathArray, SPARE_QUANTITY_PATH);
append(sparePathArray, SPARE_PRICE_PATH);
append(sparePathArray, SPARE_SELECTED_PATH);

// Extract data from configXML
pathDict = readxmlsingle(configXML, pathArray);
spareDict = readxmlmultiple(configXML, sparePathArray);

model = get(pathDict, MODEL_PATH);
configId = get(pathDict, CONFIG_ID_PATH);
currency = get(pathDict, CURRENCY_CODE_PATH);
totalPrice = get(pathDict, TOTAL_PRICE_PATH);
bomPrice = get(pathDict, BOM_PRICE_PATH);
bomItem = get(pathDict, BOM_ITEM_PATH);

// Convert totalPrice (which is a misleading name) to numeric value,
set as baseModelPrice
totalPrice = replace(totalPrice, ",", "");
if (isnumber(substring(totalPrice, 1))) {
 totalPriceNum = getcurrencyvalue(totalPrice, currency);
 priceTotal = priceTotal + totalPriceNum;
}
baseModelPrice = priceTotal;

// Add BOM total price to priceTotal (which is the REAL total price),
with the same conversion as the base price
if (NOT(isnull(bomPrice))) {
 bomPrice = replace(bomPrice, ",", "");
 if (isnumber(substring(bomPrice, 1))) {
 bomPriceNum = getcurrencyvalue(bomPrice, currency);
 priceTotal = bomPriceNum + priceTotal;
 }
}

// Get Recommended Items
for sparepath in sparePathArray {
 if (find(sparepath, "part") <> -1) {
 sparePart = get(spareDict, sparepath);
 }
 elif(find(sparepath, "quantity") <> -1) {
 spareQuantity = get(spareDict, sparepath);
 }
 elif(find(sparepath, "price") <> -1) {

Appendix E

E-2

 sparePrice = get(spareDict, sparepath);
 }
 elif(find(sparepath, "selected") <> -1) {
 spareSelected = get(spareDict, sparepath);
 }
}

// Format Rec Items payload
if (isnull(sparePart)) {
 print "No Recommended Items";
} else {
 spareListSize = sizeofarray(sparePart);
 spareArray = integer[spareListSize];

 i = 0;
 for eachSpare in spareArray {
 if (spareSelected[i] == "true") {
 //Convert price, similar to Base and BOM prices above
 priceString = substring(sparePrice[i], 1);
 priceString = replace(priceString, ",", "");
 if (isnumber(priceString)) {
 sparePrice[i] = string(getcurrencyvalue(priceString,
currency));
 priceTotal = priceTotal + atof(sparePrice[i]);
 } else {
 sparePrice[i] = "0";
 }

 // Add basic part fields to dictionary from array dictionary
 put(singleSpareDict, "part", sparePart[i]);
 put(singleSpareDict, "quantity", spareQuantity[i]);
 put(singleSpareDict, "price", sparePrice[i]);

 // Generate template and set values from dictionary
 singleSparePayload = applytemplate(SPARE_TEMPLATE_LOCATION,
singleSpareDict);

 // Get Recurring Charge fields
 part_num = sparePart[i];
 partCustomFieldsDict = bmql("SELECT part_number,
custom_field5, custom_field4, custom_field6, custom_field8 FROM _parts
WHERE part_number = $part_num");

 for each in partCustomFieldsDict {
 if (get(each, "custom_field8") == "Recurring") {
 singleSparePayload = replace(singleSparePayload,
"{{pricePeriod}}", get(each, "custom_field4"));
 singleSparePayload = replace(singleSparePayload,
"{{recurringPrice}}", get(each, "custom_field5"));
 singleSparePayload = replace(singleSparePayload,
"{{duration}}", get(each, "custom_field6"));
 } else {
 childPayloadJson = json(singleSparePayload);
 jsonremove(childPayloadJson, "recurringCharge");
 singleSparePayload = jsontostr(childPayloadJson);

Appendix E

E-3

 }
 }

 // Add Item to List
 if (sparesList == "") {
 sparesList = singleSparePayload;
 } else {
 sparesList = sparesList + "," + singleSparePayload;
 }
 }
 i = i + 1;
 }
}

// Get the BOM Items
if (isnull(bomItem)) {
 print "No BOM Items";
 bomItem = "";
} else {
 // Get part numbers for each BOM item, convert to string array for
bmql
 bomJson = json(bomItem);

 // Remove extraneous BOM fields (may have to revert if CC was
expecting to use them)
 jsonpathremove(bomJson, "$..variableName");
 jsonpathremove(bomJson, "$..definition");
 jsonpathremove(bomJson, "$..category");

 // Replacing all 0 prices with actual number 0
 bomPriceArray = jsonpathgetmultiple(bomJson,
"$.._price_unit_price_each");
 replace_lookup = boolean[];
 bomPricesString = jsonarraytostr(bomPriceArray);
 bomPricesString = replace(replace(replace(bomPricesString, "\"",
""), "[", ""), "]", "");
 bomPricesStringArray = split(bomPricesString, ",");

 i = 0;
 for each in bomPricesStringArray {
 append(replace_lookup, isnumber(each));
 i = i + 1;
 }

 i = 0;
 for each in replace_lookup {
 if (i == 0 and each == false) {
 jsonpathset(bomJson, "$.fields._price_unit_price_each",
"0");
 }
 elif(each == false) {
 str = "$.children[" + string(i - 1) +
"].fields._price_unit_price_each";
 jsonpathset(bomJson, str, "0");
 }

Appendix E

E-4

 i = i + 1;
 }

 bomItem = jsontostr(bomJson);
 bomPartsArray = jsonpathgetmultiple(bomJson, "$..partNumber");
 bomPartsString = jsonarraytostr(bomPartsArray);
 bomPartsString = replace(replace(replace(bomPartsString, "\"", ""),
"[", ""), "]", "");
 bomPartsStringArray = split(bomPartsString, ",");
 bomParts = bmql("SELECT part_number, custom_field5, custom_field4,
custom_field6, custom_field8 FROM _parts WHERE part_number IN
$bomPartsStringArray");

 // Get path for each part, add recurringCharge to them all
 for each in bomParts {
 partField = "\"partNumber\":\"" + get(each, "part_number") +
"\",";
 recurringTemplate = "\"recurringCharge\":
{ \"amount\":,\"frequency\":,\"duration\":},";

 if (get(each, "custom_field8") == "Recurring") {
 recurringTemplate = replace(recurringTemplate,
"frequency\":", "frequency\":\"" + get(each, "custom_field4") + "\"");
 recurringTemplate = replace(recurringTemplate, "amount\":",
"amount\":\"" + get(each, "custom_field5") + "\"");
 recurringTemplate = replace(recurringTemplate,
"duration\":", "duration\":\"" + get(each, "custom_field6") + "\"");
 } else {
 recurringTemplate = "";
 }
 bomItem = replace(bomItem, partField, partField +
recurringTemplate);
 }

 // Handle 0 prices in configuration (this may only fix English
users)
 bomItem = replace(bomItem, "\"partNumber\":", "\"catalogRefId\":");
 bomItem = replace(bomItem, "On Request", "0");

 // Unflatten
 bomJson = convertbomtohier(json(bomItem));
 bomItem = jsontostr(bomJson);
}

// Format main template with subcomponents and properties
put(configDict, "commerceItemId", "");
put(configDict, "model", model);
put(configDict, "ConfigId", configId);
put(configDict, "currency", currency);
put(configDict, "totalPrice", string(priceTotal));
put(configDict, "basePrice", string(baseModelPrice));
put(configDict, "ChildItems", sparesList);
put(configDict, "BomItems", bomItem);
payload = applytemplate(CART_TEMPLATE_LOCATION, configDict);

Appendix E

E-5

payload = replace(payload, """, "\""); // encoding bug on
applytemplate

return payload;

Appendix E

E-6

F
Appendix F: Understand the SyncQuote
BML

You must modify the function BML to set the Sync Quote action to run Advanced
Modify for the integration.

The following provides the SyncQuote BML used in the integration:

str = "";

for each in transactionLine{
 if (each._model_variable_name <> ""){
 lineItem_array = split(cC_LineItem_Data_t, "|");
 for lineItem in lineItem_array {
 row = split(lineItem, "~");
 if(row[0] == each._document_number){
 str = str + each._document_number +
"~cC_CommerceItemId_l~" + row[1]+"|";
 str = str + each._document_number + "~cC_ProductId_l~"
+ row[2]+"|";
 }
 }
 }
}

return str;

F-1

	Contents
	Preface
	Documentation accessibility

	1 Introduction
	2 Set Up OIC Integrations
	Download the integration packages
	Import the integration package
	Configure Oracle CPQ connections
	Generate security token for Commerce connections
	Configure the Commerce connection
	Activate the OIC integrations
	Create Sync Quote Action in Oracle CPQ
	Set up OIC integration on Oracle CPQ site
	Create the Sync Quote Integration
	Set Sync Quote Action to run Advanced Modify
	Configure Commerce webhooks
	Configure the Commerce server-side extensions

	3 Set Up Oracle CPQ
	Understand general set up for Oracle CPQ
	Understand Oracle CX Commerce set up
	Understand Oracle CPQ configuration set up

	4 Set Up Subscription Ordering in Oracle CPQ
	Create an authentication certificate integration type
	Work with in-flight cancellations
	Upgrade an asset

	5 Enable Integrations in Commerce
	Enable Oracle CPQ configuration integration
	Identify configurable products in the product catalog
	Add Customize Button to the Product Details widget
	Enable Oracle CPQ quoting integration
	Add Quote Button to Checkout and Order Details pages
	Enable Asset Based Ordering
	Enable Subscription Cloud integration

	A Appendix A: Understand the Configurator Flow
	B Appendix B: Understand the Request for Quote Flow
	C Appendix C: Understand the OIC Integration Mappings
	D Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)
	E Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)
	F Appendix F: Understand the SyncQuote BML

