
Developing Widgets

F37066-01
January 2021

Developing Widgets,

F37066-01

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 About This Guide

2 Create an Extension

Understand extensions 2-1

Create an extension ID 2-2

Create the extension structure 2-2

Create and load the extension bundle 2-3

3 Create a Widget

Understand widgets 3-1

Download widget source code 3-1

Create the widget structure 3-2

Define widget meta-data in widget.json 3-2

Acceptable values for the imports property 3-4

Create the widget template file 3-6

Create custom widget JavaScript 3-7

Configure a widget’s style 3-10

Localize a widget 3-11

Bundle images or other assets within widget 3-14

Use ccLink binding for quicker page loading 3-14

Understand widget versioning 3-16

Add customizable widget settings 3-16

Assign a global widget to multiple sites 3-21

4 Fragment a Widget into Elements

Understand elements 4-1

Create the element directory structure 4-2

Define element meta-data in an element.json file 4-3

Create the presentation for an element 4-4

iii

Create custom element JavaScript 4-5

5 Use Stacks for Increased Widget Layout Control

Understand stacks 5-1

Create the stack structure 5-2

Define stack meta-data in stack.json 5-2

Create the stack template 5-4

Configure a stack’s style 5-6

Create a quick view popup using a popup stack 5-7

6 Add Site Settings

Define site settings 6-1

Reference site settings in widget templates 6-4

7 Include Application-level JavaScript Modules

Create the extension structure for application-level JavaScript 7-1

Run custom logic upon module instantiation 7-1

Reference an application-level module in a widget 7-2

Application-level JavaScript examples 7-2

Assign an application-level JavaScript module to multiple sites 7-4

8 Filter REST Responses

Out-of-the-box response filters 8-1

Pass a response filter key in a REST call made from a widget 8-1

Programmatically determine the correct response filter key 8-2

Change response filters used by out-of-the-box widgets 8-7

Filter REST calls made from within a view model 8-9

9 Resize Images

Default image sizes 9-1

Resize images using the ccResizeImage binding 9-1

Understand the image resizing REST APIs 9-6

Manage image caching 9-8

iv

10

Manage Storefront Event Notification

Understand the PubSub library 10-1

Include the pubsub dependency 10-1

Subscribe to a topic 10-1

Publish messages 10-2

Create new topics 10-3

PubSub topics 10-3

Listen for messages from a particular object instance 10-21

Index

v

1
About This Guide

Oracle CX Commerce allow you to customize your storefront by customizing
extensions, widgets, various element and other site settings.

This guide is intended for developers working on Oracle CX Commerce
implementations. It explains in general terms how to use the widget development
framework to customize store functionality. It shows how to create extensions, widgets,
elements, and site settings and provides guidance on topics such as directory and file
structure, configuration file syntax, and localization techniques.

For information on developing widgets for specific features, for example widgets that
integrate with an external pricing system or a web checkout system, see Extending
Oracle CX Commerce, which builds on the information contained in this guide and
assumes you are familiar with it.

1-1

2
Create an Extension

An extension encapsulates entities and assets that can enhance your Commerce
implementation with additional, custom functionality.

This section describes how to create and upload extensions.

Understand extensions
Extensions are pieces of code that you can configure to extend your environment.

Extensions can contain one or more of the following:

• Widgets
A widget provides a unit of UI functionality that can be deployed on one or
more pages of your web store. Widgets are able to display content to visitors
or execute specific functions. They provide custom HTML and/or JavaScript code
and, optionally, several other types of auxiliary data for styling, localization, and
component re-use.

• Elements
To provide more control over its constituent parts, widgets can be broken up
into elements. Each element represents one part of the overall structure of the
widget and they can be configured as drag-and-drop sub-components, allowing for
finer control over their location in a page layout. For example, the Header widget
contains the following elements: Cart Link, Language, Links, Login/registration,
Logo, Rich Text and Search. An element can be defined as part of a specific
widget or as a stand-alone element that may be used by multiple widgets.

• Stacks
Page layouts are made up of regions, into which widgets are placed. All widgets
placed within a region take up the full widget of the region and are rendered
vertically within the region, one after the other. Stacks allow you exercise further
control over the placement of widgets within a given region, making it possible to
create a stepped progression through the widgets contained in the region.

• Payment Gateways
Commerce provides support for a number of payment gateways as built-in
integrations. In addition, you can use extensions to create custom integrations
with other payment gateways. The integrations you create appear as options on
the Payment Gateways tab of the Payment Processing page in the administrative
console. See Configure Payment Processing for more information.

• Site Settings
Site settings allow you to define a set of global configuration parameters. These
parameters are made available to page layout designers in the administration
interface and all widgets have access to their settings. Site settings allow you to
define a single setting that controls a feature across multiple widgets.

• Application-level JavaScript modules
Application-level JavaScript are loaded as part of the main module, before any
endpoints have been fired and before any widgets have been loaded. As such,

2-1

they can be referenced as a dependency in any widget, allowing you to build
reusable modules that can be shared among widgets and elements.

Create an extension ID
You must create an extension ID that you use when you define its meta-data.

In order to upload an extension into Commerce, you must generate an ID for the
extension and then use that ID when you define the extension’s meta-data. To create
an extension ID perform the following steps:

1. Log into Commerce.

2. Click the Settings icon.

3. Click Extensions, then click the Developer tab.

4. Click the Generate ID button to generate an extension ID.

You are prompted to name the extension.

5. Enter a name for the extension and click Save.

6. Your extension ID is now generated and must be used in the extension’s
ext.json file. For further details, refer to the next section, Create the extension
structure.

Create the extension structure
Extensions require a specific structure configuration.

Once you have a new unique ID for your extension, you can start to develop it
by creating the folder structure, as shown in the example below. Make sure your
extension uses a name that is unique within your Commerce environment; for
example, do not give your extension the same name as a default widget.

Note: If you do not include JavaScript, Less styles, or Locales, you can omit those
directories.

<extension-name> : The root folder of your extension, must be unique
 ext.json
 <additional directories to define widgets, elements,
 payment gateways, site settings>/

Define extension meta-data in ext.json

Each extension provides meta-data describing the author/developer of the extension
and other information related to its creation. This meta-data is contained in a manifest
file called ext.json. Without the manifest file, the extension cannot be loaded. The
ext.json file should include the following:

• extensionID: Unique ID of the extension. Note that this ID must match the
value generated on the Extensions page in the administrative console. See Use
developer tools to customize your store for more information.

• developerID: The extension author’s unique developer ID.

• createdBy: The name of creator (company or individual).

Chapter 2
Create an extension ID

2-2

• version: The version of the extension, expressed as a single whole number.

• timeCreated: When the extension was created. iso-8601 is the recommended
format; however, an informal time stamp is also acceptable.

• translations: An array that provides translations for both the extension name
and description. These properties are displayed on the Extensions page that
is accessible from the Settings page in Commerce. For example, the English
translation for the name of the extension in the illustration below is “Visit Counter
Widgets” and the description is “Provides visitor counting related functionality”.

An example of an ext.json file that includes translations for English and French is
shown below. Note that the translations property has three sub-properties, language,
name, and description. The language property can be either a two-letter language
code (for example, en) or a two-letter language code and a two-letter country code
with an underscore in between (for example, en_US). ISO 639-1 defines the two-letter
language codes. ISO 3166-1 alpha-2 defines the two-letter country codes.

{ "extensionID": "f3acef8e-375a-11e4-9c85-ebc5b52923a8",
 "developerID": "987654",
 "createdBy": "Company name",
 "version": 1,
 "timeCreated": "2016-09-08",
 "translations" : [
 {
 "language" : "en_US",
 "name":"Extension label in English",
 "description":"Extension description in English"
 },
 {
 "language" : "fr_CA",
 "name":"Extension label in French",
 "description":" Extension description in French"
 }
]
 }

Add functionality to the extension

The extension directory contains additional directories, at the same level as the
ext.json file, that define the functionality you want to upload. For more information
on creating these directories and their contents, see the following:

• For information on creating widgets, elements, and site settings, refer to the
remainder of this guide. Also refer to this guide for information on uploading
application-level JavaScript modules.

• For information on creating payment gateways,see Configure Payment
Processing.

Create and load the extension bundle
You must create a bundle that allows you to upload the extension.

When you have finished developing or changing your extension contents, zip up all the
files within your extension-name directory. This is the file you upload to Commerce to

Chapter 2
Create and load the extension bundle

2-3

make the extension available for use. On a Mac or Linux-based machine, you can do
this with the following command inside the extension-name directory:

zip -r extensionName.zip ./*

After creating the ZIP file, load it using the procedure below.

To load an extension, perform the following steps:

1. Log into Commerce.

2. Click the Settings menu icon.

3. Click Extensions.

4. Click the Upload Extension button and select the extension zip file from your
local file system.

The system now starts the upload and validation process. Any problems identified
during the validation checks are displayed in a warning message.

Chapter 2
Create and load the extension bundle

2-4

3
Create a Widget

A widget provides a unit of UI functionality that can be deployed on one or more pages
of your web store.

This chapter introduces widgets and the files that configure them.

Understand widgets
Widgets are made up of a set of source files and resources.

A number of things provide the widget with its functionality and include the following:

• Templates: Display templates for showing content using knockout.js data bindings.

• JavaScript: View model per widget (optional).

• CSS: Styles for the widget. Can be pure CSS or Less (see http://www.lesscss.org).

• Locale resources: Translation resources per locale for the widget.

• Images: Images used for the widget, referenced via the widget asset mappings.

Widgets also consist of auxiliary files that contain help, configuration, and meta-data
describing the widget. They include the following:

• Meta-data: The meta-data that describes the widget.

• Elements: Small pieces or fragments of functionality for a widget, including a
display template snippet and a view model.

• Configurable widget settings: A mechanism for providing configurable widget
settings that the page layout designer can use to customize the widget’s behavior
on the Design page, for example, limiting the number of products to display on a
Related Products widget.

• Configuration: Default configuration can be delivered with the widget.

Download widget source code
The following sections provide details on how to create a new widget type from
scratch. However, you can also download the source code for an existing widget type
and use it as a starting point.

To download widget source code perform the following steps:

1. On the Design page, select a widget from the Widget Templates list.

2. Click the Download Source button and, when prompted, save the widget’s ZIP
file.

3-1

http://knockoutjs.com/
http://www.lesscss.org

Create the widget structure
Widgets are added to an extension’s structure in a/widget directory that is at the same
level as the extension’s ext.json file.

When you create a new widget, it is important to ensure that the name is less than 50
characters. An error will occur if the name contains more than 50 characters.

Each widget should have its own child directory in the /widget directory. The
following example shows the directories and files that can be included for a widget:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 templates/
 display.template
 js/
 <widget-type>.js
 less
 widget.less
 locales/
 <locale code, for example, en or en_US>/
 ns.<widget-type>.json
 <other locale codes>/
 ns.<widget-type>.json
 images/

If your widget does not involve the creation of user interface elements or require
custom JavaScript, the widget structure can omit a number of directories and files
used for these purposes. The following shows the minimum set of files and directories
needed for a widget to pass validation on upload:

<extension-name>
 ext.json
 widget/
 <widget-type>/
 widget.json

Define widget meta-data in widget.json
Much like the ext.json file defines meta-data for an extension, a widget.json file
defines meta-data for a widget.

An example of a widget.json file is provided below:

{
 "version": 1,
 "global": false,
 "javascript": "<widget-type-js>",
 "i18nresources": "<widget-type>",

Chapter 3
Create the widget structure

3-2

 "availableToAllPages": true,
 "jsEditable": true,
 "config": {
 }
 "translations" : [
 {
 "language": "en",
 "name": "Name in English"
 },
 {
 "language": "de",
 "name": "Name in German"
 }
]
 }

The following list describes all the properties that you might choose to include in a
widget.json file.

• javascript: The name of the widget’s main JavaScript file, to which .js is
appended, to load in the storefront. The convention is to use the widget-type
as the JavaScript module name without the .js suffix. This property is required
if the widget includes one or more JavaScript files and should refer to the
main JavaScript file for the widget. Other JavaScript files can be defined as
dependencies in the main JavaScript file. See Include multiple JavaScript files
for more details.

• jsEditable: A flag that determines whether it is possible to edit the widget’s
JavaScript code within the Design page. Defaults to false.

• i18nresources: The namespace name for the resources of this widget, to which
ns is prepended and .json is appended. The convention is to use the widget-type
for this property, creating a file with a name like ns.widget-type.json. This
property is required if the widget has resource files. See Localize a widget for
more information.

• imports: By default, widgets have access to data and functions contained in the
common view models (user, cart, order and so on). However, in order for a widget
to have access to page-specific view models, those view models must be explicitly
defined in the imports property. The possible values that are acceptable for the
imports property depends on the type of page the widget will be placed on. See
Acceptable values for the imports property for detailed information.

• availableToAllPages: Set this property to true to allow the widget to be placed
on all page types; the widget will appear in the Component library for all pages.
Omit this property altogether to restrict placement of the widget to the page types
defined in the pageTypes property. Also, omit this property for global widgets (see
the global property below). Note that this property and the pageTypes property are
mutually exclusive but one of them must be set.

• pageTypes: Defines which page types the widget can be placed on; the widget will
appear in the Component library for the specified pages. If you use this property,
you must omit the availableToAllPages property. Note that this property and the
availableToAllPages property are mutually exclusive but one of them must be
set.
Available page types include the following:

Chapter 3
Define widget meta-data in widget.json

3-3

– product

– category

– home

– cart

– checkout

– confirmation

– article

– error

– searchResults

– noSearchResults

The widget will appear in the Component library for the page types you specify.

• translations: An array that provides translations for the widget name. This name
is displayed in the Components library panel that you use to add a widget to
a page layout. Note that either the translations property or the name property,
described below, is required.
The translations property has two sub-properties, language and name. The
language property can be either a two-letter language code (for example, en) or
a two-letter language code and a two-letter country code with an underscore in
between (for example, en_US). ISO 639-1 defines the two-letter language codes.
ISO 3166-1 alpha-2 defines the two-letter country codes.

• version: Specifies the version of the widget, used to ensure the right version of
a widget is used in the storefront. See Understand widget versioning for more
information. Defaults to 1.

• name: If your storefront only uses one language, meaning you do not need multiple
translations for the name of the component, you can choose to use the name
property instead of the translations property. Note that one of the two properties is
required.

• global: Defines the widget as a global widget. A global widget does not include
a display template. It is automatically added to all pages but, due to the lack of
template, it is excluded from template rendering. Global widgets are useful for
tasks like logging web analytics or loading JavaScript libraries. Defaults to false.

• minWidth: The minimum width that this widget will fit into it. The system will check
if the widget will fit in the region in Grid View.

• hiddenFromSiteStudio: A Boolean that determines whether the widget’s initial
state is to be hidden or not in the Component library. Set to false by default.
See Customize your store layouts for details on showing or hiding widgets in the
Component library.

Acceptable values for the imports property
When defining a widget, one of the properties you may choose to set in the
widget.json file is the imports property.

By default, widgets have access to data and functions contained in the common view
models (user, cart, site and so on). However, in order for a widget to have access to
page-specific view models, those view models must be explicitly defined in the imports

Chapter 3
Acceptable values for the imports property

3-4

property. The possible values that are acceptable for the imports property depends on
the type of page the widget will be placed on. To determine which page-specific view
models your widget can have access to, determine the page type the widget will be
placed on and then review the acceptable values for that page type in the following
sections.

Note that some page types have no page-specific view models. These include home,
order history, article, error, shopper wish list profile, search results, and no search
results.

Category

Acceptable imports values include the following:

• category

• categoryId

• dimensionId

• productTypes

Product

Acceptable imports values include the following:

• product

• productTypes

• productVariantOptions

Cart

Acceptable imports values include the following:

• defaultShippingCountry

• order

• payment

• shippingCountries

• shippingCountriesPriceListGroup

• shippingmethods

Checkout

Acceptable imports values include the following:

• billingCountries

• defaultBillingCountry

• defaultShippingCountry

• order

• payment

• paymentauthorization

• shippingCountries

Chapter 3
Acceptable values for the imports property

3-5

• shippingCountriesPriceListGroup

• shippingmethods

Confirmation

Acceptable imports values include the following:

• confirmation

• defaultShippingCountry

• shippingCountries

• shippingCountriesPriceListGroup

Order Details

Acceptable imports values include the following:

• defaultShippingCountry

• orderDetails

• shippingCountries

• shippingCountriesPriceListGroup

Shopper Profile

Acceptable imports values include the following:

• defaultShippingCountry

• shippingCountries

• shippingCountriesPriceListGroup

Wish List

Acceptable imports values include the following:

• space

Create the widget template file
With the exception of global widgets, all widgets require a template file, called
display.template, in the /widget/<widget-type>/templates directory.

The file takes the following structure:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 templates/
 display.template

Chapter 3
Create the widget template file

3-6

The template is rendered within the context of the widget and should be written as
straight HTML with no surrounding script tag. All knockout bindings and behavior are
available in the HTML template code.

Note: Additional templates are required if you want to fragment your widget into
elements. See Fragment a widget into elements for more details.

The following is an example of the Loyalty Payment widget’s template file:

<!-- ko if: ($data.paymentsContainer().isLoyaltyEnabled() &&
 ((CCRestClient.profileType ==
CCConstants.PROFILE_TYPE_AGENT &&
 $data.user().selectedPriceListGroup().currency &&

$data.user().selectedPriceListGroup().currency.currencyType ==
 CCConstants.LOYALTY_POINTS_PAYMENT_TYPE)
 || (CCRestClient.profileType !=
CCConstants.PROFILE_TYPE_AGENT &&
 $data.cart().currency &&
$data.cart().currency.currencyType ==
 CCConstants.LOYALTY_POINTS_PAYMENT_TYPE))) -->
 <div id="loyaltyPayment">
 <!-- oc layout: panels -->
 <div class="oc-panel" data-oc-id="panel-1">
 <!-- oc section: select-redeem-points -->
 <div data-bind="element: 'select-redeem-points'"></div>
 <!-- /oc -->
 </div>
 <!-- /oc -->
 </div>
<!-- /ko -->

Create custom widget JavaScript
You can customize JavaScript to add functionality for your widgets.

To add custom JavaScript to a widget you must create a JavaScript file under
the extension-name/widget/widget-type/js directory. The name of the
JavaScript file must match the value of the JavaScript property in the widget.json
file, minus the .js extension. The convention is to use the widget-type as the
JavaScript file name, without the .js suffix.

Note: As an easier coding option, there is JavaScript Code Layering feature that lets
you extend the JavaScript of an Oracle CX Commerce provided widget with your own
custom JavaScript. With the JavaScript Code Layering User Interface feature you can
open an additional user interface that lets you layer custom JavaScript on top of the
provided widget and which then has the benefit of staying on the provided widget. For
more details on this feature, see Modify Your Storefront Using Code Editing Tools and
Use the JavaScript Code Layering User Interface feature.

Custom JavaScript for a widget assumes that the file will perform some custom logic
and return an object with extensions to the widget’s view model. The JavaScript file
should implement the following format using RequireJS

Chapter 3
Create custom widget JavaScript

3-7

Note: The module must be defined anonymously, in other words, have no package
name defined in the module, as shown below.

define(
 // Dependencies
 ['jquery', 'knockout'],
 // Module Implementation
 function($,ko) {
 // We recommend enabling strict checking mode
 'use strict';
 // Private variables and functions can be defined here...
 var SOME_CONSTANT = 1024;
 var privateMethod = function () {
 // ...
 };
 return {
 // Widget JS
 // Some member variables...
 textInput: ko.observable(),
 // Some public methods...
 doSomethingWithInput: function () {
 //...

 }
 }
 });

The define statement above can be modified to include widget-specific libraries or
other JavaScript files, if required. When a widget is instantiated all properties returned
from the JavaScript file specified will be copied into that instance of the widget’s view
model. This allows you to define properties, make Web API calls, or handle UI events.

Understand this

Using this in the custom JavaScript is suitable when you refer to the widget itself, but
be careful of any callback methods where this may refer to a different context.

Include multiple JavaScript files

If your widget requires multiple JavaScript files, then any additional JavaScript files
can be loaded through the dependencies in the widget module’s define statement.

To derive the path of the dependency, use the path js/ to reference the widget’s
JavaScript folder followed by the path to the dependency but omitting the .js extension.
The following example is of widget called myWidget includes the following JavaScript
files:

myWidget/
 js/
 file1.js
 file2.js
 file3.js
 myWidget.js

Chapter 3
Create custom widget JavaScript

3-8

And myWidget.js is the main JavaScript file for the widget and it is dependent on
the other three JavaScript files, then the required dependencies in myWidget.js would
look like the following example:

// Dependencies
 ['js/file1','js/file2','js/file3'],

Running custom logic upon widget instantiation

If you must run custom logic when a widget is instantiated, then add an onLoad()
function to the widget JavaScript’s return object. The following is an example:

onLoad: function(widget) {
 //onLoad code here.
 }

onLoad() will run once the widget has finished loading and is populated with the
necessary data. This is the main access point to configure data for the widget after
its properties have been loaded and the system is ready to display the widget. As the
onLoad() function is only called the first time the widget is instantiated, when returning
to the same “page”, the widget does not need to be re-instantiated, so onLoad() is not
called again.

Running custom logic each time a widget appears on a page

If you require some logic to run each time the widget appears on the page, add the
beforeAppear() function to the widget JavaScript’s return object. The following is an
example:

beforeAppear: function(page) {
 // Code to run before showing the widget here. }

beforeAppear() is run once any re-population of mapping data has occurred. This can
be useful when a Web API call is required every time the widget is shown, or, some
other functionality required every time the widget is shown.

Specify a function runs when an HTML element is being rendered

onRender is a custom Commerce binding that tells a function to run when an HTML
element is being rendered on the page. The function is called in the current knockout
context (typically bound to the widget, but certain knockout constructs, such as for
each, may alter the binding context). For example, when the following div tag is
rendered, the addEventHandlersForAnchorClick function is called:

<div id="CC-customerProfile" data-bind="onRender:
addEventHandlersForAnchorClick">
 <!-- ... -->
 </div>

Chapter 3
Create custom widget JavaScript

3-9

Rely on mapping for a property vs. initializing it via JavaScript

Most of a custom widget’s data will come from the JSON. This data does not need to
be explicitly defined in the widget’s view model; knockout mapping will automatically
create it.

For any data that doesn’t come through JSON, the observable should be explicitly
defined in custom JavaScript. Otherwise, an error will be thrown if a template tries to
render the property while it’s undefined. For example, imagine a productName widget
that is configured with a productId and uses that productId to look up a product in
order to display its name. In this case, the productId can be a property defined via
koMapping as it should be returned by the JSON data. The product’s name, on the
other hand, is expected to be populated when the product look up completes, so it
needs to be defined in the JavaScript as productName: ko.observable(). Otherwise,
when the template is rendered, an error will be thrown because productName is not a
valid binding (it would be undefined).

Configure a widget’s style
You can customize your widgets by configuring the styles they use.

CSS specific to a widget is contained in the /widget/widget-type/less directory.
The following is an example:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 less/
 widget.less

These files are always named widget.less and any CSS can be added here.
Styling across the storefront is built using Less. A Less file, like widget.less, can
define style using the Less language or native CSS. Less files are compiled to make
one CSS file.

For the storefront, there are some Bootstrap Less files, common Less files, and
widget-specific Less files, which are compiled together into storefront.css. The
overall styling of the storefront is known as a Theme. Commerce provides tools to
manage Themes and allows merchants to change the storefront styling. You can use
the Theme Manager, or the Theme CSS to customize variables. See Customize your
theme, or Modify theme code. For information on working with Bootstrap variables,
refer to your Bootstrap documentation.

It is important that any style overridden within a widget Less file only applies to that
widget, and does not change the style across the storefront. One way to achieve this is
to format the widget’s styles using the Less nested format, for example:

.myWidgetClass {
 .myClass {
 color: red;
 }
 .otherClass {

Chapter 3
Configure a widget’s style

3-10

 color: blue;
 }
 }

In this case myWidgetClass is a class applied at the top-level of the widget’s template,
myClass is a class created for this widget and otherClass is a class that already exists
but the styles need to be modified slightly for this widget.

When this Less file is compiled, it produces CSS in the format shown below, which
ensures the changes to the styles for otherClass are only applied within this widget.
The following is an example:

.myWidgetClass .myClass {
 color: red;
 }
 .myWidgetClass .otherClass {
 color: blue;
 }

Note: If you design a custom style as part of an extension, the Less style may not
be compiled immediately after uploading the extension package. If this happens, open
the widget’s style in the code editor (on the Design page), make a superficial edit, and
then save. This process forces compilation of the style.

Localize a widget
You can customize widgets to recognize the language of the browser that your
customer is using.

Any text in a widget that does not come from a remote API call can be defined in a
resource bundle so that it can be localized. Note: You can include localized resources
in your widgets/elements by including a /locales directory. However, this is not
necessary. You can just as easily hardcode strings inside the HTML templates or
JavaScript source files.

Use resource files

The resources reside in the widget /locales directory, as shown in the following
example:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 locales/
 <locale code, for example, en or en_US>/
 ns.<widget-type>.json
 <other locale codes>/
 ns.<widget-type>.json

A child directory exists in the /locales directory for each locale you want to provide
resources for and their names can be either a two-letter language code (for example,

Chapter 3
Localize a widget

3-11

en) or a two-letter language code and a two-letter country code with an underscore in
between (for example, en_US). ISO 639-1 defines the two-letter language codes. ISO
3166-1 alpha-2 defines the two-letter country codes.

The naming convention for resource files contained in these directories is
ns.<widget-type>.json, for example, ns.mywidget.json. The ns prefix stands
for “namespace” and widget-type corresponds to the /widget/widget-type
directory. Resource files are in JSON format. Refer to the Resource loading section for
more information on this format.

Localizable resources are defined using JSON objects composed of string keys
mapped to string values. The keys represent the resource names and the values
represent the localized version of each resource. The i18next JavaScript library is
used to perform the client-side translations. An example locale file is shown below:

{
 "resources": {
 "siteNavigationFooter" : "Site Navigation Footer",
 "editFooterHeader" : "Select Header Links (multi-select allowed)"
 }
 }

Use resources in widgets

Primarily, widget resources are used when text in a widget display template is
translated. A Knockout custom binding named widgetLocaleText is available on the
storefront to invoke the translation of the resource using the store’s current locale.
This will ultimately call the i18next library, but that is invisible to the widget templates.
The following example shows using the widgetLocaleText binding in its simplest form,
passing in the resource key:

<h2 data-bind="widgetLocaleText: 'cartHeader'"></h2>

The resource files defined for a widget for the current locale are used to replace the
key with the right resource. The locale is defined for the storefront when the page is
loaded. In the current release of Commerce, the locale is defined for the Site. The
resources for the current locale are returned with the widget data when a page is
loaded. These resources are mapped onto a widget and also as a namespace for
il8next.

If you need to translate text within a widget’s JavaScript, use the translate function in
the widget view model. This would be required, for example, when sending a message
for display on the notification bar.

notifier.sendSuccess(widget.WIDGET_ID,
widget.translate('loginSuccessText'));

Use variable replacement

Rather than manually concatenating variables to localized strings, the il8next library
has support for variable replacement.

For example, a welcome message using the user’s first name can be defined in
a resource, such as, Welcome __userName__. Then, in the display template, the

Chapter 3
Localize a widget

3-12

translation can be invoked using a knockout object to set the userName variable, such
as the following:

<span data-bind="widgetLocaleText : {value:'welcome', attr:'innerText',
params:
 {userName: firstName()}}">

Note that in the JSON resource, a __doubleUnderscore__ notation marks the variables
but, when the resource is invoked in HTML or JavaScript, the underscores are omitted.
The i18Next library provides other mechanisms such as support for plurals. Refer to
the i18next section for more information.

Resource loading

By following the structure defined above for a widget, and putting the widget resources
under the /locales directory for a widget, the resources will be loaded for the widget
by the framework. The data to build a page in the storefront is retrieved from the
Pages Web API Endpoint. For the current page, this endpoint will return both context
data and the data related to the layout of the page, such as the regions and widgets to
load.

Included with the data about each widget are the resources. These resources are
then mapped onto the widget and loaded when the widget is loaded. The i18next
namespace used to load the resources is defined as part of the widget definition within
the server-side Page Repository. When a new widget is created, its widget.json file
defines a property called i18nresources. The following is an example:

{
 "name": "Widget Name",
 "version": 1,
 "javascript": "widget-type-js",
 "i18nresources": "widget-type",
 "availableToAllPages": true,
 "jsEditable": true,
 }

The i18nresources property for a widget is used to determine the file name for each
locale resource file, in the format ns.<i18nresources property>.json.

So, for the widget definition shown above, the resources file name would be
ns.widget-type.json. This i18nresources property is used in the storefront
framework when loading the resources and expects the format to be as defined here.
Since the resources are no longer loaded directly via a URL, the file name itself is less
important, but following the convention allows for consistency.

Use common resources: i18next

Currently there are two sets of expected common resources, as described in the
following:

• ns.common: Common text used across the store such as OK, Cancel, Close, and
so on.

• ns.ccformats: Defines a format for a number.

Chapter 3
Localize a widget

3-13

http://i18next.com/

Use common resources: moment

The moment.js library (see http://momentjs.com) is used in the storefront to format
dates. This requires a resource file per language. The en version comes with moment
but other languages require a separate JavaScript file.

Bundle images or other assets within widget
The simplest way to use custom resources (for example, images) in a widget is to
host them on an external server. The visitor’s browser then accesses them from that
location.

It is also possible to bundle custom images within the file structure of a widget. When
the extension is uploaded, the images are copied to a directory on the VFS, and you
can access them via the Widget Asset Mappings. If you have an image ‘image1.png’
stored in the images/ directory of your widget, you can reference that resource in
JavaScript with the following snippet:

widget.assetMappings["/images/image1.png"]();

The asset mapping is an observable, so use parentheses in JavaScript code to extract
the value.

You can also access the asset mapping from a knockout template, and be aware
of the current binding context (for example, if inside a loop, you may need to
use $parent to get back to the widget context). The sample below shows the HTML
for an asset mapping:

<img class="product-item-img" data-bind="attr: {src:
assetMappings[productImage] }">

Use ccLink binding for quicker page loading
Using the standard href link syntax, for example, About Us<a/>,
within a widget causes a full page load to occur.

For more efficiency, you should use the ccLink custom binding instead. When the
ccLink binding is used, widgets that are shared between the current page and the
linked page are maintained; in other words, they are not re-loaded and re-initialized.
Instead, when a ccLink binding is invoked, only the widget deltas are loaded; that is,
widgets that exist on the linked page but not on the current page.

The ccLink syntax for a hyperlink looks similar to the following:

<a data-bind="ccLink: 'aboutUs'">

To facilitate the ccLink binding, each widget has a links observable that contains all
of the data required to link to each of the page types in the storefront. The name
specified in the ccLink binding ('aboutUs' in the example above) is used to retrieve
data from that widget.links() object. For example, the following illustration shows
the properties that the widget.links() object contains for the aboutUs name:

Chapter 3
Bundle images or other assets within widget

3-14

http://momentjs.com

The ccLink binding uses two of these properties, route and displayName to generate
the code for the link. Specifically, it uses the route property for the link URL ("/
aboutUs" in the example). It uses the displayName property for the link text if there
is no existing text in the anchor tag ("About Us" in the example). Therefore, the
generated code for the aboutUs link would look like the following:

<a data-bind="ccLink: 'aboutUs' href="/aboutUs">About Us

As part of the code generation process, the ccLink binding adds a click event handler
to the anchor tag element. This event handler invokes internal Commerce code that
requests only the widget deltas for the linked page.

It is also possible to pass ccLink an object that contains all of the required data, rather
than using the widget.links() object data, for example:

<a data-bind="ccLink: {route: '/aboutUs', displayName:'Our History'}
">

Passing an object with all the required data is useful when working with the product
and collection view models. In this case, you can pass the full view model object to
the ccLink binding, for example:

<a data-bind="ccLink: product">

Within the product view model are properties like the following (in addition to many
others):

"displayName":"Block Table"
 "route":"/block-table/product/xprod2125"

With this usage, the generated code follows a similar approach, using the route
property for the link URL and the displayName property for the link text. The following
is an example:

<a data-bind="ccLink :product" href="/block-table/product/xprod2125">
 Block Table

Chapter 3
Use ccLink binding for quicker page loading

3-15

The same click event handler is added to the anchor tag for invoking the code that
requests only the widget deltas for the linked page.

Understand widget versioning
Widgets can be identified by their version.

If a version other than 1, which is the default, is specified for the version property in the
widget.json file, then Commerce will use that version number as part of the path
for loading widget files. For example, the JavaScript file for the first version of a widget
(either explicitly stated as "version" : "1" or no version specified) is loaded using
the URI. The following is an example:

/file/widget/myWidget/js/myWidget.js

If v1 is later replaced on the system with v2 of the same widget, then the JavaScript
file is loaded using the URI, as shown in the following:

/file/widget/v2/myWidget/js/myWidget.js

In other words, the root folder for the widget has changed from /file/widget/
myWidget to /file/widget/v2/myWidget. This can provide a form of cache-
busting, ensuring that the correct files are loaded for the widget.

However, Commerce does not allow multiple versions of a widget to be uploaded at
the same time. That is, if a version of a widget (v1) is uploaded in an extension and,
at a later time, a new version (v2) is to be uploaded, the extension containing v1 must
first be deactivated before the extension with v2 can be uploaded.

The version property in widget.json also serves as a useful reference for the
widget developer.

Add customizable widget settings
You can add settings to a widget that provide a finer level control over the widget’s
behavior when it is added to a layout.

For example, the Related Products widget has settings that allow the page designer
to specify the number of related products to show and whether to display the name or
price for related products. Any customizable settings that have been configured for a
widget are available via the widget’s Settings tab.

To view a widget’s Settings tab, perform the following steps:

1. From the Design menu, select the Layout tab.

2. From the Layout tab menu, select the layout that contains the widget whose
settings you want to view by clicking the grid view.
The layout shows all of the widgets used in the layout.

3. Click on the widget’s setting icon to view the widget information. Depending on
the widget you select, you may see different tabs available, such as Layout,
Settings and About.

4. When you have finished making your changes, click Save.

Chapter 3
Understand widget versioning

3-16

Any configurable widget settings you create are added to the widget’s view model
and can be referenced from the widget’s HTML template using a data-bind attribute.
Examples for creating the data bind are provided later in this section.

Define a widget’s configurable settings

Widget settings are defined using a JSON-based schema. To add configurable
settings to your widget, add the following files to your directory structure:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 config/
 config.json
 locales/
 en_US.json
 fr_FR.json

The resource files for configurable widget settings are stored in locale files within the /
<widget-type>/config/locales directory and are not read from the widget’s
localization resources. However, the structure of these locale files is identical to those
for widget localization resources; please refer to Localize a widget for examples.

Note that defining the locales in the format language_country (en_US) may cause
an error indicating that the locale file cannot be found. The locale folder should be
named using the language only, and if country-specific strings are preferred, you can
optionally include the locale_country folder.

The structure of a config.json file looks similar to the following:

{
 "widgetDescriptorName": "QuoteWidget",
 "properties": [
 {
 "id": "quoteWidgetTitle",
 "type": "sectionTitleType",
 "helpTextResourceId": "quoteWidgetTitle1HelpText",
 "labelResourceId": "quoteWidgetTitle1Label"
 },
 {
 "id": "quoteText",
 "type": "stringType",
 "helpTextResourceId": "quoteTextHelpText",
 "labelResourceId": "quoteTextLabel",
 "defaultValue": "",
 "required": true,
 "maxLength": 50,
 "minLength": 3,
 "pattern": "regex"
 },
 {
 "id": "quoteSource",
 "type": "stringType",

Chapter 3
Add customizable widget settings

3-17

 "helpTextResourceId": "quoteSourceHelpText",
 "labelResourceId": "quoteSourceLabel",
 "defaultValue": ""
 },
 {
 "id": "quoteStyle",
 "type": "booleanType",
 "helpTextResourceId": "quoteStyleHelpText",
 "labelResourceId": "quoteStyleLabel",
 "defaultValue": true
 },
 {
 "id": "quoteSize",
 "type": "optionType",
 "helpTextResourceId": "quoteSizeHelpText",
 "labelResourceId": "quoteSizeLabel",
 "defaultValue": "medium",
 "options": [
 {
 "id": "quoteSizeSmall",
 "value": "small",
 "labelResourceId": "quoteSizeSmallLabel"
 }, {
 "id": "quoteSizeMedium",
 "value": "medium",
 "labelResourceId": "quoteSizeMediumLabel"
 },
 {
 "id": "quoteSizeLarge",
 "value": "large",
 "labelResourceId": "quoteSizeLargeLabel"
 }
]
 }
]
 }

The widgetDescriptorName property names the widget for which these settings are
defined and it must match the name property in the widget’s widget.json file. The
properties array defines the configurable settings that should be added to the widget’s
Settings tab. For each property, the following standard keys are supported:

• id: A unique ID for the property. You use this ID in the widget’s HTML template to
create a data-bind to the property.

• name: A display name for the property that appears on the Settings tab. Note that
while this property is still available for backwards compatibility, it is preferable to
use the labelResourceId property, described below, to set the label for a property.

• type: The data type of the property. Refer below for supported data types.

• helpTextResourceId: The name of the key in the resource files whose value
provides help text for the property.

• labelResourceId: The name of the key in the resource files whose value provides
a label for the property on the Settings tab.

Chapter 3
Add customizable widget settings

3-18

• defaultValue: The property’s default value, which must be a valid value for the
property’s data type. See Use supported data types for configuration for more
information on data types.

• required: A Boolean flag that determine if the property requires a value.

Use supported data types for configuration

There are a number of data types that are supported for widget settings. To specify the
data type for a setting, you set the type key to one of the following values:

• stringType: Produces a text entry field that allows the page designer to specify a
free form text value.

• optionType: Produces a drop-down list of preset values. The values are specified
using an options array, shown in the example above.

• booleanType: Produces a checkbox that allows the property to be enabled or
disabled.

• mediaType: Produces a menu that allows you to select a media item (e.g. Image)
from your library, or by uploading a new file.

• sectionTitleType: Produces a read-only Section Title, defined by the
labelResourceId, and an optional block of descriptive help text, defined by the
helpTextResourceId, to allow you to group widget settings together. For example:

{
 "id": "quoteWidgetTitle",
 "type": "sectionTitleType",
 "helpTextResourceId": "quoteWidgetTitle1HelpText",
 "labelResourceId": "quoteWidgetTitle1Label"
 },

• collectionType: Produces a picker that allows you to select from the collections
defined in your catalog. You define the maximum number of collections that can be
chosen using the maxLength property. For example:

{
 "id": "collectionItem", "type": "collectionType",
 "name": "collectionPickerValue",
 "helpTextResourceId": "collectionPickerValueHelpText",
 "labelResourceId": "collectionPickerValueLabel",
 "maxLength": 5
}

• multiSelectOptionType: Produces a list of preset values, as does optionType;
however, you can select multiple values from this list. By default, the control
created for this data type is a drop-down list; however, you can add the
displayAsCheckboxes property to the setting definition and set it to true to display
a set of checkboxes instead. For example:

{
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": true,

Chapter 3
Add customizable widget settings

3-19

 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "card",
 "displayAsCheckboxes": true,
 "options": [
 {
 "id": "card",
 "value": "card",
 "labelResourceId": "cardLabel"
 }
]
 }

Depending on the data type it uses, a property will also support a number of data
type-specific keys. For the stringType data type, you can add the following keys:

• minLength: Minimum length of the string value.

• maxLength: Maximum length of the string value.

• pattern: A Java regular expression pattern to use for validating the string value.
The pattern key can also be used to handle number expressions. For example, the
configuration for a property that accepts a number in the range of 1 to 100 would
look similar to the following:

{
 "id": "numberField",
 "type": "stringType",
 "name": "numberField",
 "helpTextResourceId": "numberHelpText",
 "labelResourceId": "numberLabel",
 "pattern": "^[1-9][0-9]?$|^100$" }

For the optionType and multiSelectOptionType data types, you can add an options
key that contains a list of objects that describe the entries in the drop-down list. Each
option has the following keys:

• id: Unique ID for the option.

• value: The value of the option.

• labelResourceId: The resource key used to display the option in the drop-down
list.

As previously mentioned, the configurable settings you create are added to the
widget’s view model and can be referenced from templates using a data-bind
attribute. For example:

<div class="quoteContainer" data-bind="style : {fontSize : quoteSize}">
 <!-- ko ifnot : quoteText() == '' -->
 <blockquote data-bind="css : {quoted : quoteStyle}">
 <p data-bind="text: quoteText"></p>
 <!-- ko ifnot : quoteSource() == '' -->
 <footer data-bind="text : quoteSource"></footer>
 <!-- /ko -->
 </blockquote>
 <!-- /ko --> </div>

Chapter 3
Add customizable widget settings

3-20

Assign a global widget to multiple sites
Global widgets are widgets that are available to all sites in your environment. You can
use these widgets to create consistency throughout your sites.

By default, global widgets apply to all sites in your Commerce instance. You may
override this default and assign a global widget to be used on only specified sites. To
do this, you issue a POST request using the updateSiteAssociations custom action
of the widgetDescriptors resource and provide a list of sites in a sites property.
For example, the following request updates myGlobalWidget to execute on siteA and
siteB only:

POST /ccadmin/v1/widgetDescriptors/myGlobalWidget/
updateSiteAssociations {
 "sites": ["siteA", "siteB"]
 }

To remove site associations, issue a POST request using the same custom action with
the sites property set to null, as displayed in the following example:

POST /ccadmin/v1/widgetDescriptors/myGlobalWidget/updateSiteAssociations
 {
 "sites": []
 }

The following is an example response for a call made using the
updateSiteAssociations custom action, as shown in the following example:

{ "result": true,
 "links": [
 {
 "rel": "self",
 "href":
 http://localhost:9080/ccadmin/v1/widgetDescriptors/
recommendationsTracking_v1/
 updateSiteAssociations"
 }
]
 }

Note that any attempt to update site associations for a widget that is not global results
in an error, as will attempting to associate a global widget with a site whose ID does
not exist.

Chapter 3
Assign a global widget to multiple sites

3-21

4
Fragment a Widget into Elements

You can separate widgets into discrete elements. This allows a business user to
reposition individual elements on a widget without requiring knowledge of, or access
to, the underlying presentation code.

You can also use elements to create reusable chunks of functionality that is shared by
multiple widgets.

Understand elements
The following are two types of elements you can create:

• Widget-specific elements belong to a specific widget type and cannot be used by
any other widget type.

• Stand-alone elements are widgets that are not tied to a specific widget type and
can be used by multiple widget types.

As part of their configuration, elements define the widgets they can be placed on,
either implicitly (in the case of widget-specific elements) or explicitly (in the case
of stand-alone elements). Widgets can contain both widget-specific and stand-alone
elements as necessary. Business users can re-arrange, show, or hide elements of
both types using the tools in the Design page without the need for coding knowledge.

While it is not a hard and fast rule, the primary difference between widget-specific
elements and stand-alone elements is in the location of the JavaScript on which
they depend. For widget-specific elements, the JavaScript is typically contained in
the parent widget’s <widget-type>.js file. In this case, the element functions as
a display mechanism for functionality that exists in the parent widget. Removing an
element of this type from a widget on the Design page does not alter the functionality
of the parent widget; it just removes the element from the widget’s display.

Stand-alone elements typically have their own JavaScript functionality that is not
dependent on any single widget. As such, they can be fully encapsulated, making
it possible to share them among multiple widgets. Adding a stand-alone element to
a widget adds additional JavaScript functionality to the widget, along with display
mechanisms for that functionality. Note that, if you have an existing widget, you can
add a stand-alone element to it without the need to upload the whole widget again.

For a widget-specific element, you do not need to explicitly specify that it belongs to its
parent widget because you place the element’s configuration and code underneath the
parent widget’s directory. For stand-alone elements, you do need to explicitly define
which widgets can use the element. The Create the element directory structure and
Define widget meta-data in widget.json sections provide more details on these topics.

Choosing which kind of element to create depends on the purpose of the element. For
example, if you need to create a “today-element” to be used across multiple widgets,
the wise choice would be to create a stand-alone element and calculate today’s date
within that element’s JavaScript rather than rely on each widget to provide the date
calculation functionality.

4-1

Create the element directory structure
The location where you create the element directory structure determines if an
element is widget-specific or stand-alone.

Widget-specific elements are included in an element/ directory under the directory
structure for the widget type they pertain to. The following is an example:

<extension-name> : the root folder of your extension
 ext.json
 widget/
 <widget-type>/
 widget.json
 element/
 <element-name>/
 element.json
 templates/
 template.txt
 layouts/
 <layout-name>
 widget.template
 templates/
 display.template
 [additional widget-related directories for templates, JS,
CSS, etc]

Stand-alone elements are included, in an element/ directory, under the extension root.
The following is an example:

 <extension-name> : the root folder of your extension
 ext.json
 element/
 <element-name>/
 element.json
 templates/
 template.txt

Regardless of where you create your elements, each element must have a unique
name. An element directory may also contain one or more named directories
containing the JavaScript, HTML, and locale fragments related to the element, for
example:

<element-name>/
 element.json
 js/
 element.js
 locales/
 <locale code, for example, en or en_US>/
 ns.<element-name>.json
 <other locales>/
 ns.<element-name>.json

Chapter 4
Create the element directory structure

4-2

 templates/
 template.txt

Define element meta-data in an element.json file
You must define your new elements by providing meta-data that defines key
properties.

Similar to extensions and widgets, an element requires a manifest file, called
element.json, to define key properties. The contents of an element.json file look
similar to the following:

{
 "inline" : false,
 "supportedWidgetType" : ["widget-type", "widget-type", ...],
 "translations" : [
 {
 "language" : "en_EN",
 "title" : "Title in English",
 "description" : "Description in English"
 },
 {
 "language" : "de_DE",
 "title" : "Title in German",
 "description" : "Description in German"
 }
]
 }

The attributes available for element.json manifests are as follows:

• inline: A flag denoting whether the element should be inserted as a span
(inline=true) or div (inline=false) when it is added to a widget instance.

• supportedWidgetType: A list of widget-type names that determines the availability
of the element when editing widgets on the Design page. Either this property or
the availableToAllWidgets property, described below, is required for stand-alone
elements. Widget-specific elements do not require either property because they
are, by definition, consumed only by their parent widget.

• availableToAllWidgets: Set this property to true to allow a stand-alone element
to be placed on all widget types; the element will appear in the Element library for
all widgets. Omit this property altogether to restrict placement of the stand-alone
element to the widget types defined in the supportedWidgetType property.

• translations: An array that provides translations for both the element title and
description. The title is displayed in the Element library panel that you use to add
an element to its parent widget’s layout. The description is not displayed in the
Commerce user interface but can provide helpful information to a developer.
The translations property has three sub-properties, language, name and
description. The language property can be either a two-letter language code (for
example, en) or a two-letter language code and a two-letter country code with
an underscore in between (for example, en_US). ISO 639-1 defines the two-letter
language codes. ISO 3166-1 alpha-2 defines the two-letter country codes.

Chapter 4
Define element meta-data in an element.json file

4-3

Create the presentation for an element
When you create an element, you want to configure settings that allow you to present
the element on your site.

To create the presentation for an element on the storefront, you have to do the
following:

• Create the HTML content for the element

• Modify the widget’s display.template to include the element, thereby creating
an element-based widget.

• Add a widget.template file to manage editing of the element-based widget on
the Design page.

Create the HTML for the element

Each element contains a block of HTML in a file called template.txt, located in
element-name/templates. The format of this file is pure render-able HTML content
without doctypes or non-body sections, for example:

<h1 data-bind="text: title"></h1>

Modify the display.template and widget.template to use elements

Element-based widgets require two of the following templates:

• The display.template, already discussed in Create the widget template file,
provides the default presentation in the storefront for an element-based widget
before any changes are made via the Design page. It is located in extension-
name/widget/widget-type/templates.

• The widget.template provides the starting point for editing the widget’s template
in the Design page. It is located in extension-name/widget/widget-type/
layouts/layout-name/widget.template.

Both templates are required and they must have identical contents.

When designing an element-based widget, you need to add some additional tags to
both the display.template and widget.template files that enable elements to
be rendered as part of the output page and to be edited on the Design page. An
example of the tags is shown below:

 <!-- oc layout: panels -->
 <div class="row">
 <div class="col-md-12" data-oc-id="panel-1">
 <!-- oc section: product-image -->
 <div data-bind="element: 'product-image'"></div>
 <!-- /oc -->
 <!-- oc section: product-image-carousel -->
 <div data-bind="element: 'product-image-carousel'">
 </div>
 <!-- /oc -->
 </div>

Chapter 4
Create the presentation for an element

4-4

 </div>
 <!-- /oc -->

The tags that support breaking a widget into elements include the following:

• The oc layout tag tells Commerce to start parsing this section of the template for
use on the Design page. Any code that resides before or after the oc layout tag is
ignored by the Design page. Code within the tag is editable on the Design page.

• The outer div, <div class="row">, creates a standard Bootstrap row to contain
the elements. A widget template can have multiple rows to contain its elements.

• The inner div, <div class="col-md-12" data-oc-id="panel-1">, creates a
panel within the row (note that this is a Design page panel, not a traditional
Bootstrap panel). Panels contain draggable user interface elements that can be
repositioned when editing the widget on the Design page. A row can contain
multiple panels but their widths must add up to 12 (this is a requirement of the
underlying Bootstrap grid). For information on Bootstrap, refer to the Bootstrap
documentation.
Note: The Design page uses the data-oc-id attribute to identify each panel. This
custom attribute was created so that a page developer can alter the class or ID
attributes of the panel div without breaking the Design page’s functionality. Also,
the Design page is currently restricted to Bootstrap’s desktop grid classes, for
example, col-md-x.

• The oc section tags identify the individual draggable UI elements. Everything
contained in an oc section tag is repositionable as one atomic unit, even though
there may be multiple lines of code or many sub-elements within the section.
To specify an element within a panel, a <div> block is created and a data-bind
is used with element as the binding attribute and the name of the element as a
string. This name corresponds to the element’s directory.

Important: When you use the element binding, you must ensure that the current
binding context is the widget, or that you can return easily to the widget. There are
currently problems if you try to use the element binding within a ko foreach as
each iteration of the loop is bound to a list item.

The tags described above all use HTML comment syntax. This syntax is useful
because the tags do not need to be removed before being sent to the browser as they
have no visible effect on the storefront pages. Also, this format is familiar to Knockout
developers.

Create custom element JavaScript
Elements can include JavaScript if so required.

As with widgets, JavaScript for an element should be created as an anonymous
Require.js module using the format shown in the code example below. The module
must be named element.js and saved in the <element-name>/js/ directory for the
associated element. Within the module, you must create a variable called elementName
and set that variable to the name of the element. For example, if the element files are
added via an extension in <extension-name>/element/my-element, the value of

Chapter 4
Create custom element JavaScript

4-5

elementName needs to be my-element. After these requirements are met, you can add
whatever functionality your element requires to the module.

define(
 ['jquery', 'knockout', pubsub'],
 function($, ko, pubsub) {
 "use strict";

 return {
 elementName: 'my-element',
 };
 }
);

Note: See http://requirejs.org/docs/api.HTML#defdep for more details on Require.js
modules.

When a widget is loaded, the JavaScript for its elements gets added to the widget’s
view model. The element template is still loaded at the widget’s view model scope and
the element JavaScript is available via:

$data.elements['<elementName>']

It is a good practice to check for the element JavaScript before attempting to use it.
This can be done in the element’s template, as shown in the following example:

<!-- ko if: initialized() &&
$data.elements.hasOwnProperty('<elementName>') -->
 [Element template code] <!-- /ko -->

Note that without the initialized() && condition, the JavaScript loads correctly
but the template code within the block is not displayed. This is because the widget
template has been rendered and the if statement already evaluated to false by the
time the element JavaScript loads. The check on the widget’s initialized observable
ensures that the if statement will be re-evaluated when the value of initialized
changes from false to true.

onLoad()

To run custom logic when the element is instantiated, add an onLoad() function to the
element JavaScript’s return object, as displayed in the following example:

onLoad: function(widget) {
 //onLoad code here.
}

The onLoad() function runs once the element has finished loading and is populated
with the necessary data. This is the main access point to configure data for the
element after its properties have been loaded and the system is ready to display
the element. As the onLoad() function is only called the first time the element is
instantiated, when returning to the same “page,” the element does not need to be
re-instantiated and so onLoad() is not called again.

Chapter 4
Create custom element JavaScript

4-6

http://requirejs.org/docs/api.html#defdep

5
Use Stacks for Increased Widget Layout
Control

Page layouts are made up of regions into which widgets are placed.

By default, all widgets placed in a region take up the full width of the region and are
rendered vertically, one on top of the other. To introduce greater control over how
widgets are rendered within a region, you must create a stack extension. This chapter
describes what a stack extension is and how to create one. It includes:

Understand stacks
You can use stacks to group your widgets into regions and flows, for example, creating
a series of steps.

Internally, a stack is represented as a region at the same level as the other regions
in the page layout. A stack contains sub-regions that, in turn, contain widgets. The
following is an example:

Page layout
 [Other page regions]
 Stack [internally represented as a region]
 Sub-region 1
 Widget 1a
 Sub-region 2
 Widget 2a
 Widget 2b
 Sub-region 3
 Widget 3a
 Widget 3b
 [Other page regions]

The template for the stack contains any logic you need to manage the rendering of the
stack’s sub-regions and widgets. For example, a stack template can define a Bootstrap
tabbed container where each sub-region correlates to a tab and the widgets contained
in each sub-region are rendered on the associated tabs. This technique is used by the
Progress Tracker stack, which is the only stack extension included with Commerce.
Available on the Checkout layouts, the Progress Tracker allows you to create a series
of steps for the checkout process, for example, Login/Checkout, Customer Details,
Payment Details, and Review Order. Each checkout step is rendered in its own tab
and each tab contains the widgets that are necessary to render the user interface for
that step (along with a Next button to progress to the next step in the stack).

5-1

Bootstrap user interface controls that can help you manage the display of sub-regions
and widgets in a stack include, but are not limited to, tabs, pills, collapsible panels,
carousels, and modal dialog boxes. You can also create your own custom controls.
You code the controls as you normally would and make calls to the RegionViewModel
object, which represents the stack, to retrieve the sub-regions and widgets to be
rendered within each control.

Note: For details on adding a Progress Tracker stack to your page layouts, see
Customize your store layouts.

Create the stack structure
Stacks are added to an extension’s structure in a /stack directory that is at the same
level as the extension’s ext.json file.

Each stack should have its own child directory in the /stack directory. The following
example shows the directories and files that can be included for a stack:

<extension-name> : the root folder of your extension
 ext.json
 stack/
 <stack-type>/
 stack.json
 templates/
 stack.template
 less/
 stack.less
 stack-variables.less
 locales/
 <locale code>.json
 <another locale code>.json

Define stack meta-data in stack.json
The stack.json file, located in the /stack/<stack-type> directory, defines meta-
data for a stack.

Chapter 5
Create the stack structure

5-2

An example of a stack.json file is provided below:

{
 "availableToAllPages": true,
 "configurable":false,
 "configuration": {},
 "name": "Accordion Container",
 "regions": [
 {
 "name": "Accordion 1",
 "width": 12
 },
 {
 "name": "Accordion 2",
 "width": 12
 }
],
 "stackType": "accordionContainer",
 "styleSettings": {},
 "version": 1
 }

The following list describes all the properties that you might choose to include in a
stack.json file.

• availableToAllPages: Set this property to true to allow the stack to be placed on
all page types; the stack will appear in the Component library for all pages. Omit
this property altogether to restrict placement of the stack to the page types defined
in the pageTypes property. Note that this property and the pageTypes property are
mutually exclusive but one of them must be set.

• pageTypes: Defines which page types the stack can be placed on; the stack will
appear in the Component library for the specified pages. If you use this property,
you must omit the availableToAllPages property. Note that this property and the
availableToAllPages property are mutually exclusive but one of them must be
set.
Available page types include:

– product

– category

– home

– cart

– checkout

– confirmation

– article

– error

– searchResults

– noSearchResults

The stack will appear in the Component library for the page types you specify.

• configurable: Set this property to false. It is for future use.

Chapter 5
Define stack meta-data in stack.json

5-3

• configuration: Leave this array empty. It is for future use.

• name: Defines the display name for the stack in the component library.

• regions: An array that defines the default sub-regions that are available within the
stack when a new instance of this stack is created. Each item in the array includes
the following properties:

– name: The display name of the default region.

– width: This property is required to pass validation and should be set to 12.

• stackType: A unique identifier for the stack.

• styleSettings: Leave this array empty. It is for future use.

• version: The numeric version of the stack.

Create the stack template
Each stack requires a Knockout template called stack.template to render the
stack.

The stack.template file must reside in the /stack/<stack-type>/templates
directory. Using the stack’s RegionViewModel object, the stack.template can
access the sub-regions within the stack, via the regions observable array, and the
widgets within each sub-region, via the widgets observable array for each sub-region.

This section provides some examples to show you how you might create a template
that integrates Bootstrap UI controls with a stack’s content. The following code sample
shows the stack template for a tabbed container:

<div class="tabbedContainer">
 <!-- RENDER Bootstrap tabs -->
 <ul class="nav nav-tabs" data-bind="attr: { id: 'tabbedNav-'+id()+'-
pills'}">
 <!-- ko foreach: regions -->
 <li role="presentation" data-bind="css: {active: $index() ===
0},
 attr: { id: 'tabbedNav-'+$parent.id()+'-pill-'+$index() }">
 <a data-toggle="tab" data-bind="
 attr: { 'href':'#tabbedContainer-' + $parent.id() + '-
tab-' + $index()}">

 <!-- /ko -->

 <!—RENDER tabbed content --> <div class="tab-content">
 <!-- ko foreach: regions -->
 <div role="tabpanel" class="stage tab-pane" data-bind="
 attr: { id: 'tabbedContainer-'+$parent.id()+'-
tab-'+$index() },
 css: {active: $index() === 0}">
 <!—RENDER widgets in each tab -->
 <!-- ko foreach: widgets -->
 <div data-bind="
 template: {name: templateUrl(),templateSrc:

Chapter 5
Create the stack template

5-4

templateSrc()}">
 </div>
 <!-- /ko -->
 </div>
 <!-- /ko -->
 </div>
 </div>

This template includes two ko foreach: regions bindings. The first iterates over the
stack’s sub-regions and creates a tab for each sub-region. The second iterates over
the sub-regions again and renders the contents of each tab. The content rendering is
accomplished through a ko for each: widgets binding that iterates over the widgets
contained in each sub-region.

Similarly, the following code excerpt shows the rendering of widgets in collapsible
panels:

<!-- RENDER displayName from the stack -->
 <h2 data-bind="text:displayName"></h2>
 <div class="panel-group" id="accordion" role="tablist">
 <!-- RENDER stack sub-regions -->
 <!-- ko foreach: regions -->
 <div class="panel panel-default">
 <div class="panel-heading" role="tab" id="headingOne">
 <h4 class="panel-title">
 <a role="button" data-toggle="collapse" data-
parent="#accordion"
 data-bind="attr: {
 'href': '#accordionContainer-' + $parent.id() +
'-tab-' + $index()},
 text:displayName" aria-expanded="true" aria-
controls="collapseOne>

 </h4>
 </div>
 <div class="panel-collapse collapse" role="tabpanel"
 aria-labelledby="headingOne"
 data-bind="attr: {
 id: 'accordionContainer-'+$parent.id()+'-tab-'+$index() },
 css: {in: $index() === 0}">
 <div class="panel-body">
 <!-- RENDER widgets within each sub-region -->
 <!-- ko foreach: widgets -->
 <div data-bind="template: {
 name: templateUrl(),
 templateSrc: templateSrc()}">
 </div>
 <!-- /ko -->
 </div>
 </div>
 </div>
 <!-- /ko -->
 </div>

Chapter 5
Create the stack template

5-5

This code iterates over the sub-regions in the stack and renders a collapsible panel
for each one. To define the content for each panel, the code iterates over the widgets
in each sub-region and renders them using the template defined in the template
data-bind.

Configure a stack’s style
CSS specific to a stack is contained in the /stack/<stack-type>/less directory.
The following is an example:

<extension-name> : the root folder of your extension
 ext.json
 stack/
 <stack-type>/
 stack.json
 less/
 stack.less
 stack-variables.less

A style file for a stack is always named stack.less and any variables referenced in
this style file are contained in a companion file called stack-variables.less. An
example of a stack.less file is shown below:

.tabbedContainer {
 .nav-tabs {
 span {
 text-align: @tabTitleAlignment;
 }
 }
 .nav-tabs > li > a {
 background-color: @tabBackgroundColor;
 color: @tabTextColor;
 }
 .nav-tabs > li.active > a {
 background-color: @activeTabBackgroundColor;
 color: @activeTabTextColor;
 }
 }

A supporting stack-variables.less file for this example would look similar to the
following:

@activeTabBackgroundColor:#195D8E;
@activeTabTextColor:#FFFFFF;
@tabBackgroundColor:#d1d1d1;
@tabTextColor:#3d3d3d;
@tabTitleAlignment:center;

The stack.less file, like a widget.less file, can define a stack’s styles using the
Less language or native CSS. Less files across the entire storefront are compiled to
make one CSS file.

Chapter 5
Configure a stack’s style

5-6

Similar to widgets, it is important that any style overridden within a stack Less file only
applies to that stack, and does not change the style across the storefront. One way
to achieve this is to format the stack’s styles using the Less nested format. For more
details on this approach, see Configure a widget’s style.

Note: If you design a custom style as part of an extension, the Less style may not be
compiled immediately after uploading the extension package. If this happens, open the
stack’s style in the code editor (on the Design page) and make a superficial edit, then
resave. This process forces compilation of the style.

Create a quick view popup using a popup stack
Popup stacks enable a shopper to view information on a popup screen and are mostly
related to product listings.

For further details on popup stacks, see Customize your store layouts.

One instance of the popup stack is the Quick View Popup Stack which is available
within the Collection and Search Results layouts. You can apply the same quick view
logic to the Related Products widget, available on the Product layout, and the Product
Recommendations widget, available on all layouts.

The following illustrates applying the quick view popup logic to the Related Products
widget:

1. Create a new instance of the Related Products widget within the Product layout.

2. Edit the related-products-carousel element by adding the global Quick View
element, within the cc-item-detail HTML element. This should be bound with an
instance of a ProductViewModel.

 <!-- ko foreach: relatedProductGroups -->
 <div class="item row" data-bind="css:{'active': $index()==0},
for each: $data">
 <div data-bind="css: $parents[1].spanClass()" class="cc-
product-item">
 <div class="cc-item-detail">
 <!-- Quick View -->
 <div data-bind="setContextVariable: {name:'product',
value: $data}"
 class="quickViewElement">
 <!-- ko with: $parents(1) -->
 <div data-bind="element: 'product-quickview', attr:
{ id:'product-quickview-grid-' + $parent.id() } ">
 </div>
 <!-- /ko -->
 </div>
 <!-- Quick View -->

3. Add CSS styling to the Quick View element within the Related Products widget.

#cc-relatedProducts {
 quick-view {
 position: absolute;
 display: none;
 padding: 5px 10px;

Chapter 5
Create a quick view popup using a popup stack

5-7

 background-color: #195d8d;
 color: white;
 border: 1px dotted white;
 cursor: pointer;
 p: {
 font-weight: bold;
 margin:0;
 }
 }
 .carousel.inner {
 .cc-item-detail {
 .quick-view {
 left: 32%;
 top: 50%;
 }
 }
 }
 .cc-item-detail: hover {
 .quick-view {
 display:inline-block;
 }
 }

4. Save your changes and open the Layout tab.

5. Open the Product layout and select Grid View from the configuration toolbar.

6. Locate the Product Details widget, add a new row below it, and drag a Popup
Stack to that new row.

7. Open the Main sub-region and drag the Related Products widget to it from the
Components menu.

8. Open the Popup sub-region and drag the Product Details widget to it from the
Components menu. Use the existing instance of the Product Quick View.

9. Publish the changes, and verify them on the storefront.

Notes

• Changing the Related Products Carousel element will not cause the Related
Products widget to break when it is not implemented with the Quick View, as there
is a check to ensure that the widgets exist within a stack before it displays the
quick view link.

• The example assumes that some related products have already been set up in the
catalog, otherwise the widget is not displayed.

Chapter 5
Create a quick view popup using a popup stack

5-8

6
Add Site Settings

An extension can contain site settings, which are configurable parameters that are
globally accessible to the storefront code.

Site settings are added to the Site view model and are available for use by all widgets.
Site settings allow you to create a single setting that controls a feature across multiple
widgets. A site settings extension creates a custom settings panel in the administration
interface after it has been uploaded. This panel allows merchandisers to configure the
settings. To see a site settings panel, go to the Settings page and click the name of the
site settings extension under Extension Settings. For example, the illustration below
shows a Sample Site Settings extension that allows a merchandiser to configure a
variety of settings.

Any site settings you create can be referenced from a widget’s HTML template using
a data-bind attribute. Examples for creating the data-bind are provided later in this
section.

Define site settings
When you create widgets, you want to define the settings that it follows to display your
site.

Site settings are defined using a JSON-based schema. To add site settings to your
storefront, add the following files to your directory structure:

<extension-name> : extension root directory
 ext.json

6-1

 config/
 <settingsID>/ : site settings root directory
 config.json
 locales/
 en_US.json
 fr_FR.json

The resource bundles for site settings are stored in locale files under the /config/
locales directory and look similar to the following:

{
 "resources" : {
 "enabledHelpText": "Enable the cart message.",
 "enabledLabel": "Cart Message",
 "couponHelpText": "Define the coupon name.",
 "couponLabel": "Coupon",
 "minSpendHelpText": "Define the minimum spend amount for the
coupon.",
 "minSpendLabel": "Minimum Spend",
 "sizeHelpText": "The size of the banner.",
 "sizeLabel": "Banner Size",
 "sizeSmallLabel": "Small",
 "sizeMediumLabel": "Medium",
 "sizeLargeLabel": "Large",
 "passwordHelpText": "Set the value for API key.",
 "passwordLabel": "API Key",
 "title": "Sample Site Settings",
 "description":"Examples of site settings."
 }
 }

The structure of these files is identical to those for widget localization resources. Refer
to Localize a widget for examples.

The structure of a config.json file looks similar to the following:

{
 "widgetDescriptorName": "multisiteconfigdemo",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "properties": [
 {
 "id": "enabled",
 "type": "booleanType",
 "name": "enabled",
 "helpTextResourceId": "enabledHelpText",
 "labelResourceId": "enabledLabel",
 "defaultValue": true
 },
 {
 "id": "coupon",
 "type": "stringType",
 "name": "coupon",
 "helpTextResourceId": "couponHelpText",

Chapter 6
Define site settings

6-2

 "labelResourceId": "couponLabel",
 "defaultValue": "SHIP100",
 "minLength": 6,
 "maxLength": 10,
 "required": true
 },
 {
 "id": "minSpend",
 "type": "stringType",
 "name": "minSpend",
 "helpTextResourceId": "minSpendHelpText",
 "labelResourceId": "minSpendLabel",
 "defaultValue": "100",
 "required": true
 },
 {
 "id": "password",
 "type": "passwordType",
 "name": "password",
 "helpTextResourceId": "passwordHelpText",
 "labelResourceId": "passwordLabel",
 "required": true
 },
 {
 "id": "bannerSize",
 "type": "optionType",
 "name": "bannerSize",
 "required": true,
 "helpTextResourceId": "sizeHelpText",
 "labelResourceId": "sizeLabel",
 "defaultValue": "s",
 "options": [
 {
 "id": "sizeSmall",
 "value": "s",
 "labelResourceId": "sizeSmallLabel"
 },
 {
 "id": "sizeMedium",
 "value": "m",
 "labelResourceId": "sizeMediumLabel"
 },
 {
 "id": "sizeLarge",
 "value": "l",
 "labelResourceId": "sizeLargeLabel" }
]
 }
]
 }

The titleResourceId property specifies a key in the resource bundles that is used
to retrieve the title for the panel in the administration interface; for example, “Sample
Site Settings” in the illustration above. The descriptionResourceId property specifies

Chapter 6
Define site settings

6-3

a key for the descriptive text that appears below the title. In the illustration, this is
“Examples of site settings.”

The remainder of the config.json file consists of a properties array that defines
individual site settings and their key/value pairs. Site settings use the same standard
keys as configurable widget settings, namely id, name, type, helpTextResourceId,
labelResourceId, defaultValue, and required. Site settings can also use the same
data types that are available to configurable widget settings, for example, stringType,
multiSelectOptionType, and so on. Both the standard keys and the data types are
described in full detail in Define a widget's configurable settings.

Configure settings per site

Site settings can be configured on a site-by-site basis. If your Commerce instance is
running multiple sites, the values a merchandiser specifies in a settings panel apply
only to the currently selected site. The merchandiser can then select another site and
supply different values for that site.

In some cases, a site settings panel may have settings that make sense for certain
sites but not for others. In this situation, you can give merchandisers the option of
disabling a site settings panel completely for individual sites. To do this, include the
following in the config.json file of the extension that creates the panel:

"enableSiteSpecific": true

This setting must appear in top-level array in the file (that is, not within the properties
array).

Setting enableSiteSpecific to true adds a checkbox to the panel for specifying
whether the settings in the panel are enabled for the current site. The checkbox
is initially selected for each site, but a merchandiser can deselect it for individual
sites. Deselecting the checkbox disables the panel for a site and causes the fields in
the settings panel to disappear for that site. The fields reappear if the merchandiser
subsequently selects the checkbox again.

Reference site settings in widget templates
Any site settings you create are added to the Site view model and can be referenced
from templates using a data-bind attribute, for example:

<p data-bind="text: site().extensionSiteSettings['settingsID']
['propertyID']"></p>

Where settingsID is the name of the site settings root directory and propertyID is
the value of the id property for the property you want to access, as defined in the
properties array. For example, assuming the earlier example has a site settings root
directory of my-settings and you want to access the mediaPicker property, you would
use the following:

<p data-bind="text: site().extensionSiteSettings['my-settings']
['mediaPicker']"></p>

Chapter 6
Reference site settings in widget templates

6-4

To use multiple properties from the same site settings extension, you can use
something similar to the following:

<!-- ko with: site().extensionSiteSettings['settingsID'] -->
 <p data-bind="text: propertyID"></p>
 <p data-bind="text: otherPropertyID"></p>
<!-- /ko -->

Chapter 6
Reference site settings in widget templates

6-5

7
Include Application-level JavaScript
Modules

You can use an extension to upload application-level JavaScript files.

JavaScript files uploaded using this mechanism are loaded as part of the main
module, before any endpoints have been fired and before any widgets have been
loaded. As such, they can be referenced as a dependency in any widget, allowing
you to build reusable modules that can be shared among widgets and elements.
The remainder of this section describes how to create an extension that contains
application-level JavaScript modules and provides some useful examples.

Create the extension structure for application-level
JavaScript

To add application-level JavaScript files to an extension, create a global/ directory in
the extension’s root folder. The following is an example:

<extension-name> : The root folder of your extension
 ext.json
 global/
 <application-level-module-1>.js
 <application-level-module-2>.js
 <application-level-module-n>.js

Place any application-level JavaScript files in this global/ directory. There is no limit
to the number of files you can place in the global/ directory but the files themselves
must follow these rules:

• They must be anonymous, that is, have no package name defined in the module.

• Structurally, they must be valid RequireJS modules.

• Each filename must be unique. If a file with the same name has been loaded in
another extension, an error is returned.

Run custom logic upon module instantiation
Similar to widgets, you can use the onLoad() method to run custom logic once an
application-level JavaScript module is instantiated, for example:

return {
 onLoad : function() {
 CCLogger.info("Loading Demo KO Bindings");
 }
 };

7-1

Reference an application-level module in a widget
To reference an application-level module in a widget, you must list the module as a
dependency using the ccResourceLoader library.

For example, the following code creates a dependency on the
demo.shared.viewmodels module:

define(
 //--

 // DEPENDENCIES
 //--

 ['jquery', 'knockout', 'ccLogger',
 'ccResourceLoader!global/demo.shared.viewmodels'],
 //--

 // Module definition
 //--

 function ($, ko, ccLogger, sharedViewModel) { 'use
strict';
 return {
 onLoad : function(widget) {
 widget.firstName =
sharedViewModel.viewModel().firstName;
 widget.surname = sharedViewModel.viewModel().surname;
 widget.doMessage = sharedViewModel.doMessage;
 }
 };
 }
);

Note that you cannot reference an application-level module from another application-
level module. Application-level modules are loaded in parallel whenever a page is
loaded, meaning that the order in which they are loaded is not guaranteed. This
means that you cannot have a dependency form one application-level module to
another.

Application-level JavaScript examples
This section provides some useful examples for how you might use application-level
JavaScript modules.

This first example adds a reusable Knockout custom binding that can be used across
widgets:

define(
 //--

 // DEPENDENCIES

Chapter 7
Reference an application-level module in a widget

7-2

 //--

 ['jquery', 'knockout', 'ccLogger'],
 //--

 // Module definition
 //--

 function($, ko, CCLogger) {
 'use strict';
 // A simple binding that highlights an element when it
loses focus.
 ko.bindingHandlers.highlight_on_blur = {
 init: function (element, valueAccessor, allBindings,
viewModel,
 bindingContext) {
 $(element).on('blur.demo.ko', function() {
 $(this).css('background-color','yellow');
 });
 $(element).on('focus.demo.ko', function() {
 $(this).css('background-color','white');
 });
 }
 };
 return {
 onLoad : function() {
 CCLogger.info("Loading Demo KO Bindings");
 }
 };
 }
);

This example demonstrates how to create an application-level module with reusable
methods or view models:

define(
 //---
 // DEPENDENCIES
 //---
 ['jquery', 'knockout', 'ccLogger'],
 //---
 // Module definition
 //---
 function($, ko, CCLogger) {
 'use strict';
 return {
 onLoad : function() {
 CCLogger.info("Loading Demo Shared View Models");
 },
 doMessage : function() {
 alert("Shared View Models");
 },
 viewModel : ko.observable({
 firstName : ko.observable('Bob'),

Chapter 7
Application-level JavaScript examples

7-3

 surname : ko.observable('Test')
 })
 };
 }
);

Assign an application-level JavaScript module to multiple
sites

You can create a JavaScript module that spans multiple sites.

By default, application-level JavaScript modules apply to all sites in your Commerce
instance. You may override this default and assign an application-level JavaScript
module to be used on only specified sites. To do this, you issue a POST request using
the updateSiteAssociations custom action of the applicationJavaScript resource
and provide a list of sites in a sites property. For example, the following request
updates myJSModule.js to execute on siteA and siteB only.

POST /ccadmin/v1/applicationJavaScript/myJSModule.js/
updateSiteAssociations
 {
 "sites": ["siteA", "siteB"]
 }

To remove site associations, issue a POST request using the same custom action with
the sites property set to null. The following is an example:

POST /ccadmin/v1/applicationJavaScript/myJSModule.js/
updateSiteAssociations
 {
 "sites": []
 }

The following is an example response for a call using the updateSiteAssociations
custom action:

{ "result": true,
 "links": [
 {
 "rel": "self",
 "href": http://localhost:9080/ccadmin/v1/applicationJavaScript/
 demo.ko.extenders.js/updateSiteAssociations"
 }
]
}

To retrieve a list of all application-level JavaScript modules along with the sites they
are associated with, issue a GET request to the applicationJavaScript resource. An

Chapter 7
Assign an application-level JavaScript module to multiple sites

7-4

empty sites list means that a module will be loaded on all sites. The following is an
example:

GET /ccadmin/v1/applicationJavaScript

For example:

{
 "items": {
 "ext.ko.extenders.js": {
 "sites": []
 },
 "ext.shared.viewmodels.js": {
 "sites": [
 "siteUS"
]
 }
 },
 "links": [
 {
 "rel": "self",
 "href": http://localhost/ccadmini/v1/applicationJavaScript/?
sites=siteUS
 }
]
 }

Chapter 7
Assign an application-level JavaScript module to multiple sites

7-5

8
Filter REST Responses

You can define filters that limit the data returned in REST responses, thereby
improving performance.

Response filters are persistent and defined ahead of time, and then passed as part of
a REST request. The server uses the response filter to determine which fields to return
in response to the request. A response filter has an identifying name (the response
filter key), and two lists of fields, one for fields to include in the response and one for
fields to exclude. A response filter can configure fields to include, fields to exclude, or
both. It is the response filter’s key that is passed in the data that is sent with a REST
request. You create and update response filters via the REST API. For details on how
to do see Response filters. This section discusses how to use a response filter once it
has been created.

Note: The response filter functionality described in this section is, at its core, a
wrapper for the existing fields and exclude query parameters in REST requests
and it behaves the same way. Instead of sending a complete list of fields to include
or exclude in the query parameters, you can create a persistent filter containing that
data and then pass that filter instead. To support backward compatibility, if you pass
a fields or exclude query parameter and a filter in a request, the filter is ignored. For
more information on the fields and exclude query parameters, see REST API query
parameters.

Out-of-the-box response filters
A set of response filters has been defined out of the box and some out-of-the-box
widgets and one view model use them by default.

The following sections list the response filters along with the entities that use them.

• PLPData, used by the Product Listing widget

• categoryNavData, used by the Collection Navigation and Collection Navigation –
Basic widgets

• collectionData, used by the Collection widget

• productData, used by the cartViewModel when calling the listProducts
endpoint.

You can send a request to the listFilters endpoint in the Admin API to retrieve a
list of the fields that are included or excluded for each of these response filters noted
above. For details on how to do see Response filters.

Pass a response filter key in a REST call made from a
widget

Once you have created a response filter via the REST API, you can pass its key in the
data a widget sends along with a REST request.

8-1

The server uses the key to locate the correct response filter and then returns data
accordingly. The simplest way to include a response filter key is to hard code it in the
REST call, for example:

data["filterKey"] = "my-filter-key";

 ccRestClient.request(url, data,
 this.successFunc.bind(this),
 this.errorFunc.bind(this));

Commerce also provides a mechanism for programmatically determining the response
filter key to pass in a REST call, allowing you to avoid hard coding it into the
widget itself. This mechanism is described in Programmatically determine the correct
response filter key.

Programmatically determine the correct response filter key
Commerce also provides a mechanism for programmatically determining the response
filter key to pass in a REST call, allowing you to avoid hard coding it into the widget
itself.

The programmatic mechanism for determining which response filter key to pass in a
REST request has several parts, as follows:

• A context object that is instantiated in the widget’s JavaScript file.

• A filter map that is defined in an application-level JavaScript file.

• The CCStoreConfiguation library.

The context object contains the data required for locating the correct response filter
key in the filter map. The widget instantiates the context object with the necessary data
and then passes it to the CCStoreConfiguration library’s getFilterToUse() method,
which locates the correct response filter key in the filter map and returns it to the
widget.

Enable programmatic filter key determination

You must enable programmatic filter key determination before you can use it. To do
so, create an application-level JavaScript module that lists the CCStoreConfiguration
library as a dependency and includes the following code:

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {
 'use strict';

 return {
 onLoad : function() {
 CCStoreConfiguration.getInstance().enableFilter();

Chapter 8
Programmatically determine the correct response filter key

8-2

 },
 }
 }
);

See Include Application-level JavaScript Modules for details on creating and uploading
an application-level JavaScript module.

Understand the filter map

The filter map uses a prioritized structure of top-level objects and nested sub-objects.
CCStoreConfiguration compares the data in the context object to that prioritized
structure when locating the key. The following code sample shows the out-of-the-box
filter map that Commerce uses. In it, the filter map sets the priorityList variable to
["endpoint","page","identifier"], meaning that CCStoreConfiguration will first try
to find a top-level object that matches the endpoint in the context object, then it will
search inside that object for a matching page object, then it will search inside that
object for a matching identifier object. The following is an example:

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {
 'use strict';
 return {
 onLoad : function() {
 console.log("Loading Application Level JS");
 var priorityList = ["endpoint","page","identifier"];
 var newFilterMap = {
 "getCollection":{
 "megaMenuNavigation": {"ccFilterConfigKey":
"categoryNavData"},
 "categoryNavigation": {"ccFilterConfigKey":
"categoryNavData"}
 },
 "listProducts":{
 "productListingData": {"ccFilterConfigKey":
"PLPData"},
 "collectionWidget": {"ccFilterConfigKey":
"collectionData"},
 "getProductData": {"ccFilterConfigKey":
"productData"},
 "getProductDataAndRedirect":
{"ccFilterConfigKey": "productData"}
 }
 };

CCStoreConfiguration.getInstance().updateFiltersToUse(newFilterMap);
 },
 }

Chapter 8
Programmatically determine the correct response filter key

8-3

 }
);

The top-level objects in the out-of-the-box filter map correspond to endpoints
and their sub-objects correspond to identifiers. In other words, getCollection
and listProducts represent endpoints and their children (megaMenuNavigation,
categoryNavigation, productListingData, and so on) represent identifiers. (Note
that the getCollection and listProducts endpoints return data that is page-
independent so, even though the priority list includes page, page objects are not
defined for these two endpoints in the out-of-the-box filter map.)

To understand how CCStoreConfiguration compares the contents of a context object
to the filter map, we will compare the following context object to the out-of-the-box filter
map:

var contextObj = {};
 contextObj["endpoint"] = "getCollection";
 contextObj["identifier"] = "categoryNavigation";

When considering this context object, CCStoreConfiguration first looks for a matching
endpoint among the top-level objects in the filter map (because endpoint is first in
the priority list). In this case, CCStoreConfiguration finds the getCollection top-level
object. Next, CCStoreConfiguration looks for a matching page sub-object within the
getCollection top-level object (because page is second in the priority list). The
context object does not have page data, however, so CCStoreConfiguration moves
on to find the next piece of data in the priority list, which is identifier. The thing
to note here is that CCStoreConfiguration continues to look for the next piece of
data in the current object. In other words, it looks for a categoryNavigation sub-
object in the getCollection top-level object. When CCStoreConfiguration finds the
categoryNavigation sub-object, it sees that the object has a ccFilterConfigKey
defined for it. CCStoreConfiguration retrieves this filter key, categoryNavData, and
returns it to the widget.

You can set your priority list and the object structure of your filter map in any way that
makes sense for your implementation and then define context objects in your widgets
that use that updated structure. However, keep in mind that the out-of-the-box filters,
and the widgets that use them, may be affected by changes you make and may need
modifications as a result.

Create a context object and use it to retrieve the response filter key

To create a context object and use it to retrieve a response filter key, add code
similar to the following to the widget’s JavaScript file. Note that you must also add a
dependency on the CCStoreConfiguration library. The following is an example:

// Add the CCStoreConfiguration library as a dependency for this widget
 // Create the context object and populate it
 var contextObj = {};
 contextObj["endpoint"] = "endpoint-name";
 contextObj["identifier"] = "identifier-in-filter-map";
 // Call the getFilterToUse method to retrieve the response filter key
 var filterKey =
CCStoreConfiguration.getInstance().getFilterToUse(contextObj);
 // Add the filterKey to the data passed with the REST call

Chapter 8
Programmatically determine the correct response filter key

8-4

 if (filterKey) {
 data["filterKey"] = filterKey;
 }
 //Make the REST call
 ccRestClient.request(url, data,
 this.successFunc.bind(this),
 this.errorFunc.bind(this));
 }

Add a new response filter key to the out-of-the-box filter map

The following code sample creates new identifiers in the out-of-the-box filter map for
calls made to the getCollection and productListing endpoints. The new identifier
for the getCollection endpoint is customIdentifer1 and the response filter key that
is returned for it is customFilterKey1. The new identifier for the productListing
endpoint is customIdentifer2 and the response filter key that is returned for it is
customFilterKey2. The following is an example:

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {
 'use strict';
 return {
 onLoad : function() {
 console.log("Loading Application Level JS");
 var priorityList = ["endpoint","page","identifier"];
 var newFilterMap = {
 "getCollection":{
 "megaMenuNavigation": {"ccFilterConfigKey":
"categoryNavData"},
 "categoryNavigation": {"ccFilterConfigKey":
"categoryNavData"},
 "customIdentifier1": {"ccFilterConfigKey":
"customFilterKey1"}
 },
 "listProducts":{
 "productListingData": {"ccFilterConfigKey": "PLPData"},
 "collectionWidget": {"ccFilterConfigKey":
"collectionData"},
 "getProductData": {"ccFilterConfigKey": "productData"},
 "getProductDataAndRedirect": {"ccFilterConfigKey":
"productData"},
 "customIdentifier2": {"ccFilterConfigKey":
"customFilterKey2"}
 }
 };

CCStoreConfiguration.getInstance().updateFiltersToUse(newFilterMap);
 },

Chapter 8
Programmatically determine the correct response filter key

8-5

 }
 }
);

Note that, when you override the filter map, the top-level objects you define completely
replace any existing top-level objects. In other words, if you created a new filter map
that looked as follows:

// This code overwrites the getCollection top-level object entirely
var newFilterMap = {
 "getCollection":{
 "customIdentifier1": {"ccFilterConfigKey":
"customFilterKey1"}
 },
 };

You would lose the megaMenuNavigation and categoryNavigation identifiers defined
out of the box for the getCollection top-level object. However, the listProducts
top-level object would remain unchanged because no new top-level object definition
for it has been introduced. For this reason, you should be careful to include the
default identifiers, shown earlier, along with any new identifiers you create unless you
explicitly intend to overwrite them.

Use defaults in the filter map

The filter map supports the concept of defaults at each object level. When
CCStoreConfiguration cannot find a match for a piece of data in the context object, it
looks for a default. If it finds a default, it searches within that default object’s children
for the next piece of data in the priority list. If it cannot find a match or a default, it will
not return a response filter key.

The concept of default objects can exist at any level in a filter
map. For example, consider this filter map that sets its priority list to
["endpoint","page","identifier","viewport"]:

var newFilterMap = {
 "endpoint1": {
 "page1":{"cc-filter-config-key": "key1"},
 "page2":{"cc-filter-config-key": "key2"},
 "page3":{
 "identifier1":{"cc-filter-config-key":
"key3"},
 "identifier2":{"cc-filter-config-key":
"key4"},
 "cc-filter-config-key": "key11",
 "default":{
 "viewport1":{"cc-filter-config-key":
"key5"},
 "viewport2":{"cc-filter-config-key":
"key6"},
 "default":{"cc-filter-config-key": "key7"}
 }
 },
 "cc-filter-config-key": "key8",

Chapter 8
Programmatically determine the correct response filter key

8-6

 "default":{
 "identifier1":{"cc-filter-config-key":
"key9"},
 "default":{"cc-filter-config-key": "key10"}
 }
 }
};

The following table lists a variety of sample context objects and the response filter key
that would be returned for them based on this filter map:

Context Object Data Filter Key Returned

endpoint1 key8

endpoint1, page1 key1

endpoint1, page3 key11

endpoint1, page3, identifier1 key3

endpoint1, page3, identifier2 key4

endpoint1, page1, identifier3 key1

endpoint1, page3, identifier3, viewport1 key5

endpoint1, page3, identifier3, viewport3 key7

endpoint1, page4 null

endpoint1, page4, identifier1 key9

endpoint1, page4, identifier2 key10

endpoint1, page1, identifier1 key1

Change response filters used by out-of-the-box widgets
If you want to change the response filter used in one of the default widgets
(described in Out-of-the-box response filters), Oracle recommends that you create a
new response filter and assign it to the endpoint/identifier combination the widget uses
in its context object.

To do this, you create an application-level JavaScript module that requires in the
CCStoreConfiguration library and creates a modified version of the filter map. As a
reminder, the default filter map looks like this:

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {
 'use strict';
 return {
 onLoad : function() {
 console.log("Loading Application Level JS");
 var filterMap = {
 "getCollection":{

Chapter 8
Change response filters used by out-of-the-box widgets

8-7

 "megaMenuNavigation": {"ccFilterConfigKey":
"categoryNavData"},
 "categoryNavigation": {"ccFilterConfigKey":
"categoryNavData"}
 },
 "listProducts":{
 "productListingData": {"ccFilterConfigKey":
"PLPData"},
 "collectionWidget": {"ccFilterConfigKey":
"collectionData"},
 "getProductData": {"ccFilterConfigKey":
"productData"},
 "getProductDataAndRedirect":
{"ccFilterConfigKey": "productData"},
 }
 };

CCStoreConfiguration.getInstance().updateFiltersToUse(newFilterMap);
 },
 }
 }
);

The code in this example changes the response filter key for the Collection Navigation
widget from categoryNavData to customFilterKey1.

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {
 'use strict';
 return {
 onLoad : function() {
 console.log("Loading Application Level JS");
 var filterMap = {
 "getCollection":{
 "megaMenuNavigation": {"ccFilterConfigKey":
"customFilterKey1"},
 "categoryNavigation": {"ccFilterConfigKey":
"categoryNavData"}
 },
 "listProducts":{
 "productListingData": {"ccFilterConfigKey":
"PLPData"},
 "collectionWidget": {"ccFilterConfigKey":
"collectionData"},
 "getProductData": {"ccFilterConfigKey":
"productData"},
 "getProductDataAndRedirect":

Chapter 8
Change response filters used by out-of-the-box widgets

8-8

{"ccFilterConfigKey": "productData"},
 }
 };

CCStoreConfiguration.getInstance().updateFiltersToUse(newFilterMap);
 },
 }
 }
);

Remember that the top-level objects you define in the filter map override any default
top-level objects. In other words, if you modify a top-level object in the filter map,
only the identifiers you explicitly include your top-level object are used by the
CCStoreConfiguration library. For this reason, you should be careful to include the
default identifiers in top-level objects to avoid overwriting them. See Add a new
response filter key to the out-of the-box filter map for more information.

The following table defines which identifier and filter key combination is used by the
default widgets:

Widget Endpoint Identifier Response filter Key

Collection Navigation getCollection megaMenuNavigation categoryNavData

Collection Navigation
– Basic

getCollection categoryNavigation categoryNavData

Product Listing listProducts productListingData PLPData

Collection listProducts collectionWidget collectionData

Filter REST calls made from within a view model
REST calls may also be made from within view models as the view models interact
with the server while doing do their work.

IMPORTANT: This section describes how to filter REST calls made from within a
view model. Please note that dependencies exist between view models such that data
retrieved by one view model may be used by another. Care must be taken when
filtering view model REST calls so that you do not filter out data needed by another
view model.

Filtering the responses for view model REST calls uses the context object and filter
map combination described in Programmatically determine the correct response filter
key. The context objects are defined within the view models themselves, however, so
all you have to do to filter REST calls made from view models is create the filter map
and upload it in an application-level JavaScript module (see Include Application-level
JavaScript Modules for more information on creating this type of module).

The following filter map example shows the top-level objects that define which
response filters are used for REST calls made from view models. It is not necessary to
include all of these top-level objects in your filter map, only those for REST calls you
want to filter. However, keep in mind that the top-level objects you include in your filter
map will overwrite any existing top-level objects.

define(

Chapter 8
Filter REST calls made from within a view model

8-9

 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],

 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {

 'use strict';

 return {
 onLoad : function() {

 console.log("Loading Application Level JS");

 var priorityList = ["endpoint","page","identifier"];

 var filterMap = {
 "getCollection":{
 "megaMenuNavigation": {"ccFilterConfigKey":
"categoryNavData"},
 "categoryNavigation": {"ccFilterConfigKey":
"categoryNavData"}
 },
 "listProducts":{
 "productListingData": {"ccFilterConfigKey": "PLPData"},
 "collectionWidget": {"ccFilterConfigKey":
"collectionData"},
 "getProductData": {"ccFilterConfigKey": "productData"},
 "getProductDataAndRedirect": {"ccFilterConfigKey":
"productData"}
 }
 "listMembers": {
 "ccFilterConfigKey": "key-name"
 },
 "getGiftWithPurchaseChoices": {
 "ccFilterConfigKey": "key-name"
 },
 "getAllOrdersForProfile": {
 "ccFilterConfigKey": "key-name"
 },
 "listScheduledOrdersByProfile": {
 "ccFilterConfigKey": "key-name"
 },
 "getItemType": {
 "ccFilterConfigKey": "key-name"
 },
 "getCurrentProfile": {
 "userData": {"ccFilterConfigKey": "key-name"}
 },
 "getAllPrices": {
 "ccFilterConfigKey": "key-name"
 },

Chapter 8
Filter REST calls made from within a view model

8-10

 "getStockStatus": {
 "productStockStatus": {"ccFilterConfigKey": "key-name"},
 "stockStatusForProdValidation": {"ccFilterConfigKey":
"key-name"}
 },
 "getPaymentGroup": {
 "ccFilterConfigKey": "key-name"
 },
 "getOrder": {
 "orderForSubmit": {"ccFilterConfigKey": "key-name"},
 "templateOrder": {"ccFilterConfigKey": "key-name"},
 },
 "getScheduledOrder": {
 "loadOrder": {"ccFilterConfigKey": "key-name"}
 },
 "getPage": {
 "home": {
 "layoutOnly":{"ccFilterConfigKey": "key-name"},
 "cachableData":{"ccFilterConfigKey": "key-name"},
 "currentData":{"ccFilterConfigKey": "key-name"}
 }
 },
 "getIncompleteOrder": {
 "loadCartForProfile": {"ccFilterConfigKey": "key-name"},
 "refreshCart": {"ccFilterConfigKey": "key-name"}
 },
 "getStockStatuses": {
 "stockStatusesForCart": {"ccFilterConfigKey": "key-name"},
 "stockStatsToValidateCart":{"ccFilterConfigKey": "key-
name"},
 "stockStatsForItem":{"ccFilterConfigKey": "key-name"}
 },
 "getMetadata": {
 "dynamicProperties": {"ccFilterConfigKey": "key-name"}
 },
 "listSkus": {
 "skuListing": {"ccFilterConfigKey": "key-name"}
 }
 };

CCStoreConfiguration.getInstance().updateFiltersToUse(newFilterMap);
 },
 }
 }
);

The following tables describe the data that is returned for the view model REST calls
to assist you as you decide what calls you want to filter.

CartViewModel

This table describes the REST calls made from the CartViewModel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Chapter 8
Filter REST calls made from within a view model

8-11

Context Object Description

{endpoint:"getIncompleteOrder",

identifier:"loadCartForProfile"}

This context object is used for calls made
to the getIncompleteOrder endpoint. The
CartViewModel makes this call to retrieve
the current incomplete order and load it in
the UserViewModel and the CartViewModel.
This may happen when an anonymous
shopper logs in or creates an account. Also,
when a shopper accepts a quoted order
and moves to another page (other than the
checkout page), the quoted order is removed
and the incomplete order is loaded. Similarly, if
a shopper is viewing an order that is pending
payment and then moves to a page other than
the checkout page, the pending payment order
is removed and the incomplete order is loaded.

{endpoint:"getIncompleteOrder",

identifier:"refreshCart"}

This context object is used for calls made
to the getIncompleteOrder endpoint. The
CartViewModel makes this call when the
shopper changes pages or the system reloads
the cart. The call retrieves any incomplete
order data for the logged-in shopper and
then populates the CartViewModel and
UserViewModel properties with the data it
has retrieved.

{endpoint:"getMetadata",

identifier:"dynamicProperties"}

This context object is used for calls
made to the getMetadata endpoint. The
CartViewModel makes this call to retrieve
metadata for dynamic order properties.

Note that if you are using dynamic order
properties, you must customize the widget
code to use the markDirty flag depending on
your preferences. You can, therefore choose
to handle changes to dynamic order properties
when all properties have been set, or update
on selection of each dynamic property.
Marking the CartViewModel.isDirty() flag
to true would trigger an update order call.

{endpoint:"getOrder",

identifier:"templateOrder"}

This context object is used for calls made
to the getOrder endpoint. The Scheduled
Order widget triggers the CartViewModel to
make this call when the shopper clicks the
Place Order button. Clicking this button places
the contents of the scheduled order into the
shopping cart, allowing the shopper to place a
one-time order based on a scheduled order.
See Configure page layouts for scheduled
orders for more details.

{endpoint:"getStockStatus",

identifier:"stockStatusForProdValida
tion"}

This context object is used for calls made
to the getStockStatus endpoint. The
CartViewModel makes this call to retrieve
stock status information when the quantity of
a product on the cart page is updated.

Chapter 8
Filter REST calls made from within a view model

8-12

Context Object Description

{endpoint:"getStockStatuses",

identifier:"stockStatusesForCart"}

This context object is used for calls made
to the getStockStatuses endpoint. The
CartViewModel makes this call to get stock
status information when it is refreshing product
data for items in the cart. This call is also
triggered to get stock status information when
a configurable product is reconfigured.

This call does not get made for
orders in the PENDING_PAYMENT or
PENDING_PAYMENT_TEMPLATE state because
these orders cannot be edited; in other words,
since the items in the order cannot be edited,
stock status for those items is irrelevant.

{endpoint:"getStockStatuses",

identifier:"stockStatsToValidateCart
"}

This context object is used for calls made
to the getStockStatuses endpoint. The
CartViewModel makes this call to retrieve
stock status information for the products in
the cart during the checkout process. The call
is made when the shopper has clicked the
checkout link on the Checkout page and the
prices of the products in the cart have not
changed.

Note: If the prices have changed, the shopper
is redirected to the cart page and this call is
not made.

{endpoint:"getStockStatuses",

identifier:"stockStatsForItem"}

This context object is used for calls made
to the getStockStatuses endpoint. The
CartViewModel makes this call to get stock
status information for all the SKUs (base
product and child SKUs) of a configurable
product when that product is added to the cart.
(Note that the view model method that makes
this call is generic enough that it can be used
for adding a product to the cart that is not
configurable.)

{endpoint:"listProducts",

identifier:"getProductData"}

This context object is used for calls
made to the listProducts endpoint. The
CartViewModel makes this call when it needs
to check whether the order has stale product
data, for example, when the shopper moves
from one page to another. Using this call,
the CartViewModel retrieves product data
from the server and then uses it to update
the products in the cart on the client side.
By comparing the new product data with
the existing product data, Commerce can
determine if the cart has become stale (for
example, prices have changed or a product
has been marked inactive) and whether
repricing should be triggered.

Chapter 8
Filter REST calls made from within a view model

8-13

Context Object Description

{endpoint:"listProducts",

identifier:"getProductDataAndRedirec
t"}

This context object is used for calls
made to the listProducts endpoint. The
CartViewModel makes this call when the
shopper has clicked the checkout link and
the view model needs to check whether the
order has stale product data. Using this call,
the CartViewModel retrieves product data
from the server and then uses it to update
the products in the cart on the client side.
By comparing the new product data with
the existing product data, Commerce can
determine if the cart has become stale (for
example, prices have changed or a product
has been marked inactive) and whether
repricing should be triggered or the shopper
should be redirected to the cart page.

{endpoint:"listSkus",

identifier:"skuListing"}

This context object is used for calls made to
the listSkus endpoint. The CartViewModel
makes this call to get product data for all
the SKUs (base product and child SKUs) of
a configurable product when that product is
added to the cart. (Note that the view model
method that makes this call is generic enough
that it can be used for adding a product to the
cart that is not configurable.)

delegatedAdminContacts view model

This table describes the REST calls made from the delegatedAdminContacts view
model and provides details on the context objects that are used to locate a response
filter for each type of REST call the view model makes.

Context Object Description

{endpoint:"listMembers"} This context object is used for calls
made to the listMembers endpoint.
The delegatedAdminContacts view model
makes this call to retrieve a list of an account’s
contacts.

GiftProductListingViewModel

This table describes the REST calls made from the GiftProductListingViewModel
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getGiftWithPurchaseChoice
s"}

This context object is used
for calls made to the
getGiftWithPurchaseChoices endpoint.
The GiftProductListingViewModel makes
this call to retrieve the gift choices for a
gift-with-purchase promotion that allows the
shopper to choose her gift.

Chapter 8
Filter REST calls made from within a view model

8-14

LayoutContainer view model

This table describes the REST calls made from the layout-container view model and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getPage",

page:"page",

identifier:"layoutOnly"}

This context object is used for calls made
to the getPage endpoint. The layout-
container view model makes this call to get
the layout data for the page.

{endpoint:"getPage",

identifier:"cachableData"}

This context object is used for calls made
to the getPage endpoint. The layout-
container view model makes this call to get
page data that is appropriate to store in a
cache, for example, site data.

{endpoint:"getPage",

identifier:"currentData"}

This context object is used for calls made
to the getPage endpoint. The layout-
container view model makes this call to
get page data that should not be stored in a
cache, for example, user data.

OrderViewModel

This table describes the REST calls made from the OrderViewModel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description

{endpoint:"getOrder",

identifier:"orderForSubmit"}

This context object is used for calls
made to the getOrder endpoint. The
OrderViewModel makes this call when
moving a quoted or scheduled order to the
submitted state. Specifically, when the shopper
views a quoted or scheduled order’s details
and then chooses to check out the order, this
call is triggered.

OrderHistoryViewModel

This table describes the REST calls made from the OrderHistoryViewModel and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getAllOrdersForProfile"} This context object is used for calls made to
the getAllOrdersForProfile endpoint. The
OrderHistoryViewModel makes this call to
retrieve the orders that are displayed on the
order history page.

Chapter 8
Filter REST calls made from within a view model

8-15

PaymentAuthResponseViewModel

This table describes the REST calls made from the PaymentAuthResponseViewModel
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getPaymentGroup"} This context object is used for calls made
to the getPaymentGroup endpoint. The
PaymentAuthResponseViewModel makes
this call to get the current authorization
status when a shopper places an order using
CyberSource.

ProductViewModel

This table describes the REST calls made from the ProductViewModel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description

{endpoint:"getAllPrices"} This context object is used for calls
made to the getAllPrices endpoint. The
ProductViewModel makes this call to get the
prices for a product when a shopper moves to
product page.

{endpoint:"getStockStatus",

identifier:"productStockStatus"}

This context object is used for calls made
to the getStockStatus endpoint. The
ProductViewModel makes this call to get
stock information for the product when a
shopper moves to product page. The view
model also makes this call to get stock
information for the gift choices a shopper can
choose when she is presented with a gift-with-
purchase promotion that allows her to choose
her own gift.

scheduled-order view model

This table describes the REST calls made from the scheduled-order view model and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getScheduledOrder",

identifier:"loadOrder"}

This context object is used for calls made
to the getScheduledOrder endpoint. The
scheduled-order view model makes this call
to load a selected scheduled order’s details
so that it can be displayed by the Scheduled
Order widget.

Chapter 8
Filter REST calls made from within a view model

8-16

scheduledOrderList view model

This table describes the REST calls made from the scheduledOrderList view model
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"listScheduledOrdersByProf
ile"}

This context object is used for calls made
to the listScheduledOrdersByProfile
endpoint. The scheduledOrderList view
model makes this call to retrieve the list of
scheduled orders for the current profile.

skuPropertiesHandler view model

This table describes the REST calls made from the skuPropertiesHandler view model
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"getItemType"} This context object is used for calls
made to the getItemType endpoint. The
skuPropertiesHandler view model makes
this call to get the properties for a SKU.

UserViewModel

This table describes the REST calls made from the UserViewModel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description

{endpoint:"getCurrentProfile"} This context object is used for calls made
to the getCurrentProfile endpoint. The
UserViewModel makes this call to get profile
data for the logged-in shopper.

Chapter 8
Filter REST calls made from within a view model

8-17

9
Resize Images

Images are automatically sized for your customer based on the devices that they use.
However you can customize the image sizes as needed.

When a shopper views a page that contains images, Commerce automatically sizes
them on the client side for display on different devices, such as laptops, tablets, and
mobile phones. To improve your storefront’s performance, you can resize images
before they are downloaded to the client browser. To do this, Commerce provides
the /images REST endpoint which allows you to format the images returned from the
server. This endpoint, however, requires a URL with a number of parameters that can
be challenging to specify manually. To assist you in using the /images REST endpoint,
Commerce provides the ccResizeImage custom Knockout binding. You can use this
binding in your widgets to create the URL that is sent to the /images endpoint. The
ccResizeImage binding also handles specifying a default image size as well as sizes
for various viewports. This section provides information on using the ccResizeImage
binding as well as general information about the /images endpoint.

Note: Commerce also includes an earlier custom Knockout binding,
productImageSource, that creates the URL sent to the /images endpoint. It has
some limitations, however, in that it only works with product images and it does
not automatically detect the viewport. Oracle recommends using the ccImageResize
binding going forward but the productImageSource binding will continue to work. For
more information on the productImageSource binding, refer to the View Model JSDoc
for Commerce.

Default image sizes
There are default image sizes available.

By default, Commerce uses the following maximum sizes (in pixels) for images:

• Extra Small: 100x100

• Small: 300x300

• Medium: 475x475

• Large: 940x940

Resize images using the ccResizeImage binding
The custom ccResizeImage binding provides scaled images for display on the UI.

It also provides the ability to specify an alternate image and image text to be loaded in
the event that the image cannot be found. The ccResizeImage binding must be used
inside an tag, for example:

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/AntiqueWoodChair_full.jpg',
 alt:'Antique Wood Chair',

9-1

 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found'}">

Set override dimensions for specific viewports

When using the ccResizeImage binding, you can specify override dimensions for
specific viewports. You can also specify a default size for any viewport for which
no override dimension is provided. For example, in the following code snippet, the
ccResizeImage binding returns an image of size 80x80 and 120x120 for xsmall and
mediumviewports, respectively. For all other viewports, it returns an image of size
50x50.

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/AntiqueWoodChair_full.jpg',
 xsmall: '80,80',
 medium: '120,120',
 size:'50,50',
 alt: 'Antique Wood Chair',
 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found'}">

Convert images to JPEG format

The ccResizeImage binding can be used to convert images to JPEG using the optional
outputFormat attribute. When outputFormat is set to JPEG (the only option currently
supported), a source image is converted to a JPEG image. You can specify an optional
quality attribute to adjust the quality of the resulting JPEG image (0.0 is the lowest
quality, 1.0 is the highest quality). For PNG images with a transparency layer, you
can control the background color of the converted JPEG (which does not support
transparency) by setting the optional alphaChannelColor attribute. For example, the
following tag converts the logo.png image to a JPEG with a quality factor of 0.8
and replaces the transparent layer with the color black.

<img data-bind="ccResizeImage: {
 source: '/img/logo.png',
 outputFormat: 'JPEG',
 alphaChannelColor: '000000',
 quality: '0.8'}">

Note: GIF images cannot be resized or converted to JPEG as they may contain
animation which is lost after resizing and conversion.

Use a srcset to specify the image to load

HTML 5 introduced the srcset and sizes attributes to the tag, which allow you
to specify a set of images and the conditions under which each image should be
loaded. The ccResizeImage binding can take advantage of this functionality by making
a set of differently sized images available to the browser. The browser picks the image
to load based on the width that is available for the image. As the browser is resized,
or as the orientation of the view port is changed, the correct image is loaded. Also,
on view ports that have a higher pixel density, the browser is able to pick a higher
resolution image to load that is better suited to the view port. In all cases, bandwidth
use is improved because an image that is correctly sized for the circumstances is
loaded.

Chapter 9
Resize images using the ccResizeImage binding

9-2

To enable the srcset feature, you must set the isSrcSetEnabled attribute to true for
the ccResizeImage binding:

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/AntiqueWoodChair_full.jpg',
 isSrcSetEnabled: true,
 alt: 'Antique Wood Chair',
 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found'}">

When the isSrcSetEnable attribute is set to true, the ccResizeImage binding uses
the /ccstore/v1/images endpoint to create a set of differently sized versions of the
image defined by the source attribute. It also creates an accompanying sizes attribute
that specifies which image to load based on available width. The HTML generated for
the example above looks similar to this:

<img data-bind="ccResizeImage: {
 isSrcSetEnabled : true,
 source:'/file/v2/products/AntiqueWoodChair_full.jpg',
 alt:'Antique Wood Chair',
 errorSrc:'/img/no-image.jpg',
 errorAlt:'No Image Found'}",
 alt="Antique Wood Chair",
 src="/file/v2/products/
AntiqueWoodChair_full.jpg&height=475&width=475",
 srcset="
 /file/v2/products/
AntiqueWoodChair_full.jpg&height=100&width=100 100w,
 /file/v2/products/
AntiqueWoodChair_full.jpg&height=300&width=300 300w,
 /file/v2/products/
AntiqueWoodChair_full.jpg&height=475&width=475 475w,
 /file/v2/products/
AntiqueWoodChair_full.jpg&height=940&width=940 940w",
 sizes="
 (max-width:480px) 100px,
 (min-width:481px) and (max-width:768px) 300px,
 (min-width:769px) and (max-width:979px) 475px,
 (min-width:980px) 940px",
 style="display: block;}">

You can exercise even more control over which image is loaded for specific view ports
by using one of the following attributes:

xsmall_img= "url-to-xsmall-image"; // Image size should be 100 * 100 px
small_img = "url-to-small-image"; // Image size Should be 300 * 300 px
medium_img = "url-to-medium-image"; // Image size should be 475 * 475 px
large_img = "url-to-large-image" // Image size should be 940 * 940 px

These attributes provide URLs to specific images that have been uploaded to your
storefront’s Media library (as opposed to the resized images generated by the
ccResizeImage binding). Media library images are used when they are available and,

Chapter 9
Resize images using the ccResizeImage binding

9-3

when they are not, the resized images created by ccResizeImage are used. In this
example, the AntiqueWoodChair_large.jpg image will be used for the large view port
while the other view ports will use the resized images generated by ccResizeImage.
The AntiqueWoodChair_large.jpg image will be resized up to 300 x 300 pixels but no
larger, as is dictated by the optional large: '300,300' attribute.

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/AntiqueWoodChair_small.jpg',
 isSrcSetEnabled: true,
 large_img: "/file/v2/products/AntiqueWoodChair_large.jpg',
 large:'300,300',
 alt: 'Antique Wood Chair',
 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found'}">

Reserve a minimum height for an image

By default, the ccResizeImage binding reserves a minimum height on the page layout
to accommodate an image before the image loads. This prevents the layout from
shifting after the image loads. To make this possible, the ccResizeImage binding
injects a <div> tag into the HTML that wraps around the tag and sets it to
the minimum height of the image. In general, this approach provides for a superior
shopper experience, however, there are occasions where it may need to be disabled.
For example, some browsers have problems with <div> tags placed inside <td> tags.
For this reason, you have the option to disable the addition of the <div> tag by setting
the setMinHeightBeforeImageLoad attribute to false, for example:

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/AntiqueWoodChair_full.jpg',
 alt:'Antique Wood Chair',
 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found',
 setMinHeightBeforeImageLoad:false}">

ccResizeImage attributes

The following table describes the attributes you can use with the ccResizeImage
binding.

Attribute Description

source The image source URL.

large The override dimensions for the large
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

medium The override dimensions for the medium
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

small The override dimensions for the small
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

Chapter 9
Resize images using the ccResizeImage binding

9-4

Attribute Description

xsmall The override dimensions for the xsmall
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

size The dimensions used if an override dimension
has not been specified for the current viewport.
The value for this attribute can be a comma-
delimited list of two values, the first for height
and the second for width, for example:

size: '50,50',

Alternatively, the value can be one of the
following: large, medium, small, or xsmall.
If one of these values is specified and an
override dimension is provided for that same
size, then that override dimension is used. For
example, if size: 'medium' and medium:
'120,120' are set and the image is being
viewed on a viewport without a specific
override dimension, the image will be sized to
120 x 120 pixels.

If size is set to large, medium, small, or
xsmall and no override dimension is provided
for that same size, then the default dimensions
are used, which are:

xsmall: 100X100

small: 300X300

medium: 475X475

large: 940X940

alt The alternative text for the image.

errorSrc The error image URL.

errorAlt The alternative text for the error image.

outputFormat The format of the converted images. Only
JPEG is supported.

Note: GIF images cannot be resized or
converted to JPEG as they may contain
animation which is lost after resizing and
conversion.

alphaChannelColor The hexadecimal color code for the
replacement color of the PNG alpha channel
(default is white, FFFFFF).

quality A number that lets you control the image
resolution quality. The value of quality is a
number from 0.0 (worst resolution but fastest
load time) to 1.0 (best resolution but slowest
load time).

For example, you might want to reduce the
resolution of product listing images to speed
up image loading times.

The default value of, quality is 1.0.

Chapter 9
Resize images using the ccResizeImage binding

9-5

Attribute Description

isSrcSetEnabled Makes a set of variously sized images
available to the browser and defines the
conditions under which each one is loaded.
See See Use a srcset to specify the image to
load for more details.

xsmall_img A URL to an image in the Media library, used
when the available width for displaying the
image is less than 100 pixels. See Use a
srcset to specify the image to load for more
details.

small_img A URL to an image in the Media library, used
when the available width for displaying the
image is less than 300 pixels. See Use a
srcset to specify the image to load for more
details.

medium_img A URL to an image in the Media library, used
when the available width for displaying the
image is less than 475 pixels. See Use a
srcset to specify the image to load for more
details.

large_img A URL to an image in the Media library, used
when the available width for displaying the
image is less than 940 pixels. See Use a
srcset to specify the image to load for more
details.

setMinHeightBeforeImageLoad Reserves a minimum height on the page
layout to accommodate an image before the
image loads. This prevents the layout from
shifting after the image loads. See Reserve a
minimum height for an image for more details.

id This parameter is used by the binding to
create a new wrapper <div> with a unique
ID. This prevents all wrappers from using the
same ID.

Understand the image resizing REST APIs
Commerce Service REST APIs allow you to resize images displayed on your store
while optimizing load times and maintaining image quality.

Note: See Use the REST APIs for information you need to know before using the
REST APIs.

View image file names and paths

To view file names and paths for uploaded images for a product or collection, issue
a GET request to the /ccstore/v1/products/{id} or /ccstore/v1/collections/{id}
endpoint. For example:

GET /ccstore/v1/products/prod10007 HTTP/1.1
 Authorization: Bearer <access_token>

Chapter 9
Understand the image resizing REST APIs

9-6

The following portion of the sample response shows the URLs of the product’s large
image:

 "primaryLargeImageURL":"/
ccstore/v1/images/?source=/file/v7875483805069966233/products/
APP_WeekendTrouser_large.jpg&height=940&width=940",

The path returned here is the full path to the location of the image file. (See Manage
Media for Your Store for more information about the locations of uploaded images.)

Resize an image via the REST API

To resize an existing image, you use the Store API, which provides access to the
storefront. Issue a GET request to the /ccstore/v1/images endpoint. The following
table describes the query parameters you specify in the request.

Property Description

source (Required) String that specifies the fully
qualified URL for the image to resize. This is
returned in the response to

GET /ccstore/v1/products/{id} or

GET /ccstore/v1/collections/{id}.

height (Required) The maximum height for the
resized image, in pixels. If the request does
not include either height or width, the source
image is not resized.

width (Required) The maximum width for the resized
image, in pixels. If the request does not
include either height or width, the source
image is not resized.

quality A number that lets you control the image
resolution quality. The value of quality is a
number from 0.0 (worst resolution but fastest
load time) to 1.0 (best resolution but slowest
load time).

For example, you might want to reduce the
resolution of product listing images to speed
up image loading times.

The default value of quality is 1.0.

outputFormat The format of the converted images. Only
JPEG is supported.

alphaChannelColor The hexadecimal color code for the
replacement color of the PNG alpha channel
(default is white, FFFFFF).

For example, the following request resizes a product image to 500x500:

GET /ccstore/v1/images/?source=/file/v7875483805069966233/products
 /APP_WeekendTrouser_full.jpg&height=500&width=500

Chapter 9
Understand the image resizing REST APIs

9-7

Manage image caching
Commerce images can be cached by the browser and the content delivery network
(CDN) by default. Caching is desirable for performance reasons, but you must ensure
that it does not lead to out-of-date images displaying on your pages.

On a production site, calls to Commerce endpoints that refer to images, such as
product, SKU, and collection endpoints, respond with image URLs that include a
sequence of numbers. For example:

/file/v7875483805069966233/products/APP_WeekendTrouser_full.jpg

In this example, v7875483805069966233 is a checksum of the file. Commerce updates
this value automatically when the image is changed and published. The checksum
ensures that an earlier version of the image that has been cached in the browser or
CDN is not displayed.

If you generate your own image URLs (for example, if you use images that are not
explicitly associated with products, SKUs, or collections), then when you modify an
image, its URL typically does not change. As a result, an out-of-date cached version of
the image may continue to be displayed. Similarly, if you reuse an existing image URL
for a new image, the old image may be displayed instead.

To prevent these issues, you should use a cache-busting strategy to ensure only up-
to-date images are displayed. For example, the URLs you generate could incorporate
a timestamp that gets updated each time the image is updated. You can implement
this by using the lastpublishtimestamp value from the ccRestClient module. Each
time an image loaded with this parameter is modified and published, the value of
the parameter changes, ensuring that previously cached versions are not displayed.
Alternatively, you can get the full pathname for an image, including the checksum
value, by calling the getFileURLs endpoint in the Store API. For example:

PUT /ccstore/v1/files/urlMappings HTTP/1.1

{
 "filePaths": [
 "/products/cat5cable_LARGE.jpg"
]
}

The response includes the complete pathname, including the current checksum value:

{
 "/products/cat5cable_LARGE.jpg": "http://myserver.example.com:7002/
file/v2441433713947926995/products/cat5cable_LARGE.jpg",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccstore/v1/files/
urlMappings"
 }

Chapter 9
Manage image caching

9-8

]
}

Chapter 9
Manage image caching

9-9

10
Manage Storefront Event Notification

The PubSub library allows you to manage your storefront notifications.

Commerce includes two mechanisms for storefront event notification:

• The PubSub library provides a way for code to publish and subscribe to a set of
“global” messages. That is, any code in the application can publish messages
about an event and any code can listen for those messages.

• The event-dispatcher module provides the ability to listen for events triggered by
a specific instance of an object.

Understand the PubSub library
The PubSub library is a publishing and subscription system based on
jQuery.Callbacks functions.

With the PubSub library, messages can be published by any object in the system
when events happen and subscribers can listen for those messages and perform
additional tasks as needed. The backbone of the PubSub library is a list of topics
identified by ID, for example, PAGE_READY and CART_ADD. Publishers (which are
typically Commerce widgets) publish messages to these topics when events happen.
Subscribers to a given topic receive the messages published to that topic along with
supporting data.

You can create custom topics and add them to the PubSub library; however, these
custom topics may only be used by custom widgets that you build. Out-of-the-box
widgets will not have awareness of or access to custom PubSub topics.

Include the pubsub dependency
In order to use the PubSub library from within a widget, you need to include pubsub
as a dependency in the widget’s JavaScript module with a statement similar to the
following:

//---
 // DEPENDENCIES
 //---
 ['pubsub'],

Subscribe to a topic
You use the subscribe function to subscribe your callback function to a topic.

The data that has been published to a topic is then passed to the callback function.

There are two ways to use the subcribe() function. You can either provide the
callback function’s name or you can provide code for the callback function in-line.

10-1

In this example, whenever the PAGE_CHANGED topic has a message published to it, the
getPageUrlData() function is called.

$.Topic(pubsub.topicNames.PAGE_CHANGED).subscribe(
 widget.getPageUrlData);

In this example, whenever the PAGE_CHANGED topic has a message published to it, the
anonymous, in-line function is executed.

$.Topic(pubsub.topicNames.PAGE_CHANGED).subscribe(
 function(value){
 widget.isDisplayErrorPins(false);
 }
);

Note that the value for this in your callback function may vary, depending on whether
the message that triggered the callback function was published with context or not,
so you should save the current value of this if you need to guarantee that it
remains constant. See Publish messages for more details on publishing messages
with context.

To unsubscribe from a topic, use the unsubscribe() function, for example:

$.Topic(pubsub.topicNames.PAGE_LAYOUT_LOADED).unsubscribe(
 widget.resetOrderDetails);

Publish messages
Two functions, publish() and publishWith(), are used to publish messages to topics.

The publish() function takes one parameter, the object you want to publish. In the
example below, the publish() function will send the data object to callback functions
that are subscribed to the PAGE_READY topic.

$.Topic(PubSub.topicNames.PAGE_READY).publish(data);

In some cases, you may need to control the context in which subscribers receive the
published data. When a publisher provides context, it is providing the subscriber with
access to data or operations the subscriber needs to do its job. To control context, use
the publishWith() function instead of the publish() function. The publishWith()
function takes two parameters; the first is the object to be used as this in the
subscriber’s callback function, the second is the object you want to publish. For
example, the following code publishes the billing address as the context:

$.Topic(pubsub.topicNames.CHECKOUT_BILLING_ADDRESS).publishWith(
 widget.billingAddress(), [{
 message: "success"
 }]);

Chapter 10
Publish messages

10-2

This allows the subscriber to update the billing address with the value of this:

$.Topic(pubsub.topicNames.CHECKOUT_BILLING_ADDRESS).subscribe(
 function() {
 self.billingAddress(this);
 }
);

Create new topics
The PubSub library includes a number of topics out of the box and these topics are
described later in this section.

If you need to create a custom topic, you can do so using the topic() function,
passing in the ID of your topic. The topic() function returns an existing topic if the ID
already exists. If no topics exist that match the passed ID, a new topic is created and
returned.

Custom topic objects have the publish, publishWith, subscribe, and unsubscribe
functions. Note that custom topics are available for subscription by custom widgets
only; default widgets have no knowledge of or access to custom topics. They are
used exclusively to let one custom widget know about an event that has happened in
another custom widget. Oracle recommends that any custom topics you create include
a merchant-specific prefix in the topic ID to avoid conflicts with default topics.

The following example shows the creation of a topic named MY_TOPIC in a custom
widget:

$.Topic("MY_TOPIC.memory").publish("Message is here") ;

This example shows a subscription to MY_TOPIC in another custom widget:

$.Topic("MY_TOPIC.memory ").subscribe(function(message)
 {
 console.log("Message is: " + message);
 });

Note that this custom topic makes use of the .memory suffix, which enables memory
for the topic. Typically, for a callback function to be triggered, it has to be subscribed
to a topic before any messages are published to that topic. The .memory suffix allows
a callback function to be triggered for the most recently published message even if the
function has subscribed to the topic after the message was published.

PubSub topics
There are topics included by default with the PubSub system.

Topics that have memory enabled are marked accordingly. As a reminder, having
memory enabled for a topic allows a callback function to be triggered for the most
recently published message even if the function has subscribed to the topic after the
message was published. See Create new topics for more information.

Chapter 10
Create new topics

10-3

CART_ADD_SUCCESS

A message is published to this topic whenever a product is successfully added to the
cart.

$.Topic(pubsub.topicNames.CART_ADD_SUCCESS).publish(product);

Arguments

product: A JSON object that includes data for the added product, for example:

{
 "primaryFullImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg",
 "smallImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg&height=300&width=300"],
 "orderLimit" : null,
 "shippingSurcharges" : null,
 "salePrices" : null,
 "type" : null,
 "listPrices" : null,
 "primaryImageAltText" : "My Movie",
 "height" : null,
 "shippingSurcharge" : null,
 "listPrice" : 21.99,
 "description" : "A great movie that you should not miss.",
 "fullImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg"],
 "longDescription" : null,
 "unitOfMeasure" : null,
 "primaryMediumImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg&height=475&width=475",
 "CountryOfOrigin" : "US",
 "mediumImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg&height=475&width=475"],
 "primarySourceImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg&height=300&width=300",
 "seoKeywordsDerived" : "My Movie,Psychological
Thrillers,Blockbuster,
 All Products,Thrillers-Clearance",
 "width" : null,
 "primaryThumbImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg&height=100&width=100",
 "primarySmallImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg&height=300&width=300",
 "relatedMediaContent" : [],

Chapter 10
PubSub topics

10-4

 "active" : true,
 "largeImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg&height=940&width=940"],
 "salePrice" : null,
 "fractionalQuantitiesAllowed" : false,
 "primaryLargeImageURL" : "/ccstore/v1/images/?source=/
file/v2/products/
 mymovie_LARGE.jpg&height=940&width=940",
 "relatedProducts" : null,
 "weight" : null,
 "parentCategory" : null,
 "avgCustRating" : 4.5,
 "productImagesMetadata" : [{}
],
 "id" : "Product_36Exy",
 "sourceImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg&height=300&width=300"],
 "seoMetaInfo" : null,
 "variantValuesOrder" : {},
 "length" : null,
 "relatedArticles" : [],
 "defaultProductListingSku" : null,
 "seoDescriptionDerived" : "My Movie,A great movie that you
should not miss.",
 "parentCategories" : [{
 "id" : "cat70011",
 "categoryImages" : [],
 "route" : "/thrillers-clearance/category/cat70011",
 "description" : null,
 "longDescription" : null,
 "active" : true,
 "displayName" : "Thrillers-Clearance",
 "repositoryId" : "cat70011"
 }
],
 "childSKUs" : [{
 "salePrices" : null,
 "primaryFullImageURL" : null,
 "primaryLargeImageURL" : null,
 "smallImageURLs" : [],
 "thumbnailImage" : null,
 "listPrices" : null,
 "sourceImageURLs" : [],
 "listPrice" : 21.99,
 "fullImageURLs" : [],
 "productListingSku" : null,
 "quantity" : null,
 "smallImage" : null,
 "unitOfMeasure" : null,
 "primaryMediumImageURL" : null,
 "mediumImageURLs" : [],
 "primarySourceImageURL" : null,
 "largeImage" : null,

Chapter 10
PubSub topics

10-5

 "primaryThumbImageURL" : null,
 "primarySmallImageURL" : null,
 "repositoryId" : "Sku_36Fxy",
 "thumbImageURLs" : [],
 "salePriceEndDate" : null,
 "dynamicPropertyMapLong" : {},
 "images" : [],
 "largeImageURLs" : [],
 "salePrice" : null,
 "salePriceStartDate" : null,
 "fractionalQuantitiesAllowed" : false
 }
],
 "repositoryId" : "Product_36Exy",
 "thumbImageURLs" : ["/ccstore/v1/images/?source=/file/v2/
products/
 mymovie_LARGE.jpg&height=100&width=100"],
 "primaryImageTitle" : "My Movie",
 "route" : "/my-movie/product/Product_36Exy",
 "brand" : null, "seoUrlSlugDerived" : "My Movie",
 "displayName" : "My Movie",
 "seoTitleDerived" : "My Movie",
 "selectedOptions" : [],
 "orderQuantity" : 1
 }

Memory enabled

No

CART_READY

A message is published to this topic when the cart is loaded with items, either from
local storage for an anonymous shopper or from the persistent cart for a registered
shopper, and is ready for use. This topic allows subscribers to access the cart items
and their associated product details.

$.Topic(PubSub.topicNames.CART_READY).publish(cart);

Arguments

cart: The current CartViewModel. See the View Model JSDoc for Commerce for
details on what this view model contains.

Memory enabled

No

CART_UPDATED

A message is published to this topic when the cart is updated with the latest pricing
response and saved to local storage.

$.Topic(pubsub.topicNames.CART_UPDATED).publish(cart);

Chapter 10
PubSub topics

10-6

Arguments

cart: The current CartViewModel. See the View Model JSDoc for Commerce for
details on what this view model contains.

Memory enabled

No

HISTORY_PUSH_STATE

A message is published to this topic when a shopper navigates from one page to
another or refreshes the page.

$.Topic(PubSub.topicNames.HISTORY_PUSH_STATE).publish(path);

Arguments

path: The path for the page being navigated to or refreshed, for example, /home, /
cart, /checkout, /profile, and so on.

Memory enabled

Yes

ONERROR_EXCEPTION_HANDLER

A message is published to this topic when a runtime error occurs.

$.Topic(PubSub.topicNames.ONERROR_EXCEPTION_HANDLER).publish(
 errorMessage, errorUrl, errorLineNumber);

Arguments

errorMessage: Contains the error message, for example:

"Uncaught Error: Script error for: //abc.com/EEAdmin/js/ee/js/
 atgsvcs-test.js http://requirejs.org/docs/errors.html#scripterror"

errorUrl: The URL value when the error occurred, for example:

http://localhost:8080/shared/js/libs/oraclejet/libs/require/require.js

errorLineNumber: The line of code the error occurred in.

Memory enabled

No

ORDER_SUBMISSION_SUCCESS

A message is published to this topic when the submission of an order is successfully
completed.

$.Topic(PubSub.topicNames.ORDER_SUBMISSION_SUCCESS).publish(orderDetails
);

Chapter 10
PubSub topics

10-7

Arguments

orderDetails: A JSON array that includes data for the submitted order, for example:

[{
 message : " success",
 id : "o30501",
 uuid : " 14f03075-1376-46dd-9e2c-1448255efa8f"
 }]

The properties in the JSON object include:

• message: This property has a value of success to indicate the order was submitted

• successfully.id: A system-generated ID for the order in the Order

• repository.uuid: A system-generated universally unique identifier for the order.

Memory enabled

No

PAGE_CHANGED, PAGE_VIEW_CHANGED

A message is published to these topics when a page has a view change or a context
change. A view change means that the page type has changed, for example, from /
home to /checkout. In this case, both the layout and the data change. A context
change occurs when the page type remains the same but the data the page contains
changes, for example, /product/prod1 to /product/prod2.

$.Topic(PubSub.topicNames.PAGE_CHANGED).publish(pageEventData);

Arguments

pageEventData: A JavaScript object that includes data related to the page change
event, for example:

{
 pageId:"category"
 contextId:"cat60041"
 seoslug:"controllers"
 previousContextId:"Product_36Exy"
 }

The properties in the JavaScript object include:

• pageId: An identifier for the page requested that represents either the page type
(for example, product, collection, home, and so on) or, for article pages, the page
address that has been assigned in the Layout settings (for example, aboutUs,
shipping, or returns, are all pages of type article).

• contextId: For contextual pages, a contextId is included and it may be a product
ID, category ID, an order ID, or an order confirmation ID. To determine the ID for
a specific product or category, you can view the item’s details on the Catalog page
in Commerce. Order and order confirmation IDs are system-generated and cannot
be known beforehand but you can check for their existence in the JSON object.

Chapter 10
PubSub topics

10-8

• seoslug: An SEO-friendly, internally-generated name for the product or category,
based on the product or category name. This property only has a value when
changing to a product or category page.

• previousContextId: The context ID, if one exists, for the page that was rendered
before the PAGE_CHANGED event occurred

Memory enabled

Yes

PAGE_VIEW_CHANGED is the same as PAGE_CHANGED, except that PAGE_VIEW_CHANGED
reloads only the layout, while PAGE_CHANGED reloads the entire page.

PAGE_READY

A message is published to this topic when all the regions and widgets on a page are
loaded.

$.Topic(PubSub.topicNames.PAGE_READY).publish(pageEventData);

Arguments

pageEventData: A JavaScript object that includes data about the loaded page, for
example:

{
 pageId:"category",
 contextId:"cat60041",
 seoslug:" psychological-thrillers"
 previousContextId: null,
 pageRepositoryId: "categoryPage"
 }

The properties in the JavaScript object include:

• pageId: An identifier for the page requested that represents either the page type
(for example, product, collection, home, and so on) or, for article pages, the page
address that has been assigned in the Layout settings (for example, aboutUs,
shipping, or returns, are all pages of type article).

• contextId: For contextual pages, a contextId is included and it may be a product
ID, category ID, an order ID, or an order confirmation ID. To determine the ID for
a specific product or category, you can view the item’s details on the Catalog page
in Commerce. Order and order confirmation IDs are system-generated and cannot
be known beforehand but you can check for their existence in the JSON object.

• seoslug: An SEO-friendly, internally-generated name for the product or category,
based on the product or category name. This property only has a value when
changing to a product or category page.

• previousContextId: The context ID, if one exists, for the page that was rendered
before the PAGE_CHANGED event occurred.

• pageRepositoryId: The identifier for the page in the page repository. For
the out of the box pages, this value can be homePage, categoryPage,
profilePage, checkoutPageWithGiftCard, userSpacesPage, orderHistoryPage,

Chapter 10
PubSub topics

10-9

orderDetailsPage, or userSpacesSettingsPage. For any additional pages created
in Commerce, a system-generated ID is created, for example, pa100001.

Memory enabled

Yes

PRODUCT_VIEWED

A message is published to this topic when the shopper views a product.

$.Topic(pubsub.topicNames.PRODUCT_VIEWED).publish(product);

Arguments

product: The current ProductViewModel. See the View Model JSDoc for Commerce
for details on what this view model contains.

Memory enabled

Yes

SEARCH_RESULTS_UPDATED

A message is published to this topic when search results are retrieved or when
an error is returned while searching for a product. If search results are retrieved
successfully, those results are published with the message. If an error occurs, the error
is published with the message.

$.Topic(pubsub.topicNames.SEARCH_RESULTS_UPDATED).publishWith(searchResu
lts, message);

Arguments

searchResults: The contents of this argument vary depending on whether the search
was successful or not. If the search was successful, the argument consists of a JSON
object that includes the search results and meta-data about the search, for example:

{
 searchResults : Array[5],
 isNewSearch:false,
 navigation : Array[5],
 pageCount : 15,
 pagingActionTemplate : JSONObject,
 recordOffSet : 0,
 recordsPerPage : 5,
 searchAdjustments :JSONObject,
 totalRecordsFound : 74
 breadcrumbs:JSONObject
 }

The properties in the successful search JSON object include:

Chapter 10
PubSub topics

10-10

• searchResults: An array that contains the search results. The following code
sample shows what an item in that array might look like:

{
 "product.category" : ["Cameras and Camcorders"],
 "product.language" : ["en"],
 "record.type" : ["camera", "sku-camera"],
 "sku.listingId" : ["camera_1"],
 "product.priceRange" : ["JPY0 - JPY9"],
 "sku.activePrice" : ["3.990000"],
 "product.creationDate" : ["1466057558000"],
 "sku.url" : ["atgrep:/ProductCatalog/sku-camera/
 camerasku_1_55?
_product=camera_1&locale=en&priceListPair=
 salePrices_listPrices"],
 "product.priceListPair" : ["salePrices_listPrices"],
 "product.active" : ["1"],
 "sku.salePrice" : ["3.990000"],
 "sku.creationDate" : ["1466057558000"],
 "record.source" : ["ProductCatalog"],
 "product.url" : ["atgrep:/ProductCatalog/sku-camera/
 camerasku_1_55?
_product=camera_1&locale=en&priceListPair=
 salePrices_listPrices"],
 "sku.availabilityStatus" : ["OUTOFSTOCK"],
 "parentCategory.displayName" : ["Cameras and Camcorders"],
 "Endeca.Document.Language" : ["en"],
 "product.daysAvailable" : ["0"],
 "record.type.raw" : ["camera", "sku-camera"],
 "sku.baseUrl" : ["atgrep:/ProductCatalog/sku-camera/
 camerasku_1_55"],
 "product.dateAvailable" : ["1466057558000"],
 "sku.repositoryId" : ["camerasku_1_55"],
 "product.baseUrl" : ["atgrep:/ProductCatalog/sku-camera/
 camerasku_1_55"],
 "sku.listPrice" : ["399.990000"],
 "sku.onSale" : ["0"],
 "record.id" : ["sku-camera-camerasku__1__55..camera__1.en.
 salePrices__listPrices"],
 "product.route" : ["/digital-compact-system-camera/product/
 camera_1"],
 "product.longDescription" : ["This digital compact system
camera
 14.1-megapixel,\n 4/3 Live MOS sensor allows you to
 capture sharp photos and record high-definition video
footage with
 up\n to 1920 x 1080 resolution. Built-in Wi-Fi lets
 you easily share stored files.\n "],
 "sku.listingOptionIndex" : ["10000"],
 "id" : ["camera_1"],
 "repositoryId" : ["camera_1"],
 "displayName" : "Digital Compact System Camera",
 "shippingSurcharge" : 0,
 "listPrice" : 399.99,
 "salePrice" : null,

Chapter 10
PubSub topics

10-11

 "route" : "/digital-compact-system-camera/product/
camera_1",
 "primaryImageAltText" : ["Digital Compact System Camera"],
 "primaryImageTitle" : ["Digital Compact System Camera"],
 "primaryLargeImageURL" : "/ccstore/v1/images/?source=
 /file/v2/products/
OM_D_E_M10_LARGE.jpg&height=940&width=940",
 "primarySmallImageURL" : "/ccstore/v1/images/?source=
 /file/v2/products/
OM_D_E_M10_LARGE.jpg&height=300&width=300",
 "primaryThumbImageURL" : "/ccstore/v1/images/?source=
 /file/v2/products/
OM_D_E_M10_LARGE.jpg&height=100&width=100",
 "primaryMediumImageURL" : "/ccstore/v1/images/?source=
 /file/v2/products/
OM_D_E_M10_LARGE.jpg&height=475&width=475",
 "primaryFullImageURL" : "/ccstore/v1/images/?source=
 /file/v2/products/OM_D_E_M10_LARGE.jpg",
 "childSKUs" : [{
 "salePrice" : "3.990000",
 "listPrice" : "399.990000",
 "repositoryId" : ["camerasku_1_55"],
 "largeImage" : {
 "url" : "" },
 "smallImage" : {
 "url" : "" },
 "thumbnailImage" : {
 "url" : ""
 }
 }
],
 "maxActivePrice" : "399.990000",
 "minActivePrice" : "3.990000"
}

• isNewSearch: A Boolean value that specifies whether this is a new search or not.

• navigation: An array of refinements elements, each of which contains the
refinements available for a given dimension. These refinements are used to
present the shopper with a set of refinement links that she can use to further
refine the current search results. For example, the following JSON sample shows
an excerpt of the refinements available for the product.category dimension:

"refinements": [
 {
 "multiSelect": false,
 "navigationState":
 "?
N=4058976224&Nr=AND%28product.priceListPair%3AsalePrices_listPrices

%2Cproduct.language%3Aen%29&Nrpp=12&Ntl=en&Ntt=cam&language=en&

searchType=simple&visitId=-14ddf4e9%3A156217da656%3A-582e-10.170.102.150
&

Chapter 10
PubSub topics

10-12

visitorId=1298EspxGMOA_YEnEkrCS9sDr1JYUdQ6jpex06ADSHQzGuU30A4",
 "contentPath": "\/guidedsearch",
 "count": 2,
 "@class": "com.endeca.infront.cartridge.model.Refinement",
 "siteRootPath": "\/pages\/Default\/services",
 "siteState": {
 "contentPath": null,
 "siteId": "@error:siteNotFound",
 "@class": "com.endeca.infront.site.model.SiteState",
 "siteDisplayName": null,
 "validSite": false,
 "properties": {
 },
 "siteDefinition": null,
 "matchedUrlPattern": null },
 "label": "All Products",
 "properties": {
 "dimval.prop.category.ancestorCatalogIds":
"cloudLakeCatalog",
 "dimval.prop.category.rootCatalogId": "cloudLakeCatalog",
 "dimval.prop.displayName_en": "All Products",
 "dimval.prop.category.repositoryId": "AllProdPagination",
 "dimval.prop.category.catalogs.repositoryId":
 "cloudCatalog,cloudLakeCatalog",
 "record.id":
 "atgrep:\/ProductCatalog\/category\/AllProdPagination?
 categoryPath=\/AllProdPagination",
 "DGraph.Spec": "AllProdPagination"
 }
 },
 {
 "multiSelect": false,
 "navigationState":
 "?
N=3881554706&Nr=AND%28product.priceListPair%3AsalePrices_listPrices%

2Cproduct.language%3Aen%29&Nrpp=12&Ntl=en&Ntt=cam&language=en&

searchType=simple&visitId=-14ddf4e9%3A156217da656%3A-582e-10.170.102.150
&

visitorId=1298EspxGMOA_YEnEkrCS9sDr1JYUdQ6jpex06ADSHQzGuU30A4",
 "contentPath": "\/guidedsearch",
 "count": 1,
 "@class": "com.endeca.infront.cartridge.model.Refinement",
 "siteRootPath": "\/pages\/Default\/services",
 "siteState": {
 "contentPath": null,
 "siteId": "@error:siteNotFound",
 "@class": "com.endeca.infront.site.model.SiteState",
 "siteDisplayName": null,
 "validSite": false,
 "properties": {
 },
 "siteDefinition": null,

Chapter 10
PubSub topics

10-13

 "matchedUrlPattern": null
 },
 "label": "Blockbuster",
 "properties": {
 "dimval.prop.category.ancestorCatalogIds":
"cloudLakeCatalog",
 "dimval.prop.category.rootCatalogId": "cloudLakeCatalog",
 "dimval.prop.displayName_en": "Blockbuster",
 "dimval.prop.category.repositoryId": "topLeaf",
 "dimval.prop.category.catalogs.repositoryId":

"cloudCatalog,SiteContextDummyCatalog,ClassicalMoviesCatalog,
 cloudLakeCatalog",
 "record.id": "atgrep:\/ProductCatalog\/category\/topLeaf?
 categoryPath=\/topLeaf",
 "DGraph.Spec": "topLeaf"
 }
 },
 …Additional refinements here…
],
 "multiSelect": false,
 "@type": "RefinementMenu",
 "name": "product.category",
 "ancestors": [
],
 "displayName": "Category",
 "dimensionName": "product.category",
 "whyPrecedenceRuleFired": null
 },

• pageCount: The total number of pages of records. Each page contains the number
of records specified by recordsPerPage.

• pagingActionTemplate: A JSON object that returns data used to retrieve the next
page of search results.

"pagingActionTemplate" : {
 "navigationState" :
 "?&Ntl=en&Ntt=camera&language=en&searchType=simple",
 "contentPath" : "/guidedsearch",
 "@class" :
 "com.endeca.infront.cartridge.model.NavigationAction",
 "siteRootPath" : "/pages/Default/services",
 "siteState" : {
 "contentPath" : null,
 "siteId" : "@error:siteNotFound",
 "@class" : "com.endeca.infront.site.model.SiteState",
 "siteDisplayName" : null,
 "validSite" : false,
 "properties" : {},
 "siteDefinition" : null,
 "matchedUrlPattern" : null
 },

Chapter 10
PubSub topics

10-14

 "label" : null
 }

• recordOffset: Identifies the page being viewed. For example, if you have 12
records per page and recordOffset = 12, then page 2 is being viewed.

• recordsPerPage: The number of records to show per page, used for pagination
controls.

• searchAdjustments: A JSON object that contains information about any
adjustments made to the original search terms.

– @type: Identifies the search adjustments portion of the JSON response.

– originalSearchTerms: The original search terms as entered by the shopper,
including any wildcards.

– originalTerms: The original search terms entered by the shopper, minus any
wildcards.

• totalRecordsFound: The total number of records that match the search criteria.

• breadcrumbs: A JSON object that provides details on the user actions that led to
the current navigation state, for example:

"breadcrumbs" : {
 "removeAllAction" : {
 "navigationState" : "?
Ntl=en&language=en&searchType=simple&
 visitId=null&visitorId=null",
 "contentPath" : "/guidedsearch",
 "@class" :
 "com.endeca.infront.cartridge.model.NavigationAction",
 "siteRootPath" : "/pages/Default/services",
 "siteState" : {
 "contentPath" : null,
 "siteId" : "@error:siteNotFound",
 "@class" : "com.endeca.infront.site.model.SiteState",
 "siteDisplayName" : null,
 "validSite" : false,
 "properties" : {},
 "siteDefinition" : null,
 "matchedUrlPattern" : null },
 "label" : null
 },
 "refinementCrumbs" : [],
 "geoFilterCrumb" : null,
 "@type" : "Breadcrumbs",
 "endeca:auditInfo" : {
 "ecr:innerPath" : "breadcrumbs",
 "ecr:resourcePath" : "/pages/Default/services/
guidedsearch"
 },
 "searchCrumbs" : [{
 "@class" :

"com.endeca.infront.cartridge.model.SearchBreadcrumb",
 "terms" : "camera",

Chapter 10
PubSub topics

10-15

 "removeAction" : {
 "navigationState" :
 "?
Nr=AND%28product.priceListPair%3AsalePrices_listPrices%

2Cproduct.language%3Aen%29&Nrpp=12&Ntl=en&language=en&
 searchType=simple&visitId=null&visitorId=null",
 "contentPath" : "/guidedsearch",
 "@class" :

"com.endeca.infront.cartridge.model.NavigationAction",
 "siteRootPath" : "/pages/Default/services",
 "siteState" : {
 "contentPath" : null,
 "siteId" : "@error:siteNotFound",
 "@class" :
 "com.endeca.infront.site.model.SiteState",
 "siteDisplayName" : null,
 "validSite" : false,
 "properties" : {},
 "siteDefinition" : null,
 "matchedUrlPattern" : null
 },
 "label" : null
 },
 "correctedTerms" : null,
 "key" : "All",
 "matchMode" : "allpartial"
 }
],
 "rangeFilterCrumbs" : []
}

When the search has failed, the searchResults object contains details about the error,
including:

• message: The runtime error message that indicates that the search has failed.

• status: Any HTTP status codes associated with the failed request.

• errorCode: An Commerce error code, which may be

GET_SEARCH_INTERNAL_ERROR = 31040,
SEARCH_ADMIN_INTERNAL_ERROR = 31041,
 or
SEARCH_ADMIN_INDEXING_INTERNAL_ERROR = 31042.

For example:

{
 "message":"Unable to perform a search at this time",
 "status":"500",
 "errorCode":"31040"
 }

Chapter 10
PubSub topics

10-16

message: The second argument returned for the SEARCH_RESULTS_UPDATED topic
contains a JSON array that includes either a success or failure message and the
SearchViewModel object, for example:

[{
 message: "success",
 requestor: SearchViewModel
}]

In the case of a failed search, this message property has a value of fail.

[{"message":"fail"}]

Memory enabled

Yes

SKU_SELECTED

A message is published to this topic when a shopper selects all the variant options for
a product, thereby identifying a specific SKU.

$.Topic(pubsub.topicNames.SKU_SELECTED).publish(product, selectedSku,
variantOptions);

Arguments

product: The current ProductViewModel. See the View Model JSDoc for Commerce
for details on what this view model contains.

selectedSku: A JSON object that includes data for the selected SKU, for example:

selectedSku = {
 "salePrices" : null,
 "resolution" : "14.1-megapixels",
 "listPrice" : 399.99,
 "quantity" : 5,
 "repositoryId" : "camerasku_1_18",
 "color" : "Black",
 "dynamicPropertyMapLong" : {
 "sku-camera_resolution" : 0,
 "sku-camera_color" : 8
 },
 "salePrice" : 399.99,
 "salePriceStartDate" : null,
 "fractionalQuantitiesAllowed" : false
 }

variantOptions: An array whose items reflect the variant options (such as color, size,
finish, resolution, and so on) that can be selected for the SKU, along with any currently

Chapter 10
PubSub topics

10-17

selected variant options. For example, the following JSON sample shows the color
and resolution variants returned for the camera selected above.

[
 {
 "optionDisplayName" : "color",
 "parent" : {
 "basePath" : "/",
 "deferredInit" : {},
 "prevHistoryLength" : 7,
 "newHistoryLength" : 8,
 "localeSubscription" : {
 "R" : true
 },
 "WIDGET_ID" : "productDetails",
 "imgMetadata" : [{}
],
 "firstTimeRender" : true
 },
 "optionId" : "sku-camera_color",
 "actualOptionId" : "color",
 "optionCaption" : "Select color ...",
 "selectedOptionValue" : {
 "key" : "Antique Brass",
 "value" : 0
 },
 "originalOptionValues":[
 {
 "key" : "Antique Brass",
 "value" : 0
 },
 {
 "key" : "Apricot",
 "value" : 1
 },
 {
 "key" : "Aquamarine",
 "value" : 2
 },
]
 },
 {
 "optionDisplayName" : "resolution",
 "parent" : {
 "basePath" : "/",
 "deferredInit" : {},
 "prevHistoryLength" : 7,
 "newHistoryLength" : 8,
 "localeSubscription" : {
 "R" : true
 },
 "WIDGET_ID" : "productDetails",
 "imgMetadata" : [{}
],
 "firstTimeRender" : true

Chapter 10
PubSub topics

10-18

 },
 "optionId" : "sku-camera_resolution",
 "actualOptionId" : "resolution",
 "optionCaption" : "Select resolution ...",
 "selectedOptionValue" : {
 "key" : "14.1-megapixels",
 "value" : 0
 },
 "originalOptionValues":[
 {
 "key" : "14.1-megapixels",
 "value" : 0
 },
 {
 "key" : "24.3-megapixels",
 "value" : 1
 },
]
 }
]

Memory enabled

No

USER_LOGIN_SUCCESSFUL

A message is published to this topic when the shopper has successfully logged in. You
can subscribe to this topic to introduce logic that is specific to logged-in shoppers.

$.Topic(pubSub.topicNames.USER_LOGIN_SUCCESSFUL).publish();

Arguments

None

Memory enabled

No

USER_LOGOUT_SUCCESSFUL

A message is published to this topic when the shopper successfully logs out.

$.Topic(pubSub.topicNames.USER_LOGOUT_SUCCESSFUL).publish(message);

Arguments

message: A JSON array that includes a message property whose value is success.

[{"message":" success "}]

Memory enabled

No

Chapter 10
PubSub topics

10-19

USER_PASSWORD_EXPIRED

A message is published to this topic when the user password expires.

$.Topic(pubSub.topicNames.USER_PASSWORD_EXPIRED).publish();

Arguments

None

Memory enabled

No

USER_PROFILE_UPDATE_SUCCESSFUL

A message is published to this topic when the shopper’s profile is updated
successfully with a new address, email, or name.

$.Topic(pubSub.topicNames.USER_PROFILE_UPDATE_SUCCESSFUL).publish(profil
eData);

Arguments

profileData: A JSON object that contains the updated user profile data, for example:

{
 "receiveEmail" : "yes",
 "lastName" : "Spencers",
 "locale" : "en_US",
 "contactBillingAddress" : "Address Object",
 "links" : [{
 "rel" : "self",
 "href" : http://localhost:9080/ccstore/v1/profiles/
current
 }
],
 "contactShippingAddress" : "Address Object",
 "repositoryId" : "se-570032",
 "parentOrganization" : null,
 "id" : "se-570032",
 "dynamicProperties" : [],
 "email" : "mspens@abc.com",
 "shippingAddresses" : ["Address Object1","Address Object2"],
 "daytimeTelephoneNumber" : null,
 "secondaryAddresses" : {
 "Mom' s house" : "Address Object",
 "Work" : "Address Object",
 "Home" : "Address Object",
 },
 "firstName" : "Mark",
 "shippingAddress" : "Address Object"
}

Chapter 10
PubSub topics

10-20

Note that the Address Object references in the example above look similar to the
following:

"contactBillingAddress" : {
 "lastName" : "Spencers",
 "postalCode" : "36130",
 "phoneNumber" : "555-555-1234",
 "county" : null,
 "state" : "AL",
 "address1" : "123 Main St",
 "address2" : null,
 "firstName" : "Mark",
 "companyName" : null,
 "repositoryId" : "se-990032",
 "city" : "Montgomery",
 "country" : "US"
},

Memory enabled

Yes

USER_SESSION_EXPIRED

A message is published to this topic when the user session expires. You can subscribe
to this topic to clear any session-specific data once the session expires.

$.Topic(pubsub.topicNames.USER_SESSION_EXPIRED).publish();

Arguments

None

Memory enabled

Yes

Listen for messages from a particular object instance
The PubSub library provides a way for code to publish and subscribe to a set of “global”
messages.

Any code in the application can publish messages to a topic and any code can listen
for those messages. There may be a need, however, to listen for messages coming
only from a specific instance of an object. To manage this use case, Commerce
includes the event-dispatcher module. Any object created from a module that
extends event-dispatcher can trigger events and allow other objects to register as
listeners for those events.

The event-dispatcher module provides two functions, trigger() and on(), that
facilitate event triggering and event listening, respectively. In the example below, the
ExampleDialog view model extends event-dispatcher and defines two events that
can be fired, save-event and cancel-event. To trigger the events, the view associated

Chapter 10
Listen for messages from a particular object instance

10-21

with ExampleDialog could call the trigger() functions as needed, for example, when
the Save or Cancel button is clicked.

/** * ExampleDialog.js */
 define (["shared/ccLibs/event-dispatcher"],
function(EventDispatcher) { "use strict";
 /**
 * Example of a module that extends EventDispatcher, enabling
instances of the
 * class to fire events to any listeners/event handlers
registered.
 * @see EventDispatcher
 */
 function ExampleDialog() {
 // Invoke superclass constructor to inherit any instance
properties.
 EventDispatcher.call(this);
 this.p1 = "property 1 value";
 this.p2 = "property 2 value";
 }
 // Extend EventDispatcher so we can dispatch events.
 ExampleDialog.prototype =
Object.create(EventDispatcher.prototype);
 ExampleDialog.prototype.constructor = ExampleDialog;
 // Define constants for any events we want to fire. These
need only be unique
 // within this module because corresponding listeners receive
events from a
 // given instance of this module.
 ExampleDialog.SAVE = "save-event";
 ExampleDialog.CANCEL = "cancel-event";
 /**
 * Corresponding view could be set up to call this method
when the
 * dialog's Save button is clicked, for example.
 */
 ExampleDialog.prototype.save = function() {
 // Fire SAVE event. Any additional arguments (beyond the
first) are
 // passed along to the event handler/listener.
 this.trigger(ExampleDialog.SAVE, this.p1);
 };
 /**
 * Corresponding view could be set up to call this method
when the
 * dialog's cancel button is clicked, for example.
 */
 ExampleDialog.prototype.cancel = function() {
 // Fire CANCEL event.
 this.trigger(ExampleDialog.CANCEL);
 };
 /**
 * Displays the dialog.
 */
 ExampleDialog.prototype.show = function() {

Chapter 10
Listen for messages from a particular object instance

10-22

 // Do something to display the dialog. Perhaps trigger an
event as well.
 };
 return ExampleDialog;
});

This code sample creates an instance of ExampleDialog and provides listeners, using
the on() function, for the save and cancel events triggered in that instance.

/**
 * Example.js
 */
 define (["path/to/ExampleDialog"], function(ExampleDialog) {
 "use strict";
 /**
 * Example of a module that listens for ExampleDialog events.
Does nothing
 * real or useful other than establishing how to add
listeners to an
 * EventDispatcher.
 * @see ExampleDialog */
 function Example() {
 // Note: The code in this constructor might more typically
be in an
 // initialize method or somewhere else.
 var dialog = new ExampleDialog();
 // Add listeners for save and cancel events. 3rd arg, if
provided, sets the
 // context for the listener
 dialog.on(ExampleDialog.SAVE, this.onSave, this);
 dialog.on(ExampleDialog.CANCEL, this.onCancel);
 dialog.show();
 }
 /**
 * Listener/handler for dialog save events.
 * @param args {Array} Any args passed along when event is
fired.
 */
 Example.prototype.onSave = function(args) {
 // Do something...
 console.log(args[0]);
 };
 /**
 * Listener/handler for dialog cancel events.
 * @param args {Array} Any args passed along when event is
fired.
 */
 Example.prototype.onCancel = function(args) {
 // Do something else...
 if (args.length === 0) {
 console.log("No args passed with cancel event.");
 }
 };

Chapter 10
Listen for messages from a particular object instance

10-23

 return Example;
});

Chapter 10
Listen for messages from a particular object instance

10-24

Glossary

Glossary-1

Index

Index-1

	Contents
	1 About This Guide
	2 Create an Extension
	Understand extensions
	Create an extension ID
	Create the extension structure
	Create and load the extension bundle

	3 Create a Widget
	Understand widgets
	Download widget source code
	Create the widget structure
	Define widget meta-data in widget.json
	Acceptable values for the imports property
	Create the widget template file
	Create custom widget JavaScript
	Configure a widget’s style
	Localize a widget
	Bundle images or other assets within widget
	Use ccLink binding for quicker page loading
	Understand widget versioning
	Add customizable widget settings
	Assign a global widget to multiple sites

	4 Fragment a Widget into Elements
	Understand elements
	Create the element directory structure
	Define element meta-data in an element.json file
	Create the presentation for an element
	Create custom element JavaScript

	5 Use Stacks for Increased Widget Layout Control
	Understand stacks
	Create the stack structure
	Define stack meta-data in stack.json
	Create the stack template
	Configure a stack’s style
	Create a quick view popup using a popup stack

	6 Add Site Settings
	Define site settings
	Reference site settings in widget templates

	7 Include Application-level JavaScript Modules
	Create the extension structure for application-level JavaScript
	Run custom logic upon module instantiation
	Reference an application-level module in a widget
	Application-level JavaScript examples
	Assign an application-level JavaScript module to multiple sites

	8 Filter REST Responses
	Out-of-the-box response filters
	Pass a response filter key in a REST call made from a widget
	Programmatically determine the correct response filter key
	Change response filters used by out-of-the-box widgets
	Filter REST calls made from within a view model

	9 Resize Images
	Default image sizes
	Resize images using the ccResizeImage binding
	Understand the image resizing REST APIs
	Manage image caching

	10 Manage Storefront Event Notification
	Understand the PubSub library
	Include the pubsub dependency
	Subscribe to a topic
	Publish messages
	Create new topics
	PubSub topics
	Listen for messages from a particular object instance

	Glossary
	Index

