Developing Widgets

F37066-01

a January 2021
ORACLE




Developing Widgets,
F37066-01
Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

1 About This Guide

2 Create an Extension
Understand extensions 2-1
Create an extension ID 2-2
Create the extension structure 2-2
Create and load the extension bundle 2-3

3 Create a Widget

Understand widgets 3-1
Download widget source code 3-1
Create the widget structure 3-2
Define widget meta-data in widget.json 3-2
Acceptable values for the imports property 3-4
Create the widget template file 3-6
Create custom widget JavaScript 3-7
Configure a widget's style 3-10
Localize a widget 3-11
Bundle images or other assets within widget 3-14
Use ccLink binding for quicker page loading 3-14
Understand widget versioning 3-16
Add customizable widget settings 3-16
Assign a global widget to multiple sites 3-21
4 Fragment a Widget into Elements
Understand elements 4-1
Create the element directory structure 4-2
Define element meta-data in an element.json file 4-3
Create the presentation for an element 4-4

ORACLE iii



Create custom element JavaScript

Use Stacks for Increased Widget Layout Control

4-5

Understand stacks 5-1
Create the stack structure 5-2
Define stack meta-data in stack.json 5-2
Create the stack template 5-4
Configure a stack’s style 5-6
Create a quick view popup using a popup stack 5-7
Add Site Settings
Define site settings 6-1
Reference site settings in widget templates 6-4
Include Application-level JavaScript Modules
Create the extension structure for application-level JavaScript 7-1
Run custom logic upon module instantiation 7-1
Reference an application-level module in a widget 7-2
Application-level JavaScript examples 7-2
Assign an application-level JavaScript module to multiple sites 7-4
Filter REST Responses
Out-of-the-box response filters 8-1
Pass a response filter key in a REST call made from a widget 8-1
Programmatically determine the correct response filter key 8-2
Change response filters used by out-of-the-box widgets 8-7
Filter REST calls made from within a view model 8-9
Resize Images
Default image sizes 9-1
Resize images using the ccResizelmage binding 9-1
Understand the image resizing REST APIs 9-6
Manage image caching 9-8
iv

ORACLE



10 Manage Storefront Event Notification

Understand the PubSub library
Include the pubsub dependency
Subscribe to a topic

Publish messages

Create new topics

PubSub topics

Listen for messages from a particular object instance

Index

10-1
10-1
10-1
10-2
10-3
10-3

10-21

ORACLE"



About This Guide

ORACLE

Oracle CX Commerce allow you to customize your storefront by customizing
extensions, widgets, various element and other site settings.

This guide is intended for developers working on Oracle CX Commerce
implementations. It explains in general terms how to use the widget development
framework to customize store functionality. It shows how to create extensions, widgets,
elements, and site settings and provides guidance on topics such as directory and file
structure, configuration file syntax, and localization techniques.

For information on developing widgets for specific features, for example widgets that
integrate with an external pricing system or a web checkout system, see Extending
Oracle CX Commerce, which builds on the information contained in this guide and
assumes you are familiar with it.

1-1



Create an Extension

An extension encapsulates entities and assets that can enhance your Commerce
implementation with additional, custom functionality.

This section describes how to create and upload extensions.

Understand extensions

Extensions are pieces of code that you can configure to extend your environment.

ORACLE

Extensions can contain one or more of the following:

Widgets

A widget provides a unit of Ul functionality that can be deployed on one or

more pages of your web store. Widgets are able to display content to visitors

or execute specific functions. They provide custom HTML and/or JavaScript code
and, optionally, several other types of auxiliary data for styling, localization, and
component re-use.

Elements

To provide more control over its constituent parts, widgets can be broken up

into elements. Each element represents one part of the overall structure of the
widget and they can be configured as drag-and-drop sub-components, allowing for
finer control over their location in a page layout. For example, the Header widget
contains the following elements: Cart Link, Language, Links, Login/registration,
Logo, Rich Text and Search. An element can be defined as part of a specific
widget or as a stand-alone element that may be used by multiple widgets.

Stacks

Page layouts are made up of regions, into which widgets are placed. All widgets
placed within a region take up the full widget of the region and are rendered
vertically within the region, one after the other. Stacks allow you exercise further
control over the placement of widgets within a given region, making it possible to
create a stepped progression through the widgets contained in the region.

Payment Gateways

Commerce provides support for a number of payment gateways as built-in
integrations. In addition, you can use extensions to create custom integrations
with other payment gateways. The integrations you create appear as options on
the Payment Gateways tab of the Payment Processing page in the administrative
console. See Configure Payment Processing for more information.

Site Settings

Site settings allow you to define a set of global configuration parameters. These
parameters are made available to page layout designers in the administration
interface and all widgets have access to their settings. Site settings allow you to
define a single setting that controls a feature across multiple widgets.

Application-level JavaScript modules
Application-level JavaScript are loaded as part of the main module, before any
endpoints have been fired and before any widgets have been loaded. As such,

2-1



Chapter 2
Create an extension ID

they can be referenced as a dependency in any widget, allowing you to build
reusable modules that can be shared among widgets and elements.

Create an extension ID

You must create an extension ID that you use when you define its meta-data.

In order to upload an extension into Commerce, you must generate an ID for the
extension and then use that ID when you define the extension’s meta-data. To create
an extension ID perform the following steps:

1. Log into Commerce.

2. Click the Settings icon.

3. Click Extensions, then click the Developer tab.

4. Click the Generate ID button to generate an extension ID.
You are prompted to name the extension.

5. Enter a name for the extension and click Save.

6. Your extension ID is now generated and must be used in the extension’s
ext . j son file. For further details, refer to the next section, Create the extension
structure.

Create the extension structure

ORACLE

Extensions require a specific structure configuration.

Once you have a new unigue ID for your extension, you can start to develop it
by creating the folder structure, as shown in the example below. Make sure your
extension uses a name that is unique within your Commerce environment; for
example, do not give your extension the same name as a default widget.

Note: If you do not include JavaScript, Less styles, or Locales, you can omit those
directories.

<extension-name> . The root folder of your extension, must be unique
ext.json
<additional directories to define widgets, elenents,
payment gateways, site settings>/

Define extension meta-data in ext.json

Each extension provides meta-data describing the author/developer of the extension
and other information related to its creation. This meta-data is contained in a manifest
file called ext . j son. Without the manifest file, the extension cannot be loaded. The
ext . j son file should include the following:

* extensionl D: Unique ID of the extension. Note that this ID must match the
value generated on the Extensions page in the administrative console. See Use
developer tools to customize your store for more information.

e devel oper | D: The extension author’s unique developer ID.

e createdBy: The name of creator (company or individual).

2-2



Chapter 2
Create and load the extension bundle

e version: The version of the extension, expressed as a single whole number.

e timeCreated: When the extension was created. iso-8601 is the recommended
format; however, an informal time stamp is also acceptable.

« transl ations: An array that provides translations for both the extension name
and description. These properties are displayed on the Extensions page that
is accessible from the Settings page in Commerce. For example, the English
translation for the name of the extension in the illustration below is “Visit Counter
Widgets” and the description is “Provides visitor counting related functionality”.

An example of an ext . j son file that includes translations for English and French is
shown below. Note that the translations property has three sub-properties, language,
name, and description. The language property can be either a two-letter language
code (for example, en) or a two-letter language code and a two-letter country code
with an underscore in between (for example, en_US). | SO 639- 1 defines the two-letter
language codes. | SO 3166- 1 al pha- 2 defines the two-letter country codes.

{ "extensionlD': "f3acef8e-375a-11e4-9c85- ebc5h52923a8",

"devel operI D': "987654",

"createdBy": "Conpany nane",

"version": 1,

"timeCreated": "2016-09-08",

“translations" : [

{

"l anguage" : "en_US",
"name": "Extension | abel in English",
"description":"Extension description in English"

"l anguage" : "fr_CA",
"name": "Extension |abel in French",
"description":" Extension description in French"

Add functionality to the extension

The extension directory contains additional directories, at the same level as the
ext . j son file, that define the functionality you want to upload. For more information
on creating these directories and their contents, see the following:

e For information on creating widgets, elements, and site settings, refer to the
remainder of this guide. Also refer to this guide for information on uploading
application-level JavaScript modules.

e For information on creating payment gateways,see Configure Payment
Processing.

Create and load the extension bundle

You must create a bundle that allows you to upload the extension.

When you have finished developing or changing your extension contents, zip up all the
files within your extension-name directory. This is the file you upload to Commerce to

ORACLE 2-3



Chapter 2
Create and load the extension bundle

make the extension available for use. On a Mac or Linux-based machine, you can do
this with the following command inside the extension-name directory:

zip -r extensionName.zip ./*

After creating the ZIP file, load it using the procedure below.
To load an extension, perform the following steps:

1. Log into Commerce.

2. Click the Settings menu icon.
3. Click Extensions.
4

Click the Upload Extension button and select the extension zip file from your
local file system.

The system now starts the upload and validation process. Any problems identified
during the validation checks are displayed in a warning message.

ORACLE 2.4



Create a Widget

A widget provides a unit of Ul functionality that can be deployed on one or more pages
of your web store.

This chapter introduces widgets and the files that configure them.

Understand widgets

Widgets are made up of a set of source files and resources.

A number of things provide the widget with its functionality and include the following:

* Templates: Display templates for showing content using knockout.js data bindings.
* JavaScript: View model per widget (optional).

e CSS: Styles for the widget. Can be pure CSS or Less (see http://www.lesscss.org).
* Locale resources: Translation resources per locale for the widget.

* Images: Images used for the widget, referenced via the widget asset mappings.

Widgets also consist of auxiliary files that contain help, configuration, and meta-data
describing the widget. They include the following:

* Meta-data: The meta-data that describes the widget.

» Elements: Small pieces or fragments of functionality for a widget, including a
display template snippet and a view model.

»  Configurable widget settings: A mechanism for providing configurable widget
settings that the page layout designer can use to customize the widget's behavior
on the Design page, for example, limiting the number of products to display on a
Related Products widget.

e Configuration: Default configuration can be delivered with the widget.

Download widget source code

The following sections provide details on how to create a new widget type from
scratch. However, you can also download the source code for an existing widget type
and use it as a starting point.

To download widget source code perform the following steps:

1. On the Design page, select a widget from the Widget Templates list.

2. Click the Download Source button and, when prompted, save the widget's ZIP
file.

ORACLE 3-1


http://knockoutjs.com/
http://www.lesscss.org

Chapter 3
Create the widget structure

Create the widget structure

Widgets are added to an extension’s structure in a/ wi dget directory that is at the same
level as the extension’s ext . j son file.

When you create a new widget, it is important to ensure that the name is less than 50
characters. An error will occur if the name contains more than 50 characters.

Each widget should have its own child directory in the / wi dget directory. The
following example shows the directories and files that can be included for a widget:

<extension-name> : the root folder of your extension
ext.json
wi dget /
<wi dget -t ype>/
wi dget . j son
tenpl at es/
di splay.tenplate
s/
<wi dget-type>.js
| ess
wi dget . | ess
| ocal es/
<l ocal e code, for exanple, en or en_US>/
ns. <wi dget -t ype>. j son
<ot her |ocal e codes>/
ns. <wi dget -t ype>. j son
i mages/

If your widget does not involve the creation of user interface elements or require
custom JavaScript, the widget structure can omit a number of directories and files
used for these purposes. The following shows the minimum set of files and directories
needed for a widget to pass validation on upload:

<ext ensi on- nane>

ext.json
wi dget /
<wi dget -t ype>/
wi dget . j son

Define widget meta-data in widget.json

Much like the ext . j son file defines meta-data for an extension, awi dget . j son file
defines meta-data for a widget.

An example of a wi dget . j son file is provided below:

{
"version": 1,
"global": fal se,
"javascript": "<w dget-type-js>",
"i18nresources": "<wi dget-type>",

ORACLE 3-2



ORACLE

Chapter 3
Define widget meta-data in widget.json

"avai | abl eToAl | Pages": true,
"jsEditable": true,
"config": {

}

"translations" : [

{

"l anguage": "en",
"name": "Name in English"
b,
{
"l anguage": "de",
"nane": "Nanme in Cerman"

The following list describes all the properties that you might choose to include in a
wi dget . j son file.

j avascri pt : The name of the widget's main JavaScript file, to which .js is
appended, to load in the storefront. The convention is to use the widget-type
as the JavaScript module name without the .js suffix. This property is required
if the widget includes one or more JavaScript files and should refer to the
main JavaScript file for the widget. Other JavaScript files can be defined as
dependencies in the main JavaScript file. See Include multiple JavaScript files
for more details.

j sEdi tabl e: A flag that determines whether it is possible to edit the widget's
JavaScript code within the Design page. Defaults to false.

i 18nr esour ces: The namespace name for the resources of this widget, to which
ns is prepended and . | son is appended. The convention is to use the widget-type
for this property, creating a file with a name like ns. wi dget - t ype. j son. This
property is required if the widget has resource files. See Localize a widget for
more information.

i npor t s: By default, widgets have access to data and functions contained in the
common view models (user, cart, order and so on). However, in order for a widget
to have access to page-specific view models, those view models must be explicitly
defined in the i npor t s property. The possible values that are acceptable for the
imports property depends on the type of page the widget will be placed on. See
Acceptable values for the imports property for detailed information.

avai | abl eToAl | Pages: Set this property to true to allow the widget to be placed
on all page types; the widget will appear in the Component library for all pages.
Omit this property altogether to restrict placement of the widget to the page types
defined in the pageTypes property. Also, omit this property for global widgets (see
the global property below). Note that this property and the pageTypes property are
mutually exclusive but one of them must be set.

pageTypes: Defines which page types the widget can be placed on; the widget will
appear in the Component library for the specified pages. If you use this property,
you must omit the avai | abl eToAl | Pages property. Note that this property and the
avai | abl eToAl | Pages property are mutually exclusive but one of them must be
set.

Available page types include the following:

3-3



Chapter 3
Acceptable values for the imports property

— product

— category

—  hone

— cart

— checkout

— confirmation

— article

— error

— searchResults

— noSearchResults
The widget will appear in the Component library for the page types you specify.

transl ations: An array that provides translations for the widget name. This name
is displayed in the Components library panel that you use to add a widget to

a page layout. Note that either the translations property or the name property,
described below, is required.

The translations property has two sub-properties, language and name. The
language property can be either a two-letter language code (for example, en) or

a two-letter language code and a two-letter country code with an underscore in
between (for example, en_US). ISO 639-1 defines the two-letter language codes.
ISO 3166-1 alpha-2 defines the two-letter country codes.

ver si on: Specifies the version of the widget, used to ensure the right version of
a widget is used in the storefront. See Understand widget versioning for more
information. Defaults to 1.

nane: If your storefront only uses one language, meaning you do not need multiple
translations for the name of the component, you can choose to use the name
property instead of the translations property. Note that one of the two properties is
required.

gl obal : Defines the widget as a global widget. A global widget does not include
a display template. It is automatically added to all pages but, due to the lack of
template, it is excluded from template rendering. Global widgets are useful for
tasks like logging web analytics or loading JavaScript libraries. Defaults to false.

m nW dt h: The minimum width that this widget will fit into it. The system will check
if the widget will fit in the region in Grid View.

hi ddenFr onfi t eSt udi 0: A Boolean that determines whether the widget’s initial
state is to be hidden or not in the Component library. Set to false by default.
See Customize your store layouts for details on showing or hiding widgets in the
Component library.

Acceptable values for the imports property

ORACLE

When defining a widget, one of the properties you may choose to set in the
Wi dget . j son file is the imports property.

By default, widgets have access to data and functions contained in the common view
models (user, cart, site and so on). However, in order for a widget to have access to
page-specific view models, those view models must be explicitly defined in the imports

3-4



ORACLE

Chapter 3
Acceptable values for the imports property

property. The possible values that are acceptable for the imports property depends on
the type of page the widget will be placed on. To determine which page-specific view
models your widget can have access to, determine the page type the widget will be
placed on and then review the acceptable values for that page type in the following
sections.

Note that some page types have no page-specific view models. These include home,
order history, article, error, shopper wish list profile, search results, and no search
results.

Category

Acceptable imports values include the following:
e category

e categoryld

e dinensionld

e product Types

Product

Acceptable imports values include the following:
e product

e product Types

e product Variant Options

Cart

Acceptable imports values include the following:
e defaul t Shi ppi ngCountry

e order

e paynent

e shippingCountries

* shippingCountriesPriceli st Goup

e shi ppi ngnet hods

Checkout

Acceptable imports values include the following:
e billingCountries

o defaultBillingCountry

e defaul t Shi ppi ngCountry

e order

e paynent

e paynentaut horization

e shippingCountries

3-5



Chapter 3
Create the widget template file

» shippingCountriesPriceli st Goup

e shi ppi ngnet hods

Confirmation

Acceptable imports values include the following:
e confirmtion

o defaul t Shi ppi ngCountry

e shippingCountries

* shippingCountriesPricelistGoup

Order Details

Acceptable imports values include the following:
o defaul t Shi ppi ngCountry

e orderDetails

e shippingCountries

* shippingCountriesPriceli st Goup
Shopper Profile

Acceptable imports values include the following:
e defaul t Shi ppi ngCountry

* shi ppingCountries

e shippingCountriesPricelistGoup

Wish List

Acceptable imports values include the following:

e space

Create the widget template file

ORACLE

With the exception of global widgets, all widgets require a template file, called
di spl ay. tenpl at e, in the / wi dget / <wi dget -t ype>/t enpl at es directory.

The file takes the following structure:

<extension-name> : the root folder of your extension
ext.json
wi dget /
<wi dget -t ype>/
wi dget . j son
t enpl at es/
di splay.tenplate

3-6



Chapter 3
Create custom widget JavaScript

The template is rendered within the context of the widget and should be written as
straight HTML with no surrounding script tag. All knockout bindings and behavior are
available in the HTML template code.

Note: Additional templates are required if you want to fragment your widget into
elements. See Fragment a widget into elements for more details.

The following is an example of the Loyalty Payment widget's template file:

<I-- ko if: ($data.paymentsContainer().isLoyaltyEnabled() &%
((CCRestClient.profil eType ==

CCConst ant s. PROFI LE_TYPE_AGENT &&
$dat a. user (). sel ectedPri ceLi st Goup().currency &&

$dat a. user (). sel ectedPri ceLi st G oup().currency. currencyType ==
CCConst ant's. LOYALTY_PO NTS_PAYMENT_TYPE)
|| (CCRestClient.profileType !=
CCConst ant s. PROFI LE_TYPE_AGENT &&
$data.cart().currency &&
$data. cart().currency. currencyType ==
CCConst ant s. LOYALTY_PQO NTS_PAYMENT_TYPE))) -->
<div id="Ioyal tyPaynent" >
<I'-- oc layout: panels -->
<div class="oc-panel " data-oc-id="panel -1">
<I-- oc section: select-redeempoints -->
<di v data-bind="el enent: 'select-redeem points'"></div>
<l-- /oc -->
</div>
<l-- Joc -->
</ div>
<l-- ko -->

Create custom widget JavaScript

ORACLE

You can customize JavaScript to add functionality for your widgets.

To add custom JavaScript to a widget you must create a JavaScript file under

the ext ensi on- nane/ wi dget/w dget -t ype/j s directory. The name of the
JavaScript file must match the value of the JavaScript property in the wi dget . j son
file, minus the . j s extension. The convention is to use the widget-type as the
JavaScript file name, without the .js suffix.

Note: As an easier coding option, there is JavaScript Code Layering feature that lets
you extend the JavaScript of an Oracle CX Commerce provided widget with your own
custom JavaScript. With the JavaScript Code Layering User Interface feature you can
open an additional user interface that lets you layer custom JavaScript on top of the
provided widget and which then has the benefit of staying on the provided widget. For
more details on this feature, see Modify Your Storefront Using Code Editing Tools and
Use the JavaScript Code Layering User Interface feature.

Custom JavaScript for a widget assumes that the file will perform some custom logic
and return an object with extensions to the widget's view model. The JavaScript file
should implement the following format using Requi reJS

3-7



Chapter 3
Create custom widget JavaScript

Note: The module must be defined anonymously, in other words, have no package
name defined in the module, as shown below.

def i ne(
/1 Dependenci es
["jquery', 'knockout'],
/1 Modul e | npl enentation
function($, ko) {
Il W reconmmend enabling strict checking nmode
‘use strict';
/1 Private variables and functions can be defined here...
var SOVE_CONSTANT = 1024,
var privateMethod = function () {
...
b
return {
/1 Wdget JS
/1 Some nenber variables...
textlnput: ko.observable(),
/1 Some public nethods...
doSomet hi ngWt hl nput: function () {
...

}
1)

The define statement above can be modified to include widget-specific libraries or
other JavaScript files, if required. When a widget is instantiated all properties returned
from the JavaScript file specified will be copied into that instance of the widget's view
model. This allows you to define properties, make Web API calls, or handle Ul events.

Understand t hi s

Using this in the custom JavaScript is suitable when you refer to the widget itself, but
be careful of any callback methods where this may refer to a different context.

Include multiple JavaScript files

If your widget requires multiple JavaScript files, then any additional JavaScript files
can be loaded through the dependencies in the widget module’s define statement.

To derive the path of the dependency, use the path j s/ to reference the widget's
JavaScript folder followed by the path to the dependency but omitting the .js extension.
The following example is of widget called myW dget includes the following JavaScript

files:
nyW dget /
jsl/
filel.js
file2.js
file3d.js
myWdget.js

ORACLE 3-8



Chapter 3
Create custom widget JavaScript

And nyW dget . j s is the main JavaScript file for the widget and it is dependent on
the other three JavaScript files, then the required dependencies in myW dget . j s would
look like the following example:

/1 Dependenci es
["js/ifilel ,"js/ifile2 , "js/file3d'],

Running custom logic upon widget instantiation

If you must run custom logic when a widget is instantiated, then add an onlLoad()
function to the widget JavaScript's return object. The following is an example:

onLoad: function(wi dget) {
[l onLoad code here.

}

onLoad() will run once the widget has finished loading and is populated with the
necessary data. This is the main access point to configure data for the widget after

its properties have been loaded and the system is ready to display the widget. As the
onLoad() function is only called the first time the widget is instantiated, when returning
to the same “page”, the widget does not need to be re-instantiated, so onLoad() is not
called again.

Running custom logic each time a widget appears on a page

If you require some logic to run each time the widget appears on the page, add the
bef or eAppear () function to the widget JavaScript’s return object. The following is an
example:

bef oreAppear: function(page) {
/1 Code to run before showing the widget here. }

bef or eAppear () is run once any re-population of mapping data has occurred. This can
be useful when a Web API call is required every time the widget is shown, or, some
other functionality required every time the widget is shown.

Specify a function runs when an HTML element is being rendered

onRender is a custom Commerce binding that tells a function to run when an HTML
element is being rendered on the page. The function is called in the current knockout
context (typically bound to the widget, but certain knockout constructs, such as for
each, may alter the binding context). For example, when the following div tag is
rendered, the addEvent Hand| er sFor Anchor C i ck function is called:

<div id="CC-custonerProfile" data-bi nd="onRender:
addEvent Handl er sFor Anchor d i ck" >
<l-- .. -->

</ div>

ORACLE 3-9



Chapter 3
Configure a widget's style

Rely on mapping for a property vs. initializing it via JavaScript

Most of a custom widget’s data will come from the JSON. This data does not need to
be explicitly defined in the widget's view model; knockout mapping will automatically
create it.

For any data that doesn’t come through JSON, the observable should be explicitly
defined in custom JavaScript. Otherwise, an error will be thrown if a template tries to
render the property while it's undefined. For example, imagine a pr oduct Nane widget
that is configured with a product | d and uses that product | d to look up a product in
order to display its name. In this case, the product | d can be a property defined via
koMappi ng as it should be returned by the JSON data. The product’'s name, on the
other hand, is expected to be populated when the product look up completes, so it
needs to be defined in the JavaScript as product Nane: ko. observabl e() . Otherwise,
when the template is rendered, an error will be thrown because pr oduct Nane is not a
valid binding (it would be undefined).

Configure a widget's style

You can customize your widgets by configuring the styles they use.

CSS specific to a widget is contained in the / wi dget / wi dget -t ype/ | ess directory.
The following is an example:

<extension-nanme> : the root folder of your extension
ext.json
wi dget /
<wi dget - t ype>/
wi dget . j son
| ess/
wi dget . | ess

These files are always named wi dget . | ess and any CSS can be added here.
Styling across the storefront is built using Less. A Less file, like wi dget . | ess, can
define style using the Less language or native CSS. Less files are compiled to make
one CSS file.

For the storefront, there are some Bootstrap Less files, common Less files, and
widget-specific Less files, which are compiled together into st orefront. css. The
overall styling of the storefront is known as a Theme. Commerce provides tools to
manage Themes and allows merchants to change the storefront styling. You can use
the Theme Manager, or the Theme CSS to customize variables. See Customize your
theme, or Modify theme code. For information on working with Bootstrap variables,
refer to your Bootstrap documentation.

It is important that any style overridden within a widget Less file only applies to that
widget, and does not change the style across the storefront. One way to achieve this is
to format the widget's styles using the Less nested format, for example:

.nyWdget d ass {
.nyd ass {
color: red;

}

.otherd ass {

ORACLE 3-10



Chapter 3
Localize a widget

col or: bl ue;

In this case nyW dget d ass is a class applied at the top-level of the widget's template,
myd ass is a class created for this widget and ot her 0 ass is a class that already exists
but the styles need to be modified slightly for this widget.

When this Less file is compiled, it produces CSS in the format shown below, which
ensures the changes to the styles for ot her O ass are only applied within this widget.
The following is an example:

.nyWdgetd ass . nyd ass {

color: red;

}

.nyW dget d ass .otherd ass {
color: bl ue;

}

Note: If you design a custom style as part of an extension, the Less style may not

be compiled immediately after uploading the extension package. If this happens, open
the widget's style in the code editor (on the Design page), make a superficial edit, and
then save. This process forces compilation of the style.

Localize a widget

You can customize widgets to recognize the language of the browser that your
customer is using.

Any text in a widget that does not come from a remote API call can be defined in a
resource bundle so that it can be localized. Note: You can include localized resources
in your widgets/elements by including a/ | ocal es directory. However, this is not
necessary. You can just as easily hardcode strings inside the HTML templates or
JavaScript source files.

Use resource files

The resources reside in the widget / | ocal es directory, as shown in the following
example:

<ext ension-name> : the root folder of your extension
ext.json
wi dget/
<wi dget -t ype>/
wi dget . j son
| ocal es/
<l ocal e code, for exanple, en or en_US>/
ns. <wi dget -t ype>. j son
<ot her |ocal e codes>/
ns. <wi dget -t ype>. j son

A child directory exists in the / | ocal es directory for each locale you want to provide
resources for and their names can be either a two-letter language code (for example,

ORACLE 3-11



ORACLE

Chapter 3
Localize a widget

en) or a two-letter language code and a two-letter country code with an underscore in
between (for example, en_US). | SO 639- 1 defines the two-letter language codes. | SO
3166- 1 al pha- 2 defines the two-letter country codes.

The naming convention for resource files contained in these directories is

ns. <wi dget - t ype>. j son, for example, ns. mywi dget . j son. The ns prefix stands
for “namespace” and widget-type corresponds to the / wi dget/ wi dget -t ype
directory. Resource files are in JSON format. Refer to the Resource loading section for
more information on this format.

Localizable resources are defined using JSON objects composed of string keys
mapped to string values. The keys represent the resource names and the values
represent the localized version of each resource. The i 18next JavaScript library is
used to perform the client-side translations. An example locale file is shown below:

{
"resources": {
"siteNavi gati onFooter" : "Site Navigation Footer",
“edi t Foot erHeader" : "Sel ect Header Links (nulti-select allowed)"
}
}

Use resources in widgets

Primarily, widget resources are used when text in a widget display template is
translated. A Knockout custom binding named wi dget Local eText is available on the
storefront to invoke the translation of the resource using the store’s current locale.
This will ultimately call the i 18next library, but that is invisible to the widget templates.
The following example shows using the wi dget Local eText binding in its simplest form,
passing in the resource key:

<h2 dat a- bi nd="wi dget Local eText: 'cartHeader'"></h2>

The resource files defined for a widget for the current locale are used to replace the
key with the right resource. The locale is defined for the storefront when the page is
loaded. In the current release of Commerce, the locale is defined for the Site. The
resources for the current locale are returned with the widget data when a page is
loaded. These resources are mapped onto a widget and also as a namespace for
iI8next.

If you need to translate text within a widget's JavaScript, use the translate function in
the widget view model. This would be required, for example, when sending a message
for display on the notification bar.

notifier.sendSuccess(w dget. W DGET_I D,
wi dget . transl ate(' | ogi nSuccessText'));

Use variable replacement

Rather than manually concatenating variables to localized strings, the il8next library
has support for variable replacement.

For example, a welcome message using the user’s first name can be defined in
aresource, such as, Wl cone __user Nanme__. Then, in the display template, the

3-12



ORACLE

Chapter 3
Localize a widget

translation can be invoked using a knockout object to set the user Nane variable, such
as the following:

<span dat a- bi nd="wi dget Local eText : {value:'welcome', attr:'innerText",
par ans:
{userNane: firstName()}}"></span>

Note that in the JSON resource, a __doubl eUnder score__ notation marks the variables
but, when the resource is invoked in HTML or JavaScript, the underscores are omitted.
The i 18Next library provides other mechanisms such as support for plurals. Refer to
the i18next section for more information.

Resource loading

By following the structure defined above for a widget, and putting the widget resources
under the / | ocal es directory for a widget, the resources will be loaded for the widget
by the framework. The data to build a page in the storefront is retrieved from the
Pages Web API Endpoint. For the current page, this endpoint will return both context
data and the data related to the layout of the page, such as the regions and widgets to
load.

Included with the data about each widget are the resources. These resources are
then mapped onto the widget and loaded when the widget is loaded. The i18next
namespace used to load the resources is defined as part of the widget definition within
the server-side Page Repository. When a new widget is created, its wi dget . j son file
defines a property called i 18nr esour ces. The following is an example:

{
"name": "W dget Name",
"version": 1,
"javascript": "widget-type-js",
"i18nresources": "w dget-type",
"avai | abl eToAl | Pages": true,
"j sEditable": true,

}

The i 18nr esour ces property for a widget is used to determine the file name for each
locale resource file, in the format ns. <i 18nr esour ces property>.json.

So, for the widget definition shown above, the resources file name would be

ns. w dget -t ype. j son. This i 18nr esour ces property is used in the storefront
framework when loading the resources and expects the format to be as defined here.
Since the resources are no longer loaded directly via a URL, the file name itself is less
important, but following the convention allows for consistency.

Use common resources: il8next

Currently there are two sets of expected common resources, as described in the
following:

e ns.comon: Common text used across the store such as OK, Cancel, Close, and
S0 on.

 ns.ccformts: Defines a format for a number.

3-13


http://i18next.com/

Chapter 3
Bundle images or other assets within widget

Use common resources: moment

The noment . j s library (see http://momentjs.com) is used in the storefront to format
dates. This requires a resource file per language. The en version comes with moment
but other languages require a separate JavaScript file.

Bundle images or other assets within widget

The simplest way to use custom resources (for example, images) in a widget is to
host them on an external server. The visitor’s browser then accesses them from that
location.

It is also possible to bundle custom images within the file structure of a widget. When
the extension is uploaded, the images are copied to a directory on the VFS, and you
can access them via the Widget Asset Mappings. If you have an image ‘i magel. png’
stored in the i mages/ directory of your widget, you can reference that resource in
JavaScript with the following snippet:

wi dget . asset Mappi ngs["/i mages/i magel. png"] ();

The asset mapping is an observable, so use parentheses in JavaScript code to extract
the value.

You can also access the asset mapping from a knockout template, and be aware

of the current binding context (for example, if inside a loop, you may need to

use $par ent to get back to the widget context). The sample below shows the HTML
for an asset mapping:

<ing class="product-iteming" data-bind="attr: {src:
asset Mappi ngs[ productimge ] }">

Use ccLink binding for quicker page loading

ORACLE

Using the standard hr ef link syntax, for example, <a hr ef ="/ about Us" >About Us<a/ >,
within a widget causes a full page load to occur.

For more efficiency, you should use the ccLi nk custom binding instead. When the
ccLi nk binding is used, widgets that are shared between the current page and the
linked page are maintained; in other words, they are not re-loaded and re-initialized.
Instead, when a ccLi nk binding is invoked, only the widget deltas are loaded; that is,
widgets that exist on the linked page but not on the current page.

The ccLi nk syntax for a hyperlink looks similar to the following:

<a dat a- bi nd="ccLi nk: 'about Us'"></a>

To facilitate the ccLi nk binding, each widget has a links observable that contains all
of the data required to link to each of the page types in the storefront. The name
specified in the ccLi nk binding (' about Us' in the example above) is used to retrieve
data from that wi dget . | i nks() object. For example, the following illustration shows
the properties that the wi dget . | i nks() object contains for the about Us name:

3-14


http://momentjs.com

ORACLE

Chapter 3
Use ccLink binding for quicker page loading

wiidget . 1 inkg] )

TObject {did: Object, homer Object,
AR DBject
v aboutlis: Object
defaultPage: false
displaydame: “About Us™
name: “aboutls"
pageType:r “artic

F pageTypelten: Object
repositoryld: “aboutUsPage"
rowte: "/aboutlls

® rules: Array[1]
target: 1ed

" * Object

cart: Dbject

category: Dbject

chitchowts DBject

confTirmation: Object

contactls: DEject

mome: Object

maSearehResulre: Dbject

daaliapsdls s Ml

The ccLi nk binding uses two of these properties, r out e and di spl ayNanme to generate
the code for the link. Specifically, it uses the r out e property for the link URL ("/

about Us" in the example). It uses the di spl ayNane property for the link text if there

is no existing text in the anchor tag ("About Us" in the example). Therefore, the
generated code for the about Us link would look like the following:

¥FEYEFETTN

<a dat a- bi nd="ccLi nk: 'aboutUs' href="/about Us">About Us</a>

As part of the code generation process, the ccLi nk binding adds a click event handler
to the anchor tag element. This event handler invokes internal Commerce code that
requests only the widget deltas for the linked page.

It is also possible to pass ccLi nk an object that contains all of the required data, rather
than using the wi dget.|inks() object data, for example:

<a data-bi nd="ccLink: {route: '/aboutUs', displayName:' Qur History'}
"><f a>

Passing an object with all the required data is useful when working with the pr oduct
and col | ecti on view models. In this case, you can pass the full view model object to
the ccLi nk binding, for example:

<a dat a- bi nd="ccLi nk: product"></a>

Within the product view model are properties like the following (in addition to many
others):

"di spl ayName": "Bl ock Tabl e"
"route”:"/ bl ock-tabl el product/xprod2125"

With this usage, the generated code follows a similar approach, using the rout e
property for the link URL and the di spl ayName property for the link text. The following
is an example:

<a data-bi nd="ccLink :product" href="/bl ock-tabl e/ product/xprod2125">
Bl ock Tabl e</a>

3-15



Chapter 3
Understand widget versioning

The same click event handler is added to the anchor tag for invoking the code that
requests only the widget deltas for the linked page.

Understand widget versioning

Widgets can be identified by their version.

If a version other than 1, which is the default, is specified for the version property in the
wi dget . j son file, then Commerce will use that version number as part of the path
for loading widget files. For example, the JavaScript file for the first version of a widget
(either explicitly stated as "version" : "1" or no version specified) is loaded using
the URI. The following is an example:

[filelw dget/nyWdget/js/nyWdget.js

If v1 is later replaced on the system with v2 of the same widget, then the JavaScript
file is loaded using the URI, as shown in the following:

[filelw dget/v2/ myWdget/js/nyWdget.js

In other words, the root folder for the widget has changed from / fi | e/ wi dget/
myW dget to/fil e/ wi dget/v2/ nyW dget . This can provide a form of cache-
busting, ensuring that the correct files are loaded for the widget.

However, Commerce does not allow multiple versions of a widget to be uploaded at
the same time. That is, if a version of a widget (v1) is uploaded in an extension and,
at a later time, a new version (v2) is to be uploaded, the extension containing v1 must
first be deactivated before the extension with v2 can be uploaded.

The ver si on property in wi dget . j son also serves as a useful reference for the
widget developer.

Add customizable widget settings

ORACLE

You can add settings to a widget that provide a finer level control over the widget's
behavior when it is added to a layout.

For example, the Related Products widget has settings that allow the page designer
to specify the number of related products to show and whether to display the name or
price for related products. Any customizable settings that have been configured for a
widget are available via the widget's Settings tab.

To view a widget's Settings tab, perform the following steps:

1. From the Design menu, select the Layout tab.

2. From the Layout tab menu, select the layout that contains the widget whose
settings you want to view by clicking the grid view.
The layout shows all of the widgets used in the layout.

3. Click on the widget's setting icon to view the widget information. Depending on
the widget you select, you may see different tabs available, such as Layout,
Settings and About.

4. When you have finished making your changes, click Save.

3-16



ORACLE

Chapter 3
Add customizable widget settings

Any configurable widget settings you create are added to the widget's view model
and can be referenced from the widget's HTML template using a dat a- bi nd attribute.
Examples for creating the data bind are provided later in this section.

Define a widget’s configurable settings

Widget settings are defined using a JSON-based schema. To add configurable
settings to your widget, add the following files to your directory structure:

<extension-name> : the root folder of your extension
ext.json
w dget/
<wi dget -t ype>/
Wi dget . j son
config/
config.json
| ocal es/
en_US.json
fr_FR json

The resource files for configurable widget settings are stored in locale files within the /
<wi dget -t ype>/ confi g/ | ocal es directory and are not read from the widget's
localization resources. However, the structure of these locale files is identical to those
for widget localization resources; please refer to Localize a widget for examples.

Note that defining the locales in the format | anguage_count ry (en_US) may cause
an error indicating that the locale file cannot be found. The locale folder should be
named using the language only, and if country-specific strings are preferred, you can
optionally include the | ocal e_count ry folder.

The structure of a confi g. j son file looks similar to the following:

{
"wi dget Descri ptor Nane": "QuoteW dget",
"properties": [
{

"id": "quoteWdgetTitle",
"type": "sectionTitleType",
"hel pText Resourcel d": "quoteWdgetTitlelHel pText",
"| abel Resourcel d": "quoteWdgetTitlellLabel”

"id": "quoteText",

"type": "stringType",

"hel pText Resourcel d": "quot eText Hel pText ",
"| abel Resourcel d": "quoteText Label ",
“defaul tVal ue": "",

“required": true,

"maxLengt h": 50,

“m nLength": 3,

"pattern": "regex"

"id": "quoteSource",
"type": "stringType",

3-17



ORACLE

Chapter 3
Add customizable widget settings

"hel pText Resourcel d": "quot eSour ceHel pText",
"| abel Resourcel d": "quot eSour ceLabel ",
“defaul t Val ue": ""

¥

{
"id": "quoteStyle",
"type": "bool eanType",
"hel pText Resourcel d": "quoteStyl eHel pText",
"| abel Resourcel d": "quoteStyl eLabel ",
“defaul tVal ue": true

¥

{

"id": "quoteSize",
"type": "optionType",
"hel pText Resourcel d": "quot eSi zeHel pText",

"| abel Resourcel d": "quoteSi zeLabel ",
“defaul t Val ue": "nediunt,
"options": [
{
"id": "quoteSizeSmall",
"value": "small",
"“| abel Resourcel d": "quoteSi zeSmal | Label "
b {
"id": "quoteSizeMedi unt,
“val ue": "mediunt,
"| abel Resourcel d": "quot eSi zeMedi unLabel "
3
{
"id": "quoteSizelLarge",
"value": "large",
"| abel Resourcel d": "quoteSi zeLar geLabel "
}

The wi dget Descr i pt or Nane property names the widget for which these settings are
defined and it must match the nane property in the widget's wi dget . j son file. The
properties array defines the configurable settings that should be added to the widget’s
Settings tab. For each property, the following standard keys are supported:

i d: A unique ID for the property. You use this ID in the widget's HTML template to
create a data-bind to the property.

nane: A display name for the property that appears on the Settings tab. Note that
while this property is still available for backwards compatibility, it is preferable to
use the | abel Resour cel d property, described below, to set the label for a property.

t ype: The data type of the property. Refer below for supported data types.

hel pText Resour cel d: The name of the key in the resource files whose value
provides help text for the property.

| abel Resour cel d: The name of the key in the resource files whose value provides
a label for the property on the Settings tab.

3-18



ORACLE

Chapter 3
Add customizable widget settings

def aul t Val ue: The property’s default value, which must be a valid value for the
property’s data type. See Use supported data types for configuration for more
information on data types.

requi red: A Boolean flag that determine if the property requires a value.

Use supported data types for configuration

There are a number of data types that are supported for widget settings. To specify the
data type for a setting, you set the t ype key to one of the following values:

stringType: Produces a text entry field that allows the page designer to specify a
free form text value.

opt i onType: Produces a drop-down list of preset values. The values are specified
using an options array, shown in the example above.

bool eanType: Produces a checkbox that allows the property to be enabled or
disabled.

medi aType: Produces a menu that allows you to select a media item (e.g. Image)
from your library, or by uploading a new file.

sectionTitl eType: Produces a read-only Section Title, defined by the
| abel Resour cel d, and an optional block of descriptive help text, defined by the
hel pText Resour cel d, to allow you to group widget settings together. For example:

{
"id": "quoteWdgetTitle",
"type": "sectionTitleType",
"hel pText Resourcel d": "quoteWdgetTitl elHel pText",
"| abel Resourcel d": "quoteWdgetTitlellLabel"
¥

col | ectionType: Produces a picker that allows you to select from the collections
defined in your catalog. You define the maximum number of collections that can be
chosen using the maxLengt h property. For example:

{
"id": "collectionltent, "type": "collectionType",
"nanme": "coll ectionPickerVal ue",
"hel pText Resourcel d": "col | ectionPi ckerVal ueHel pText",
"| abel Resourceld": "collectionPickerVal ueLabel ",
"maxLength": 5

}

mul ti Sel ect Opti onType: Produces a list of preset values, as does opt i onType;
however, you can select multiple values from this list. By default, the control
created for this data type is a drop-down list; however, you can add the

di spl ayAsCheckboxes property to the setting definition and set it to true to display
a set of checkboxes instead. For example:

{
"id": "paynent Met hodTypes",
"type": "nmulti Sel ect OptionType",
"name": "paynent Met hodTypes",
"required": true,

3-19



Chapter 3
Add customizable widget settings

"hel pText Resourcel d": "paynent Met hodsHel pText ",
"| abel Resourcel d": "payment Met hodsLabel ",
“defaul t Val ue": "card",

"di spl ayAsCheckboxes": true,

"options": |
{
"id": "card",
"value": "card",
"| abel Resourcel d": "cardLabel "
}

]
}

Depending on the data type it uses, a property will also support a number of data
type-specific keys. For the stringType data type, you can add the following keys:

* minLengt h: Minimum length of the string value.
* maxLengt h: Maximum length of the string value.

e pattern: A Java regular expression pattern to use for validating the string value.
The pattern key can also be used to handle number expressions. For example, the
configuration for a property that accepts a number in the range of 1 to 100 would
look similar to the following:

{
"id": "nunberField",

“type": "stringType",

"nane": "nunberField",

“hel pText Resourcel d": "number Hel pText",
"I abel Resourcel d": "nunberLabel ",
"pattern": "A[1-9][0-9]?$|~100%" }

For the opti onType and mul ti Sel ect Opt i onType data types, you can add an options
key that contains a list of objects that describe the entries in the drop-down list. Each
option has the following keys:

e id: Unique ID for the option.
* val ue: The value of the option.

e | abel Resourcel d: The resource key used to display the option in the drop-down
list.

As previously mentioned, the configurable settings you create are added to the
widget's view model and can be referenced from templates using a dat a- bi nd
attribute. For example:

<di v cl ass="quot eCont ai ner" data-bind="style : {fontSize : quoteSize}">
<I-- ko ifnot : quoteText() ==""' -->
<bl ockquot e dat a-bi nd="css : {quoted : quoteStyle}">
<p data-bind="text: quoteText"></p>
<I-- ko ifnot : quoteSource() =="'" -->
<footer data-bind="text : quoteSource"></footer>
<l-- /ko -->
</ bl ockquot e>

<l-- [ko --> </div>

ORACLE 3-20



Chapter 3
Assign a global widget to multiple sites

Assign a global widget to multiple sites

Global widgets are widgets that are available to all sites in your environment. You can
use these widgets to create consistency throughout your sites.

By default, global widgets apply to all sites in your Commerce instance. You may
override this default and assign a global widget to be used on only specified sites. To
do this, you issue a POST request using the updat eSi t eAssoci at i ons custom action
of the wi dget Descr i pt or s resource and provide a list of sites in a si t es property.
For example, the following request updates nyd obal W dget to execute on sit eAand
siteBonly:

POST /ccadmi n/ vl/w dget Descri pt ors/ nyd obal W dget /
updat eSi t eAssoci ations {
"sites": ["siteA", "siteB"]

}

To remove site associations, issue a POST request using the same custom action with
the sit es property set to null, as displayed in the following example:

POST /ccadmi n/ vl/w dget Descri ptors/ nyd obal W dget / updat eSi t eAssoci ati ons
{

"sites": []

}

The following is an example response for a call made using the
updat eSi t eAssoci at i ons custom action, as shown in the following example:

{ "result": true,
"links": [
{
“rel": "self",
"href":

http://1ocal host: 9080/ ccadm n/v1/ wi dget Descri ptors/
reconmendat i onsTracki ng_v1/
updat eSi t eAssoci at i ons”
}
]
}

Note that any attempt to update site associations for a widget that is not global results
in an error, as will attempting to associate a global widget with a site whose ID does
not exist.

ORACLE 3-21



Fragment a Widget into Elements

You can separate widgets into discrete elements. This allows a business user to
reposition individual elements on a widget without requiring knowledge of, or access
to, the underlying presentation code.

You can also use elements to create reusable chunks of functionality that is shared by
multiple widgets.

Understand elements

ORACLE

The following are two types of elements you can create:

* Widget-specific elements belong to a specific widget type and cannot be used by
any other widget type.

» Stand-alone elements are widgets that are not tied to a specific widget type and
can be used by multiple widget types.

As part of their configuration, elements define the widgets they can be placed on,
either implicitly (in the case of widget-specific elements) or explicitly (in the case

of stand-alone elements). Widgets can contain both widget-specific and stand-alone
elements as necessary. Business users can re-arrange, show, or hide elements of
both types using the tools in the Design page without the need for coding knowledge.

While it is not a hard and fast rule, the primary difference between widget-specific
elements and stand-alone elements is in the location of the JavaScript on which

they depend. For widget-specific elements, the JavaScript is typically contained in
the parent widget's <wi dget - t ype>. j s file. In this case, the element functions as
a display mechanism for functionality that exists in the parent widget. Removing an
element of this type from a widget on the Design page does not alter the functionality
of the parent widget; it just removes the element from the widget’s display.

Stand-alone elements typically have their own JavaScript functionality that is not
dependent on any single widget. As such, they can be fully encapsulated, making
it possible to share them among multiple widgets. Adding a stand-alone element to
a widget adds additional JavaScript functionality to the widget, along with display
mechanisms for that functionality. Note that, if you have an existing widget, you can
add a stand-alone element to it without the need to upload the whole widget again.

For a widget-specific element, you do not need to explicitly specify that it belongs to its
parent widget because you place the element’s configuration and code underneath the
parent widget's directory. For stand-alone elements, you do need to explicitly define
which widgets can use the element. The Create the element directory structure and
Define widget meta-data in widget.json sections provide more details on these topics.

Choosing which kind of element to create depends on the purpose of the element. For
example, if you need to create a “today-element” to be used across multiple widgets,
the wise choice would be to create a stand-alone element and calculate today’s date
within that element’s JavaScript rather than rely on each widget to provide the date
calculation functionality.

4-1



Chapter 4
Create the element directory structure

Create the element directory structure

The location where you create the element directory structure determines if an
element is widget-specific or stand-alone.

Widget-specific elements are included in an el emrent / directory under the directory
structure for the widget type they pertain to. The following is an example:

<extension-name> : the root folder of your extension
ext.json
wi dget /
<wi dget -t ype>/
wi dget . j son
el ement/
<el ement - nane>/
el enent. j son
t enpl at es/
tenpl ate. t xt
[ ayout s/
<l ayout - nane>
wi dget . tenpl ate
t enpl at es/
display.tenplate
[additional widget-related directories for tenplates, JS,
CSS, etc]

Stand-alone elements are included, in an el enent/ directory, under the extension root.
The following is an example:

<extension-name> : the root folder of your extension
ext.json
el enent/
<el ement - nane>/
el enent . j son
t enpl at es/
tenpl ate. t xt

Regardless of where you create your elements, each element must have a unique
name. An element directory may also contain one or more named directories
containing the JavaScript, HTML, and locale fragments related to the element, for
example:

<el ement - nane>/
el ement . j son
jsl/
element.js
| ocal es/
<l ocal e code, for exanple, en or en_US>/
ns. <el enent - nane>. j son
<ot her | ocal es>/
ns. <el enent - nane>. j son

ORACLE 4-2



Chapter 4
Define element meta-data in an element.json file

t enpl at es/
tenpl at e. t xt

Define element meta-data in an element.json file

You must define your new elements by providing meta-data that defines key
properties.

Similar to extensions and widgets, an element requires a manifest file, called
el ement . j son, to define key properties. The contents of an el enent . j son file look
similar to the following:

{
“inline" : false,
"supportedW dget Type" : ["wi dget-type", "widget-type", ...],
"translations" : [
{
"l anguage" : "en_EN',
“title" ; "Title in English",
"description" : "Description in English"
¥
{
"l anguage" : "de_DE",
“title" : "Title in German",
"description" : "Description in Gernman"
}
]
}

The attributes available for el enent . j son manifests are as follows:

e inline: Aflag denoting whether the element should be inserted as a span
(inline=true) ordiv (i nl i ne=f al se) when it is added to a widget instance.

e supportedW dget Type: A list of widget-type names that determines the availability
of the element when editing widgets on the Design page. Either this property or
the avai | abl eToAl | W dget s property, described below, is required for stand-alone
elements. Widget-specific elements do not require either property because they
are, by definition, consumed only by their parent widget.

e avail abl eToAl | Wdget s: Set this property to t r ue to allow a stand-alone element
to be placed on all widget types; the element will appear in the Element library for
all widgets. Omit this property altogether to restrict placement of the stand-alone
element to the widget types defined in the support edW dget Type property.

* transl ations: An array that provides translations for both the element title and
description. The title is displayed in the Element library panel that you use to add
an element to its parent widget's layout. The description is not displayed in the
Commerce user interface but can provide helpful information to a developer.
The translations property has three sub-properties, language, name and
description. The language property can be either a two-letter language code (for
example, en) or a two-letter language code and a two-letter country code with
an underscore in between (for example, en_US). | SO 639- 1 defines the two-letter
language codes. | SO 3166- 1 al pha- 2 defines the two-letter country codes.

ORACLE 4.3



Chapter 4
Create the presentation for an element

Create the presentation for an element

ORACLE

When you create an element, you want to configure settings that allow you to present
the element on your site.

To create the presentation for an element on the storefront, you have to do the
following:

» Create the HTML content for the element

¢ Modify the widget's di spl ay. t enpl at e to include the element, thereby creating
an element-based widget.

 Addaw dget.tenpl at e file to manage editing of the element-based widget on
the Design page.

Create the HTML for the element

Each element contains a block of HTML in a file called t enpl at e. t xt , located in
el ement - nane/templates. The format of this file is pure render-able HTML content
without doct ypes or non-body sections, for example:

<hl data-bind="text: title"></hl>

Modify the di spl ay. t enpl at e and wi dget . t enpl at e to use elements
Element-based widgets require two of the following templates:

e Thedisplay. tenpl at e, already discussed in Create the widget template file,
provides the default presentation in the storefront for an element-based widget
before any changes are made via the Design page. It is located in ext ensi on-
nanme/ wi dget/wi dget -type/tenpl at es.

e The wi dget . t enpl at e provides the starting point for editing the widget’s template
in the Design page. It is located in ext ensi on- nane/ wi dget/ wi dget -t ype/
| ayout s/ | ayout - narme/ wi dget . t enpl at e.

Both templates are required and they must have identical contents.

When designing an element-based widget, you need to add some additional tags to
both the di spl ay. t enpl at e and wi dget . t enpl at e files that enable elements to
be rendered as part of the output page and to be edited on the Design page. An
example of the tags is shown below:

<I-- oc layout: panels -->
<div class="row'>
<div class="col -nd-12" data-oc-id="panel -1">
<I-- oc section: product-inage -->
<di v data-bind="el enent: 'product-imge' "></div>
<l-- /oc -->
<I'-- oc section: product-inage-carousel -->
<di v data-bind="el enent: 'product-imge-carousel'">
</div>
<l-- /oc -->
</div>

4-4



Chapter 4
Create custom element JavaScript

</div>
<l-- Joc -->

The tags that support breaking a widget into elements include the following:

 Theoc layout tag tells Commerce to start parsing this section of the template for
use on the Desigh page. Any code that resides before or after the oc layout tag is
ignored by the Design page. Code within the tag is editable on the Design page.

e The outer div, <di v cl ass="row'>, creates a standard Bootstrap row to contain
the elements. A widget template can have multiple rows to contain its elements.

e Theinnerdiv, <div class="col -md-12" data-oc-i d="panel -1">, creates a
panel within the row (note that this is a Design page panel, not a traditional
Bootstrap panel). Panels contain draggable user interface elements that can be
repositioned when editing the widget on the Design page. A row can contain
multiple panels but their widths must add up to 12 (this is a requirement of the
underlying Bootstrap grid). For information on Bootstrap, refer to the Bootstrap
documentation.

Note: The Design page uses the dat a- oc- i d attribute to identify each panel. This
custom attribute was created so that a page developer can alter the class or ID
attributes of the panel div without breaking the Design page’s functionality. Also,
the Design page is currently restricted to Bootstrap’s desktop grid classes, for
example, col - md- x.

* The oc section tags identify the individual draggable Ul elements. Everything
contained in an oc section tag is repositionable as one atomic unit, even though
there may be multiple lines of code or many sub-elements within the section.
To specify an element within a panel, a <di v> block is created and a data-bind
is used with el enent as the binding attribute and the name of the element as a
string. This name corresponds to the element’s directory.

Important: When you use the element binding, you must ensure that the current
binding context is the widget, or that you can return easily to the widget. There are
currently problems if you try to use the element binding within a ko f or each as
each iteration of the loop is bound to a list item.

The tags described above all use HTML comment syntax. This syntax is useful
because the tags do not need to be removed before being sent to the browser as they
have no visible effect on the storefront pages. Also, this format is familiar to Knockout
developers.

Create custom element JavaScript

Elements can include JavaScript if so required.

As with widgets, JavaScript for an element should be created as an anonymous

Requi re. j s module using the format shown in the code example below. The module
must be named el enent . j s and saved in the <el enent - nane>/ | s/ directory for the
associated element. Within the module, you must create a variable called el ement Name
and set that variable to the name of the element. For example, if the element files are
added via an extension in <ext ensi on- nane>/ el enent / ny- el enent , the value of

ORACLE 4.5



ORACLE

Chapter 4
Create custom element JavaScript

el ement Name needs to be ny- el enent . After these requirements are met, you can add
whatever functionality your element requires to the module.

defi ne(
['jquery', 'knockout', pubsub'],
function($, ko, pubsub) {

"use strict";
return {
el ement Nane: ' ny-el ement’,

s
}
)

Note: See http://requirejs.org/docs/api.HTML#defdep for more details on Require.js
modules.

When a widget is loaded, the JavaScript for its elements gets added to the widget's
view model. The element template is still loaded at the widget's view model scope and
the element JavaScript is available via:

$dat a. el enent s[ ' <el ement Nane>' ]

It is a good practice to check for the element JavaScript before attempting to use it.
This can be done in the element’s template, as shown in the following example:

<l-- ko if: initialized() &&
$dat a. el enent s. hasOawnProperty(' <el ement Name>') -->
[Element tenplate code] <!-- /ko -->

Note that without the i nitial i zed() && condition, the JavaScript loads correctly
but the template code within the block is not displayed. This is because the widget
template has been rendered and the i f statement already evaluated to false by the
time the element JavaScript loads. The check on the widget's initialized observable
ensures that the i f statement will be re-evaluated when the value of initialized
changes from f al se to t rue.

onLoad()

To run custom logic when the element is instantiated, add an onLoad() function to the
element JavaScript's return object, as displayed in the following example:

onLoad: function(wi dget) {
/I onLoad code here.

}

The onLoad() function runs once the element has finished loading and is populated
with the necessary data. This is the main access point to configure data for the
element after its properties have been loaded and the system is ready to display
the element. As the onLoad() function is only called the first time the element is
instantiated, when returning to the same “page,” the element does not need to be
re-instantiated and so onLoad() is not called again.

4-6


http://requirejs.org/docs/api.html#defdep

Use Stacks for Increased Widget Layout
Control

Page layouts are made up of regions into which widgets are placed.

By default, all widgets placed in a region take up the full width of the region and are
rendered vertically, one on top of the other. To introduce greater control over how
widgets are rendered within a region, you must create a stack extension. This chapter
describes what a stack extension is and how to create one. It includes:

Understand stacks

You can use stacks to group your widgets into regions and flows, for example, creating
a series of steps.

Internally, a stack is represented as a region at the same level as the other regions
in the page layout. A stack contains sub-regions that, in turn, contain widgets. The
following is an example:

Page | ayout
[ & her page regions]
Stack [internally represented as a region]
Sub-region 1
W dget 1la
Sub-region 2
W dget 2a
W dget 2b
Sub-region 3
W dget 3a
W dget 3b
[ & her page regions]

The template for the stack contains any logic you need to manage the rendering of the
stack’s sub-regions and widgets. For example, a stack template can define a Bootstrap
tabbed container where each sub-region correlates to a tab and the widgets contained
in each sub-region are rendered on the associated tabs. This technique is used by the
Progress Tracker stack, which is the only stack extension included with Commerce.
Available on the Checkout layouts, the Progress Tracker allows you to create a series
of steps for the checkout process, for example, Login/Checkout, Customer Details,
Payment Details, and Review Order. Each checkout step is rendered in its own tab
and each tab contains the widgets that are necessary to render the user interface for
that step (along with a Next button to progress to the next step in the stack).

ORACLE 5-1



Chapter 5
Create the stack structure

m Fusemar B LA o S

Login / Checkout

Checkout

# Check out as Gusst Lag Im 2 your account

ating an & rt maans you can thop baster, ke

Bootstrap user interface controls that can help you manage the display of sub-regions
and widgets in a stack include, but are not limited to, tabs, pills, collapsible panels,
carousels, and modal dialog boxes. You can also create your own custom controls.
You code the controls as you normally would and make calls to the Regi onVi ewhbdel
object, which represents the stack, to retrieve the sub-regions and widgets to be
rendered within each control.

Note: For details on adding a Progress Tracker stack to your page layouts, see
Customize your store layouts.

Create the stack structure

Stacks are added to an extension’s structure in a / st ack directory that is at the same
level as the extension’s ext . j son file.

Each stack should have its own child directory in the / st ack directory. The following
example shows the directories and files that can be included for a stack:

<extension-name> : the root folder of your extension
ext.json
st ack/
<stack-type>/
stack.json
t enpl at es/
stack.tenpl ate
| ess/
stack. | ess
stack-variabl es. | ess
| ocal es/
<l ocal e code>.json
<anot her |ocal e code>. | son

Define stack meta-data in stack.json

The st ack. j son file, located in the / st ack/ <st ack- t ype> directory, defines meta-
data for a stack.

ORACLE 5-2



ORACLE

An example of a st ack. j son file is provided below:

{

"avai |l abl eToAl | Pages": true,
"configurabl e":fal se,
"configuration": {},

name": "Accordi on Container",
"regions": |
{
"name": "Accordion 1",
"width": 12
h
{
"name": "Accordion 2",
"width": 12
}

]

tackType": "accordi onCont ai ner",
"styleSettings": {},
"version": 1

Chapter 5
Define stack meta-data in stack.json

The following list describes all the properties that you might choose to include in a
stack. j son file.

avai | abl eToAl | Pages: Set this property to true to allow the stack to be placed on
all page types; the stack will appear in the Component library for all pages. Omit
this property altogether to restrict placement of the stack to the page types defined
in the pageTypes property. Note that this property and the pageTypes property are

mutually exclusive but one of them must be set.

pageTypes: Defines which page types the stack can be placed on; the stack will
appear in the Component library for the specified pages. If you use this property,
you must omit the avai | abl eToAl | Pages property. Note that this property and the
avai | abl eToAl | Pages property are mutually exclusive but one of them must be

set.
Available page types include:

— product

— category

—  home

— cart

— checkout

— confirmation
— article

— error

— searchResults

noSear chResul ts

The stack will appear in the Component library for the page types you specify.

confi gurabl e: Set this property to false. It is for future use.

5-3



Chapter 5
Create the stack template

e configuration: Leave this array empty. It is for future use.
e nane: Defines the display name for the stack in the component library.

* regions: An array that defines the default sub-regions that are available within the
stack when a new instance of this stack is created. Each item in the array includes
the following properties:

— nane: The display name of the default region.

— Wi dt h: This property is required to pass validation and should be set to 12.
* stackType: A unique identifier for the stack.
e styleSettings: Leave this array empty. It is for future use.

e version: The numeric version of the stack.

Create the stack template

ORACLE

Each stack requires a Knockout template called st ack. t enpl at e to render the
stack.

The st ack. t enpl at e file must reside in the / st ack/ <st ack-type>/tenpl at es
directory. Using the stack’s Regi onVi ew\bdel object, the st ack. t enpl at e can
access the sub-regions within the stack, via the r egi ons observable array, and the
widgets within each sub-region, via the wi dget s observable array for each sub-region.

This section provides some examples to show you how you might create a template
that integrates Bootstrap Ul controls with a stack’s content. The following code sample
shows the stack template for a tabbed container:

<div cl ass="t abbedCont ai ner" >
<l-- RENDER Bootstrap tabs -->
<ul class="nav nav-tabs" data-bind="attr: { id: 'tabbedNav-'+id()+" -
pills }">
<I-- ko foreach: regions -->
<l'i role="presentation" data-bind="css: {active: $index() ===
0},
attr: { id: 'tabbedNav-'+$parent.id()+ -pill-"+$index() }">
<a data-toggl e="tab" data- bi nd="
attr: { "href':'#tabbedContainer-' + $parent.id() + '-
tab-' + $index()}">
<span dat a-bi nd="text: di spl ayName"></span>
</ a>
<li>
<l-- [ko -->
</ul >
<! —RENDER t abbed content --> <div class="tab-content">
<I-- ko foreach: regions -->
<div rol e="tabpanel " class="stage tab-pane" data-bi nd="
attr: { id: 'tabbedContainer-'+$parent.id()+ -
tab-' +$i ndex() },
css: {active: $index() === 0}">
<! —-RENDER wi dgets in each tab -->
<I-- ko foreach: w dgets -->
<di v dat a- bi nd="
tenplate: {nane: tenplateUrl (), tenplateSrc:

5-4



Chapter 5
Create the stack template

tenpl ateSrc()}">

</div>
<l-- /ko -->
</div>
<l-- /ko -->
</div>
</div>

This template includes two ko foreach: regions bindings. The first iterates over the
stack’s sub-regions and creates a tab for each sub-region. The second iterates over
the sub-regions again and renders the contents of each tab. The content rendering is
accomplished through a ko for each: widgets binding that iterates over the widgets
contained in each sub-region.

Similarly, the following code excerpt shows the rendering of widgets in collapsible
panels:

<I'-- RENDER displ ayNane fromthe stack -->
<h2 dat a- bi nd="t ext : di spl ayNane"></ h2>
<di v cl ass="panel -group"” id="accordion" role="tablist">
<!-- RENDER stack sub-regions -->
<l-- ko foreach: regions -->
<div cl ass="panel panel-default">
<di v cl ass="panel - headi ng" role="tab" id="headi nglne">
<h4 cl ass="panel -title">
<a role="button" data-toggl e="col | apse" dat a-
par ent =" #accor di on"
data- bi nd="attr: {
"href': '#accordionContainer-' + $parent.id() +
‘-tab-' + S$index()},
t ext: di spl ayName" ari a-expanded="true" aria-
control s="col | apseCne>
</ a>
</ h4>
</div>
<di v cl ass="panel -col | apse col | apse” rol e="t abpanel "
ari a-| abel | edby="headi ngOne"
dat a- bi nd="attr: {
id: "accordionContainer-'+$parent.id()+ -tab-'+$index() },
css: {in: $index() === 0}">
<di v cl ass="panel - body" >
<I'-- RENDER wi dgets within each sub-region -->
<I-- ko foreach: widgets -->
<div data-bind="tenplate: {
nane: tenplateUl (),
tenpl ateSrc: tenplateSrc()}">
</ div>
<l-- ko -->
</div>
</div>
</div>
<l-- [ko -->
</div>

ORACLE 5-5



Chapter 5
Configure a stack’s style

This code iterates over the sub-regions in the stack and renders a collapsible panel
for each one. To define the content for each panel, the code iterates over the widgets
in each sub-region and renders them using the template defined in the t enpl at e
data-bind.

Configure a stack’s style

CSS specific to a stack is contained in the / st ack/ <st ack-t ype>/ | ess directory.
The following is an example:

<extension-name> : the root folder of your extension
ext.json
stack/
<stack-type>/
stack.json
| ess/
stack. | ess
stack-variabl es. | ess

A style file for a stack is always named st ack. | ess and any variables referenced in
this style file are contained in a companion file called st ack- vari abl es. | ess. An
example of a st ack. | ess file is shown below:

. t abbedCont ai ner {

.nav-tabs {

span {
text-align: @abTitleAlignnment;

}

1

.nav-tabs > li > a {
backgr ound- col or: @ abBackgr oundCol or;
color: @abText Col or;

1

.nav-tabs > li.active > a {
background- col or: @ctiveTabBackgroundCol or;
col or: @ctiveTabText Col or;

1

1

A supporting st ack- vari abl es. | ess file for this example would look similar to the
following:

@ct i veTabBackgr oundCol or: #195D8E;
@ctiveTabText Col or: #FFFFFF;

@ abBackgr oundCol or: #d1d1d1;

@ abText Col or: #3d3d3d;

@abTitl eA i gnment:center;

The st ack. | ess file, like awi dget . | ess file, can define a stack’s styles using the
Less language or native CSS. Less files across the entire storefront are compiled to
make one CSS file.

ORACLE 5-6



Chapter 5
Create a quick view popup using a popup stack

Similar to widgets, it is important that any style overridden within a stack Less file only
applies to that stack, and does not change the style across the storefront. One way

to achieve this is to format the stack’s styles using the Less nested format. For more
details on this approach, see Configure a widget’s style.

Note: If you design a custom style as part of an extension, the Less style may not be
compiled immediately after uploading the extension package. If this happens, open the
stack’s style in the code editor (on the Design page) and make a superficial edit, then
resave. This process forces compilation of the style.

Create a quick view popup using a popup stack

ORACLE

Popup stacks enable a shopper to view information on a popup screen and are mostly
related to product listings.

For further details on popup stacks, see Customize your store layouts.

One instance of the popup stack is the Quick View Popup Stack which is available
within the Collection and Search Results layouts. You can apply the same quick view
logic to the Related Products widget, available on the Product layout, and the Product
Recommendations widget, available on all layouts.

The following illustrates applying the quick view popup logic to the Related Products
widget:

1. Create a new instance of the Related Products widget within the Product layout.

2. Editthe rel at ed- product s- car ousel element by adding the global Quick View
element, within the cc-item detail HTML element. This should be bound with an
instance of a Product Vi ewvbdel .

<l-- ko foreach: relatedProduct G oups -->
<div class="itemrow' data-bind="css:{"active': $index()==0},
for each: $data">
<di v data-bind="css: $parents[1].spanC ass()" class="cc-
product-itent>
<div class="cc-itemdetail">
<l-- Quick View -->
<di v dat a- bi nd="set Cont ext Vari abl e: {name:' product",
val ue: $data}"
cl ass="qui ckVi ewEl enent " >
<I-- ko with: $parents(l) -->
<di v data-bind="el enent: 'product-quickview, attr:
{ id:"product-quickviewgrid-' + $parent.id() } ">
</div>
<l-- [ko -->
</div>
<I-- Quick View-->

3. Add CSS styling to the Quick View element within the Related Products widget.

#cc-rel at edProduct s {
qui ck-vi ew {
position: absol ute;
di spl ay: none;
paddi ng: 5px 10px;

5-7



ORACLE

Chapter 5
Create a quick view popup using a popup stack

backgr ound- col or: #195d8d;
color: white;

border: 1px dotted white;
cursor: pointer;
p: {

font-weight: bold;

mar gi n: 0;

}
}

.carousel .inner {
.cc-itemdetail {
. qui ck-vi ew {
left: 32%
top: 50%
}
}
}

.cc-itemdetail: hover {
. qui ck-view {
di splay:inline-block;

}
1
4. Save your changes and open the Layout tab.
5. Open the Product layout and select Grid View from the configuration toolbar.
6. Locate the Product Details widget, add a new row below it, and drag a Popup
Stack to that new row.
7. Open the Main sub-region and drag the Related Products widget to it from the
Components menu.
8. Open the Popup sub-region and drag the Product Details widget to it from the
Components menu. Use the existing instance of the Product Quick View.
9. Publish the changes, and verify them on the storefront.
Notes

Changing the Related Products Carousel element will not cause the Related
Products widget to break when it is not implemented with the Quick View, as there
is a check to ensure that the widgets exist within a stack before it displays the
quick view link.

The example assumes that some related products have already been set up in the
catalog, otherwise the widget is not displayed.

5-8



Add Site Settings

An extension can contain site settings, which are configurable parameters that are
globally accessible to the storefront code.

Site settings are added to the Site view model and are available for use by all widgets.
Site settings allow you to create a single setting that controls a feature across multiple
widgets. A site settings extension creates a custom settings panel in the administration
interface after it has been uploaded. This panel allows merchandisers to configure the
settings. To see a site settings panel, go to the Settings page and click the name of the
site settings extension under Extension Settings. For example, the illustration below
shows a Sample Site Settings extension that allows a merchandiser to configure a
variety of settings.

Comimarce Ooud Site A

+ Sample Site Settings

Extension Settings

Sl Site Settings

Any site settings you create can be referenced from a widget's HTML template using
a data-bind attribute. Examples for creating the data-bind are provided later in this
section.

Define site settings

ORACLE

When you create widgets, you want to define the settings that it follows to display your
site.

Site settings are defined using a JSON-based schema. To add site settings to your
storefront, add the following files to your directory structure:

<extensi on-name> : extension root directory

ext.json

6-1



Chapter 6
Define site settings

config/
<settingsID> : site settings root directory
config.json
| ocal es/
en_US.json
fr_FR json

The resource bundles for site settings are stored in locale files under the / conf i g/
| ocal es directory and look similar to the following:

{
"resources" : {
"enabl edHel pText": "Enable the cart nessage.",
"enabl edLabel ": "Cart Message",
"couponHel pText": "Define the coupon nane.",
"couponLabel ": " Coupon",
"m nSpendHel pText": "Define the m ni num spend amount for the
coupon. ™,
"m nSpendLabel ": "M ni num Spend",
"sizeHel pText": "The size of the banner.",
"sizelLabel ": "Banner Size",
“sizeSmal | Label ": "Smal ",
"si zeMedi unLabel ": " Medi uni',
"sizelargelLabel ": "Large",
"passwor dHel pText": "Set the value for APl key.",
"passwor dLabel ": "API Key",
"title": "Sanple Site Settings",
"description":"Exanples of site settings."
}
}

The structure of these files is identical to those for widget localization resources. Refer
to Localize a widget for examples.

The structure of a confi g. j son file looks similar to the following:

{

"wi dget Descri ptorNane": "nmul tisiteconfigdem”,
"titl eResourceld": "title",
"descriptionResourcel d": "description",
"properties": |

{
"id": "enabled",
"type": "bool eanType",
"nane": "enabl ed",
"hel pText Resourcel d": "enabl edHel pText",
"| abel Resourcel d": "enabl edLabel ",
"defaul t Val ue": true

1

{

"id": "coupon",

"type": "stringType",

"name": "coupon",

"hel pText Resourcel d": "couponHel pText",

ORACLE 6-2



Chapter 6
Define site settings

"| abel Resourcel d": "couponLabel ",
"defaul t Val ue": "SH P100",
“m nLength": 6,

“maxLengt h": 10,
“required": true

"id": "mnSpend",

"type": "stringType",

"name": "m nSpend",

“hel pText Resourcel d": "m nSpendHel pText",
"| abel Resourcel d": "m nSpendLabel ",
"defaul t Val ue": "100",

“required": true

"id": "password",

"type": "passwordType",

"nane": "password",

“hel pText Resourcel d": "passwordHel pText",
"| abel Resourcel d": "passwordLabel ",
“required": true

"id": "bannerSize",
"type": "optionType",
"name": "bannerSi ze",
“required": true,
"hel pText Resourcel d": "sizeHel pText",
"| abel Resourcel d": "sizelabel ",
"defaul t Val ue": "s",
"options": |

{

"id": "sizeSmall",

"val ue": "s",
"| abel Resourcel d": "sizeSmal | Label "

"id": "sizeMediunt,
"value": "nf,
"| abel Resourcel d": "sizeMedi uniLabel "

"id": "sizelarge",
"value": "|"
"| abel Resourcel d": "sizelLargelLabel " }

The titl eResourcel d property specifies a key in the resource bundles that is used
to retrieve the title for the panel in the administration interface; for example, “Sample
Site Settings” in the illustration above. The descri pti onResour cel d property specifies

ORACLE 6-3



Chapter 6
Reference site settings in widget templates

a key for the descriptive text that appears below the title. In the illustration, this is
“Examples of site settings.”

The remainder of the confi g. j son file consists of a properties array that defines
individual site settings and their key/value pairs. Site settings use the same standard
keys as configurable widget settings, namely i d, nane, t ype, hel pText Resour cel d,

| abel Resour cel d, def aul t Val ue, and r equi r ed. Site settings can also use the same
data types that are available to configurable widget settings, for example, stri ngType,
mul ti Sel ect Opti onType, and so on. Both the standard keys and the data types are
described in full detail in Define a widget's configurable settings.

Configure settings per site

Site settings can be configured on a site-by-site basis. If your Commerce instance is
running multiple sites, the values a merchandiser specifies in a settings panel apply
only to the currently selected site. The merchandiser can then select another site and
supply different values for that site.

In some cases, a site settings panel may have settings that make sense for certain
sites but not for others. In this situation, you can give merchandisers the option of
disabling a site settings panel completely for individual sites. To do this, include the
following in the confi g. j son file of the extension that creates the panel:

"enabl eSiteSpecific": true

This setting must appear in top-level array in the file (that is, not within the properties
array).

Setting enabl eSi t eSpeci fi ¢ to true adds a checkbox to the panel for specifying
whether the settings in the panel are enabled for the current site. The checkbox

is initially selected for each site, but a merchandiser can deselect it for individual
sites. Deselecting the checkbox disables the panel for a site and causes the fields in
the settings panel to disappear for that site. The fields reappear if the merchandiser
subsequently selects the checkbox again.

Reference site settings in widget templates

ORACLE

Any site settings you create are added to the Site view model and can be referenced
from templates using a data-bind attribute, for example:

<p data-bind="text: site().extensionSiteSettings['settingslD ]
['propertyl D ]"></p>

Where set ti ngsl Dis the name of the site settings root directory and propertyl Dis
the value of the i d property for the property you want to access, as defined in the
properties array. For example, assuming the earlier example has a site settings root
directory of my- set ti ngs and you want to access the medi aPi cker property, you would
use the following:

<p data-bind="text: site().extensionSiteSettings[' ny-settings']
[' medi aPi cker']"></p>

6-4



ORACLE

Chapter 6
Reference site settings in widget templates

To use multiple properties from the same site settings extension, you can use
something similar to the following:

<I-- ko with: site().extensionSiteSettings['settingsID] -->
<p data-bind="text: propertyl D' ></p>
<p data-bind="text: otherPropertylD'></p>

<l-- [ko -->

6-5



Include Application-level JavaScript
Modules

You can use an extension to upload application-level JavaScript files.

JavaScript files uploaded using this mechanism are loaded as part of the main
module, before any endpoints have been fired and before any widgets have been
loaded. As such, they can be referenced as a dependency in any widget, allowing
you to build reusable modules that can be shared among widgets and elements.
The remainder of this section describes how to create an extension that contains
application-level JavaScript modules and provides some useful examples.

Create the extension structure for application-level
JavasScript

To add application-level JavaScript files to an extension, create a gl obal / directory in
the extension’s root folder. The following is an example:

<ext ensi on-name> : The root fol der of your extension
ext.json
gl obal /
<application-level -modul e-1>.js
<application-level -nmodul e-2>.js
<application-level -modul e-n>.js

Place any application-level JavaScript files in this gl obal / directory. There is no limit
to the number of files you can place in the gl obal / directory but the files themselves
must follow these rules:

*  They must be anonymous, that is, have no package name defined in the module.
e Structurally, they must be valid Requi r eJS modules.

e Each filename must be unique. If a file with the same name has been loaded in
another extension, an error is returned.

Run custom logic upon module instantiation

Similar to widgets, you can use the onLoad() method to run custom logic once an
application-level JavaScript module is instantiated, for example:

return {
onLoad : function() {
CCLogger . i nfo("Loadi ng Deno KO Bi ndi ngs");
1
¥

ORACLE 7-1



Chapter 7
Reference an application-level module in a widget

Reference an application-level module in a widget

To reference an application-level module in a widget, you must list the module as a
dependency using the ccResour ceLoader library.

For example, the following code creates a dependency on the
deno. shar ed. vi ewnodel s module:

define(
I
/| DEPENDENCI ES
I
['jquery', 'knockout', 'cclLogger',
' ccResour ceLoader! gl obal / deno. shar ed. vi ewnodel s' |,
I
[l Nodul e definition
I
function ($, ko, ccLogger, sharedVi ewvbdel) { 'use
strict';

return {
onLoad : function(w dget) {
wi dget.firstName =
shar edVi ewbdel . vi ewMbdel (). first Name;
wi dget . surname = sharedVi ewmvbdel . vi ewbdel (). surname;
wi dget . doMessage = shar edVi embdel . doMessage;

Note that you cannot reference an application-level module from another application-
level module. Application-level modules are loaded in parallel whenever a page is
loaded, meaning that the order in which they are loaded is not guaranteed. This
means that you cannot have a dependency form one application-level module to
another.

Application-level JavaScript examples

ORACLE

This section provides some useful examples for how you might use application-level
JavaScript modules.

This first example adds a reusable Knockout custom binding that can be used across
widgets:

define(

/' DEPENDENCI ES

7-2



Chapter 7
Application-level JavaScript examples

I e R
['jquery', 'knockout', 'cclLogger']
I e R
[l Nodul e definition
I e R
function($, ko, CCLogger) {

'use strict';

Il A sinmple binding that highlights an el enent when it

| oses focus.
ko. bi ndi ngHandl ers. hi ghli ght_on_blur = {
init: function (el enment, val ueAccessor, all Bindings,

vi ewvbdel
bi ndi ngCont ext) {
$(el ement).on(' bl ur.demo. ko', function() {
$(this).css('background-color',"'yellow);
1)
$(el ement).on("' focus. deno. ko', function() {
$(this).css(' background-color', ' white');
¥
}
b
return {
onLoad : function() {
CCLogger . i nfo("Loadi ng Demo KO Bi ndi ngs");
}
b
}
);

This example demonstrates how to create an application-level module with reusable
methods or view models:

def i ne(

e R
/| DEPENDENCI ES
e R
['jquery', 'knockout', 'cclLogger']
e LT E TP
/1 Modul e definition
e LT E TP
function($, ko, CCLogger) {

"use strict';

return {

onLoad : function() {
CCLogger . i nfo("Loadi ng Demo Shared Vi ew Mdel s");

doMessage : function() {
alert("Shared View Mdel s");
} il
vi ewhvbdel : ko. observabl e({
firstName : ko.observabl e(' Bob'),

ORACLE 7-3



Chapter 7
Assign an application-level JavaScript module to multiple sites

surnane : ko.observabl e(' Test")

Assign an application-level JavaScript module to multiple

sites

ORACLE

You can create a JavaScript module that spans multiple sites.

By default, application-level JavaScript modules apply to all sites in your Commerce
instance. You may override this default and assign an application-level JavaScript
module to be used on only specified sites. To do this, you issue a POST request using
the updat eSi t eAssoci at i ons custom action of the appl i cati onJavaScri pt resource
and provide a list of sites in a sites property. For example, the following request
updates nyJSModul e. j s to execute on siteAand sit eBonly.

POST /ccadmi n/vl/applicationJavaScript/myJShodul e. s/
updat eSi t eAssoci ati ons

{
"sites": ["siteA", "siteB"]

}

To remove site associations, issue a POST request using the same custom action with
the si t es property set to null. The following is an example:

POST /ccadmi n/vl/applicationJavaScript/myJShodul e. s/
updat eSi t eAssoci ati ons

{
"sites": []

}

The following is an example response for a call using the updat eSi t eAssoci at i ons
custom action:

{ "result": true,
"links": [
{
“rel": "self",

“href": http://local host: 9080/ ccadni n/v1l/ applicationJavaScript/
deno. ko. ext enders. j s/ updat eSi t eAssoci ati ons”

To retrieve a list of all application-level JavaScript modules along with the sites they
are associated with, issue a GET request to the appl i cati onJavaScri pt resource. An

7-4



ORACLE

Chapter 7
Assign an application-level JavaScript module to multiple sites

empty sites list means that a module will be loaded on all sites. The following is an
example:

CET /ccadmi n/v1/ applicationJavaScri pt

For example:

{
"items": {
"ext.ko.extenders.js": {
"sites": []
¥
"ext.shared. vi ewmdel s.js": {
"sites": |
"sitelS'
]

}
1
"links": [
{

"rel": "self",
“"href": http://local host/ccadnini/vl/ applicationJavaScript/?
sites=siteUS
}
]
}

7-5



Filter REST Responses

You can define filters that limit the data returned in REST responses, thereby
improving performance.

Response filters are persistent and defined ahead of time, and then passed as part of
a REST request. The server uses the response filter to determine which fields to return
in response to the request. A response filter has an identifying name (the response
filter key), and two lists of fields, one for fields to include in the response and one for
fields to exclude. A response filter can configure fields to include, fields to exclude, or
both. It is the response filter’s key that is passed in the data that is sent with a REST
request. You create and update response filters via the REST API. For details on how
to do see Response filters. This section discusses how to use a response filter once it
has been created.

Note: The response filter functionality described in this section is, at its core, a
wrapper for the existing fi el ds and excl ude query parameters in REST requests
and it behaves the same way. Instead of sending a complete list of fields to include
or exclude in the query parameters, you can create a persistent filter containing that
data and then pass that filter instead. To support backward compatibility, if you pass
a fields or exclude query parameter and a filter in a request, the filter is ignored. For
more information on the fields and exclude query parameters, see REST API query
parameters.

Out-of-the-box response filters

A set of response filters has been defined out of the box and some out-of-the-box
widgets and one view model use them by default.

The following sections list the response filters along with the entities that use them.
e PLPDat a, used by the Product Listing widget

e categoryNavDat a, used by the Collection Navigation and Collection Navigation —
Basic widgets

e collectionData, used by the Collection widget

e product Dat a, used by the cart Vi embdel when calling the | i st Product s
endpoint.

You can send a request to the | i st Fi | t er s endpoint in the Admin API to retrieve a
list of the fields that are included or excluded for each of these response filters noted
above. For details on how to do see Response filters.

Pass a response filter key in a REST call made from a
widget

Once you have created a response filter via the REST API, you can pass its key in the
data a widget sends along with a REST request.

ORACLE 8-1



Chapter 8
Programmatically determine the correct response filter key

The server uses the key to locate the correct response filter and then returns data
accordingly. The simplest way to include a response filter key is to hard code it in the
REST call, for example:

data["filterKey"] = "my-filter-key";

ccRestClient.request(url, data,
t his. successFunc. bi nd(this),
this.errorFunc. bind(this));

Commerce also provides a mechanism for programmatically determining the response
filter key to pass in a REST call, allowing you to avoid hard coding it into the

widget itself. This mechanism is described in Programmatically determine the correct
response filter key.

Programmatically determine the correct response filter key

Commerce also provides a mechanism for programmatically determining the response
filter key to pass in a REST call, allowing you to avoid hard coding it into the widget
itself.

The programmatic mechanism for determining which response filter key to pass in a
REST request has several parts, as follows:

* A context object that is instantiated in the widget’s JavaScript file.
» Afilter map that is defined in an application-level JavaScript file.
e The CCSt or eConfi guati on library.

The context object contains the data required for locating the correct response filter
key in the filter map. The widget instantiates the context object with the necessary data
and then passes it to the CCSt or eConfi gurati on library’'s get Fi | t er ToUse() method,
which locates the correct response filter key in the filter map and returns it to the
widget.

Enable programmatic filter key determination

You must enable programmatic filter key determination before you can use it. To do
so, create an application-level JavaScript module that lists the CCSt or eConfi guration
library as a dependency and includes the following code:

def i ne(
e LR LT TR R
/| DEPENDENCI ES

function(CCSt oreConfiguration) {
"use strict';

return {

onLoad : function() {
CCSt oreConfi guration. getlnstance().enableFilter();

ORACLE 8-2



ORACLE

Chapter 8
Programmatically determine the correct response filter key

See Include Application-level JavaScript Modules for details on creating and uploading
an application-level JavaScript module.

Understand the filter map

The filter map uses a prioritized structure of top-level objects and nested sub-objects.
CCSt or eConf i gur at i on compares the data in the context object to that prioritized
structure when locating the key. The following code sample shows the out-of-the-box
filter map that Commerce uses. In it, the filter map sets the pri orityLi st variable to
["endpoint", "page","identifier"], meaning that CCSt or eConfi gurati on will first try
to find a top-level object that matches the endpoint in the context object, then it will
search inside that object for a matching page object, then it will search inside that
object for a matching identifier object. The following is an example:

def i ne(

[ i

function(CCSt oreConfiguration) {
'use strict';
return {
onLoad : function() {
consol e. | og("Loadi ng Application Level JS');
var prioritylList = ["endpoint", "page","identifier"];
var newFilterMap = {
"get Col l ection":{
"megaMenuNavi gation": {"ccFilterConfigKey":
"cat egoryNavData"},
"cat egoryNavi gation": {"ccFilterConfigKey":
"cat egoryNavDat a"}
b,
"listProducts":{
"productListingData": {"ccFilterConfigKey":
"PLPDat a"},
“col l ecti onWdget": {"ccFilterConfigKey":
“col l ectionData"},
"get ProductData": {"ccFilterConfigKey":
"product Data"},
"get Product Dat aAndRedi rect ":
{"ccFilterConfigKey": "productData"}
}
b

CCSt or eConfi guration. getlnstance(). updateFiltersToUse(newFilterMp);
}l
}

8-3



ORACLE

Chapter 8
Programmatically determine the correct response filter key

}
)

The top-level objects in the out-of-the-box filter map correspond to endpoints

and their sub-objects correspond to identifiers. In other words, get Col | ecti on

and | i st Product s represent endpoints and their children (megaMenuNavi gat i on,
cat egor yNavi gat i on, product Li sti ngDat a, and so on) represent identifiers. (Note
that the get Col | ecti on and | i st Product s endpoints return data that is page-
independent so, even though the priority list includes page, page objects are not
defined for these two endpoints in the out-of-the-box filter map.)

To understand how CCSt or eConf i gur ati on compares the contents of a context object
to the filter map, we will compare the following context object to the out-of-the-box filter
map:

var contextoj = {};
cont ext Cbj ["endpoint"] = "getCol | ection”;
contextChbj["identifier"] = "categoryNavigation";

When considering this context object, CCSt or eConf i gur at i on first looks for a matching
endpoint among the top-level objects in the filter map (because endpoint is first in

the priority list). In this case, CCSt or eConf i gur ati on finds the get Col | ecti on top-level
object. Next, CCSt or eConfi gur ati on looks for a matching page sub-object within the
get Col | ecti on top-level object (because page is second in the priority list). The
context object does not have page data, however, so CCSt or eConf i gur ati on moves
on to find the next piece of data in the priority list, which is i denti fi er. The thing

to note here is that CCSt or eConf i gur at i on continues to look for the next piece of

data in the current object. In other words, it looks for a cat egor yNavi gat i on sub-
object in the get Col | ect i on top-level object. When CCSt or eConf i gur ati on finds the
cat egor yNavi gat i on sub-object, it sees that the object has a ccFi | t er Confi gKey
defined for it. CCSt or eConf i gur at i on retrieves this filter key, cat egor yNavDat a, and
returns it to the widget.

You can set your priority list and the object structure of your filter map in any way that
makes sense for your implementation and then define context objects in your widgets
that use that updated structure. However, keep in mind that the out-of-the-box filters,
and the widgets that use them, may be affected by changes you make and may need
modifications as a result.

Create a context object and use it to retrieve the response filter key

To create a context object and use it to retrieve a response filter key, add code
similar to the following to the widget's JavaScript file. Note that you must also add a
dependency on the CCSt or eConf i gur ati on library. The following is an example:

/1 Add the CCStoreConfiguration library as a dependency for this widget
/1 Create the context object and populate it
var contextQoj = {};
cont ext Cbj [ "endpoi nt"] = "endpoi nt - name";
contextCbj["identifier"] = "identifier-in-filter-map";
Il Call the getFilterToUse nethod to retrieve the response filter key
var filterKey =
CCSt oreConfiguration. getlnstance().getFilterToUse(context Chj);
/1 Add the filterKey to the data passed with the REST cal |

8-4



ORACLE

Chapter 8
Programmatically determine the correct response filter key

if (filterKey) {
data["filterKey"] = filterKey;
}
/I Make the REST call
ccRestClient.request(url, data,
t hi s. successFunc. bi nd(this),
this.errorFunc. bind(this));

}

Add a new response filter key to the out-of-the-box filter map

The following code sample creates new identifiers in the out-of-the-box filter map for
calls made to the get Col | ecti on and product Li sti ng endpoints. The new identifier
for the get Col | ecti on endpoint is cust om denti f er 1 and the response filter key that
is returned for it is cust oni | t er Keyl. The new identifier for the product Li sting
endpoint is cust onl dent i f er 2 and the response filter key that is returned for it is
cust onfi | t er Key2. The following is an example:

define(
R e LR TR
/| DEPENDENCI ES

[ il

function(CCStoreConfiguration) {
'use strict';
return {
onLoad : function() {
consol e. | og("Loadi ng Application Level JS');
var priorityList = ["endpoint","page","identifier"];
var newFilterMap = {
"get Col l ection":{
"megaMenuNavi gation": {"ccFilterConfigKey":
"cat egoryNavData"},
"cat egoryNavi gation": {"ccFilterConfigKey":
"cat egoryNavData"},
"custom dentifierl": {"ccFilterConfigKey":
"custonFilterKeyl"}
b
“listProducts":{
“productListingData": {"ccFilterConfigKey": "PLPData"},
“col lectionWdget": {"ccFilterConfigKey":
"col l ectionData"},
"get Product Data": {"ccFilterConfigKey": "productData"},
"get Product Dat aAndRedirect": {"ccFilterConfigKey":
"product Data"},
"custom dentifier2": {"ccFilterConfigKey":
"custonFilterKey2"}
}
¥

CCst or eConfi guration. getlnstance(). updateFiltersToUse(newFilterMap);
}1

8-5



ORACLE

Chapter 8
Programmatically determine the correct response filter key

}
}
)

Note that, when you override the filter map, the top-level objects you define completely
replace any existing top-level objects. In other words, if you created a new filter map
that looked as follows:

/1 This code overwites the getCollection top-level object entirely
var newFilterMp = {
"get Col l ection":{
“custom dentifierl": {"ccFilterConfigKey":
"custonFilterKeyl"}
¥
b

You would lose the negaMenuNavi gat i on and cat egor yNavi gat i on identifiers defined
out of the box for the get Col | ect i on top-level object. However, the | i st Product s
top-level object would remain unchanged because no new top-level object definition
for it has been introduced. For this reason, you should be careful to include the
default identifiers, shown earlier, along with any new identifiers you create unless you
explicitly intend to overwrite them.

Use defaults in the filter map

The filter map supports the concept of defaults at each object level. When

CCst or eConfi gurat i on cannot find a match for a piece of data in the context object, it
looks for a default. If it finds a default, it searches within that default object’s children
for the next piece of data in the priority list. If it cannot find a match or a default, it will
not return a response filter key.

The concept of default objects can exist at any level in a filter
map. For example, consider this filter map that sets its priority list to

noon non

["endpoint", " page",

identifier","viewort"]:

var newkilterMap = {
"endpoi nt1": {
"pagel":{"cc-filter-config-key": "keyl"},
"page2":{"cc-filter-config-key": "key2"},
"page3d": {
"identifierl":{"cc-filter-config-key":

"key3"},
"identifier2":{"cc-filter-config-key":
"key4"},
"cc-filter-config-key": "keyll"
"defaul t":{
"viewport1":{"cc-filter-config-key":
"key5"},
"viewport2":{"cc-filter-config-key":
"key6"},

“default":{"cc-filter-config-key": "key7"}

}
}y
"cc-filter-config-key": "key8",

8-6



Chapter 8
Change response filters used by out-of-the-box widgets

“defaul t":{
"identifierl":{"cc-filter-config-key":
"key9"},
"default":{"cc-filter-config-key": "keyl0"}

b

The following table lists a variety of sample context objects and the response filter key
that would be returned for them based on this filter map:

Context Object Data Filter Key Returned
endpointl key8
endpointl, pagel keyl
endpointl, page3 keyll
endpointl, page3, identifierl key3
endpointl, page3, identifier2 key4
endpointl, pagel, identifier3 keyl
endpointl, page3, identifier3, viewportl key5
endpointl, page3, identifier3, viewport3 key7
endpointl, page4 null
endpointl, page4, identifierl key9
endpointl, page4, identifier2 keyl10
endpointl, pagel, identifierl keyl

Change response filters used by out-of-the-box widgets

If you want to change the response filter used in one of the default widgets

(described in Out-of-the-box response filters), Oracle recommends that you create a
new response filter and assign it to the endpoint/identifier combination the widget uses
in its context object.

To do this, you create an application-level JavaScript module that requires in the
CCst oreConfi guration library and creates a modified version of the filter map. As a
reminder, the default filter map looks like this:

def i ne(

il

function(CCSt oreConfiguration) {
"use strict';
return {
onLoad : function() {
consol e. | og("Loadi ng Application Level JS");
var filterMap = {
"get Col l ection":{

ORACLE 8.7



Chapter 8
Change response filters used by out-of-the-box widgets

"megaMenuNavi gation": {"ccFilterConfigKey":
"cat egoryNavData"},
"cat egoryNavi gation": {"ccFilterConfigKey":
"cat egoryNavDat a"}
3,
“listProducts":{
"product Li stingData": {"ccFilterConfigKey":
"PLPDat a"},
“col lectionWdget": {"ccFilterConfigKey":
"col l ectionData"},
"get Product Data": {"ccFilterConfigKey":
"product Data"},
" get Product Dat aAndRedi rect":
{"ccFilterConfigKey": "productData"},

}
b

CCSt or eConfi guration. getlnstance(). updateFiltersToUse(newFilterMp);
b
}
}
);

The code in this example changes the response filter key for the Collection Navigation
widget from cat egor yNavDat a to cust onFi | t er Key1l.

define(
I e LR TP P PR
/| DEPENDENCI ES

[ - e e e e e e ieeiiiiiiiiiiii.s

function(CCStoreConfiguration) {
'use strict';
return {
onLoad : function() {
consol e. | og("Loadi ng Application Level JS');
var filterMap = {
"get Col l ection":{
"megaMenuNavi gation": {"ccFilterConfigKey":
"custonfilterKeyl"},
"cat egoryNavi gation": {"ccFilterConfigKey":
"cat egoryNavDat a"}

b
"l

st Product s": {
"productListingData": {"ccFilterConfigKey":
"PLPDat a"},

"col lectionWdget": {"ccFilterConfigKey":
"col l ectionData"},

"get Product Data": {"ccFilterConfigKey":
"product Data"},
"get Product Dat aAndRedi rect":

ORACLE 8-8



Chapter 8
Filter REST calls made from within a view model

{"ccFilterConfigKey": "productData"},

}
b

CCSt or eConfi guration. getlnstance(). updateFiltersToUse(newFilterMp);
}i
}

)

Remember that the top-level objects you define in the filter map override any default
top-level objects. In other words, if you modify a top-level object in the filter map,
only the identifiers you explicitly include your top-level object are used by the

CCSt or eConfi gurati on library. For this reason, you should be careful to include the
default identifiers in top-level objects to avoid overwriting them. See Add a new
response filter key to the out-of the-box filter map for more information.

The following table defines which identifier and filter key combination is used by the
default widgets:

Widget Endpoint Identifier Response filter Key
Collection Navigation getCollection megaMenuNavigation categoryNavData
Collection Navigation getCollection categoryNavigation categoryNavData

— Basic

Product Listing listProducts productListingData PLPData

Collection listProducts collectionWidget collectionData

Filter REST calls made from within a view model

ORACLE

REST calls may also be made from within view models as the view models interact
with the server while doing do their work.

IMPORTANT: This section describes how to filter REST calls made from within a

view model. Please note that dependencies exist between view models such that data
retrieved by one view model may be used by another. Care must be taken when
filtering view model REST calls so that you do not filter out data needed by another
view model.

Filtering the responses for view model REST calls uses the context object and filter
map combination described in Programmatically determine the correct response filter
key. The context objects are defined within the view models themselves, however, so
all you have to do to filter REST calls made from view models is create the filter map
and upload it in an application-level JavaScript module (see Include Application-level
JavaScript Modules for more information on creating this type of module).

The following filter map example shows the top-level objects that define which
response filters are used for REST calls made from view models. It is not necessary to
include all of these top-level objects in your filter map, only those for REST calls you
want to filter. However, keep in mind that the top-level objects you include in your filter
map will overwrite any existing top-level objects.

def i ne(

8-9



Chapter 8
Filter REST calls made from within a view model

function(CCStoreConfiguration) {
'use strict';

return {
onLoad : function() {

consol e. | og("Loadi ng Application Level JS");

var priorityList = ["endpoint","page","identifier"];
var filterMap = {
"get Col | ection":{
"megaMenuNavi gation": {"ccFilterConfigKey":
"cat egoryNavData"},
"cat egoryNavi gation": {"ccFilterConfigKey":
"cat egoryNavDat a"}
}l
"listProducts":{
“productListingData": {"ccFilterConfigKey": "PLPData"},
“col l ecti onWdget": {"ccFilterConfigKey":
"col l ectionData"},
"get Product Data": {"ccFilterConfigKey": "productData"},
"get Product Dat aAndRedi rect": {"ccFilterConfigKey":
"product Dat a"}
}
"listMenbers": {
“ccFilterConfigKey": "key-nane"
}l
"get G ft Wt hPur chaseChoi ces": {
“ccFilterConfigKey": "key-nane"
}l
"get Al | OrdersForProfile": {
“ccFilterConfigKey": "key-nane"
}l
"listSchedul edOr dersByProfile": {
“ccFilterConfigKey": "key-nane"

}

etltenflype": {
“ccFilterConfigKey": "key-nane"

}l
"getCurrentProfile": {

"userData": {"ccFilterConfigKey": "key-nane"}

}l
"getAll Prices": {

“ccFilterConfigKey": "key-nane"
}l

ORACLE 8-10



ORACLE

Chapter 8
Filter REST calls made from within a view model

"get StockStatus": {
"product St ockStatus": {"ccFilterConfigKey": "key-name"},
"stockSt at usFor ProdVval i dation": {"ccFilterConfigKey":

"key-nane"}
}1
"get Paynent Group": {
“ccFilterConfigKey": "key-nane"
}1
"getOrder": {
“orderForSubmit": {"ccFilterConfigKey": "key-name"},
"templateOrder": {"ccFilterConfigKey": "key-nane"},
}1
"get Schedul edOrder": {
"l oadOrder": {"ccFilterConfigKey": "key-name"}
}1
"get Page": {
“home": {
"l ayout Onl y": {"ccFilterConfigKey": "key-name"},
"cachabl eData": {"ccFilterConfigKey": "key-name"},
“currentData": {"ccFilterConfigKey": "key-nane"}
}
}1
"getInconmpl eteOrder": {
"l oadCart ForProfile": {"ccFilterConfigKey": "key-name"},
"refreshCart": {"ccFilterConfigKey": "key-name"}
}1
"get St ockSt at uses": {
"stockStatusesForCart": {"ccFilterConfigKey": "key-nane"},
"stockStatsToValidateCart":{"ccFilterConfigKey": "key-
name"},
"stockStatsForltent:{"ccFilterConfigKey": "key-name"}
}1
"get Metadata": {
"dynani cProperties": {"ccFilterConfigKey": "key-nanme"}
}1
"listSkus": {
"skuListing": {"ccFilterConfigKey": "key-nane"}
}
b

CCSt or eConfi guration. getlnstance(). updateFiltersToUse(newFilterMp);
b
}
}
);

The following tables describe the data that is returned for the view model REST calls
to assist you as you decide what calls you want to filter.

Car t Vi ewbdel

This table describes the REST calls made from the Cart Vi ewbdel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

8-11



ORACLE

Chapter 8
Filter REST calls made from within a view model

Context Object

Description

{endpoint: "getlnconpl eteCrder"”,
identifier:"|oadCartForProfile"}

{endpoi nt: "get | nconpl eteCrder”,
identifier:"refreshCart"}

{endpoi nt: "get Met adat a",
i dentifier:"dynam cProperties"}

{endpoint: "get Order",
identifier:"tenplateOrder"}

{endpoi nt: "get St ockSt at us",

identifier:"stockStatusForProdVvalida
tion"}

This context object is used for calls made

to the get I nconpl et eOr der endpoint. The
Cart Vi emvbdel makes this call to retrieve
the current incomplete order and load it in

the User Vi ewvbdel and the Cart Vi ewvbdel .
This may happen when an anonymous
shopper logs in or creates an account. Also,
when a shopper accepts a quoted order

and moves to another page (other than the
checkout page), the quoted order is removed
and the incomplete order is loaded. Similarly, if
a shopper is viewing an order that is pending
payment and then moves to a page other than
the checkout page, the pending payment order
is removed and the incomplete order is loaded.

This context object is used for calls made

to the get I nconpl et eOr der endpoint. The
Cart Vi ewhvbdel makes this call when the
shopper changes pages or the system reloads
the cart. The call retrieves any incomplete
order data for the logged-in shopper and

then populates the Car t Vi ewbdel and

User Vi ewhbdel properties with the data it
has retrieved.

This context object is used for calls

made to the get Met adat a endpoint. The
Cart Vi ewhvbdel makes this call to retrieve
metadata for dynamic order properties.

Note that if you are using dynamic order
properties, you must customize the widget
code to use the mar kDi rt y flag depending on
your preferences. You can, therefore choose
to handle changes to dynamic order properties
when all properties have been set, or update
on selection of each dynamic property.
Marking the Cart Vi emvbdel . isDirty() flag
to true would trigger an update order call.

This context object is used for calls made

to the get Or der endpoint. The Scheduled
Order widget triggers the Car t Vi ewhbdel to
make this call when the shopper clicks the
Place Order button. Clicking this button places
the contents of the scheduled order into the
shopping cart, allowing the shopper to place a
one-time order based on a scheduled order.
See Configure page layouts for scheduled
orders for more details.

This context object is used for calls made

to the get St ock St at us endpoint. The

Cart Vi emvbdel makes this call to retrieve
stock status information when the quantity of
a product on the cart page is updated.

8-12



Chapter 8
Filter REST calls made from within a view model

Context Object

Description

ORACLE

{endpoi nt: "get St ockSt at uses”,
identifier:"stockStatusesForCart"}

{endpoi nt: "get St ockSt at uses”,

identifier:"stockStatsToValidateCart
Il}

{endpoi nt: "get St ockSt at uses",
identifier:"stockStatsForlten}

{endpoint:"listProducts",
i dentifier;"getProductData"}

This context object is used for calls made

to the get St ock St at uses endpoint. The
Cart Vi ewlbdel makes this call to get stock
status information when it is refreshing product
data for items in the cart. This call is also
triggered to get stock status information when
a configurable product is reconfigured.

This call does not get made for

orders in the PENDI NG_PAYMENT or

PENDI NG_PAYMENT TEMPLATE state because
these orders cannot be edited; in other words,
since the items in the order cannot be edited,
stock status for those items is irrelevant.

This context object is used for calls made

to the get St ock St at uses endpoint. The
Cart Vi ewvbdel makes this call to retrieve
stock status information for the products in
the cart during the checkout process. The call
is made when the shopper has clicked the
checkout link on the Checkout page and the
prices of the products in the cart have not
changed.

Note: If the prices have changed, the shopper
is redirected to the cart page and this call is
not made.

This context object is used for calls made

to the get St ock St at uses endpoint. The
Cart Vi ewhWbdel makes this call to get stock
status information for all the SKUs (base
product and child SKUs) of a configurable
product when that product is added to the cart.
(Note that the view model method that makes
this call is generic enough that it can be used
for adding a product to the cart that is not
configurable.)

This context object is used for calls

made to the | i st Product s endpoint. The
Cart Vi ewbdel makes this call when it needs
to check whether the order has stale product
data, for example, when the shopper moves
from one page to another. Using this call,
the Cart Vi ewhbdel retrieves product data
from the server and then uses it to update
the products in the cart on the client side.

By comparing the new product data with

the existing product data, Commerce can
determine if the cart has become stale (for
example, prices have changed or a product
has been marked inactive) and whether
repricing should be triggered.

8-13



ORACLE

Chapter 8
Filter REST calls made from within a view model

Context Object

Description

{endpoint:"listProducts"”,

i dentifier:"getProduct Dat aAndRedirec
tll}

{endpoint:"listSkus",
i dentifier:"skuListing"}

This context object is used for calls

made to the | i st Product s endpoint. The
Cart Vi ewvbdel makes this call when the
shopper has clicked the checkout link and
the view model needs to check whether the
order has stale product data. Using this call,
the Cart Vi ewmvbdel retrieves product data
from the server and then uses it to update
the products in the cart on the client side.
By comparing the new product data with
the existing product data, Commerce can
determine if the cart has become stale (for
example, prices have changed or a product
has been marked inactive) and whether
repricing should be triggered or the shopper
should be redirected to the cart page.

This context object is used for calls made to
the | i st Skus endpoint. The Cart Vi ewibdel
makes this call to get product data for all

the SKUs (base product and child SKUs) of

a configurable product when that product is
added to the cart. (Note that the view model
method that makes this call is generic enough
that it can be used for adding a product to the
cart that is not configurable.)

delegatedAdminContacts view model

This table describes the REST calls made from the del egat edAdmi nCont act s view
model and provides details on the context objects that are used to locate a response
filter for each type of REST call the view model makes.

Context Object

Description

{endpoint:"listMenbers"}

This context object is used for calls

made to the | i st Menber s endpoint.

The del egat edAdmi nCont act s view model
makes this call to retrieve a list of an account’s
contacts.

GiftProductListingViewModel

This table describes the REST calls made from the G ft Product Li sti ngVi ewivbdel
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object

Description

{endpoint: "get G ft Wt hPurchaseChoi ce
s")

This context object is used

for calls made to the

get G ft Wt hPur chaseChoi ces endpoint.
The G ft Product Li sti ngVi emvbdel makes
this call to retrieve the gift choices for a
gift-with-purchase promotion that allows the
shopper to choose her gift.

8-14



ORACLE

Chapter 8
Filter REST calls made from within a view model

LayoutContainer view model

This table describes the REST calls made from the layout-container view model and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description
{endpoi nt: " get Page", This context object is used for calls made
page: " page” to the get Page endpoint. The | ayout -

cont ai ner view model makes this call to get
the layout data for the page.

{endpoi nt : " get Page", This context object is used for calls made

i dentifier:"cachabl eData"} to the get Page endpoint. The | ayout -

cont al ner view model makes this call to get
page data that is appropriate to store in a
cache, for example, site data.

{endpoi nt: " get Page", This context object is used for calls made

i dentifier:"currentData"} to the get Page endpoint. The | ayout -
cont al ner view model makes this call to
get page data that should not be stored in a
cache, for example, user data.

identifier:"layoutOnly"}

OrderViewModel

This table describes the REST calls made from the Or der Vi emvbdel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description
{endpoint: "get Order", This context object is used for calls
i dentifier:"orderFor Submit"} made to the get Or der endpoint. The

Or der Vi ewbdel makes this call when
moving a quoted or scheduled order to the
submitted state. Specifically, when the shopper
views a quoted or scheduled order’s details
and then chooses to check out the order, this
call is triggered.

OrderHistoryViewModel

This table describes the REST calls made from the Or der H st or yVi ewvbdel and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint:"get Al l OrdersForProfile"} This context object is used for calls made to
the get Al | Or der sFor Profi | e endpoint. The
Or der Hi st oryVi ewModel makes this call to
retrieve the orders that are displayed on the
order history page.

8-15



ORACLE

Chapter 8
Filter REST calls made from within a view model

PaymentAuthResponseViewModel

This table describes the REST calls made from the Paynent Aut hResponseVi ewivbdel
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoi nt: "get Paynment Gr oup"} This context object is used for calls made
to the get Paynent G oup endpoint. The
Paynent Aut hResponseVi ewlvbdel makes
this call to get the current authorization
status when a shopper places an order using
CyberSource.

ProductViewModel

This table describes the REST calls made from the Pr oduct Vi ewvbdel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description

{endpoint:"getAll Prices"} This context object is used for calls
made to the get Al | Pri ces endpoint. The
Product Vi ewbdel makes this call to get the
prices for a product when a shopper moves to
product page.

{endpoi nt: "get St ockSt at us", This context object is used for calls made

i denti fier:"product St ockStat us"} to the get St ockSt at us endpoint. The
Product Vi ewhbdel makes this call to get
stock information for the product when a
shopper moves to product page. The view
model also makes this call to get stock
information for the gift choices a shopper can
choose when she is presented with a gift-with-
purchase promotion that allows her to choose
her own gift.

scheduled-order view model

This table describes the REST calls made from the scheduled-order view model and
provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description
{endpoi nt: "get Schedul edOr der ", This context object is used for calls made
identifier:"l oadOrder"} to the get Schedul edOr der endpoint. The

schedul ed- or der view model makes this call
to load a selected scheduled order’s details

so that it can be displayed by the Scheduled
Order widget.

8-16



ORACLE

Chapter 8
Filter REST calls made from within a view model

scheduledOrderList view model

This table describes the REST calls made from the schedul edOr der Li st view model
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description
{endpoint:"listSchedul edOrdersByProf This context object is used for calls made
ile"} to the | i st Schedul edCOr der sByProfile

endpoint. The schedul edOr der Li st view
model makes this call to retrieve the list of
scheduled orders for the current profile.

skuPropertiesHandler view model

This table describes the REST calls made from the skuPr operti esHandl er view model
and provides details on the context objects that are used to locate a response filter for
each type of REST call the view model makes.

Context Object Description

{endpoint: "getlteniType"} This context object is used for calls
made to the get | t eniType endpoint. The
skuProperti esHandl er view model makes
this call to get the properties for a SKU.

UserViewModel

This table describes the REST calls made from the User Vi ewhbdel and provides
details on the context objects that are used to locate a response filter for each type of
REST call the view model makes.

Context Object Description

{endpoint:"getCurrentProfile"} This context object is used for calls made
to the get Current Profi | e endpoint. The
User Vi ewbdel makes this call to get profile
data for the logged-in shopper.

8-17



Resize Images

Images are automatically sized for your customer based on the devices that they use.
However you can customize the image sizes as needed.

When a shopper views a page that contains images, Commerce automatically sizes
them on the client side for display on different devices, such as laptops, tablets, and
mobile phones. To improve your storefront’s performance, you can resize images
before they are downloaded to the client browser. To do this, Commerce provides

the /i mages REST endpoint which allows you to format the images returned from the
server. This endpoint, however, requires a URL with a number of parameters that can
be challenging to specify manually. To assist you in using the / i mages REST endpoint,
Commerce provides the ccResi zel mage custom Knockout binding. You can use this
binding in your widgets to create the URL that is sent to the /images endpoint. The
ccResi zel mage binding also handles specifying a default image size as well as sizes
for various viewports. This section provides information on using the ccResi zel mage
binding as well as general information about the /i mages endpoint.

Note: Commerce also includes an earlier custom Knockout binding,

product | mageSour ce, that creates the URL sent to the / i nages endpoint. It has
some limitations, however, in that it only works with product images and it does

not automatically detect the viewport. Oracle recommends using the ccl mageResi ze
binding going forward but the product | mageSour ce binding will continue to work. For
more information on the pr oduct | mageSour ce binding, refer to the View Model JSDoc
for Commerce.

Default image sizes

There are default image sizes available.

By default, Commerce uses the following maximum sizes (in pixels) for images:
e Extra Small: 100x100

*  Small: 300x300

*  Medium: 475x475

* Large: 940x940

Resize images using the ccResizelmage binding

ORACLE

The custom ccResi zel mage binding provides scaled images for display on the Ul.

It also provides the ability to specify an alternate image and image text to be loaded in
the event that the image cannot be found. The ccResi zel nage binding must be used
inside an <i ng> tag, for example:

<i ng data- bi nd="ccResi zel mage: {
source: '/filelv2/ products/AntiqueWodChair full.jpg',
alt:"Antique Wod Chair',

9-1



ORACLE

Chapter 9
Resize images using the ccResizelmage hinding

errorSrc:'imges/nol mage. png',
errorAl't:' No I mage Found' }"></ing>

Set override dimensions for specific viewports

When using the ccResi zel mage binding, you can specify override dimensions for
specific viewports. You can also specify a default size for any viewport for which

no override dimension is provided. For example, in the following code snippet, the
ccResi zel mage binding returns an image of size 80x80 and 120x120 for xsmal | and
medi unviewports, respectively. For all other viewports, it returns an image of size
50x50.

<i mg dat a- bi nd="ccResi zel mage: {
source: '/filel/v2/ products/AntiqueWodChair_full.jpg',
xsmal | : ' 80, 80",
medi um ' 120, 120",
size:'50,50',
alt: 'Antique Wod Chair',
errorSrc:'inmages/ nol mage. png',
errorAlt:' No | mage Found' }"></ing>

Convert images to JPEG format

The ccResi zel mage binding can be used to convert images to JPEG using the optional
out put For mat attribute. When out put For mat is set to JPEG (the only option currently
supported), a source image is converted to a JPEG image. You can specify an optional
quality attribute to adjust the quality of the resulting JPEG image (0.0 is the lowest
quality, 1.0 is the highest quality). For PNG images with a transparency layer, you

can control the background color of the converted JPEG (which does not support
transparency) by setting the optional al phaChannel Col or attribute. For example, the
following <i ng> tag converts the | ogo. png image to a JPEG with a quality factor of 0.8
and replaces the transparent layer with the color black.

<i ng data- bi nd="ccResi zel mage: {
source: '/img/logo.png',
out put Format: ' JPEG ,
al phaChannel Col or: ' 000000',
quality: '0.8}"></ing>

Note: GIF images cannot be resized or converted to JPEG as they may contain
animation which is lost after resizing and conversion.

Use a srcset to specify the image to load

HTML 5 introduced the srcset and sizes attributes to the <i ng> tag, which allow you
to specify a set of images and the conditions under which each image should be
loaded. The ccResi zel mage binding can take advantage of this functionality by making
a set of differently sized images available to the browser. The browser picks the image
to load based on the width that is available for the image. As the browser is resized,
or as the orientation of the view port is changed, the correct image is loaded. Also,

on view ports that have a higher pixel density, the browser is able to pick a higher
resolution image to load that is better suited to the view port. In all cases, bandwidth
use is improved because an image that is correctly sized for the circumstances is
loaded.

9-2



ORACLE

Chapter 9
Resize images using the ccResizelmage binding

To enable the srcset feature, you must set the i sSrcSet Enabl ed attribute to true for
the ccResi zel mage binding:

<i ng data- bi nd="ccResi zel mage: {
source: '/filelv2/ products/ AntiqueWodChair full.jpg',
i sSrcSet Enabl ed: true,
alt: 'Antique Wod Chair',
errorSrc:'imges/ nol mage. png',
errorAl't:' No I mage Found' }"></ing>

When the i sSrcSet Enabl e attribute is set to true, the ccResi zel nage binding uses
the / ccst ore/ v1l/i mages endpoint to create a set of differently sized versions of the
image defined by the source attribute. It also creates an accompanying sizes attribute
that specifies which image to load based on available width. The HTML generated for
the example above looks similar to this:

<i ng dat a- bi nd="ccResi zel mage: {
i sSrcSet Enabl ed : true,
source: ' /file/v2/ products/AntiqueWwodChair full.jpg',
alt:" Antique Wod Chair',
errorSrc:'/ing/no-inage.jpg',
errorAl't:' No I mage Found'}",
alt="Antique Wod Chair",
src="/filelv2/ products/
Ant i queWbodChai r _ful | . j pg&anp; hei ght =475&anp; wi dt h=475",
srcset ="
[filelv2/products/
Anti queWbodChai r _ful | . j pg&anp; hei ght =100&anp; wi dt h=100 100w,
[filelv2/products/
Anti queWbodChai r _ful | . j pg&anp; hei ght =300&anp; wi dt h=300 300w,
[filelv2/products/
Anti queWbodChai r _ful | . j pg&anp; hei ght =475&anp; wi dt h=475 475w,
[filelv2/products/
Anti queWsodChai r _ful | . j pg&anp; hei ght =940&anp; wi dt h=940 940w",
Si zes="
(max-wi dt h: 480px) 100px,
(mn-wdth:481px) and (max-w dth: 768px) 300px,
(mn-wdth: 769px) and (max-w dth: 979px) 475px,
(m n-w dth: 980px) 940px",
styl e="di spl ay: block;}">
</ing>

You can exercise even more control over which image is loaded for specific view ports
by using one of the following attributes:

xsmal |l _ing= "url-to-xsnall-image"; // lmage size should be 100 * 100 px
smal | _ing = "url-to-small-inage"; /'l 1'mage size Should be 300 * 300 px
medi uminmg = "url-to-nediuminage"; // Imge size should be 475 * 475 px
large ing = "url-to-large-image" /'l 1mage size should be 940 * 940 px

These attributes provide URLSs to specific images that have been uploaded to your
storefront’s Media library (as opposed to the resized images generated by the
ccResi zel mage binding). Media library images are used when they are available and,

9-3



ORACLE

Chapter 9
Resize images using the ccResizelmage binding

when they are not, the resized images created by ccResi zel mage are used. In this
example, the Anti queWbodChai r _| arge. j pg image will be used for the large view port
while the other view ports will use the resized images generated by ccResi zel mage.
The Ant i queWodChai r _| ar ge. j pg image will be resized up to 300 x 300 pixels but no
larger, as is dictated by the optional | arge: ' 300, 300" attribute.

<i mg dat a- bi nd="ccResi zel mage: {
source: '/filel/v2/products/AntiqueWodChair_small.jpg',
i sSrcSet Enabl ed: true,
large_ing: "/filelv2/products/ AntiqueWodChair_|arge.jpg',
| arge: ' 300, 300",
alt: 'Antique Wod Chair',
errorSrc:'inages/ nol mage. png',
errorAlt:' No | mage Found' }"></ing>

Reserve a minimum height for an image

By default, the ccResi zel nage binding reserves a minimum height on the page layout
to accommodate an image before the image loads. This prevents the layout from
shifting after the image loads. To make this possible, the ccResi zel mage binding
injects a <di v> tag into the HTML that wraps around the <i ng> tag and sets it to

the minimum height of the image. In general, this approach provides for a superior
shopper experience, however, there are occasions where it may need to be disabled.
For example, some browsers have problems with <di v> tags placed inside <t d> tags.
For this reason, you have the option to disable the addition of the <di v> tag by setting
the set M nHei ght Bef or el nageLoad attribute to f al se, for example:

<img dat a- bi nd="ccResi zel mage: {
source: '/filel/v2/ products/AntiqueWodChair_full.jpg',
alt:"Antique Wod Chair',
errorSrc:'inmages/ nol mage. png',
errorAlt:' No | mage Found',
set M nHei ght Bef or el mageLoad: fal se}"> </ing>

ccResizelmage attributes

The following table describes the attributes you can use with the ccResi zel nage
binding.

Attribute Description
source The image source URL.
| arge The override dimensions for the | ar ge

viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

medi um The override dimensions for the nedi um
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

smal | The override dimensions for the snal |
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

9-4



Chapter 9
Resize images using the ccResizelmage hinding

Attribute

Description

xsmal |

The override dimensions for the xsmal |
viewport, expressed as a comma-separated
list of two values, the first for height and the
second for width.

si ze

The dimensions used if an override dimension
has not been specified for the current viewport.
The value for this attribute can be a comma-
delimited list of two values, the first for height
and the second for width, for example:

size: '50,50",

Alternatively, the value can be one of the
following: | ar ge, medi um smal |, or xsnal | .
If one of these values is specified and an
override dimension is provided for that same
size, then that override dimension is used. For
example, if si ze: ' medi un and medi um

' 120, 120" are set and the image is being
viewed on a viewport without a specific
override dimension, the image will be sized to
120 x 120 pixels.

If si ze is setto | arge, medi um smal |, or
xsmal | and no override dimension is provided
for that same size, then the default dimensions
are used, which are:

xsmal | : 100X100
smal | : 300X300
medi um 475X475
| ar ge: 940X940

alt

The alternative text for the image.

errorSrc

The error image URL.

errorAlt

The alternative text for the error image.

out put For mat

The format of the converted images. Only
JPEG is supported.

Note: GIF images cannot be resized or
converted to JPEG as they may contain
animation which is lost after resizing and
conversion.

al phaChannel Col or

The hexadecimal color code for the
replacement color of the PNG alpha channel
(default is white, FFFFFF).

qual ity

A number that lets you control the image
resolution quality. The value of quality is a
number from 0.0 (worst resolution but fastest
load time) to 1.0 (best resolution but slowest
load time).

For example, you might want to reduce the
resolution of product listing images to speed
up image loading times.

The default value of, qual i ty is 1.0.

ORACLE

9-5



Chapter 9
Understand the image resizing REST APIs

Attribute Description

i sSrcSet Enabl ed Makes a set of variously sized images
available to the browser and defines the
conditions under which each one is loaded.
See See Use a srcset to specify the image to
load for more details.

xsnal | _i ng A URL to an image in the Media library, used
when the available width for displaying the
image is less than 100 pixels. See Use a
srcset to specify the image to load for more
details.

smal | _ing A URL to an image in the Media library, used
when the available width for displaying the
image is less than 300 pixels. See Use a
srcset to specify the image to load for more
details.

medi um i ngy A URL to an image in the Media library, used
when the available width for displaying the
image is less than 475 pixels. See Use a
srcset to specify the image to load for more
details.

large_i ng A URL to an image in the Media library, used
when the available width for displaying the
image is less than 940 pixels. See Use a
srcset to specify the image to load for more
details.

set M nHei ght Bef or el mageLoad Reserves a minimum height on the page
layout to accommodate an image before the
image loads. This prevents the layout from
shifting after the image loads. See Reserve a
minimum height for an image for more details.

id This parameter is used by the binding to
create a new wrapper <di v> with a unique
ID. This prevents all wrappers from using the
same ID.

Understand the image resizing REST APIs

ORACLE

Commerce Service REST APIs allow you to resize images displayed on your store
while optimizing load times and maintaining image quality.

Note: See Use the REST APIs for information you need to know before using the
REST APIs.

View image file names and paths

To view file names and paths for uploaded images for a product or collection, issue
a CGET request to the / ccstore/ v1/ products/{id} or/ccstore/vl/collections/{id}
endpoint. For example:

CET /ccstorel/vl/ products/prodl10007 HTTP/ 1.1
Aut hori zation: Bearer <access_token>

9-6



Chapter 9
Understand the image resizing REST APIs

The following portion of the sample response shows the URLs of the product’s large
image:

"primarylLargel mgeURL": "/
ccstore/vl/imges/ ?source=/fil e/ v7875483805069966233/ pr oduct s/
APP_\WeekendTrouser _| arge. j pg&hei ght =9408&wi dt h=940",

The path returned here is the full path to the location of the image file. (See Manage
Media for Your Store for more information about the locations of uploaded images.)

Resize an image via the REST API

To resize an existing image, you use the Store API, which provides access to the
storefront. Issue a GET request to the / ccst ore/ v1/i mages endpoint. The following
table describes the query parameters you specify in the request.

Property Description

source (Required) String that specifies the fully
qualified URL for the image to resize. This is
returned in the response to

CET /ccstore/vl/ products/{id} or
CET /ccstore/vl/collections/{id}.

hei ght (Required) The maximum height for the
resized image, in pixels. If the request does
not include either height or width, the source
image is not resized.

wi dt h (Required) The maximum width for the resized
image, in pixels. If the request does not
include either height or width, the source
image is not resized.

quality A number that lets you control the image
resolution quality. The value of quality is a
number from 0.0 (worst resolution but fastest
load time) to 1.0 (best resolution but slowest
load time).

For example, you might want to reduce the
resolution of product listing images to speed
up image loading times.

The default value of quality is 1.0.

out put For mat The format of the converted images. Only
JPEG is supported.
al phaChannel Col or The hexadecimal color code for the

replacement color of the PNG alpha channel
(default is white, FFFFFF).

For example, the following request resizes a product image to 500x500:

CET /ccstore/vl/images/ ?source=/fil e/ v7875483805069966233/ product s
| APP_\WeekendTrouser _full.jpgé&hei ght =500&w dt h=500

ORACLE o



Chapter 9
Manage image caching

Manage image caching

ORACLE

Commerce images can be cached by the browser and the content delivery network
(CDN) by default. Caching is desirable for performance reasons, but you must ensure
that it does not lead to out-of-date images displaying on your pages.

On a production site, calls to Commerce endpoints that refer to images, such as
product, SKU, and collection endpoints, respond with image URLs that include a
sequence of numbers. For example:

[filelv7875483805069966233/ product s/ APP_WeekendTrouser _full.|pg

In this example, v7875483805069966233 is a checksum of the file. Commerce updates
this value automatically when the image is changed and published. The checksum
ensures that an earlier version of the image that has been cached in the browser or
CDN is not displayed.

If you generate your own image URLs (for example, if you use images that are not
explicitly associated with products, SKUs, or collections), then when you modify an
image, its URL typically does not change. As a result, an out-of-date cached version of
the image may continue to be displayed. Similarly, if you reuse an existing image URL
for a new image, the old image may be displayed instead.

To prevent these issues, you should use a cache-busting strategy to ensure only up-
to-date images are displayed. For example, the URLS you generate could incorporate
a timestamp that gets updated each time the image is updated. You can implement
this by using the | ast publ i shti nest anp value from the ccRest d i ent module. Each
time an image loaded with this parameter is modified and published, the value of

the parameter changes, ensuring that previously cached versions are not displayed.
Alternatively, you can get the full pathname for an image, including the checksum
value, by calling the get Fi | eURLs endpoint in the Store API. For example:

PUT /ccstore/vl/files/url Mappings HITP/1.1

{
“filePaths": [

"/ product s/ cat 5cabl e_LARGE. j pg"
]
}

The response includes the complete pathname, including the current checksum value:

{
"/ product s/ cat 5cabl e LARGE. jpg": "http://nyserver.exanpl e.com 7002/
filelv2441433713947926995/ product s/ cat 5cabl e LARGE. j pg",

"links": [
{
“rel": "self",
“href": "http://nyserver.exanpl e.com 7002/ ccstore/vl/files/
ur | Mappi ngs"

9-8



Chapter 9
Manage image caching

ORACLE" 9-9



Manage Storefront Event Notification

The PubSub library allows you to manage your storefront notifications.
Commerce includes two mechanisms for storefront event notification:

e The PubSub library provides a way for code to publish and subscribe to a set of
“global” messages. That is, any code in the application can publish messages
about an event and any code can listen for those messages.

* The event - di spat cher module provides the ability to listen for events triggered by
a specific instance of an object.

Understand the s library

The PubSub library is a publishing and subscription system based on
j Query. Cal | backs functions.

With the PubSub library, messages can be published by any object in the system
when events happen and subscribers can listen for those messages and perform
additional tasks as needed. The backbone of the PubSub library is a list of topics
identified by | D, for example, PAGE_READY and CART_ADD. Publishers (which are
typically Commerce widgets) publish messages to these topics when events happen.
Subscribers to a given topic receive the messages published to that topic along with
supporting data.

You can create custom topics and add them to the PubSub library; however, these
custom topics may only be used by custom widgets that you build. Out-of-the-box
widgets will not have awareness of or access to custom PubSub topics.

Include the pubsub dependency

In order to use the PubSub library from within a widget, you need to include pubsub
as a dependency in the widget's JavaScript module with a statement similar to the
following:

[' pubsub'],

Subscribe to a topic

You use the subscri be function to subscribe your callback function to a topic.
The data that has been published to a topic is then passed to the callback function.

There are two ways to use the subcri be() function. You can either provide the
callback function’s name or you can provide code for the callback function in-line.

ORACLE 10-1



Chapter 10
Publish messages

In this example, whenever the PAGE_CHANGED topic has a message published to it, the
get PageUr | Dat a() function is called.

$. Topi c(pubsub. t opi cNames. PAGE_CHANGED) . subscri be(
wi dget . get PageUr | Dat a) ;

In this example, whenever the PAGE_CHANGED topic has a message published to it, the
anonymous, in-line function is executed.

$. Topi c(pubsub. t opi cNanes. PAGE_CHANGED) . subscri be(
function(val ue){
wi dget . i sDi spl ayErrorPi ns(fal se);
}
);

Note that the value for t hi s in your callback function may vary, depending on whether
the message that triggered the callback function was published with context or not,

so you should save the current value of t hi s if you need to guarantee that it

remains constant. See Publish messages for more details on publishing messages
with context.

To unsubscribe from a topic, use the unsubscri be() function, for example:

$. Topi ¢( pubsub. t opi cNames. PAGE_LAYOUT _LOADED) . unsubscri be(
Wi dget.resetOrderDetails);

Publish messages

Two functions, publ i sh() and publ i shWth(), are used to publish messages to topics.

The publ i sh() function takes one parameter, the object you want to publish. In the
example below, the publ i sh() function will send the data object to callback functions
that are subscribed to the PAGE_READY topic.

$. Topi c( PubSub. t opi cNanmes. PAGE_READY) . publ i sh(dat a) ;

In some cases, you may need to control the context in which subscribers receive the
published data. When a publisher provides context, it is providing the subscriber with
access to data or operations the subscriber needs to do its job. To control context, use
the publ i shWth() function instead of the publ i sh() function. The publ i shWt h()
function takes two parameters; the first is the object to be used as this in the
subscriber’s callback function, the second is the object you want to publish. For
example, the following code publishes the billing address as the context:

$. Topi c(pubsub. t opi cNames. CHECKOUT_BI LLI NG_ADDRESS) . publ i shW t h(
wi dget . bi | i ngAddress(), [{
message: "success"

H);

ORACLE 10-2



Chapter 10
Create new topics

This allows the subscriber to update the billing address with the value of this:

$. Topi c( pubsub. t opi cNames. CHECKOUT_BI LLI NG_ADDRESS) . subscri be(
function() {
sel f.billingAddress(this);
}
);

Create new topics

The PubSub library includes a number of topics out of the box and these topics are
described later in this section.

If you need to create a custom topic, you can do so using the t opi c() function,
passing in the 1D of your topic. The t opi ¢c() function returns an existing topic if the 1D
already exists. If no topics exist that match the passed ID, a new topic is created and
returned.

Custom topic objects have the publish, publ i shW't h, subscribe, and unsubscribe
functions. Note that custom topics are available for subscription by custom widgets
only; default widgets have no knowledge of or access to custom topics. They are

used exclusively to let one custom widget know about an event that has happened in
another custom widget. Oracle recommends that any custom topics you create include
a merchant-specific prefix in the topic ID to avoid conflicts with default topics.

The following example shows the creation of a topic named My_TOPI Cin a custom
widget:

$. Topi c("MY_TOPI C. menory") . publ i sh("Message i s here") ;

This example shows a subscription to MY_TOPI C in another custom widget:

$. Topi c("MY_TOPI C. menory ") . subscri be(function(nmessage)

{
consol e. | og("Message is:

19K

+ nessage);

Note that this custom topic makes use of the . menory suffix, which enables memory
for the topic. Typically, for a callback function to be triggered, it has to be subscribed
to a topic before any messages are published to that topic. The . menory suffix allows
a callback function to be triggered for the most recently published message even if the
function has subscribed to the topic after the message was published.

PubSub topics

ORACLE

There are topics included by default with the PubSub system.

Topics that have memory enabled are marked accordingly. As a reminder, having
memory enabled for a topic allows a callback function to be triggered for the most
recently published message even if the function has subscribed to the topic after the
message was published. See Create new topics for more information.

10-3



ORACLE

Chapter 10
PubSub topics

CART_ADD_SUCCESS

A message is published to this topic whenever a product is successfully added to the
cart.

$. Topi c(pubsub. t opi cNames. CART_ADD SUCCESS) . publ i sh( product);

Arguments

product : A JSON object that includes data for the added product, for example:

{

“primryFul | I mageURL" : "/ccstore/vl/imges/ ?source=/
filelv2/ products/
nynovi e_LARGE. j pg",
"smal | I mageURLs" : ["/ccstore/vl/inmages/ ?source=/filelv2/

product s/
nynovi e_LARGE. j pg&hei ght =300&w dt h=300"],

“orderLimt" : null,

"shi ppi ngSurcharges" : null,

“salePrices" : null,

"type" : null,

“listPrices" : null,

"primaryl mageA tText" : "My Movie",

"height" : null,

"shi ppi ngSurcharge" : null,

“listPrice" : 21.99,

"description" : "A great novie that you should not niss.",

“full lmageURLs" : ["/ccstore/vl/imges/ ?source=/filelv2/
product s/

nynovi e_LARGE. j pg"],
"l ongDescription" : null,
“unit Of Measure" : null,
“primaryMedi um mageURL" : "/ccstore/vl/images/ ?source=/
filelv2/ products/
nynovi e_LARGE. j pg&hei ght =4758&wi dt h=475",
"CountryOrOrigin" : "US",
"medi um mageURLs" : ["/ccstore/vl/imges/ ?source=/filelv2/
product s/
nynovi e_LARGE. | pg&hei ght =475&w dt h=475"],
"primrySourcel mageURL" : "/ccstore/vl/images/ ?source=/
filelv2/ products/
nynovi e_LARGE. j pg&hei ght =3008&wi dt h=300",
"seoKeywor dsDerived" : "My Movie, Psychol ogi cal
Thrillers, Bl ockbuster,
Al'l Products, Thrillers-d earance",
"width" : null,
“primryThunbl mageURL" : "/ccstore/vl/inmages/ ?source=/
filelv2/ products/
nynovi e_LARGE. j pg&hei ght =100&wi dt h=100",
“primrySmal | I mgeURL" : "/ccstore/vl/inmages/ ?source=/
filelv2/ products/
nynovi e_LARGE. j pg&hei ght =3008&wi dt h=300",
"rel at edMedi aContent” : [],

10-4



ORACLE

product s/

Chapter 10

filelv2/ products/

product s/

should not miss.",

PubSub topics
"active" : true,
"l argel mageURLs" : ["/ccstore/vl/images/ ?source=/filelv2/
nynovi e_LARGE. j pg&hei ght =940&wi dt h=940"],
“salePrice" : null,
"fractional QuantitiesAllowed" : false,
"primrylLargel mgeURL" : "/ccstore/vl/images/ ?source=/
nynovi e_LARGE. j pg&hei ght =9408&wi dt h=940",
“rel atedProducts" : null,
"weight" : null,
"parent Category” : null,
"avgCustRating" : 4.5,
"product | nagesMet adata" : [{}
1,
"id" : "Product_ 36Exy",
"sourcel mageURLs" : ["/ccstore/vl/imges/ ?source=/filelv2/
nynovi e_LARGE. j pg&hei ght =300&w dt h=300"],
"seoMetal nfo" : null,
"variant Val uesOrder" : {},
"length" : null,
"relatedArticles" : [],
"defaul t Product Li stingSku" : null,
"seoDescriptionDerived" : "My Myvie, A great novie that you
"parent Categories" : [{
“id" : "cat70011",
"cat egoryl mages" : [],
"route" : "/thrillers-clearance/category/cat70011",
"description" : null,
"l ongDescription" : null,
"active" : true,
"di spl ayName" : "Thrillers-C earance",
"repositoryld" : "cat70011"
}
1,
“chil dSKUs" : [{
“salePrices" : null,

“primryFul |l mgeURL" : null,
"primarylLargel mgeURL" : null,
"smal |  mageURLs" : [],

"t hunbnai | I mge" : null,
“listPrices" : null,
"sour cel mgeURLs" : [],

“listPrice"” : 21.99,
“fulllmgeURLS" : [],
"product Li stingSku" : null,

"quantity" : null,
"smal | I mage" @ null,
"uni t Of Measure" : null,

"primaryMedi um mageURL" @ nul |,
"medi um mageURLs" : [],
"primarySourcel mageURL" : nul |,
"l argel mage" : null,

10-5



ORACLE

Chapter 10
PubSub topics

"primaryThunbl mageURL" : nul |,
"primarySmal | | mageURL" : null,
"repositoryld" : "Sku_36Fxy",
"t hunbl mageURLs" : [],

"sal ePriceEndDate" : null,
"dynani cPropertyMapLong” : {},
"imges" : [],

"l argel mageURLs" : [],
"salePrice" : null,

"sal ePriceStartDate" : null,
"fractional QuantitiesAlowed" : false

}

epositoryld" : "Product_ 36Exy",
"t hunbl mageURLs" : ["/ccstore/vl/images/ ?source=/filelv2/

]

product s/
nynovi e_LARGE. j pg&hei ght =100&w dt h=100"],
"primaryl mageTitle" @ "My Movie",
"route" : "/ny-novielproduct/Product_ 36Exy",
"brand" : null, "seoUrl Sl ugDerived" : "My Movie",
"di spl ayNane" : "My Movie",
"seoTitleDerived" : "My Movie",
"sel ectedOptions" : [],
"orderQuantity" : 1
}

Memory enabled

No

CART_READY

A message is published to this topic when the cart is loaded with items, either from
local storage for an anonymous shopper or from the persistent cart for a registered
shopper, and is ready for use. This topic allows subscribers to access the cart items
and their associated product details.

$. Topi ¢( PubSub. t opi cNanmes. CART_READY) . publ i sh(cart);

Arguments

cart: The current Cart Vi ew\bdel . See the View Model JSDoc for Commerce for
details on what this view model contains.

Memory enabled

No

CART_UPDATED

A message is published to this topic when the cart is updated with the latest pricing
response and saved to local storage.

$. Topi c(pubsub. t opi cNames. CART_UPDATED) . publ i sh(cart);

10-6



ORACLE

Chapter 10
PubSub topics

Arguments

cart: The current Cart Vi ew\bdel . See the View Model JSDoc for Commerce for
details on what this view model contains.

Memory enabled

No

HISTORY_PUSH_STATE

A message is published to this topic when a shopper navigates from one page to
another or refreshes the page.

$. Topi c(PubSub. t opi cNanes. H STORY_PUSH_STATE) . publ i sh(path);

Arguments

pat h: The path for the page being navigated to or refreshed, for example, / horre, /
cart,/checkout, /profile, and so on.

Memory enabled

Yes

ONERROR_EXCEPTION_HANDLER

A message is published to this topic when a runtime error occurs.

$. Topi c( PubSub. t opi cNames. ONERROR_EXCEPTI ON_HANDLER) . publ i sh(
errorMessage, errorUl, errorlLineNunber);

Arguments

error Message: Contains the error message, for example:

"Uncaught Error: Script error for: //abc.com EEAdnin/js/eeljs/
atgsvcs-test.js http://requirejs.org/docs/errors. htm#scripterror”

errorUrl: The URL value when the error occurred, for example:

http://1ocal host: 8080/ shared/js/|ibs/oraclejet/libs/require/require.js

errorLi neNunber : The line of code the error occurred in.
Memory enabled

No

ORDER_SUBMISSION_SUCCESS

A message is published to this topic when the submission of an order is successfully
completed.

$. Topi c( PubSub. t opi cNames. ORDER_SUBM SSI ON_SUCCESS) . publ i sh(order Det ai | s
);

10-7



ORACLE

Chapter 10
PubSub topics

Arguments

orderDetails: AJSON array that includes data for the submitted order, for example:

[{

message : " success",

id: "o030501",

uuid : " 14f03075-1376- 46dd- 9e2c- 1448255ef a8f "
}H

The properties in the JSON object include:

e nmessage: This property has a value of success to indicate the order was submitted
e successfully.id: A system-generated ID for the order in the Order

e repository.uuid: A system-generated universally unique identifier for the or der .

Memory enabled

No

PAGE_CHANGED, PAGE_VIEW_CHANGED

A message is published to these topics when a page has a view change or a context
change. A view change means that the page type has changed, for example, from /
home to / checkout . In this case, both the layout and the data change. A context
change occurs when the page type remains the same but the data the page contains
changes, for example, / product / prodl to / product/ prod2.

$. Topi c( PubSub. t opi cNanes. PAGE_CHANGED) . publ i sh( pageEvent Dat a) ;

Arguments

pageEvent Dat a: A JavaScript object that includes data related to the page change
event, for example:

{
pagel d: "cat egor y"
contextld:"cat60041"
seosl ug: "control | ers"
previ ousCont ext I d;: " Product 36Exy"

The properties in the JavaScript object include:

e pagel d: An identifier for the page requested that represents either the page type
(for example, product, col | ecti on, hore, and so on) or, for article pages, the page
address that has been assigned in the Layout settings (for example, about Us,
shi ppi ng, or ret urns, are all pages of type article).

* contextld: For contextual pages, a cont ext 1 d is included and it may be a product
ID, category ID, an order ID, or an order confirmation ID. To determine the ID for
a specific product or category, you can view the item'’s details on the Catalog page
in Commerce. Order and order confirmation IDs are system-generated and cannot
be known beforehand but you can check for their existence in the JSON object.

10-8



ORACLE

Chapter 10
PubSub topics

* seosl ug: An SEO-friendly, internally-generated name for the product or category,
based on the product or category name. This property only has a value when
changing to a product or category page.

e previousCont ext | d: The context ID, if one exists, for the page that was rendered
before the PAGE_CHANGED event occurred

Memory enabled
Yes

PAGE_VI EW CHANGED is the same as PAGE_CHANGED, except that PAGE_VI EW CHANGED
reloads only the layout, while PAGE_CHANGED reloads the entire page.

PAGE_READY

A message is published to this topic when all the regions and widgets on a page are
loaded.

$. Topi ¢( PubSub. t opi cNames. PAGE_READY) . publ i sh( pageEvent Dat a) ;

Arguments

pageEvent Dat a: A JavaScript object that includes data about the loaded page, for
example:

{
pagel d: "category",
context|d: "cat60041",
seosl ug: " psychol ogi cal -thrillers"
previousContextld: null,
pageReposi toryld: "categoryPage"
}

The properties in the JavaScript object include:

e pagel d: An identifier for the page requested that represents either the page type
(for example, product, col | ecti on, horre, and so on) or, for article pages, the page
address that has been assigned in the Layout settings (for example, about Us,
shi ppi ng, or ret urns, are all pages of type article).

e contextld: For contextual pages, a context|d is included and it may be a product
ID, category ID, an order ID, or an order confirmation ID. To determine the ID for
a specific product or category, you can view the item'’s details on the Catalog page
in Commerce. Order and order confirmation IDs are system-generated and cannot
be known beforehand but you can check for their existence in the JSON object.

» seosl ug: An SEO-friendly, internally-generated name for the product or category,
based on the product or category name. This property only has a value when
changing to a product or category page.

» previousContext!d: The context ID, if one exists, for the page that was rendered
before the PAGE_CHANGED event occurred.

* pageReposi toryl d: The identifier for the page in the page repository. For
the out of the box pages, this value can be honePage, cat egor yPage,
profil ePage, checkout PageWt hG ft Car d, user SpacesPage, or der H st or yPage,

10-9



ORACLE

Chapter 10
PubSub topics

order Det ai | sPage, or user SpacesSet t i ngsPage. For any additional pages created
in Commerce, a system-generated ID is created, for example, pal00001.

Memory enabled

Yes

PRODUCT_VIEWED

A message is published to this topic when the shopper views a product.

$. Topi c(pubsub. t opi cNames. PRODUCT VI EVED) . publ i sh(product);

Arguments

product : The current Product Vi ewhbdel . See the View Model JSDoc for Commerce
for details on what this view model contains.

Memory enabled

Yes

SEARCH_RESULTS_UPDATED

A message is published to this topic when search results are retrieved or when

an error is returned while searching for a product. If search results are retrieved
successfully, those results are published with the message. If an error occurs, the error
is published with the message.

$. Topi c( pubsub. t opi cNames. SEARCH_RESULTS_UPDATED) . publ i shW't h( sear chResu
I'ts, message);

Arguments

sear chResul t s: The contents of this argument vary depending on whether the search
was successful or not. If the search was successful, the argument consists of a JSON
object that includes the search results and meta-data about the search, for example:

{
searchResults : Array[5],

i sNewSear ch: f al se,

navi gation : Array[5],

pageCount : 15,

pagi ngActionTenpl ate : JSONObj ect,
recorddffSet : 0,

recor dsPer Page : 5,

sear chAdj ust nent s : JSONQbj ect,

t ot al RecordsFound : 74

breadcr unbs: JSONChj ect

The properties in the successful search JISON object include:

10-10



Chapter 10
PubSub topics

» searchResul ts: An array that contains the search results. The following code
sample shows what an item in that array might look like:

"product. category" : ["Cameras and Cantorders"],
"product .| anguage" : ["en"],
“record.type" : ["camera", "sku-canmera"],
"sku.listingld" : ["canmera_1"],
"product. priceRange" : ["JPYOD - JPY9"],
"sku.activePrice" : ["3.990000"],
"product.creationDate" : ["1466057558000"],
"sku.url" : ["atgrep:/Product Cat al og/ sku- caner a/
camerasku_1 557
_product =canera_18& ocal e=en&pri ceLi st Pai r=
salePrices_listPrices"],
“product. priceListPair" : ["salePrices_listPrices"],
"product.active" : ["1"],
"sku.sal ePrice" : ["3.990000"],
"sku.creationDate" : ["1466057558000"],
"record.source" : ["ProductCatal 0g"],
“product.url™ : ["atgrep:/Product Catal og/ sku-camera/
camerasku_1 55?7
_product =canera_18& ocal e=en&pri ceLi st Pai r=
salePrices_listPrices"],
"sku.availabilityStatus" : ["OQUTOFSTOCK"],
"parent Cat egory. di spl ayName" : ["Cameras and Cantorders"],
"Endeca. Docunent . Language” : ["en"],
"product . daysAvail able" : ["0"],
"record.type.raw' : ["canera", "sku-canera"],
"sku. baseUr|™ : ["atgrep:/Product Catal og/ sku- camera/
canerasku_1_55"],
"product . dat eAvai | abl e" : ["1466057558000"],
"sku.repositoryld" : ["camerasku_1 55"],
“product. baseUr " : ["atgrep:/Product Catal og/ sku- caner a/
canerasku_1_55"],
"sku.listPrice" : ["399.990000"],
"sku.onSale" : ["0"],
"record.id" : ["sku-canera-canerasku__1 55..camera__1.en
salePrices__listPrices"],
“product.route" : ["/digital-conpact-system caneral product/
canera_1"],
"product .| ongDescription” : ["This digital conpact system
camera
14. 1- megapi xel ,\'n 4/ 3 Live MXS sensor allows you to
capture sharp photos and record high-definition video
footage with
up\ n to 1920 x 1080 resolution. Built-in W-Fi lets
you easily share stored files.\n "1,
"sku.listingOptionlndex" : ["10000"],
"id" : ["camera_1"],
"repositoryld" : ["canera_l1"],
“di spl ayName" : "Digital Conmpact System Camera"
"shi ppi ngSurcharge" : 0
“listPrice" : 399.99
"salePrice" : null

ORACLE 10-11



ORACLE

Chapter 10
PubSub topics

“route" : "/digital-conpact-system cameral product/
camera_1",
“primaryl mageAlt Text" : ["Digital Conpact System Camera"],
"primarylmageTitle" : ["Digital Conpact System Canera"],
“primarylLargel mgeURL" : "/ccstore/vl/images/ ?source=
[filelv2/products/
OM D _E_MLO_LARGE. j pg&hei ght =9408&wi dt h=940",
“primrySmal | I mageURL" : "/ccstore/vl/images/ ?source=
[filelv2/products/
OM D _E_MLO_LARGE. j pg&hei ght =300&wi dt h=300",
“primaryThunbl mageURL" : "/ccstore/vl/images/ ?source=
[filelv2/products/
OM D _E_MO_LARGE. j pg&hei ght =100&wi dt h=100",
“primaryMedi um mageURL" : "/ccstore/vl/imges/ ?sour ce=
[filelv2/products/
OM D _E_MO_LARGE. j pg&hei ght =475&wi dt h=475",
“primryFul | I mageURL" : "/ccstore/vl/imges/ ?source=
[filelv2/products/OM D E MO _LARGE. jpg",
“chil dSKUs" @ [{

"sal ePrice" : "3.990000",
“listPrice" : "399.990000",
"repositoryld" : ["camerasku_1 55"],
"l argel mage" : {
“url" oo b
"smal | I mage" @ {
“url" oo b
"thunbnai | I mge" : {
“url" oot
}
}
1,
“maxActivePrice"” : "399.990000",
"m nActivePrice" : "3.990000"

* isNewSearch: A Boolean value that specifies whether this is a new search or not.

e navigation: An array of ref i nement s elements, each of which contains the
refinements available for a given dimension. These refinements are used to
present the shopper with a set of refinement links that she can use to further
refine the current search results. For example, the following JSON sample shows
an excerpt of the refinements available for the product . cat egory dimension:

"refinenents": [

{

"multiSelect": false,
"navi gationState":

"9
N=40589762248Nr =ANDY28pr oduct . pri ceLi st Pai r ¥8Asal ePrices_listPrices
9%2Cpr oduct . | anguage¥8Aen9R9&Nr pp=12&Nt | =en&Nt t =cam&l anguage=en&

sear chType=si npl e&vi si t | d=- 14ddf 4e9%8A156217da656%BA- 582e- 10. 170. 102. 150
&

10-12



Chapter 10

PubSub topics
vi sitorld=1298EspxGVOA_YEnEkr CS9sDr 1JYUd(Q6j pex 06 ADSHQz GuU30A4" ,
"contentPath": "\/gui dedsearch",
“count": 2,
"@lass": "comendeca.infront.cartridge. mdel.Refinement",

"siteRoot Path": "\/pages\/Default\/services",
"siteState": {
"contentPath": null,
"siteld": "@rror:siteNot Found",
"@l ass": "comendeca.infront.site.nodel.SiteState",
"siteD splayNane": null,
"validSite": false,
“properties": {
3,
"siteDefinition": null,
“mat chedUr | Pattern": null },
“label": "Al Products",
"properties": {
“di mval . prop. cat egory. ancest or Cat al ogl ds":
"cl oudLakeCat al 0og",
“di mval . prop. cat egory. root Catal ogl d": "cl oudLakeCat al og",
“di mval . prop. di spl ayNane_en": "Al'l Products",
“di mval . prop. category.repositoryld": "All ProdPagi nation",
“di mval . prop. cat egory. cat al ogs. repositoryld":
"cl oudCat al og, cl oudLakeCat al og",
"record.id":
"atgrep:\/Product Cat al og\/ cat egory\/ Al | ProdPagi nati on?
cat egor yPat h=\/ Al | Pr odPagi nati on",
"DGraph. Spec": "All ProdPagi nation"

“multiSelect": false,
"navi gationState":

"9
N=3881554706&Nr =ANDY28pr oduct . pri ceLi st Pai r ¥8Asal ePrices_listPrices%
2Cpr oduct . | anguage¥BAen%29&Nr pp=12&Nt | =en&Nt t =cam®l anguage=en&

sear chType=si npl e&vi si t | d=- 14ddf 4e9%8A156217da656%BA- 582e- 10. 170. 102. 150

&

vi sitorld=1298EspxGVOA_YEnEkr CS9sDr 1JYUd(Q6j pex 06 ADSHQz GuU30A4" ,
"contentPath": "\/gui dedsearch",
“count": 1,
"@lass": "comendeca.infront.cartridge. model.Refinement",

"siteRoot Path": "\/pages\/Default\/services",
"siteState": {

"contentPath": null,

"siteld": "@rror:siteNot Found",

"@l ass": "comendeca.infront.site.nodel.SiteState",

"siteD splayNane": null,

"validSite": false,

“properties": {

b

"siteDefinition": null,

ORACLE 10-13



Chapter 10
PubSub topics

"mat chedUr | Pattern": null

1,

"l abel ": "Bl ockbuster",

"properties": {
“di mval . prop. cat egory. ancest or Cat al ogl ds":

"cl oudLakeCat al 0og",

“di mval . prop. cat egory. root Catal ogl d": "cl oudLakeCat al og",
“di mval . prop. di spl ayNane_en": "Bl ockbuster",
“di mval . prop. category.repositoryld": "topLeaf",
“di mval . prop. cat egory. cat al ogs. repositoryld":

"cl oudCat al og, Si t eCont ext DumyCat al og, G assi cal Mvi esCat al og,
cl oudLakeCat al og",
“record.id": "atgrep:\/Product Catal og\/category\/topLeaf?
cat egor yPat h=\/t opLeaf ",
" DG aph. Spec": "topLeaf”
}
1,
.Addi tional refinements here...
1,
"nul tiSelect": false,
"@ype": "Refinenment Menu",
"name": "product.category"”,
"ancestors": |

]

i spl ayName": "Category",
"di mensi onNane": "product. category",
"whyPrecedenceRul eFired": null

b

* pageCount : The total number of pages of records. Each page contains the number
of records specified by recor dsPer Page.

e pagi ngActionTenpl at e: A JSON object that returns data used to retrieve the next
page of search results.

"pagi ngActionTenpl ate" : {
"navi gationState" :
"?&Nt | =en&Nt t =camer a&l anguage=ené&sear chType=si npl e",
"contentPath" : "/guidedsearch",
"@l ass" :
"com endeca.infront.cartridge. nodel . Navi gati onActi on",
"siteRoot Path" : "/pages/Defaul t/services",
"siteState" : {
"contentPath" : null,
"siteld" : "@rror:siteNot Found",
"@lass" : "comendeca.infront.site.nmbdel.SiteState",
"siteDi spl ayName" : null,
"validSite" : false,
"properties" : {},
"siteDefinition" : null,
"mat chedUr | Pattern" : null

ORACLE 10-14



Chapter 10
PubSub topics

"l'abel" : null

* recorddfset: Identifies the page being viewed. For example, if you have 12
records per page and recor dO fset = 12, then page 2 is being viewed.

* recordsPerPage: The number of records to show per page, used for pagination
controls.

e searchAdj ustment s: A JSON object that contains information about any
adjustments made to the original search terms.

— @ype: Identifies the search adjustments portion of the JSON response.

— original SearchTer ms: The original search terms as entered by the shopper,
including any wildcards.

— original Terns: The original search terms entered by the shopper, minus any
wildcards.

» total RecordsFound: The total number of records that match the search criteria.

e breadcrunbs: A JSON object that provides details on the user actions that led to
the current navigation state, for example:

"breadcrunbs" : {
"renmoveAl | Action" : {
"navigationState" : "?
Nt | =en&l anguage=ené&sear chType=si npl e&
visitld=null &isitorld=null",

“contentPath" : "/guidedsearch",
"@l ass" :

"com endeca. i nfront.cartridge. nodel . Navi gati onAction",
"siteRootPath" : "/pages/Defaul t/services",

"siteState" : {
"contentPath" : null,
"siteld" : "@rror:siteNot Found",
"@lass" : "comendeca.infront.site.nodel.SiteState",
"siteDisplayName" : null,
"validSite" : false,
"properties" : {},
"siteDefinition" : null,
"mat chedUr | Pattern" : null },
“label" : null
1
"refinenent Crunbs" : [],
"geoFilterCrumb" : null,
"@ype" : "Breadcrunbs",
"endeca: auditlnfo" : {
“ecr:innerPath" : "breadcrunbs"”,
“ecr:resourcePath" : "/pages/Defaul t/services/
gui dedsear ch"
1
"searchCrunbs" : [{
"@l ass" :

"com endeca. i nfront.cartridge. nodel . Sear chBreadcrunb”,
"terns" : "canera",

ORACLE 10-15



ORACLE

Chapter 10
PubSub topics

"renmoveAction" : {
"navigationState" :
"9
Nr =ANDY28pr oduct . pri ceLi st Pai r ¥8Asal ePrices_| i stPrices%

2Cpr oduct . | anguage¥BAen%29&Nr pp=12&Nt | =en&l anguage=en&
sear chType=si npl e&vi sitld=nul | &i sitorld=null",

"contentPath" : "/guidedsearch",
"@l ass" :
"com endeca. i nfront. cartridge. model . Navi gati onActi on",
"siteRoot Path" : "/pages/Default/services",
"siteState" : {
"contentPath" : null,
"siteld" : "@rror:siteNot Found",
"@l ass" :

"com endeca.infront.site.nodel.SiteState",
"siteDi splayNane" : null,
"validSite" : fal se,
"properties" : {},
"siteDefinition" : null,
“mat chedUr| Pattern" : null

b

"label" : null

}

n

orrectedTerns" : null,
"key" : "Al",
"mat chMbde" : "allpartial”
}
]

"rangeFilterCrunbs" : []

When the search has failed, the sear chResul t s object contains details about the error,
including:

e nmessage: The runtime error message that indicates that the search has failed.
e status: Any HTTP status codes associated with the failed request.
e errorCode: An Commerce error code, which may be

CGET_SEARCH_| NTERNAL_ERROR = 31040,

SEARCH ADM N_| NTERNAL _ERROR = 31041,

or
SEARCH_ADM N_I NDEXI NG_| NTERNAL_ERRCR = 31042.

For example:

{

"message”: "Unable to performa search at this tine",
"status":"500",
“errorCode": "31040"

10-16



Chapter 10
PubSub topics

message: The second argument returned for the SEARCH RESULTS_UPDATED topic
contains a JSON array that includes either a success or failure message and the
Sear chVi ewMbdel object, for example:

[{

message: "success",
requestor: SearchVi ewhbdel

}

In the case of a failed search, this message property has a value of fail.

[{"message":"fail"}]

Memory enabled

Yes

SKU_SELECTED

A message is published to this topic when a shopper selects all the variant options for
a product, thereby identifying a specific SKU.

$. Topi c(pubsub. t opi cNames. SKU_SELECTED) . publ i sh(product, sel ect edSku,
variant Options);

Arguments

product : The current Product Vi ewMbdel . See the View Model JSDoc for Commerce
for details on what this view model contains.

sel ect edSku: A JSON object that includes data for the selected SKU, for example:

sel ectedSku = {

“salePrices" : null,

"resolution" : "14.1-negapi xel s",

“listPrice" : 399.99,

"quantity" : 5,

"repositoryld" : "camerasku 1 18",

“color" : "Black",

"dynani cPropertyMapLong" : {
"sku-canera_resolution" : 0,
"sku-canera_color" : 8

¥

“sal ePrice" : 399.99,
"salePriceStartDate" : null,
“fractional QuantitiesAllowed" : false

vari ant Opti ons: An array whose items reflect the variant options (such as color, size,
finish, resolution, and so on) that can be selected for the SKU, along with any currently

ORACLE 10-17



ORACLE

Chapter 10
PubSub topics

selected variant options. For example, the following JSON sample shows the col or
and resol uti on variants returned for the camera selected above.

[
{
“optionDi spl ayNane" : "color",
"parent" : {
"basePath" : "/",

"deferredinit" : {},

"prevH storyLength" : 7,

"newH storylLength" : 8,

"l ocal eSubscription" : {
"R'" 1 true

}

"WDGET_ID" : "productDetails",
"ingMetadata" : [{}
|

irstTimeRender" : true

}

ptionld" : "sku-canmera_color",
"actual Optionld" : "color",
"optionCaption" :
"sel ectedOptionVal ue" : {

"key" : "Antique Brass",
"value" : 0
¥
"original OptionVal ues": |
{
"key" : "Antique Brass",
"value" : 0
¥
{
"key" : "Apricot",
"value" : 1
¥
{
"key" : "Aquamarine",
"value" : 2
¥
]
¥
{
"optionDi spl ayName" : "resol ution"
"parent" : {
"basePath" : "/"

"deferredinit" : {},

"prevH storyLength" : 7,
"newH storylLength" : 8,
"l ocal eSubscription" : {

"R'" 1 true
}1
"WDGET_ID" : "productDetails",
"ingMetadata" : [{}
]1

"firstTimeRender" : true

"Sel ect color ...

10-18



Chapter 10
PubSub topics

1,

"optionld" : "sku-camera_resolution",
"actual Optionld" : "resolution",
"optionCaption" : "Select resolution ...",

"sel ectedOptionVal ue" : {
"key" : "14.1-negapi xel s",

"value" : 0
¥
"original OptionVal ues":|[
{
"key" : "14.1-negapi xel s"
"value" : 0
¥
{
"key" : "24.3-negapi xel s"
"value" : 1
¥

Memory enabled

No

USER_LOGIN_SUCCESSFUL

A message is published to this topic when the shopper has successfully logged in. You
can subscribe to this topic to introduce logic that is specific to logged-in shoppers.

$. Topi c( pubSub. t opi cNames. USER_LOG N_SUCCESSFUL) . publ i sh();

Arguments

None

Memory enabled

No
USER_LOGOUT_SUCCESSFUL

A message is published to this topic when the shopper successfully logs out.
$. Topi c(pubSub. t opi cNames. USER_LOGOUT_SUCCESSFUL) . publ i sh( message) ;

Arguments

message: A JSON array that includes a nessage property whose value is success.

[{"message":" success "}]

Memory enabled

No

ORACLE 10-19



Chapter 10
PubSub topics

USER_PASSWORD_EXPIRED

A message is published to this topic when the user password expires.

$. Topi c( pubSub. t opi cNanmes. USER_PASSWORD EXPI RED) . publ i sh();

Arguments
None
Memory enabled

No

USER_PROFILE_UPDATE_SUCCESSFUL

A message is published to this topic when the shopper’s profile is updated
successfully with a new address, email, or name.

$. Topi c( pubSub. t opi cNanmes. USER_PROFI LE_UPDATE_SUCCESSFUL) . publ i sh( profi |
eDat a) ;

Arguments

profil eData: A JSON object that contains the updated user profile data, for example:

{

"receiveEmail" : "yes",
"| ast Nane" : "Spencers",
"locale" : "en_US",
"contactBillingAddress" : "Address Object”,
"links" @ [{
"rel" : "self",
"href" : http://1ocal host: 9080/ ccstore/vl/ profiles/
current
}
1,
"cont act Shi ppi ngAddress" : "Address Object”,
"repositoryld" : "se-570032",
"parent Organi zation" : null,
“id" : "se-570032",
"dynami cProperties" : [],
"email" : "mepens@bc. cont,
"shi ppi ngAddr esses” : ["Address bjectl1","Address Qbject2"],
"dayti meTel ephoneNunber™ : null,
"secondar yAddr esses" : {
"Mom s house" : "Address (bject”,
"Work" : "Address Qbject”,
"Home" : "Address QObject”,
},
“firstName" : "Mark",
"shi ppi ngAddress” : "Address Qbject”

ORACLE 10-20



Chapter 10
Listen for messages from a particular object instance

Note that the Address Obj ect references in the example above look similar to the
following:

"contactBillingAddress" : {

"| ast Nane" : "Spencers",
"“post al Code" : "36130",
“phoneNurmber" : "555-555-1234",
"county" : null,

“state" : "AL",

"address1" : "123 Main St",
"address2" : null,
“firstName" : "Mark",
"conmpanyNarme" : nul |,
"repositoryld" : "se-990032",
"city" : "Montgonery",
“country" : "US"

b

Memory enabled

Yes

USER_SESSION_EXPIRED

A message is published to this topic when the user session expires. You can subscribe
to this topic to clear any session-specific data once the session expires.

$. Topi c(pubsub. t opi cNames. USER_SESSI ON_EXPI RED) . publ i sh();

Arguments
None
Memory enabled

Yes

Listen for messages from a particular object instance

ORACLE

The PubSub library provides a way for code to publish and subscribe to a set of “global”
messages.

Any code in the application can publish messages to a topic and any code can listen
for those messages. There may be a need, however, to listen for messages coming
only from a specific instance of an object. To manage this use case, Commerce
includes the event - di spat cher module. Any object created from a module that
extends event - di spat cher can trigger events and allow other objects to register as
listeners for those events.

The event - di spat cher module provides two functions, tri gger () and on(), that
facilitate event triggering and event listening, respectively. In the example below, the
Exanpl eDi al og view model extends event - di spat cher and defines two events that
can be fired, save- event and cancel - event . To trigger the events, the view associated

10-21



ORACLE

Chapter 10
Listen for messages from a particular object instance

with Exanpl eDi al og could call the tri gger () functions as needed, for example, when
the Save or Cancel button is clicked.

[** * ExanpleDialog.js */
define (["shared/ccLibs/event-dispatcher"],
function(Event Di spatcher) { "use strict";
/~k~k
* Exanpl e of a nodul e that extends EventDi spatcher, enabling
i nstances of the
* class to fire events to any listeners/event handlers
registered.
* @ee EventDispatcher
*/
function Exanpl ebDi al og() {
/'l 1 nvoke superclass constructor to inherit any instance
properties.
Event Di spat cher.cal I (this);
this.pl = "property 1 value";
this.p2 = "property 2 val ue";
}
/1 Extend Event Di spatcher so we can dispatch events.
Exanpl eDi al og. prot ot ype =
(bj ect . creat e( Event Di spat cher. prot ot ype);
Exanpl eDi al og. prot ot ype. constructor = Exanpl eDi al og;
/1 Define constants for any events we want to fire. These
need only be unique
/1 within this nodul e because corresponding listeners receive
events froma
/1 given instance of this nodul e.
Exanpl eDi al og. SAVE = "save-event";
Exanpl eDi al og. CANCEL = "cancel - event";

/**

* Corresponding view could be set up to call this method

when the
* dialog's Save button is clicked, for exanple.
*/
Exanpl eDi al og. prot ot ype. save = function() {
Il Fire SAVE event. Any additional argunents (beyond the
first) are
/'l passed along to the event handler/listener.
this.trigger(Exanpl eDi al og. SAVE, this.pl);
b
/~k~k
* Corresponding view could be set up to call this method
when the

* dialog's cancel button is clicked, for exanple.
*/
Exanpl eDi al og. prot ot ype. cancel = function() {
Il Fire CANCEL event.
this.trigger(Exanpl eDi al og. CANCEL) ;
b
/~k~k
* Displays the dial og.
*/
Exanpl eDi al og. prot ot ype. show = function() {

10-22



ORACLE

Chapter 10
Listen for messages from a particular object instance

/1 Do sonmething to display the dialog. Perhaps trigger an
event as well.
b
return Exanpl eDi al og;
¥

This code sample creates an instance of Exanpl eDi al og and provides listeners, using
the on() function, for the save and cancel events triggered in that instance.

/**
* Exanple.js
*/
define (["path/to/ Exanpl eDi al 0og"], function(ExanpleDial og) {
"use strict";
/**
* Exanple of a nodule that listens for ExanpleDial og events.
Does not hi ng
* real or useful other than establishing howto add
listeners to an
* Event Di spat cher.
* @ee Exanpl eDial og */
function Exanple() {
/1 Note: The code in this constructor might nore typically
be in an
[l initialize nmethod or somewhere el se.
var dial og = new Exanpl eDi al og();
/1 Add |isteners for save and cancel events. 3rd arg, if
provided, sets the
/1 context for the l|istener
di al og. on( Exanpl eDi al 0og. SAVE, this.onSave, this);
di al og. on( Exanpl eDi al og. CANCEL, this.onCancel);
di al og. show() ;
1
/**
* Listener/handl er for dialog save events.
* @aramargs {Array} Any args passed al ong when event is
fired.
*/
Exanpl e. prot ot ype. onSave = function(args) {
/1 Do sonething...
consol e.l og(args[0]);
¥
/**
* Listener/handl er for dialog cancel events.
* @aramargs {Array} Any args passed al ong when event is
fired.
*/
Exanpl e. prot ot ype. onCancel = function(args) {
/1 Do sonething else...
if (args.length === 0) {
consol e.l og("No args passed with cancel event.");
}
¥

10-23



Chapter 10
Listen for messages from a particular object instance

return Exanple;
1

ORACLE" 10-24



Glossary

ORACLE Glossary-1



Index

ORACLE Index-1



	Contents
	1 About This Guide
	2 Create an Extension
	Understand extensions
	Create an extension ID
	Create the extension structure
	Create and load the extension bundle

	3 Create a Widget
	Understand widgets
	Download widget source code
	Create the widget structure
	Define widget meta-data in widget.json
	Acceptable values for the imports property
	Create the widget template file
	Create custom widget JavaScript
	Configure a widget’s style
	Localize a widget
	Bundle images or other assets within widget
	Use ccLink binding for quicker page loading
	Understand widget versioning
	Add customizable widget settings
	Assign a global widget to multiple sites

	4 Fragment a Widget into Elements
	Understand elements
	Create the element directory structure
	Define element meta-data in an element.json file
	Create the presentation for an element
	Create custom element JavaScript

	5 Use Stacks for Increased Widget Layout Control
	Understand stacks
	Create the stack structure
	Define stack meta-data in stack.json
	Create the stack template
	Configure a stack’s style
	Create a quick view popup using a popup stack

	6 Add Site Settings
	Define site settings
	Reference site settings in widget templates

	7 Include Application-level JavaScript Modules
	Create the extension structure for application-level JavaScript
	Run custom logic upon module instantiation
	Reference an application-level module in a widget
	Application-level JavaScript examples
	Assign an application-level JavaScript module to multiple sites

	8 Filter REST Responses
	Out-of-the-box response filters
	Pass a response filter key in a REST call made from a widget
	Programmatically determine the correct response filter key
	Change response filters used by out-of-the-box widgets
	Filter REST calls made from within a view model

	9 Resize Images
	Default image sizes
	Resize images using the ccResizeImage binding
	Understand the image resizing REST APIs
	Manage image caching

	10 Manage Storefront Event Notification
	Understand the PubSub library
	Include the pubsub dependency
	Subscribe to a topic
	Publish messages
	Create new topics
	PubSub topics
	Listen for messages from a particular object instance

	Glossary
	Index

