
Extending Oracle CX Commerce

F38412-01
April 2021

Extending Oracle CX Commerce,

F38412-01

Copyright © 1997, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Understand Extension Features

2 Use the REST APIs

Learn about the APIs 2-1

REST API authentication 2-2

Use the APIs on instances running multiple sites 2-6

CORS support 2-7

REST API query parameters 2-8

Response filters 2-12

Error messages 2-16

Register applications 2-17

3 Use Webhooks

Understand webhooks 3-1

Configure webhooks 3-4

Secure webhooks 3-5

Troubleshoot webhooks 3-7

Understand webhooks and PCI DSS compliance 3-7

Use the REST API to configure webhooks 3-10

Reduce the size of webhook requests 3-11

Manage failed webhook calls 3-15

4 Manage Shopper Profiles

Understand shopper profiles and shopper types 4-1

View a shopper profile 4-1

Create a shopper profile 4-3

View a shopper type 4-10

Add custom properties to a shopper type 4-12

Set custom properties on a shopper profile 4-14

Create custom properties for addresses 4-15

iii

Access custom properties using the UserViewModel 4-18

5 Access SKU Properties through Widgets

Understand APIs for accessing SKU properties 5-1

Create an element to display SKU properties 5-3

SkuPropertiesHandler example 5-5

6 Create Custom Promotions

Understand PMDL discount rules 6-1

Create a promotion 6-4

View promotions created with the REST API 6-6

Sample promotions 6-7

Create custom properties for promotions 6-11

Assign and manage coupons 6-17

Set up promotion upsell messages 6-19

7 Manage Multiple Inventory Locations

Access inventory data 7-1

Create locations 7-4

Create inventory data for locations 7-7

Retrieve inventory data for locations 7-9

8 Manage Inventory for Preorders and Backorders

Understand inventory 8-1

Enable preorder and backorder functionality 8-1

Access and update inventory data 8-2

Update widgets for preorders and backorders 8-3

Customize email templates for preorders and backorders 8-3

9 Manage Orders

Integrate with an order management system 9-1

Understand order states 9-11

Create custom properties for orders 9-14

Implement robust order capture 9-17

Support zero-cost orders 9-18

Support shopper-initiated order management 9-19

Enable returns on partially fulfilled orders 9-23

iv

Support add-on products 9-24

10

Customize Order Line Items

Understand customization of order line items 10-1

Create custom properties for line items 10-2

Understand view model support for line items 10-4

Implement a custom cart summary widget 10-5

11

Ship an Order to Multiple Addresses

Understand view model support for split shipping 11-1

Implement split shipping UI controls 11-3

Understand REST support for split shipping 11-16

Customize email templates for split shipping 11-17

Retaining shipping group information 11-22

Extending the CartItem and ShippingGroupRelationship view models 11-23

12

Exclude Items from Shipping Methods and Costs

Exclude items from shipping methods 12-1

Exclude items from shipping cost calculations 12-1

Create collections for the excluded items 12-2

Update shipping methods 12-2

Update the Order Summary – Checkout widget 12-3

13

Manage Countries and Regions for Shipping and Billing Addresses

Understand countries and regions 13-1

Retrieve a list of countries and regions 13-2

Create and update countries and regions 13-3

Delete countries and regions 13-6

Customize address formats using the API 13-6

Work with address types 13-15

Customize address validation 13-17

14

Configure Buy Online Pick Up In Store

Understand buy online pick up in store 14-1

Manage inventory for in-store pick up 14-3

Configure layouts and widgets for in-store pick up 14-4

Configure products and SKUs for in-store pick up 14-7

v

Customize email templates for in-store pick up 14-8

Configure payment processing for in-store pick up 14-8

Understand tax processing and in-store pick up 14-10

Configure the Picked Up Items webhook 14-11

15

Create Scheduled Orders

Configure an invoice payment gateway for scheduled orders 15-1

Configure the scheduled order service 15-2

Configure page layouts for scheduled orders 15-4

Update prices in a scheduled order 15-6

Notify shoppers about scheduled order activity 15-6

Understand shopper tasks for scheduled orders 15-6

16

Notify Shoppers When Items are Back in Stock

Understand back in stock notifications 16-1

Create and upload the notification extension 16-1

Add the Notify Me element to the Product Details widget 16-6

Configure the scheduler to send the back in stock emails 16-6

17

Enable Purchase Lists

Understand the difference between wish lists and purchase lists 17-1

Configure purchase lists 17-3

Work with the purchase list API 17-5

Share purchase lists 17-7

18

Enable Order Approvals

Allow a delegated administrator to control order approvals 18-1

Configure a deferred payment gateway for order approvals 18-2

Set the frequency of canceled order clean up 18-3

Configure page layouts for order approvals 18-4

Manage the checkout flow for orders requiring approval 18-6

Display a contact’s purchase limit in a widget 18-12

Integrate with an external system for order approvals 18-12

19

Assign Catalogs and Price Groups to Shoppers

Configure the External Price Group and Catalog webhook 19-1

vi

Create a custom shopper context widget 19-3

20

Implement Storefront Single Sign-On

Understand storefront SSO message flow 20-1

Configure storefront SSO 20-2

Understand storefront SSO limitations 20-6

Implement storefront SSO for account-based shoppers 20-7

21

Implement Single Sign-On for Internal Users

Configure SSO with OpenID Connect 21-1

Configure SSO with SAML 2.0 21-5

22

Configure Sites

Understand site objects 22-1

Create a site 22-3

Update a site 22-6

Delete a site 22-7

23

Work with Loyalty Programs

Implement loyalty points 23-1

Create a custom currency for loyalty points 23-1

Configure a site to use loyalty programs 23-3

Understand tax and shipping calculations with loyalty programs 23-5

Display tax and shipping in currency for points-based orders 23-6

Redeem loyalty points 23-8

Understand currency exchange rates 23-12

Use custom properties in loyalty integration 23-13

24

Integrate with Oracle Content and Experience Cloud

Enable the integration with Oracle Content and Experience Cloud 24-1

Configure content items to display on the storefront 24-2

25

Integrate with External Shipping Calculators

Work with externally priced shipping methods 25-1

Upgrading from external shipping methods to externally priced shipping methods 25-6

Work with external shipping methods 25-6

vii

Enable fallback shipping methods 25-10

26

Integrate with an External Pricing System

Create the widget 26-1

Configure the webhook 26-6

Use promotions from an external system 26-7

27

Customize Email Templates

Download and edit email templates 27-1

Customize tax display in templates 27-2

Customize line-item display in templates 27-3

Add company name and logo to account-based email templates 27-5

Notify a contact of multiple account or role changes in a single email 27-6

Customize recommendations in templates 27-7

Add a site to a template 27-11

28

Upload Third-Party Files

Create folders for third-party files 28-1

Upload third-party files to folders 28-2

Upload a Google site ownership verification file 28-6

Upload an Apple Pay merchant identity certificate 28-6

Delete third-party files 28-7

Manage files on multiple sites 28-8

29

Manage Guest Checkout

Example for restricting guest checkout 29-1

Note about preventing self-registration in account-based storefronts 29-3

30

Manage Saved Carts

Understand saved carts 30-1

Create a widget to support saved carts 30-2

Customize emails for saved carts 30-11

31

Manage the Use of Personal Data

Configure consent requests 31-1

viii

Delete shopper information 31-12

32

Implement Access Control for Internal Users

Use and modify roles 32-2

Create security criteria 32-5

Create generic access rights 32-10

33

Manage Access to Shopper Data

Implement property access control for internal users 33-1

34

Manage an Account-based Storefront

Manage account-based shopper profiles 34-1

Implement access control in business accounts 34-3

Create custom properties for accounts 34-8

Add delegated administration to your storefront 34-15

Ensure PayPal shoppers provide first and last name 34-18

35

Integrate With a Procurement System

Understand punchout 35-1

Enable punchout for an account 35-2

Work with the punchout server-side extension 35-7

Configure your storefront for punchout shoppers 35-12

36

Perform Bulk Export and Import

Understand Bulk Exporting And Importing 36-1

Export data endpoints 36-3

Import data endpoints 36-5

Understand export and import endpoint parameters 36-8

Export and import account data 36-10

Export and import profile data 36-14

Export and import product data 36-19

Export and import catalog data 36-23

Export and import category data 36-26

Export and import inventory data 36-29

Export and import promotion data 36-30

Export and import price data 36-32

Import address data 36-34

ix

Import relationship data 36-37

Export and import CSV files 36-39

Delete bulk import or export files from repository 36-50

Convert registered shoppers to account-based shoppers 36-51

Improve performance in large bulk imports 36-56

37

Create a Credit Card Payment Gateway Integration

Understand the credit card payment gateway workflow 37-1

Create a credit card extension 37-2

Install the extension and configure the gateway 37-5

Credit card payment properties 37-6

38

Create a Generic Payment Gateway Integration

Understand the generic payment gateway architecture 38-1

Supported payment methods and transaction types 38-1

Send custom properties to a payment gateway 38-4

Incorporate 3D-Secure support 38-6

Support stored credit cards 38-15

39

Integrate with a Gift Card Payment Gateway

Understand the gift card payment gateway workflow 39-1

Create a gift card extension and configure the webhook 39-1

Customize the Gift Card widget 39-3

Gift card payment properties 39-4

40

Integrate with a Store Credit Payment Gateway

Create a store credit extension and configure the webhook 40-1

Add a Store Credit payment option to the checkout page 40-3

Store credit payment properties 40-3

41

Integrate with a Loyalty Point Payment Gateway

Understand the loyalty point payment gateway workflow 41-1

Create a loyalty point extension and configure the webhook 41-1

Add a loyalty point payment option to the checkout page 41-3

Loyalty point payment properties 41-3

Use Loyalty Points and Pay with alternate currency 41-16

x

42

Integrate with a Cash Payment Gateway

Understand the cash payment gateway workflow 42-1

Create a cash payment extension and configure the webhook 42-1

Cash payment properties 42-2

43

Integrate with an Invoice Payment Gateway

Understand the invoice payment gateway workflow 43-1

Create an invoice payment extension and modify the checkout page 43-1

Invoice payment properties 43-3

44

Integrate with a Web Checkout System

Overview of web checkout system integrations 44-1

Initiate the order 44-1

Retrieve the order 44-4

Complete the order 44-7

45

Enable Split Payments

Understand split payments 45-1

Use the Split Payment widget 45-2

Use webhooks with split payments 45-3

Customize the Split Payment widget 45-4

46

Configure Tax Processors

Integrate with an external tax processor 46-1

Monitor tax processors 46-14

47

Configure Search Features

Understand which search features can be configured 47-1

Understand how to execute endpoints 47-2

Understand ZIP format and JSON format 47-2

HTTP methods for configuring search features 47-3

Delete resources 47-4

Understand system-generated object attributes 47-5

Export and import all search configuration 47-5

Configure individual resources using ZIP format 47-7

Back up and restore all application configuration 47-7

xi

Migrate configuration of all search features 47-8

Apply configuration changes to your live storefront 47-8

Configure a thesaurus 47-9

Configure keyword redirects 47-12

Optimize URLs for search engines 47-23

View your changes 47-26

Specify which index fields are included in searches 47-26

Index and Query Popular Searches 47-39

Modify data structures to enhance searches and navigation 47-45

Configure which properties of aggregated records and their members are accessible
to front end applications 47-51

Configure the order of facets 47-52

Configure the order of facet values 47-54

Order facet values by statistical significance 47-58

Add metadata to facet values 47-61

Create custom range facets 47-62

Configure the ranking of records in search results 47-65

Link additional content to search results 47-77

Search non-catalog data 47-79

Machine learning for search 47-87

Sample Search and Navigation REST API requests using cURL 47-89

48

Use Developer Utilities

Download the Commerce SDK 48-1

Develop server-side extensions 48-1

Use the Design Code Utility 48-6

Use the JavaScript Code Layering User Interface feature 48-24

Toggle JavaScript minification in preview 48-26

Reduce the size of page responses 48-26

View client-side error logs 48-28

Restore or upgrade the storefront framework version 48-29

49

Improve System Performance

Measure performance often 49-1

Monitor your Commerce environments 49-1

Improve performance in REST API Calls 49-2

Use cc-storage for Safari private browsing mode 49-2

Avoid console.log() statements 49-2

Avoid using ko.observable() 49-2

Update observable JavaScript arrays 49-3

xii

Use Knockout data-binds syntax to attach events to DOM elements 49-3

Use onLoad and beforeAppear correctly 49-3

Use the fields parameter 49-4

Use persistent filters 49-4

Use minified versions of libraries and widget JavaScript 49-4

Localize endpoints 49-4

Enable queueing simultaneous endpoint calls 49-4

Improve performance in custom widgets 49-5

Optimize Search 49-5

Use preFilter parameter with fields parameter to improve endpoint performance 49-6

Speed up system response on Product Listing and Product Details 49-6

Enable asynchronous orders flow 49-8

Improve Storefront Performance for Large Carts 49-8

Prevent Site Traffic Slowdowns 49-15

Improve performance with large numbers of addresses for profiles or accounts 49-15

50

Improve Storefront Performance

Optimize First Meaningful Paint 50-1

Lazy load images 50-1

Improve Storefront Performance for Large Carts 50-3

Add a page level spinner 50-9

Enable prioritized loading of Storefront page content 50-9

Avoid synchronous AJAX calls 50-9

Avoid hiding elements with CSS styling 50-10

Remove unused UI elements completely from layouts 50-10

Use viewport specific layouts for mobile 50-10

Keep contents of header and footer regions consistent 50-10

Limit DOM node creation 50-10

Use ccLink binding for quicker page loading 50-11

Resize images using the ccResizeImage binding 50-11

xiii

1
Understand Extension Features

Oracle CX Commerce provides several sets of tools that you can use to extend the
capabilities of the system. The primary ones are these:

• An extensive set of REST APIs allows external applications to make calls into the
Oracle CX Commerce server. These APIs are supplemented by webhooks that
the server can use to make calls out to external applications. For example, you
can create an integration with an order management system in which Oracle CX
Commerce uses webhooks to send order data to your OMS, and the OMS uses
the Oracle CX Commerce REST APIs to update the order’s status information as
the order is processed.

• Custom widgets allow you to extend the functionality of your storefront by
communicating with the Oracle CX Commerce server to access features that
are not exposed by default. Custom widgets can also enhance the storefront by
communicating with external systems such as social media sites.

Note that these tools are not mutually exclusive; you may need to use all of them to
accomplish your objectives. For example, a custom widget might make a REST call
to the Oracle CX Commerce server to request data for the storefront, and the server
might then execute a webhook to obtain that data from an external system.

This manual focuses on building specific customizations using REST APIs, webhooks,
custom widgets, and other tools. For general information about developing custom
widgets, see Create a Widget.

1-1

2
Use the REST APIs

Oracle CX Commerce includes REST web service APIs you can use to create
integrations with other products, and to build extensions to the administration interface
and the storefront.

Learn about the APIs
The Oracle CX Commerce REST APIs consist of several sets of endpoints.

The Commerce REST API endpoints include the following:

• The Store API endpoints provide access to store functionality on the storefront
server. A subset of the Store API endpoints, the Store Extension API, enables
integrations and server-side extensions to access data that is not exposed to
shoppers.

• The Admin API endpoints provide access to administrative functionality on the
administration server. Two subsets of the Admin API endpoints, the Search Admin
and Configuration and the Search Data and Indexing API endpoints, provide
access to search functionality on the search server.

• The Agent API endpoints provide access to agent functionality on the
administration server.

• The Social Wish Lists API endpoints are used to configure wish list features. This
API is not described in this manual.

Each set of endpoints is different, although in many cases similar endpoints are
available in multiple APIs. For example, the Store, Agent, and Admin APIs all have
endpoints for working with orders, though they differ in the functions that they can
perform.

Note: You should not make calls to the Admin API or the Agent API from a storefront
application. If your application needs access to functionality or data provided by these
endpoints, you can use the Store Extension API endpoints instead. These endpoints
can be used by store integrations and server-side extensions, but should not be called
from a browser.

Authentication is handled separately for each API. For example, logging into the
Admin API does not give you access to the Agent endpoints. In addition, each API’s
endpoints differ in terms of which user roles provide access to them. For example, an
account with CS Agent permissions does not necessarily also include Administrator
permissions. See Configure Internal User Accounts for more information.

Note that each API is available only in certain environments:

• The Admin API and Agent API are available on the administration server only.

• The Store API is available primarily on the storefront server. It is also available on
the administration server for previewing unpublished changes to the store.

You can find information about individual endpoints in the REST API documentation
that is available through the Oracle Help Center. Be sure to select the version of the

2-1

REST API documentation that matches the version of Oracle CX Commerce you are
using.

ccdebug REST client

In your test environment, the administration server includes a REST client for making
calls to the Commerce APIs. This client is available at the following URL:

http://admin-server-hostname/ccdebug

Note that this client can make calls only to the administration server it is running on.
You can use it to access the Admin API and Agent API, and to access the Store API
in preview mode. If you want to access endpoints on other servers, you can use a
third-party client tool such as Postman.

REST API authentication
Oracle CX Commerce REST APIs use OAuth 2.0 with bearer tokens for
authentication.

The REST APIs support two authentication approaches:

• To enable an external application such as an integration or server-side extension
to be authenticated, the application must first be registered in the administration
interface, as described in Register applications. As part of the registration process,
an application key is generated. During authentication, the application key must
be passed to Oracle CX Commerce using a POST request to the appropriate login
endpoint.

• To authenticate an internal user or storefront shopper, the user login and password
must be passed to Oracle CX Commerce using a POST request to the appropriate
login endpoint.

In either case, if the authentication succeeds, the endpoint returns an access token
that must be supplied in subsequent requests. Note that application keys and access
tokens are long base64-encoded strings.

Use the application key for authentication

When you register an application, Oracle CX Commerce automatically generates a
JSON Web Token called an application key. You send the application key in the
authorization header of a POST request, and Oracle CX Commerce responds with an
access token that the application must supply in subsequent requests.

Note: Application keys should be stored securely and all requests that include them
must be sent via HTTPS. They should be used by integrations and server-side
extensions only, and should not be sent by a browser.

Send the authorization header in a POST request to the appropriate login endpoint:

• Use POST /ccadmin/v1/login if your application makes calls to the administration
server.

• Use POST /ccapp/v1/login if your application makes calls to the storefront server.

Chapter 2
REST API authentication

2-2

The Content-Type header value must be set to application/x-www-form-urlencoded,
and the body of the request must include the grant type client_credentials. For
example:

POST /ccapp/v1/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer <application_key>

grant_type=client_credentials

The following example shows the server’s JSON response, which includes the access
token:

{
"access_token": "<access_token>",
"token_type": "bearer"
}

Now whenever the application needs to access a secured endpoint, it must issue a
request with an authorization header that contains the access token. The following
example shows an authorization header for a request that returns orders:

GET /ccapp/v1/orders HTTP/1.1
Authorization: Bearer <access_token>

Use login credentials for authentication

When you log in as an individual user (either a shopper or an internal user such as a
customer service agent), there is no application key, so you must instead supply the
user login and password in the body of the request. The following example illustrates
logging into a shopper account on the storefront server:

POST /ccstore/v1/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=johndoe@example.com&password=g4dEj3w1

The response includes an access token to use in subsequent requests. Each API you
log into returns a separate access token. The following example shows the server’s
JSON response, which includes the access token:

{
"access_token": "<access_token>",
"token_type": "bearer"
}

Multi-factor authentication (Admin API only)

Chapter 2
REST API authentication

2-3

Logging into the Admin API as an internal user involves multi-factor authentication. To
log in, you issue a POST request to the /ccadmin/v1/mfalogin endpoint, and include
the username, password, and passcode in the body of the request. For example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=365214

To obtain passcodes, the login account must be registered with the Oracle Mobile
Authenticator app. See Access the Commerce administration interface for more
information.

Note that account passwords and passcodes may expire or be changed, so you must
make sure you have up-to-date values when you log in.

Refresh an access token

Each access token expires automatically after a predetermined period of time. Tokens
associated with an application key expire after 5 minutes. Tokens associated with user
credentials expire after 15 minutes.

To avoid being logged out of an API, you can replace the current token by issuing a
POST request to the API’s refresh endpoint. Include the current access token in the
authorization header, just as you would for any other authenticated request. Oracle CX
Commerce generates and returns a new token and restarts the clock. You then use
the new token in the authorization headers of subsequent requests. Note that you may
need to refresh the token multiple times (every 5 minutes for a login with an application
key, every 15 minutes for a login with user credentials) if you need to remain logged in
for an extended period of time.

The following example is an authorization header that refreshes an access token for
the Admin API:

POST /ccadmin/v1/refresh HTTP/1.1
Authorization: Bearer <old_access_token>

The following example shows the body of the server’s response, which includes the
new token:

{
"access_token": "<new_access_token>",
"token_type": "bearer"
}

Change the token expiration period (Admin API only)

As mentioned above, the expiration period for tokens associated with user credentials
is 15 minutes by default. For the Admin API, you can change the expiration period

Chapter 2
REST API authentication

2-4

using the saveAdminConfiguration endpoint. For example, to change the period to 30
minutes:

PUT /ccadmin/v1/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "sessionTimeout": 30
}

You can set sessionTimeout to any integer from 3 to 120. Note that the value you set
also specifies the session timeout period for the administration interface, which is the
period of inactivity after which the user is automatically logged out.

Access preview through the APIs

You can use the Store API on the administration server to access your store in preview
mode. This requires a multi-step authentication procedure.

First, log into the Admin API on the administration server using an account that has
the Administrator role. Issue a POST request to the /ccadmin/v1/mfalogin endpoint,
and include the username, password, and passcode in the body of the request. For
example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=443589

The response returned includes an access token:

{
 "token_type": "bearer",
 "access_token": "<access_token>"
}

Next, create a new preview user by issuing a POST request to /ccstore/v1/profiles
on the administration server. (You can skip this step if you have previously created
a preview user.) In the authorization header field of the request, pass in the access
token that was returned by /ccadmin/v1/mfalogin:

POST /ccstore/v1/profiles HTTP/1.1
Authorization: Bearer <access_token>

In the body of the request, specify the values of the profile properties, as described in
Create a shopper profile.

Now log in as the preview user by issuing a POST request to the /ccstore/v1/login
endpoint on the administration server. Include the username and password in the body

Chapter 2
REST API authentication

2-5

of the request. In addition, in the authorization header field of the request, pass in the
access token that was returned by /ccadmin/v1/mfalogin:

POST /ccstore/v1/login HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=previewuser@example.com&password=Test1234

The response returned by /ccstore/v1/login includes a new access token:

{
 "token_type": "bearer",
 "access_token": "<access_token_2>"
}

You can now make requests to the /ccstore/v1 endpoints on the administration
server, passing in <access_token_2> (the access token that was returned by /
ccstore/v1/login). You can also use the original access token (returned by /
ccadmin/v1/mfalogin) to access /ccadmin/v1 endpoints and to create preview users
with the /ccstore/v1/profiles endpoint.

Note that if your Commerce instance is running multiple sites, preview requires a
specific site context. You can specify the site when you log in as a preview user and in
subsequent calls to the Store API. If you do not specify a site, the default site is used.
See Use the APIs on instances running multiple sites for information about specifying
the site in API calls.

Use the APIs on instances running multiple sites
If you are running multiple sites on your Commerce instance, your REST calls need to
specify which sites they apply to.

There are two ways to specify the site:

• For calls to any of the APIs, you can specify the site using the x-ccsite header in
the request.

• For calls to the Store API, you can explicitly include the domain name of the
applicable site in the URL.

Note that if you do not specify a site in a call to the Store API, the call is directed
to the default site. (See Configure sites for a discussion of the default site.) If you do
not specify a site in a call to the Admin API or the Agent API, the call is applied to
the instance as a whole. For example, if you specify a site for the getOrders Admin
endpoint, only orders associated with that site are returned; if you do not specify a site,
orders associated with all sites are returned.

Chapter 2
Use the APIs on instances running multiple sites

2-6

x-ccsite header

You can use the x-ccsite header to specify the site for an API call. For example, if
you have two sites, siteA and siteB, you could use this call to return the orders for
siteB:

GET /ccadmin/v1/orders HTTP/1.1
Authorization: Bearer <access_token>
x-ccsite: siteB

CORS support
For security purposes, web browsers implement the same-domain policy, which
prevents JavaScript on a page served from one domain from accessing resources
on another domain. In some cases, you may want to selectively override this policy to
allow specific domains to access data on your stores.

Note: You can allow access to Admin and Agent endpoints as well. See Configure
CORS support for the Admin or Agent endpoints below for information.

To enable external domains to access your storefront environment, Commerce
supports CORS (cross-origin resource sharing), which is a standard mechanism for
implementing cross-domain requests. For a detailed description of CORS, see:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

You configure CORS support in Commerce by explicitly specifying the external
domains that are permitted to make requests to your sites. When a cross-domain
request is submitted, the web browser is responsible for determining if access is
permitted. In some cases, prior to sending the actual request, the browser first sends
an OPTIONS method preflight request with headers that specify the domain that the
request originates from and the expected HTTP method. In this situation, Commerce
responds to the preflight request by indicating whether the actual request can be sent.

You specify the domains and methods permitted to access a specific site by
using the PUT /ccadmin/v1/sites/{siteID} endpoint to set the value of the
allowedOriginMethods property on the corresponding site object. For example, the
following call enables cross-domain access to the siteUS site from two external
domains and specifies which HTTP methods are permitted from each domain:

PUT /ccadmin/v1/sites/siteUS HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "properties": {
 "allowedOriginMethods": {
 "http://www.example1.com": "GET,OPTIONS",
 "http://www.example2.com": "GET,PUT,POST,OPTIONS"
 }
 }
}

Chapter 2
CORS support

2-7

After setting the value of allowedOriginMethods on the site object, publish the
changes so they apply to the live context.

Note that the domain entries for the allowedOriginMethods property must be fully
qualified, and cannot include wildcards. You must provide a separate entry for each
domain or subdomain you want to enable access for. For example, if you want to
provide CORS access to a domain named www.example1.com that has subdomains
named shoes.example1.com and shirts.example1.com, you need to create three
entries.

Also, even if you enable cross-domain requests, access to a resource from an allowed
domain may require authentication. For example, calls to the Admin API endpoints
require authentication, as described in REST API Authentication.

Configure CORS support for the Admin or Agent endpoints

You can enable external domains to access the Admin and Agent endpoints by
using PUT /ccadmin/v1/merchant/adminConfiguration (for configuring access to the
Admin API) or PUT /ccadmin/v1/merchant/agentConfiguration (for access to the
Agent API). Each of these calls has an associated allowedOriginMethods property for
specifying the domains and HTTP methods.

For example, the following call enables access to the Admin API from two external
domains:

PUT /ccadmin/v1/merchant/adminConfiguration HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "properties": {
 "allowedOriginMethods": {
 "http://www.example3.com": "GET,POST,OPTIONS",
 "http://www.example4.com": "GET,PUT,POST,DELETE,OPTIONS"
 }
 }
}

Note that for the Admin and Agent endpoints, the allowedOriginMethods values take
effect in the live context immediately. You do not need to publish the changes.

REST API query parameters
You can use query parameters to control what data is returned in endpoint responses.

The sections below describe query parameters that you can use to control the set of
items and properties in responses, and the order of the items returned.

Control the set of items returned

To prevent the response from becoming too large, the number of items returned
is limited by default to 250. You can override this value by using the limit query

Chapter 2
REST API query parameters

2-8

parameter to specify a different number. For example, the following call limits the
number of orders returned to 5:

GET /ccadmin/v1/orders?limit=5

To page through the results, you can use the offset parameter. For example, suppose
you have returned the first group of 250 orders using this call:

GET /ccadmin/v1/orders

You can return the next group of 250 using the following call:

GET /ccadmin/v1/orders?offset=250

The default value of offset is 0, which means the listing begins with the first item. So
setting offset to 250 means the listing begins with the 251st item.

You can use limit and offset together. For example, to return the 401st through 600th

order:

GET /ccadmin/v1/orders?limit=200&offset=400

Control the set of properties returned

Another way to reduce the size of responses is to return only certain properties. For
example, products can have a large number of properties, but you may need only
certain ones.

You can use the fields parameter to restrict the set of properties returned to only
those you explicitly specify. The properties are specified as a comma-separated list.
For example, to return only the id and displayName properties of products:

GET /ccadmin/v1/products?fields=items.id,items.displayName

Note that items is the key for the array of objects returned, so top-level properties are
referred to as items.propertyName (for example, items.displayName). Properties of
nested objects are specified using additional period delimiters. For example:

GET /ccadmin/v1/products?fields=items.listPrices.defaultPriceGroup

You can also use a special field, totalResults, to return the total number of items
available (such as the total number of products in the catalog). For example:

GET /ccadmin/v1/products?fields=items.id,totalResults

Note that if a call does not use the fields parameter, totalResults is included in
the response by default. For calls that use the fields parameter, totalResults is
suppressed unless it is explicitly listed as one of the fields to include.

As an alternative to the fields parameter, which explicitly specifies the properties
to include, you can use the exclude parameter to include all properties except

Chapter 2
REST API query parameters

2-9

the ones specified. For example, to return all of the properties of products except
longDescription:

As with the fields parameter, properties of nested objects can be specified
for the exclude parameter using additional period delimiters (for example,
items.listPrices.defaultPriceGroup).

If you use both the fields and exclude query parameters in the same request, the
fields parameter is applied first to determine the initial list of properties to return, and
then the exclude parameter is applied to remove properties from that list.

You can also create persistent response filters that store a list of the properties to
include and the properties to exclude. See Response filters.

Control the order of items returned

By default, the items returned are sorted by a predetermined property that depends on
the type of item. For example, products are sorted by displayName.

You can use the sort parameter to specify a different property to sort by. For example:

GET /ccadmin/v1/products?sort=id

You can append :asc or :desc to the property name to specify sorting in ascending or
descending order. For example, to sort by id descending:

GET /ccadmin/v1/products?sort=id:desc

If you do not specify a sort order, it defaults to ascending.

You can specify multiple properties for sorting. The following call returns results
sorted first by listPrice, and then by displayName (for items with identical listPrice
values):

GET /ccadmin/v1/products?sort=listPrice,displayName

Note that sorting is done before applying limit and offset values, so it can affect
not only the order in which items appear in the response, but also which items are
returned. For example, if limit=200 and offset=400, items 401 to 600 are selected
from the sorted list of all items. If you change the sorting criteria, items 401 to 600 may
not be the same ones as before.

Filter results

Many endpoints that return a list of items support the q query parameter. This
parameter is used for specifying a filter expression that restricts the set of the items
returned, based on criteria such as numeric comparisons or string matching with the
values of the items’ properties. For example, the following call returns only those
products whose orderLimit property has a value of less than 10:

GET /ccadmin/v1/products?q=orderLimit lt 10

For most endpoints that support it, the q parameter accepts filter expressions that
use the syntax described in Section 3.2.2.2 of the System for Cross-Domain Identity

Chapter 2
REST API query parameters

2-10

Management (SCIM) specification, which is available at https://tools.ietf.org/html/draft-
ietf-scim-api-12. A few endpoints accept filter expressions that use RQL syntax
instead, as discussed below.

Use SCIM expressions for filtering

The SCIM specification defines standardized services for managing user identities
in cloud environments. These services include a querying language for filtering the
results returned by REST endpoints.

In SCIM filtering expressions, text, date, and time values must be enclosed in
quotation marks, with date and time values using ISO-8601 format. (Numeric and
boolean values should not be quoted.) For example, the following call returns products
whose description property starts with pa:

GET /ccadmin/v1/products?q=description sw "pa"

The operators are case-insensitive, as are strings used for matching. So, for example,
the following calls return identical results:

GET /ccadmin/v1/products?q=displayName co "shirt"
GET /ccadmin/v1/products?q=displayName CO "sHIrt"

Note that filter expressions must be URL encoded, so you must ensure that characters
such as the quotation mark (") are escaped properly.

SCIM also supports the logical operators AND, OR, and NOT. For example, the following
call returns products whose orderLimit property has a value between 5 and 10:

GET /ccadmin/v1/products?q=orderLimit gt 5 and orderLimit lt 10

Restrictions on filtering

Not all properties can be used in filter expressions. The following are some limitations
you should be aware of:

• You can use only top-level properties of items in filter expressions. For example,
for product endpoints, you cannot include properties of subobjects such as child
SKUs.

• You can use a property in filter expressions only if it is returned by the endpoint
you are calling. For example, if a specific product property is not returned by the
GET /ccadmin/v1/products endpoint, then the property cannot be used with the q
parameter for that endpoint. Note, however, that equivalent endpoints in different
APIs (for example, GET /ccadmin/v1/products and GET /ccstore/v1/products)
may not return identical sets of properties, so a property that is not returned by
one of these endpoints may be returned by the other.

Also, if you have multiple custom product types, and two or more custom types
have a custom property with the same name, the property cannot be used in filter
expressions. For example, if you have two custom product types called Shoes and
Hats, and each has a custom property called material, then you cannot use material
in filter expressions. If only one custom product type has a material property, you can
use the property in filter expressions.

Use RQL expressions for filtering

Chapter 2
REST API query parameters

2-11

https://tools.ietf.org/html/draft-ietf-scim-api-12
https://tools.ietf.org/html/draft-ietf-scim-api-12

As mentioned above, a few endpoints use RQL syntax for filtering instead of SCIM
syntax. These are:

GET /ccadmin/v1/exchangerates
GET /ccadmin/v1/orders
GET /ccadmin/v1/posts
GET /ccadmin/v1/serverExtensions
GET /ccadmin/v1/webhookFailedMessages

You can find information about RQL syntax in the Oracle Commerce Platform
documentation:

https://www.oracle.com/technetwork/indexes/documentation/
atgwebcommerce-393465.html

See the Repository Query Language section of the Repository Guide.

For example, this call uses RQL syntax for a numeric comparison:

GET /ccadmin/v1/exchangerates?q=exchangeRate > 3.5

This call uses RQL syntax for a timestamp comparison:

GET /ccadmin/v1/webhookFailedMessages?q=savedTime=datetime("2018-9-22
12:05:54 GMT")

Note that the endpoints that use RQL syntax by default can optionally use SCIM
instead. To enable SCIM syntax for one of these endpoints, use the queryFormat
query parameter. For example:

GET /ccadmin/v1/orders?queryFormat=SCIM&q=profileId eq "110658"

Response filters
Response filters provide an alternative way to use the fields and exclude query
parameters.

Rather than using fields or exclude to explicitly list properties in the URL of a REST
call, you can create persistent filters that store the set of properties to include or
exclude. You can then specify a filter by name in the URL using the filterKey query
parameter. For example, you could create a response filter named productSummary
that lists product properties to include, and then invoke the filter like this:

GET /ccadmin/v1/products?filterKey=productSummary

Note:A response filter is essentially a wrapper for the fields and exclude query
parameters, and the properties returned by a filter are the same as they would be
for equivalent fields and exclude expressions. If you include the filterKey query
parameter and either fields or exclude (or both) in an API call, filterKey is ignored,
and fields and exclude are applied.

Chapter 2
Response filters

2-12

https://www.oracle.com/technetwork/indexes/documentation/atgwebcommerce-393465.html
https://www.oracle.com/technetwork/indexes/documentation/atgwebcommerce-393465.html

To view a list of response filters, use the listFilters endpoint in the Admin API:

GET /ccadmin/v1/responseFilters HTTP/1.1
Authorization: Bearer <access_token>

Note that by default there are four response filters included with Commerce:

{
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
responseFilters"
 }
],
 "items": [
 {
 "include":
"items.id,items.displayName,items.type,items.variantValuesOrder,
 items.productVariantOptions,items.defaultProductListingSku,

items.dynamicPropertyMapLong,items.route,items.primarySmallImageURL,

items.primaryImageAltText,items.primaryImageTitle,items.childSKUs,
 items.listPrice,items.salePrice,items.relatedProducts,
 category.displayName,items.description,totalResults,offset,
 totalExpandedResults",
 "exclude":
"items.childSKUs.largeImage,items.childSKUs.largeImageURLs,
 items.childSKUs.fullImageURLs,items.childSKUs.listPrices,

items.childSKUs.mediumImageURLs,items.childSKUs.primaryLargeImageURL,
 items.childSKUs.primaryMediumImageURL,

items.childSKUs.primaryThumbImageURL,items.childSKUs.thumbImageURLs,
 items.childSKUs.salePrices,items.childSKUs.thumbnailImage,
 items.childSKUs.barcode,items.childSKUs.denomination,
 items.childSKUs.model,items.childSKUs.productFamily,
 items.childSKUs.productLine,items.childSKUs.unitOfMeasure,
 items.childSKUs.saleVolumePrices",
 "key": "PLPData"
 },
 {
 "include":
"childCategories(items).displayName,childCategories(items).route,
 childCategories(items).id,
 childCategories(items).childCategories.displayName,
 childCategories(items).childCategories.route,
 childCategories(items).childCategories.id,

childCategories(items).childCategories.childCategories.displayName,
 childCategories(items).childCategories.childCategories.route,
 childCategories(items).childCategories.childCategories.id,

Chapter 2
Response filters

2-13

childCategories(items).childCategories.childCategories.childCategories",
 "key": "categoryNavData"
 },
 {
 "include":
"items.id,items.displayName,items.productVariantOptions,
 items.defaultProductListingSku,items.dynamicPropertyMapLong,

items.route,items.primarySmallImageURL,items.primaryImageAltText,
 items.primaryImageTitle,items.childSKUs.listPrice,
 items.childSKUs.salePrice,items.listPrice,items.salePrice,
 items.relatedProducts,items.childSKUs.dynamicPropertyMapLong,

items.childSKUs.repositoryId,category.displayName,items.description",
 "key": "collectionData"
 },
 {
 "include":
"id,active,saleVolumePrices,listVolumePrices,route,configurable,

dynamicPropertyMapLong,productVariantOptions,primaryThumbImageURL,
 notForIndividualSale,displayName,childSKUs.repositoryId,
 childSKUs.active,childSKUs.listPrice,childSKUs.salePrice,
 childSKUs.primaryThumbImageURL,childSKUs.listingSKUId,
 childSKUs.saleVolumePrices,childSKUs.listVolumePrices,
 childSKUs.dynamicPropertyMapLong",
 "key": "productData"
 }
]
}

Each filter must have a key (which is used to identify the filter), and either an include
array (equivalent to the fields query parameter) an exclude array (equivalent to the
exclude query parameter), or both.

You can view an individual filter using the getFilter endpoint. For example:

GET /ccadmin/v1/responseFilters/productData HTTP/1.1
Authorization: Bearer <access_token>

Note that you should not modify or delete the default response filters, as they are used
by widgets provided with Commerce, and these widgets may not work properly if the
response filters are changed. For information about these response filters and how
they are used by widgets, see Filter REST Responses.

Create response filters

You can create your own response filters using the createFilter endpoint. For
example, the following call creates a new response filter named productLabels:

POST /ccadmin/v1/responseFilters HTTP/1.1
Authorization: Bearer <access_token>

{

Chapter 2
Response filters

2-14

 "key": "productLabels",
 "include": "items.id,items.displayName,items.description"
}

The following call uses the productLabels filter to restrict the set of properties returned
for products:

GET /ccadmin/v1/products?filterKey=productLabels HTTP/1.1
Authorization: Bearer <access_token>

The following shows a portion of the response:

"items": [
 {
 "displayName": "A-Line Skirt",
 "description": "The simple perfect A line",
 "id": "xprod2535"
 },
 {
 "displayName": "Acadia Wood Chair",
 "description": "Craftsman meets classic in this attractive wood
chair",
 "id": "xprod2148"
 },
 {
 "displayName": "Americana Nightstand",
 "description": "Classic American design",
 "id": "xprod2103"
 },

 ...

]
}

Modify response filters

You can use the updateFilter endpoint to modify response filters. For example, the
following call changes the set of properties returned by the productLabels filter shown
above:

PUT /ccadmin/v1/responseFilters/productLabels HTTP/1.1
Authorization: Bearer <access_token>

{
 "include": "items.displayName,items.description,items.listPrice"
}

Note that when you modify a response filter, the changes to the filter do not take
effect until your JSON cache is cleared. This cache is cleared each time you publish
changes on your Commerce instance. Changes to response filters themselves do
not require publishing, so to force the cache to be cleared, you need to modify a
publishable asset (such as an item in the product catalog) and then invoke publishing.

Chapter 2
Response filters

2-15

Delete response filters

You can use the deleteFilter endpoint to delete a response filter. For example:

DELETE /ccadmin/v1/responseFilters/productLabels HTTP/1.1
Authorization: Bearer <access_token>

Error messages
Commerce uses a standard format for REST errors.

REST calls that produce errors return the following response fields:

• message – the error message

• status – the HTTP status code

• errorCode – the system error code that uniquely identifies the error

For example:

{
 "message": "Required header is missing: x-ccasset-language",
 "status": "400",
 "errorCode": "82001"
}

Some errors use the multiple-error format instead, which encapsulates one or more
errors in an errors array object. Each entry in the array is a separate error, with its
own message, status, and errorCode values. In addition, the format includes top-level
message and status values that apply globally to all of the errors. For example:

{
 "message": "Error while retrieving the products",
 "errors": [
 {
 "message": "Product Id xprod100 is invalid or non-
existent.",
 "status": "400",
 "errorCode": "20031",
 },
 {
 "message": "Product Id xprod102 is invalid or non-
existent.",
 "status": "400",
 "errorCode": "20031",
 }
],
 "status": "400"
}

Chapter 2
Error messages

2-16

Register applications
External applications can use the Oracle CX Commerce REST web services APIs to
provide integrations or extensions to the administration interface or the storefront.

You must register an application in the administration interface before it can access
Oracle CX Commerce data. Registering an application automatically generates the
following:

• An application ID that identifies the application internally.

• An application key that you use to authenticate the application.

The application key is a JSON Web Token (JWT) from the Oracle CX Commerce
OAuth server. Your registered application exchanges the key for an access token as
part of the authentication flow. For more information, see Use the application key for
authentication.

To register an application:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.

3. Click the Register Application button.

4. Enter a name for the application.

5. Click Save.
The application ID and application key are automatically generated and the
application is added to the list on the Registered Applications page.

To acquire the application key:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.

3. Click the name of the application whose key you want to get.

4. Click the Application Key box to reveal the key.

5. Copy the key and provide it to the application developer.
See Use the application key for authentication for more information.

To reset the key for a registered application:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.

3. Click the name of the application whose key you want to reset.

4. Click Reset.
The new application key is automatically generated. The existing application key is
automatically revoked and can no longer be used to authenticate the application.

To unregister an application:

1. Click the Settings icon.

2. Click Web APIs and display the Registered Applications tab.

3. Click the name of the application you want to unregister.

Chapter 2
Register applications

2-17

4. Click Delete.

5. Click Save.
The application’s ID is removed from the system and its application key is
automatically revoked.

Chapter 2
Register applications

2-18

3
Use Webhooks

Oracle CX Commerce includes webhooks that enable the server to make calls to
external APIs. For example, you can configure the Order Submit webhook to send
data to an order management system every time a shopper successfully submits an
order.

There are two versions of each webhook, preview and production. Production
webhooks send information from your live store to production environments of
your external systems, while preview webhooks send information from your preview
environment to the test or sandbox environments of your external systems.

Understand webhooks
Oracle CX Commerce includes two types of webhooks, asynchronous event
webhooks and synchronous function webhooks:

• Event webhooks are asynchronous; they are triggered by JMS (Java Message
Service) events. An event webhook call returns an HTTP status code. An event
webhook request can be sent to multiple URLs.

• Function webhooks are synchronous; they are invoked explicitly in code. A
successful function webhook call returns JSON data. A function webhook request
can be sent to only one URL.

Both types of webhooks are described below.

Understand event webhooks

An event webhook sends a POST request to URLs you specify each time a Commerce
event occurs. The body of the request contains the data associated with the event,
in JSON format. The external system that receives the POST request returns an HTTP
status code indicating whether the data was received successfully. A 200-level status
code indicates the POST was successful. Any other code indicates failure; if this occurs,
Commerce sends the POST request again. The webhook is executed up to five times
until it succeeds or gives up.

The external system can use the data from the webhook request body in requests to
the endpoints of the Commerce REST API endpoints. For example, you can configure
the Order Submit webhook to send a notification to your order management system
(OMS) every time a shopper successfully submits an order. When a change occurs to
an order in the OMS, the OMS can issue a PUT request to the Update Order endpoint
to modify the order in Commerce.

Commerce includes the following event webhooks:

Webhook Notification event

Account Create A new account was successfully created by
an administrator. See Configure Business
Accounts for more information.

3-1

Webhook Notification event

Account Update An existing account was successfully updated
by an administrator. See Configure Business
Accounts for more information.

Cart Idle A cart that contains items has been inactive
for the number of minutes you specify on the
Abandoned Cart Settings page. See Configure
Abandoned Cart settings for more information.

Export Complete A data export process successfully completed.

Import Complete A data import process successfully completed.

Inventory Update Out-of-stock SKUs are back in stock.
See Understand inventory for information
about inventory data that determines whether
a SKU is in stock.

Order Cancel An agent canceled an order.

Order Cancel Without Payment Details An agent canceled an order.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Order Submit An order was successfully submitted by a
customer or an agent.

Order Submit Without Payment Details An order has been successfully submitted by a
customer or an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Publish Complete Changes were successfully published.

Remorse Period Start An order’s customer remorse period has
started.

See Set the customer remorse period for more
information.

Remorse Period Start Without Payment Details An order’s customer remorse period has
started.

See Set the customer remorse period for more
information.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Return Request Update A return request was successfully processed
by an agent.

Return Request Update without Payment
Details

A return request was successfully processed
by an agent.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Shopper Profile Create A new shopper registered on your instance.

Shopper Profile Update A registered shopper changed their account
details.

Shopper Profile Delete A registered shopper’s account has been
deleted. See Delete Shopper Information for
more information.

Chapter 3
Understand webhooks

3-2

Webhook Notification event

Order Redact An order’s properties have been redacted.
See Delete Shopper Information for more
information.

Request Quote A shopper requested a quote for an order
on a store that supports an external product
configurator.

Update Quote A shopper accepted or rejected a quote, or the
quote was canceled on a store that supports
an external product configurator.

Account Request An account-based shopper has submitted an
account registration request. See Configure
Business Accounts for more information.

Contact Request An account-based shopper or anonymous
shopper has submitted a contact registration
request. See Configure Business Accounts for
more information.

Understand function webhooks

Like an event webhook, a function webhook sends a JSON notification to a URL you
specify each time something happens on your store. For example, you can configure
the Shipping Calculator webhook to send a notification to an external shipping service
every time a shopper requests shipping costs for an order.

While an external system only sends an HTTP status code in response to an event
webhook POST request, a system must respond to a function webhook POST request
with information in JSON format. You must implement the external system’s API to
write code that processes the request and sends a response to Commerce. For
example the Shipping Calculator webhook expects a set of shipping methods and
their prices, which are displayed to the shopper who has requested them.

Commerce includes the following function webhooks:

Webhook Description

Shipping Calculator Integrates shipping services (such as UPS,
USPS, or FedEx) into your store. See Integrate
with External Shipping Calculators for more
information.

Credit Card Payment Integrates custom payment gateways that
let your store accept credit card payments.
See Create a Credit Card Payment Gateway
Integration for more information.

Generic Payment Integrates custom payment gateways that let
your store accept various payment types.
See Create a Generic Payment Gateway
Integration for more information.

External Price Validation Validates prices with an external pricing
system. See Integrate with an External Pricing
System for more information.

External Tax Calculation Integrates tax processors that calculate sales
tax in the shopping cart. See Configure Tax
Processors for more information.

Chapter 3
Understand webhooks

3-3

Webhook Description

Order Approvals Integrates systems that determine if an
order placed on an account-based store
requires approval. See Integrate with an
external system for order approvals for more
information.

Catalog and Price Group Assignment Integrates systems that determine which
catalog and price group a shopper should
use to create orders. See Assign Catalogs
and Price Groups to Shoppers for more
information.

Contact Accounts Retrieval Returns a list of service account IDs for the
current user.

Services Retrieval Returns information about a services or assets
associated with the current user.

Service Actions Performs a modify, renew, or cancel action on
a service or asset.

Custom Currency Payment Integrates custom payment gateways that let
your store accept loyalty points payments.

Return Request Validation Validates whether items maintained in an
external order management system are
eligible for return.

Return Request Validation Without Payment
Details

Validates whether items maintained in an
external order management system are
eligible for return.

The body for this webhook does not include
payment details. See Understand webhooks
and PCI DSS compliance for more information.

Order Qualification Performs order qualification operations prior to
submitting the order.

Order Validation Validates the contents of the submitted order
after final pricing is performed.

Validate function webhook responses

As discussed in the previous section, you must ensure the system receiving a function
webhook POST responds by sending the appropriate JSON data to Commerce. To
determine whether the response data conforms to the correct schema, the ccdebug
REST client on the administration server in your test environment includes a validation
tool for function webhooks. To access this tool, go to the following URL:

http://<admin-server-hostname>/ccdebug

Select the Function Webhooks tab, and then log into the Admin API. Follow the
instructions on the screen to validate the format of your response payloads.

Configure webhooks
This section describes how to configure webhooks in the Oracle CX Commerce
administration interface.

Before you configure the webhooks, you must identify the URLs of the web application
or third-party provider where the webhooks will send notifications. You must use

Chapter 3
Configure webhooks

3-4

HTTPS URLs. See Troubleshoot SSL certificates for information about configuring the
SSL certificates you install on your external system’s web servers.
To configure a webhook:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.

3. Click the type of webhook you want to configure.

4. For a function webhook, enter the URL where you want to send the POST requests.
For an event webhook, enter one or more URLs. Separate multiple URLs with
commas.

(You must enter HTTPS URLs. See Troubleshoot SSL certificates for information
about configuring the SSL certificates you install on your external system’s web
servers.)

5. If the external system you are integrating with requires a username and password,
enter them under Basic Authorization.

6. (Optional) To add a new property to the header of the request, click Add New
Header Property and enter the name and value for the new property.

7. Click Save.

Once the webhook is set up, Oracle CX Commerce can push data to the external
system specified by the URLs you entered.

Secure webhooks
Webhook events are signed so that the system receiving the event can verify their
authenticity.

Webhook POST requests include an HMAC SHA1 signature in the X-Oracle-CC-
WebHook-Signature header. This signature is calculated using the secret key to
generate a hash of the raw UTF-8 bytes of the body of the post. A base64 encoding
is then used to turn the hash into a string. If your secret key has been disclosed or
compromised, you can generate a new one.

To generate a new secret key:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.

3. Click the type of webhook you want to configure.

4. Under HMAC Authentication, click Reset.

The following is sample code for generating a HMAC SHA1 signature from a secret
key and content. In the case of webhooks, the content String would be the complete,
unaltered body of the webhook POST request.

This or similar code can be used to verify that the message was sent by someone with
access to the private key (presumably Oracle CX Commerce), and that the body of the
message has not been altered after the fact:

import java.security.SignatureException;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;

Chapter 3
Secure webhooks

3-5

/**
 * This class provides an example of calculating an HMAC SH1
 * signature in java.
 */
public class CalcHmacSignature {

 /**
 * Calculate an HMAC SHA1 signature.

 *
 * @param pSecretKey the secret key (in string form).
 * @param pContent the content to create a signture for. For Commerce
 * Cloud WebHooks this should be the complete, unmodified body of the
post.
 *
 * @return The Base64-encoded HMAC SHA1 signature.
 *
 * @throws java.security.SignatureException if there's a problem
 */
 public static String getSignatureForBytes(String pSecretKey, String
pContent)
 throws java.security.SignatureException {

 try {
 // HMAC SHA1 key from the raw key bytes
 SecretKeySpec keySpec = new

SecretKeySpec(javax.xml.bind.DatatypeConverter.parseBase64Binary(secretK
ey),
 "HmacSHA1");

 // get the Mac instance for HMAC SHA1
 Mac mac = Mac.getInstance("HmacSHA1");

 // initialize with our key spec
 mac.init(keySpec);

 // generate the signature from the UTF-8 bytes of the content
 byte[] digest = mac.doFinal(pContent.getBytes("UTF-8"));
 // base64-encode the hmac signature... there's a pre-JDK-8 one
 // tucked away in javax.xml.bind. If using Java 8, use the new
 // java.util.Base64 class instead.
 return javax.xml.bind.DatatypeConverter.printBase64Binary(
 digest);
 } catch (Exception e) {
 throw new SignatureException("Failed to generate signature: " +
 e.getMessage());
 }
 }

 public static void main(String[] args) throws SignatureException {
 if (args.length != 2) {
 System.out.println("Usage: CalcHmacSignature key content");
 System.out.println();
 System.out.println(" (Note that one shouldn't really have the

Chapter 3
Secure webhooks

3-6

key ");
 System.out.println(" passed in on the command line.)");
 System.exit(-1);
 }
 System.out.println("Signature: " + getSignatureForBytes(args[0],
 args[1]));
 }
}

Troubleshoot webhooks
This section helps you fix problems you might encounter when configuring webhooks.

If you encounter any issues with the Oracle CX Commerce push, one strategy is to
use another website external to your OMS to identify the source of the issue. This
external website needs to accept message posts whose contents are undefined, and
then make the messages available for display to a website user.

If the messages pushed by Oracle CX Commerce look correct on the other website,
the issue may involve your internal systems.

Troubleshoot SSL certificates

Invalid or incorrectly-configured SSL certificates cause most of the problems you might
experience when configuring webhooks. The webhooks verify SSL certificates when
delivering each request, so it is important that they are properly installed.

Oracle CX Commerce does not support self-signed SSL certificates. Your SSL
certificates must be issued from a trusted Certificate Authority.

After you install the SSL certificate on your web server, verify the installation and
diagnose any problems, using one of the many free, third-party tools that are available.

Understand webhooks and PCI DSS compliance
Not all external systems you integrate with Oracle CX Commerce will comply with the
Payment Card Industry Data Security Standard (PCI DSS).

For example, while your order management system will likely comply with PCI DSS,
systems that manage services like email marketing or customer loyalty programs
might not be compliant.

Oracle CX Commerce provides three webhooks that exclude payment details from the
order data you send to systems that do not comply with PCI DSS:

• Order Submit Without Payment Details fires when an order has been successfully
submitted by a customer or an agent.

• Return Request Update Without Payment Details fires when a return request has
been successfully processed by an agent.

• Return Request Validation Without Payment Details queries an external system to
determine whether an order is returnable.

Important: Oracle CX Commerce does not verify that systems to which you send
webhook notifications comply with PCI DSS. You are responsible for determining if
target systems are compliant. If you know for sure the target system does not comply

Chapter 3
Troubleshoot webhooks

3-7

with PCI DSS, or if you are unsure whether it does, use the versions of the webhooks
Without Payment Details.

The following table describes all the components of the paymentGroups object that are
excluded from the request for non-PCI compliant versions of the webhooks.

paymentGroups Component Description

authorizationStatus An array of authorization status objects.

token The payment token string. This component is
valid only if the paymentGroupClassType is
tokenizedCreditCard.

expirationMonth The two-digit credit card expiration
month. This component is valid only
if the paymentGroupClassType is
tokenizedCreditCard.

expirationYear The four-digit credit card expiration
year. This component is valid only
if the paymentGroupClassType is
tokenizedCreditCard.

paymentGroupClassType The class type of the payment group.
Valid values are tokenizedCreditCard or
externalPaymentGroup.

creditCardNumber The last four digits of the credit
card number. This component is valid
only if the paymentGroupClassType is
tokenizedCreditCard.

submittedDate The date the payment was submitted.

The following example shows the paymentGroups portion of an Order Submit webhook
POST request.

"paymentGroups": [{
 "id": "pg30411",
 "amount": 277.97,
 "authorizationStatus": [{
 "amount": 277.97,
 "errorMessage": "Request was processed successfully.",
 "authorizationDecision": "ACCEPT",
 "transactionId": "bupovkdslhd8or1i869pj1bls",
 "reasonCode": "100",
 "transactionUuid": "75afb7640b5a43e88341572869adbda6",
 "transactionSuccess": true,
 "currency": "USD"
 }],
 "currencyCode": "USD",
 "token": "9997000108950573",
 "expirationMonth": "02",
 "expirationYear": "2019",
 "paymentGroupClassType": "tokenizedCreditCard",
 "creditCardNumber": "1111",
 "submittedDate": "2015-12-16T10:25:41.894Z",
 "billingAddress": {
 "middleName": null,
 "lastName": "Shopper",

Chapter 3
Understand webhooks and PCI DSS compliance

3-8

 "ownerId": null,
 "state": "NY",
 "address1": "100 MyStreet Ave",
 "address2": null,
 "address3": null,
 "companyName": null,
 "suffix": null,
 "country": "US",
 "city": "MyTown",
 "faxNumber": null,
 "postalCode": "13202",
 "phoneNumber": "212-555-0100",
 "email": "shopper@example.com",
 "county": null,
 "prefix": null,
 "firstName": "Sally",
 "jobTitle": null
 },
 "amountAuthorized": 277.97,
 "paymentMethod": "tokenizedCreditCard"
 }]

The following example shows the paymentGroups portion of an Order Submit Without
Payment Details webhook POST request.

"paymentGroups": [{
 "id": "pg30411",
 "amount": 277.97,
 "billingAddress": {
 "middleName": null,
 "lastName": "Shopper",
 "ownerId": null,
 "state": "NY",
 "address1": "100 MyStreet Ave",
 "address2": null,
 "address3": null,
 "companyName": null,
 "suffix": null,
 "country": "US",
 "city": "MyTown",
 "faxNumber": null,
 "postalCode": "13202",
 "phoneNumber": "212-555-0100",
 "email": "shopper@example.com",
 "county": null,
 "prefix": null,
 "firstName": "Sally",
 "jobTitle": null
 },
 "amountAuthorized": 277.97,
 "paymentMethod": "tokenizedCreditCard"
 }]

Chapter 3
Understand webhooks and PCI DSS compliance

3-9

Use the REST API to configure webhooks
This section provides an overview of actions you can perform with the Oracle CX
Commerce Admin API’s Event Webhooks and Function Webhooks endpoints.

See Learn about the APIs for information about accessing the endpoint
documentation.

The following table describes the endpoints for the Event Webhooks resource.

Endpoint Description and URI

getWebHook Gets a specified webhook.

GET /ccadmin/v1/webhooks/{id}

getWebHooks Gets an array of webhooks, which can
be narrowed by server type, for example,
production. Each element of the returned
array follows the format of that returned by
getWebHook.

GET /ccadmin/v1/webhooks

updateWebHook Updates the URL properties of a specified
webhook and, optionally, resets the secret key.
You can use the REST API to change the
number of times a webhook gets resent and
the number of seconds between resends.

PUT /ccadmin/v1/webhooks/{id}

updateWebHooks Updates the URL properties of an array of
existing webhooks and, optionally, resets the
secret keys. You can use the REST API to
change the number of times a webhook gets
resent and the number of seconds between
resends.

PUT /ccadmin/v1/webhooks

webhookOperation Resets the secret key of a specified webhook.

POST /ccadmin/v1/webhooks/{id}

The following table describes the endpoints for the Function Webhooks resource.

Endpoint Description and URI

getFunctionWebHook Gets a specified webhook.

GET /ccadmin/v1/functionWebhooks/
{id}

getFunctionWebHooks Gets an array of webhooks, which can
be narrowed by server type, for example,
production. Each element of the returned
array follows the format of that returned by
getWebHook.

GET /ccadmin/v1/functionWebhooks

Chapter 3
Use the REST API to configure webhooks

3-10

Endpoint Description and URI

updateFunctionWebHook Updates the URL properties of a specified
webhook and, optionally, resets the secret key.

PUT /ccadmin/v1/functionWebhooks/
{id}

updateFunctionWebHooks Updates the URL properties of an array of
existing webhooks and, optionally, resets the
secret keys.

PUT /ccadmin/v1/functionWebhooks

functionWebhookOperation Resets the secret key of a specified webhook.

POST /ccadmin/v1/functionWebhooks/
{id}

The following table describes the endpoints that you can use to manage failed event
webhook messages. These are described in more detail in the next section.

Endpoint Description and URI

deleteFailedMessage Deletes a specified webhook message that
failed to send.

DELETE /ccadmin/v1/
webhookFailedMessages/{id}

getFailedMessage Gets a specified webhook message that failed
to send.

GET /ccadmin/v1/
webhookFailedMessages/{id}

getFailedMessages Gets an array of webhook messages that
failed to send. Each element of the returned
array follows the format of that returned by
getFailedMessage.

GET /ccadmin/v1/
webhookFailedMessages

updateFailedMessage Specifies a failed webhook message to
resend.

PUT /ccadmin/v1/
webhookFailedMessages/{id}

updateFailedMessages Specifies an array of failed webhook
messages to resend.

PUT /ccadmin/v1/
webhookFailedMessages

Reduce the size of webhook requests
In some cases, the request payload from an Oracle CX Commerce webhook may be
very large. This can cause performance issues, and external systems that impose size
limits may reject the payload.

This section describes two ways Commerce provides to reduce the size of certain
webhook payloads:

• Limit the number of items in payloads

Chapter 3
Reduce the size of webhook requests

3-11

• Send changes rather than complete data

Limit the number of items in payloads

You can configure webhooks to truncate certain properties in their request payloads.
This capability is limited to specific Map and Collection properties, because these
properties are the ones most likely to result in very large payloads. For example,
the Shopper Profile Update webhook has two properties that can be truncated,
secondaryAddresses and shippingAddresses.

To truncate these properties, you configure the webhook using endpoints in the Admin
API, and set the value of subEntityTruncationSize to specify the maximum number
of records to return for the property. (By default, the value of this setting is null, which
means there is no limit.) You can set this property to an integer from 100 to 50000. For
example, the following sets the threshold to 200:

PUT /ccadmin/v1/webhooks/production-updateProfile HTTP/1.1

{
 "subEntityTruncationSize": 200
}

This means that if the secondaryAddresses or shippingAddresses property has 200
records or fewer, the addresses are included in the property as usual. But if one of
these properties has 201 or more records, the property is omitted from the payload
and is replaced with an indication that it has been truncated. In the following example,
the shippingAddresses property has been truncated:

{
 "profileId": "110000",
 "profile": {
 ...
 "id": "110000",
 "shippingAddressesIsTruncated": true,
 ...
 },
 "siteId": "siteUS",
 "type": "atg.dps.ProfileUpdate"
}

The special property indicating that a property has been truncated is given the name
of the truncated property with IsTruncated appended. So in this example, the name of
the special property is shippingAddressesIsTruncated.

The external system that the webhook sends its payload to can take appropriate
action when it receives indication that a property has been truncated. For example, the
system could then make a call to the getProfile endpoint to get the addresses.

The following tables list the event webhooks and function webhooks that have
properties whose values can be truncated:

Event Webhook Truncatable Properties

Shopper Profile Create • secondaryAddresses
• shippingAddresses

Chapter 3
Reduce the size of webhook requests

3-12

Event Webhook Truncatable Properties

Order Submit • commerceItems

Order Submit Without Payment Details • commerceItems

Remorse Period Start • commerceItems

Remorse Period Start Without Payment Details • commerceItems

Shopper Profile Update • secondaryAddresses
• shippingAddresses

Cart Idle • items
• childItems

Return Request Update • commerceItems
• returnItemList
• childReturnItems

Return Request Update Without Payment
Details

• commerceItems
• returnItemList
• childReturnItems

Account Create • allSecondaryAddresses
• secondaryAddresses

Account Update • allSecondaryAddresses
• secondaryAddresses

Request Quote • commerceItems

Account Request • secondaryAddresses

Picked Up Items • commerceItems

Order Cancel • commerceItems

Order Cancel Without Payment Details • commerceItems

Function Webhook Truncatable Properties

Shipping Calculator • items
• childItems

Credit Card Payment • commerceItems

External Price Validation • items
• childItems

Generic Payment • commerceItems

External Tax Calculation • items
• childItems

Order Approvals • items
• childItems

Catalog and Price Group Assignment • items
• childItems
• allSecondaryAddresses
• secondaryAddresses
• shippingAddresses

Custom Currency Payment • commerceItems

Return Request Validation • commerceItems
• returnItemList
• childReturnItems

Chapter 3
Reduce the size of webhook requests

3-13

Function Webhook Truncatable Properties

Return Request Validation Without Payment
Details

• commerceItems
• returnItemList
• childReturnItems

Order Qualification • items
• childItems

Order Validation • items
• childItems

External Promotions • items
• childItems

Cancel Order Update • commerceItems

Send changes rather than complete data

Another option for reducing the size of webhook payloads is to include only the items
that have been changed. This option is available for two event webhooks, Shopper
Profile Update and Account Update, and applies to the properties listed in the table
below:

Webhook Properties

Shopper Profile Update • secondaryAddresses
• shippingAddresses
• loyaltyPrograms
• secondaryOrganizations
• siteProperties
• roles
• abandonedOrders
• secondaryAddresses.types
• shippingAddresses.types

Account Update • secondaryAddresses
• siteOrganizationProperties
• members
• relativeRoles
• ancestorOrganizations
• secondaryAddresses.types
• siteOrganizationProperties.shippingMetho

ds

To enable this option for the Shopper Profile Update or Account Update webhook,
you set the webhook's includeChangesOnly value to true. (The default is false.) For
example:

PUT /ccadmin/v1/webhooks/production-updateProfile HTTP/1.1

{
 "includeChangesOnly": true
}

If this option is enabled for one of these webhooks, the properties listed above will
include the records that have been modified. Each modified object includes a special

Chapter 3
Reduce the size of webhook requests

3-14

_actionCode property whose value indicates how the object has changed. Valid values
are CREATE, UPDATE, and DELETE. In the following example, the shippingAddresses
property includes only the addresses that have been changed:

The following is an example of the shippingAddresses property in the request:

"shippingAddresses": [
 {
 "country": "US",
 "lastName": "Anderson",
 "address3": "",
 "city": "Syracuse",
 "address2": "",
 "prefix": "",
 "address1": "21 Cedar Ave",
 "postalCode": "13202",
 "companyName": "",
 "county": "",
 "suffix": "",
 "firstName": "Kim",
 "externalAddressId": null,
 "phoneNumber": "212-555-1977",
 "item-id": null,
 "_actionCode": "UPDATE",
 "repositoryId": "se-980031",
 "faxNumber": "",
 "middleName": "",
 "state": "NY"
 },
 {
 "_actionCode": "DELETE",
 "repositoryId": "140010"
 }
],

Manage failed webhook calls
This section discusses how to manage webhook calls when they fail.

Oracle CX Commerce provides two mechanisms for resending failed calls, one for
event webhooks and one for function webhooks.

Queue event webhooks for resending

As discussed in Understand event webhooks, an event webhook sends a POST request
to specified URLs each time a specific event occurs (for example, when an order is
submitted). The body of the request contains the data associated with the event. An
external system that receives the message returns a 200-level HTTP status code if the
data is received successfully.

If the message is not received successfully by one of the URLs (for example, due to
a network issue or an external system being down), Oracle CX Commerce sends the
POST request again to that URL after a specified interval, and continues resending it
until it succeeds or until the specified limit on the number of attempts is reached. By

Chapter 3
Manage failed webhook calls

3-15

default, the interval is one hour, and the maximum number of attempts is 5, but you
can change these values using either the updateWebHook or updateWebHooks endpoint.

Messages that are not delivered successfully after the maximum number of attempts
are saved to a failed message log for later retrieval. Commerce includes a
mechanism for managing failed messages automatically. You can also manage these
failed messages manually using endpoints in the Admin REST API, or using the
administration interface.

Manage failed messages automatically

To manage failed messages, Commerce monitors each target URL that a webhook is
configured to send messages to, and if a URL is unresponsive, disables it as a target.
For example, if the Order Submit webhook sends messages to three different URLs,
and Commerce detects that calls to one of the URLs are failing consistently (returning
non-200-level status codes, or not returning any response), it stops sending messages
to this URL, while continuing to send messages to the other two URLs. The messages
for the disabled URL are instead added directly to the failed message log.

Commerce continues monitoring the disabled target. When it detects that the URL is
responding again, it resumes sending messages to it. Messages to the URL that failed
previously (either reached the maximum number of retries, or were sent directly to
the failed message log after Commerce disabled the target) are queued for resending.
Note that it may take a while for all failed messages to be resent.

Manage failed messages using the REST API

The Admin REST API has several endpoints for viewing, deleting, and resending failed
event webhook messages.

You can use the getFailedMessage endpoint to view a failed message that has been
stored. You specify the ID of the message in a URL path parameter.

You can use the getFailedMessages endpoint to view all of the failed messages that
have been stored. However, there may be a large number of messages, so you may
find it desirable to return only a subset of the failed messages.

You can use the q query parameter with the getFailedMessages endpoint to filter the
set of messages to return, based on values of the message properties. Typically you
would filter based on serverType (production or publishing) or messageType. For
example, the following call returns only those failed messages whose messageType is
atg.commerce.fulfillment.SubmitOrder:

GET /ccadmin/v1/webhookFailedMessages?
q=messageType="atg.commerce.fulfillment.SubmitOrder" HTTP/1.1
Authorization: Bearer <access_token>

You can also filter messages by when they were saved. For example, to return
messages that were saved after a specific time:

GET /ccadmin/v1/webhookFailedMessages?q=savedTime >
datetime("2018-9-22 12:05:54 GMT") HTTP/1.1
Authorization: Bearer <access_token>

Chapter 3
Manage failed webhook calls

3-16

To resend failed messages, you can either specify them individually using the
updateFailedMessage endpoint, or use the updateFailedMessages endpoint to queue
all of the stored messages for resending.

To resend a single failed webhook message, use the updateFailedMessage endpoint.
The body of the request should set the resend property of the failed message to true.
For example:

PUT /ccadmin/v1/webhookFailedMessages/200001 HTTP/1.1
Authorization: Bearer <access_token>

{
 "resend": true
}

Setting resend to true causes the message to be added to a queue for resending. If
the message was originally sent to multiple URLs, the service that manages the queue
ensures that the message is resent to only those URLs for which the webhook failed
originally.

You can use the updateFailedMessages endpoint to queue all of the stored messages
for resending, or use this endpoint with the q parameter to specify a subset of the
stored messages for resending. Note, however, the format of filter expressions for this
parameter is different from the format used for the getFailedMessages endpoint. With
getFailedMessages, the q parameter accepts expressions in RQL format by default
(although it can optionally accept SCIM format instead). With updateFailedMessages,
the q parameter accepts expressions in SCIM format only. See REST API query
parameters for more information.

For example, the following call adds the failed production messages to the queue for
resending:

PUT /ccadmin/v1/webhookFailedMessages?q=serverType eq "production"
HTTP/1.1
Authorization: Bearer <access_token>

{
 "resend": true
}

The following call adds only the production messages that were saved after a specific
time:

PUT /ccadmin/v1/webhookFailedMessages?q=serverType eq "production" and
savedTime gt "2019-04-11T02:41:00.000Z" HTTP/1.1
Authorization: Bearer <access_token>

{
 "resend": true
}

As an alternative to the updateFailedMessages endpoint, you can use the
requeueFailedMessages endpoint, which allows you to specify the set of messages
to resend using criteria specified in the endpoint request body.

Chapter 3
Manage failed webhook calls

3-17

Manage failed event webhooks in the administration interface

In addition to using Admin API endpoints to retrieve and resend failed event webhook
messages, you can also perform these tasks in the Commerce administration
interface.

To view a list of failed event webhook messages in the Commerce administration
interface:

1. Click the Service Operations icon.
Commerce displays a list of failed event webhook messages.

2. Use the options at the top of the page to sort and filter the list of failed webhook
messages.
For example, you can sort them from oldest to newest, and filter the list so that it
displays only Order Submit messages in your production environment that failed in
the last 24 hours.

3. Click a message’s Information icon to see details about why the message failed.

Once you have filtered the list of failed webhook messages, you can resend or delete
some or all of them.

• To resend a single webhook message, click its Resend icon. To resend all the
webhook messages in the filtered list, click the Resend All icon at the top of the
page.
Commerce adds these messages to a queue for resending. If the message was
originally sent to multiple URLs, the service that manages the queue ensures that
the message is resent to only those URLs for which the webhook failed originally.

• To delete all the webhook messages in the list, click the Delete All icon at the top
of the page. You cannot delete a message that is queued for retry.

Changes you make on the Service Operations page take effect as soon as you save
them. You do not need to publish the changes.

Retry function webhooks

As discussed in Queue event webhooks for resending, Oracle CX Commerce includes
a mechanism for managing failed event webhook calls. Because event webhooks are
asynchronous, this mechanism supports queueing the failed messages for periodic
retry.

Function webhooks, however, are synchronous, so the queueing mechanism used for
event webhooks is not suitable for managing failed function webhook calls. Instead,
Commerce provides a synchronous retry mechanism for certain function webhooks.
If a webhook call using this mechanism does not initially succeed, it is immediately
retried several times until it either succeeds or reaches the maximum number of
retries, at which point it fails.

A call succeeds only if it returns an HTTP status code in the 2xx range. If any other
status code is returned, or if nothing is returned due to a timeout or network error, the
call fails.

Retry is supported for the following function webhooks:

• Shipping Calculator

• External Tax Calculation

• Catalog and Price Group Assignment

Chapter 3
Manage failed webhook calls

3-18

• Order Approvals

• Return Request Validation

Enable retry

Retry is controlled by two JSON properties, supportsSynchronousRetry and
synchronousRetries. The supportsSynchronousRetry property is a read-only property
that specifies whether the webhook supports the use of retry. It is set to true for the
webhooks listed above, and is set to false for all other function webhooks. You cannot
change the value of this property on any function webhook.

If a webhook’s supportsSynchronousRetry property is true, you can enable retry for
that webhook by setting its synchronousRetries property to an integer greater than
zero (0). The value of synchronousRetries specifies the maximum number of times
to retry the call. Note that if the value of synchronousRetries is 0, no retry will take
place, even if supportsSynchronousRetry is true.

The following example sets the value of synchronousRetries for the Order Approvals
webhook:

PUT /ccadmin/v1/functionWebhooks/production-checkOrderApprovalWebhook
HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "synchronousRetries": 5
}

The retry mechanism has a one minute limit. If the calls fail with an HTTP error
immediately, the retries will be executed in rapid succession until the limit is reached
or a call succeeds. But if the calls time out, the mechanism may reach the one minute
limit before the maximum number of retries is reached.

Note that the Shipping Calculator and External Tax Calculation webhooks support a
fallback mechanism that returns preconfigured default values if calls to the associated
shipping calculator or tax calculator fail. If both fallback and retry are enabled for one
of these webhooks, in some cases the fallback values may be returned even if the
maximum number of retries has not been reached.

To see a list of all of the available function webhooks, including information about
which ones support retry, use the getFunctionWebHooks endpoint in the Admin
API. The response includes the values of the supportsSynchronousRetry and
synchronousRetries properties for each function webhook.

Chapter 3
Manage failed webhook calls

3-19

4
Manage Shopper Profiles

This section describes how to use the Commerce REST web services APIs to add
custom properties to shopper profiles.

Understand shopper profiles and shopper types
Shopper profiles include a predefined set of properties that store information about
shoppers at your store.

Profile properties include common shopper data, such as firstName and phoneNumber,
plus data used internally by Oracle CX Commerce.

A shopper type defines the set of properties that exist for each shopper profile of that
type. Shopper types are similar to product types, in that a shopper type is a template
for a shopper profile rather than a profile itself. However, there is a currently only one
shopper type available. The ID of this shopper type is user.

You cannot create additional shopper types, but you can add custom properties to the
user shopper type. For example, if your store carries books, you might want to add a
favorite_author property to shopper profiles. You can do this by using the Oracle CX
Commerce Admin API to modify the user shopper type.

The Shopper Types resource in the Admin API includes endpoints for creating and
working with custom properties of the user shopper type. The Profiles resource in
the Admin API includes endpoints that you can use to set the values of properties of
individual shopper profiles, including custom properties that have been added to the
user shopper type.

When you add a custom property to the user shopper type, the property is added to
all shopper profiles and preview profiles, including any new profiles you create and any
profiles that already exist.

Shopper profiles and preview profiles

Oracle CX Commerce maintains two separate sets of shopper profiles. The main
set represents actual shoppers who register on your storefront. You can access and
modify existing shopper profiles, and create new shopper profiles, using the Store
endpoints on your storefront server.

The other set of profiles is for preview users. These are fictional shoppers that you
can use to log into your store on the Admin server to preview changes before they
are published. You can access and modify existing preview profiles, and create new
preview profiles, using the Store endpoints on your administration server. See Access
preview through the APIs for information.

View a shopper profile
You can view a shopper profile using the REST API.

4-1

To view an existing shopper profile, first log into the Admin API on the administration
server using an account that has the Administrator role.

For example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=365214

Then issue a GET request to the /ccadmin/v1/profiles/{id} endpoint, providing the
ID of the profile you want to view, and including the access token that was returned
by /ccadmin/v1/mfalogin. For example:

GET /ccadmin/v1/profiles/se-570031 HTTP/1.1
Authorization: Bearer <access_token>

The following is an example of the response returned:

{
 "receiveEmail": "yes",
 "shippingSurchargePriceList": null,
 "lastName": "Anderson",
 "locale": "en_US",
 "priceListGroup": null,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/profiles/
se-570031"
 }
],
 "repositoryId": "se-570031",
 "id": "se-570031",
 "email": "kim@example.com",
 "shippingAddresses": [
 {
 "lastName": "Anderson",
 "postalCode": "13202",
 "phoneNumber": "212-555-1977",
 "county": null,
 "state": "NY",
 "address1": "21 Cedar Ave",
 "address2": null,
 "firstName": "Kim",
 "repositoryId": "se-980031",
 "city": "Syracuse",
 "country": "US"
 }
],
 "translations": {},
 "daytimeTelephoneNumber": null,
 "firstName": "Kim",

Chapter 4
View a shopper profile

4-2

 "shippingAddress": {
 "lastName": "Anderson",
 "postalCode": "13202",
 "phoneNumber": "212-555-1977",
 "county": null,
 "state": "NY",
 "address1": "21 Cedar Ave",
 "address2": null,
 "firstName": "Kim",
 "repositoryId": "se-980031",
 "city": "Syracuse",
 "country": "US"
 }
}

The response shows the predefined profile properties that are exposed by Oracle CX
Commerce. You can set the values of these properties for an existing profile using the
PUT /ccadmin/v1/profiles/{id} endpoint on the administration server.

Create a shopper profile
To create a new shopper profile, issue a POST request to the /ccadmin/v1/profiles
endpoint on the administration server.

Specify the values of the profile properties as a JSON map in the body of the request.
For example:

POST /ccadmin/v1/profiles HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "receiveEmail": "yes",
 "lastName": "Wilson",
 "locale": "en_US",
 "email": "fredW@example.com",
 "firstName": "Fred"
}

If the profile is created successfully, the response body returned includes the ID for the
new profile and a link to the URL used in the request:

{
 "id": "120000",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
profiles"
 }
]
}

Chapter 4
Create a shopper profile

4-3

Specify the email address and login

The value of the login property on the profile is used as the shopper’s username.
Each username must be unique. On many storefronts, the username is also the
shopper’s email address, in which case the value of the login property is the same as
the value of the email property.

When you create a profile through an API call, the request must explicitly set the email
property, but can omit the login property. If the request does not specify a value for
the login property, it is set to the same value as the email property. For example, the
following request creates a profile with bobW@example.com as both the username and
the email address:

POST /ccadmin/v1/profiles HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "receiveEmail": "yes",
 "lastName": "Wilson",
 "email": "bobW@example.com",
 "firstName": "Bob"
}

If you want the username to be different from the email address, you can set separate
values for the email and login properties in the request. For example, the following
request creates a profile with fwilson as the username and fredW@example.com as the
email address:

POST /ccadmin/v1/profiles HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "login": "fwilson",
 "receiveEmail": "yes",
 "lastName": "Wilson",
 "email": "fredW@example.com",
 "firstName": "Fred"
}

Allow profiles to share an email address

One reason you may want the login and email values to differ is to allow multiple
profiles to share an email address. By default, Commerce requires each profile to
have a unique email address, but your business needs may make this restriction
undesirable. If so, you can use the following call to allow multiple profiles to share the
same email address:

PUT /ccadmin/v1/merchant/shopperProfileConfiguration HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

Chapter 4
Create a shopper profile

4-4

{
 "duplicateEmailsAllowed": true
}

Note that once your Commerce instance has profiles that share an email address, you
cannot set duplicateEmailsAllowed back to false. If you try to do this, the call will
return an error.

Block weak passwords

As discussed in the Configure Shopper Settings, you can configure password policies
through the Commerce administration interface. The purpose of these settings is to
ensure that shoppers do not use passwords that are easy to guess.

The properties set through the administration interface can also be set using the
savePolicies endpoint in the Admin API. In addition to these properties, this endpoint
can set the blockCommonPasswords property, which has no equivalent setting in the
administration interface. If blockCommonPasswords is set to true, Commerce rejects
weak passwords, regardless of whether they meet the criteria specified in the other
properties.

The properties set using this endpoint are site-specific, so the call must specify the site
using the x-ccsite header. For example, the following call specifies values for a site's
password policy settings, including blockCommonPasswords, which it sets to true:

PUT /ccadmin/v1/merchant/profilePolicies HTTP/1.1
Authorization: Bearer <access_token>
x-ccsite: 100002

{
 "guestCheckoutEnabled": true,
 "numberOfPreviousPasswords": 3,
 "numberOfPreviousPasswordsMinVal": 1,
 "passwordExpirationEnabled": false,
 "passwordExpirationLengthMinVal": 1,
 "sessionTimeoutLength": 15,
 "cannotUsePreviousPasswords": false,
 "passwordExpirationLength": 90,
 "minPasswordLengthMinVal": 4,
 "sessionTimeoutEnabled": true,
 "minPasswordLengthMaxVal": 64,
 "useNumber": true,
 "cannotUseUsername": false,
 "useMinPasswordLength": true,
 "minPasswordLength": 8,
 "numberOfPreviousPasswordsMaxVal": 6,
 "useMixedCase": false,
 "sessionTimeoutLengthMinVal": 1,
 "sessionTimeoutLengthMaxVal": 120,
 "useSymbol": false,
 "blockCommonPasswords": true
}

If blockCommonPasswords is true, Commerce rejects any password that appears in
its dictionary of weak passwords. When the shopper specifies a new password, it is

Chapter 4
Create a shopper profile

4-5

compared against all of the entries in the dictionary, and if it matches one of those
entries, it is rejected.

In addition to the passwords listed in the dictionary, you can specify your own list of
passwords to block using the updateRestrictedWords endpoint. For example:

POST /ccadmin/v1/merchant/profilePolicies/updateRestrictedWords
HTTP/1.1
Authorization: Bearer <access_token>

{
 "add": ["frog", "cow", "pig"]
}

The response includes an items array that lists your blocked entries:

{
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/merchant/
profilePolicies/updateRestrictedWords"
 }
],
 "items": [
 "frog",
 "cow",
 "pig"
]
}

You can also display your current list using the getRestrictedWords endpoint (GET /
ccadmin/v1/merchant/profilePolicies/restrictedWords).

Note that your list of blocked passwords is not site-specific. The entries you specify
apply to all sites whose blockCommonPasswords property is true.

The updateRestrictedWords endpoint can also take a delete array for specifying
entries to remove from your list. For example:

POST /ccadmin/v1/merchant/profilePolicies/updateRestrictedWords
HTTP/1.1
Authorization: Bearer <access_token>

{
 "delete": ["frog", "cow"]
}

Deleting entries affects only your own list of blocked passwords. You cannot modify
the dictionary that Commerce uses. For example, if you add an entry to your list that
matches a value already in the dictionary, and subsequently delete that entry from your
list, it does not affect the entry for that value in the dictionary.

Chapter 4
Create a shopper profile

4-6

Note that changing settings in the password policy does not invalidate existing
passwords. The policy change is applied only when a shopper attempts to set a new
password.

Disable soft login

As discussed in Configure Shopper Settings, a logged-out shopper can still see
personalized content based on their profile. This is referred to as soft login. Soft
login is enabled by default. You can use the /ccadmin/v1/merchant/profilePolicies
REST API endpoint to disable or enable it.

If softLoginEnabled is set to false, Commerce disables soft login. The following call
sets softLoginEnabled to false for the specified site:

PUT /ccadmin/v1/merchant/profilePolicies HTTP/1.1
Authorization: Bearer <access_token>
x-ccsite: 100002

{
 "softLoginEnabled": false
}

Create a shopper profile on an instance running multiple sites

If you are running multiple sites on your Commerce instance, shopper profiles are
shared by all of these sites. If a shopper registers on one site running on the instance,
the shopper’s profile is automatically available on all sites running on the instance.

However, the values of certain properties in the profile can be site-specific. For
example, the values of the receiveEmail property are site-specific.

When you create a shopper profile using a POST request, you can specify a site using
the x-ccsite header, as described in Use the APIs on instances running multiple sites.
The resulting profile applies to all of the sites on your Commerce instance, but the
value you provide for a site-specific property applies only to the site you specify. (If you
do not specify a site, the value is applied to the default site only.) On all other sites, the
value of this property is set to its default. You can modify the property on a specific site
using a PUT request. For example:

PUT /ccadmin/v1/profiles/120000 HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>
x-ccsite: 100001

{
 "receiveEmail": "yes"
}

Similarly, if you use a GET request to view a profile, the value returned for a site-
specific property reflects the site specified in the x-ccsite header, or the default site if
no site is specified.

Set a site-specific profile property for multiple sites

If your Commerce instance is running multiple sites, shoppers can set site-specific
profile properties for each site individually. For example, the storefront for each

Chapter 4
Create a shopper profile

4-7

site can provide a checkbox for setting the receiveEmail property, with the setting
applying only to the current site.

A drawback of this approach is that in order to configure settings on all sites, a
shopper must access each site separately. To simplify profile configuration, you may
instead want to provide a way for the shopper to configure multiple sites in one place.

To enable this, you can modify your storefront to use the updateSiteProperties
endpoint in the Store API. This endpoint sets the values of site-specific properties
of the current profile (the profile in the current calling context). Note that the current
profile must be for a registered shopper, which means the shopper must be logged in.

For example, the following call sets the value of the receiveEmail property of the
current profile for two different sites:

PUT /ccstore/v1/profiles/current/siteProperties HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "siteProperties": [
 {
 "site": {
 "id": "siteUS"
 },
 "properties": {
 "receiveEmail": "yes"
 }
 },
 {
 "site": {
 "id": "siteUK"
 },
 "properties": {
 "receiveEmail": "no"
 }
 }
]
}

The response shows the values of the receiveEmail property for all sites on which
it has been set. For example, the following is a portion of the response to the above
request:

{
 ...
 "items": [
 {
 "site": {
 "id": "siteUK"
 },
 "properties": {
 "receiveEmail": "no"
 }
 },

Chapter 4
Create a shopper profile

4-8

 {
 "site": {
 "id": "siteUS"
 },
 "properties": {
 "receiveEmail": "yes"
 }
 }
],
 "totalNumberOfItems": 2
}

You can also display the current values of site-specific properties using the
listSiteProperties endpoint. For example:

GET /ccstore/v1/profiles/current/siteProperties HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

The response contains the same data as the updateSiteProperties endpoint
response.

Some things to note about using the updateSiteProperties and listSiteProperties
endpoints:

• Before you can set the value of a site-specific property for an individual site, the
site object’s enabled property must be set to true, and the site object must be
published.

• You can use the updateSiteProperties endpoint to update the value of a site-
specific property for all of the sites running on the instance, or for a subset of the
sites. In the latter case, you include only the sites you want to update in the body
of the request.

• Setting the values of a site-specific property affects only sites that have already
been created. If you subsequently create an additional site, the property's value for
that site is set to the property's default value on all shopper profiles.

• If the value of a site-specific property has not been set explicitly for a site, the
value for that site is set to the property's default value, but no entry for the site is
included in the updateSiteProperties or listSiteProperties response.

Send site-specific properties in webhooks

Several webhooks include profile data for the current shopper in their request bodies.
This data includes a sitePropertiesList array that lists the values of site-specific
properties such as receiveEmail for each site. These webhooks are:

• Cart Idle

• Shopper Registration

• Shopper Account Update

• External Price Validation

• External Tax Calculation

Chapter 4
Create a shopper profile

4-9

The following is an example of a sitePropertiesList array that lists site-specific
property values in a webhook request:

"sitePropertiesList": [
 {
 "site": {"id": "siteDE"},
 "properties": {"receiveEmail": "no"}
 },
 {
 "site": {"id": "siteUS"},
 "properties": {"receiveEmail": "yes"}
 }
]

View a shopper type
To view a shopper type, issue a GET request to the /ccadmin/v1/shopperTypes/{id}
endpoint on the administration server.

The following example illustrates calling this endpoint with user (the only type currently
available) specified as the value for id:

GET /ccadmin/v1/shopperTypes/user HTTP/1.1
Authorization: Bearer <access_token>

The following example shows a portion of the response returned:

{
 "id": "user",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
shopperTypes/user"
 }
],
 "properties": {
 ...
 "lastName": {
 "writable": true,
 "localizable": false,
 "label": "Last name",
 "type": "shortText",
 "uiEditorType": "shortText",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": null,
 "default": null,
 "audienceVisibility": null,
 "editableAttributes": [
 "textSearchable",
 "multiSelect",

Chapter 4
View a shopper type

4-10

 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "audienceVisibility",
 "searchable"
],
 "length": 254,
 "required": false,
 "searchable": false
 },
 },
 ...
}

This example shows a portion of the response corresponding to one of the predefined
profile properties appearing in the previous example. The property has a group of
attributes that control the behavior associated with the property. To modify the user
shopper type, you can create custom properties or modify existing properties by
setting the values of these attributes.

Settable attributes of shopper type properties

The following table describes all of the attributes of shopper type properties that you
can set through the Shopper Types endpoints of the Admin API:

Attribute Description

label String containing the display name of the
property on the storefront. This attribute is
localizable. If a value is not supplied, the
attribute value is set to the name of the
property.

type Data type of the property. Valid values are
shortText, richText, number, date, and
checkbox. This attribute must be set explicitly,
and it cannot be modified after it is set.

uiEditorType Data type for determining the type of user
interface control for editing the value of the
property. This attribute must be set to the
same value as the type attribute for the
property, and cannot be modified after it is set.

internalOnly Boolean that specifies whether the property
can be displayed on the storefront. If true,
the property cannot be displayed. Defaults to
false if not specified explicitly.

default Value to use for the property if a value is not
specified. Defaults to null if not set explicitly.
Must be set explicitly if the required attribute is
true.

required Boolean that specifies whether the property
value must be set. If this attribute is true, the
property must have a default value set through
the default attribute. Defaults to false if not
set explicitly.

Chapter 4
View a shopper type

4-11

Attribute Description

audienceVisibility String that determines whether the property
appears as a choice in the Attributes field
of the audience interface. For shopper profile
properties, this value should be set to all. See
Define Audiences.

Note that in addition to the attributes listed in the table above, there are several
more attributes whose values are returned when you issue a GET request to the /
ccadmin/v1/shopperTypes/{id} endpoint. These attributes either cannot be set
through the API, or if they are set, have no effect.

Add custom properties to a shopper type
To add custom properties to a shopper type, issue a PUT request to the /ccadmin/v1/
shopperTypes/{id} endpoint on the administration server.

Use the following format:

• The request header must specify the x-ccasset-language value.

• The request body is a map where each key is the ID of a new property, and each
value is an object that specifies the values of the attributes of the property.

• Each object is also a map, with each key being the name of an attribute and each
value being the corresponding attribute value.

Note that the ID of a custom property must include the underscore character (_).
This ensures that the ID will not conflict with any properties that Commerce adds to
shopper types in the future. The endpoint produces an error if you attempt to create a
custom property without an underscore in its ID.

The following example shows a sample request for adding two custom properties to
the user shopper type:

PUT /ccadmin/v1/shopperTypes/user HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en
Content-Type: application/json

{
 "properties": {
 "loyalty_program_member": {
 "label": "Member of loyalty program?",
 "type": "checkbox",
 "uiEditorType": "checkbox",
 "internalOnly": true,
 "default": false,
 "required": true,
 "audienceVisibility": "all"
 },
 "favorite_website": {
 "label": "Favorite Web Site",
 "type": "shortText",
 "uiEditorType": "shortText",

Chapter 4
Add custom properties to a shopper type

4-12

 "internalOnly": false,
 "default": null,
 "required": false,
 "audienceVisibility": "all"
}}}

See Settable attributes of shopper type properties for information about specifying the
attribute values.

The following is a portion of the response that shows the new properties:

{
 ...
"properties": {
 ...
 "loyalty_program_member": {
 "writable": true,
 "localizable": false,
 "label": "Member of loyalty program?",
 "type": "checkbox",
 "uiEditorType": "checkbox",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": true,
 "default": false,
 "audienceVisibility": "all"
 "editableAttributes": [
 "textSearchable",
 "multiSelect",
 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "audienceVisibility",
 "searchable"
],
 "length": 19,
 "required": true,
 "searchable": false
 },
 "favorite_website": {
 "writable": true,
 "localizable": false,
 "label": "Favorite Web Site",
 "type": "shortText",
 "uiEditorType": "shortText",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": false,
 "default": null,
 "audienceVisibility": "all"
 "editableAttributes": [

Chapter 4
Add custom properties to a shopper type

4-13

 "textSearchable",
 "multiSelect",
 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "audienceVisibility",
 "searchable"
],
 "length": 254,
 "required": false,
 "searchable": false
 },
 ...
 }
 ...
}

Set custom properties on a shopper profile
After adding new custom properties to the user shopper type, you can use the Admin
API to set the values of these properties on shopper profiles.

You can issue a PUT request to the /ccadmin/v1/profiles/{id} endpoint on the
administration server to set the values of custom properties on an existing shopper
profile, or issue a POST request to the /ccadmin/v1/profiles endpoint to set these
and other properties when you create a new shopper profile. Custom properties you
create on the user shopper type are automatically exposed to these endpoints.

The following example shows a sample request body for setting the two custom
properties created in the previous section on an existing shopper profile:

{
 "loyalty_program_member": true,
 "favorite_website": www.oracle.com
}

The following shows the response body returned:

{
 "receiveEmail": "yes",
 "shippingSurchargePriceList": null,
 "lastName": "Anderson",
 "locale": "en_US",
 "priceListGroup": null,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/profiles/
se-570031"
 }
],

Chapter 4
Set custom properties on a shopper profile

4-14

 "repositoryId": "se-570031",
 "id": "se-570031",
 "loyalty_program_member": true,
 "email": "kim@example.com",
 "shippingAddresses": [
 {
 "lastName": "Anderson",
 "postalCode": "13202",
 "phoneNumber": "212-555-1977",
 "county": null,
 "state": "NY",
 "address1": "21 Cedar Ave",
 "address2": null,
 "firstName": "Kim",
 "repositoryId": "se-980031",
 "city": "Syracuse",
 "country": "US"
 }
],
 "translations": {},
 "daytimeTelephoneNumber": null,
 "favorite_website": "www.oracle.com",
 "firstName": "Kim",
 "shippingAddress": {
 "lastName": "Anderson",
 "postalCode": "13202",
 "phoneNumber": "212-555-1977",
 "county": null,
 "state": "NY",
 "address1": "21 Cedar Ave",
 "address2": null,
 "firstName": "Kim",
 "repositoryId": "se-980031",
 "city": "Syracuse",
 "country": "US"
 }
}

Note that the values of custom profile properties can be set on the storefront using
a custom widget that accesses the UserViewModel. The view model can then call
the updateProfile REST endpoint to update the data on the server. For details, see
Access custom properties using the UserViewModel.

Create custom properties for addresses
You can use the Oracle CX Commerce REST web services APIs to add custom
properties to shopper and account addresses.

See Use the REST APIs for information you need to know before using the services.
Note that the view models for addresses support custom properties, but widgets
included with Oracle CX Commerce require customization to access these properties.

Chapter 4
Create custom properties for addresses

4-15

View the contactInfo item type

Addresses are stored internally as instances of the contactInfo item type. You can
view this item type with the following call:

GET /ccadmin/v1/itemTypes/contactInfo HTTP/1.1
Authorization: Bearer <access_token>

The following example shows a portion of the response representing one of the
contactInfo properties. Each property has a group of attributes whose values control
the behavior associated with the property:

...
{
 "length": 254,
 "label": "City",
 "type": "shortText",
 "required": false,
 "searchable": false,
 "writable": true,
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "audienceVisibility": "all",
 "localizable": false,
 "textSearchable": false,
 "id": "city",
 "dimension": false,
 "editableAttributes": [
 "internalOnly",
 "default",
 "audienceVisibility",
 "textSearchable",
 "label",
 "dimension",
 "required",
 "searchable",
 "multiSelect"
],
 "multiSelect": null
}
...

You can use the updateItemType endpoint to modify the contactInfo item type:

• Modify existing properties by changing the values of their attributes.

• Create custom properties by specifying their attributes.

See Settable attributes of shopper type properties for descriptions of these attributes.

Add custom properties to the contactInfo item type

You can use the updateItemType endpoint in the Commerce Admin API to add custom
properties to the contactInfo item type. When you add a custom property to the

Chapter 4
Create custom properties for addresses

4-16

contactInfo item type, the property is added to addresses in profiles, as well as in
other data objects that include addresses, such as accounts and orders. The property
is not added to inventory locations, however.

The ID of a custom property must include the underscore character (_). This ensures
that the ID will not conflict with any properties that Commerce adds to addresses in
the future. The updateItemType endpoint produces an error if you attempt to create a
custom property without an underscore in its ID.

The following example illustrates using the updateItemType endpoint to add a custom
property to addresses. Note that the request header must specify the x-ccasset-
language value:

PUT /ccadmin/v1/itemTypes/contactInfo HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "id": "contactInfo",
 "specifications": [
 {
 "id": "sales_region",
 "label": "Sales Region",
 "type": "shortText",
 "uiEditorType": "shortText",
 "internalOnly": false,
 "required": false,
 "default": null
 }
]
}

The response includes the custom property you added:

...
 {
 "length": 254,
 "label": "Sales Region",
 "type": "shortText",
 "required": false,
 "searchable": false,
 "writable": true,
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "audienceVisibility": null,
 "localizable": false,
 "textSearchable": false,
 "id": "sales_region",
 "dimension": false,
 "editableAttributes": [
 "internalOnly",
 "default",
 "audienceVisibility",
 "textSearchable",

Chapter 4
Create custom properties for addresses

4-17

 "label",
 "dimension",
 "required",
 "searchable",
 "multiSelect"
],
 "multiSelect": null
 }
...

Access custom properties using the UserViewModel
The UserViewModel, which is the global view model that contains a shopper’s profile
information, provides access to any custom profile properties you have created via the
dynamicProperties observable array.

You can write custom widgets to retrieve the values of custom profile properties from
this array, and also set the values of any custom properties you have created.

Get a custom profile property via the UserViewModel

To access a custom profile property from within a widget, you first create a widget-level
observable in the widget’s JavaScript file and then assign a value to that observable
after retrieving it from the dynamicProperties array. In the following example, we
assume that two custom profile properties have been created, age and nickname.

// Create the widget-level observables
age : ko.observable(),
nickname : ko.observable(),

// Iterate over the dynamicProperties array and assign the value of the
property
// with id = age to the age observable. Repeat for id = nickname.
for (var i=0; i< widget.user().dynamicProperties().length; i++){
 if (widget.user().dynamicProperties()[i].id() == 'age') {
 widget.age(widget.user().dynamicProperties()[i].value());
 } else if (widget.user().dynamicProperties()[i].id() ==
'nickname') {
 widget.nickname(widget.user().dynamicProperties()[i].value());
 }
}

At this point, you can bind the widget-level observables to UI components defined in
the widget’s template. For example, this code snippet binds the age and nickname
observables to text boxes in the widget’s UI.

<div id="dyn-prop">
 Age:<input type="text" name="age" id="CC-dyn-prop-age"
 aria-required="true" data-bind="value: age" >

 Nickname:<input type="text" name="nickname" id="CC-dyn-prop-
nickname"
 aria-required="true" data-bind="value: nickname" >

</div>

Chapter 4
Access custom properties using the UserViewModel

4-18

This code results in a UI that displays two text boxes that have the labels Age
and Nickname and are populated with the current values of the age and nickname
observables.

Set a custom profile property via the UserViewModel

To set the value of a custom property, your widget must update the
dynamicProperties array in the UserViewModel using the current value of the widget-
level observable. For example, the code below updates the dynamic property with
id=age to the value of the age observable.

for (var i=0; i< widget.user().dynamicProperties().length; i++){
 if (widget.user().dynamicProperties()[i].id() == 'age') {
 widget.user().dynamicProperties()[i].value(widget.age());
 break;
 }
}

To propagate the change in the view model to the server side, the
handleUpdateProfile function of the UserViewModel must be called. This function
detects modifications in the observables of the UserViewModel and triggers a call
to the updateProfile REST endpoint to update the data on the server. Typically,
the process of making this call is triggered via clicking a Save button on the page.
In the code sample below, taken from the customerProfileDetails.template for
the Customer Profile widget, the Save button has a click binding that calls the
widget.handleUpdateProfile() method. This method publishes a PubSub event
to the USER_PROFILE_UPDATE_SUBMIT topic which, in turn, triggers a call to the
handleUpdateProfile() method in the UserViewModel.

<!-- Define the Save and Cancel buttons -->
<button class="cc-button-primary col-sm-2 col-xs-12 pull-right
 cc-customer-profile-button" id="CC-customerProfile-save"
 data-bind="click: handleUpdateProfile,
 event: { mousedown: handleMouseDown, mouseup: handleMouseUp}">

</button>
<button class="cc-button-secondary col-sm-2 col-xs-12 pull-right
 cc-customer-profile-button" id="CC-customerProfile-cancel"
 data-bind="click: handleCancelUpdate,
 event: { mousedown: handleMouseDown, mouseup: handleMouseUp}">

</button>

Note that the widget.handleUpdateProfile() method is defined in the Customer
Profile widget’s customerProfile.js file and it looks like this:

// Handles User profile update
widget.handleUpdateProfile = function () {

 if(widget.isUserProfilePasswordEdited()) {
 widget.user().isPasswordValid();
 }

Chapter 4
Access custom properties using the UserViewModel

4-19

 // Sends a PubSub message for the update
 $.Topic(PubSub.topicNames.USER_PROFILE_UPDATE_SUBMIT).publishWith(
 widget.user(),
 [{message: "success"}]
);
};

Chapter 4
Access custom properties using the UserViewModel

4-20

5
Access SKU Properties through Widgets

In addition to SKU properties that are defined out the box, Commerce provides the
ability to add custom properties to SKUs, for example, a UPC code.

Custom properties for SKUs are defined in the administration interface. They can be
defined at the Base Product level, in which case all SKUs will have them, or as part of
a custom product type, in which case only SKUs that are children of that product type
will have them. The values for the custom properties can then be set for any given
SKU. You can display out-of-the-box and custom SKU properties on your product
details pages or on any page where products/SKUs are displayed, using the APIs
described in this section.

Understand APIs for accessing SKU properties
SKU properties, both custom and out-of-the-box, are returned as part of the
ProductViewModel.

Any widget that has access to the ProductViewModel can access SKU properties
from it. Widgets that do not have access to the ProductViewModel can access SKU
properties via the viewModels/SkuPropertiesHandler module.

A call to either of these APIs returns an array of SKU properties. Each item in the array
consists of a property definition for a SKU property, including ID, label, type, and so on.
Note that the values for the properties are returned as part of the child SKU objects,
so you must make a call to one of the APIs to determine what SKU properties exist
and then call the SKU objects themselves to get the values for those properties. For
example, if a custom SKU property called upcCode exists, your widget can retrieve the
value for the property for each child SKU object from the ProductViewModel as shown
in the example below (assuming your widget has access to the ProductViewModel):

<div></
div>

As with other product properties, SKU properties can be any of five types:

• Short text

• Rich text

• Number

• Date

• Checkbox

To correctly display a SKU property’s value, you must take into account the type of
property being handled.

5-1

Access SKU properties from the ProductViewModel

Any widget that has access to the ProductViewModel can access SKU properties from
it, for example:

widget.product().skuProperties()[0].label

This code snippet returns the label for each SKU property, both custom and out-of-the-
box, defined in the SKU properties array.

Access SKU properties using SkuPropertiesHandler

The viewModels/SkuPropertiesHandler module provides access to SKU properties
for any widgets that do not have access to the ProductViewModel. The viewModels/
SkuPropertiesHandler module must be imported by a widget in order for the widget to
call its methods, which are described below.

SkuPropertiesHandler.getBase

This method returns property definitions for both custom and out-of-the-box SKU
properties created for the Base Product, for example:

viewModels/SkuPropertiesHandler.getBase(targetArray,
successCallbackFunction,errorCallbackFunction)

Required arguments include:

• targetArray: An observable array in the UI element that is populated with the
properties to be displayed.

• successCallbackFunction: (Optional) The function that is called on success.

• errorCallbackFunction: (Optional) The function that is called on error.

SkuPropertiesHandler.getCustom

This method returns property definitions for any custom SKU properties created for the
specified productType, for example:

viewModels/SkuPropertiesHandler.getCustom(targetArray,
productType,successCallbackFunction, errorCallbackFunction)

If there are no custom SKU properties defined, this method does not populate
targetArray.

Required arguments include:

• targetArray: An observable array in the UI element that is populated with the
properties to be displayed.

• productType: The name of the product type (for Base Product, this value is
product.)

• successCallbackFunction: (Optional) The function that is called on success.

• errorCallbackFunction: (Optional) The function that is called on error.

SkuPropertiesHandler.getAll

Chapter 5
Understand APIs for accessing SKU properties

5-2

This method returns property definitions for both custom and out-of-the-box SKU
properties created for both the Base Product as well as the specified productType,
for example:

viewModels/SkuPropertiesHandler.getAll(targetArray,
productType,successCallbackFunction, errorCallbackFunction)

Required arguments include:

• targetArray: An observable array in the UI element that is populated with the
properties to be displayed.

• productType: The name of the product type (for Base Product, this value is
product.)

• successCallbackFunction: (Optional) The function that is called on success.

• errorCallbackFunction: (Optional) The function that is called on error.

Create an element to display SKU properties
You can create an element that renders SKU properties, either custom or out-of-the-
box, for a selected SKU. That element can then be used in a widget such as the
Product Details widget on the Product Layout.

This section provides code samples for creating a sample element named sku-
properties.

Note: Elements must be included in an extension and uploaded to Commerce before
they can be used in a widget. For details on this process, see Understand widgets.

To create an element for displaying SKU properties, you need three files,
element.js, template.txt, and element.json. The element.js file in this
example defines a sku-properties element along with an onLoad function that, when
the sku-properties element is loaded by a parent widget, creates an array of SKU
properties for the selected SKU:

define(
['knockout'],
function (ko) {
 "use strict";
 return {
 // Name of the element
 elementName: 'sku-properties',

 // When the element is loaded by the widget, execute this function
 onLoad : function(widget) {
 var self = this;
 // Custom array named 'mySkuProps' that can be used within the
 // template.txt file
 self.mySkuProps = ko.computed(function() {
 var currentArray = [];
 // If and when the widget has a SKU selected
 if (widget.selectedSku()) {
 var currentSku = widget.selectedSku();
 // Access skuProperties from the product view model and

Chapter 5
Create an element to display SKU properties

5-3

 // iterate over it to get the value for each SKU property
 for (var i=0; i < widget.product().skuProperties().length;
i++) {
 var currentProperty = widget.product().skuProperties()[i];
 if (currentSku[currentProperty.id]) {
 // Add the property ID, label, and value to the array so
 // that they can be rendered by the template.txt
 currentArray.push({
 'mylabel': currentProperty.label,
 'myid': currentProperty.id,
 'myvalue': currentSku[currentProperty.id]
 });
 }
 }
 }
 return currentArray;
 });
 }
 }
});

The template.txt file provides the HTML rendering code for the element. In this
example, template.txt iterates over each entry in the custom SKU properties array
and renders labels and values for them.

<div>
 <!-- ko if: initialized() && $data['sku-properties'] -->
 <!-- // Iterate over each entry in the mySkuProps array -->
 <!-- ko foreach: $data['sku-properties'].mySkuProps() -->
 <div>

 <!-- // Display labels, IDs, and values as needed -->
 (<span data-
bind="text:
 myid">) : </
span>

 </div>
 <!-- /ko -->
 <!-- /ko -->
</div>

In this sample element.json meta-data file, the sku-properties element is made
available for use by the Product Details widget:

{
 "inline" : true,
 "supportedWidgetType" : ["productDetails"],
 "translations" : [
 {
 "language" : "en_EN",
 "title" : "Sku Properties",
 "description" : "Displaying Sku Properties in the product details
widget"

Chapter 5
Create an element to display SKU properties

5-4

 }
]
}

In order to use the new element in a widget, you need to add some additional tags
to the widget’s display.template and widget.template files that enable the
element to be rendered as part of the output page and to be managed on the Design
page. If the widget has already been broken into elements, you will, at a minimum,
need to add an oc section tag for the new element:

<!-- oc section: sku-properties -->
 <div data-bind="element: 'sku-properties'"></div>
<!-- /oc -->

You may need to add other tags if the widget has not already been broken into
elements. See Understand widgets for more information on the display.template
and widget.template files and adding elements to them.

SkuPropertiesHandler example
In order to access SKU properties for a given SKU object using the viewModels/
SkuPropertiesHandler module, you must determine the product type the SKU
belongs to so it may be passed to the viewModels/SkuPropertiesHandler method
that retrieves the property definitions.

The following widget code snippet iterates over the SKUs in a cart, determines the
product type for each SKU, retrieves the SKU property definitions for that product type,
and then populates an observable array with the label, ID, and values for each SKU
property for each SKU in the cart.

// Make sure to import 'viewModels/skuPropertiesHandler' and alias
// as SkuPropertiesHandler

// Iterate over a given set of cart items (SKUs) and populate the
properties of
// each SKU
ko.utils.arrayForEach(widget.cart().items(), function(item) {
 widget.populateSkuProperties(item.productData());
});
// Sample function that populates the SKU properties
populateSkuProperties: function(item) {
 var self = this;
 // Property definition array
 var skuPropDefinition = ko.observableArray([]);
 // Variable in the item object to store properties and their values
 item.mySkuPropertyArray = ko.observableArray([]);
 // Get the product type of the SKU
 var productType = 'product';
 if (item.type) {
 productType = item.type;
 }
 // API call to get the property definition of the SKU
 SkuPropertiesHandler.getAll(skuPropDefinition, productType,

Chapter 5
SkuPropertiesHandler example

5-5

 function(skuPropDefinition) {
 // Iterate over each property of the SKU and populate the array,
which can
 // then be used in the widget template
 for (var i=0; i < skuPropDefinition().length; i++) {
 var currentProperty = skuPropDefinition()[i];
 var currentSku = item.childSKUs[0];
 if (currentSku[currentProperty.id]) {
 // Add the label, ID, value, etc to a variable that can be
accessed
 // by the widget template
 item.mySkuPropertyArray.push({
 'mylabel':currentProperty.label,
 'myid':currentProperty.id,
 'myvalue': currentSku[currentProperty.id]});
 }
 }
 });
}

After creating the observable array, you can use it in the widget’s template to render
the SKU properties on the page:

<!-- // Iterate over the array that was created by the
'populateSkuProperties' in widget.js -->
<!-- ko foreach: mySkuPropertyArray -->
 <div>
 (<span data-bind="text:
 myid">) :
 </div>
<!-- /ko -->

Chapter 5
SkuPropertiesHandler example

5-6

6
Create Custom Promotions

You can use the Oracle CX Commerce Admin API to programmatically create and
manage promotions, including promotion types that are not available in the UI.

This section describes how to use the Admin API to work with promotions, including
creating and managing custom promotions and associating multiple promotions to a
coupon. See Manage Promotions for information about working with promotions on the
Marketing tab, as well as overview information about promotions. See Use the REST
APIs for information you need to know before you start creating promotions.

You can also find more custom promotions information and examples in the post
Custom Promotions API How-To with Examples on Oracle Cloud Customer Connect.

Understand PMDL discount rules
The Price Model Definition Language (PMDL) describes Oracle CX Commerce
promotions internally.

PMDL describes the rules for when a promotion may apply (the condition), the rules
for what may be discounted (the offer), and how to apply the discount (for example,
10% off).

This section describes the XML used for constructing discount rules that represent
promotions in Oracle CX Commerce.

PMDL XML structure

The PMDL that describes promotions discount rules is relatively simple. The DTD
defines the following to use in your PMDL rules:

• Iterators such as next, up-to-and-including and every.

• Quantifiers that are used in WHEN conditions, such as at-least, at-most, exactly
and all.

• Operators such as and, or and not.

• Comparators such as starts-with, ends-with, contains, greater-than, less-
than and equals, which compare values and/or arrays.

• Operations such as union and anded-union.

• Value types such as constant or null.

• Array types such as constant or value.

The PMDL DTD contains the following elements:

Pricing-Model element

The pricing-model element is the root tag for the PMDL.

Offer element

6-1

https://cloudcustomerconnect.oracle.com/posts/e43f65ba27

Every pricing-model requires one offer element. The offer includes one or more
discount-structure elements, which contain detailed information about the discount
and its target.

You can include more than one discount-structure element in an offer; this allows
you to wrap multiple discounts in a single promotion (note that this is not supported in
Merchandising, but you can build a custom template with this functionality).

If you have multiple discount structures within a single item promotion, you can specify
the filter-collection-name attribute of the offer; this ensures that once a given
item has been marked to receive a discount, it cannot receive a discount from any
other discount-structures. If filter-collection-name is not set, filtering does not
take place, and a given commerce item can be the target for more than one discount.
The filter-collection-name should match the iterator element’s collection-name
attribute, which is normally set to items. Filtering is not required for single discount
structures, or for non-item-based promotions.

Qualifier Element

Every pricing-model requires one qualifier element. The qualifier is the root tag
for the promotion’s buy condition.

Target Element

The target specifies the rule for selecting the items to be discounted. Your discount
structure should not include a target element if the promotion is for orders or
shipping; only item discounts include target as part of the discount-structure.

Discount-Structure element

The discount-structure element has the following attributes:

• calculator-type: A calculator service configured in the pricing engine. For all
Oracle CX Commerce promotions, the value for calculator-type is standard.

• discount-type: The calculators use this value to determine how to calculate an
adjustment. Valid values are: percentOff, amountOff, free, and fixedPrice.

• adjuster: This optional attribute specifies the price adjustment to make for this
discount. For example, the following discount structure element specifies that the
promotion should discount the target by 50%:

<discount-structure calculator-type="standard" discount-
type="percentOff" adjuster="50"></discount-structure>

Attribute element

The attribute element allows you to add generic name/value pairs to parent tags,
similar to the process used to extend a Core Commerce repository. During PMDL
parsing, the attributes and their values are placed in an attribute Map.

Iterator element

An iterator sorts a collection of items, then evaluate each item against one or more
sub-expressions. It returns those items that match the sub-expressions.

The iterator element allows you to create custom iterators. Your new iterator
element must include a name attribute that is unique across the PMDL.

Chapter 6
Understand PMDL discount rules

6-2

An iterator element can have the following attributes and sub-elements:

• name attribute (required)

• sort-by attribute (required)

• sort-order attribute (required)

• collection-name (required)

• element-name (required)

• element-quantity-property

Quantifier element

Quantifiers are evaluation beans that evaluate a collection of items against one or
more sub-expressions. It returns true or false, depending on the quantity of items
that match the sub-expressions.

The quantifier element allows you to create custom quantifiers. Your new
quantifier element must include a name attribute that is unique across the PMDL.

A quantifier element can have the following attributes and sub-elements:

• name attribute (required)

• number attribute

• collection-name (required)

• element-name (required)

• element-quantity-property

Operator element

Operators return true or false based on the Boolean results from their sub-
expressions.

The operator element allows you to create custom operators. Your new operator
element must include a name attribute that is unique across the PMDL.

An operator element can specify any number of attribute sub-elements and operates
on at least one comparator, operator or quantifier.

Comparator element

Comparators return true or false depending on the values of their sub-expressions.

The comparator element allows you to create custom comparators. Your new
comparator element must include a name attribute that is unique across the PMDL.
A comparator element can specify any number of attribute sub-elements and must
specify at least one value or array name.

Comparators evaluate using one or more sub-expressions. For example:

<comparator name="includes-any">

Comparators can also compare two value elements, and custom comparators could
include any number of value or constant elements.

Value element

Chapter 6
Understand PMDL discount rules

6-3

The value element returns the value of a property of the item the promotion is
evaluating. You must include the value element for Buy One Get One promotions
as follows:

<value>item.auxiliaryData.productRef.ancestorCategoryIds</value>

Constant element

The constant element returns a constant value against which other values can be
compared. For example:

<constant>
 <data-type>java.lang.String</data-type>
 <string-value>xprod2147</string-value>
</constant>

Create a promotion
You create a rawPmdlTemplate promotion by using the POST /ccadmin/v1/promotions
endpoint on the administration server.

The following table describes the body of the endpoint request. See Sample
promotions for examples of requests.

Property Description

displayName (required) A string that identifies the promotion.

description A string that describes the promotion. This
does not appear on your site.

priceListGroups An array of strings that specifies the price
groups this promotion applies to. For example:

"priceListGroups": [
 "defaultPriceGroup",
 "CanadianDollar"
]

If you do not include priceListGroups in
the request, the promotion applies to all price
groups. See Manage Promotions for more
information.

enabled A Boolean that specifies whether this
promotion can be used with a qualifying order.
The default value is true, but a promotion’s
availability also depends on any start and end
dates you set. If enabled is set to false, the
promotion cannot be used regardless of the
start and end dates.

Chapter 6
Create a promotion

6-4

Property Description

priority (required) An integer that specifies the priority of the
promotion. Promotions are applied in order of
priority, with low priority numbers applied first.
Oracle CX Commerce sorts the promotions by
the value of this property.

A promotion’s priority is evaluated against
other promotions of the same type. For
example, item discounts are evaluated only
against other item discounts, not against order
discounts.

If an order qualifies for multiple promotion
types, item discounts are applied first, followed
by order discounts, then shipping discounts.

Promotions that are of the same type and
have the same priority have no guaranteed
sequence, so the order in which they are
evaluated is undefined.

startDate A string that specifies the date and time the
promotion becomes available, formatted in
ISO-8601 format as follows:

YYYY-MM-DD T LOCALTIME OFFSET

For example:

"startDate":"2016-03-10T00:00:00.000
-05:00"

endDate A string that specifies the date and time the
promotion is no longer available, formatted in
ISO-8601 format as follows:

YYYY-MM-DD T LOCALTIME OFFSET

For example:

"endDate":"2116-03-30T00:00:00.000-0
5:00"

templateName (required) A string that specifies the name of the
promotion template to use. For a custom
promotion created with raw PMDL, the
templateName value is rawPmdlTemplate.

templatePath (required) A string that specifies the path
to the promotion template. Supported
templatePath values are order, item, and
shipping.

templateValues A string that specifies the template values
that are used as part of the promotion to
control its behavior. For rawPmdlTemplate
promotions, the string is the XML that
describes the promotion. See Understand
PMDL discount rules and Sample promotions
for more information.

Chapter 6
Create a promotion

6-5

Property Description

shippingMethods For shipping promotions, an array of strings
that specifies which shipping methods can be
used with the promotion. For example:

"shippingMethods": [
 "priorityShippingMethod",
 "groundShippingMethod"
]

cardIINRanges A numeric range that indicates an international
Issuer Identification Number (IIN) for credit
cards. The number consists of the first six
digits of a credit card, identifying the type
of card used. By setting this range, you
can present and apply promotions based
on payment type to customers. You can
use wildcards in this numeric property.
Note that IIN ranges are not applicable
when working with CyberSource and PayPal
payment gateways.

If the promotion is created successfully, the response body returned includes the ID for
the new promotion. For example:

{
 "id": "promo20014",
 "enabled": true,
 "type": 9,
 "displayName": "Spend $20 in Fan Favorites Get Order Discount"
}

For information on creating custom promotions with an external promotion system,
refer to the Use promotions from an external system.

View promotions created with the REST API
The Promotions list on the Marketing tab in the administration interface displays all
your store’s promotions, including promotions created with the Admin API.

Unlike promotions created with the UI, merchandisers can view and edit only basic
details for promotions created with the API.

The Marketing tab displays the following information about a promotion created with
the API:

• A message that explains this promotion was created with the API and that not all
promotion details are displayed here.

• The promotion’s name, description, start date, end date, priority, and whether
the promotion is enabled. These are the only details that you can edit on the
Marketing tab.

• The type of the promotion (item discount, order discount, or shipping discount).

Chapter 6
View promotions created with the REST API

6-6

• Details about coupon codes and the Add Coupon Code button.

You can use the Marketing tab to add and edit coupon codes for promotions created
with the API. See Manage Promotions for more information.

You cannot use the Copy button on the Marketing tab to copy a promotion created with
the API.

Sample promotions
This section includes sample promotions you can create with the Admin API.

The following promotions include sample request bodies for the POST /ccadmin/v1/
promotions endpoint:

• Get Order Discount

• Spend Y in X Get Order Discount

• Spend Y in X Get Item Discount

• Spend Y in X Get Shipping Discount

• Apply shipping discounts to individual shipping groups

You can find more sample promotions in Custom Promotions API How-To with
Examples on Oracle Cloud Customer Connect.

Get Order Discount

This promotion automatically discounts an entire order with no spend requirements.

The following example creates a promotion that discounts an order by 10%.

{
 "displayName":"Get 10% off your order",
 "description":"A get order discount promotion",
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2016-03-10T00:00:00.000-05:00",
 "endDate":"2116-03-30T00:00:00.000-05:00",
 "templatePath": "order",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": {"xml": "<pricing-model><qualifier/><offer>
 <discount-structure calculator-type="standard" discount-
type="percentOff"
 adjuster="10"/></offer></pricing-model>"}
}
}

Spend Y in X Get Order Discount

This promotion discounts an entire order when the shopper spends the specified
amount in the specified collections.

Chapter 6
Sample promotions

6-7

https://cloudcustomerconnect.oracle.com/posts/e43f65ba27
https://cloudcustomerconnect.oracle.com/posts/e43f65ba27

The following example creates a promotion that discounts an order by 10% when the
shopper spends $20 in the Summer Favorites collection, whose ID is cat60036.

{
 "displayName":"Spend $20 in Summer Favorites Get Order Discount",
 "description":"A sample spend y in x get order discount promotion",
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2016-03-10T00:00:00.000-05:00",
 "endDate":"2116-03-30T00:00:00.000-05:00",
 "templatePath": "order",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": {"xml": "<pricing-model><qualifier>
 <quantifier name="at-least" number="20"><collection-name>items</
collection-
 name><element-name>item</element-name><aggregator name="spendAmount"
 operation="total"/><comparator name="includes-any">
 <value>item.auxiliaryData.productRef.ancestorCategoryIds</value>
 <constant><data-type>java.util.Set</data-type><string-
value>cat60036</string-
 value></constant></comparator></quantifier></qualifier><offer>
 <discount-structure calculator-type="standard" discount-
type="percentOff"
 adjuster="10"></discount-structure></offer></pricing-model>"}
}
}

Spend Y in X Get Item Discount

This promotion discounts one or more items when a shopper spends the specified
amount in the specified collections. Unlike the Spend Y Get Order Discount promotion,
which looks only at the total amount spent on the order to determine whether the
customer qualifies for the promotion, this promotion examines the individual items in
the shopping cart.

The following example creates a promotion that discounts the product Beach Umbrella
by 50% when the shopper spends $10 in the Summer Favorites collection, whose ID is
cat60036.

{
 "displayName":"Spend $10 in Summer Favorites, get 50% off a beach
umbrella",
 "description":"A sample spend y in x get item discount promotion",
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2016-03-10T00:00:00.000-05:00",
 "endDate":"2116-03-30T00:00:00.000-05:00",
 "templatePath": "item",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": { "xml": {"<pricing-
model><qualifier><quantifier
 name="at-least" number="10"><collection-name>items</collection-
name><element-

Chapter 6
Sample promotions

6-8

 name>item</element-name><aggregator name="spendAmount"
 operation="total"/><comparator name="includes-any">
 <value>item.auxiliaryData.productRef.ancestorCategoryIds</value>
 <constant><data-type>java.util.Set</data-type><string-
 value>cat60036</string-value></constant></comparator>
 </quantifier></qualifier><offer><discount-structure
 calculator-type="standard" discount-type="percentOff"
 adjuster="50"><target><iterator name="up-to-and-including"
number="-1"
 sort-by="priceInfo.listPrice" sort-order="ascending">
 <collection-name>items</collection-name><element-name>item</element-
name>
 <aggregator name="quantity" operation="total"/>
 <comparator name="includes-any">
 <value>item.auxiliaryData.productRef.ancestorCategoryIds</value>
 <constant><data-type>java.util.Set</data-type>
 <string-value>cat60036</string-value></constant></comparator>
 </iterator></target></discount-structure></offer></pricing-model>"}
}
}

Spend Y in X Get Shipping Discount

This promotion offers free shipping when the shopper purchases items from a
specified collection.

The following example creates a promotion that offers free shipping when a shopper
buys anything from the Summer Favorites collection, whose ID is cat60036.

{
 "displayName":"Spend $10 in Summer Favorites, Get Free Shipping",
 "description":A sample spend y in x get shipping discount promotion,
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2016-03-10T00:00:00.000-05:00",
 "endDate":"2016-03-30T00:00:00.000-05:00",
 "templatePath": "shipping",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": {"xml": "<pricing-
model><qualifier><quantifier
 name=\"at-least\" number=\"10\"><collection-name>items</collection-
name>
 <element-name>item</element-name><aggregator name=\"spendAmount\"
 operation=\"total\"/><comparator name=\"includes-any\">
 <value>item.auxiliaryData.productRef.ancestorCategoryIds</value>
 <constant><data-type>java.util.Set</data-type>
 <string-value>cat60036</string-value></constant></comparator>
 </quantifier></qualifier> <offer><discount-structure calculator-
type=\"standard\"
 discount-type=\"fixedPrice\" adjuster=\"0\"></discount-structure>
 </offer></pricing-model>"}
}
}

Chapter 6
Sample promotions

6-9

Apply shipping discounts to individual shipping groups

Shipping discount promotions you create from templates in the administration interface
apply to a shopper's entire order. However, you can use the Admin API to create
promotions that discount shipping for individual, qualifying shipping groups. You can
create promotions that discount shipping when a shipping group reaches a value
threshold ("Spend $100, Get Free Ground Shipping") or when it contains specific items
("All Outerwear Ships Free").

The following sample request body creates a promotion that offers free ground
shipping for a shipping group when it contains anything from the Summer Favorites
collection, whose ID is cat60036.

{
 "displayName":"Free Shipping on All Your Summer Favorites",
 "description":"A sample shipping discount promotion for individual
shipping groups",
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2018-03-10T00:00:00.000-05:00",
 "endDate":"2018-03-30T00:00:00.000-05:00",
 "shippingMethods":"US48Ground",
 "templatePath": "shipping",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": {"xml":
 "<pricing-model>
 <qualifier>
 <quantifier name=\"at-least\" number=\"1\">
 <collection-name>shippingGroup.commerceItemRelationships</
collection-name>
 <element-name>item</element-name>
 <aggregator name=\"spendAmount\" operation=\"total\"/>
 <comparator name=\"includes-any\">
 <value>item.auxiliaryData.productRef.ancestorCategoryIds</
value>
 <constant>
 <data-type>java.util.Set</data-type>
 <string-value>cat60036</string-value>
 </constant>
 </comparator>
 </quantifier>
 </qualifier>
 <offer>
 <discount-structure calculator-type=\"standard\" discount-
type=\"fixedPrice\" adjuster=\"0.0\">
 </discount-structure>
 </offer>
 </pricing-model>"}}
}

Chapter 6
Sample promotions

6-10

The following sample request body creates a promotion that offers free two-day
shipping when a shipping group contains $100 in merchandise.

{
 "displayName":"Spend $100, Get Free 2 Day Shipping",
 "description":"A sample shipping discount promotion for individual
shipping groups",
 "priceListGroups":["defaultPriceGroup"],
 "enabled":true,
 "priority":"1",
 "startDate":"2018-03-10T00:00:00.000-05:00",
 "endDate":"2018-03-30T00:00:00.000-05:00",
 "shippingMethods":"US48TwoDay",
 "templatePath": "shipping",
 "templateName": "rawPmdlTemplate",
 "templateValues":{"pmdl": {"xml":
 "<pricing-model>
 <qualifier>
 <greater-than>
 <value>shippingGroup.priceInfo.itemSubtotal</value>
 <constant>
 <data-type>java.lang.Double</data-type>
 <string-value>100.0</string-value>
 </constant>
 </greater-than>
 </qualifier>
 <offer>
 <discount-structure calculator-type=\"standard\" discount-
type=\"fixedPrice\" adjuster=\"0.0\">
 </discount-structure>
 </offer>
 </pricing-model>"}}
}

Create custom properties for promotions
This section describes how to use the Oracle CX Commerce REST web services APIs
to add custom properties to promotions.

The Use the REST APIs section contains information you should be familiar with
before creating custom properties.

Understand item types

Like shopper profiles, commerce items and orders, promotions include a predefined
set of properties. Promotion properties are determined by an item type.

Promotions use the /itemTypes/{id} administration endpoint, where the ID is a
repository item type that supports customizable properties. When you use PUT with
the endpoint, the endpoint uses attributes whose names are configured for each item
type. In the case of custom properties for promotions, the itemType is promotion.

You cannot create additional item types, but you can add custom properties to
the promotion item type. For example, you could add a custom property that an
administrator uses to indicate additional promotion details.

Chapter 6
Create custom properties for promotions

6-11

View a promotion

Promotions can be created with the Oracle CX Commerce REST Admin APIs by using
the createPromotion endpoint, or updated with the updatePromotion endpoint. In both
cases, custom properties appear in the request body alongside the other predefined
properties.

You can use the Oracle CX Commerce Admin API to retrieve promotion information.
Issue a GET request to /ccadmin/v1/promotions to display all promotions. For
example:

GET /ccadmin/v1/promotions HTTP/1.1
Authorization: Bearer <access_token>

To view a specific promotion, issue a GET request to the /ccadmin/v1/promotions/
{id} endpoint, providing the ID of the promotion you want to view.

The response displays a list of promotions and a subset of properties for each
promotion. You can modify the values of these properties using the PUT /ccadmin/v1/
promotions/{id} endpoint on the administration server.

Create a promotion custom property

To add custom properties to a promotion, issue a PUT request to the /ccadmin/v1/
itemTypes/promotion endpoint on the administration server.

The Item Types resource in the administration API includes endpoints for creating and
working with custom properties of the item type. The items resource in the Admin
API includes endpoints that you can use to set the values of properties of individual
promotions, including custom properties that have been added to the promotion item
type.

The promotion item type uses some of the attributes used by all non-product item
types, which are type, uiEditorType, label, default, internalOnly, required,
and localizable. Note that the localizable attribute is rejected by other
item types. An attribute that is specific to the promotion item type is the
includeInDiscountInfoJson attribute. When you define a custom property for a
promotion, the includeInDiscountInfoJson attribute, which is set by default to
true, indicates if the custom property will be added automatically along with
the promotionId, promotionDesc, and promotionLevel values that are included in
discountInfo for each promotion. This attribute, which is a boolean attribute, can be
set when creating or updating the custom property.

When you add a custom property to the promotion item type, the property is
added to all promotions, including any new promotions. Note that changes to an
individual promotion must be selected for publication and then published. Custom
property definitions are automatically included in the publishing process. For additional
information on publishing, refer to Understand publishing.

The ID of a custom property must include the underscore character (_). This ensures
that the ID will not conflict with any properties that Commerce adds to promotions in
the future. The endpoint produces an error if you attempt to create a custom property
without an underscore in its ID.

Chapter 6
Create custom properties for promotions

6-12

The following is a sample request to create a custom property named
promotion_campaign. Note that shortText is the only value supported for the type
attribute of a promotion property:

{
 "specifications": [
 {
 "id": "promotion_campaign",
 "label": "Campaign",
 "type": "shortText",
 "required": false,
 "uiEditorType": "shortText",
 "localizable": false,
 "includeInDiscountInfoJson": true
 }
]
}

The following is an example response with the new promotion_campaign custom
property:

{
 "propertiesOrder": [
 "upsell",
 "global",
 "displayName",
 "isSiteRestricted",
 "filterForQualifierActedAsQualifier",
 "filterForQualifierDiscountedByAny",
 "template",
 "giveToAnonymousProfiles",
 "filterForQualifierOnSale",
 "beginUsable",
 "startDate",
 "filterForQualifierZeroPrices",
 "endDate",
 "priority",
 "endUsable",
 "relativeExpiration",
 "description",
 "timeUntilExpire",
 "filterForQualifierNegativePrices",
 "allowMultiple",
 "uses",
 "enabled",
 "pmdlVersion",
 "evaluationLimit",
 "pmdlRule",
 "promotion_campaign"
],
 "displayName": "Promotion",
 "links": [
 {
 "rel": "self",

Chapter 6
Create custom properties for promotions

6-13

 "href": "http://my.website.com:9080/ccadmin/v1/itemTypes/
promotion"
 }
],
 ...
 {
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "length": 254,
 "includeInDiscountInfoJson": true,
 "localizable": false,
 "label": "Campaign",
 "id": "promotion_campaign",
 "type": "shortText",
 "editableAttributes": [
 "internalOnly",
 "default",
 "includeInDiscountInfoJson",
 "label",
 "required"
],
 "required": false,
 "writable": true
 },
 {
 "internalOnly": false,
 "uiEditorType": "number",
 "default": 1,
 "length": 10,
 "includeInDiscountInfoJson": false,
 "localizable": false,
 "label": "Max uses per customer",
 "id": "uses",
 "type": "number",
 "editableAttributes": [
 "internalOnly",
 "default",
 "includeInDiscountInfoJson",
 "label",
 "required"
],
 "required": false,
 "writable": true
 },
 {
 "internalOnly": false,
 "uiEditorType": "date",
 "default": null,
 "length": 7,
 "includeInDiscountInfoJson": false,
 "localizable": false,
 "label": "Distribute starting",
 "id": "startDate",
 "type": "date",

Chapter 6
Create custom properties for promotions

6-14

 "editableAttributes": [
 "internalOnly",
 "default",
 "includeInDiscountInfoJson",
 "label",
 "required"
],
 "required": false,
 "writable": true
 }
]
}

The following is an example of a request for creating a promotion with the
promotion_campaign custom property:

{
 "priceListGroups" : ["defaultPriceGroup"],
 "endDate" : null,
 "templateName" : "tieredOrderDiscount",
 "displayName" : "10% off over $100",
 "templateValues" : {
 "discountStructure" : {
 "discount_details" : [{
 "spend_value" : "100.00",
 "discount_value" : "10.00"
 }],
 "discount_type_value" : "percentOff"
 }
 },
 "promotion_campaign" : "onlineOnly",
 "sites" : [],
 "priority" : 1,
 "promotionId" : null,
 "startDate" : null,
 "excludedPromotions" : [],
 "templatePath" : "order"
}

The following is the request response:

{
 "template": "/order/tieredOrderDiscount.pmdt",
 "dynamicPropertyMapLong": {},
 "endDate": null,
 "displayName": "10% off over $100",
 "templateValues": {
 "discountStructure": {
 "discount_details": [
 {
 "spend_value": "100.00",
 "discount_value": "10.00"
 }
],

Chapter 6
Create custom properties for promotions

6-15

 "discount_type_value": "percentOff"
 }
 },
 "description": null,
 "global": true,
 "sites": [],
 "type": 9,
 "enabled": true,
 "parentFolder": null,
 "priceListGroups": [
 "defaultPriceGroup"
],
 "includedPromotions": [],
 "dynamicPropertyMapString": {
 "promotion_campaign": "onlineOnly"
 },
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:9080/ccadmin/v1/promotions/promo10001"
 }
],
 "paymentTypes": [],
 "id": "promo10001",
 "filterForQualifierActedAsQualifier": null,
 "evaluationLimit": -1,
 "shippingMethods": [],
 "dynamicPropertyMapBigString": {},
 "priority": 1,
 "excludedPromotions": [],
 "repositoryId": "promo10001",
 "promotion_campaign": "onlineOnly",
 "stackingRule": null,
 "dynamicPropertyMapDouble": {},
 "startDate": null
}

Update an existing custom property

To update a custom property issue a PUT request to the /ccadmin/v1/itemTypes/
promotion endpoint on the administration server with the ID of the existing
custom property. The following example changes the label displayed for the
promotion_campaign property:

{
"id": "promotion", //this is the ID of the item-type item
"specifications": [
 {
 "id": "promotion_campaign", //this is the ID of the property
 "label": "Discount Source"
 }
]
}

Chapter 6
Create custom properties for promotions

6-16

Assign and manage coupons
The Commerce UI allows merchandisers to assign only a single coupon or coupon
batch to each promotion. However, you can use the Oracle CX Commerce Admin API
to associate multiple promotions with a coupon or coupon batch.

This section describes how to use the Oracle CX Commerce Admin API to associate
multiple promotions with a coupon or coupon batch.

Assign multiple promotions to a coupon or coupon batch

You must use the Oracle CX Commerce Admin API to assign multiple promotions to a
coupon or coupon batch. You cannot perform these tasks on the Marketing tab in the
administration interface.

You can assign promotions to a new coupon or batch when you create it or you can
update an existing coupon or batch so that it applies to multiple promotions:

• To assign multiple promotions to a coupon when you create it, issue a POST
request to /ccadmin/v1/claimables.

• To assign multiple promotions to a coupon batch when you create it, issue a POST
request to /ccadmin/v1/couponBatches.

• To associate promotions with an existing coupon, issue a PUT request to /
ccadmin/v1/claimables/{id}.

• To associate promotions with an existing coupon batch, issue a PUT request to /
ccadmin/v1/couponBatches/{id}.

Keep the following points in mind when assigning promotions to coupons and coupon
batches:

• The promotions you want to assign to a coupon or coupon batch must already
exist; simply specifying a promotion ID when you create or update a coupon or
coupon batch does not automatically create the promotion.

• To assign additional promotions to an existing coupon or coupon batch that
already has promotions assigned to it, include both the new promotions and the
existing promotions in the PUT request. To replace the existing promotions with
new promotions, include only the new promotions in the PUT request.

• Each coupon or coupon batch has a startDate property that specifies the date
and time the coupon or batch is available for use, for example, to be associated
with shopper profiles. You can specify a start date when you create a coupon or
coupon batch. By default, if a newly-created coupon or batch is associated with
only one promotion, its startDate value is the same as the startDate value of the
promotion. If a coupon or batch is associated with multiple promotions, the value
of its startDate property is null.

You can change the value of the startDate for a coupon or coupon batch with a PUT
request to /ccadmin/v1/claimables/{id} or /ccadmin/v1/couponBatches/{id}.

Note: If you update a promotion, either through the Marketing tab in the administration
interface or with the Admin API, the value of the startDate property of any coupons or
batches associated with the updated promotion is automatically reset to the startDate
value of the updated promotion. If you update a promotion whose child coupons have

Chapter 6
Assign and manage coupons

6-17

a different startDate value than the promotion itself, remember to reset the startDate
value of each child coupon or batch to avoid unexpected behavior.

The following example creates a new coupon that applies to two promotions:

POST /ccadmin/v1/claimables HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "promotions":[{"repositoryId":"promo10001"},
{"repositoryId":"promo10003"}],
 "id": "MYSALE",
 "maxUses": "3"
}

If the coupon is created successfully, the response body returned includes the ID for
the new coupon:

{
 "repositoryId": "MYSALE"
}

The following example shows a sample request that adds four promotions to an
existing coupon batch.

PUT /ccadmin/v1/couponBatches/{SAVE2a462ON50} HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
"promotions": [
 {"repositoryId": "promo10001"},
 {"repositoryId": "promo10002"},
 {"repositoryId": "promo10003"},
 {"repositoryId": "promo10006"}]
}

The following shows the response body returned:

{
 "id": "SAVE2a462ON50",
 "numberOfCoupons": 100,
 "maxUses": 8,
 "numberClaimed": 0,
 "prefix": "Summer Sale",
 "promotions": [
 {"repositoryId": "promo10001"},
 {"repositoryId": "promo10002"},
 {"repositoryId": "promo10003"},
 {"repositoryId": "promo10006"}
],
 "uses": 0,

Chapter 6
Assign and manage coupons

6-18

 "repositoryId": "SAVE2a462ON50"
}

Remove a coupon or coupon batch from a promotion

You remove a coupon or coupon batch from one or more promotions by issuing a
DELETE request:

• To remove a coupon from one or more promotions, issue a DELETE request to /
ccadmin/v1/claimables/{id}.

• To remove a coupon batch from one or more promotions, issue a DELETE request
to /ccadmin/v1/couponBatches/{id}.

The body of the request must include the IDs for the promotions to remove the coupon
from. If the coupon is still associated with one or more promotions after you issue
the DELETE request, it is not deleted but is no longer associated with the promotions
you specified in the request body. If the coupon is no longer associated with any
promotions, it is deleted. If you remove all a promotion’s coupons and do not add
another, shoppers will never be able to claim the promotion; it is automatically disabled
until you associate it with at least one coupon or coupon batch and then re-enable it in
one of the following ways:

• With the API: Issue a PUT request to either /ccadmin/v1/promotions/{id} whose
body includes "enabled": true.

• In the UI: On the Marketing tab, click the name of the promotion and on its details
page, select the Enabled checkbox.

The following example removes the coupon FreeSummer from the promotion whose ID
is promo10001:

DELETE /ccadmin/v1/claimables/FreeSummer?promotionId=promo10001

The following example removes the coupon batch SAVE4e49eON50 from the promotion
whose ID is promo10007:

DELETE /ccadmin/v1/couponBatches/SAVE4e49eON50?promotionId=promo10007

Set up promotion upsell messages
When working with promotions, you can configure promotion upsell messages for your
shoppers.

Promotion upsell messages let your shoppers know if they are close to qualifying or
have successfully qualified for a promotion. For example, if you have a promotion
that says “Buy Two Dog Bowls Get a Free Collar”, when a shopper has put one dog
bowl in their shopping cart, the upsell message might say “Buy another dog bowl and
you’ll get a free collar!” Once they have put two dog bowls in their cart, the message
changes to “Congratulations! You’re getting a free collar!”

Merchandisers can use the administration interface to select upsell messages to
associate with promotions. To use these upsell messages, they must be associated
with widgets so that they can be displayed in the appropriate locations.

Chapter 6
Set up promotion upsell messages

6-19

This section describes how to create message tags and promotional upsell widgets
using the REST API. For information on working with promotion upsell messages
using the administration interface, refer to Manage Promotions.

The following are the steps to create promotion upsell messages. Some of these steps
are, or can be, performed using the administration interface. You may not need to
perform all of these steps, they are provided for context:

• The merchandiser creates the promotions. Refer to Understand promotions for
information on working with and creating promotions.

• Create tags for the promotions, as described in Create message tags. Tags can
also be created using the administration interface, as described in Manage upsell
messages.

• Create the messages, as described in Manage upsell messages.

• Publish the new tags so that they can be accessed by widgets and promotions.
For additional information, refer to Understand publishing.

• Create a promotion upsell widget as described in Create promotion upsell widgets.

• Upload the widget as described in Create and load the extension bundle.

Understand promotion upsell messages

This section describes promotion upsell messages that are created using the REST
API. For information on using the administrative interface, refer to Manage upsell
messages. Upsell messages are displayed using messaging widgets that read
tags indicating which and where messages appear. For example, promotion upsell
messages can be displayed on the shopper’s checkout page, the site’s home page
and the product description page.

There are three types of promotion upsell messages:

• Not Qualified – This message indicates that the shopper has not yet qualified to
receive the promotion.

• Partially Qualified – This message indicates that the shopper is close to
obtaining a promotion. The message may include specific actions that the shopper
can take to obtain the promotion. You can provide placeholder variables that
allows you to specify the values needed for a shopper’s cart qualification. This
type of message also allows you to implement closeness qualifiers that you use to
identify criteria that trigger messages.

• Success – This message indicates that the shopper has reached the criteria
needed to receive the promotion.

Note that you can create only one of each type of upsell message per promotion.

Promotions are associated to an order once a pricing operation is initiated. During
the pricing operation, each promotion is evaluated. Once a promotion qualifies,
it is removed from further evaluation. Upsell messages are specific to individual
promotions and cannot be used across promotions.

Should the shopper no longer qualify for a promotion, the partially qualified message,
or the unqualified message if the cart does not meet the qualifying criteria, replaces
the success message.

A threshold level can be set for partially qualified messages. This allows you to set
a specific threshold which, when the shopper reaches the level, displays the partially
qualified message. This threshold is read by the pricing engine that uses the threshold

Chapter 6
Set up promotion upsell messages

6-20

as a boundary condition. For example, if you set a threshold for $30, once a shopper’s
cart reaches $30, the promotion becomes qualified and a qualified upsell message is
presented.

If the promotion has the same tag for all of the upsell messages, the partially qualified
message will replace the not qualified message when the closeness qualifier fires. The
success message will replace the partially qualified message when the promotion is
applied, and the partially qualified message will replace the success message if the
shopper no longer qualifies for the promotion. The not qualified message will replace
the partially qualified message if the closeness qualifier no longer fires.

For additional information on promotion upsell messages, refer to Manage upsell
messages.

Use the promotion upsell API

You can set up promotion upsell messages using the administration interface, as
described in Manage upsell messages, or using the REST API with the endpoints
listed in this section.

Create message tags

Messages use tags, in conjunction with promotion upsell messaging widgets, to
indicate where an upsell message should appear on the storefront. A merchandiser
uses the administration interface to select the tags associated with each message. A
single upsell message can be associated with multiple tags.

To create or update message tags, use the messageTags API by issuing a POST
command in /ccadmin/v1/messageTags. Use the message tag endpoints to work
with tag item types.

Message tag endpoints allow you to manage tags, and include the following:

• createMessageTag

• getMessageTag

• updateMessageTag

• listMessageTags

• deleteMessageTag

Refer to the API documentation for additional information on using these endpoints.

Use the createMessageTag endpoint to create and name a tag. The following example
creates a tag named FREE_SHIPPING_HOMEPAGE_BANNER, indicating that this
tag displays a message on the banner of the home page. When you create tags,
name them with a term or phrase that will help you identify their use. For example,
a tag named “FREE_SHIPPING_HOMEPAGE_BANNER” indicates that the message
appears in the banner on the home page, or “CART_UPSELL” indicates that the
message is displayed on the shopper’s cart:

// createMessageTag:
{
 "name": "FREE_SHIPPING_HOMEPAGE_BANNER"
}
// returns:
{
 "repositoryId" : "mt200006",

Chapter 6
Set up promotion upsell messages

6-21

 "name" : "FREE_SHIPPING_HOMEPAGE_BANNER"
}

Note: Message tags are case sensitive. Also, when naming your message tags, do
not use the following characters: < >, { }, {{ }} or " ".

You must remember to publish your new tags so that promotions and widgets can
reference them. For information on publishing, refer to Understand publishing.

Work with promotion upsell messages

When you create a new message, provide a message and a tag value. The tag value
is the name of the tag that you created and the message value is the text of the
message that is displayed to the shopper. This text can be localized.

For example:

{
 "unqualifiedMessages": [
 { "message": "Spend $100 and get free shipping!",
 "tags": [
 { "name": "CART_UPSELL" },
] }]
 }

The process of creating or updating a message differs only that you provide an
existing message ID if updating.

Note: If you update a promotion without providing an ID, the system will create a new
message, overwriting the message you are trying to update.

The following example updates an unqualified message with new text and
creates an additional tag:
// Change any of the contents EXCEPT IDs.
// NOTE: The presence of the message ID indicates this is an existing
message.
// This example changes the message, and adds a tag named
"LOYALTY_CART".
{
 "unqualifiedMessages": [
 { "repositoryId": "tm100003"
 "message": " Spend $100 or 10 loyalty points and get free
shipping!",
 "tags": [
 { “repositoryId: “tm100003”
 "name": "FREE_SHIPPING_HOMEPAGE_BANNER" },
 { "name": "LOYALTY_CART" }] }]
 }

Work with promotion endpoints

Use the following promotion endpoints to set up and configure upsell messages with
closeness qualifiers and promotions:

• getPromotion – This endpoint displays the upsell messages.

Chapter 6
Set up promotion upsell messages

6-22

• updatePromotion – This endpoint allows you to update both new and existing
messages, as well as apply tags. There are three properties available
on promotions that are relevant to upsell messages: unqualifiedMessages,
qualifiedMessages, and closenessQualifier.

Use the updatePromotion endpoint to manage promotion messages by issuing a
PUT command to /ccadmin/v1/promotions/{ID} to initiate a call for a specific
promotion.

Use placeholder variables

Partially qualified messages can use placeholder variables to indicate where a value
should be inserted. Placeholder variables are identified with double brackets ({{ }}).
For example, if the shopper has put two dog bowls in the cart, you could present a
message like “Buy 2 more dog bowls and get a free collar!” To do this, you would
create the following message: “Buy {{QuantityStillNeeded}} more dog
bowls and get a free collar!” Note that formatting should be put outside of the
place holder brackets. Putting formatting tags within the double brackets will result in
an error.

Be careful when crafting your message and avoid plural or singular tenses. You cannot
create messages that change based on tense. For example, if you say “Buy 1 more
bowl!” when you work with more than one object, the message would be “Buy 2 more
bowl!” You messages should be more generic, for example, “You’ve almost got all of
your bowls! You need X more to get free shipping!”

These variables, which are computed during the pricing operation, are as follows:

• {{AmountSpent}} – The shopper’s current qualifying amount spent.

• {{AmountStillNeeded}} – Identifies the amount still needed by the shopper to
qualify for the promotion.

• {{QuantityBought}} – Identifies the number of qualifying items in the shopper’s
cart.

• {{QuantityStillNeeded}} – Indicates the minimum number of items needed in
the shopper’s cart to qualify for the promotion.

Note that this list contains the accepted place holders. Any other placeholder variables
that you create, even if you use the curly braces ({{ }}), is treated as literal text and
will be seen by your shoppers.

When you create a message, you can indicate where you want a dynamic variable
by using the dynamic variable-specific syntax. When a widget queries for messages,
these numbers are calculated dynamically and then returned in the message. For
example, to create the partially qualified message “You’re almost there! Spend X and
you’ll get free shipping!” you would provide the message ID, and the necessary tags.

{
 "closenessMessages":
 { "repositoryId": "tm100003"
 "message" : “You’re almost there! Spend {{AmountStillNeeded}}, and
you’ll get free shipping!",
 "tags": [
 { "name": "FREE_SHIPPING_HOMEPAGE_BANNER" }]}
}

Chapter 6
Set up promotion upsell messages

6-23

Understand closeness qualifiers

Closeness qualifiers set the boundaries on how close a shopper is to qualifying for
a promotion by holding a condition value and the corresponding message for that
condition. Use the updatePromotion endpoint to create a closeness qualifier. The
following example creates a closeness qualifier that displays the partially qualified
message, also known as a closeness message, when the shopper’s cart hits $35:

{
 "closenessQualifiers" : [
 {
 "closenessMessages" : [
 {
 "message" : " You’re almost there! Spend
{{AmountStillNeeded}}, and you’ll
 get free shipping!"",
 "tags" : [{"name" : "FREE_SHIPPING_HOMEPAGE_BANNER"}]
 }] }],
}

The process of creating or updating a closeness qualifier differs only that you provide
an existing ID if updating.

To delete a qualifying condition, pass an empty array for the closenessQualifiers
property value.

The following is an example getPromotion call:

...
{
 "unqualifiedMessages": [
 {
 "repositoryId": "tm100001",
 "text": "Spend $100 and get free shipping!",
 "tags": []
 }
],
 "qualifiedMessages": [
 {
 "repositoryId": "tm100003",
 "text": "Congratulations! This order is shipping for free!",
 "tags": [
 { "name": "CART_UPSELL" },
 { "name": "FREE_SHIPPING_HOMEPAGE_BANNER" }
]
 }
],
 "closenessQualifiers": [
 {
 "repositoryId": "2015",
 "closenessMessages": [
 {
 "text": "You’re almost there! Spend {{AmountStillNeeded}} and
you’ll
 get free shipping!",

Chapter 6
Set up promotion upsell messages

6-24

 "tags": [
 { "name": "FREE_SHIPPING_HOMEPAGE_BANNER" }
]
 }
]
 }
],
 "templateValues" : [
 {"customer_alert_spend_value" : 35 }]
 }
 ...

The following is a list of the promotion templates that support closeness qualifiers
and their threshold value names in the templateValues property. For information
on working with promotion templates, refer to Create a promotion. Threshold value
names are required when providing input for closeness qualifiers. The following table
describes the threshold value names used by each promotion template:

Promotion Template Threshold Value Name

item/bogo closeness_value

item/bogoSortBy closeness_value

item/buyItemXGetGWP closeness_value

item/spendYGetGWP customer_alert_spend_value

item/spendYInXGetItemDiscount customer_alert_spend_value

item/spendYInXGetItemDiscountSortBy customer_alert_spend_value

order/buyXGetOrderDiscount closeness_value

order/spendYGetOrderDiscount spend_close_value

order/spendYInXGetOrderDiscount customer_alert_spend_value

order/tieredOrderDiscount spend_close_value

shipping/buyXGetShippingDiscount closeness_value

shipping/spendYGetShippingDiscount spend_close_value

shipping/spendYInXGetShippingDiscount customer_alert_spend_value

Work with order store endpoints

The order store endpoint payloads contain the upsell messages. This includes
priceOrder, updateCurrentProfileOrder, updateOrder and createOrder endpoints.

Each pricing endpoint response contains a list of promotion upsell messages that
contain a text and a tags property. The text property sets the message value, while the
tags property indicates the name or names of the associated tags. For example:

},
 "pricingMessages": {
 "promotionUpsellMessages":[
 {
 "text":"Spend $45 get free shipping!",
 "tags":["BANNER_UPSELL", "FOOTER_UPSELL"]
 },
 {
 "text":"You’re almost there! Spend $100 and you’ll get free
shipping!",

Chapter 6
Set up promotion upsell messages

6-25

 "tags":["CART_UPSELL"]
 },
 {
 "text":"Add one more dog bowl and get a free collar!",
 "tags":["CART_UPSELL"]
 },
 {
 "text":"Buy any 2 All Natural Chew Toys and get 50%!",
 "tags":["CART_UPSELL"]
 }
]},

You can use the /ccstore/v1/orders/getUpsellMessages call to return
unqualified or success messages. For example:

{
 "promotionUpsellMessages":[
 {
 "text":"Spend $45 and you’ll get free shipping!",
 "tags":["CART_UPSELL"]
 },
 {
 "text":"Congratulations! You have qualified for a free collar!",
 "tags":["FREE_SHIPPING_HOMEPAGE_BANNER","CART_UPSELL"]
 }]
 }

Create promotion upsell widgets

To display your upsell messages, you create promotion upsell widgets that are used
on page layouts. The promotion upsell widget can be added to any layout or page
where messages are needed. You can also use multiple instances of the widget on
different or the same pages. Messages are available to promotion messaging widgets
using tags that are associated with the messages. This allows the relevant promotion
message to be displayed in the correct location.

A messaging widget allows you to display particular upsell messages. Messages use
the tags that you created earlier in Create message tags to communicate with the
widget. Using widgets allows you to select the available tags, as well as specify a
threshold for how many messages to display.

The widget uses the tags field to identify the message that will be displayed by the
widget. The field can contain a single tag name, or a comma-separated list of tag
names. The maximum number of messages that can be displayed is configured using
the messageLimit field.

If there are widgets configured to display promotion messages with the same tag on
more than one location on storefront layout, the system cannot display a different
message from the sequenced list in each location. You must ensure that your
messages use different tags.

The promotion upsell widget uses the promotion upsell container view model, which
holds all of the upsell messages obtained from processing and getUpsellMessages
endpoint calls. The widget instances interact with the view model to get messages
with matching tags. This view model also makes endpoint calls to get non-qualified

Chapter 6
Set up promotion upsell messages

6-26

messages from the getUpsellMessage endpoint. The cart view model also populates
the promotion upsell container view model with promotion messages that come from
pricing calls.

A promotionUpsell widget could be created in a way similar to the following example.
The widget.json file might contain the following:

{
 "config": {
 "tags":"CART_UPSELL",
 "messageLimit":"1"
 },
 "availableToAllPages": true,
 "global": false,
 "globalEnabled": false,
 "i18nresources": "promotionUpsell",
 "imports": [],
 "javascript": "promotion-upsell",
 "jsEditable": false,
 "name": "Promotion Upsell Widget",
 "version": 1
}

The config.json file might contain the following:

{
 "widgetDescriptorName": "promotionUpsell",
 "properties": [
 {
 "id": "tags",
 "type": "stringType",
 "name": "tags",
 "helpTextResourceId": "tagsHelpText",
 "labelResourceId": "tagsLabel",
 "defaultValue": ""
 },
 {
 "id": "messageLimit",
 "type": "stringType",
 "name": "messageLimit",
 "helpTextResourceId": "messageLimitHelpText",
 "labelResourceId": "messageLimitLabel",
 "defaultValue": "1",
 "required": true
 }
]
}

The widget’s JavaScript might be similar to the following, which you could store in a file
named promotion-upsell.js:

define(
//---
// DEPENDENCIES

Chapter 6
Set up promotion upsell messages

6-27

//---
 ['knockout', 'pubsub', 'viewModels/promotionUpsellContainer'],
//---
// MODULE DEFINITION
//---
 function(ko, pubSub, promotionUpsellContainer) {
 "use strict";
 return {
 /** Widget root element ID */
 WIDGET_ID: 'promotionUpsell',
 onLoad : function(widget) {
 widget.messageLimit = widget.messageLimit && null !=
widget.messageLimit()
 && widget.messageLimit != "" ? parseInt(widget.messageLimit()) :
 parseInt("1");
 widget.promotionUpsellContainer =
promotionUpsellContainer.getInstance();
 widget.widgetTags = widget.tags && null != widget.tags() &&
widget.tags()
 != "" ? widget.tags().split(","):[];
 widget.promotionUpsellMessages = ko.pureComputed(function() {
 var promoMessages = widget.promotionUpsellContainer.
 promotionUpsellMessages().filter(function(message, index) {
 var widget = this;
 var displayMessage = false;
 widget.widgetTags.forEach(function(widgetTags) {
 for (var i=0; i<message.tags.length; i++) {
 if(message.tags[i] == widgetTags) {
 displayMessage = true;
 break;
 }
 }
 });
 return displayMessage;
 }, widget);
 return promoMessages.slice(0,widget.messageLimit);
 }).extend({ rateLimit: 500 });
 widget.items = ko.computed(function(){
 return widget.cart().allItems();
 }).extend({ rateLimit: 1000 });
 widget.getNonQualifiedMessages = function () {
 if (widget.cart().items().length == 0) {
 widget.promotionUpsellContainer.getNonQualifiedMessages();
 }
 };
 widget.getNonQualifiedMessagesSubsciption = function () {
 widget.items.subscribe(function(newVal) {
 if (newVal.length == 0) {
 widget.promotionUpsellContainer.getNonQualifiedMessages();
 }
 });
 };
 if(!widget.promotionUpsellContainer.
 isNonQualifiedMessagesSubscribedToQuantity) {

Chapter 6
Set up promotion upsell messages

6-28

widget.promotionUpsellContainer.isNonQualifiedMessagesSubscribedToQuanti
ty
 = true;
 widget.getNonQualifiedMessages();
 $.Topic(pubSub.topicNames.PAGE_LAYOUT_UPDATED).subscribe(widget.
 getNonQualifiedMessagesSubsciption);
 $.Topic(pubSub.topicNames.USER_LOGIN_SUCCESSFUL).subscribe(widget
.
 getNonQualifiedMessages);
 $.Topic(pubSub.topicNames.USER_LOGOUT_SUCCESSFUL).subscribe(widge
t.
 getNonQualifiedMessages);
 $.Topic(pubSub.topicNames.USER_AUTO_LOGIN_SUCCESSFUL).subscribe(w
idget.
 getNonQualifiedMessages);
 }
 }
 }
 }
);

The locale resources, which are part of the configuration and provide text, might be
similar to this:

{
 "resources": {
 "tagsHelpText":"Add the list of tags that this widget uses to
display promotions.",
 "tagsLabel":"List of tags this this widget uses to display
promotions.",
 "messageLimitLabel":"Message Limit Label",
 "messageLimitHelpText":"The HelpText message limit."
 }
}

The display.template file might contain the following:

<div id="CC-promotionUpsell">
 <!-- ko foreach : {data: $data.promotionUpsellMessages(), as:
'message'}-->
 <div class="cc-rich-text" data-bind="html: message.text"/>
 <!-- /ko -->
</div>

If you have multiple widgets you must query whatever mechanism you use for storing
the results of the API call for that specific widget.

Chapter 6
Set up promotion upsell messages

6-29

7
Manage Multiple Inventory Locations

By default, Oracle CX Commerce maintains one set of inventory values for each
product or SKU. You may want to maintain multiple inventory locations so that you can
provide inventory information to shoppers.

This section describes how to use the Admin API to create locations and manage
location-specific inventory data. For example, you may currently have multiple
international sites that are supplied from a centralized inventory warehouse, but now
you would like to have multiple inventory locations that service specific sites so that
your Scottish site accesses a Scottish distribution warehouse and your German-based
site accesses a German-based distribution warehouse.

An inventory record uses a location ID (locationId) that associates it with a location
with the same location ID (locationId) value. A site is associated with the location
when its location inventory ID (inventoryLocationId) matches the location’s location
ID (locationId).

Note that the inventory’s location ID does not need to match a location’s location ID.
You can create an ID that allows you to manage inventory data. Multiple inventories
allow you to provide different inventory values per site, rather than a single inventory,
and help you to split inventory data.

Note that any changes you make to inventory are reflected on the storefront
immediately. However, when you create or modify a location, you must publish these
changes before they appear on the storefront. Also, note that the Store API has
endpoints for retrieving locations and inventory data, but not for creating or modifying
these resources.

Access inventory data
You can use the getInventory endpoint to retrieve inventory information for a specific
product or SKU.

The getInventory endpoint takes a type query parameter to specify the item type.
The value of this parameter must be product (for a product) or variant (for a SKU).
The default is variant, so if you omit the parameter, Oracle CX Commerce assumes
that the item is a SKU.

For example:

GET /ccadmin/v1/inventories/xprod1004?type=product HTTP 1.1
Authorization: Bearer <access_token>

The response body includes inventory information for the product as a whole, plus
information about each individual SKU:

{
 "id": "xprod1004",
 "stockStatus": "partialAvailability",

7-1

 "totalStockLevel": 210,
 "links": [
 {
 "rel": "self",
 "href":"https://myserver.example.com:7002/ccadmin/v1/
 inventories/xprod1004?type=product"
 }
],
 "childSKUs": [
 {
 "preorderThreshold": 0,
 "stockThreshold": 0,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": null,
 "preorderLevel": 0,
 "skuNumber": "xsku5014",
 "availableToPromise": null,
 "translations": null,
 "skuId": "xsku5014",
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": "Titanium Analog Watch",
 "stockLevel": 100
 },
 {
 "preorderThreshold": 0,
 "stockThreshold": 0,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": null,
 "preorderLevel": 0,
 "skuNumber": "xsku5015",
 "availableToPromise": null,
 "translations": null,
 "skuId": "xsku5015",
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": "Silver Plated Analog Watch",
 "stockLevel": 100
 },
 {
 "preorderThreshold": 0,
 "stockThreshold": 20,
 "availabilityStatus": 1001,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "outOfStock",
 "backorderLevel": 0,
 "locationId": null,
 "preorderLevel": 0,
 "skuNumber": "xsku5016",

Chapter 7
Access inventory data

7-2

 "availableToPromise": null,
 "translations": null,
 "skuId": "xsku5016",
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": "Brushed Steel Analog Watch",
 "stockLevel": 10
 }
],
 "displayName": "Analog Watch"
}

If you specify a SKU, you can omit the type parameter. For example:

GET /ccadmin/v1/inventories/xsku5014 HTTP 1.1
Authorization: Bearer <access_token>

The response contains inventory information about the SKU only:

{
 "preorderThreshold": 0,
 "stockThreshold": 0,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": null,
 "links": [
 {
 "rel": "self",
 "href": "https://myserver.example.com:7002/ccadmin/v1/
inventories/xsku5014"
 }
],
 "preorderLevel": 0,
 "skuNumber": "xsku5014",
 "availableToPromise": null,
 "translations": null,
 "skuId": "xsku5014",
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": "Titanium Analog Watch",
 "stockLevel": 100
}

Update inventory

You can use the updateInventory endpoint to modify the inventory of a specific SKU.
In the request body, specify new values for the properties you want to update. For
example:

PUT /ccadmin/v1/inventories/xsku5014 HTTP 1.1
Authorization: Bearer <access_token>

Chapter 7
Access inventory data

7-3

{
 "stockThreshold": 15,
 "stockLevel": 200
}

Create locations
To maintain inventory for individual physical stores or web sites, you must represent
them in Oracle CX Commerce by creating new locations.

Create physical locations

Use the createLocation endpoint to create a new physical location. You specify
information about the location in the body of the request. The following example
creates a physical location for a warehouse:

POST /ccadmin/v1/locations HTTP/1.1
Authorization: Bearer <access_token>

{
 "externalLocationId": "107",
 "locationId": "Warehouse13",
 "address1": "221 Third Street",
 "country": "USA",
 "city": "Cambridge",
 "faxNumber": "(617) 386-1200",
 "postalCode": "02141",
 "phoneNumber": "(617) 386-1200",
 "email": "wh13@example.com",
 "stateAddress": "MA",
 "county": "Middlesex",
 "name": "Warehouse 13 -- 02141",
 "longitude": -71.0901,
 "latitude": 42.3629
}

You must supply a value for the name property. If you omit locationId (the property
used to identify the location in REST API calls), a value is automatically supplied. If
you omit other properties, their values will be null.

The endpoint returns the location information in the response body:

{
 "country": "USA",
 "distance": null,
 "city": "Cambridge",
 "endDate": null,
 "postalCode": "02141",
 "latitude": 42.3629,
 "county": "Middlesex",
 "stateAddress": "MA",
 "pickUp": false,
 "sites": [],

Chapter 7
Create locations

7-4

 "type": "location",
 "inventory": false,
 "locationId": "Warehouse13",
 "email": "wh13@example.com",
 "longitude": -71.0901,
 "address3": null,
 "address2": null,
 "address1": "221 Third Street",
 "externalLocationId": "107",
 "phoneNumber": "(617) 386-1200",
 "siteGroups": [],
 "repositoryId": "Warehouse13",
 "name": "Warehouse 13 -- 02141",
 "faxNumber": "(617) 386-1200",
 "startDate": null
}

Understand site inventory locations

When a shopper accesses a Product Display page, the page displays the item’s stock
level at the site’s specified inventory location. An inventory check is also made when a
shopper adds to or decreases the amount of an item in a cart.

Location-based inventory allows each of your web sites to be served by its own
inventory. Once you have mapped a specific web site to an inventory, transactions will
display the relevant inventory levels. Oracle CX Commerce identifies a site’s inventory
location and uses that location throughout the shopper’s session. This means that any
inventory checks made during the session are location-aware. For example, when an
order is submitted, the inventory decrement occurs on the inventory linked to the site.

A site can be mapped to a default inventory location. If no inventory mapping for a site
is detected, the system uses the default inventory location.

The shipFrom location based on the storefront’s inventory location is used to calculate
shipping costs. A hard goods shipping group is created when a cart item is identified
as being shipped to a physical address.

Create a web site inventory location

Before you can create an inventory location for your site, you must create or update
a site to use the inventoryLocationId property. Use the site endpoint to set a default
inventory location ID for a custom site that contains the inventoryLocationId. For
example:

POST /ccadmin/v1/sites HTTP/1.1
Authorization: Bearer <access_token>

{
 "properties": {
 "repositoryId": "CustomSite2",
 "name": "Custom Site 2",
 "defaultCatalog": {
 "repositoryId": "ClassicalMoviesCatalog"
 },
 "inventoryLocationId": "WH12",
 "enabled": true

Chapter 7
Create locations

7-5

 }
}

Once you have the site configured with the inventory location ID, you can create a
location. Set the site’s location ID and include the custom site in the sites array:

POST /ccadmin/v1/locations HTTP/1.1
Authorization: Bearer <access_token>

{
 "country": "USA",
 "address3": null,
 "endDate": "2017-04-25",
 "address2": "Building 4",
 "city": "Glen Allen",
 "address1": "4870 Sadler Rd.",
 "latitude": 37.6659833,
 "postalCode": "23060",
 "county": "Henrico",
 "stateAddress": "VA",
 "externalLocationId": "187",
 "phoneNumber": "(617) 637-8687",
 "locationId": "Warehouse12",
 "name": "Warehouse 12 --23060",
 "faxNumber": "(617) 386-1200",
 "startDate": "2016-04-25",
 "email": "wh12@example.com",
 "longitude": -77.5063697
}

You can determine when and if inventory levels are decremented by identifying
the specific inventory location for each SKU or product. The default inventory is
decremented if you do not configure an inventory location.

Note the following:

• A site that contains a null inventoryLocationId returns records from a null
inventory

• A site that contains an inventoryLocationId that is mapped to a location but
not mapped to an inventory record empties inventory records with a status of
IN_STOCK.

Once the locations are defined, you must associate an inventory record with a location
as described in the Create inventory data for locations section.

List locations

Use the listLocations endpoint to retrieve a listing of all locations:

GET /ccadmin/v1/locations HTTP/1.1
Authorization: Bearer <access_token>

You can use query parameters to restrict the set of locations returned.

Chapter 7
Create locations

7-6

Modify a location

Use the updateLocation endpoint to modify a location:

PUT /ccadmin/v1/locations/Warehouse13 HTTP/1.1
Authorization: Bearer <access_token>

{"postalCode": "02141"}

Delete a location

Use the deleteLocation endpoint to delete a location:

DELETE /ccadmin/v1/locations/Warehouse13 HTTP/1.1
Authorization: Bearer <access_token>

Delete a location currently in use

If you remove active locations from a custom site, the following may occur:

• Returns will no longer be possible for removed locations

• The location ID property is not removed; references to it will remain on your site /
inventory

• The Ship From address defaults to the site’s default

• Historic orders will reference the location used when the order was placed

Create inventory data for locations
You can use the createInventory endpoint to set inventory values for a specific SKU
at a location.

When you create a new inventory location, it initially has no inventory data associated
with it. You can set inventory values for a SKU at the location. For example, the
following request specifies inventory data for the location created in the previous
section:

POST /ccadmin/v1/inventories HTTP/1.1
Authorization: Bearer <access_token>

{
 "locationId": "Warehouse13",
 "id": "xsku5014",
 "stockThreshold": 10,
 "stockLevel": 75
}

The endpoint includes the inventory data in the response body:

{
 "locationInventoryInfo": [
 {

Chapter 7
Create inventory data for locations

7-7

 "preorderThreshold": 0,
 "stockThreshold": 10,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": "Warehouse13",
 "preorderLevel": 0,
 "skuNumber": null,
 "availableToPromise": null,
 "translations": null,
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": null,
 "stockLevel": 75
 }
],
 "links": [
 {
 "rel": "self",
 "href": "https://myserver.example.com:7002/ccadmin/v1/
inventories"
 }
],
 "skuNumber": "xsku5014",
 "skuId": "xsku5014",
 "displayName": "Titanium Analog Watch"
}

Notice that the response encapsulates the returned inventory data in a
locationInventoryInfo array object. This object type is used whenever inventory
is returned for a non-default location, and enables returning inventory for multiple
locations. (See Retrieve inventory data for locations for an example of returning
inventory for multiple locations.)

Update inventory for a location

You can use the updateInventory endpoint to modify the inventory of a specific SKU
at a specific location. You specify the location and the updated inventory data in the
request body. For example:

PUT /ccadmin/v1/inventories/xsku5014 HTTP/1.1
Authorization: Bearer <access_token>

{
 "locationId": "Warehouse13",
 "stockThreshold": 20,
 "stockLevel": 200
}

Delete inventory for a location

You can use the deleteInventory endpoint to delete the inventory of a specific SKU at
a specific location. This endpoint takes two query parameters:

Chapter 7
Create inventory data for locations

7-8

• A type query parameter to specify the item type. The value of this parameter must
be product (for a product) or variant (for a SKU). The default is variant, so if
you omit the parameter, Oracle Commerce assumes that the item is a SKU.

• An optional locationId query parameter to specify the location by its ID.

For example:

DELETE /ccadmin/v1/inventories/xsku5014?locationId=Warehouse13 HTTP/1.1
Authorization: Bearer <access_token>

Retrieve inventory data for locations
To retrieve inventory at specific locations, you use the getInventory endpoint with the
locationIds query parameter.

The locationIds query parameter allows you to specify one or more location IDs as a
comma-separated list. For example:

GET /ccadmin/v1/inventories/xsku5014?
locationIds=Warehouse13,Warehouse11 HTTP/1.1
Authorization: Bearer <access_token>

The response includes a locationInventoryInfo array in which each entry is the
inventory for one of the locations specified in the URL. For example:

{
 "locationInventoryInfo": [
 {
 "preorderThreshold": 0,
 "stockThreshold": 20,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": "Warehouse13",
 "preorderLevel": 0,
 "skuNumber": null,
 "availableToPromise": null,
 "translations": null,
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": null,
 "stockLevel": 200
 },
 {
 "preorderThreshold": 0,
 "stockThreshold": 5,
 "availabilityStatus": 1000,
 "backorderThreshold": 0,
 "availabilityStatusMsg": "inStock",
 "backorderLevel": 0,
 "locationId": "Warehouse11",
 "preorderLevel": 0,

Chapter 7
Retrieve inventory data for locations

7-9

 "skuNumber": null,
 "availableToPromise": null,
 "translations": null,
 "availabilityDate": null,
 "inventoryId": null,
 "displayName": null,
 "stockLevel": 22
 }
],
 "links": [
 {
 "rel": "self",
 "href": "https://myserver.example.com:7002/ccadmin/v1/
inventories/xsku5014?
 locationIds=Warehouse13,Warehouse11"
 }
],
 "skuNumber": "xsku5014",
 "skuId": "xsku5014",
 "displayName": "Titanium Analog Watch"
}

You can include inventory for the default inventory location as well by setting
the includeDefaultLocationInventory query parameter to true. For example, the
following call returns inventory for the default location as well as the Warehouse13
location:

GET /ccadmin/v1/inventories/xsku5014?
 locationIds=Warehouse13&includeDefaultLocationInventory=true HTTP/1.1
Authorization: Bearer <access_token>

Note that if you do not use the locationIds parameter to specify a non-default
location, inventory for the default location is returned. This is the case even if you
do not set includeDefaultLocationInventory to true. If you do use locationIds,
however, inventory for the default location is omitted unless you explicitly set
includeDefaultLocationInventory to true.

Set an inventory record for a SKU using the location’s locationId. For example:

POST /ccadmin/v1/inventories/ HTTP/1.1
Authorization: Bearer <access_token>

// IN STOCK

{
 "id": "Sku_13D",
 "locationId": "Warehouse13",
 "type": "variant",
 "stockThreshold": 5,
 "stockLevel": 3000,
 "availabilityDate": null,
 "preorderLevel": 0,
 "preorderThreshold": 0,
 "backorderLevel": 0,

Chapter 7
Retrieve inventory data for locations

7-10

 "backorderThreshold": 0
}

// OUT OF STOCK

{
 "id": "Sku_15DE",
 "locationId": "Warehouse13",
 "type": "variant",
 "stockThreshold": 5,
 "stockLevel": 1,
 "availabilityDate": null,
 "preorderLevel": 0,
 "preorderThreshold": 0,
 "backorderLevel": 0,
 "backorderThreshold": 0
}

Chapter 7
Retrieve inventory data for locations

7-11

8
Manage Inventory for Preorders and
Backorders

To market and accept orders for items that are not yet available to ship, you must use
the Admin API to enable backorders and preorders.

This section describes how to manage backorder and preorder inventory data.

Understand inventory
This section describes the data that Commerce uses to track inventory.

Commerce maintains the following inventory data that determines the availability of
each SKU:

• stockLevel is the number that can be purchased.

• preorderLevel is the number that can be preordered.

• backorderLevel is the number that can be backordered.

If stockLevel is not 0, then the SKU is in stock.

If stockLevel is 0 but backorderLevel is not 0, then the SKU is backorderable.

If stockLevel and backorderLevel are both 0, but preorderLevel is not 0, then the
SKU is preorderable.

If all three levels are 0, then the SKU is out of stock.

In addition to inventory levels, Commerce maintains the following inventory data for
each SKU:

• stockThreshold is the threshold at which the status of the SKU changes to out of
stock.

• preorderThreshold is the threshold at which the status of the SKU changes from
preordered to out of stock.

• backorderThreshold is the threshold at which the status of the SKU changes from
backordered to out of stock.

• availabilityDate is the date on which the SKU becomes available.

• availabilityStatus is the status of the SKU, for example, preordered,
backordered, or out of stock.

Enable preorder and backorder functionality
You can use the updateInventoryConfiguration endpoint to enable preorder and
backorder functionality.

8-1

By default, preorder and backorder functionality are disabled in Commerce. This
section describes how to use the updateInventoryConfiguration endpoint to enable
preorder and backorder functionality. Preorders and backorders are enabled and
disabled at the same time with the preorderBackorderEnabled property. You cannot
enable or disable them separately.

The following sample request enables backorder and preorder functionality:

PUT /ccadmin/v1/merchant/inventoryConfiguration HTTP/1.1
Authorization: Bearer <access_token>

{
 "preorderBackorderEnabled": true
}

Access and update inventory data
This section describes how to set backorder and preorder levels and thresholds.

You can use the administration interface to set stock levels and stock thresholds, but
not to set backorder and preorder levels and thresholds. Instead, you must use one of
the following methods:

• Import inventory data for your catalog with the Commerce import feature. To learn
how to import preorder and backorder inventory data, see Import and Export
Catalog Items and Inventory.

• Set SKU inventory data with the Admin API updateInventory endpoint. This
section describes how to use the updateInventory endpoint.

• In a system where Commerce interacts with an external system, import and export
large amounts of inventory data with the Admin API. See Perform Bulk Export and
Import for more information.

Before you set backorder and preorder inventory data, you must enable backorders
and preorders with the updateInventoryConfiguration endpoint. See Enable
preorder and backorder functionality for more information.

Use the getInventory endpoint to retrieve inventory information for a specific product
or SKU. For details about using this endpoint, see Access inventory data.

Use the updateInventory endpoint to modify the inventory of a specific SKU. In the
request body, specify new values for the properties you want to update.

The following sample request sets the backorder level for SKU to 200. The backorder
threshold is 15, at which point the item will show as out of stock on the store.

PUT /ccadmin/v1/inventories/xsku5014 HTTP 1.1
Authorization: Bearer <access_token>

{
 "backorderThreshold": 15,
 "backorderLevel": 200
}

Chapter 8
Access and update inventory data

8-2

The following example shows a sample response:

{
 "preorderThreshold": 0,
 "backorderLevel": 200,
 "displayName": null,
 "availabilityDate": null,
 "availabilityStatusMsg": "backorderable",
 "stockThreshold": 5,
 "stockLevel": 0,
 "availableToPromise": null,
 "skuNumber": "xsku5014",
 "preorderLevel": 0,
 "locationId": null,
 "translations": null,
 "inventoryId": null,
 "backorderThreshold": 15,
 "links": [
 {
 "rel": "self",
 "href": "https://myserver.example.com:7002/ccadmin/v1/inventories/
xsku5014
],
 "availabilityStatus": 1003,
 "skuId": "xsku5014",
}

Update widgets for preorders and backorders
To implement support for preorders and backorders, make sure your layouts include
the latest versions of the Shopping Cart and Product Details widgets.

If your store includes the scheduled orders feature, make sure the Scheduled Order
layout includes the latest version of the Scheduled Order widget. To determine if you
are using the latest version, and for information about replacing a widget with the latest
version, see Customize your store layouts.

Customize email templates for preorders and backorders
If you configure your store to support preorders and backorders, you should also
customize the templates for emails that contain order summaries so those emails can
display the appropriate availability status for preordered and backordered items.

The following email templates include order summaries:

• Order Placed

• Items Shipped

• Order Pending For Approval

• Order Rejected

• Order Approved

• Order Quoted

Chapter 8
Update widgets for preorders and backorders

8-3

• Quote Requested

• Quote Failed

• Payment Failure

• Abandoned Order

• Scheduled Order Placed Failed

• Agent Cancel Order

• Agent Edit Order

• Agent Return Order Refund

• Agent Return Order

The data available to the email templates to support preorders and backorders comes
from the Orders resource in the Store REST API. Support has been added for
preorders and backorders, in the form of the following properties:

• backOrderedQuantity is an integer that specifies the quantity is reserved from the
backorderLevel for an item.

• preOrderedQuantity is an integer that specifies the quantity is reserved from the
preorderLevel for an item.

• availabilityDate is a string that specifies the date that the preordered or
backordered item will be available.

These properties are typically added to the template in the order items list.

Note: Before you customize the email templates, read the Configure Email Settings.
For details about working with FreeMarker templates, see the Apache FreeMarker
documentation at freemarker.org.

To display preorder and backorder information in an email template:

1. Download the email template as described in Customize email templates.

2. Update the html_body.ftl file.

3. Upload the updated template as described in Customize email templates.

Chapter 8
Customize email templates for preorders and backorders

8-4

9
Manage Orders

An order is created when a shopper successfully completes the checkout process on
your store.

An Oracle CX Commerce order object stores a great deal of data about the
transaction: the items purchased, the shopper’s shipping address, the payment
method, and so on. Once an order is created in Oracle CX Commerce, the data is
sent off to an external order management system (OMS) for processing and fulfillment.
This section describes how to manage orders in Oracle CX Commerce.

Integrate with an order management system
Once an order is created, your external order management system (OMS) is the
system of record and is responsible for fulfilling the order.

Communication between Oracle CX Commerce and the OMS is handled as follows:

• Oracle CX Commerce uses webhooks to send order data to your OMS or to a
gateway that transmits the data to the OMS.

• The order management system implements the Oracle CX Commerce Admin
REST API to update the order’s status information as the order is processed.

You need to configure your OMS or gateway to convert the data received from Oracle
CX Commerce into the format used by the OMS, and to set up the OMS to make
calls to the Oracle CX Commerce REST APIs to update the status of the order. Note
that for certain order management systems, optional integration software is available
to simplify this process.

Configure the integration points

Follow these steps to enable Oracle CX Commerce to communicate with your order
management system:

1. Configure the webhooks you intend to use. At a minimum, you will need to
configure the Order Submit webhook. If your store includes the Agent Console,
you should also configure the Return Request Update webhook.
To configure a webhook, you supply the URL to direct POST requests to, the
headers to include, and authentication information. The values to supply are
determined by your OMS. See Configure Webhooks for more information.

2. Register your OMS application with Oracle CX Commerce. Doing this generates
an application ID and an application key that the OMS can use for authentication
when it makes REST calls to Oracle CX Commerce. See Register applications for
more information.

Order Submit webhook

When an order is submitted, the Order Submit webhook sends a POST request to the
URL you have configured. (Typically this is the URL where your OMS or gateway
listens for requests.) The body of the request contains the complete order data

9-1

in JSON format. The order management system converts the JSON data into the
system’s native format, and returns an HTTP status code indicating whether the data
was received successfully. A 200-level status code indicates the POST was successful.
Any other code indicates failure; if this occurs, Order Submit sends the POST request
again. The webhook is executed up to five times until it succeeds or gives up.

Not all external systems you integrate with Oracle CX Commerce will comply with
the Payment Card Industry Data Security Standard (PCI DSS). For example, while
your order management system will likely comply with PCI DSS, systems that manage
services like email marketing or customer loyalty programs might not be compliant.
Oracle CX Commerce provides versions of the Order Submit webhook that exclude
payment details from the order data you send to systems that do not comply with PCI
DSS. See Understand webhooks and PCI DSS compliance for more information.

Order Submit request example

The following example shows the body of an Order Submit webhook POST request
from Oracle CX Commerce. The request body is a JSON representation of the order.

{
 "site": {
 "siteURL": "http://www.example.com",
 "siteName": "Commerce Site"
 },
 "order": {
 "lastModifiedTime": 1403734373592,
 "shippingGroupCount": 1,
 "paymentGroupCount": 1,
 "shippingGroups": [
 {
 "specialInstructions": {},
 "id": "sg20005",
 "handlingInstructions": [],
 "trackingNumber": null,
 "priceInfo": {
 "amount": 6.5,
 "currencyCode": "USD",
 "amountIsFinal": false,
 "discounted": false,
 "rawShipping": 6.5
 },
 "description": "sg20005",
 "state": 0,
 "locationId": null,
 "actualShipDate": null,
 "submittedDate": null,
 "shipOnDate": null,
 "shippingMethod": "ground",
 "shippingAddress": {
 "middleName": "",
 "lastName": "Smith",
 "ownerId": null,
 "state": "Alaska",
 "address1": "101 TNT Dr",
 "address2": "",
 "address3": "",

Chapter 9
Integrate with an order management system

9-2

 "companyName": "",
 "suffix": "",
 "country": "United States",
 "city": "Birmingham",
 "id": null,
 "postalCode": "99672",
 "faxNumber": "",
 "phoneNumber": "555-555-1212",
 "county": "",
 "email": "home@example.com",
 "prefix": "",
 "firstName": "Jean",
 "jobTitle": ""
 },
 "stateDetail": null
 }
],
 "commerceItems": [
 {
 "id": "ci2000007",
 "productDisplayName": "Military Jacket",
 "returnedQuantity": 0,
 "priceInfo": {
 "quantityDiscounted": 0,
 "amount": 291,
 "discountable": true,
 "onSale": false,
 "priceListId": "listPrices",
 "currencyCode": "USD",
 "rawTotalPrice": 291,
 "listPrice": 145.5,
 "amountIsFinal": false,
 "discounted": false,
 "currentPriceDetailsSorted": [
 {
 "amount": 291,
 "itemPriceInfo": null,
 "currencyCode": "USD",
 "range": {
 "lowBound": 0,
 "class": "atg.core.util.Range",
 "highBound": 1,
 "size": 2
 },
 "tax": 0,
 "amountIsFinal": false,
 "discounted": false,
 "quantity": 2,
 "detailedUnitPrice": 145.5
 }
],
 "salePrice": 0
 },
 "catalogId": null,
 "quantity": 2,

Chapter 9
Integrate with an order management system

9-3

 "catalogKey": null,
 "catalogRefId": "sku40139",
 "productId": "prod20012"
 },
],
 "id": "o20005",
 "siteId": "siteUS",
 "priceInfo": {
 "total": 268.4,
 "amount": 261.9,
 "shipping": 6.5,
 "currencyCode": "USD",
 "tax": 0,
 "amountIsFinal": false,
 "discounted": true,
 "manualAdjustmentTotal": 0,
 "rawSubtotal": 291,
 "discountAmount": 29.1
 },
 "paymentGroups": [
 {
 "authorizationStatus": [
 {
 "errorMessage": "Request was processed
successfully.",
 "amount": 261.9,
 "authorizationDecision": "ACCEPT",
 "transactionId": "4037343708700178147626",
 "reasonCode": "100",
 "currency": "USD",
 "transactionSuccess": true
 }
],
 "currencyCode": "USD",
 "paymentId": "pg20005",
 "state": 1,
 "amountAuthorized": 261.9,
 "amount": 297.5,
 "id": "pg20005",
 "phoneNumber": "555-555-1212",
 "token": "9997000107329795",
 "expirationYear": "2021",
 "expirationMonth": "08",
 "submittedDate": {
 "time": 1403734373000
 },
 "creditCardNumber": "1111",
 "paymentMethod": "tokenizedCreditCard"
 }
],
 "taxPriceInfo": {
 "amount": 0,
 "currencyCode": "USD",
 "countyTax": 0,
 "countryTax": 0,

Chapter 9
Integrate with an order management system

9-4

 "amountIsFinal": false,
 "stateTax": 0,
 "discounted": false,
 "cityTax": 0,
 "districtTax": 0
 },
 "profileId": "120023",
 "creationTime": 1403734364000,
 "relationships": [
 {
 "amount": 0,
 "id": "r20003",
 "returnedQuantity": 0,
 "relationshipType": "SHIPPINGQUANTITY",
 "shippingGroupId": "sg20005",
 "quantity": 2,
 "commerceItemId": "ci2000007"
 },
 {
 "amount": 0,
 "id": "r20004",
 "returnedQuantity": 0,
 "relationshipType": "SHIPPINGQUANTITY",
 "shippingGroupId": "sg20005",
 "quantity": 1,
 "commerceItemId": "ci2000008"
 },
 {
 "id": "r20005",
 "amount": 261.9,
 "relationshipType": "ORDERAMOUNTREMAINING",
 "paymentGroupId": "pg20005",
 "orderId": "o20005"
 }
],
 "totalCommerceItemCount": 2
 }
}

Order Management REST APIs

Once the order data is successfully received by the order management system, any
further processing of the order occurs in the OMS. For example, the status of the order
changes in the OMS when payment is received and when the order is shipped.

To keep the order up to date in Oracle CX Commerce, the OMS can submit requests
to the endpoints of the Orders resource when changes occur to the order. Typically,
the update will involve changing the values of properties that store information about
the state of either the order itself or components of the order, such as shipping groups.
For example, when the OMS begins processing the order, it can use a PUT request to
change the state property of the order object from SUBMITTED to PROCESSING:

PUT /ccadmin/v1/orders/o10406 HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

Chapter 9
Integrate with an order management system

9-5

Content-Type: application/json

{"state": "PROCESSING"}

The properties of an order are described in the documentation for the /ccadmin/v1/
orders/{id} endpoint. (See Learn about the APIs for information about accessing
endpoint documentation.) For information about the available states for orders and
order components, see Understand order states.

Keep the following in mind when writing PUT requests with the Commerce REST
APIs:

• The request typically does not need to include properties you are not updating.
However, if the request includes a list or map property, that property must contain
references to all the members of the list or map that should be retained. Even if
you want to update only one item out of a list of 20, you must provide enough data
to match the other 19 existing list members.

• References to an existing list member must contain enough data to match the item
with an existing item. If no match can be found, a new item will be created.

• A request that includes a representation of an empty list or map removes all
members of that list or map.

Return Request webhooks

An order or portion of an order is eligible for return only if it has been fulfilled and
the items to be returned have not previously been returned. Even if it meets these
conditions, the order may not be returnable (for example, if too much time has elapsed
since the order was fulfilled), or individual items may not be returnable (for example, if
a product or SKU’s Not Returnable property is set to true, or if the OMS determines
an item cannot be returned).

Oracle CX Commerce includes two webhooks that you can use to communicate with
an order management system to process returns:

• The Return Request Validation webhook is a function webhook that queries the
OMS to determine whether the order is returnable, and receives data back from
the OMS indicating which items can be returned.

• The Return Request Update webhook is an event webhook that submits a return
request to the OMS when it is initiated by a shopper or agent.

These webhooks can be used together to help manage returns. For example, the
Return Request Validation webhook can be used to determine which items in the order
are returnable, and therefore are eligible for inclusion in the return request. The Return
Request Update webhook can then be used to notify the OMS once the return request
is created.

To enable these webhooks, you configure them with the URL where your OMS or
gateway listens for requests. The webhooks send data to the OMS as POST requests
containing JSON data. The OMS may need to be configured to convert the JSON data
into the system’s native format.

Note: Oracle CX Commerce also provides versions of the Return Request Validation
and Return Request Update webhooks that exclude payment details from the order
data you send to systems that do not comply with PCI DSS. See Understand
webhooks and PCI DSS compliance for more information.

Chapter 9
Integrate with an order management system

9-6

Return Request Validation webhook

The Return Request Validation webhook is automatically invoked when Commerce
needs to determine which items in an order are returnable. (For example, when
displaying the order history, the webhook is used to determine whether to display a
Return button next to an order). The webhook can also be invoked manually using
the Return Requests endpoints in the Store REST API. These endpoints enable your
store to accommodate a variety of different return workflows, such as shopper-initiated
returns.

The webhook payload includes a context property that specifies the operation being
performed. The following are the valid values for this property when validating a return
request:

• Initiate_Return -- check if the order and its items are eligible for return

• CalculateRefund_Return -- determine refund amount

• Submit_Return -- validate the return request prior to creating it or saving the
changes

• Custom_Return -- trigger the webhook from the Store API

The following are the valid values for this property when validating an exchange
request:

• Initiate_Exchange -- check if the order and its items are eligible for exchange

• Submit_Exchange -- validate the exchange request prior to creating it or saving
changes

• Process_Exchange -- validate that the exchange should be fulfilled once the
returned goods are received

The following example shows a portion of the webhook payload that lists the items to
determine the return eligibility of:

{
 "context": "Initiate_Return",
 "returnRequests": [
 {
 "returnItemList": [
 {
 "quantityToReturn": 0,
 "commerceItemId": "ci3000416",
 "quantityAvailable": 20,
 "quantityShipped": 20,
 "productId": "Product_27Fxyzii",
 "nonreturnable": true,
 "returnReason": null,
 "shippingGroupId": "sg40414",
 "catalogRefId": "Sku_27Gxyzii",
 "nonReturnableReason": "This is a non-returnable item."
 },
 {
 "quantityToReturn": 0,
 "commerceItemId": "ci3000417",
 "quantityAvailable": 15,
 "quantityShipped": 20,

Chapter 9
Integrate with an order management system

9-7

 "productId": "Product_36Exy",
 "nonreturnable": false,
 "returnReason": null,
 "shippingGroupId": "sg40414",
 "catalogRefId": "Sku_36Fxy",
 "nonReturnableReason": null
 }
],
. . .

The response from the OMS indicates whether the individual items are eligible for
return, and whether the order as a whole is returnable. (For example, the items
might be eligible for return, but the order might not be returnable if too much time
has elapsed since it was fulfilled.) The response can optionally include a return
authorization number, a tracking number, a URL for accessing a return shipping label,
and additional data that can be displayed to the shopper. It can also override the
values of the nonreturnable flag from the request.

The following is a sample response returned by the OMS:

{
 "context": "Initiate_Return",
 "returnRequests": [
 {
 "returnItemList": [
 {
 "shippingGroupId": "sg40414",
 "productId": "Product_27Fxyzii",
 "nonreturnable": true,
 "nonReturnableReason": "This is a returnable item",
 "additionalProperties": {
 "name1": "value1",
 "name2": "value2"
 },
 "quantityAvailable": 1,
 "commerceItemId": "ci3000416"
 },
 {
 "shippingGroupId": "sg40414",
 "productId": "Product_36Exy",
 "nonreturnable": false,
 "nonReturnableReason": "This is a returnable item",
 "additionalProperties": {
 "name1": "value1",
 "name2": "value2"
 },
 "quantityAvailable": 1,
 "commerceItemId": "ci3000417"
 }
],
 "orderId": "o30411",
 "rma": "12345",
 "trackingNumber": "1234567890",
 "returnLabel": "a5445afg5",
 "nonReturnableReason": "Order exceeded no of days",

Chapter 9
Integrate with an order management system

9-8

 "nonreturnable": false,
 "additionalProperties": {
 "name1": "value1",
 "name2": "value2"
 }
 }
]
}

Notice that this response indicates the individual items are both eligible for return (that
is, they are not nonreturnable items), and that the order as a whole can be returned.

Return Request Update webhook

When a customer service agent or a shopper creates a return request or exchange
request, the Return Request Update webhook sends a request to the OMS. The body
of the request contains the following data:

• The complete order data from the original Order Submit POST request.

• The new or updated return or exchange request.

• For an exchange request, the new order data from the exchange.

The order management system should return an HTTP status code indicating whether
the data was received successfully. A 200-level status code indicates the POST was
successful. Any other code indicates failure; if this occurs, Return Request Update
sends the request again. The webhook is executed up to five times until it succeeds or
gives up.

Update the return request

Once the return request is received, the OMS is responsible for managing the return
process. However, you may want Oracle CX Commerce to receive progress updates,
so you can reflect the status of the return in the shopper’s order history.

To update the return request in Commerce, the OMS can submit requests to the
updateReturnRequest endpoint in the Admin API. For example, after the OMS
authorizes the return, it can send Commerce the tracking number and related
information:

PUT /ccadmin/v1/returnRequests/200001 HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en
Content-Type: application/json

{
 "shippingTaxRefund": 0,
 "agentId": "service",
 "secondaryCurrencyShippingTaxRefund": 0,
 "actualShippingRefund": 12.5,
 "actualTaxRefund": 4,
 "otherRefund": 0,
 "secondaryCurrencyActualTaxRefund": 0,
 "refundMethodList": [
 {
 "refundType": "manualRefund",
 "amount": 66.49,

Chapter 9
Integrate with an order management system

9-9

 "state": "INCOMPLETE"
 }
],
 "returnLabel": "https://www.example.com/returnLabel/234977gege4",
 "authorizationNumber": "200001",
 "returnFee": 0,
 "requestId": "200001",
 "secondaryCurrencyActualShippingRefund": 0,
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com/ccadmin/v1/returnRequests/200001"
 }
],
 "state": "PENDING_CUSTOMER_ACTION",
 "additionalProperties": {
 "key1": "value1"
 },
 "originOfReturn": "contactCenter",
 "trackingNumber": "178923",
 "returnItemList": [
 {
 "secondaryCurrencyActualTaxRefundShare": 0,
 "comments": null,
 "shippingGroupId": "sg70428",
 "secondaryCurrencyActualShippingSurchargeRefundShare": 0,
 "quantityWithFractionReceived": 0,
 "commerceItemId": "ci6000446",
 "secondaryCurrencyActualShippingRefundShare": 0,
 "actualShippingSurchargeRefundShare": 0,
 "returnReason": "defective",
 "actualShippingRefundShare": 12.5,
 "state": "AWAITING_RETURN",
 "additionalProperties": {},
 "actualTaxRefundShare": 4,
 "quantityReceived": 0,
 "refundAmount": 49.99
 }
],
 "actualShippingSurchargeRefund": 0,
 "secondaryCurrencyActualShippingSurchargeRefund": 0
}

At later stages of the return process, the OMS can use this endpoint to provide
further updates, such as notification when the returned item has been received,
and notification when a refund has been issued. Typically the OMS will update the
return state (which describes the return as a whole) and the return item states (which
describes each return item individually) at these times.

The following are the valid return states and return item states:

• Return states: MANUAL_REFUND, PENDING_REFUND, INCOMPLETE, COMPLETE,
FULL_RETURN, PARTIAL_RETURN, PENDING_CUSTOMER_ACTION.

• Return item states: RETURN_NOT_REQUIRED, AWAITING_RETURN, PARTIAL_RETURN,
RETURNED, INITIAL.

Chapter 9
Integrate with an order management system

9-10

By default, the following are the valid values for the returnReason property,
which indicates why the shopper returned the item: defective, didNotLike,
didNotMeetExpectations, incorrectColor, incorrectItem, incorrectSize. You can
use the Reasons endpoints in the Admin REST API to add, delete, or inactivate
individual return reasons. For example, to make the defective value inactive:

PUT /ccadmin/v1/reasons?type=returnReasons&id=defective
Authorization: Bearer <access_token>
x-ccasset-language: en
Content-Type: application/json

{
 "readableDescription": "Defective",
 "active": false,
 "description": "defective"
}

Note that the getReturnRequest and updateReturnRequest endpoints cannot be used
in preview mode. For more information about these endpoints, including a list of the
fields that can be updated, see the REST API documentation in the Oracle Help
Center.

Update refund amounts

Refund amounts can be calculated and issued by either Commerce or by the
OMS system. To calculate and issue refunds in Commerce, use the Agent Console
or the receiveReturnRequest endpoint in the Agent API to indicate that the
returned items have been received. Then start the refund process by calling
the updateReturnRequest endpoint in the Agent API with the op value set to
initiateRefund.

If refunds are calculated and issued by the OMS, use the Agent Console or the
receiveReturnRequest endpoint in the Agent API to indicate that the returned items
have been received. Then use the updateReturnRequest endpoint in the Admin API
to update the refund-related fields in Commerce, and the updateOrder endpoint in the
Admin API to update the amountCredited in the payment group of the original order.

Understand order states
This section lists the possible states of an order and of order subobjects.

The following table describes the possible states of an order:

State Name Description

AGENT_REJECTED When using order approvals, this indicates that
the order has been rejected by the agent.

APPROVED When using order approvals, this indicates that
the order has been approved by the agent.

APPROVED_TEMPLATE When using order approvals, this indicates that
the scheduled order has been approved by the
agent.

BEING_AMENDED When using order approvals, this indicates that
the order is being amended.

Chapter 9
Understand order states

9-11

State Name Description

FAILED The order failed.

FAILED_APPROVAL When using order approvals, this indicates that
the order has failed to get approval.

FAILED_APPROVAL_TEMPLATE When using order approvals, this indicates that
the scheduled order has failed to get approval.

INCOMPLETE The order is still in the purchase process.

NO_PENDING_ACTION The order has been fulfilled, and processing of
the order is complete. All shipping groups in
the order are in a NO_PENDING_ACTION or
REMOVED state, and order payment has been
settled.

PENDING_AGENT_APPROVAL When using order approvals, this indicates that
the order is still awaiting review by the agent.

PENDING_APPROVAL When using order approvals, this indicates that
the order is still pending approval.

PENDING_APPROVAL_TEMPLATE When using order approvals, this indicates that
the scheduled order is still pending approval.

PENDING_CUSTOMER_ACTION Processing of the order requires the
customer’s attention for some reason, such as
an incorrect customer address.

PENDING_CUSTOMER_RETURN Processing of the order requires the customer
return submission.

PENDING_MERCHANT_ACTION Processing of the order requires merchant
attention for some reason, such as the failure
of a payment group in the order.

PENDING_PAYMENT When using account-based commerce, this
indicates that the order is awaiting payment
information.

PENDING_PAYMENT_TEMPLATE When using order approvals, this indicates
that the scheduled order is awaiting payment
information.

PENDING_QUOTE When using account-based commerce, this
indicates that the quote for the order is still
pending.

PENDING_REMOVE A request was made to remove the order.
The order is placed in this state until all
shipping groups in the order are set to a
PENDING_REMOVE state.

PROCESSING The order is being processed by the order
management system.

REMOVED The order has been removed successfully.

SUBMITTED The order has completed the purchase
process and has been submitted to the order
management system.

QUOTED When using account-based commerce, this
indicates that the order has been quoted.

QUOTE_REQUEST_FAILED When using account-based commerce, this
indicates that the quote for the order has
failed.

REJECTED When using account-based commerce, this
indicates that the order has been rejected.

Chapter 9
Understand order states

9-12

State Name Description

REJECTED_QUOTE When using account-based commerce, this
indicates that the quote for the order has been
rejected.

In addition, the sections below describe the possible states of various order
components:

paymentGroup states

An order’s array of payment groups represent the payments that paid for the order.
The following table describes the possible states of a payment group:

State Name Description

AUTHORIZE_FAILED Authorization of the payment group has failed.

AUTHORIZED The payment group has been authorized and
can be debited.

CREDIT_FAILED Credit of the payment group has failed.

INITIAL The payment group has not been acted on yet.

REMOVED The payment group has been removed.

SETTLE_FAILED Debit of the payment group has failed.

SETTLED The payment group has been debited
successfully.

shippingGroup states

A shipping group represents a shipment and includes commerceItemRelationships
that represent which commerce items in what quantities are included in the shipment.
The following table describes the possible states of shipping group:

State Name Description

INITIAL The shipping group is in a pre-fulfillment state.

PROCESSING The shipping group has started the fulfillment
process.

PENDING_REMOVE A request for the removal of the entire order
was made, and the removal of this shipping
group is possible.

REMOVED The shipping group has been removed.

FAILED The shipping group has failed to process.

PENDING_SHIPMENT The shipping group is ready to be shipped.

NO_PENDING_ACTION The shipment of all the items in the shipping
group is complete.

PENDING_MERCHANT_ACTION An error occurred while trying to process
the shipping group; the error requires the
merchant’s attention.

commerceItem states

Commerce items (sometimes referred to as line items) represent the SKUs
included in an order. The following table describes the possible states of a

Chapter 9
Understand order states

9-13

commerceItem. These states are read-only and are calculated from the shipping
group’s commerceItemRelationship.

State Name Description

BACK_ORDERED The item is not available in the inventory; it has
been backordered.

DISCONTINUED The item is not available in the inventory; it
cannot be backordered.

FAILED The item has failed.

INITIAL The item is in an initial state, that is, it is not
yet associated with any shipping group.

ITEM_NOT_FOUND The item could not be found in the inventory.

OUT_OF_STOCK The item is not available in the inventory, and it
has not been backordered.

PENDING_REMOVE The item will be removed pending verification
that all item relationships referring to it can be
removed.

PRE_ORDERED The item is not available in the inventory; it has
been preordered.

REMOVED The item has been removed from the order.

SUBITEM_PENDING_DELIVERY The item is available in the inventory, and it is
being prepared for shipment to the customer.

Create custom properties for orders
This section describes how to add custom properties to orders.

This section describes how to use the Oracle CX Commerce REST web services APIs
to add custom properties to orders. See Use the REST APIs for information you need
to know before using the services.

Understand order types

Like shopper profiles, orders include a predefined set of properties. For example,
orders have properties for storing data about when the order was submitted, the cost
of the items, shipping information, and so on.

Just as the properties of a shopper profile are determined by its associated shopper
type, the properties of an order are determined by its associated order type. The order
type serves as a template for the order. Currently only one order type, whose ID is
order, is available. This order type is associated with all Oracle CX Commerce orders.

You cannot create additional order types, but you can add custom properties to
the order order type. For example, you could add a gift_message property that a
customer can use to provide a note to include in the package when the order items
ship.

You can use the Oracle CX Commerce Admin API to add custom properties to the
order order type. The Order Types resource in the Admin API includes endpoints for
creating and working with custom properties of the order order type, and the Orders
resource in the Admin API includes endpoints that you can use to set the values of
properties of individual orders, including custom properties that have been added to
the order order type.

Chapter 9
Create custom properties for orders

9-14

When you add a custom property to the order order type, the property is added to all
orders, including any new orders customers create and any orders that already exist.

Note: Many of the properties of orders store either arrays or pointers to other
resources. The Order Types endpoints do not expose these properties. You can add
custom properties to the order order type and modify them using the Order Types
endpoints, but you can only create and modify top-level scalar properties.

View an order

To view an existing order, first log into the Admin API on the administration server
using an account that has the Administrator role. For example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=365214

Then issue a GET request to the /ccadmin/v1/orders/{id} endpoint, providing the
ID of the order you want to view, and including the access token that was returned
by /ccadmin/v1/mfalogin. For example:

GET /ccadmin/v1/orders/o10008 HTTP/1.1
Authorization: Bearer <access_token>

The response shows the predefined order properties that are exposed by Oracle CX
Commerce, and the values of the properties in the order. You can modify the values of
these properties for an order using the PUT /ccadmin/v1/orders/{id} endpoint on the
administration server.

View an order type

To view an order type, issue a GET request to the /ccadmin/v1/orderTypes/{id}
endpoint on the administration server. The following example illustrates calling this
endpoint with order (the only order type currently available) specified as the value for
id:

GET /ccadmin/v1/orderTypes/order HTTP/1.1
Authorization: Bearer <access_token>

Add custom properties to an order type

To add custom properties to an order type, issue a PUT request to the /ccadmin/v1/
orderTypes/{id} endpoint on the administration server. Use the following format:

• The request header must specify the x-ccasset-language value.

• The request body is a map where each key is the name of a new property, and
each value is an object that specifies the values of the attributes of the property.

• Each object is also a map, with each key being the name of an attribute and each
value being the corresponding attribute value.

The attributes of order type properties that you can set through Order Types endpoints
are the same as the attributes of shopper type properties you can set through Shopper

Chapter 9
Create custom properties for orders

9-15

Types endpoints. See Settable attributes of shopper type properties for descriptions of
these properties.

The ID of a custom property must include the underscore character (_). This ensures
that the ID will not conflict with any properties that Commerce adds to orders in the
future. The endpoint produces an error if you attempt to create a custom property
without an underscore in its ID.

The following example shows a sample request for adding a custom property to the
order order type:

{
 "properties": {
 "gift_message": {
 "label": "Enter an optional gift message here:",
 "type": "richText",
 "uiEditorType": "richText",
 "internalOnly": false,
 "required": false
 }
} }

The following is a portion of the response that shows the new property:

{
 ...
 "properties": {
 ...
 "gift_message": {
 "writable": true,
 "localizable": false,
 "label": "Enter an optional gift message here:",
 "type": "richText",
 "uiEditorType": "richText",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": false,
 "default": null,
 "editableAttributes": [
 "textSearchable",
 "multiSelect",
 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "searchable"
],
 "length": 4000000,
 "required": false,
 "searchable": false
 },
 ...
 }

Chapter 9
Create custom properties for orders

9-16

 ...
}

Implement robust order capture
Oracle CX Commerce includes robust order capture tools to ensure that orders are
persisted and problems can be resolved if there are errors during the payment or order
submission process.

The tools available depend on the options specified in the Setup tab in the Payment
Processing settings in the administration interface. This tab has a Payment Options
drop-down with two options:

• Allow Partial Payment/Early Persist -- When a shopper attempts to submit
an order, Commerce saves it in the PENDING_PAYMENT state before processing
payments.

• Full Payment Required -- When a shopper attempts to submit an order, the order
state is INCOMPLETE until all payments are authorized.

The Setup tab also includes a Price Hold Period field. If Allow Partial Payment/Early
Persist is selected, the Price Hold Period setting specifies the amount of time the
shopper is given to provide missing payment information before an order is cancelled.
The order's prices will not change during this interval.

Use early persist

If the Allow Partial Payment/Early Persist option is selected, when a shopper submits
an order, the order is initially placed in the PENDING_PAYMENT state. If a payment fails
but Commerce does not receive an error, the order remains in this state. During the
price hold period, the shopper can add payments to the order, but cannot make other
changes or delete the order. A record of the order is visible in the Agent Console, so
an agent can also attempt to resolve the issue. At the end of the price hold period, if
the order is still in the PENDING_PAYMENT state, it is marked for cancellation.

For example, the order processing might proceed as follows:

1. A shopper begins the checkout process using a web checkout system.

2. The shopper enters payment information on the payment provider’s screen.

3. An error occurs with the payment that prevents the order submission from
completing successfully.

4. The order remains in the PENDING_PAYMENT state, and the shopper does not
receive an order confirmation.

5. The shopper can see the order in the PENDING_PAYMENT state and resubmit the
order with payment. The merchant can also see the order and take steps to
resolve the issue.

To support this option, you must ensure that your order history and checkout
widgets can handle the PENDING_PAYMENT state, and that your storefront allows the
shopper to see order issues and take corrective action. For example, the storefront
should enable the shopper to see order status, update payment information, and
resubmit an order that has not been successfully submitted. On storefronts built using
the Open Storefront Framework, the Allow Partial Payment/Early Persist option is
recommended, and the included widgets are designed to handle these situations.

Chapter 9
Implement robust order capture

9-17

On storefronts built using Storefront Classic, you will need to use the Split Payment
widget and customize it and other widgets on your storefront to support these
behaviors. See Enable Split Payments for more information.

Note that if an anonymous shopper has a partially paid order, the order must be
completed before the session times out, because the shopper has no way to access
the order when returning to the site later. However, if the Order Payment Initiated email
is enabled, the shopper is sent an email with the order ID when the order is created,
and can supply this ID to a customer service agent for completing the order.

Use full payment required

The Full Payment Required option should be used only on storefronts built using
Storefront Classic. If this option is selected, and authorization for any payment method
fails, an error is displayed, and any other authorizations that succeeded are voided.
The shopper must re-enter all payments and resubmit the order.

However, if Commerce for some reason does not receive a response about an
authorization, it cannot determine if there has been an error, and the order remains in
the INCOMPLETE state. If the shopper then tries to remove the items from the shopping
cart, the shopper is prevented from removing the last item, and the order is saved
in the FAILED state if the system is aware of the payment attempt. The order can be
viewed on the Order History page of the storefront and in the Agent Console.

Support zero-cost orders
You can enable your Commerce sites to handle orders whose price is zero.

On some Commerce sites, it is possible for the total cost of an order to be zero. For
example, the customer may have a coupon for a free item, or the site may offer free
samples, such as color swatches on a fabric site or a chapter of an electronic book on
a bookstore site.

To support these situations, Commerce makes it possible for a shopper to bypass
providing payment information when placing a zero-cost order. By default, if the total
cost of an order is zero, the shopper does not need to provide payment information to
place the order. This behavior is controlled by the isPaymentsDisabled function in the
OrderViewModel:

OrderViewModel.prototype.isPaymentsDisabled = function(){
 var self = this;
 var disableRules = self.cart().total() == 0;
 if(disableRules){
 $.Topic(pubsub.topicNames.PAYMENTS_DISABLED).publish();
 }
 return disableRules;
}

As you can see in the code above, if the total cost of the shopping cart is zero, the
function's disableRules variable is set to true, and a message is published to the
PAYMENTS_DISABLED topic. Payment widgets can subscribe to this topic and disable
payment inputs when a message is published to it.

If you want to require shoppers to provide payment information even when the order
cost is zero, your payment widgets can ignore the PAYMENTS_DISABLED topic, so

Chapter 9
Support zero-cost orders

9-18

that payment inputs are not disabled. Requiring payment information is desirable for
situations that involve recurring billing. If you capture an order that has no upfront
charges, you will still need to collect payment information and include it with the order.
This way a token will be returned, saved with the order, and passed to the fulfillment
system using the Order Submit webhook.

Note that gift card and credit card payment widgets have a triggerValidations flag
that determines whether to validate the required payment information, such as the
card number and CVV. You can change the setting of this flag depending on the
behavior your sites require.

See Understand widgets for information about extending widgets and view models.

Support shopper-initiated order management
Once an order is created, Oracle CX Commerce provides functionality that allows the
shopper to manage the order.

This section describes how to configure Commerce so that shoppers can initiate
cancellations, returns, or exchanges on orders they have placed through their account.

Support shopper-initiated cancellations

You can configure the Order Details widget on the Order Details layout to enable
shopper-initiated cancellations. Once this is done a shopper may initiate a cancellation
on an order they have placed provided the following criteria are met:

• The remorse period is enabled in the Admin settings for your site.

• The order is within the remorse period.

• The order status is QUEUED, or all of the following status criteria are met:

– The order status is not CANCELLED, NO_PENDING_ACTION,
PENDING_APPROVAL, PENDING_REMOVE, QUEUED, or REMOVED.

– The paymentGroup status is not SETTLED.

– The shippingGroup status is not NO_PENDING_ACTION.

– No item within the order has a status of DELIVERED.

If each of these criteria are met, a Cancel Order button is displayed to the shopper
when they review an order on the Order Details layout. When the shopper clicks
on the button, they are asked to select a reason for cancelling the order and to
confirm the cancellation. Once the cancellation is confirmed, Commerce uses the
order cancellation webhook to instruct the fulfillment system to cancel the order and
updates the order status accordingly. An email is then sent to the shopper telling them
that their order has been cancelled.

To configure shopper-initiated cancellations on your site you must:

• Enable the remorse period for your site. For further information on enabling the
remorse period, refer to the Set the customer remorse period.

• Ensure you have an Order Details layout that contains an Order Details widget
instance. From the Design page, open the Grid View for the Order Details layout
and click on the Settings icon on the Order Details widget instance. Check the
Enable Shopper Initiated Cancel box and click Save.

Chapter 9
Support shopper-initiated order management

9-19

If you need to add the Order Details widget to the Order Details layout on your site,
refer to the Add widgets to a layout section of Customize your store layouts for more
information.

Support shopper-initiated in-flight cancellations

You can configure Oracle CX Commerce so that user can cancel an order post the
remorse period, using the extended remorse period option. The user can also cancel
an order post the remorse period, that is, after the order is submitted for fulfillment by
Order Submit Webhook.

To configure shopper-initiated in-flight cancellations on your site you must enable the
Extended Remorse Period in the admin settings for your site. From the Oracle CX
Commerce administration UI, Agent Console Settings, Extended Remorse Period,
click the checkbox Enable Extended Remorse Period, and specify the number of
days from the date of submission during which orders can be cancelled.

The pointOfNoRevision property, which is updated by the fulfillment system and when
set to true, indicates that the item has passed the point at which the fulfillment system
can prevent the item from being shipped or provisioned. When a shopper selects to
cancel an inflight order, if any item in the order has passed the point of no revision
(pointOfNoRevision = true) then the system returns an error indicating that this
order cannot be cancelled.

Note:Remorse Period and Extended Remorse Period are independent settings that
are not mutually exclusive, in that both periods start from the time that the shopper
places the order. While the Remorse Period actually delays the submission of the
order to the fulfillment system, the Extended Remorse period applies even if the order
has already been submitted to fulfillment.

Setup for the validateCancel SSE

You need to setup the SSE validateCancel or shopper-initiated in-flight cancellations
would not be able to validate if the order is within the extendedRemorsePeriod. The
SSE validateCancel is only triggered with the sample widget and not the OOTB
widget.

Below SSEs are available in the Admin Developer: Validate-cancel-
app-store.zip (storefront), Validate-cancel-app-agent.zip (Agent), and
OrderQualification.zip . The Validate-cancel-lib.zip SSE (required), is
included in other two SSEs. You do not need not download it.

Download the SSE validateCancel by clicking Admin UI, Developer tab. Once you
download the SSE, you will need to edit the configuration file in SSE. When you
download each SSE, refer to the README file for instructions.

Note: You must upload these SSEs to the node server. You need not download the
library file here, since the library file contains the classes and would be packaged as
node-modules when either download of the store/agent SSEs.

How to initiate and submit flow for cancel order

To initiate a Cancel Order, you can use this endpoint:

/ccstoreui/v1/orders/initiateCancelOrder POST
/ccagentui/v1/orders/initiateCancelOrder POST

Chapter 9
Support shopper-initiated order management

9-20

Or, if you are using custom widget, after making a call to the SSE, which validates if
the order is still within the ExtendedRemorsePeriod, you can click the Cancel order
button in the custom widget Order details.

When you click the Cancel order button in the order details page (after remorse
period has expired and within extended remorse period), following occurs:

1. A Cancel order is created (clone of original order with prices made zero)

2. An in-memory return request is created. This means a return request object that is
not persisted and just stays in memory. This return request facilitates the refunds
for items with one time price.

3. The Cancel summary page displays the details of the cancel order and return
request.
Note: This cancel order summary is an OOTB widget. The order details widget
has code to handle the invocation of the initiateCancelOrder endpoint and
redirection to this page and display this widget.

To submit a Cancel Order, you can use this endpoint:

/ccstoreui/v1/orders/submitCancelOrder PUT
/ccagentui/v1/orders/submitCancelOrder PUT

Or you can use the Cancel order summary widget in cancel checkout page

Once the user reviews the Cancel order summary and clicks on Confirm button, the
submit cancel order flow is triggered and the following occurs:

1. The Order qualification webhook is triggered which will trigger the Order
qualification pipeline and the validate cancel module will check if the cancellation
is still allowed. You need to use this webhook to check whether the order is still
in extended remorse period. If you do not use this webhook, it will not check for
extendedRemorsePeriod. You will need to configure this webhook before using this
feature, using the latest version of OrderQualification SSE.

2. Other validations are performed to check if there is any change in the original
order.

3. When validation passes, the in-memory return request (created in the initiate
cancel order) is submitted and confirmed. Note: The first time the return request
is created, it is just to return the refund values and is not persisted on the server.
On submit cancel, the return request is created again and that one is submitted
and confirmed. All items in this return request will be marked as returnRequired =
false. This is because in 19A, cancel in-flight can be triggered only when all items
have PONR=false. Therefore, none of these items need to be returned (since they
never got shipped). The return request is created for the sole purpose of refund.

4. The cancel order is then submitted (as a zero value order) using the existing
submit order flow and sent to the fulfillment system for further processing. The
state of the original order is changed to REMOVED, while the order still remains in
the database.

Note: If you use the Cancel order summary widget in cancel checkout page, and if
before submitting, you try to navigate to some other page, you cannot resume your
cancellation. You will have to initiate the cancel again and submit the order. For orders
for which cancel was initiated but not completed, a scheduler runs to clean them up.

Chapter 9
Support shopper-initiated order management

9-21

Initiate the appropriate Terminate asset operation in the asset management
system (CPQ)

When an in-flight order is cancelled, some items in that order may be assets in Oracle
CPQ and need to be terminated. Manage this by using the Order Asset Operation
SSE and related webhooks:

Server Side Extension Endpoint Order Asset Operation

Item Description

SSE Order Asset Operation

Endpoint Name Order Asset Operation

Trigger The endpoint can be triggered by the Order
Asset Operation webhook.

Inputs: Order - the original order that is being
cancelled.

Operation - Terminate. This webhook may be
used for Terminate and Get Assets

Returns Collection of items containing:

BOM - A configured item or Bill of
Materials that represents the terminate asset
instructions.

Asset ID - The asset ID to which the BOM
relates.

Commerce Item ID - the ID value for the order
item that corresponds with the asset record,
that is, the order item that resulted in the
creation of the asset.

Note the following:

• If any item in the original order has become an asset in CPQ, the cancel order flow
will take care of the termination of those assets.

• Sub items of an configurable item (with soldAsPackage=false) can be tracked
individually for return.

If an configurable item in the original order has soldAsPackage=false, each sub
item will have its own shippingGroupCommerceItemRelationships. When a return
request is created there will be corresponding return items for those sub items,
which will help in tracking the return status of the sub items when return is initiated
on the root item.

Note: Return of a sub item alone is not supported.

Non-Shippable items

Non-shippable items are items that cannot be physically shipped, such as mobile
phone tariffs, IPTV packages, downloadable items, etc. For these items, the
administrator can set the shippable flag at the item level. From Oracle CX Commerce
administration, select Catalog, item, General, and then click on the Shippable
checkbox. The Shippable property is selected by default and must be unchecked to
indicate that a product is non-physical.

Chapter 9
Support shopper-initiated order management

9-22

Support shopper-initiated returns

In addition to shopper-initiated cancellations, you can also configure your storefront to
allow shoppers to initiate returns of fulfilled orders. See Order Details for information
about how to do this.

Note that some items may not be returnable. If a product or SKU’s Not Returnable
property is set to true, neither a shopper nor an agent can initiate a return for that
item. If order information is maintained in an external system, you can use the Return
Request Validation webhook to communicate with the system to determine whether an
order can be returned. For more information about this webhook, see Return Request
webhooks.

The Agent Console also includes tools that enable a customer service agent to initiate
a return or exchange on behalf of a shopper. See Understand the Agent Console for
information about these tools.

Enable returns on partially fulfilled orders
Commerce can optionally support returns on partially fulfilled orders.

By default, an item received by a shopper can be returned only if the order that it
is part of has been fulfilled completely. For example, suppose an order contains two
items, and only one item is shipped to the shopper because the other item is out of
stock. If the shopper decides to return the first item, he or she must wait until the
second item arrives.

This section describes how to enable returns on partially fulfilled orders, so shoppers
can return received items even if not all of the items in the order have been received.
Note that this feature is currently supported only through the REST APIs.

Enable returns

If you want to allow shoppers to return items in orders that have been only partially
fulfilled, use the updateCloudConfiguration endpoint in the Admin API to set the
allowReturnOnPartiallyFulfilledOrder property to true. For example:

PUT /ccadmin/v1/merchant/cloudConfiguration HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "allowReturnOnPartiallyFulfilledOrder": true
}

Modify the order state

This example illustrates using the Admin API to mark one of the items in an order
as delivered. The order contains two items, but only one item has been delivered
because the other is out of stock. Both items have the same shipping address and use
the same shipping method.

1. Call the getOrder endpoint in the Admin API to view the order. For example:

GET /ccadmin/v1/orders/o20005

Chapter 9
Enable returns on partially fulfilled orders

9-23

The response shows the data from the order. The order should have one shipping
group with two commerceItemRelationships objects (a separate object for each
item).

2. Call the updateOrder endpoint in the Admin API and update the state of
the commerceItemRelationships object associated with the delivered item to
DELIVERED.

Initiate the return

To initiate the return of the delivered item, you use either the Agent API or the Store
API. This section illustrates using the Agent API.

1. Call the handleOrderActions endpoint in the Agent API to check if the order is
returnable. For example:

POST /ccagent/v1/orders/o20005
{"op": "validActions"}

The response should show the isReturnOrder flag as true. If isReturnOrder is
false, items in the order cannot be returned.

2. Initiate a return request for the above order using the Agent API initiateReturn
endpoint. For example:

POST /ccagent/v1/returnRequests
{
 "op": "initiateReturn",
 "orderId": "o20005"
}

The response includes a list of the items in the order. For an item that
has not been delivered yet, the nonreturnable property is true and the
nonReturnableReason property indicates that the item has not been delivered.

3. Now create the return request using the initiateReturn endpoint with "op":
"createReturnRequest", and specify the item to be returned.
Once the return request is created, the remainder of the return flow (such as
receiving the returned item and processing the refund) can be performed using the
UI.

Support add-on products
Add-on products are optional extras, like monogramming, gift wrap, or warranties,
which shoppers can purchase to customize or enhance purchases.

An add-on is a product that you can link to a main product so shoppers see it on
the main product’s details page and can optionally purchase it along with the main
product. See Create add-on products to learn how to create an add-on product and
link it to a main product.

You must make changes to several storefront layouts to allow your store to support
add-on products. The modifications described in this section involve adding new
widgets to page layouts and also making sure the latest versions are used for some
widgets that are included in the page layouts out of the box. To determine if you are

Chapter 9
Support add-on products

9-24

using the latest version, or to replace a widget with the latest version, see Customize
your store layouts.

The following widgets incorporate add-on products functionality into your storefront:

• The Order Confirmation and Order Details widgets have been updated to support
add-on products. Make sure you are using the latest version of these widgets,
which allow a shopper to see any add-on products that are part of the order.

• The Product Details widget must be updated to display add-on products that
shoppers can select, customize (if appropriate), and add to the cart along with
the main product. See Product Details widget for add-ons for more information,
including a sample version of the Product Details widget that lets shoppers select
different types of gift wrapping and add a custom gift message.

• The Shopping Cart and Cart Summary widgets have been updated to support
add-on products. Make sure you are using the latest versions of these widgets.
The new version of the Shopping Cart Summary widget allows a shopper to see,
but not remove or edit, any add-on products that are part of the order. See Cart
Summary widget for add-ons for a sample version of the Shopping Cart Summary
widget that lets shoppers remove or edit add-on products.

Product Details widget for add-ons

There is no one-size-fits-all solution for displaying add-on products in the Product
Details layout, so by default, the Product Details layout does not include components
for add-on products. To allow shoppers to see and purchase add-on products, you
must customize the layout’s Product Details widget. This section describes an example
based on the Product Details widget that is included in Commerce. The sample
updates the widget so it displays the details about all add-on products linked to the
main product when the shopper views the main product’s details page. If an add-on
product offers multiple SKUs, the shopper can select a SKU. If an add-on product
allows shopper input, such as a gift message, the shopper can specify that value.

This sample assumes that you have already created and linked add-on products as
described in Create add-on products. The add-on products in this sample include
two product types, whose IDs are Warranty and GiftWrap. The GiftWrap product
type includes a short text Shopper Input property that allows the shopper to add a
gift message. Note that the code in this section is for illustrative purposes only; it
is not intended to be production-ready, and may not adequately handle all possible
use cases or implement the exact behavior you want. In addition, you may need to
customize other widgets that handle add-on items.

Access add-on properties via the productTypesViewModel

The productTypesViewModel is populated with the ProductTypes data available
from the data initializer. This view model is cacheable, and maintains a cache of
ProductTypes data. The productTypesViewModel supports the following methods:

• getInstance (data) gets the instance of the productTypesViewModel object. data
is an optional object that contains the array of productTypes information.

• setContextData (data) populates the productTypes list from the data fetched
from Repositorydata. data is an object that contains the array of productTypes
information.

• retrieveShopperInputsData (productTypes, success, error) gets the
ShopperInput for the requested productTypes.

Note: The dynamicProperty view model is used to store the shopperInput data.

Chapter 9
Support add-on products

9-25

Create an element to display an add-on product

The out-of-the-box version of the Product Details widget is separated into elements.
(See Fragment a Widget into Elements for more information.) To create an element
to display the add-on products, this sample’s template.txt file provides the HTML
rendering code for the element.

<!-- ko if: initialized() -->
<div class="col-md-12">
 <!-- ko if: $data.addOnPopulated -->
 <div data-bind="foreach: addOnProducts">

 <div style="border: .5px solid #a1a1a1;padding: 10px 40px;border-
radius:
 7px;display: inline-block;background-color: #EEEEEE;margin-bottom:
10px;"
 class="col-md-12">
 <div class="col-md-12" style="left: -10px;">
 <input type="checkbox" data-bind="checked: isSelected, disable:
 (stockStatus != 'IN_STOCK')" />

 </div>
 <div class="col-md-12" data-bind="if: isSelected">
 <div class="col-md-12">
 <!-- ko with: $data.shopperInput -->
 <!-- ko foreach: $data -->
 <label data-bind="text: $data.label"></label>
 <!-- ko if: ($data.uiEditorType() == "shortText") -->
 <input class="form-control"
type="text" data-bind="validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "longText") -->
 <textarea class="form-control" data-
bind="validatableValue:
 $data.value"></textarea>

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "number") -->
 <input class="form-control"
type="number" data-bind="validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "date") -->
 <input class="form-control" type="date"
data-bind="validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "checkbox") -->
 <input class="form-control" type="checkbox" data-
bind="checked:
 $data.value, validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.type() == "enumerated") -->
 <select class="form-control" type="text" data-
bind="options:
 $data.values, optionsCaption:
$parents[2].listShopperInputPlaceHolderText,
 validatableValue: $data.value" ></select>

Chapter 9
Support add-on products

9-26

 <!-- /ko -->
 <!-- Validation message place holder -->
 <div>
 <p class="text-danger" id="CC-shopperInput-error"
 data-bind="validationMessage: $data.value"
role="alert"></p>

 </div>
 <!-- /ko -->
 <!-- /ko -->
 </div>
 <!-- ko if: ($data.addOnOptions && $data.addOnOptions.length >
0) -->

 <!-- ko if: ($data.addOnOptions[0].product.type == 'GiftWrap'
||
 $data.addOnOptions[0].product.type == 'Normal') -->
 </
span>

 <div class="col-md-12" style="display: inline-flex;">
 <!-- ko foreach: $data.addOnOptions -->
 <div class="col-md-4">
 <img class="imageSize" data-
bind="productVariantImageSource:
 {src: $data.product, imageType: 'thumb', alt:$data.product.displayName,
 errorSrc:'/img/no-image.jpg', errorAlt:'No Image Found'}, click:
$parents[2].addOnIconChanged.bind($parents[2], $parent)" />

 <div style="display:block;word-break:break-
all;width:100%;">

 -
 <span data-bind="currency:
{price: $data.product.listPrice, currencyObj:
$parents[2].site().selectedPriceListGroup().currency, nullReplace:
$parents[2].priceUnavailableText(), prependNull: false}">
 </div>
 </div>
 <!-- /ko -->
 </div>
 <!-- /ko -->
 <!-- ko if: ($data.addOnOptions[0].product.type ==
'Warranty') -->
 <div class="col-md-12">
 <!-- ko foreach: $data.addOnOptions -->
 <input type="radio" data-
bind="id:{name: $data.repositoryId}, checked:
$parent.selectedAddonSku, value: $data.repositoryId, click:
$parents[2].addOnRadioChanged.bind($parents[2], $parent) ">
 <span id="cc-add-on-product-name" data-bind="text :
$data.sku.repositoryId ">
 <span id="cc-add-on-product-price" data-
bind="currency: {price: $data.product.listPrice, currencyObj:
$parents[2].site().selectedPriceListGroup().currency, nullReplace:
$parents[2].priceUnavailableText(), prependNull: false}">
 </input>

Chapter 9
Support add-on products

9-27

 <!-- /ko -->
 </div>
 <!-- /ko -->
 <!-- /ko -->
 <div class="col-md-12" class="text-danger" >

 </div>
 </div>
 </div>
 </div>
 <!-- /ko -->
</div>
<!-- /ko -->

In this sample element.json meta-data file, the element is made available for use
by the Sample Product Details widget:

{
 "inline" : false,
 "supportedWidgetType" : ["sampleProductDetails"],
 "translations" : [
 {
 "language" : "en_EN",
 "title" : "addons",
 "description" : "Displaying add-on products in the product details
widget"
 }
]
}

In order to use the new element in a widget, you need to add some additional
tags to the widget’s display.template and widget.template files that enable
the element to be rendered as part of the output page and to be managed on the
administration interface Design page. If the widget has already been broken into
elements, you will, at a minimum, need to add an oc section tag for the new element:

<!-- oc section: product-addOn -->
 <div data-bind="element: 'sample-product-addOn'"></div>
<!-- /oc -->

Add an add-on product to the cart

The cart-item view model has been updated to include the following new fields:

• isAddOnItem is a Boolean that is set to true for add-on products. This
distinguishes between add-on items and Oracle CPQ child items.

• shopperInput is a place holder field to capture the shopper input value, such as a
gift message.

• configurablePropertyId is the repository ID of the ConfigurableProperty that
corresponds to the selected add-on product.

Chapter 9
Support add-on products

9-28

• configurationOptionId is the repository ID of the ConfigurationOption that
corresponds to the selected add-on product.

When a shopper selects an add-on product displayed on Product Details page and
clicks the Add To Cart button, the addItem method of CartViewModel is triggered
for the main product data, which is also the case for products without add-ons. The
new field selectedAddOnProductsObj contains information that describes the selected
add-on products, and is passed to addItem with the product.

addItem iterates over the selectedAddOnProductsObj array and creates a new
CartItem object corresponding to each selectedAddon object. isAddOnItem is set as
true and shopperInput is populated if the add-on product contains shopper input
data. If no add-on products were selected by the shopper, then the childItems
property of main product is undefined.

The following sample method iterates over the add-on products structure and trims
any options that the shopper did not select before adding the main product and add-on
products to the cart.

processAddonBeforeAddtoCart: function(addOnProducts) {
 var selectedAddonProducts = [];
 for (var i=0; i<addOnProducts.length; i++) {
 selectedAddonProducts.push(ko.toJS(addOnProducts[i]));
 }

 // Set the add-on products ShopperInputs
 var iAddonProdsSize = selectedAddonProducts.length - 1;
 var iSelectedSKUsSize = 0;
 for (var i=iAddonProdsSize; i>=0; i--) {
 if(!selectedAddonProducts[i].isSelected) {
 selectedAddonProducts.splice(i, 1);
 continue;
 }

 var shopperInput = {};
 if (selectedAddonProducts[i].shopperInput &&
selectedAddonProducts[i].shopperInput.length > 0) {
 for(j=0; j<selectedAddonProducts[i].shopperInput.length; j++) {
 // If a shopperInput is not entered then no need to send this
further
 if(selectedAddonProducts[i].shopperInput[j].value ||
(selectedAddonProducts[i].shopperInput[j].required &&
 selectedAddonProducts[i].shopperInput[j].value === false)) {
 shopperInput[selectedAddonProducts[i].shopperInput[j].id] =
 selectedAddonProducts[i].shopperInput[j].value;
 }
 }
 }

 iSelectedSKUsSize = selectedAddonProducts[i].addOnOptions.length -
1;
 for (var j=iSelectedSKUsSize; j>=0; j--) {
 if(!selectedAddonProducts[i].addOnOptions[j].isSelected) {
 selectedAddonProducts[i].addOnOptions.splice(j, 1);
 continue;
 }

Chapter 9
Support add-on products

9-29

 selectedAddonProducts[i].addOnOptions[j].shopperInput =
shopperInput;
 selectedAddonProducts[i].addOnOptions[j].quantity = 1;
 }

 // If none of the config options are selected, there is no need
 // to pass the ConfigProperty
 if(selectedAddonProducts[i].addOnOptions.length == 0) {
 selectedAddonProducts.splice(i, 1);
 }
 }
 return selectedAddonProducts;
},

Create the sample Product Details widget.json file

The sample’s widget.json file defines meta-data for the widget and should look
something like this:

{
 "name": "Sample Product Details",
 "javascript": "product-details",
 "availableToAllPages": true,
 "i18nresources": "sampleProductDetails",
 "imports": [
 "product",
 "imageRootUrl",
 "loaded",
 "productVariantOptions",
 "productTypes"
],
 "config" : {
 }
}

Cart Summary widget for add-ons

By default, add-on products that appear in the Cart Summary cannot be edited. This
section describes an example based on the Cart Summary widget that is included in
Commerce. The sample updates the widget so shoppers can edit or remove add-on
products that are already in the cart. Note that the code in this section is for illustrative
purposes only; it is not intended to be production-ready, and may not adequately
handle all possible use cases or implement the exact behavior you want. In addition,
you may need to customize other widgets that handle add-on items.

This sample assumes that you have already created and linked add-on products as
described in Create add-on products.

When a shopper clicks the Edit button for an add-on product (childItem) associated
with a main product (cartItem), the click handler opens a modal dialog and passes the
selected add-on product ID, and the main product cartItem productData.

Chapter 9
Support add-on products

9-30

The JavaScript file for the widget defines a displayEditAddonModal() function that
implements the logic for the dialog:

displayEditAddonModal : function(mainItemProduct,
selectedAddOn, element) {
 var widget = this;
 //Modal related functionality
 $('#CC-addonSelectionpane').on('show.bs.modal', function() {
 widget.selectedAddOnChildItem = selectedAddOn;
 if(widget.addonProductsMap[mainItemProduct.id]) {
 // Add-on data is already present.
 // No need to construct the data
 var tempAddonData =
widget.addonProductsMap[mainItemProduct.id];
 for(var i=0; i<tempAddonData.length; i++) {
 if(tempAddonData[i].repositoryId ==
selectedAddOn.configurablePropertyId) {
 widget.editedAddonData(tempAddonData[i]);
 for(var j=0;
j<widget.editedAddonData().addOnOptions.length; j++) {
 if(widget.editedAddonData().addOnOptions[j].repositoryId
==
selectedAddOn.configurationOptionId) {
 widget.editedAddonData().addOnOptions[j].isSelected(true);
 break;
 }
 }
 if(widget.editedAddonData().shopperInput) {
 for(var j=0;
j<widget.editedAddonData().shopperInput.length; j++) {
 var shopperInputId =
widget.editedAddonData().shopperInput[j].id();
 if(selectedAddOn.shopperInput[shopperInputId])
{widget.editedAddonData().shopperInput[j].value
(selectedAddOn.shopperInput[shopperInputId]);
 }
 }
 }
 widget.addOnPopulated(true);
 break;
 }
 }
 } else {
 widget.getAddOnProductData(mainItemProduct.id, selectedAddOn,
mainItemProduct.addOnProducts);
 }
 });
 $('#CC-addonSelectionpane').modal('show');
 $('#CC-addonSelectionpane').on('hidden.bs.modal', function() {
 widget.addOnPopulated(false);
 widget.editedAddonData(null);
 widget.selectedAddOnChildItem = null;
 });
 },

Chapter 9
Support add-on products

9-31

 <script type='text/html' id='expand-item'>
 <li style="display : inline;">
 <!-- Expanding the childItems -->
 <!-- ko if: !$data.childItems -->
 <!-- ko if: !$data.addOnItem -->
 <div><a data-bind="ccLink: productData, attr:
{ id: 'CC-shoppingCart-configDetails-' + $data.repositoryId}">

 <!-- ko foreach: $data.selectedOptions -->
 <!-- ko if: $data.optionValue -->
 (<span data-bind="widgetLocaleText :
{value:'option', attr:'innerText', params:
{optionName: $data.optionName,
 optionValue: $data.optionValue}},
 attr: { id: 'CC-shoppingCart-childProductOptions-'+
$parents[0].productId + $parents[0].catRefId +
($parents[0].commerceItemId ? $parents[0].commerceItemId: '') +
$parents[0].removeSpaces($data.optionValue)}">
)
 <!-- /ko -->
 <!-- /ko -->
 <span data-bind="currency: { price: $data.externalPrice(),
currencyObj:
$widgetViewModel.site().selectedPriceListGroup().currency}">
 -x
 <!-- ko foreach: externalData -->
 <div>
 <small>
 <!-- ko with: values -->
 :

 <!-- /ko -->
 <!-- ko if: actionCode -->
 ()
 <!-- /ko -->
 </small>
 </div>
 <!-- /ko -->
 </div>
 <!-- /ko -->
 <!-- ko if: $data.addOnItem -->
 <!-- ko if: $data.productData -->

 <div data-bind="attr: {id: 'CC-shoppingCart-productAddonItems-'
+
$parent.productId + $parent.catRefId + $parent.commerceItemId +
$index()}">

 </
span>
 -

ko if: ($data.detailedItemPriceInfo) -->
 <span data-
bind="currency:{price:$data.detailedItemPriceInfo()[0]

Chapter 9
Support add-on products

9-32

.detailedUnitPrice,
currencyObj:$parents[3].site().selectedPriceListGroup().currency}">

 <!-- /ko -->
 <a href="#" data-bind=" click:
$parents[3].handleRemoveAddonFromCart.bind($parents[3], $data) ">
 <img data-bind="widgetLocaleText :
{value:'handleRemoveAddonFromCart', attr:'alt'},
 attr:{id:'CC-shoppingCart-removeAddonItem-' + productId
+ catRefId + (commerceItemId ? commerceItemId: '') }"
src="/img/remove.png" alt="Remove">

 <!-- ko if: $data.shopperInput -->
 <!-- ko foreach: Object.keys($data.shopperInput) -->

 :
 <span data-bind="text:
$parent.shopperInput[$data]">

 <!-- /ko -->
 <!-- /ko -->
 </
span>
 :

 <a href="#" data-bind="
click:$parents[3].displayEditAddonModal.bind($parents[3], $parent,
$data)" tabindex="0" data-toggle="modal">
 <u><span data-bind="widgetLocaleText:
'editAddonsText'">Edit</u>

 </div>
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 <!-- ko if: $data.childItems -->

 <div class = "alignChild"><a data-bind="click:
$widgetViewModel.setExpandedFlag.bind($data, $element),
 attr: { href: '#CC-shoppingCart-configDetails-' +
$data.repositoryId}" data-toggle="collapse"
class="configDetailsLink collapsed"
role="configuration"> <a data-bind="ccLink: productData">

 <!-- ko foreach: $data.selectedOptions -->
 <!-- ko if: $data.optionValue -->
 (<span data-bind="widgetLocaleText :
{value:'option', attr:'innerText', params: {optionName:
$data.optionName,
 optionValue: $data.optionValue}},
 attr: { id: 'CC-shoppingCart-productOptions-'+
$parents[0].repositoryId +
$parents[0].removeSpaces($data.optionValue)}">

Chapter 9
Support add-on products

9-33

)
 <!-- /ko -->
 <!-- /ko -->
 <!-- ko ifnot: ($data.expanded) -->
 <span data-bind="if: $data.expanded,currency:
{ price: $data.itemTotal(), currencyObj:
$widgetViewModel.site().selectedPriceListGroup().currency}">
 -x
 <!-- /ko -->
 <!-- ko if: ($data.expanded) -->
 <span data-bind="currency:
{ price: $data.externalPrice(), currencyObj:
$widgetViewModel.site().selectedPriceListGroup().currency}">
 -x
 <!-- /ko -->
 <!-- ko foreach: externalData -->
 <div>
 <small>
 <!-- ko with: values -->
 :

 <!-- /ko -->
 <!-- ko if: actionCode -->
 ()
 <!-- /ko -->
 </small>
 </div>
 <!-- /ko -->
 <ul data-bind="template: {name: 'expand-item',
foreach: $data.childItems}, attr:
{ id: 'CC-shoppingCart-configDetails-' + $data.repositoryId}"
class="collapse">

 </div>
 <!-- /ko -->

 </script>
 <!-- /ko -->
<!-- /ko -->

The JavaScript file defines a cancelEditAddon() function that implements logic for
closing the dialog without making changes to the selected add-on product:

cancelEditAddon : function() {
 // Modal related functionality
 $('#CC-addonSelectionpane').modal('hide');

The JavaScript file defines a continueEditAddon() function that implements logic for
closing the dialog when the shopper clicks the Save button to save changes to the
selected add-on product:

continueEditAddon : function() {
 var widget = this;
 // Modal related functionality

Chapter 9
Support add-on products

9-34

 $('#CC-addonSelectionpane').modal('hide');

 var configOptions = widget.editedAddonData().addOnOptions;
 for(var i=0; i<configOptions.length; i++) {
 if(configOptions[i].isSelected()) {
 widget.selectedAddOnChildItem.catRefId =
configOptions[i].sku.repositoryId;
 widget.selectedAddOnChildItem.configurationOptionId =
configOptions[i].repositoryId;
 if(widget.editedAddonData().shopperInput &&
widget.editedAddonData().shopperInput.length > 0) {
 var shopperInput = {};
 for(var j=0;
j<widget.editedAddonData().shopperInput.length; j++) {
 // If a shopperInput is not entered then no need to send this
further
 if(widget.editedAddonData().shopperInput[j].value() ||
(widget.editedAddonData().shopperInput[j].required() &&
widget.editedAddonData().shopperInput[j].value() === false)) {

shopperInput[widget.editedAddonData().shopperInput[j].id()] =
widget.editedAddonData().shopperInput[j].value();
 }
 }
 widget.selectedAddOnChildItem.shopperInput = shopperInput;
 }
 }
 }
 console.log(widget.selectedAddOnChildItem);
 // Use cart VM method to update the cart Item data

widget.cart().editChildItemFromCart(widget.selectedAddOnChildItem);
 },

The JavaScript file defines a validateEditAddon() function that implements logic for
validating the shopper’s changes to the add-on product:

validateEditAddon : function() {
 var widget = this;
 if(!widget.editedAddonData()) {
 // If the editedAddonData is not yet created,
 // then there is nothing to validate.
 return;
 }

 var addonProduct = widget.editedAddonData();
 // 1. Check if at least one Config Option is selected
 var isConfigOptionSelected = false;
 for(var i=0; i<addonProduct.addOnOptions.length; i++) {
 if(addonProduct.addOnOptions[i].isSelected()) {
 isConfigOptionSelected = true;
 break;
 }
 }

Chapter 9
Support add-on products

9-35

 if(!isConfigOptionSelected) {
 return false;
 }
 // 2. Validate Shopper Input
 if(addonProduct.shopperInput) {
 for(var i=0; i<addonProduct.shopperInput.length; i++) {
 if(!addonProduct.shopperInput[i].validateNow()) {
 return false;
 }
 }
 }
 return true;

The JavaScript file defines a handleRemoveAddonFromCart() function that implements
logic for removing the selected add-on product from the cart:

handleRemoveAddonFromCart: function(childCartItem) {
 var widget = this;
 console.log("remove ..");
 widget.cart().removeChildItemFromCart(childCartItem, true);
 },

The widget’s display.template file contains the following code for rendering the
dialog:

<!-- MODAL dialog for editing or removing an add-on product -->
 <div class="modal fade col-md-12" id="CC-addonSelectionpane"
tabindex="-1" role="dialog">
 <div class="modal-dialog cc-config-modal-dialog">
 <div class="modal-content">
 <div class="modal-header CC-header-modal-heading">
 <!-- ko if: $parent.addOnPopulated -->
 <h3 data-bind="text:$parent.editedAddonData()
.displayName "></h3>
 <!-- /ko -->
 </div>
 <div class="modal-body cc-modal-body">
 <!-- ko if: $parent.addOnPopulated -->
 <div class="col-md-12">
 <!-- ko with: $parent.editedAddonData().shopperInput -->
 <!-- ko foreach: $data -->
 <label data-bind="text: $data.label"></label>
 <!-- ko if: ($data.uiEditorType() == "shortText") -->
 <input class="form-control"
type="text" data-bind="validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "longText") -->
 <textarea class="form-control"
data-bind="validatableValue: $data.value"></textarea>

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "number") -->
 <input class="form-control" type="number"
data-bind="validatableValue: $data.value">

 <!-- /ko -->

Chapter 9
Support add-on products

9-36

 <!-- ko if: ($data.uiEditorType() == "date") -->
 <input class="form-control" type="date"
data-bind="validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.uiEditorType() == "checkbox") -->
 <input class="form-control" type="checkbox"
data-bind="checked: $data.value, validatableValue: $data.value">

 <!-- /ko -->
 <!-- ko if: ($data.type() == "enumerated") -->
 <select class="form-control" type="text"
data-bind="options: $data.values,
optionsCaption: $parents[2].listShopperInputPlaceHolderText,
validatableValue: $data.value" ></select>

 <!-- /ko -->
 <!-- Validation message place holder -->
 <div>
 <p class="text-danger" id="CC-shopperInput-error"
 data-bind="validationMessage:
$data.value" role="alert"></p>
 </div>
 <!-- /ko -->
 <!-- /ko -->
 </div>

 <!-- ko if: ($parent.editedAddonData().addOnOptions.
length > 0) -->
 <!-- ko if:
($parent.editedAddonData().addOnOptions[0].product.type ==
'GiftWrap' || $parent.editedAddonData().addOnOptions[0].product.type ==
 'Normal') -->
 <div class="col-md-12" style="display: inline-flex;">
 <!-- ko foreach: $parent.editedAddonData().addOnOptions
-->
 <div class="col-md-3">
 <img style="max-height: 75px;
max-width: 75px;min-height: 75px;min-width: 75px;" data-
bind="productVariantImageSource: {src: $data.product,
imageType: 'thumb', alt:$data.product.displayName,
errorSrc:'/img/no-image.jpg', errorAlt:'No Image Found'},
 click: $parents[1].addOnIconChanged.bind($parents[1],
$parents[1].editedAddonData()) ">

 <div style="display:block;word-break:break-all;width:100%;">

 -
 <span data-bind="currency: {price:
$data.product.listPrice, currencyObj:
$parents[1].site().selectedPriceListGroup().currency, nullReplace:
$parents[1].priceUnavailableText(), prependNull: false}">
 </div>
 </div>
 <!-- /ko -->
 </div>
 <!-- /ko -->
 <!-- ko if:

Chapter 9
Support add-on products

9-37

($parent.editedAddonData().addOnOptions[0].product.type == 'Warranty')
-->
 <div class="col-md-12">
 <!-- ko foreach:
$parent.editedAddonData().addOnOptions -->
 <input type="radio" data-bind="attr:{id:
 $data.repositoryId, name:$parents[1].editedAddonData().repositoryId},
 checked: $parent.selectedAddonSku, value: $data.repositoryId, click:
 $parents[1].addOnRadioChanged.bind($parents[1],
 $parents[1].editedAddonData()) ">
 <span id="cc-add-on-product-name"
data-bind="text: $data.sku.repositoryId ">
 <span id="cc-add-on-product-price"
data-bind="currency: {price: $data.product.listPrice,
currencyObj: $parents[1].site().selectedPriceListGroup().currency,
 nullReplace: $parents[1].priceUnavailableText(), prependNull:
 false}">
 </input>

 <!-- /ko -->
 </div>
 <!-- /ko -->
 <div class="col-md-12" class="text-danger" >

 <span data-bind="text:
$parent.editedAddonData().stockValidationMessage ">
 </div>
 <!-- /ko -->
 <!-- /ko -->
 </div>
 <div class="modal-footer CC-header-modal-footer">
 <button data-bind="click: $parent.cancelEditAddon"
type="button" class="cc-button-secondary">Cancel</button>
 <button data-bind="enable:
$parent.validateEditAddon.bind($parent)(), click:
$parent.continueEditAddon.bind($parent, $parent.editedAddonData())"
type="button" class="cc-button-primary">Save</button>
 </div>
 </div>
 <!-- /.modal-content -->
 </div>
 <!-- /.modal-dialog -->
 </div>
 <!-- /.modal -->

Chapter 9
Support add-on products

9-38

10
Customize Order Line Items

This section describes how you can enable shoppers to customize items in orders by
splitting line items and setting custom properties on the resulting items.

Understand customization of order line items
Orders are broken down into line items that each contain data about an individual SKU
being purchased.

For example, if a shopper adds a specific SKU to the shopping cart and specifies a
quantity of 4, a single line item is created that stores information about the SKU, the
parent product, the SKU price, the quantity (4), and the total price of the 4 SKUs.
When you view the shopping cart page, it shows a separate entry for each line item.
For example, the following illustration shows two line items, one with a quantity of 4
and the other with a quantity of 1:

If the shopper modifies a quantity value on this page, the corresponding line item is
updated to reflect the new quantity and total price.

Line items have a predefined set of properties. In some cases, you may want to store
additional data that does not correspond to one of these properties. This is especially
useful if you have SKUs that can be customized in some way. For example, if you sell
items that can be monogrammed, your site needs a way to store the initials for the
monogram.

To enable storing such data, Commerce provides support for adding custom properties
to line items. You can use these properties for customization data, such as the initials
for a monogram.

If you add custom properties to line items, your storefront needs to provide a way for
shoppers to specify the values of these properties. It should also enable shoppers to
split a line item whose quantity is greater than 1 into multiple line items, so that each
item can be customized individually.

For example, suppose a shopper adds a coffee mug to the cart, and specifies a
quantity of 3. Doing this creates a single line item. If the shopper sets a custom
monogram property on the line item, the value applies to all three mugs. To specify
different values for each mug, he or she will first need to break the single line item
whose quantity value is 3 into three separate line items, each with a quantity of 1.

Commerce provides support for splitting line items in this way. The Implement a
custom cart summary widget section shows an example of how you can modify

10-1

your storefront to provide the controls for splitting line items and specifying values
of custom properties.

Note that this feature does not support splitting or personalizing line items representing
products configured through the integration of Oracle CX Commerce and Oracle CPQ.

Create custom properties for line items
This section describes how to add custom properties to line items.

This section describes how to use the Oracle CX Commerce REST web services APIs
to add custom properties to line items. See Use the REST APIs for information you
need to know before using the services.

View the commerceItem item type

Order line items are stored internally as instances of the commerceItem item type. You
can view this item type with the following call:

GET /ccadmin/v1/itemTypes/commerceItem HTTP/1.1
Authorization: Bearer <access_token>

The following example shows a portion of the response representing one of the
commerceItem properties. Each property has a group of attributes whose values control
the behavior associated with the property:

...
"productId": {
 "length": 254,
 "label": "Product id",
 "type": "shortText",
 "required": false,
 "searchable": false,
 "writable": true,
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "audienceVisibility": null,
 "localizable": false,
 "textSearchable": false,
 "dimension": false,
 "multiSelect": null,
 "editableAttributes": [
 "internalOnly",
 "default",
 "audienceVisibility",
 "textSearchable",
 "label",
 "dimension",
 "required",
 "searchable",
 "multiSelect"
]

Chapter 10
Create custom properties for line items

10-2

}
...

You can use the updateItemType endpoint to modify the commerceItem item type:

• Modify existing properties by changing the values of their attributes.

• Create custom properties by specifying their attributes.

See Settable attributes of shopper type properties for descriptions of these attributes.

The next section provides an example of creating a custom property.

Add custom properties to the commerceItem item type

You can use the updateItemType endpoint in the Commerce Admin API to add custom
properties to the commerceItem item type. When you add a custom property to the
commerceItem item type, the property is added to all line items in all orders.

Note that sites that sell configurable products such as telecommunications plans
may use certain item types that extend the commerceItem item type. When you add
custom properties to the commerceItem item type, they are automatically added to
these extensions as well. For example, you could add a fulfillment status property for
separately tracking each line item in a service plan.

The ID of a custom property must include the underscore character (_). This
ensures that the ID will not conflict with any properties that Commerce adds to the
commerceItem item type in the future. The endpoint produces an error if you attempt to
create a custom property without an underscore in its ID.

The following example illustrates using the updateItemType endpoint to add a custom
property. Note that the request header must specify the x-ccasset-language value:

PUT /ccadmin/v1/itemTypes/commerceItem HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "id": "commerceItem",
 "specifications": [
 {
 "id": "monogram_initials",
 "label": "Initials for monogramming",
 "type": "shortText",
 "uiEditorType": "shortText",
 "internalOnly": false,
 "required": false,
 "default": null
 }
]
}

The response includes the custom property you added:

...
{

Chapter 10
Create custom properties for line items

10-3

 "length": 254,
 "label": "Initials for monogramming",
 "type": "shortText",
 "required": false,
 "searchable": false,
 "writable": true,
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "audienceVisibility": null,
 "localizable": false,
 "textSearchable": false,
 "id": "monogram_initials",
 "dimension": false,
 "multiSelect": null,
 "editableAttributes": [
 "internalOnly",
 "default",
 "audienceVisibility",
 "textSearchable",
 "label",
 "dimension",
 "required",
 "searchable",
 "multiSelect"
]
 }
...

Note that for a commerceItem custom property, you will typically want to set default
to null and required to false, so that the property is not set unless the shopper
explicitly chooses to set it.

Understand view model support for line items
This section describes view model support for splitting line items.

The class diagram below shows the specific properties and methods of the view
models that support setting custom properties and splitting line items.

The CartViewModel implements the splitItems() function for splitting existing line
items. It also includes functions for handling dynamic properties (custom properties).

The combineLineItems string property on the CartViewModel determines the behavior
when a shopper adds instances of a SKU to a shopping cart that already contains that

Chapter 10
Understand view model support for line items

10-4

SKU. If combineLineItems is set to yes (the default), the SKUs are combined into a
single line item. For example, if there is a line item with a quantity of 3 for a certain
SKU, and the shopper adds that SKU to the cart again with a quantity of 2, the default
behavior is to modify the existing line item, resulting in a single line item with a quantity
of 5.

The splitItems() function sets combineLineItems to no, to prevent merging of line
items that have different customizations. In the example above, if combineLineItems is
set to no, the result is two separate line items for the SKU, one with quantity 3 and one
with quantity 2.

Implement a custom cart summary widget
After you add custom properties to the commerceItem item type, you need to provide a
way for a shopper to specify the values of these properties and to split individual line
items into multiple line items for customization.

To enable a shopper to specify the values of these properties and to split individual line
items into multiple line items for customization, you replace the Cart Summary widget
on your shopping cart page with a custom widget that implements these options.

This section describes a custom widget that you could create to add these capabilities
to your storefront. It assumes that you have previously created the monogram_initials
custom property shown in the Add custom properties to the commerceItem item
type section. Note that the code in this example is for illustrative purposes only; it
is not intended to be production-ready, and may not adequately handle all possible
use cases or implement the exact behavior you want. In addition, you may need to
customize other widgets that display order data to handle split line items and custom
properties.

Also, keep in mind that when you create a dynamic property for order line items, the
property is added to all line items. You may not want to expose the property in all
cases. For example, your store may offer monogramming only for certain items; for
other items, you do not want a personalization option to appear. You may need some
additional logic in your custom widget to conditionally expose or hide personalization
options, depending on the item. For example, you could expose personalization
options only for certain custom product types.

Display links for personalization

The custom widget’s display.template file conditionally displays one of two links for
each line item:

<!-- ko ifnot: $parent.isPersonalized -->
<a data-bind="click: $parents[2].personalizeItem.bind($data, $parent,
 $parents[2])" data-toggle="modal">Personalize
<!-- /ko -->
<!-- ko if: $parent.isPersonalized -->
<a data-bind="click: $parents[2].editItem.bind($data, $parent,
$parents[2])"
 data-toggle="modal">Edit
<!-- /ko -->

When the cart is initially displayed, none of the line items have been personalized, so
the shopping cart page shows a Personalize link for each line item. For example:

Chapter 10
Implement a custom cart summary widget

10-5

Clicking a line item’s Personalize link opens a modal dialog for splitting the line
item and personalizing the resulting items. For example, if the shopper clicks the
Personalize link for the Organized Wallet line item, the following dialog is displayed:

If the checkbox is checked, the line item will not be split when the shopper clicks
Save, and the value the shopper supplies for the monogram_initials property will be
applied to both wallets. If the checkbox is unchecked, the line item will be split, and the
dialog expands to display fields for specifying the custom property values for each item
individually:

After the shopper fills in the monogram values and clicks Save, the Organized Wallet
line item is split into two line items, and the monogram_initials property is set

Chapter 10
Implement a custom cart summary widget

10-6

separately on each one. The widget’s display.template file displays the value
of the property for each item it is set on:

<!-- ko if:($parents[1][$data.id()]) -->
 : <span data-bind =
"text:
 $parents[1][$data.id()]">

<!-- /ko -->

Notice that there are now two line items for the Organized Wallet, each with a quantity
of 1, and each with a different value for the custom property. The Tumbler Glass line
item still has a Personalize link, but the Organized Wallet line items now have Edit
links instead. Clicking one of the Edit links opens a dialog for changing the monogram
for the wallet associated with that link. For example:

Create the dialog for splitting and personalizing line items

The JavaScript file for the widget defines a personalizeItem() function that
implements the logic for the dialog:

personalizeItem: function(item, widget) {
 //Personalizing the item
 var totalQuantity = item.quantity();
 if(widget.cart().lineAttributes().length > 0) {
 for(var i=0; i< totalQuantity; i++) {
 var propObj = {};
 for(var j=0; j< widget.cart().lineAttributes().length;j++) {
 //Injecting default values of properties from the metadata

Chapter 10
Implement a custom cart summary widget

10-7

 propObj[widget.cart().lineAttributes()[j].id()] =
 ko.observable(widget.cart().lineAttributes()[j].value());
 }
 //Pushing each key-value pair to the result object to show
onto the modal
 widget.itemProps.push(propObj);
 }
 }
 //Modal related functionality
 $('#cc-personalizationPane').on('show.bs.modal', function() {
 widget.item(item);
 });
 $('#cc-personalizationPane').modal('show');
 $('#cc-personalizationPane').on('hidden.bs.modal', function() {
 widget.itemProps([]);
 });
 },

If the custom properties have default values, these values are used to populate
the dialog fields. However, providing defaults for these values is not recommended,
because they will be applied to all line items, including ones that cannot actually be
personalized.

The widget’s display.template file contains the following for rendering the dialog:

<!-- Personalization Modal -->
<div class="modal fade" id="cc-personalizationPane" tabindex="-1"
role="dialog">
 <div class="modal-dialog cc-modal-dialog">
 <div class="modal-content">
 <!-- ko if: $parent && $parent.item()!=null -->
 <div class="modal-header CC-header-modal-heading">
 <h4>Personalize your Item</h4>
 </div>
 <div class="modal-body cc-modal-body">
 <h5>Item 1</h5>
 <!-- ko with: lineAttributes -->
 <!-- ko foreach: $data -->
 <label class="control-label" data-bind="text: label"></label>
 <!-- ko if: $parents[2].itemProps()[0] -->
 <!-- ko if: uiEditorType() == "shortText" || uiEditorType() ==
"richText"
 || uiEditorType() == "number" || uiEditorType() == "date" -->
 <input class="form-control" type="text" data-bind="attr:
{name : id},
 value: $parents[2].itemProps()[0][id()]">

 <!-- /ko -->
 <!-- ko if: uiEditorType() == "checkbox" -->
 <input class="form-control" type="checkbox" data-bind="attr:
{name : id},
 checked: $parents[2].itemProps()[0][id()]">

 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->

Chapter 10
Implement a custom cart summary widget

10-8

 <input type="checkbox" data-bind="checked: $parent.noRepeat">Use
this
 for all items</input>
 <div data-bind="visible: !$parent.noRepeat()">
 <!-- ko foreach: new Array($parent.item().quantity()-1) -->
 <h5><p>Item </p></h5>
 <!-- ko with: $parent.lineAttributes -->
 <!-- ko foreach: $data -->
 <label class="control-label" data-bind="text: label"></label>
 <!-- ko if: $parents[3].itemProps()[$parentContext.$index()+1]
-->
 <!-- ko if: uiEditorType() == "shortText" || uiEditorType() ==
"richText"
 || uiEditorType() == "number" || uiEditorType() == "date" -->
 <input class="form-control" type="text" data-bind="attr:
{name : id},
 value: $parents[3].itemProps()[$parentContext.$index()+1]
[id()]"/>

 <!-- /ko -->
 <!-- ko if: uiEditorType() == "checkbox" -->
 <input class="form-control" type="checkbox" data-bind="attr:
{name : id},
 checked: $parents[3].itemProps()[$parentContext.$index()+1]
[id()]"/>

 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 </div>
 </div>
 <div class="modal-footer CC-header-modal-footer">
 <button data-bind="click:
$parent.cancelPersonalization.bind($parent)"
 type="button" class="cc-button-secondary">Cancel</button>
 <button data-bind="click:
$parent.savePersonalization.bind($parent)"
 type="button" class="cc-button-primary">Save</button>
 </div>
 <!-- /ko -->
 </div>
 </div>
</div>

The JavaScript file for the widget also includes a savePersonalization() function,
which is executed when the shopper clicks Save:

savePersonalization: function() {
 var widget= this;
 //Saving personalized values
 if(widget.noRepeat()) {
 //If the flag is checked, populate the entire quantity with the
same set
 //of values.

Chapter 10
Implement a custom cart summary widget

10-9

 widget.item().populateItemDynamicProperties(widget.itemProps()
[0]);
 widget.item().isPersonalized(true);
 widget.cart().markDirty();
 } else {
 //Splitting all quantities to 1 each if the flag is unchecked.
 //This can be customized further to split total quantity in any
manner.
 var quantityList = new Array(widget.item().quantity()
+1).join(1).
 split('').map(function(){return 1;})
 //Calling split items function to create multiple lines with
 //different custom properties provided.
 widget.cart().splitItems(widget.item(), quantityList,
 widget.itemProps());
 }
 //Modal related functionality
 $('#cc-personalizationPane').modal('hide');
},

If the shopper chooses to split a line item, the widget splits it into line items whose
quantity is 1. For example, if the line item has a quantity of 3, it is split into three line
items with a quantity of 1. After an item is split, the shopper can increase the quantity
of one of the resulting items and then split that item. If the shopper splits an item and
then adds more of the same SKU to the shopping cart, the addition is treated as a
separate line item and not combined with the split items.

Note that the splitItems() function of the CartViewModel supports splitting in other
ways than the above code implements. For example, splitItems() can split a line
item with quantity 3 into two line items, one with a quantity of 1 and one with a quantity
of 2. You can support this option in your own custom widget by creating controls that
enable shoppers to specify different splitting options.

When the customer edits property values, the sample widget triggers one pricing call
per edit. You can reduce the number of pricing calls by implementing a way for your
custom widget to trigger pricing only after all personalization is complete.

Create the dialog for modifying personalized line items

The isPersonalized boolean on the CartItem is used to indicate whether a line
item has been personalized. By default it is set to false; when a shopper clicks a
Personalize link on a line item to invoke the widget’s personalizeItem() function,
the widget sets the isPersonalized property to true. This causes the Edit link to
be displayed for the resulting line items. Clicking the Edit link invokes the widget’s
updatePersonalization() function, which enables further changes to the custom
property values, but not further splitting of the line items:

updatePersonalization: function(){
 var widget = this;
 //Calling the method to update properties of the item specified
 //by the user in the modal
 widget.item().populateItemDynamicProperties(widget.itemProps()[0]);
 $('#cc-editPane').modal('hide');
 widget.cart().markDirty();
},

Chapter 10
Implement a custom cart summary widget

10-10

You could extend this function to support further splitting of line items as well.

The widget’s display.template file contains the following for rendering the dialog:

<!-- Edit Personalization Modal -->
 <div class="modal fade" id="cc-editPane" tabindex="-1" role="dialog">
 <div class="modal-dialog cc-modal-dialog">
 <div class="modal-content">
 <!-- ko if: $parent && $parent.item()!=null -->
 <div class="modal-header CC-header-modal-heading">
 <h4>Edit Personalization</h4>
 </div>
 <div class="modal-body cc-modal-body">
 <h5>Item</h5>
 <!-- ko with: lineAttributes -->
 <!-- ko foreach: $data -->
 <label class="control-label" data-bind="text: label"></label>
 <!-- ko if: $parents[2].itemProps()[0] -->
 <!-- ko if: uiEditorType() == "shortText" || uiEditorType() ==
 "richText" || uiEditorType() == "number" || uiEditorType() ==
"date" -->
 <input class="form-control" type="text" data-bind="attr:
{name : id},
 value: $parents[2].itemProps()[0][id()]">

 <!-- /ko -->
 <!-- ko if: uiEditorType() == "checkbox" -->
 <input class="form-control" type="checkbox" data-bind="attr:
{name :
 id}, checked: $parents[2].itemProps()[0][id()]">

 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->
 </div>
 <div class="modal-footer CC-header-modal-footer">
 <button data-bind="click: $parent.cancelEdit.bind($parent)"
type="button"
 class="cc-button-secondary">Cancel</button>
 <button data-bind="click:
$parent.updatePersonalization.bind($parent)"
 type="button" class="cc-button-primary">Save</button>
 </div>
 <!-- /ko -->
 </div>
 </div>
 </div>

Chapter 10
Implement a custom cart summary widget

10-11

11
Ship an Order to Multiple Addresses

The split shipping feature makes it possible for a shopper to split a single order so that
portions of it are shipped to different addresses.

This section provides details on how to implement this feature.

Understand view model support for split shipping
This section provides information on the view models that contain data related to split
shipping and the APIs you use to interact with them.

Affected view models

The class diagram below shows the properties and methods added to the view models
to support multiple shipping groups. Detailed descriptions of these APIs follow the
diagram.

CartViewModel.isSplitShipping

The property that indicates if split shipping is activated. When the shopper chooses
the split shipping option, this property must be set to true. You should also use this
property to control the visibility of split shipping/single shipping UI elements.

ShippingGroupRelationship

The view model class that represents an association between a cart item and a
shipping group. Strictly speaking, shipping group relationships associate a specified
quantity of a cart item with a shipping address and shipping method (not a shipping
group). However, the shipping groups array that supports split shipping is directly
generated from the ShippingGroupRelationship instances. When the shopper selects
a shipping address and shipping method for a quantity of a given cart item, it is this
class that captures those selections. See Understand REST support for split shipping
for more details on the shipping groups array.

11-1

CartItem.shippingGroupRelationships

The collection of ShippingGroupRelationship instances for a cart item. By default,
there is one ShippingGroupRelationship instance per cart item, meaning that each
cart item will be associated with at least one shipping group.

CartItem.addShippingGroupRelationship

In order to ship the same cart item (SKU) to several different addresses (shipping
groups), it is necessary to create several associations (shipping group relationships)
between a cart item and the different shipping groups. This method creates additional
shipping group relationship instances, allowing multiple associations per single cart
item. The maximum number of shipping group relationship instances is equal to the
cart item quantity, beyond which it is not possible to split the cart item any further (as
there would be more associations than cart items available).

CartItem.canAddShippingGroupRelationship

Determines if it is possible to add another shipping group relationship instance (that
is, associate the cart item with another shipping group). The maximum number of
shipping group relationship instances is equal to the cart item quantity, beyond which
it is not possible to split the cart item any further (as there would be more associations
than cart items available).

CartItem.removeShippingGroupRelationship

Removes a ShippingGroupRelationship instance from the cart item’s
shippingGroupRelationships array.

CartViewModel.hasSingleShippingInformation

When in single shipping mode (that is, isSplitShipping is false), determines if the
single shipping address and shipping method are populated.

CartViewModel.hasSplitShippingInformation

When in split shipping mode (that is, isSplitShipping is true), determines
if all shipping group relationships are populated with shipping addresses and
shipping methods, and the shippingGroupRelationships array is valid. See
ShippingGroupsRelationships array validation for details.

CartViewModel.hasShippingInformation

This property is true if either hasSplitShippingInformation or
hasSingleShippingInformation is true, otherwise it is false.

CartViewModel.priceCartForCheckout

The method that calls the Store priceOrder endpoint to price the shopping cart only
if the cart has shipping information; that is, hasShippingInformation is true. This
method’s internal logic accounts for both single and split shipping scenarios.

CartViewModel.orderShippingGroups

The latest shipping groups array (if any) returned from a web service call. See
Understand REST support for split shipping for more details on this array

Chapter 11
Understand view model support for split shipping

11-2

Implement split shipping UI controls
It is standard e-commerce practice that shipping selections are implemented as part of
the checkout flow.

Commerce already implements single shipping this way, so for the purposes of
continuity, it is recommended that split shipping is also implemented in checkout. A
non-standard implementation (such as on the cart page), although possible, would
require more custom coding and may have additional side effects that require
mitigation.

Split shipping toggle

A split shipping toggle button allows users to activate or deactivate split shipping for
the current order. The button toggles the state of the isSplitShipping property. Also,
it may be necessary to toggle the visibility of split shipping/single shipping UI elements.

The following sequence diagrams shows how you might choose to activate and
deactivate the split shipping toggle on your storefront.

Activate

In this diagram, the following happens:

• The shopper clicks a Use Split Shipping button on the UI, which calls the Checkout
Address Book widget’s toggleSplitShipping() method.

• The toggleSplitShipping() method sets the CartViewModel.isSplitShipping
property to true.

• The Checkout Address Book widget shows the Ship To Multiple Addresses UI and
hides the Ship To Single Address UI.

Deactivate

Chapter 11
Implement split shipping UI controls

11-3

In this diagram, the following happens:

• The shopper clicks the Use Single Shipping button on the UI, which calls the
Checkout Address Book widget’s toggleSplitShipping() method.

• The toggleSplitShipping() method sets the CartViewModel.isSplitShipping
property to false.

• The Checkout Address Book widget shows the Ship To Single Address UI and
hides the Ship To Multiple Addresses UI.

Split shipping web form

A split shipping web form allows users to populate shipping options for each
cart item. The shippingGroupRelationships property (which is an observable
array) captures the split shipping options for each cart item. Each instance of
a ShippingGroupRelationships object associates a quantity of cart item with a
given shipping address and shipping method. A single cart item can have several
ShippingGroupRelationships instances, allowing the cart item to be split across
several shipping groups.

Chapter 11
Implement split shipping UI controls

11-4

Quantity field

The Quantity field allows the shopper to specify the portion of cart item to be
associated with a given shipping group. The following code shows a sample UI binding
pattern for this feature:

<!-- ko foreach: cart().items -->
 <!-- ko foreach: shippingGroupRelationships -->
 <input type="number" name="quantity" class="form-control" data-
bind="
 value: quantity,

Chapter 11
Implement split shipping UI controls

11-5

 event: {change: $parents[1].priceSplitShippingCartForCheckout}">
 <!-- /ko -->
<!-- /ko -->

Note: A change of Quantity will cause the widget to make a pricing call, provided the
split shipping form is complete and valid.

Shipping Address field

The Shipping Address field allows the shopper to select a shipping address for the
specified quantity of the cart item. The following code shows a sample UI binding
pattern for this feature:

<!-- ko foreach: cart().items -->
 <!-- ko foreach: shippingGroupRelationships -->
 <select
 class="form-control"
 name="shippingAddress"
 data-bind="options: $parents[1].user().shippingAddressBook(),
 optionsText: $parents[1].getOptionTextForAddress,
 value: shippingAddress,
 optionsCaption: 'Select shipping address',
 event: {change: $parents[1].lookupShippingOptions}">
 </select>
 <!-- /ko -->
<!-- /ko -->

Shipping Address options should be retrieved from the profile’s shipping address book
so that updates to the shipping address book will automatically be reflected in the
options list. A change of Shipping Address must trigger a method in your widget that
makes an AJAX service call to retrieve the valid shipping options for the selected
address and product. The product ID must be passed in this call because some
products may have a shipping surcharge and not all shipping methods can be used for
products with surcharges.

Shipping Method field

The Shipping Method field allows the shopper to select a shipping method for the
specified quantity of the cart item. The following code shows a sample UI binding
pattern for this feature:

<!-- ko foreach: cart().items -->
 <!-- ko foreach: shippingGroupRelationships -->
 <select
 class="form-control"
 name="shippingMethod"
 data-bind="options: shippingOptions,
 optionsText: 'displayName',
 value: shippingMethod,
 optionsCaption: 'Select shipping method',
 enable: shippingAddress,
 event: {change:
$parents[1].priceSplitShippingCartForCheckout}">
 </select>

Chapter 11
Implement split shipping UI controls

11-6

 <!-- /ko -->
<!-- /ko -->

The Shipping Method options displayed to the shopper must be populated by a
method in your widget that makes an AJAX service call to retrieve the valid shipping
options for the selected address. A change of Shipping Address should trigger this
method.

A change of Shipping Method should cause the widget to make a pricing call, provided
the split shipping form is complete and valid.

Split Items button

The Split Items button creates another shipping group relationship instance for this
cart item, allowing the same cart item to be associated with more than one shipping
group. The following code shows a sample UI binding pattern for this feature:

<!-- ko foreach: cart().items -->
 <!-- ko if: $parent.canAddShippingGroupRelationship($parent) -->
 <button class="btn btn-link" data-bind="click:
addShippingGroupRelationship">
 Split items
 </button>
 <!-- /ko -->
<!-- /ko -->

It is only possible to split a cart item if the cart item quantity is greater than
shippingGroupRelartionships.length.

Remove Item (X) button

The Remove Item button, shown as an X in the sample UI displayed in this section,
removes a shipping group relationship instance. The following code shows a sample
UI binding pattern for this feature:

<!-- ko foreach: cart().items -->
 <!-- ko foreach: shippingGroupRelationships -->
 <button class="btn btn-sm btn-link" data-bind="click:
 parents[1].removeShippingGroupRelationship.bind($parent)">

 </button>
 <!-- /ko -->
<!-- /ko -->

The removeShippingGroupRelationship method, used in the click binding above, is
a widget method and not the CartItem.removeShippingGroupRelationship method.
It does, however, delegate to CartItem.removeShippingGroupRelationship, and also
makes a pricing call, provided the split shipping form is complete and valid.

Add Address button

The Add Address button opens an address form where a shopper can save a new
address to his profile address book. Once created, the new address will automatically
appear in the Shipping Address options in the split shipping form. Apart from the
inclusion of an alias field, no new address management APIs are required for split

Chapter 11
Implement split shipping UI controls

11-7

shipping. Re-using existing address management functionality is wholly sufficient to for
this purpose.

The following illustration shows what an Add Address form might look like with fields
for name, address, and phone number information. Note the addition of the Alias field.

ShippingGroupsRelationships array validation

The shippingGroupRelationships property has two predefined custom Knockout
validators:

• Quantity of item allocated to shipping groups exceeds quantity of item in cart:
Checks that the sum of the shipping group quantities is not greater than the cart
item quantity.

• Cart item quantity not fully allocated to shipping groups: Checks that the sum of
the shipping group quantities is not less than the cart item quantity.

The above validators are computed automatically. The illustration below shows an
error message that indicates to the shopper when a validation has failed.

To output the error message on screen, use the validationMessage binding shown
below:

<!-- ko foreach: cart().items -->
 <div class="text-danger" data-bind="validationMessage:
 shippingGroupRelationships" role="alert"></div> <!-- /ko -->

Chapter 11
Implement split shipping UI controls

11-8

Price order

The pricing method CartItem.priceCartForCheckout handles both single and split
shipping pricing. There is no change to the API for the split shipping.

As you create your widgets, you should consider when pricing is called. For example,
you should call pricing when:

• The Quantity field changes.

• The Shipping Method field changes.

• A shipping group relationship is removed (clicking the X button in the sample UI
shown in this section).

The priceCartForCheckout method uses the isSplitShipping property to determine
which pricing request to make. The priceCartForCheckout method will only make a
pricing request if the split shipping form is complete and valid.

Order summary

Your storefront may need to show a pricing breakdown by shipping group in an Order
Summary section, as shown in the following example which displays the shipping
group name, subtotal before tax and shipping, shipping costs, sales tax, and total cost
for each group.

Chapter 11
Implement split shipping UI controls

11-9

The following binding pattern outputs the price info per shipping group in the widget
shown above.

<!-- ko if: cart().isSplitShipping() -->
 <!-- ko foreach: cart().orderShippingGroups -->
 <!-- ko if: $data.hasOwnProperty("priceInfo") -->
 <div class="well well-sm small">
 Shipping Group

 (</
span> -
 <span data-bind="text:
 shippingMethod.shippingMethodDescription"></
span>)
 <div class="row">
 <div class="col-xs-7">Subtoal</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.subTotal,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">

Chapter 11
Implement split shipping UI controls

11-10

 </div>
 </div> <div class="row">
 <div class="col-xs-7">
 Shipping (<span data-bind="text:
 shippingMethod.shippingMethodDescription"></
span>)
 </div> <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.shipping,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div>
 <!-- ko if: $data.hasOwnProperty("discountInfo") -->
 <!-- ko if: discountInfo.shippingDiscount !== 0 -->
 <div class="row">
 <div class="col-xs-7">Shipping Discount </div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: -discountInfo.shippingDiscount,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- /ko -->
 <!-- ko if: priceInfo.shippingSurchargeValue &&
 priceInfo.shippingSurchargeValue !== 0 -->
 <div class="row">
 <div class="col-xs-7">Shipping Surcharge</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.shippingSurchargeValue,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- ko if: $parent.cart().showTaxSummary -->
 <div class="row">
 <div class="col-xs-7">Sales Tax</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.tax,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- ko if: (taxPriceInfo.isTaxIncluded &&
 $parent.cart().showTaxSummary) -->
 <div class="row">
 <div class="col-xs-7">Group Total (excluding tax)</
div>

Chapter 11
Implement split shipping UI controls

11-11

 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.totalWithoutTax,
 currencyObj:
$parent.site().priceListGroup.currency}">
 </div>
 </div> <!-- /ko -->
 <div class="row"> <div class="col-xs-7">
 Group Total
 <!-- ko if: (taxPriceInfo.isTaxIncluded &&
 $parent.cart().showTaxSummary) -->
 <span data-bind="widgetLocaleText:
'includingTaxText'">
 <!-- /ko --> </div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.total,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div> </div> </
div> <!-- /ko --> <!-- /ko -->
 <!-- /ko -->

Place order

The OrderViewModel.handlePlaceOrder method handles placing both single and
split shipping orders. There is no change to the API for split shipping. The
handlePlaceOrder method should be called when the Place Order button is clicked.

Order confirmation

Order confirmation should display each shipping group and its relevant information
such as the addressee, the shipping method, the items in the shipping group, the
subtotal before tax and shipping, shipping costs, sales tax, and a total cost for each
group.

Chapter 11
Implement split shipping UI controls

11-12

Chapter 11
Implement split shipping UI controls

11-13

The following binding pattern iterates over the shippingGroups array in the widget
shown above.

<!-- ko with: confirmation --> <!-- ko foreach: shippingGroups -->
 Mark-up for shipping group here... <!-- /ko -->
 <!-- /ko -->

Order details

Order details, like order confirmation, should display each shipping group and its
relevant information such as the addressee, the shipping method, the items in the
shipping group, the subtotal before tax and shipping, shipping costs, sales tax, and a
total cost for each group.

Chapter 11
Implement split shipping UI controls

11-14

Chapter 11
Implement split shipping UI controls

11-15

The following binding pattern iterates over the shippingGroups array in the widget
shown above.

<!-- ko with: orderDetails-->
 <!-- ko foreach: shippingGroups -->
 Mark-up for shipping group here...
 <!-- /ko -->
<!-- /ko -->

Understand REST support for split shipping
To support the split shipping feature, updates have been made to the Profile and
Orders resources in the Store REST API.

These resources contain endpoints for managing shopper profiles and orders,
respectively.

• For the Profile resources, support has been added for an alias property to identify
addresses in the address book.

• For the Orders endpoints, support has been added for multiple shipping groups,
in the form of a shippingGroups array, and for an alias property to identify the
addresses contained in those shipping groups. Each of the Orders endpoints
that take detailed order or cart information in their request payload support the
shippingGroups array. All of the Orders endpoints that return detailed order
information will return a shippingGroups array in the response as long as there
are cart items associated with the shipping groups. If none of the shipping groups
for a cart or order have cart items associated with them then the shippingGroups
array is suppressed in the endpoint response. This will typically be the case for
persisted carts (incomplete orders) that existed in the order repository before the
split shipping feature was deployed.

Understand the shippingGroups array

The shippingGroups array is supported in request and response payloads when
appropriate. In request payloads, it is optional. In response payloads, it is returned
as long as item relationships exist for one or more shipping groups in the cart/order.
Each object in the shippingGroups array holds information about:

• The shipping address (shippingAddress object) for the shipping group. This
shippingAddress object has an alias property that identifies the address.

• The shipping method (shippingMethod object) for the shipping group.

• The item relationships (items array) for the shipping group.

• The unique ID of the shipping group (shippingGroupId), if known.

Existing shippingAddress and shippingMethod properties

Prior to the introduction of the split shipping feature, the Store API endpoints only
supported a single shipping group. All items in the cart inherently belonged to that
shipping group though the relationship between shipping group and cart items was
not established in the order repository until the order was submitted. To that end, the
pricing and order-related endpoints supported specification of the shipping address
and shipping method for the default shipping group, via the shippingAddress and
shippingMethod properties, in the request and response payloads. For backwards

Chapter 11
Understand REST support for split shipping

11-16

compatibility these properties continue to be supported in the request and response
payloads with the caveats described below.

In request payloads, the shippingAddress and shippingMethod properties are:

• Ignored if the shippingGroups array is specified.

• Used to set the shipping address and method of the first shipping group in the
shippingGroups array when the shippingGroups array is not explicitly specified.

In response payloads, the shippingAddress and shippingMethod properties refer
to the shipping address and shipping method of the first shipping group in the
shippingGroups array.

Customize email templates for split shipping
If you configure your store to support split shipping, you should also customize the
templates for emails that contain order summaries so those emails can display the
appropriate shipping addresses.

The data available to the email templates to support the split shipping feature comes
from the Orders resource in the Store REST API. Support has been added for multiple
shipping groups, in the form of a shippingGroups array, and for an alias property to
identify the addresses contained in those shipping groups. For more information, see
Understand REST support for split shipping.

Note: Before you customize the email templates, read Configure Email Settings.
For details about working with FreeMarker templates, see the Apache FreeMarker
documentation at freemarker.org.

To display multiple shipping addresses in an email template:

1. Download the email template as described in Customize email templates.

2. Update the html_body.ftl file. See Sample email template for sections of a
sample html_body.ftl file that supports split shipping.

3. Upload the updated template as described in Customize email templates.

Sample email template

The following sample shows split shipping customizations you might make to
the html_body.ftl file for the Order Placed email template. Order Placed
emails let customers know that an order has been submitted for fulfillment. The
html_body.ftl file is the FreeMarker template file that configures the HTML body
of the email.

IMPORTANT: This sample code is not production ready and should be
used for informational purposes only. It has not been tested for accessibility,
internationalization, or unexpected path flows.

The default html_body.ftl file for the Order Placed email displays the shipping
address, shipping method, payment methods, and a cart summary for an order. This
sample uses the macro directive to allow the email body to display multiple shipping
addresses, along with their associated shipping methods and cart summaries. (A
FreeMarker macro is a template fragment associated with a variable.)

Chapter 11
Customize email templates for split shipping

11-17

The following macro is used to display the appropriate shipping method.

<!-- ko if: cart().isSplitShipping() -->
 <!-- ko foreach: cart().orderShippingGroups -->
 <!-- ko if: $data.hasOwnProperty("priceInfo") -->
 <div class="well well-sm small">
 Shipping Group

 (</
span> -
 <span data-bind="text:
 shippingMethod.shippingMethodDescription"></
span>)
 <div class="row">
 <div class="col-xs-7">Subtoal</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.subTotal,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <div class="row">
 <div class="col-xs-7">
 Shipping (<span data-bind="text:
 shippingMethod.shippingMethodDescription"></
span>)
 </div> <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.shipping,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div>
 <!-- ko if: $data.hasOwnProperty("discountInfo") -->
 <!-- ko if: discountInfo.shippingDiscount !== 0 -->
 <div class="row">
 <div class="col-xs-7">Shipping Discount </div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: -discountInfo.shippingDiscount,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- /ko -->
 <!-- ko if: priceInfo.shippingSurchargeValue &&
 priceInfo.shippingSurchargeValue !== 0 -->
 <div class="row">
 <div class="col-xs-7">Shipping Surcharge</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.shippingSurchargeValue,

Chapter 11
Customize email templates for split shipping

11-18

 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- ko if: $parent.cart().showTaxSummary -->
 <div class="row">
 <div class="col-xs-7">Sales Tax</div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.tax,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div>
 </div> <!-- /ko -->
 <!-- ko if: (taxPriceInfo.isTaxIncluded &&
 $parent.cart().showTaxSummary) -->
 <div class="row">
 <div class="col-xs-7">Group Total (excluding tax)</
div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.totalWithoutTax,
 currencyObj:
$parent.site().priceListGroup.currency}">
 </div>
 </div> <!-- /ko -->
 <div class="row"> <div class="col-xs-7">
 Group Total
 <!-- ko if: (taxPriceInfo.isTaxIncluded &&
 $parent.cart().showTaxSummary) -->
 <span data-bind="widgetLocaleText:
'includingTaxText'">
 <!-- /ko --> </div>
 <div class="col-xs-5 text-right">
 <span data-bind="currency: {
 price: priceInfo.total,
 currencyObj:

$parent.site().selectedPriceListGroup().currency}">
 </div> </div> </
div> <!-- /ko --> <!-- /ko -->
 <!-- /ko -->

The following macro is used to display the cart summary for each shipping group.

<#macro displayShippingItems shippingItems>

 <table width="100%" align="center" border="0" cellpadding="0"
cellspacing="0"
 class="devicewidthinner">
 <tbody>
 <tr>

Chapter 11
Customize email templates for split shipping

11-19

 <td width="30%"
 style="font-family: Helvetica, arial, sans-serif;
 font-size: 18px; color: #FFFFFF; text-align: left;
 line-height: 24px; background: #1c73a3;
 padding: 5px 10px 5px 10px;"
 st-title="3col-title1">
 ${getString("ORDER_PLACED_ITEM_TITLE")}
 </td>
 <td width="40%"
 style="font-family: Helvetica, arial, sans-serif; font-size:
18px;
 color: #ffffff; text-align: center; line-height: 24px;
 background: #1c73a3; padding: 5px 10px 5px 10px;"
 st-title="3col-title1"> </td>
 <td width="10%"
 style="font-family: Helvetica, arial, sans-serif; font-size:
18px;
 color: #ffffff; text-align: center; line-height: 24px;
 background: #1c73a3; padding: 5px 10px 5px 10px;"
 st-title="3col-title1">
 ${getString("ORDER_PLACED_QUANTITY_TITLE")}
 </td>
 <td width="20%"
 style="font-family: Helvetica, arial, sans-serif; font-size:
18px;
 color: #ffffff; text-align: right; line-height: 24px;
 background: #1c73a3; padding: 5px 10px 5px 10px;"
 st-title="3col-title1">
 ${getString("ORDER_PLACED_PRICE_TITLE")}
 </td>
 </tr>
 <#list shippingItems as product>

 <tr>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size:
14px;
 color: #687078; text-align: left; line-height: 24px;
 padding: 5px 10px 5px 10px;"
 st-content="3col-content1" width="30%">
 <img src="${product.imageLocation}"
 alt="${product.title!}" width="50%">
 </td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size:
14px;
 color: #687078; text-align: left; line-height: 24px;
 padding: 5px 10px 5px 10px;"
 st-content="3col-content1" width="40%">
 ${product.title!}
 <!-- Variants -->
 <#if product.variants??>

 <#list product.variants as variant>
 ${variant.optionName}: <#if variant.optionValue??>

Chapter 11
Customize email templates for split shipping

11-20

 ${variant.optionValue}</#if>

 </#list>
 </#if>
 </td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size:
14px;
 color: #687078; text-align: center; line-height: 24px;
 padding: 5px 10px 5px 10px;"
 st-content="3col-content1" width="10%">
 ${product.quantity}</td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size:
14px;
 color: #687078; text-align: right; line-height: 24px;
 padding: 5px 10px 5px 10px;"
 st-content="3col-content1" width="20%">
 ${product.price}</td>
 </tr>

 </#list>
 </tbody>
 </table>

</#macro>

The following macro is used to display a shipping group’s shipping method.

<#macro displayShippingMethodMacro shippingMethod >
 <table width="186" align="right" border="0"
 cellpadding="0" cellspacing="0" class="devicewidth">
 <tbody> <tr> <td>
 <!-- start of text content table -->
 <table width="186" align="center" border="0"
 cellpadding="0" cellspacing="0"
 class="devicewidthinner"> <tbody>
 <!-- title --> <tr>
 <td
 style="font-family: Helvetica, arial, sans-
serif;
 font-size: 18px; color: #666666; text-align:
center;
 line-height: 24px;"
 st-title="3col-title3">
 $
{getString("ORDER_PLACED_SHIPPING_METHODS_TITLE")}
 </td> </tr>
 <!-- end of title -->
 <!-- Spacing --> <tr>
 <td width="100%" height="15"
 style="font-size: 1px; line-height: 1px;
 mso-line-height-rule: exactly;"> </td>
 </tr> <!-- Spacing -->

Chapter 11
Customize email templates for split shipping

11-21

 <!-- content --> <tr>
 <td
 style="font-family: Helvetica, arial, sans-
serif;
 font-size: 14px; color: #687078; text-align:
center;
 line-height:
24px;" st-content="3col-content3">
${shippingMethod!}
 </td>
</tr> <!-- end of content --> </
tbody> </table>
 </td> </tr>
 <!-- end of text content table --> </tbody>
 </table> </#macro>

The following macros are used to display a single shipping group or multiple shipping
groups.

<#macro displayShippingGroupMacro shippingGroup> <!-- 3 Start of
Columns -->
 <table width="100%" bgcolor="#ffffff" cellpadding="0"
cellspacing="0"
 border="0" id="backgroundTable"> <tbody> <tr>
 <td> <@displayShippingAddressMacro
 shippingAddress=shippingGroup.shippingAddress />
 </td> <td>
 <@displayShippingMethodMacro
 shippingMethod=shippingGroup.shippingMethod />
 </td> </tr> <tr>
 <td colspan="2">
 <@displayShippingItems
shippingItems=shippingGroup.shippingItems />
 </td> </tr> </tbody> </table> </#macro>
<#macro displayMultipleShippingGroupsMacro shippingAddresses >
 <div>Calling details </div>
 <#list shippingAddresses as currShippingGroup>
 <@displayShippingGroupMacro
shippingGroup=currShippingGroup /> </#list> </#macro>

The following code calls displayMultipleShippingGroupsMacro to display the
order details for multiple shipping groups if the order includes them.

<div> Multi shipping methods</div>
<#if data.shippingGroups??>
 <@displayMultipleShippingGroupsMacro
 shippingAddresses=data.shippingGroups />
</#if>

Retaining shipping group information
Commerce’s default behavior is to reset shipping group relationships whenever the
shopper makes changes to the cart.

Chapter 11
Retaining shipping group information

11-22

You may want to override this behavior to retain shipping group information for the
shopper so he does not have to re-enter it when he resumes the checkout process.

To avoid resetting shipping group relationships, you can use an application-level
JavaScript module that configures the resetShippingGroupRelationships flag.
Specifically, you must create an extension that uploads an application-level JavaScript
module that depends on the cc-store-configuration-1.0.js library and sets
the resetShippingGroupRelationships flag to false. The following code sample
shows what the contents of this JavaScript module might look like (for general
information on creating an application-level JavaScript extension, see Understand
widgets):

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {

 "use strict";

 return {
 // Override the default value (true) of
resetShippingGroupRelationships to
 // false to retain shipping group relationship on cart updates

CCStoreConfiguration.getInstance().resetShippingGroupRelationships =
false;
 };
});

Extending the CartItem and ShippingGroupRelationship view models
The CartItem and ShippingGroupRelationship view models are publicly available
and you can extend them to behave in whatever way your storefront requirements
demand.

To override the methods belonging to these view models, you must create an
extension that uploads an application-level JavaScript module that depends on
the view models. The following code samples show what the contents of these
JavaScript modules might look like. The first sample shows how to extend the
canAddShippingGroupRelationship method in the CartItem view model.

define(
 //---
 // DEPENDENCIES
 //---
 ['viewModels/cart-item'],
 //---
 // Module definition
 //---

Chapter 11
Extending the CartItem and ShippingGroupRelationship view models

11-23

 function(CartItem) {

 "use strict";

 return {
 onLoad: function() {
 CartItem.prototype.canAddShippingGroupRelationship = function
() {
 // Override code goes here
 };
 }
 };
});

This sample shows how to extend the addQuantity method in the
ShippingGroupRelationship view model.

define(
 //---
 // DEPENDENCIES
 //---
 ['viewModels/shipping-group-relationship'],
 //---
 // Module definition
 //---
 function(ShippingGroupRelationship) {

 "use strict";

 return {
 onLoad: function() {
 ShippingGroupRelationship.prototype.addQuantity = function (x) {
 // Override code goes here
 };
 }
 };
});

Note: For general information on creating an application-level JavaScript extension,
see Understand widgets.

Chapter 11
Extending the CartItem and ShippingGroupRelationship view models

11-24

12
Exclude Items from Shipping Methods and
Costs

This section describes how to use the Commerce Admin APIs to exclude certain items
from the calculation of shipping costs or from being shipped by certain methods.

• You can exclude item from a specific shipping method. For example, you might
want to restrict certain products, such as oversized items or furniture, to ground
shipping only. When a shopper adds a product from an excluded category to his or
her cart, restricted shipping options are unavailable.

• You can exclude items from the order total for the purpose of calculating shipping
costs. For example gift wrapping, from the order total for the purposes of
calculating shipping costs.

Exclude items from shipping methods
Commerce allows you to exclude collections of items from a specific shipping method.

For example, you might want to restrict certain products, such as oversized items,
hazardous items, or furniture, to ground shipping only. When a shopper adds one of
these items to his or her cart, the restricted shipping options are not displayed and so
cannot be selected by the shopper.

If you have implemented the split shipping feature, only portions of the order that
contain products that are excluded from certain shipping methods will not show those
shipping methods. If other portions of the order do not include products that are
excluded from shipping methods, all appropriate shipping methods are displayed. See
Ship an Order to Multiple Addresses for more information about split shipping.

To exclude items from a shipping method, perform the following tasks:

1. Create one or more non-navigable collections and add the products you want to
exclude from shipping methods to them. See Create collections for the excluded
items for more information.

2. Update the shipping methods from which you want to exclude items with one or
more of the collections you created in the previous step. See Update shipping
methods for more information.

Exclude items from shipping cost calculations
Commerce allows you to exclude certain items, for example gift wrapping or electronic
downloads, from the order total for the purposes of calculating shipping costs.

For example, if an order contains a DVD that costs $25 and three electronic gift cards
that cost $50 each, the order total used for shipping cost calculation is $25, not $175.
To exclude items from shipping cost calculations, perform the following tasks:

12-1

1. Create one or more non-navigable collections and add the items you want to
exclude from shipping methods to them. See Create collections for the excluded
items for more information.

2. Update the shipping methods from which you want to exclude items with one or
more of the collections you created in the previous step. See Update shipping
methods for more information.

Create collections for the excluded items
Commerce excludes collections of products, not individual products, from shipping
methods and shipping calculations.

Create one or more non-navigable collections for the products you want to exclude
from shipping methods or shipping calculations. See Organize products in collections
to learn about working with collections in the Commerce administration interface.

Keep the following points in mind when you create collections for excluded items:

• Collections you use for shipping method or shipping cost exclusion should be
non-navigable, meaning shoppers cannot browse to the collections as part of the
hierarchical catalog on your store.

• It is a good idea to create a separate collection for each type of product. For
example, you might create one collection for oversized items and another for
hazardous items. Similarly, you could create one collection for all products you
want to exclude from shipping charges calculation, but organize different types of
products, like gift wrap or electronic gift cards, in child collections.

• When you use a collection for shipping method or shipping cost exclusion, all the
products in all its child collections are also excluded.

Update shipping methods
Once you create and populate non-navigable collections for products to
exclude, configure the exclusion features through the createShippingMethod and
updateShippingMethod endpoints, which contain the following array properties:

• shippingMethodExclusions identifies the collections you want to exclude from the
shipping method. All products in the specified collections and any child collections
are excluded.

• shippingChargeExclusions identifies the collections you want to exclude from
shipping cost calculations. All products in the specified collections and any child
collections are excluded from shipping cost calculations.

The following sample request updates the Ground shipping method to exclude
products in two collections (gift wrap and electronic gift cards) from shipping cost
calculations.

PUT /ccadmin/v1/shippingMethods/standardShippingMethod HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "shippingChargeExclusions": {
 "excludedCategoriesShippingCharge": [

Chapter 12
Create collections for the excluded items

12-2

 "catGW",
 "catDownloads"
]
 }
}

The following sample request updates the Next Day shipping method to exclude
products in two collections (furniture and oversized).

PUT /ccadmin/v1/shippingMethods/overnightShippingMethod HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "shippingMethodExclusions": {
 "excludedCategories": [
 "catFurniture",
 "catOversized"]
 }
}

Update the Order Summary – Checkout widget
To implement shipping method exclusions, make sure your checkout layouts include
the latest version of the Order Summary – Checkout widget.

To replace a widget with the latest version, see Upgrade deployed widgets in
Customize your store layouts.

Chapter 12
Update the Order Summary – Checkout widget

12-3

13
Manage Countries and Regions for
Shipping and Billing Addresses

By default, Oracle configures your Commerce instance to include the countries and
regions that you require for addresses such as shipping and billing addresses.

You can, however, use the Admin API to add, delete, and update countries and
regions available to your store.

Understand countries and regions
Commerce uses countries and their associated regions in a number of places on your
storefront, in the administration interface, and in the REST APIs.

For example, a shopper’s shipping-address country specifies the country where
their purchases are shipped. Countries and regions you add with the Admin API /
ccadmin/v1/countries/: endpoints are available in all areas of your Commerce
instance.

You can use Commerce settings and widgets to narrow the list of countries used by .
For example:

• You can create shipping methods that allow shoppers to have their purchases
shipped only to the contiguous 48 states, even when all 50 states and Armed
Forces PO Boxes are available in your Commerce instance

• You can narrow the available list of billing countries for a country store so that only
shoppers whose billing addresses are in specific countries can purchase items
from the store.

If you Commerce instance supports multiple sites, the list of countries is available to all
sites. See Configure Sites for more information about multiple sites.

Each country and region you add to Commerce must match a valid ISO 3166 code.
For details about ISO 3166, codes, visit the International Standards for Organization
website at https://www.iso.org.

The following table describes the properties that are part of requests and responses to
the /ccadmin/v1/countries/: endpoints.

Property Description

countryCode A valid ISO 3166 country code. For example,
AR is the country code for Argentina.

regionCode A valid ISO 3166 subdivision code. For
example, AR-B is the code for Buenos Aires.

abbreviation The second part of a regionCode. For
example, abbreviation for Buenos Aires is B

displayName A string that identifies a country or region
on the storefront and in the administration
interface.

13-1

Retrieve a list of countries and regions
To see the countries that are currently part of your Commerce instance, issue a GET
request to the /ccadmin/v1/countries endpoint.

The following example shows a sample response body for this request:

[
 {
 "repositoryId": "AR",
 "countryCode": "AR",
 "displayName": "Argentina"
 },
 {
 "repositoryId": "AU",
 "countryCode": "AU",
 "displayName": "Australia"
 },
 {
 "repositoryId": "BD",
 "countryCode": "BD",
 "displayName": "Bangladesh"
 },
 {
 "repositoryId": "BR",
 "countryCode": "BR",
 "displayName": "Brazil"
 },
 {
 "repositoryId": "CA",
 "countryCode": "CA",
 "displayName": "Canada"
 },
]

To see a country’s regions that are currently part of your Commerce instance, issue
a GET request to the /ccadmin/v1/countries/{id} endpoint. For example, to
see all the Canadian provinces in your Commerce instance, issue a GET request
to the /ccadmin/v1/countries/{CA} endpoint. The following example shows a
sample response body for this request. Notice that the response does not return all the
Canadian provinces,, only the ones added to the Commerce instance being queried.

{
 "regions": [
 {
 "regionCode": "CA-AB",
 "displayName": "Alberta",
 "repositoryId": "CA-AB",
 "abbreviation": "AB"
 },
 {
 "regionCode": "CA-BC",
 "displayName": "British Columbia",

Chapter 13
Retrieve a list of countries and regions

13-2

 "repositoryId": "CA-BC",
 "abbreviation": "BC"
 },
 {
 "regionCode": "CA-MB",
 "displayName": "Manitoba",
 "repositoryId": "CA-MB",
 "abbreviation": "MB"
 },
 {
 "regionCode": "CA-PE",
 "displayName": "Prince Edward Island",
 "repositoryId": "CA-PE",
 "abbreviation": "PE"
 },
 {
 "regionCode": "CA-QC",
 "displayName": "Quebec",
 "repositoryId": "CA-QC",
 "abbreviation": "QC"
 },
 {
 "regionCode": "CA-SK",
 "displayName": "Saskatchewan",
 "repositoryId": "CA-SK",
 "abbreviation": "SK"
 },
],
 "countryCode": "CA",
 "displayName": "Canada",
 "repositoryId": "CA",
 "links": [
 {
 "rel": "self",
 "href": "http://servername:9080/ccadmin/v1/countries/CA"
 }
]
}

Create and update countries and regions
To add a country to Commerce, issue a POST request to the /ccadmin/v1/
countries/addCountries endpoint.

You can also create the country’s regions in the same request.

The following example shows a sample request body for creating two countries (India
and Sri Lanka), each with two regions.

{
 "countries": [{
 "countryCode": "IN",
 "displayName": "India",

Chapter 13
Create and update countries and regions

13-3

 "regions": [{
 "regionCode": "IN-KA",
 "displayName": "Karnataka",
 "abbreviation": "KA"
 },
 {
 "regionCode": "IN-SK",
 "displayName": "Sikkim",
 "abbreviation": "SK"
 }
]
 },
 {
 "countryCode": "LK",
 "displayName": "SriLanka",
 "regions": [{
 "regionCode": "LK-GA",
 "displayName": "Galle",
 "abbreviation": "GA"
 },
 {
 "regionCode": "LK-CO",
 "displayName": "Colombo",
 "abbreviation": "CO"
 }
]
 }
]
}

The following example shows the response body returned:

[
 {
 "repositoryId": "IN",
 "regions": [
 {
 "regionCode": "IN-KA",
 "displayName": "Karnataka",
 "repositoryId": "IN-KA",
 "abbreviation": "KA"
 },
 {
 "regionCode": "IN-SK",
 "displayName": "Sikkim",
 "repositoryId": "IN-SK",
 "abbreviation": "SK"
 }
],
 "countryCode": "IN",
 "displayName": "India"
 },
 {
 "repositoryId": "LK",

Chapter 13
Create and update countries and regions

13-4

 "regions": [
 {
 "regionCode": "LK-CO",
 "displayName": "Colombo",
 "repositoryId": "LK-CO",
 "abbreviation": "CO"
 },
 {
 "regionCode": "LK-GA",
 "displayName": "Galle",
 "repositoryId": "LK-GA",
 "abbreviation": "GA"
 }
],
 "countryCode": "LK",
 "displayName": "SriLanka"
 }
]

To add regions to an existing country, issue a PUT request to the /ccadmin/v1/
countries/{id}/addRegions endpoint.

The following example shows a sample request body for creating two new regions in
an existing country.

{
 "countryCode": "IN",
 "displayName": "India",
 "regions": [
 {
 "regionCode": "IN-TG",
 "displayName": "Telangana",
 "abbreviation": "TG"
 }
]
}

The following example shows the response body returned:

{
 "countryCode": "IN",
 "displayName": "India",
 "regions": [
 {
 "regionCode": "IN-TG",
 "displayName": "Telangana",
 "abbreviation": "TG"
 }
]
}

Chapter 13
Create and update countries and regions

13-5

Delete countries and regions
When you delete a country or region, it is no longer available to merchants or
shoppers.

Deleting a country automatically deletes all its associated regions.

Before you can delete a country or region, make sure you have removed it from all
lists of billing or shipping countries and regions. When you issue the DELETE request,
Commerce checks that the countries or regions in the body of the request are not
currently referenced in billing or shipping lists. If they are, the request returns an error
and the items are not deleted.

To remove a country from your Commerce instance, issue a DELETE request to the
ccadmin/v1/countries/deleteCountries endpoint.

The following sample request body removes three countries and all their associated
regions from a Commerce instance:

{
 "ids": ["CN", "PK", "LK"]
 }

To remove a region from a country, issue a DELETE request to the /ccadmin/v1/
countries/{id}/deleteRegions endpoint, where id is the repositoryId of the country
whose regions you want to delete.

For example, to delete three Canadian provinces, issue a DELETE request to the /
ccadmin/v1/countries/{CA}/deleteRegions endpoint. The following example shows
a sample body for this request:

{
 "ids": ["CA-AB", "CA-SK", "CA-PE"]
 }

Customize address formats using the API
You can make modifications to address formats for countries that require additional
address customizations.

In addition to using Oracle Commerce Cloud’s default address formats, you can use
the REST API to create multi-country custom address formats. This allows you to
create country-specific address formats or ensure that your address formats align with
the requirements of any external service that you might use. Addresses that appear
in profiles, accounts, registration requests, payments and order addresses can be
customized.

You can also use the REST API to create address types, which you use to identify an
address’ purpose.

Understand customized address formats

Some countries require a county or a district in addition to the default address, city,
state, postal code and phone number fields. Creating custom address formats allows

Chapter 13
Delete countries and regions

13-6

you to create address formats that change based upon the shopper’s country locale.
Using the API, you can map custom fields to the administration interface. This also
allows you to work with address verification services and ensure that your address
customizations are in line with these services.

Address customizations can contain fields with variable label text. These fields can
have different requirements and default values. Once you have created the custom
address, you associate it with a specific country or countries so that it is used only on
storefronts (and administration and agent interfaces) with that locale. When a shopper
from that locale sees the site, the address format is changed to match the format
identified for that locale.

You can customize addresses that are found on profiles, accounts, account
registration requests, as well as payment and shipping group pages. Addresses found
on credit card, inventory location or the Ship from Warehouse location address in the
tax processing setting pages cannot be customized.

Custom address formats are defined by creating a server-side extension (SSE). The
server-side extension allows you to specify the values for the address properties. Each
locale can have an individual address customization, or can share customizations.
Note that multiple countries can share the same address format, but must have
different values for the properties. Server-side extensions also allow you to upload a
file containing multiple address formats in bulk using a JSON format, or export, modify
or re-import address formats. For general information on working with extensions, refer
to the Developing Widgets guide.

Before you can create custom addresses, you must implement a server-side extension
from the Commerce Cloud administration server. See Use server-side extensions in
Using Oracle CX CommerceUsing Oracle Commerce Cloud for details on how to
download server-side extensions. If you are using one of Commerce’s default tax
processors, it is also suggested that you verify that any address modifications you
want to make will continue to work with the tax processor validation.

Note: Because Avalara and Vertex Tax Processors do not support adding custom
properties, you cannot create customized address formats for either of these
integrations.

Server-side extensions define REST endpoints that allow you to customize countries
and region/states addresses. Each country and region/state also has a localizable
display name.

Work with a server-side extension for customized addresses

Oracle Commerce Cloud provides an example server-side extension that creates
customized address formats. The example contains country-specific address formats,
which you can use as a template for creating your own address formats. Address
properties that are defined using this SSE are stored as custom address properties,
which behave just like any other custom address properties. These address properties
are included in all APIs and web hooks that use the address property, with the
exception of those addresses on credit cards, inventory pages or tax processing ship-
from-warehouse location addresses.

The server-side extension references a widget that specifies the address formats
maintained by JSON files. These JSON files include metadata files, resource bundles
and files that map values to each of the properties.

When you download the server-side extension, it is copied locally to your system in a
ZIP file. Each ZIP file contains the following files:

Chapter 13
Customize address formats using the API

13-7

• Package.json – This file contains the metadata information for the server-side
extension. It contains the main entry point, name and public URLS, as well as the
description and devDependencies and files that are contained in the extension.

• Index.js – This file calls the HTTP requests and responses.

• Readme.md – A file that describes the server-side extension’s classes and
endpoints and includes information on installing and extending the extension.

The example SSE contains the following directories:

• /lib – This directory contains the class that processes address metadata, which
can be extended to call endpoints or make modifications to value mappings. It also
contains module constants and address format, metadata and value mappings for
three different example address locations for the United Arab Emirates (UAE), the
Unites States (US) and Singapore (SG).

• /node_modules – This contains a library that wraps the logging utility and should
be copied into the /node_modules directory of the server-side extension.

• /out – This directory contains the output, including styles and the HTML that
displays the JavaScript documentation for the SSE.

Define country-specific properties using metadata

The server-side extension metadata allows you define the properties that are included
in the address customization. Properties are specific to the country they display. The
metadata also allows you to list the order in which the properties are displayed within
the administration interface.

Properties can be identified as required or as an internal-only property, and can
include default values.

For a property to be displayed with a localized string, the label field for the property
must be configured as resources.propertyName. If the resources prefix is not used
in the label field, the property name will not be localized. The following is an example
of a United States-specific address metadata JSON file. For example, note that the
properties label field value is prefixed with resources. This ensures that the field is
localized.

Property types allow you to indicate if the property is shortText, richText, date,
checkbox or enumerated. Enumerated address properties can be related to one
another, which lets you provide a list of values that are displayed across related
properties. Although multiple countries can share the same address format, they must
have different values for any enumerated properties.

The following is from the Metadata.json file of the SSE example:

{
 "properties": {
 "address1": {
 "id": "address1",
 "type": "shortText",
 "uiEditorType": "shortText",
 "label": "resources.addressLine1",
 "validations": [
 {
 "type": "required",
 "value": true

Chapter 13
Customize address formats using the API

13-8

 },
 {
 "type": "maxLength",
 "value": 60
 }
]
 },
 "address2": {
 "id": "address2",
 "type": "shortText",
 "uiEditorType": "shortText",
 "label": "resources.addressLine2",
 "validations": [
 {
 "type": "required",
 "value": false
 },
 {
 "type": "maxLength",
 "value": 60
 }
]
 },
 "postalCode": {
 "id": "postalCode",
 "type": "shortText",
 "uiEditorType": "shortText",
 "label": "resources.postalCode",
 "validations": [
 {
 "type": "required",
 "value": true
 },
 {
 "type": "maxLength",
 "value": 10
 },
 {
 "type": "regex",
 "pattern": "^[0-9]{5}([-][0-9]{4})?$"
 }
]
 },
 "state": {
 "id": "state",
 "type": "singleSelect",
 "uiEditorType": "singleSelect",
 "label": "resources.state",
 "parent": "country",
 "validations": [
 {
 "type": "required",
 "value": true
 }
]

Chapter 13
Customize address formats using the API

13-9

 },
 "city": {
 "id": "city",
 "type": "shortText",
 "uiEditorType": "shortText",
 "label": "resources.city",
 "parent": "state",
 "validations": [
 {
 "type": "required",
 "value": true
 }
]
 },
 "phoneNumber": {
 "id": "phoneNumber",
 "type": "shortText",
 "uiEditorType": "shortText",
 "label": "resources.phoneNumber",
 "validations": [
 {
 "type": "required",
 "value": false
 },
 {
 "type": "maxLength",
 "value": 15
 },
 {
 "type": "regex",
 "pattern": "^[0-9()+ -]+$"
 }
]
 }
 },
 "propertiesOrder": [
 [
 "address1"
],
 [
 "address2"
],
 [
 "city",
 "state"
],
 [
 "postalCode",
 "phoneNumber"
]
]
}

Notice that the JSON file also identifies the order in which properties will be displayed
to the shopper. In the SSE example, the properties included in the US-specific

Chapter 13
Customize address formats using the API

13-10

metadata are mapped to the following default properties and in the order in which
they will be displayed:

Order No. Property Type Required Mapped to
Default
Property

Parent
Property

1 address1 ShortText Yes address1 N/A

2 address2 ShortText No address2 N/A

3 city ShortText Yes city N/A

4 state SingleSelec
t

Yes state country

5 postalCode ShortText Yes postalCode N/A

6 phoneNumber ShortText No phoneNumber N/A

For contrast, the following is the SSE example of a metadata mapping for the United
Arab Emirates (UAE):

Order No. Property Type Required Mapped to
Default
Property

Parent
Property

1 addressLine
1

ShortText Yes address1 N/A

3 area SingleSelec
t

Yes city N/A

4 emirate SingleSelec
t

Yes state N/A

5 zipPostalCo
de

ShortText Yes postalCode country

6 phoneNumber ShortText N/A phoneNumber N/A

Understand resource bundles

The SSE contains sample address formats. You can also upload a file that contains
multiple address formats with the associated country mapping. Additionally, you can
export address formats, modify or populate them and then import them.

These JSON files provide the locale resources for country-specific properties. The
resource bundle JSON file for the US-specific metadata might be:

{
 "addressLine1": "Address Line 1",
 "addressLine2": "Address Line 2",
 "state": "State/Region",
 "city": "City",
 "postalCode": "Zip/Postal Code",
 "phoneNumber": "Phone Number"
}

Chapter 13
Customize address formats using the API

13-11

While the locale resources for Spain-specific metadata might be:

{
 "addressLine1": "Dirección Line 1",
 "addressLine2": "Dirección Line 2",
 "state": "Estado / Región",
 "city": "Ciudad",
 "postalCode": "Código postal",
 "phoneNumber": "Número de teléfono"
}

Understand value mappings

Value mappings are JSON files that provide a value array for the country-specific
properties. These mappings allow you to identify specific address data, such as city or
state values.

The following is an example of state.json in the UAE-specific value mapping file.
Note that the displayName field value is prefixed with resources, ensuring that the
display name is localized.

{"AE" : [
 {
 "regionCode": "AE-AZ",
 "displayName": "resources.Abu Dhabi",
 "repositoryId": "AE-AZ",
 "abbreviation": "AZ"
 },
 {
 "regionCode": "AE-AJ",
 "displayName": "resources.Ajman",
 "repositoryId": "AE-AJ",
 "abbreviation": "AJ"
 },
 {
 "regionCode": "AE-DU",
 "displayName": "resources.Dubai",
 "repositoryId": "AE-DU",
 "abbreviation": "DU"
...

Value mappings are also supported by resource files. The value mapping resource
file provides locale information when the resources prefix is added to the field.
The following is the example of the UAE-specific ar.json file, which allows the
displayName field to show the localized text:

{
 "Abu Dhabi": " ووو ووو ",
 "Ajman": "ووووو",
 "Dubai": "ووو",
 "Fujairah": "ووووووو",
 "Ras al-Khaimah": " وووووو ووو ",
 "Sharjah": "ووووووو",
 "Umm al-Quwain": " ووووووو وو ",

Chapter 13
Customize address formats using the API

13-12

 "United Arab Emirates": " ووووووو ووووووو وووووووو "
}

Associate endpoints

The address customization server-side extension uses endpoints to exchange address
information. Use the /addresscustomformat/getAddressMetadata and /
getAddressPropertyValue endpoints to get the address metadata and properties
respectively. The address formatting endpoints return the address information with the
specified parameters. Each country, region and state has a localizable display name.
These properties become available for profiles, accounts, self-registration and order
addresses, and can be displayed in the administration interface. Note that custom
address properties do not appear in the address list of the Account interface and the
Registration Request interface.

The example server-side extension for address formats uses custom REST endpoints,
which use the prefix /ccstorex/custom. For example:

/ccstorex/custom/v1/addresscustomformat/getAddressMetadata

The /addresscustomformat/getAddressMetadata endpoint gets the metadata
for the country or context that you select. Issue a GET command to obtain the address
metadata. For example:

GET /ccstorex/custom/v1/addrescustomformat/getAddressMetadata?
contextId=US

You can use the /addresscustomformat/getAddressPropertyValue endpoint
to obtain any address property’s value. To do this, issue a GET command. Note that the
contextId, propertyName and parentContextID query parameters are mandatory.

/ccstorex/custom/v1/addresscustomformat/getAddressPropertyValue?
contextId=US&parentContextId=US&locale=en&propertyName=state

The locale parameter can be passed in using a query parameter or the X-CCAsset-
Language request header. If you do not pass in the locale, the system will use the
default locale passed in by the server-side extension. The response may be something
similar to the following:

[
 {
 "regionCode": "US-AL",
 "displayName": "Alabama",
 "repositoryId": "US-AL",
 "abbreviation": "AL"
 },
 {
 "regionCode": "US-AK",
 "displayName": "Alaska",
 "repositoryId": "US-AK",
 "abbreviation": "AK"

Chapter 13
Customize address formats using the API

13-13

 },
...

Understand the address customization widget

You can display the address customizations to your shoppers by employing it in
a widget. The checkout Address Book customization widget example allows you
to present your shoppers with a list of countries. The widget displays the address
properties included in the associated address format for each locale. The widget
allows you to create custom fields, as well as different label text for each field. You
can also determine if your customized fields are required or not, as well as provide
a default value for each field. For each enumerated property, the widget displays a
drop-down of the configured options. Any properties that are hierarchical display the
child property options that are configured for the selected parent value.

The following are portions of the changes made in the example customized
checkout-address-book.js widget file.

Review the customized widget example

The first thing the example shows is how to add the ccRestClient, viewModels/
dynamicProperty and ccstoreConfiguration parameters to the dependencies and
model definitions.

Note: Custom address properties are available to Storefront using the view models
for contact addresses, account addresses, order details and submission of registration
request.

For example:

//---
// DEPENDENCIES
//---
 ['knockout', 'viewModels/address', 'ccConstants', 'pubsub',
 'koValidate', 'notifier', 'ccKoValidateRules', 'storeKoExtensions',
 'spinner', 'navigation', 'storageApi', 'CCi18n','ccRestClient',
 'viewModels/dynamicProperty', 'ccStoreConfiguration'],
//---
// MODULE DEFINITION
//---
function(ko, Address, CCConstants, pubsub, koValidate, notifier,
 rules, storeKoExtensions, spinner, navigation, storageApi, CCi18n,
ccRestClient,
 DynamicProperty, CCStoreConfiguration) {

The example then adds the following observables:

shippingAddressproperties: ko.observableArray([]),
 shippingAddressPropertiesOrder: ko.observableArray([]),
 addressConfiguredInSSE: ko.observable(false),

Chapter 13
Customize address formats using the API

13-14

For example:

// Switch between ‘view’ and 'edit' views
isUsingSavedAddress: ko.observable(false),
isSelectingAddress: ko.observable(false),
billingAddressEnabled: ko.observable(),
addressSetAfterWebCheckout: ko.observable(false),
addressSetAfterOrderLoad: ko.observable(false),
showPreviousAddressInvalidError: ko.observable(false),
previousSelectedCountryValid: ko.observable(false),
shippingAddressBook: ko.observableArray().extend({ deferred: true }),
shippingAddressProperties: ko.observableArray([]),
shippingAddressPropertiesOrder: ko.observableArray([]),
addressConfiguredInSSE : ko.observable(false),
loadPersistedShipping : ko.observable(false),

The example then adds the definition to the default checkoutAddressBook
widget. The first function is the populateMetadataForContextConfiguredInSSE,
which initiates an SSE endpoint to retrieve the metadata for a specific
locale. Once the widget has performed various validation functions, it uses the
populateSelectedCountryMetadata.

Note that if you want to use address custom formats with an external address
verification service, you should ensure that you develop widgets that contain the
format and properties that are required by that service.

Work with address types
An address type is a string, such as Billing or Shipping, that can be associated with a
CX Commerce address.

Address types help shoppers, business users, and administrators keep track of profile
and account addresses. Address types can also be used in integrations, as they
are included with address details in the bodies of webhooks and API responses. By
default, two address types are available in Commerce: Shipping and Billing.

Note: When multiple sites are run from a single Commerce instance, a shopper’s
profile is shared by all sites. This means that any billing or shipping addresses added
to a shopper’s profile are available to all sites. By default, any profile address (with any
country) can be marked as a shipping or billing address, even if the address might not
be a valid shipping or billing address on some sites, or in some account contexts.

Address types can be assigned to profile and account addresses, as well as
addresses used in account registration requests. Business users who work with
account addresses can automatically select existing address types when creating or
editing addresses in the administration interface. However, since default widgets do
not include support for address types, shoppers, delegated administrators, and Agent
Console users will not be able to work with address types unless you customize
widgets that let them see and work with addresses. You can also assign address types
with REST API endpoints.

The Address Types resource in the Admin API includes endpoints for creating and
working with address types. The Profiles and Organizations resources include
endpoints that you can use to set the values of properties of address types.

Chapter 13
Work with address types

13-15

View address types

You can view address types using the REST API. To view existing address types, first
log into the Admin API on the administration server using an account that has the
Administrator role. For example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=365214

Then issue a GET request to the ccadmin/v1/addressTypes endpoint.

The following is an example of the response returned. Note that BILLING and SHIPPING
are default address types that are included with Commerce.

{
 "total": 3,
 "totalResults": 3,
 "offset": 0,
 "limit": 250,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadminui/v1/
addressTypes"
 }
],
 "sort": [
 {
 "property": "displayName",
 "order": "asc"
 }
],
 "items": [
 {
 "displayName": "Billing",
 "repositoryId": "BILLING",
 "id": "BILLING"
 },
 {
 "displayName": "Office",
 "repositoryId": "at100001",
 "id": "at100001"
 },
 {
 "displayName": "Shipping",
 "repositoryId": "SHIPPING",
 "id": "SHIPPING"
 }
]
}

Chapter 13
Work with address types

13-16

Create an address type

To create a new address type, issue a POST request to the /ccadmin/v1/addressTypes
endpoint on the administration server. Specify the value of the displayName property in
the body of the request. For example:

If the address type is created successfully, the response body returned includes the ID
for the new address type and a link to the URL used in the request:

{
 "displayName": "Main Campus",
 "repositoryId": "at100002",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadminui/v1/
addressTypes"
 }
],
 "id": "at100002"
}

Assign a type to an address

Business users who work with account addresses can automatically select existing
address types when creating or editing addresses in the administration interface. For
example, a Commerce administrator can select address types when creating or editing
an account's addresses. For more information, see Work with account addresses.

You can also assign an address type with REST API endpoints that create or update
profile and account addresses. The following sample request assigns the Main Campus
address type to a specified account address.

PUT /ccadmin/v1/organizations/or-100001/secondaryAddresses/at100001
HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "addressType":"Main Campus"
}

Customize address validation
You can use the Admin API to specify whether a default address field is required and
to create patterns that validate user input for default address fields.

You can customize validations for addresses that are found on profiles, accounts,
account registration requests, as well as payment and shipping group pages.
Addresses found on credit card, inventory location or the Ship from Warehouse
location address in the tax processing setting pages cannot include custom
validations.

Chapter 13
Customize address validation

13-17

All the validations described in this section are customized with the Admin API
itemtypes endpoint and the customizations made to the address field apply on all
sites and for all countries, through both the Commerce UIs and the REST APIs.
If you need to configure country-specific validations, you must work with a server-
side extension (SSE) and custom widget for customized addresses. See Customize
address formats using the API for more information.

Validate address input

You can configure Commerce to perform server-side and client-side validation on any
default or custom address field to ensure that the value entered matches a regular
expression validation pattern you specify. For example, you could require that first and
last names contain only letters and be no longer than 20 characters with the validation
pattern ^[A-Za-z]{20}.

Note: For number type custom properties, values sent in the payload will be converted
to decimals (double) in the API and then validated. To apply validations for this, the
validation pattern should be in the form of ^[0-9]+([.][0-9]+)?$, where the first 0-9
represents the integer part and the second 0-9 represents the decimal part. This
pattern should be customized according to the requirements of the particular address
field.

When you specify a validation pattern for an address field, Commerce applies
the validation to values entered through the storefront or administration interface,
REST API calls, CSV imports, and bulk imports. It is important to keep in
mind that Commerce does not verify that your validation-pattern string is a valid
regular expression. Make sure that your validation patterns are appropriate and not
contradictory for the fields to which they apply. Otherwise, shoppers and administrators
and administrators might get unexpected results when trying to enter addresses.

Use the Admin API updateItemType/contactInfo endpoint to add a validation pattern
to an address field.

For example, the following sample issues a PUT request to /ccadmin/v1/itemTypes/
contactInfo to apply a validation pattern to US mobile phone numbers so that they
are formatted as 111-222-3333:

PUT /ccadmin/v1/itemTypes/contactInfo HTTP 1.1
Authorization: Bearer <access_token>

{"specifications":[
 {
 "id" : "phoneNumber",
 "required" : false,
 "validationPattern": "^[0-9]{3}([-][0-9]{3}([-][0-9]{4})?$",
 "default": null
 }
]}

Note: In this example, no default value is provided. However, if you do provide a
default value, make sure it adheres to the validation pattern set for the property.
Additionally, if you are working with custom addresses that you created with server
side extensions, make sure that validation patterns for fields such as postalCode are
broad enough to allow values for all countries your custom addresses support. See
Customize address formats using the API for more information.

Chapter 13
Customize address validation

13-18

Make an address field required or optional

Commerce requires that a default address (that is, an address that ships with the
product) contain values for a number of address fields, such as City, State, or Country.
You can use the Admin API to mark a number of address fields as required or optional,
depending on their usage. When you change an address field's required property
value, that value applies to the field everywhere it is used.

Note: This section describes only default address properties and not to custom
properties you have created. For more information about custom address properties,
see Customize address formats using the API.

The following table shows which address fields are required and optional by default for
different types of Commerce addresses and tasks.

Property Account: New
Address

Individual
Shopper: New
Address

Account: Place
Order

Individual
Shopper: Place
Order

firstName Optional Optional Required Required

lastName Optional Optional Required Required

companyName Required Optional Optional Optional

phoneNumber Optional Optional Optional Optional

address1 Required Required Required Required

city Required Required Required Required

state Required Required Required Required

postalcode Required Required Required Required

country Required Required Required Required

The firstName, lastName, country, and companyName fields, which are required by
default, cannot be made optional. Additionally, you cannot make required fields
optional for addresses found on credit card, inventory location or the Ship from
Warehouse location address in the tax processing setting pages.

Use the Admin API updateItemType/contactInfo endpoint to make an address field
required or optional.

For example, the following sample issues a PUT request to /ccadmin/v1/itemTypes/
contactInfo to make the first line of an address field optional:

PUT /ccadmin/v1/itemTypes/contactInfo HTTP 1.1
Authorization: Bearer <access_token>

{"specifications":[
{
 "id" : "address1",
 "required" : false
}
]}

Keep in mind that the Commerce REST API documentation describes default property
values and does not update to match any customizations you make to default address
fields. For example, if you make a required address field optional, the REST API
documentation will still describe the field as being required.

Chapter 13
Customize address validation

13-19

14
Configure Buy Online Pick Up In Store

By default, Commerce is configured to ship orders to a shopper-provided shipping
address, but you can also let shoppers pick up their orders from specified locations,
such as brick-and-mortar stores. This section describes how to configure in-store pick
up.

Understand buy online pick up in store
You can configure in-store pick up for the following scenarios.

In either scenario, you must create pick-up locations and inventory. See Manage
inventory for in-store pick up for more information.

• A shopper picks a store location and the items are in stock at the store. This
is the default scenario supported by Commerce and the one described in this
documentation.

• A shopper picks a store location and the goods are not in stock, but are shipped
from an online inventory location, such as a warehouse, to the shopper’s selected
store location.

For information about more complex integrations, for example, externally-configured
SKUs and asset-based orders, see Using Oracle CPQ Cloud Features with Oracle CX
Commerce.

Configure in-store pick up to work with other Commerce Cloud features

This section describes points to keep in mind when you configure in-store pick up to
work with your Commerce instance and integrations.

• Commerce orders include a new properties that support in-store pick-up. These
properties appear wherever order information is incorporated, for example, REST
API endpoints and webhook bodies. See Understand in-store pick up shipping
groups to learn about these properties.

• If a shopper’s order qualifies for a free gift with purchase and the shopper selects
in-store pick up, Commerce adds the gift to the cart but moves it to the in-store
shipping group only if it is in stock at the pick-up location. See Create a gift with
purchase promotion for more information about how Commerce a

• If you want shoppers to be able to pick up items that include add-on products, the
add-ons must also be in stock at the pick-up location. Commerce checks add-on
products for inventory to make sure they are available for pick up. If a shopper
selects an add-on product that is not available for pick up, the main item is also not
available for pick up, even if it is in inventory at the pick-up location.

• Commerce can provide inventory status for configurable SKUs only once the
configurable SKUs are in the shopping cart. See Using Oracle CPQ Cloud
Features with Oracle CX Commerce for details about configurable SKUs and
asset-based orders.

14-1

• In-store pick up is available for account-based shoppers without any specific
configuration for accounts. For orders that require approval, once the order has
been approved, the shopper cannot change in-store pick up to a different shipping
method. For more information about account-based shoppers, see Configure
Business Accounts.

• If your Commerce store lets shoppers pay for purchases with loyalty points, your
store should be configured to display currencies other than loyalty points and
the site’s payShippingInSecondaryCurrency property should be set to TRUE.
Otherwise, when shoppers choose to pay in store (or with any other payment
type except points), the order state is set to INCOMPLETE and the order never
progresses to fulfillment. To learn more about paying with loyalty points, see Work
with Loyalty Programs.

Understand in-store pick up shipping groups

This section describes the shipping group that contains items a shopper will pick up in
a store, inStorePickupShippingGroup. Commerce automatically creates this shipping
group when a shopper selects in-store pick up for an item they add to the cart. To
allow a shopper to select in-store pick up along with other shipping methods, you must
update the Shipping Options tab in the Checkout Layout. See Configure layouts and
widgets for in-store pick up for more information.

The following excerpt from a sample request includes an in-store pick up shipping
group.

"shippingGroups": [
 {
 "lastName": "Smith",
 "shippingMethod": "inStorePickupShippingGroup",
 "description": "sg60415",
 "submittedDate": null,
 "firstName": "John",
 "priceInfo": {
 "secondaryCurrencyTaxAmount": 0,
 "discounted": false,
 "shippingTax": 0,
 "secondaryCurrencyShippingAmount": 0,
 "amount": 0,
 "rawShipping": 0,
 "amountIsFinal": false,
 "currencyCode": "USD"
 },
 "phoneNumber": "987654321",
 "shipOnDate": null,
 "actualShipDate": null,
 "trackingInfo": [],
 "locationId": "Boston138",
 "specialInstructions": {},
 "middleName": null,
 "commerceItemRelationships": [
 {
 "availablePickupDate": "2018-07-23T12:12:58.000Z",
 "commerceItemId": "ci5000413",
 "inventoryLocationId": "Boston138",
 "amount": 0,

Chapter 14
Understand buy online pick up in store

14-2

 "quantity": 1,
 "relationshipType": "SHIPPINGQUANTITY",
 "returnedQuantity": 0,
 "preferredPickupDate": "2018-07-23T12:12:58.000Z",
 "range": {
 "lowBound": 0,
 "highBound": 0,
 "size": 1
 },
 "commerceItemExternalId": null,
 "state": "INITIAL",
 "id": "r60390"
 }
],
 "state": "INITIAL",
 "id": "sg60415",
 "stateDetail": null,
 "email": "testTest",
 "handlingInstructions": [],
 "shippingGroupClassType": "inStorePickupShippingGroup"
 }
],

Manage inventory for in-store pick up
By default, Commerce maintains one set of inventory values for each product or SKU,
however, to configure in-store pick up you must maintain multiple inventory locations
so that you can provide inventory information to shoppers.

This section describes changes to the endpoints that allow you to implement in-store
pick up. For detailed information about the procedures in this section, as well as
examples for updating and working with inventory for a specific location, see Manage
Multiple Inventory Locations.

To maintain inventory for individual physical stores or web sites, you must represent
them in Commerce by creating new locations. Use the createLocation endpoint to
create a new physical location. You specify information about the location in the body
of the request. To allow in-store pick up at a physical location, set its pickUp property
to true. You must set pickup to true even if you do not plan to have goods in stock
at this location, but will have them shipped there from an online inventory location or
warehouse.

The following example creates a brick-and-mortar store where shoppers can pick up
their purchases:

POST /ccadmin/v1/locations HTTP 1.1
Authorization: Bearer <access_token>

{
 "externalLocationId": "107",
 "locationId": "Cambridge02",
 "pickup": true,
 "address1": "221 Third Street",
 "country": "USA",
 "city": "Cambridge",

Chapter 14
Manage inventory for in-store pick up

14-3

 "faxNumber": "(617) 386-1200",
 "postalCode": "02141",
 "phoneNumber": "(617) 386-1200",
 "email": "cmb02@example.com",
 "stateAddress": "MA",
 "county": "Middlesex",
 "name": "Cambridge, MA -- 02141",
 "longitude": -71.0901,
 "latitude": 42.3629
}

See Create locations for more details about creating and working with physical
locations, including information about how to configure location inventory in an
environment that supports multiple sites.

Before you can create an inventory location for your site, you must create or update
a site to use the inventoryLocationId property. Use the site endpoint to set a default
inventory location ID for a custom site that contains the inventoryLocationId. For
example:

When you create a new inventory location, it initially has no inventory data associated
with it. You can use the createInventory endpoint to set inventory values for a
specific SKU at the location. For example, the following request specifies inventory
data for the location created in the previous section:

POST /ccadmin/v1/inventories HTTP 1.1
Authorization: Bearer <access_token>

{
 "locationId": "Cambridge02",
 "id": "xsku5014",
 "stockThreshold": 10,
 "stockLevel": 75
}

See Create inventory data for locations for more details about adding and working with
inventory for physical locations

You can also import inventory data for a location, specified by its locationId. See
Export and import inventory data for more information.

Configure layouts and widgets for in-store pick up
You must make changes to a number of the storefront layouts to add in-store pick up
to your storefront.

This section describes adding new widgets to page layouts and also making sure the
latest versions are used for some widgets that are included in the page layouts out of
the box. To replace a widget with the latest version, see Upgrade deployed widgets in
Customize your store layouts.

To enable in-store pick up, you must make the following changes to your storefront:

• Add the Store Pick Up element to the Product Details widget. See Update the
Product layout for in-store pick up.

Chapter 14
Configure layouts and widgets for in-store pick up

14-4

• Make Checkout Layout for Multi Ship the default checkout layout. See Update the
default checkout layout for in-store pick up.

• Configure the Enable Store Pickup setting for the Shopping Cart Summary and
Shipping Options widgets. See Update the default checkout layout for in-store pick
up and Update the Cart layout for in-store pick up.

• Update to the latest versions of the Order Confirmation and Order Details widgets.

• If your environment supports scheduled orders, update to the latest version of
the Scheduled Order widget. See Configure page layouts for scheduled orders for
more information.

• (Optional) Configure widgets to show when an item will be available for pick up.
See Display the date and time an item will be available for pick up.

Update the Product layout for in-store pick up

Add the Store Pick Up element to the Product Details widget on the Product layout.
(Make sure you are using the latest version of the Product layout and Product Details
widget.) This element specifies that an item can be picked up (based on the value of
the SKU’s onlineOnly property) and lets the shopper search for pick-up locations by
postal code or city and state.

When the shopper clicks the Find Stores button, Commerce displays a list of nearby
stores where the item can be picked up. For stores where the item is in stock, The
number of stores listed depends on the .Enter the Number of Matching Stores to
Display value you entered on the Product Details widget’s Settings tab. (By default, the
widget displays a maximum of ten stores.) The shopper can click a Select Store button
for a store that has the item in stock to put the item in the shopping cart.

Note: If you customize the query that finds stores, note that Commerce does not
support finding a store by geolocation, that is, by its longitude and latitude coordinates.

Update the Cart layout for in-store pick up

Make sure you are using the latest version of the Shopping Cart widget so you can
enable in-store pick up.

To configure the Shopping Cart widget to support in-store pick up:

1. From the Design page, select the Layout tab.

2. From the Layout tab menu, select the Cart layout.

3. Click the Shopping Cart widget’s setting icon to view the widget information.

4. On the Settings tab, select the Enable Store Pickup check box.

5. Enter the maximum number of stores to display when a shopper searches for a
pick-up location from a product’s details page.
By default, the maximum number of stores listed is ten.

6. Click Save.

Chapter 14
Configure layouts and widgets for in-store pick up

14-5

Update the default checkout layout for in-store pick up

Make Checkout Layout for Multi Ship the default checkout layout. This new layout
includes a Progress Tracker stack with the following tabs and widgets:

• Login

• Shipping Options

• Payment Methods

• Review Order

Login tab

The Login tab includes a new version of the Login-Checkout widget.

Shipping Options tab

The Shipping Options tab includes a new Shipping Options widget that lets registered
and anonymous shoppers select a shipping option on the cart or checkout page. If
Enable Store Pickup is selected on the widgets Settings tab, shoppers can search for
a store that has the item in stock.

Payment Methods tab

The Payment Methods tab includes the Split Payments widget. The latest version of
this widget displays the Pay in Store option if it has been configured and if all items in
the order will be picked up at the same location. See Configure payment processing
for in-store pick up for more information.

Even if an order qualifies for in-store payment, the Pay in Store option will not appear
if gift cards have already been applied to the order. The shopper can remove gift cards
from the order and then select Pay in Store. The shopper can pay with the gift cards
when they pick up the items at the store.

In the new version of this widget, each payment method includes its own Billing
Address section. A payment’s billing address overrides the default billing address.

This tab also includes a new version of the Promotions widget.

Review Order tab

The Review Order tab includes the Review Order widget, which has not been updated
in this release.

Note: A shopper can view the details of their selected pick-up location when they
review their order. However, after they view the pick-up location details in Review
Order and then navigate back to Shipping Options to update the selected store, the
updated store is not reflected within the Review Order widget.

Display the date and time an item will be available for pick up

You can optionally configure widgets to display the date and time an item will be
available for pick up at a store. For example, you could display the availability dates
on the product details page, in the shopping cart, during checkout, and in the order
history.

Every in-store pick up shipping group in an order contains the following properties:

Chapter 14
Configure layouts and widgets for in-store pick up

14-6

• availablePickUpDate specifies the date and time the items in the shipping group
will be at the location and ready to be picked up by the shopper. This data likely
originates in your order management system.

• preferredPickUpDate specifies the date and time the shopper specifies would
like to pick up their items. The date specified by preferredPickUpDate should be
valid in relation to inventory availability, for example, it should occur after the date
specified by availablePickUpDate or the availabilityDate, but Commerce does
not automatically provide validation. The integration you write will need to include
code that validates the dates.

Configure products and SKUs for in-store pick up
The onlineOnly property is a Boolean that specifies whether an item is allowed to be
picked up.

If the property is set to false (default), the item can be picked up; if set to true, the item
cannot be picked up, but can be shipped or downloaded.

You can set the property on both products and SKUs. If you set onlineOnly to true on
a product, all its SKUs automatically inherit the setting; you cannot override the setting
for individual SKUs.

For SKU bundles and configurable SKUs, Commerce validates the onlineOnly value
only for the main SKU, not for any of the SKUs added to the bundle or .configurable
SKU. See Integrate with an External Product Configurator and Create and work with
SKUs for more information about creating these types of SKUs.

To set properties on a product, issue a PUT request to the /ccadmin/v1/products/{id}
endpoint on the administration server.

The following sample request sets the onlineOnly property for a product:

PUT /ccadmin/v1/products/x0215 HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "onlineOnly": true

}

To set properties on a SKU, issue a PUT request to the /ccadmin/v1/skuProperties/
{id} endpoint on the administration server.

The following sample request sets the onlineOnly property for a SKU whose parent
product’s onlineOnly property is set to false:

PUT /ccadmin/v1/skuProperties/sku0215a HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "onlineOnly": true

Chapter 14
Configure products and SKUs for in-store pick up

14-7

}

Customize email templates for in-store pick up
You can configure and automatically send the following types of email when a shopper
chooses to pick up a purchase in a store:

• Items Ready For Pickup emails are sent when shipping Group Type is
inStorePickupShippingGroup and the Shipping Group Status for the order is “This
email is triggered when the shipping group state is PENDING_SHIPMENT.

Commerce sends a separate email for each item in an order that a shopper will pick
up.

• Items Picked Up emails are sent when the shopper picks up an item up at a
store. This email is triggered when the Shipping Group Status for the order is
NO_PENDING_ACTION.

When sending these emails to a registered shopper, Commerce uses the email
address associated with the shopper profile. When sending emails to an anonymous
shopper, Commerce uses the email address from the inStorePickupShippingGroup,

The following email templates can also include information about in-store pick up:

• Order Placed

• Order Approved

• Order Payment Initiated

• Order Pending Approval

• Order Quoted

• Order Rejected

• Quote Failed

• Quote Requested

• Scheduled Order Placed Failed

• Store Cancel Order

• Store Return Order

You do not need to download new versions of the templates in order to see in-
store pick up details, as these properties are part of the shipping group, and so
are automatically added to a template that includes the shipping group object. See
Understand buy online pick up in store for details about the order properties that
support in-store pick up.

See Configure Email Settings and Customize Email Templates for information about
enabling and working with email notifications your store sends to shoppers.

Configure payment processing for in-store pick up
Commerce supports existing payment types and gateways for in-store pick up.

Chapter 14
Customize email templates for in-store pick up

14-8

A new payment type, called In Store Payment, lets shoppers pay for items when
they pick them up in a store instead of when they place the order online. Commerce
displays the In Store Payment type only when all items in an order will be picked up
at the same location – that is, when all items in an order are part of the same in-store
pick up shipping group or multiple in-store pick up shipping groups for the same store.
If an order includes items that will be picked up at multiple locations or items that will
be shipped or downloaded, In Store Payment is not available and the shopper must
pay for the entire order at checkout.

An order created with the In Store Payment type includes a single in store payment
group. The in store payment group functions as a placeholder in the order until the
shopper picks up and pays for the order in store. After the shopper pays in the store,
you can update the order with payment details using the updateOrder endpoint in the
Admin API. (See Order Management REST APIs for more information.)

To update the order with appropriate payment details, issue a PUT request to
the /ccadmin/v1/orders endpoint on the administration server. Replace the existing
payment group with new payment groups that represent the actual payment at pick up.
For example, the following excerpt from a sample updateOrder request body specifies
that a shopper paid with cash when they picked up an order:

 ...
 "paymentGroups": [
 {
 "paymentGroupClassType": "cash",
 "amountAuthorized": 200,
 "amount": 200,
 "gatewayName": "merchantCashGateway",
 "paymentProps": {},
 "paymentMethod": "cash",
 "state": "PAYMENT_REQUEST_ACCEPTED",
 "id": "pg304412",
 "submittedDate": "2018-04-30T08:25:35.000Z",
 "debitStatus": [],
 "authorizationStatus": [
{
 "amount": 200,
 "statusProps": {
 "sample-addnl-property-key2": "sample-payment-property-
value2",
 "responseReason": "1001",
 "sample-addnl-property-key1": "sample-payment-property-
value1",
 "merchantTransactionId": "MERCHANT-TRANSACTION-ID",
 "currencyCode": "USD",
 "occs_tx_id": "o30430-pg30441-1525076734070",
 "occs_tx_timestamp": "2018-04-30T08:25:34+0000",
 "merchantTransactionTimestamp": "1447807667046",
 "responseCode": "1000",
 "token": "token-success"
 },
 "transactionSuccess": true,
 "errorMessage": null,
 "externalStatusProps": [],
 "transactionId": "HOST-TRANSACTION-ID",

Chapter 14
Configure payment processing for in-store pick up

14-9

 "transactionTimestamp": "2015-11-18T00:47:47.000Z"
 }
],
 "currencyCode": "USD"
 }
],
 "relationships": [
 {
 "paymentGroupId": "pg304412",
 "amount": 200,
 "relationshipType": "ORDERAMOUNTREMAINING",
 "id": "r7i0471"
 }
],
 ...
 "id": "o50444",
 "state": "SUBMITTED",
}

To configure the In Store Payment settings in the Commerce administration interface:

1. Click the Settings icon.

2. Select Payment Processing from the Settings list

3. On the Payment Gateways tab, select In Store Payment from the Service Type
list.

4. Select one of the following environments to configure.
Preview: Your store’s preview environment

Agent: The Commerce Agent Console

Storefront: Your production storefront

5. (Optional) If your Commerce environment is configured for scheduled orders or
order approvals, select Enable For Scheduled Order or Enable For Order
Approval to let shoppers pay for those orders if they pick them up in stores.

6. Click Save.

7. Publish your changes. See Publish Changes for more information.

See Configure Payment Processing for more information about configuring payment
settings in Commerce.

Note: Make sure you are using the latest version of the layouts and widgets that allow
shoppers to select in-store pick up and payment. See Configure layouts and widgets
for in-store pick up for more information.

Understand tax processing and in-store pick up
When you configure tax processor integrations, you must provide Ship from
Warehouse Location properties that specify an address from which items sold on your
store are shipped.

The tax processor uses this information when calculating taxes.

Chapter 14
Understand tax processing and in-store pick up

14-10

In previous releases, Commerce set the Ship from Warehouse Location property per
order. To support in-store pick up, this property is now set at the line item level, that is,
per shipping group:

• When all items in an order are shipped from a warehouse to the shopper, the Ship
from Warehouse Location is the warehouse you specified when you configured
your tax processor integration.

• When a shopper picks up all items in the order from a store, the Ship from
Warehouse Location is the store address.

• When an order includes a mix of items being shipped and picked up, or items that
are being picked up at multiple locations, each shipping group is assigned its own
Ship from Warehouse Location.

Commerce automatically sets the ship-to address for in-store pick up shipping groups
as the pick-up location. You do not have to configure your tax processor integrations to
do this. Commerce uses the address that you specified when you created the location.
See Create physical locations for more information.

To learn about configuring the built-in Avalara and Vertex tax processor integrations,
see Configure Ship from Warehouse Locations. To learn about configuring an
integration with an external tax processor, see Configure Tax Processors.

Configure the Picked Up Items webhook
The Picked Up Items event webhook sends information to one or more external
systems when .a shopper completes an in-store pick up.

Commerce invokes the webhook when an order’s InStorePickupShippingGroup state
is changed to NO_PENDING_ACTION.

The following properties are sent in the JSON request body of the webhook:

• Meta-data for the shippingGroups object that contains the items

• All components of the order object. See Order Submit request example for a
sample JSON representation of an order in a webhook body.

To send this data to the external system, you configure the webhook by specifying
the URL, username, and password for accessing the system. (See Use Webhooks for
more information.)

Chapter 14
Configure the Picked Up Items webhook

14-11

15
Create Scheduled Orders

Commerce provides a set of widgets and page layouts that allow shoppers to create
scheduled orders.

The shopper adds items to her cart and, instead of checking out, creates a schedule
that determines the frequency used to fill the order in the future. A service audits the
order repository periodically and triggers orders that are scheduled to run. This section
describes how to implement the scheduled orders feature.

Configure an invoice payment gateway for scheduled orders
Because scheduled orders are submitted automatically at a future time, they must be
paid for using either a stored credit card or by sending an invoice to the shopper.

For information about paying for scheduled orders using a stored credit card, see
Support stored credit cards. If, instead, you want to send invoices to shoppers for
scheduled orders, you can set up an invoice payment gateway, as described in
Integrate with an Invoice Payment Gateway. In addition to those instructions, you
must add the enabledForScheduledOrder property to the config.json file for the
gateway. An example of a config.json file with the enabledForScheduledOrder
property is provided below.

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "enabledForScheduledOrder",
 "type": "booleanType",
 "name": "enabledForScheduledOrder",

15-1

 "helpTextResourceId": "enabledForScheduledOrderHelpText",
 "labelResourceId": "enabledForScheduledOrderLabel",
 "defaultValue": true,
 "public" : true
 },

 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": true,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "invoice",
 "displayAsCheckboxes": true,
 "options": [
 {
 "id": "invoice",
 "value": "invoice",
 "labelResourceId": "invoiceLabel"
 },
 {
 "id": "card",
 "value": "card",
 "labelResourceId": "cardLabel"
 }
]
 }
]
}

Configure the scheduled order service
A scheduled order service runs periodically to review the order repository and
determine if any scheduled orders are due to be filled.

Out of the box, this service is not set to run, so you must provide a frequency for it
before scheduled orders can work.

To set the initial frequency of the scheduled order service, you issue a POST request to
the scheduledJobs endpoint, with a payload that defines the schedule, an example of
which is provided below. To update the schedule, you issue a PUT request to the same
endpoint.

POST /ccadmin/v1/merchant/scheduledJobs

{
"componentPath": "ScheduledOrderService",
"scheduleType": "periodic",
"schedule":
 {
 "period" : 1000000
 }
}

Chapter 15
Configure the scheduled order service

15-2

The scheduleType and schedule properties determine the frequency used when
running the scheduled order service. The scheduleType property may be either
periodic (time-based) or calendar (calendar-based).

If you specify periodic for the scheduleType property, you must also provide a period
property in milliseconds.

If you specify calendar, you must provide additional properties that further define the
frequency. These properties include:

• occurrenceInDay: This field can be set to 1 or 2, representing once a day or
twice a day, respectively. The default is 1, in other words, if occurenceInDay is not
specified, the order will be run once on the specified days.

• daysOfWeek: This field can be set to 1, 2, 3, 4, 5, 6, or 7, which correspond to
(and can be represented in the UI as) Sunday, Monday, Tuesday, Wednesday,
Thursday, Friday, and Saturday.

• weeksInMonth: This field can be set to 1, 2, 3, 4, or 5, which correspond to (and
can be represented in the UI as) the first, second, third, fourth, or last week of the
month.

• monthsInYear: This field can be set to 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, which
correspond to (and can be represented in the UI as) January, February, March,
April, May, June, July, August, September, October, November, and December.

• daysInMonth : This field corresponds to the day of the month and it can be set to a
number between 1 and 31 (depending on the number of days in the month).

The following combinations of these properties are allowed:

• occurenceInDay, daysOfWeek, weeksInMonth, monthsInYear

• monthsInYear, daysInMonth, occurenceInDay

Note: If both daysInMonth and daysOfWeek are sent in the payload, then daysInMonth
takes priority.

To help you better understand how to combine these properties, some examples are
provided below.

This schedule runs twice on Sunday, Monday, and Tuesday of the first, second and
third weeks of February and April.

"schedule":{ "daysOfWeek":[1,2,3],
 "weeksInMonth":[1,2,3], "monthsInYear":[1, 3],
 "occurrenceInDay":2 }

This schedule runs twice a day:

"schedule":{ "occurrenceInDay":2 }

This schedule runs once every Sunday:

"schedule":{ "daysOfWeek":[1] }

Chapter 15
Configure the scheduled order service

15-3

This schedule runs twice on Monday in the second and third weeks of every month:

"schedule":{ "daysOfWeek":[2], "weeksInMonth":[2,3],
 "occurrenceInDay":2 }

This schedule runs once on the first day of every month:

"schedule":{ "daysInMonth ":[1] }

This schedule runs once on the fifth day of June:

"schedule":{ "daysInMonth ":[5], "monthsInYear": [5]
 }

This schedule runs once on the first day of January, March, May, July, September, and
November:

"schedule":{ "daysInMonth ":[1]
 "monthsInYear":[0, 2, 4, 6, 8, 10] }

This schedule runs on the 10th, 15th, 20th, and 21st days of February and December:

"schedule":{ "daysInMonth":[10,15,20,21],
 "monthsInYear":[1, 11] }

Configure page layouts for scheduled orders
This section describes the page layouts that are affected by the scheduled orders
feature, along with the changes and verifications you need to make to implement
scheduled orders.

Several of the sections below require you to ensure that you are using the latest
version of a widget. To replace a widget with the latest version, see Customize your
store layouts.

Checkout Layout for Scheduled Orders

To implement scheduled orders, you must add the Scheduled Order – Checkout
widget to the checkout page you are using (either Checkout Layout or Checkout
Layout with GiftCard). This widget presents UI controls to the shopper that capture the
schedule information for a scheduled order, including a name for the scheduled order,
the start and end dates, the frequency, and the option to suspend the scheduled order.

Also on the checkout layout, make sure you are using the latest version of these
widgets:

• Order Summary – Checkout widget. The latest version of this widget toggles the
Place Order button to a Schedule Order button when the shopper selects the
option to create a scheduled order.

• Payment Gateway Options widget. The latest version of this widget disables the
Cash payment option when the scheduled order checkbox is selected.

Chapter 15
Configure page layouts for scheduled orders

15-4

• Gift Card widget. The latest version of this widget disables the gift card payment
option when the scheduled order checkbox is selected.

Profile Layout for Scheduled Orders

The Scheduled Order List widget is available for use on the Profile Layout. This
widget displays a list of scheduled orders associated with the current shopper’s profile.
Clicking the link for one of the scheduled orders displays the Scheduled Order Layout
with details for the selected order.

While it is not configured this way out of the box, you can create a vertical tab stack
on your Profile Layout and place the Scheduled Order List widget on one of the tabs.
For more information on vertical tab stacks, see Add vertical tabs in Design Your Store
Layout.

Scheduled Order Layout for Scheduled Orders

The Scheduled Order Layout displays the details of the selected scheduled order. To
access the Schedule Order Layout, a shopper must click a scheduled order link from
the list displayed by the Scheduled Order List widget on the Profile Layout. See Profile
Layout for Scheduled Orders for details.

Out of the box, the Scheduled Order Layout is populated with an instance of the
Scheduled Order widget, which is the widget responsible for rendering the scheduled
order’s details, which include:

• The scheduled order’s name and ID.

• The next order date.

• The schedule details, including schedule name, start and end date, frequency,
and a suspend option. Note that the shopper can modify the schedule details but
she cannot modify any other details about the scheduled order. See Modify the
schedule of a scheduled order for more information.

• Previously fulfilled orders, including any reasons for failed orders.

• The contents of the scheduled order.

• The shipping address and method for the scheduled order.

This widget also provides an option to delete the scheduled order and to place a one-
time order based on the scheduled order’s content. See Delete a scheduled order and
Place a one-time order based on a scheduled order for more information, respectively.

Order History Layout for Scheduled Orders

On the Order History Layout, you must make sure you are using the latest version of
the Order History widget. This version includes orders placed as part of a scheduled
order in the order history list. This version also provides the option to display a
scheduled order ID column for orders generated from a scheduled order template.

Order Details Layout for Scheduled Orders

On the Order Details Layout, make sure you are using the latest version of the Order
Details widget. This version includes the scheduled order name for any orders placed
via a scheduled order.

Chapter 15
Configure page layouts for scheduled orders

15-5

Update prices in a scheduled order
It is possible that prices will change for items in a scheduled order over time.

The Scheduled Order Layout, which displays the details for a selected scheduled
order, displays the latest prices for the scheduled order. Each time a schedule order is
triggered, the most current prices are applied to the order’s items. Also, any applicable
promotions that are available at the time the scheduled order is triggered are applied.

Notify shoppers about scheduled order activity
The Order Placed email template sends an email to the shopper whenever a
scheduled order is triggered.

In addition to the regular order details, this template is augmented with information
relevant to scheduled orders such as the scheduled order name, the scheduled order
ID, and the next time the schedule will run.

The Scheduled Order Error email template sends an email to the shopper when a
scheduled order fails to run along with an error message that indicates why the order
failed.

For more information on email templates, see Customize Email Templates.

Understand shopper tasks for scheduled orders
The configuration described in the preceding sections provides shoppers with the
functionality described below.

Note that, when a contact is removed from an account, all scheduled orders
associated with that contact expire.

Place a scheduled order

On the checkout page, the shopper can enable the Scheduled Order option to create a
scheduled order from his cart contents instead of placing the order immediately. When
the shopper enables this option, he is presented with a scheduled order form that
allows him to specify a name for the scheduled order, define the start and end dates,
and set the frequency. Out of the box, frequencies include:

• Once a day

• Weekly. When this option is selected, the shopper can specify the day of the week
(Sunday through Saturday) or the weeks of the month (First, second, third, fourth,
last) for when an order should be run.

• Monthly. When this option is selected, the shopper can select once a month, every
two months, or quarterly for when the order should be run.

The shopper also has the option to suspend the order. Suspended orders are not run
until they are re-activated. See Suspend a scheduled order for details.

Modify the schedule of a scheduled order

A shopper can modify the schedule of an existing scheduled order but the contents of
the order cannot be modified, nor can the shipping method or address. Instead, the

Chapter 15
Update prices in a scheduled order

15-6

shopper would have to create a new scheduled order with the modified contents and
shipping details and then delete the old one.

Suspend a scheduled order

A shopper can suspend a scheduled order, either while they are first creating the
scheduled order on the checkout page, or while they are viewing the scheduled order’s
details. A suspended order will not run until it is re-activated from the scheduled
order’s details page.

Place a one-time order based on a scheduled order

When viewing a schedule order’s details, a shopper can place an immediate, one-
time order using the scheduled order’s contents by clicking the Place Order button.
Clicking this button places the contents of the scheduled order into the shopping cart.
If any other products exist in the cart already, the contents of the scheduled order are
added to them. The shopper then checks out as normal.

Delete a scheduled order

To delete a scheduled order, the shopper must view the scheduled order’s details, then
click the Delete button.

Manage a failed scheduled order

Scheduled orders can fail for a variety of reasons, for example, a product in the
scheduled order is out of stock or discontinued, or the price list group associated with
the scheduled order has been removed so the order can no longer be priced.

Depending on the failure type, the shopper may be able to quickly create a new
scheduled order that does not have the issue (for example, a new order that removes
a discontinued product). To do this, he can view the details page for the problem
scheduled order, click the Place Order button to add the order’s contents to the cart,
modify the cart contents (for example, to remove a discontinued product), go to the
checkout page and create a new scheduled order. The shopper will also have to delete
the problem scheduled order as described in Delete a scheduled order.

If the shopper cannot resolve the issue, he will have to contact an agent and provide
the error information to get assistance.

Chapter 15
Understand shopper tasks for scheduled orders

15-7

16
Notify Shoppers When Items are Back in
Stock

You can use the Admin API to enable shoppers to receive email notifications for out of
stock products when they arrive back in stock.

This section describes how to create the notification extension, configure the
scheduler, and add the Notify Me element to the Product Details widget.

If your Oracle CX Commerce environment integrates with an external system to notify
shoppers when items are back in stock, configure the Back in Stock event webhook
to notify the system that handles your shopper notifications. See Understand event
webhooks for more information.

Understand back in stock notifications
Shoppers on your store can choose to receive a back in stock email notification for out
of stock products.

To do so, they click the Notify Me link within the Product Details page on the
storefront. After clicking the link, shoppers are prompted to enter their email address.
Once confirmed, they receive a confirmation message informing them that they will
be notified when the product becomes available. When back in stock, the shopper
receives an email notification containing a link to the previously out of stock product.

In order for the Notify Me link to appear to shoppers when products are out of stock,
you must have the Notify Me email template enabled. See Enable the types of email
your store sends for more information.

Create and upload the notification extension
You can use an extension to add a Notify Me button to your Product Details widget,
which is then displayed to shoppers when they view a product that is out of stock.

You must create and upload the notification extension in order to create the Notify Me
element. To do so:

1. Click the Settings icon.

2. Click Extensions and display the Developer tab.
Before you develop an extension, you must generate an ID that you will include in
your extension file.

3. Click Generate ID, and you are prompted to name the extension.

4. Name the extension Notify Me, and click Save.
Your extension ID is now generated and must be used in the extension’s
ext.json file.

5. Edit the ext.json file and set the extensionID property to the value generated in
the previous steps.

16-1

6. Package all the files within your <extension-name> directory in a ZIP file.

7. Open the Installed tab, and click Upload Extension to upload the extension to
the administration interface.

8. Select the extension ZIP file from your local file system.

9. Publish your changes.

Create a Notify Me element

The Product Details widget is separated into elements, (see Fragment a Widget into
Elements for more information) including the Notify Me element. To create an element
to display the Notify Me button, you must create a template.txt file providing the
HTML rendering code for the element. The contents of the template.txt file look
similar to the following:

<!-- Notify Me Element -->
<!-- ko if: initialized() && $data.elements.hasOwnProperty('product-
notify-me') -->
 <div class="notify-me" id="cc-notify-me-container" data-
bind="visible: $data.elements['product-notify-me'].showNotifyMe">
 <a href="#" data-bind="click : $data.elements['product-notify-
me'].notifyMe.bind(this)" id="CC-notifyMe-link">
 <span id="CC-notifyMe-label" data-bind="widgetLocaleText:
'notifyMeText'">

 </div>

 <!-- Popup -->
 <div class="modal fade" id="CC-notify-me-dialog" tabindex="-1"
role="dialog">
 <div class="modal-dialog cc-modal-dialog" id="CC-notify-me-dialog-
content" role="document">
 <div class="modal-content">
 <div class="modal-header CC-header-modal-heading">
 <h3 data-bind="widgetLocaleText:'notifyDialogTitle'"></h3>
 </div>
 <div class="modal-body cc-modal-body">

 <p data-bind="widgetLocaleText: 'notifyOutOfStock'"></p>
 <p data-bind="widgetLocaleText: 'notifyInstructions'"></p>

 <div class="form-group row">
 <div class="controls col-md-12">
 <label class="control-label inline" for="CC-login-input"
data-bind="widgetLocaleText:'emailAddressText'"></label>
 <span role="alert" class="text-danger" id="CC-notify-
email-input-error" data-bind="validationMessage: user().emailAddress"></
span>
 <input type="email" class="col-md-5 form-control" id="CC-
notify-email-input" aria-required="true"
 data-bind="validatableValue: user().emailAddress,
widgetLocaleText: {value: 'emailAddressText', attr:'placeholder'},
 event: { blur:
$data.user().emailAddressLostFocus.bind(this), focus:
$data.user().emailAddressFocused.bind(this) }" />

Chapter 16
Create and upload the notification extension

16-2

 </div>
 </div>

 <div id="CC-notify-me-footer" class="modal-footer CC-header-
modal-footer">
 <div class="center-block">
 <button class="cc-button-primary" data-
bind="widgetLocaleText: 'confirmText', click: $data.elements['product-
notify-me'].confirm.bind(this)" />
 <button class="cc-button-secondary" data-
bind="widgetLocaleText: 'cancelText', click: $data.elements['product-
notify-me'].cancel.bind(), event: {mousedown: $data.elements['product-
notify-me'].handleMouseDown.bind($data, $parent), mouseup:
$data.elements['product-notify-me'].handleMouseUp.bind($data,
$parent)}" />
 </div>
 </div>

 </div>
 </div>
 </div>
 </div>

<!-- /ko -->

This file must be located in the NotifyMe/templates folder.

Define the Notify Me element meta-data

The Notify Me element requires a manifest file, called element.json, to define key
properties. The contents of the element.json file look similar to the following:

{
 "inline" : true,
 "supportedWidgetType":["productDetails"],
 "translations" : [
 {
 "language" : "en",
 "title" : "Notify Me",
 "description" : "Element to allow setting of back in stock
notifications"
 }]
}

Define the Notify Me element.js

The Notify Me element requires an element.js file, the contents of the which look
similar to the following:

define(
//---
 // DEPENDENCIES
 //---
 ['jquery', 'knockout', 'navigation', 'ccConstants', 'ccRestClient',

Chapter 16
Create and upload the notification extension

16-3

'pubsub', 'notifier'],
 // ---
 // MODULE DEFINITION
 // ---
 function ($, ko, navigation, CCConstants, CCRestClient, pubsub,
notifier) { "use strict";
 return {
 elementName: 'product-notify-me',
 showNotifyMe: ko.observable(false),

 onLoad: function(widget){
 var self = this;

 $.Topic(pubsub.topicNames.PRODUCT_VIEWED).subscribe(function(prod
uct){
 self.setVisible(widget);
}); $.Topic(pubsub.topicNames.SKU_SELECTED).subscribe(function(pr
oduct, sku, variant){
 self.setVisible(widget);
});

widget.stockStatus.subscribe(function(newValue){
 self.setVisible(widget);
});

 $("[id^='CC-prodDetails-'").on("change", function(evt, data){
 if ($(evt.target).find("option:selected").index() == 0){
 //the "Select..." option has been selected, hide the notify-me
 self.showNotifyMe(false);
 }
 });

//Set up subscriptions to user product notification
events $.Topic(pubsub.topicNames.USER_PRODUCT_NOTIFICATION_SUCCES
S).subscribe
 (function(data){

notifier.sendSuccess(widget.WIDGET_ID,widget.translate('notifySuccess'))
; });

$.Topic(pubsub.topicNames.USER_PRODUCT_NOTIFICATION_FAILED).subscribe
 (function(data){

notifier.sendSuccess(widget.WIDGET_ID,widget.translate('notifyFailed'));
 });

widget.confirmNotify = function(widget, email){
 var inputData = {}, skuId = '';

 inputData.siteId = widget.site().siteInfo.id;
 inputData.productId = widget.product().id();

 if (widget.selectedSku()){
 skuId = widget.selectedSku().repositoryId;
 }else{

Chapter 16
Create and upload the notification extension

16-4

 //SKU for top level product
 skuId = widget.product().stockStatus().catRefId || '';
 }
 inputData.skuId = skuId;

 inputData.profileId = widget.user().repositoryId();
 inputData.email = email;
 inputData.locale = widget.locale();
 inputData.expiryDate = "";

 widget.user().createProductNotification(inputData);

 $("#CC-notify-me-dialog").modal("hide");
 }
},
confirm: function(widget, event){
 if (widget.user().emailAddress.isValid()) {
 var email = $("#CC-notify-email-input").val();
 widget.confirmNotify(widget, email);
 }
},
notifyMe: function(widget){
 notifier.clearError(widget.WIDGET_ID);
 if (!widget.user().loggedIn()){
 widget.user().reset();
 $("#CC-notify-email-input").val("");
 $("#CC-notify-me-dialog").modal("show");
 $('#CC-notify-me-dialog').on('shown.bs.modal', function () {
 $("#CC-notify-email-input").focus();
 });
 $('#CC-notify-me-dialog').on('hidden.bs.modal', function() {
 $("#CC-notifyMe-link").focus();
 });
 }else{
 widget.confirmNotify(widget, widget.user().email());
 }
 },
 cancel: function(){
 $("#CC-notify-me-dialog").modal("hide");
 },
 setVisible: function(widget){
 var hide = false;

 //if a product has variants, but none are selected, don't show
the
 notify me option
 if (widget.productVariantOptions &&
 widget.productVariantOptions()){
 if (!widget.selectedSku()){
 hide = true;
 }
 //always allow options to be selected
 if (widget.disableOptions){
 widget.disableOptions(false);
 }

Chapter 16
Create and upload the notification extension

16-5

 }
 this.showNotifyMe(!widget.stockStatus() && !hide);
 },
 /**
 * Ignores the blur function when mouse click is up
 */
 handleMouseUp: function(data) {
 this.ignoreBlur(false);
 data.user().ignoreEmailValidation(false);
 return true;
 },
 /**
 * Ignores the blur function when mouse click is down
 */
 handleMouseDown: function(data) {
 this.ignoreBlur(true);
 data.user().ignoreEmailValidation(true);
 return true;
 }
 };
 }
);

Add the Notify Me element to the Product Details widget
In order to enable shoppers to receive back in stock email notifications, you will need
to add the Notify Me element to the Product Details widget on the Product layout within
the Design page.

To do so:

1. Click the Design page, and open the Layout tab.

2. Open the Product layout.

3. Click the Grid View icon.

4. Open the Product Details widget settings.

5. From the Layout tab, open the Element Library located at the bottom of the
page.

6. Locate the Notify Me element, and drag to the relevant position on the Product
Details widget.

7. Click Save to confirm.

Configure the scheduler to send the back in stock emails
Oracle CX Commerce runs a scheduler that determines when to send out back in
stock email notifications by performing periodic reviews of the inventory.

The scheduler must be configured with an endpoint, and have a frequency set as, out
of the box, this service is not automatically set to run.

To set the initial frequency of the scheduled product notification service, you issue a
POST request to the scheduledJobs endpoint, with a payload that defines the schedule,

Chapter 16
Add the Notify Me element to the Product Details widget

16-6

an example of which is provided below. To update the schedule, you issue a PUT
request to the same endpoint.

POST /ccadmin/v1/merchant/scheduledJobs

{
"componentPath": "ProductNotificationService",
"scheduleType": "periodic",
"schedule":
 {
 "period" : 1000000
 }
}

See Configure the Scheduled Order Service to learn how to use these properties to
set how frequently the service runs.

The frequency of the inventory reviews is dependent on the scheduler configurations.
Note: If the product becomes unavailable, then the scheduler will delete the
notification request. Likewise, if the notification request expires, the scheduler deletes
the notification request. (The default notification expiration time is three months.)

Chapter 16
Configure the scheduler to send the back in stock emails

16-7

17
Enable Purchase Lists

Commerce provides a set of widgets and page layouts that allow shoppers to create
purchase lists, which are lists that shoppers can use to quickly access frequently
purchased items.

Purchase lists can be enabled in both Oracle CX Commerce consumer and account-
based sites.

This section describes how to implement purchase lists.

Understand the difference between wish lists and purchase
lists

A wish list allows shoppers to maintain a list of items that they are considering
purchasing, also allowing them to use social media to share and comment on the
list.

Purchase lists allow shoppers to maintain a quickly accessible list of frequently
purchased products that can be added to an order. While both of these lists are similar,
there are some distinctions.

Understand wish list features

Wish lists allow shoppers to create a list of items that they may want to purchase, or
have other shoppers purchase for them. These lists can be shared using social media,
and allow for social experiences from others that are invited to view the list. Once an
item from a wish list has been included in an order, the item does not remain in the
wish list.

Wish lists are best used by shoppers that want to communicate and share the list with
others.

Wish lists provide your shoppers with:

• A way to create and manage a list of products they are considering buying.
Included is the ability to save items in wish lists and purchase easily from them
later.

• A social experience where shoppers can share their lists and receive feedback
and suggestions from friends and family members they invite to their wish lists.

• Email notifications for key wish list-related activities.

• Registered shoppers can create up to 50 wish lists. The number of product posts,
text posts, and comments on an individual post is set to 100 per wish list.

For detailed information on wish lists, refer to Understand wish list features.

17-1

Understand purchase list features

Purchase lists are created by shoppers and include items that they have selected.
These lists, which do not include pricing information or shipping and bill addresses,
can be created from the shopper’s profile page, the product detail page or the order
detail pages and include the following:

Property Description

Name A unique name for the purchase list. The
purchase list name can be modified by the
owner of the list.

Description A description for the purchase list. This field is
not exposed in the UI.

Items The shopper adds SKUs and associated
quantities. A shopper can save a purchase list
that contains no SKUs. The item name is a link
to the SKU’s Quick View.

Purchase lists can be used as reminders for frequently purchased items or item
combinations. These lists are also helpful when a buyer purchases items on a
frequent basis, but does not want to create a scheduled order. For example, a buyer
may purchase office supplies frequently, and would like to be able to access the
items without searching through the catalog. By creating a list that contains a list of
frequently purchased office supplies, the buyer can quickly add these items to the
order.

Purchase lists are associated with a specific buyer. When a shopper creates a
purchase list, it is available on all sites. If your environment is configured for account-
based commerce, purchase lists are available on all sites and in all accounts.

Unlike a wish list, when an item is added to an order, the item remains on the
purchase list.

Purchase lists provide shoppers with the following features:

• A way to create and manage a list of products they buy consistently, including the
ability to save items in purchase lists and add them to orders later.

• The ability to create and manage multiple purchase lists.

• The ability to share purchase lists you have created. See Share purchase lists for
more complete information.

• Once configured, buyers can search and view lists of purchase lists they created.
The list views available are a view for purchase lists the shopper actually created
as well as a view of purchase lists shared with/by the shopper.

• Registered shoppers can add items to the purchase list from the product details
page, their profile, or from the order detail page.

• Registered users can add a product from a purchase list to a shopping cart for
purchase.

• The ability to edit and delete purchase lists, including modifying purchase list
names, adding and removing items from purchase lists and modifying the quantity
of items within the purchase list. Note that the quantity of an item in a purchase list
cannot be null.

Chapter 17
Understand the difference between wish lists and purchase lists

17-2

• There is no limit to the number of purchase lists that a shopper can make. (Note
that having a large number of purchase lists may affect server performance.)

Purchase lists can be viewed by shoppers when working on their profile, viewing
product details or viewing order detail information. When a shopper views a list
of purchase list available on their profile, they are presented with the following
information:

Property Description

Name The name of the purchase lists that they
created.

Number of Purchase List items The total number of items included within each
list.

Date Last Modified The date when the list was last modified.

Delete Button An icon that allows a shopper to delete an
item.

Link to create a new purchase list A link that allows a shopper to create a new
purchase list.

When a shopper opens the list of purchase lists available to them, they can select a
specific purchase list to review.

Configure purchase lists
The following instructions describe the steps that are needed to enable purchase lists.

Purchase lists are comprised of the following widgets and layouts:

Widget Layout Description

Purchase Lists Shopper Profile Layout From the Profile Layout, a
shopper can view a list of
their purchase list and select
a purchase list to modify.

Note: The Purchase List
widget is included by default in
account-based environments.

Purchase List Details Purchase List Details Layout The Purchase List Details
Layout displays the Purchase
List Details widget. The widget
displays a list of purchase
lists, and details of individual
purchase lists, as well as
allows a shopper to use a
search box to search for
products.

Product Details Product Layout The Product Details widget
allows a shopper to add items
to a new or existing purchase
list using a checkbox element.

Chapter 17
Configure purchase lists

17-3

Widget Layout Description

Order Details Order Confirmation Layout

and

Order Details Layout

When a shopper accesses the
Order Details widget, all items
are selected for inclusion into
a new or existing purchase
list. The shopper can select
specific items to add to a new
or existing purchase list.

By default, all of the items
on the Order Details page
are added to the purchase
list, however the shopper
can modify the selection as
needed.

Order Details with Additional
Info

Order Confirmation Layout

and

Order Details Layout

When a shopper accesses the
Order Details with Additional
Info widget, as with the Order
Details widget, all items are
selected for inclusion into their
purchase list. The shopper
can select specific items to
add to a new or existing
purchase list.

The Order Details with
Additional Info widget
includes, by default, the
purchase list elements that are
displayed to enable to shopper
to add items to their purchase
list.

For information on working with widgets and layouts, refer toUnderstand widgets .

Configure purchase list widgets

To display purchase lists, you must include the purchase list widgets in the appropriate
layouts, as well as include the purchase list elements. To make purchase lists
available to shoppers:

1. Place the Purchase List widget on the profile layout. Note that in account-based
environments, the widget is added by default to the profile layout.

2. Once the Purchase List widget has been added to profile layout, configure
the Order Details widget to include the purchase list elements. By default, the
purchase list elements are disabled.

3. Ensure that the purchase list elements have been added to the Order Details with
Additional Info widget. The elements are enabled by default on this widget.

4. Configure the Product Detail Page widget to include the Add to Purchase List
elements.

The purchase list elements place an Add to Purchase button and checkboxes next to
each item that can be added to the list.

Note: For additional info on configuring the Purchase List widget so that it supports the
sharing of purchase lists, refer to Share purchase lists.

Chapter 17
Configure purchase lists

17-4

For detailed instructions on working with widgets and layouts, refer to Create a Widget.
To replace a widget with the latest version, refer to Upgrade deployed widgets in
Customize your store layouts.

Configure search for purchase lists

When populating a purchase list, you can configure the environment to allow a
shopper to search for products and get a type-ahead dropdown of product names.
The TypeAhead search interface, which is known in the Oracle CX Commerce Search
administration UI as a searchable field ranking, displays a search box that is separate
from the standard search. This search box presents a dropdown list of products that
match the TypeAhead criteria.

To enable shoppers to search using the TypeAhead search box in a specific field of a
purchase list, do the following:

1. Determine which field should be made searchable.

2. Log in to the Oracle CX Commerce administration interface.

3. Mark the field as Searchable as described in both the #unique_136/
unique_136_Connect_42_TITLE_JVC_GN2_RHB section and Add fields to the
searchable field ranking list.

4. Publish the changes that you made to the field.

5. Use the Search tab to access the Searchable Field Ranking page.

6. Open the TypeAhead ranking as described in the Understand the searchable field
ranking list.

7. Once you have added the field, and positioned it in the desired position relative to
the other fields, save your changes.

For additional information on configuring search settings, refer to the Manage Search
Settings.

Work with the purchase list API
The purchase list API allows you to create purchase lists that are accessible only on
specific sites, or for account-based shoppers, only on specific sites and/or accounts.

The API also allows you to create purchase lists that are accessible in all contexts, like
the purchase lists that are created using the UI.

The following tasks can be performed using the purchase list API. For additional
information on working with APIs, refer to the Use the REST APIs.

Create a purchase list with the API

When a shopper creates a purchase list, it is available in all site and account contexts
for consumer commerce or account based-commerce, however, you can specify
specific sites and/or accounts.

Issue a POST request to /ccstore/v1/purchaseLists. For example:

{
 "name":"Purchase List 1",
 "description":"Purchase List",
 "siteId":"siteUS",

Chapter 17
Work with the purchase list API

17-5

 "accountId":"or-100001",
 "items": [{
 "productId":"Product_18Cxi",
 "catRefId": "Sku_18Dxi",
 "quantityDesired" : 25
 },
{
 "productId":"Product_5Cx",
 "catRefId": "Sku_5Cxy",
 "quantityDesired" : 30
 }
]
}

Update a purchase list with the API

To update a purchase list issue a PUT request in the following format: /ccstore/v1/
purchaseLists/{id} where you provide the purchase list ID. For example, you could
use the following to update the name or description of the purchase list with the
following:

PUT /ccstore/v1/purchaseLists/gl42244

To update a specific purchase list item, use the /ccstore/v1/purchaseLists/{id}/
updateItems. The following example removes one of the products:

{
 "items": [{
 "productId":"Product_18Cxi",
 "catRefId": "Sku_18Dxi",
 "quantityDesired" : 25,
 "op": "update"
 },
{
 "productId":"Product_5Cx",
 "catRefId": "Sku_5Cxy",
 "quantityDesired" : 100,
 "op": "delete"

 }
]
}

Delete a purchase list with the API

To remove a purchase list, issue a DELETE request and the ID of the purchase list. For
example:

DELETE /ccstore/v1/purchaseLists/gl42244

Once the purchase list has been removed, the shopper will get a confirmation prompt.

Chapter 17
Work with the purchase list API

17-6

Share purchase lists
In Oracle CX Commerce, you create and maintain purchase lists so that you do
not have to look through the catalog for the same products each time you want to
purchase them.

You create the purchase list once and, then, whenever you want to order those items,
you select the purchase list and add all or some of the items in it to your order. See
Understand purchase list features for more complete information on the feature

As either a shopper or an account-based shopper, you can share also purchase lists
with other shoppers or account-based contacts. This section of the chapter provides
information on understanding this feature and illustrates how to share purchase lists.

Understand the ways that purchase lists are shared

There are two ways that purchase lists can be shared. These are the following:

• As a non-account-based shopper, you share the list with other non-account-based
shoppers - With this method, a non-account-based shopper who has created a
purchase list provides one or more email addresses of other non-account-based
shoppers with whom they wish to share the list.

• As an account-based shopper, you share the list with other account-based
shoppers within the context of the current account - With this method, an account-
based shopper who has created a purchase list provides one or more email
addresses of recipients within the current account with whom they wish to share
the purchase list. The account information refers to an account to which both you
and the owner(s) of the email address belong. You also can indicate whether the
purchase list should be shared with all shoppers in the current account. If you
share a purchase list with an account then all members of the account can see the
purchase list. A purchase list is private to the owner unless you explicitly share it
with other non-account-based shoppers or account-based shoppers.

Understand purchase list owners vs. list recipients

Purchase list owners and the recipients that they share the list(s) with have different
capabilities as to how they can use the list.

As a purchase list’s owner (creator), you may:

• Share the purchase list with other shoppers, and grant edit permission to
recipients.

• Edit the name and description of the purchase list.

• Edit any account/site viewing restrictions on the purchase list (via API only).

• Delete the purchase list.

• See and edit the list of purchase list recipients.

• View the purchase list’s “last modified” information. A list owner can always see
who last modified the purchase list and when the last modification occurred.

As the recipient of a purchase list you may:

• See the name and email address of the purchase list’s owner.

• Modify the quantity of an item in the purchase list.

Chapter 17
Share purchase lists

17-7

• If granted edit access, add items to the purchase list or remove items from the
purchase list.

Note: Any shopper (non-account-based shopper or account-based shopper) who tries
to add an item(s) to an existing purchase list from Product Details or Order Details can
only choose from purchase lists that they have created.

• Copy the purchase list and become the owner of the copy so that you can share
the copy with other shoppers. Refer to the user interface for a link to copy (and
rename) the list.

Recipients of shared purchase lists are viewed and managed differently depending on
the type of shopper who creates the list. If you are a non-account-based shopper who
creates the purchase list being shared you can do the following with list recipients:

• See a list of all recipients (i.e., email addresses) with whom you shared the
purchase list.

• Add a recipient.

• Remove a recipient.

• When adding one or more recipients, you can optionally add a comment that will
be included in the email notification sent to recipients. This comment is not saved
and is not subsequently viewable.

If you are an account-based shopper who creates the purchase list being shared you
can do the following with list recipients:

• See a list of all individual recipients (i.e., email address/account information pairs)
with whom you have shared the purchase list.

• In the shopper user interface, you can only see the email addresses of those with
whom you have shared the purchase list in the current account context.

• Add an individual recipient.

• Remove an individual recipient.

• See a list of all account recipients with whom you have shared the purchase list.

In the shopper user interface, you can only see whether you have shared the purchase
list with the current account.

• Add an account recipient (via API only, for accounts other than the current
context).

• Remove an account recipient (via API only, for accounts other than the current
context).

• When adding one or more recipients, you can optionally add a comment that will
be included in the email notification sent to recipients. This comment is not saved
and is not subsequently viewable.

Understand validation of shoppers chosen to receive lists

Commerce validates the following before making a purchase list visible and accessible
to a non-account-based shopper or account-based shopper:

• The shopper’s email address exists in Commerce.

• The shopper’s type (non-account-based shopper or account-based shopper)
matches the type of the shopper who created the purchase list.

• The shopper is a recipient of the purchase list.

Chapter 17
Share purchase lists

17-8

• With an account-based shopper, that the customer belongs to the account with
which the purchase list was shared, or to the account in the email address/account
information pair with which the purchase list was shared.

• The shopper’s account and site context adhere to any account and/or site context
viewing restrictions assigned to the purchase list.

Understand which purchase list types can be viewed

With the functionality of purchase lists being extended so that they can be shared, a
shopper (non-account-based shopper or account-based shopper) can see two types of
purchase lists:

• My Lists – This is a list of all purchase lists that a shopper owns (and that are
available in the current account or site)

• Lists Shared with Me – This is a list of all purchase lists shared with the shopper
(and that are available in the current account or site context) including:

– Lists shared with the owner directly by email address

– For account-based shoppers only, lists shared with owner at the account level
(i.e., by virtue of the owner’s membership in an account)

Information that can be seen in the My Lists list includes the following:

• Purchase list name (this is a link that opens the list details)

• An icon indicating whether the purchase list is shared or private

• The number of items contained in the list

Information that can be seen in the Lists Shared with Me list includes the following:

• Purchase list name (this is a link that opens the list details)

• The purchase list owner’s name

• The purchase list owner’s email address

• The number of items contained in the list

Each list of collected lists is paginated depending on the amount of lists.

Each list also has a filter control that lets you filter on the following fields:

• Purchase list name

• Purchase list owner’s name (for Lists Shared with Me)

• Purchase list owner’s email address (for Lists Shared with Me)

• Placeholder text for the filter control on My Lists: “Filter by name”

• Placeholder text for the filter control on Lists Shared with Me: “Filter by name,
email, or owner”

Note: These are not typeahead filters.

You can also sort the list on the following fields (ascending and descending):

• Purchase list name

• Purchase list owner’s name - sorted by last name (for Lists Shared with Me)

• Purchase list owner’s email address (for Lists Shared with Me)

Finally, you can switch between the following views in the Lists Shared with Me list:

Chapter 17
Share purchase lists

17-9

• All lists shared with you (the owner) in this account (the default)

• Lists shared with all members of this account

• Lists shared with you (the owner) individually

Assign edit access to shared purchase lists

When sharing purchase lists, you have the ability to assign edit access to the list
recipients if you are the list creator. Edit permission allows a shared purchase list
recipient to add items to the purchase list or remove items from the purchase list.
Editing access permissions can differ depending on the type of shopper you are.

A list owner who is a non-account-based shopper can:

• Set a default edit permission (yes or no) for the purchase list. The default for this
setting is no edit access.

• Set the edit permission (yes or no) for an individual recipient of the purchase list.
The default for this setting is no edit access.

Note: An individual non-account-based shopper recipient’s permission, if explicitly set,
takes precedence over the purchase list’s default permission.

A shared purchase list owner (creator) who is an account-based shopper can

• Set a default edit permission (yes or no) for the purchase list for an account
recipient. The default for this setting is no edit access.

• Set the edit (yes or no) for an individual recipient (a member of the current
account) of the purchase list – that is using an email address. The default for
this setting is no edit access.

Note: The permission for the individual email address, if explicitly set, takes
precedence over the purchase list’s default permission for the account.

Understand email notifications for recipients of shared lists

Recipients of shared lists receive email notification when they are chosen to share a
list. The following occurs in the email notification process for people who are chosen
as recipients of shared purchase lists:

• When a purchase list owner adds an individual recipient to share the list, the
recipient receives a notification email.

• When a purchase list owner adds an account-based recipient, a single email
notification is sent with all current members of the account Bcc’d on the email.

• Emails are scheduled using the scheduler, rather than being sent immediately.
See Notify Shoppers When Items are Back in Stock for more information on using
the scheduler.

For more complete information on what occurs during the email notification process,
the contents of the emails, and how to configure the email settings for shared
purchase lists, refer to Configure Email Settings.

Make sure purchase list sharing is available for shoppers

To make sure that list sharing is available for both non-account-based shoppers and
account-based shoppers, you just need to make sure that the correct purchase list
widgets are used in the store. These widgets are already present in layouts for

Chapter 17
Share purchase lists

17-10

account-based shoppers, but need to be added for shoppers that are not account
based.

Once the purchase list widgets are included in a store’s pages, purchase list sharing is
automatically available. There is no need actually configure list sharing – you just need
to have the correct widgets present.

Note: For additional information on how to use purchase list widgets in your store
layouts, refer to Configure purchase lists.

As mentioned, for non-account-based shoppers, you must add the necessary widget
to the correct layout from the Design area of the administration user interface to
expose the feature (these widgets are already present in layouts for account-based
shoppers).

Use the following steps to add the widgets for non-account-based shoppers:

1. Login as the Administrator.

2. Open the Design page.

3. Search for the “Profile Layout” on the Layout page.

4. Open it for editing in the Grid View.

5. Find the “Profile Navigation (shared)” widget and open its Settings.

6. Add another row in it by clicking on “Add More Rows”.

7. In the first column add “purchaseListsText” and in the second column add “/
purchaselists”.

8. Click on Save and publish these changes.

To check and make sure that the introduction of the widget to layout has made the
creation of purchase lists available, do the following:

1. Login as to the store as a non-account-based shopper.

2. Click My Account at the top of the user interface.

3. On the My Account Page, click on Purchase Lists. At this page will see the
options to:

• Create a purchase list

• Share a purchase list after you have created it by providing an email address.

• Set edit access permissions for the shared list.

• Copy an existing list for sharing, renaming, etc.

4. Be sure to save any changes or additions made to that page.

Add products to a list from the search box on the Purchase List details page

To have the ability to add products to your list from the search box on the Purchase
List details page, use the following steps:

1. Login as the Administrator.

2. Open the Catalogs page.

3. Click Manage Catalogs > Product Types > Base Product

4. Click SKU Properties and click on edit the ID property.

Chapter 17
Share purchase lists

17-11

5. Check Allow property to be searched.

6. Click on Save and Publish that change.

7. In the Search area of the administration user interface, go to Searchable Field
Ranking.

8. Open the Typeahead ranking.

9. Add the SKU ID field.

10. Click on Save and Publish that change.

You should now be able to use the search box in the Purchase List details page to
search for a product by its SKU ID.

Add products to your list from the Product details page

To have the ability to add Products to your purchase list from the Product details page,
use the following steps:

1. Login as the Administrator.

2. Open the Design page.

3. Search for the Product Layout.

4. Open it for edit in the Grid View.

5. Look for the Product Details Widget and open its Settings.

6. From the pull-up menu for Element Library, pick the Add To Purchase List
element (widget) and place it in the blank section above.

7. Click on Save and Publish these changes.

After having completed these steps, you can add to an existing purchase list or choose
to create a new one when you open the product details page for a product. For
additional information on how to enable purchase lists refer to Configure purchase
lists.

Share a purchase list and specify edits permissions

To share purchase lists and specify edit permissions, required widgets need to
conditionally display fields slightly differently for a non-account-based shopper as
opposed to an account-based shopper who has created a purchase list. This process
can be described as follows:

• If you are a non-account-based shopper who created the purchase list then you
can

– Indicate whether the purchase list should be shared with all shoppers. The
default for this global sharing is False.

– If you wish to share the purchase list with all shoppers, optionally specify a
global edit permission (yes or no) for the recipients. The default for the global
edit permission is No / False.

– Provide one or more email addresses of shoppers with whom to share the
purchase list.

– For each email address of a recipient, optionally specify an edit permission
(yes or no). This individual edit permission, if present, overrides the global edit
permission.

Chapter 17
Share purchase lists

17-12

– When adding one or more recipients, optionally add a comment that will be
included in the email notification sent to recipients. This comment is not saved
and is not subsequently viewable.

• If you are an account-based shopper who created the purchase list, then you can

– Indicate whether the purchase list should be shared with all shoppers in the
current account. The default for this account-level sharing is False.

– If you share the purchase list at the account level, optionally specify an
account-level edit permission (yes or no). The default for the account-level
edit permission is No / False.

– Provide one or more email addresses of shoppers with whom to share the
purchase list. The purchase list will be shared with each of them in the context
of Monica’s current account context.

– For each email address of a recipient, optionally specify an edit permission
(yes or no). This individual edit permission, if present, overrides the account-
level edit permission.

– When adding one or more recipients, optionally add a comment that will be
included in the email notification sent to recipients. This comment is not saved
and is not subsequently viewable.

Both non-account-based shoppers and account-based shoppers can see the list of
email addresses (and accounts, in an account-based shopper’s case) with which they
have shared a purchase list.

Both non-account-based shoppers and account-based shoppers can remove an
email address (or an account, in an account-based shopper’s case) from the list of
recipients.

When a non-account-based shopper or an account-based shopper delete a purchase
list that is shared, both will get a confirmation dialog that announces that the purchase
list is shared and will ask them if they really want to delete it. Cancel and Delete
buttons allow them to make either choice.

Understand the purchase list cleanup process

Behind the scenes, Commerce will periodically run a cleanup process that:

• Updates recipient lists for purchase lists owned by shoppers whose account
memberships have changed

• Customers can configure how often the process runs.

See Work with the purchase list API for more information on removing purchase lists.

Chapter 17
Share purchase lists

17-13

18
Enable Order Approvals

The changes you make to a storefront for order approvals make it possible for an
administrator to enable or disable order approvals, set a purchase limit, and designate
approvers on the storefront itself.

They also add the necessary UI controls for shoppers and approvers that are working
with orders that require approvals; for example, controls for viewing orders that need
approval, approving or reject the orders, and providing payment for orders that have
been approved.

This section describes the necessary changes you must make to a storefront to
incorporate order approvals.

Note: This chapter has a companion chapter, Use Order Approvals, that provides an
overview of order approvals and describes other non-developer tasks for the feature.

Allow a delegated administrator to control order approvals
If you want delegated administrators of an account to be able to enable and disable
order approvals and set a purchase limit on the storefront, you must set a flag in the
administration interface.

Once you set this flag, the corresponding settings in the administration interface
become read-only and only the delegated administrator is allowed to manage these
settings.

An account’s delegated administrator approval management is site-specific. If an
account has multiple contracts, you must select a site when setting the delegate
approval management flag.

Note: If you integrate with an external system determine if orders require approval,
the account’s delegated administrators will not be able to enable and disable order
approvals or set a purchase limit. See Integrate with an external system for order
approvals for more information.

To allow delegated administrators to control order approvals:

1. In the administration interface, click the Accounts tab.

2. Select the account to be modified.

3. Click the Approvals tab.

4. If you are using multiple sites, select the site that will be associated with the
approval.

5. Enable the Administrator at the account can manage approvals option and save
your changes.

18-1

Configure a deferred payment gateway for order approvals
If you want your shoppers to be able to pay for orders requiring approval using a
deferred payment method such as invoice or cash, you must set up the payment
gateway for the method using the instructions provided in the Integrate with an Invoice
Payment Gateway or Integrate with a Cash Payment Gateway sections.

In addition to these instructions, you must add an enabledForApproval property to
the config.json file for the gateway. For example, the following code snippet
shows the config.json file for an invoice payment gateway that includes the
enabledForApproval property:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "enabledForApproval",
 "type": "booleanType",
 "name": "enabledForApproval",
 "helpTextResourceId": "enabledForApprovalHelpText",
 "labelResourceId": "enabledForApprovalLabel",
 "public": true,
 "defaultValue": true
 },

 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": true,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "invoice",
 "displayAsCheckboxes": true,

Chapter 18
Configure a deferred payment gateway for order approvals

18-2

 "options": [
 {
 "id": "invoice",
 "value": "invoice",
 "labelResourceId": "invoiceLabel"
 },
 {
 "id": "card",
 "value": "card",
 "labelResourceId": "cardLabel"
 }
]
 }
]
}

You must also add a translation resource that provides the label for the
enabledForApproval property in the administration interface. You should add the
resource to each <locale>.json file you have for the languages supported in your
administration interface. For example, the following code snippet shows the en.json
file where the value for the enableForApprovalLabel is Enable for order approvals.
This is the label that will appear in the administration interface when you view the
gateway’s properties.

{
 "resources" : {
 "paymentMethodsHelpText": "Select the payment methods.",
 "paymentMethodsLabel": "Payment Methods",
 "invoiceLabel": "Invoice",
 "cardLabel": "CCCard",
 "title": "Invoice Payment Gateway Config",
 "description":"Invoice Payment Gateway configuration.",
 "agentInstanceLabel": "Agent Configuration",
 "previewInstanceLabel": "Preview Configuration",
 "storefrontInstanceLabel": "Storefront Configuration",
 "poRequiredHelpText":"Check if PO number is required",
 "poRequiredLabel":"PO number required",
 "enabledForApprovalLabel":"Enable for order approvals",
 }
}

When configuring the deferred payment gateway in the administration interface,
be sure that the “Enable for order approvals” option is checked (if you follow the
instructions above, it will be checked by default).

Set the frequency of canceled order clean up
A service runs periodically to review the order repository and remove any orders that
have been marked for cancellation because they exceeded the price hold period time
limit.

To set the initial frequency of the order cancellation service, you issue a POST
request to the scheduledJobs endpoint, with a payload that defines the path to

Chapter 18
Set the frequency of canceled order clean up

18-3

the CancelOrderScheduledJob component and the schedule, an example of which
is provided below. To update the schedule, you issue a PUT request to the same
endpoint.

POST /ccadmin/v1/merchant/scheduledJobs

{
"componentPath": "CancelOrderScheduledJob",
"scheduleType": "periodic",
"schedule":
 {
 "period" : 1000000
 }
}

The scheduleType and schedule properties determine the frequency used when
running the service. Setting these properties is described in detail in the Configure
the scheduled order service section.

See Set a price hold period for more information on the price hold period.

Configure page layouts for order approvals
You must make changes to a number of the storefront layouts to add order approvals
to your storefront.

Oracle recommends that you clone the out-of-the-box layouts and then make your
changes to the clones. If your site only supports account-based shoppers, you can
mark the clones as the defaults and make the order approval changes to those
pages. If your site must support both account-based shoppers and other, non-account
affiliated shoppers, then you will need two versions of the pages, one marked as
default for the non-account affiliated shoppers and the other marked as “Display
layout to account shoppers only” for the account-based shoppers. In this scenario, you
would make the order approval changes to the pages designed for the account-based
shoppers.

The modifications described in the sections below involve adding new widgets to page
layouts and also making sure the latest versions are used for some widgets that are
included in the page layouts out of the box. To replace a widget with the latest version,
see Upgrade deployed widgets in Customize your store layouts.

Profile layout for order approvals

To add the order approval feature to your storefront, you must add these two widgets
the Profile layout:

• The Order Approval Settings widget provides the delegated administrator with an
interface for enabling and disabling order approvals and setting the purchase limit.

If you integrate with an external system determine if orders require approval, the
account’s delegated administrators will not be able to enable and disable order
approvals or set a purchase limit. See Integrate with an external system for order
approvals for more information.

• The Orders Pending Approval widget allows an approver to view a list of orders
pending approval.

Chapter 18
Configure page layouts for order approvals

18-4

To add the order approval widgets to the Profile layout, you can create a vertical tab
stack and place the order approval widgets on individual tabs within the stack. To
restrict the display of the Order Approval Settings widget to contacts with administrator
privileges and the display of the Orders Pending Approval tab to contacts with
approver privileges, you can add something similar to the following code snippet in
the vertical tab stack’s template:

<!-- ko foreach: regions -->
<!--ko if:($data.displayName() == 'Profile') ||
((($data.displayName() == 'Account Contacts') ||
($data.displayName() == 'Account Addresses') ||
($data.displayName() == 'Order Approval Settings')) &&
($masterViewModel.data.global.user.roles.map(function(data)
{return data.function; }).indexOf("admin")!== -1)) ||
(($data.displayName() == 'Orders Pending Approval') &&
($masterViewModel.data.global.user.roles.map(function(data)
{return data.function; }).indexOf("approver")!== -1))-->
 <li role="presentation" data-bind="css: {active: $index() === 0},
 attr: { id: 'verticalTabs-'+$parent.id()+'-tab-'+$index() }">
 <a data-toggle="tab" data-bind="attr: { 'href': '#verticalTabs-' +
 $parent.id() + '-content-' + $index()}">

<!-- /ko -->
<!-- /ko -->

This code snippet shows the My Profile tab to all contacts but restricts the
display of the Orders Pending Approval tab to approvers and the display of the
other tabs (Account Contacts, Account Addresses, and Order Approval Settings)
to administrators. (It assumes you used “My Profile”, “Account Contacts”, “Account
Addresses”, “Order Approval Settings”, and “Orders Pending Approval” as the
display names for the tabs that hold the Customer Profile, Account Contacts,
Account Addresses, Order Approval Settings, and Orders Pending Approval widgets,
respectively.)

In addition to adding the Order Approval Settings and Orders Pending Approval
widgets to the Profile layout, you must also make sure you are using the latest version
of the Account Contacts widget. This version allows the delegated administrator to
assign the Approver role to contacts.

Note: The Account Addresses and Account Contacts widgets are described in the Add
delegated administration to your storefront section. For more information on vertical
tab stacks, see Add Vertical Tabs in Customize your store layouts and Use Stacks for
Increased Widget Layout Control.

Order Details layout and Scheduled Order layout for order approvals

These two layouts provide detailed information about orders, both regular (Order
Details layout) and scheduled (Scheduled Order layout). The modifications you have
to make to them are similar and are described below.

You have to add the Order Approvals widget to each layout. This widget allows an
approver to approve or reject an order and provide comments when viewing an order’s
details. Note that Order Approvals widget only appears in the storefront when an
approver is viewing an order’s details. Otherwise, it is hidden.

Chapter 18
Configure page layouts for order approvals

18-5

You also must use the latest version of these widgets:

• The Order Details widget or the Order Details with Additional Info widget on the
Order Details layout.

• The Scheduled Order widget on the Scheduled Order layout.

The updated versions of these widgets provide:

• The reasons an order requires approval. If you are using the Order Approvals
webhook to integrate with an external system, all the reasons returned by the
webhook response are listed.

• The approver name and comments, along with the rest of an order’s details, after
the order has been approved or rejected.

• A Complete Payment button for the shopper if an order has been approved but still
requires payment.

• An Add Items to Cart button for orders that have been rejected. This button allows
the shopper to quickly add the items in the rejected order to a new cart, forming
the basis for a modified order that will pass approval.

Order Confirmation layout for order approvals

To incorporate order approvals on the Order Confirmation layout, make sure you
are using the latest version of either the Order Confirmation widget or the Order
Confirmation with Additional Info widget. The latest versions of these widgets include
conditional text for two cases:

• If the order is pending approval, a message describing the reasons the order
requires approval is provided. If you are using the Order Approvals webhook
to integrate with an external system, all the reasons returned by the webhook
response are listed.

• If the order will need payment after approval (in other words, the payment method
used for the order is not a deferred payment method like invoice or cash),
this message is provided: “After approval, you will need to provide payment
information.”

Order History layout for order approvals

To incorporate order approvals on the Order History layout, make sure you are using
the latest version of the Order History widget. This version allows a contact to see
orders that are pending approval, approved, rejected, or canceled, along with orders
that did not require approval. Note that the text strings used to communicate the order
statuses can be customized via the Text Snippets tool.

Checkout layout for order approvals

The checkout layout requires more customization to support order approvals than the
other page layouts. As such, it is described in its own section, Manage the checkout
flow for orders requiring approval.

Manage the checkout flow for orders requiring approval
Commerce cannot store payment details such as credit card information in between
when an order is placed and when the order is approved.

Chapter 18
Manage the checkout flow for orders requiring approval

18-6

As such, storefronts that use the order approvals feature must implement two
checkout layouts, one for the initial checkout flow and a second for when payment
is provided after approval has been given. The initial checkout flow layout handles
orders in the following way:

• If an order does not require approval, the shopper can pay for it immediately using
any payment method she chooses to provide.

• If the order requires approval, the shopper can either:

– Pay for it immediately with a deferred payment method like invoice or cash
that does not require storing payment details. Orders that fall into this category
are immediately processed after approval is given and require no further
interaction by the shopper.

– Opt to pay for the order after approval is given, using a non-deferred payment
method like a credit card or gift card. The shopper is notified via email after
order approval is given and must return to the store to provide payment
information. This is when the shopper is presented with the post-approval
checkout layout.

Because order approval is based on aspects of the order (such as the order total
or items the order contains) at the time the shopper submitted the order, the post-
approval checkout layout must restrict the shopper from editing the order in any
way other than providing payment information. To pay for an approved order, the
shopper must view the order’s details, either by clicking a link in the Order Approved
notification email or by viewing her order history and clicking the order that is pending
payment. When a shopper is viewing order details for an approved order that is
pending payment, a Complete Payment button is provided. Clicking this button sends
the shopper to the post-approval checkout layout, where she can provide the payment
information.

The following sections describe how to create the two checkout layouts that support
order approvals.

Note: The sections below provide the minimum version number for each of the
widgets you will be placing on the checkout layout. In order for the order approvals
feature to work as described in this section, you must use these minimum versions or
later. To tell which version of a widget you are using, view the widget’s settings and
click the About tab to see the widget’s version number.

Initial checkout flow for order approvals

Follow the instructions below to create the initial checkout flow for storefronts that use
order approvals.

To create the initial checkout flow:

1. On the Design tab, clone the Checkout Layout and give it a descriptive name like
Checkout, Order Approval, Immediate Payment.

2. Enable the Display layout to account shoppers only option and save the clone.

3. Go to Grid View for the Checkout, Order Approval, Immediate Payment layout.

4. The rows containing the Notifications Widget, Header – Basic Widget, and Footer
Widget widget instances should remain as is. Remove all widgets from the row in
between them (Login – Checkout, Customer Address Book, Payment Details, and
so on) and drag the column separator to the right to reconfigure the row to have a
single column.

Chapter 18
Manage the checkout flow for orders requiring approval

18-7

5. Add a Progress Tracker stack to the empty row you just created.

6. Edit the Progress Tracker so that it has the following tabs:

• Login

• Schedule Order (this tab is not required if your storefront does not include the
scheduled orders feature)

• Shipping and Promotions

• Billing and Payments

7. On the Login tab, add the Login – Checkout widget (version 2 or later).

8. If you created a Schedule Order tab, add the Scheduled Order – Checkout widget
to it (version 2 or later).

9. On the Shipping and Promotions tab, add new instances of the following widgets
and modify them as described:

• Promotion (version 1 or later).

• Managed Account Address Book (version 3 or later). Name the instance
Managed Account Address Book, Shipping Only. View the widget’s settings
and disable the Include Billing Details option.

• Cart Summary (version 5 or later).

• Order Summary - Checkout (version 9 or later). Follow the instructions in
Modify the Order Summary – Checkout widget to edit the widget to hide the
Place Order button and enable the Shipping Method menu.

• Check for Approval Required. This is a custom widget that you have to create
yourself. See Create the Check for Approval Required widget for details on
how to do so.

10. On the Billing and Payments tab, add new instances of the following widgets and
modify them as described:

• Managed Account Address Book (version 3 or later). Name the instance
Managed Account Address Book, Billing Only. View the widget’s settings and
disable the Include Shipping Details option.

• Payment Gateway Options (version 1 or later). Modify the instance to include
elements for any deferred payment methods your storefront supports for
orders that require approval, such as Invoice Payment and Cash Payment.
Make sure to configure the payment gateway for any payment methods you
add here. For more information, see Configure a deferred payment gateway
for order approvals.

Note: If an order requires approval and a payment gateway is not configured
for order approvals (that is, the enableForApproval flag has not been set to true
for the gateway) then the payment method associated with that gateway will be
hidden and disabled.

• Pay After Approval (version 1 or later). This widget provides shoppers with
a checkbox that allows them to specify that they will pay for the order after
approval has been given.

• Payment Details (version 6 or later). This version of the widget is hidden if the
order requires approval.

• Gift Card Widget (version 3 or later). This version of the widget is hidden if the
order requires approval.

Chapter 18
Manage the checkout flow for orders requiring approval

18-8

• Cart Summary (version 5 or later).

• Order Summary - Checkout (version 9 or later). Follow the instructions in
Modify the Order Summary – Checkout widget to edit the widget to display the
Place Order button and disable the Shipping Method menu.

In addition to the new widget instances you just added to the Billing and Payments
tab, you must also add an instance of the Cart Summary widget (version 5 or
later). For this widget, use the same instance you created and placed on the
Shipping and Promotions tab.

Checkout flow for payment after approval

Follow the instructions below to create a layout for the checkout flow that is used when
orders are paid for after approval has been given.

To create the delayed payment checkout flow:

1. On the Design tab, clone the Checkout Layout and give it a descriptive name like
Checkout, Order Approval, Delayed Payment.

2. Enable the Display layout to account shoppers only option.

3. Set the layout to be displayed when the Order Status is PENDING_PAYMENT.
If your storefront uses the scheduled orders feature, also set the layout to be
displayed with the Order Status is PENDING_PAYMENT_TEMPLATE.

4. Save the clone.

5. Go to Grid View for the Checkout, Order Approval, Delayed Payment layout.

6. The rows containing the Notifications Widget, Header – Basic Widget, and Footer
Widget widget instances should remain as is. Remove all widgets from the row in
between them (Login – Checkout, Customer Address Book, Payment Details, and
so on).

7. Add a new instance of the Managed Account Address Book widget (version 3 or
later) to the empty row you just created. Name the instance Managed Account
Address Book, Delayed Payment. View the widget’s settings and ensure that both
Include Billing Details and Include Shipping Details are enabled. Note that this
version of the widget will disable editing of the shipping address if the order state
is PENDING_PAYMENT.

8. Add the next four widgets to the row. Use the same instances you created for the
Billing and Payments tab of the immediate payment flow.

• Payment Gateway Options (version 1 or later).

• Payment Details (version 6 or later)

• Gift Card Widget (version 3 or later)

• Cart Summary (version 5 or later).

9. Add a new instance of the Order Summary - Checkout widget (version 9 or later)
to the row.

Modify the Order Summary – Checkout widget

The HTML for the Order Summary – Checkout widget instances on both the Shipping
and Promotions tab and the Billing and Payments tab must be modified to support the
two order approval-related checkout layouts.

For the Shipping and Promotions tab

Chapter 18
Manage the checkout flow for orders requiring approval

18-9

Edit the instance of the Order Summary – Checkout widget that resides on the
Shipping and Promotions tab to remove the following code from the widget’s HTML
template:

<!-- ko ifnot : (order().approvalRequired()) -->
<div class="paymentoptions hidden-xs">
 <h3 data-bind="widgetLocaleText:'paymentOptionsText'"></h3>
 <div class="row-payments">
 <!-- ko foreach: payment().cards -->
 <span data-bind="css : ($index() % 4) == 0 ? 'row-first' : '' ,
 attr:{id: 'CC-checkoutOrderSummary-payment'+$parents[1].id()
+value}">

 <!-- /ko -->
 </div>
</div>
<!-- /ko -->
<!-- ko ifnot : (order().showSchedule) -->
<div id="CC-checkoutOrderSummary-placeOrder" class="checkout row">
<button class="cc-button-primary col-xs-12" data-bind="click:
handleCreateOrder,
enable: order().enableOrderButton">
</button></
div>
<!-- /ko -->
<!-- ko if : (order().showSchedule) -->
<div id="CC-checkoutOrderSummary-placeOrder" class="checkout row">
<button class="cc-button-primary col-xs-12" data-bind="click:
handleCreateOrder,
enable: order().enableOrderButton">
</
button></div>
<!-- /ko -->
<p></p>
<!-- ko if : $data.payment().gateways.paypalGateway.enabled -->
<!-- ko ifnot : (order().approvalRequired()) -->
<!-- ko ifnot : (order().isPaypalVerified()) -->
<div id="CC-checkoutOrderSummary-paypal" class="checkout row">
 <!-- ko if: (order().showSchedule() &&
 !order().paymentDetails().isPaypalEnabledForScheduledOrder()) -->
 <span id="CC-checkoutOrderSummary-paymentAvailablability"
 data-bind="widgetLocaleText: 'paymentMethodNotAvilable'">

 <img class="img-responsive center-block" alt="checkoutWithPayPal"
 data-bind="attr: {src: paypalImageSrc}">
 <!-- /ko -->
 <!-- ko ifnot: (order().showSchedule() &&
 !order().paymentDetails().isPaypalEnabledForScheduledOrder()) -->
 <a data-bind="attr : { id: 'CC-checkoutOrderSummary-
checkoutWithPaypal'},
 disabled: {condition: cart().items().length == 0,
 click: order().handleCheckoutWithPaypal.bind(order()) }" href="#">
 <img class="img-responsive center-block" alt="checkoutWithPayPal"
 data-bind="attr: {src: paypalImageSrc}">

Chapter 18
Manage the checkout flow for orders requiring approval

18-10

 <!-- /ko -->
</div>
<!-- /ko -->
<!-- /ko -->
<!-- /ko -->

For the Billing and Payments tab

Edit the instance of the Order Summary – Checkout widget that resides on the Billing
and Payments tab to replace this portion of the widget’s HTML template:

<button id="cc-shippingOptions-dropDown" class="btn dropdown-toggle col-
xs-12"
data-toggle="dropdown" tabindex="0" data-bind="click:
displayShippingMethodsDropdown,disable: !order().isOrderEditable(),
attr: {'aria-label': ''}" style="border-color:#ddd;background-
color:white;">

With the following code:

<button id="cc-shippingOptions-dropDown" class="btn dropdown-toggle col-
xs-12"
 data-toggle="dropdown" tabindex="0" data-bind="click:
 displayShippingMethodsDropdown,disable: true, attr: {'aria-
label': ''}"
 style="border-color:#ddd;background-color:white;">

Create the Check for Approval Required widget

The checkout flow for order approvals requires a custom widget that determines
whether or not an order requires approval. This widget manages what the shopper
sees for billing and payment options, depending on whether or not an order requires
approval. For example, if the order requires approval, the shopper will not be able to
pay for the order using a credit card. This widget does not have any UI associated with
it, only the logic for determining if the order requires approval.

For general information on creating and uploading a custom widget, refer to Create
a Widget. The code snippets below show you the custom code that must exist in the
widget.

The following example shows the JavaScript for the Check for Approval Required
widget:

/**
 * @fileoverview Check for Approval Require Widget.
 *
 * @author
 */
define(
 //---
 // DEPENDENCIES
 //---
 ['knockout', 'pubsub', 'notifier', 'CCi18n', 'ccConstants',
'navigation',

Chapter 18
Manage the checkout flow for orders requiring approval

18-11

 'ccRestClient'],
 //---
 // MODULE DEFINITION
 //---
 function(ko, pubsub, notifier, CCi18n, CCConstants, navigation,
ccRestClient) {
 "use strict";
 return {

 onLoad: function(widget){
 var pageId=widget.pageContext().pageType.id;
 },
 validate : function() {
 var orderId=this.user().orderId();
 var data = {
 "orderId":orderId
 };
 this.order().checkOrderForApproval(data);
 return true;
 }
 }
});

The following example shows the content of the HTML template for the Check for
Approval Required widget. Note that, because there is no UI associated with this
widget, it contains only a placeholder <div> element:

<div style="display:none"></div>

Display a contact’s purchase limit in a widget
A contact’s purchase limit is available from the User view model; however, it is not
included in the out-of-the-box widgets.

If you want to add a contact’s purchase limit to a widget, you can do so using code
similar to the sample below:

widget.user().derivedOrderPriceLimit()

Integrate with an external system for order approvals
The built-in Commerce approval functionality determines if an order requires approval
based on a purchase limit you specify.

If you want to create more complex rules than a simple purchase limit, you can
integrate with an external system that determines if an order requires approval. For
example, you might want to require approval for all orders that include specific items or
that are shipped to certain addresses. To integrate with an external system, you must
enable approvals for an account, and configure the Order Approvals webhook.

Chapter 18
Display a contact’s purchase limit in a widget

18-12

Enable or disable order approvals

Order approval settings are defined at the account level and apply to all contacts
within the account. When you integrate with an external system, the order approval
feature can be enabled or disabled only in the administration interface, not on the
storefront.

To enable order approval and specify that an external system should determine if
orders require approval:

1. Click the Accounts icon.

2. Select the account to modify and click its Approvals tab.

3. If you are using multiple sites, select the name of the site. (Approvals are site-
specific.)

4. Under Approval Settings, select Require Approval, then select Use external
service to determine approval settings.

5. Click Save.

Configure the Order Approvals webhook

When a contact places an order and their account is configured to use an external
service to determine whether approval is required, the server first invokes the Order
Approvals function webhook. The webhook sends the following data to the external
system:

• Details about the order. The request does not include certain payment details,
such as credit card information. See Understand webhooks and PCI DSS
compliance for information about payment details that are excluded from the
request. See Order Submit request example for a sample JSON representation
of an order in a webhook body.

• Shopper profile details for the contact who placed the order.

• Details about the account for which the order was placed.

To send this data to the external system, you configure the webhook by specifying the
URL, username, and password for accessing the system. (See Configure webhooks
for details.) You must also configure the external system to read the request data,
determine whether the order requires approval, and send a response that includes the
following items:

• The key approvalAction, whose value must be either true (the order requires
approval) or false (the order does not require approval).

• The key approvalActionReason, whose value is a string that describes the reason
approval is required if approvalAction is true. Commerce adds this string to
the order’s properties and displays it in layouts and emails related to orders
and approvals. See Configure page layouts for order approvals for details about
layouts where this string can appear. See Notify users of order approval-related
events for details about emails where this string can appear.

If approvalAction is true but approvalActionReason is missing, empty, or contains a
null string, Commerce uses the string Reason unavailable.

Chapter 18
Integrate with an external system for order approvals

18-13

For example, if the order requires approval because some of the products ordered are
part of a specific collection, the response body might be:

{
 "approvalAction": true,
 "approvalActionReason": "Contains restricted items"
}

If Commerce cannot connect to the external system, for example in the event of an
outage, or if the approvalAction key is missing, null, or contains an invalid value, the
order is sent for approval. Approvers are notified, via the Order Pending For Approval
email, that the order requires approval because the external system could not be
reached.

Chapter 18
Integrate with an external system for order approvals

18-14

19
Assign Catalogs and Price Groups to
Shoppers

By default, Commerce assigns catalogs and price groups to sites or, for account-
based commerce, to accounts.

However, you might want to override these default assignments with different catalogs
and price groups for each registered shopper. For example, you can personalize the
catalog and prices a shopper sees based on geographic location or level in a loyalty
program.

To enable this, Oracle CX Commerce includes tools that you can use to build a custom
integration with an external system that determines which catalog and price groups
to assign to a shopper. You create a custom widget that makes a call to the external
system to obtain the catalog and price lists to use. You configure a webhook that
the widget invokes, sending information about the shopper’s context to the external
system. The webhook also calls the external system to validate the order when it is
placed.

Configure the External Price Group and Catalog webhook
The External Price Group and Catalog webhook sends information to an external
system which determines which catalog and price groups to display to a shopper and
sends that information in a response.

If Commerce cannot connect to the external system (for example in the event of an
outage), or if the webhook response contains incorrect information, Commerce uses
the catalog and price groups assigned to the current site or account.

The custom widget you create invokes the webhook to send shopper-context
information to the external system, which responds with the catalog and price groups
to display. Then, when the shopper places the order (or when a scheduled order
is triggered, or an approver opens an order for approval), the server invokes the
webhook, which sends the context data to the external system to verify that the
catalog and price group used to place the order are still valid. This step is used to
ensure that items in the cart are still available and that the prices in the cart have not
been modified.

If the webhook response returns a different catalog and price group than the ones
that were assigned when the shopper created the order, or if the default catalog and
price group are used because the webhook fails, the server verifies that all items in the
order are still available at the same price. If they are, the order progresses to the next
step.

If all the items in the order are not available at the same prices, an error message is
displayed and the shopper can change items in the cart before submitting the order
again. For scheduled orders, the order fails. For an order that has been opened by
an approver, an error message is displayed and the order is returned to the Pending
Approval list.

19-1

Note: If your store supports scheduled orders and order approvals, make sure you are
using the latest versions of the layouts and widgets described in Create Scheduled
Orders and Enable Order Approvals.

The following properties are sent in the JSON request body of the of the External Price
Group and Catalog webhook:

• Profile details for the shopper. The webhook sends all the properties (including
custom properties) that are sent with the Shopper Account Update webhook.

Note: The webhook does not send any information about the shopper’s audience
membership.

• If the store is configured for account-based commerce, details about the current
account. The webhook sends all the properties (including custom properties) that
are sent with the Account Update webhook.

• If the webhook is triggered because an order is placed, a scheduled order is
instantiated, or an order is approved, the webhook body also includes details
about the order. See Order Submit request example for a sample JSON
representation of an order in a webhook body.

The webhook body does not include certain payment details, such as credit card
information. See Understand webhooks and PCI DSS compliance for information
about payment details that are excluded from the request.

• If any custom order properties have their externalShopperContext attribute set
to true, the webhook body also includes those order properties as a map of name/
value pairs. See Create the custom order properties for more information.

For example, the following portion of a sample request body sends the values for the
custom properties eventProp1Key and eventProp2Key.

"contextData":{

"userContext":"{\"eventProp1Key\":\"eventasas1\",\"eventProp2Key\":\"tru
e\"}"
 }

To send this data to the external system, you configure the webhook by specifying the
URL, username, and password for accessing the system. (See Configure webhooks
for details.) You must also configure the external system to read the request data,
determine which catalog and price groups Commerce should display, and send a
response. The following table describes the properties that should be returned in the
JSON response body of the External Price Group and Catalog webhook.

Chapter 19
Configure the External Price Group and Catalog webhook

19-2

Property Description

responseCode An integer that specifies which catalog and
price groups to use.

When the webhook is triggered during a
context change, 0 specifies that Commerce
displays the catalog and price groups assigned
to the current site or, for account-based
commerce, to the current account. If the value
is 1, Commerce displays the catalog and price
groups whose IDs are returned in the body of
the response.

When an order is validated, 0 specifies that
the catalog and price groups assigned to the
current site or account are valid for the order.
If the value is 1, the catalog and price groups
assigned to the shopper are valid for the order.
If the value is 2, the items or prices in the
order are not valid. If the response code is
0 or 1, the order is submitted or opened for
approval. If the response code is 2, the order
is not submitted, and an error is displayed.

Message A string that describes the responseCode.

defaultPriceListGroup A string that is the ID of the price group whose
prices are displayed by default.

defaultAdditionalPriceListGroups An array of strings that are the IDs of
additional price groups. Additional price
groups let a shopper select from a list of
currencies your store supports and see those
prices on your store.

defaultCatalog A string that is the ID of the catalog to use.

For example, if the external system determines that a shopper should see the
North American Parts (NAParts) catalog priced with the defaultPriceGroup with two
additional price groups (plgCAD and plgMXN), the response body might be:

{
 "defaultAdditionalPriceListGroups": [
 "plgInr",
 "plgEuro"
],
 "defaultPriceListGroup": "defaultPriceGroup",
 "defaultCatalog": "NAParts",
 "message": "use this data",
 "responseCode": 1
}

Create a custom shopper context widget
This section describes how to create a sample widget that lets a logged-in shopper
select a different catalog and price groups set on a storefront.

The widget makes an endpoint call to get a set of custom order properties. The values
of these properties will be used to display the UI for a context selector that a shopper

Chapter 19
Create a custom shopper context widget

19-3

uses to select a catalog and price list groups. The custom widget’s JavaScript file
extends the storefront’s ContextViewModel class by implementing a callback function.
When a shopper successfully switches context, this function invokes the External Price
Group and Catalog webhook, which makes a call to the external system to obtain the
catalog and price groups to use.

Create the custom order properties

A settable attribute of order type properties, externalShopperContext lets you specify
if the properties and their values are sent as name/value pairs in the webhook
request body. To add custom properties to an order type, issue a PUT request to the /
ccadmin/v1/orderTypes/{id} endpoint on the administration server. (See Add custom
properties to an order type for more information.)

The following example shows a sample request that adds the
defaultPriceListGroup, defaultCatalog, defaultAdditionalPriceListGroups,
responseCode, and message properties to the order type. Note that the
externalShopperContext attribute is set to true for these properties.

{
 "properties":{
 "defaultPriceListGroup":{
 "dimension":true,
 "multiSelect":true,
 "textSearchable":false,
 "default":"",
 "internalOnly":false,
 "localizable":false,
 "label":"defaultPriceListGroup",
 "type":"shortText",
 "uiEditorType":"shortText",
 "required":false,
 "searchable":false,
 "audienceVisibility":false,
 "externalShopperContext":true
 },
 "defaultCatalog":{
 "dimension":true,
 "multiSelect":true,
 "textSearchable":false,
 "default":"",
 "internalOnly":false,
 "localizable":false,
 "label":"defaultCatalog",
 "type":"shortText",
 "uiEditorType":"shortText",
 "required":false,
 "searchable":false,
 "audienceVisibility":false,
 "externalShopperContext":true
 },
 "responseCode":{
 "dimension":true,
 "multiSelect":true,
 "textSearchable":false,

Chapter 19
Create a custom shopper context widget

19-4

 "default":"",
 "internalOnly":false,
 "localizable":false,
 "label":"responseCode",
 "type":"shortText",
 "uiEditorType":"shortText",
 "required":false,
 "searchable":false,
 "audienceVisibility":false,
 "externalShopperContext":true
 },
 "message":{
 "dimension":true,
 "multiSelect":true,
 "textSearchable":false,
 "default":"",
 "internalOnly":false,
 "localizable":false,
 "label":"message",
 "type":"shortText",
 "uiEditorType":"shortText",
 "required":false,
 "searchable":false,
 "audienceVisibility":false,
 "externalShopperContext":true
 },
 "defaultAdditionalPriceListGroups":{
 "dimension":true,
 "multiSelect":true,
 "textSearchable":false,
 "default":"",
 "internalOnly":false,
 "localizable":false,
 "label":"defaultAdditionalPriceListGroups",
 "type":"shortText",
 "uiEditorType":"shortText",
 "required":false,
 "searchable":false,
 "audienceVisibility":false,
 "externalShopperContext":true
 }
 }
}

Create the shopper context widget extension

The ext.json file contains metadata for the extension. For example:

{
 "extensionID": "c2e6a60e-579a-4190-af3e-5edc0cd8a725",
 "developerID": "999999",
 "createdBy": "Demo Corp.",
 "name": "ShopperContextSelectorDemoWidget",
 "version": 1,
 "timeCreated": "2017-10-10",

Chapter 19
Create a custom shopper context widget

19-5

 "description": "Demo Shopper Context Widget"
}

Note that the extensionID must match the value generated on the Extensions page in
the administration interface. See Install the widget for more information.

Write the widget JavaScript

The following example shows the JavaScript for the sample Shopper Context Selector
widget.

For general information on creating and uploading a custom widget, refer to Create a
Widget.

/**
 * @fileoverview Shopper Context Selector.
 */
define(

 //---
 // DEPENDENCIES
 //---
 ['knockout', 'pubsub', 'ccConstants','notifier', 'CCi18n',
'storageApi',
 'viewModels/shopperContext'],

 //---
 // MODULE DEFINITION
 //---

 function(ko, pubsub, CCConstants, notifier, CCi18n, storageApi,
ShopperContext) {
 "use strict";
 return {
 WIDGET_ID:
 "shopperContextSelector",
 isReady: ko.observable(false),
 onLoad: function(widget) {
 var self = this;
 widget.shopperContextViewModel = ko.observable();
 widget.shopperContextViewModel(ShopperContext.getInstance());
 widget.shopperContextViewModel().
 getOrderDynamicPropertiesWithDefaultValues();

$.Topic(pubsub.topicNames.USER_LOGIN_SUCCESSFUL).subscribe(function(){
 widget.shopperContextViewModel().populatePLGandCatalogData();
 });

$.Topic(pubsub.topicNames.USER_LOGOUT_SUCCESSFUL).subscribe(function(){
 widget.isReady(false);
 window.location.reload();
 });
 },
 beforeAppear:function(page) {
 var widget = this;

Chapter 19
Create a custom shopper context widget

19-6

 if (widget.user().loggedIn() != false) {
 widget.isReady(true);
 }else{
 widget.isReady(false);
 }
 },
 // Click handler for the Load Context button
 handleLoadContext: function (viewModel, event) {
 var widget = this;
 widget.shopperContextViewModel().populatePLGandCatalogData();
 },
 };
 }
);

Display the context switcher

The custom widget’s display.template file displays the context switcher that a
shopper uses to pick a new context that will invoke the webhook.

<!-- ko if: (isReady) -->
<div class="container-fluid">
 <!-- ko if:
$data.shopperContextViewModel().dynamicProperties().length > 0 -->
 <div class="row" data-bind="foreach:
$data.shopperContextViewModel().dynamicProperties">
 <!-- ko if: (type === 'shortText' || type==='richText' ||
type==='number') -->
 <div class="col-md-12">
 <label data-bind="text: label"></label>
 <input type="text" data-
bind="value:$parent.shopperContextViewModel().shopperContext[id],
attr:{'id':id}"/>
 </div>
 <!-- /ko -->
 <!-- ko if: (type === 'checkbox') -->
 <div class="col-md-12">
 <label data-bind="text: label"></label>
 <input type="checkbox" data-
bind="checked:$parent.shopperContextViewModel().shopperContext[id],
attr:{'id':id}"/>
 </div>
 <!-- /ko -->
 <!-- ko if: (type == 'date') -->
 <div class="col-md-12">
 <label data-bind="text: label"></label>
 <input type="date" data-
bind="checked:$parent.shopperContextViewModel().shopperContext[id],
attr:{'id':id}"/>
 </div>
 <!-- /ko -->
 </div>
 <button data-bind="click: handleLoadContext"> <span data-
bind="text:'Load
Context'"></button>

Chapter 19
Create a custom shopper context widget

19-7

 <!-- /ko -->
</div>
<!-- /ko -->

Install the widget

To install the widget, perform the following tasks in the administration interface:

1. Click the Settings icon.

2. Click Extensions and display the Developer tab.

3. Click Generate ID to generate an extension ID for the widget.

4. Edit the widget’s ext.json file and set the extensionID property to the value
generated in the previous step.

5. Package the widget as a ZIP file. Use the structure described in Create the widget
structure.

6. Display the Installed tab and click Upload Extension. Select the ZIP file.

7. Publish your changes.

Chapter 19
Create a custom shopper context widget

19-8

20
Implement Storefront Single Sign-On

Oracle CX Commerce enables you to integrate customer logins on your storefront with
an external customer data store or identity management tool.

For example, suppose you have an existing informational website with a large number
of customer accounts. When you create a new Commerce site, you may want to
provide existing customers with accounts on the commerce site.

Storefront Single Sign-On (SSO) is implemented using SAML (Security Assertion
Markup Language) 2.0, which is an open-standard XML-based data-exchange format.
Before setting up storefront SSO, you should be familiar with SAML 2.0. For
information about SAML 2.0, see:

https://en.wikipedia.org/wiki/SAML_2.0

The SAML 2.0 specification is available at:

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

Storefront Single Sign-On (SSO) provides two main benefits:

• Your Commerce environment can share logins with another site or system, so that
logging into one environment automatically logs a shopper into the other.

• If an unregistered shopper is logged into the external system, then the first time
the shopper accesses the Commerce site, a shopper profile is automatically
created.

There are two ways you can use SSO on your storefront:

• You can configure your storefront to use SSO exclusively. In this case, all shopper
logins are maintained in the external system.

• You can configure your storefront to support both SSO and standard logins. In this
case, the logins for shoppers using SSO are maintained in the external system,
and the logins for other shoppers are maintained in Commerce.

This section describes both of these configurations and how to set them.

Understand storefront SSO message flow
SAML 2.0 supports a variety of different message flows for authentication and
authorization.

The following diagram illustrates the approach used by Commerce. It shows the flow
of messages when a shopper logs into a Commerce storefront using storefront SSO.
Note that in SAML terminology, Commerce is referred to as the service provider, while
the external system that provides authentication is called the identity provider:

20-1

Configure storefront SSO
Setting up storefront SSO involves the following steps:

1. Configure Commerce storefront SSO settings.

2. Download the service provider entity descriptor from Commerce.

3. Upload the service provider entity descriptor to the identity provider, then
download the corresponding identity provider entity descriptor.

4. Upload the identity provider entity descriptor to Commerce.

5. Configure CORS to enable the identity provider to access Commerce resources.

6. Modify the storefront so that the links for logging in and accessing an account
direct the shopper to either the storefront or the identity provider, as appropriate.

7. If your Commerce environment is running multiple sites, repeat this process for
each new site you create.

These steps are described in the sections that follow.

Note that if you configure your storefront to use SSO exclusively and your identity
provider allows multiple accounts to share the same email address, you should enable
sharing of email addresses in Commerce as well. See Allow profiles to share an email
address for information about how to do this. If you configure your storefront to support
both SSO and standard logins, neither your identity provider nor Commerce should
support sharing of email addresses.

Configure Commerce storefront SSO settings

Use the PUT /ccadmin/v1/merchant/samlSettings endpoint in the Admin API to
configure Commerce to use storefront SSO. The endpoint request body includes the
following properties that are used to create the service provider entity descriptor:

• enabled – If true, support for SSO is enabled. Default is false.

• nameIdPolicyFormat – The SAML name ID policy to use. Default is
urn:oasis:names:tc:SAML:2.0:nameid-format:persistent.

Chapter 20
Configure storefront SSO

20-2

In addition, the request body can include several properties that control the SAML
security policies that Commerce enforces. The values of these properties are used to
create settings in the service provider entity descriptor:

• signAuthnRequest – If true, the SAML request message will be signed. Default is
true.

• nameIdPolicyAllowCreate – If true, Commerce allows the identity provider to
create persistent name identifiers for sessions. Default is true.

• requireEncryptedAssertions – If true, Commerce accepts SAML assertions
from the identity provider only if they are encrypted. Default is true. For security
reasons, this should be set to true in your production environment.

• requireSignedResponse – If true, Commerce accepts authorization responses
from the identity provider only if they include a signature. Default is true. For
security reasons, this should be set to true in your production environment.

The following call enables and configures SSO on a Commerce instance:

PUT /ccadmin/v1/merchant/samlSettings HTTP/1.1
Authorization: Bearer <access_token>

{
 "enabled": true,
 "nameIdPolicyFormat": "urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent",
 "requireEncryptedAssertions": true,
 "requireSignedResponse": true,
 "signAuthnRequest": true,
 "nameIdPolicyAllowCreate": true
}

Note that it may take several minutes for the changes to propagate to the storefront
server.

Download the service provider entity descriptors

Once you have configured SSO on your Commerce instance, you can use the
GET /ccstore/v1/merchant/samlSettings endpoint in the Store API to return service
provider entity descriptors. For example, if you send the following request:

GET /ccstore/v1/merchant/samlSettings HTTP/1.1
Authorization: Bearer <access_token>

The response will be similar to this:

{
 "spEntityDescriptor": "<service provider entity descriptor>",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccstore/v1/merchant/
samlSettings"
 }

Chapter 20
Configure storefront SSO

20-3

]
}

The entity descriptor is returned as the value of the spEntityDescriptor property.
This value is an XML document using a standard SAML 2.0 format for describing the
configuration of the service provider.

To return the entity descriptor in Base64 encoding, call the endpoint with the encode
query parameter set to true:

GET /ccstore/v1/merchant/samlSettings?encode=true HTTP/1.1
Authorization: Bearer <access_token>

Save the value of spEntityDescriptor as a standalone document. Note that you need
to create separate service provider entity descriptors for the preview context and the
live context, as they will need to be registered with the identity provider as separate
service providers.

Register the service providers with the identity provider

Register the two service providers (the preview context and the live context) with
the identity provider. (Register both service providers with the same identity provider;
do not create multiple identity providers.) Depending on the API or other tools the
identity provider supplies for this purpose, you register the service providers either by
uploading the service provider entity descriptor documents that you downloaded from
Commerce, or by manually configuring the identity provider with the data from the
documents.

Once you have registered the service providers, download the identity provider entity
descriptor. There should be only one identity provider entity descriptor, which applies
to both the preview context and the live context. The identity provider entity descriptor
should be a Base64-encoded XML file. If the generated file is not Base64-encoded,
encode it before you upload it to Commerce.

Upload the identity provider entity descriptor to Commerce

Use the PUT /ccadmin/v1/samlIdentityProviders/default endpoint to upload the
identity provider entity descriptor to Commerce, and to map assertion attributes to
profile properties. This mapping enables automatic creation of shopper profiles in
Commerce.

The request body includes the following properties:

• encodedIdpMetadata -- The Base64-encoded identity provider entity descriptor.

• loginAttributeName – The identity provider attribute that stores the shopper’s
login name.

• emailAttributeName -- The identity provider attribute that stores the shopper’s
email address.

• requiredAttributeToPropertyMap – A map in which the keys are identify provider
attributes and the values are the names of the corresponding required Commerce
profile properties.

• optionalAttributeToPropertyMap – A map in which the keys are identify provider
attributes and the values are the names of additional (non-required) Commerce
profile properties. (Optional.)

Chapter 20
Configure storefront SSO

20-4

For example:

PUT /ccadmin/v1/samlIdentityProviders/default HTTP/1.1
Authorization: Bearer <access_token>

{
 "loginAttributeName": "uid",
 "emailAttributeName": "email",
 "encodedIdpMetadata": "<identity provider entity descriptor>",
 "requiredAttributeToPropertyMap": {
 "uid": "login",
 "email": "email"
 },
 "optionalAttributeToPropertyMap": {
 "fName": "firstName",
 "lName": "lastName"
 }
}

Configure CORS

To allow the identity provider to make POST requests to a site running on your
Commerce instance, you must add the identity provider’s domain to the list of
domains for which the site supports CORS. To do this, add the domain to the
allowedOriginMethods property of the corresponding site object. For example:

PUT /ccadmin/v1/sites/siteUS HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "properties": {
 "allowedOriginMethods": {
 "http://www.myIdentityProvider.com": "POST"
 }
 }
}

See CORS support for more information about CORS.

Modify the storefront

To enable shoppers to access SSO on your storefront, you must modify any widgets
that handle login or registration. The necessary modifications depend on whether your
storefront supports SSO exclusively or supports both SSO and standard logins:

• If your storefront supports SSO exclusively, provide login and registration links that
redirect the shopper to the identity provider.

• If your storefront supports both standard logins and SSO, provide two sets of links,
one set that directs the shopper to the standard login and registration and one set
that directs the shopper to the identity provider.

By default, the Header Widget in Commerce includes a Login/Registration element
with links to the standard login and registration. In addition, Commerce provides
an SSO-specific SAML Login/Registration element. If your storefront supports SSO

Chapter 20
Configure storefront SSO

20-5

exclusively, you can replace the standard Login/Registration element with the SAML
Login/Registration element. If your storefront supports both standard logins and SSO,
you can include both login/registration elements in the widget. Note that the text and
styling are identical in both elements, so if you do include both, you should modify one
or both of them to make it clear which kind of login each supports.

Implement storefront SSO for multiple sites

If your Commerce environment is running multiple sites, all sites must be configured
with the same identity provider. However, in the identity provider, each site should
be registered as a separate service provider. (There should actually be two service
providers registered for each site, one for the preview context and one for the live
context.)

For each site, follow the instructions above to generate service provider entity
descriptors for the preview context and live context. If your site URLs are differentiated
by context root, pass the site ID in the x-ccsite header when calling the GET /
ccstore/v1/merchant/samlSettings endpoint:

GET /ccstore/v1/merchant/samlSettings HTTP/1.1
Authorization: Bearer <access_token>
x-ccsite: <siteId>

If your site URLs are differentiated by domain or subdomain, you do not need to
pass the site ID in the header. Specifying the domain in the URL when calling the
GET /ccstore/v1/merchant/samlSettings endpoint will identify the site.

The entity ID and assertion consumer POST location in each site’s service provider
entity descriptor should match the site's base URL. Register the service providers
either by uploading the service provider entity descriptor documents that you
downloaded from Commerce, or by manually configuring the identity provider with
the data from the documents. Note that only a single identity provider is currently
supported, so all service providers must be configured in the same identify provider.

After registering the service providers, download the identity provider entity descriptor,
and then use the PUT /ccadmin/v1/samlIdentityProviders/default endpoint to
upload it to Commerce. (There should be only one identity provider entity descriptor
for a Commerce instance, regardless of the number of sites. If you have already
performed this step for one site, you can skip it for other sites you add.) The identity
provider entity descriptor should be a Base64-encoded XML file. If the generated file is
not Base64-encoded, encode it before you upload it to Commerce.

In addition to adding each site as a service provider, you must update the CORS
allowedOriginMethods property for each site to include the identity provider.

Understand storefront SSO limitations
The storefront single sign-on implementation has some limitations you should be
aware of.

Storefront SSO does not provide single log-out (SLO). If a shopper signs out of
Commerce or if the shopper’s session times out, the shopper may continue to be
logged into the identity provider until the identity provider session times out. Similarly, if
the shopper signs out or is timed out of the identity provider, the shopper may remain
logged into Commerce until the Commerce session times out.

Chapter 20
Understand storefront SSO limitations

20-6

If a Commerce storefront uses SSO exclusively, customer service agents cannot reset
shopper passwords in the Agent Console; shopper passwords can be reset only in the
identity provider. If a Commerce storefront supports both SSO and standard logins,
passwords of shoppers using standard logins can be reset in the Agent Console, but
passwords of shoppers using SSO can be reset only in the identity provider.

Implement storefront SSO for account-based shoppers
If your Commerce store is configured to support account-based commerce, storefront
SSO lets you easily create business-account contacts for shoppers who have profiles
in an external customer data store or identity management tool.

You can add authenticated shoppers to any active Commerce business account. See
Configure Business Accounts for details about accounts, roles, and contacts.

You implement storefront SSO for account-based stores in much the same way as you
would for stores that support only individual shoppers. This section includes only the
information related to account-based stores. Before you read this section, make sure
you have read all the sections that precede it in Implement Storefront Single Sign-On.

Note: The account-based commerce feature may not be enabled in your environment.
Contact your Oracle account manager for more details on how to activate this
functionality.

Understand how storefront SSO determines a shopper’s account and role

Commerce uses the account ID supplied during login to determine how to associate
the authenticated shopper with an account and an account-based role.

• If the shopper is a contact for the target account, and the account is active, the
shopper is logged into the account with their assigned role.

• If the shopper does not have a profile on your store and the target account is
active, a new contact is created for the shopper in that account and the shopper
is logged in. If a role is specified in the identity provider entity descriptors, the new
contact is assigned that role. If no role is specified, the new contact is assigned the
default Buyer role.

• If the shopper is not a contact for the target account (or if that account is not
active) but is a contact for one or more other active accounts, the shopper is
denied access to the store.

• If the shopper has a profile on your store but is not a contact for the target account
or any other active account, the shopper is denied access to the store.

• If your store supports both account-based shoppers and individual shoppers, the
way you configure your store determines whether the shopper is logged in:

– If the shopper does not have a profile on your store and you set the
fallbackToB2cUserCreation property to true when you upload the identity
provider entity descriptors, a new individual shopper profile is created. If
fallbackToB2cUserCreation is set to false, the shopper is denied access to
the store.

– If your storefront includes SSO elements for both types of shoppers, when a
shopper who does not have a profile on your store logs in with the regular
(that is, not account-based) SSO link, Commerce creates a profile for a new
individual shopper.

Chapter 20
Implement storefront SSO for account-based shoppers

20-7

This shopper cannot later log into an account via the link for account-based SSO. If
the original SSO login was accidental and the shopper needs access to an account,
they must contact the merchant, who can either manually add the shopper as a
contact in the target account or simply delete the existing shopper profile.

Important: If you remove a shopper from your external identity management system,
you must also deactivate or remove their associated contact from the Commerce
business account they log into with SSO. Leaving the contact active allows the
shopper to continue accessing your store and account features by logging in with
their Commerce login credentials.

Configure account-based storefront SSO

Setting up storefront SSO for an account-based store involves the following steps:

1. Configure Commerce to use storefront SSO. See Configure Commerce storefront
SSO settings for more information.

2. Once you have configured SSO on your Commerce instance, you can return
service provider entity descriptors. See Download the service provider entity
descriptor from Commerce for more information.

3. Upload the service provider entity descriptor to the identity provider, then
download the corresponding identity provider entity descriptor. See Register the
service providers with the identity provider for more information.

4. Upload the identity provider entity descriptors to Commerce, and map assertion
attributes to profile properties. This mapping enables automatic creation of
shopper profiles in Commerce. See Upload the identity provider entity descriptor
to Commerce for more information, and see Identity provider entity descriptors for
account based stores for additional properties specific to account-based shoppers.

5. Configure CORS to enable the identity provider to access Commerce resources.
See Configure CORS for more information.

6. Modify the storefront so that the links for logging in and accessing an account
direct the shopper to either the storefront or the identity provider, as appropriate.
See Modify login layouts for account based shoppers for more information.

Identity provider entity descriptors for account based stores

Use the PUT /ccadmin/v1/samlIdentityProviders/default endpoint to upload the
identity provider entity descriptors to Commerce, and to map assertion attributes to
profile properties. This mapping enables automatic creation of shopper profiles and
contacts in Commerce.

In addition to the properties described in Upload the identity provider entity descriptors
to Commerce, the request body includes the following properties specifically for
account-based stores:

• organizationAttributeName -- The identity provider attribute that stores the
contact’s account ID.

• roleAttributeName – The identity provider attribute that stores the contact’s role
in the account specified by organizationAttributeName.

• fallbackToB2cUserCreation – If true, Commerce creates an individual shopper
profile if the contact logs in with invalid account credentials. See Create Page
Layouts that Support Different Types of Shoppers for more information.

Chapter 20
Implement storefront SSO for account-based shoppers

20-8

For example:

PUT /ccadmin/v1/samlIdentityProviders/default HTTP/1.1
Authorization: Bearer <access_token>

{

 "loginAttributeName": "uid",
 "emailAttributeName": "email",
 "organizationAttributeName": "organizationId",
 "roleAttributeName": "Role",
 "fallbackToB2cUserCreation": true,
 "encodedIdpMetadata": "<identity provider entity descriptor>",
 "requiredAttributeToPropertyMap": {
 "uid": "login",
 "email": "email",
 "firstName": "firstName",
 "lastName": "lastName"
 },
 "optionalAttributeToPropertyMap": {
 "addressFirstName": "address.firstName",
 "addressLastName": "address.lastName",
 "address1": "address.address1",
 "postalCode": "address.postalCode",
 "city": "address.city",
 "country": "address.country",
 "state": "address.state"
 }
}

Modify login layouts for account based shoppers

This section describes a sample Header widget that lets account-based shoppers
access SSO on your storefront. See Modify the storefront for overview information
about updating the storefront to enable SSO.

In this sample, the out-of-the-box Header widget has been modified to include a
customized version of the Login/Register element that includes an SSO login link.
When the contact clicks the link, they see a login modal where they enter an account
ID. If the ID matches

For details about how to create widgets, see Create a Widget.

The element template file provides the HTML rendering code for the element:

<div id="CC-header-sso-login" class="col-md-6">
 <a href="#CC-headermodalpane" id="CC-linkSsoLogin"
data-original-title="ssoLogin"
 data-bind="click: $parent.showSsoLoginSection.bind($parent),
 widgetLocaleText: 'ssoLoginLinkText',
 event: { mousedown: $parent.handleMouseDown.bind($parent,
$parents[1]),
 mouseup: $parent.handleMouseUp.bind($parent, $parents[1])}">

</div>

Chapter 20
Implement storefront SSO for account-based shoppers

20-9

The following code is for the SSO pane that appears when the shopper clicks the SSO
login link:

<!--Pane for SSO Login-->
 <div id="CC-ssoLoginPane">
 <div class="modal-header CC-header-modal-heading">
 <h3 class="modal-title"
id="CC-sso-login-text-title" data-bind="widgetLocaleText:
'ssoLoginText'"></h3>
 </div>
 <div class="modal-body cc-modal-body">
 <div id="CC-sso-login-section" data-bind="with: $parent.user">
 <div class="form-group row">
 <div class="controls col-md-12">
 <label class="control-label inline" for="CC-sso-login-account-
input"
 data-bind="widgetLocaleText:'accountIdText'">
 </label>
 <input type="email" class="col-md-5 form-control"
id="CC-sso-login-account-input" aria-required="true"
 data-bind="validatableValue: ssoLoginAccountName,
 widgetLocaleText : { value:'accountIdText',
attr:'placeholder' }"/>
 </div>
 </div>
 </div>
 </div>
 <div class="modal-footer CC-header-modal-footer">
 <div class="center-block">
 <button type="button" id="CC-sso-login"
class="cc-button-primary" data-bind="widgetLocaleText: 'buttonLogin',
click: function(data, event) { doSsoLogin.bind($data, $parent, event)
() },
event: { mousedown: handleMouseDown.bind($data, $parent),
mouseup: handleMouseUp.bind($data, $parent) }"></button>
 <button type="button" id="CC-sso-login-cancel"
class="cc-button-secondary" data-dismiss="modal"
data-bind="widgetLocaleText: 'buttonCancel', click: function(data,
event)
{ handleCancelSsoLogin.bind(data, $parent, event)() },
event: { mousedown: handleMouseDown.bind($data, $parent),
mouseup: handleMouseUp.bind($data, $parent) }"></button>
 </div>
 </div>
</div>

The element’s JavaScript file includes a click handler for cancelling the SSO login
modal.

/**
 * Click handler to cancel the SSO login modal.
 * @param data Data that is passed on the click event.
 * @param event jQuery event of the click event on the cancel
button.

Chapter 20
Implement storefront SSO for account-based shoppers

20-10

 */
 handleCancelSsoLogin: function(data, event) {
 if('click' === event.type ||
(('keydown' === event.type ||
 'keypress' === event.type) && event.keyCode === 13)) {
 notifier.clearError(this.WIDGET_ID);
 navigation.doLogin(navigation.getPath(),
data.links().home.route);
 }
 return true;
 },

The following sample is an event handler for the log in with SSO link.

 /**
 * Event handler for the Log In With SSO link on the B2B login
modal.
 * It shows the SSO login modal.
 * @param data Data passed when the link is clicked.
 */
 showSsoLoginSection: function(data) {
 this.hideAllSections();
 $('#CC-ssoLoginPane').show();
 $('#CC-sso-login-account-input').focus();
 data.ssoLoginAccountName('');
 },

The following sample is the click event handler for the Login button on the SSO Login
modal.

 /**
 * Click event handler for the Login button in SSO Login modal.
 * @param data Data passed when the login button is clicked.
 * @param event jQuery event for the click event.
 */
 doSsoLogin: function(data, event) {
 if ('click' === event.type ||
(('keydown' === event.type || 'keypress' === event.type)
&& event.keyCode === 13)) {
 data.user().handleSamlLogin();
 }
 return true;
 },

 createOrganizationRequestSuccess: function(){
 this.hideAllSections();
 $('#CC-headermodalpane').children(".modal-dialog").css('top',
'20%');
 $('#CC-organizationRequestSuccessPane').show();
 },

 createOrganizationRequestFailure: function(pResponse){
 this.modalMessageText(pResponse.message);

Chapter 20
Implement storefront SSO for account-based shoppers

20-11

 this.showErrorMessage(true);
 },

During a SAML login, the ssoLoginAccountName variable is sent automatically as the
relay_state. This variable is used for organization validation. If the relay_state
is not passed in, no validation occurs when the customer logs into their parent
organization. However, if the relay_state is passed in, the system validates that the
customer has access to the account.

This is the event handler for the login with SSO link on the login modal.

 /**
 * Event handler for the Log In With SSO link on the B2B login
modal.
 * It shows the SSO login modal.
 * @param data Data passed when the link is clicked.
 */
 showSsoLoginSection: function(data) {
 this.hideAllSections();
 $('#CC-ssoLoginPane').show();
 $('#CC-sso-login-account-input').focus();
 data.ssoLoginAccountName('');
 },

Chapter 20
Implement storefront SSO for account-based shoppers

20-12

21
Implement Single Sign-On for Internal
Users

You can configure Oracle Identity Cloud Service (IDCS) to enable the Oracle CX
Commerce administration interface and Agent Console to support single sign-on
(SSO) with other Oracle Cloud applications.

Two single sign-on implementations are supported, OpenID Connect and SAML 2.0.
Note that OpenID Connect SSO supports the use of IDCS OAuth 2 application keys
with Oracle CX Commerce, to simplify integration with other Oracle applications.
SAML 2.0 SSO does not support this.

Configure SSO with OpenID Connect
You can configure Oracle Identity Cloud Service to provide single sign-on (SSO) for
Oracle CX Commerce applications using OpenID Connect.

Before you begin, you will need the following:

• An Oracle CX Commerce account with authorization rights to configure federated
authentication.

• An Oracle Identity Cloud Service account with authorization rights to
manage applications and users (Identity Domain Administrator or Application
Administrator).

IDCS must be configured to require multi-factor authentication (MFA) logins for users
that can access the Oracle CX Commerce administration interface, to meet the
requirements of PCI.

Configure Oracle CX Commerce in Oracle Identity Cloud Service

This section describes how to register and activate the Oracle CX Commerce
administration and agent applications in Oracle Identity Cloud Service. You can then
assign users or groups to these Oracle CX Commerce applications.

Register and activate the Oracle CX Commerce administration application

1. In the Oracle Identity Cloud Service administration console, select Applications,
and then click Add.

2. Click Confidential Application.

3. Enter the name: Oracle CX Commerce Admin

4. Verify that the Display in My Apps checkbox is selected, and then click Next.

5. Click Configure this application as a client now.

6. For Allowed Grant Types, check Resource Owner, Client Credentials, Refresh
Token, and Authorization Code.

7. For Redirect URL, enter: https://<admin-server>/occs-admin/sso-login.jsp

21-1

8. For Logout URL, enter: https://<admin-server>/occs-admin/sso-logout.jsp

9. For Post Logout Redirect URL, enter: https://<admin-server>/occs-admin

10. In the Token Issuance Policy section, under Authorized Resources, select
Specific.

11. Under Grant the client access to Identity Cloud Service Admin APIs, click
Add, and add Identity Domain Administrator.

12. Click Next.

13. Under Expose APIs to Other Applications, select Configure this application
as a resource server now.

14. For Primary Audience, enter: https://<admin-server>/occs-admin

15. Click Next.

16. Under Authorization, check Enforce Grants as Authorization.

17. Click Finish. Oracle Identity Cloud Service should display a confirmation
message.

Register and activate the Oracle CX Commerce agent application

1. In the Oracle Identity Cloud Service administration console, select Applications,
and then click Add.

2. Click Confidential Application.

3. Enter the name: Oracle CX Commerce Agent

4. Verify that the Display in My Apps checkbox is selected, and then click Next.

5. Click Configure this application as a client now.

6. For Allowed Grant Types, check Resource Owner, Client Credentials, Refresh
Token, and Authorization Code.

7. For Redirect URL, enter: https://<agent-server>/occs-agent/sso-login.jsp

8. For Logout URL, enter: https://<agent-server>/occs-agent/sso-logout.jsp

9. For Post Logout Redirect URL, enter: https://<agent-server>/occs-agent

10. In the Token Issuance Policy section, under Authorized Resources, select
Specific.

11. Under Grant the client access to Identity Cloud Service Admin APIs, click
Add, and add Identity Domain Administrator.

12. Click Next.

13. Click Next.

14. Under Authorization, check Enforce Grants as Authorization.

15. Click Finish. Oracle Identity Cloud Service should display a confirmation
message.

Configure OpenID Connect SSO for Oracle CX Commerce

This section describes how to configure SSO in Oracle CX Commerce applications
with Oracle Identity Cloud Service.

Configure an identity provider

Chapter 21
Configure SSO with OpenID Connect

21-2

1. Log in as an administrator at: https://<commerce-admin-domain>/occs-admin/#/
adminLogin
This is a special login path that allows your primary administrator direct access
to the Oracle CX Commerce administration interface even when SSO is enabled,
so that edits can be made to the SSO settings. This login requires multi-factor
authentication.

2. Click the menu icon and select Settings.

3. On the Settings page, click Oracle Integrations section.

4. Select IDCS from the popup menu.
If IDCS is not available as an option on this menu, contact your Oracle
representative.

5. For IDP Base URL, enter the URL of your IDCS instance.

6. For Admin App Client ID , enter the Client ID of the Oracle CX Commerce
administration application you set up in IDCS. (You can find this value on the
Configuration Page, under General Information.)

7. For Admin App Client Secret, enter the Client Secret for the Oracle CX
Commerce administration application from IDCS. (Click Show Secret to reveal
this value.)

8. For Agent App Client ID, enter the Client ID of the Oracle CX Commerce agent
application you set up in IDCS. (You can find this value on the Configuration
Page, under General Information.)

9. For Agent App Client Secret, enter the Client Secret for the Oracle CX
Commerce agent application from IDCS. (Click Show Secret to reveal this value.)

10. Click Save to save your changes, then logout.

Use IDCS OAuth 2 application keys with Oracle CX Commerce

OpenID Connect SSO supports the use of IDCS OAuth 2 application keys with Oracle
CX Commerce, to simplify integration with other Oracle applications. To set up an
OAuth 2 application key:

• Create a Confidential Client.

• Under Allowed Grant Types, select Client Credentials.

• Under Authorized Resources, select Specific.

• Under Add Scope, select Oracle CX Commerce Admin. For the scope, enter:
https://<commerce-URL>/occs-admin/auth/appid.full_control

An application with this scope will have access to both the Admin and Agent APIs.

Verify the integration

This section describes how to verify that SSO and single log-out (SLO) work when
initiated from Oracle Identity Cloud Service (identity provide initiated SSO and SLO)
and from Oracle CX Commerce (service provider initiated SSO and SLO).

Verify identity provider initiated SSO

1. Access the Oracle Identity Cloud Service My Console at: https://<IDCS-
Service-Instance>.identity.oraclecloud.com/ui/v1/myconsole

Chapter 21
Configure SSO with OpenID Connect

21-3

2. Log in using credentials for a user that is assigned to the Oracle CX Commerce
agent and administration applications. (Oracle Identity Cloud Service displays a
shortcut to Oracle CX Commerce applications under My Apps.)

3. Click the Oracle CX Commerce agent application. The Oracle CX Commerce
agent home page appears.

4. On the home page, verify that the logged-in user is the same for both Oracle
CX Commerce and Oracle Identity Cloud Service. This confirms that SSO that is
initiated from Oracle Identity Cloud Service is working.

Verify service provider initiated SSO

1. Access Oracle CX Commerce at: <siteurl>/occs-admin
You will redirected to the Oracle Identity Cloud Service Sign In page.

2. Log in using credentials for a user that is assigned to the Oracle CX Commerce
administration application. The Oracle CX Commerce administration home page
appears.

3. On the Oracle CX Commerce administration home page, verify that the logged-in
user is the same for both Oracle CX Commerce and Oracle Identity Cloud Service.
This confirms that SSO initiated from Oracle CX Commerce administration is
working.

If the user can access only the dashboard page in Oracle CX Commerce
administration after logging in, your Commerce Administrator will need to add
the appropriate roles in the administration interface. By default, new users have
dashboard access only.

Verify identity provider initiated SLO

1. On the Oracle Identity Cloud Service home page, click the user name in the
upper-right corner, and then select Sign Out from the drop-down list.

2. Access the user profile in Oracle CX Commerce, and verify that the login page
appears. This confirms that SLO is working and that the user is no longer logged
in to Oracle CX Commerce and Oracle Identity Cloud Service.

Verify service provider initiated SLO

1. On the Oracle CX Commerce administration interface or agent console, click the
user icon in the upper-right corner, and then select Logout from the drop-down
list.

2. Click OK at the confirmation message that displays.

3. Access the Oracle Identity Cloud Service My Console, and then confirm that the
login page appears. This confirms that SLO is working and that the user is no
longer logged in to Oracle CX Commerce and Oracle Identity Cloud Service.

Troubleshoot the integration

Oracle Identity Cloud Service may display the following message:

"You are not authorized to access the app. Contact your system administrator."

The two most likely causes are:

• The administrator revokes access for the user at the same time as the user
tries to access Oracle CX Commerce using Oracle Identity Cloud Service. If this
happens, access the Oracle Identity Cloud Service administration console, select

Chapter 21
Configure SSO with OpenID Connect

21-4

Applications, Oracle CX Commerce Admin (or Oracle CX Commerce Agent),
Users, and then click Assign to re-assign the user.

• The OpenID Connect integration between the Oracle Identity Cloud Service and
Oracle CX Commerce has been deactivated. In this case, access the Oracle
Identity Cloud Service administration console, select Applications, Oracle CX
Commerce Admin, click Activate, and then click Activate Application. Oracle
Identity Cloud Service displays a confirmation message.

For other issues, contact your Oracle representative.

Configure SSO with SAML 2.0
You can configure Oracle Identity Cloud Service to provide single sign-on (SSO) for
Oracle CX Commerce applications using SAML 2.0.

Before you begin, you will need the following:

• An Oracle CX Commerce account with authorization rights to configure federated
authentication.

• An Oracle Identity Cloud Service account with authorization rights to
manage applications and users (Identity Domain Administrator or Application
Administrator).

• Identity provider metadata. Use the following
URL to access the metadata: https://<IDCS-Service-
Instance>.identity.oraclecloud.com/fed/v1/metadata

IDCS must be configured to require multi-factor authentication (MFA) logins for users
that can access the Oracle CX Commerce administration interface, to meet the
requirements of PCI.

Note: SAML 2.0 SSO does not support using IDCS OAuth 2 application keys with
Oracle CX Commerce. If you want to use IDCS OAuth 2 application keys, use OpenID
Connect SSO instead.

Configure SAML 2.0 SSO for Oracle CX Commerce

This section describes how to configure SSO in Oracle CX Commerce apps with
Oracle Identity Cloud Service.

Configure an identity provider

1. Log in as an administrator at: https://<commerce-admin-domain>/occs-admin/#/
adminLogin
This is a special login path that allows your primary administrator direct access
to the Oracle CX Commerce administration interface even when SSO is enabled,
so that edits can be made to the SSO settings. This login requires multi-factor
authentication.

2. Click the menu icon and select Settings.

3. On the Settings page, click Oracle Integrations section.

4. Select IDCS from the popup menu.
If IDCS is not available as an option on this menu, contact your Oracle
representative.

5. Upload the identity provider metadata file (see above).

Chapter 21
Configure SSO with SAML 2.0

21-5

6. Logout.

Configure Oracle CX Commerce in Oracle Identity Cloud Service

This section describes how to register and activate the Oracle CX Commerce
applications. You can then assign users or groups to these applications.

Register and activate the Oracle CX Commerce administration application

1. Access the Oracle Identity Cloud Service administration console, select
Applications, and then click Add.

2. Click SAML Application.

3. Enter the name: Oracle CX Commerce Admin

4. Verify that the Display in My Apps checkbox is selected, and then click Next.

5. For Entity ID, enter: https://<commerce-admin-domain>/occs-admin

6. For Assertion Consumer URL, enter: https://<commerce-admin-domain>/occs-
admin/sso-login.jsp

7. For NameID Format, use: Persistent

8. For NameID Value, use: User Name

9. Open Advanced Settings.

10. For Signed SSO, use: Assertion

11. For Signature Hashing Algorithm, use: SHA-256

12. Select Enable Single Logout.

13. For Logout Binding, use: POST

14. For Single Logout URL, enter: https://<commerce-admin-domain>/occs-admin/
sso-logout.jsp

15. For Logout Response URL, enter: https://<commerce-admin-domain>/occs-
admin

16. Open Attribute Configuration.

17. Add the following attributes:

Name Format Entry Value

uid Basic User Attribute User Name

email Basic User Attribute Primary Email

firstName Basic User Attribute First Name

lastName Basic User Attribute Last Name

Now click Activate, and then click Activate Application. Oracle Identity Cloud
Service displays a confirmation message.

Register and activate the Oracle CX Commerce agent application

1. In the Oracle Identity Cloud Service administration console, select Applications,
and then click Add.

2. Click SAML Application.

3. Enter the name: Oracle CX Commerce Agent

Chapter 21
Configure SSO with SAML 2.0

21-6

4. Verify that the Display in My Apps checkbox is selected, and then click Next.

5. For Entity ID, enter: https://<commerce-agent-domain>/occs-agent

6. For Assertion Consumer URL, enter: https://<commerce-agent-domain>/occs-
agent/sso-login.jsp

7. For NameID Format, use: Persistent

8. For NameID Value, use: User Name

9. Open Advanced Settings.

10. For Signed SSO, use: Assertion

11. For Signature Hashing Algorithm, use: SHA-256

12. Select Enable Single Logout.

13. For Logout Binding, use: POST

14. For Single Logout URL, enter: https://<commerce-agent-domain>/occs-agent/
sso-logout.jsp

15. For Logout Response URL, enter: https://<commerce-agent-domain>/occs-
agent

16. Open Attribute Configuration.

17. Add the following attributes:

Name Format Type Value

uid Basic User Attribute User Name

email Basic User Attribute Primary Email

firstName Basic User Attribute First Name

lastName Basic User Attribute Last Name

Now click Activate, and then click Activate Application. Oracle Identity Cloud
Service displays a confirmation message.

Verify the integration

This section describes how to verify that SSO and single log-out (SLO) work when
initiated from Oracle Identity Cloud Service (identity provide initiated SSO and SLO)
and from Oracle CX Commerce (service provider initiated SSO and SLO).

Verify identity provider initiated SSO

1. Access the Oracle Identity Cloud Service My Console at: https://<IDCS-
Service-Instance>.identity.oraclecloud.com/ui/v1/myconsole

2. Log in using credentials for a user that is assigned to the Oracle CX Commerce
agent and administration applications. (Oracle Identity Cloud Service displays a
shortcut to Oracle CX Commerce applications under My Apps).

3. Click the Oracle CX Commerce agent application. The Oracle CX Commerce
agent home page appears.

4. On the home page, verify that the logged-in user is the same for both Oracle
CX Commerce and Oracle Identity Cloud Service. This confirms that SSO that is
initiated from Oracle Identity Cloud Service is working.

Verify service provider initiated SSO

Chapter 21
Configure SSO with SAML 2.0

21-7

1. Access Oracle CX Commerce at: https://<commerce-admin-domain>/occs-
admin
You will redirected to the Oracle Identity Cloud Service Sign In page

2. Log in using credentials for a user that is assigned to the Oracle CX Commerce
administration application. The Oracle CX Commerce administration home page
appears.

3. On the Oracle CX Commerce administration home page, verify that the logged-in
user is the same for both Oracle CX Commerce and Oracle Identity Cloud Service.
This confirms that SSO initiated from Oracle CX Commerce administration is
working.

If the user can access only the dashboard page in Oracle CX Commerce
administration after logging in, your Commerce Administrator will need to add
the appropriate roles in the administration interface. By default, new users have
dashboard access only.

Verifying identity provider initiated SLO

1. On the Oracle Identity Cloud Service home page, click the user name in the
upper-right corner, and then select Sign Out from the drop-down list.

2. Access the user profile in Oracle CX Commerce, and verify that the login page
appears. This confirms that SLO is working and that the user is no longer logged
in to Oracle CX Commerce and Oracle Identity Cloud Service.

Verify service provider initiated SLO

1. On the Oracle CX Commerce administration interface or agent console, click the
user icon in the upper-right corner, and then select Logout from the drop-down
list.

2. Click OK at the confirmation message that displays.

3. Access the Oracle Identity Cloud Service My Console, and then confirm that the
login page appears. This confirms that SLO is working and that the user is no
longer logged in to Oracle CX Commerce and Oracle Identity Cloud Service.

Troubleshooting

Oracle Identity Cloud Service may display the following message:

"You are not authorized to access the app. Contact your system administrator."

The two most likely causes are:

• The administrator revokes access for the user at the same time as the user
tries to access Oracle CX Commerce using Oracle Identity Cloud Service. If this
happens, access the Oracle Identity Cloud Service administration console, select
Applications, Oracle CX Commerce Admin (or Oracle CX Commerce Agent),
Users, and then click Assign to re-assign the user.

• The SAML 2.0 integration between the Oracle Identity Cloud Service and
Oracle CX Commerce has been deactivated. In this case, access the Oracle
Identity Cloud Service administration console, select Applications, Oracle CX
Commerce Admin (or Oracle CX Commerce Agent), click Activate, and then
click Activate Application. Oracle Identity Cloud Service displays a confirmation
message.

For other issues, contact your Oracle representative.

Chapter 21
Configure SSO with SAML 2.0

21-8

22
Configure Sites

Your Oracle CX Commerce instance initially has a single site. If you want to create
other sites, you can do so by using the Admin REST API to create additional site
objects.

Note that in order for requests to be routed to the correct site on your instance, each
site must have a unique domain name. The topics in this section describe how to
manage sites by creating, modifying, and deleting site objects.

Understand site objects
Each site is represented in Commerce by an object whose properties store
configuration data for the site.

To set up a new site, you create a site object and set the values of the properties. You
can also update an existing site by modifying the values of the site object properties,
or delete a site by deleting its site object. Note that you must log into the Admin API
on the administration server using a profile that has the Administrator role in order to
create, modify, or delete sites.

To simplify site creation, Commerce designates one site as the default site. When you
create a new site, the values for properties that you do not explicitly supply are copied
to the new site from the default site, with the following exceptions:

• productionURL and additionalProductionURLs are left null if you do not supply
values.

• requireGDPRCookieConsent and requireGDPRP13nConsent default to false.

• priceListGroupList defaults to a single JSON object containing the value of
defaultPriceListGroup.

• id and name values are supplied automatically by Commerce.

In addition to serving as a template for site creation, the default site is used as the
destination for requests to your Commerce instance when the site cannot be otherwise
resolved (for example, a request whose URL does not match any of the URLs
specified in the productionURL or additionalProductionURLs properties described
below).

There is always a single default site in an individual instance of Commerce. Initially,
this is the site whose id is siteUS (the site included with each Commerce instance).
Once you have created other sites, you can change which site is the default. However,
there are several things you should be aware of when setting the default site:

• The enabled property of the default site must be true. If you want to make a
currently disabled site the default, first set enabled to true.

• You cannot set the enabled property to false on the default site. If you want to
disable the site that is currently the default, first make a different site the default.

22-1

• If you set the defaultSite property to true on a site that is not currently the
default, the defaultSite property is automatically set to false on the site that was
previously the default.

• If you attempt to set the defaultSite property to false on the site that is currently
the default, the call is ignored. To set the defaultSite property to false on a site,
you must set it to true on a different site.

• You cannot delete the default site. If you want to delete the site that is currently the
default, first make a different site the default.

• You cannot set the value of a site’s id property to defaultSite.

• You can use GET /ccadmin/v1/site/defaultSite to return the current default
site.

Most of the properties of site objects are site-specific – their values can be different
for each site. A few properties are global – their values must be identical for all sites.
When you set a site-specific property on a site object, the value you supply is applied
only to that site object. When you set a global property on a site object, the value you
supply is applied to all of the site objects in your Commerce instance.

The following site properties are global:

Property Description

recommendationsHost The hostname of the server for product
recommendations. For example, pt-recs-
app1.us.example.com.

recommendationsPort The port number for accessing the server for
product recommendations.

The remaining site properties are site-specific, including the following:

Property Description

productionURL The primary URL for accessing the site,
without the protocol. If you have multiple
sites running on your Commerce instance,
their URLs can be differentiated by domain,
subdomain, or context root.

additionalProductionURLs Alternate URLs that can be used to access the
site.

allowedOriginMethods An array that specifies external domains that
are allowed to use CORS to make requests
to the site. See CORS Support for more
information.

priceListGroupList An array of JSON objects that specify all of
the price list groups associated with the site.
Must include the price list group specified in
defaultPriceListGroup.

defaultPriceListGroup A JSON object that specifies the default price
list group associated with the site.

name Name of the site (maximum 254 characters).

description Text describing the site.

longDescription Text describing the site in greater detail.

Chapter 22
Understand site objects

22-2

Property Description

defaultCatalog The product catalog used for the site. Each
site is associated with a single catalog.

defaultBillingCountryId The country code of the default billing country
for the site.

defaultShippingCountryId The country code of the default shipping
country for the site.

defaultLocaleId A string containing an integer that identifies
the default locale for the site. You can view
the mapping of IDs to locales using the
listLocales endpoint.enabled.

additionalLocaleIds An array of IDs that specify other locales the
site supports.

useDefaultSiteLocale A Boolean specifying whether the locale
specified by defaultLocaleId is displayed,
even if it is not the browser's default locale.

enabled A Boolean specifying whether the site is
currently enabled.

defaultSite A Boolean specifying whether the site is
currently the default site.

siteTypes An array listing the site types this
site supports. For sites running consumer-
based commerce, set this property to
["commerce"]. If you have sites running
account-based commerce or sites running
both account-based and consumer-based
commerce, this setting must be configured for
you by Oracle.

timeToLive Amount of time (in milliseconds) that an
approved order or a partially paid order can
remain available before payment is completed.
If payment is not completed after this amount
of time, the order is marked for cancellation.

secondaryCurrency For sites that support loyalty points, the
monetary currency that points can be
converted to for calculating taxes and shipping
costs. See Work with Loyalty Programs for
more information.

requireGDPRCookieConsent A Boolean specifying whether a shopper on
the site must give consent before any cookies
containing personal data are created on the
shopper’s machine. See Manage the Use of
Personal Data for more information.

requireGDPRP13nConsent A Boolean specifying whether a shopper on
the site must give consent to be considered
a member of any audience that uses shopper
profile data. See Manage the Use of Personal
Data for more information.

Create a site
You can use the createSite endpoint to create a new site, using the default site as a
template.

Chapter 22
Create a site

22-3

For example:

POST /ccadmin/v1/sites HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
"properties":
 {
 "productionURL": "www.example2.com"
 }
}

The response is similar to the following:

{
 "longDescription": null,
 "priceListGroupList": [
 {
 "deleted": false,
 "repositoryId": "defaultPriceGroup",
 "active": true,
 "id": "defaultPriceGroup"
 }
],
 "productionURL": "www.example2.com",
 "timezone": "etc_utc",
 "description": null,
 "secondaryCurrency": null,
 "defaultCatalog": {
 "displayName": "Product Catalog",
 "repositoryId": "cloudCatalog",
 "id": "cloudCatalog"
 },
 "requireGDPRP13nConsent": false,
 "type": "siteConfiguration",
 "defaultBillingCountryId": null,
 "defaultShippingCountryId": null,
 "enabled": false,
 "requireGDPRCookieConsent": false,
 "payTaxInSecondaryCurrency": false,
 "timeToLive": null,
 "defaultLocaleId": "1",
 "activeTheme": null,
 "loyaltyPrograms": [

],
 "paymentOption": "0",
 "additionalProductionURLs": [

],
 "links": [
 {
 "rel": "self",

Chapter 22
Create a site

22-4

 "href": "http://myserver.example.com:7002/ccadmin/v1/sites"
 }
],
 "id": "100002",
 "defaultSite": false,
 "additionalLocaleIds": [

],
 "recommendationsHost": "pt-recs-app1.us.example.com",
 "favicon": null,
 "allowedOriginMethods": {

 },
 "noimage": null,
 "defaultPriceListGroup": {
 "deleted": false,
 "repositoryId": "defaultPriceGroup",
 "active": true,
 "id": "defaultPriceGroup"
 },
 "payShippingInSecondaryCurrency": false,
 "siteTypes": [
 "commerce"
],
 "recommendationsPort": "8080",
 "shipFromAddress": {

 },
 "repositoryId": "100002",
 "name": "100002"
}

Note: If you want to implement wish lists on a new site that you create using the
Admin API, you must also create a new wish list environment and associate it with
the site. To do this, use the PUT /swm/rs/v1/sites/cc/{ccSiteId} endpoint in the
Social Wish Lists API. If you subsequently modify the site using the Admin API, you
should use this endpoint to make the equivalent changes to the associated wish list
environment. If you delete the site, you should also delete the associated wish list
environment, using the DELETE /swm/rs/v1/sites/cc/{ccSiteId} endpoint.

For more information about these endpoints, see the REST API documentation that is
available through the Oracle Help Center:

http://docs.oracle.com/cloud/latest/commercecs_gs/CXOCC/

createSiteFromForm endpoint

In addition to the createSite endpoint, which creates a site based on the default site,
Commerce includes a createSiteFromForm endpoint that creates a site based on a
site you specify. For example, to create a new site using site 100002 as a template:

POST /ccadmin/v1/sites/100002 HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{

Chapter 22
Create a site

22-5

"properties":
 {
 "productionURL": "www.example3.com"
 }
}

Update a site
You can use the updateSite endpoint to modify settings on an existing site.

For example:

PUT /ccadmin/v1/sites/100002 HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "properties":
 {
 "productionURL": "www.example7.com",
 "defaultLocaleId": "3"
 }
}

The response is similar to the following:

{
 "longDescription": null,
 "priceListGroupList": [
 {
 "deleted": false,
 "repositoryId": "defaultPriceGroup",
 "active": true,
 "id": "defaultPriceGroup"
 }
],
 "productionURL": "www.example7.com",
 "timezone": "etc_utc",
 "description": null,
 "secondaryCurrency": null,
 "defaultCatalog": {
 "displayName": "Product Catalog",
 "repositoryId": "cloudCatalog",
 "id": "cloudCatalog"
 },
 "requireGDPRP13nConsent": false,
 "type": "siteConfiguration",
 "defaultBillingCountryId": null,
 "defaultShippingCountryId": null,
 "enabled": false,
 "requireGDPRCookieConsent": false,
 "payTaxInSecondaryCurrency": false,
 "timeToLive": null,

Chapter 22
Update a site

22-6

 "defaultLocaleId": "3",
 "activeTheme": null,
 "loyaltyPrograms": [

],
 "paymentOption": "0",
 "additionalProductionURLs": [

],
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/sites/
100002"
 }
],
 "id": "100002",
 "defaultSite": false,
 "additionalLocaleIds": [

],
 "recommendationsHost": "pt-recs-app1.us.example.com",
 "favicon": null,
 "allowedOriginMethods": {

 },
 "noimage": null,
 "defaultPriceListGroup": {
 "deleted": false,
 "repositoryId": "defaultPriceGroup",
 "active": true,
 "id": "defaultPriceGroup"
 },
 "payShippingInSecondaryCurrency": false,
 "siteTypes": [
 "commerce"
],
 "recommendationsPort": "8080",
 "shipFromAddress": {

 },
 "repositoryId": "100002",
 "name": "100002"
}

Delete a site
You can use the deleteSite endpoint to delete an existing site.

For example:

DELETE /ccadmin/v1/sites/100002 HTTP/1.1
Authorization: Bearer <access_token>

Chapter 22
Delete a site

22-7

If the site is deleted successfully, a 200-level HTTP status code is returned.

Note that you cannot delete the default site. If you want to delete the site that is
currently the default, first make a different site the default.

Chapter 22
Delete a site

22-8

23
Work with Loyalty Programs

Commerce provides Admin APIs you can use to set up and manage a loyalty points
program for your store.

The topics in this section describe how to configure loyalty program features.

Implement loyalty points
If your store supports a loyalty program that lets shoppers earn and spend points, use
the following steps to set up a loyalty program using the Commerce Admin API:

1. Define new custom currency specifically for the loyalty program as defined in the
Create a custom currency for loyalty points section.

2. Set loyalty program details at the site level as described in the Configure a site
to use loyalty programs section. This includes setting the primary currency for the
site and linking price list group to sites so that you may display a catalog.

3. Configure a payment integration to provide a payment method shoppers can use
for points-based orders at checkout. Refer to the Integrate with a Loyalty Point
Payment Gateway section.

4. If you are using Avalara AvaTax or Vertex O Series tax processors, you must
configure an exchange rate between your loyalty program currency and the
secondary monetary currency of your site. Exchange rates are described in the
Create exchange rates section.

5. Define how taxes are calculated and configure the tax settings at the price list
group level as described in the Understand tax and shipping calculations with
loyalty programs section.

6. Determine if the loyalty program will allow a mixed currency for taxes and shipping
s described in the Display tax and shipping in currency for points-based orders
section.

7. Update your widgets to use the loyalty program specific widgets to display
information to your shoppers, as described in the Use loyalty-specific widgets
section.

8. Add loyalty program properties to shopper profiles that let you indicate if a shopper
is enrolled in your loyalty program and specify their loyalty account ID. Refer
to Redeem loyalty points for this information. See Manage Shopper Profiles for
details about how to create and set custom properties for shopper profiles.

9. Update or create email templates that contain loyalty program properties.

Create a custom currency for loyalty points
You can create a custom currency and assign it to a price group so shoppers can see
items priced in points and then use points to pay for purchases on your store.

23-1

This section describes how to create a custom currency and add it to a price group.
You will also need to perform other tasks so shoppers can place orders paid for with
points. For example:

You must use the Commerce REST API to create a custom currency for the
points. Merchandisers then create a price group for the currency in the Commerce
administration interface. Once the price group is active, shoppers can select the
points-based currency to see the prices for all items in points. All items in an order
must be priced in a single currency. Therefore, a shopper must use points to pay for an
entire order. A shopper cannot use points to pay for only some items in an order.

The Avalara AvaTax and the Vertex O Series tax processor integrations will convert
points-based orders into monetary currency to calculate tax. If you implement a points-
based currency for your store and you use an external Commerce tax processor
integration (other than Avalara AvaTax or Vertex O Series) to calculate taxes, you must
convert the dollar amount into points and then store that conversion information in
Oracle CX Commerce. See Configure Tax Processing for more information.

You can configure your site to display tax and shipping amounts in a monetary
currency, separate from the loyalty points used for an order. For information, refer
to the Understand tax and shipping calculations with loyalty programs section

To create a new currency for loyalty points, issue a POST request to the /ccadmin/v1/
currencies endpoint on the administration server. Specify the values of the currency
properties as a JSON map in the body of the request.

The following table describes the body of the request.

Property Description

id (Required) A string that specifies the ID for the
currency. This value must be lowercase letters
and cannot include underscores or spaces.
This value cannot be a valid JDK locale, such
as "en_US".

currencyCode (Required) A string that represents the
pointType of the loyalty program. This value
cannot be an ISO 4217 standard currency
code, for example, "USD".

symbol (Required) A Unicode string that specifies the
currency symbol. When shoppers select the
points-based currency on your store, prices
are displayed with this currency symbol.

displayName (Required) A string that specifies the display
name for the currency. Shoppers do not see
the display name, but it appears internally,
for example, in the Commerce administration
interface and when you export products.

currencyType (Required) "loyaltyPoints" is the only
accepted value for currencyType. Any other
value will cause the request to return an error.

fractionalDigits A number that specifies the precision specifier
(the number of decimal places) in the prices
shoppers see on your store. The default value
is 2.

Chapter 23
Create a custom currency for loyalty points

23-2

The following example shows a sample request for creating a loyalty points currency:

POST /ccadmin/v1/currencies HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
"id": "points",
"currencyCode": "PTS",
"symbol": "P",
"displayName": "Frequent Shopper Bucks",
"currencyType": "loyaltyPoints",
"fractionalDigits": 0
}

If the currency is created successfully, the response body returned includes the ID for
the new currency and a link to the URL used in the request. The following is a sample
response:

{
 "currencyType": "loyaltyPoints",
 "symbol": "P",
 "deleted": false,
 "displayName": "PTS",
 "repositoryId": "points",
 "fractionalDigits": 0,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/currencies"
 }
],
 "currencyCode": "PTS",
 "numericCode": null,
}

Configure a site to use loyalty programs
The following sections describe how to configure your sites to recognize and use
loyalty programs.

Associate a loyalty program’s secondary currency to a site

You can use Admin endpoints to define the secondary currency for a site by setting the
secondaryCurrency property.

To associate secondary currency to a site, issue a PUT request to the /ccadmin/v1/
sites/{site_id} endpoint on the administration server. The following example
identifies the secondary currency of the Site US as US Dollars:

PUT/ccadmin/v1/sites/siteUS
{
 "properties": [

Chapter 23
Configure a site to use loyalty programs

23-3

 {
 "secondaryCurrency": "USD",
 }
}

Associate loyalty programs with a site

Loyalty programs can be associated with specific sites. To see which loyalty programs
are associated with a site, issue a GET request using the /ccadmin/v1/sites/
{site_id} endpoint on the administration server. The response may be similar to the
following:

{
 "...": "...",
 "loyaltyPrograms": [
 {
 "repositoryId": "siteUS_pg100001",
 "programId": "pg100001",
 "programName": "Premier",
 "associationDate": "2017-07-05T14:15:37.000Z"
 },
 {
 "repositoryId": "siteUS_pg100002",
 "programId": "pg100002",
 "programName": "Insider",
 "associationDate": "2017-07-05T14:15:37.000Z"
 }
]
}

To associate a loyalty program with a site, issue a PUT request to the /ccadmin/v1/
sites endpoint on the administration server. For example:

{
 "properties": {
 "...": "...",
 "loyaltyPrograms": [
 {
 "programId": "pg100001",
 "programName": "Premier"
 }
]
 }
}

You can associate a loyalty program with a site at any time by issuing a PUT request
to /ccadmin/v1/sites/{site_id}.

Associate a loyalty program price group with a site

Once your site has been configured to recognize loyalty programs, you can create
price groups for the loyalty program and associate the price group with the site.

Create a price group for loyalty points

Chapter 23
Configure a site to use loyalty programs

23-4

Once you create a currency for the loyalty points, merchandisers can use the
Commerce administration interface to create and activate a price group for the
currency. A price group is a set of price lists (list price, sale price, and shipping
surcharge), in a specific currency, for the products, SKUs, and shipping surcharges in
a catalog. Creating a price group for the points-based currency lets you price catalog
items in the points so a shopper can select the points-based currency from a list of
supported currencies and see those prices on your store.

For details about creating and activating price groups, see Configure Price Groups.

Associate the loyalty points price group

To associate the loyalty program price group with a site, issue a PUT request using /
ccadmin/v1/sites/

{site_id} .

For example:

PUT /ccadmin/v1/sites/siteUS
{
 "properties": {
 "priceListGroupList": [
 {
 "active": true,
 "id": "defaultPriceGroup"
 },
 {
 "active": true,
 "id": "loyaltyPoint"
 }
]
 }
}

Enable a loyalty payment gateway

If you are going to integrate with a gateway for paying with loyalty points., you must
configure your loyalty point programs as described in the Integrate with a Loyalty Point
Payment Gateway section.

Understand tax and shipping calculations with loyalty
programs

Oracle CX Commerce can be configured to provide shipping and tax calculations in
both loyalty points or in monetary currency.

Currency conversion is enabled by setting the isCurrencyConversionEnabled flag to
true in the PriceListGroupManager.

Understand tax calculations with loyalty points

There are three different types of conversion for Avalara and Vertex processors.
Depending on the configuration made in the price list group, an administrator can

Chapter 23
Understand tax and shipping calculations with loyalty programs

23-5

configure the price list group to perform the conversion, skip the tax call entirely, or
make the tax call without performing any currency conversions.

Whenever an order contains a combination of loyalty points and monetary currency,
the secondaryCurrencyCode and ExchangeRate are added to the order.

Currency conversion is enabled by setting the isCurrencyConversionEnabled flag to
true in the PriceListGroupManager. When conversion is enabled, the shipping and
commerce line item amounts are converted to currency before being sent to Avalara
and Vertex tax systems.

For details additional about creating and activating price groups, see Configure Price
Groups for additional information on working with price list groups.

For information on configuring tax processor integrations, refer to Configure Tax
Processing and Configure Tax Processors.

Understand shipping calculations with loyalty points

Shipping is calculated in the same currency as the order. In loyalty points-based
orders, shipping is calculated in loyalty points. The CloudShippingPriceInfo stores
the shipping value that has been converted to a loyalty-based order.

The shipping price is determined for each shipping method by calling pre-
calculators, applying promotions and then applying any shipping surcharges.
For detailed information on setting up shipping methods, refer to Configure
Shipping. The final value is converted to the currency amount and set within the
SecondaryCurrencyShippingAmount property.

How order totals are calculated

When a secondary currency is identified for tax and/or shipping, the PriceInfo
stores the total shipping/tax amounts that are applied to the order in the
secondaryCurrencyAmount property. The currency conversion amounts for shipping
and tax are also set within the order using the priceTaxForOrderTotal and
priceShippingForOrderTotal property.

Display tax and shipping in currency for points-based orders
When the isCurrencyConversionEnabled flag is enabled in the
PriceListGroupManager, the order is processed in points, and the tax and shipping
amounts are converted as per configuration.

When the isCurrencyConversionEnabled flag is enabled in the
PriceListGroupManager, the order is processed in points, and the tax and shipping
amounts are converted as per configuration. However, you can configure your site to
display tax and shipping in standard currency and not in loyalty points.

To set tax and shipping in currency for a loyalty points-based order, issue a PUT
request to the /ccadmin/v1/sites/{site_id} endpoint on the administration server.
Specify if the tax or shipping amounts should be displayed in the currency properties in
a JSON map in the body of the request.

Note: When setting the payTaxInSecondaryCurrency and
payShippingInSecondaryCurrency properties, they must both be set either to true or
false. One property cannot be true while the other is false, they must both have the
same value.

Chapter 23
Display tax and shipping in currency for points-based orders

23-6

The following table describes properties that determines how tax and shipping are
displayed:

Property Description

payTaxInSecondaryCurrency A Boolean flag that determines if tax should be
displayed in the secondary currency.

payShippingInSecondaryCurrency A Boolean flat that determines if shipping
should be displayed in the secondary currency.

For example:

PUT ccadmin/v1/sites/SiteUS
{
 "properties": {
 "payShippingInSecondaryCurrency": true,
 "payTaxInSecondaryCurrency": true
 }
}
An example response might be similar to the following:
"priceInfo": {
 "secondaryCurrencyTaxAmount": 1.5,
 "amount": 89.97,
 "total": 96.27,
 "secondaryCurrencyShippingAmount": 6,
 "shipping": 0,
 "secondaryCurrencyTotal": 7.5,
 "primaryCurrencyTotal": 89.97,
 "shippingSurchargeValue": 0,
 "tax": 6.3,
 "subTotal": 89.97,
 "currencyCode": "USLoyaltyPoints",
 "totalWithoutTax": 15
 }

Use webhooks for loyalty points with monetary currency

When working with webhooks and loyalty programs, it is important to know which
webhooks contain secondary currency properties. The following list shows the
webhooks that recognize and enable loyalty-points currency conversion.

• CheckOrderApprovalWebhook

• ExternalPricing

• ExternalTaxCalculation

• IdleCart

• Order

• RequestQuote

• Return

Use widgets with loyalty programs with monetary currency

The following widgets can be used to display currency-related properties.

Chapter 23
Display tax and shipping in currency for points-based orders

23-7

Note: To incorporate loyalty information on your store’s pages, make sure you are
using the latest version of the widgets.

Specifically, you should update the following:

• shoppingCartSummary

• orderSummary

• orderHistory

• checkoutOrderSummary

• checkoutPaymentDetails

• giftCard

• confirmationSummary

• cartShippingDetails

• checkoutConfirmation

• productDetails

• loyaltyDetails

• loyaltyPayment

• CybersourcePaymentAuthentication

• orderDetails

• ordersPendingApproval

• splitPayments

• accountOrderDetails

• accountCheckoutConfirmation

Redeem loyalty points
Once you have set up a loyalty program on an external system, you allow your
shoppers to redeem loyalty points against a program.

To do this, enroll the shoppers into the program. You can enroll members in a loyalty
program by providing loyalty details in their profiles using the Commerce Web API.

Use webhooks to configure loyalty point redemption

The Order Submit webhook, which is described in detail in the Order Submit Webhook
section, includes loyalty details in the payload. This webhook gets the secondary
monetary currency and exchange rate properties. The following example is of a
POST request that identifies the loyalty programs and membership ID of the profile
associated with the order.

 "loyaltyPrograms": [
 {
 "programId": "program1",
 "membershipId": null,
 "programName":"XTRAMILES",
 "status":"RequestForEnrollment"
 },

Chapter 23
Redeem loyalty points

23-8

 {
 "programId": "program2",
 "membershipId": null,
 "programName":"XTRAREWARDS",
 "status":"RequestForEnrollment"
 }

The Profile webhook contains loyalty program nomination in the payload. Loyalty
membership details are stored in the profile properties and include the program and
membership ID.

Use endpoints to configure loyalty point redemption

Endpoints allow you to configure loyalty programs for a site and are used during
nomination to loyalty flow for validation. During nomination, all programs that are
linked to the profile are included in the payload of Register/Update shopper webhook.

The following properties are used by the profile endpoint to recognize and redeem
loyalty point data.

Property Description

programId The ID of the loyalty program.

programName The name of the loyalty program.

membershipId The ID that indicates the shopper is a member
of the loyalty program.

status Indicates the status of the enrollment within
the loyalty program. The status can be:

Enrolled – The profile has been successfully
enrolled and has a membership number. This
membership number can be saved in Oracle
CX Commerce along with the loyalty program
ID.

Unenrolled – Indicates that the profile has
been successfully removed from the loyalty
system.

Failed – Indicates that the loyalty system failed
to enroll a program.

To create a new profile with loyalty data, issue a POST request in /ccadmin/v1/
profile. For example:

{
 "firstName": "John",
 "lastName": "Doe",
 "profileType": "b2b_user",
 "roles": [
 {
 "function": "buyer",
 "relativeTo": {
 "id": "900004"
 }
 }
],
 "receiveEmail": "yes",

Chapter 23
Redeem loyalty points

23-9

 "active": true,
 "parentOrganization": "900004",
 "email": "jdoe@example.com",
 "daytimeTelephoneNumber": "212-555-1977",
 "loyaltyPrograms": [
 {
 "programId": "program1",
 "membershipId": null,
 "programName":"XTRAMILES",
 "status":"RequestForEnrollment"
 },
 {
 "programId": "program2",
 "membershipId": null,
 "programName":"XTRAREWARDS",
 "status":"RequestForEnrollment"
 }
]
}

You can add loyalty programs at any time to an existing profile by issuing a PUT
request in /ccadmin/v1/profile/{profile_id}.

Understand enrollment into loyalty programs

When shoppers are enrolled into loyalty programs, Oracle CX Commerce stores the
details of the shopper’s enrollment in their profile. There are two ways to configure
enrollment. You can decide to enroll all new shoppers, so that when you create a
profile it triggers the profile webhook sending the enrollment request to an integrated
loyalty system with the program name associated with your site. Or you can create a
dynamic property for a profile.

Create custom properties

For example, you could create custom properties for the order, which allows the order
to determine accrued points, point types and the loyalty transaction ID:

PUT /ccadmin/v1/orderTypes/order
{
 "properties": {
 "loyalty_transaction_id": {
 "internalOnly": true,
 "label": "Loyalty transaction Id",
 "type": "shortText",
 "uiEditorType": "shortText"
 },
 "loyalty_points_accrued": {
 "internalOnly": false,
 "label": "Loyalty points accrued",
 "type": "number",
 "default":0,
 "uiEditorType": "number"
 },
 "accrued_point_type": {
 "internalOnly": false,

Chapter 23
Redeem loyalty points

23-10

 "label": "Point type",
 "type": "shortText",
 "uiEditorType": "shortText"
 }
}

You could also create custom properties for the profile, which allows the shopper to
enroll in a loyalty program. For example:

PUT /ccadmin/v1/shopperTypes/user
{
 "properties": {
 }
 "enroll_to_loyalty": {
 "internalOnly": false,
 "label": "Enroll for Loyalty program",
 "type": "checkbox",
 "uiEditorType": "checkbox"
 }
 }
}

Once the loyalty details widget is placed on the profile layout (storefront), a shopper
has the ability to see their loyalty details by accessing My Account and seeing the
display of their loyalty status. This information is stored on the shopper’s profile in the
properties you created.

Note: When you create custom properties, make sure that your property name
contains an underscore (_). For example, you could create a custom property named
CustomerProfile_PropertyName. Once you have created this property, you must
customize the integration code and replace any references with the new custom
property name.

Use loyalty-specific widgets

There are two loyalty-specific widgets associated with loyalty programs, the Loyalty
Details widget and the Loyalty Payment widget.

The Loyalty Details widget, when added to a layout, displays the loyalty details of a
registered shopper. This widget displays only one loyalty program detail per shopper,
but can be modified to display all of a shopper’s loyalty programs memberships.

When the Loyalty Details widget is placed on a page layout that is accessible by
registered shoppers, it gets the shopper loyalty information and populates the loyalty
view model. Additionally, you can add the logic within the Loyalty Details widget to a
global widget so that the loyalty view model is populated with the program details.

For additional information on the Loyalty Details widget, refer to Appendix: Layout
Widgets and Elements.

The Loyalty Payment widget displays the payment method as loyalty points when the
gateway is enabled. For detailed information on the Loyalty Payment widget, refer to
the Appendix: Layout Widgets and Elements. For information on gateways, refer to
Integrate with a Loyalty Point Payment Gateway.

Chapter 23
Redeem loyalty points

23-11

Understand currency exchange rates
In instances where you have configured currency for a loyalty program, you may need
to convert the loyalty program’s currency to a secondary monetary currency.

To do this, you must set up and maintain exchange rates between the loyalty
program’s points and the secondary monetary currency.

The primary reason for creating an exchange rate is to set conversion rates between
loyalty programs and the secondary currency. The exchange rate can also be used
during tax calculations with Avalara AvaTax or Vertex O Series. This allows you to
send order information to the tax processor in a format that the processor can use
to calculate the tax. The tax value is then converted back into loyalty points and
displayed in the order.

For information on configuring tax gateways, refer to Configure Tax Processors and
Configure Tax Processing.

The secondary monetary currency is configured with the secondaryCurrency property
when setting up a site. This indicates the currency that the site uses, such as USD.
For information on creating a base currency and assigning it to a site, refer to the
Associate a loyalty program price group with a site section.

Note: Exchange rates do not convert between different monetary currencies. For
example, you should not configure an exchange rate between US dollars and Euros.

Exchange rates are set using the exchangerates endpoint to identify a source
currency and target currency. Exchange rates are global and not site specific. There
should be at least one exchange rate configured with the target currency identified
in the secondaryCurrency property. Note that exchange rate settings are used only
with sites that have loyalty points indicated in their price list group. For information on
working with price list groups, refer to the Configure Price Groups.

Create exchange rates

When you create a site that supports loyalty points, you must create an exchange rate.
You can create multiple exchange rates, but the site will determine which configuration
to use when converting currency.

To create an exchange rate between currency and loyalty points, issue a POST request
to the /ccadmin/v1/exchangerates endpoint on the administration server. Specify the
values of the currency properties as a JSON map in the body of the request.

The following table describes properties in the body of the request.

The following example shows a sample request for creating an exchange rate between
a monetary currency and the loyalty program’s currency that you created in the
Implement loyalty points section:

POST /ccadmin/v1/exchangerates HTTP/1.1
Authorization: Bearer <access_token>

{
 "sourceCurrency": "PTS",
 "targetCurrency": "USD",

Chapter 23
Understand currency exchange rates

23-12

 "exchangeRate": 5
}

If the exchange rate is created successfully, the response body returned includes the
ID for the new currency and a link to the URL used in the request. The following is a
sample response.

{
 "sourceCurrency": "USD",
 "targetCurrency": "PTS",
 "exchangeRate": 5,
 "id": "10001"

}

The price of the points-based order is converted to the secondary monetary currency
for the site, using the corresponding exchange rate. The value that the tax processor
calculates is converted from monetary currency back into points using the same
exchange rate.

If you are using the External Tax Calculation webhook to integrate with an external tax
processor, the tax call is made with or without currency conversion depending on how
price list group has been configured. This allows the external tax processor to use the
correct logic.

Once the conversion is complete, the exchange rate is recorded and used for
subsequent operations, such as returns and exchanges. Once the tax value in
monetary currency is returned by the tax processor, it is also stored so that it may
be passed to order management systems as part of a Submit and Return Request
webhook.

Use custom properties in loyalty integration
The custom properties in loyalty need to follow a convention.

Custom properties used in Oracle CX Commerce need to follow a naming convention,
for example x_customProperty). You should change any custom properties you had
created in the past to follow this convention. For example:

Older format New format

enrollToLoyalty occ_enrollToLoyalty

loyaltyTransactionId occ_loyaltyTransactionId

loyaltyPointsAccrued occ_loyaltyPointsAccrued

accruedPointType occ_accruedPointType

Chapter 23
Use custom properties in loyalty integration

23-13

24
Integrate with Oracle Content and
Experience Cloud

Oracle CX Commerce provides an integration with Oracle Content and Experience
Cloud (CEC) that you can use to display content items such as blog posts and articles
on your storefront.

CEC is a cloud-based content hub used to drive omni-channel content management
from where you can manage your content, digital assets, and websites. The features
you can access, and the UI you can view, are dependent on your assigned role.
For more information, see the Oracle Content and Experience Cloud documentation
available in the Oracle Help Center.

Enable the integration with Oracle Content and Experience
Cloud

You can enable the integration with Oracle Content and Experience Cloud via the
Settings page in the administration interface.

To enable the integration, perform the following steps:

1. Open the Settings page and select Oracle Integrations.

2. Choose Content and Experience Cloud from the dropdown list.

3. Check the Enable Integration checkbox, and expand the Product Configuration
options.

4. Enter the Server URL, Channel Token, and Channel ID, the details of which you
can locate within your content management system.

A channel ID and a channel token are assigned to a channel when it is created
within OCE. Refer to the Oracle Content and Experience Cloud documentation for
further details.

5. Click Add User and enter the username and password of the OCE user you
want to add. Note: these user credentials are provided within OCE along with the
appropriate permissions for the dedicated integration user. The user must enter
the exact username as provided within OCE, and not the user's email address.

6. Click Save.

Once saved, a newly created webhook enables communication between Oracle
CX Commerce and your content management system, and retrieves all content
items from the specified channel. Each channel contains a variety of different
content types (an example of a content type might be a blog). These content types
and items are available to the storefront via the Content Listing widget, and the
Content Item layout, which is configurable within the Design tab.

24-1

Configure content items to display on the storefront
When configuring content items for your storefront, you must utilize the Design page
layouts. The content items are listed on the storefront. Each of the individual items on
that list can be selected and the item details viewed.

To configure content items to display on the storefront:

1. Open the Design page and choose any layout to clone. For further information,
refer to Create a new layout instance (cloning).

2. Configure the Settings for the newly cloned layout, and click Save.

3. Open grid view and drag the Content Listing widget to the layout. For further
information, refer to Customize your store layouts.

4. Open the Content Listing widget’s Settings and select the content type from the
dropdown list. Note that you can only associate one content type with a Content
Listing widget, and as such, you must repeat this step for each content type you
wish to display on your storefront. For example, the content type ‘blog’ should be
created separately from the content type ‘recipes’.

5. Click Save.

You must now edit the widget’s code in order to ensure that the content item fields
match those on your own content management system, and to tailor the look of
the list as required.

6. Open the About tab and click Go to widget code, which enables you to go
directly to the widget’s template. From here you can update the code references
for the content item fields. Note: You must ensure the content identifier is up to
date so it matches your own fields.

7. Click Save.

8. Publish the changes in order to see the content pages, containing a link to the
content details, displayed on the storefront.

The content details use a Content Item layout to render this information. The page
URL of the content item corresponds to the mapped content table. If, at any point,
you make updates to the content and then re-publish, this is automatically sent to
Commerce.
All content items are by default, rendered on the storefront using the Content
Item layout. However, you can create another version of that layout for a selected
content type by cloning the Content Item layout and associating one or more
content types to that layout within the layout settings. As per Step 6 above, you
can configure the Content Item layout code to ensure the content item is displayed
on the storefront.

Chapter 24
Configure content items to display on the storefront

24-2

25
Integrate with External Shipping
Calculators

You can integrate your store with external shipping calculators that return shipping
methods and costs for an order.

With Oracle CX Commerce, three shipping method options are available:

• Internally priced shipping method - A shipping method created in the
administration interface whose price and availability is determined during checkout
using internal rules. Refer to Configure Shipping for information on using this
method.

• Externally priced shipping method - A shipping method created in the
administration interface whose price and availability are determined using a
combination of internal rules and the shipping calculator service. This method is
covered in the Work with externally priced shipping methods Work with external
shipping methods section this chapter.

• External shipping method – A shipping method returned by the external
shipping calculator service that does not have an internal representation in the
administration interface.

The price and availability is determined entirely by the service. Refer to the Work with
external shipping methods section of this chapter for detailed information on using this
method. Refer also to Use Webhooks for additional information on using webhooks
and specifically the shipping calculator service.

This chapter focuses solely on providing information related to the externally priced
and external shipping methods. Externally priced shipping methods are covered in
their own section in the first half of this chapter. This type of shipping method provides
you with the best (and preferred) way to use the shipping calculator service and
allows you to take advantage of Oracle CX Commerce’s shipping promotion and tax
calculation features. External shipping methods are covered in the second half of this
chapter. This information is provided to assist customers who may have used this as
the original way to integrate with the shipping calculator service. There is finally a
section on enabling fallback shipping methods, which applies to both externally priced
and external shipping methods.

Work with externally priced shipping methods
Externally priced shipping methods can be created to represent each shipping method
that can be returned by your shipping calculator service.

Unlike external shipping methods, creating externally priced shipping methods lets
you take advantage of Oracle CX Commerce’s shipping promotion and tax calculation
features.

Oracle CX Commerce determines which externally priced shipping methods are
available based on internal rules. The available shipping methods and costs are
sent to the shipping calculator service in the request. The shipping calculator service

25-1

responds with some or all of the available methods and their prices and these
available shipping methods are displayed to the shopper with the returned price.
This section of this chapter provides detailed information on using this method. Refer
also to Use Webhooks for additional information on using webhooks and the shipping
calculator service.

With Oracle CX Commerce, you can create an externally priced shipping method
through the administration interface Shipping Methods page available from the
Settings list. This is done just like creating an internally priced shipping method except
there is a drop-down list selection you can choose to indicate that you are specifying
an externally priced shipping method. Also, you have availability to the “applies to
shipping methods” picker in shipping promotions like you do with internally priced
shipping methods.

Other things to note about this method include:

• You have the ability to indicate that a shipping method is externally priced using
both the Admin API and administration interface.

• You have the ability to set all properties for external shipping methods in mostly
the same way you can for internal methods. Some of the fallback behavior is
different, however. See Enable fallback shipping methods for more information.

• You have the ability to allow externally priced shipping methods to be marked as
fallback methods. Externally priced shipping methods marked as fallback require
prices. Pricing information is optional if the shipping method is externally priced but
not a fallback. See Enable fallback shipping methods for more information.

Externally priced shipping methods behave the same as internally priced shipping
methods. Shipping promotions and taxes are applied to externally priced shipping
methods the same way as internally priced shipping methods.

The store recognizes the shipping regions associated with externally priced shipping
methods as it does with internally priced shipping methods. The store should
recognize the shipping regions associated with an externally priced shipping method
that is considered unavailable based on internal rules but is returned by the shipping
calculator. The service overrides the internal rules in this case and the resulting
shipping method/storefront interface behaves the same as all other internally priced
shipping methods.

Create externally priced shipping methods

As mentioned, you have the ability to create an externally priced shipping method
using the administration interface. For information on how to do this, refer to Configure
Shipping.

Configure the Shipping Calculator service for externally priced methods

Oracle CX Commerce invokes the Shipping Calculator function API to determine
the available shipping method list. The list is then populated with a combination of
available internal shipping methods and shipping methods returned in the Shipping
Calculator response.

When the order is submitted, Commerce invokes the service again to confirm that
the selected shipping method and its associated cost are still valid. For an order with
multiple shipping groups, Commerce invokes the Web API once for each shipping
group.

Chapter 25
Work with externally priced shipping methods

25-2

To send this data to the external shipping calculator service, you configure the service
by specifying the URL, username, and password for accessing the service. (See
Configure webhooks for details.) You must also configure the external service to read
the request data, determine the appropriate shipping methods, and send a response
that includes the following items:

• The key orderIdReceived, whose value is a string that is the ID assigned to the
order by Commerce.

• The shippingMethods array, which contains available shipping methods and their
associated costs. A sample response is shown in this section of this chapter.

You can configure fallback shipping methods to display if Commerce cannot connect
to the external system, for example in the event of an outage. See Enable fallback
shipping methods for more information

Understand how the shipping calculator Web API works

The shipping calculator Web API sends the following data to the external shipping
calculator service:

• Most details about the order, including all its shipping groups. The request does
not include certain payment details, such as credit card information. See Order
Submit request example for a sample JSON representation of an order object in a
Shipping Calculator service request body.
Previous versions of this service sent less order data in the payload of the
request. Commerce still supports this version of the request by default. To send
the detailed order object in the request, you must first use the Admin API to
issue a PUT request to /ccadmin/v1/merchant/clientConfiguration that sets
the includeOrderDetailsInShippingMethodsPayload property to true.

• Profile details for the registered shopper who placed the order.

• The service request will also contain the externally priced shipping methods (along
with their IDs and other properties) that are available based on internal rules.

Upon receiving the request, the shipping calculator service sends back a response
which includes the externally priced shipping methods that are available for the current
shopper/cart.

Note: The externally priced shipping methods in the response are identified by the ID
sent in the request. Based on this ID, the response provides pricing and additional
method information. In this way, the response format is different from what you might
be used to when using existing external shipping methods. For more information,
refer to the next two sections which describe the externally priced shipping methods
response and request formats in more detail.

Understand the externally priced shipping methods shipping calculator service
request

In more detail, the shipping service request provides the following information to the
shipping calculator service:

• The externally priced shipping methods eligible based on internal rules in the
request. These will include the shipping method ID (see example) to identify them
and other properties including the internal price if defined.

• The complete cart/order definition if the full order capability has been requested.

• The shopper profile

Chapter 25
Work with externally priced shipping methods

25-3

• Shipping related properties for each item in the order such as dimensions and
weight.

The following presents an example of a shipping calculator service request sent for
externally priced shipping methods. The shipping method ID is displayed in bold in the
example.

"availableExternallyPricedShippingMethods" : [{
 "eligibleForProductWithSurcharges" : false,
 "ranges" : [],
 "associatedPriceListGroups" : [{
 "id" : "defaultPriceGroup"
 }],
 "displayName" : "Example External Shipping Method",
 "description" : "Example External Shipping Method",
 "allSites" : true,
 "sites" : [],
 "shippingMethodId" : "100001",
 "excludedCategoriesShippingCharge" : [],
 "isFallback" : false,
 "taxCode" : "100",
 "shippingGroupType" : "hardgoodShippingGroup"

Understand the externally priced shipping methods shipping calculator service
response

Upon receiving the request, the shipping calculator service sends back a response
which includes the externally priced shipping methods that are available for the current
shopper/cart. These are identified by the ID received in the request.

The following example shows a shipping calculator service response for externally
priced shipping methods. Again, the same shipping method ID is displayed in bold in
the example.

"shippingMethods": [{
 "eligibleForProductWithSurcharges": false,
 "estimatedDeliveryDateGuaranteed": false,
 "displayName": "Example External Shipping Method",
 "shippingTax": 2,
 "currency": "USD",
 "shippingCost": 12.95,
 "shippingMethodId":"100001"
 "internationalDutiesTaxesFees": 0,
 "estimatedDeliveryDate": "2018-02-02 14:48:45 -0400",
 "shippingTotal": 14.95,
 "deliveryDays": 2,
 "taxcode": "100",
 "carrierId": "ON",
 }]

If a shipping method is returned in the response whose ID matches the one in the
request then:

Chapter 25
Work with externally priced shipping methods

25-4

• The properties returned in the response override the properties modeled internally.
For example, the price and tax code returned by the shipping calculator will be
used instead of the price and tax code modeled internally.

• Oracle CX Commerce applies shipping promotions and calculate taxes for these
shipping method and that generally behave the same as internal shipping methods
except that they use the returned price and properties.

If a shipping method is returned in the response has an ID that does NOT match that
in the request, or that does not have an ID then:

• This shipping method is displayed with the name, price, tax code, and other
properties as returned in the response.

• Oracle CX Commerce treats these shipping methods as external shipping
methods. Shipping promotions will not be applied. Other limitations may apply as
described in the next section concerning external shipping methods.

A response may include a combination of externally priced and external shipping
methods. Also, the shipping calculator may return a 400 error to indicate that the
shipping address is invalid.

The following example shows an error response that might be returned when there is
an invalid shipping address:

{ "errorCode": "00000000",
 "message": "Invalid shipping address", "errors": [
 { "errorCode": "28128",
 "message": "Update unsuccessful. Shipping address is not
 a valid ship-to address.", "status": "400"
 }], "status": "400" }

Understand the contents of an order payload

If the shipping calculator service is triggered because an order is placed, a scheduled
order is instantiated, or an order is approved, the order payload also includes details
about the order and its shipping methods. See Order Submit request example for a
sample JSON representation of an order in a webhook body.

The payload does not include certain payment details, such as credit card information.
See Understand webhooks and PCI DSS compliance for information about payment
details that are excluded from the request.

Some examples of the information that you find in the payload associated with this
shipping method include

• Promotion information

• Shopper profile information

• Product level information (for example length, width, weight, etc.)

• Available externally priced shipping methods information

For more complete information and examples of the payload associated with this
shipping method, refer to Learn about the APIs.

Chapter 25
Work with externally priced shipping methods

25-5

Upgrading from external shipping methods to externally
priced shipping methods

If you have previously used external shipping methods and want to take advantage
of externally priced shipping methods, then you should re-implement the functionality
following the procedure described in the previous Work with externally priced shipping
methods section of this chapter.

You need to create an externally priced shipping method for each shipping method
returned by your shipping calculator service. You must also update your shipping
calculator service to receive the available externally priced shipping methods in
the request and then return a subset of these methods as identified by the
shippingMethodId in the response. You can continue to use existing fallback shipping
methods or mark the externally priced shipping methods as fallback.

Work with external shipping methods
Unlike externally priced shipping methods, there is no need to create an internal
representation for an external shipping method. This step can be omitted.

However, you may need to create a dummy internal shipping method if you plan to use
external shipping methods only. This method is described in Configure Shipping. This
step applies only to external shipping methods and is not needed for externally priced
shipping methods.

Note: You can use external shipping methods if you do not need to take advantage
of Oracle CX Commerce shipping promotion functionality. Using externally priced
shipping methods, however, provides you with the best way to use the shipping
calculator service and allows you to take full advantage of Oracle CX Commerce’s
shipping promotions and tax calculation features.

Configure the Shipping Calculator service for external shipping methods

When the shopper selects the shipping methods list in the shopping cart, Commerce
invokes the Shipping Calculator service. The list is then populated with the shipping
methods returned in the service response. Then, when the shopper submits the order,
Commerce invokes the service again to confirm that the selected shipping method
and its associated cost are still valid. For an order with multiple shipping groups,
Commerce invokes the service once for each shipping group.

The service sends the following data to the external shipping calculator:

• Most details about the order, including all its shipping groups. The request
does not include certain payment details, such as credit card information. See
Understand webhooks and PCI DSS compliance for information about payment
details that are excluded from the request. See Order Submit request example
for a sample detailed representation of an order object in a Shipping Calculator
service request body.
Previous versions of this service sent less order data in the payload of the request.
Commerce still supports this version of the request by default. To send the more
complete order representation in the request, you must first use the Admin API to
issue a PUT request to /ccadmin/v1/merchant/clientConfiguration that sets the
includeOrderDetailsInShippingMethodsPayload property to true.

Chapter 25
Upgrading from external shipping methods to externally priced shipping methods

25-6

• Profile details for the registered shopper who placed the order. See Manage
Shopper Profiles for a sample JSON representation of a shopper profile.

To send this data to the external shipping calculator service, you configure the service
by specifying the URL, username, and password for accessing the service. (See
Configure webhooks for details.) You must also configure the external service to read
the request data, determine the appropriate shipping methods, and send a response
that includes the following items:

• The key orderIdReceived, whose value is a string that is the ID assigned to the
order by Commerce.

• The shippingMethods array, which contains available shipping methods and their
associated costs.

The following sample shows a response with two available shipping methods:

{
 "orderIdReceived": "o460411",
 "shippingMethods": [
 {
 "shippingCost": 12.95,
 "shippingTax": 2.00,
 "shippingTotal": 14.95,
 "internationalDutiesTaxesFees": 0,
 "eligibleForProductWithSurcharges": true,
 "deliveryDays": 2,
 "estimatedDeliveryDateGuaranteed": false,
 "estimatedDeliveryDate": "2013-04-12 14:48:45 -0400",
 "displayName": "canadapost-overnight",
 "carrierId": "ON",
 "taxcode": "GT987",
 "currency": "USD"
 },
 {
 "shippingCost": 29.00,
 "shippingTax": 4.00,
 "shippingTotal": 33.00,
 "internationalDutiesTaxesFees": 0,
 "deliveryDays": 2,
 "estimatedDeliveryDateGuaranteed": false,
 "estimatedDeliveryDate": "2013-04-12 14:48:45 -0400",
 "displayName": "fedex-2dayground",
 "carrierId": "1D",
 "taxcode": "TD543",
 "currency": "USD"
 }
]
}

You can configure fallback shipping methods to display if Commerce cannot connect
to the external system, for example in the event of an outage. See Enable fallback
shipping methods for more information;

Chapter 25
Work with external shipping methods

25-7

If no shipping methods are available based on the shipping address, the response
returns an error. The following sample shows an error response that might be returned
for an invalid shipping address.

{
 "errorCode": "00000000",
 "message": "Invalid shipping address",
 "errors": [
 {
 "errorCode": "28128",
 "message": "Update unsuccessful. Shipping address is not
 a valid ship-to address.",
 "status": "400"
 }
],
 "status": "400"
}

Implement the shipping calculator service for external shipping methods

In comparison to an externally priced shipping method, an external shipping method is
a method returned by the external shipping calculator service that does not have an
internal representation in the administration interface.

To set up the external shipping method integration with an external shipping calculator,
perform the following steps:

1. Create shipping regions that specify where the carrier service will ship to. See
Create shipping regions for more information.

2. Your store can offer a combination of internal and external shipping methods.
If your store uses only shipping methods returned from an external service, create
a shipping method and associate it with the shipping regions you created in the
previous step. See Create a shipping method for more information.

Keep the following points in mind as you create the shipping method:

• Give the shipping method an appropriate name, such as the descriptive name
of a specific Region.

• By default, Commerce assumes that shipping prices received from the
external service include all applicable taxes. Therefore, any tax value
calculated by your integrated tax processor (based on the shipping method’s
Tax Code property) is automatically overridden with 0 when the shipping price
is displayed to the shopper.

However, you can configure Commerce so it uses your integrated tax processor
(Avalara, Vertex, or an external tax processor) to calculate applicable shipping
taxes for external shipping methods. This is the preferred method for calculating
shipping taxes because shipping taxes are calculated the way you intended. See
Calculate taxes for external shipping methods shipping calculator service for more
information.

3. If you want to offer only shipping methods returned in the Shipping Calculator
service response, customize the Order Summary widget JavaScript to hide the
shipping method (based on its repositoryId property) you created in the previous
step. See Developing Widgets for more information about customizing widgets.

Chapter 25
Work with external shipping methods

25-8

Note: There is no way to hide this shipping method on the Agent Console. You
must instruct Agent Console users to not select this shipping method.

4. Configure the Shipping Calculator service as described in Configure the Shipping
Calculator service for external shipping methods section of chapter.

Once you have performed the steps in this procedure, the service is ready to use.

Understand the external shipping methods shipping calculator service request

With external shipping methods, you need to know the following information about the
service request:

• The request includes the complete cart/order definition

• The request includes the shopper profile

• The request includes shipping related properties for each item in the order such as
dimensions and weight.

Understand the external shipping methods shipping calculator service response

With external shipping methods, you need to know the following information about the
service request:

• The response includes external shipping methods identified by display name.
The price, tax code, and all properties are displayed as returned by the shipping
calculator (since there is no internal representation).

• Alternately the response may return a 400 error indicating an invalid shipping
address (existing)

Oracle CX Commerce will not apply shipping promotions to these shipping methods.

Calculate taxes for external shipping methods shipping calculator service

By default, Commerce requires that shipping prices received from the external service
include all applicable taxes. However, you can configure Commerce to use your
integrated tax processor (Avalara, Vertex, or an external tax processor) to calculate
applicable shipping taxes for shipping methods returned by the external shipping
methods shipping calculator service. This is the preferred method for calculating
shipping taxes because shipping taxes are calculated the way you intended.

You configure the Shipping Calculator webhook response to specify where shipping
taxes are calculated by configuring the shipping system to include the appropriate
value for the flag taxIncluded in the webhook response. The value should be one of
the following:

• true: Shipping taxes must be calculated by the external shipping service. This is
the default value.

• false: Shipping taxes are automatically calculated by the tax processor you
integrated with Commerce.

The following sample webhook response body might be returned if taxIncluded is
omitted:

orderIdReceived "o30451"
shippingMethods
0
shippingCost 12.95

Chapter 25
Work with external shipping methods

25-9

shippingTax 2
shippingTotal 14.95
internationalDutiesTaxesFees 0
eligibleForProductWithSurcharges true
deliveryDays 2
estimatedDeliveryDateGuaranteed false
estimatedDeliveryDate "2018-09-12 14:48:45 -0400"
displayName "canadapost-overnight"
carrierId "ON"
taxcode "GT987"
currency "USD"

If taxIncluded is set to false, the response body might be:

orderIdReceived "o30451"
shippingMethods
0
shippingCost 12.95
shippingTax 0
shippingTotal 12.95
internationalDutiesTaxesFees 0
eligibleForProductWithSurcharges true
deliveryDays 2
estimatedDeliveryDateGuaranteed false
estimatedDeliveryDate "2018-09-12 14:48:45 -0400"
displayName "canadapost-overnight"
carrierId "ON"
taxcode "GT987"
taxIncluded "false"
currency "USD"

See Configure Tax Processing for information about integrating with a tax processor.

Enable fallback shipping methods
You can designate internal shipping methods as fallback by selecting the fallback
option.

You can also designate externally priced shipping methods as fallback. If the shipping
calculator fails (no response or invalid response), then any internal and externally
priced shipping methods that are eligible based on internal rules are shown to the
shopper. In this case, the internal prices defined in the shipping methods will be used.

Keep in mind that internal shipping methods marked as fallback are only available to
the shopper if the shipping calculator fails. Externally priced shipping methods can be
available to the shopper if the shipping calculator fails (using internal prices) or if the
shipping method is available based on internal rules and is returned by the shipping
calculator (as identified by an ID). In case of the latter, the price and properties
returned by the shipping calculator will be used.

Understand more about fallback shipping methods

As mentioned, Oracle CX Commerce lets you offer fallback shipping methods to
shoppers when it cannot connect to your external shipping calculator’s web service,

Chapter 25
Enable fallback shipping methods

25-10

for example, in the event of an outage. The fallback logic displays internally priced
shipping methods (that you can specify either in the administration interface or with the
Admin API) to all orders if a specified number of service calls to the external shipping
calculator fail within a specified time span. This prevents errors at the shipping
calculation step of order processing and allows orders to progress to the payment
processing step.

During the initial configuration of your environment, Oracle sets certain settings that
trigger the use of fallback shipping methods, including the number of consecutive
failed service calls, the time span over which to count failed service calls, and the time
period after which Commerce should try calling the shipping calculator’s service again.

Commerce uses the fallback logic to calculate shipping only when calls to the external
shipping calculator fail. That is, when the external shipping calculator’s web service
responds to a call with a 500-level status code. Fallback shipping calculation is not
used when any other type of response is received.

The shippingMethod property on Commerce order objects specifies the shipping
method selected by the shopper when they created the order. This property is also
included in the data Commerce sends in the Order Submit webhook. You can use this
information to identify orders submitted with a fallback shipping method so you can
decide how to handle them in your order management system.

Specify a fallback shipping method

You can mark any number of internally priced shipping methods as fallbacks. You
might want to create a fallback method for each type of shipping method you expected
to receive back from the external shipping service. This section describes how to use
the Admin REST API to specify fallback shipping methods. To learn how to use the
administration interface for this task, see Configure Shipping.

To specify that a shipping method can be used as a fallback, set its isFallback
property to true. The following example marks an existing shipping method as a
fallback.

PUT /ccadmin/v1/shippingMethods/standardShippingMethod HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "isFallback": true
}

Disable fallback shipping

The ability to use fallback shipping methods is enabled by default, but you can
disable it. If you disable fallback shipping and Commerce cannot reach your shipping
calculator’s web service, shoppers may see errors during checkout and may not be
able to complete their orders.

You use the Commerce Admin API to set the fallbackEnabled property, a Boolean
that specifies whether fallback shipping methods are used. The default value for
fallbackEnabled is true.

To set the fallbackEnabled property, issue a PUT request to the /ccadmin/v1/
merchant/fallbackShippingConfiguration endpoint.

Chapter 25
Enable fallback shipping methods

25-11

The following example shows a PUT request that disables fallback shipping.

PUT /ccadmin/v1/merchant/fallbackShippingConfiguration HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "fallbackEnabled": false
}

Chapter 25
Enable fallback shipping methods

25-12

26
Integrate with an External Pricing System

By default, Oracle CX Commerce stores prices for products and SKUs internally in
price lists. When a shopper browses products on your storefront, the internal price is
displayed for each product, and this price is applied to the product when it is added to
the shopping cart.

Some stores, however, may need to access prices that are maintained in an external
system. To enable this, Oracle CX Commerce includes tools that you can use to build
a custom integration with an external pricing system. You create a custom widget that
makes a call to the external pricing system to obtain the price of an item when it
is added to the shopping cart. You also configure a webhook that calls the external
pricing system to validate the prices when the shopper checks out.

Create the widget
To obtain prices from an external pricing system, you write a custom widget to include
on your storefront’s pages.

The custom widget’s JavaScript file extends the storefront’s CartViewModel class by
implementing a prepricing callback function. When a shopper modifies the shopping
cart by adding or removing products or changing quantities, this function makes a call
to the external pricing system to obtain prices for the items in the cart.

In addition to an externalPrice property for storing the external price of a product,
the CartViewModel has an externalPriceQuantity property that determines the
maximum quantity that the external price can be applied to. For example, suppose
the list price of a product is $10.00, but the external pricing system returns an
externalPrice value of $7.00 and an externalPriceQuantity value of 3. If a shopper
selects this product and specifies a quantity of 2, the price in the cart for the two items
is $14.00, because the external price is applied to both items. However, if the shopper
specifies a quantity of 5, the external price is applied to only three of the items, so the
total is $41.00 (three items at $7.00 each, and two items at $10.00 each).

If the value of externalPriceQuantity for a specific product is -1, there is no
maximum quantity, so the external price is applied to all of the items of the product.

Create the widget structure

Create your widget as a global widget. Global widgets are automatically loaded for all
pages; you do not need to add them explicitly to page layouts. Global widgets cannot
include any user interface elements, so you should omit any display templates. The
following shows an example of the files and directories in a global widget:

External Pricing/
 ext.json
 widget/
 external-pricing/
 widget.json

26-1

 js/
 external-pricing.js

To make the widget global, set the global property in the widget.json file to true:

"global": true

For more information about the widget structure and the contents of the ext.json
and widget.json files, see Create a Widget.

Write the JavaScript

The JavaScript code you write extends the CartViewModel class by implementing
a callback function that executes during prepricing. The following example shows
sample JavaScript that implements a prepricing function:

define(

 ['jquery', 'knockout', 'ccLogger'],

 function($, ko, CCLogger) {

 'use strict';
 return {

 onLoad: function(widget) {
 CCLogger.info("Loading external pricing widget");
 var callbackMap = new Object();
 var performPrepricing = function()
 {
 // sample code to invoke external system
 $.ajax({
 type: 'POST',
 dataType: 'json',
 url: EXTERNAL_SYSTEM_SERVICE_URL,
 data: widget.cart().items(),
 success: function(data) {
 // update the cart items with external price details,
 // assuming data has item details with external prices
 if (data.items && data.items.length > 0) {
 for (var i = 0; i < widget.cart().items().length; i++) {
 for (var j = 0; j < data.items.length; j++) {
 if (widget.cart().items()[i].productId ==
 data.items[j].productId &&
 widget.cart().items()[i].catRefId ==
 data.items[j].catRefId &&
 data.items[i].externalPrice &&
 data.items[j].externalPriceQuantity) {
 widget.cart().items()[i].externalPrice
 (data.items[j].externalPrice);
 widget.cart().items()[i].externalPriceQuantity
 (data.items[j].externalPriceQuantity);
 }
 }

Chapter 26
Create the widget

26-2

 }
 // invoke pricing in this success callback
 widget.cart().markDirty();
 }
 },
 error: function() {}
 });
 };
 callbackMap['prepricing'] = performPrepricing;
 widget.cart().setCallbackFunctions(callbackMap);
 }
 }
 }
);

Note that because the asynchronous call to the external pricing system may complete
after a pricing operation has already taken place on the Oracle CX Commerce
server, the code explicitly marks the cart as having been modified after applying the
external price information. This forces another pricing operation to be invoked using
the external prices.

Some other considerations to take into account when you create your widget:

• To avoid making unnecessary calls, it is a good idea for your code to check
whether external prices have already been applied to the cart items, and if so, skip
calling the external system.

• If the external system does not impose a quantity limit on a specific product, your
code should set externalPriceQuantity to -1, so that the external price is applied
to all of the items of the product.

Install the widget

To install the widget, do the following in the administration interface:

1. Click the menu icon, then click Settings.

2. Click Extensions and display the Developer tab.

3. Click Generate ID to generate an extension ID for the widget.

4. Edit the widget’s ext.json file and set the extensionID property to the value
generated in the previous step.

5. Package the widget as a ZIP file. Use the structure described in Create the widget
structure.

6. Display the Installed tab and click Upload Extension. Select the ZIP file.

7. Publish your changes.

Price the cart items

The custom widget alters the logic for pricing the shopping cart. This section describes
how the pricing of the cart behaves when external pricing is enabled.

When a shopper views the product detail page for a specific product, the page
displays the internal price that Oracle CX Commerce stores for the product. When the
shopper modifies the shopping cart (adds or remove an item, or changes the quantity
of an item), the custom widget makes a call to the external pricing service, and applies

Chapter 26
Create the widget

26-3

any external prices it receives to the items in the cart. Note that this means that the
price of a product in the cart may differ from the price displayed on the product detail
page.

After obtaining prices from the external pricing service, the storefront sends the
current contents of the cart to the Oracle CX Commerce server to calculate
pricing (for example, to apply promotions). This call includes externalPrice and
externalPriceQuantity values for any products in the cart that have external prices.

The following shows an example of the data sent to the server:

{
 "shoppingCart": {
 "items": [
 {
 "productId": "xprod1003",
 "quantity": 3,
 "catRefId": "xsku1013",
 "stockStatus": true,
 "discountInfo": [],
 "externalPrice": "21.00",
 "externalPriceQuantity": "1",
 "invalid": false
 },
 {
 "productId": "xprod1002",
 "quantity": 5,
 "catRefId": "xsku1007",
 "stockStatus": true,
 "externalPrice": "18.00",
 "externalPriceQuantity": "-1",
 "invalid": false,
 "currentPrice": 0
 }
],
 "coupons": []
 }
}

In the example above, the cart contains two products, xprod1003 and xprod1002. The
quantity of xprod1003 is 3, but only one of those items will have the external price
applied to it ($21.00), because the externalPriceQuantity value for xprod1003 is 1.
The other two items will have the internal price applied.

The quantity of xprod1002 is 5, and all of these items will have the external price
applied ($18.00), because the externalPriceQuantity value for xprod1002 is -1.

When the server receives the data above, it performs a pricing operation, using the
external prices for any items that have them, and applying internal prices to the rest.
The repriced cart data is returned to the storefront for display.

The following example shows part of the data returned to the storefront after a pricing
operation:

{
 "shoppingCart": {

Chapter 26
Create the widget

26-4

 "numberOfItems": 8,
 "items": [
 {
 "onSale": false,
 "catRefId": "xsku1013",
 "shippingSurchargeValue": 0,
 "externalPrice": 21,
 "unitPrice": 36,
 "discountAmount": 0,
 "productId": "xprod1003",
 "externalPriceQuantity": 1,
 "rawTotalPrice": 93,
 "price": 93,
 "discountInfo": [],
 "listPrice": 36,
 "detailedItemPriceInfo": [
 {
 "amount": 21,
 "currencyCode": "USD",
 "tax": 0,
 "discounted": false,
 "orderDiscountShare": 0,
 "quantity": 1,
 "detailedUnitPrice": 21
 },
 {
 "amount": 72,
 "currencyCode": "USD",
 "tax": 0,
 "discounted": false,
 "orderDiscountShare": 0,
 "quantity": 2,
 "detailedUnitPrice": 36
 }
],
 "salePrice": 0,
 "quantity": 3
 },
 {
 "onSale": false,
 "catRefId": "xsku1007",
 "shippingSurchargeValue": 0,
 "externalPrice": 18,
 "unitPrice": 24,
 "discountAmount": 0,
 "productId": "xprod1002",
 "externalPriceQuantity": -1,
 "rawTotalPrice": 90,
 "price": 90,
 "discountInfo": [],
 "listPrice": 24,
 "detailedItemPriceInfo": [
 {
 "amount": 90,
 "currencyCode": "USD",

Chapter 26
Create the widget

26-5

 "tax": 0,
 "discounted": false,
 "orderDiscountShare": 0,
 "quantity": 5,
 "detailedUnitPrice": 18
 }
],
 "salePrice": 0,
 "quantity": 5
 }
]
 },
 "discountInfo": {
 "orderCouponsMap": {},
 "orderDiscount": 0,
 "orderImplicitDiscountList": [],
 "unclaimedCouponsMap": {},
 "shippingDiscount": 0
 },
 "priceInfo": {
 "amount": 183,
 "total": 183,
 "shipping": 0,
 "totalWithoutTax": 183,
 "currencyCode": "USD",
 "shippingSurchargeValue": 0,
 "tax": 0,
 "subTotal": 183
 },
...

The response shows the effect of the external pricing. For example, the
detailedItemPriceInfo object for xprod1003 shows that one item is priced at $21.00
(the external price) and the other two are priced at $36.00 each (the internal price).
The total price of the three items is $93.00.

Configure the webhook
When the shopper clicks Place Order, the order is submitted. However, if any item in
the order has an external price, the server first invokes the External Price Validation
function webhook, which sends the external pricing data to the pricing system for
verification.

Invoking the webhook ensures that the external prices have not changed since the last
pricing operation and that the prices in the cart have not been modified.

For example, the following shows part of a sample request issued by this webhook:

...
"currencyCode" : "USD",
"operation" : "externalPricing",
"externalPrices": [
 {
 "externalPriceQuantity": 1,

Chapter 26
Configure the webhook

26-6

 "externalPrice": 21,
 "catRefId": "xsku1013"
 },
 {
 "externalPriceQuantity": -1,
 "externalPrice": 18,
 "catRefId": "xsku1007"
 }
]
...

To send this data to the pricing system, you configure the webhook by specifying
the URL, username, and password for accessing the pricing system. (See Configure
webhooks.) If your environment uses account-based storefronts, you might also
specify the account. You must also configure the pricing system to read the external
pricing data, verify whether it is valid, and send a response that includes the
appropriate response code. The response code should be one of the following:

• 5001 (VALID_EXTERNAL_PRICES)

• 5002 (INVALID_EXTERNAL_PRICES)

For example, if the external price data is valid, the response body might be:

{
 "ResponseCode": "5001"
}

If the response code is 5001, the order is submitted. If the response code is 5002, the
order is not submitted, and an error is displayed on the checkout page. You can write
custom logic to correct the error (for example, by removing items from the cart and
then putting them back in so that the widget retrieves up-to-date price data from the
external pricing system).

Use promotions from an external system
When working with promotions, you may want to use either Oracle CX Commerce
and/or an external system for issuing your promotions.

When a pricing operation is initiated, the regular item and order pricing occurs. After
order pricing, the system invokes the External Promotions webhook. This webhook
allows an external system that you have configured, as outlined earlier in this chapter,
to discount order and item prices determined by Commerce. Commerce receives a
request to update pricing to items within the cart and the pricing changes are applied
and displayed to the shopper.

The following properties are used for external promotion requests:

Property Description

externalCoupons Contains the external coupons list.

order Contains the order object, which contains the
order ID.

Chapter 26
Use promotions from an external system

26-7

Property Description

profile Contains the profile repository item that is
added to the request as a top-level JSON
object.

serviceName Contains the name of the webhook service.

ExternalPromotionsIds Contains the list of external promotion IDs
provided during the return process.

The following is an example of a request:

{
 "secondaryCurrencyCode": "string",
 "exchangeRate": 0,
 "profile": {},
 "currencyCode": "string",
 "operation": "string",
 "order": {
 "priceInfo": {},
 "discountInfo": {
 "orderCouponsMap": [
 {
 "promotionLevel": "string",
 "totalAdjustment": "string",
 "promotionDesc": "string",
 "promotionId": "string"
 }
],
 "orderDiscount": 0,
 "shippingDiscount": 0
 },
 "shoppingCart": {
 "numberOfItems": 2,
 "items": [
 {
 "unitPrice": 24.99,
 "amount": 36.98,
 "quantity": 2,
 "detailedItemPriceInfo": [
 {
 "discounted": false,
 "secondaryCurrencyTaxAmount": 0,
 "amount": 24.99,
 "quantity": 1,
 "tax": 0,
 "orderDiscountShare": 0,
 "detailedUnitPrice": 24.99,
 "currencyCode": "USD",
 "detailedItemPriceInfoID": "String"
 },
 {
 "discounted": true,
 "secondaryCurrencyTaxAmount": 0,
 "amount": 11.99,

Chapter 26
Use promotions from an external system

26-8

 "quantity": 1,
 "tax": 0,
 "orderDiscountShare": 0,
 "detailedUnitPrice": 11.99,
 "currencyCode": "USD",
 "detailedItemPriceInfoID": "String"
 }
],
 "catRefId": "string",
 "externalRecurringChargeDuration": "string",
 "discountInfo": [
 {
 "promotionLongDesc": "<p>Save $13 on
Wonderland OR
 XBOX 360</p>",
 "promotionName": "Explicit Item Discount -
 SAVE13DOLLARS",
 "promotionLevel": "item",
 "coupon": "SAVE13DOLLARS",
 "totalAdjustment": "-13.0",
 "promotionDesc": "Explicit Item Discount -
 SAVE13DOLLARS",
 "promotionId": "explicitItemAmountDiscount",
 "giftWithPurchaseDiscountInfo": []
 }
]
 }
]
 },
 "coupons": [
 {
 "code": "",
 "description": "",
 "status": "",
 "level": "",
 "id": ""
 }
],
 "shippingAddress": {},
 "siteId": "string"
 },
 "externalCoupons": [
 {
 "code": "EXTERNALCOUPON",
 "description": "",
 "status": "",
 "level": "",
 "id": ""
 }
]
}

Chapter 26
Use promotions from an external system

26-9

The orderCouponsMap includes the promotionID, which provides the external system
with the ability to differentiate between internal promotions that have been applied to
the order and those promotions that have been applied by the external system.

The External Promotions webhook responds with either an error code or a status
message. Note that the external system must provide a unique ID for each promotion
to be applied. This ID should be unique between both external promotions and internal
promotions. External promotion IDs must not clash with internal IDs. If an external
promotion uses an ID that matches the ID of an internal item or order promotion that
has already been applied to the order, the external promotion is ignored.

The following properties are used for external promotion response:

Property Type Description

adjustmentAmount Number The amount to adjust the
target item or order by.

adjustmentOperation String The external promotion
adjustment operation to apply.
Values for this property
include:

- adjustItemPrice – Adjust
the price of an item

- adjustOrderPrice –
Adjust the price of an order

adjustmentOrdering String The order of items to
target for adjustment based
on the highestFirst or
lowestFirst priced.

coupon String The coupon ID.

description String A description of the external
promotion being applied by the
adjustment.

displayName String The promotion display name.

id String The ID of the commerce item
in the cart to be adjusted.

promotionId String The external promotion ID.

quantity Number The quantity of items to be
adjusted.

The following is an example of the body of a response:

{
 "responseCode":"6101",
 "promotionAdjustments": [
 {
 "adjustmentOperation": "adjustItemPrice",
 "promotionId": "EP1001",
 "description": "$20 discount on XBOX 360",
 "id": "ci6000413",
 "quantity": "2",
 "adjustmentOrdering": "highestFirst",
 "adjustmentAmount": "-20",
 "displayName": "XBOX Forever",
 "coupon": "20DOLLARDISCOUNTXBOX"

Chapter 26
Use promotions from an external system

26-10

 },
 {
 "adjustmentOperation": "adjustOrderPrice",
 "promotionId": "EP1003",
 "description": "$50 off order when total above $300",
 "adjustmentAmount": "-50",
 "displayName": "50DollarDiscount"
 }
]
}

Once the webhook responds, the operation described in the response, or any errors,
are reported back.

Cancel external promotion orders

If an order is cancelled during the remorse period, the Cancellation webhook is
triggered. This could allow details of the cancelled orders to be posted to the external
pricing system upon cancellation, releasing any promotions that were applied during
the order so that they may be reapplied if necessary. The Cancellation webhook
contains all of the order-related information, as well as the reason for the cancellation.

If a remorse period is in effect, the Submit Order webhook is not fired until the end of
the remorse period. Use the Remorse Period Started webhook to give details of the
order to an external system prior to order being submit. For example, you could use
the Remorse Period Started webhook to mark promotions to ensure that they are not
unknowingly reapplied if a shopper creates another order during the remorse period.

For further information on remorse periods, refer to Understand the remorse period.

Chapter 26
Use promotions from an external system

26-11

27
Customize Email Templates

Oracle CX Commerce provides FreeMarker templates you can use to customize the
emails your store sends to shoppers.

FreeMarker is a Java template engine. You do not need to install FreeMarker in
order to edit the template files. For information about FreeMarker templates, see the
FreeMarker Manual at freemarker.org.

If your Commerce instance is running multiple sites, you can configure and customize
templates on for each site. See Download and edit email templates to learn how to
select a site when you download email templates and upload your changes. See Add
a site to a template for information about site names and URLs in templates.

Download and edit email templates
Changes you make to your store through the Commerce administration interface do
not affect the email templates. If you make changes to your store that you want to see
reflected in emails you send to customers, you must manually update the templates.

Examples of changes you might want to reflect in your email templates are as follows:

• If you change a theme’s style sheet on the Design page and you want your emails
to have the same look and feel, you must manually update each email’s style
sheet in its template.

• If you change the Tax Processing settings to remove the tax summary line from
your store’s cart, checkout, and order summary pages, you must manually update
the templates to remove the tax summary line from emails that contain order
summaries. (See Customize tax display in templates for more information.)

Each email template package you download includes the following files:

File Description

locales/<langcode>/Strings.xlf Contains localized strings for the locale
specified by <langcode>.

For example, the Spanish strings are located
in the file

locales/es/Strings.xlf.

You can edit text inside the <source> tags.

html_body.ftl FreeMarker template file that configures the
HTML body of the email.

text_body.ftl FreeMarker template file that configures the
plain text body of the email. This file is
included only in the package for the Forgotten
Password and New Account emails.

Readme.txt A help file that describes the fields that you
can reference in the templates.

27-1

File Description

subject.ftl FreeMarker template file that configures the
subject line of the email.

To download an email template package:

1. Click Settings.

2. Select Email Settings.

3. If you run multiple sites from a single Commerce instance, select the site whose
email templates you want to download.

4. Click the type of email whose template you want to download.

5. Under Content, click Download Current Template.

6. Specify whether to open the ZIP file or save it.

Once you have made changes to the template files, compress them into a ZIP file and
upload it. Make sure the ZIP file has the same name as the one you downloaded and
contains the following files:

• locales/<langcode>/Strings.xlf

• html_body.ftl for HTML-based email messages or text_body.ftl for plain
text email messages.

• subject.ftl

To upload an email template:

1. Click Settings.

2. Select Email Settings.

3. If you run multiple sites from a single Commerce instance, select the site whose
email templates you want to download.

4. Click the type of email whose template you want to upload.

5. Under Content, click Upload New Templates.

6. Locate the ZIP file to upload and then click Open.
When the upload is complete, Commerce displays a success message. This
update takes effect immediately and does not require publishing.

Customize tax display in templates
By default, your store’s cart, checkout, and order summary pages display a separate
tax summary line.

You can configure the tax processing settings to hide the tax summary line. For
example, if your catalog’s prices include tax, you wouldn’t want to show the tax
separately. (See Configure Tax Processing for more information about these settings.)
If you configure your store’s tax processing settings to hide the tax summary line,
you must customize the templates to remove the tax summary line from emails that
contain order summaries. (Order Placed, Items Shipped, Agent Cancel Order, Agent
Edit Order, and Agent Return Order emails all contain order summaries.)

To remove the tax summary line from an email template:

Chapter 27
Customize tax display in templates

27-2

1. Download the email template as described in Download and edit email templates.

2. Make the following changes to the html_body.ftl file:

• Remove the tax header by deleting the following from the section marked with
the comment <!-- Start of Shipment Contents: items, cost breakdown -->:

 ("ITEMS_SHIPPED_TAX_TITLE")}:

 ${getString

• Remove the tax field by deleting the following:

${shippingGroup.tax}

3. Upload the updated template as described in Download and edit email templates.

Customize line-item display in templates
This section describes how to customize email templates to display custom properties
of line items.

As discussed in the Customize Order Line Items section, you can add custom
properties to order line items, such as a property for specifying the initials to use
to monogram an item. By default, email templates that show order information do not
display custom properties. This section describes how to customize these templates
to display any custom properties added to line items. In addition, it describes how to
display product IDs and SKU IDs in line items. (Note that these customizations are
independent of each other; you can, for example, add the IDs without adding custom
properties.)

You can modify how line items are displayed in the following email templates:

• Abandon Order

• Items Shipped

• Order Approved

• Order Pending for Approval

• Order Placed

• Order Quoted

• Order Rejected

• Payment Failure

• Quote Failed

• Quote Requested

• Scheduled Order Placed Failed

• Store Cancel Order

To add product IDs and SKU IDs to an email template, insert the following in the order
items list in the html_body.ftl file:

Product ID : ${product.productId}

Chapter 27
Customize line-item display in templates

27-3

SKU ID: ${product.catRefId}

To add custom line-item properties to an email template, insert the following in the
order items list in the html_body.ftl file:

<#if product.dynamicProperties??>
 <#list product.dynamicProperties as dynProperty>
 <#if dynProperty.propertyValue??>

 ${dynProperty.propertyLabel}: ${dynProperty.propertyValue}
 </#if>
 </#list>
</#if>

See Download and edit email templates for information about how to modify email
templates.

The following example shows the order items list section of the Order Placed
template, customized to display custom properties, product IDs, and SKU IDs. The
customizations appear in bold:

<!-- Start of order items list-->
<#list data.orderItems as product>
<tr>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size: 14px;
 color: #687078; text-align: left; line-height: 24px; padding: 5px
10px
 5px 10px;"
 st-content="3col-content1" width="30%">
 <img src="${product.imageLocation}"
 alt="${product.title!}" width="50%">
 </td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size: 14px;
 color: #687078; text-align: left; line-height: 24px; padding: 5px 10px
 5px 10px;"
 st-content="3col-content1" width="40%">
 ${product.title!}

 Product ID : ${product.productId}

 SKU ID: ${product.catRefId}

 <!-- Variants -->
 <#if product.variants??>
 <#list product.variants as variant>
 <#if variant.optionValue??>

 ${variant.optionName}: ${variant.optionValue}
 </#if>
 </#list>
 </#if>

Chapter 27
Customize line-item display in templates

27-4

 <#if product.dynamicProperties??>
 <#list product.dynamicProperties as dynProperty>
 <#if dynProperty.propertyValue??>

 ${dynProperty.propertyLabel}: ${dynProperty.propertyValue}
 </#if>
 </#list>
 </#if>
 </td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size: 14px;
 color: #687078; text-align: center; line-height: 24px; padding: 5px
 10px 5px 10px;"
 st-content="3col-content1" width="10%">
 ${product.quantity}</td>
 <td
 style="font-family: Helvetica, arial, sans-serif; font-size: 14px;
 color: #687078; text-align: right; line-height: 24px; padding: 5px
 10px 5px 10px;"
 st-content="3col-content1" width="20%">
 ${product.price}</td>
</tr>
</#list>
<!-- End of order items list -->

Add company name and logo to account-based email
templates

In account-based storefronts, you can add a company name and logo to the emails
generated by Commerce by editing the html_body.ftl file associated with any
given email template.

Note: The account-based commerce feature may not be enabled in your environment.

To add a company name and logo, insert the following variables in the
html_body.ftl file for the appropriate template:

• ${data.organization.name} represents the company name and corresponds to
the value entered for the account name when creating the account.

• ${data.organization.logoURL} represents the path to the company logo and
corresponds to the path you provided for the Store Logo during account creation.

For example, the following is a modified version of the Forgotten Password template’s
html_body.ftl:

${getString("PASSWORD_RESET_SALUTATION", data.firstName)}

${getStringNotEscaped("PASSWORD_RESET_LINE_1", data.password)}

${data.organization.name}

${getString("PASSWORD_RESET_LINE_2")}

Chapter 27
Add company name and logo to account-based email templates

27-5

${getString("PASSWORD_RESET_SENT_SIGNATURE_TEXT")}

At run time, both variables are replaced in the generated email with the name and logo
image associated with the account.

To modify an email template, you must download its constituent files, make the
modifications to the html_body.ftl file, and then upload it again. For details on
this process, see the Download and edit email templates section.

You can add your company name and logo to the following email templates:

• Abandon Order

• Account Assignment Changed

• Agent Cancel Order

• Agent Edit Order

• Agent Forgot Password

• Agent Return Order

• Agent Return Order Refund

• Agent Shopper Registration

• Forgotten Password

• New Account

• Order Placed

• Wish List New Comment

• Wish List New Member

• Wish List New Post

These email templates are not yet compatible with company name and logo additions:

• Items Shipped

• Store Cancel Order

Notify a contact of multiple account or role changes in a
single email

If your store supports account-based commerce, you can configure Commerce to send
emails notifying contacts of changes to their account and role assignments. When you
make several account or role changes for a contact at the same time, Commerce can
notify the contact of those changes in a single email.

To take advantage of this feature, you must use the most recent version of the
Account Assignment Changed and Role Assignment Changed email templates as
described in Download and edit email templates. When you are using the most recent
version of these templates, Commerce automatically includes multiple account or role
assignment changes in a single email. If you use older versions of the templates,
Commerce will send a separate email each time you save an account or role
assignment change.

Chapter 27
Notify a contact of multiple account or role changes in a single email

27-6

The consolidated email notification displays account or role assignment changes made
in a single endpoint call. In the administration interface, this usually means changes
made before you clicked the Save button. Some actions (such as changing a parent
organization, assigning a sub account as a parent, or removing both parent and sub
account associations at the same time) result in multiple endpoint calls, however. In
this case, the contact will still receive multiple emails, one for each endpoint call.

Customize recommendations in templates
The Abandon Cart and New Account email templates allow you to include product
recommendations with the emails you send.

You can configure the product recommendations information sent to your shoppers as
follows:

• For the Abandon Cart email, you can provide product recommendations, set
the number of recommendations, and set the strategy and restrictions for the
recommendations.

• For the New Account email, you can provide product recommendations and set
the number of products recommended.

See Display product recommendations for more information about these settings.

To customize product recommendations in an email template:

1. Download the email template as described in Download and edit email templates.

2. Edit the code sample provided below and add the block to the html_body.ftl
file. It is recommended you add the code after the Call to Action block.

3. Upload the updated template as described in Download and edit email templates.

<!-- Show recommendations if present -->
<#if data.recommendations??>
<!-- Start of separator -->
<table width="100%" bgcolor="#ffffff" cellpadding="0" cellspacing="0"
border="0"
 id="backgroundTable" st-sortable="separator">
 <tbody>
 <tr>
 <td>
 <table width="600" align="center" cellspacing="0"
cellpadding="0"
 border="0" class="devicewidth">
 <tbody>
 <tr>
 <td align="center" height="30" style="font-size:1px;
 line-height:1px;"> </td>
 </tr>
 <tr>
 <td width="550" align="center" height="1"
bgcolor="#d1d1d1"
 style="font-size:1px; line-
height:1px;"> </td>
 </tr>
 <tr>

Chapter 27
Customize recommendations in templates

27-7

 <td align="center" height="30" style="font-size:1px;
 line-height:1px;"> </td>
 </tr>
 </tbody>
 </table>
 </td>
 </tr>
 </tbody>
</table>
<!-- End of separator -->
<!-- Start of Product Recommendations -->
<table width="100%" bgcolor="#ffffff" cellpadding="0" cellspacing="0"
border="0"
 id="backgroundTable">
 <tbody>
 <tr>
 <td>
 <table width="600" cellpadding="0" cellspacing="0" border="0"
align="center"
 class="devicewidth">
 <tbody>
 <tr>
 <td width="100%">
 <table width="600" cellpadding="0" cellspacing="0"
border="0"
 align="center" class="devicewidth">
 <tr>
 <tr>
 <td>Some other products you may like ...</td>
 </tr>
 <tr>
 <td> </td>
 </tr>
 <tr>
 <td>
 <!-- col 1 -->
 <table width="100%" align="left" border="0"
cellpadding="0"
 cellspacing="0" class="devicewidth">
 <tbody>

 <tr>
 <td>
 <!-- start of text content table -->
 <table width="100%" align="center" border="0"
 cellpadding="0" cellspacing="0"
 class="devicewidthinner">
 <tbody>

 <!-- title2 -->
 <tr>
 <td width="30%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 18px; color:
#FFFFFF;

Chapter 27
Customize recommendations in templates

27-8

 text-align:left; line-height: 24px;
 background: #1c73a3; padding:5px 10px
5px 10px;"
 st-title="3col-title1">Product Name</td>
 <td width="50%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 18px; color:
#ffffff;
 text-align:center; line-height: 24px;
 background: #1c73a3; padding:5px 10px
5px 10px;
 " st-title="3col-title1"> </td>
 <td width="20%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 18px; color:
#ffffff;
 text-align:right; line-height: 24px;
 background: #1c73a3; padding:5px 10px
5px 10px;
 " st-title="3col-title1">Price</td>
 </tr>
 <!-- end of title2 -->
 <!-- Spacing -->
 <tr>
 <td width="30%" height="15" style="font-
size:1px;
 line-height:1px; mso-line-height-rule:
exactly;
 "> </td>
 <td width="50%" style="font-size:1px; line-
height:1px;
 mso-line-height-rule:
exactly;"> </td>
 <td width="20%" style="font-size:1px; line-
height:1px;
 mso-line-height-rule:
exactly;"> </td>
 </tr>
 <!-- Spacing -->
 <!-- content2 -->

 <#list data.recommendations as product>
 <tr>
 <td width="30%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 14px; color:
#687078;
 text-align:left; line-height: 24px;
 padding:5px 10px 5px 10px;
 " st-content="3col-content1">
 <div class="imgpop">
 <img src="${product.imageLocation}"
width="83"
 height="111" alt="$
{product.title!}">

Chapter 27
Customize recommendations in templates

27-9

 </div>
 </td>
 <td width="40%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 14px; color:
#687078;
 text-align:left; line-height: 24px;
 padding:5px 10px 5px 10px;
 " st-content="3col-content1">

 ${product.title!}
 <td width="20%" style="font-family:
Helvetica, arial,
 sans-serif; font-size: 14px; color:
#687078;
 text-align:right; line-height: 24px;
 padding:5px 10px 5px 10px;
 " st-content="3col-content1">
 <#if product.priceRange?? &&
 product.priceRange="true">
 ${product.priceMin!}
 - ${product.priceMax!}
 <#elseif product.onSale?? &&
product.onSale="true">
 <span style="text-decoration:
 line-through">$
{product.listPrice!}

 ${product.salePrice!}
 <#else>
 ${product.listPrice!}
 </#if>
 </td>
 </tr>
 </#list>

 <!-- end of content2 -->
 </tbody>
 </table>
 <!-- end of text content table -->
 </td>
 </tr>

 </tbody>
 </table>
 </td>
 </tr>
 </table>
 </td>
 <!-- spacing -->

 <!-- end of spacing -->
 </tr>
 </tbody>
 </table>

Chapter 27
Customize recommendations in templates

27-10

 </td>
 </tr>
 </tbody>
</table>
</#if>
<!-- end of Product Recommendations-->

Add a site to a template
If your Commerce instance supports more than one site, one site is designated as the
default. When you create a new site, the values for email settings and templates are
copied to the new site from the default site.

The values that are copied include any customizations you have made to email
templates for the default site. When you download and upload email templates in
an environment that supports multiple sites, make sure you select the correct site first.
See Download and edit email templates for more information.

In emails generated by Commerce, the following variables in the html_body.ftl file
associated with any given email template specify site name and URL information.

• ${data.sitename} represents the store name and corresponds to the value
entered for the site name when creating the site.

• ${data.storefrontUrl} represents the site base URL provided when creating the
site.

At run time, these variables are replaced in the generated email with the name and
URL associated with the site.

Chapter 27
Add a site to a template

27-11

28
Upload Third-Party Files

Oracle CX Commerce allows you to upload third-party files to your sites, such as files
used for site and merchant domain verification.

These files are used by services such as Google Search and Apple Pay, and they
must be accessible via the file path specified by the service. The topics in this section
describes how to upload and manage any third-party files your storefront requires.

Create folders for third-party files
Commerce includes a folder named /thirdparty where you can upload files needed
by third-party services such as Apple Pay and Google Search.

Files stored in the /thirdparty folder can be accessed on your site. For example,
if your site is www.example.com and you upload a file named myfile.html, the file
can be viewed at the following URL:

http://www.example.com/myfile.html

You can create subfolders of /thirdparty and upload files to these subfolders
using the Commerce Admin API. For example, you could create a subfolder named /
thirdparty/myfolder, and upload the file myfile.html to this subfolder. The file
would then be accessible at this URL:

http://www.example.com/myfolder/myfile.html

To create a subfolder of /thirdparty, issue a POST request to the /ccadmin/v1/
files/createFolder endpoint on the administration server. The request JSON for this
endpoint includes a single property, folder, for specifying the pathname, which must
begin with /thirdparty.

For example, the following request creates a /myfolder subfolder of the /
thirdparty folder:

POST /ccadmin/v1/files/createFolder HTTP 1.1
Authorization: Bearer <access_token>

{
 "folder": "/thirdparty/myfolder"
}

If the folder creation is successful, the JSON payload in the response is empty. To
verify that the folder was created successfully, see View a list of files and folders.

28-1

Upload third-party files to folders
You can upload files to the /thirdparty folder or to subfolders that you create.

Uploading a file involves the following steps:

1. Generate a token for the file upload.

2. Upload the file to the desired location.

3. View a list of files and folders.

4. Publish the files and folders to the production environment.

5. Verify that the file is present on the production environment.

These steps are described in the sections that follow.

Generate a token for the file upload

Before you can upload a file, you must generate a token to associate with the upload.
To do this, use the startFileUpload endpoint (PUT /ccadmin/v1/files). The request
JSON for this endpoint includes three properties:

• filename – The pathname for the file, relative to the /thirdparty folder.
So, for example, if you want to upload a file named policy.html to be
located directly in the /thirdparty folder, the value of the filename property
would be policy.html. (Do not include a leading slash; /policy.html is
incorrect.) If you want to upload a file named policy.html to be located in the /
thirdparty/myfolder subfolder, the value of the filename property would be
myfolder/policy.html. (If the subfolder does not already exist, it is created
automatically when the file is uploaded.)

• segments -- The file must be uploaded in segments of less than 1 GB each. If
your file is larger than 1 GB, it must be up broken up into multiple segments, with
each segment uploaded separately. The segments property specifies the number
of segments to be uploaded.

• uploadtype – Set the value of this property to thirdPartyFile.

The following request body generates a token for uploading a third-party file named /
thirdparty/myfolder/sampleFile.txt in two segments:

{
 "filename": "myfolder/sampleFile.txt",
 "segments": 2,
 "uploadtype": "thirdPartyFile"
}

The response body includes the token and an array of the indices of the segments to
be uploaded. The indices are zero-based, so the first segment is 0:

{
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/files"

Chapter 28
Upload third-party files to folders

28-2

 }
],
 "segmentsNeeded": [
 0,
 1
],
 "token": "18a7878ddf1ab_1751"
}

Upload the file to the desired location

The actual upload is performed using the uploadSegment endpoint (POST/ccadmin/v1/
files/<token>, where <token> is the token generated in the startFileUpload call).
You must call uploadSegment once for each file segment, and each time specify these
three properties:

• filename -- The pathname for the file, relative to the /thirdparty folder. This
must match the filename used to generate the token.

• index -- The index for the file segment being loaded.

• file -- The based64-encoded content of the segment.

The following sample request uses the token generated by the startFileUpload call
in the previous section to upload the first segment of a file:

POST /ccadmin/v1/files/18d396ba091fa_1755 HTTP 1.1
Authorization: Bearer <access_token>

{
 "filename": "myfolder/sampleFile.txt",
 "index": 0,
 "file":
"TG9yZW0gaXBzdW0gZG9sb3Igc2l0IGFtZXQsIGNvbnNlY3RldHVyIGFkaXBpc2NpbmcgZ
WxpdC4gTWF1cmlzIGF1Y3RvciBmZXVnaWF0IGp1c3RvLCBpZCB1bHRyaWNlcyBsb3JlbSBzb
2RhbGVzI
HNpdCBhbWV0LiBJbiBhdWN0b3Igc2VkIHNlbSBldCBpYWN1bGlzLiBNYWVjZW5hcyBiaWJlb
mR1bSBua
XNsIG5lcXVlLiBBZW5lYW4gYXQgb3JuYXJlIGRpYW0uIEZ1c2NlIGlkIGRpZ25pc3NpbSBsb
3JlbSwgc
nV0cnVtIGNvbmRpbWVudHVtIGxlY3R1cy4gUGVsbGVudGVzcXVlIHZhcml1cyBjb25zZWN0Z
XR1ciBtZ
XR1cyBub24gc2FnaXR0aXMuIEludGVnZXIgZXN0IHF1YW0sIGRpZ25pc3NpbSBub24gbGVjd
HVzIG5lY
ywgY29udmFsbGlzIGNvbnZhbGxpcyBuaXNpLiBFdGlhbSBpbiBlZmZpY2l0dXIgbnVsbGEuI
FN1c3Blb
mRpc3NlIGVnZXQgdGluY2lkdW50IHR1cnBpcywgbmVjIHRlbXB1cyB1cm5hLiA="
}

For a multi-segment upload, the response body for each segment but the last is similar
to this:

{
 "success": true,
 "links": [
 {

Chapter 28
Upload third-party files to folders

28-3

 "rel": "self",
 "href":
"http://myserver.example.com:7002/ccadmin/v1/files/18d396ba091fa_1755"
 }
]
}

For a single-segment upload, or the last segment of a multi-segment upload, the
response body is similar to this:

{
 "result": {
 "@class": "atg.cloud.file.ThirdPartyUploadResultSummary",
 "failedFiles": 0,
 "allFilesFailed": false,
 "newFiles": 1,
 "modifiedFiles": 0,
 "unzipped": false,
 "failedFilesReasons": {}
 },
 "success": true,
 "links": [
 {
 "rel": "self",
 "href":
"http://myserver.example.com:7002/ccadmin/v1/files/18d396ba091fa_1755"
 }
]
}

View a list of files and folders

To list third-party files and their containing folders, issue a GET request to the /
ccadmin/v1/files endpoint on the administration server. This endpoint has a required
query parameter, folder, that you use to specify the folder to return results for. For
example:

GET /ccadmin/v1/files?folder=/thirdparty HTTP 1.1
Authorization: Bearer <access_token>

You can use the assetType query parameter to specify whether to return a list
of the files only (assetType=file), the folders only (assetType=folder), or both
(assetType=all). The default is file, so if you omit this query parameter, a list of the
files is returned.

The following example shows a sample call to the getFiles endpoint that returns both
files and folders:

GET /ccadmin/v1/files?folder=/thirdparty&assetType=all HTTP 1.1
Authorization: Bearer <access_token>

Chapter 28
Upload third-party files to folders

28-4

The following example shows sample output from this call:

{
 "total": 2,
 "totalResults": 2,
 "offset": 0,
 "limit": 250,
 "links": [
 {
 "rel": "self",
 "href":
"http://myserver.example.com:7002/ccadmin/v1/files?
folder=%2Fthirdparty&assetType=all"
 }
],
 "sort": [
 {
 "property": "name",
 "order": "asc"
 }
],
 "items": [
 {
 "path": "/thirdparty/myfolder",
 "repositoryId": "folder10004",
 "name": "myfolder",
 "url": "http://myserver.example.com:7002/
file/thirdparty/myfolder"
 },
 {
 "path": "/thirdparty/myfolder/sampleFile.txt",
 "extension": "txt",
 "metadata": {},
 "size": 916,
 "repositoryId": "f10001",
 "name": "sampleFile.txt",
 "checksum": 6238228597895851000,
 "lastModified": "2017-01-04T21:19:14.015Z",
 "type": "file",
 "url":
"http://myserver.example.com:7002/file/v1857419716804211141/thirdparty/
myfolder/sampleFile.txt"
 }
]
}

The getFiles endpoint can also take a filter query parameter to limit the set of folders
and files returned. The value of this parameter is a simple sequence of characters
(no wild-card or regular expression elements) that is used to do substring matching
on file or folder names. For example, the following call returns a list of the files in
the /thirdparty folder whose names include the string “red”:

GET /ccadmin/v1/files?folder=/thirdparty&filter=red HTTP 1.1
Authorization: Bearer <access_token>

Chapter 28
Upload third-party files to folders

28-5

Publish the files and folders to the production environment

To make your changes available to the production environment, publish them, as
described in Publish Changes.

Verify that the file is present on the production environment

View the file in your browser to verify that it is present on your production
environment. For example, to view a file uploaded to /thirdparty/myfolder/
sampleFile.txt:

http://myserver.example.com:7002/myfolder/sampleFile.txt

Upload a Google site ownership verification file
Google provides a number of methods for verifying ownership of your sites.
Commerce supports the HTML file upload method.

Complete the following steps to upload a Google site ownership verification file:

1. Create a Google site ownership verification HTML file as described on this page:

https://support.google.com/webmasters/answer/35179?
hl=en#verification_details

The name of the file differs from site to site. The naming convention is
google<code>.html, where <code> is a sequence of letters and numbers. For
example, google2827eae44ccfac6b.html.

2. Depending on how your site URL is specified when you create the file,
you may need to use the createFolder endpoint to create a subfolder of /
thirdparty. For example, if your site is specified as www.example.com, the
file should be uploaded to /thirdparty, so you do not need a subfolder; if
your site is specified as www.example.com/es, the file should be uploaded to /
thirdparty/es, so you need to create a subfolder named /es.

3. Use the startFileUpload endpoint to generate a token for uploading the file to the
appropriate folder.

4. Use the doFileSegmentUpload endpoint to upload the file.

5. Publish your changes to the production environment.

6. View the file in your browser to verify that it was uploaded correctly. For example,
if your site is www.example.com/es, and the file you uploaded is named
google2827eae44ccfac6b.html, the URL for the file is:

http://www.example.com/es/google2827eae44ccfac6b

Upload an Apple Pay merchant identity certificate
To support Apple Pay on your site, you must upload a merchant identity certificate.

Complete the following steps:

Chapter 28
Upload a Google site ownership verification file

28-6

1. Create the Apple Pay Merchant Identity Certificate, as described on this page:

https://developer.apple.com/reference/applepayjs/

The name of the file is as follows:

apple-developer-merchantid-domain-association

2. Use the createFolder endpoint to create a subfolder of /thirdparty
named /.well-known.

3. Use the doFileSegmentUpload endpoint to upload the file.

4. Publish your changes to the production environment.

5. View the file in your browser to verify that it was uploaded correctly. For example, if
your site is www.example.com, the file has this URL:

https://www.example.com/.well-known/apple-developer-merchantid-
domain-association

Delete third-party files
To delete a single third-party file, issue a POST request to the /ccadmin/v1/files/
deleteFile endpoint on the administration server.

The request JSON includes a required filename property for specifying the file to
delete. For example:

POST /ccadmin/v1/files/deleteFile HTTP 1.1
Authorization: Bearer <access_token>

{
 "filename": "/thirdparty/sampleFile.txt"
}

To delete multiple third-party files, issue a POST request to the /ccadmin/v1/files/
deleteFiles endpoint on the administration server. The request body includes a
deletePaths property that specifies an array of files to delete:

POST /ccadmin/v1/files/deleteFiles HTTP 1.1
Authorization: Bearer <access_token>

{
 "deletePaths": [
 "/thirdparty/google2827eae44ccfac6b.html",
 "/thirdparty/.well-known/apple-developer-merchantid-domain-
association"
]
}

If the deletion is successful, the JSON payload in the response is empty.

Chapter 28
Delete third-party files

28-7

The request body for these endpoints can include an optional recursive property. If
this property is set to true, the call recursively deletes child folders under the specified
folders or files. If the property is omitted, it defaults to false.

To make your changes available to the production environment, publish them, as
described in Publish Changes.

Manage files on multiple sites
If your Commerce instance is running multiple sites, the /thirdparty directory
supports creation of site-specific subfolders and files.

This behavior makes it possible for you to have, for example, a different Apple Pay
merchant identity certificate for each site, without running into naming conflicts.

For example, suppose you have two sites, siteA and siteB, and each site requires a
unique version of a file named example.txt. To upload the file for siteA, first use the
startFileUpload endpoint, and set the value of the x-ccsite header to siteA:

PUT /ccadmin/v1/files HTTP 1.1
Authorization: Bearer <access_token>
x-ccsite: siteA

{
 "filename": "example.txt",
 "segments": 1,
 "uploadtype": "thirdPartyFile"
}

Next, using the token returned in the response, call the uploadSegment endpoint (with
x-ccsite set to siteA) to upload the file, as described in Upload the file to the desired
location.

Once you have uploaded the siteA version of the file, use startFileUpload and
uploadSegment with x-ccsite set to siteB to create the version of the file for siteB.
If you then view example.txt in your browser, the version of the file you see will
depend on which site’s URL you use.

You can also create a global file by omitting the x-ccsite header when you call
startFileUpload and uploadSegment. When you use the getFiles endpoint to view a
list of files, the files you see depend on the current site in the request. For example,
if you call getFiles without the x-ccsite header, you see only the global versions of
files. If you set x-ccsite to siteA, you see all siteA-specific files and folders, as well
as any global files and folders that are not overridden by siteA-specific versions. (If
there is both a global and a siteA-specific version of a file, you see the siteA-specific
version.) Similar logic applies when using the deleteFile endpoint to delete a file.

Note that since the storefront always has a current site, if there is a site-specific
version of a file for the current site as well as a global version of the file, the storefront
always sees the site-specific version.

Chapter 28
Manage files on multiple sites

28-8

29
Manage Guest Checkout

Your site can require that anonymous shoppers log in before they check out.

This feature can be used for anonymous shoppers who will log into either a personal
account or a business account. The topics in this section describe the coding
requirements to implement a restricted guest checkout UI.

Example for restricting guest checkout
Preventing guest checkout is a two-step process involving disabling the guest
checkout administration option and modifying the checkout UI on the storefront.

First, you must disable Guest Checkout on the Settings page in the Commerce
administration interface. This sets the flag used for testing whether guest checkout
is allowed. For details on how to set this flag, see Restrict guest checkout. Second,
you must modify your storefront’s checkout UI to prevent anonymous shoppers from
accessing check out features until they have logged in. For example, you might
disable the Place Order button on the Checkout page until the shopper logs in. The
specifics of modifying your checkout UI to restrict guest checkout vary with each
storefront’s requirements. As such, a simple example has been provided to give you
an understanding of how you can restrict access to the Place Order button until a
shopper has logged in or agreed to create an account.

In the illustration below, the out-of-the-box Login-Checkout widget has been modified
to replace the Checkout as Guest button with a Register to Checkout button. The
Register to Checkout button has been selected but the I Want to Create an Account
checkbox has not. This combination of settings indicates that the shopper is an
anonymous shopper who does not yet have an account. For a storefront that restricts
guest checkout, this combination of settings should result in a disabled Place Order
button.

29-1

When the shopper enables the “I want to create an account” option, he is agreeing to
become a registered shopper using the information he provides on the Checkout page.
At this point, the Place Order button becomes enabled.

To create this UI, you first modify the Login – Checkout widget to introduce ko if and
ko ifnot bindings that check for whether the guestCheckoutEnabled flag is true or
false and then render the appropriate radio button text (either “Checkout as guest” or
“Register to checkout”) depending on the state of the flag.

<!-- ko with: user -->
<div id="checkout-registration">
 <h2 data-bind="widgetLocaleText:'checkoutRegistrationText'"></h2>
 <hr>
 <fieldset id="checkoutOptions" data-bind="visible: !loggedIn()">
 <legend id="checkoutOptions-legend"
 data-bind="widgetLocaleText:'checkoutOption'"></legend>
 <div class="row">
 <div class="form-group">
 <div class="col-sm-6 col-lg-4 cc-checkoutRegistration-radio">
 <label class="radio"
 data-bind="attr:{ for: 'CC-checkoutRegistration-userOption-'+
 $parent.order().checkoutGuest() }">
 <input type="radio" class="form control" name="account"
 data-bind="value: $parent.order().checkoutGuest,
 attr:{ id: 'CC-checkoutRegistration-userOption-
 '+$parent.order().checkoutGuest() },
 checked: $parent.order().checkoutOption"/>
 <!-- ko if: $data.contextData.global.guestCheckoutEnabled -->
 </
span>
 <!-- /ko -->
 <!-- ko ifnot: $data.contextData.global.guestCheckoutEnabled
-->
 Register to checkout
 <!-- /ko -->
 </label>
 </div>
 <div class="col-sm-6 col-lg-8 cc-checkoutRegistration-radio">
 <label class="radio"

Chapter 29
Example for restricting guest checkout

29-2

 data-bind="attr:{ for: 'CC-checkoutRegistration-userOption-
 '+$parent.order().checkoutLogin() }">
 <input type="radio" class="form control" name="account"
 data-bind="value: $parent.order().checkoutLogin,
 attr:{ id: 'CC-checkoutRegistration-userOption-
 '+$parent.order().checkoutLogin() },
 checked: $parent.order().checkoutOption"/>
 </
span>
 </label>
 </div>
 </div>
 </div>
 ...
 ...

Note: In the interest of simplicity, this example does not add a resource string for the
“Register to checkout” label. To do that, you must download the widget, update the
source files, and import the updated widget into Commerce.

Next, you modify the Order Summary – Checkout widget to update the
handleCreateOrder enable data-binding with logic that controls whether the Place
Order button is enabled or disabled, based on whether guest checkout is enabled and
whether the shopper is logged in:

...
<div id="CC-checkoutOrderSummary-placeOrder" class="checkout row">
 <button class="cc-button-primary col-xs-12"
 data-bind="click: handleCreateOrder,
 enable: (!user().contextData.global.guestCheckoutEnabled &&
 user().loggedIn() && order().enableOrderButton) ||
 (!user().contextData.global.guestCheckoutEnabled && !
user().loggedIn()
 && order().enableOrderButton && order().createAccount) ||
 (user().contextData.global.guestCheckoutEnabled &&
 order().enableOrderButton)">

 </button>
</div>
...

Note about preventing self-registration in account-based
storefronts

In account-based storefronts, accounts are created manually by merchant
administrators in Commerce. Therefore, storefronts that support account-based
contacts must be careful not to allow this type of contact to self-register.

To accommodate this use case, the example in the Example for restricting guest
checkout section would need to be modified to restrict account-based contacts to
logging in only. For storefronts that support both individual, registered shoppers and
account-based contacts, your UI will have to make it clear that the self-registration
process creates a personal account only, not a business account.

Chapter 29
Note about preventing self-registration in account-based storefronts

29-3

30
Manage Saved Carts

The saved-carts feature makes it possible for a registered shopper to create and save
multiple shopping carts.

The topics in this section describe how to implement saved carts.

Understand saved carts
By default, Commerce supports creation and management of one shopping cart per
shopper, per storefront.

The saved cart feature lets a shopper save multiple unfinished carts and retrieve them
later. A shopper can create an order with only one cart at a time, though they can
merge saved carts into the current cart.

This feature is available for both individual registered shoppers and account-based
shoppers. If an account-based shopper is a member of more than one account, they
cannot access their saved carts across accounts. That is, they can access saved carts
only for the account for which they are currently logged into the store.

The order state for a saved card is INCOMPLETE, which specifies that the order is still
in the purchasing stages. See Understand order states for more information.

To support saved carts, the getAllOrdersForProfile endpoint of the Store API
includes a Boolean query parameter, incompleteOnly. The following sample request
returns only incomplete orders for the logged-in shopper profile:

GET /ccstoreui/v1/orders/getAllOrdersForProfile?incompleteOnly=true

Once you enable the saved carts feature, a cartName order property is available to
specify the cart associated with the order. This property will appear in the body of
all webhooks that send order information, as well as in any REST API response that
includes an order. The value of cartName is the string the shopper entered when they
saved the cart.

A new view model, multiCartViewModel, is used to list all incomplete orders and
provide support for pagination and search by cartName when a shopper wants to view
their list of saved carts.

Note: When you enable saved carts, it is possible, though unlikely, that a shopper
might see old incomplete carts the first time they view their saved cart list in their
profile. This can occur if something unexpected happened during a past order flow;
for example, if a shopper added items to their cart before logging in and the cart did
not merge properly after login, an incomplete cart might have remained in the system.
That cart would appear in the shopper’s saved cart list. Shoppers can simply delete
any older carts that appear the first time they view their saved carts list.

Enabling the saved carts feature does not affect scheduled orders, as Commerce
maintains schedule information separately.

30-1

If you configured Commerce to use the External Price Group and Catalog webhook
to assign a shopper a specific catalog and price group at login, and the shopper
then opens a saved cart, Commerce reprices the cart based on the catalog and price
group specified by the webhook response. See Assign Catalogs and Price Groups to
Shoppers for more information about this webhook.

Create a widget to support saved carts
To enable and manage saved carts for a registered individual or account-based
shopper, you write a custom widget to include on your storefront’s Cart pages.

For detailed information about creating widgets, see Create a Widget.

This topic includes the following sections:

• Create the widget structure for the saved-carts sample widget

• Create the JavaScript file for the saved-carts sample widget

• Create template files for the saved-carts sample widget

Create the widget structure for the saved-carts sample widget

Widgets that include user interface elements must include display templates. The
following shows an example of the files and directories in a saved-carts widget. Notice
that it includes two display templates; these are described in detail in Create template
files for the saved-carts sample widget.

MultiCartDemoWidget/
 ext.json
 widget/
 multiCart_v1/
 widget.json
 js/
 multi-cart.js
 less/
 widget.less
 locales/
 en/
 ns.multicart.json
 templates/
 display.template
 pagination.template

Because this widget includes user interface elements that allow the shopper to work
with saved carts, you must not create it as a global widget. Set the global property in
the widget.json file to false:

"global": false

The JavaScript code you write extends the multiCartViewModel class. For more
information about the widget structure and the contents of the ext.json and
widget.json files, see Create the widget structure .

Chapter 30
Create a widget to support saved carts

30-2

Create the JavaScript file for the saved-carts sample widget

The widget’s JavaScript file includes functions that let shoppers save, retrieve, merge,
and delete carts:

• listIncompleteOrders gets all the incomplete orders (saved carts) associated
with the logged-in shopper profile.

• createOrderWithTemporaryItems creates an incomplete order for a shopper who
has not logged in.

• createNewIncompleteCart crates a new saved cart for the logged-in shopper

• loadParticularIncompleteOrder displays a saved cart.

• mergeWithParticularIncompleteOrder merges a saved cart with the current cart.

• deleteParticularIncompleteOrders deletes a saved cart.

The following example shows sample JavaScript that implements the saved-cart
functionality:

define(

 //---
 // DEPENDENCIES
 //---
 ['knockout', 'pubsub', 'notifier', 'CCi18n', 'ccConstants',
 'navigation', 'ccRestClient','viewModels/multiCartViewModel'],

 //---
 // MODULE DEFINITION
 //---
 function(ko, pubsub, notifier, CCi18n, CCConstants, navigation,
 ccRestClient, MultiCartViewModel) {

 "use strict";

 return {

 WIDGET_ID: "multiCart",
 display: ko.observable(false),
 currentCartName: ko.observable(""),
 fetchSize: ko.observable(10),
 cartNameSearch: ko.observable(""),

 onLoad: function(widget) {
 var self = this;
 widget.listingViewModel = ko.observable();
 widget.listingViewModel(new MultiCartViewModel());
 widget.listingViewModel().itemsPerPage = widget.fetchSize();
 widget.listingViewModel().blockSize = widget.fetchSize();

 $.Topic(pubsub.topicNames.USER_AUTO_LOGIN_SUCCESSFUL)
.subscribe(function(){
 widget.listIncompleteOrders();
 });

Chapter 30
Create a widget to support saved carts

30-3

 $.Topic(pubsub.topicNames.USER_LOGIN_SUCCESSFUL).subscribe(funct
ion(){
 widget.listIncompleteOrders();
 if(widget.cart().items().length>0){
 widget.cart().isCurrentCallInProgress = true;
 widget.createOrderWithTemporaryItems();
 }
 });

 $.Topic(pubsub.topicNames.CART_PRICE_SUCCESS).subscribe(functio
n(){
 if(widget.user().loggedIn()){
 widget.listIncompleteOrders();
 widget.currentCartName("");
 }
 });
 $.Topic(pubsub.topicNames.CART_DELETE_SUCCESS).subscribe(functio
n(){
 if(widget.user().loggedIn()){
 widget.listIncompleteOrders();
 }
 });

 widget.listOfIncompleteOrders = ko.computed(function() {
 var numElements, start, end, width;
 var rows = [];
 var orders;
 var startPosition, endPosition;
 // Get the orders in the current page
 startPosition = (widget.listingViewModel().currentPage()
 - 1) * widget.listingViewModel().itemsPerPage;
 endPosition = startPosition +
 parseInt(widget.listingViewModel().itemsPerPage,10);
 orders =
widget.listingViewModel().data.slice(startPosition,
 endPosition);

 if (!orders) {
 return;
 }
 numElements = orders.length;
 width = parseInt(widget.listingViewModel().itemsPerRow(),
10);
 start = 0;
 end = start + width;
 while (end <= numElements) {
 rows.push(orders.slice(start, end));
 start = end;
 end += width;
 }
 if (end > numElements && start < numElements) {
 rows.push(orders.slice(start, numElements));
 }
 return rows;

Chapter 30
Create a widget to support saved carts

30-4

 }, widget);
 },

 beforeAppear: function (page) {
 var widget = this;
 if (widget.user().loggedIn() == false) {
 widget.display(false);
 } else {
 widget.listIncompleteOrders();
 widget.display(true);
 }
 },

 /**
 * @function
 * @name multi-cart#listIncompleteOrders
 *
 * call to list incomplete orders for logged in profile.
 */
 listIncompleteOrders : function() {
 var self = this;
 var inputDate ={};
 //inputDate[CCConstants.SORTS] = "lastModifiedDate:desc";
 self.listingViewModel().sortProperty = "lastModifiedDate:desc";
 //set self.listingViewModel().cartNameSearch
 //string to search based on cartname
 if (self.user() && !self.user().loggedinAtCheckout()) {
 self.listingViewModel().refinedFetch();
 }
 },

 /**
 * @function
 * @name multi-cart#createOrderWithTemporaryItems
 *
 * method to create new incomplete cart with anonymous cart items
 */
 createOrderWithTemporaryItems : function() {
 var self = this;
 self.cart().createNewCart(true);
 self.cart().validateServerCart();
 self.cart().getProductData();
 self.cart().createCurrentProfileOrder();
 },

 /**
 * @function
 * @name multi-cart#createNewIncompleteCart
 */
 createNewIncompleteCart : function() {
 var self = this;
 self.cart().createNewCart(true);

ccRestClient.setStoredValue(CCConstants.LOCAL_STORAGE_CREATE_NEW_CART,tr
ue);

Chapter 30
Create a widget to support saved carts

30-5

 self.cart().emptyCart();
 self.user().orderId('');
 self.user().persistedOrder(null);
 self.user().setLocalData('orderId');
 self.currentCartName("");
 },

 deleteParticularIncompleteOrders: function(pOrderId) {
 var self = this;
 self.cart().deleteParticularIncompleteOrders(pOrderId);
 },

 /**
 * @function
 * @name UserViewModel#loadParticularIncompleteOrder
 */
 loadParticularIncompleteOrder : function(pOrderId) {
 var self = this;
 self.cart().loadCartWithParticularIncompleteOrder(pOrderId);
 },
 /**
 * @function
 * @name UserViewModel#mergeWithParticularIncompleteOrder
 */
 mergeWithParticularIncompleteOrder : function(pOrderId) {
 var self = this;
 self.cart().mergeCartWithParticularIncompleteOrder(pOrderId);
 },

 saveIncompleteCart : function(pOrderId) {
 var self = this;
 self.cart().cartName(self.currentCartName());
 self.cart().priceItemsAndPersist();
 }

 };
 }
);

Create template files for the saved-carts sample widget

The widget’s display.template file contains code that renders a page where
shoppers can see a list of saved carts, display a saved cart, merge a saved cart
with the current cart, or delete a saved cart.

The widget’s display.template file contains the following code for rendering the
page:

<!-- ko if: display-->
 <!-- ko with: cart -->
 <!-- ko if:($parent.user().loggedInUserName() &&
($parent.user().loggedIn()
 || $parent.user().isUserSessionExpired()))-->
 <div id="CC-multiCart">

Chapter 30
Create a widget to support saved carts

30-6

 <div class="row col-md-12">
 <h3 class="modal-title text-center">Your Saved Carts</h3>
 </div>
 <div id="CC-multicartorder-table-md-lg-sm" class="row
hidden-xs">
 <section id="orders-info" class="col-md-12" >
 <table class="table" >
 <thead>
 <tr>
 <th class="col-md-2 " scope="col" data-bind="widgetLocaleText :
 'orderNumber'"></th>
 <th class="col-md-2 " scope="col" data-
bind="widgetLocaleText:
 'cartName'"></th>
 <th class="col-md-2 " scope="col" data-
bind="widgetLocaleText:
 'orderTotal'"></th>
 <th class="col-md-3" scope="col"><div class="sr-only"></
div></th>
 <th class="col-md-3" scope="col"><div class="sr-only"></
div></th>
 <th class="col-md-3 " scope="col" data-
bind="widgetLocaleText:
 'delete'"></th>
 </tr>
 </thead>
 <!-- ko if: $parent.listOfIncompleteOrders().length > 0
-->
 <tbody data-
bind="foreach:$parent.listOfIncompleteOrders">
 <tr>
 <td class="col-md-2" data-bind="text : $data[0].orderId"
 scope="row"></td>
 <td class="col-md-2" data-bind="text : $data[0].cartName"
 scope="row"></td>
 <td class="col-md-2" data-bind="currency:
{price: $data[0].total,
 currencyObj: $data[0].priceListGroup.currency}" scope="row"></td>
 <td class="col-md-3">
 <button class="cc-button-primary pull-right" href="#"
 data-dismiss="modal"
 data-
bind="click:$parents[1].loadParticularIncompleteOrder.bind($parents[1],
$data[0].orderId)" >
 <span data-bind="widgetLocaleText: 'LoadThis'
 ,attr: {title: 'Clicking this will clear the cart and load this
order'}">

 </button>
 </td>
 <td class="col-md-3">
 <button class="cc-button-primary pull-right" href="#"
 data-dismiss="modal" data-
bind="click:$parents[1].mergeWithParticularIncompleteOrder.bind($parent
s[1],

Chapter 30
Create a widget to support saved carts

30-7

$data[0].orderId)" >
 <span data-bind="widgetLocaleText: 'MergeInto',attr:
 {title: 'Clicking this will merge the cart items into this order'}"></
span>
 </button>
 </td>
 <td class="col-md-3">
 <button class="cc-button-primary pull-right" data-
bind="click:$parents[1].deleteParticularIncompleteOrders.bind($parents[1
],
$data[0].orderId)" >
 <span data-bind="widgetLocaleText: 'delete' ,attr:
 {title: 'Clicking this will delete this cart'}">
 </button>
 </td>
 </tr>
 </tbody>
 <!-- /ko -->
 <!-- ko if: $parent.listOfIncompleteOrders().length == 0
-->
 <tbody>
 <tr>
 <td colspan="5">

 </td>
 </tr>
 </tbody>
 <!-- /ko -->
 </table>
 </section>
 </div>
 <!-- ko with: $parent.listingViewModel -->
 <div id="cc-paginated-controls-bottom"
 class="row col-md-12 visible-xs visible-sm visible-md visible-lg">
 <div data-bind="visible : (totalNumberOfPages() > 1)">
 <div>
 <div data-bind="template: { name:
$parents[1].templateAbsoluteUrl('/templates/
paginationControls.template')
 , templateUrl: ''}"
 class="row pull-right"></div>
 </div>
 </div>
 </div>
 <!-- /ko -->
 <div class="row col-md-12">
 <!-- ko if: $data.items().length == 0 -->
 <button type="button" class="btn btn-default"
 data-bind="click:$parent.createNewIncompleteCart.bind($parent)">
Create New</button>
 <!-- /ko -->
 <!-- ko if: $data.items().length > 0 -->
 <section id="cart-details-heading" >
 <h3 class="modal-title text-center"
 data-bind="widgetLocaleText:'currentCart'"></h3>

Chapter 30
Create a widget to support saved carts

30-8

 </section>
 <section id="cart-info" class="col-md-12" >
 Cart Name:
 <table class="table" >
 <thead>
 <tr>
 <th class="col-md-3 " scope="col" data-
bind="widgetLocaleText:
 'referenceId'"></th>
 <th class="col-md-3 " scope="col" data-
bind="widgetLocaleText:
 'quantity'"></th>
 <th class="col-md-3 " scope="col" data-
bind="widgetLocaleText:
 'total'"></th>
 </tr>
 </thead>
 <tbody data-bind="foreach:$data.items" >
 <tr>
 <td class="col-md-3 text-left" data-
bind="text :catRefId"
 scope="row"></td>
 <td class="col-md-3 text-left" data-
bind="text :quantity()"
 scope="row"></td>
 <td class="col-md-3 text-left" data-
bind="text :itemTotal()"
 scope="row"></td>
 </tr>
 </tbody>
 </table>

 <input type="text" class="col-md-4 form-control"
 name="currentCartName" id="currentCartName" data-bind="value:
 $parent.currentCartName, widgetLocaleText : {value:'cartNameText',
 attr:'placeholder'}">
 <button type="button" class="btn btn-default"
 data-bind="click:$parent.saveIncompleteCart.bind($parent)">Save Cart</
button>
 </section>
 <section id="footer-buttons">
 <button type="button" class="btn btn-default" data-
bind="click:$parent.createNewIncompleteCart.bind($parent)">Create New</
button>
 </section>
 <!-- /ko -->
 </div>
 </div>
 <!-- /ko -->
 <!-- /ko -->
 <!-- /ko -->

Chapter 30
Create a widget to support saved carts

30-9

The widget’s display.template calls another template file,
paginationControls.template. This template file contains .the following code for
rendering multiple pages when the list of carts is long:

<div class="btn-group">

 <a href="#" class="btn btn-default" data-bind="click:
 getFirstPage, widgetLocaleText :
 {value:'goToFirstPageText', attr:'aria-label'},
 makeAccess: {readerText: 'Go to first page ', cssContent: 'on'},
 css: { disabled: $data.currentPage() == 1 }, widgetLocaleText:
 'goToFirstPagePaginationSymbol'" ><<
 <a href="#" class="btn btn-default" data-bind="click: decrementPage,
 widgetLocaleText : {value:'goToPreviousPageText', attr:'aria-label'},
 makeAccess: {readerText: 'Go to previous page ', cssContent:
'on'},
 css: { disabled: $data.currentPage() == 1 }, widgetLocaleText:
 'goToPreviousPagePaginationSymbol'" rel="prev"><

 <!-- ko foreach: pages -->
 <a href="#" class="btn btn-default" data-bind="click:
 $parent.changePage.bind($parent, $data), css: {active:
 $data.pageNumber===$parent.clickedPage() }">
 <!-- ko if: $data.selected === true -->
 <span data-bind="widgetLocaleText : {value:'activePageText',
 attr:'aria-label'}, makeAccess: {readerText: 'Active page is ',
 cssContent: 'on'}">
 <!-- /ko -->
 <!-- ko if: $data.selected === false -->
 <span data-bind="widgetLocaleText : {value:'clickToViewText',
 attr:'aria-label'}, makeAccess: {readerText: 'Click to view page
 ',
 cssContent: 'on'}">
 <!-- /ko -->

 <!-- /ko -->

 <a href="#" class="btn btn-default" data-bind="click: incrementPage,
 widgetLocaleText : {value:'goToNextPageText', attr:'aria-label'},
makeAccess:
 {readerText: 'Go to next page ', cssContent: 'on'}, css:
{ disabled:
 currentPage() == $data.totalNumberOfPages() }, widgetLocaleText:
 'goToNextPagePaginationSymbol'" rel="next">>
 <a href="#" class="btn btn-default" data-bind="click:
$data.getLastPage,
 widgetLocaleText : {value:'goToLastPageText', attr:'aria-label'},
makeAccess:
 {readerText: 'Go to last page ', cssContent: 'on'}, css:
{ disabled:
 currentPage() == $data.totalNumberOfPages() }, widgetLocaleText:
 'goToLastPagePaginationSymbol'">>>

Chapter 30
Create a widget to support saved carts

30-10

</div>

Customize emails for saved carts
If your store supports saved carts, you can customize the Abandoned Order email
template, which remind customers that they left unpurchased items in their shopping
carts, to include the name of the saved cart.

Note: Though it is most useful in Abandoned Order emails, you can add the name of
a saved cart to any of the following email templates that include order details: Items
Shipped, Quote Failed, Order Approved, Order Rejected, Order Payment Initiated,
Order Placed, Order Quoted, Quote Requested, Scheduled Order Placed Failed, Store
Cancel Inflight Order, Store Cancel Order, and Store Return Order.

The cartName property is available to email templates to display the name of a saved
cart. This property comes from the Orders resource in the Store REST API.

To display the name of a saved cart in an email template:

1. Download the email template as described in Customize email templates.

2. Update the html_body.ftl file.
Add cartName to the main body of the email.

3. Upload the updated template as described in Customize email templates.

If a shopper has multiple saved carts that meet the Abandoned Cart settings criteria,
Commerce sends a separate email for each cart.

See Configure Abandoned Cart settings for more information about Abandoned Order
emails.

Chapter 30
Customize emails for saved carts

30-11

31
Manage the Use of Personal Data

The European Union General Data Protection Regulation (GDPR) enacts a set of legal
requirements designed to control the collection and storage of personal data.

To address GDPR requirements, you may need to observe various practices regarding
the handling of shopper information on your Oracle CX Commerce sites. This
regulation is designed to protect the data privacy of all EU citizens and may require
website customization.

Important: Consult legal counsel for professional guidance if you believe your
websites and commerce operations may be subject to the GDPR. It is your
responsibility to assess the legal and operational implications of the GDPR
on your business and implement changes to any websites as necessary. For
detailed information and guidelines on the European Union General Data Protection
Regulation, refer to https://gdpr.eu.

This chapter discusses tools Commerce provides to help you address two key aspects
of the GDPR, consent and right to erasure:

• Consent is the right of a shopper to allow, or disallow, the collection or processing
of personal data. For information on setting up consent, refer to Configure consent
requests.

• Right to erasure requires you to delete data about a shopper on your sites if
the shopper requests it. For information on deleting shopper data, refer to Delete
shopper information.

California Consumer Privacy Act

A privacy initiative similar to the GDPR, the California Consumer Privacy Act (CCPA),
went into effect in the state of California on January 1, 2020. You can use the tools
described in this chapter and in the Manage Access to Shopper Data chapter to help
your sites meet the requirements of this act. Note that although the GDPR and the
CCPA are similar in some ways, they are not identical. Consult legal counsel for
professional guidance if you believe your websites and commerce operations may be
subject to the CCPA. For information about the CCPA, see https://oag.ca.gov/privacy/
ccpa. For additional information about Oracle CX Commerce and CCPA compliance,
see https://cloudcustomerconnect.oracle.com/posts/bd10639220.

Configure consent requests
You must determine which types of data processing activities need consent, how to get
permissions, and how to add details to your site’s terms and conditions.

You must also define the GDPR-based shopper profile properties and to determine the
next steps in the shopper’s experience when consent is given or revoked. Oracle CX
Commerce does provide a set of tools that you can use and customize to assist with
compliance of some of the GDPR requirements.

You can ask consent for various data processing types at different points in a
shopper’s visit. Examples of data processing types include, but are not limited to,

31-1

https://gdpr.eu
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa
https://cloudcustomerconnect.oracle.com/posts/bd10639220

processing orders, sending marketing material, enabling third-party data sharing,
creating cookies, or personalizing the shopper’s experience. You can capture consent
when a shopper logs in, during the order checkout process, or when you work
within the shopper’s profile. Additionally, the Receive Email Updates checkbox that
is displayed on these pages allows you to request email consent.

When a shopper creates an order, your policy may be to consider that the shopper is
inherently giving permission to use their personal data for the purpose of processing
the order. It is up to you to provide any necessary disclaimer text or to customize order
consent requests. To do this, you can customize widgets and profile properties.

If you prefer to request separate consent to capture data for order processing, and the
shopper does not give consent, you must determine what actions occur. For example,
you might prevent profile registration or guest checkout. Once you have determined
the workflow, you should create the necessary customization.

Understand consent properties and cookies

The following table describes properties and cookies provided by Commerce for
managing various types of consent:

Consent For Property/Cookie Description

Personalization requireGDPRP13nConsent This site-level property
indicates if the shopper must
provide consent when they
register on your site. When
consenting, the shopper is
allowing you the right to
perform personalization.

For additional information,
refer to the Manage
personalization consent
section.

Personalization GDPRP13nConsentGranted This profile property tracks a
shopper’s consent status.

For additional information,
refer to the Manage
personalization consent
section.

Personalization GDPRP13ConsentDate This profile property tracks the
date that the shopper provided
consent.

For additional information,
refer to the Manage
personalization consent
section.

Personalization and Site GDPRCookieP13nConsentNo
tRequired

This cookie is placed on a
shopper’s browser if your site
does not require consent,
or if the shopper’s locale
is identified as a non-GDPR
country.

For additional information,
refer to the Manage cookie-
based consent section.

Chapter 31
Configure consent requests

31-2

Consent For Property/Cookie Description

Personalization and Site GDPRCookieP13nConsentGr
anted

This cookie is placed on
a shopper’s browser if the
shopper has given their
consent.

For additional information,
refer to the Manage cookie-
based consent section.

Site requireGDPRCookieConsen
t

This site-level property
identifies if the shopper is
required to accept the cookies
used on your site.

For additional information,
refer to the Manage cookie-
based consent section.

The following sections describe how to use these properties and cookies. Note that
this documentation is not intended as legal advice for the GDPR. Please refer to your
legal counsel for guidance.

Manage personalization consent

You may want to obtain a shopper’s consent to perform profile-based personalization.
For example, if you use audiences, or the product recommendations widget, you may
need to collect the personal data stored in a shopper’s profile.

You can collect profile data consent at shopper registration or order checkout by
using the GDPR-based profile properties to indicate the need to display consent
checkboxes. Configure personalization consent using the following widgets and
elements:

• The customerProfile widget

• The shopperDetail widget

• The checkoutRegistration widget

• The login-registration element

• The contact-login-for-managed-contacts element

Note that these widgets will contain the necessary consent fields by default when you
set your environment to require the GDPR consent.

To indicate that your site needs consent to use the shopper’s personal
data, use the Oracle CX Commerce Admin API updateSite endpoint to set
requireGDPRP13nConsent to true. By default, this field is set to false. For example:

PUT /ccadmin/v1/sites/siteUS HTTP/1.1

{
 "properties":
 {
 "requireGDPRCookieConsent": true,
 "requireGDPRP13nConsent": true

Chapter 31
Configure consent requests

31-3

 }
}

Then, when a shopper accesses your site, they are presented with a checkbox asking
if they would like to see relevant, or personalized, data. Additionally, they will be
presented with the Receive Email Updates checkbox.

A shopper’s consent status is stored in the GDPRP13nConsentGranted property
of their profile. The date that the shopper provided consent is stored in the
GDPRP13nConsentDate property.

You should work with your legal team to determine the actions required for various
configurations. For example, if your site uses audiences and you have set the
requireGDPRP13NConsent flag to true, shoppers must provide consent. If a shopper
does not provide consent, the non-consenting shopper cannot be a member of any of
your audiences that use shopper profile data. You may want to indicate to the shopper
that this will occur if they do not consent.

Once a shopper has provided initial consent, you can determine what, if any, situations
require the shopper to provide new or additional consent. By default, shoppers who
have given consent will not be presented with additional consent requests unless you
configure your storefront as such.

The following example shows how you could modify the Shopper Details and
Customer Profile widget templates to require GDPR personalization consent:

<div class="row col-md-12" data-bind="visible:$parent.site().
 requireGDPRP13nConsent">
 <div class="form group">
 <div class="checkbox" id="CC-customerProfile-edit-
personalizationConsent-
 checkbox">
 <label for="CC-customerProfile-edit-personalizationConsent">
 <input type="checkbox" name="personalization-Consent"
 data-bind="checked: GDPRProfileP13nConsentGranted"
 id="CC-customerProfile-edit-personalizationConsent">
 <span data-bind="widgetLocaleText:
'personalizationConsentText'"
 id="CC-customerProfile-edit-personalizationConsent-
text">
 </label>
 </div>
 </div>
</div>

Note that you can add text that is appropriate for your environment by editing the
widget’s resource file.

For information on audiences, refer to Define Audiences. For information
on customizing the product recommendations widget, refer to the Product
Recommendations.

Manage cookie-based consent

Cookie-based consent requests are made when you want to obtain consent from
shoppers to use cookies that contain personal data during their site visits. Additionally,

Chapter 31
Configure consent requests

31-4

you can use cookie-based consent requests while creating personalization consent.
For example, by setting the requireGDPRCookieConsent site property you can set the
consent for receiving cookies. By setting the requireGDPRP13nConsent property, you
can set personalization consent.. The need to request consent is based upon the
locale of the shopper, and whether the cookie consent property is set to true.

Use the Oracle CX Commerce Admin API updateSite to set
requireGDPRCookieConsent to true. By default, this field is set to false. For example:

PUT /ccadmin/v1/sites/siteUS HTTP/1.1
{
 "properties":
 {
 "requireGDPRCookieConsent": true,
 "requireGDPRP13nConsent": true,
 }
}

The following table displays the possibilities when you set the
requireGDPRCookieConsent property to true. When you set the property to true, your
consent dialog is displayed to the shopper when they visit the site:

Shopper Response Effect

Gives consent If the shopper gives consent, the
GDPRCookieP13nConsentGranted cookie is
placed on their browser. No cookies are
deleted from the shopper’s browser.

Does not give consent If the shopper does not give consent, Oracle
CX Commerce cookies that contain personal
data will be deleted from the shopper’s
browser, with the exception of cookies that
are identified within the necessaryCookies
property list in the widget JSON. No further
cookies are added to the browser.

GDPR not applicable If the GDPR is not required,
a GDPRCookieP13nConsentNotRequired
cookie is placed on the shopper’s browser.

Note: It is important to be aware of the cookies that your site uses, and, in particular,
which cookies are deployed by third-party software. For a list of Oracle CX Commerce
cookies, refer to Cookies used in Oracle CX Commerce.

If you have customized any of the following widgets, you may want to update to
the latest default widget to get the new fields, or update your customized widgets to
include the GDPR consent and profile personalization consent code elements. For
information on upgrading customized widgets, refer to the Upgrade deployed widgets
section in Design Your Store Layout :

• customerProfile widget

• shopperDetail widget

• checkoutRegistration widget

You can configure your personalization services, such as the audience feature, to
look for the presence of the GDPRProfileP13nConsentGranted cookie on the shopper’s

Chapter 31
Configure consent requests

31-5

browser and then perform the actions required for your site configuration. Refer to the
Manage personalization consent section for information.

Cookie customization example

Oracle CX Commerce provides access to the file
CivicUKCookieControl_sample.zip that contains sample code you can use to
model the configuration of your site to comply with certain GDPR regulations. You can
obtain this file from the Oracle CX Commerce Developer Community blog posts at:

https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/09/21/
how-to-ensure-cookie-compliance-in-commerce-cloud-with-a-custom-widget

This code asks for consent based on the shopper’s profile settings and the setting
of the requireGDPRCookieConsent property. The example uses the Civic UK Cookie
Control widget to see if requireGDPRCookieConsent is set to true.

https://www.civicuk.com/cookie-control/v8/documentation

The Civic UK Cookie Control widget is only an example of one way that you could
customize your storefront. Oracle CX Commerce cannot provide or recommend the
types of consent that you need to capture, or the mechanisms that you use to capture
them. Work with your legal team to determine your requirements.

Note that you can use any cookie consent application, but when you create
cookies, they must use the names specified by Oracle CX Commerce,
the GDPRCookieP13nConsentNotRequired and the GDPRCookieP13nConsentRequired
cookies. The following example makes use of the application Cookie Control. For
information, refer to:

The following example provides a customized configuration for the widget JSON:

{
 "name": "Cookie Control (Civic UK)",
 "javascript": "cukCookieControl",
 "i18nresources":"cukCookieControl",
 "availableToAllPages": true,
 "global": true,
 "globalEnabled": true,
 "config": {
 "apiKey":"94b985b32474b87b3fc2533a19aadeb8c455d5",
 "product":"free",
 "position":"left",
 "theme":"light",
 "initialState":"open",
 "necessaryCookies":["JSESSIONID", "atgRecVisitorId",
 "oauth_token_secret-storefrontUI", "xdVisitorID"]
 }
}

In the above example, the following configurations are set:

• apiKey – A Cookie Control API key from the Civic UK Cookie Control API for a
particular domain. This is a required property.

• product – The type of the Cookie Control license that is set from the widget. The
value can be multisite, custom, or the default, free. This is a required property that
corresponds to the API key.

Chapter 31
Configure consent requests

31-6

https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/09/21/how-to-ensure-cookie-compliance-in-commerce-cloud-with-a-custom-widget
https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/09/21/how-to-ensure-cookie-compliance-in-commerce-cloud-with-a-custom-widget
https://www.civicuk.com/cookie-control/v8/documentation

• position – The position of the consent dialog. For button style widgets, the values
can be left or right.

• initialState – Identifies that the dialog has to be open when the widget starts.

• necessaryCookies – Indicates the list of cookies that need to be protected from
the deletion process.

The following is an example of a customized cukCookieControl.js file:

define(

 //---
 // DEPENDENCIES
 //---
 ['knockout', 'pubsub', 'CCi18n', 'ccConstants',
 'https://cc.cdn.civiccomputing.com/8.0/cookieControl-8.0.min.js',
 'storageApi'],

 //---
 // MODULE DEFINITION
 //---
 function(ko, pubsub, CCi18n, CCConstants, CC, storageApi) {
 "use strict";

 return {
 widgetInitialised: ko.observable(false),
 onLoad: function(widget) {
 if(widget.apiKey() !== null) {
 var cukConfig = {};
 cukConfig.apiKey = widget.apiKey();
 switch (widget.product()) {
 case 'free':
 cukConfig.product = "COMMUNITY";
 break;
 case 'multisite':
 cukConfig.product = "PRO_MULTISITE";
 break;
 case 'pro':
 cukConfig.product = "PRO";
 break;
 default:
 cukConfig.product = "COMMUNITY";
 }

 switch (widget.position()) {
 case 'left':
 cukConfig.position = "LEFT";
 break;
 case 'right':
 cukConfig.position = "RIGHT";
 break;
 default:
 cukConfig.position = "LEFT";
 }

Chapter 31
Configure consent requests

31-7

 if(widget.position() !== 'left' && widget.position() !==
'right') {
 cukConfig.position = "LEFT";
 }

 if(widget.theme() === 'light'){
 cukConfig.theme = "LIGHT";
 } else {
 cukConfig.theme = "DARK";
 }

 if(widget.initialState() === 'open'){
 cukConfig.startOpen = "OPEN";
 } else {
 cukConfig.startOpen = "CLOSED";
 }

 cukConfig.optionalCookies = [
 {
 name : 'analytics',
 label : 'Analytical
cookies',
 description : 'Analytical
cookies help
 us to improve our
website by
 collecting and reporting
 information on its
usage.',
 onAccept :
this.onConsentAccept,
 onRevoke :
this.onConsentRevoke
 }
];
 cukConfig.necessaryCookies = widget.necessaryCookies();
 cukConfig.text = {};
 cukConfig.text.title = '<p>' + CCi18n.t('ns.cukCookieControl
 :resources.cccTitle') + '</p>';
 cukConfig.text.intro = '<p>' + CCi18n.t('ns.cukCookieControl
 :resources.cccIntro') + '</p>';

// Main call to invoke Cookie Control, passing the configuration object
we have
// set up. cookieControl object is established by the
cookieControl-6.2.min.js
// file loaded in dependencies. Also subscribe to PAGE_CHANGED so we
can manage
// the use of cookies if user has disallowed their use.
 if(widget.site().requireGDPRCookieConsent){
 if(CookieControl) {
 CookieControl.load(cukConfig);
 $.Topic(pubsub.topicNames.PAGE_CHANGED).subscribe
 (this.pageChanged.bind(this));
 this.widgetInitialised(tre);

Chapter 31
Configure consent requests

31-8

 }
 }else{
 storageApi.getInstance().saveToCookies
 ("GDPRCookieP13nConsentNotRequired",true,365);
 if(storageApi.getInstance().readFromCookies
 ("GDPRCookieP13nConsentGranted")!==null){

storageApi.getInstance().removeItem("GDPRCookieP13nConsentGranted");
 }
 }
 }
 },

 pageChanged: function(page){
 if(this.widgetInitialised() &&
storageApi.getInstance().readFromCookies
 ("GDPRCookieP13nConsentGranted")===null){
 CookieControl.deleteAll();
 }
 },
 onConsentAccept: function() {

storageApi.getInstance().saveToCookies("GDPRCookieP13nConsentGranted"
 ,true,365);
 },

 onConsentRevoke: function() {
 CookieControl.deleteAll();
 }
 };
 }
);

This JavaScript makes a call to Civic UK CDN with the required parameters in the
cukConfig object. In this example, only one category of optionalCookies is created
with the name of Analytical Cookies. The onAccept function for this category sets
the GDPRCookieP13nConsentGranted cookie and deletes all other cookies except those
listed in the necessaryCookies list in the widget.json file. If more categories are
required, you can write separate onAccept and onRevoke functions for each category.

When a widget loads, if the requireGDPRCookieConsent property for cookies is set to
false, a GDPRCookieP13nConsentNotRequired cookie is created.

The ns.cukCookieControl.json file contains example text that you could use for
the messages presented to the shopper:

{
 "resources": {
 "cccTitle" : "This site uses cookies to store information on your
computer.",
 "cccIntro" : "Some of these cookies are essential to make our site
work and
 others help us to improve by giving us some insight into how
the site is
 being used.",

Chapter 31
Configure consent requests

31-9

 "cccFull" : "Click for full Privacy Policy..."
 }
}

You can add configurations to the cukConfig object. For more configuration
information, refer to the Civic UK documentation.

Cookies used in Oracle CX Commerce

This section describes the cookies that are issued with Oracle CX Commerce. This list
provides information that may assist you when you are configuring your cookie control
for shopper consent. It also indicates cookies that should be protected from deletion
by adding them to the necessaryCookies list, as described in the Cookie customization
example.

FILE_OAUTH_TOKEN cookie

The FILE_OAUTH_TOKEN cookie, which has a life of 24 hours, stores a token that is
needed to access files using the /files servlet on the administration server. Note that
this cookie is for the administration interface only and does not contain any personal
data. This cookie can be deleted on the client-side, if necessary. It does not need to be
included in the necessaryCookies list.

JSESSIONID cookie

The JSESSIONID cookie, which has a life that lasts only until the user’s browsing
session ends, helps the server to manage user sessions. It is a standard Java servlet
container cookie. While not accessible to scripts, this cookie can be deleted from the
client-side. However, the cookie will be re-sent during the next request from the user.

This cookie tracks each request from the same browser, ensuring that the same
session data is available on the server side. It does not contain any personal data.
You must include this cookie in the necessaryCookies list, or else WebLogic will create
new sessions for every request that comes in.

atgRecVisitorId cookie

This cookie does not collect personal data. It has a life expiration of 20 years. It is
accessible to scripts, and can be deleted from the client-side. You must add this cookie
to the necessaryCookies list.

oauth_token_secret-storefrontUI cookie

The oauth_token_secret-storefrontUI cookie is necessary for storefront user
interface operations, as it is used to store the OAuth token of the user that is logged
in and keeps the shopper’s login token active during page reloads and multiple tab
access. This cookie does collect personal data in the form of the profileId. While
the cookie is accessible from scripts, it cannot be deleted from the client-side. If
you delete this cookie, shoppers may have to log in again after opening new tabs
or refreshing pages. Deleting this cookie would also cause some checkout payment
flows to fail when a shopper gets redirected to an external payment site like PayPal.
When the browser gets returned to the storefront, the shopper’s authentication state
is lost and the checkout process cannot proceed. You should add this cookie to the
necessaryCookies list.

EETrViID cookie

Chapter 31
Configure consent requests

31-10

The EETrViID cookie is an Oracle WebLogic cookie that stores the Visitor ID. It does
not contain any personal data. This cookie cannot be deleted, and therefore cannot be
modified by JavaScript in the browser. This cookie does not need to be added to the
necessaryCookies list.

BIGIP cookie

The BIGIP cookie is an HTTP Only cookie that maintains a connection to a single
application instance. This cookie is not accessible from scripts and contains no
personal data. This cookie expires at the end of the session.

xd[tenantID]_[siteID] cookie

These cookies are generated by Visitor ID services and track the visits, which are
site-specific. This cookie should be added to the protected list as it does not collect
personal data. Note that the _[siteID] is only added to the cookie name if your
environment supports multiple sites. You should know your own tenant ID and site ID.

For example: xdtp6a0c0_siteUS, where xdtp6a0c0 is the tenant ID and _siteUS is the
site ID.

Soft Login cookie

The Soft Login cookie, which has a life of 13 months, contains a cryptographically
secure version of the expiration timestamp and the user’s profile ID. If the shopper
does not provide consent, the soft login cookie is not added to their browser, and
soft login will not occur. This cookie does collect personal data, and therefore should
not be included in the necessaryCookies list. If you delete this cookie, the soft login
capability will not function. For information on soft login, refer to Configure the logged-
in shopper session. For information on disabling the soft login feature, see Disable soft
login.

Configure consent for account-based commerce

If your environment is configured with business accounts, as described in the
Configure Business Accounts, you may want to configure profile properties that enable
consent requests for account-based contacts. It is up to you to determine what types
of consent to gather. For example, you may want to allow some accounts to grant
consent on behalf of their contacts.

For example, you could configure your site to recognize when an account-based
contact logs in for the first time and present them with various consent requests. Once
you have consent, contacts who have visited before are not presented with additional
consent checkboxes unless you configure it otherwise.

By default, when an account-based contact logs in, the Contact Login element of the
Header widget checks to see if this is the contact’s first login. If it is, the contact is
presented with a checkbox for consent to receive marketing emails, and a checkbox
for personalization consent if the site has been configured to require consent.

Note that should it be necessary, you can provide agents and delegated administrators
with the ability to use the getMember and updateMember endpoints in the Admin
REST API to update a shopper’s consent properties. Administrators may also use the
updateProfile endpoint to update an account-based shopper’s consent properties.
For information on configuring custom properties, see Manage Shopper Profiles.

Chapter 31
Configure consent requests

31-11

Delete shopper information
In addition to consent requirements, the GDPR also ensures a shopper the right to
erasure.

The right to erasure requires you to delete all data about a shopper on your sites if the
shopper requests it. To support this right, Commerce provides endpoints in the Agent
and Admin API that enable removal of personal data for consumer-based commerce
shoppers and account-based commerce contacts. Using these endpoints, you can do
the following:

• Redact orders. Personal information about the shopper in a specified order is
removed from the order and replaced with new data that does not identify the
shopper. The order itself is retained in the system for reporting purposes.

• Delete orders. The order and its constituent objects (such as line items, shipping
groups, and payment groups) are removed from the server entirely and cannot be
recovered. Note that only internal users who have the Administrator role can use
the order deletion endpoints.

• Delete or redact other objects that may contain personal data, such as purchase
lists.

• Delete profiles of registered shoppers or contacts. The shopper’s profile is
deleted and personal data is discarded. For a registered shopper or contact, it
is recommended that you delete or redact orders and other objects that contain
personal data before deleting the shopper’s profile.

• Delete notification requests for shopper-initiated email notifications for back in
stock products, using either notification request ID, or using a profile ID/email ID.

Note that redaction and deletion are supported for orders associated with guest
shoppers as well as registered shoppers.

This section describes how to use the REST APIs to delete shopper and contact
information from your sites. It includes the following topics:

• Redact orders

• Delete orders

• Delete shopper profiles

• Delete contact data for account-based commerce

• List of non-redactable order properties

Important: Consult legal counsel for professional guidance about maintaining
compliance with the GDPR right to erasure.

Redact orders

Commerce provides endpoints in the Agent API for redacting orders.
These endpoints overwrite shopper information in orders and replace it with
automatically generated data.

To redact an order, you need its order ID. To find orders for a specific registered
shopper, use the getOrders endpoint in the Admin API or the searchOrders endpoint

Chapter 31
Delete shopper information

31-12

in the Agent API. (The Admin API getOrders endpoint searches all orders, including
orders needing approval, order quotes, and scheduled orders.) For example:

GET /ccadmin/v1/orders?queryFormat=SCIM&q=profileId eq "110658"
HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

The response returns the orders associated with the specified profile ID. You can use
these results to find the IDs of the orders you want to redact.

For some shoppers, you may not have a profile ID. This would be the case if you
already deleted the shopper’s profile, or if the shopper never registered and instead
checked out as a guest. If so, you can find the shopper’s orders by using the q query
parameter to search for orders that contain a specific property value. For example:

GET /ccadmin/v1/orders?queryFormat=SCIM&q=shippingGroups.lastName eq
"Brady" HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

To redact an individual order, you use the redactOrder endpoint in the Agent API, and
include the order ID as a path parameter in the URL of the request. You specify the
properties to redact in the properties array in the body of the request. For example:

POST /ccagent/v1/orders/o10042/redact HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
"properties": [
 "shippingGroups.lastName",
 "shippingGroups.city"
]
}

You can redact multiple orders in one request using the redactOrders endpoint in the
Agent API. You specify the orders to redact in the orderIds array in the body of the
request, and the properties to redact in the properties array. For example:

POST /ccagent/v1/orders/redact HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "orderIds": [
 "o10007",
 "o10042",
 "o10312",
 "o10842"
],
"properties": [
 "shippingGroups.lastName",

Chapter 31
Delete shopper information

31-13

 "shippingGroups.city"
]
}

Redactable and non-redactable properties

When you redact an order, you should remove all personal data. (Consult legal
counsel to determine which data should be considered personal.) Other data,
however, should remain intact, so the order can be used in reporting. For example,
the items purchased and the cost of the order are useful for tracking sales, and can be
retained once they are no longer associated with a specific shopper.

To protect shopper privacy without discarding key data, Commerce designates
which properties can be redacted and which cannot. For a complete list of the non-
redactable properties, see the List of non-redactable order properties. Any order
property that does not appear in this list can be redacted, including any custom
properties.

Note that if you attempt to redact a property that is not redactable, the call will fail, and
none of the specified properties will be redacted. For example:

POST /ccagent/v1/orders/o10057/redact HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
"properties": [
 "shippingGroups.lastName",
 "shippingGroups.city",
 "shippingGroups.priceInfo.currencyCode"
]
}

The response indicates which of the specified properties are not redactable:

{
 "errorCode": "28403",
 "message": "The following properties are blocked from redaction,
please
 remove from the set of properties to be redacted -
 [shippingGroups.priceInfo.currencyCode]",
 "status": "400"
}

Redacted values

When you redact an order property, the value used to overwrite the existing value
depends on the data type. The following table lists the various data types and the
values they are set to when redacted:

Type Redacted Value

Integer 0

Long 0

Chapter 31
Delete shopper information

31-14

Type Redacted Value

Double 0.0

Float 0.0

Boolean null

Date Jan 1 12:00:00 GMT 1970

Timestamp Thursday, January 1, 1970 12:00:00 AM

String Randomly generated string

Enumeration Cannot be redacted

There are some properties that are exceptions to the values in the table:

• profileId – The profileId property for the first order you redact is set to
redact100001, and for subsequent orders it is set to redact100002, redact100003,
and so on. If you use the redactOrders endpoint to redact multiple orders in a
single call, then all orders specified in the call that have the same profileId are
given the same redacted value, as described in Understand pseudonymization
and anonymization

• creditCardNumber – The redacted value of the creditCardNumber property is
always xxxxxxxxxxxx1111.

• approverIds (account-based orders only) – The redacted value of the
approverIds property is the empty string.

Also, note that if you redact a Boolean custom property that has a default value, the
property is set to the default value rather than to null.

Understand pseudonymization and anonymization

During redaction, string property values are replaced with automatically generated
random strings. There are some differences you should be aware of between how
redaction is done within a single call and across multiple calls.

If you redact orders individually (either by using the redactOrder endpoint or by using
redactOrders and specifying a single order ID in each call), then there is no carry
over of redacted string values from one call to the next. For example, even if all of the
orders to be redacted have the same value for the shippingGroups.email property,
the value this property is set to during redaction will be different in each call (and
therefore for each order). The orders are anonymized so that they have no apparent
connection to each other. The drawback of anonymization is that information that may
be useful for reporting (such as the number of orders associated with a specific email
address) is lost.

If you use the redactOrders endpoint to redact multiple orders in a single call,
however, the same string is used in all of these orders to redact the same value.
So if the value of shippingGroups.email is the same in each order before redaction,
the same random string will be used in each order to redact this property. Although
the original value is replaced, the fact that all of the orders had the same value for
the property will be preserved. In this case, the order is pseudonymized, indicating
that a single random string is used as a pseudonym for the original value. The
drawback of pseudonymization is that someone examining the orders may be able
to draw inferences about the original values. Hence pseudonymization is somewhat
less secure than anonymization. Keep in mind, too, that pseudonymization applies
only to orders redacted in the same REST call. If you make a subsequent call to redact

Chapter 31
Delete shopper information

31-15

additional orders, the redacted values used in the first call are not carried over to the
second.

Redact scheduled orders

A scheduled order consists of two parts: an order template that specifies the items to
include in the orders that are created, and a scheduling object that determines when
those orders are submitted. You can use the Scheduled Orders endpoints in the Agent
API to delete the scheduling object for a scheduled order, to ensure that no further
orders are created from the template. First, use the listScheduledOrdersByProfile
endpoint to find the shopper or contact’s scheduled orders. You can then use the
deleteScheduledOrders endpoint to delete the schedules for those orders.

To remove personal data in the template, you can redact the order template, just as
you would any other order. However, if you want to redact orders that have been
created from the template, you must locate them and specify them separately.

For more information about scheduled orders, see Create Scheduled Orders. For
more information about the Scheduled Orders endpoints in the Agent API, see the
REST API documentation in the Oracle Help Center.

Order Redact webhook

Oracle CX Commerce includes an Order Redact event webhook. You can configure
this webhook to notify external systems when an order is redacted. The webhook
payload contains the order ID of the redacted order. For example:

{
 "orderId": "o30411"
}

See the Use Webhooks chapter for information about configuring and using webhooks.

Delete orders

Internal users who have the Administrator access role can use REST endpoints to
delete orders. When an order is deleted, the order and its constituent objects (such
as line items, shipping groups, and payment groups) are removed from the server
entirely, so any reports you generate will not take into account data from the order. If
you want to remove personal information from orders while still retaining other data for
reports, you can redact the orders instead.

To delete an order, you need its order ID. To find orders for a specific registered
shopper, use the getOrders endpoint in the Admin API or the searchOrders endpoint
in the Agent API, as described in Redact orders.

To delete an individual order, you use the deleteOrder endpoint in the Admin API, and
include the order ID as a path parameter in the URL of the request. For example:

DELETE /ccadmin/v1/orders/o10042 HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

Chapter 31
Delete shopper information

31-16

You can delete multiple orders in one request using the deleteOrders endpoint in the
Admin API. You specify the orders to delete in the orderIds array in the body of the
request. For example:

POST /ccadmin/v1/orders/delete HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "orderIds": [
 "o10007",
 "o10042",
 "o10312",
 "o10842"
]
}

Delete scheduled orders

A scheduled order consists of two parts: an order template that specifies the items
to include in the orders that are created, and a scheduling object that determines
when those orders are submitted. When a new order is created from the template, the
order’s createdByOrderId property contains a reference to the template. To delete a
scheduled order, use the deleteOrder or deleteOrders endpoints to delete the order
template. When you delete an order template, the associated scheduling object is
deleted as well. However, if you want to delete orders that have been created from the
template, you must locate them and specify them separately.

Delete returns and exchanges

When a shopper returns an item, a return request object is created and associated
with the order. If the shopper makes multiple returns against one order, each return
creates a new return request object that is added to the original order.

When a shopper requests an exchange, a return request object and a new order are
created. The return request contains a reference to the follow-up order. If the shopper
subsequently requests a return or exchange for the follow-up order, a new return
request object is created for that order. Return requests and exchange orders can
be chained together without limit, and each return request can have its own chain of
exchanges and further returns.

When you delete an order, any return request objects belonging to the order are also
deleted. But if a return request object has a follow-up (exchange) order associated
with it, that order is not deleted when the original order is deleted. You must locate any
exchange orders and delete them separately.

Delete quotes

When a shopper requests a quote, a quoteInfo object is created and associated
with the order, and the order state changes to PENDING_QUOTE. When the quote is
received, the original order and its quoteInfo object are copied to create a new order.
(The copy’s order state is thus PENDING_QUOTE, and its quoteInfo reflects the original
quoteInfo.) The state of the original order is then changed to QUOTED, and the original
order and quoteInfo object are updated to reflect the quoted values.

Chapter 31
Delete shopper information

31-17

Each time the shopper requests a requote, a new QUOTED order and quoteInfo are
created. The result is that there is one order for every quote, plus a single order whose
state is PENDING_QUOTE. Each of these orders has at most one quoteInfo.

When a quoted order is deleted, its associated quoteInfo is also deleted. Other orders
created through the quoting process are not deleted automatically. You must locate
these orders and delete them separately.

Order Delete webhook

Oracle CX Commerce includes an Order Delete event webhook. You can configure
this webhook to notify external systems when an order is deleted. The webhook
payload contains the order ID of the deleted order. For example:

{
 "orderId": "o30419"
}

See the Use Webhooks chapter for information about configuring and using webhooks.

Delete shopper profiles

Commerce provides endpoints in the Agent API for deleting shopper profiles. These
endpoints delete profiles securely to ensure they can no longer be accessed. Note that
once a profile is deleted, it cannot be accessed on any site running on your Commerce
instance.

Important: Before you delete a shopper’s profile, you should first redact or delete all
of that shopper’s orders. Deleting a profile does not automatically remove personal
data from orders associated with it.

To delete a profile, you need its profile ID. You can find the profile by using the
searchProfiles endpoint in the Agent API. Use the q query parameter to search for
profiles that contain a specific property value. For example:

GET /ccagent/v1/profiles?queryFormat=SCIM&q=email eq
"floeb@example.com" HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

The response includes the profile ID:

{
 . . .
 "items": [
 {
 "firstName": "Fred",
 "lastName": "Loeb",
 "profileType": null,
 "repositoryId": "110332",
 "shippingAddress": {
 "phoneNumber": "617-555-1212",
 "postalCode": "01012",
 "repositoryId": "130417"
 },

Chapter 31
Delete shopper information

31-18

 "id": "110332",
 "email": "floeb@example.com",
 }
]
}

To delete a single profile, you use the deleteProfile endpoint in the Agent API. You
specify the profile to delete by including the profile ID as a path parameter in the URL
of the request. For example, to delete the profile shown above:

DELETE /ccagent/v1/profiles/110332 HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

To delete multiple profiles with a single request, you use the deleteProfiles endpoint
in the Agent API. You specify the profiles to delete in the profileIds array in the body
of the request. For example:

DELETE /ccagent/v1/profiles HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "profileIds": [
 "110332",
 "150027",
 "160035"
]
}

Delete or redact purchase lists

You can use the Purchase List endpoints in the Agent API to delete or redact purchase
lists associated with a specific shopper or contact. To find the purchase lists, use the
getPurchaseList endpoint. You can then use the deletePurchaseList endpoint to
delete the shopper’s purchase lists individually, by providing the purchase list ID as a
path parameter. As an alternative, you can use the updatePurchaseList endpoint to
redact any personal data in the purchase list by overwriting it.

For more information about purchase lists, see the Enable Purchase Lists chapter. For
more information about the Purchase List endpoints in the Agent API, see the REST
API documentation in the Oracle Help Center.

Delete back in stock notification requests

When you delete a shopper profile, you may also want to delete any email notification
requests associated with the shopper for back in stock products. Commerce provides
two endpoints in the Admin API for this purpose.

Chapter 31
Delete shopper information

31-19

The deleteProductNotification endpoint deletes a single notification request whose
ID is specified as a path parameter. For example:

DELETE /ccadmin/v1/productnotify/330007 HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

The deleteProductNotificationByProfileIdOrEmail endpoint deletes all of the
notification requests that match a specific email address or profile ID. The email
address can be specified using the email query parameter, or the profile ID can
be specified using the profileId query parameter. For example, to delete all of the
notification requests associated with a specific profile ID:

DELETE /ccadmin/v1/productnotify?profileId=160035 HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

For more information about these endpoints, see the REST API documentation in the
Oracle Help Center.

Shopper Profile Delete webhook

Oracle CX Commerce includes a Shopper Profile Delete event webhook. You can
configure this webhook to notify external systems when a profile is deleted. The
webhook payload contains the profile ID of the deleted profile. For example:

{
 "profileId": "110658"
}

See the Use Webhooks chapter for information about configuring and using webhooks.

Delete contact data for account-based commerce

If any of your sites support account-based commerce, you have shoppers called
contacts who are associated with specific accounts. You can delete the profiles for
contacts just as you would for consumer-based commerce shoppers. You can also
redact or delete orders associated with contacts.

However, there are some additional considerations you must be aware of when you
delete contacts and redact or delete data associated with their orders. This section
discusses other steps you should perform and additional data you should delete or
redact. It includes the following topics:

• Delete a contact

• Delete an approver

• Redact account and contact registration requests

Note that if your sites store personal data in other account-based objects such as
organizations, you can also use endpoints in the REST APIs to overwrite this data.

For more information about account-based commerce, see Configure Business
Accounts.

Delete a contact

Chapter 31
Delete shopper information

31-20

Before deleting a contact’s profile, there are a few related actions you should perform:

• Redact or delete any orders associated with the contact. Note that
account-based orders have a few additional properties (approverMessages,
approvalSystemMessages, approverIds, and organizationId) not found in
consumer-based orders. These additional properties are all redactable.

• Use the administration interface or Admin API to redact any registration requests
associated with the contact. See Redact registration requests.

• Redact or delete the contact’s scheduled orders.

• Manually reject any orders submitted by the contact that are still pending approval.

• Redact or delete the contact’s purchase lists.

Delete an approver

A contact’s profile cannot be deleted if the contact has the Approver role for any
account. You must first remove the Approver role from the contact for all accounts
before deleting the profile. You can do this in the administration interface or by using
the Admin API. Note that if there is only one approver for an account, you cannot
remove the Approver role from that contact until you add another approver to the
account.

Before you delete an approver’s profile, you should remove the approver’s ID from
orders. To find the orders that have been approved by this approver, use the
getOrders endpoint in the Admin API. For example:

GET /ccadmin/v1/orders?queryFormat=SCIM&q=approverIds co "bb-110031"
HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

Once you have the list of orders, use the redactOrder or redactOrders endpoint to
redact the approverIds property. For example, to redact the approverIds property on
a single order:

POST /ccagent/v1/orders/o10051/redact HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
"properties": [
 "approverIds"
]
}

When you redact an order’s approverIds property, its value is set to the empty string.

Redact registration requests

If a contact has submitted any registration requests, you should redact these requests
before deleting the contact’s profile. Note that you should reject or approve any
pending registration requests before redacting them or deleting the contact. If you
delete a contact that has any pending requests, you will only be able to reject those
requests afterward.

Chapter 31
Delete shopper information

31-21

You can use the Organization Requests endpoints in the Admin API to redact a
contact’s registration requests. Use the listOrganizationRequests endpoint to find
the relevant requests, and then use the updateOrganizationRequests endpoint to
overwrite the fields you want to redact.

List of non-redactable order properties

The following is a list of all of the order properties whose values cannot be redacted:

id
state
creationDate
createdByOrderId
submittedDate
lastModifiedDate
completedDate
priceInfo
taxPriceInfo
siteId
locale
priceGroupId
taxExempt
taxCalculated
externalOrderPriceDetails
recurringChargePriceInfo
secondaryCurrencyCode
exchangeRate
catalogId
commerceItems.commerceItemId
commerceItems.catalogId
commerceItems.catalogRefId
commerceItems.catalogKey
commerceItems.productId
commerceItems.siteId
commerceItems.quantity
commerceItems.state
commerceItems.stateDetail
commerceItems.productTaxCode
commerceItems.externalPriceDetails
commerceItems.quantityWithFraction
commerceItems.recurringChargePriceInfo
commerceItems.externalRecurringChargeDetails
priceInfo.rawSubTotal
priceInfo.tax
priceInfo.shipping
priceInfo.manualAdjustmentTotal
priceInfo.type
priceInfo.currencyCode
priceInfo.amount
priceInfo.discounted
priceInfo.amountIsFinal
priceInfo.finalReasonCode
priceInfo.adjustments.adjustmentDescription
priceInfo.adjustments.pricingModel
priceInfo.adjustments.manualPricingAdjustment

Chapter 31
Delete shopper information

31-22

priceInfo.adjustments.coupon
priceInfo.adjustments.totalAdjustment
priceInfo.adjustments.quantityAdjusted
priceInfo.adjustments.quantityWithFractionAdjusted
commerceItems.priceInfo.listPrice
commerceItems.priceInfo.rawTotalPrice
commerceItems.priceInfo.salePrice
commerceItems.priceInfo.onSale
commerceItems.priceInfo.orderDiscountShare
commerceItems.priceInfo.quantityDiscounted
commerceItems.priceInfo.quantityAsQualifier
commerceItems.priceInfo.priceList
commerceItems.priceInfo.discountable
commerceItems.priceInfo.shippingSurcharge
commerceItems.priceInfo.quantityWithFractionAsQualifier
commerceItems.priceInfo.quantityWithFractionDiscounted
commerceItems.priceInfo.currentPriceDetails
commerceItems.priceInfo.type
commerceItems.priceInfo.currencyCode
commerceItems.priceInfo.amount
commerceItems.priceInfo.discounted
commerceItems.priceInfo.amountIsFinal
commerceItems.priceInfo.finalReasonCode
commerceItems.priceInfo.adjustments.adjustmentDescription
commerceItems.priceInfo.adjustments.pricingModel
commerceItems.priceInfo.adjustments.manualPricingAdjustment
commerceItems.priceInfo.adjustments.coupon
commerceItems.priceInfo.adjustments.adjustments.totalAdjustment
commerceItems.priceInfo.adjustments.quantityAdjusted
commerceItems.priceInfo.adjustments.quantityWithFractionAdjusted
taxPriceInfo.cityTax
taxPriceInfo.countyTax
taxPriceInfo.stateTax
taxPriceInfo.countryTax
taxPriceInfo.valueAddedTax
taxPriceInfo.miscTax
taxPriceInfo.isTaxIncluded
taxPriceInfo.secondaryCurrencyTaxAmount
taxPriceInfo.type
taxPriceInfo.currencyCode
taxPriceInfo.amount
taxPriceInfo.discounted
taxPriceInfo.amountIsFinal
taxPriceInfo.finalReasonCode
taxPriceInfo.adjustments.adjustmentDescription
taxPriceInfo.adjustments.pricingModel
taxPriceInfo.adjustments.manualPricingAdjustment
taxPriceInfo.adjustments.coupon
taxPriceInfo.adjustments.totalAdjustment
taxPriceInfo.adjustments.quantityAdjusted
taxPriceInfo.adjustments.quantityWithFractionAdjusted
shippingGroups.priceInfo.rawShipping
shippingGroups.priceInfo.shippingTax
shippingGroups.priceInfo.secondaryCurrencyTaxAmount
shippingGroups.priceInfo.type

Chapter 31
Delete shopper information

31-23

shippingGroups.priceInfo.currencyCode
shippingGroups.priceInfo.amount
shippingGroups.priceInfo.discounted
shippingGroups.priceInfo.amountIsFinal
shippingGroups.priceInfo.finalReasonCode
shippingGroups.priceInfo.adjustments.adjustmentDescription
shippingGroups.priceInfo.adjustments.pricingModel
shippingGroups.priceInfo.adjustments.manualPricingAdjustment
shippingGroups.priceInfo.adjustments.coupon
shippingGroups.priceInfo.adjustments.totalAdjustment
shippingGroups.priceInfo.adjustments.quantityAdjusted
shippingGroups.priceInfo.adjustments.quantityWithFractionAdjusted
commerceItems.currentPriceDetails.tax
commerceItems.currentPriceDetails.orderDiscountShare
commerceItems.currentPriceDetails.orderManualAdjustmentShare
commerceItems.currentPriceDetails.quantityAsQualifier
commerceItems.currentPriceDetails.quantityWithFractionAsQualifier
commerceItems.currentPriceDetails.quantityWithFraction
commerceItems.currentPriceDetails.secondaryCurrencyTaxAmount
commerceItems.currentPriceDetails.type
commerceItems.currentPriceDetails.currencyCode
commerceItems.currentPriceDetails.amount
commerceItems.currentPriceDetails.discounted
commerceItems.currentPriceDetails.amountIsFinal
commerceItems.currentPriceDetails.finalReasonCode
commerceItems.currentPriceDetails.adjustments.adjustmentDescription
commerceItems.currentPriceDetails.adjustments.pricingModel
commerceItems.currentPriceDetails.adjustments.manualPricingAdjustment
commerceItems.currentPriceDetails.adjustments.coupon
commerceItems.currentPriceDetails.adjustments.totalAdjustment
commerceItems.currentPriceDetails.adjustments.quantityAdjusted
commerceItems.currentPriceDetails.adjustments.quantityWithFractionAdjust
ed
paymentGroups.paymentGroupClassType
paymentGroups.paymentMethod
paymentGroups.amount
paymentGroups.amountAuthorized
paymentGroups.amountDebited
paymentGroups.amountCredited
paymentGroups.currencyCode
paymentGroups.state
paymentGroups.submittedDate
paymentGroups.cancelledDate
shippingGroups.shippingGroupClassType
shippingGroups.shippingMethod
shippingGroups.state
shippingGroups.submittedState
relationships.shippingGroup
relationships.commerceItem
relationships.quantity
relationships.returnedQuantity
relationships.amount
relationships.state
relationships.quantityWithFraction
relationships.returnedQuantityWithFraction

Chapter 31
Delete shopper information

31-24

externalPriceDetails.externalPrice
externalPriceDetails.externalPriceQuantity

Chapter 31
Delete shopper information

31-25

32
Implement Access Control for Internal
Users

Oracle CX Commerce includes a role-based access control system that is applied to
all internal users such as merchandisers and administrators.

Each internal user can be assigned one or more roles. Depending on the roles
assigned, the user may have access to a number of areas of Commerce. These
include:

• Specific pages of the administration interface and the Agent Console, and the
functionality available on those pages.

• Catalogs and price groups.

• Properties of shopper profiles.

Commerce includes several predefined roles, and you can create additional custom
roles. Roles primarily function as containers for various entities that are used to control
access. These entities are:

• privileges – Predefined rights that grant access to specific functionality. Each
predefined role has a single privilege assigned to it. Merchants can assign
privileges to custom roles, but cannot create new privileges, or edit or delete
existing privileges.

• security criteria – Merchant-defined restrictions on the data access granted by
privileges. For example, if a role has the Catalog privilege, a merchant might
create a security criterion that restricts access to specific catalogs and assign the
security criterion to that role, or create a separate role and assign the security
criterion to it.

• generic access rights – Merchant-defined rights that can be used to control read
and write access to the properties of shopper profiles. Generic access rights are
particularly useful for ensuring compliance with consumer privacy laws such as the
European Union General Data Protection Regulation (GDPR) and the California
Consumer Privacy Act (CCPA).

Note that although privileges and access rights are used for different purposes,
privileges are treated internally as a special type of access right. So, for example, the
same endpoint property is used to add privileges and access rights to a custom role.
To reduce the possibility of confusion, access rights for controlling property access are
referred to as generic access rights.

This chapter describes how to create and modify these elements of access control
and assign them to roles. For information about assigning roles to internal users and
implementing an overall access control strategy, see Understand Role-based Access
Control.

32-1

Use and modify roles
You can use predefined roles and create custom roles. You can also modify roles by
adding security criteria and generic access rights.

This section describes the predefined roles included with Commerce and how to
create and modify custom roles. For information about assigning roles to internal
users, see Understand Role-based Access Control.

Use predefined roles

Commerce includes a number of predefined roles. Each predefined role contains a
privilege of the same name that provides access to a certain area of the administration
interface. For example, the Design role contains the Design privilege, which gives
access to the Design page in the administration interface to users assigned the role.
You cannot remove the privilege from a predefined role or add a different one to it.
If you want a role to contain multiple privileges, you must create a custom role, as
described below.

Note that you can add security criteria and generic access rights to a predefined role,
but a more flexible approach is to leave the predefined roles as is and add security
criteria and generic access rights to custom roles only.

The following table describes the predefined roles and their corresponding privileges.
Note that each role and privilege has an ID which is used to identify it in API calls.

Role and Privilege
Name

Role ID Privilege ID Description

Administrator adminRole ora.adminPrivilege Full access to
the Commerce
administration
interface.

CS Agent csAgentRole ora.csAgentPrivilege Full access to the
Agent Console except
Manual Adjustments.
(Available only if your
subscription includes
the Agent Console.)

CS Agent Supervisor csAgentSupervisorRol
e

ora.csAgentSuperviso
rPrivilege

Full access to
the Agent Console.
(Available only if your
subscription includes
the Agent Console.)

Account Manager accountManagerRole ora.accountManagerP
rivilege

Full access to the
Accounts page. (This
feature may not
be enabled in your
environment.)

Catalog catalogRole ora.catalogPrivilege Full access to the
Catalog page.

You must also assign
the Media privilege if
the user will upload
images for products,
SKUs, and collections.

Chapter 32
Use and modify roles

32-2

Role and Privilege
Name

Role ID Privilege ID Description

Dashboard dashboardRole ora.dashboardPrivileg
e

Read access to the
dashboard, which is
the landing page
for the administration
interface that users
see when they log into
Commerce.

All privileges that
control access to
the administration
interface allow the
user to see the
dashboard, but only
the Dashboard or
Administrator privilege
allows a user to
see the summary
reports there. A user
who can see the
summary reports on
the dashboard needs
the Reporting or
Administrator privilege
to click through to view
the full reports.

Design designRole ora.designPrivilege Full access to the
Design page.

Marketing marketingRole ora.marketingPrivilege Full access to the
Marketing page.

Media mediaRole ora.mediaPrivilege Full access to the
Media page.

Operations operationsRole ora.operationsPrivileg
e

Full access to the
Service Operations
page.

Preview previewRole ora.previewPrivilege Access to the Preview
button.

Publishing publishingRole ora.publishingPrivilege Full access to the
Publishing page.

Reporting reportingRole ora.reportingPrivilege Full access to the
Reports page.

Search searchRole ora.searchPrivilege Full access to the
Search page

Settings settingsRole ora.settingsPrivilege Full access to all
Settings pages except
Access Control,
Extensions, Extension
Settings, Email
Settings, and Web
APIs. (Access to those
settings is granted
by the Administrator
privilege.)

Chapter 32
Use and modify roles

32-3

Create custom roles

In addition to providing the predefined roles described above, Commerce provides
support for creating custom roles. Unlike predefined roles, you can delete custom
roles, and you can add privileges to and remove privileges from them.

To create a custom role, use the createAdminRole endpoint in the Admin API, as
shown in the following example. As this example shows, when you create a role, you
can assign privileges, security criteria, and access rights in the same call. Alternatively,
you can create the role and later assign these entities, as described in Modify roles.

POST /ccadmin/v1/adminRoles HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "repositoryId": "HomeGoodsMerchandiser",
 "securityCriteria": [
 {
 "id": "securityCriterionHomeGoodsCatalog"
 },
 {
 "id": "securityCriterionHomeGoodsPriceGroup"
 }
],
 "accessRights": [
 {
 "repositoryId": "ora.catalogPrivilege"
 },
 {
 "repositoryId": "ar1"
 }
],
 "name": "Home Goods Merchandiser"
}

The response is similar to this:

{
 "securityCriteria": [
 {
 "name": "Security Criterion for HomeGoodsPriceGroup",
 "description": "Grants access to HomeGoodsPriceGroup",
 "id": "securityCriterionHomeGoodsPriceGroup"
 },
 {
 "name": "Security Criterion for HomeGoodsCatalog",
 "description": "Grants access to catalog assets of the
HomeGoodsCatalog",
 "id": "securityCriterionHomeGoodsCatalog"
 }
],
 "name": "Home Goods Merchandiser",
 "repositoryId": "HomeGoodsMerchandiser",

Chapter 32
Use and modify roles

32-4

 "description": null,
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/adminRoles"
 }
],
 "accessRights": [
 {
 "displayName": "Access Right 1",
 "name": "ar1",
 "repositoryId": "ar1",
 "description": "First of several access rights.",
 "id": "ar1",
 "type": "generic"
 },
 {
 "displayName": "Catalog",
 "name": "Catalog",
 "repositoryId": "ora.catalogPrivilege",
 "description": "Catalog Privilege",
 "id": "ora.catalogPrivilege",
 "type": "privilege"
 }
],
 "securityCriteriaLastModified": "2021-03-08T21:12:30.047Z",
 "id": "HomeGoodsMerchandiser",
 "category": "Custom"
}

Modify roles

You can use the updateAdminRole endpoint in the Admin API to modify predefined
roles or custom roles by adding or removing security criteria and generic access rights.
For custom roles, you can also use this endpoint to add and remove privileges.

Note that when you call this endpoint, the body of the request can include the
securityCriteria property, the accessRights property, or both. If you include one
of these properties in the call, the entities specified in the property replace the ones
currently assigned to the role. So, for example, if you include the securityCriteria
property to add a security criterion to a role, the value of the property should include all
of the security criteria that are currently assigned to the role, in addition to the security
criterion you want to add; if you specify only the new criterion, the existing criteria
will be removed from the role. Similarly, if you include the accessRights property to
add a privilege or a generic access right, the value of the property should include the
privileges and generic access rights that are currently assigned to the role. If you add
a generic access right to a predefined role, be sure to include the role's privilege in the
accessRights property, or the request will be rejected.

Create security criteria
Security criteria can be assigned to roles to restrict access to specific catalogs or price
groups.

Chapter 32
Create security criteria

32-5

A security criterion restricts the specific data a user can access. For example, a user
might be assigned the Catalog role and also a custom role containing a security
criterion that limits the user to modifying only one specific catalog. Another role might
have a security criterion that denies update access to two specific price groups but
permits update access to all others.

Currently, security criteria affect users who have roles with the Catalog privilege or
Administrator privilege, and restrict update access only, not read access. Any user with
one of these privileges can view any catalog or price group. Also, if a user has one
of these privileges but no security criteria, the user can update any catalog or price
group.

This chapter describes how to create and view security criteria. The use of security
criteria to control update access to catalogs and price groups is described in detail in
Understand Role-based Access Control.

Create security criteria for catalogs

An individual security criterion applies either to catalogs or to price groups, and
includes one of these constraint types:

• grant – Grants update access to specific catalogs or price groups.

• deny – Denies update access to specific catalogs or price groups.

• grantNone – Denies create and update access to all catalogs or price groups.

The following example illustrates using the createAdminSecurityCriterion endpoint
in the Admin API to create a security criterion for catalogs. This criterion grants update
access to a single catalog. Note the following properties in the payload:

• id – The ID to give the security criterion you are creating.

• securityCriteriaResource.id – The ID of the type of resource the
security criterion applies to. Specify ora.catalogAssetResource for catalogs or
ora.pLGAssetResource for price groups.

• actions – An array specifying the actions the criterion affects. Currently this must
be ["create", "update", "delete"], as shown in the example below. You can
specify this explicitly, or you can omit the property and it will default to this value.

• constraintType – The type of constraint the security criterion includes. See the
list above.

• constraints.constraintConfig.id – The ID of the asset type the security
criterion applies to. Specify ora.catalogConstraintConfiguration for catalogs
or ora.pLGConstraintConfiguration for price groups.

• constraints.values – An array of the IDs of the specific catalogs or price groups
the security criterion applies to.

POST /ccadmin/v1/adminSecurityCriteria HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "id": "securityCriterionHomeGoodsCatalog",
 "name": "Security Criterion for HomeGoodsCatalog",
 "description": "Grants access to catalog assets of the
HomeGoodsCatalog",

Chapter 32
Create security criteria

32-6

 "securityCriteriaResource": {
 "id": "ora.catalogAssetResource"
 },
 "actions": [
 "create",
 "update",
 "delete"
],
 "constraintType": "grant",
 "constraints": [
 {
 "constraintConfig": {
 "id": "ora.catalogConstraintConfiguration"
 },
 "values": [
 "HomeGoodsCatalog"
]
 }
]
}

The response is similar to the following:

{
 "constraintType": "grant",
 "roles": [],
 "name": "Security Criterion for HomeGoodsCatalog",
 "description": "Grants access to catalog assets of the
HomeGoodsCatalog",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/
adminSecurityCriteria"
 }
],
 "securityCriteriaResource": {
 "name": "Catalog Assets",
 "id": "ora.catalogAssetResource"
 },
 "lastModified": "2021-03-08T19:52:43.752Z",
 "id": "securityCriterionHomeGoodsCatalog",
 "constraints": [
 {
 "values": [
 "HomeGoodsCatalog"
],
 "constraintConfig": {
 "id": "ora.catalogConstraintConfiguration"
 },
 "id": "scc-100001"
 }
],
 "actions": [

Chapter 32
Create security criteria

32-7

 "update",
 "delete",
 "create"
]
}

Create security criteria for price groups

The following example illustrates using the createAdminSecurityCriterion endpoint
to create a security criterion for a price group. This criterion grants update access to a
single price group.

POST /ccadmin/v1/adminSecurityCriteria HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

 {
 "id": "securityCriterionHomeGoodsPriceGroup",
 "name": "Security Criterion for HomeGoodsPriceGroup",
 "description": "Grants access to HomeGoodsPriceGroup",
 "securityCriteriaResource": {
 "id": "ora.pLGAssetResource"
 },
 "actions": [
 "create",
 "update",
 "delete"
],
 "constraintType": "grant",
 "constraints": [
 {
 "constraintConfig": {
 "id": "ora.pLGConstraintConfiguration"
 },
 "values": [
 "HomeGoodsPriceGroup"
]
 }
]
}

The response is similar to the following:

{
 "constraintType": "grant",
 "roles": [],
 "name": "Security Criterion for HomeGoodsPriceGroup",
 "description": "Grants access to HomeGoodsPriceGroup",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/
adminSecurityCriteria"
 }

Chapter 32
Create security criteria

32-8

],
 "securityCriteriaResource": {
 "name": "Price Groups",
 "id": "ora.pLGAssetResource"
 },
 "lastModified": "2021-03-08T20:12:19.302Z",
 "id": "securityCriterionHomeGoodsPriceGroup",
 "constraints": [
 {
 "values": [
 "HomeGoodsPriceGroup"
],
 "constraintConfig": {
 "id": "ora.pLGConstraintConfiguration"
 },
 "id": "scc-100002"
 }
],
 "actions": [
 "create",
 "update",
 "delete"
]
}

List available security criteria

You can use the listAdminSecurityCriteria endpoint to see a list of your available
security criteria. The following example returns the two security criteria created in the
examples above:

GET /ccadmin/v1/adminSecurityCriteriaResources HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

The response is similar to the following:

{
 "total": 2,
 "totalResults": 2,
 "offset": 0,
 "limit": 250,
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/
adminSecurityCriteriaResources"
 }
],
 "sort": [
 {
 "property": "id",
 "order": "asc"
 }

Chapter 32
Create security criteria

32-9

],
 "items": [
 {
 "constraintConfigurations": [
 {
 "constrainingAssetType": "catalog",
 "displayName": "Catalogs",
 "constrainingAssetDisplayNameProperty":
"displayName",
 "id": "ora.catalogConstraintConfiguration",
 "constrainingAssetGroup": "/atg/commerce/catalog/
ProductCatalog/"
 }
],
 "name": "Catalog Assets",
 "id": "ora.catalogAssetResource"
 },
 {
 "constraintConfigurations": [
 {
 "constrainingAssetType": "priceListGroup",
 "displayName": "Price Groups",
 "constrainingAssetDisplayNameProperty":
"displayName",
 "id": "ora.pLGConstraintConfiguration",
 "constrainingAssetGroup": "/atg/commerce/pricing/
priceLists/PriceLists/"
 }
],
 "name": "Price Groups",
 "id": "ora.pLGAssetResource"
 }
]
}

Create generic access rights
You can create generic access rights and use them to limit which internal users can
access specific shopper data.

A generic access right is essentially a label that is applied to metadata attributes of
shopper profile properties. Generic access rights are used by the Commerce access
control system to determine which users can access the values of those properties.
For example, if a property's readAccessRight attribute is set to the ID of a specific
generic access right, then internal users who are assigned roles that include that
access right will be able to see the value of that property. (Because they are simply
labels, you may also be able to use generic access rights in other contexts such as
integrations, though you will need to implement the logic for applying them in your own
code.)

This section describes how to create and view generic access rights. The use of
generic access rights to control access to properties is described in detail in Manage
Access to Shopper Data.

Chapter 32
Create generic access rights

32-10

Create a new generic access right

Commerce does not include any predefined generic access rights for internal users.
If you want to use generic access rights, you need to create them using the
createAdminAccessRight endpoint in the Admin API. For example:

POST /ccadmin/v1/adminAccessRights HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "displayName": "Access Right 1",
 "name": "ar1",
 "repositoryId": "ar1",
 "description": "First of several access rights."
}

The response is similar to this:

{
 "displayName": "Access Right 1",
 "name": "ar1",
 "repositoryId": "ar1",
 "description": "First of several access rights.",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/
adminAccessRights"
 }
],
 "id": "ar1",
 "type": "generic",
 "category": {
 "displayName": "Custom",
 "id": "customAccessRightCategory"
 }
}

The Use and modify roles section of this chapter describes how to assign generic
access rights to roles. For information about how to apply access rights to profile
properties, see the Manage Access to Shopper Data chapter.

List generic access rights

To list all of the available generic access rights, use the listAdminAccessRights
endpoint. For example:

GET /ccadmin/v1/adminAccessRights HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

Chapter 32
Create generic access rights

32-11

You can return a list of the predefined privileges in addition to the generic access rights
by including the includePrivileges query parameter in the call. For example:

GET /ccadmin/v1/adminAccessRights?includePrivileges=true HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

The following shows part of the list of privileges in the response:

...

 "items": [
 {
 "displayName": "Account Manager",
 "name": "Account Manager",
 "repositoryId": "ora.accountManagerPrivilege",
 "description": "Account Manager Privilege",
 "id": "ora.accountManagerPrivilege",
 "type": "privilege"
 },
 {
 "displayName": "Administrator",
 "name": "Administrator",
 "repositoryId": "ora.adminPrivilege",
 "description": "Administrator Privilege",
 "id": "ora.adminPrivilege",
 "type": "privilege"
 },

...

Chapter 32
Create generic access rights

32-12

33
Manage Access to Shopper Data

The Oracle CX Commerce access control system can be used to manage internal
users' access to shopper data, such as profile properties.

Access to these properties is controlled using metadata attributes of the properties.
You assign roles and generic access rights to these attributes to specify, for each
individual property, which groups of internal users can access the property, and the
type of access granted (either read, write, or both).

You can use property access control to support compliance with privacy laws such
as the European Union General Data Protection Regulation (GDPR), by enforcing
restrictions on who can access a shopper’s personal data. For example, you might
want to allow an administrator to see all of the properties in a shopper’s profile, but
allow customer service agents to see only a subset of the profile properties.

This chapter describes how to use roles and generic access rights to manage access
to shopper data. For general information about the Commerce access control system,
and instructions about creating generic access rights and assigning them to roles, see
Implement Access Control for Internal Users.

Implement property access control for internal users
There are a number of property metadata attributes that you can use to limit access to
specific shopper data.

The following are the primary attributes used to control which users can read or write
the value of a property:

• readRole – You can set this attribute to the ID of a role. Users with the specified
role can see the property value.

• writeRole – You can set this attribute to the ID of a role. Users with the specified
role can set or change the property value.

• readAccessRight – You can set this attribute to the ID of an access right. Users
with the specified access right can see the property value.

• writeAccessRight – You can set this attribute to the ID of an access right. Users
with the specified access right can set or change the property value.

By default, these attributes are null for any given property, which means that any user
who is logged in can see and modify the property’s value. When you set one or more
of these attributes, you are actually revoking access from users who lack the specified
role or access right. Note that each attribute can only be set to a single ID.

A user’s ability to access properties is determined both by the roles the user has and
by the access rights those roles have:

• A user has read access to a property if the user has the role that is specified by
the property’s readRole attribute, or if the user has a role that has the access right
that is specified by the property’s readAccessRight attribute.

33-1

• A user has write access to a property if the user has the role that is specified by
a property’s writeRole attribute, or if the user has a role that has the access right
that is specified by the property’s writeAccessRight attribute.

You should make sure that your settings for these attributes do not result in any users
having write access to a property but not read access. Such a user would be able to
modify the property’s values but not be able to see the changes he or she makes.

To avoid this situation, be careful when you set these attributes to ensure that the
users with write access to a given property are a subset of those with read access.
Here are some examples:

• If you want all users to be able to see a property’s values, but want only
administrators to be able to modify the values, then you could set the writeRole
attribute to adminRole, and leave readRole null.

• If you do not want any users to be able to edit the values of a property, you could
set the writeAccessRight attribute to an access right that is not assigned to any
roles (and therefore is not associated with any users). You can then use readRole
or readAccessRight to assign read access as desired.

• If you want a certain group of users to have read and write access to a property,
but for no other users to have either form of access, you could set writeRole and
readRole to the same role.

Note: Subsystems of Commerce that exchange data with external systems (for
example, webhooks and bulk export and import) are not affected by property access
control settings. If you want to restrict property access in these subsystems, you may
need to implement access control on the external systems.

In addition, the Freemarker email templates included with Commerce are not affected
by property access control settings. If you want to restrict property access in emails
your store sends, you must manually remove properties from the templates. (See
Customize Email Templates for more information.)

Bypass access settings for storefront shoppers

Access control can be applied to shoppers as well as to internal users. As a result,
when you restrict access to specific profile properties, you may unintentionally prevent
shoppers from accessing their own profile data. For example, if you allow only users
who have the Administrator role to access shopper email addresses, then shoppers
will not be able to see or edit their own email addresses when they view their profiles.

To avoid this issue, the following attributes can be used to enable shoppers to bypass
any access restrictions on properties in their own profiles:

• shopperReadable -- Set this to true to bypass any role or access right security
when a shopper views the property on the shopper’s own profile. Default is false.

• shopperWriteable -- Set this to true to bypass any role or access right security
when a shopper edits the property on the shopper’s own profile. Default is false.

Configure the data to return

Properties have two attributes, readSecurityLevel and writeSecurityLevel, that
control how Commerce responds when a user lacking the necessary role or access
right attempts to access the property.

The readSecurityLevel attribute can be set to one of the following values:

Chapter 33
Implement property access control for internal users

33-2

• ignore – Return a masking value rather than the actual value of the property. If
readSecurityLevel is not set, it defaults to ignore.

• deny – Omit the property from the response entirely. This option is available only
for custom properties.

The writeSecurityLevel attribute can be set to one of the following values:

• ignore – Attempts to modify the property value will fail silently. If
writeSecurityLevel is not set, it defaults to ignore.

• deny – Attempts to modify the property value will result in errors. Note, however,
if the user attempts to set the value to the same value that was originally returned
(that is, either the current value of the property or a masking value, depending on
the user’s read access), no error will result. This is to handle cases where a form
populated with current values attempts to write all of those values back when it is
submitted. This option is available only for custom properties.

Note that the values of these attributes have an effect only if read or write access
attributes are set on the property as well. For example, if the readSecurityLevel
attribute is set to deny for a custom property, the property is omitted from a response
only if read access is restricted by the readRole or readAccessRight attribute, and the
user does not have the specified role or access right.

Return masking values

If the value of a property’s readSecurityLevel attribute is ignore, then attempts to
access the property by users lacking the necessary access right or role return a
placeholder called a masking value. The logic for determining the value is as follows:

• If the property is not required, null is returned.

• If the property is required, and its default value is set, the default value is returned.
(Note that for a custom property that is required, the default value must be set.)

• If the property is required, and its default value is not set, a generic value is
returned. The value depends on the data type of the property:

– String – the empty string

– Numeric value -- 0

– Date or timestamp -- Jan 1 1970

– Enumeration -- the first enumerated value

You can override this logic by explicitly specifying a placeholder value for the property
using the securityMaskingValue attribute. For example, you might want to set the
placeholder value for strings to “XXXXX,” to make it clear that the actual value is being
suppressed rather than empty. Note that the securityMaskingValue you specify must
match the data type of the property.

Set the values of access control attributes

To set the access control attributes on specific properties, you use the endpoints in the
Admin API for modifying the item type for those properties. For example, to configure
access control on profile properties, you use the updateShopperType endpoint to
modify the user shopper type.

Chapter 33
Implement property access control for internal users

33-3

The following example illustrates setting the role and access right attributes of a
property, as well as its securityMaskingValue:

PUT /ccadmin/v1/shopperTypes/user HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en
Content-Type: application/json

{
 "properties": {
 "lastName": {
 "readRole": "audit",
 "writeRole": "audit",
 "readAccessRight": "ar10",
 "writeAccessRight": "ar10",
 "shopperReadable": true,
 "shopperWriteable": true,
 "securityMaskingValue": "XXXXX"
 }
 }
}

The response shows the attribute values you set:

...
"lastName": {
 "shopperWriteable": true,
 "readRole": "audit",
 "readSecurityLevel": null,
 "readAccessRight": "ar10",
 "securityMaskingValue": "XXXXX",
 "length": 254,
 "shopperReadable": true,
 "label": "Last Name",
 "type": "shortText",
 "writeSecurityLevel": null,
 "writeAccessRight": "ar10",
 "required": false,
 "searchable": false,
 "writable": true,
 "internalOnly": false,
 "uiEditorType": "shortText",
 "default": null,
 "audienceVisibility": null,
 "localizable": false,
 "textSearchable": false,
 "writeRole": "audit",
 "dimension": false,
 "editableAttributes": [
 "shopperWriteable",
 "readRole",
 "readSecurityLevel",
 "readAccessRight",
 "securityMaskingValue",

Chapter 33
Implement property access control for internal users

33-4

 "shopperReadable",
 "label",
 "writeSecurityLevel",
 "writeAccessRight",
 "required",
 "searchable",
 "internalOnly",
 "default",
 "audienceVisibility",
 "textSearchable",
 "writeRole",
 "dimension",
 "multiSelect"
],
 "multiSelect": null
},
...

These settings restrict both read and write access to only users that either have the
audit role or the ar10 access right. If a user has neither of these and attempts to
view a shopper’s profile, the lastName property value is masked in the response. For
example:

...
"lastName": "XXXXX",
"GDPRProfileP13nConsentDate": null,
"GDPRProfileP13nConsentGranted": false,
"gender": "female",
...

Note that you should not set access-control attributes on a property that points to
another object or collection of objects. Instead, set the attributes on the individual
properties of the objects.

For a property that holds an array of strings or numeric values, you can set
access-control attributes to specify access rights and roles, but you cannot set the
securityMaskingValue attribute.

Chapter 33
Implement property access control for internal users

33-5

34
Manage an Account-based Storefront

This chapter provides information on additional requirements you must satisfy when
creating an account-based storefront. It also provides information on adding the
delegated administration feature to your storefront.

Note: The account-based commerce feature may not be enabled in your environment.

Manage account-based shopper profiles
Account-based storefronts cannot use the Customer Profile widget that is included in
Commerce out of the box.

This widget allows shoppers to edit their billing and shipping addresses. In account-
based storefronts, addresses are managed at the account level and shoppers should
not be able to modify them, which makes the Customer Profile widget inappropriate
for account-based storefronts. Instead, account-based storefronts must create a new
widget that displays profile information but does not enable address editing.

This section describes how to create this new widget.

Download the existing Customer Profile widget

You can create your new widget using the code from the existing Customer Profile
widget as a starting point. For instructions on how to download the code for the
existing Customer Profile widget, see Download widget source code.

Modify the Customer Profile widget

The display.template for the existing widget includes the following lines of code:

<div id="CC-customerProfile-profileDetails-section"
 class="row cc-customerProfile-profile-details"
 data-bind="template: { name: templateAbsoluteUrl(
 '/templates/customerProfileDetails.template') ,
 templateUrl: ''}">

This code references another template file, customerProfileDetails.template,
that contains the code that is responsible for rendering the profile’s addresses:

<div class="col-sm-6" id="CC-customerProfile-shipping">
 <div class="row cc-customerProfile-shipping-address"
 id="CC-customerProfile-shipping-details"
 data-bind="template: { name: templateAbsoluteUrl(
 '/templates/customerProfileShippingAddress.template') ,
 templateUrl: ''}"></div>
</div>

34-1

At a minimum, these lines of code in the customerProfileDetails.template
must be removed or commented out to prohibit shoppers from editing or adding
addresses. However, this will also prevent the addresses from being displayed on
the Profile Layout (note that the shopper can still see her addresses on the Checkout
Layout and Checkout Layout with GiftCard pages). As an alternative, you can modify
the customerProfileShippingAddress.template referenced in this code to
retrieve addresses from the account instead of the individual shopper.

If you choose to edit the customerProfileShippingAddress.template file,
you must remove any options in that file that edit or add new addresses. To
display the addresses, you must use the organizationAddressBook array from the
UserViewModel in place of the shippingAddressBook array. For example, in the
following code:

<div class="col-xs-12">
 <!-- ko with: user -->
 <fieldset id="CC-customerProfile-edit-fields">
 <legend class="cc-profile-legend-title"
 id="CC-customerProfile-shippingAddress-label">

 …
 …
 <!-- View Begins -->
 <div class="col-sm-10" id="CC-customerProfile-shippingAddress-
view-region">
 <!-- ko foreach: shippingAddressBook -->
 <!-- ko if: postalCode -->
 <address class="CC-customerProfile-shipping-address
 cc-customer-profile-shipping-address-view">
 <div class="pull-right">
 <!-- ko if: $parent.shippingAddressBook().length > 1 -->
 <button class="btn btn-default btn-sm"
 data-bind="click:

$parents[1].handleSelectDefaultShippingAddress,
 disable: isDefaultAddress(),
…

This line:

<!-- ko foreach: shippingAddressBook -->

Should change to:

<!-- ko foreach: organizationAddressBook -->

And this line:

<!-- ko if: $parent.shippingAddressBook().length > 1 -->

Chapter 34
Manage account-based shopper profiles

34-2

Should change to:

<!-- ko if: $parent.organizationAddressBook.length > 1 -->

After making the necessary code changes, you must create a new extension package
to contain the widget and upload it to Commerce. To make the new extension
package, you can copy the extension package from the original Customer Profile
Widget, however, you must modify the widget directory name and the meta-data in
the ext.json and widget.json files for your new widget. For more details, see
Understand extensions.

Implement access control in business accounts
For stores with business accounts, there are two types of users who can have their
access to properties controlled with roles and access rights:

• Internal users who can work with the administration interface’s Accounts page
because they were assigned the Administrator or Account Manager role.

• Storefront users who have been assigned the Administrator role (delegated
administrators) or the Approver role. These roles allow them to manage certain
aspects of their business accounts. Delegated administrators do not have access
to the Commerce administration UI. Delegated administrators perform all account-
management tasks on their My Account pages, which are available once they log
into your store.

With the support of role-based access control, you can also use these roles and
access rights to enforce restrictions on which internal users can access a shopper’s
personal data. More specifically, you can control which properties an internal user
can see or edit. For example, if you set the writeRole attribute of a property to
Administrator, only someone with the Administrator role can set the value of a specific
property.

Delegated administrators can also have their access to properties controlled with
roles and access rights. For more information on delegated administrators, refer
to Understand delegated administration. For specific details on how a delegated
administrator can have their access to properties controlled with roles and access
rights, refer to the Create access rights for use with shopper roles section of this
document.

Understand how access rights and roles affect the Accounts page

Internal users with a role of Administrator or Account Manager have access to
properties found on the Accounts page in the Oracle Commerce Cloud administration
UI. With support of role-based access control, you can limit what a user is able to
see or modify on the Accounts page based on role and access rights. This can be
particularly useful when trying to limit access to information in the following areas:

• Contacts list

• Contact details

• Account details - This includes the following tabs: General, Addresses, Contacts,
Contracts, Approvals, Shipping/Payments, and Registration Requests (if the
feature has been enabled). The use of role-based access control could be
particularly useful on tabs that display personal information such as the Addresses
and Contacts tabs.

Chapter 34
Implement access control in business accounts

34-3

By focusing on tabs that include sensitive and personal information, you can take
advantage of this feature to effectively control what a user is able to see or modify on
the Accounts page.

The following image shows an example of what an internal user might see on
the Accounts page of the administration interface if role-based access control is
implemented for an account-based store. Specifically, an access right has been
assigned to both the readAccessRight and writeAccessRight attributes of the user
shopper type’s email property. In this case the user is not assigned a role that includes
the same access right – as a result the email address of each contact appears as the
placeholder value XXXXX. See the Configure the data to return section of this document
for more information.

Other things you should pay attention to when you are considering using role-based
access control to control access to properties on the Accounts page include the
following:

• If you make account name, contact name, or contact email a restricted property,
you should specify a non-null masking value. Otherwise, business users who view
the list of contacts or accounts, but don’t have access to these fields, may see null
values, and therefore may not be able to open the details of a contact or account.

• If a user tries to view a list, and the default sort is on one or more fields to which
they do not have read access, the list returns unsorted results. To the requesting
user, all instances of the field (in all rows) will have the same masked value.
You can sort by clicking the headings in the tables that appear on the following
Accounts pages: Contacts List, Accounts List, and Registration Requests List as
well as on the All Sites and Contacts tabs for an account’s details page, which you
see when you click on that specific account in the Accounts List.

• If a user tries to search on a field to which they do not have read access, no
results will be returned. This refers to any search boxes (the ones that have Filter
as the label in them) on the Accounts pages (for example, accounts, contacts,
registration requests, and sites).

• If a user tries to do an Advanced search and any of the fields they search on
is one to which they do not have access, no results will be returned. Advanced
search is available on the Contacts List, Accounts List, and the Registration
Requests List pages.

Chapter 34
Implement access control in business accounts

34-4

Plan access control for an account-based store

This section describes things to keep in mind as you implement property access
features for an account-based store.

• Each of a property’s access-control attributes (readRole, writeRole,
readAccessRight, and writeAccessRight) can be set only to a single ID. If you
plan to use access rights to control property access for both internal users and
delegated administrators, make sure that corresponding access rights and custom
roles you create for internal users and shoppers have the same repositoryId
value.
For example, suppose you use the createAdminAccessRight endpoint to create
an access right whose ID is ar10. You then assign the access right to a property’s
readAccessRight attribute. Any internal user whose role includes the access right
ar10 will have read access to that property. If you want delegated administrators
to also have read access to that property, you must use the createAccessRight
endpoint to create an access right with the exact same ID, ar10. Then, any
delegated administrator whose role includes the access right ar10 will also have
read access to the property.

• If you set access-control attributes on a property, think about whether you want
to set the property’s shopperReadable and shopperWriteable attributes to true. If
these attributes are false, shoppers (including delegated administrators) who do
not have the appropriate access right assigned to them via a role, will not be able
to access the properties for their own accounts and orders. For more information
about these attributes, see Understand roles and access rights.

• Depending on how you implement property restrictions, you may want to
customize the storefront widgets you have configured for layouts that your
delegated administrators access. (For example, the Order Approval Settings,
Account Contacts, and Account Addresses widgets.) You could add logic that
provides better user experience for delegated administrators. For example, if a
delegated administrator does not have write access to a property, the widget could
include logic that prevents them from saving the property, rather than waiting to
get an error from the server.

• Commerce provides one set of endpoints for creating access rights and roles
for shoppers and another for creating them for internal users. However, there is
only one set of endpoints for assigning access rights to properties. If you plan to
control property access for both internal users and delegated administrators, make
sure that corresponding access rights you create with createAdminAccessRight
(for internal users) and createAccessRight (for delegated administrators) have the
same repositoryId value. This helps ensure consistency when you implement
property access control for both types of users.
For more information about assigning access rights to properties, see Set access
control on properties.

• If your account-based store is configured to allow shoppers to submit account
registration requests, do not restrict a shopper’s write access to any properties of
the organizationRequest item type, as this will cause any registration request the
shopper submits to fail.

Create access rights for use with shopper roles

You create access rights to control delegated administrators’ access to properties
using the createAccessRight endpoint in the Admin API.

Chapter 34
Implement access control in business accounts

34-5

The following example creates an access right that can be used with shopper roles:

POST /ccadmin/v1/accessRights HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "displayName": "Shopper Email Access Right 1",
 "name": "shopperEmailAr1",
 "repositoryId": "shopperEmailAr1",
 "description": "First of several storefront access rights."
}

The response is similar to this:

{
 "displayName": "Shopper Email Access Right 1",
 "name": "shopperEmailAr1",
 "repositoryId": "shopperEmailAr1",
 "description": "First of several storefront access rights.",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/accessRights"
 }
]
}

Create custom shopper roles

Commerce provides the ability to create custom shopper roles that will contain
shopper access rights. Custom roles are global roles, which can be assigned to
delegated administrators in any account. You should not use the built-in Storefront
Roles (Buyer, Account Address Manager, Administrator, Approver, and Profile Address
Manager), for property access control. While the REST API does not prevent you
from assigning access rights to the built-in Storefront Roles, these roles are account-
specific and using them to control access to individual properties may not produce the
results you expected when you planned your access-control strategy.

Note: Custom shopper roles do not appear in the administration interface, so you
must assign them to shopper profiles with the createProfile, updateProfile, or
updateUserRoles endpoints in the Admin API.

To create a custom shopper role, use the createRole endpoint in the Admin API. The
following example creates a custom role and assigns an existing access right to it in
the same request. You can also create a custom role with no access rights and assign
them to the role later with the updateRole endpoint, or just use the role (without access
rights) to control property access.

POST /ccadmin/v1/roles HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{

Chapter 34
Implement access control in business accounts

34-6

 "name": "No Email Access",
 "repositoryId": "noEmail",
 "description": "Delegated admin who cannot access shopper email
addresses.",
 "accessRights": [
 {
 "repositoryId": "shopperEmailAr1"
 }
]
}

The response is similar to this:

{
 "name": "No Email Access",
 "repositoryId": "noEmail",
 "description": "Delegated admin who cannot access shopper email
addresses.",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/roles"
 }
],
 "accessRights": [
 {
 "repositoryId": "shopperEmailAr1",
 }
],
 "category": "Custom"
}

The following example assigns two existing access rights to an existing custom role:

PUT /ccadmin/v1/roles/noPhone HTTP/1.1
Authorization: Bearer <access_token>
Content-Type: application/json

{
 "accessRights": [
 {
 "repositoryId": "bbar1",
 "repositoryId": "bbar2"
 }
]
}

The response is similar to this:

{
 "name": "No Phone Number Access",
 "repositoryId": "noPhone",
 "description": "Delegated admin who cannot access shopper phone

Chapter 34
Implement access control in business accounts

34-7

numbers.",
 "links": [
 {
 "rel": "self",
 "href": "http://www.example.com:7002/ccadmin/v1/roles"
 }
],
 "accessRights": [
 {
 "repositoryId": "bbar1",
 "repositoryId": "bbar2",
 }
],
 "category": "Custom"
}

Create custom properties for accounts
This section describes how to use the Commerce REST web services APIs to add
custom properties to accounts.

See Use the REST APIs for information you need to know before using the services.

Note that you can also create custom properties for the contacts associated with
accounts. Contacts are stored as shopper profiles, so any custom properties you add
to shopper profiles are available for contacts as well. See Manage Shopper Profiles for
information.

View an account

To view an existing account, first log into the Admin API on the administration server
using a profile that has the Administrator role. For example:

POST /ccadmin/v1/mfalogin HTTP/1.1
Content-Type: application/x-www-form-urlencoded

grant_type=password&username=admin1@example.com&password=A3ddj3w2&totp_c
ode=365214

Then issue a request to the getOrganization endpoint, providing the ID of the account
you want to view, and including the access token that was returned by /ccadmin/v1/
mfalogin. For example:

GET /ccadmin/v1/organizations/100002 HTTP/1.1
Authorization: Bearer <access_token>

The response shows the predefined account properties that are exposed by
Commerce, and the values of the properties in the specified account. Note that the
members property is an array in which the elements are the IDs of the contacts for the
account:

{
 "customerType": "Supplier",

Chapter 34
Create custom properties for accounts

34-8

 "contract": {
 "creationDate": "2016-10-17T20:25:44.000Z",
 "startDate": null,
 "externalContractReference": "",
 "description": null,
 "catalog": {
 "repositoryId": "cloudCatalog"
 },
 "terms": null,
 "priceListGroup": {
 "repositoryId": "defaultPriceGroup"
 },
 "endDate": null,
 "displayName": "Sherman",
 "repositoryId": "100002"
 },
 "vatReferenceNumber": null,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
organizations/100002"
 }
],
 "organizationLogoURL": null,
 "type": "company",
 "repositoryId": "100002",
 "dunsNumber": 000000000,
 "uniqueId": null,
 "id": "100002",
 "description": "Supplier of sprockets to a wide range of
industries.",
 "name": "Sherman Sprockets",
 "active": true,
 "secondaryAddresses": [
 {
 "address": {
 "postalCode": "02116",
 "phoneNumber": "1-555-555-1212",
 "state": "MA",
 "address1": "1 Wixom Street",
 "address2": null,
 "companyName": "Sherman Sprockets",
 "repositoryId": "120002",
 "country": "US",
 "city": "Boston"
 },
 "addressType": "Sherman"
 }
],
 "billingAddress": null,
 "taxReferenceNumber": null,
 "shippingAddress": {
 "postalCode": "02116",
 "phoneNumber": "1-555-555-1212",

Chapter 34
Create custom properties for accounts

34-9

 "state": "MA",
 "address1": "1 Wixom Street",
 "address2": null,
 "companyName": "Sherman Sprockets",
 "repositoryId": "120002",
 "country": "US",
 "city": "Boston"
 },
 "members": [
 {
 "repositoryId": "110001"
 }
 {
 "repositoryId": "110002"
 }
],
 "organizationLogo": null
}

You can modify the values of the properties of an account using the PUT /ccadmin/v1/
organizations/{id} endpoint on the administration server.

View the organization item type

Accounts include a predefined set of properties for storing information, such as the
DUNS number and the account name. The set of properties available for an account is
determined by the organization item type, which serves as a template for accounts.
You can view this item type with the following call:

GET /ccadmin/v1/itemTypes/organization HTTP/1.1
Authorization: Bearer <access_token>

The following example shows a portion of the response corresponding to one of the
predefined account properties. Each property has a group of attributes whose values
control the behavior associated with the property:

{
 "id": "organization",
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
itemTypes/organization"
 }
],
 "displayName": "Organization",
 "specifications": [
 {
 ...
 "writable": true,
 "localizable": false,
 "label": "Description",
 "type": "shortText",
 "id": "description",

Chapter 34
Create custom properties for accounts

34-10

 "uiEditorType": "shortText",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": false,
 "default": null,
 "editableAttributes": [
 "textSearchable",
 "multiSelect",
 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "searchable"
],
 "length": 254,
 "required": false,
 "searchable": false
 },
 ...
}

To modify the organization item type, you can create custom properties or modify
existing properties by setting the values of these attributes. See Settable attributes of
shopper type properties for descriptions of these attributes.

Add custom properties to the organization item type

You can use the updateItemType endpoint in the Commerce Admin API to add custom
properties to the organization item type. When you add a custom property to the
organization item type, the property is added to all accounts, including any new
accounts created afterward and any accounts that already exist.

The ID of a custom property must include the underscore character (_). This ensures
that the ID will not conflict with any properties that Commerce adds to accounts in
the future. The endpoint produces an error if you attempt to create a custom property
without an underscore in its ID.

The following example illustrates using the updateItemType endpoint to add a custom
property. Note that the request header must specify the x-ccasset-language value:

PUT /ccadmin/v1/itemTypes/organization HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "id": "organization",
 "specifications": [
 {
 "id": "customer_tier",
 "label": "Customer tier",
 "type": "shortText",
 "uiEditorType": "shortText",
 "internalOnly": false,

Chapter 34
Create custom properties for accounts

34-11

 "required": false,
 "audienceVisibility": "b2b",
 }
]
}

The response includes the custom property you added:

...
{
 "writable": true,
 "localizable": false,
 "label": "Customer tier",
 "type": "shortText",
 "id": "customer_tier",
 "uiEditorType": "shortText",
 "textSearchable": false,
 "multiSelect": null,
 "dimension": false,
 "internalOnly": false,
 "default": null,
 "editableAttributes": [
 "textSearchable",
 "multiSelect",
 "dimension",
 "internalOnly",
 "default",
 "label",
 "required",
 "searchable"
 "audienceVisibility"
],
 "length": 254,
 "required": false,
 "searchable": false
 },
...

The audienceVisibility is the string that determines whether the property appears
as a choice in the Attributes field of the audience interface. For account properties, this
value should be set to b2b. See Define Audiences.

You can create a new account and set the values of custom properties (as well as
the predefined properties) using the createOrganization endpoint. To set a custom
property on an existing account, use the updateOrganization endpoint. For example:

PUT /ccadmin/v1/organizations/100001 HTTP/1.1
Authorization: Bearer <access_token>

{
 "customer_tier": "silver"
}

Chapter 34
Create custom properties for accounts

34-12

Add a custom property that lets administrators log internal notes

This section describes a code sample that adds a custom property to the organization
type. This property displays a rich-text field on each account’s General tab in the
Commerce administration interface. Account administrators can use this editor to log
internal notes about the account. In this example, the rich-text field is used to add and
track internal notes related to registration requests.

Note: Keep in mind that you cannot search on this custom property in the
administration interface. You can search only on custom short text properties. See
Work with accounts for information about searching on custom properties.

The following sample request creates the rich-text editor, which is added to all
accounts, including any new accounts created afterward and any accounts that
already exist.

PUT /ccadmin/v1/itemTypes/organization HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
 "specifications": [
 {
 "label": "Internal Notes for Registration Requests",
 "id": "internal_notes",
 "default": null,
 "required": false,
 "localizable": false,
 "internalOnly": false,
 "textSearchable": false,
 "searchable": false,
 "multiSelect": false,
 "type": "richText",
 "uiEditorType": "richText"
 }
]
}

The editor appears at the bottom of the General tab for each account, in the Additional
Information section. As with all property editors, the editor appears in each account,
but the values are unique to the account where they are entered.

Keep the following tips in mind when you use the editor to create internal notes:

• Format each individual note, or task, as a separate bullet point.

• Each internal user should add their name or username to each note they create.

• Append new notes to the existing list. It is best not to modify or delete any existing
notes because there is no way to restore a note that has been changed or deleted.

The following illustration shows an account’s rich-text editor, with notes from three
different account administrators.

Chapter 34
Create custom properties for accounts

34-13

Render custom properties of accounts on the storefront

To render custom properties of accounts on your storefront, customize the JavaScript
in the Account Details widget to access the dynamicProperties observable array in
the Organization view model. For example:

define(
 //--
-
 // DEPENDENCIES
 //--
-
 ['jquery', 'knockout', 'ccLogger', 'ccRestClient', 'ccConstants',
 'viewModels/dynamicPropertyMetaContainer'],
 //--
-
 // Module definition
 //--
-
 function($, ko, CCLogger, ccRestClient, CCConstants,
 DynamicPropertyMetaContainer) {
 'use strict';
 return {
 dynamicProperties: ko.observableArray(),
 onLoad : function(widget) {
 },

 beforeAppear: function(page) {
 var widget = this;
 if (widget.user() && widget.user().organizations &&
 widget.user().organizations().length > 0) {
 this.getDynamicPropertyMetadata(widget);
 }
 },

 getDynamicPropertyMetadata: function(widget) {
 var dynamicPropertyMetaInfo =
 DynamicPropertyMetaContainer.getInstance();
 if (dynamicPropertyMetaInfo &&
 dynamicPropertyMetaInfo.dynamicPropertyMetaCache &&
 dynamicPropertyMetaInfo.dynamicPropertyMetaCache.

Chapter 34
Create custom properties for accounts

34-14

 hasOwnProperty("organization")) {
 this.dynamicProperties(dynamicPropertyMetaInfo.
 dynamicPropertyMetaCache["organization"]);
 }
 },

 updateDynamicProperties: function() {
 var data = ko.toJS(this.user().organizations()[0]);
 ccRestClient.request("updateOrganization",data,
 this.updateDynamicPropertySuccess.bind(this),
 this.updateDynamicPropertyFailure.bind(this),
 this.user().organizations()[0].id());
 },
 updateDynamicPropertySuccess: function() {
 },
 updateDynamicPropertyFailure: function() {
 }
 }
 }
);

Modify the widget’s template file to include Knockout bindings similar to the following:

<div id="CC-org-dynamic-property">
 <!-- ko foreach: dynamicProperties -->
 <label data-bind="attr: {id: 'CC-label-org-dynamicProperty-'+id()},
 text: label">
 </label>
 <input data-bind="attr: {id: 'CC-edit-org-dynamicProperty-'+id(),
 type: uiEditorType, required: required},
 value: $parent.user().organizations()[0][id()]">

 <!--/ko-->
</div>

Add delegated administration to your storefront
A delegated administrator is a contact whose storefront role has been set to
administrator.

Using delegated administration features in the storefront itself, a delegated
administrator can perform tasks such as adding new contacts to an account,
specifying roles (such as buyer or administrator) for contacts in an account, and
specifying account-level billing and shipping addresses.

This section provides information about modifying your storefront to provide delegated
administration features to contacts with administrator privileges.

Note: For more information on assigning delegated administration privileges to
contacts, see Understand delegated administration.

Chapter 34
Add delegated administration to your storefront

34-15

Add delegated administration widgets to the Profile Layout

To add the delegated administration feature to your storefront pages, you must modify
the Profile Layout. Specifically, the Profile Layout has access to two widgets that
provide delegated administration features:

• The Account Contacts widget provides the delegated administrator with an
interface for viewing, adding, removing, and modifying account contacts. Using
this widget, the delegated administrator can also activate a contact as well as give
administrator privileges to a contact. Note that a delegated administrator cannot
remove the administrator role from her own profile; however, she can remove the
administrator role from another contact. Similarly, a delegated administrator cannot
deactivate herself but she can deactivate other delegated administrators.

• The Account Addresses widget allows a delegated administrator to specify
account-level addresses. This widget also allows a delegated administrator to
specify a default billing address and a default shipping address for the account.

To add these widgets to the Profile Layout, you must create a version of the Profile
Layout for account-based shoppers only. To do this, go to the Design page, clone
the Profile Layout, give it a descriptive name, enable the ‘Display layout to account
shoppers only’ option, and save the clone.

To add the delegated administration widgets to the clone you created, you can
create a vertical tab stack and place the widgets on individual tabs within the stack.
To restrict the display of the delegated administration tabs to contacts that have
administrator privileges, you can add something similar to the following code snippet in
the vertical tab stack’s template (this snippet assumes you used “My Profile”, “Account
Addresses”, and “Account Contacts” as the display names for the tabs that hold the
Customer Profile, Account Contacts, and Account Addresses widgets, respectively):

($data.displayName() == 'My Profile') ||
((($data.displayName() == 'Account Contacts') ||
($data.displayName() == 'Account Addresses')) &&
($masterViewModel.data.global.user.roles[0].function === 'admin'))

This code snippet shows the My Profile tab to all contacts but restricts the display
of the Account Contacts and Account Addresses tabs to contacts with administrator
privileges.

For more information on vertical tab stacks, see Customize your store layouts and Use
Stacks for Increased Widget Layout Control.

Render custom properties of contacts on the storefront

Note: The information in this section applies only to rendering custom properties
of contacts when accessed on the storefront by delegated administrators. For more
general information about rendering custom properties of shopper profiles, see Access
custom properties using the UserViewModel.

To render custom properties of contacts on your storefront, customize the JavaScript
in the Account Contacts widget to access the dynamicProperties observable array in
the delegatedAdminContacts view model. For example:

define(
 //--

Chapter 34
Add delegated administration to your storefront

34-16

-
 // DEPENDENCIES
 //--
-
 ['jquery', 'knockout', 'ccLogger', 'ccRestClient', 'ccConstants',
 'viewModels/dynamicPropertyMetaContainer'],
 //--
-
 // Module definition
 //--
-
 function($, ko, CCLogger, ccRestClient, CCConstants,
 DynamicPropertyMetaContainer) {
 'use strict';
 return {
 dynamicProperties: ko.observableArray(),
 onLoad : function(widget) {
 var self = this;
 widget.listingViewModel= ko.observable();
 widget.listingViewModel(new DelegatedAdminContacts());
 },
 getDynamicPropertyMetadata: function(widget) {
 var dynamicPropertyMetaInfo =
DynamicPropertyMetaContainer.getInstance();
 if (dynamicPropertyMetaInfo &&
 dynamicPropertyMetaInfo.dynamicPropertyMetaCache &&
 dynamicPropertyMetaInfo.dynamicPropertyMetaCache.
 hasOwnProperty("user")) {
 this.dynamicProperties(dynamicPropertyMetaInfo.
 dynamicPropertyMetaCache["user"]);
 }
 },
 beforeAppear: function(page) {
 var widget = this;
 if (widget.listingViewModel&&
 widget.listingViewModel().dynamicPropertyMetaInfo &&
 widget.listingViewModel().dynamicPropertyMetaInfo.
 dynamicPropertyMetaCache && widget.listingViewModel().
 dynamicPropertyMetaInfo.dynamicPropertyMetaCache.
 hasOwnProperty(CCConstants.ENDPOINT_SHOPPER_TYPE_PARAM)) {
 this.getDynamicPropertyMetadata();
 }
 },

 koToJS: function() {
 var widget = this;
 var data = {};

 for(var i =0; i < widget.dynamicProperties().length; i++) {
 data[widget.dynamicProperties()[i].id()] =
 widget.listingViewModel()[this.dynamicProperties()[i].id()]
();
 }
 widget.isDelegatedAdminFormEdited = true;
 return data;

Chapter 34
Add delegated administration to your storefront

34-17

 },
 }
 }
);

Modify the widget’s template file to include Knockout bindings similar to the following:

<div id="CC-contact-dynamic-property">
 <!-- ko foreach: dynamicProperties -->
 <label data-bind="attr: {id: 'CC-label-contact-
dynamicProperty-'+id()},
 text: label">
 </label>
 <input data-bind="attr: {id: 'CC-edit-contact-
dynamicProperty-'+id(),
 type: uiEditorType, required: required},
 value: $parent.listingViewModel()[id()]">

 <!--/ko-->
</div>

Notify a contact of delegated administration changes

When a delegated administrator adds or removes a contact from an account, an
Account Assignment Changed notification email is sent to the contact. When a
delegated administrator adds or removes a role from a contact, a Role Assignment
Changed notification email is sent to the contact. For more information on these email
templates and how you can modify them, see Configure Email Settings and Customize
Email Templates.

Ensure PayPal shoppers provide first and last name
Account-based storefronts have an additional requirement for shoppers who use
PayPal as their payment method.

Specifically, an account-based storefront must ensure that the shopper provides a first
and last name before clicking the PayPal button on the Checkout page.

To understand this requirement, it is helpful to have some context. When the PayPal
button is clicked, a request is made to create an order. To pass validation, this request
can either:

• Include a complete and valid address for the shopper, or

• Contain no address information for the shopper (the expectation in this case is
that the shopper will provide complete address information after going through the
PayPal process and returning to the Commerce storefront to complete the order).

Either case is acceptable and will pass validation. The issue for an account-based
storefront is that every contact has a partial address, in the form of the address
provided for the contact’s parent account, that does not include a first and last name.
Using this partial address when attempting to create the order causes a validation
error.

The best method for ensuring that a shopper provides a first and last name before
clicking the PayPal button depends on your storefront’s requirements. Note that the

Chapter 34
Ensure PayPal shoppers provide first and last name

34-18

first and last name requirement exists only for the Checkout page. The Cart page,
which also has a PayPal button, does not have the same restriction because it never
passes an address when it makes the create order request (because the shopper has
no way of entering address information on the Cart page).

Chapter 34
Ensure PayPal shoppers provide first and last name

34-19

35
Integrate With a Procurement System

The Commerce punchout features let you integrate an account-based store with a
procurement system.

This integration allows a shopper who is logged into a procurement system to access
your storefront, view items from the assigned catalog, add items to the cart, and return
to the procurement system, which approves the purchase.

Understand punchout
The Commerce punchout features let you integrate an account-based store with a
procurement system.

This integration allows a shopper who is logged into a procurement system to access
your storefront, view items from the assigned catalog, add items to the cart, and return
to the procurement system.

Once the procurement system approves the purchase, it sends Commerce a purchase
order, which is used to create the Commerce order.

Commerce punchout functionality is provided through server-side extensions.
Commerce identifies incoming punchout orders that come through the server side
extension (as cXML-based orders) by setting the originOfOrder property to punchout
for incomplete orders and purchaseOrder once the order has been approved by the
procurement system.

The following are some key terms that you need to be familiar with before you
implement a punchout integration:

• The procurement system is an external system where the buyer starts the
shopping process, and where the buyer’s proposed purchases are approved.

• The supplier/seller is the Commerce merchant.

• A purchase order is a message sent from the procurement system to Commerce.
The purchase order includes details about the cart the punchout shopper created.
Commerce requires the purchase order so it can create an order.

• After a shopper has submitted cart data to the procurement system, they may
need to alter the order. This is known as re-punchout. The only difference between
the punchout and re-punchout process is that after the process has returned the
security token, re-punchout creates or updates incomplete orders and returns
the order information in JSON format. The procurement system passes the cart
information in cXML format for re-punchout; no cart information is passed during
punchout.

During re-punchout, if the cart contains an invalid product or SKU, Commerce
automatically removes it. If the cart contains a product or SKU that is out of stock,
it remains in the cart and storefront displays a message that notifies the shopper of its
inventory status.

35-1

Punchout functionality can be implemented only for a Commerce store that is
configured for account-based commerce. (See Configure Business Accounts for more
information.)

Punchout is implemented using cXML (commerce eXtensible Markup Language) 1.2,
which is an open-standard XML-based data-exchange format. Before configuring
punchout, you should be familiar with cXML. For information about cXML 1.2, see
http://cxml.org/.

Understand Commerce punchout limitations

Commerce does not support level 2 punchout, which implements CIF (Content
Interchange Format) catalogs to allow shoppers to view your Commerce catalog on
the procurement system’s site before punching out to your Commerce site to see
real-time data, like prices, and add items to the cart.

Commerce does not support punchout marketplaces or networks, where buyers can
connect to a number of different suppliers. Commerce supports only direct punchout.

Punchout can be used with most Commerce features that can be configured for
account-based stores. However, punchout cannot be used with scheduled orders or
quoting.

Configure CORS support

To access Commerce endpoints from the procurement system, you must configure
CORS (cross-origin resource sharing) support in Commerce by explicitly specifying
the procurement system’s domain as one that is permitted to make requests to
the punchout site. You specify the domains and methods permitted to access the
Commerce punchout site by using the PUT /ccadmin/v1/sites/{siteID} endpoint to
set the value of the allowedOriginMethods property on the corresponding site object.
See CORS support for more information.

Additionally, the punchoutSetupResponse Commerce sends to the procurement system
(in response to the punchoutSetupRequest request) must include Access-Control-
Expose-Headers to allow the procurement system to access to the oAuthtoken,
BuyerCookie, BrowserFormPost and OrderId in the response headers.

The punchoutSetUpResponse contains the Commerce storefront URL, which the
procurement system should redirect the shopper to. Other information (such as
oAuthToken and BuyerCookie) is part of the HTTP response headers.

Enable punchout for an account
This section describes how to set up and enable a new punchout account for
Commerce.

It contains the following sections:

• Understand the punchout account setup and enablement tasks

• Create the punchout account

• Enable punchout on the punchout account

• Generate an authorization code

• Set the punchout cart time setting

• Set the frequency of incomplete punchout order clean up

Chapter 35
Enable punchout for an account

35-2

• Learn about the generic punchout shopper profile

• Learn more about using punchout

Understand the punchout account setup and enablement tasks

To best understand the account setup and punchout enablement processes for the
punchout feature, it’s good to know at a high level the tasks that need to be completed.
These tasks are:

1. Create the punchout account (if this has not been done already).

2. Enable punchout on the punchout account.

3. Generate an authorization code. This code will be shared with the procurement
system in completing the account connection details to Oracle CX Commerce.

4. Download and customize the punchout server-side extensions, then upload them
to your Node.js server. See Work with the punchout server-side extension for more
information.

5. Set the punchout cart time setting.

The next sections provide details on how to complete these tasks.

Create the punchout account

Whenever you want to set up a new business buyer for a punchout account, you first
need to go through the usual steps required in creating the business account that will
use punchout (if you have not done so already).

This process includes designating contract info, providing addresses, choosing
catalogs, selecting price groups, etc. Refer to Configure Business Accounts for more
complete information on this task.

Note: For this release, no contacts can be set up for punchout accounts as Oracle CX
Commerce does not persist the profile of punchout shoppers. To learn more about how
punchout handles the profile of punchout shoppers, refer to Learn about the generic
punchout shopper profile.

Additionally, merchants should define a relatively small set of business contacts in
Oracle CX Commerce under whose profiles the procurement system will submit orders
after approving them. (For example, these could be the profiles of the approvers at the
procurement system.)

You have the following choices to help you define the small set of contacts:

• Import the profiles of users whom they expect to submit orders

• Customize a server side extension to create profiles on the fly when Oracle CX
Commerce receives a purchase order

Profiles created in either of these ways will be regular contacts, just like the ones
created by administrators. They can access the account/site directly just like any other
contact on the account.

Enable punchout on the punchout account

After you have set up your punchout account, the next step is to enable punchout on
that account. Since not every account will use punchout, this is the way to distinguish
punchout accounts from non-punchout accounts.

Chapter 35
Enable punchout for an account

35-3

Use the following steps to enable punchout for an account by using the administration
interface:

1. In the administration interface, click the Accounts icon to go to the Accounts
page.

2. Select the account that you want to use the punchout feature.

3. From the Account page of that account, select the Punchout tab.

4. Select Allow Punchout Shopping to enable the punchout feature for that
account. This property:

• Allows the designated account to accept punchout (cXML only) shopping
requests if the account has an integration to a procurement system.

• Is inheritable. All sub-accounts inherit this field by default.

• Is not site-specific.

• Is unchecked by default.

5. Select Enable Authorization Code to enable the account to have the ability
to generate a punchout authorization code. A Generate button appears. This
property:

• Allows you to generate the code that an external system provides in each
cXML punchout or purchase order request for authentication purposes. This is
the authorization code that will be shared with the procurement system that is
using punchout.

The account’s account ID and URL are also shared with the procurement system.

• Is inheritable. All sub-accounts inherit this field by default.

• Is not site-specific.

• Is unchecked by default.

Generate an authorization code

Punchout transactions are signed so that the system receiving the event can verify
their authenticity. Once you select Enable Authorization Code on the Punchout tab,
the Generate button appears below this option on the administration user interface.
This button gives you the ability to generate a punchout authorization code for that
account. This is the code that an external system provides in each cXML punchout or
purchase order request for authentication purposes. This code can be regenerated at
any time if need be.

The authorization code is shared with the procurement system implementing
punchout. You must manually communicate this code (for example, via phone or
email) to someone on the procurement side during implementation of the procurement
system integration. After this is done, the procurement system sends it to Oracle CX
Commerce with each request.

To generate the punchout authorization code, do the following

1. In the administration interface, click the Accounts icon to go to the Accounts
page.

2. Select the account that has the punchout feature enabled.

3. Select the Punchout tab of the particular punchout account that requires an
authorization code.

Chapter 35
Enable punchout for an account

35-4

4. Click the Generate button to generate a unique authorization code. A warning
appears that tells you that if you continue, the new authorization code will be
saved immediately. If you have already generated a code before, this code will
replace the existing code. If this is the case, make sure you update any external
sources that are using the existing code to access this account.

5. Click Save to save the code that you have generated. The authorization code is
shared with the procurement system implementing punchout. You must manually
communicate this code (for example, via phone or email) to someone on the
procurement side during implementation of the procurement system integration.
After this is done, the procurement system sends it to Oracle CX Commerce with
each request.

Set the punchout cart time setting

The administration user interface also lets you set a time period after which the system
removes a punchout cart with its items. Specifically, this setting is used to clear off old
carts which have not been punched out and are no longer needed. This is done as
follows:

1. In the administration interface, click the Settings icon.

2. Select Order Settings.

3. In the Punchout Carts section of the page, enter the number of days you wish as
the time period after which the system removes a punchout cart. 7 days is the
default value. You may enter values up to 99 days.

4. Click Save to save your setting.

5. Configure the service that runs periodically to remove incomplete punchout orders
that have exceeded the time limit you specified. See Set the frequency of
incomplete punchout order clean up.

This setting is global across all sites and appears if there is at least one business
account.

Set the frequency of incomplete punchout order clean up

A service runs periodically to review the order repository and remove any
incomplete punchout orders that have exceeded the time limit specified in the Days
Until a Punchout Cart is Removed setting. (See Set the punchout cart time
setting.) To set the initial frequency of the order cancellation service, you issue
a POST request to the scheduledJobs endpoint, with a payload that specifies the
PunchoutOrderScheduledJob component and the schedule, an example of which
is provided below. To update the schedule, you issue a PUT request to the same
endpoint.

POST /ccadmin/v1/merchant/scheduledJobs

{
"componentPath": "PunchoutOrderScheduledJob",
"scheduleType": "periodic",
"schedule":
 {
 "period" : 1000000
 }
}

Chapter 35
Enable punchout for an account

35-5

The scheduleType and schedule properties determine the frequency used when
running the service. Setting these properties is described in detail in the Configure
the scheduled order service section.

Learn about the generic punchout shopper profile

For each account that uses punchout, a generic punchout shopper profile is created.
Even though Oracle CX Commerce receives an email address and name in the
shopping request from the procurement system, these are only for the purpose of
displaying to the shopper (should the merchant decide to customize a widget to do so).
From the perspective of Oracle CX Commerce, the generic punchout shopper profile is
associated with all punchout shopping requests.

The generic punchout shopper profile contains the following information:

• Last Name = “User”

• First Name = “Punchout”

• email address = punchoutuser@organizationId.com

This generic punchout shopper is created when the first valid request is received
from the procurement system. The generic punchout shopper is also returned by the
contact APIs.

In the top-level Contacts list in the administration user interface, the Account Contacts
list in the administration user interface, and the Account Contacts widget in Storefront,
you can see the last name, first name, and email address of the generic punchout
shopper in the list view. This is the same as for a regular shopper. No link is provided
to open the contact details, however.

For the top-level Contacts list in the administration user interface, if there is a generic
punchout shopper in any account, you will see a message stating that the list may
include system-generated punchout contacts that are read-only. You will also see this
message in the Account Contacts list in the administration user interface and the
Account Contacts widget if the account has a generic punchout shopper.

This following is some additional information about the generic punchout user profile:

• A user who knows the URL of the contact details of the generic shopper profile
can view it.

• The API can operate on the generic punchout shopper just as on any other
contact.

• A generic punchout shopper profile cannot receive emails.

• A generic punchout shopper cannot log into the Storefront except
programmatically as part of the punchout session.

• If the punchout shopper’s session expires, the shopper will have to return to the
procurement system and then punch out again.

• If an account stops using punchout and then later re-starts using punchout,
when the system receives the first new punchout request, it will ensure that the
account’s generic punchout shopper is in place correctly. For example:

– If someone had used an API to remove the generic shopper profile from the
account, the system puts it back under the account.

– If someone had used an API to deactivate the generic shopper profile, the
system re-activates it.

Chapter 35
Enable punchout for an account

35-6

• When you choose to add an existing contact to an account, a dropdown of existing
contacts is displayed to choose from, remove other accounts’ generic punchout
shoppers from the dropdown list.

Learn more about using punchout

The following are recommendations and notes to keep in mind when enabling the
punchout feature:

• Commerce does not collect shipping information and does not calculate taxes for a
punchout cart.

• Commerce does not currently store the punchout shopper’s first name, last name,
or email address on carts. Persisted punchout carts are tracked using the order ID.

• The punchout shopper’s first name, last name, and email address are currently
not mandatory. A merchant can display them, however, if needed. See Display
information about a punchout shopper in a widget for more information.

• By default, an order originating from a punchout account can be paid using the
invoice payment method only. However, merchants can customize the server side
extensions to support other payment methods.

Work with the punchout server-side extension
Commerce punchout functionality is provided through server-side extensions that can
run on the Node.js server associated with your Commerce environment.

To use the punchout features, you must download the extensions from the Commerce
administration server. You then customize the extension and upload it to your
Node.js server. The punchout server-side extensions implement custom REST
endpoints, which have the prefix /ccstorex/custom.

Commerce includes punchout server-side extensions that you can download and
customize for your environment. This section describes the punchout extensions that
are included with Commerce. See in Use developer tools to customize your store for
details about how to download and customize server-side extensions.

The following table describes the punchout server-side extensions.

Server-side extension Description

punchout-app.zip Includes functionality that enables the
punchout flow between the procurement
system and Commerce. Use this sample
application to customize the default
functionality provided in the punchout-lib
library.

punchout-lib.zip Supports setup, edit and complete flows for
punchout in cXML standard with Commerce.
Do not make any changes to this library.

purchase-order-app.zip Includes functionality that enables the
purchase order flow between the procurement
system and Commerce. Use this sample
application to customize the default
functionality provided in the purchase-
order-lib library.

Chapter 35
Work with the punchout server-side extension

35-7

Server-side extension Description

purchase-order-lib.zip Supports submitted orders in Commerce from
procurement system’s purchase order in cXML
format. Do not make any changes to this
library.

Each ZIP file includes readme.md files that describe classes and endpoints and
include information about how to install and extend the extensions.

The server-side extensions provide the core punchout functionality with the following
JavaScript classes. You can extend these classes, for example, to customize
mappings or make additional Commerce REST API requests.

Class Name Description

PunchOutSetup Provides methods to authenticate, create the
shopper token, and create the shopping cart in
Commerce if re-punchout is required.

PunchOutComplete Provides methods that convert the order
request body JSON to the cXML
PunchOutOrderMessage, which is sent to the
procurement system.

PurchaseOrder Provides methods that call the store
priceOrder endpoint, check if prices are
within tolerance limit, and create the order.

PunchOutUtils Provides utilities for functionality such as
fetching SKU prices, calling Commerce APIs,
and parsing XML.

Work with the punchout endpoints

This section describes the endpoints included in the punchout server-side extension.
All the endpoints are public URLs and all requests must be sent via HTTPS.

punchoutSetUp endpoint

Issue a POST request to the /ccstorex/custom/v1/punchOut/punchOutSetUp endpoint
to establish a punchout (or re-punchout) session from the procurement system.

When the procurement system makes a punchout setup call (which happens once per
session), the extension responds with the start page URL (the Oracle CX Commerce
storefront home page) and the OAuth token. The procurement system then uses the
start page URL to navigate the shopper to storefront page.

The following example shows a sample cXML request body. In the header, Identity is
the Organization ID and SharedSecret is the organization’s authorization code.

<cXML>
 <Header>
 <Sender>
 <Credential domain='organizationId'>
 <Identity>or-10001</Identity>
 <SharedSecret>authorization_code</SharedSecret>
 </Credential>
 </Sender>

Chapter 35
Work with the punchout server-side extension

35-8

 </Header>
 <Request>
 <PunchOutSetupRequest operation='create'>
 <BuyerCookie>1CX3L4843PPZO</BuyerCookie>
 <BrowserFormPost>
 <URL>http://localhost:1616/punchoutexit</URL>
 </BrowserFormPost>
 <Contact>
 <Name>buyer_name</Name>
 <Email>buyer_email</Email>
 <Extrinsic name='lastName'>punchout</Extrinsic>

 </Contact>
 </PunchOutSetupRequest>
 </Request>
</cXML>

The following example shows a sample cXML response:

<cXML>
 <Response
 <Status code="200" text="success" />
 <PunchOutSetupResponse>
 <StartPage>
 <URL>http://xml.example.com/retrieve?
reqUrl=20626;Initial=TRUE</URL>
 </StartPage>
 </PunchOutSetupResponse>
 </Response
</cXML>

punchoutComplete endpoint

When the punchout shopper has finished adding items to their cart and wants
to return to their procurement system, issue a POST request to the /ccstorex/
custom/v1/punchOut/punchoutComplete endpoint to convert the order JSON to
PunchOutOrderMessage cXML. See Add a punchout checkout button to the Order
Summary widget for a sample widget that implements this endpoint.

The request body is a JSON representation of the punchout shopper’s order and the
response body is a cXML representation of the order. See Order submit webhook for a
sample JSON representation of an order.

purchaseOrder endpoint

Issue a POST request to the /ccstorex/custom/v1/punchOut/purchaseOrder endpoint
to convert the procurement system’s purchase order cXML to JSON and create an
order in Commerce.

By default, this server side extension supports invoice payment only, but. you can
customize the extension to support other payment methods.

The following example shows a sample cXML request body.

<cXML>
 <Header>

Chapter 35
Work with the punchout server-side extension

35-9

 <Sender>
 <Credential domain='organizationId'>
 <Identity>or-100001</Identity>
 <SharedSecret>key</SharedSecret>
 </Credential>
 </Sender>
 </Header>
 <Request>
 <OrderRequest>
 <OrderRequestHeader orderID="DO102880"
orderDate="2012-08-03T08:49:09+07:00" type="new">
 <Contact>
 <Name>First Name</Name>
 <Email>Email@example.com</Email>
 <Extrinsic name='lastName'>John_Smith</Extrinsic>
 <Extrinsic name='parentOrganization'>or-100001</Extrinsic>
 </Contact>
 <Total>
 <Money currency="USD">86.50</Money>
 </Total>
 <ShipTo>
 <Address isoCountryCode="US" addressID="1000467">
 <Name xml:lang="en">Acme, Inc.</Name>
 <PostalAddress name="default">
 <DeliverTo>John Q. Smith</DeliverTo>
 <DeliverTo>Buyers Headquarters</DeliverTo>
 <Street>123 Main Street</Street>
 <City>Mountain View</City>
 <State>CA</State>
 <PostalCode>94089</PostalCode>
 <Country isoCountryCode='US'>United States</Country>
 </PostalAddress>
 <Email name="default">john_smith@example.com</Email>
 <Phone name="work">
 <TelephoneNumber>
 <CountryCode isoCountryCode="United States">1</
CountryCode>
 <AreaOrCityCode>800</AreaOrCityCode>
 <Number>5555555</Number>
 </TelephoneNumber>
 </Phone>
 </Address>
 </ShipTo>
 <BillTo>
 <Address isoCountryCode="US" addressID="12">
 <Name xml:lang="en">Acme Accounts Payable</Name>
 <PostalAddress name="default">
 <Street>124 Union Street</Street>
 <City>San Francisco</City>
 <State>CA</State>
 <PostalCode>94128</PostalCode>
 <Country isoCountryCode="US">United States</Country>
 </PostalAddress>
 <Phone name="work">
 <TelephoneNumber>

Chapter 35
Work with the punchout server-side extension

35-10

 <CountryCode isoCountryCode="US">1</CountryCode>
 <AreaOrCityCode>415</AreaOrCityCode>
 <Number>6666666</Number>
 </TelephoneNumber>
 </Phone>
 </Address>
 </BillTo>
 <Shipping>
 <Money currency="USD">10.00</Money>
 <Description xml:lang="en-US">FedEx 2-day</Description>
 </Shipping>
 <Tax>
 <Money currency="USD">1.5</Money>
 <Description xml:lang="en">CA State Tax</Description>
 </Tax>
 </OrderRequestHeader>
 <ItemOut quantity="2" lineNumber="1">
 <ItemID>
 <SupplierPartID>Camera_1002</SupplierPartID>
 <SupplierPartAuxiliaryID>SKU_3005A</SupplierPartAuxiliaryID>
 </ItemID>
 <ItemDetail>
 <UnitPrice>
 <Money currency="USD">10</Money>
 </UnitPrice>
 <Description xml:lang="en">Laptop Notebook, 300 MHz</
Description>
 <UnitOfMeasure>EA</UnitOfMeasure>
 <Classification domain="UNSPSC">43171801</Classification>
 <URL>http://www.example.com/Punchout.asp</URL>
 <Extrinsic name="ExtDescription">Enhanced keyboard</Extrinsic>
 </ItemDetail>
 <Shipping>
 <Money currency="USD">10.00</Money>
 <Description xml:lang="en-US">standardShippingMethod</
Description>
 </Shipping>
 <ShipTo>
 <Address isoCountryCode="US" addressID="1000467">
 <Name xml:lang="en">Acme, Inc.</Name>
 <Email name="default">john_smith@exmaple.com</Email>
 <Phone name="work">
 <TelephoneNumber>
 <CountryCode isoCountryCode="United States">1</
CountryCode>
 <AreaOrCityCode>800</AreaOrCityCode>
 <Number>5555555</Number>
 </TelephoneNumber>
 </Phone>
 <PostalAddress name="default">
 <DeliverTo>John Q. Smith</DeliverTo>
 <DeliverTo>Buyers Headquarters</DeliverTo>
 <Street>123 Main Street</Street>
 <City>Mountain View</City>
 <State>CA</State>

Chapter 35
Work with the punchout server-side extension

35-11

 <PostalCode>94089</PostalCode>
 <Country isoCountryCode="US">United States</Country>
 </PostalAddress>
 </Address>
 </ShipTo>
 <Distribution>
 <Accounting name="DistributionCharge">
 <AccountingSegment id="7720">
 <Name xml:lang="en-US">Account</Name>
 <Description xml:lang="en-US">Office Supplies</
Description>
 </AccountingSegment>
 <AccountingSegment id="610">
 <Name xml:lang="en-US">Cost Center</Name>
 <Description xml:lang="en-US">Engineering Mgt</
Description>
 </AccountingSegment>
 </Accounting>
 <Charge>
 <Money currency="USD">20.00</Money>
 <!--<Percentage percent="20"/>
 <Money currency="USD">0.00</Money>-->
 </Charge>
 </Distribution>
 <Tolerances>
 <PriceTolerance>
 <Money currency="USD">100.00</Money>
 </PriceTolerance>
 </Tolerances>
 </ItemOut>
 </OrderRequest>
 </Request>
</cXML>

The following example shows a sample cXML response body for the previous request.

<cXML>
 <Response>
 <Status code="200" text="OK. Order ID: o30630"/>
 </Response>
</cXML>

Configure your storefront for punchout shoppers
You must make changes to a number of the storefront layouts as part of the punchout
integration.

To learn how to make changes to existing layouts, widgets, and elements, see Design
Your Store Layout. To learn about creating custom widgets and elements, see Create
a Widget.

This section includes the following topics:

• Design the storefront for punchout shopping

Chapter 35
Configure your storefront for punchout shoppers

35-12

• Indicate that a logged-in shopper is a punchout shopper

• Add a punchout checkout button to the Order Summary widget

• Display information about a punchout shopper in a widget

Design the storefront for punchout shopping

Keep the following in mind when you design your store layout to support punchout
shopping.

• Oracle recommends that you create a separate site just for punchout shoppers.
The punchout site has its own URL, which you provide to the procurement system,
plus its own catalog, price group, and contract terms. See Configure Sites to learn
how to create additional sites.

• Punchout shoppers require only a subset of the features you might otherwise
provide on your store and they might be confused if they see design elements
that do not apply to them. For example, punchout shoppers do not select shipping
methods or have wish lists.

A punchout site should include Home, Product, Collection, and Cart layouts.

However, to ensure a smooth experience for punchout shoppers, remove the following
components from your punchout site:

• Any layouts related to profiles, including Profile, Order History, Purchase List, and
Scheduled Order.

• Any of the checkout layouts, including Checkout, Checkout with GiftCard,
Checkout Payment, and Checkout Stack.

• All wish list layouts, widgets, and elements.

• Any links to external sites.

• The Login/Registration and My Account elements in the Header widget.
It is important to remove these components because shoppers who did not arrive
at the site via punchout should not be able to log in or complete an order. If the
shopper’s session expires, do not prompt them to log in again; redirect them to the
procurement system, instead.

• The Cart Shipping widget from the Cart layout. Instead, you can add a button to
the Cart layout that shoppers click when they want to return to the procurement
system. See Add a punchout checkout button to the Order Summary widget for
more information.

• The Checkout button element in the Cart Summary widget. You could also modify
this button to redirect the shopper to the Cart layout, where they can click a button
that sends them back to the procurement site. See Add a punchout checkout
button to the Order Summary widget for more information.

Indicate that a logged-in shopper is a punchout shopper

A flag that specifies that a shopper has been redirected from a procurement site is
available from the User view model. However, it is not included in the out-of-the-box
widgets. If you want to indicate that a shopper is a punchout shopper in a widget, you
can do so using code similar to the sample below:

widget.user().isPunchout()

Chapter 35
Configure your storefront for punchout shoppers

35-13

See Add a punchout checkout button to the Order Summary widget for a code sample
that uses this functionality in a method that redirects the punchout shopper back to the
procurement system.

Add a punchout checkout button to the Order Summary widget

The Order Summary widget (available for the Cart layout) lets the shopper review their
order from the cart page before proceeding to checkout. This section describes how to
add a button to the Order Summary widget that a punchout shopper clicks when they
are ready to complete their order.

First, customize the Order Summary widget’s JavaScript file to handle the button click.
In the following example, the handlePunchoutOrder() function handles the button
click.

handlePunchoutOrder: function() {
 var widget = this;
 if(data.cart().items().length > 0) {
 data.cart().validatePrice = true;
 data.cart().skipPriceChange(true);
 data.redirectToProcurement("SSEURL",false);
 }
 return true;
 },

The following method redirects the shopper back to their procurement system.

/**
 * Method to redirect punchout user back to procurement using Form post.
 *
 * Before redirecting, call the server-side extension URL with orderjson
 * to convert it to CXML and post it to the procurement system.
 */
redirectToProcurement : function(){
 var widget=this;
 if(widget.user().isPunchout()){
 //get request data saved in local storage when shopper was
 * redirected from procurement to Commerce
 var punchoutStorageData =CCRestClient.
getStoredValue(CCConstants.LOCAL_STORAGE_ADDITIONAL_FORM_DATA);
 if(punchoutStorageData){
 var punchoutStorageObject =JSON.parse(punchoutStorageData);
 if(punchoutStorageObject){
 widget.punchoutBuyerCookie
=punchoutStorageObject.buyerCookie?
punchoutStorageObject.buyerCookie:null;
 widget.punchoutBrowserFormPost
=punchoutStorageObject.browserFormPost?
punchoutStorageObject.browserFormPost:null;
 }
 }
 //Creating form element
 var form = document.createElement('form');
 document.body.appendChild(form);
 form.method = 'post';

Chapter 35
Configure your storefront for punchout shoppers

35-14

 //Setting form action URL sent by procurement
 form.action = widget.punchoutBrowserFormPost;
 if(widget.user().orderId() && widget.user().orderId() != ''){
 var contextObj = {};
 var data ={};
 contextObj[CCConstants.ENDPOINT_KEY] =
CCConstants.ENDPOINT_GET_ORDER;
 var filterKey =
widget.cart().storeConfiguration.getFilterToUse(contextObj);
 if (filterKey) {
 data[CCConstants.FILTER_KEY] = filterKey;
 }
 //Get Order Call
 CCRestClient.request(CCConstants.ENDPOINT_GET_ORDER, data,
 function(data) {
 //Success function of get order
 //Call to SSE to convert Order Json to CXML
 $.ajax({
 type: 'post',
 url: 'http://example.com:8080/ccstorex/custom/v1/punchOut/
punchOutComplete',
 data: JSON.stringify(data),
 headers:{"X-BuyerCookie":widget.punchoutBuyerCookie},
 contentType: "application/json",
 dataType: 'text',
 success: function (response) {
 //setting CXML order in form element
 var input = document.createElement('input');
 input.type = 'hidden';
 input.name = "cxml-urlencoded";
 input.value = response;
 form.appendChild(input);
 //cleanup in Commerce before form submission
 CCRestClient.
clearStoredValue(CCConstants.LOCAL_STORAGE_ADDITIONAL_FORM_DATA);
 CCRestClient.clearStoredValues();
 widget.user().clearUserData();
 widget.cart().clearCartForProfile();

 form.submit();
 }
 });

 },
 function(data) {
 navigation.goTo(widget.contextData.global.links['404'].route);
 },
 widget.user().orderId());
 }else{
 //If there is no order id, redirect with empty cart.
 //removing punchout related data from localstorage and empty cart;

CCRestClient.clearStoredValue(CCConstants.LOCAL_STORAGE_ADDITIONAL_FORM_
DATA);
 CCRestClient.clearStoredValues();

Chapter 35
Configure your storefront for punchout shoppers

35-15

 widget.user().clearUserData();
 widget.cart().clearCartForProfile();
 form.submit();
 }
 }
}

Display information about a punchout shopper in a widget

When a procurement system directs a punchout shopper to your store, it can also
pass the shopper’s name and email address. Commerce maintains this data in local
storage, where widgets can access it.

The following sample customizes the JavaScript file for the Contact Login for Managed
Accounts element, which is available for the Header widget, to display the punchout
shopper’s name and email address. For more information about this element, see
Create Page Layouts that Support Different Types of Shoppers.

//Changes to be added in onLoad method of element.js file in contact-
login-for-managed-accounts-v2 element of header widget
onLoad : function(widget) {
 var self = this;
 var afterLogIn = false;
 if(widget.user().isPunchout()){
// Get user details from local storage punchout form post data and
// override firstName,lastName and Email
 var punchoutStorageData =
CCRestClient.getStoredValue(CCConstants.LOCAL_STORAGE_ADDITIONAL_FORM_DA
TA);
 if (punchoutStorageData) {
 var punchoutStorageObject = JSON.parse(punchoutStorageData);
 if (punchoutStorageObject) {
 var punchoutUserFirstName =
punchoutStorageObject.firstName;
 if(punchoutUserFirstName){

widget.user().firstName(punchoutStorageObject.firstName);

widget.user().loggedInUserName(punchoutStorageObject.firstName);
 }
 if(punchoutStorageObject.lastName){

widget.user().lastName(punchoutStorageObject.lastName);
 }
 if(punchoutStorageObject.emailAddress){

widget.user().emailAddress(punchoutStorageObject.emailAddress);
 }
 }
 }
 }
}

Chapter 35
Configure your storefront for punchout shoppers

35-16

36
Perform Bulk Export and Import

In an environment where Oracle CX Commerce interacts with an external system, you
may want to exchange data. Oracle CX Commerce includes REST web services APIs
that allows you to select data items and export or import them in bulk.

This framework allows you to perform large data transfers between different
environments or systems of items such as accounts, profiles and promotions.

The following is a list of bulk import and export IDs that are available:

ID Comment Supports Import Supports Export

Profiles Both shopper and
account-based profile
data.

Yes Yes

AccountsV2 Accounts data. Yes Yes

Products Product data. Yes Yes

ProductsV2 Product data. This is
faster than the
Products plugin as this
import generates a
failedAssociation
RecordFile for any
associations that failed
even though the
product updates are
successful.

Yes Yes

Catalogs Catalog data. Yes Yes

Inventory Inventory data,
including location-
based inventory.

Yes Yes

Collections Collections data. Yes Yes

Promotions Promotions data. Yes Yes

Prices Prices data. Yes Yes

Addresses Address data for
profiles and accounts.

Yes No

Relationships Relationship data
between profiles and
accounts.

Yes No

Note: All export and import APIs discussed in this section refer to bulk import and bulk
export APIs. For information on individual export and import, refer to Import and Export
Catalog Items and Inventory.

Understand Bulk Exporting And Importing
To perform an export or an import, the REST APIs consist of two endpoints that create
or read a data file.

36-1

The exportProcess exports data, while the importProcess imports data. These
endpoints allow you to generate or read data files in two modes:

• Archived mode

• Standalone mode

Archived mode

When you initiate an export or import in archived mode, you work with a single archive
file that can contain more than one data file, allowing you to manipulate several data
files at a time. This is the default mode for performing exports and imports.

The data file in archived mode is in ZIP format and must include the content.json file,
which contains information about the other files in the data ZIP file. The following is an
example of a content.json file:

[
 {
 "fileName": "Profiles.json",
 "format": "json",
 "id": "Profiles"
 },
 {
 "fileName": "Accounts.json",
 "format": "json",
 "id": "Accounts"
 }
]

Each JSON in the JSON array corresponds to the data file with the following
parameters:

• fileName - The name of the data file.

• id - The operation ID.

Note that each data file inside the ZIP must be less than 100MB. The ZIP file will be
rejected if any data file size, after extraction, is greater than 100MB.

For example, the following export request is in archived mode. It generates two
different files that are combined into a single archive file:

POST /ccadmin/v1/exportProcess
 {
 "fileName": "profile.zip",
 "items": [
 {
 "id": "Profiles",
 "format": "json"
 },
 {
 "id": "Accounts",
 "format": "json"
 }
]
 }

Chapter 36
Understand Bulk Exporting And Importing

36-2

As displayed in the above example, the request contains the fileName parameter,
which represents the name of the archive file. It also contains the items, id and
format parameters.

Standalone mode

When you initiate an export or import in standalone mode, you work with a single data
file. To transfer data in the standalone mode, use the mode parameter to identify the
process mode type as standalone.

The following is an export request in standalone mode, which creates a single file:

POST /ccadmin/v1/exportProcess
{
 "fileName" : "product.json",
 "mode" : "standalone",
 "id" : "Products",
 "format" : "json"
}

As displayed in the above example, the request contains the fileName parameter,
which represents the name of the data file, as well as the id and format parameter.

Status Files

When you receive either export or import results, the payload provides you with links
that you can use to download the export and/or status files. For example, when
exporting, the export fileLink URL provides information on how many accounts were
in the exported file. The metaLink URL identifies successful and unsuccessful counts.
If there are any failures during export or import, they will be displayed in the metaLink
file.

Note: Uploaded import files, as well as generated export files, are stored for a period
of time before they are automatically removed from the system.

Export data endpoints
The following information shows you how you can perform an export. For detailed
information on the REST APIs used in this section, refer to the REST API
documentation.

To export data, perform the following steps:

1. Trigger the export using the executeExport endpoint.

2. Monitor the export status using the getExportProcess endpoint. Once the export
has finished, download the exported and status files.

3. You can stop the export process by using the abortExportProcess endpoint if
necessary.

An export can be initiated using the following steps:

Chapter 36
Export data endpoints

36-3

1. Initiate the export by using the exportProcess endpoint. Provide the name of the
file that will contain the exported data. The following example is of an archived
export:

[
 {
 "fileName": "Profiles.json",
 "format": "json",
 "id": "Profiles",
 "params" : {
 "q" : "id eq <id>"
 }
 },
 {
 "fileName": "Accounts.json",
 "format": "json",
 "id": "Accounts",
 "params" : {
 "q" : "id eq <id>"
 }
 }
]

The following example is of a standalone export:

POST /ccadmin/v1/exportProcess
 {
 "fileName": "product.json",
 "mode": "standalone",
 "accounts": "Products",
 "format": "json",
 "params" : {
 "q" : "id eq <id>"
 }
 }

Note that the number of records in the export should be limited to 100 thousand.
Exporting large quantities of data can cause performance issues. You can do limit
the record number by using the q parameter.

2. You can review the export progress by using the process ID returned from the
exportProcess API. For example:

GET /ccadmin/v1/exportProcess/{processId}

3. Once the export job is done, the resulting payload provides the links you can use
to download the export and status files. The following is an example of a response
for a completed export in archive mode:

{
 "progress": "succeeded",
 "startTime": "2020-05-22T07:28:04.242Z",
 "links": [
 {

Chapter 36
Export data endpoints

36-4

 "rel": "meta",
 "href": "<base_url>/export/rKjSiAtgt8WCzJ1YHXrAc5mTQ_10000/
exportStatus.zip"
 },
 {
 "rel": "file",
 "href": ""<base_url>/export/rKjSiAtgt8WCzJ1YHXrAc5mTQ_10000/
datafile.zip"
 },
 {
 "rel": "self",
 "href": ""<base_url>/exportProcess/
rKjSiAtgt8WCzJ1YHXrAcmTQ_10000?fileName=datafile.zip"
 }
],
 "endTime": "2020-05-22T07:28:05.434Z",
 "completed": true,
 "requestStatus": 200
}

The file URL can be used to download the exported data file. The meta URL is the
status file that contains the following data:

• startTime - Indicates the start time of the export process.

• endTime - Indicates that the time that the export process ended.

• successCount - This indicates the number of records that were successfully
exported.

• failureCount - The number of records that failed to successfully export.

• failureExceptions - This provides error details if there are any errors that
were created during the export process.

A sample status file resembles the following:

{
 "endTime" : 1587782346639,
 "startTime" : 1587782346602,
 "failureCount" : 1,
 "successCount" : 202,
 "failureExceptions" : [Some error message]
}

Abort an export

An export can be aborted any time after triggering the export and before completion of
the export. Once the export is aborted, the export process terminates and there are no
partially exported files available.

To abort an export, use the POST /ccadmin/v1/exportProcess/{processId}/abort
REST endpoint.

Import data endpoints
The following information shows how you can perform an import.

Chapter 36
Import data endpoints

36-5

When you perform an import, you perform the following steps:

1. Upload the data file.

2. Trigger the import using the executeImport endpoint.

3. Monitor the import status using the getImportProcess endpoint. Once the import
has finished, you then download the error and status files.

4. You can end the import process using the abortImprotProcess endpoint if
necessary.

1. Use the following endpoint to upload your import file:

POST /ccadmin/v1/files

Use the following form parameters with this endpoint:

• fileUpload - The file to upload.

• fileName - An optional file name.

• uploadType - Use the bulkImport parameter.

2. Initiate the import by using the importProcess endpoint. The following is an
example of an archive import:

{
 "fileName" : "profilesAndAccounts.zip"
}

Refer to the Archived Mode section for information on what is contained in the ZIP
file.

The following example is of a standalone import:

POST /ccadmin/v1/importProcess
 {
 "fileName": "product.json",
 "mode" : "standalone",
 "id" : "Products",
 "format": "json"
 }

3. You can review the progress of the import using the process ID that is returned
from the importProcess API. For example:

GET /ccadmin/v1/importProcess/{processId}

4. Once the import job is complete, the resulting payload provides the links that you
can use to download the error and status files. The following is an example of a
completed import in standalone mode:

{
 "completedPercentage":100,
 "progress":"succeeded",
 "startTime":"2020-04-04T20:25:01.982Z",
 "links":[

Chapter 36
Import data endpoints

36-6

 {
 "rel":"meta",
 "href":"<baseUrl>/import/ ezzPxcPRmJIlXYOTQNT9HMacA
_10000/importStatus.json"
 },
 {
 "rel":"failedRecordsFile",
 "href":"<baseUrl>/import/ ezzPxcPRmJIlXYOTQNT9HMacA
_10000/importFile.json"
 },
 {
 "rel":"failedAssociationRecordsFile",
 "href":"<baseUrl>/ezzPxcPRmJIlXYOTQNT9HMacA_10000/
failedAssociationRecordsFile.json"
 },
 {
 "rel":"self",
 "href":"<baseUrl>/importProcess/
ezzPxcPRmJIlXYCyOTQNT9HMacA_10000"
 }
],
 "endTime":"2020-04-04T20:25:02.190Z",
 "completed":true,
 "requestStatus":200
}

The meta URL is the status file that contains the following data:

• startTime - Indicates the start time of the export process.

• endTime - Indicates that the time that the export process ended.

• successCount - This indicates the number of records that were successfully
exported.

• failureCount - The number of records that failed to successfully export.

• failureExceptions - This provides error details if there are any errors that
were created during the export process.

The status file may look similar to the following:

{
 "endTime" : 1587782346639,
 "startTime" : 1587782346602,
 "failureCount" : 1,
 "successCount" : 202,
 "failureExceptions" : [Invalid Phone Number is provided for 133]
}

The failedRecordsFile contains the errors generated during the import process. The
details in this meta file can be used to fix the error records in the failedRecordsFile,
which can be re-imported once you have fixed the data.

For the ProductsV2 import process, the failedAssociationRecordsFile contains
the records for which most of the data was correctly processed, but some specific

Chapter 36
Import data endpoints

36-7

associations failed. The failedAsociationRecordsFile can also be re-imported once
the data has been fixed.

Abort an import

An import can be aborted any time after triggering the import and before completion of
the import. The import is terminated only after the current batch of records has been
processed.

To abort an import, use the POST /ccadmin/v1/importProcess/{processId}/abort
REST endpoint.

Update import data

By default, when performing an import, existing records are updated if they are found
in the repository. You can set the update flag to false if you do not want to update
existing records as setting this flag to false can increase the speed of the import
process if all of the records being imported are new records. For example:

{
 "fileName": "product.json",
 "id" : "Products",
 "mode" : "standalone",
 "format" : "json",
 "params" :{
 "update":"false"
 }
}

Understand export and import endpoint parameters
The exportProcess and importProcess endpoints contain the following request
parameters:

Parameter Description

fileName The name of the file to read from or create
during the process. This parameter is required
except when performing an export or import in
standalone mode.

mode Indicates if the export or import is standalone
or archived. This parameter is only required if
using standalone mode.

id The operation ID. This parameter is required
when working in the standalone mode.

format The format to use during the export or import.
This parameter is used only when working in
the standalone mode.

items Applies only to export. A list of objects to be
exported. This array contains the format and
id properties of the export operation.

Chapter 36
Understand export and import endpoint parameters

36-8

Parameter Description

param Passes additional parameters to plug-ins. For
example, you can speed up an import process
by not looking for an existing item to update
using the following:

{
 "fileName": "account.json",
 "id" : "bulkAccountHandler",
 "mode" : "standalone",
 "format" : "json",
 "params" : {
 "update":"false"
 }
}

prettyPrintJson This is parameter is supported for all import
and export IDs. The value can be true or
false, which is the default. If set to true,
the exported JSON will be formatted. Note
that this parameter is supposed only for JSON
formats.

headersList This parameter, which is supported for all
import and export IDs, controls the headers of
an exported CSV file. Note that this parameter
is supported only for CSV files.

exportFromRepository For Products, ProductsV2, Collections,
Catalogs, Prices and Promotions, only
published data is exported. To export
unpublished data, set the value of this
parameter to publishing.

q The q parameter filters records for the total set
of records. It supports conditional operators,
such as eq, ne, gt, ge, lt, le, AND, OR, etc.
Use this parameter to restrict exported records
to 100 thousand.

update The value for this import parameter an be set
to true or false, which is the default. If set
to false, all records will be marked as create.
Using this parameter can speed up the import
process when import data contains only new
records.

memberAssignmentEmailTemplate This email template import parameter can be
used with Accounts and AccountsV2 IDs to
trigger email when a member is added or
removed from an account.

accountDeactivatedEmailTemplate This email template import parameter can
be used with Accounts and AccountsV2 IDs
to trigger email whenever an account is
deactivated.

organization_site_available_v1 This email template import parameter can be
used with Accounts and AccountsV2 Ids to
trigger email when an account is reactivated
or a new contract has been added.

Chapter 36
Understand export and import endpoint parameters

36-9

Parameter Description

emailTemplate This email template import parameter can be
used with Profiles IDs to trigger email when a
new profile is created.

siteId This email import parameter can be used with
Profiles IDs. When triggering email, the links
or other details included in the email are taken
from the default site. To trigger email from
a different site context, pass in a different
siteId using this parameter.

roleChangeEmailTemplate This email template import parameter is
used with Profiles IDs to trigger email roles
whenever a profile is changed.

profileDeactivatedEmailTemplate This email template import parameter can
be used with Profiles IDs to trigger email
whenever a profile is deactivated.

organizationChangeEmailTemplate This email template import parameter can be
used by Profiles IDs to trigger email when a
profile's account changes.

triggerWebhook By default Shopper Profile Create or
Shopper Profile Update webhooks are not
triggered when a profile is created or modified.
However, you can use this import parameter
with Profiles IDs to trigger the webhook by
setting this flag to true.

Note that you can also import and export your custom properties.

Notification webhooks for export and import

If you want to receive notification when an export or an import job completes, configure
the Export or Import Complete webhooks as required for your external application.
These webhooks contain links to status and export files for export processes, and
status and failed record files for import processes.

1. In the Oracle CX Commerce administration interface, click the Settings icon.

2. Click Web APIs.

3. Open the Import Complete or the Export Complete Event API.

4. Enter the URL of your external application, as well as any authorization
information necessary to access the system. Click Save.

Export and import account data
One of the Oracle CX Commerce items that can be exported and imported is
accounts.

This enables you to export or import any accounts that you may have configured in
your environment, as outlined in Import and Export Catalog Items and Inventory. When
you export or import account data, you are generating or adding a list of accounts and
their members.

Note that account-based storefronts may not be activated in your environment.

Chapter 36
Export and import account data

36-10

Account export and import fields

The following account-based commerce fields can be exported or imported:

Field Types Description

Name The name of the account.

Description A description of the account.

Classification This field is used to identify the type of
account.

Account Type Indicates the type of account such as
company, division, department or group.

Contract Information The information includes fields such as
contract ID, terms, name, description, catalog,
site and price list used.

Account Details Account details such as DUNS number, logo,
VAT reference number, unique ID and tax
reference number.

Addresses These fields include shipping and secondary
addresses of the account. Note that the
AccountV2 plug-in provides the format
supported by the Integration Cloud Service.

Address type An optional property. The value is validated
when provided against the setup values. The
shipping and secondary addresses include the
address type field.

Payment Information This field includes payment methods. Note
that payment method types are not required
fields, and therefore must be manually
added to an account before shoppers can
use the field. Additionally, the Boolean
property, which is set to true by default,
useAllPaymentMethodsFromSite, allows
you to obtain the method from the site, as
opposed to individual accounts. Note that if
the property is set to true, it will override any
methods set through the UI.

Shipping Information This field includes shipping methods. Shipping
method type is not a required field and
must be manually added to an account
before shoppers can use the field. The
useAllShippingMethodsFromSite Boolean
property allows you to obtain the method from
the site, as opposed from individual accounts.
Note that if the property is set to true, the
existing shipping methods in the repository will
be deleted and any shipping methods passed
in during import will be ignored. When a new
principal account is created, the property is set
to true when the property has not been set
and there are not shipping methods contained
within imported data.

Members Identifies members of the account.

Approval Settings Indicates if the account has approval settings
and delegated approval administrators. These
settings are site specific.

Chapter 36
Export and import account data

36-11

Field Types Description

Site Information The siteOrganizationproperties
property is a map that sets information
for the site and organization, such as
approval, contract, order price limits, delegated
administrators and payment information, as
described above.

Account import validation

During the import, the system verifies that the account name or the ID provided in the
import file is actually in the repository. If the account name or ID in the given row is
found, the repository item is updated with the data provided in the import file. If no data
is found in the repository, a new account is created.

The following validations are performed for accounts:

• The DUNS number contains 9 digits.

• The account logo is valid.

• The contract ID is valid.

• Members added to the account have the profile type b2b_user.

• The phone number, company, address, city, state, country, and postal code have
been provided.

• The postal code is valid.

• The country and state combination are valid.

• The name of the account cannot be “root.”

• The ID of the parent organization is valid.

• All site level fields are valid.

• The shipping and payment methods are valid and are associated with the site.

• The address type is validated against the setup values.

Approval settings during import

When accounts are configured with a list of approvers, specific validations occurs:

• A member cannot be removed from an organization if that member is the
last active approver in the organization and approval is required, or the
organization has at least one order that is either in the pending_approval or the
pending_approval_template state.

• An organization’s order price limit cannot be updated when delegated approval
management is active and the current value of the order’s price limit is different
than the repository data.

• An organization’s approval required attribute cannot be updated if delegated
approval management is active and the current value of the approval required
is different than the repository data.

• You cannot activate an organization’s approval required attribute if no member of
the organization has approval authorization.

• Approvals are site-specific and must reference a valid site.

Chapter 36
Export and import account data

36-12

Account email triggers during import

While performing an import, if a member is added or removed from an organization, an
email is triggered, notifying you of the new status. To trigger emails during the import,
send the specific email template as a parameter in the request payload. The following
example shows how you would identify using an organization_assigned template:

{
 "fileName": "accountImport.json",
 "id": "Accounts",
 "format": "json",
 "mode": "standalone",
 "params": {
 "memberAssignmentEmailTemplate": "organization_assigned_v1"
 }
}

Account email triggers in multiple site environments

When working in a multiple site environment, an email is triggered during import that
contains all of the site URLs related to the account and profile. Note that up to five
sites are listed per account. Additionally, account changes, role updates, approval
information, and password information is also included in the email, if applicable. All
event information is displayed in a table that identifies the changes that occurred.

When you add a new member to an organization, an email with the name of previous
organizations and roles, if any, are added.

Work with sub-accounts

Sub-accounts can be created and updated using the parentOrganization field. An
account can have a single parent account, as well as its own sub-accounts. A principal
account, or one that does not have any parent account, cannot inherit any properties.
There is no fixed number of account hierarchy levels.

Note: When a new business account is created as a sub account (that is, as the child
account of another account in an account hierarchy) there is no limit to the depth of the
hierarchy, but sub accounts inherit account properties only up to the 14th level.

Sub-accounts can inherit the following derived organization properties if the sub-
accounts properties are not specifically designed:

• derivedUniqueId

• derivedDunsNumber

• derivedOrganizationLogo

• derivedVatReferenceNumber

• derivedTaxReferenceNumber

• derivedDescription

• derivedType

Sub-accounts can be moved under other accounts if there are no circular references
between the accounts. Additionally, a sub-account cannot be set to a parent account
of itself. Each sub-account should have its ancestor organization details updated to

Chapter 36
Export and import account data

36-13

provide account information. Note that a root account cannot be associated to another
account either as a parent account or as a sub-account.

When working with shipping and payment methods in a sub-account and site pair,
the sub-account-based methods and the use of site- based methods are either
both inherited or not inherited. For example, the sub-account shipping methods
and the use of all site shipping methods properties are both inherited together and
cannot be inherited individually. The inherited state of the these sub-account and site
pairs are determined by the Boolean properties useAllShippingMethodsFromSite and
useAllPaymentMethodsFromSite. The values used in the API will override those set in
the UI.

Account email triggers when account is deactivated

When performing an import, if an account is deactivated, an email is triggered to notify
you of the change of the account’s status. To trigger emails during the import, process,
send the specific email template as a parameter in the request payload. The following
example shows how you would use the accountDeactivatedEmail template:

{
 "fileName": "accountImport.json",
 "id": "Accounts",
 "format": "json",
 "mode": "standalone",
 "params": {
 "accountDeactivatedEmailTemplate":"organization_deactivated_v1"
 }
}

Note that when an account has a contract for a specific site, moving an existing
account to be a sub-account of that specific site will cause an email to be sent to all
members of the sub-account. This is because the contract for the site is inherited. This
also occurs if a new account is created as a child of an account using the API, and
contacts are added in that same API call.

For detailed information on account configuration and working with accounts, refer to
Understand accounts, contacts, and contracts.

Export and import profile data
Profiles contain information about shoppers, such as their name, phone number and
email address.

You can export or import profile data, which you may have configured in your
environment as outlined in Import and Export Catalog Items and Inventory, allowing
you to share the data with external systems. The following section describes the fields
and validation that occurs when exporting or importing profile data.

Profile export and import fields

The following table displays the profile fields that can be exported and imported:

Chapter 36
Export and import profile data

36-14

Field Description

firstName, lastName The name associated with the profile. This
includes the first and last name, which are
required during import.

email The email associated with the profile. This field
is required when creating a new profile.

userSiteProperties This is a site level property that contains the
receiveEmail flag property for the site. It
indicates if the profile is configured to receive
email. This defaults to false.

receiveEmail This is a user item level property that indicates
if the profile is configured to receive email.
This defaults to false.

registrationDate This optional field indicates the date that the
profile was registered.

profileType The type of profile being exported or imported.
If the profile type is b2b_user, the shipping
and billing addresses are not imported. If the
profile type is b2c_user, the organization is
not imported.

shippingAddresses The shipping addresses associated with the
profile. There can be only one addressed
denoted as the default shipping address. If
phone numbers are provided in the shipping
address, validation occurs to ensure they are
in the correct format. Address type is an
optional property, and the value is validated
when provided against the setup values.

Note that phoneNumber, address1, city,
state, country and postalCode are
required for a shipping address. The
postalCode field and city and state
combination are validated.

locale This field, which is required when creating new
profiles, indicates the locale associated with
the profile. Validation occurs to ensure that the
locale is valid.

roles The roles associated with the profile.
Validation occurs to ensure that the role is
available with one of the parent organizations.

dateOfBirth Date of birth associated with the profile.
Validation occurs in the format you have
chosen, either MM/dd/yy or DD/mm/YY.

shippingAddress, billingAddress Export only. The contact information for the
profile. Address type is an optional property,
and the value is validated when provided
against the setup values.

Note that phoneNumber, address1, city,
state, country and postalCode are
required for a shipping address. The
postalCode field and city and state
combination are validated.

Chapter 36
Export and import profile data

36-15

Field Description

parentOrganization Export only. The organization associated with
the profile. The organization ID is used to
associate the profile with the organization.

Note: The parentOrganization can be
updated during the bulk import process for
account-based commerce profiles.

isDefaultShippingAddress Boolean. Flag marked to true if address
being imported is the default shipping address
of the parent. Any value other than true is
treated as false.

isDefaultBillingAddress Boolean. Flag marked to true if address
being imported is the default billing address
of the parent. Any value other than true is
treated as false.

Price lists (including the list and sales prices,
as well as shippingSurcharge)

Export only. This read-only field indicates the
price lists associated with the profile.

Price list groups Export only. This read-only field indicates the
price list groups associated with the profile.

Note that the following audience-based profile properties are read only:

• lifetimeSpend

• lifetimeAOV

• numberOfOrders

• lastPurchaseAmount

• firstPurchaseDate

• lastPurchaseDate

• lastVisitDate

• previousVisitDate

For audience-based information, see Define Audiences.

Profile validations

The following validations are performed when importing profiles:

• The buyer role of a profile, which is the default role, must be present.

• If the profile type is b2b_user, the shipping and billing addresses are not included.
If the profile type is b2c_user, the parent organization is not included.

• The login field defaults to the profile’s email address.

• When creating an initial import file, the email, locale, firstName and lastName
contain valid values.

• The receiveEmail flag is disabled by default.

• All phone numbers are in the correct format.

• All addresses contain a phoneNumber, address1, city, state, country and
postalCode.

Chapter 36
Export and import profile data

36-16

• The country and state combination is valid.

• The site properties have been set. This is the userSiteProperties that contains
the receiveEmail property.

Profile approver role validations during import

When profiles are configured as approvers, specific validations occur:

If a profile is the last active approver in the organization and approval is required, or
the organization has at least one order that is either in the pending_approval or the
pending_approval_template state, the following modifications cannot be made:

• The profile approver role cannot be removed from the profile.

• The profile’s active status cannot be removed.

• The parent organization of a profile cannot be modified.

Bulk profile import with the GDPR

If you are importing profiles and want to set the European Union General Data
Protection Regulation (GDPR) consent values, ensure that you have the shopper’s
consent, which may have been given on the system from which you are exporting
profiles. You should also set the consent date in the import file to the consent date that
was recorded on the other system.

Note: If you do not have an explicit consent from the shopper, it is best that you do not
set the consent fields during a bulk profile import. For detailed information on working
with the GDPR, refer to the Manage the use of personal data section.

Create a new password during import

You can generate new passwords when importing profiles. When the import occurs, a
token is triggered for the profile. When the shopper selects the token link, the system
navigates the shopper to the change password page, where they have the option
to provide their user name, and create a new password. The token is a one-time
password that expires within a time frame that you configure. Generating a new token
does not clear a shopper’s existing password.

To allow a shopper to request a new password, use the emailTemplate parameter in
the request. This provides the name of the email template used during the creation of
new profiles, for example, shopper_acc_reg_v1. If an email template is not provided,
email will not be sent.

The following is a sample profile import with a new password request:

{
 "fileName": "profile.zip",
 "items": [
 {
 "id": "bulkProfileHandler",
 "format": "json",
 "params": {
 "emailTemplate": "shopper_acc_reg_v1"
 }
 }
]
}

Chapter 36
Export and import profile data

36-17

Understand triggering emails during import in a multiple site environment

When working in a multiple site environment, an email is triggered during import that
contains all of the sites related to the profile. Note that up to five sites are listed
per profile. Additionally, account changes, role updates, approval information, and
password information is also included in the email, if applicable. All event information
is displayed in a table that identifies the changes that occurred.

When you add a profile to an organization, an email with the name of previous
organizations and roles, if any, are added.

Note: Email template settings are copied from the default site. They can be disabled
and updated as needed.

Trigger webhook during import

When a new profile is created or an existing profile is updated during an
import, a webhook can be triggered with the profile information. The production-
registerProfile webhook is triggered when a profile is created. The production-
updateProfile webhook is triggered when the profile is updated.

To trigger the webhook during import, you need to set the triggerWebHook parameter
in the request to true. For example:

{
 "fileName": "profileImport.json",
 "id": "Profiles",
 "format": "json",
 "mode": "standalone",
 "params": {
 "triggerWebHook": "true"
 }
}

Contact email triggers with deactivated contact

While performing an import, if a contact is deactivated, an email is triggered that
notifies the contact of the new status. To trigger emails during the import, set the
specific email template as a parameter in the request payload. The following example
shows how you would identify using a profileDeactivatedEmail template:

{
 "fileName": "profileImport.json",
 "id": "Profiles",
 "format": "json",
 "mode": "standalone",
 "params": {
 "profileDeactivatedEmailTemplate":"re_v1"
 }
}

Contact email triggers when organization list changes

While performing an import, if a parent organization or secondary organization list
is modified or deleted, an email is triggered, notifying the contact of the change.

Chapter 36
Export and import profile data

36-18

However, the email is only sent if the contact is active and is a member of an
organization of at least one active account, or is an account that has an assigned
contract. To trigger emails during the import, set the specific email template as a
parameter in the request payload.

The following example shows how you would identify using an
organizationChangeEmailTemplate template:

{
 "fileName": "profileImport.json",
 "id": "Profiles",
 "format": "json",
 "mode": "standalone",
 "params": {
 "profileDeactivatedEmailTemplate":"re_v1"
 }
}

Export and import product data
Product data can be exported or imported from external systems.

Once you have set up products and SKUs, as outlined in Create and work with SKUs,
you can share the data.

Products are associated with Master View or standard catalogs or collections. For
detailed information on the difference between these two types of catalogs, refer to
Understand catalogs.

When you create a product the product is linked, by default, to the master
defaultCategoryForProducts category. If you indicate that the category is null, or
you set the orphaned attribute to true, the product you create is identified as
orphaned. If you provide a valid a standard catalog ID, the product is linked to the
defaultCategoryForProducts category of the specific catalog.

Products cannot be linked to root categories of any catalog. If you provide
root categories in the parentCategories attribute, the product is linked to the
defaultCategoryForProducts of that specific catalog. However, if you provide both
parentCategories and a catalogId, the catalogId is ignored.

Note that the catalogId and orphaned attributes are not exported, as these properties
are used only when performing an import.

Product-specific export and import fields

The following sections describe the fields that can be exported and imported for
products. Note that both the product and SKU data are imported into and exported
to a single file. The product and SKU fields have been separated in the following
tables for the sake of clarity.

Product import issues

If you import a large number of products, you could experience some performance
issues if the products are not categorized properly. To avoid these issues, consider the
following:

Chapter 36
Export and import product data

36-19

1. A collection should not hold too many products.

2. Avoid creating too many products without any category.

3. Avoid creating too many price groups.

Field Type Description

Product price information Fields that contain pricing information,
such as listPrice, listVolumePrice,
listPrices, listVolumePrices,
salePrice, saleVolumePrice,
salePrices, saleVolumePrices,
shippingSurcharge, shippingSurcharges
and taxCode.

You can upload pricing information into
multiple price list groups.

Tax information The tax code of the product.

Product Add-Ons Add-on product associated with the product
with the property addOnProducts.

Add-Ons are not supported at SKU level. Only
at product level.

Product description information Fields that describe the product, such as
height, weight, length, brand, type and
displayName.

Product image information The product image description
field productImages that contains
path, metadata, repositoryId, name,
url and tags. Also describes
additional information about images,
such as productImagesMetadata,
primaryImageTitle and
primaryImageAltText. Note that you cannot
import images along with the corresponding
product. However, you can map images that
you have already uploaded to the products
that you are importing. To do this, refer to the
Import image assignments.

Additional product information Fields that contain information such
as unitOfMeasure, onlineOnly,
configurable, discountable, orderable,
active, notForIndividualSale,
orderLimit, variantValuesOrder and
CountryOfOrigin.

Associated SKU descriptions Fields that contain descriptions about
associated SKUs, such as childSKUs and
defaultProductListingSku.

Additional related product fields Fields that contain additional product
and related fields descriptions, such
as description, longDescription,
relatedProducts, relatedArticles and
relatedMediaContent.

Date and time Fields that provide dates and
times, such as salePriceStartDate,
salePriceEndDate, creationDate,
arrivalDate, dateAvailable and
daysAvailable.

Chapter 36
Export and import product data

36-20

Field Type Description

Linking information Fields that provide information on linking
fields. For example, parentCategories. Note
that parentCategories is imported first and
during product import, it is linked to the
corresponding parent categories using its
repositoryId.

SKU-specific export and import fields

The following fields can be exported and imported for SKUs.

Field Type Description

SKU price information Fields that contain pricing information,
such as listPrice, listVolumePrice,
listPrices, listVolumePrices,
salePrice, saleVolumePrice,
salePrices, and saleVolumePrices.

SKU image information The SKU image description field images that
uses path, metadata, repositoryId, name,
url and tags. Note that you cannot import
images along with the corresponding SKU.
However, you can map images that you have
already uploaded to the SKUs that you are
importing. To do this, refer to the Import image
assignments.

Product related information Fields that describe related product data, such
as productFamily and productLine.

Date and time Fields that provide dates and
times, such as salePriceStartDate,
salePriceEndDate, creationDate,
arrivalDate, dateAvailable and
daysAvailable.

Boolean fields Fields that describe SKU properties, such as
active, discountable, and configurable.

Dynamic SKU information Fields that contain information specific
to dynamic SKUs, such as color and
resolution.

Product and SKU validations

The following list describes some of the validation performed when importing products:

• The product ID is valid and not null. Valid characters are alphanumeric, as well as
underscore (_) and dash (-).

• The listPrices and salePrices properties are either maps or null. If it is a map,
each price corresponding to a price group ID is either a number or null.

• The listVolumePrices and saleVolumePrices properties are either a map or null.
If it is a map, each price corresponding to a price group ID is either a map or null.

• The listPrices and listVolumePrices properties cannot contain a non-null entry
for a particular price list group ID i.e. a particular product or SKU cannot have both
list and list volume prices for a particular pricelistgroup.

Chapter 36
Export and import product data

36-21

• The salePrices and saleVolumePrices properties cannot contain a non-null entry
for a particular price list group ID i.e. a particular product or SKU cannot have both
sale and sale volume prices for a particular pricelistgroup.

• The listPrice, which should be a positive number, should be available for the
mandatory price list groups.

• If a site not account-enabled, the listPrice of a product cannot be null.

• The listPrice cannot be less than the salePrice.

• The shippingSurcharge should be a positive number.

• If categoryId is null the categoryItem property will not be set.

• The productImages property tags should be null or a map and if not null, each of
its elements should be an instance of map or string.

• The childSKUs.configurationMetadata.name property must be a string and is a
required.

• The propertychildSKUs.configurationMetadata.value property must be a string
and is optional.

The following validations are also performed when importing SKUs:

• The corresponding catalog and product IDs should be valid and not null.

• The active property should be Boolean or String.

• SKU properties cannot be null, and should be unique. Additionally, the SKU ID
should be valid, and a SKU with the same ID cannot pre-exist in the repository.

• Inbound SKU data should have all of the mandatory variant properties.

SKUs can be bundled together to create a new SKU. SKU bundles have the following
validation:

• A SKU cannot be deleted if it is part of a SKU bundle.

• You can only bundle one level of SKUs.

• A SKU cannot be a member of multiple bundles, and you cannot have bundles
referenced within bundles.

• SKUs can only be a part of the same bundle once.

For detailed information on working with products and SKUs, refer to Create and work
with SKUs .

Support for hierarchical price list groups

If you have set up price groups by using base price groups, this hierarchy is supported
in bulk product import. Note that the following validations are not performed in bulk
import for performance reasons:

1. The validation that salePrice value is lesser than list price value is not performed
when there is price hierarchy. The price list group for the sale and list prices are
added and inherit the parent price list group.

2. The validation that salePrice is given but the list price is missing is not performed
when there is price hierarchy. The price list group for the sale price is added and
inherits the parent price list group.

For more information about setting up price groups, see Configure Price Groups.

Chapter 36
Export and import product data

36-22

Export and import catalog data
Data from catalogs can be exported or imported from external systems.

Once you have set up these items, as outlined in Understand catalogs, you can share
their data.

In addition to the standard catalog, you can create a Master View catalog. The
standard catalog has catalog-specific hierarchies, catalogs, products and SKUs, and
can to link to other catalog category sub-trees. Both types of catalogs have child
navigation and non-navigation categories.

For detailed information on the different types of catalog versions, refer to Understand
catalogs.

During an import, the supportVersion1Catalogs attribute, which can be modified
using the administrative interface, determines which version of the catalog to use. If
this attribute is set to false, and a catalog version is not provided, a standard catalog
will be created. If the supportVersion1Catalogs attribute is set to true, then you
can create both a standard or a Master View catalog. If you set the catalogVersion
property value to 1, a Master View catalog is created. If you set the catalogVersion
property value to 2, a standard catalog is created. Note that the catalogVersion
attribute is added to export data, and cannot be updated.

The fixedParentCategories, ancestorCategories, parentCategoriesForCatalog
and computedCatalogs attributes are updated in the repository for each child category
that is linked or to be unlinked from a catalog, including any of its child categories.

Top level root categories (both navigation and non-navigation) are made when creating
a catalog and cannot be moved or deleted from the catalog. Root categories, however,
are not made when creating a Master View catalog. The default Master catalog cannot
be deleted but it may be updated and exported.

The following is a sample request for a catalog import:

{
 "displayName": "Classical Movies Catalog",
 "rootCategories": [
 {
 "id": "category_1"
 },
 {
 "id": "category_2"
 }
],
 "id": "ClassicalMoviesCatalog"
}

The catalogVersion, rootNavigationCategory and defaultCategoryforProducts
attributes are exported. You can export all catalogs, including the default master
catalog, in the repository along with rootCategories. The rootCategories attribute in
the response contains navigation and non-navigation categories for standard catalogs,
and any number of categories for Master View catalogs, and cannot be updated. The
fixedChildCategories for navigation and non-navigation categories are exported for
all catalogs, except for Master View catalogs.

Chapter 36
Export and import catalog data

36-23

The following is an example of a response:

{
 "catalogVersion": 2,
 "defaultCategoryForProducts": {
 "id": "category_1"
 },
 "rootNavigationCategory": {
 "id": "rootCategory_1"
 },
 "displayName": "Classical Movies Catalog",
 "rootCategories": [
 {
 "fixedChildCategories": [],
 "id": "nonNavigableCategory_1"
 },
 {
 "fixedChildCategories": [
 {
 "id": "cat40013"
 },
 {
 "id": "cat60023"
 }
],
 "id": "rootCategory_1"
 }
],
 "id": "ClassicalMoviesCatalog"
}

The following section describes the fields and validation that occurs when exporting or
importing catalog data.

Catalog export and import fields

The following fields can be exported and imported for catalogs.

Field Name Description

displayName The name of the catalog.

Id The ID of the catalog.

rootCategories An array of categories associated with the
catalog. From this field, you can export the Id
fields of the categories.

Chapter 36
Export and import catalog data

36-24

Field Name Description

translations This field indicates the different names for an
attributed based on the language. The current
displayName is supported. The following is
an example of a response:

translations": {
 "items": [
 {
 "displayName": "Classical
Movies Catalog",
 "lang": "en"
 },
 {
 "displayName":
"[DE]Classical Movies
 Catalog[DE]",
 "lang": "de"
 }
]
}

catalogVersion Indicates the version of the catalog, either a
standard catalog or a Master View catalog.

defaultCategoryForProducts This identifies the default category for a
product. By default this links the product to the
master default category. If this attribute is null,
the product is orphaned.

rootNavigationCategory Identifies the navigation category for a catalog.

When there is a relationship between entities such as a collection and products,
relationship updates are Full updates. New relationships override existing ones during
the import or export process.

During import, you can link independent collections to catalogs. When you create
a Master View catalog, the top level root categories are not created. By default,
the master catalog’s navigation category is linked to the rootNavigationCategory
attribute. Additionally, you can link any of the Master View catalogs to collections that
are only available in the default master catalog. Errors will occur if you try to link a
collection that is not in the master catalog.

When you create a catalog, the top level root categories are created; this is not the
case with Master View Catalogs.

Catalog validations

The following validations are performed when importing catalogs:

• The required displayName is valid.

• The required catalogId is valid and must contain only alphanumeric, underscore
(_) or dash (-) characters.

• The rootCategories array should have valid categories.

Chapter 36
Export and import catalog data

36-25

• The catalogVersion attribute value is validated based on the
supportVersion1Catalogs attribute setting.

• The defaultCategoryForProducts attribute is validated to ensure that you are not
linking a collection to a root category of a standard catalog.

Special handling of large products import

You may experience some performance issues if you import more than 100,000
products and the products are not properly categorized. To avoid import performance
issue, please follow these guidelines:

1. A collection should not hold too many products. Try to restrict it to 10,000 products
per collection

2. Avoid creating too many price list groups.

Import Parameter

You should pass the parameter fullPublishMode as true when initiating a large
import. Use this option with care since the recording of the changes are disabled to
speed up the import process. Full publish becomes mandatory after the imports are
performed using this parameter. Note that "full publish" means that all changes will be
published.

For example, a sample request payload to trigger initial data import:

{
 "mode": "standalone",
 "id": "Products",
 "format": "json",
 "params": {
 "fullPublishMode": "true",
 "update": "false"
 }
}

Note: fullPublishMode=true should only be used for initial data imports.

publishChangeLists

The publishChangeLists endpoint can be used to perform to publish all changes:

/ccadmin/v1/publishingChangeLists/publish {"operationType":"publish",
"skipDependencyCheck":"true"}

You can optionally set skipDependencyCheck:"true" to skip any other dependency
checks from other modifications that are not necessary for publish operations.

Export and import category data
Data from categories can be exported or imported from external systems.

Once you have set up these items, as outlined in Understand catalogs, you can share
their data.

Chapter 36
Export and import category data

36-26

Collections can link to an independent collection or a product. Navigation and non-
navigation categories of any standard catalog can update all attributes.

The fixedChildProducts attribute for all root categories should be empty as a
product cannot be linked directly to root categories. If you are trying to update
the fixedChildProducts attribute while performing a root category update, link the
product to the defaultCategoryForProducts category of the specific catalog, if
present, or ignore if not present.

Note that catalog navigation and non-navigation categories cannot be a child category
of any other category. When you create a category, it is linked to the master navigation
category. If you set orphaned=true, the category is created as an orphan. If a valid
standard catalog ID is provided, the category is linked to the navigation category of the
specified catalog. Note that an error occurs if the Master View catalog ID is provided
because a new category cannot be linked to a Master View catalog.

When you remove a category from the default master catalog, you must remove the
same category from all of the Master View catalogs, if present, as the Master View
catalogs should contain only the categories available in the master catalog.

The following is an example of a request:

{
 "catalogId": "cat_1",
 "orphaned": false,
 "displayName": "Drama",
 "fixedChildCategories": [
 {
 "id": "cat40011"
 },
 {
 "id": "cat40010"
 }
],
 "active": true,
 "id": "cat40015",
 "fixedChildProducts": []
}

Note that when exporting a catalogId, orphaned attributes will not be exported.

The following is an example of a response:

{
 "longDescription": null,
 "childProductsCount": 0,
 "route": "/drama/category/cat40015",
 "categoryImages": [],
 "displayName": "Drama",
 "categoryPaths": [
 "/Cloud Catalog/Storefront Navigation/Movie Store Root/Drama",
 "/QA Movie and Games Catalog/Storefront Navigation/Movie Store Root/
Drama"
],
 "translations": {
 "items": [

Chapter 36
Export and import category data

36-27

 {
 "longDescription": null,
 "displayName": "Drama",
 "description": null,
 "lang": "en"
 }
]
 },
 "fixedChildCategories": [
 {
 "displayName": "Award Winners",
 "id": "cat40011"
 },
 {
 "displayName": "Sports",
 "id": "cat40010"
 }
],
 "seoDescriptionDerived": "Drama",
 "active": true,
 "categoryIdPaths": [
 "cloudCatalog>cat100058>cat40013>cat40015",
 "cloudLakeCatalog>rootCategory>cat40013>cat40015"
],
 "id": "cat40015",
 "fixedChildProducts": []
}

The following section describes the fields and validation that occurs when exporting or
importing category data.

Categories export and import fields

The following fields are exported and imported for categories:

Field Name Description

longDescription The description of the category.

fixedChildProducts Any child products associated with the
category. The Id field is used to identify the
fixed child products.

categoryImages Images associated with the category.

displayName The name that is displayed with the category.

Id The ID of the category.

fixedChildCategories Any child categories associated with the
category. From this field, you can access the
Id and displayName fields for fixed child
categories.

seoDescriptionDerived Indicates if the description of the SEO has
been derived.

active Indicates if the category is active.

route Non-writable. For export only.

categoryIdPaths Non-writable. For export only.

Chapter 36
Export and import category data

36-28

Field Name Description

categoryPaths Non-writable. For export only.

Category validations

Additionally, the following validations are performed when importing categories:

• The required category ID is not null and contains only alphanumeric, underscore
(_) or dash (-) characters.

• The required image name and path are valid.

• The products for given product IDs in fixedChildProducts are available in the
repository.

• The new parent category of child categories is valid.

• The fixedChildCategory array contains valid categories.

• The display name is valid.

For detailed information on catalogs and categories, refer to Understand catalogs.

Export and import inventory data
It is common to import inventory data from external systems.

Once you have set up your inventory, as outlined in Understand catalogs, you can
import inventory data. The following section describes the fields and validation that
occurs when exporting or importing inventory data.

Inventory export and import fields

The following fields are exported and imported for inventories:

Field Name Description

locationId The location of the inventory item.

skuNumber The ID of the SKU.

displayName The display name of the product.

stockLevel Indicates the number of products available for
purchase.

stockThreshold The threshold of the stock level that triggers a
warning event.

preorderLevel Indicates the number of preordered SKUs.

preorderThreshold The threshold at which the status of the SKU
changes from preordered to out of stock.

backorderLevel Indicates the number of backordered SKUs.

backorderThreshold The threshold at which the status of the SKU
changes from backordered to out of stock.

availabilityDate The date at which the SKU becomes available.

availabilityStatus The status of the SKU, for example,
PREORDERED, BACKORDERED or
OUT_OF_STOCK.

Chapter 36
Export and import inventory data

36-29

Field Name Description

availableToPromise A collection of date/quality pairs that represent
when and how much inventory can be
promised.

Inventory validations

Additionally, the following validations are performed when importing inventories:

• The skuNumber is a valid SKU ID.

• The locationId is valid.

• The required stockLevel is valid when creating the import, and should be a non-
negative long number.

• The stockThreshold is a non-negative long number.

• The preorderLevel is a non-negative long number.

• The preorderThreshold is a non-negative long number.

• The backorderLevel is a non-negative long number.

• The backorderThreshold is a non-negative long number.

• The availabilityDate is a valid date.

For detailed information on working with inventories, refer to Understand catalogs.

Export and import promotion data
Promotion data can be exported or imported from external systems.

Once you have set up promotions, as outlined in Understand promotions, you can
share promotion data. The following section describes the fields and validation that
occurs when exporting or importing promotion data.

Promotions export and import fields

The following fields can be exported and imported for promotions:

Field Name Description

audiences A list of audiences for which a promotion
is specifically designed. This includes the
audience ID, display name and if audiences
are enabled. You can have multiple audiences.

displayName The name of the promotion.

enabled Describes if the promotion is enabled. If
enabled, the promotion takes effect according
to the specified usage period.

endDate The date that the promotion stops being
delivered.

excludedPromotions Promotions that are excluded from a
promotion.

id The promotion ID.

priceListGroups The pricelist groups used by the promotion.

Chapter 36
Export and import promotion data

36-30

Field Name Description

priority The priority of the promotion.

shippingMethods The shipping method used by the promotion.

sites A list of sites associated with the promotion.
This identifies the site ID and the site name.
You can configure multiple sites.

stackingRules Any stacking rules used by the promotion.

startDate The date the promotion begins.

templateValues Placeholder values that are used when
creating a template.

type The type of discount this promotion provides.

description A description of the promotion.

templateName The name of the template used with the
promotion.

templatePath The path of the template used with the
promotion.

parentFolder The parent folder of the promotion.

qualifiedMessages The list of qualified messages for a promotion.

unqualifiedMessages The list of unqualified messages for a
promotion.

closenessQualifiers The list of closeness qualifiers for a promotion.
This data will be imported only if the specific
promotion supports it.

Promotion validations

The following validations are performed when creating a new promotions import:

• The templateName, templatePath, displayName, and promotion ID are available
and are valid. The shipping method, if provided, should also be valid.

• The startDate is not greater than the endDate.

• The promotionTemplates should be valid and are available in the template path.

• The Id field inside excludedPromotions cannot be null and that promotions with
the ID are valid.

• The promotionId cannot be the same as any other excludedPromotionsId.

• TemplateValues do not contain any keys other than AllowedUIKeys, and contain
all of the keys listed in RequireUIKeys.

• The promotion does not contain any coupon codes.

• The siteId and the audienceId are valid.

• Included and excluded promotion types are compatible with the promotion:

– If templatePath=item, allowed promotion types are item, order or shipping

– if templatePath=order, then allowed promotion types are order or shipping

– if templatePath=shipping, then the allowed promotion type is shipping

The following validations are performed when updating an existing promotions import:

• The promotion ID is there and valid.

Chapter 36
Export and import promotion data

36-31

• The templatePath, templateName and type of existing promotions have not been
changed.

• If enabling a promotion that does not contain a coupon, ensure that there is no
previous coupon associated with it.

For detailed information on working with promotions, refer to Understand promotions.

Export and import price data
With this feature you can import and export the prices for products and SKUs and as
part of import, you can create, update and delete the prices.

You can import and export prices for products and SKUs. While importing price data,
you can create, update and delete prices. For example, you may want to delete prices
so that the price hierarchy can be obtained from the parent. Or you might want to
remove a sale price to activate the list price.

The Prices plugin allows you to do the following:

• Create and update prices for products and SKUs from different price list groups.

• Provide prices for only the SKUs of a product with price changes.

When you issue a bulk request to import prices (and optionally update, create or
delete prices) with the importOperationCode property, the following applies:

• You can import and export prices using a JSON or CSV format for both standalone
and bundle modes.

• The import process supports both simple and complex pricing schemes.

• The bulk import process supports the priceListGroupId and type properties, in
addition to the priceListId property.

• You can configure the bulk price export using the q parameter.

The following is an example of a price import process:

POST http://localhost:9080/ccadmin/v1/importProcess
{
 "mode": "standalone",
 "fileName": "BulkImportPrices.json",
 "format": "json",
 "uploadType": "bulkImport",
 "id": "Prices"
}

The following table lists the fields that are supported by the plugin, along with
validations.

Chapter 36
Export and import price data

36-32

Property Name Type Description Required

importOperationCo
de

String Supported for import
only. The following
values are supported:

merge (default):
Creates a new record
if no matching record
is found, otherwise it
updates it.

create: Creates a
record. If a matching
record is found, an
error occurs. Can
be used to improve
performance with new
records.

delete: Deletes the
record.

No

productId string The product ID. Yes

skuId string The SKU ID. No

priceListId string The price list ID. Yes, but it is
not required if a
priceListgroupId
and type are
provided.

priceListGroupId string The pricelist group
ID.

No, unless
the pricelistId
property has not been
provided.

type string The price type. No, unless
the pricelistId
property has not been
provided.

startDate date The start date of the
price's availability.

No

endDate date The date that the price
expires.

No

pricingScheme string The pricing scheme
contains the following
values:

listPrice: This
indicates a simple
price. The listPrice
property must contain
data.

bulkPrice or
tieredPrice: These
properties indicate a
volume price.

Yes

Chapter 36
Export and import price data

36-33

Property Name Type Description Required

listPrice double The product/SKU
price. This must
be provided when
the pricingScheme
property equals the
listPrice property.

No, unless the
pricingScheme
property is set to
listPrice.

complexPrice repository object The volume price
information that
contains an array of
levels.

No, unless the
pricingScheme
property is set
to bulkPrice or
tieredPrice.

Understand complex price levels

The complex price entities are defined in the following table:

Property Name Type Description
quantity long The quantity needed to enable

the price.

price double The price that is used
when the quantity meets the
value defined in the quantity
property.

Import address data
By using this plugin, you can perform bulk imports of addresses for shopper-based
and account-based profiles.

You can integrate your account-based and customer-based data with an external
system.

Import address data

The import address plugin allows you to synchronize address data between
Commerce and an external system. This plugin allows you to perform the following:

• Import data from an external system in JSON and CSV format in standalone or
bundle modes, similar to other bulk plugins.

• Work with custom attributes and address types.

• Delete addresses for an account or profile using the importOperationCode
attribute.

• Identify an address as the default shipping or billing address for an profile
or account using the isDefaultBillingAddress and isDefaultShippingAddress
attributes.

The following is an example of a bulk address import record:

{
"contactInfo": [
 {
 "address1": "21 Cedar Ave",

Chapter 36
Import address data

36-34

 "city": "Syracuse",
 "country": "US",
 "createdBy": "admin",
 "firstName": "Kim",
 "id": "se-980031",
 "importOperationCode": "create",
 "isDefaultBillingAddress": true,
 "isDefaultShippingAddress": true,
 "lastName": "Anderson",
 "parentId": "110026",
 "phoneNumber": "212-555-1977",
 "postalCode": "13202",
 "state": "NY",
 "parentType": "contact",
 "addressType": [
 "at100105",
 "at100106"
]
 }
]
}

Note that:

• Export is not supported.

• To link an address to a account-based contact, the contact must to have the
profileAddressManager role.

You can link an address to a profile or account by providing the following properties in
the data file:

Property Name Type Description Required

address1 string The first address line
of the address.

Yes

address2 string The second address
line of the address.

No

address3 string The third address line
of the address.

No

addressType array The predefined values
for this property can
contain address types
such as shipping or
billing.

For account address
types, this property is
required. However, for
profile address types,
if no address type is
provided, it defaults to
a generic value.

city string The city of the
address.

Yes

companyName string The company name
associated with the
address.

No

country string The country code of
the address.

Yes

county string The county of the
address.

No

Chapter 36
Import address data

36-35

Property Name Type Description Required

createdBy string Creator of the
address.

No

externalAddressId string The ID used by the
external system to
identify the address.
Ensure that this field
contains a unique
externalAddressId.

No

externalParentId string The external ID of the
parent address. For
contact address types,
this ID is provided by
the
customerContactId
property, for account
address types, it is
provided by the
externalOrganizat
ionId property.
Ensure that this field
contains valid a
externalOrganizat
ionId value.

No. However, if the
parentId property
is not provided, an
externalParentId
is required.

faxNumber string The fax number
associated with the
address.

No

firstName string The first name of the
profile associated with
the address.

No

id string The ID of the address
being imported.
Ensure that this field
contains a unique
addressId.

Yes

importOperationCo
de

string The following values
are supported:

merge (default):
Creates a new record
if no matching record
is found, otherwise it
updates the record.

create: Creates the
record. If a matching
record is found, an
error is generated.
Can be used for
performance gains for
new records.

delete: Deletes the
record.

No

Chapter 36
Import address data

36-36

Property Name Type Description Required

isDefaultBillingA
ddress

boolean This flag is set to true
if the address being
imported is the default
billing address of the
parent.

No

isDefaultShipping
Address

boolean This flag is set to true
if the address being
imported is the default
shipping address of
the parent.

No

middleName string The middle name of
the profile associated
with the address.

No

parentId string The ID of the parent
address. Ensure that
this field contains
valid profileId
and organizationId
values.

No. However, if the
parentId property
is not provided, an
externalParentId
is required.

parentType string The type of the parent
address.

This can be set to
either contact or
account, depending
on which address is
being linked.

Yes

phoneNumber string The phone number
associated with the
address.

No

postalCode string The postal code of
address.

Yes

prefix string The prefix associated
with the address.

No

province string The province code of
the address.

No

state string The state code of the
address.

Yes

suffix string The suffix associated
with the address.

No

Import relationship data
This plugin, which is available only in account-based environments, is used for
importing the relationships between contacts and accounts.

You can import account and profile relationship data from an external system. Note
that only account-based contacts can be linked with profiles.

When you import relationship data using the Relationships plugin, you can perform
the following:

Chapter 36
Import relationship data

36-37

• Create, update and delete a relationship between an account and a profile using
the importOperationCode attribute.

• Generate email and webhooks whenever the relationship between a profile and an
account changes.

Account and profile relationships are established by providing the following properties:

Property Name Type Description Required

accountId string The ID of the account
organization. Ensure
that there is a valid
organizationId
value associated with
this account.

Yes, if an
externalAccountId
has not been
provided.

contactId string The ID of the account-
based contact. Ensure
that there is a valid
account-based profile
ID associated with this
property.

Yes, if an
externalContactId
has not been
provided.

externalAccountId string The external ID of the
account, which is
referenced by the
externalOrganizat
ionId property. This
property provides the
value of the
customerContactId,
which represents the
contact ID in an
external system.

Yes, if an accountId
has not been
provided.

externalContactId string The external ID of
the contact, which
is referenced by the
customerContactId
property.

Yes, if a contactId
property has not been
provided.

importOperationCo
de

string The following values
are supported:

merge (default):
Creates a new record
if no matching record
is found, otherwise it
updates the record.

create: Creates the
record. If a matching
record is found, an
error is generated.
Can be used for
performance gains for
new records.

delete: Deletes the
record.

No

Chapter 36
Import relationship data

36-38

Property Name Type Description Required

primary boolean Denotes whether
the account is the
primary or secondary
organization of the
contact. When primary
is set to true,
the account is
added as the parent
organization of the
contact. When set to
false, the account is
set as a secondary
organization.

When a primary
value is not provided
and the relationship
already exists (primary
or secondary), it is
not updated. If there
is no relationship,
the account will be
added as a secondary
organization.

If you do not
provide this property
for an existing
relationship, the
existing relationship
remains.

No

Export and import CSV files
When importing and exporting data, you may want to use CSV files. This allows you to
list the data in multiple lines with headers.

The first row of the CSV contains the headers. These headers are used to identify the
complete path to the property, since the CSV format supports complete hierarchy of
the record.

Understand CSV headers

When working with CSV headers, remember the following:

1. The top-level properties use the property name as the header name. For example,
the property and header name would both be stringProperty1.

2. A child item uses dot separators to refer to its properties. For example, the
property of a child item would be complexProperty.stringProperty1.

3. When working with list properties, the first header holds the sequence number of
each item followed by the individual property. For example:

listProperty.row#, listProperty.springProperty1,
listProperty.numberProperty1

Chapter 36
Export and import CSV files

36-39

4. Map properties use the first header to hold the keys of each entry, followed by
individual properties. For example:

mapProperty.key#, mapProperty.stringProperty1,
mapProperty.numberProperty1

Note that each entry in a map or list will be displayed in separate CSV rows. This
may make a single record in a CSV file spread across multiple CSV rows.

The following is an example of a list data CSV file with records spreading across
multiple rows:

ID listProperty.
row#

listProperty.
id

listProperty.
property1

listProperty.
property2

ID123 0 childpropId1 Property1data
1

Property2data
1

ID123 1 childpropId2 Property1data
2

Property2data
2

ID123 2 childpropId3 Property1data
3

Property2data
3

You can export a CSV file with default headers using the csv in the format parameter.
For example:

{
 "fileName": "profile.json",
 "mode" : "standalone",
 "id" : "Profiles",
 "format" : "csv"
}

You can export all attributes, including custom attributes by setting the headersList
parameter to ALL. The following example shows how to include all headers in a
standalone mode:

{
 "fileName": "profile.json",
 "mode" : "standalone",
 "id" : "Profiles",
 "format" : "csv"{
 "fileName": "profile.json",
 "mode" : "standalone",
 "id" : " Profiles",
 "format" : "csv",
 "params": {
 "headersList": "ALL"
 }
 }
}

Chapter 36
Export and import CSV files

36-40

To export a specific list of attributes, use the following format:

{
 "fileName": "profile.json",
 "mode" : "standalone",
 "id" : " Profiles",
 "format" : "csv",
 "params": {
 "headersList":
"firstName,lastName,shippingAddress.postalCode,shippingAddress.country"
 }
 }

You can also use the default list of attributes and include additional attributes by using
a '+' sign before the list of additional headers. For example:

{
 "fileName": "profile.json",
 "mode" : "standalone",
 "id" : " Profiles",
 "format" : "csv",
 "params": {
 "headersList":
"+addedfield1,addedfield2,addedfield3.subField1"
 }
 }

If you do not specify a set of headers, the export includes the default set of headers for
the Oracle CX Commerce item.

Note: Custom properties for collections are supported for both CSV and JSON
formats.

1. For JSON export, the custom properties are automatically included.

2. For CSV export, the headersList should include the required custom property
names or they can pass "ALL" (as in the previous example) to get all the custom
properties.

3. During import, the custom properties can be passed in both CSV and JSON
format.

Understand the JSON format

A data file in the JSON format contains an array of JSON items, with each JSON item
considered to be a data record. The following is an example of a JSON format:

{
 "products": [
 {
 "displayName": "Product 1 Name",
 "id": "product1",
 "listPrice": 35,
 "childSKUs": [
 {

Chapter 36
Export and import CSV files

36-41

 "id": "SKU of Product1"
 }
]
 },
 {
 "displayName": "Product 2 Name",
 "id": "product2",
 "listPrice": 45,
 "childSKUs": [
 {
 "id": "SKU of Product2"
 }
]
 }
]
}

When working with JSON files, remember the following:

1. A single JSON record can contain the complete hierarchy of data. For example, a
profile can have a list of addresses, accounts and create cards, etc.

2. The record that needs to be updated can include any updated partial data except
for maps and lists. If simple properties, such as strings or numbers, are not passed
during the update, they will not be reset to null or to 0.

3. For map and list properties, if an existing entry is not passed during an update, it
is deleted. For example, if a profile contains three addresses and only the first two
addresses are passed in with the data file, the third address will be deleted.

4. A simple property value can be set to null so that during an update, it removes the
previous value. For example:

{
 ...
 "property1" : null
 ...
}

5. A list property can be cleared in JSON format by passing an empty array. For
example:

{
 ...
 "listProperty1" : []
 ...
}

Default headers for CSV export and import

The following section describes the fields that are included in the header by default
when exporting or importing data.

Default headers for accounts

The default header list for accounts contains:

Chapter 36
Export and import CSV files

36-42

• id

• name

• description

• type

• customerType

• taxReferenceNumber

• dunsNumber

• contract.terms.terms

• contract.displayName

• contract.description

• contract.catalog.id

• contract.priceListGroup.id

• contract.externalContractReference

• members.row#

• members.firstName

• members.lastName

• members.id

• members.email

• relativeRoles.row#

• relativeRoles.function

• secondaryAddresses.key#

• secondaryAddresses.country

• secondaryAddresses.phoneNumber

• secondaryAddresses.address2

• secondaryAddresses.city

• secondaryAddresses.address1

• secondaryAddresses.companyName

• secondaryAddresses.postalCode

• secondaryAddresses.id

• secondaryAddresses.state

• billingAddress.country

• billingAddress.phoneNumber

• billingAddress.address2

• billingAddress.city

• billingAddress.address1

• billingAddress.companyName

• billingAddress.postalCode

Chapter 36
Export and import CSV files

36-43

• billingAddress.id

• billingAddress.state

• shippingAddress.country

• shippingAddress.phoneNumber

• shippingAddress.address2

• shippingAddress.city

• shippingAddress.address1

• shippingAddress.companyName

• shippingAddress.postalCode

• shippingAddress.id

• shippingAddress.state

Default headers for profiles

The default header list for profiles contains:

• dateOfBirth

• middleName

• receiveEmail

• lastName

• locale

• id

• lastActivity

• registrationDate

• email

• login

• firstName

• shippingAddress.middleName

• shippingAddress.item-id

• shippingAddress.lastName

• shippingAddress.state

• shippingAddress.address1

• shippingAddress.address2

• shippingAddress.address3

• shippingAddress.companyName

• shippingAddress.repositoryId

• shippingAddress.suffix

• shippingAddress.city

• shippingAddress.country

• shippingAddress.postalCode

Chapter 36
Export and import CSV files

36-44

• shippingAddress.faxNumber

• shippingAddress.phoneNumber

• shippingAddress.county

• shippingAddress.prefix

• shippingAddress.firstName

Default headers for products

The default header list for products contains:

• id

• displayName

• description

• longDescription

• type

• keywords.row#

• keywords.keywords

• listPrices.key#

• listPrices.listPrices

• salePrices.key#

• salePrices.salePrices

• shippingSurcharges.key#

• shippingSurcharges.shippingSurcharges

• listVolumePrices.key#

• listVolumePrices.complexPrice.levels.row#

• listVolumePrices.complexPrice.levels.quantity

• listVolumePrices.complexPrice.levels.price

• listVolumePrices.pricingScheme

• saleVolumePrices.key#

• saleVolumePrices.complexPrice.levels.row#

• saleVolumePrices.complexPrice.levels.quantity

• saleVolumePrices.complexPrice.levels.price

• saleVolumePrices.pricingScheme

• parentCategories.row#

• parentCategories.displayName

• parentCategories.id

• productImages.row#

• productImages.description

• productImages.url

• productImages.id

Chapter 36
Export and import CSV files

36-45

• productImages.path

• productImages.type

• productImages.name

• primaryImageTitle

• smallImageURLs

• primaryLargeImageURL

• fullImageURLs

• sourceImageURLs

• primarySourceImageURL

• mediumImageURLs

• largeImageURLs

• thumbImageURLs

• primaryMediumImageURL

• primaryImageAltText

• primarySmallImageURL

• primaryFullImageURL

• primaryThumbImageURL

• seoUrlSlugDerived

• seoKeywordsDerived

• seoDescriptionDerived

• seoTitleDerived

• brand

• defaultProductListingSku.id

• childSKUs.row#

• childSKUs.id

• childSKUs.barcode

• childSKUs.active

• childSKUs.bundleLinks.row#

• childSKUs.bundleLinks.item.id

• childSKUs.bundleLinks.quantity

• childSKUs.listPrices.key#

• childSKUs.listPrices.listPrices

• childSKUs.salePrices.key#

• childSKUs.salePrices.salePrices

• childSKUs.listVolumePrices.key#

• childSKUs.listVolumePrices.complexPrice.levels.row#

• childSKUs.listVolumePrices.complexPrice.levels.quantity

Chapter 36
Export and import CSV files

36-46

• childSKUs.listVolumePrices.complexPrice.levels.price

• childSKUs.listVolumePrices.pricingScheme

• childSKUs.saleVolumePrices.key#

• childSKUs.saleVolumePrices.complexPrice.levels.row#

• childSKUs.saleVolumePrices.complexPrice.levels.quantity

• childSKUs.saleVolumePrices.complexPrice.levels.price

• childSKUs.saleVolumePrices.pricingScheme

Default headers for categories

The default header list for categories contains:

• longDescription

• categoryImages.row#

• categoryImages.description

• categoryImages.url

• categoryImages.id

• categoryImages.path

• categoryImages.type

• categoryImages.name

• displayName

• id

• fixedChildProducts.row#

• fixedChildProducts.id

• seoDescriptionDerived

• fixedChildCategories.row#

• fixedChildCategories.id

• fixedChildCategories.displayName

Default headers for inventory

The default header list for inventory contains:

• preOrderLevel

• backorderThresdhold

• displayName

• skuNumber

• backorderLevel

• availabilityStatus

• availableToPromise.quantity

• availableToPromise.availableDate

• availableToPromise.quantityWithFraction

Chapter 36
Export and import CSV files

36-47

• availableToPromise.inventoryId

• preorderThreshold

• availabilityDate

• locationId

• stocklevel

• stockThreshold

Default headers for promotions

The default header list for promotions contains:

• template

• templateName

• templatePath

• endDate

• displayName

• sites.row#

• sites.id

• sites.name

• audiences.row#

• audiences.id

• audiences.displayName

• audiences.deleted

• audiences.enabled

• global

• templateValues.no_of_items_to_discount

• templateValues.discount_value

• templateValues.discount_type_value

• templateValues.sort_order

• templateValues.no_of_items_to_buy

• templateValues.spend_value

• templateValues.sort_by

• templateValues.discountStructure

• templateValues.gwpItem.autoRemove

• templateValues.gwpItem.giftType

• templateValues.gwpItem.giftId

• templateValues.condition_psc_value.includedCategories.row#

• templateValues.condition_psc_value.includedCategories.includedCategories

• templateValues.condition_psc_value.includedProducts.row#

• templateValues.condition_psc_value.includedProducts.includedProducts

Chapter 36
Export and import CSV files

36-48

• templateValues.condition_psc_value.excludedProducts.row#

• templateValues.condition_psc_value.excludedProducts.excludedProducts

• templateValues.condition_psc_value.excludedCategories.row#

• templateValues.condition_psc_value.excludedCategories.excludedCategories

• templateValues.condition_psc_value.includedSkus.row#

• templateValues.condition_psc_value.includedSkus.includedSkus

• templateValues.condition_psc_value.excludedSkus.row#

• templateValues.condition_psc_value.excludedSkus.excludedSkus

• templateValues.condition_psc_value.sameAsCondition

• templateValues.optional_offer_psc_value.includedCategories.row#

• templateValues.optional_offer_psc_value.includedCategories.includedCategories

• templateValues.optional_offer_psc_value.includedProducts.row#

• templateValues.optional_offer_psc_value.includedProducts.includedProducts

• templateValues.optional_offer_psc_value.excludedProducts.row#

• templateValues.optional_offer_psc_value.excludedProducts.excludedProducts

• templateValues.optional_offer_psc_value.excludedCategories.row#

• templateValues.optional_offer_psc_value.excludedCategories.excludedCategories

• templateValues.optional_offer_psc_value.includedSkus.row#

• templateValues.optional_offer_psc_value.includedSkus.includedSkus

• templateValues.optional_offer_psc_value.excludedSkus.row#

• templateValues.optional_offer_psc_value.excludedSkus.excludedSkus

• templateValues.optional_offer_psc_value.sameAsCondition

• templateValues.offer_psc_value.includedCategories.row#

• templateValues.offer_psc_value.includedCategories.includedCategories

• templateValues.offer_psc_value.includedProducts.row#

• templateValues.offer_psc_value.includedProducts.includedProducts

• templateValues.offer_psc_value.excludedProducts.row#

• templateValues.offer_psc_value.excludedProducts.excludedProducts

• templateValues.offer_psc_value.excludedCategories.row#

• templateValues.offer_psc_value.excludedCategories.excludedCategories

• templateValues.offer_psc_value.includedSkus.row#

• templateValues.offer_psc_value.includedSkus.includedSkus

• templateValues.offer_psc_value.excludedSkus.row#

• templateValues.offer_psc_value.excludedSkus.excludedSkus

• templateValues.offer_psc_value.sameAsCondition

• templateValues.PSC_value.includedCategories.row#

• templateValues.PSC_value.includedCategories.includedCategories

Chapter 36
Export and import CSV files

36-49

• templateValues.PSC_value.includedProducts.row#

• templateValues.PSC_value.includedProducts.includedProducts

• templateValues.PSC_value.excludedProducts.row#

• templateValues.PSC_value.excludedProducts.excludedProducts

• templateValues.PSC_value.excludedCategories.row#

• templateValues.PSC_value.excludedCategories.excludedCategories

• templateValues.PSC_value.includedSkus.row#

• templateValues.PSC_value.includedSkus.includedSkus

• templateValues.PSC_value.excludedSkus.row#

• templateValues.PSC_value.excludedSkus.excludedSkus

• description

• priority

• type

• excludedPromotions.row#

• excludedPromotions.id

• priceListGroups.row#

• priceListGroups.id

• translations.items.row#

• translations.items.description

• translations.items.displayName

• translations.items.lang

• id

• startDate

• shippingMethods.row#

• shippingMethods.shippingMethods

• stackingRule

• parentFolder.row#

• parentFolder.id

Delete bulk import or export files from repository
Each time a bulk import or export is performed, files are generated and are saved in
the publishing queue. These files are not needed by Storefront and the total files size
can eventually grow in size to become detrimental to remain in the system.

If the files for bulk import are uploaded using the files endpoint by passing
the {"uploadType" : "bulkImport"} parameter, the files will not be added to the
publishing queue and they will be automatically deleted. It is highly recommended that
you use this parameter for uploading the bulk import files.

Chapter 36
Delete bulk import or export files from repository

36-50

If the files are uploaded without the {"uploadType" : "bulkImport"} parameter, they
are saved in the publishing queue. These files are not needed by the Storefront and
the total file sizes can eventually grow very large and become detrimental to your
system.

To delete these files, contact your Oracle representative to open a Service Request
(SR) to being the process of deleting these files. Once your Oracle representative
has finished configuration changes, you can delete the files uploaded for import,
generated by bulk import, or exported from repository using the deleteFiles endpoint,
for example:

POST /ccadminui/v1/files/deleteFiles
Input Example:
{
 "deletePaths": [
 "/import/importPath1",
 "/import/importPath2"
],
 "recursive": "true"
}

Note: It is recommended that you delete the files before publishing, so that they are
not published. However, you can also delete published files. In this case, these the
deleted files will appear in Publishing queue with "DELETE" in red text, and they need
to be published. If you are having trouble finding your uploaded files, you may not
have imported them to the /import folder. When importing files include the folder
name in the filename property in the payload, for the appropriate destination, for
example; filename: /import/<filename.csv>

Convert registered shoppers to account-based shoppers
You can perform a one-time bulk conversion of registered shoppers to account-based
shoppers.

This section details this process.

To convert a set of registered shoppers to account-based shoppers follow these steps:

1. Export registered shoppers using bulk export API to a CSV or JSON format. See
the section Perform Bulk Export and Import for more information.

2. Open the exported file and change the profileType from registered (b2c_user or
null) to account-based (b2b_user).

3. Associate each shopper with an active account.

4. Change other fields as desired - for example, adding roles, or removing profile
addresses.

5. Import the changed file (CSV or JSON) using bulk import API with the input
parameter isProfileMigration set to true. See the section Perform Bulk Export
and Import for more information.

Only the administrator can access the export and import APIs.

Chapter 36
Convert registered shoppers to account-based shoppers

36-51

Notes on the conversion process

The following table notes issues to be aware of when you convert a shopper’s type
from registered to account-based.

Conversion area Conversion Notes

Profiletype After conversion, this field’s value will reflect
that the shopper is now account-based
(b2b_user).

Lifetime value properties

The following properties exist for Registered
shoppers only:

• Lifetime spend
• Lifetime average order value (AOV)
• Number of orders
• Last purchase amount
• First purchase date
• Last purchase date

When you convert a registered shopper to an
account-based shopper, the shopper’s lifetime
value properties are changed.

The following properties are set to 0:

• Lifetime spend
• Lifetime average order value (AOV)
• Number of orders
• Last purchase amount
The following properties are set to null:

• First purchase date
• Last purchase date
If you have set up any kind of custom reporting
based directly on these properties, reports
that span the timeframe of the migration may
reflect the fact that these properties were
zeroed/nulled for the converted shoppers.

GDPR - Right to be forgotten:

• Deletion of profile
• Redaction of PII from many entities

Under GDPR (General Data Protection
Regulation), a registered shopper or an
account-based shopper may ask to be
forgotten. You have a legally specified amount
of time to redact the shopper’s PII in the
system and delete the shopper’s profile. You
determine exactly what PII needs to be
redacted, based on guidance from your own
legal counsel. For account-based shoppers,
there is potentially PII in more places than
for registered shoppers. For more information,
see the section Delete shopper information.

Account-based roles such as account-based
Buyer, Administrator, Approver, Account
Address Manager, and Profile Address
Manager roles. A registered shopper cannot
have these roles.

During conversion, you can assign converted
shoppers to account-based roles.

Profile addresses - including:

• Shipping address
• Billing address

You can delete shopper profile addresses
during the conversion process by nulling
the address columns in the spreadsheet
of exported profiles before re-importing the
profiles.

If the profile addresses are left intact, the
converted shopper will be able to check out
with those addresses even if the merchant
did not give the shopper (or any shopper) the
Profile Address Manager role and does not
want account-based shoppers using personal
addresses.

Chapter 36
Convert registered shoppers to account-based shoppers

36-52

Conversion area Conversion Notes

ORDERS - Active orders - including:

• Orders pending payment
• Quoted orders
• Incomplete orders (carts)

Converted shoppers will not be able to see
any orders that they submitted or carts they
created when they were a registered shopper.

An Agent will not be able to see a cart that the
shopper had created as a registered shopper

An order that the shopper had submitted as
a registered shopper and that does not need
intervention will continue to process.

If an order that the shopper had submitted
as a registered shopper is payment pending
or has been quoted, an Agent will be able to
see and cancel the order, but cannot pay and
submit it.

The shopper’s orders can be accessed via an
Admin API.

ORDERS:

Fulfilled orders and order history

Returns, exchanges, cancellations

Shoppers will not be able to see any orders
that they submitted as a registered shopper.

If an order that the shopper had submitted
as a registered shopper has been fulfilled,
an Agent will be able to see the order and
process it as usual –for example, process a
return.

In addition, you can access the orders using
an Admin API.

ORDERS:

Scheduled orders

After conversion, any scheduled orders that
the shopper had submitted as a registered
shopper will be deactivated.

ORDERS:

Abandoned cart fields and emails

The shopper will no longer receive abandoned
order emails for their registered shopper
carts, since they can no longer access their
registered shopper carts.

Active coupons / promotions There is a unusual situation that could occur
during the conversion:

• A registered shopper enters coupon code,
but does not check out.

• The shopper is converted to an account-
based shopper.

• The promotion remains granted to the
shopper and stored in the profile.

• The converted shopper qualifies for
promotion, it is applied, and the shopper
checks out having used a registered
shopper-intended promotion for account-
based shopping.

You should be aware of this potential issue
and manage it using business processes. One
possible solution: For each promotion, specify
the price groups to which the promotion
applies. A shopper who is converted from
registered to account-based will switch price
groups, and will only qualify for promotions
associated with account-based price groups.

Chapter 36
Convert registered shoppers to account-based shoppers

36-53

Conversion area Conversion Notes

Purchase lists - including:

• Lists the shopper created and kept private
• Lists the shopper created and shared
• Lists shared with the shopper

Purchase lists that a converted shopper
created when they were a registered shopper
and shared with other registered shoppers will
no longer be shared upon conversion.

After conversion, the only purchase lists
shared with the shopper will be those that
are shared with the whole account, for any
account to which the shopper is being added.

Audience membership Audiences based on lifetime value properties
will stop capturing shoppers who were
converted, because the conversion process
will have zeroed/nulled these shoppers’
lifetime value properties, since these
properties are not populated for account-
based shoppers.

Audiences based on the following profile
address properties will no longer capture any
shoppers who were converted, if you chose to
null out these profile properties as part of the
conversion:

• Billing address city, country, postal code,
state

• Shipping address city, country, postal
code, state

Audiences based on the following profile
properties will not be affected:

• Date of birth
• Email address
• First visit date
• Gender
• Previous visit date
• Receive email
• Registration date
Newly converted shoppers may begin to show
up in audiences that are based on account
properties, since these shoppers will now
belong to accounts.

SSO If the registered shopper had been signing
in via single sign-on (SSO), then after
conversion, they will only be able to log in if
they are a member of an active account.

Active flag You can change this field during conversion.

An account-based shopper’s active status
applies across all accounts to which they
belong. An account-based shopper must be
active in order to be able to log in.

Chapter 36
Convert registered shoppers to account-based shoppers

36-54

Conversion area Conversion Notes

Administrator access to shopper profile data When you convert a shopper from registered
to account-based, the shopper will be
somewhat more exposed to inspection by
administrators. A registered shopper’s profile
properties are visible only to the shopper.
Once converted into account-based shopper,
the account administrator can now view
attributes of the shopper profile.

If you want to prevent Administrators and
Delegated Administrators from accessing a
shopper profile property, you would need
to use role-based property-level access.
Property-level access control can ensure that
a given profile property’s values can be viewed
only by the shopper, not by an Administrator or
Delegated Administrator.

You can also use existing endpoints to clear
the values of specific profile properties once
exported, and import them with null values.

Administrator access to profile properties is as
follows:

• Merchant Administrators can use the
updateProfile API to update a
shopper’s profile properties (custom and
static). This applies to all properties
(including profile addresses) except
profileType.

• Merchant Administrators have a UI for
viewing a shopper’s name, email address,
and custom profile property values.

• Custom and static profile properties that
are not internalOnly are exposed in the
Storefront view model.

• A Delegated Administrator has a UI for
viewing the name and email address of a
shopper in his account.

• A Delegated Administrator can use the
updateMember API to update the profile
properties of a shopper in his account.
This applies to all profile properties except
for the shopper’s account memberships
and profileType.

Shopper’s access to sites Note that, as an account-based shopper, the
shopper will only be able to access sites that
have contracts with the account.

Catalogs and pricelists Note that, as an account-based shopper, the
shopper should see catalogs and pricelists
based on the account’s contract with the site.

Webhooks Changes to shoppers’ profile properties during
conversion may result in a high volume of
webhook calls upon re-import.

You can use the existing attribute
triggerWebHook to control whether
webhooks are triggered on re-import.

Chapter 36
Convert registered shoppers to account-based shoppers

36-55

Conversion area Conversion Notes

Emails to the shoppers After the conversion, the usual Account
Assignment emails are sent to converted
shoppers who are active and assigned
to active accounts. Other emails may be
triggered as well. The triggering of each email
template can be controlled using an existing
parameter on import.

Improve performance in large bulk imports
The performance of the import of very large numbers of products can be improved with
the use of an alternate plug-in.

If you are trying to import very large numbers of products, you can improve
performance by using an alternate plug-in, ProductsV2. Oracle recommends using
ProductsV2 during your initial load of data. You can choose between the Products
and ProductsV2 plug-ins during the import process. The ProductsV2 plug-in takes
advantage of multi-threaded processing. The major difference between Products
and ProductsV2 is the file failedAssociationsRecordsFile, which appears in
an import response when the ProductsV2 plug-in is used as the import ID. For
Import Status, SuccessCount and Failure Count do not depend on Category or
Add on product failures. As a result, if Category or Add On products are invalid in
the passed import data, the products will still be created. After your import, even
if the success count matches the product count passed, you should always check
failedAssociationsRecordsFile for any association failures. If you find failure
records, correct failedAssociationsRecordsFile and re-import.

How to use the ProductsV2 plug-in

The ProductsV2 plug-in can be used in the same way as the Products plug-in. For
more information, see Perform Bulk Export and Import. The following examples show
how to use the ProductsV2 plug-in in Standalone and Bundle mode.

Standalone mode code sample

POST http://localhost:9080/ccadminui/v1/importProcess
Standalone mode Request:
{
 "mode": "standalone",
 "fileName": "<filename>",
 "format": "json",
 "id": "ProductsV2"
}

Note: For CSV request formats, specify "csv" as the "format" value.

Bundle mode code sample In bundle mode, place files to be imported in zip
format and place the content.json file inside the zip which describes importing
files details. For example: [{ "fileName": "example.csv", "format": "csv",

Chapter 36
Improve performance in large bulk imports

36-56

"id": "ProductsV2" },{ "fileName": "example2.csv", "format": "csv", "id":
"ProductsV2" }]

POST http://localhost:9080/ccadminui/v1/importProcess
Bundle mode Request:
{
 "mode": "bundle",
 "fileName": "<filename.zip>"
}

Note: For CSV request formats, specify "csv" as the "format" value.

Sample response

{
 "completedPercentage": 100,
 "progress": "succeeded",
 "startTime": "2019-09-24T18:31:45.214Z",
 "links": [
 {
 "rel": "meta",
 "href": "http://example.com:3021/file/v5804828446398654872/import/
cEIWX7B43XJVrfwZm7ygfK4nr8_10001/importStatus_ProductsV2.json"
 },
 {
 "rel": "failedRecordsFile",
 "href": "http://example.com:3021/file/v3721096615427138463/import/
cEIWX7B43XJVrfwZm7ygfK4nr8_10001/importFile.csv"
 },
 {
 "rel": "failedAssociationRecordsFile",
 "href": "http://example.com:3021/file/v3721096615427138463/import/
cEIWX7B43XJVrfwZm7ygfK4nr8_10001/importFile_failedAssociations.csv"
 },
 {
 "rel": "self",
 "href": "http://example.com:3021/ccadminui/v1/importProcess/
cEIWX7B43XJVrfwZm7ygfK4nr8_10001?fileName=Bulk_Import100K.zip"
 }
],
 "endTime": "2019-09-24T18:35:39.725Z",
 "completed": true,
 "requestStatus": 200
}

Chapter 36
Improve performance in large bulk imports

36-57

37
Create a Credit Card Payment Gateway
Integration

You can use tools that Commerce provides to create custom integrations with payment
gateways.

As discussed in Configure Payment Processing in Using Oracle Commerce, Oracle
CX Commerce provides support for a number of payment gateways as built-in
integrations. In addition, you can create custom integrations with other payment
gateways. The integrations you create appear as options on the Payment Gateways
tab of the Payment Processing page in the administration interface.

To create a custom integration with a credit card payment gateway, you create an
extension for accessing the gateway, and configure the Credit Card Payment function
webhook. When a shopper places an order, the webhook calls a specified payment
service URL and sends the payment-related data in a JSON request. The external
system then sends a response that indicates success or failure and other information
about the transaction.

Determine which payment webhook to use

In addition to the Credit Card Payment webhook, which supports only credit cards,
Commerce includes the Generic Payment webhook, which supports a variety of
different payment methods, including credit cards. See Supported payment methods
and transaction types for information about the other payment methods available.

Note that the Credit Card Payment webhook does not support the 3D-Secure protocol,
and does not support the use of stored credit cards. To create a credit card payment
gateway that supports 3D-Secure or the use of stored credit cards, you must use the
Generic Payment webhook. See the Create a Generic Payment Gateway Integration
chapter for more information.

Understand the credit card payment gateway workflow
The following diagram illustrates the credit card payment gateway workflow:

37-1

Create a credit card extension
Extensions let you add functionality to your store or settings to your administration
interface.

For example, you can use extensions to upload custom widgets and widget elements
to your store, or to add settings for a custom payment gateway to the Payment
Processing page’s Payment Gateways tab.

Before you develop an extension, you must generate an ID that you will include in your
extension file. After you develop the extension, you install it by uploading it to Oracle
CX Commerce as a ZIP file. For a payment gateway, the directory structure of the ZIP
file looks like this:

<extension-name>
 ext.json
 gateway/
 <gateway ID>/
 gateway.json
 config/
 config.json
 locales/
 <locale>.json

The JSON files in this structure are used to set various properties that configure the
behavior of the extension. These files are discussed below, using a sample credit
card payment gateway extension to illustrate their contents. You can find additional
information about extensions in Create an Extension.

ext.json

The ext.json file contains metadata for the extension. For example:

{
 "extensionID": "c2e6a60e-579a-4190-af3e-5edc0cd8a725",
 "developerID": "999999",
 "createdBy": "Demo Corp.",
 "name": "DemoPaymentGateway",
 "version": 1,
 "timeCreated": "2016-01-01",
 "description": "Demo Payment Gateway"
}

Note that the extension ID must match the value generated on the Extensions page
in the administration interface. See Install the extension and configure the gateway for
more information.

gateway.json

The gateway.json file configures the following gateway settings:

• provider – A label describing the payment provider.

• paymentMethodTypes -- A list of the payment method types supported for the
gateway.

Chapter 37
Create a credit card extension

37-2

• transactionTypes -- A list of supported transaction types for each supported
payment type. For a credit card payment gateway, valid values are
authorization, void, and refund.

In the following example, the Demo Payment Provider is configured to permit
only credit card transactions, and to support authorization, void, and refund
transactions:

{
 "provider": "Demo Payment Provider",
 "paymentMethodTypes": ["card"],
 "transactionTypes": {
 "card": ["authorization", "void", "refund"]
 }
}

config.json

The config.json file creates user interface elements in the administration interface
for configuring gateway settings. For example:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "merchantId",
 "type": "stringType",
 "name": "merchantId",
 "helpTextResourceId": "merchantIdHelpText",
 "labelResourceId": "merchantIdLabel",
 "defaultValue": "merchant id",
 "required": true
 },
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",

Chapter 37
Create a credit card extension

37-3

 "name": "paymentMethodTypes",
 "required": true,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "card",
 "options": [
 {
 "id": "card",
 "value": "card",
 "labelResourceId": "cardLabel"
 }
]
 },
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,
 "public": true
 }
]
}

Notice the following settings in the example above:

• The configType property specifies the type of configuration the file contains. For a
payment gateway, the value of this property should be payment.

• The instances property specifies an array of different instances of the resource
being configured, which makes it possible to have multiple groups of the same
settings in the administration interface. In the example above, there are separate
settings created for the storefront, the Agent Console, and preview.

• The includeOrderInWebhookPayload property creates a checkbox for specifying
whether or not to include the order data in the webhook call.

• The file specifies a number of resource properties. The labels used in the user
interface are mapped to the resource IDs in the <locale>.json files, as
described below.

<locale>.json

You create a separate <locale>.json file for each language supported in your
administration interface. For example, you might have an en.json file for English,
fr.json for French, and de.json for German. These files contain labels that
appear in the administration interface when you select the Payment Gateways tab.
For example:

{
 "resources": {
 "paymentMethodsLabel": "Payment Methods",
 "merchantIdLabel": "Merchant ID",
 "cardLabel": "Credit/Debit Card",
 "title": "Demo Payment Gateway Config",
 "description":"Demo Payment Gateway configuration",

Chapter 37
Create a credit card extension

37-4

 "agentInstanceLabel": "Agent Configuration",
 "previewInstanceLabel": "Preview Configuration",
 "storefrontInstanceLabel": "Storefront Configuration"
 "merchantIdHelpText": "Enter your Merchant ID",
 "paymentMethodsHelpText": "Select your payment method"
 "includeOrderLabel": "Include order data in webhook call?"
 }
}

The values of the properties in the file are applied to the corresponding resource
ID in the config.json file. For example, the value of the paymentMethodsLabel
property is used to set the value of the labelResourceID property of the JSON object
in config.json that specifies the user interface controls.

Install the extension and configure the gateway
Once you create the extension, you need to install it and configure the payment
gateway.

Install the extension

To install the extension, do the following in the administration interface:

1. Click the Settings icon.

2. Click Extensions and display the Developer tab.

3. Click Generate ID. In the dialog, fill in the extension name and click Save. A new
extension ID is created.

4. Set the extensionID property in the ext.json file to the value of the ID.

5. Package the extension in a ZIP file. (See Create a credit card extension.)

6. In the Installed tab, click Upload Extension. Select the ZIP file.

Once the extension is uploaded, it appears in the list of installed extensions.

Enable the gateway

To enable the new payment gateway:

1. Click the Settings icon.

2. Select the site you want to configure the gateway for.

3. Click Payment Processing and display the Payment Gateways tab.

4. Select the payment gateway integration you installed from the Service Type drop-
down list.

5. Select the Payment Gateway Enabled checkbox.

6. Configure any other settings required by the integration. For example, in the
extension shown in Create a credit card extension, there are checkboxes for
enabling credit card support under Preview Configuration, Agent Configuration,
and Storefront Configuration.

When you enable a custom credit card payment gateway for a site, make sure that the
other credit card gateways (for example, CyberSource and Chase Paymentech Credit
Cards) are disabled on that site. Only one credit card gateway integration should be
enabled for an individual site.

Chapter 37
Install the extension and configure the gateway

37-5

Configure the Credit Card Payment webhook

When you create an integration for a credit card gateway, the integration uses the
Credit Card Payment webhook to send authorization requests to the gateway. To
configure the webhook:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.

3. Select the Credit Card Payment webhook that you want to configure. Note that
there are separate Preview and Production versions of the webhook.

4. In the URL field, enter the URL for accessing the payment gateway. The URL
must use HTTPS.

5. Under Basic Authorization, fill in the username and password for accessing your
gateway account.

6. If your gateway requires any additional HTTP request headers, click Add New
Header Property and fill in the property name and value.

7. Click Save.

Note that webhook settings are not site-specific. The configuration you supply applies
to all sites that use this webhook.

Credit card payment properties
When the Credit Card Payment webhook executes, it sends a JSON request body to
the payment gateway.

The request body contains a request that contains information about the order and
about the method of payment. The gateway processes the request and returns
a JSON response body that contains information about the transaction, including
whether the transaction succeeded.

The set of properties in the request and response bodies, including the subobjects,
vary depending on the type of transaction. For credit card gateways, there are three
transaction types supported: authorization, void, and refund.

Credit card payment request properties

This section describes the top-level properties and the properties of subobjects sent
in the JSON request body of the Credit Card Payment webhook. Note that if the
includeOrderInWebhookPayload property in the gateway extension's config.json file
is set to true, the order is also included in the request. See Order Submit webhook for
information about the order properties.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce sends
in the webhook request.

Property Description

paymentId The ID of the internal payment group

Chapter 37
Credit card payment properties

37-6

Property Description

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionType A code indicating the type of transaction. For
the Credit Card Payment webhook, this must
be one of the following numeric values:

0100 (authorization)
0110 (void)
0400 (refund)

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront
agent
preview

paymentMethod The payment method. For the Credit Card
Payment webhook, the value must be card.

orderId The ID of the order associated with the
payment

amount The amount to be authorized, as a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

currencyCode The ISO 4217 currency code

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

siteURL The URL of the site on which the order was
placed

siteId The ID of the site on which the order was
placed

gatewayId The ID of the payment gateway

retryPaymentCount The number of times payment has been retried
for the order

auxiliaryProperties

The following table describes the properties of the auxiliaryProperties object in the
request.

Chapter 37
Credit card payment properties

37-7

Property Description

authenticationMethod Either guest (for an anonymous shopper) or
local (for a logged-in shopper)

shopperAccountPaymentAccountFirstUseDate The timestamp of when the card used for
payment was saved, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

cardDetails properties

The following table describes the properties of the cardDetails object in a credit card
payment request. The values of these properties are used to authorize the payment.

Property Description

expirationMonth A two-digit number indicating the month the
credit card expires (for example, 07 for July)

expirationYear A four-digit number indicating the year the
credit card expires (for example, 2019)

cvv The three-digit or four-digit security code
verifying the credit card

number The credit card number

type The credit card type. Valid values are:

visa
mastercard
amex
discover
diners
jcb
elo
dankort
cartebleue
cartasi

holderName The complete name of the holder of the credit
card

billingAddress properties

The following table describes the properties of the billingAddress object in the
request. The billing address is the address of the customer to whom the order is
charged.

Property Description

lastName The last name of the customer

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

Chapter 37
Credit card payment properties

37-8

Property Description

email The email address associated with the
address

state The state in the address

address1 The first line of the address. Typically the
street and number

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order

firstName The first name of the customer

city The city in the address

country The country in the address

shippingAddress properties

The following table describes the properties of the shippingAddress object in the
request. The shipping address is the address of the person (not necessarily a
customer) receiving the order.

Property Description

lastName The last name of the order recipient

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

email The email address associated with the
address

state The state in the address

address1 The first line of the address. Typically the
street and number

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order

firstName The first name of the order recipient

city The city in the address

country The country in the address

profile properties

The following table describes the properties of the profile object in the request.
These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile

phoneNumber The phone number from the customer profile

email The email address from the customer profile

profileDetails properties

Chapter 37
Credit card payment properties

37-9

The following table describes the properties of the profileDetails object in
the request. These values are associated with the customer purchasing the
order. Note that for account-based commerce shoppers, this object may also
include parentOrganization, currentOrganization, and secondaryOrganizations
subobjects.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Sample authorization request

The following is an example of an authorization request sent by the Credit Card
Payment webhook to a payment gateway:

{
 "transactionId": "o30446-pg30417-1458555741310",
 "currencyCode": "USD",
 "paymentId": "pg30417",
 "locale": "en",
 "siteURL": "https://www.example.com",
 "gatewaySettings": {
 "paymentMethodTypes": "card",
 "filteredFields": ["paymentMethodTypes"]
 },
 "cardDetails": {
 "expirationMonth": "02",
 "expirationYear": "2022",
 "cvv": "234",
 "number": "4111111111111111",
 "type": "visa",
 "holderName": "Test Shopper"
 },

Chapter 37
Credit card payment properties

37-10

 "amount": ""000000122526",
 "transactionType": "0100",
 "transactionTimestamp": "2019-11-21T10:22:21+0000",
 "siteId": "siteUS",
 "billingAddress": {
 "lastName": "Shopper",
 "postalCode": "01242",
 "phoneNumber": "617-555-1977",
 "email": "tshopper@example.com",
 "state": "MA",
 "address1": "1 Main Street",
 "address2": "",
 "firstName": "Test",
 "city": "Cambridge",
 "country": "US"
 },
 "channel": "storefront",
 "shippingAddress": {
 "lastName": "Shopper",
 "postalCode": "01242",
 "phoneNumber": "617-555-1977",
 "email": "tshopper@example.com",
 "state": "MA",
 "address1": "1 Main Street",
 "address2": "",
 "firstName": "Test",
 "city": "Cambridge",
 "country": "US"
 },
 "orderId": "o30446",
 "paymentMethod": "card",
 "gatewayId": "gatewayDemo",
 "profile": {
 "id": "110454",
 "phoneNumber": "617-555-1977",
 "email": "tshopper@example.com"
 },
 "profileDetails": {
 "id": "110454",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z"
 }
 "retryPaymentCount": 0,
 "auxiliaryProperties": {
 "authenticationMethod": "local",
 "shopperAccountPaymentAccountFirstUseDate":
"2019-10-17T06:14:06.004Z"
 },
}

Chapter 37
Credit card payment properties

37-11

Credit card payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the JSON response body of the Credit Card Payment webhook.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce
expects in the webhook response.

Property Description

paymentId The ID of the internal payment group. Must
match the value from the request.

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionType A code indicating the type of transaction. For
the Credit Card Payment webhook, this must
be one of the following numeric values:

0100 (authorization)
0110 (void)
0400 (refund)

Must match the value from the request.

transactionTimestamp The timestamp of the transaction in Oracle CX
Commerce, expressed as an ISO 8601 value
in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

hostTransactionTimeStamp The timestamp of the transaction from the
gateway (in milliseconds).

paymentMethod The payment method. For the Credit Card
Payment webhook, the value must be card.

orderId The ID of the order associated with the
payment. Must match the value from the
request.

amount The amount authorized. This must match the
exact amount requested. Any other amount
will cause an error, as Oracle CX Commerce
does not support partial authorizations for
credit card payments.

The value of this property is a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

currencyCode The ISO 4217 currency code. This is expected
to match the value in the request.

gatewayId The ID of the payment gateway. Must match
the value from the request.

Chapter 37
Credit card payment properties

37-12

Property Description

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

additionalProperties Key/value pairs for additional properties sent
by the merchant.

authorizationResponse properties

The following table describes the properties of the authorizationResponse object in
the response. The values of these properties indicate whether the transaction was
authorized successfully.

Property Description

responseCode The authorization decision from the payment
provider as interpreted by the merchant. For
the Credit Card Payment webhook, this must
be one of the following values:

1000 (success)
9000 (decline)

responseDescription Information from the payment gateway about
the response

responseReason Information about why the authorization
succeeded or failed

authorizationCode The authorization code from the payment
provider

hostTransactionId The transaction reference ID from the payment
gateway

merchantTransactionId The transaction reference ID from the
merchant

token The payment token used by the payment
provider

Sample authorization response

The following is an example of an authorization response sent to the Credit Card
Payment webhook by a payment gateway:

{
 "orderId": "o30446",
 "currencyCode": "USD",
 "transactionId": "o30446-pg30417-1458555741310",
 "paymentId": "pg30417",
 "amount": "000000122526",
 "transactionType": "0100",
 "hostTransactionTimestamp": "1447807667046",
 "transactionTimestamp": "2019-11-21T10:22:21+0000",
 "paymentMethod": "card",
 "gatewayId": "gatewayDemo",
 "siteId": "siteUS",

Chapter 37
Credit card payment properties

37-13

 "authorizationResponse": {
 "responseCode": "1000",
 "responseReason": "1001",
 "responseDescription": "1002",
 "authorizationCode": "s001",
 "hostTransactionId": "h001"
 },
 "additionalProperties": {
 "sampleProperty1": "An additional property whose value will
be stored."
 }
}

Chapter 37
Credit card payment properties

37-14

38
Create a Generic Payment Gateway
Integration

For a more general solution than the one provided by the Credit Card Payment
webhook, you can create an integration that uses the Generic Payment webhook to
exchange data with providers of a variety of different payment types.

Using the Generic Payment webhook, you can integrate with payment providers for:

• credit cards

• cash payments

• gift cards

• invoices and purchase orders

• web checkout systems

This chapter provides an overview of the gateway integrations you can create using
the Generic Payment webhook. Subsequent chapters cover specific types of payment
providers.

Understand the generic payment gateway architecture
The following diagram illustrates the generic payment gateway architecture:

Supported payment methods and transaction types
Creating a gateway integration using the Generic Payment webhook is similar to
creating an integration using the Credit Card Payment webhook. However, the Generic
Payment webhook supports a wider range of options in order to handle a variety of
payment methods.

The following table summarizes the available payment methods and the transaction
types they support. Note that in addition to the methods listed here for the Generic
Payment webhook, Commerce supports loyalty point payments using the Custom
Currency webhook.

38-1

Payment Method Supported Transaction Types

card authorization – approve payment for an
order

void -- cancel an order or a payment

refund -- issue a credit to the shopper after a
return

cash initiate -- create an order to be completed
later

cancel -- cancel an order or a payment

generic initiate -- create an order to be completed
later

retrieve -- return an initiated order to
complete it

authorization -- approve payment for an
order

void -- cancel an order or a payment

refund -- issue a credit to the shopper after a
return

physicalGiftCard balanceInquiry -- return current available
balance

authorize -- approve payment for an order

void -- cancel an order or a payment

refund -- issue a credit to the shopper after a
return

invoice authorization -- approve payment for an
order

storeCredit balanceInquiry -- return current available
balance

authorize -- approve payment for an order

void -- cancel an order or a payment

refund -- issue a credit to the shopper after a
return

The payment and transaction types are specified in the gateway.json file. For
example:

{
 "provider": "Sample Payment Gateway",
 "paymentMethodTypes": ["physicalGiftCard", "cash"],
 "transactionTypes": {
 "physicalGiftCard": ["balanceInquiry", "authorize", "void",
"refund"],
 "cash": ["initiate", "cancel"]
 }
}

Chapter 38
Supported payment methods and transaction types

38-2

User interface configuration controls that appear in the Payment Processing page of
the administration interface are specified in the config.json file. For example:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": false,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "physicalGiftCard",
 "displayAsCheckboxes": true,
 "public": true,
 "options": [
 {
 "id": "cash",
 "value": "cash",
 "labelResourceId": "cashPayLabel"
 },
 {
 "id": "physicalGiftCard",
 "value": "physicalGiftCard",
 "labelResourceId": "physicalGiftCardPayLabel"
 }
]
 },
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,

Chapter 38
Supported payment methods and transaction types

38-3

 "public": true
 }
]
}

Notice that in this example the type attribute of the paymentMethodTypes property is
set to multiSelectOptionType, which means that multiple methods can be selected
(for example, physicalGiftCard and cash). By default the control created for selecting
the methods is a drop-down list, but setting displayAsCheckboxes to true specifies
that a set of checkboxes should be used instead.

The includeOrderInWebhookPayload property creates a checkbox for specifying
whether or not to include the order data in the webhook call.

Send custom properties to a payment gateway
When payment transaction data is sent to a payment provider by the Generic Payment
webhook, the provider processes the payment information and returns information
about the transaction.

The webhook sends out a predefined set of properties in the request, and expects to
receive another predefined set of properties back in the response. For some providers,
however, you may need to send additional data in the request, and the provider may
include additional data in the response. This section describes how you can send and
receive additional data that is not included in the predefined properties.

Include custom properties in the REST call

Depending on the payment provider you integrate with, there may be additional
payment data that you want to send. If so, you can include this data in the
createOrder REST request. Each payments object in the request can include a
customProperties subobject that you can use to send additional data as key/value
pairs. For example:

...
"payments": [
 {
 "endYear": 2018,
 "cardTypeName": "Visa",
 "nameOnCard": "Fred Smith",
 "customProperties": {
 "monthlyCharge": "$77",
 "numberOfPayments": "12"
 },
 "cardCVV": "123",
 "type": "card",
 "cardType": "visa",
 "endMonth": "02",
 "cardNumber": "4055011111111111"
 }
],
...

Chapter 38
Send custom properties to a payment gateway

38-4

Send custom properties in the webhook request

The custom properties from the REST request are then included in the
customProperties object in the webhook call to the payment provider. For example:

{
 "transactionId": "o60412-pg60411-1465342612829",
 "currencyCode": "USD",
 "paymentId": "pg60411",
 "siteId": "siteUS",
 "locale": "en",
 "customProperties": {
 "monthlyCharge": "$77",
 "numberOfPayments": "12"
 },
 "gatewaySettings": [{
 "paymentMethodTypes": "card",
 "filteredFields": ["paymentMethodTypes"]
 }],
 "amount": "000000007700",
 "transactionType": "0100",
...

Note that for gift card payments, in addition to the top-level customProperties object,
each paymentRequests object also has a customProperties object. See Integrate with
a Gift Card Payment Gateway for more information.

Return custom properties in the webhook response

The webhook can return custom properties from the payment provider as an
additionalProperties object in the response. This data is saved with the payment
group for the order. The webhook can also return a customPaymentProperties object
that specifies a list of the properties in the additionalProperties object that should
be returned to the storefront in the response to the original createOrder request. For
example:

{
 "orderId": "o60412",
 "paymentId": "pg60411",
 "siteId": "siteUS",
 "merchantTransactionId": "324a5107-8fe5-4dd7-aa1f-8b7e2e0ec8df",
 "hostTransactionId": "o60412-pg60411-1465342612829",
 "transactionTimestamp": "2016-06-07T23:36:52+0000",
 "hostTimestamp": "2016-06-07T23:36:52+0000",
 "transactionType": "0100",
 "additionalProperties": {
 "interestRate": "0.05",
 "remainingPayments": "5",
 "latePayment": false,
 },
 "customPaymentProperties": ["remainingPayments", "latePayment"],
 "amount": "000000007700",

Chapter 38
Send custom properties to a payment gateway

38-5

 "currencyCode": "USD",
...

Incorporate 3D-Secure support
The generic payment gateway’s credit card payment method includes optional support
for 3D-Secure for shopper verification.

If 3D-Secure is required, then before the merchant authorizes a payment, the shopper
is redirected to a page provided by the card issuer for authentication. If the shopper
authenticates successfully, the card issuer and merchant then determine whether to
authorize the transaction.

Note that whether 3D-Secure is required depends on the merchant and the card
issuer, and is not controlled by Oracle CX Commerce. The gateway described in this
section invokes 3D-Secure only when it is required, and can process non-3D-Secure
payments as well.

Understand 3D-Secure support

The following diagram illustrates how credit card payments are handled in a generic
payment gateway integration that implements 3D-Secure support:

The payment processing involves the following steps:

1. When the shopper clicks Place Order, the storefront invokes the createOrder
endpoint of the Store API. The endpoint sends the order information to the
Commerce server.

2. When the server receives the order submission, it invokes the Generic Payment
webhook, which posts an authorization request to the merchant.

Chapter 38
Incorporate 3D-Secure support

38-6

3. The merchant and the card issuer communicate to determine whether 3D-Secure
is required, and whether the shopper is enrolled in the card issuer’s 3D-Secure
program. If 3D-Secure is required and the shopper is enrolled, the card issuer
sends an ACS (access control server) URL to the merchant.

4. The merchant sends the webhook response to the Commerce server. If 3D-Secure
is required for the transaction, the merchant includes the response code 10000
(PAYER_AUTH_REQUIRED). The merchant supplies the ACS URL and other data
needed for invoking the 3D-Secure authentication page on the card issuer’s
website.

5. The Commerce server sends the data it receives in the webhook response,
including the 3D-Secure data, to the storefront in the createOrder endpoint
response. The uiIntervention property for the payment group is set to true in
the response to indicate that 3D-Secure authentication is required.

6. The storefront posts a payment request to the card issuer’s website to invoke
the 3D-Secure authentication page. The request includes data returned from the
merchant in the webhook response.

7. The card issuer displays the authentication page.

8. The shopper fills out the authentication form and submits it.

9. The card issuer and the merchant communicate to determine if the shopper
authenticated successfully, and if so, whether to authorize the transaction.

10. The merchant constructs an authorization response and sends it to the Commerce
server using the POST /ccstore/v1/payment/genericCardResponses endpoint.

11. Meanwhile, after posting the payment request to the issuer’s website, the
storefront begins polling the Commerce server using the getPaymentGroup
endpoint to detect when the server receives the authorization response from the
merchant.

12. When the Commerce server receives the authorization response from the
merchant, the server includes the data from the merchant in the getPaymentGroup
endpoint response it sends to the storefront.

These steps are described in greater detail below.

Note: 3D-Secure is not applicable to payment requests that originate from the
Oracle CX Commerce Agent Console. If the value of the channel property in a
Generic Payment webhook request is agent, the merchant should map the transaction
appropriately in the gateway so the card issuer bypasses 3D-Secure.

Create the gateway extension

As discussed in Supported payment methods and transaction types, the payment and
transaction types are specified in the gateway.json file. For a credit card gateway
that supports 3D-Secure, the gateway.json file should be similar to the following:

{
 "provider": "Generic Card 3DS Provider",
 "paymentMethodTypes": ["card"],
 "transactionTypes": {
 "card": ["authorization", "void", "refund"]
 },
 "processors" : {
 "card": "card3ds"

Chapter 38
Incorporate 3D-Secure support

38-7

 }

}

Note that the card3ds processor is needed to provide 3D-Secure support.

In addition to configuring user interface controls, the config.json file must include
a shared secret key specified by the merchant. The key is used to generate a
signature that the POST /ccstore/v1/payment/genericCardResponses endpoint uses
for authentication:

...
 {
 "id": "secretKey3DS",
 "type": "passwordType",
 "name": "secretKey",
 "helpTextResourceId": "secretKeyHelpText",
 "labelResourceId": "secretKeyLabel",
 "defaultValue": "5ad0f437X6af6X4d4eXb08cX729a310843ce",
 "required": true,
 "public": true
 },
...

See Generate the signature for more information about how the secret key is used.

Send the webhook response

If 3D-Secure is required for a transaction, the merchant returns a responseCode
value of 10000 (PAYER_AUTH_REQUIRED) when it sends the Generic Payment webhook
response to the Commerce server. The payment group is not updated.

The merchant uses the additionalProperties map in the webhook response to
supply data needed for invoking the 3D-Secure authentication page on the card
issuer’s website. This data typically includes values such as acsURL (the issuer’s
URL to direct the shopper to for authentication), paReq (the payer authentication
request), MD (merchant data), and TermURL (the URL to return the shopper to after
authentication). The exact set of properties, and the names for these properties, may
differ depending on the card issuer. The merchant can also include maxRetryCount
and delayInMillis properties as part of the additionalProperties map to configure
the storefront’s polling behavior.

The webhook also returns a customPaymentProperties array that specifies a list of
the properties from the additionalProperties map that should be returned to the
storefront. For example:

{
 "transactionType": "0100",
 "orderId": "o140451",
 "siteId": "siteUS",
 "channel": "preview",
 "locale": "en",
 "currencyCode": "USD",

 "authorizationResponse": {

Chapter 38
Incorporate 3D-Secure support

38-8

 "additionalProperties": {
 "delayInMillis": "10000",
 "payerAuthEnrollReply_proxyPAN": "1078787",
 "amount": "000000003499",
 "orderId": "o140451",
 "channel": "storefront",
 "maxRetryCount": "5",
 "locale": "en",
 "transactionId": "o140451-pg140415-1480662437847",
 "transactionTimestamp": "2016-12-02T07:07:17+0000",
 "transactionType": "0100",
 "payerAuthEnrollReply_paReq":
"eNpVkctuNBgiESLAKGWnXGsJiUPcByU/n3thQd",
 "paymentId": "pg140415",
 "payerAuthEnrollReply_acsURL":
 "http://www.example.com/ccstore/v1/genericCardAuth3DS",
 "paymentMethod": "card",
 "displayMessage": "Please wait",
 "payerAuthEnrollReply_xid": "Skh0MTRsZGsxYXZPbEd4a2I1VjA=",
 "TermUrl":
 "http://www.example.com/ccstore/v1/payment/
genericCardResponses",
 "currencyCode": "USD",
 "gatewayId": "gateway3DS"
 },
 "customPaymentProperties": ["delayInMillis",
 "payerAuthEnrollReply_proxyPAN", "amount", "decision",
"orderId",
 "channel", "maxRetryCount", "locale", "transactionId",
 "transactionTimestamp", "transactionType",
"payerAuthEnrollReply_paReq",
 "paymentId", "payerAuthEnrollReply_acsURL", "paymentMethod",
 "displayMessage", "reasonCode", "payerAuthEnrollReply_xid",
"TermUrl",
 "currencyCode", "gatewayId"],
 "responseCode": "10000"
 }

}

Authorize the payment

The Commerce server sends the data from the webhook response, including the 3D-
Secure data, to the storefront in the createOrder endpoint response. The storefront
then posts a payer authentication request to the card issuer’s website using data
received from the merchant. The issuer displays an authentication page in an inline
frame on the Commerce storefront. (See Create a custom payment authorization
widget for information about how to customize the storefront to do this.)

After the shopper fills out the authentication form and submits it, the card issuer and
the merchant communicate to determine if the shopper authenticated successfully,
and if so, whether to authorize the transaction. The merchant then sends an
authorization response to the Commerce server, using the POST /ccstore/v1/
payment/genericCardResponses endpoint.

Chapter 38
Incorporate 3D-Secure support

38-9

The following table describes the POST properties:

Property Description

transactionType Match value from webhook request.

currencyCode Match value from webhook request.

locale Match value from webhook request.

channel Match value from webhook request.

orderId Match value from webhook request.

signedKeys A comma-separated list of the properties
that are used to generate the signature. See
Generate the signature.

signature The Base64 signature returned by the
merchant. See Generate the signature.

authorizationResponse A JSON map of key/value pairs containing
authorization data

For example, the body of the POST might include:

<input id="transactionType" name="transactionType" type="hidden"
value="0100"/>
<input id="currencyCode" name="currencyCode" type="hidden" value="USD"/>
<input id="locale" name="locale" type="hidden" value="en"/>
<input id="channel" name="channel" type="hidden" value="preview"/>
<input id="orderId" name="orderId" type="hidden" value="o120419"/>
<input id="signedKeys" name="signedKeys" type="hidden"
value="transactionType,

currencyCode,locale,channel,orderId,paymentId,transactionId,paymentMetho
d,
 gatewayId,amount,merchantTransactionId,authCodes"/>
<input id="signature" name="signature" type="hidden"
 value="5ad0f437X6af6X4d4eXb08cX729a310843ce"/>
<input id="authorizationResponse" name="authorizationResponse"
type="hidden"
 value="authorization_response_JSON_map"/>

The following table lists the properties of the JSON map that the
authorizationResponse property in the POST is set to. All properties are required
unless specified otherwise:

Property Description

paymentId Match value from webhook request.

transactionId Match value from webhook request.

transactionTimestamp Match value from webhook request.

paymentMethod Match value from webhook request.

gatewayId Match value from webhook request.

siteId Must match the value from the request.

Chapter 38
Incorporate 3D-Secure support

38-10

Property Description

amount The amount authorized. The value of this
property is a positive, 12-digit number
that is expressed in base currency.
For example, $125.75 is represented as
000000012575

merchantTransactionId The transaction reference ID from the
merchant

merchantTransactionTimestamp The timestamp of the transaction from the
merchant (in milliseconds)

hostTransactionId The transaction reference ID from the payment
gateway (optional)

hostTransactionTimestamp The timestamp of the transaction from the
gateway, in milliseconds (optional)

responseCode The authorization decision from the payment
provider as interpreted by the merchant. Must
be one of the following values:

1000 (success)
4000 (sale complete)
9000 (decline)

responseReason Information about why the authorization
succeeded or failed

responseDescription Information from the payment gateway about
the response

authCode The authorization code for the transaction

token The payment token used by the payment
provider (optional)

additionalProperties Key/value pairs for additional properties sent
by the merchant (optional)

customPaymentProperties A list of the properties in the
additionalProperties object that should be
returned to the storefront (optional)

The following is an example of the JSON map that is supplied as the value of the
authorizationResponse property in the POST. Note that you need to use HTML entities
to replace certain characters such as quotation marks before including the map in the
POST:

{
 "paymentId": "pg130411",
 "transactionId": "o120419-pg130411-1478862352044",
 "transactionTimestamp": "2016-08-05T12:24:54+0000",
 "paymentMethod": "card",
 "gatewayId": "gateway3DS",
 "siteId": "siteUS",
 "amount": "000000009349",
 "merchantTransactionId": "mID1470399894815",
 "merchantTransactionTimestamp": "1470399894815",
 "hostTransactionId": "hID1470399894715",
 "hostTransactionTimestamp": "1470399894715",

Chapter 38
Incorporate 3D-Secure support

38-11

 "responseCode": "1000",
 "responseReason": "AuthResponseReason",
 "responseDescription": "AuthResponseDescription",
 "authCode": "AUTH-ACCEPT",
 "token": "token-success",
 "additionalProperties":
 {
 "sample-addnl-property-key1": "sample-payment-property-value1",
 "sample-addnl-property-key2": "sample-payment-property-value2"
 },
 "customPaymentProperties": ["sample-addnl-property-key2"]
}

Generate the signature

The merchant uses the shared secret key to generate a signature that it supplies
when it sends the authorization response using the POST /ccstore/v1/payment/
genericCardResponses endpoint. When the Commerce server receives authorization
response, it applies the same logic that the merchant uses to calculate the signature,
and accepts the authorization only if both signatures match.

The signature is generated on the merchant server by performing an HmacSHA256 hash
of the signedKeys properties using the shared secret key. The minimum recommended
set of properties to include in signedKeys is:

signedKeys=transactionType,currencyCode,locale,channel,orderId,paymentId
,
transactionId,paymentMethod,gatewayId,amount,merchantTransactionId,authC
ode

Using the properties listed in signedKeys, construct a comma-separated list
of key/value pairs. For example, using the signedKeys value from the
authorizationResponse data in the example above, the list would be:

transactionType=0100,currencyCode=USD,locale=en,channel=preview,orderId=
o120419,
paymentId=pg130411,transactionId=o120419-pg130411-1478862352044,
paymentMethod=card,gatewayId=gateway3DS,amount=000000009349,
merchantTransactionId=mID1470399894815,authCode=AUTH-ACCEPT

Note: Do not include any URL-encoded characters in the list.

Using the list of key/value pairs and the shared secret key, perform the hash to
generate the signature. For example:

...

// secretKey - shared secret Key provided by merchant in the gateway
extension
// dataToSign - comma separated key/value string
SecretKeySpec secretKeySpec = new
SecretKeySpec(secretKey.getBytes("UTF-8"),
"HmacSHA256");
Mac mac = Mac.getInstance("HmacSHA256");

Chapter 38
Incorporate 3D-Secure support

38-12

mac.init(secretKeySpec);
byte[] rawHmac = mac.doFinal(dataToSign.getBytes("UTF-8"));
Base64.getEncoder().encodeToString(rawHmac).replace("\n", "");

Retrieve the authorization response

After posting the payment request to the issuer’s website, the storefront begins polling
the Commerce server using the getPaymentGroup endpoint to determine if the server
has received the authorization response from the merchant. When the Commerce
server receives the authorization response, it includes the data from the merchant in
the getPaymentGroup endpoint response it sends to the storefront.

Create a custom payment authorization widget

In order for your storefront to use 3D-Secure, you need to write a custom widget
and use it to replace the CyberSource Payment Authorization Widget on the Payer
Authentication Layout. The custom widget must manage various communications
between the storefront, the Commerce server, and the credit card issuer.

The widget.json file should be similar to the following:

{
 "name": "Generic Card 3DS Widget",
 "javascript": "genericCard3DS",
 "jsEditable": true,
 "global": false,
 "i18nresources": "genericCard3DS",
 "imports": [
 "payment",
 "paymentauthorization",
 "order",
 "site"
],
 "pageTypes": ["payment"]
}

Write the widget JavaScript

The widget’s JavaScript code should implement the following logic:

• Listen for the ORDER_AUTHORIZE_PAYMENT event and initiate payer authentication.

• Populate the authentication form and submit it to the issuer’s URL.

• Publish a PAYMENT_GET_AUTH_RESPONSE event to trigger polling the Commerce
server to detect when it receives the authorization response from the merchant.

• Handle timeout and error cases.

This section includes examples of code that implements these operations.

Listening for the ORDER_AUTHORIZE_PAYMENT event and initiating payer authentication:

$.Topic(pubsub.topicNames.ORDER_AUTHORIZE_PAYMENT).subscribe(function(ob
j) {
 if (obj[0].details) {
 widget.authDetails = obj[0].details;
 widget.createSignatureIfIframeIsLoaded(widget.authDetails, 0);

Chapter 38
Incorporate 3D-Secure support

38-13

 }
});

Populating the authentication form and submitting it to the issuer’s URL:

widget.injectFormValuesForPayerAuth(
 uiIntervenedPaymentGroup.customPaymentProperties);
widget.injectActionURL(

uiIntervenedPaymentGroup.customPaymentProperties.payerAuthEnrollReply_ac
sURL);
widget.postForm();

Publishing a PAYMENT_GET_AUTH_RESPONSE event to trigger polling the Commerce
server to detect when it receives the authorization response from the merchant:

var messageDetails = [{message: "success",
orderid: authDetails.orderDetails.id,
orderuuid: authDetails.orderDetails.uuid,
paymentGroupId: uiIntervenedPaymentGroup.paymentGroupId,
numOfRetries:
uiIntervenedPaymentGroup.customPaymentProperties.maxRetryCount,
delay: uiIntervenedPaymentGroup.customPaymentProperties.delayInMillis
 }];

$.Topic(pubsub.topicNames.PAYMENT_GET_AUTH_RESPONSE).publish(messageDeta
ils);

Handling the error cases, such as being unable to access the issuer URL, or receiving
an authentication error from the issuer. For example:

widget.handleErrors = function() {
 try {
 $.Topic(pubsub.topicNames.ORDER_SUBMISSION_FAIL).publish([{message:
"fail"}]);
 }
 catch(e) {
 log.error('Error Handling Order Fail');
 log.error(e);
 }
 try {
 widget.handleTimeout();
 }
 catch(e) {
 log.error('Error Handling Timeout');
 log.error(e);
 }
};

Chapter 38
Incorporate 3D-Secure support

38-14

Support stored credit cards
When you create a Generic Payment gateway integration for credit card payments,
you can enable the integration to allow logged-in shoppers to store card data in their
profiles, and then later access the stored cards when they place orders.

Commerce does not store the complete credit card data. Instead, when a shopper
stores a credit card, the payment processor associated with the gateway sends back
a token that is stored with the shopper’s profile. When the shopper places orders in
the future, he or she is given a list of saved cards and can select the one to use. The
token associated with the selected card is then sent to the gateway, which retrieves
the card data and sends the authorization request to the payment processor.

Tokens are stored on a per-gateway basis. This has important implications in
an environment running multiple sites, because different sites may use different
gateway extensions. For example, if you have two sites that require different gateway
configurations for credit cards, you must create a separate gateway extension for each
site. In this case, a card stored on one site will not automatically be stored for the
other, because the gateways require separate tokens. (The shopper can store the
same card on each site separately, though.) But if both sites use the same gateway
configuration, they can share the same gateway extension. In this case, a card stored
on one site will also be stored for the other.

Save and use stored credit cards

This section describes the workflow supported for storing and using saved credit
cards. Note that you must implement this logic on your storefront; the widgets included
with Commerce cannot handle stored cards by default.

Store a credit card when placing an order

The following is the logic you implement for storing a credit card when a shopper
places an order:

1. When a shopper pays for an order with a credit card that has not been previously
saved by the current payment gateway, the checkout page provides an option for
storing the card. The shopper selects the option to indicate that the card should be
saved.

2. When the shopper submits the order, the storefront invokes the createOrder or
updateOrder endpoint of the Store API. The endpoint sends the order information
to the Commerce server, along with information about the credit card, which
includes a flag indicating the credit card should be saved.

3. When the server receives the order submission, it invokes the Generic Payment
webhook, which posts an authorization request to the gateway. The webhook
request contains the credit card information that was sent to the server by the
endpoint, including the flag indicating the credit card should be saved.

4. The gateway saves the card information and generates a token to associate with
the card. It sends the authorization request to the payment provider.

5. The provider sends a response back to the gateway, which it passes on to the
Commerce server along with the token.

6. The Commerce server stores the token and passes the authorization response on
to the storefront.

Chapter 38
Support stored credit cards

38-15

Store credit cards without placing an order

Commerce provides an Update Profile store API endpoint that lets you add and store
customer credit cards as part of a customer Billing Profile without actually placing an
order.

The name of the endpoint is addCreditCard. The URI for the endpoint is POST /
ccstore/v1/current/creditCards/.

The endpoint can be used to invoke Add Card requests multiple times to let you add
more than one card to a profile. Each new card is then stored against the profile. The
inputs of this endpoint are:

• cardType

• nameOnCard

• cardNumber

• expiryMonth

• expiryYear

This endpoint triggers the Generic Payment webhook for a Tokenize operation on the
payment system. The payment system is expected to return a tokenized value of the
card which is then saved against the profile. The endpoint then returns back a stored
card ID.

Note: The ability to add credit cards directly to a shopper profile requires configuring
the Generic Payment webhook and enabling 3D-Secure support by specifying the
card3ds processor in the gateway extension's config.json file. Keep in mind that
enabling 3D-Secure support does not mean 3D-Secure is used for all credit card
transactions; it is used only for transactions that require it. See Incorporate 3D-Secure
support for more information.

Use a stored card

The following describes the logic you implement to enable shoppers to use stored
credit cards for order payments:

1. When the shopper accesses the checkout page, the storefront calls the
listCreditCards endpoint of the Store API. The Commerce server sends a
response that includes information about the shopper’s stored credit cards. The
storefront displays the cards and provides controls for selecting a card.

2. The shopper selects the card to use. Depending on how the payment gateway is
configured, the shopper may need to then provide the CVV.

3. The shopper submits the order. The storefront invokes the createOrder or
updateOrder endpoint of the Store API, which sends the order information to the
Commerce server.

4. When the server receives the order submission, it retrieves the token associated
with the credit card. It invokes the Generic Payment webhook, which posts an
authorization request to the gateway, along with the token.

5. The gateway retrieves the card data and sends the authorization request to the
payment provider. The provider sends a response back to the gateway, which it
passes on to the Commerce server.

6. The Commerce server passes the authorization response on to the storefront.

Chapter 38
Support stored credit cards

38-16

The payload of the authorization request includes several properties for tracking
information about transactions involving a stored credit card:

• originOfOrder -- A top-level property that indicates the source of the order. Valid
values: default, scheduledOrder, contactCenter, punchout, purchaseOrder,
bulk.

• storedCardUsed -- A boolean property of the cardDetails object that is set to true
for transactions involving a stored credit card.

• additionalSavedCardProperties -- An object containing custom properties that
are sent by the gateway in the webhook response when a card is stored. Each
subsequent time the saved card is used, these properties are updated with values
received in the associated webhook response.

The following example shows a portion of an authorization request that includes these
properties:

{
...
"originOfOrder": "scheduledOrder",
"paymentId": "pg40429",
"cardDetails": {
 "expirationYear": "2029",
 "storedCardUsed": true,
 "number": "411111xxxxxx1111",
 "tokenExpiryDate": "2023-05-14 06:45:35.0",
 "expirationMonth": "11",
 "additionalSavedCardProperties":
 {
 "prop1": "val1",
 "prop2": "val2",
 "prop3": "val3"
 }
,
"type": "visa",
"maskedCardNumber": "xxxxxxxxxxxx1111",
"token": "Token-1557816335786"
...
}

Manage cards

The createOrder endpoint’s payments array includes properties for specifying that
the card used for the order should be saved, as well as additional properties for
optionally making it the default card for the shopper and for specifying a nickname
for the card (for example, WorkAMEX). In addition, the checkout page can call the
listCreditCards endpoint to display a list of the cards stored for the current site, so a
shopper will be able to select the card to use when placing a future order.

You can also use the listCreditCards endpoint to display the shopper’s stored cards
on the Your Account page. In addition, there are several other endpoints that you can
use to enable shoppers to update card details and delete cards.

Note that by default the listCreditCards endpoint returns only the shopper’s cards
that are active and apply to the current gateway and current site. This ensures that
the cards displayed on the checkout page are all valid for the order being placed. The

Chapter 38
Support stored credit cards

38-17

endpoint also supports query parameters that can be used to return all of a shopper’s
stored cards, regardless of site, gateway, or active status. These parameters should
be used on the Your Account page, as shown in Create a saved credit card widget.

Configure the payment gateway integration to support stored cards

To configure a payment gateway integration that supports storing credit cards, the
config.json file in the gateway extension can include these settings:

• isCVVRequiredForSavedCards – A boolean indicating whether the shopper must
supply the CVV when using a stored card. Default is true.

• enabledForScheduledOrders – A boolean indicating whether the gateway
supports using stored cards as payment for scheduled orders. Default is true.

• isCVVRequiredForScheduledOrders – A boolean indicating whether the shopper
must supply the CVV for each instance of a scheduled order. Default is false,
which allows the instances to be processed without the CVV. See Use stored
credit cards for scheduled orders for more information.

Note: Because the scheduler runs on the store server, if you have an Oracle
CX Commerce Agent Console configuration, you should configure the gateway
so that both the storefront and the agent instances use the same value for
the isCVVRequiredForScheduledOrders flag. This prevents the settings used in
the storefront from overwriting the scheduled order settings used in the agent
environment.

Use stored credit cards for scheduled orders

A shopper can use a stored credit card to pay for scheduled orders. This provides an
alternative to sending an invoice to the shopper after each order is placed. Note that
the credit card must have already been stored before creating the scheduled order.
The ID of the selected credit card is retained on the scheduled order, and is used to
retrieve the token that is sent when processing an instance of the order.

Submission of the orders depends on whether the shopper is required to take
further action, such as supplying a CVV or 3D-Secure login credentials. If no
shopper intervention is required, order instances are submitted automatically in the
background, and the shopper is sent an email indicating the order has been submitted.
To avoid the need for shopper intervention, you can set the payment gateway’s
isCVVRequiredForScheduledOrders to false. This setting allows scheduled orders to
be processed without the CVV.

If the shopper is required to take further action, then when an instance of the order
is created, it is placed in the PENDING_PAYMENT state and an email is sent to the
shopper about the action required. Similarly, if a card-related problem occurs (for
example, the card has been deleted or has expired), the order instance moves to the
PENDING_PAYMENT state and an email is sent to the shopper.

After receiving an email indicating further action is required, the shopper can access
the order and do any of the following:

• Enter any required card information (for example, update the expiration date) and
submit the order.

• Change the payment method and submit the order. Note that the payment method
change applies only to this order instance; future instances of the order still use
the credit card associated with the order.

• Cancel the order instance.

Chapter 38
Support stored credit cards

38-18

Note that for a scheduled order, the value of the orderId property in the Generic
Payment webhook authorization request is the ID for the individual order instance, not
for the order template. Also, the value of the originOfOrder property in the request is
set to scheduledOrder.

Use stored credit cards for orders requiring approval

An account-based commerce shopper can use a stored credit card to pay for
an order that requires approval. The card must have already been stored before
creating the order. The shopper’s credit card information cannot be seen by delegated
administrators or approvers.

Once an order has been created and approved, submission of the order depends
on whether the shopper is required to take further action, such as supplying a CVV
or 3D-Secure login credentials. If no shopper intervention is required, the order is
submitted upon approval, and the shopper is sent an email indicating the order has
been submitted.

If the shopper is required to take further action, then once the order is approved, it is
placed in the PENDING_PAYMENT state and an email is sent to the shopper about the
action required. Similarly, if a card-related problem occurs (for example, the card has
been deleted or has expired), the order instance moves to the PENDING_PAYMENT state
and an email is sent to the shopper.

After receiving an email indicating further action is required, the shopper can access
the order and do any of the following:

• Enter any required card information (for example, update the expiration date) and
submit the order.

• Change the payment method and submit the order.

• Cancel the order instance.

If an order is rejected by an approver, there is no effect on the stored credit card. It
remains available for use with other orders.

Customize your storefront to support stored cards

To add support for stored credit cards to your storefront, you must customize some of
the widgets. This section describes the fields in the credit card view model that enable
access to stored cards, and provides guidance for creating a new widget for managing
stored cards on the Your Account page, as well as for customizing the Split Payments
widget on the checkout page to enable saving and retrieving stored cards.

View model support for stored cards

The credit card view model includes several fields for working with stored credit cards:

• nickname -- Stores a nickname supplied by the shopper to identify the card.

• isSavedCard – A boolean used to indicate whether a card has been stored.

• saveCard – A boolean used when the shopper enters a new card for an order,
indicating whether the card should be saved.

• setAsDefault – A boolean that indicates whether the card is the default card.

• isCVVRequiredForSavedCards – A boolean whose value is set from the gateway
property of the same name. If true, the shopper must supply the CVV when using
a stored card.

Chapter 38
Support stored credit cards

38-19

Modify the Split Payments widget

To support storing credit cards, modify the display template of the Split Payments
widget to add checkboxes for setting the saveCard and setAsDefault properties of
the credit card view model. In addition, you will need to make changes to the widget’s
JavaScript to add the ability to select a previously stored card to pay for an order.

The following example shows a function which calls the listCreditCards endpoint
to retrieve stored cards. It takes the results from this REST call, and for each credit
card returned it calls the view model’s populateData() function to create a credit card
object. Each credit card object is stored as an entry in an observableArray named
allCreditCards:

getCreditCardsForProfile: function() {
 var widget = this;
 var inputData = {};
 var url = "listCreditCards";
 var maskedNumberRegex = /\d(?=\d{4})/g;
 var maskedSymbol = "*";
 ccRestClient.request(url, inputData,
 function(data){
 data.creditCards=data.items;
 for (var i = 0; i < data.creditCards.length; i++) {
 var creditCard =
widget.paymentsContainer().createPaymentGroup(
 CCConstants.CARD_PAYMENT_TYPE);
 creditCard.populateData(data.creditCards[i]);
 creditCard.isSavedCard(true);
 widget.allCreditCards.push(creditCard);
 }
 if (data.creditCards.length > 0) {
 widget.resetSelectedSavedCardId();
 widget.allCreditCards()[0].amount.subscribe(function(newVal)
{
 console.log(newVal);
 });
 }
 },
 function(data) {
 console.log("Error while retrieving the credit cards");
 });
}

The widget includes fields named selectedSavedCardId (to hold the ID of the selected
card) and orderDefaultSavedCardId (to hold the ID of the default card). The onLoad()
function contains code that sets the initial values of these fields:

onLoad: function(widget) {
 widget.resetSelectedSavedCardId = function() {
 widget.selectedSavedCardId(null);
 for (var i = 0; i < widget.allCreditCards().length; i++) {
 widget.allCreditCards()[i].resetCardCvv();
 widget.allCreditCards()[i].cardCVV.isModified(false);
 if (widget.orderDefaultSavedCardId ==
 widget.allCreditCards()[i].savedCardId()) {

Chapter 38
Support stored credit cards

38-20

 widget.selectedSavedCardId(widget.orderDefaultSavedCardId);
 break;
 }
 }
 if (widget.selectedSavedCardId() == null) {
 for (var i = 0; i < widget.allCreditCards().length; i++) {
 if (widget.allCreditCards()[i].isDefault() == true) {
 widget.selectedSavedCardId(widget.allCreditCards()
[i].savedCardId());
 break;
 }
 }
 }
 if (widget.selectedSavedCardId() == null &&
 widget.allCreditCards().length>0) {
 widget.selectedSavedCardId(widget.allCreditCards()
[0].savedCardId());
 }
 }

 widget.addCardToPaymentViewModel = function() {
 for (var i = 0; i < widget.allCreditCards().length; i++) {
 if (widget.selectedSavedCardId() ==
 widget.allCreditCards()[i].savedCardId()) {
 var newCard = widget.paymentsContainer().createPaymentGroup(
 CCConstants.CARD_PAYMENT_TYPE)
 newCard.populateData(ko.mapping.toJS(widget.allCreditCards()
[i]));
 newCard.cardCVV(widget.allCreditCards()[i].cardCVV());
 newCard.isSavedCard(true);
 if (widget.allCreditCards()[i].cardCVV() === undefined) {
 widget.allCreditCards()[i].cardCVV.isModified(true);
 }
 widget.paymentViewModel(newCard);
 }
 }
 };
...
}

The widget’s beforeAppear() function clears the values of these fields and calls the
getCreditCardsForProfile() function to repopulate the fields with the current data:

beforeAppear: function (page) {
 var widget = this;
 widget.orderDefaultSavedCardId = null;
 widget.allCreditCards.removeAll();
 widget.getCreditCardsForProfile();
...
}

Create a saved credit card widget

Chapter 38
Support stored credit cards

38-21

In addition to modifying the Split Payments widget as described above, you will need
to create a new widget for displaying and modifying saved credit cards on the Your
Account page.

This widget includes a function called getCreditCardsForProfile() that is called
by the beforeAppear() function. This is similar to the getCreditCardsForProfile()
function in the updated Split Payments widget, except that when it calls the
listCreditCards endpoint, it uses the allCards=true, allGateways=true, and
allSites=true query parameters so that all of the shopper’s saved credit cards are
displayed:

getCreditCardsForProfile: function() {
 var widget = this;
 var inputData = {"allCards":true, "allGateways":true,
"allSites":true};
 var url = "listCreditCards";
 var maskedNumberRegex = /\d(?=\d{4})/g;
 var maskedSymbol = "*";
 CCRestClient.request(url, inputData,
 function(data){
 data.creditCards=data.items;
 for (var i = 0; i < data.creditCards.length; i++) {
 var creditCard = new CreditCard();
 creditCard.populateData(data.creditCards[i]);
 creditCard.isSavedCard(true);
 widget.allCreditCards.push(creditCard);
 }
 },
 function(data) {
 console.log("Error while retrieving the credit cards");
 });
}

The widget should also include a function that calls the updateCreditCard endpoint to
modify card nicknames and to change which card is the default, and a function that
calls the removeCreditCard endpoint to delete a credit card.

Chapter 38
Support stored credit cards

38-22

39
Integrate with a Gift Card Payment
Gateway

Oracle CX Commerce provides support for building integrations with gift card
providers.

This section describes with how to integrate with a gift card payment gateway.

Understand the gift card payment gateway workflow
The following diagram illustrates the gift card payment gateway workflow:

Create a gift card extension and configure the webhook
To create a custom integration with a gift card payment gateway, you perform the
following steps:

1. Create the gateway extension. See Gift card extension details for information
specific to this extension.

2. Upload the extension to the administration interface.

3. Enable the gateway for the sites that require it. Be sure to disable any other gift
card payment gateways for those sites.

4. Configure the Generic Payment webhook by specifying the gateway URL and the
username and password. Note that webhook settings are not site-specific. The
configuration you supply applies to all sites that use this webhook.

Gift card extension details

The format of a payment gateway extension is described in the Create a Credit Card
Payment Gateway Integration chapter. For a gift card gateway, the gateway.json file
should be similar to the following:

{
 "provider": "Custom Gift Card",
 "paymentMethodTypes": ["physicalGiftCard"],
 "transactionTypes": {

39-1

 "physicalGiftCard": ["balanceInquiry", "authorize", "void",
"refund"]
 },
 "processors" : {
 "physicalGiftCard": "genericGiftCard"
 }
}

The config.json file should be similar to the following:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": false,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "physicalGiftCard",
 "displayAsCheckboxes": true,
 "public": true,
 "options": [
 {
 "id": "physicalGiftCard",
 "value": "physicalGiftCard",
 "labelResourceId": "physicalGiftCardPayLabel"
 }
]
 },
 {
 "id": "giftCardMaxLength",
 "type": "stringType",

Chapter 39
Create a gift card extension and configure the webhook

39-2

 "name": "giftCardMaxLength",
 "helpTextResourceId": "giftCardMaxLengthHelpText",
 "labelResourceId": "giftCardMaxLengthLabel",
 "required": true,
 "defaultValue": "19",
 "public": true
 },
 {
 "id": "giftCardPinRequired",
 "type": "booleanType",
 "name": "giftCardPinRequired",
 "helpTextResourceId": "giftCardPinRequiredHelpText",
 "labelResourceId": "giftCardPinRequiredLabel",
 "defaultValue": true,
 "public": true
 },
 {
 "id": "giftCardPinMaxLength",
 "type": "stringType",
 "name": "giftCardPinMaxLength",
 "required": false,
 "helpTextResourceId": "giftCardPinMaxLengthHelpText",
 "labelResourceId": "giftCardPinMaxLengthLabel",
 "defaultValue": "4",
 "public": true
 }
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,
 "public": true
 }
]
}

The properties in the config.json file shown above create controls that appear in
the Payment Processing settings in the administration interface. These controls allow
the merchant to specify whether a shopper using a gift card is required to supply
a PIN, as well as the maximum length of the gift card number and the PIN. The
includeOrderInWebhookPayload property creates a checkbox for specifying whether
or not to include the order data in the webhook call.

Customize the Gift Card widget
By default, the shopper specifies gift card information through the Gift Card widget,
which is included on the Checkout Layout with GiftCard.

When the shopper selects Pay with Gift Card on the checkout page, the widget
displays fields for entering the gift card number and PIN. For example:

Chapter 39
Customize the Gift Card widget

39-3

The gateway settings shown in Gift card extension details allow the merchant to
specify whether a PIN is required, as well as the maximum length of the gift card
number and the PIN. You can also change the behavior of the Gift Card widget
by downloading it and customizing it. To download the Gift Card widget as a ZIP
file, access the widget template in the Components tab in the administration design
interface, and click the Download Source button. After customizing the new widget,
upload it and use it to replace the Gift Card widget in the Checkout Layout with
GiftCard. For more information, see Understand widgets.

Gift card payment properties
When the Generic Payment webhook executes, it sends a JSON request body to the
payment gateway.

The request body contains information about the order and about the method of
payment. The gateway processes the request and returns a JSON response body
that contains information about the transaction, including whether the transaction
succeeded.

The set of properties in the request and response bodies, including the subobjects,
vary depending on the type of transaction. For gift card gateways, there are four
transaction types supported: authorize, void, refund, and balance inquiry.

Gift card payment request properties

This section describes the top-level properties and the properties of subobjects sent
in the JSON request body of the Generic Payment webhook for gift card transactions.
Note that if the includeOrderInWebhookPayload property in the gateway extension's
config.json file is set to true, the order is also included in the request. See Order
Submit webhook for information about the order properties.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce sends
in the webhook request.

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values:

0100 (authorize)
0110 (void)
0400 (refund)
0600 (balance inquiry)

Chapter 39
Gift card payment properties

39-4

Property Description

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront
agent
preview

orderId The ID of the order associated with the
payment

currencyCode The ISO 4217 currency code.

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

siteId The ID of the site on which the order was
placed

siteURL The URL of the site on which the order was
placed

retryPaymentCount The number of times payment has been retried
for the order

customProperties Additional key/value pairs from the submitted
order to be sent to the provider

paymentRequests properties

The following table describes the properties of paymentRequests objects that Oracle
CX Commerce sends in the webhook request.

Property Description

paymentId The ID of the internal payment group.

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

paymentMethod The payment method. For a gift card, the value
is physicalGiftCard.

amount The expected amount of the transaction. The
value of this property is a positive, 12-digit
number that is expressed in base currency.
For example, $125.75 is represented as
000000012575.

gatewayId The ID of the payment gateway.

customProperties Additional key/value pairs from the submitted
order to be sent to the provider.

cardDetails properties

Chapter 39
Gift card payment properties

39-5

The following table describes the properties of the cardDetails object sent in a gift
card authorization request or balance inquiry.

Property Description

giftCardNumber The number that uniquely identifies the gift
card

giftCardPin The security code for authenticating the gift
card

referenceInfos properties

The following table describes the properties of the referenceInfos objects sent in a
gift card void request or refund request. The values of these properties are taken from
the original authorization transaction so the merchant can map the void or refund to it.

Property Description

merchantTransactionId The transaction reference ID from the
merchant

hostTransactionId The transaction reference ID from the payment
gateway

billingAddress properties

The following table describes the properties of the billingAddress object in the
request. The billing address is the address of the shopper to whom the order is
charged.

Property Description

lastName The last name of the shopper

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

email The email address associated with the
address

state The state in the address

address1 The first line of the address. Typically the
street and number.

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order.

firstName The first name of the shopper

city The city in the address

country The country in the address

shippingAddress properties

The following table describes the properties of the shippingAddress object in the
request. The shipping address is the address of the person (not necessarily the
shopper) receiving the order.

Chapter 39
Gift card payment properties

39-6

Property Description

lastName The last name of the order recipient

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

email The email address associated with the
address

state The state in the address

address1 The first line of the address. Typically the
street and number.

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order.

firstName The first name of the order recipient

city The city in the address

country The country in the address

profile properties

The following table describes the properties of the profile object in the request.
These values are associated with the shopper purchasing the order.

Property Description

id The ID of the shopper profile

phoneNumber The phone number from the shopper profile

email The email address from the shopper profile

profileDetails properties

The following table describes the properties of the profileDetails object in
the request. These values are associated with the customer purchasing the
order. Note that for account-based commerce shoppers, this object may also
include parentOrganization, currentOrganization, and secondaryOrganizations
subobjects.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

Chapter 39
Gift card payment properties

39-7

Property Description

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Sample authorization request

The following is an example of a gift card authorization request:

{
 "transactionType": "0100",
 "currencyCode": "USD",
 "locale": "en",
 "customProperties": { },
 "channel": "storefront",
 "siteId": "siteUS",
 "siteURL": "https://www.example.com",
 "orderId": "o50415",
 "paymentRequests": [
 {
 "transactionId": "o50415-pg50417-1464958982609",
 "paymentId": "pg50417",
 "customProperties": { },
 "gatewaySettings": {
 "paymentMethodTypes":"physicalGiftCard"
 },
 "cardDetails":{
 "giftCardNumber": "12393678",
 "giftCardPin": ""
 },
 "amount":"000000002499",
 "billingAddress": { },
 "transactionTimestamp": "2019-12-03T13:03:02+0000",
 "referenceInfos": { },
 "shippingAddress": { },
 "paymentMethod": "physicalGiftCard",
 "gatewayId": "demoGiftCardGateway",
 }
],
 "profile": {
 "id": "120002",
 "phoneNumber": "1234512345",
 "email": "ab@abc.com"
 }
 "profileDetails": {
 "id": "120002",

Chapter 39
Gift card payment properties

39-8

 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
}

Gift card payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the response body of the Generic Payment webhook for gift card
transactions.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce
expects in the webhook response.

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values:

0100 (authorize)
0110 (void)
0400 (refund)
0600 (balance inquiry)

currencyCode The ISO 4217 currency code. This is expected
to match the value in the request.

locale The shopper’s locale. This is expected to
match the value in the request.

channel The area of the system where the
payment-processing request originated. This is
expected to match the value in the request.

orderId The ID of the order associated with the
payment. This is expected to match the value
in the request.

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

authorizationResponse, voidResponse, creditResponse, and
inquireBalanceResponse properties

The following table describes the properties of the authorizationResponse,
voidResponse, creditResponse, or inquireBalanceResponse objects in the webhook
response. Only one of these object types is included in each response (the object type
corresponding to the transaction type; for example, a voidResponse object for a void
transaction). All of these object types require the same set of properties. The values of
these properties indicate the results of the transaction.

Chapter 39
Gift card payment properties

39-9

Property Description

responseCode The decision from the payment provider as
interpreted by the merchant. The acceptable
values depend on the transaction type. For an
authorization request, the code must be one of
the following values:

1000 (success)
4000 (sale complete)
9000 (decline)

For a void request, the code must be one of
the following values:

2000 (success)
8000 (decline)

For a credit (refund) request, the code must be
one of the following values:

3000 (success)
7000 (decline)

For a balance inquiry, the code must be one of
the following values:

5000 (success)
6000 (decline)

responseDescription Information from the payment gateway about
the response

responseReason Information about why the transaction
succeeded or failed

hostTransactionId The transaction reference ID from the payment
gateway

merchantTransactionId The transaction reference ID from the
merchant

paymentId The ID of the internal payment group. Must
match the value from the request

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens. Must match the value
from the request.

transactionTimestamp The timestamp of the transaction in Oracle CX
Commerce, expressed as an ISO 8601 value
in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

Chapter 39
Gift card payment properties

39-10

Property Description

paymentMethod The payment method. Must match the value
from the request. For a gift card, the value is
physicalGiftCard.

amount The actual amount of the transaction. This
may differ from the amount in the request.

The value of this property is a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

merchantTransactionTimeStamp The timestamp of the transaction from the
merchant (in milliseconds)

hostTransactionTimeStamp The timestamp of the transaction from the
gateway (in milliseconds)

gatewayId The ID of the payment gateway. Must match
the value from the request

additionalProperties Key/value pairs for additional properties sent
by the merchant

Sample authorization response

The following is an example of a response to a gift card authorization request:

{
 "transactionType": "0100",
 "currencyCode": "USD",
 "locale": "en",
 "channel": "storefront",
 "siteId": "siteUS",
 "orderId": "o50415",
 "authorizationResponse":
 [{
 "merchantTransactionTimestamp": "1464958982654",
 "responseCode": "1000",
 "hostTransactionId": "hID1464958982554",
 "transactionId": "o50415-pg50417-1464958982609",
 "paymentId": "pg50417",
 "responseDescription": "AuthResponseDescription",
 "merchantTransactionId": "mID1464958982654v",
 "amount": "000000002999",
 "additionalProperties": {
 "sample-addnl-property-key4": "sample-payment-property-
value4",
 "sample-addnl-property-key2": "sample-payment-property-
value2",
 "sample-addnl-property-key3": "sample-payment-property-
value3",
 "sample-addnl-property-key1": "sample-payment-property-
value1"
 },
 "hostTransactionTimestamp": "1464958982554",
 "responseReason": "AuthResponseReason",
 "transactionTimestamp": "2019-12-03T13:03:02+0000",

Chapter 39
Gift card payment properties

39-11

 "paymentMethod": "physicalGiftCard",
 "gatewayId": "demoGiftCardGateway"
 }]
}

Chapter 39
Gift card payment properties

39-12

40
Integrate with a Store Credit Payment
Gateway

Oracle CX Commerce provides support for integrating with store credit systems.
Individual shoppers can pay for items using store credits that they have accumulated.

Important: Store credit is not available as a payment option for account-based
shoppers.

This section describes how to integrate with a gateway for paying with store credits.

Create a store credit extension and configure the webhook
To create a custom integration with a store credit payment gateway, you perform the
following steps:

1. Create the gateway extension. See Store credit extension details for information
specific to this extension.

2. Upload the extension to the administration interface.

3. Enable the gateway for the sites that require it.

4. Add a store credit payment option to the checkout page.

5. Configure the Generic Payment webhook by specifying the gateway URL and the
username and password. Note that webhook settings are not site-specific. The
configuration you supply applies to all sites that use this webhook.

Store credit extension details

The format of a payment gateway extension is described in the Create a Credit Card
Payment Gateway Integration chapter. For a store credit gateway, the gateway.json
file should be similar to the following:

{
 "provider": "Store Credits Payment Gateway",
 "paymentMethodTypes": ["storeCredit"],
 "transactionTypes": {
 "storeCredit": ["balanceInquiry", "authorize", "void", "refund"]
 }
}

The config.json file should be similar to the following:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [

40-1

 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": false,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "storeCredit",
 "displayAsCheckboxes": true,
 "public": true,
 "options": [
 {
 "id": "storeCredit",
 "value": "storeCredit",
 "labelResourceId": "storeCreditPayLabel"
 }
]
 },
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,
 "public": true
 }
]
}

Currency and store credit

Commerce requests the store credit authorization in the order currency value, but
it does not convert the order currency to store credits or conversely. The merchant
ERP system should return the store credit equivalent value for the requested currency
amount. For example, Commerce requests the store credit authorization in $150.00,
and the store credit balance is 1500. Only the merchant ERP system can decide the
dollar amount of 1500 store credits and whether it is more or less than $150.00. If it

Chapter 40
Create a store credit extension and configure the webhook

40-2

is more than $150, the merchant ERP system should return a success response code
along with the remaining store credit balance. Otherwise it should return a decline
response code.

Add a Store Credit payment option to the checkout page
To enable paying through store credits, you need to add a store credit payment option
to the checkout page:

1. Create a store credit payment widget. Oracle does not provide a ready-to-use
widget for store credit.

2. Open the Checkout Layout that you are using on your storefront. (The default is
Checkout Layout with GiftCard.)

3. Switch to grid view.

4. Add the store credit payment widget to the layout.

5. Publish your changes.

Store credit payment properties
When the Generic Payment webhook executes, it sends a JSON request body to the
payment gateway.

The request body contains information about the order, the method of payment, and
the type of transaction being initiated. The gateway processes the request and returns
a JSON response body that contains information about the results of the transaction,
including whether the transaction succeeded.

The set of properties in the request and response bodies, including the subobjects,
vary depending on the type of transaction. For store credit gateways, there are four
transaction types supported: authorize, void, refund, and balance inquiry.

Store credit payment request properties

This section describes the top-level properties and the properties of subobjects sent in
the JSON request body of the Generic Payment webhook for store credit transactions.
Note that if the includeOrderInWebhookPayload property in the gateway extension's
config.json file is set to true, the order is also included in the request. See Order
Submit webhook for information about the order properties.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce sends
in the webhook request.

Chapter 40
Add a Store Credit payment option to the checkout page

40-3

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values:

0100 (authorize)
0110 (void)
0400 (refund)
0600 (balance inquiry)

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront
agent
preview

orderId The ID of the order associated with the
transaction.

currencyCode The ISO 4217 currency code.

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

customProperties Additional key/value pairs to be sent to the
payment provider.

siteURL The URL of the site on which the order was
placed.

siteId The ID of the site on which the order was
placed.

retryPaymentCount The number of times payment has been retried
for the order.

paymentRequests properties

The following table describes the properties of paymentRequests objects that Oracle
CX Commerce sends in the webhook request.

Property Description

paymentId The ID of the internal payment group.

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

paymentMethod The payment method. For store credit, the
value is storeCredit.

Chapter 40
Store credit payment properties

40-4

Property Description

amount The expected amount of the transaction. The
value of this property is a positive, 12-digit
number that is expressed in base currency.
For example, $125.75 is represented as
000000012575.

gatewayId The ID of the payment gateway.

customProperties Additional key/value pairs from the submitted
order to be sent to the provider.

profile properties

The following table describes the properties of the profile object included in the
request. These values are associated with the shopper purchasing the order.

Property Description

id The Commerce ID of the shopper profile

phoneNumber The phone number from the shopper profile

email The email address from the shopper profile

dynamicProperties The shopper profile dynamic properties if
configured

profileDetails properties

The following table describes the properties of the profileDetails object in the
request. These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Chapter 40
Store credit payment properties

40-5

storeCredit properties

The following table describes the property of the storeCredit objects sent in an
authorization request or balance inquiry.

Property Description

storeCreditNumber The number that uniquely identifies the store
credit. For balance inquiries, if a store credit
number is passed in the request, the amount
specific to that store credit is sent back.
Otherwise, all the store credits associated with
the shopper profile are sent back.

referenceInfos properties

The following table describes the properties of the referenceInfos objects sent in
a void request or refund request. The values of these properties are taken from the
original authorization transaction so the merchant can map the void or refund to it.

Property Description

merchantTransactionId The transaction reference ID from the
merchant.

hostTransactionId The transaction reference ID from the payment
gateway.

billingAddress properties

The following table describes the properties of the billingAddress object in an
authorization request. The billing address is the address of the shopper to whom the
order is charged.

Property Description

lastName The last name of the shopper.

postalCode The postal code in the address (for example,
the zip code in the United States).

phoneNumber The phone number associated with the
address.

email The email address associated with the
address.

state The state in the address.

address1 The first line of the address. Typically the
street and number.

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order.

firstName The first name of the shopper.

city The city in the address.

country The country in the address.

shippingAddress properties

Chapter 40
Store credit payment properties

40-6

The following table describes the properties of the shippingAddress object in a
request. The shipping address is the address of the person (not necessarily the
shopper) receiving the order.

Property Description

lastName The last name of the order recipient.

postalCode The postal code in the address (for example,
the zip code in the United States).

phoneNumber The phone number associated with the
address.

email The email address associate with the address.

state The state in the address.

address1 The first line of the address. Typically the
street and number.

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order.

firstName The first name of the order recipient.

city The city in the address.

country The country in the address.

Sample balance inquiry request

The following is an example of a store credit balance inquiry request:

{
 "orderId": "o78615",
 "profile": {
 "phoneNumber": "617-555-1977",
 "id": "se-570031",
 "email": "john@example.com"
 "dynamicProperties": [
 {
 "label": "Nickname",
 "id": "field1",
 "value": "Jack"
 }
]
},
 "channel": "agent",
 "locale": "en",
 "transactionId": "f4dd73a8-d722-407d-9d9d-
e9db11a68ace-00e09e08-171e-4a83-8e75-96132ad61166-1509528103666",
 "transactionTimestamp": "2018-01-06T09:21:43+0000",
 "transactionType": "0600",
 "customProperties": null,
 "paymentId": "00e09e08-171e-4a83-8e75-96132ad61166",
 "gatewaySettings": {
 "paymentMethodTypes": "storeCredit"
 },
 "paymentMethod": "storeCredit",
 "shippingAddress": null,
 "siteId": "siteUS",

Chapter 40
Store credit payment properties

40-7

 "currencyCode": "USD",
 "gatewayId": "storeCreditPaymentGateway"
}

Sample authorization request

The following is an example of a store credit authorization request:

{
 "amount": "000000007490",
 "orderId": "o150425",
 "profile": {
 "phoneNumber": "617-555-1977",
 "id": "se-570031",
 "email": "john@example.com"
 "dynamicProperties": [
 {
 "label": "Nickname",
 "id": "field1",
 "value": "Jack"
 }
]
 },
 "profileDetails": {
 "id": "se-570031",
 "lastName": "Shopper",
 "firstName": "John",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
 "channel": "agent",
 "locale": "en",
 "siteURL": "https://www.example.com",
 "transactionId": "o150425-pg150422-1509433854097",
 "transactionTimestamp": "2019-12-07T07:10:54+0000",
 "transactionType": "0100",
 "paymentId": "pg150422",
 "gatewaySettings": {
 "paymentMethodTypes": "storeCredit"
 },
 "paymentMethod": "storeCredit",
 "shippingAddress": {
 "lastName": "Niel",
 "country": "US",
 "firstName": "John",
 "phoneNumber": "617-555-1977",
 "address2": null,
 "city": "Cambridge",
 "address1": "1 Main St",
 "postalCode": "02142",
 "state": "MA",
 "email": "john@example.com"

Chapter 40
Store credit payment properties

40-8

 },
 "siteId": "siteUS",
 "billingAddress": {
 "country": "US",
 "lastName": "Niel",
 "firstName": "John",
 "phoneNumber": "617-555-1977",
 "city": "San Francisco",
 "address1": "1 Elm St",
 "postalCode": "91333",
 "state": "CA",
 "email": "john.niel@gmail.com"
 },
 "retryPaymentCount": 0,
 "currencyCode": "USD",
 "gatewayId": "storeCreditPaymentGateway"
}

Store credit payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the response body of the Generic Payment webhook for store
credit transactions.

Top-level properties

The following table describes the top-level properties that should be returned in the
response body of the Generic Payment webhook for store credit transactions.

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values,
and is expected to match the value in the
request:

0100 (authorize)
0110 (void)
0400 (refund)
0600 (balance inquiry)

currencyCode The ISO 4217 currency code. This is expected
to match the value in the request.

locale The shopper’s locale. This is expected to
match the value in the request.

channel The area of the system where the
payment-processing request originated. This is
expected to match the value in the request.

orderId The ID of the order associated with the
payment. This is expected to match the value
in the request.

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

Chapter 40
Store credit payment properties

40-9

authorizationResponse, voidResponse, creditResponse, and
inquireBalanceResponse properties

The following table describes the properties of the authorizationResponse,
voidResponse, creditResponse, or inquireBalanceResponse object in the webhook
response. Only one of these objects is included in each response (the object
corresponding to the transaction type; for example, a voidResponse object for a void
transaction). All of these object types require the same set of properties. The values of
these properties indicate the results of the transaction.

Property Description

totalAvailableAmount The total amount available in all store credits

responseCode The decision from the payment provider as
interpreted by the merchant. The acceptable
values depend on the transaction type. For an
authorization request, the code must be one of
the following values:

1000 (success)
4000 (sale complete)
9000 (decline)

For a void request, the code must be one of
the following values:

2000 (success)
8000 (decline)

For a credit (refund) request, the code must be
one of the following values:

3000 (success)
7000 (decline)

For a balance inquiry, the code must be one of
the following values:

5000 (success)
6000 (decline)

responseDescription Information from the payment gateway about
the response.

responseReason Information about why the transaction
succeeded or failed.

hostTransactionId The transaction reference ID from the payment
gateway.

merchantTransactionId The transaction reference ID from the
merchant.

paymentId The ID of the internal payment group. Must
match the value from the request.

Chapter 40
Store credit payment properties

40-10

Property Description

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens. Must match the value
from the request.

transactionTimestamp The timestamp of the transaction in Oracle CX
Commerce, expressed as an ISO 8601 value
in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

paymentMethod The payment method. Must match the value
from the request. For store credit, the value is
storeCredit.

amount The actual amount of the transaction. This
may differ from the amount in the request.

The value of this property is a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

merchantTransactionTimeStamp The timestamp of the transaction from the
merchant (in milliseconds).

hostTransactionTimeStamp The timestamp of the transaction from the
gateway (in milliseconds).

additionalProperties Key/value pairs for additional properties sent
by the merchant.

customPaymentProperties Keys from the additionalProperties.

storeCredits Store credit details of the shopper profile.

storeCredit properties

The following table describes the properties of the objects in the storeCredits array.

Property Description

storeCreditNumber The number that uniquely identifies the store
credit.

availableAmount Amount available in each store credit

Sample balance inquiry response

The following is an example of a response to a store credit balance inquiry request:

{
 "totalAvailableAmount": "500",
 "transactionType": "0600",
 "orderId": "o78615",
 "paymentId": "00e09e08-171e-4a83-8e75-96132ad61166",
 "channel": "agent",
 "paymentMethod": "storeCredit",
 "siteId": "siteUS",
 "locale": "en",
 "inquireBalanceResponse": {

Chapter 40
Store credit payment properties

40-11

 "hostTransactionTimestamp": "1509528105863",
 "responseReason": "inquireBalanceResponseReason",
 "storeCredits": [
 {
 "storeCreditNumber": "4123654789",
 "availableAamount": "100"
 },
 {
 "storeCreditNumber": "4123654790",
 "availableAamount": "200"
 },
 {
 "storeCreditNumber": "4123654791",
 "availableAamount": "200"
 }
],
 "customPaymentProperties": [
 "5000addnl-property-key5",
 "5000addnl-property-key2"
],
 "responseDescription": "inquireBalanceResponseDescription",
 "merchantTransactionId": "MERCH-TX-1509528105863",
 "hostTransactionId": "HOST-TX-1509528105863",
 "additionalProperties": {
 "5000addnl-property-key5": "5000payment-property-value5",
 "5000addnl-property-key4": "5000payment-property-value4",
 "5000addnl-property-key3": "5000payment-property-value3",
 "5000addnl-property-key2": "5000payment-property-value2",
 "5000addnl-property-key1": "5000payment-property-value1",
 },
 "responseCode": "5000",
 "merchantTransactionTimestamp": "1509528105863"
 },
 "currencyCode": "USD",
 "transactionId": "f4dd73a8-d722-407d-9d9d-
e9db11a68ace-00e09e08-171e-4a83-8e75-96132ad61166-1509528103666",
 "transactionTimestamp": "2018-01-06T09:55:22+0000",
 "gatewayId": "storeCreditPaymentGateway"
}

Sample authorization response

The following is an example of a response to a store credit authorization request:

{
 "amount": "000000007490",
 "orderId": "o150425",
 "channel": "agent",
 "authorizationResponse": {
 "hostTransactionTimestamp": "1509433854723",
 "responseReason": "authResponseReason",
 "responseDescription": "authResponseDescription",
 "merchantTransactionId": "MERCH-TX-1509433854723",
 "hostTransactionId": "HOST-TX-1509433854723",
 "additionalProperties": {

Chapter 40
Store credit payment properties

40-12

 "1000addnl-property-key5": "1000payment-property-value5",
 "1000addnl-property-key4": "1000payment-property-value4",
 "1000addnl-property-key1": "1000payment-property-value1",
 "1000addnl-property-key3": "1000payment-property-value3",
 "1000addnl-property-key2": "1000payment-property-value2",
 },
 "responseCode": "1000",
 "merchantTransactionTimestamp": "1509433854723"
 },
 "locale": "en",
 "transactionId": "o150425-pg150422-1509433854097",
 "transactionTimestamp": "2018-01-06T09:47:48+0000",
 "transactionType": "0100",
 "paymentId": "pg150422",
 "paymentMethod": "storeCredit",
 "siteId": "siteUS",
 "currencyCode": "USD",
 "gatewayId": "storeCreditPaymentGateway"
}

Chapter 40
Store credit payment properties

40-13

41
Integrate with a Loyalty Point Payment
Gateway

Shoppers who are enrolled in supported loyalty programs can pay for items using
loyalty points that they have accumulated in those programs.

This section describes how to integrate with a gateway for paying with loyalty points.
See Work with Loyalty Programs for more information about integrating with loyalty
programs.

Understand the loyalty point payment gateway workflow
The following diagram illustrates the loyalty point payment gateway workflow:

Create a loyalty point extension and configure the webhook
To create a custom integration with a loyalty point payment gateway, you must create a
loyalty point extension and configure the Custom Currency webhook.

To create the integration, you perform the following steps:

1. Create the gateway extension, as described below.

2. Upload the extension to the administration interface.

3. Enable the gateway for the sites that require it.

4. Add a loyalty point payment option to the checkout page.

5. Configure the Custom Currency webhook by specifying the gateway URL and the
username and password. Note that webhook settings are not site-specific. The
configuration you supply applies to all sites that use this webhook.

41-1

Loyalty point extension details

The format of a payment gateway extension is described in the Create a Credit
Card Payment Gateway Integration chapter. For a loyalty point gateway, the
gateway.json file should be similar to the following:

{
 "provider": "Loyalty Points Payment Gateway",
 "paymentMethodTypes": ["loyaltyPoints"],
 "transactionTypes": {
 "loyaltyPoints": ["balanceInquiry", "authorize", "void", "refund"]
 },
 "processors" : {
 "loyaltyPoints": "loyaltyPoints"
 }
}

The config.json file should be similar to the following:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances" : [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": false,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "loyaltyPoints",
 "displayAsCheckboxes": true,
 "public": true,
 "options": [
 {

Chapter 41
Create a loyalty point extension and configure the webhook

41-2

 "id": "loyaltyPoints",
 "value": "loyaltyPoints",
 "labelResourceId": "loyaltyPointsLabel"
 }
]
 },
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,
 "public": true
 }
]
}

Add a loyalty point payment option to the checkout page
To enable paying through loyalty points, you need to add a loyalty point payment
option to the checkout page:

1. Open the Checkout Layout that you are using on your storefront. (The default is
Checkout Layout with GiftCard.)

2. Switch to grid view.

3. Add the Loyalty Payment widget to the layout.

4. Publish your changes.

Note that in addition to the Loyalty Payment widget, Commerce includes a Loyalty
Details widget that displays information about loyalty programs the shopper is enrolled
in and the shopper’s current point totals. You may want to add the Loyalty Details
widget to your checkout page or to another page, such as the shopper profile page.

Loyalty point payment properties
When the Custom Currency webhook executes, it sends a JSON request body to the
payment gateway.

The request body contains information about the order, the method of payment, and
the type of transaction being initiated. The gateway processes the request and returns
a JSON response body that contains information about the results of the transaction,
including whether the transaction succeeded.

The set of properties in the request and response bodies, including the subobjects,
vary depending on the type of transaction. For loyalty point gateways, there are four
transaction types supported: authorize, void, refund, and balance inquiry.

Loyalty point payment request properties

This section describes the top-level properties and the properties of subobjects
sent in the JSON request body of the Custom Currency webhook for loyalty point
transactions. Note that if the includeOrderInWebhookPayload property in the gateway

Chapter 41
Add a loyalty point payment option to the checkout page

41-3

extension's config.json file is set to true, the order is also included in the request
(except for balance inquiry requests, which do not have an associated order). See
Order Submit webhook for information about the order properties.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce sends
in the webhook request.

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values:

0100 (authorize)
0110 (void)
0400 (refund)
0600 (balance inquiry)

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront
agent
review

orderId The ID of the order associated with the
transaction

currencyCode The custom currency code used for the loyalty
program. See Create a custom currency for
loyalty points for information about this value.

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

customProperties Additional key/value pairs to be sent to the
payment provider

paymentId The ID of the internal payment group

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

paymentMethod The payment method. For loyalty points, the
value is loyaltyPoints.

amount For authorize, void, and refund transactions,
the number of loyalty points, expressed as a
positive 12-digit number.

retryPaymentCount The number of times payment has been retried
for the order

siteURL The URL of the site on which the order is
placed

Chapter 41
Loyalty point payment properties

41-4

Property Description

siteId The ID of the site on which the order is placed

gatewayId The ID of the payment gateway

gatewaySettings Key/value pairs of properties that configure the
payment gateway

profile properties

The following table describes the properties of the profile object included in the
request. These values are associated with the shopper purchasing the order.

Property Description

id The Commerce ID of the shopper profile

phoneNumber The phone number from the shopper profile

email The email address from the shopper profile

profileDetails properties

The following table describes the properties of the profileDetails object in the
request. These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

loyaltyDetails properties

The following table describes the properties of the loyaltyDetails objects sent in
an authorization request or balance inquiry. These values are retrieved from the
shopper’s profile.

Chapter 41
Loyalty point payment properties

41-5

Property Description

programName The name of the loyalty program

programId The ID for the loyal program

membershipId The shopper’s membership ID in the loyalty
program

status The shopper’s status in the loyalty program.
Valid values are:

RequestForEnrollment
Enrolled
RequestForUnenrollment
Unenrolled
Failed

referenceInfos properties

The following table describes the properties of the referenceInfos objects sent in
a void request or refund request. The values of these properties are taken from the
original authorization transaction so the merchant can map the void or refund to it.

Property Description

amount The number of loyalty points used in the
original transaction, expressed as a positive
12-digit number.

currencyCode The custom currency code used for the loyalty
program

locale The shopper’s locale from the original
transaction

merchantTransactionId The transaction reference ID from the
merchant

hostTransactionId The transaction reference ID from the payment
gateway

billingAddress properties

The following table describes the properties of the billingAddress object in an
authorization request. The billing address is the address of the shopper to whom the
order is charged.

Property Description

lastName The last name of the shopper

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

email The email address associated with the
address

state The state in the address

Chapter 41
Loyalty point payment properties

41-6

Property Description

address1 The first line of the address. Typically the
street and number

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order

firstName The first name of the shopper

city The city in the address

country The country in the address

shippingAddress properties

The following table describes the properties of the shippingAddress object in an
authorization or balance inquiry request. The shipping address is the address of the
person (not necessarily the shopper) receiving the order.

Property Description

lastName The last name of the order recipient

postalCode The postal code in the address (for example,
the zip code in the United States)

phoneNumber The phone number associated with the
address

email The email address associated with the
address

state The state in the address

address1 The first line of the address. Typically the
street and number.

address2 The second line of the address. Included as
an empty string in the JSON data if no value
exists in the order.

firstName The first name of the order recipient

city The city in the address

country The country in the address

Sample balance inquiry request

The following is an example of a loyalty point balance inquiry request:

{
 "loyaltyDetails": [
 {
 "programName": "programForFlyer",
 "membershipId": "member0002",
 "programId": "prg10002",
 "status": "Enrolled"
 },
 {
 "programName": "programForYoungster",
 "membershipId": "member0001",
 "programId": "prg10001",
 "status": "Enrolled"

Chapter 41
Loyalty point payment properties

41-7

 }
],
 "orderId": "o30417",
 "profile": {
 "phoneNumber": "1234512345",
 "id": "110072",
 "email": "john@example.com"
 },
 "channel": "storefront",
 "locale": "en",
 "transactionId": "o30417-pg30418-1504691722253",
 "transactionTimestamp": "2017-09-06T09:55:22+0000",
 "transactionType": "0600",
 "customProperties": {
 "cust-prop2": "cust-prop2",
 "cust-prop1": "cust-prop1"
 },
 "paymentId": "pg30418",
 "gatewaySettings": {
 "paymentMethodTypes": "loyaltyPoints"
 },
 "paymentMethod": "loyaltyPoints",
 "shippingAddress": {
 "lastName": "Niel",
 "country": "US",
 "firstName": "John",
 "phoneNumber": "1234512345",
 "address2": null,
 "city": "Cambridge",
 "address1": "1 Main St",
 "postalCode": "02142",
 "state": "MA",
 "email": "john@example.com"
 },
 "siteId": "siteUS",
 "currencyCode": "PTS",
 "gatewayId": "demoLoyaltyPointsPaymentGateway"
}

Sample authorization request

The following is an example of a loyalty point authorization request:

{
 "loyaltyDetails": [
 {
 "programName": "programForYoungster",
 "membershipId": "member0001",
 "programId": "prg10001",
 "status": "Enrolled"
 },
 {
 "programName": "programForFlyer",
 "membershipId": "member0002",
 "programId": "prg10002",

Chapter 41
Loyalty point payment properties

41-8

 "status": "Enrolled"
 }
],
 "amount": "000000000200",
 "orderId": "o30417",
 "profile": {
 "phoneNumber": "1234512345",
 "id": "110072",
 "email": "john@example.com"
 },
 "profileDetails": {
 "id": "110072",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
 "channel": "storefront",
 "locale": "en",
 "siteURL": "https://www.example.com",
 "retryPaymentCount": 0,
 "transactionId": "o30417-pg30415-1504691268818",
 "transactionTimestamp": "2019-12-06T09:47:48+0000",
 "transactionType": "0100",
 "customProperties": {
 "cust-prop2": "cust-prop2",
 "cust-prop1": "cust-prop1"
 },
 "paymentId": "pg30415",
 "gatewaySettings": {
 "paymentMethodTypes": "loyaltyPoints"
 },
 "paymentMethod": "loyaltyPoints",
 "shippingAddress": {
 "lastName": "Niel",
 "country": "US",
 "firstName": "John",
 "phoneNumber": "1234512345",
 "address2": null,
 "city": "Cambridge",
 "address1": "1 Main St",
 "postalCode": "02142",
 "state": "MA",
 "email": "john@example.com"
 },
 "siteId": "siteUS",
 "billingAddress": {
 "country": "US",
 "lastName": "John",
 "firstName": "Niel",
 "phoneNumber": "9000054321",
 "city": "San Francisco",

Chapter 41
Loyalty point payment properties

41-9

 "address1": "1 Elm St",
 "postalCode": "91333",
 "state": "CA",
 "email": "john.niel@gmail.com"
 },
 "currencyCode": "PTS",
 "gatewayId": "demoLoyaltyPointsPaymentGateway"
}

Loyalty point payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the response body of the Custom Currency webhook for loyalty
point transactions.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce
expects in the webhook response.

Property Description

transactionType A code indicating the type of transaction. This
must be one of the following numeric values,
and is expected to match the value in the
request:

0100 (authorization)
0110 (void)
0400 (refund)
0600 (balance inquiry)

currencyCode The custom currency code used for the loyalty
program. This is expected to match the value
in the request.

locale The shopper’s locale. This is expected to
match the value in the request.

channel The area of the system where the
payment-processing request originated. This is
expected to match the value in the request.

orderId The ID of the order associated with the
payment. This is expected to match the value
in the request.

paymentId The ID of the internal payment group. Must
match the value from the request.

paymentMethod The payment method. Must match the value
from the request. For loyalty points, the value
is loyaltyPoints.

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens. Must match the value
from the request.

amount The number of loyalty points used in the
transaction, expressed as a positive 12-digit
number.

Chapter 41
Loyalty point payment properties

41-10

Property Description

transactionTimestamp The timestamp of the transaction in Oracle CX
Commerce, expressed as an ISO 8601 value
in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

gatewayId The ID of the payment gateway. Must match
the value from the request.

authorizationResponse, voidResponse, creditResponse, and
inquireBalanceResponse properties

The following table describes the properties of the authorizationResponse,
voidResponse, creditResponse, or inquireBalanceResponse object in the webhook
response. Only one of these objects is included in each response (the object
corresponding to the transaction type; for example, a voidResponse object for a void
transaction). All of these object types require the same set of properties. The values of
these properties indicate the results of the transaction.

Chapter 41
Loyalty point payment properties

41-11

Property Description

responseCode The decision from the payment provider as
interpreted by the merchant. The acceptable
values depend on the transaction type. For an
authorization request, the code must be one of
the following values:

1000 (success)
4000 (sale complete)
9000 (decline)

For a void request, the code must be one of
the following values:

2000 (success)
8000 (decline)

For a credit (refund) request, the code must be
one of the following values:

3000 (success)
7000 (decline)

For a balance inquiry, the code must be one of
the following values:

5000 (success)
6000 (decline)

responseDescription Information from the payment gateway about
the response

responseReason Information about why the transaction
succeeded or failed

hostTransactionId The transaction reference ID from the payment
gateway

merchantTransactionId The transaction reference ID from the
merchant

merchantTransactionTimeStamp The timestamp of the transaction from the
merchant (in milliseconds)

hostTransactionTimeStamp The timestamp of the transaction from the
gateway (in milliseconds)

additionalProperties Key/value pairs for additional properties
sent by the merchant. (For an
authorizationResponse object, we
recommend including the programId,
programName, and membershipId
properties, so they can be included in any
subsequent void or refund webhook requests.)

customPaymentProperties A list of the properties from the
additionalProperties map that should be
returned to the storefront

Chapter 41
Loyalty point payment properties

41-12

loyaltyPrograms properties

The following table describes the properties of the objects in the loyaltyPrograms
array of an inquireBalanceResponse object.

Property Description

membershipType The category or level of the membership; for
example, silver, gold, or platinum

pointsBalance The number of points available

pointsType The type of points. This should match the
currencyCode value described in Create a
custom currency for loyalty points.

additionalProperties Key/value pairs for additional properties sent
by the merchant for this program type

loyaltyPointDetails properties

The following table describes the properties of the objects in the loyaltyPointDetails
array of a loyaltyPrograms object of an inquireBalanceResponse object.

Property Description

programName The name of the loyalty program

programId The ID of the loyalty program

membershipId The shopper’s ID in the loyalty program

additionalProperties Key/value pairs for additional properties sent
by the merchant for this point type

status The status of the shopper in the loyalty
program. Valid values are:

RequestForEnrollment
Enrolled
RequestForUnenrollment
Unenrolled
Failed

Sample balance inquiry response

The following is an example of a response to a loyalty point balance inquiry request:

{
 "transactionType": "0600",
 "orderId": "o30417",
 "paymentId": "pg30418",
 "channel": "storefront",
 "paymentMethod": "loyaltyPoints",
 "siteId": "siteUS",
 "locale": "en",
 "inquireBalanceResponse": {
 "hostTransactionTimestamp": "1504691722267",
 "responseReason": "inquireBalanceResponseReason",
 "customPaymentProperties": [
 "cust-prop2",

Chapter 41
Loyalty point payment properties

41-13

 "cust-prop1"
],
 "responseDescription": "inquireBalanceResponseDescription",
 "loyaltyPrograms": [
 {
 "loyaltyPointDetails": [
 {
 "membershipType": "blue",
 "pointsBalance": "2000",
 "pointsType": "bluePoints",
 "additionalProperties": {
 "propertyName1": "value1",
 "propertyName2": "value2"
 }
 },
 {
 "membershipType": "red",
 "pointsBalance": "6000",
 "pointsType": "redPoints",
 "additionalProperties": {
 "propertyName4": "value4",
 "propertyName3": "value3"
 }
 },
 {
 "membershipType": "standard",
 "pointsBalance": "6000",
 "pointsType": "PTS",
 "additionalProperties": {
 "propertyName6": "value6",
 "propertyName5": "value5"
 }
 }
],
 "programName": "programForYoungster",
 "membershipId": "member0001",
 "additionalProperties": {
 "validTill": "2029-11-26T15:57:55.631Z",
 "validFrom": "2017-07-14T15:57:55.631Z"
 },
 "programId": "prg10001"
 },
 {
 "loyaltyPointDetails": [
 {
 "membershipType": "silver",
 "pointsBalance": "2000",
 "pointsType": "rewardPoints",
 "additionalProperties": {
 "propertyName7": "value7",
 "propertyName8": "value8"
 }
 },
 {
 "membershipType": "gold",

Chapter 41
Loyalty point payment properties

41-14

 "pointsBalance": "6000",
 "pointsType": "skyMiles",
 "additionalProperties": {
 "propertyName10": "value10",
 "propertyName9": "value9"
 }
 }
],
 "programName": "programForFlyer",
 "membershipId": "member0002",
 "additionalProperties": {
 "validTill": "2030-12-26T15:57:55.631Z",
 "validFrom": "2017-06-14T15:57:55.631Z"
 },
 "programId": "prg10002"
 }
],
 "merchantTransactionId": "MERCH-TX-1504691722267",
 "hostTransactionId": "HOST-TX-1504691722267",
 "additionalProperties": {
 "cust-prop2": "cust-prop2",
 "cust-prop1": "cust-prop1",
 },
 "responseCode": "5000",
 "merchantTransactionTimestamp": "1504691722267"
 },
 "currencyCode": "PTS",
 "transactionId": "o30417-pg30418-1504691722253",
 "transactionTimestamp": "2017-09-06T09:55:22+0000",
 "gatewayId": "demoLoyaltyPointsPaymentGateway"
}

Sample authorization response

The following is an example of a response to a loyalty point authorization request:

{
 "amount": "000000000200",
 "orderId": "o30417",
 "channel": "storefront",
 "authorizationResponse": {
 "hostTransactionTimestamp": "1504691269627",
 "responseReason": "authResponseReason",
 "customPaymentProperties": [
 "programName",
 "membershipId",
 "programId"
],
 "responseDescription": "authResponseDescription",
 "merchantTransactionId": "MERCH-TX-1504691269627",
 "hostTransactionId": "HOST-TX-1504691269627",
 "additionalProperties": {
 "programName": "programForFlyer",
 "membershipId": "member0002",
 "programId": "prg10002"

Chapter 41
Loyalty point payment properties

41-15

 },
 "responseCode": "1000",
 "merchantTransactionTimestamp": "1504691269627"
 },
 "locale": "en",
 "transactionId": "o30417-pg30415-1504691268818",
 "transactionTimestamp": "2017-09-06T09:47:48+0000",
 "transactionType": "0100",
 "paymentId": "pg30415",
 "paymentMethod": "loyaltyPoints",
 "siteId": "siteUS",
 "currencyCode": "PTS",
 "gatewayId": "demoLoyaltyPointsPaymentGateway"
}

Use Loyalty Points and Pay with alternate currency
Allow shoppers to pay for an order using either loyalty points or in a monetary currency
or a mix of currencies.

The property allowAlternateCurrency is a boolean introduced at site level and is not
accessible with the admin UI. At the time of order creation, allowAlternateCurrency
is copied to the order. This setting is disabled by default, but can be enabled through
the update site admin API, for example:

/ccadminui/v1/sites/siteUS

{ "properties": {
 "allowAlternateCurrency": true
 }
}

Allowing orders to be paid in mix of currencies

Enable the allowAlternateCurrency property to allow a shopper to pay for an order in
a mix of currencies, such as:

• A monetary order paid using points and monetary currency.

• A points based order paid using monetary currency and points.

If the payShippingInSecondaryCurrency and payTaxInSecondaryCurrency setting is
enabled in addition to allowAlternateCurrency, then there are certain restrictions on
the way the order can be paid:

1. If the order is monetary order, then the entire order can be paid in monetary, but
can not be paid in points. The shipping and tax total paid in monetary and leftover
amount can be paid in either, points or in monetary currency or in a mix of both.

2. If the order is point based order, then the entire order can be paid in points, but
can not be paid in monetary. The shipping and tax total paid in monetary and
leftover amount can be paid in either, points or in monetary currency or in a mix of
both.

Chapter 41
Use Loyalty Points and Pay with alternate currency

41-16

payShippingInSecondaryCurrency and payTaxInSecondaryCurrency impose a
restriction on the order, so that the shipping and tax total must be paid in monetary
currency.

Choosing alternate currency

If the order is point based order and the allowAlternateCurrency flag is enabled,
then the alternate currency which can be used to pay for the order will be the
secondary currency set at the site level. The shopper is not allowed to choose any
other monetary currency.

If the order is monetary based and the allowAlternateCurrency flag is enabled,
then the alternate currency of points can be selected at the time of payment, but the
shopper is allowed to use only one point type for one order. For example, if one points
payment is done using, for example "bluePoints" and shopper wishes to make another
payment using points, they must only use "bluePoints" in that order. The point type
selected has to be sent in payments section of the order payload as "currencyCode".
This is required because there is no other way of identifying the alternate currency for
monetary orders and to calculate the conversion and remaining amount.

For point based orders, the alternate currency is always the site level secondary
currency and need not be mentioned in the order request payload.

Setting exchange rate for amount conversion

For point based orders, the exchange rate is set at the order level at the time of the
order creation itself while the pricing is completed.

For monetary orders, the exchange rate is set at order level, only if there is a payment
made in points and it is done when the payment is submitted. The exchange rate set
at the order level can only be changed if the order is in the pending payment state and
all previous point based payments have been voided.

If the allowAlternateCurrency flag is disabled and payTaxInSecondaryCurrency and
payShippingInSecondaryCurrency settings are disabled, then orders created are to
be paid in single currency. Therefore, an error will result if a monetary order is
paid using loyalty points or if a point based order is paid using card or any other
monetary payment method. Single currency orders must be paid using payment
methods supporting the order's primary currency.

The calculateRemainingBalance endpoint is used to calculate the order amount
which can be paid in monetary currency and points. More details about this can be
found at Payment endpoint for supporting mixed currency orders.

For mixed currency payments for a logged in user at checkout, the
createOrderForLoggedInAtCheckout property must be enabled in client configuration,
for example:

PUT /ccadminui/v1/merchant/
clientConfiguration{"createOrderForLoggedInAtCheckout":true}

Payment endpoint for supporting mixed currency orders

The calculateRemainingBalance endpoint is used as part of the payment framework
for mixed currency orders and you can split the order total between custom and
monetary currency, and this endpoint returns the order amount which can be paid in
points and monetary currency.

Chapter 41
Use Loyalty Points and Pay with alternate currency

41-17

The calculateRemainingBalance endpoint returns the remaining order amount in
primary and alternate currency.

The order states supported are BEING_AMENDED, INCOMPLETE, PENDING_PAYMENT, and
QUOTED. To use this endpoint, the allowAlternateCurrency flag must be enabled.

For example:

calculateRemainingBalance{POST ccagent/v1/payment/
calculateRemainingBalance} {POST ccstore/v1/payment/
calculateRemainingBalance }

This request contains:

• amount - The amount the user wants to pay in primary currency.

• alternateCurrencyAmount - The amount the user wants to pay in the alternate
currency.

• alternateCurrencyCode - The alternate currency code. This is always the
secondary currency for point based orders. For point based orders if the property
is empty or null, the API assumes the alternate currency to be the secondary
currency, but if an incorrect currency code is sent, then the API will throw an
exception.

The following is an example of a calculateRemainingBalance request:

If the primary currency is points.
{
 "amount":20,
 "orderId":"o410438",
 "alternateCurrencyCode":"USD",
 "alternateCurrencyAmount":19
}

If the primary currency is USD
{
 "amount":20,
 "orderId":"o410438",
 "alternateCurrencyCode":"bluePoints",
 "alternateCurrencyAmount":19
}

This response contains:

• amountRemaining - The remaining order amount to be paid in primary currency.

• alternateAmountRemaining - The remaining order amount to be paid in alternate
currency.

• minimumMonetaryCurrencyAmountRemaining - The minimum remaining order
amount which must be paid in monetary currency. This occurs when both the
payTaxInSecondaryCurrency and payShippingInSecondaryCurrency settings are
enabled.

• alternateCurrencyCode - The alternate currency code given in the input.

Chapter 41
Use Loyalty Points and Pay with alternate currency

41-18

• amount - The amount the shopper wants to pay in primary currency given in the
input.

• alternateCurrencyAmount - The amount the shopper wants to pay in the
alternate currency given in the input.

• payments - The existing payment groups in the order.

The following is an example of a calculateRemainingBalance response:

{
 "secondaryCurrencyTaxAmount": 0,
 "alternateCurrencyAmountRemaining": "746.0",
 "secondaryCurrencyShippingAmount": 425,
 "orderId": "o410440",
 "payments": [
 {
 "paymentGroupId": "pg530482",
 "amountAuthorized": 20,
 "amount": 20,
 "customPaymentProperties": {
 "1000addnl-property-key5": "1000payment-property-value5",
 "1000addnl-property-key2": "1000payment-property-value2"
 },
 "gatewayName": "demoLoyaltyPointsPaymentGateway",
 "uiIntervention": null,
 "paymentMethod": "customCurrencyPaymentGroup",
 "isAmountRemaining": false,
 "paymentState": "AUTHORIZED",
 "type": "loyaltyPoints",
 "currencyCode": "bluePoints"
 }
],
 "alternateCurrencyCode": "USD",
 "payShippingInSecondaryCurrency": true,
 "payTaxInSecondaryCurrency": true,
 "amountRemaining": "20.0",
 "links": [
 {
 "rel": "self",
 "href": "http://localhost:9080/ccagentui/v1/payment/
calculateRemainingBalance"
 }
],
 "state": "PENDING_PAYMENT",
 "minimumMonetaryCurrencyAmountRemaining": "406.0",
 "currencyCode": "bluePoints"
}

Chapter 41
Use Loyalty Points and Pay with alternate currency

41-19

42
Integrate with a Cash Payment Gateway

This section describes how to integrate with a cash payment gateway, to enable
customers to pay with cash after placing an order.

This section describes payment gateway workflows, extensions, webhooks and
properties.

Understand the cash payment gateway workflow
The following diagram illustrates the cash payment gateway workflow:

Create a cash payment extension and configure the
webhook

To create a custom integration with a cash payment gateway, perform the following
steps:

1. Create the gateway extension. See Cash payment extension details for
information specific to this extension.

2. Upload the extension to the administration interface.

3. Enable the gateway for the sites that require it.

4. Add a cash payment option to the checkout page.

5. Configure the Generic Payment webhook by specifying the gateway URL and the
username and password. Note that webhook settings are not site-specific. The
configuration you supply applies to all sites that use this webhook.

42-1

Cash payment extension details

The format of a payment gateway extension is described in the Create a Credit
Card Payment Gateway Integration chapter. For a cash payment gateway, the
gateway.json file should be similar to the following:

{
 "provider": "Cash Payments",
 "paymentMethodTypes": ["cash"],
 "transactionTypes": {

 "cash": ["initiate", "cancel"]
 },
}

The extension must also create user interface controls (for example, checkboxes) for
merchants to specify the countries that cash payments are supported for.

Add a cash payment option to the checkout page

To enable paying through cash, you need to add a cash payment option to the
checkout page:

1. Open the Checkout Layout that you are using on your storefront. (The default is
Checkout Layout with GiftCard.)

2. Switch to grid view.

3. Add the Payment Gateway widget to the layout.

4. Add the Cash Payment element to the Payment Gateway widget.

5. Publish your changes.

Note that when a shopper checks out, the cash payment option appears on the
checkout page only if the country being shipped to appears in the list of countries that
cash payments are supported for.

Process the order

When a customer checks out using the cash payment option, the Generic Payment
webhook sends a CASH REQUEST transaction type to the payment gateway. The
provider can respond with the response code 1000, which acknowledges the payment
request. After the payment is received, the provider can update the order with payment
details using the updateOrder endpoint in the Admin API.

If payment has already occurred when the webhook request is received, the provider
can send the response code 4000 in the webhook response, indicating that the sale is
complete. In such cases, updateOrder calls are not needed. If response code 4000 is
received, the order is marked as ready for fulfillment.

Cash payment properties
When the Generic Payment webhook executes, it sends a JSON request body to the
payment gateway.

Chapter 42
Cash payment properties

42-2

The request body contains an authorization request that contains information
about the order and about the method of payment. The gateway processes
the request and returns a JSON response body that contains information about
the transaction, including whether the transaction succeeded. Note that if the
includeOrderInWebhookPayload property in the gateway extension's config.json file
is set to true, the order is also included in the request. See Order Submit webhook for
information about the order properties.

Cash payment request properties

This section describes the top-level properties and the properties of subobjects sent in
the JSON request body for cash transactions.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce sends
in the webhook request.

Property Description

referenceNumber The ID of the internal payment group

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

transactionType For a cash payment gateway, this must be one
of the following strings:

CASH REQUEST

CASH CANCEL

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront

agent

preview

paymentMethod For a cash payment gateway, the value must
be cash

orderId The ID of the order associated with the
payment

amount The amount to be authorized, as a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

currencyCode The ISO 4217 currency code

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

retryPaymentCount The number of times payment has been retried
for the order

siteURL The URL of the site on which the order was
placed

Chapter 42
Cash payment properties

42-3

Property Description

siteId The ID of the site on which the order was
placed

gatewayId The ID of the payment gateway

profile properties

The following table describes the properties of the profile object in the request.
These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile.

phoneNumber The phone number from the customer profile.

email The email address from the customer profile.

profileDetails properties

The following table describes the properties of the profileDetails object in the
request. These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Sample authorization request

The following is an example of an authorization request sent by the Generic Payment
webhook to a cash payment gateway:

{
 "transactionId": "o30446-pg30417-1458555741310",

Chapter 42
Cash payment properties

42-4

 "currencyCode": "USD",
 "referenceNumber": "pg30417",
 "locale": "en",
 "gatewaySettings": {
 "paymentMethodTypes": "cash",
 "filteredFields": ["paymentMethodTypes"]
 },
 "amount": ""000000122526",",
 "transactionType": "CASH REQUEST",
 "transactionTimestamp": "2019-10-21T10:22:21+0000",
 "channel": "storefront",
 "orderId": "o30446",
 "paymentMethod": "cash",
 "retryPaymentCount": 0,
 "siteURL": "https://www.example.com",
 "siteId": "siteUS",
 "gatewayId": "gatewayDemo",
 "profile": {
 "id": "110454",
 "phoneNumber": "617-555-1977",
 "email": "tshopper@example.com"
 }
 "profileDetails": {
 "id": "120002",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
}

Cash payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the JSON response body for cash transactions.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce
expects in the webhook response.

Property Description

referenceNumber The ID of the internal payment group. Must
match the value from the request.

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens.

Chapter 42
Cash payment properties

42-5

Property Description

transactionType For a cash payment gateway, this must be one
of the following strings:

CASH REQUEST

CASH CANCEL

transactionTimestamp The timestamp of the transaction in Oracle CX
Commerce, expressed as an ISO 8601 value
in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

hostTimeStamp The timestamp of the transaction in the
gateway (in milliseconds).

merchantTransactionTimestamp The timestamp of the transaction from the
merchant (in milliseconds).

paymentMethod For a cash payment gateway, the value must
be cash.

orderId The ID of the order associated with the
payment. Must match the value from the
request.

amount The actual amount collected from the shopper.
This may differ from the amount in the request.

The value of this property is a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

currencyCode The ISO 4217 currency code. This is expected
to match the value in the request.

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

gatewayId The ID of the payment gateway. Must match
the value from the request.

additionalProperties Key/value pairs for additional properties sent
by the merchant.

authorizationResponse properties

The following table describes the properties of the authorizationResponse object in
the response. The values of these properties indicate whether the transaction was
authorized successfully.

Property Description

responseCode For a cash payment gateway, this must be one
of the following values:

1000 (success)

4000 (sale complete)

9000 (decline)

responseDescription Information from the payment gateway about
the response.

Chapter 42
Cash payment properties

42-6

Property Description

responseReason Information about why the authorization
succeeded or failed.

authorizationCode The authorization code from the payment
provider.

hostTransactionId The transaction reference ID from the payment
gateway.

merchantTransactionId The transaction reference ID from the
merchant.

token The payment token used by the payment
provider.

Sample authorization response

The following is an example of an authorization response sent to the Generic Payment
webhook by a cash payment gateway:

{
 "orderId": "o30446",
 "currencyCode": "USD",
 "transactionId": "o30446-pg30417-1458555741310",
 "referenceNumber": "pg30417",
 "amount": "000000122526",
 "transactionType": "CASH REQUEST",
 "hostTimestamp": "1447807667046",
 "transactionTimestamp": "2019-10-21T10:22:21+0000",
 "merchantTransactionTimestamp": "1447807667046"
 "paymentMethod": "cash",
 "siteId": "siteUS",
 "gatewayId": "gatewayDemo",

 "authorizationResponse": {
 "responseCode": "1000",
 "responseReason": "1001",
 "responseDescription": "1002",
 "authorizationCode": "s001",
 "hostTransactionId": "h001"
 },
 "additionalProperties": {
 "sampleProperty1": "An additional property whose value will
be stored."
 }
}

Chapter 42
Cash payment properties

42-7

43
Integrate with an Invoice Payment
Gateway

This section describes how to integrate with an invoice payment gateway, to enable
merchants to bill customers for payments after orders are placed.

This section contains information on the payment gateway workflow, extensions, and
properties.

Understand the invoice payment gateway workflow
The following diagram illustrates the invoice payment gateway workflow:

Create an invoice payment extension and modify the
checkout page

To create a custom integration with an invoice payment gateway, you perform the
following steps:

1. Create the gateway extension. See Invoice payment extension details for
information specific to this extension.

2. Upload the extension to the administration interface.

3. Enable the gateway for the sites that require it.

4. Add an invoice payment option to the checkout page.

5. Configure the Generic Payment webhook by specifying the gateway URL and the
username and password. (This step is optional. See Validate the purchase order
number.) Note that webhook settings are not site-specific. The configuration you
supply applies to all sites that use this webhook.

6. Add invoice payment information to order pages.

43-1

Invoice payment extension details

The format of a payment gateway extension is described in the Create a Credit Card
Payment Gateway Integration chapter. For an invoice gateway, the gateway.json
file should be similar to the following:

{
 "provider": "Invoice Payment Provider",
 "paymentMethodTypes": ["invoice"],
 "transactionTypes": {
 "invoice": ["authorization"]
 }
}

Add an invoice payment option to the checkout page

To enable paying through a purchase order, you need to add an invoice option to the
checkout page:

1. Open the Checkout Layout that you are using on your storefront. (The default is
Checkout Layout with GiftCard.)

2. Switch to grid view.

3. Add the Payment Gateway widget to the layout.

4. Add the Invoice Payment element to the Payment Gateway widget.

5. Publish your changes.

If the invoice gateway is enabled, the checkout page displays a checkbox for optionally
requesting an invoice. When the shopper selects this checkbox, a text field appears for
specifying a purchase order number:

Validate the purchase order number

When a shopper checks out using a purchase order number, the Store API
createOrder endpoint includes the purchase order number in the submitted order. The
merchant can then issue an invoice for the amount owed. After receiving payment, the
merchant should invoke the updateOrder endpoint to update the order.

You can optionally configure the Generic Payment webhook to send transaction data,
including the purchase order number, to an external service for validation. If the
webhook is configured, Commerce waits for the result of the validation to determine
whether to submit the order.

Add invoice payment information to order pages

To display information about the invoice payment selection and purchase order
number on the order details and order confirmation pages, you need to make changes
to the corresponding layouts.

To update the order details page perform the following steps:

1. Open the Order Details Layout.

Chapter 43
Create an invoice payment extension and modify the checkout page

43-2

2. Switch to grid view.

3. Replace the Order Details widget with the Order Details with Additional Info
widget.

4. Publish your changes.

To update the order confirmation page:

1. Open the Order Confirmation Layout.

2. Switch to grid view.

3. Replace the Order Confirmation widget with the Order Confirmation with Additional
Info widget.

4. Publish your changes.

Invoice payment properties
When the Generic Payment webhook executes, it sends a JSON request body to the
payment gateway.

The request body contains information about the order and about the method of
payment. The gateway processes the request and returns a JSON response body
that contains information about the transaction, including whether the transaction
succeeded.

Invoice payment request properties

This section describes the top-level properties and the properties of subobjects sent
in the JSON request body of the Generic Payment webhook for invoice transactions.
Note that if the includeOrderInWebhookPayload property in the gateway extension's
config.json file is set to true, the order is also included in the request. See Order
Submit webhook for information about the order properties.

Top-level properties

The following table describes the top-level properties that Oracle Commerce Cloud
sends in the webhook request.

Property Description

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and the
transaction time stamp (in milliseconds),
separated by hyphens.

transactionType The type of transaction. For an invoice
payment gateway, this must be AUTHORIZE.

transactionTimestamp The timestamp of the transaction, expressed
as an ISO 8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

organizationId The ID of the organization to be invoiced.

organizationName The name of the organization to be invoiced.

PONumber The purchase order number for the account to
be invoiced.

referenceNumber The ID of the internal payment group.

Chapter 43
Invoice payment properties

43-3

Property Description

channel The area of the system where the payment-
processing request originated. Valid values
are:

storefront

agent

preview

paymentMethod The payment method. For an invoice payment
gateway, the value must be invoice.

orderId The ID of the order associated with the
payment.

amount The amount to be authorized, as a positive,
12-digit number that is expressed in base
currency. For example, $125.75 is represented
as 000000012575.

currencyCode The ISO 4217 currency code.

locale The shopper’s locale, taken from the order. If
no locale is set, the default locale from the
storefront is used.

siteURL The URL of the site on which the order was
placed.

siteId The ID of the site on which the order was
placed.

gatewayId The ID of the payment gateway.

retryPaymentCount The number of times payment has been retried
for the order.

customProperties Additional key/value pairs from the submitted
order to be sent to the provider.

profile properties

The following table describes the properties of the profile object in the request.
These values are associated with the customer purchasing the order.

Property Description

id The ID of the customer profile.

phoneNumber The phone number from the customer profile.

email The email address from the customer profile.

profileDetails properties

The following table describes the properties of the profileDetails object in
the request. These values are associated with the customer purchasing the
order. Note that for account-based commerce shoppers, this object may also
include parentOrganization, currentOrganization, and secondaryOrganizations
subobjects.

Property Description

id The ID of the customer profile

lastName The last name of the customer profile

Chapter 43
Invoice payment properties

43-4

Property Description

firstName The first name of the customer profile

middleName The middle name of the customer profile

email The email address from the customer profile

taxExempt Indicates whether the customer tax-exempt
status; either true or false

taxExemptionCode For a customer with tax-exempt status, the
exemption code

profileType The type of profile; either b2c_user or
b2b_user

receiveEmail Indicates whether the customer agrees to
receive email; either yes or no

registrationDate The timestamp of when the profile was
created, expressed as an ISO 8601 value in
the following format:

yyyy-MM-dd'T'HH:mm:ssZ

lastPasswordUpdate The timestamp of when the password for the
profile was last updated, expressed as an ISO
8601 value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Sample authorization request

The following is an example of a purchase order authorization request:

{
 "transactionId": "o40426-pg40413-1466678343221",
 "currencyCode": "USD",
 "organizationName": "ABCD Corp",
 "locale": "en",
 "siteURL": "https://www.example.com",
 "PONumber": "po22222",
 "referenceNumber": "pg40413",
 "customProperties": { },
 "organizationId": "or-300007",
 "siteId": "siteUS",
 "gatewaySettings": {
 "paymentMethodTypes": "invoice",
 "filteredFields": [
 "paymentMethodTypes"
]
 },
 "amount": "000000002999",
 "transactionType": "AUTHORIZE",
 "transactionTimestamp": "2019-12-23T10:39:03+0000",
 "channel": "storefront",
 "orderId": "o40426",
 "paymentMethod": "invoice",
 "profile": {
 "id": "130000",
 "phoneNumber": "2342342345",

Chapter 43
Invoice payment properties

43-5

 "email": "a1@abcdcorp.com"
 },
 "profileDetails": {
 "id": "130000",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
 "retryPaymentCount": 0,
 "gatewayId": "invoiceGateway"
}

Invoice payment response properties

This section describes the top-level properties and the properties of subobjects that
should be returned in the JSON response body of the Generic Payment webhook for
invoice transactions.

Top-level properties

The following table describes the top-level properties that Oracle CX Commerce
expects in the webhook response.

Property Description

transactionId The unique ID of the transaction. Consists
of the order ID, the payment ID, and
the transaction timestamp (in milliseconds),
separated by hyphens. Must match the value
from the request.

transactionType The type of transaction. For an invoice
payment gateway, this must be AUTHORIZE.

transactionTimestamp The time stamp of the transaction in Oracle
Commerce Cloud, expressed as an ISO 8601
value in the following format:

yyyy-MM-dd'T'HH:mm:ssZ

Must match the value from the request.

organizationId The ID of the organization for the account to
be invoiced.

PONumber The purchase order number for the account to
be invoiced.

referenceNumber The ID of the internal payment group. Must
match the value from the request.

hostTransactionTimeStamp The time stamp of the transaction from the
gateway.

merchantTransactionTimestamp The time stamp of the transaction from the
merchant (in milliseconds).

paymentMethod The payment method. For an invoice payment
gateway, the value must be invoice.

Chapter 43
Invoice payment properties

43-6

Property Description

orderId The ID of the order associated with the
payment. Must match the value from the
request.

amount The amount invoiced. The value of this
property is a positive, 12-digit number
that is expressed in base currency.
For example, $125.75 is represented as
000000012575.

currencyCode The ISO 4217 currency code. This is expected
to match the value in the request.

siteId The ID of the site on which the order
was placed. Must match the value from the
request.

gatewayId The ID of the payment gateway. Must match
the value from the request.

additionalProperties Key/value pairs for additional properties sent
by the merchant.

authorizationResponse properties

The following table describes the properties of the authorizationResponse object in
the response. The values of these properties indicate whether the transaction was
authorized successfully.

Property Description

responseCode The authorization decision from the payment
provider as interpreted by the merchant. For
an invoice payment gateway, this must be one
of the following values:

1000 (success)

9000 (decline)

responseDescription Information from the payment gateway about
the response.

responseReason Information about why the authorization
succeeded or failed.

hostTransactionId The transaction reference ID from the payment
gateway.

merchantTransactionId The transaction reference ID from the
merchant.

Sample authorization response

The following is an example of a response to a purchase order authorization request:

{
 "merchantTransactionTimestamp": "1447807667046",
 "currencyCode": "USD",
 "transactionId": "o40426-pg40413-1466678343221",
 "PONumber": "po22222",
 "referenceNumber": "pg10415",
 "organizationId": "or-300007",
 "amount": "000000002999",

Chapter 43
Invoice payment properties

43-7

 "transactionType": "AUTHORIZE",
 "siteId": "siteUS",
 "authorizationResponse": {
 "hostTransactionId": "HOST-TRANSACTION-ID",
 "responseCode": "1000",
 "responseReason": "1002",
 "responseDescription": "Valid PO Number",
 "merchantTransactionId": "2016-06-23T10:39:03+0000"
 },
 "transactionTimestamp": "2016-05-02T12:14:09+0000",
 "paymentMethod": "invoice",
 "orderId": "o40426",
 "gatewayId": "invoiceGateway"
}

Chapter 43
Invoice payment properties

43-8

44
Integrate with a Web Checkout System

This chapter discusses integration with an external web checkout system such as
Stripe Checkout or Amazon Payments.

It also discusses how to initiate, retrieve and complete an order.

Overview of web checkout system integrations
When you integrate with a payment provider, the checkout process is typically
managed by the Oracle CX Commerce storefront.

For example, if you use the Credit Card Payment webhook, the gateway can transmit
payment authorization, void, and refund requests to the payment provider. The
provider processes these transactions, but does not handle the shopping cart.

Integrations based on the Generic Payment webhook can use the Commerce
checkout process as well. For example, in the scenario described in Integrate with
a Gift Card Payment Gateway, the Generic Payment webhook functions in a similar
way to the Credit Card Payment webhook, and the checkout process is handled by the
Commerce storefront.

The Generic Payment webhook, however, also supports integrations with external web
checkout systems such as Amazon Payments or Stripe Checkout. When using one of
these providers, some or all of the checkout experience, including the user interface,
is delegated to it. Commerce passes the entire shopping cart to the external system,
which is responsible for managing the checkout process and then sending the results
back to Commerce.

To develop an integration with an external web checkout system, you need to do the
following:

• Create a gateway extension. In the gateway.json file, set paymentMethodTypes
to generic.

• Customize the Commerce storefront widgets to redirect to the external system,
and to handle the data that the external system returns.

• Customize the system to be able to transform the Commerce data into the form
required by the payment provider.

This chapter describes how to integrate with a web checkout system. This process
requires using the initiate and retrieve gateway transaction types to process the
cart, and authorization to complete the order. See Supported payment methods and
transaction types for information about these transaction types.

Initiate the order
When the shopper invokes checkout with an external checkout system, the Store
API createOrder endpoint sends the contents of the shopping cart to the Commerce

44-1

server, and includes a special parameter ("op":"initiate") to specify that the order
being created is incomplete.

The server invokes the Generic Payment webhook, which sends an initiate
transaction request with the cart data to the web checkout system. For example:

{
 "transactionId" : "o60412-pg60411-1465342272905",
 "currencyCode" : "USD",
 "paymentId" : "pg60411",
 "locale" : "en",
 "siteURL": "https://www.example.com",
 "customProperties" : { },
 "gatewaySettings" : [{
 "name" : "paymentMethodTypes",
 "value" : "generic"
 }],
 "amount" : "000000004999",
 "transactionType" : "0800",
 "items" : [{
 "id" : "ci6000412",
 "catRefId" : "sku10020",
 "price" : 49.99,
 "rawTotalPrice" : 49.99,
 "description" : "Xbox 360 Controller",
 "quantity" : 1,
 "unitPrice" : null,
 "displayName" : null,
 "options" : [],
 "productId" : "prod10017"
 }],
 "transactionTimestamp" : "2016-06-07T23:31:12+0000",

 ... billing and shipping addresses ...

 "channel" : "storefront",
 "siteId": "siteUS",
 "orderId" : "o60412",
 "paymentMethod" : "generic",
 "profile" : {
 "id" : "140160",
 "phoneNumber" : "617-555-1977",
 "email" : "bshopper@example.com"
 },
 "profileDetails": {
 "id": "140160",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 },
 "retryPaymentCount": 0,

Chapter 44
Initiate the order

44-2

 "gatewayId" : "demoGenericGateway"
}

The checkout system typically creates its own representation of the order and sends
a response to Commerce indicating that it was created successfully. This triggers an
ORDER_CREATED_INITIAL event on the client. You can write widget code to subscribe to
this topic. For example:

$.Topic(pubsub.topicNames.ORDER_CREATED_INITIAL).subscribe(
 widget.initialOrderCreated.bind(widget));

In this example, the widget defines a function called initialOrderCreated() that
subscribes to the ORDER_CREATED_INITIAL topic. The response object, named order,
is passed in the event. Your custom widget can retrieve the response and inspect the
properties of the order.

Note that when the shopper is directed back to the checkout page from the
web checkout system (as described in Retrieve the order), the shopping cart
should be retrieved from the Commerce server, not reloaded from local storage.
To prevent reloading from local storage, your widget code should set the
ccConstants.SKIP_LOADING_LOCAL_CART variable to true before initiating the web
checkout. For example:

widget.initialOrderCreated = function(orderEvent) {
 var widget = this;

storageApi.getInstance().setItem(ccConstants.SKIP_LOADING_LOCAL_CART,tru
e);
 navigation.goTo(widget.links().checkout.route+'?
 param1=test1¶m2=test2&orderId='+orderEvent.order.id);
};

Setting the variable to true prevents the cart from being reloaded from local
storage, and causes a DEFERRED_CART_LOAD event to be published from the
initCatalog() function of the CartViewModel. When the order is retrieved, the
handlePageChanged() widget function receives this event. See Retrieve the order for
more information.

Use custom properties

A key aspect of the integration involves the use of custom properties in the Generic
Payment webhook data. The webhook response to the initiate request may include
custom properties that the storefront can use to hand off control to the external
system.

For example, the response may include a REDIRECT property that specifies the URL for
redirecting the shopper’s browser to the external checkout system:

{
 "orderId": "o60412",
 "paymentId": "pg60411",
 "merchantTransactionId": "c9f058f8-ef54-44cc-9c90-dc58269d3667",
 "hostTransactionId": "o60412-pg60411-1465342272905",
 "transactionTimestamp": "2016-06-07T23:31:12+0000",

Chapter 44
Initiate the order

44-3

 "hostTimestamp": "2016-06-07T23:31:14+0000",
 "transactionType": "0800",
 "siteId": "siteUS",
 "additionalProperties": {
 "AddProp1": "AddProp1_value",
 "AddProp2": "AddProp2_value",
 "AddProp3": "AddProp3_value",
 "REDIRECT": "checkout_system_URL"
 },
 "externalProperties": ["AddProp2", "REDIRECT"],
 "amount": "000000004999",
 "currencyCode": "USD",
 "response": {
 "success": true,
 "code": "Response Code Value",
 "description": "Response description value",
 "reason": "Response reason value"
 }
}

See Send custom properties to a payment gateway for more information about using
custom properties with the Generic Payment webhook.

Retrieve the order
After processing the payment information, some web checkout systems will issue a
POST request to the Commerce store to redirect the shopper back to the checkout page
to complete the order.

The POST request triggers a PAGE_CHANGED event. Your widget code should subscribe to
this topic. For example:

$.Topic(pubsub.topicNames.PAGE_CHANGED).subscribe(
 widget.handlePageChanged.bind(widget));

The widget’s handlePageChanged() function should handle the PAGE_CHANGED event by
parsing the parameters in the incoming URL to extract custom properties that identify
the order. For example:

widget.handlePageChanged = function(pageData) {

 var widget = this;
 if (pageData.pageId === "checkout") {
 var urlParameters = pageData.parameters;
 if (urlParameters) {

 // extract the URL parameters
 var params = urlParameters.split('&');
 var result = {};
 for (var i = 0; i < params.length; i++) {
 var entries = params[i].split('=');
 result[entries[0]] = entries[1];
 }

Chapter 44
Retrieve the order

44-4

 if (widget.order().paymentGateway()) {
 widget.order().paymentGateway().type = '';
 }

 . . .

In addition, the handlePageChanged() function should subscribe to the
DEFERRED_CART_LOAD event. When it receives this event, it should determine whether
the web checkout succeeded. If so, it should add the custom properties to the payment
observables array in the OrderViewModel, and then load the shopping cart using the
getOrder() function. If the checkout has failed, it should reload the cart from local
storage. For example:

 . . .

$.Topic(pubsub.topicNames.DEFERRED_CART_LOAD).subscribe(function() {
 if(result.param1 && result.param2) {

 // add the extracted parameters to the payment as custom
properties
 var payment = {type: "generic", customProperties: result};
 var payments = [payment];
 widget.order().updatePayments(payments);
 widget.order().getOrder();
 }
 else {
 widget.cart().loadCart();
 }
 storageApi.getInstance().setItem(
 ccConstants.SKIP_LOADING_LOCAL_CART,false);

 });

 }
 }
};

If the checkout succeeds, the getOrder() function is executed, which invokes the
Store API getInitialOrder endpoint to retrieve the incomplete order. When the
server receives the request, it invokes the Generic Payment webhook, which sends
a retrievetransaction request to the web checkout system. For example:

{
 "transactionType" : "0900",
 "transactionTimestamp" : "2016-06-07T23:31:14+0000",
 "customProperties" : {
 "param1" : "test1",
 "param2" : "test2"
 },
 "gatewaySettings" : [],

Chapter 44
Retrieve the order

44-5

 "channel" : "storefront"
 }

The webhook response from the web checkout system must include the orderId so
Commerce can retrieve the order, and the paymentId to identify the correct payment
group. You may want to include these values in the customProperties object of the
webhook request to ensure they are available to send in the response.

The response can also include an additionalProperties object, as well as
an externalProperties object that specifies a list of the properties in the
additionalProperties object that should be returned to the storefront. For example:

{
 "orderId": "o60412",
 "paymentId: "pg60411",
 "siteId": "siteUS",
 "transactionTimestamp": "2016-06-07T23:31:14+0000",
 "hostTimestamp": "2016-06-07T23:31:14+0000",
 "transactionType": "0900",
 "additionalProperties": {
 "RetrieveAddProp2": "RetrieveProp2_value",
 "RetrieveAddProp1": "RetrieveProp1_value"
 },
 "externalProperties": ["RetrieveAddProp2"],
 "response": {
 "success": true,
 "code": "Response Code Value",
 "description": "Response description value",
 "reason": "Response reason value"
 }
}

A successful response triggers an ORDER_RETRIEVED_INITIAL event. Your widget can
subscribe to this topic:

$.Topic(pubsub.topicNames.ORDER_RETRIEVED_INITIAL).subscribe(
 widget.handleOrderRetrieved.bind(widget));

The widget’s handleOrderRetrieved() function should handle the
ORDER_RETRIEVED_INITIAL event by adding the updated payment information to the
OrderViewModel:

widget.handleOrderRetrieved = function(orderEvent) {

 var widget = this;
 widget.order().id(orderEvent.order.id);
 widget.order().isVerified(true);

 var payment = {type: "generic",
 paymentGroupId: orderEvent.order.payments[0].paymentGroupId};
 var payments = [payment];
 widget.order().updatePayments(payments);
};

Chapter 44
Retrieve the order

44-6

Complete the order
When the customer clicks a button to submit the order, the Store API createOrder
endpoint is called.

The request includes a parameter ("op":"complete") to specify that a previously
initiated order is being completed. The request must also include the order ID and the
payment group ID.

The server invokes the Generic Payment webhook, which sends an authorization
transaction request to the checkout system. Any custom properties in the order are
included in the webhook request. The webhook response should indicate whether the
authorization succeeded. If the authorization succeeds, the order is submitted and the
shopper is redirected to the Order Confirmation page.

Validate the data

Before submitting the order, it is a good idea to validate the data being sent, including
any custom properties. To do this, you can register a callback function with the
OrderViewModel that is executed when the handlePlaceOrder() function is called. You
can use the callback function to add validation and error handling.

The code below registers a callback function that validates the widget data. This
function first calls the widget’s validate() function. If that function returns true, the
callback function adds a custom property to the payment data in the OrderViewModel.
If widget.validate() returns false, the callback function adds a validation error to the
OrderViewModel.

widget.validate = function {
 return true;
}

widget.order().addValidationCallback(function() {

if (widget.validate()) {
 var customProperties = {genericPaymentId: widget.genericPaymentId};
 widget.genericPayment.customProperties = customProperties;
 widget.updatePayment(widget.genericPayment);
 }
 else {
 widget.order().addValidationError("genericPayment",
 widget.translate('errorMessage'));
 }
});

Chapter 44
Complete the order

44-7

45
Enable Split Payments

Oracle CX Commerce provides support for shoppers to use multiple payment methods
to pay for an order.

This facility is also known as split payments, because it enables a shopper to split
the cost of an order into two or more transactions that each have a different payment
method.

Understand split payments
Depending on the needs of your store, you may want to enable shoppers to split order
payments across multiple payment types.

Some online stores require a shopper to use a single payment method to pay for an
order. For example, the shopper supplies a credit card at checkout, and uses it to
pay for the entire order. In this situation, the order involves a single transaction, which
includes information about the payment method (the credit card) and the amount
charged to it (in this case, the total for the order), and so on.

Some shoppers, though, may want to split the cost of an order across two or more
payment methods, or across multiple instances of a payment method (such as two
different credit cards), or even a combination of both (such as a gift card and two
credit cards). For example, if a shopper has a $50.00 gift card and an order’s total cost
is $85.00, the shopper may want to pay $40.00 using the gift card, and charge the
remaining $45.00 to a credit card. Or a shopper may want to charge part of an order to
one credit card, and the rest to another.

Some of the payment widgets (such as the Payment Details widget) support split
payments in a limited way. They allow the use of multiple gift cards, or one or more
gift cards plus one other payment method (such as a credit card, an invoice, or cash.)
To support more complex scenarios, Commerce provides the Split Payment widget.
This widget provides user interface controls that the shopper can use to break down
the order cost into multiple parts, with each part associated with a different payment
method instance. The widget also provides a single payment setting the shopper can
switch to. The single payment setting supports the same options as the standard
payment widgets (a single payment method, multiple gift cards, or gift cards plus one
other method).

The Split Payment widget can be used with built-in payment gateway integrations
(such as CyberSource) and payment gateway integrations you create (as described
elsewhere in this manual), but requires customization in order to work with web
checkout systems such as Amazon Payments. See Integrate with a Web Checkout
System for information about processing payments using one of these systems.

Understand the Payment Options settings

The Setup tab in the Payment Processing settings of the administration interface has
a Payment Options drop-down that controls certain aspects of how payments are
processed in Commerce. This drop-down has two options:

45-1

• Allow Partial Payment/Early Persist – This setting should be used with storefronts
built with the Open Storefront Framework, as well as Storefront Classic
applications that use the Split Payment widget. With this setting, when the shopper
submits the order, the payments are processed in sequence, one payment at a
time. The order is saved in the PENDING_PAYMENT state until the entire cost of the
order has been authorized. If all authorizations succeed, the order is then sent
to the order management system for processing. If any authorization fails, the
successful authorizations are saved with the order. The shopper can correct the
payment details, or leave the order in the PENDING_PAYMENT state and return later
to specify payments for the remaining amount and resubmit the order.

• Full Payment Required – With this setting, when an order is submitted, all of the
payments are processed at the same time. If authorization for any method fails,
an error is displayed, and the successful authorizations are voided. The shopper
must re-enter all payments and resubmit the order. If all of the payments are
successfully authorized, the order is sent to the order management system for
processing.

For additional information about these options, see Implement robust order capture.

For a registered shopper, partially paid orders are persisted and appear in the
shopper’s order history. The shopper can retrieve a partially paid order from the list
and complete it. If the Order Payment Initiated email is enabled in the administration
interface, an email is sent to the shopper when the order is created. The email
includes the order ID. The shopper can use this ID to help locate and retrieve the
order, or supply the ID to a customer service agent, who can then complete the order
in the Agent Console.

For an anonymous shopper, the shopper must complete a partially paid order before
the session times out, because the shopper has no way to access the order when
returning to the site later. However, if the Order Payment Initiated email is enabled, the
shopper is sent an email with the order ID when the order is created, and can supply
this ID to a customer service agent for completing the order.

In addition to the drop-down, the Setup tab in the Payment Processing settings has
a Price Hold Period setting that specifies the amount of time the shopper is given to
provide missing payment information before an order is canceled. If a partially paid
order is not completed before the price hold period expires, the order is marked for
cancellation and is subsequently removed. To handle the actual removal of orders, a
scheduled service is run. This is the same service used in account-based commerce
to remove orders that have been approved but not paid for after the specified amount
of time. See Set the frequency of canceled order clean up for information about
configuring this service.

Partial payments must be enabled if any of the payment methods you support requires
the shopper to take action while the payment is being processed. For example,
if you have a credit card gateway integration that supports 3D-Secure, when the
payment is processed, the shopper must authenticate with the card provider. Enabling
partial payments ensures that payments are processed sequentially, preventing
the authentication pages for multiple payments from displaying simultaneously or
overwriting each other.

Use the Split Payment widget
To replace the existing payment widgets in your checkout layout with the Split
Payments widget:

Chapter 45
Use the Split Payment widget

45-2

1. Open the Checkout Layout that you are using on your storefront. (The default is
Checkout Layout with GiftCard.)

2. Switch to grid view.

3. Add the Split Payments widget to the layout.

4. Remove any other payment widgets from the layout.
For example, by default, the Checkout Layout with GiftCard includes the Payment
Details widget and the Gift Card widget. The Split Payments widget replaces both
of these.

Enable partial payments

As discussed above, if your storefront is using the Split Payments widget, you need to
enable partial payments in the administration interface:

1. Click the Settings icon.

2. Click Payment Processing and display the Setup tab.

3. From the Payment Options dropdown menu, select Allow Partial Payment.

By default, an order can be saved in a partially paid state indefinitely. If you want
partially paid orders to expire automatically after a certain amount of time, the Setup
tab also provides fields for specifying a price hold period. This is the amount of time
an order can remain in the PENDING_PAYMENT state before it is marked for cancellation.
Note that this is the same setting used in account-based commerce to determine when
to cancel an order that has been approved but not paid for. See Set a price hold
period.

Note that these settings are site-specific, so you will need to configure each site
individually. Also, you must publish your changes for the configurations to take effect.

Use webhooks with split payments
When using split payments, each payment authorization for a gateway integrations
is managed individually using the webhook appropriate for that gateway, such as the
Generic Payment webhook or the Credit Card Payment webhook.

Payment authorizations for built-in gateways, such as CyberSource, are managed
internally. A separate call is made for each payment group.

Webhooks that include payment data for entire orders, however, must handle multiple
payment groups. The request bodies of the following webhooks can include multiple
payment groups, one for each payment method instance used in the order:

• Order Submit

• Order Submit Without Payment Details

• Cart Idle

• External Price Validation

• Return Request Update

• Return Request Update for Without Payment Details

Chapter 45
Use webhooks with split payments

45-3

Customize the Split Payment widget
The Split Payment widget is very flexible, providing a broad range of checkout options.

Depending on the needs of your store, you may want to modify the widget to limit the
options available or change some of the logic. For example, you could modify the logic
to support using the widget with the Full Payment Required setting.

You can modify the widget by downloading it and customizing it. To download the
Split Payment widget as a ZIP file, access the widget template in the Components
tab in the administration design interface, and click the Download Source button.
After customizing the widget, upload it and use it in your checkout layout. For more
information, see Understand widgets.

Chapter 45
Customize the Split Payment widget

45-4

46
Configure Tax Processors

Commerce includes integrations with both Avalara AvaTax and Vertex O Series to
automatically calculate sales tax in the shopping cart. You can also configure an
integration with any other tax processor for which you have an active account.

If you run multiple sites within a single instance of Commerce, these sites share a
tax processor. However, each site can have its warehouse own ship-from address.
See Configure Sites to learn about multiple sites. For information on working with tax
processors when using loyalty programs, refer to the Work with Loyalty Programs.

Integrate with an external tax processor
Commerce includes built-in integrations with Avalara AvaTax and Vertex O Series to
calculate sales tax in the shopping cart.

If you have an account with a different tax processor, you can configure an integration
that tells Commerce to use that tax processor to perform tax calculations.

Understand the external tax processor integration

Commerce does not configure taxes, but integrates with tax processors that calculate
sales tax in the shopping cart. To integrate with an external tax processor:

• Make sure you have a valid account with the tax processing service you want to
use.

• Configure the production-externalTaxCalculation webhook (for the production
storefront) and the publishing-externalTaxCalculation webhook (for the
preview environment) with the URL where Commerce will send order information
to the tax processor’s web service and the username and password you use to log
into the tax processor.

• Use the Commerce administration interface or the REST Admin API to configure
the Commerce settings that identify and enable your tax processor and specify
your warehouse ship-from address.

Commerce automatically uses the enabled tax processor to calculate taxes for every
order placed on your store. The tax processor calculates sales tax as part of the
pricing operation. When the shopping cart is priced with a request to include tax
pricing (when the shopper begins the checkout process and when the order is
submitted), Commerce sends the order information to the external tax processor in
the body of a webhook request. The tax processor calculates the total tax amount and
sends it in a response. The response breaks down the tax into individual components,
for example, the total tax amount might include sales tax assessed by both the state
and county.

Note: Commerce is not involved in the settlement process.

Commerce uses a fallback method for calculating taxes when it cannot connect to your
tax processor’s web service in the event of an outage. See Monitor tax processors for
details about fallback tax calculation and information about configuring its settings.

46-1

If you want to display prices with tax included, for example prices that include VAT,
create a price group for those tax-inclusive prices. See Configure Tax Processors for
more information. If your store uses price groups with tax-inclusive prices, you may
need to update certain settings on your tax processor’s site.

Important: As a merchant, it is your responsibility to add the appropriate tax
jurisdictions when you configure your profile or account on your tax processing
service. Jurisdictions tell the tax processor where and when to calculate and report
tax. All sales that occur in jurisdictions you have not configured in your tax processor
result in tax calculation that returns a value of zero tax. Commerce is not responsible
for configuring or validating jurisdictions. Look in your tax processor’s documentation
for information about nexus and tax jurisdictions.

Understand the Tax Code property

Each product and shipping method you create in Commerce has a Tax Code property.
Tax calculators use the value of the Tax Code property to determine the tax category
for a product or shipping method. For example, if you process taxes with vertex O
Series, the value of the Tax Code property is the code you assigned to a taxability
category in Vertex O Series. Consult the documentation for your tax processor to learn
how it lets you categorize products and services.

Tax Code is not a required property; that is, Commerce allows you to create and
publish a product or shipping method without providing a tax code. However, you
should assign a tax code to every product and shipping method you create. Otherwise,
the tax calculations may return unexpected results, including a higher-than-anticipated
tax amount.

Configure the External Tax Calculation webhook

When the shopping cart is priced with a request to include tax pricing, the External
Tax Calculator webhook sends a POST request to the URL you specified when you
configured the webhook. (Typically this is the URL where your tax processor’s web
service listens for requests.) The body of the request contains the complete order data
in JSON format.

The following example shows the body of an External Tax Calculation webhook POST
request from Oracle CX Commerce. The request body is a JSON representation of the
order.

{
 "shippingGroups" : [{
 "priceInfo" : {
 "amount" : 59.96,
 "total" : 84.96,
 "shipping" : 25,
 "shippingSurchargeValue" : 0,
 "tax" : 0,
 "subTotal" : 59.96,
 "currencyCode" : "USD",
 "totalWithoutTax" : 84.96
 },
 "discountInfo" : {
 "orderDiscount" : 0,
 "shippingDiscount" : 0,
 "discountDescList" : []
 },

Chapter 46
Integrate with an external tax processor

46-2

 "shippingMethod" : {
 "shippingTax" : 0,
 "cost" : 25,
 "taxCode" : "",
 "value" : "priorityShippingMethod",
 "shippingMethodDescription" : "Priority"
 },
 "shippingGroupId" : "sg140414",
 "shippingAddress" : {
 "lastName" : "Smith",
 "country" : "US",
 "address3" : "",
 "address2" : "",
 "city" : "Syracuse",
 "prefix" : "",
 "address1" : "101 TNT Drive",
 "postalCode" : "13202",
 "companyName" : "",
 "jobTitle" : "",
 "county" : "",
 "suffix" : "",
 "firstName" : "Jean",
 "phoneNumber" : "555-555-1212",
 "faxNumber" : "",
 "alias" : "Home",
 "middleName" : "",
 "state" : "NY",
 "email" : null
 },
 "items" : [{
 "unitPrice" : 14.99,
 "quantity" : 4,
 "productId" : "Product_1Ci",
 "commerceId" : "ci1443367",
 "rawTotalPrice" : 59.96,
 "returnedQuantity" : 0,
 "salePrice" : 0,
 "detailedItemPriceInfo" : [{
 "discounted" : false,
 "amount" : 59.96,
 "quantity" : 4,
 "tax" : 0,
 "orderDiscountShare" : 0,
 "detailedUnitPrice" : 14.99,
 "currencyCode" : "USD"
 }],
 "shippingSurchargeValue" : 0,
 "discountAmount" : 0,
 "catRefId" : "Sku_1Di",
 "discountInfo" : [],
 "price" : 59.96,
 "onSale" : false,
 "stateDetailsAsUser" : "The item has been initialized within the
shipping group",
 "listPrice" : 14.99,

Chapter 46
Integrate with an external tax processor

46-3

 "status" : "INITIAL"
 }]
 }],
 "creationTime" : 1486073446086,
 "isTaxIncluded" : true,
 "orderId" : "o130414",
 "profile" : {
 "firstName" : "Jean",
 "lastName" : "Smith",
 "taxExempt" : false,
 "receiveEmail" : "yes",
 "id" : "se-570031",
 "locale" : "en",
 "email" : "home@example.com",
 "daytimeTelephoneNumber" : ""
 },
 "orderStatus" : "Incomplete",
 "creationDate" : "2017-02-02T22:10:46.086Z",
 "orderProfileId" : "se-570031",
 "callType" : "SalesOrder",
 "priceInfo" : {
 "amount" : 59.96,
 "total" : 59.96,
 "shipping" : 25,
 "shippingSurchargeValue" : 0,
 "tax" : 0,
 "subTotal" : 59.96,
 "currencyCode" : "USD",
 "totalWithoutTax" : 59.96
 },
 "discountInfo" : {
 "unclaimedCouponMultiPromotions" : { },
 "orderCouponsMap" : { },
 "orderDiscount" : 0,
 "shippingDiscount" : 25,
 "orderImplicitDiscountList" : [],
 "unclaimedCouponsMap" : { },
 "claimedCouponMultiPromotions" : { }
 },
 "shipFromAddress" : {
 "country" : "US",
 "lastName" : null,
 "address3" : null,
 "address2" : null,
 "city" : "Cambridge",
 "address1" : "1 main st",
 "prefix" : null,
 "postalCode" : "02142",
 "county" : null,
 "ownerId" : null,
 "suffix" : null,
 "firstName" : null,
 "middleName" : null,
 "state" : "MA"
 },

Chapter 46
Integrate with an external tax processor

46-4

 "shoppingCart" : {
 "numberOfItems" : 4,
 "items" : [{
 "unitPrice" : 14.99,
 "quantity" : 4,
 "productId" : "Product_1Ci",
 "rawTotalPrice" : 59.96,
 "salePrice" : 0,
 "detailedItemPriceInfo" : [{
 "discounted" : false,
 "amount" : 59.96,
 "quantity" : 4,
 "tax" : 0,
 "orderDiscountShare" : 0,
 "detailedUnitPrice" : 14.99,
 "currencyCode" : "USD"
 }],
 "displayName" : "Liberty Heights",
 "shippingSurchargeValue" : 0,
 "giftWithPurchaseCommerceItemMarkers" : [],
 "discountAmount" : 0,
 "isItemValid" : true,
 "taxCode" : null,
 "catRefId" : "Sku_1Di",
 "skuProperties" : [{
 "propertyType" : "sku-base",
 "name" : "Name",
 "id" : "displayName",
 "value" : null
 }, {
 "propertyType" : "sku-base",
 "name" : "Active",
 "id" : "active",
 "value" : true
 }, {
 "propertyType" : "sku-base",
 "name" : "Id",
 "id" : "id",
 "value" : "Sku_1Di"
 }],
 "discountInfo" : [],
 "price" : 59.96,
 "variant" : [],
 "onSale" : false,
 "id" : "ci13000413",
 "listPrice" : 14.99
 }]
 },
 "giftWithPurchaseInfo" : [],
 "shippingAddress" : {
 "lastName" : "Smith",
 "country" : "US",
 "address3" : "",
 "address2" : "",
 "city" : "Syracuse",

Chapter 46
Integrate with an external tax processor

46-5

 "prefix" : "",
 "address1" : "101 TNT Drive",
 "postalCode" : "13202",
 "companyName" : "",
 "jobTitle" : "",
 "county" : "",
 "suffix" : "",
 "firstName" : "Jean",
 "phoneNumber" : "",
 "faxNumber" : "",
 "alias" : "Home",
 "middleName" : "",
 "state" : "NY",
 "email" : null
 }
}

When you configure the webhook, you need to supply a URL for your tax processor’s
web service and the username and password you use to log into your tax processor
account. You must also configure the external tax calculator service to read the data,
calculate the tax, and send a response that includes the tax. You can configure
webhooks on the Commerce administration interface or with the REST Admin API.
See Use Webhooks for more information.

The following example shows a sample JSON response sent from a tax processor.
Notice that the response breaks the total tax down into several individual components
(state, city, and commuter) for each item in the order, including shipping.

"response": {
 {
 "shippingGroups": [
 {
 "taxPriceInfo": {
 "cityTax": 0,
 "amount": 22.99,
 "valueAddedTax": 0,
 "countyTax": 0,
 "isTaxIncluded": false,
 "miscTax": 0,
 "districtTax": 0,
 "stateTax": 0,
 "countryTax": 0
 },
 "priceInfo": {
 "amount": 89.94,
 "total": 114.94,
 "shipping": 25,
 "taxable": 89.94,
 "shippingSurchargeValue": 0,
 "tax": 22.988,
 "subTotal": 89.94,
 "currencyCode": "USD",
 "totalWithoutTax": 91.95
 },
 "shippingMethod": {

Chapter 46
Integrate with an external tax processor

46-6

 "shippingTax": 0,
 "cost": 25,
 "taxable": 25,
 "taxDetails": [
 {
 "jurisType": "state",
 "rate": "0.2000",
 "tax": 2.5,
 "taxName": "state tax"
 },
 {
 "jurisType": "city",
 "tax": 2.5,
 "taxName": "city tax"
 },
 {
 "jurisType": "commuter",
 "tax": 1,
 "taxName": "commuter tax"
 }
],
 "rate": 0,
 "tax": 5,
 "taxCode": "",
 "value": "twoDayShippingMethod",
 "shippingMethodDescription": "Two Day"
 },
 "shippingGroupId": "sg70413",
 "items": [
 {
 "unitPrice": 14.99,
 "quantity": 6,
 "productId": "Product_1Ci",
 "commerceId" : "ci1443367",
 "rawTotalPrice": 89.94,
 "taxable": 89.94,
 "taxDetails": [
 {
 "jurisType": "state",
 "rate": "0.2000",
 "tax": 8.994,
 "taxName": "state tax"
 },
 {
 "jurisType": "city",
 "tax": 8.994,
 "taxName": "city tax
 },
 {
 "jurisType": "commuter",
 "tax": 1.9879999999999995,
 "taxName": "commuter tax"
 }
],
 "returnedQuantity": 0,

Chapter 46
Integrate with an external tax processor

46-7

 "salePrice": 0,
 "shippingSurchargeValue": 0,
 "discountAmount": 0,
 "tax": 17.988,
 "catRefId": "Sku_1Di",
 "discountInfo": [],
 "rate": 0,
 "price": 89.94,
 "onSale": false,
 "stateDetailsAsUser": "The item has been initialized within
the shipping group",
 "listPrice": 14.99,
 "status": "INITIAL"
 }
]
 }
],
 "creationTime": 1475951869000,
 "isTaxIncluded": false,
 "orderId": "o60413",
 "orderStatus": "Incomplete",
 "creationDate": "2016-10-08T18:37:49.000Z",
 "orderProfileId": "se-570031",
 "taxDate": "02-02-2017",
 "callType": "SalesOrder",
 "status": "success",
 "timestamp": "2017-02-02T00:57:25.017"
}
}

If the tax processor cannot calculate the tax based on the information in the POST
request, it returns an error response. The following example shows a sample JSON
error response sent from a tax processor for an order that contains an invalid shipping
address.

{
"response": {
 "status": "error",
 "errors": [
 {
 "errorCode": 100123,
 "description": "No taxing jurisdiction found.
 Please check the address"}
]
 }
}

Configure the tax processing settings

To configure the external tax processor integration, you must supply your unique
merchant ID. You can enable the external tax processor integration and configure its
settings either on the Tax Processing settings page in the Commerce administration
interface or with the Commerce Admin API.

Chapter 46
Integrate with an external tax processor

46-8

Configure tax processing settings with the administration interface

This section describes how to configure integration settings for external tax processors
in the Commerce administration interface.

To configure the settings for an external tax processor:

1. Click the Settings icon.

2. Select Tax Processing from the Settings list to display the Tax Processing page.

3. Select External from the Tax Processor list and select the Enable Tax
Processor checkbox.

4. (Optional) Select Show Tax Summary to display an order’s tax amount in the cart,
checkout, and order summary pages, or deselect it to hide the tax summary. This
checkbox is selected by default.
If your store’s prices include tax, such as VAT, you likely do not want to display the
tax summary. However, if prices to not include tax, you should always display a tax
summary.

This setting has no effect on the display of the tax summary in the emails your
store sends to customers. To learn how to remove the tax summary line from the
order summaries in emails, see Customize tax display in templates.

5. Enter your Merchant ID.
This page does not ask for a URL or account login information, as you
specify those when you configure the webhook. See Configure the External Tax
Calculation webhook.

6. Enter your Ship from Warehouse Location settings.
If you run multiple sites within a single instance of Commerce, each site can have
its own ship-from address. See Configure Ship from Warehouse Locations for
more information.

7. Click Save.

The following table describes the Merchant ID and Ship-From Warehouse Location
properties.

Configure tax processing settings with the Admin API

This section describes how to configure tax processing settings with the Admin API.
See Use the REST APIs for information you need to know before you start working
with the Admin API, including how to get an access token to make API requests.

If you run multiple sites within a single instance of Commerce, each site can have its
own ship-from address. The ship-from address is a property of the site object, even if
your Commerce instance runs only a single site. In previous releases, the ship-from
address was a property of the taxProcessor object.

To configure the settings for an external tax processor, issue a PUT request to /
ccadmin/v1/taxProcessors/ext-p.

The following table describes the properties for the request.

Property Description

company String that specifies your Vertex O Series
taxpayer code.

Chapter 46
Integrate with an external tax processor

46-9

Property Description

enabled Boolean that specifies whether the tax
processor is enabled for tax calculations on
your store.

showTaxSummary Boolean that specifies whether a tax summary
will be shown on your store’s cart, checkout,
and order summary. By default, the value of
showTaxSummary is false.

If your store’s prices include tax, such as
VAT, you likely do not want to display the tax
summary. However, if prices to not include tax,
you should always display a tax summary.

This setting has no effect on the display of the
tax summary in the emails your store sends
to customers. To learn how to remove the
tax summary line from the order summaries
in emails, see Customize tax display in
templates.

type A string that specifies the tax processor to use.
The value must be external to specify any
tax processor that is not Avalara AvaTax or
Vertex O Series.

The following example shows a PUT request that enables an external tax processor.
Note that the request does not include a URL or account login information, as you
specify those when you configure the webhook. See Configure the External Tax
Calculation webhook for more information. This sample request also sets fallback
tax calculation settings that Commerce uses if it cannot reach your tax processor, for
example, in the event of an outage. See Monitor tax processors for more information.

PUT /ccadmin/v1/taxProcessors/ext-p HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "enabled": true,
 "showTaxSummary": true,
 "type": "external",
 "fallbackEnabled": true,
 "defaultTaxRate": 5,
 "fallbackRequestVolumeThreshold": 2,
 "fallbackTimeThreshold": 60000,
 "fallbackSleepWindow": 5000
}

The following is the sample response body for this request. Commerce returns
properties for a warehouse ship-from address, even though you do not set them on the
taxProcessors object. See Configure a ship-from address for more information.

 {
 "country": null,
 "isTaxIncluded": false,
 "fallbackRequestVolumeThreshold": 2,

Chapter 46
Integrate with an external tax processor

46-10

 "city": null,
 "defaultTaxRate": 5,
 "postalCode": null,
 "hasPassword": false,
 "type": "external",
 "isActive": false,
 "url": null,
 "enabled": false,
 "fallbackTimeThreshold": 60000,
 "fallbackEnabled": true,
 "merchantId": 12345,
 "fallbackSleepWindow": 5000,
 "addressLine1": null,
 "region": null,
 "showTaxSummary": true,
 "username": null
}

Configure returns and exchanges tax calculation dates

You can use the useOrderSubmittedDateForTax flag in the merchant settings Admin
API, to use the order's submitted date for tax calculations. This allows you to calculate
tax refunds for returns using the original order date, rather than the current date. This
sends the date of the original order to the external tax processors.

To modify this setting, issue a PUT command to the /ccadmin/v1/merchant/
useOrderSubmittedDateForTax flag to true. For example:

{"userOrderSubmittedDateForTax":true}

To continue using the current date for tax calculations, set the
useOrderSubmittedDateForTax flag to false.

If you are using Oracle CX Commerce 20.1 or earlier, the default for this flag is set to
false. Later versions of Oracle CX Commerce have this flag default to true.

Configure a ship-from address

If you run multiple sites within a single instance of Commerce, each site can have its
own address from which items are shipped. For example, suppose you run two sites,
one that sells items in the United States, and another that sells items in France. For
the US store, items would ship from your warehouse in Chicago; for the French store,
items would ship from your warehouse in Paris. The ship-from address is specified
by the shipFromAddress property of the site object, even if your Commerce instance
runs only a single site. See Configure Sites for more information about working with
site objects.

In previous releases, the ship-from properties were stored on the taxProcessor object.
If you integrated with Avalara AvaTax, Vertex O Series, or an external tax processor
in a previous release and configured a ship-from address, Commerce automatically
adds the address to the default site in this release. If you do not specifically configure
a ship-from address for a site, the site automatically inherits the address used for the
default site.

To configure the ship-from address for a site, issue a PUT request to /ccadmin/v1/
sites/{id}.

Chapter 46
Integrate with an external tax processor

46-11

The following table describes the properties for the request.

Property Description

addressLine1 String that specifies the first line of the address
where your products ship from.

addressLine2 String that specifies the second line of the
address where your products ship from.

addressLine3 String that specifies the third line of the
address where your products ship from.

city String that specifies the name of the city where
your products ship from.

country String that specifies the country where your
products ship from.

postalCode String that specifies the postal/ZIP code for
the address where you products ship from. For
addresses in the United States, use the nine-
digit ZIP+4 code for best results.

region String that specifies the name of the region,
province, or state where your products ship
from.

The following example shows a PUT request that configures the ship-from address for a
site.

PUT /ccadmin/v1/sites/100002 HTTP/1.1
Authorization: Bearer <access_token>
x-ccasset-language: en

{
"properties": {
"shipFromAddress": {
"city": "cambridge",
"addressLine1": "2 Main Street",
"country": "US",
"region": "WA",
"postalCode": "12345"
}
}
}

Note that this call modifies the productionURL property only for the specified site, but
also modifies defaultLocaleId, which is a global property, on all sites.

Configure tax exempt status

Some shoppers may have tax exempt status for certain purchases. For example,
individuals working for a charitable organization may be exempt from sales tax on
items used in running the charity.

Avalara AvaTax and Vertex O Series can automatically take into account a shopper’s
tax exempt status when they calculate sales tax. (Other tax processor services should
be able to do this as well.) Configuring Commerce and your tax processor to handle
tax exemptions involves the following steps:

Chapter 46
Integrate with an external tax processor

46-12

1. The shopper obtains a tax exemption certificate from a taxing authority. (In the
United States, the taxing authority is typically the state government of the state in
which the shopper resides.) The certificate specifies what exemptions the shopper
qualifies for.

2. The shopper provides you (the merchant) with a copy of the certificate.

3. Using the certificate management system supplied by your tax processor service,
you upload the certificate to the service.

4. The tax processor returns a tax exemption code that is used to associate the
shopper with the appropriate exemptions. (Some tax processors may use a
different name for this value. Avalara AvaTax and Vertex O Series both refer to
this as the customer code in their certificate management systems.) Or you can
explicitly set the code to a specific value in the certificate management system.

5. You use the Commerce Admin API to set the taxExemptionCode property of the
shopper’s profile to the code returned by the tax processor.

Once you have performed these steps, no further intervention is required unless the
shopper’s tax exemption status changes. Each time the shopper places an order on
your site, Commerce includes the shopper’s tax exemption code with the order data it
sends to the tax processor. The tax processor uses the code to look up the shopper’s
certificate and then applies the specified exemptions when it calculates sales tax on
the order.

Set the shopper’s tax exemption code

The only configuration step actually performed in Commerce setting the
taxExemptionCode property of the shopper’s profile. To do this, you use the
updateProfile endpoint in the Admin API. For example:

PUT /ccadmin/v1/profiles/110000 HTTP/1.1
Authorization: Bearer <access_token>

{
 "taxExemptionCode": "187652"
}

Note that if the taxExemptionCode property is null or an empty string, Commerce
instead includes the value of the profileId property as the tax exemption code when
it sends order data to the tax processor. This means that if you explicitly set the
exemption code in the certificate management system to the value of the shopper’s
profileId, you do not need to set the taxExemptionCode property on the profile.

Set the tax exemption code for account-based commerce

For account-based commerce, the tax exemption certificate applies to the account
as a whole, and Commerce sends the exemption code to the tax processor for
every purchase made by that account, regardless of the shopper. The account has
a taxExemptionCode property that you set to this value using the updateOrganization
endpoint in the Admin API. For example:

PUT /ccadmin/v1/organizations/100002 HTTP/1.1
Authorization: Bearer <access_token>

{

Chapter 46
Integrate with an external tax processor

46-13

 "taxExemptionCode": "339657"
}

Set the tax exemption code for account-based commerce

For account-based commerce, the tax exemption certificate applies to the account
as a whole, and Commerce sends the exemption code to the tax processor for
every purchase made by that account, regardless of the shopper. The account has
a taxExemptionCode property that you set to this value using the updateOrganization
endpoint in the Admin API. For example:

PUT /ccadmin/v1/organizations/100002 HTTP/1.1
Authorization: Bearer <access_token>

{
 "taxExemptionCode": "339657"
}

Monitor tax processors
Commerce uses a fallback method for calculating taxes when it cannot connect to your
tax processor’s web service in the event of an outage.

The fallback tax logic automatically applies a default tax rate (that you set with the
Admin API) to all orders if a specified number of calls to the tax processor fail
within a specified time span. This prevents errors at the tax calculation step of order
processing and allows orders to progress to the payment processing step.

Note: During the initial configuration of your environment, Oracle sets certain settings
that trigger the fallback tax calculation, including the number of consecutive failed tax
calls, the time span over which to count failed tax calls, and the time period after which
Commerce should try calling the tax processor’s service again.

Commerce uses the fallback logic to calculate taxes only when calls to the tax
processor fail. That is, when the tax processor’s web service responds to a call with
a 500-level status code. Fallback tax calculation is not used when any other type of
response is received. For example, if your Commerce tax settings contain the wrong
postal code for your tax nexus, the tax processor will reply with an error, but that error
will not trigger fallback tax calculation logic.

Set the default tax rate

You use the Commerce Admin API to set the defaultTaxRate property, an integer that
specifies the tax rate to apply when fallback tax processing is used. The default value
for defaultTaxRate is 0, which means that no tax is charged. However, you could set
it to a rate that is higher than any jurisdiction where your store charges tax. The default
tax rate is applied to all prices in an order, including shipping costs.

Note: During the initial configuration of your environment, Oracle sets certain settings
that trigger the fallback tax calculation, including the number of consecutive failed tax
calls, the time span over which to count failed tax calls, and the time period after which
Commerce should try calling the tax processor’s service again. You cannot change
these settings. If you find that the settings are not appropriate for your store, you can
file a support ticket and to change the settings. For example, if orders are failing at the

Chapter 46
Monitor tax processors

46-14

tax processing step, it might be appropriate to allow fewer failed calls over a shorter
time span.

To set the defaultTaxRate property, issue a PUT request to one of the following
endpoints:

• /ccadmin/v1/taxProcessors/vertex-p if your tax processor is Vertex O Series

• /ccadmin/v1/taxProcessors/ava-p if your tax processor is Avalara AvaTax

The following example shows a PUT request that sets the default tax rate for a store
that uses Avalara AvaTax to process taxes. When the fallback logic indicates that the
AvaTax web service is down, Commerce stops making calls to it and automatically
applies a tax rate of 10% to all orders.

PUT /ccadmin/v1/taxProcessors/ava-p HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "type":"avalara",
 "url": "<dedicated_host_instance_url>",
 "defaultTaxRate": 10,
}

Disable fallback tax calculation

The fallback tax calculation settings are enabled by default, but you can disable
them. If you disable fallback tax calculation and Commerce cannot reach your tax
processor’s web service, for example in the case of an outage, shoppers will see an
error during checkout and will not be able to complete their orders.

You use the Commerce Admin API to set the fallbackEnabled property, a Boolean
that specifies whether fallback tax processing is used. The default value for
fallbackEnabled is true.

To set this property, issue a PUT request to one of the following endpoints:

• /ccadmin/v1/taxProcessors/vertex-p if your tax processor is Vertex O Series

• /ccadmin/v1/taxProcessors/ava-p if your tax processor is Avalara AvaTax

The following example shows a PUT request that disables fallback tax processing for a
store that uses Avalara AvaTax to process taxes.

PUT /ccadmin/v1/taxProcessors/ava-p HTTP/1.1
Content-Type: application/json
Authorization: Bearer <access_token>

{
 "type":"avalara",
 "url": "<dedicated_host_instance_url>",
 "fallbackEnabled": false,
}

Chapter 46
Monitor tax processors

46-15

Track fallback tax calculation on orders

A Boolean property on Commerce order objects, TaxCalculated, indicates how tax
was calculated for the order:

• If the value of TaxCalculated is true, tax was calculated normally by your specified
tax processor.

• If the value of TaxCalculated is false, the default tax rate you set was applied to
the order.

This property is also included in the data Commerce sends in the Order Submit
webhook. You can use this information to identify orders to which the default tax rate
was applied so you can decide how to handle them in your order management system.

Chapter 46
Monitor tax processors

46-16

47
Configure Search Features

This chapter describes how to use the Search and Navigation REST API to configure
the features that enable shoppers to search for product data in the storefront.

The REST API enables you to export the search features from your application so that
you can configure them, and then re-import them into your application. Configuration
can be exported and imported in either ZIP format or JSON format, as described in
this chapter. The two formats use the same set of URLs.

For an online summary of the Search and Navigation REST API, refer to the REST
API for Oracle CX Commerce.

Important: Oracle recommends that you not modify the configuration of search
features unless you are an advanced user and have requirements that you cannot
meet in any other way. Oracle also recommends that you not attempt to modify
any search features other than those described in this chapter. Note that some
search features can be configured by the merchandiser, as described in Manage
Search Settings. Consult this section before deciding to configure search features as
described in this chapter.

Understand which search features can be configured
You can configure the search features that enable shoppers to search for product data
in the storefront.

The following table summarizes the search features that you can configure to
determine which records are returned by searches, and the order in which they are
returned.

Configurable feature How is this feature
configured?

For more information, see:

How shoppers’ search strings
are matched with index fields
(property values or dimension
values)

By selecting a match mode,
as part of configuring a search
interface.

"Understand how search
strings are matched to index
fields" in the topic Understand
what a search interface does

Which index fields are
examined as possible matches
with shoppers’ search strings.

By adding index fields to
the fields array in a search
interface.

Specify which index fields are
included in searches

Equivalent phrases for the
shoppers’ search terms.

By configuring a thesaurus of
equivalent phrases for specific
search terms.

Configure a thesaurus

URLs to which shoppers are
directed when they enter
specific search strings.

By configuring keyword
redirects that specify the
URLs to which shoppers are
directed.

Configure keyword redirects

47-1

Configurable feature How is this feature
configured?

For more information, see:

URLs that are optimized for
search engines and shoppers

By configuring URLs to have
directory-style structures that
better enable search engines
to index the URLs and that
better describe the contents of
pages for shoppers.

Optimize URLs for search
engines

How search results are ranked
and sorted.

By defining a relevance
ranking strategy that includes
one or more relevance ranking
modules. Relevance ranking
strategies determine the order
of records in search results.

Configure the ranking of
records in search results

Understand how to execute endpoints
Each request to execute an endpoint consists of the endpoint itself - that is, an HTTP
method and a URL - as well as other information required by the endpoint being
executed.

For example, the endpoint that imports configuration of keyword redirects is as follows:

POST /gsadmin/v1/cloud/redirects

You must provide the following information:

• A message header specifying a valid OAuth access token

• In JSON format only, a message header specifying that imported content is to be
parsed as JSON. The value of this header must be: "Content-Type:application/
json". This header is not used with endpoints that export or delete configuration.

• A parameter that points to the file containing the content to be imported. This
parameter is not used with endpoints that export or delete configuration.

A variety of tools and utilities exist to enable you to execute endpoints. For samples of
how to execute the endpoints using the cURL command line utility, see Sample Search
and Navigation REST API endpoints using cURL.

Understand ZIP format and JSON format
Any request can be made in either of two formats: ZIP format and JSON format.

These formats differ only in how they import and export configuration. All configuration,
however exported or imported, is written in JSON code.

The following table summarizes the differences between JSON format and ZIP format.

Chapter 47
Understand how to execute endpoints

47-2

Format Input and output HTTP methods Best uses

JSON JSON content
specified in command
line or utility, or

In JSON files.

GET

POST

PUT

PATCH

Exporting
configuration for
viewing, or

Configuring resources.

ZIP In ZIP files that
contain JSON files.

GET

POST

Exporting
configuration for
backup and migration,
or

Configuring resources.

HTTP methods for configuring search features
The following table summarizes the HTTP methods supported for use with JSON
format and ZIP format.

Format Operation Method Examples

JSON Export GET GET/gsadmin/v1/
cloud/
thesaurus.json
or

GET /
gsadmin/v1/
cloud/thesaurus

JSON Create POST POST/
gsadmin/v1/
cloud/thesaurus

JSON Overwrite PUT PUT/gsadmin/v1/
cloud/thesaurus

PUT /
gsadmin/v1/
cloud/
thesaurus/
thesaurus-
entry-name

The input to the
PUT request can
include configuration
of the child objects
(thesaurus-entry) of
thesaurus. The
imported configuration
of the child object
replaces its existing
configuration.

Chapter 47
HTTP methods for configuring search features

47-3

Format Operation Method Examples

JSON Modify PATCH PATCH /
gsadmin/v1/
cloud/thesaurus

PATCH modifies an
existing object by
modifying the values
of existing attributes in
the object or adding
new attributes to the
object.

Note: PATCH cannot
modify child objects of
the object specified in
the URL.

For example, to modify
a thesaurus-entry
object with PATCH,
you must specify the
URL:

PATCH /
gsadmin/v1/
cloud/
thesaurus/
thesaurus-
entry-name.

ZIP Export GET GET/gsadmin/v1/
cloud/
thesaurus.zip

 ZIP Create POST POST/
gsadmin/v1/
cloud/thesaurus

 ZIP Overwrite POST POST/
gsadmin/v1/
cloud/thesaurus

n/a Delete DELETE For information, see
Delete resources.

Note the following differences between the HTTP methods that are supported for ZIP
format and for JSON format:

• JSON format supports two methods that are not supported for ZIP format: PUT
and PATCH. These methods cannot be used with ZIP format.

• With ZIP format, the POST method creates configuration, overwriting any existing
configuration. With JSON format, POST can create but not overwrite; to overwrite
configuration in JSON format, use the PUT method.

Delete resources
Important: Oracle recommends that you not delete high level resources such as /
thesaurus or /redirects.

Chapter 47
Delete resources

47-4

Oracle also recommends that you back up your configuration before deleting any
object. For information, see Back up and restore all application configuration.

To delete a resource, issue the following:

DELETE /gsadmin/v1/cloud/resourcePath

where resourcePath indicates the object to be deleted. Both the object indicated by
resourcePath and its child objects (if any) are deleted.

For example, the following endpoint deletes the redirects object and all its child objects
(redirect-group objects and redirect-entry objects):

DELETE /gsadmin/v1/cloud/redirects

Note: Deleting the application is not supported. For example, the following endpoint
fails with an error:

DELETE /gsadmin/v1/cloud

Understand system-generated object attributes
The following table lists attributes that the system adds to the configuration of objects
imported through the POST, PUT, or PATCH methods.

These attributes are read only. You do not need to include these attributes in any
configuration that you import.

Attribute Name Value

ecr:lastModifiedBy user ID The user who last modified the
search interface. Example:

"ecr:lastModifiedBy":
"admin"

ecr:lastModified time stamp The time when the search
interface was last modified.
Example:

"ecr:lastModified":
"2016-03-27T13:39:15.48
6Z"

ecr:createDate time stamp The time when the search
interface was created.
Example:

"ecr:createDate":
"2016-03-27T13:39:15.48
6Z"

Export and import all search configuration
Exporting and importing all search configuration in ZIP format is a convenient
technique for performing the following tasks:

Chapter 47
Understand system-generated object attributes

47-5

• Backing up and restoring all search configuration. For information, see Back up
and restore all application configuration.

• Migrating all search configuration from one environment to another. For
information, see Migrate configuration of all search features.

You can also use ZIP format to configure individual resources. For information, see
Configure individual resources using ZIP format.

For examples of how to specify input and output for endpoints, see Sample Search
and Navigation REST API endpoints using cURL.

Export all configuration in ZIP format

Use the following endpoint to export search configuration in ZIP format:

GET /gsadmin/v1/cloud/resourcePath.zip

where:

resourcePath specifies the location of the particular resource to the exported.

.zip indicates that ZIP format is used. The .zip extension is used only with the GET
command.

The following are examples of endpoints in ZIP format:

GET /gsadmin/v1/cloud.zip

(Exports the entire search configuration for the cloud application.)

GET /gsadmin/v1/cloud/thesaurus.zip

(Exports the entire thesaurus for the cloud application.)

GET /gsadmin/v1/cloud/searchInterfaces/All.zip

(Exports configuration for the search interface named All.)

When the ZIP file is downloaded through a browser client, it is saved to the default
downloads location of the browser, or to a location that you specify. If the ZIP file is
downloaded programmatically, your client application must determine how to handle
the ZIP file.

Import all configuration in ZIP format

The endpoint to import configuration of a resource using the ZIP format is of the
following form:

POST /gsadmin/v1/cloud/resourcePath

For example, the following endpoint imports configuration of the search interface ALL:

POST /gsadmin/v1/cloud/searchInterfaces/All

Chapter 47
Export and import all search configuration

47-6

The ZIP file provided with the POST endpoint is first scanned for viruses and
unsupported file types. The JSON content to be imported is then validated for
syntactical correctness. If the scanning or validation fails, an error is returned. If the
scanning and validation are successful, the current configuration of the resource at
resourcePath is fully replaced by configuration in the specified zip file.

Important: The ZIP file content that you import entirely replaces any existing
configuration at resourcePath. Thus, if you import only the configuration for a
thesaurus into /cloud (rather than into /cloud/thesaurus), all existing search
configuration at /cloud will be replaced by the configuration of the thesaurus alone.

Configure individual resources using ZIP format
To configure an individual search resource in ZIP format, follow these steps:

1. Export the configuration of the search resource that you want to edit. For example,
the following endpoint exports the configuration of the search interface All:

GET /gsadmin/v1/cloud/searchInterfaces/All.zip

2. Open the downloaded ZIP file containing the configuration of the search interface
ALL and edit the configuration.

3. Zip up the edited JSON configuration.

4. Import the ZIP file containing the edited configuration of All using the following
endpoint:

POST /gsadmin/v1/cloud/searchInterfaces/All

With the POST endpoint you must specify the name and location of the ZIP file
containing the configuration to be imported. For an example of how to specify the
ZIP file, see Understand how to execute endpoints.

Important: Do not delete files from or add files to the exported ZIP file, or change the
arrangement of folders and files in it.

Back up and restore all application configuration
To back up and restore all application configuration, use the procedure for exporting
and importing configuration in ZIP files as follows:

1. Export a search configuration using the following endpoint:

GET /gsadmin/v1/cloud.zip

This endpoint exports all search configuration in a file whose name and location
must be specified with the endpoint.

2. Store the downloaded ZIP file in a secure location.

3. To restore your search configuration, import the ZIP file containing the
configuration using the following endpoint:

POST /gsadmin/v1/cloud

Chapter 47
Configure individual resources using ZIP format

47-7

With the POST endpoint you must specify the name and location of the ZIP file
containing the configuration to be imported. For an example of how to specify the ZIP
file, see Understand how to execute endpoints.

Migrate configuration of all search features
To migrate the configuration of all search features from one system to another, follow
these steps:

1. Export all search configuration using the following endpoint:

GET /gsadmin/v1/cloud.zip

This endpoint exports all search configuration in a file whose name and location
are specified with the endpoint.

2. Copy the downloaded ZIP file to the system to which you want to migrate the
search configuration.

3. Import the search configuration in the downloaded ZIP file onto the system to
which you are migrating, using the following endpoint:

POST /gsadmin/v1/cloud

With the POST endpoint you must specify the name and location of the ZIP file
containing the configuration to be imported. For an example of how to specify the ZIP
file, see Understand how to execute endpoints.

Apply configuration changes to your live storefront
Changes to search configuration do not take effect in your live storefront until you
publish the catalog.

Some changes, however, take effect in the preview storefront immediately, as noted in
the following section.

Changes that take effect in the preview storefront immediately

The following changes to search configuration take effect in the preview storefront
immediately, without publishing:

• Changes in the Catalog tab.

• Changes in Search tab.

• Changes made to the configuration of resources through the Search and
Navigation REST API. These resources currently include: Thesaurus, Search
Interfaces, Relevance Ranking Strategy, and Keyword Redirects.

Steps for publishing the catalog

To publish the catalog, follow these steps:

1. Click the Publishing tab in the Oracle CX Commerce administration interface.

2. At the top of the updates list, click Publish and then select Publish Now.

Chapter 47
Migrate configuration of all search features

47-8

Note: The Publish button becomes active only when changes have been made to
Catalog configuration through the Oracle CX Commerce administration interface.
Making changes to search configuration through the Search and Navigation REST
API does not activate the Publish button.

3. Confirm that you want to publish everything on the Updates to Publish list.

For information about how to schedule the publishing of changes, see Schedule
publishing events.

Configure a thesaurus
To broaden the search for product information that is performed when a shopper
searches on a given term, you can specify one or more thesaurus entries for that term.

The search results include matches on the thesaurus entries as well as on the search
term.

To create thesaurus entries, you must first create a thesaurus, which will serve as a
container for all your thesaurus entries. You then add an entry to the thesaurus for
each thesaurus entry that you want to define.

If your instance of Oracle CX Commerce is running multiple sites, all sites must share
the same thesaurus configuration. You cannot configure the thesaurus differently for
the different sites.

This section includes the following topics:

• Understand thesaurus entries

• Export thesaurus entries

• Create thesaurus entries

• Modify thesaurus entries

• Replace the thesaurus

Understand thesaurus entries

You can add two kinds of the following entries to your thesaurus:

• A one-way thesaurus entry, which establishes a mapping between a search term
and its thesaurus entry that applies in a single direction only.
For example, you can define a one-way mapping so that all queries on “tools”
(the shopper’s search term) return matches containing “hammers” (a synonym
for “tools” specified in the thesaurus) as well as matches on “tools”. Note,
however, that this mapping works only one way: searching for the thesaurus entry
“hammers” does not return matches containing the word “tools”.

• A multi-way thesaurus entry, which specifies two-way mappings among two or
more words or phrases that are treated as equivalents of each other. Note: In the
Oracle CX Commerce interface, the term equivalent is used in place of multi-way.
Use multi-way in the REST API.
For example, a multi-way entry might specify that the terms “adapter”, “converter”,
and “adapter converter” are equivalents of each other. A search on any of these
terms can return matches on any of the three.

The following table describes the JSON attributes that configure a thesaurus and
thesaurus entries.

Chapter 47
Configure a thesaurus

47-9

Attribute Value

ecr:type The ecr-type of the node. The value can be
thesaurus or thesaurus-entry. Required.

id Can be generated by the system or specified
by the user. Required for operations on a
thesaurus entry.

thesaurus-entry Each entry has the following attributes:

Type: (string, required). The supported values
are:

one-way: Specifies a single thesaurus entry
for the searchTerms value. If entered as a
search term, a searchTerms value matches
the synonyms value; but a synonyms value, if
entered as a search term, does not match a
searchTerms value.

equivalent: Specifies a list of synonyms, any
one of which, if entered as a search term,
matches any of the other synonyms. Note: In
the REST API, the term multi-way is used in
place of equivalent.

searchTerms: (string) Required if the Type
value is one-way. Not used if the entry type is
multi-way.

synonyms: (string or string[], required). The
synonyms values are treated in the following
ways:

If type is one-way, the synonyms value is
a single word or phrase that is considered a
match for the searchTerm value.

If type is multi-way, the synonyms value is
a set of two or more words or phrases, any
one of which is considered a match for any
of the others when entered by the user as a
search term.

Example: thesaurus with two thesaurus-entry objects

The following JSON illustrates the configuration of a thesaurus object containing two
thesaurus-entry objects: a one-way entry that configures “shirt” as a searchTerms
value and “blouse” as a synonyms value; and a multi-way entry that configures
“adapter”, “converter”, and “adapter-converter” as synonyms of each other. Note that
the ID of one thesaurus-entry object was generated by the system and the other was
specified by the user; for information about how to specify the IDs of thesaurus-entry
objects, see Create thesaurus entries.

{
 "ecr:type" : "thesaurus",
 "auto_generated_id":
 {
 "ecr:type": "thesaurus-entry",
 "type": "one-way",
 "searchTerms": "shirt",
 "synonyms" : ["blouse"]

Chapter 47
Configure a thesaurus

47-10

 },
 "user_specified_id":
 {
 "ecr:type": "thesaurus-entry",
 "type": "multi-way",
 "synonyms": [
 "converter","adapter","adapter-converter"
]
 }
}

Thus:

• If a shopper enters “shirt” as a search term, records that include “blouse” appear in
the search results; but if a shopper enters “blouse” as a search term, records that
include “shirt” do not appear in the search results.

• If a shopper enters any of the words “ adapter”, “converter”, or “ adapter-converter”
as a search term, records that contain any of the three words appear in the search
results.

Export thesaurus entries

You can use the following endpoint to export thesaurus configuration in JSON or in a
ZIP file:

GET /gsadmin/v1/cloud/thesaurus (JSON format)
GET /gsadmin/v1/cloud/thesaurus.zip (ZIP format)

Create thesaurus entries

Execute a POST endpoint with input such as the following to add a thesaurus entry
with a user-specified ID to the thesaurus:

POST /gsadmin/v1/cloud/thesaurus/user_specified_id
{
 "ecr:type" : "thesaurus-entry",
 "type": "one-way",
 "synonyms": [
 "dig"
]
 "searchTerms": "digit"
}

Execute a POST endpoint with input such as the following to add a thesaurus entry
with a system-generated ID to the thesaurus:

POST /gsadmin/v1/cloud/thesaurus
{
 "ecr:type" : "thesaurus-entry",
 "type": "one-way",
 "synonyms": [
 "dig"
]

Chapter 47
Configure a thesaurus

47-11

 "searchTerms": "digit"
}

Execute the following POST endpoint to import thesaurus configuration in a zip file:

POST /gsadmin/v1/cloud/thesaurus

Modify thesaurus entries

Execute a PATCH endpoint to modify the values of existing thesaurus entries. For
example, to change the synonym from dig to digi for sample_entry_1, you can
execute the PATCH method with the following input:

PATCH /gsadmin/v1/cloud/thesaurus/sample_entry_1
{
 "synonyms": ["digi"],
 "ecr:type": "thesaurus-entry"
}

Note: PATCH is supported only in JSON format.

Replace the thesaurus

Execute a PUT endpoint to replace the thesaurus in its entirety. For example, the
following endpoint replaces configuration of the thesaurus:

PUT /gsadmin/v1/cloud/thesaurus

The new configuration of the thesaurus must be included in the JSON body of the
endpoint.

Note: PUT is supported only in JSON format.

Configure keyword redirects
This section describes keyword redirects and how to export, create, replace, and
modify keyword redirect configuration using the Search Admin and Configuration
REST API.

It includes the following topics:

• Understand keyword redirects

• Configure keyword redirects for multiple sites

• Keyword redirect objects

• Configure the redirects object

• Configure a redirect-group object

• Configure a redirect-entry object

Chapter 47
Configure keyword redirects

47-12

Understand keyword redirects

You can configure your application to send a storefront shopper to a particular URL
when the shopper enters a particular search term. The URL can represent a static
page in your application (such as an “About Us” page) or a specific search or
navigation state. This type of configuration is known as a keyword redirect.

You can configure any number of search terms to redirect the shopper to a particular
URL. For example, you can configure the search terms “delivery” and “shipping” to
redirect shoppers to a URL such as http://shipping.example.com.

Configure keyword redirects for multiple sites

If your instance of Oracle CX Commerce is running multiple sites, you can configure
keyword redirects differently for the different sites by using the siteIds attribute. A
redirect entry created without the siteIds attribute applies to all sites.

Keyword redirect objects

Keyword redirects are configured by the following three ecr:type objects:

• a redirects object, which contains a single:

• redirect-group object, which contains one or more of the following objects:

– redirect-entry objects, each of which specifies the URL to which shoppers
are redirected when they enter a particular search term.

– Multiple redirect-entry objects, each specifying a different search term, can
redirect shoppers to the same URL.

Note: It is possible to configure more than one redirect-group object, but for all
ordinary purposes a single redirect-group object is sufficient.

Sample redirects configuration

The following example illustrates the configuration of a redirects object containing
a redirect-group object named Products, which contains redirect-entry objects
named id1 and id2:

{
 "ecr:type": "redirects",
 "Products" : {
 "ecr:type": "redirect-group",
 "id1" : {
 "ecr:type": "redirect-entry",
 "searchTerms": "canon",
 "matchmode": "MATCHEXACT",
 "url": "/browse/Canon/_/N-1z141ya"
 },
 "id2" : {
 "ecr:type": "redirect-entry",
 "searchTerms": "nikon",
 "matchmode": "MATCHEXACT",
 "url": "/browse/Nikon/_/N-1z141ya"
 }

Chapter 47
Configure keyword redirects

47-13

 }
}

Configure the redirects object

This section describes the operations that can be performed to export, create, replace,
and modify configuration of the redirects object.

Redirects object attribute

The following table summarizes the attribute of redirects objects.

Attribute Required? Type Values

"ecr:type" yes String Redirects (required
value)

There can be only one
redirects object.
The redirects object
can contain one
or more redirect-
group objects.

See Sample redirects
configuration.

Note: You cannot add attributes to or modify the attribute value of the redirects
object. You can only create it, if for any reason it is missing.

Export redirects object in JSON format

Use the following endpoint to export configuration of the redirects object, in JSON
format:

GET /gsadmin/v1/cloud/redirects.json

In JSON format, the GET endpoint returns full configuration of the redirects object,
and lists the child object, Default, of the redirects object; for example:

{
 "ecr:lastModifiedBy": "occ_admin",
 "ecr:lastModified": "2016-10-26T09:32:32.602-07:00",
 "ecr:createDate": "2016-10-26T09:32:32.602-07:00",
 "ecr:type": "redirects",
 "Default": {
 "ecr:lastModifiedBy": "occ_admin",
 "ecr:lastModified": "2016-10-26T09:32:32.661-07:00",
 "ecr:createDate": "2016-10-26T09:32:32.661-07:00",
 "ecr:type": "redirect-group"
 }
}

To export the full configuration of the child object of the redirects object, use the GET
method in ZIP format, as described in the following section.

Export redirects object in ZIP format

Chapter 47
Configure keyword redirects

47-14

Use the following endpoint to export configuration of the redirects object in ZIP
format:

GET /gsadmin/v1/cloud/redirects.zip

In ZIP format, the GET endpoint returns not only the redirects object, but also the
immediate child object (redirect-group) of redirects.

The configuration of all objects is returned in a ZIP file. The ZIP file includes a file
named _.json containing the configuration of the redirects object, and an additional
_.json file containing partial configuration of the redirect-group object.

For example, suppose that the redirects object contains a redirect-group named
Default. The _.json file that configures the redirects object contains the following:

{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-10-17T05:25:35.760-07:00",
 "ecr:createDate": "2016-10-17T05:25:35.760-07:00",
 "ecr:type": "redirects"
}

The _.json file that configures the redirect-group object named Default is
contained in a directory named Default within the ZIP file. This _.json file contains
configuration such as the following:

{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-10-24T07:57:48.924-07:00",
 "ecr:createDate": "2016-10-24T07:57:48.924-07:00",
 "ecr:type": "redirect-group"
}

To get full configuration of a redirect-group object, specify the following endpoint:

GET /gsadmin/v1/cloud/redirects/redirect-group-name.zip pathname/
filename.zip

Create a redirects object

Use the following endpoint to configure the redirects object, in JSON format or ZIP
format:

POST /gsadmin/v1/cloud/redirects

For most purposes, it is convenient to configure all child objects of redirects through
the same request that configures redirects.

Chapter 47
Configure keyword redirects

47-15

For example, the POST endpoint above can import the following JSON content to
configure not only the redirects object, but also a redirect-group object named
Default and a redirect-entry object named id1 within the redirect-group object:

{
 "ecr:type": "redirects",
 "Default": {
 "ecr:type": "redirect-group",
 "id1": {
 "ecr:type": "redirect-entry",
 "searchTerms": "fujifilm",
 "siteIds": "siteA",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us"
 }
 }
}

Replace the redirects object and its children

In JSON format, use a PUT endpoint to replace the redirects object and all its child
objects with the content provided as input to the endpoint:

PUT /gsadmin/v1/cloud/redirects

Note: The PUT method cannot be used with ZIP format.

In ZIP format, use a POST endpoint to replace the redirects object and all its child
objects with the content provided as input to the endpoint:

POST /gsadmin/v1/cloud/redirects

For example, the PUT and POST endpoints above can import the following JSON
content to replace all existing configuration of the redirects object and its child
objects:

{
 "ecr:type": "redirects",
 "Default": {
 "ecr:type": "redirect-group",
 "id1": {
 "ecr:type": "redirect-entry",
 "searchTerms": "kodak",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us"
 }
 }
}

Configure a redirect-group object

This section describes how to get, create, modify, and replace the configuration of a
redirect-group object.

Chapter 47
Configure keyword redirects

47-16

Redirect-group object attributes

The following table lists the attributes of a redirect-group object:

Attribute Required? Type Values

"ecr:type" yes String redirect-group
(required value)

Note: For almost
all purposes, only
one redirect-group
object needs to
be configured. Each
redirect-group
object, however, can
contain one or more
redirect-entries
child objects.

See Sample redirects
configuration.

Export the redirect-group object in ZIP format

Use an endpoint of the following form to export configuration of a redirect-group
object in ZIP format:

GET /gsadmin/v1/cloud/redirects/redirect-group-name.ZIP

The ZIP file in which the configuration is downloaded contains the following _.json
files:

• A file containing the configuration of the redirects object; for example:

{
 "ecr:lastModifiedBy": "occ_admin",
 "ecr:lastModified": "2016-10-26T17:11:47.308Z",
 "ecr:createDate": "2016-10-26T09:32:32.602-07:00",
 "ecr:type": "redirects"
}

• An individual _.json file for the redirect-group object in redirects; for example,
the configuration of the Default redirect-group object can be as follows:

{
 "ecr:lastModifiedBy": "occ_admin",
 "ecr:lastModified": "2016-10-26T10:11:47.369-07:00",
 "ecr:createDate": "2016-10-26T10:11:47.369-07:00",
 "ecr:type": "redirect-group",
 "id1": {
 "ecr:type": "redirect-entry",
 "searchTerms": "canon",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us",
 "searchTermExpansions": {
 "0":{"canon": ["canon"]}

Chapter 47
Configure keyword redirects

47-17

 }
 },
 "id2": {
 "ecr:type": "redirect-entry",
 "searchTerms": "contacts",
 "matchmode": "MATCHEXACT",
 "url": "/contact-us",
 "searchTermExpansions": {
 "0": {"contacts": ["contact"]}
 }
 }
}

Note: searchTermExpansions is a system-generated attribute. Do not delete or modify
it except when the searchTerms attribute is updated, in which case delete the
searchTermExpansions attribute from the JSON, use the PUT endpoint to update the
redirect-group object and generate a new searchTermExpansions attribute.

Export the redirect-group object in JSON format

Use an endpoint of the following form to export configuration of a redirect-group object
in JSON format:

GET /gsadmin/v1/cloud/redirects/redirect-group-name.json

or

GET /gsadmin/v1/cloud/redirects/redirect-group-name

For example, the following endpoint exports configuration of a redirect-group named
Default:

GET /gsadmin/v1/cloud/redirects/Default

The following sample illustrates content of the file to which the configuration of
the Default redirect-group object is exported; note that the configuration of the two
redirect-entry child objects under Default is contained in this same file:

{
 "ecr:type": "redirect-group",
 "id1": {
 "ecr:type": "redirect-entry",
 "searchTerms": "canon",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us",
 "searchTermExpansions": {
 "0": {"canon": ["canon"]}
 }
 },
 "id2": {
 "ecr:type": "redirect-entry",
 "searchTerms": "contacts",
 "matchmode": "MATCHEXACT",

Chapter 47
Configure keyword redirects

47-18

 "url": "/contact-us",
 "searchTermExpansions": {
 "0": {"contacts": ["contact"]}
 }
 }
}

Note: searchTermExpansions is a system-generated attribute. Do not delete or modify
it except when the searchTerms attribute is updated, in which case delete the
searchTermExpansions attribute from the JSON, use the PUT endpoint to update the
redirect-group object and generate a new searchTermExpansions attribute.

Create the redirect-group object

If no redirect-group object currently exists, you can create one using the POST
method. If a redirect-group object currently exists, however, you do not need to
create another. One redirect-group object is sufficient for all ordinary purposes.

Use a POST endpoint of the following form to create a redirect-group object, in
JSON format or ZIP format:

POST /gsadmin/v1/cloud/redirects/redirect-group-name

The JSON content that configures the redirect-group object can include the
configuration of the redirect-entry objects that the redirect-group is to contain;
for example, the following content supplied to the POST endpoint above creates a
redirect-group object containing two redirect-entry objects, id1 and id2:

{
 "ecr:type": "redirect-group",
 "id1": {
 "ecr:type": "redirect-entry",
 "searchTerms": "canon",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us",
 "searchTermExpansions": {
 "0": {"canon": ["canon"]}
 }
 },
 "id2": {
 "ecr:type": "redirect-entry",
 "searchTerms": "contacts",
 "matchmode": "MATCHEXACT",
 "url": "/contact-us",
 "searchTermExpansions": {
 "0": {"contacts": ["contact"]}
 }
 }
}

Configure a redirect-entry object

You can get, create, modify, and replace redirect-entry object configuration using
the Search Admin and Configuration REST API.

Chapter 47
Configure keyword redirects

47-19

Export redirect-entry object configuration in ZIP format

Use a GET endpoint of the following form to export configuration of a redirect-entry
object in ZIP format:

GET /gsadmin/v1/cloud/redirects/redirect-group-name/redirect-entry-
name.ZIP

The ZIP file in which the configuration is downloaded contains a file named _.json
that contains the configuration of the redirect-entry object.

Export redirect-entry object configuration in JSON format

Use a GET endpoint of the following form to export configuration of a redirect-entry
object in JSON format:

GET /gsadmin/v1/cloud/redirects/redirect-group-name/redirect-entry-name

For example, the following GET endpoint exports the configuration of a redirect-
entry object named ID3:

GET /gsadmin/v1/cloud/redirects/Default/ID3

The following JSON content illustrates configuration of a redirect-entry object that
can be exported by the endpoint above:

{
 "ecr:type": "redirect-entry",
 "searchTerms": "fujifilm",
 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us",
 "searchTermExpansions": {"0": {"fujifilm": ["fujifilm"]}}
}

Create a redirect-entry object

In JSON or ZIP format, use the following POST endpoint to configure a specified
redirect-entry object in a specified redirect-group object:

POST /gsadmin/v1/cloud/redirect/redirect-group-name/redirect-entry-name

For example, the following endpoint configures a redirect-entry object named id3 in
a redirect-group named Default:

POST /gsadmin/v1/cloud/redirect/Default/id3

The following code illustrates the configuration of a redirect-entry object that can be
input to an endpoint in either ZIP or JSON format:

{
 "ecr:type": "redirect-entry",
 "searchTerms": "fujifilm",

Chapter 47
Configure keyword redirects

47-20

 "matchmode": "MATCHEXACT",
 "url": "http://www.example.com/about-us"
}

Modify a redirect-entry object

In JSON format, you can use the following endpoint to modify the configuration of a
specified redirect-entry object in a specified redirect-group object:

PATCH /gsadmin/v1/cloud/redirects/redirect-group-name/redirect-entry-
name

Note: The PATCH method cannot be used in ZIP format.

For example, the following endpoint modifies a redirect-entry object named id3 in a
redirect-group object named Products:

PATCH /gsadmin/v1/cloud/redirects/Products/id3

The endpoint above can use JSON content such as the following to modify the url
attribute of redirect-entry object named id3:

{
 "ecr:type": "redirect-entry",
 "url": "http://www.example.com/about-us"
}

Redirect-entry object attributes

The following table lists the attributes of redirect-entry objects.

Attribute Required? Type Description

"ecr:type" yes String redirect-entry

Note: One or more
redirect-entry
objects can be
configured as
child objects of
a single redirect-
group object.

See Sample redirects
configuration.

searchTerms yes String One or more phrases
to be compared
with search terms
entered by shoppers.
When matches
occur between a
searchTerms value
and a search term
entered by a shopper,
the keyword redirect is
triggered.

Chapter 47
Configure keyword redirects

47-21

Attribute Required? Type Description

matchmode yes String The type of match
between the specified
searchTerms value
and the search term
that the user enters.
Must be one of:

MATCHEXACT – The
keyword redirect
is triggered only
if a shopper’s
search terms exactly
match the specified
searchTerms values,
in the same order, with
no additional terms.

MATCHPHRASE –
Default. The keyword
redirect is triggered
if the shopper’s
search terms
match the specified
searchTerms values,
in the same order.
The shopper’s search
terms may include
additional words
before or after the
searchTerms values.

MATCHALL – The
keyword redirect
is triggered if a
shopper’s search
terms exactly
match the specified
searchTerms values,
with no additional
terms, but not
necessarily in the
same order

url yes String The URL to which
users are redirected
when a search
term entered by a
shopper matches a
searchTerms value.

siteIds no Array of Strings Specifies one or
more site IDs that
this redirect entry
belongs to. A redirect
entry created without
the siteIds attribute
applies to all sites.

Chapter 47
Configure keyword redirects

47-22

Attribute Required? Type Description

enableStemming no Boolean Determines whether
the system considers
the stems of search
terms (for example,
“box” the stem
of “boxes”) when
constructing keyword
redirects.

searchTermExpansi
ons

no object A system-generated
attribute

Optimize URLs for search engines
This section describes how custom widgets can invoke an /assembler endpoint to
generate URLs that are optimized for search engines.

The optimization not only increases the rankings of the URLs in search engine results.
It also makes the URLs more descriptive of the contents of the pages and thus more
intelligible to shoppers.

When URLs are optimized, the display labels of the refinements to which a shopper
navigates are converted into keywords. The keywords are organized into a directory-
style path that becomes part of the URL. Any search terms entered by the shopper are
appended to the URL.

For example, the following optimized URL points to a page that a shopper reaches by
performing a search on the term “xbox” and then selecting the refinement “Consoles”:

https://www.example.com/searchresults/Consoles/_/N-1817514100?Ntt=xbox

where:

Consoles is the display label for the dimension value with the ID 1817514100.

Ntt=xbox specifies the record search term entered by the shopper (“xbox”).

By default, only the Brand dimension and the Category dimension and its hierarchy
are included in optimized URLs. For information about how to include additional
dimensions in optimized URLs, see Specify which dimensions are included in
optimized URLs.

To turn on SEO URL optimization for search URLs, you must first use the Admin API
to issue a PUT request to /ccadmin/v1/merchant/clientConfiguration that sets the
useEnhancedSearch property to true. The useEnhancedSearch property is set to false
by default.

Optimize URLs through custom widgets

You create optimized URLs from within a custom widget by calling the URL
optimization API. For detailed information about how to create custom widgets, see
Understand widgets. Note that the standard widget types do not optimize URLs.

Pages pointed to by the optimized URLs can include links to refinements of the current
navigation state. When a shopper clicks a refinement, the custom widget generates an

Chapter 47
Optimize URLs for search engines

47-23

optimized URL and renders that page, which can contain a link to a further refinement,
and so on. Thus, a shopper can navigate from page to page following a sequence of
optimized URLs.

For example, if a shopper searches on the keyword “xbox”, the custom widget
executes the following endpoint and displays the corresponding page:

/ccstoreui/v1/assembler/pages/Default/services/guidedsearch?Ntt=xbox

This endpoint returns JSON containing a link to a refinement of “xbox”; for example,
“Consoles”:

{
 "@type": "RefinementMenu",
 "displayName": "Category",
 "name": "product.category",
 "ancestors": [],
 "dimensionName": "product.category",
 "refinements": [
 {
 "link":
 "/Consoles/_/N-1817514100?Ntt=xbox",
 "label": "Consoles",
 },
 ...
]
 }

When this JSON is rendered, the shopper can click the refinement “Consoles” to
advance to the next page.

The following steps illustrate in detail how custom widgets can generate a sequence of
optimized URLs that reflect a shopper’s selection of refinements:

1. When a shopper navigates to a refinement or enters a keyword search term, the
custom widget executes a GET operation on the following endpoint:

/ccstoreui/v1/assembler/pages/Default/{pagePath}/{miscPath}/
{pathSeparatorToken}/{pathParameters}?{queryString}

where:

pagePath = Indicates the page to which the URL points.

miscPath = Keywords representing dimension value IDs, arranged into a directory-
style structure.

pathSeparatorToken = An arbitrary token (an underscore by common convention)
that separates the optimized portion of the URL from the query parameters that
the optimized portion represents.

pathParameters = The dimension IDs in the current navigation state, prefixed by
the query parameter N-.

queryString = The search terms that the shopper enters, prefixed by the query
parameter Ntt-.

Chapter 47
Optimize URLs for search engines

47-24

Note: Default is the required site ID.

2. The widget renders the JSON as a refinement menu for the dimension specified
by dimensionName. The refinement’s display name is specified by the label
property.

3. When the shopper selects the refinement, the custom widget constructs a search
service URL consisting of the “link" value appended to the following prefix: "/
ccstoreui/v1/assembler/pages/Default/guidedsearch".
Thus, when a shopper searches on the keyword “xbox” and then clicks the
refinement Consoles, the widget constructs an optimized URL such as the
following:

/ccstoreui/v1/assembler/pages/Default/guidedsearch” + /Consoles/_/
N-1817514100?Ntt=xbox

4. The custom widget renders the page pointed to by the above URL. If the shopper
chooses any further refinements, the widget again executes the URL optimization
API and constructs and renders a URL for the refinement page.

Note: Shoppers see optimized URLs such as the following in their browsers:

http://www.example.com/products/consoles/_/N-1817514100?Ntl=en&Ntt=xbox

They do not see the search URLs such as the following, which the custom widgets
construct behind the scenes and invoke through a GET operation:

http://www.example.com/ccstoreui/v1/assembler/pages/Default/services/
guidedsearch/consoles/_/N-1817514100+927940346?Ntl=en&Ntt=xbox

Specify which dimensions are included in optimized URLs

By default, only the Brand dimension, the Category dimension, and dimensions in the
Category hierarchy are included in optimized URLs.

You can specify additional dimensions to appear in the URLs by setting the
includeInNavLinks property of the dimension’s seoConfig attribute. If this property
is set to true, the dimension is included in navigation URLs. (Navigation URLs point to
pages that a shopper arrives at by guided navigation.)

Recommended practice is to include dimensions that describe the qualities of products
that shoppers are likely to search for (such as category, brand, fabric, or features) and
to exclude dimensions with numerical values (such as rating, price or weight).

Note: For example, the seoConfig attribute of the color dimension can be configured
as follows:

"product.color": {
 "ecr:type": "dimension",
 "mergeAction" : "update"
 ...
 "seoConfig": {
 "includeInNavLinks": true
 },

Chapter 47
Optimize URLs for search engines

47-25

 ...
}

In the example above, "includeInNavLinks": true causes the dimension color to be
included in navigation URLs.

Note: Include the "mergeAction" : "update" property if the dimension attribute
already exists in Oracle CX Commerce. For a dimension that you are creating, omit
the "mergeAction" : "update" property. (add is the default mergeAction value.)

To apply your configuration of optimized URLs, execute the following endpoint:

POST | PUT /gsadmin/v1/${appName}/attributes/system

View your changes
You can immediately view the optimized URLs in your preview store.

You must publish your changes, however, before they are visible in your production
store. For information about how to preview and publish you store, refer to Understand
publishing.

Specify which index fields are included in searches
This section describes search interfaces, the underlying configurable mechanism
through which a storefront shopper’s search for product data records is executed.

A search interface performs the following actions:

• Specifies which index fields (property values or dimension values) are examined
as possible matches with shoppers’ search terms.

• Specifies how search terms are matched to index fields.

• Together with a relevance ranking strategy, it determines the order in which
records appear in the search results. For information about relevance ranking
strategies, see Configure the ranking of records in search results.

Search interface configuration can be exported and imported in either ZIP format or
JSON format. For information about these formats, see Understand ZIP format and
JSON format.

Note: A search interface can be partially configured in Oracle CX Commerce
administration interface, where it is known as a searchable field ranking. For
information, see Search Results.

This section includes the following topics:

• Configure a single search interface for multiple sites

• Understand what a search interface does

• Know how the Search and Navigation REST API can configure search interfaces

• Understand search interface elements

• Know how to make fields searchable

• Add a field to a search interface

Chapter 47
View your changes

47-26

• Know when changes that affect the search interface take effect

• Export a search interface

• Create a folder object for search interfaces

• Create a search interface

• Replace configuration of a search interface

• Modify configuration of a search interface

Configure a single search interface for multiple sites

If your instance of Oracle CX Commerce is running multiple sites, all sites must share
the same search interface configuration. You cannot configure the search interface
differently for the different sites.

Understand what a search interface does

A search interface does not define or control the user interface through which
shoppers search for product data in the storefront.

Understand the All and TypeAhead search interfaces

The Oracle CX Commerce provides two search interfaces, which perform different
functions as follows:

• The search interface All determines which index fields are examined for possible
matches with the shopper’s search terms, how search terms are matched to index
fields, and, together with the relevance ranking strategy, how records are sorted
in results lists. Only the index fields that are included in All are examined for
possible matches with shoppers’ search terms.
Modify the default version of All as needed to enable shoppers to find product
information easily and efficiently.

• The search interface TypeAhead specifies the index fields for which typeahead
functionality is enabled. Removing an index field from TypeAhead disables
typeahead functionality for searches on that index field. Note that because
wildcarding is required by the typeahead feature, wildcarding is enabled by default
for all members of the TypeAhead search interface.

You can specify which index fields are included as members in All and TypeAhead
using the Search tab of Oracle CX Commerce, or the Search and Navigation REST
API endpoints to modify the configuration of the search interface.

Important: Use of search interfaces other than All and Typeahead is not supported.

Understand how searches are narrowed

A search interface narrows the scope of shoppers’ searches to specified index fields in
your published product data. A search interface does this by specifying the following:

• The dimensions whose dimension values will be examined as possible matches
with the shopper’s search term.

• The properties whose values will be examined as possible matches with the
shopper’s search term.
Note: The dimensions and properties contained by a search interface are known
as its members. Searches ignore dimensions and properties that are not members
of a search interface.

Chapter 47
Specify which index fields are included in searches

47-27

The dimensions and properties correspond to catalog fields. When catalog content is
published the following occurs:

• Product fields that the merchandiser marked as Facet become dimensions.

• Product fields that the merchandiser did not mark as Facet become properties.

• Product category fields such as “Shirts”, “Dresses”, “Skirts” become dimension
values.

• Product records (SKUs) grouped under a product category are tagged to the
corresponding dimension value.

When a storefront shopper searches on a particular term, the search results include
the following product data records:

• Contains a property whose value matches the shopper’s search term, and/or

• Are tagged to dimension values that match the shopper’s search term. The
dimension values must be in dimensions that are members of the search interface.

Example: the search interface All

Suppose that the search interface All includes:

• A property named product.short_desc

• A dimension named product.category

If a storefront shopper performs a search on the term “backpacks”, the search results
contain the following:

• Records with a product.short_desc property whose value matches the search
term (“backpacks”); for example, a record whose product.short_desc property is
set to “SLR Camera/Laptop Backpack”.
and/or

• Records tagged to dimension values in the dimension product.category
that match the search term (“backpacks”); for example, a record tagged
to the dimension value “camera backpacks and cases” in the dimension
product.category.

Note: See the following section for information about how search terms are matched
to properties and dimensions.

Understand how search strings are matched to index fields

You can configure how search strings are matched to index fields by specifying the
following:

• Whether parts of a search string can be individually matched with different
members.

• Whether partial query matches are supported.

For detailed information, see Search interface attributes below.

Understand how the fields array affects the sorting of search results

The order of records in search results is determined by your relevance ranking
strategy. A relevance ranking strategy is composed of different modules, each of which
sorts records according to its own criteria.

Chapter 47
Specify which index fields are included in searches

47-28

Some modules take into account the order of the members in the fields array of
your search interface. For information about how they do this, see Understand how
relevance ranking modules sort results.

The position of the member ecr:crossField in the fields array determines the
position in the search results of records that are added to the list because of cross-
field matches. The member ecr:crossField is taken into account only when the
crossFieldMatch attribute is set to always.

Know how the Search and Navigation REST API can configure search interfaces

The following tasks can be performed only through the Search and Navigation REST
API:

• Create and delete search interfaces

• Enable and disable cross-field matching

• Enable different types of partial matching

• Specify snippet sizes

In addition, the Search and Navigation REST API can perform a number of tasks that
can also be performed through the Search tab of Oracle CX Commerce:

• Add fields to and delete them from a search interface

• Specify the position in search results of records that are selected because of
cross-field matches

Dimensions and properties can be marked as searchable in the Catalog tab of Oracle
CX Commerce.

Note: The Search and Navigation REST API cannot create or modify dimensions or
properties.

Understand search interface elements

A search interface is configured by a JSON document that includes the following
elements:

• attributes: which configure the behavior of the search interface as a whole. See
the following section for information about the attributes of a search interface.

• fields: an attribute array containing the members of the search interface. Each
member is a dimension or property that is examined for matches with the
shopper’s search term. The order of members in the fields array can affect the
order of records in search results; see Understand how the fields array affects the
sorting of search results.

Search interface attributes

A search interface is configured by JSON attributes. The following table summarizes
these attributes. The use of these attributes is discussed in the sections following this
table.

Attribute Supported values Description

ecr:type (required) search-
interface

Specifies that this JSON
document configures a search
interface.

Chapter 47
Specify which index fields are included in searches

47-29

Attribute Supported values Description

isAutoWildcardEnabled true, false True enables wildcarding for
all members of this search
interface.

crossFieldMatch always, never, or
onFailure (See below.)

Specifies whether parts
of a search string can
be individually matched
with different members. For
example, given the search
string “red shoes”, can
matches be made between
“red” and one member, and
between “shoes” and another
member? See Examples:
Cross-field matching and
partial matching.

Cross field matches can be
made between dimensions,
between properties, or
between dimensions and
properties.

The possible values of this
attribute have the following
meanings:

crossFieldMatch always Causes the search always
to look for matches between
members of the search
interface and the parts of a
search string. always is the
recommended setting for most
purposes. See below for a
description of the effect of
setting crossFieldMatch to
always.

Note: If crossFieldMatch is
not specified, always is used
as a default.

 crossFieldMatch never Requires that the entire
search string be found within
the same member in order to
make a match.

You can set
crossFieldMatch to
never only when the
ecr:crossField attribute is
not a member of the fields
array.

Chapter 47
Specify which index fields are included in searches

47-30

Attribute Supported values Description

 crossFieldMatch onFailure Causes the search to look for
matches between members
of the search interface and
parts of a search string
only if it cannot match the
entire search string to any
single member of the search
interface.

You can set
crossFieldMatch to
onFailure only when the
ecr:crossField attribute is
not a member of the fields
array.

partialMatch maxWordsOmitted or

minWordsIncluded (See
below.)

Specifies whether partial
query matches should be
supported for the search
interface that contains this
element. See Examples:
Cross-field matching and
partial matching.

The possible values of this
attribute have the following
meanings:

 partialMatch maxWordsOmitted A positive integer or zero. If
the original keyword search
string includes N words, then
all results will match at least N
– maxWordsOmitted words.
The default is 2.

 partialMatch minWordsIncluded A positive integer. All results
will match at least this many
words from the search query.
The default is 2.

Chapter 47
Specify which index fields are included in searches

47-31

Attribute Supported values Description

fields (required) array of attributes Each attribute in the fields
array specifies a member
of the search interface. An
attribute can represent a
property or a dimension.

The position of the attribute
ecr:crossFields in the
fields array specifies the
position in the search results
of any records that are added
to the search results because
of cross field matches.

Note: Include
ecr:crossfield only if the
value of crossFieldMatch
is Always. Note also
that ecr:crossfield is
used only if the Fields
module is included in your
relevance ranking strategy. For
information about relevance
ranking strategies, see
Configure the ranking of
records in search results.

snippetSize positive integer Specifies the maximum
number of words that this
member can contain. Omitting
this attribute or setting its
value to zero disables the
ability to create snippets.

Note: Snippets are useful
for document searches, but
are not ordinarily used by
eCommerce Web sites.

The following sample JSON illustrates the configuration of a search interface that
includes four members, product.displayName, product.brand, ecr:crossField, and
product.category:

{
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 {
 "attribute": "product.displayName "
 },
 {
 "attribute": "product.brand"
 },
 {
 "attribute": "ecr:crossField"
 },
 {

Chapter 47
Specify which index fields are included in searches

47-32

 "attribute": "product.category"
 }
]
}

Examples: cross-field matching and partial matching

The following examples illustrate the effects on the search results of the
crossfieldMatch and partialMatch attributes.

Cross-field matching example

Suppose that a shopper searches for matches on the string “men’s shoes” through a
search interface that is configured as follows:

• The crossFieldMatch attribute of the search interface is set to Always, as follows:
"crossFieldMatch": "always"

• The members of the search interface include a dimension named
product.category and a property named product.description, as follows:

"fields": [
 {
 "attribute": "product.category "
 },
 {
 "attribute": "product.description"
 }
]

The search results for a search on the string “men’s shoes” will include the following
records:

• Records tagged to dimension values in the dimension product.category that
match both “men’s” and “shoes”.

• Records with a property named product.description that matches both “men’s”
and “shoes”.

• Records tagged to one or more dimension values in the dimension
product.category that match “men’s” and that have a property named
product.description whose value matches “shoes”.

• Records tagged to one or more dimension values in the dimension
product.category that match “shoes” and that have a property named
product.description whose value matches “men’s”.

Partial match example

Suppose that a shopper searches for matches on the string “men’s large blue suede
shoes” through a search interface that is configured with the following partialMatch
values:

"partialMatch":
 {"maxWordsOmitted": 1,
 "minWordsIncluded": 2
 }

Chapter 47
Specify which index fields are included in searches

47-33

The value of maxWordsOmitted specifies that a property or dimension value cannot
match the shopper’s search string if it omits more than one word of the search string.
Thus, only a property or dimension value that includes at least four of the five words in
the search string “men’s large blue suede shoes” will match it.

The value of minWordsIncluded specifies that a property or dimension value cannot
match any search string if it includes fewer than two words of the search string.

Note: Setting minWordsIncluded to a low value can increase the possibility of getting
irrelevant results. Suppose, for example, that minWordsIncluded is set to 1.

If the shopper enters the search string “purple jeans”, the search results include all
records that match “purple jeans”. If it finds no records that match “purple jeans”, it
returns any records that match “purple” or “jeans” – neither of which results is relevant
to the shopper’s search.

To eliminate from the search results any records that match only the single words
“purple “ or “jeans”, set minWordsIncluded to 2. The search results now include only
records that match “purple jeans”; if no records match “purple jeans” there will be no
records in the search results.

Add a field to a search interface

You can add searchable fields to a search interface in any of the following ways:

• Using the Search tab of the Oracle CX Commerce administration interface.

• Using the Search and Navigation REST API to modify the configuration of the
search interface.

Know how to make fields searchable

Index fields are examined for possible matches with the shopper’s search string only if
the following conditions are met:

• They have been marked as searchable. Fields can be marked searchable by the
merchandiser through the catalog view for editing product attributes, in the Oracle
CX Commerce administration interface, and

• They have been added to the search interface as members, on the Search tab
of the Oracle CX Commerce administration interface or through the Search and
Navigation REST API, and

• They are members of the default search interface All.

Note: You can make a field not searchable by removing it from the search interface
All.

Know when changes that affect the search interface take effect

Changes that you make to a search interface through the Search and Navigation
REST API take effect in the preview storefront immediately, without being published.
Similarly, changes that you make to an existing search interface through the Search
tab take effect in the preview storefront immediately.

However, none of these changes take effect in the live storefront until you have
published changes in the catalog.

Toggling fields in the catalog to determine whether they are searchable, are facets,
or are multi-select facets, does not take effect until the merchandiser publishes these
changes.

Chapter 47
Specify which index fields are included in searches

47-34

For more information about when changes to search interface configuration take effect
in your preview and live storefronts, see Apply configuration changes to your live
storefront.

Export a search interface

You can export the search interfaces All and TypeAhead in ZIP format or JSON format
in order to view them, edit them, or back them up.

After you export these search interfaces, you can modify them to meet your
requirements.

To export search interface configuration in ZIP format, use the following endpoint:

GET /gsadmin/v1/cloud/searchInterfaces/searchInterfaceName.zip

To export search interface configuration in JSON format, use the following endpoint:

GET /gsadmin/v1/cloud/searchInterfaces/searchInterfaceName.json

or

GET /gsadmin/v1/cloud/searchInterfaces/searchInterfaceName

Note: The search interface’s name is not included in the JSON that configures the
search interface.

The following example illustrates the JSON representation of a search interface
named All that can be exported by the endpoints above:

{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-03-27T13:39:15.486Z",
 "ecr:createDate": "2016-03-27T13:39:15.486Z",
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 {
 "attribute": "product.id"
 },
 {
 "attribute": "product.sku"
 },
 {
 "attribute": "product.code"
 },
 {
 "attribute": "product.brand.name"
 },
 {
 "attribute": "product.category"
 },
 {
 "attribute": "product.name"

Chapter 47
Specify which index fields are included in searches

47-35

 },
 {
 "attribute": "ecr:crossField"
 },
 {
 "attribute": "product.long_desc"
 }
]
}

Note: The endpoints GET/gsadmin/v1/cloud/searchInterfaces.zip and GET/
gsadmin/v1/cloud/searchInterfaces.json return a list of search interfaces that does
not include the full configurations of the individual search interfaces.

Create a folder object for search interfaces

If a folder object for search interfaces does not exist, you must re-create it. Do not
attempt to create more than one searchInterfaces folder.

The searchInterfaces folder must contain a search interface named All; if All is
missing, shoppers cannot search the catalog. It must also contain a search interface
named TypeAhead if typeahead functionality is to be enabled for shoppers’ search
strings.

Use the following endpoint to create the searchInterfaces folder:

POST /gsadmin/v1/cloud/searchInterfaces

The POST endpoint must import the following JSON configuration:

{
 "ecr:type": "search-interface-folder"
}

Note: For most purposes, it is convenient to create the search interface All when
you create the searchInterfaces folder. In this case, the JSON configuration that you
provide as input to the POST request includes the configuration of All as well as the
configuration of the searchInterfaces folder.

Create a search interface

Note: Only two interfaces are supported: All and TypeAhead. Thus, you will need to
create a search interface only if, for whatever reason, one of these search interfaces
is missing. Do not attempt to create or use search interfaces other than All and
TypeAhead.

In JSON format or ZIP format, use a POST endpoint to create the configuration of a
search interface.

For example, the following endpoint imports configuration of a search interface named
All:

POST /gsadmin/v1/cloud/searchInterfaces/All

Chapter 47
Specify which index fields are included in searches

47-36

The endpoint must include JSON configuration of the search interface All as its
content; for example:

{
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 {
 "attribute": "product.id"
 },
 {
 "attribute": "product.sku"
 },
 {
 "attribute": "product.code"
 },
 {
 "attribute": "product.brand.name"
 },
 {
 "attribute": "product.category"
 },
 {
 "attribute": "product.name"
 },
 {
 {
 "attribute": "ecr:crossField"
 },
 "attribute": "product.long_desc"
 }
]
}

Note: The JSON object that configures a search interface does not specify the name
of the search interface. Instead, the name of the search interface is assumed to be the
same as the name of the subfolder (for example, All) where the search interface is
created.

Replace configuration of a search interface

In ZIP format, you can use the following POST endpoint to replace the current
configuration of a search interface in its entirety. For example, the following endpoint
replaces configuration of the search interface ALL:

POST /gsadmin/v1/cloud/searchInterfaces/All

In JSON format, you can use the following PUT endpoint to replace the current
configuration of a search interface in its entirety. For example, the following endpoint
replaces configuration of the search interface ALL:

PUT /gsadmin/v1/cloud/searchInterfaces/All

Chapter 47
Specify which index fields are included in searches

47-37

The PUT method can only replace a search interface in its entirety; it cannot replace
parts of a search interface. An error results if you attempt to PUT a search interface
with a given name when no search interface with that name currently exists.

Modify configuration of a search interface

In JSON format, you can use a PATCH endpoint to modify the configuration of a
search interface by adding attributes to it or changing the values of existing attributes.
For example, the following endpoint modifies the configuration of the search interface
All:

PATCH /gsadmin/v1/cloud/searchInterfaces/All

For example, suppose that the search interface All is currently configured as follows:

{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-07-07T17:17:07.474-04:00",
 "ecr:createDate": "2016-05-06T17:15:06.414-04:00",
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 { "attribute": "product.displayName" },
 { "attribute": "product.brand" },
 { "attribute": "ecr:crossField" },
 { "attribute": "product.category" }
]
}

You can add a snippet size attribute to this configuration of All by executing the
PATCH endpoint above with the following input:

{
 "ecr:type": "search-interface",
 "fields": [
 {
 "snippetSize": 20,
 "attribute": "product.short_desc"
 }
]
}

The search interface ALL is now configured as follows:

{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-07-07T17:17:07.474-04:00",
 "ecr:createDate": "2016-05-06T17:15:06.414-04:00",
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 { "attribute": "product.displayName" },
 { "attribute": "product.brand" },

Chapter 47
Specify which index fields are included in searches

47-38

 { "attribute": "ecr:crossField" },
 { "attribute": "product.category" },
 {
 "snippetSize": 20,
 "attribute": "product.short_desc"
 }
]
}

You can also use PATCH to modify the values of existing attributes. For example, to
change the snippet size from 20 to 25, you can execute the PATCH method with the
following input:

{
 "ecr:type": "search-interface",
 "fields": [
 {
 "snippetSize": 25,
 "attribute": "product.short_desc"
 }
]
}

Note: You cannot re-order the field members in a search interface using PATCH.

Index and Query Popular Searches
Oracle CX Commerce offers a ready-to-use typeahead function, which searches
against and returns product records. This can be used to display products, their prices,
images, and so on

Typeahead enables shoppers to also search against other popular search terms. It
comes with pre-configured APIs and schema. You need to provide your own search
terms and handle rendering the results from this endpoint.

To provide an alternative type-ahead experience for shoppers, you can configure
Commerce to search against terms that it has automatically identified as popular with
other shoppers. Additionally, Commerce can also search against your own custom or
curated search terms.

You must implement this feature using the REST APIs. Commerce widgets do not
support this feature by default. To use this feature, you must ensure that you are using
the correct configuration, and handle rendering the results from this endpoint. Perform
the following steps to use this feature:

• Index popular searches records

• Query the correct endpoint

Index popular searches records

Each term that can appear in the results for a query against popular searches is
a single record. If you have a list of 15,000 popular search terms, each term is a
separate record and indexed separately.

For each record, there are four required fields:

Chapter 47
Index and Query Popular Searches

47-39

• record.id

• keyword.terms

• keyword.searchable

• keyword.score

Shopper searches are normally matched against the keyword.searchable field, which
may contain synonym forms, common misspellings, or any other “alternative” forms
of the term corresponding to a given record. The keyword.terms field contains the
canonical form of the term and is the one normally displayed in the results and
searched for when the result is selected.

Ensure that all the fields above are properly configured by submitting the following
POST request:

POST /gsadmin/v1/cloud/attributes/keywords
{
 "ecr:type": "attributes-owner-folder",
 "keyword.terms": {
 "ecr:type": "property",
 "propertyDataType": "ALPHA",
 "isRecordSearchEnabled": false,
 "isWildcardEnabledInRecordSearch": false,
 "context": ["locale"]
 },
 "keyword.searchable": {
 "ecr:type": "property",
 "propertyDataType": "ALPHA",
 "isRecordSearchEnabled": true,
 "isWildcardEnabledInRecordSearch": true,
 "context": ["locale"]
 },
 "keyword.score": {
 "ecr:type": "property",
 "propertyDataType": "DOUBLE"
 },
 "keyword.searchCount": {
 "ecr:type": "property",
 "propertyDataType": "INTEGER"
 }
}

Automatic popular searches records

Commerce automatically identifies popular searches based on shoppers’ past
behavior, and periodically uploads the corresponding records to the internal-keywords
record collection. From there, they are processed for indexing. The contents of the
internal-keywords record collection at any given time can be inspected by querying the
following endpoint:

GET /gsdata/v1/cloud/data/internal-keywords

Important: Do not attempt to modify the internal-keywords record collection. Your
changes will be overwritten.

Chapter 47
Index and Query Popular Searches

47-40

Add your own custom keyword records

To add custom keyword records to the system so they can be processed for indexing,
you must upload them to the keywords record collection with the following endpoint:

POST /gsdata/v1/cloud/data/keywords

Multiple records can be submitted in each request. Multiple requests can be made
to add data. That is, subsequent POST calls to /gsdata will not replace previously
submitted records. If you need to submit a large number of records, it is recommended
to submit then in a few sets, rather than one at a time.

The following is a sample POST command that submits three records using the above
schema:

POST /gsdata/v1/cloud/data/keywords
{
 "items":[
 {
 "record.id": "kw-en:digital+cameras",
 "keyword.terms@locale:en": "digital cameras",
 "keyword.searchable@locale:en": [
 "digital cameras", "digicams"
],
 "keyword.score": "12234"
 },
 {
 "record.id": "kw-en:film+cameras",
 "keyword.terms@locale:en": "film cameras",
 "keyword.searchable@locale:en": "film cameras",
 "keyword.score": "3234"
 },
 {
 "record.id":"kw-en:dslr+cameras",
 "keyword.terms@locale:en": "dslr cameras",
 "keyword.searchable@locale:en": [
 "dslr cameras", "digital slr cameras", "slr digicams"
],
 "keyword.score": "23421"
 }
]
}

Localize the custom keyword records

The fields keyword.terms and keyword.searchable in the previous section are
localized. When uploading records, you must specify the correct locale (for example,
@locale:en for English) that shoppers will search under.

Chapter 47
Index and Query Popular Searches

47-41

Each keyword record can optionally contain translations for multiple locales. It is
perfectly acceptable to create multiple, single-locale keyword records for multiple
locales. For example:

POST /gsdata/v1/cloud/data/keywords
{
 "items":[
 {
 "record.id": "kw-en:book",
 "keyword.terms@locale:en": "book",
 "keyword.searchable@locale:en": "book",
 "keyword.score": "1"
 },
 {
 "record.id": "kw-fr:livre",
 "keyword.terms@locale:fr": "livre",
 "keyword.searchable@locale:fr": "livre",
 "keyword.score": "1"
 },
 {
 "record.id": "kw:notebook",
 "keyword.terms@locale:en": "notebook",
 "keyword.searchable@locale:en": "notebook",
 "keyword.terms@locale:fr": "cahier",
 "keyword.searchable@locale:fr": "cahier",
 "keyword.score": "1"
 }
]
}

Index additional fields for custom keyword records

You may want to return additional information with your custom keyword records. In
this case, you can add custom fields. There is no fixed schema for those additional
fields, but it is recommended that you follow the naming convention of keyword.x.
For example, keyword.related_terms, or keyword.related_product_id. For more
information, see Modify the configuration to return additional fields.

Perform indexing

If you added custom keyword records to the system and defined schema, you need to
run the search indexing process. To do so, use the following API call. Keep in mind
that indexing times will vary depending on the size of your catalog.

POST /ccadmin/v1/search/index {"op":"baseline" }

Query the keywords endpoint

At this point, your popular search records are available in the index.

Ensure that the search service definition is properly configured by using the following
endpoints:

POST /gsadmin/v1/cloud/searchInterfaces/keywords
{

Chapter 47
Index and Query Popular Searches

47-42

 "isAutoWildcardEnabled": true,
 "ecr:type": "search-interface",
 "crossFieldMatch": "never",
 "fields": [
 {
 "attribute": "keyword.searchable"
 }
]
}

POST /gsadmin/v1/cloud/pages/Default/keywords/typeahead
{
 "contentType": "Page",
 "ecr:type": "page",
 "contentItem": {
 "@name": "Keyword Search Service",
 "@type": "KeywordSearchService",
 "@appFilterState": {
 "@type": "FilterState",
 "typeAhead": true,
 "recordFilters": [
 "OR(record.collection:keywords,record.collection:internal-
keywords)"
]
 },
 "resultsList": {
 "@type": "ResultsList",
 "relRankStrategy": "static(keyword.score,descending)",
 "fieldNames": [
 "record.id",
 "keyword.terms",
 "keyword.score"
]
 }
 }
}

Run the following endpoint:

GET /ccstore/v1/assembler/pages/Default/keywords/typeahead

and specify the following two parameters to perform a search:

• Ntt= This is the user’s search terms. For instance, if the customer has typed “cam”
as part of searching for “camera”, you would set it to &Ntt=cam

• Ntk= This specifies the search key. A search interface named “keywords” has
been defined

For example:

GET /ccstore/v1/assembler/pages/Default/keywords/typeahead?
Ntt=cam&Ntk=keywords

Chapter 47
Index and Query Popular Searches

47-43

Modify the configuration to return additional fields

In order to provide a responsive service that is also quite small in size, the default /
keywords/typeahead service is configured only to return a minimal set of fields in the
resultsList.

If you want additional fields returned, you must modify the /keywords/typeahead
service:

1. Run GET /gsadmin/v1/cloud/pages/Default/keywords/typeahead.

2. Add the custom fields to the list of fieldNames.

3. PUT the modifications back to /gsadmin/v1/cloud/pages/Default/keywords/
typeahead.

Configure typeahead query prefixes

By default, Commerce ignores typeahead and wildcard search terms of less than 3
characters.

If you want to change the default behavior, you can use the Search Interfaces
endpoints in the Search Admin and Configuration API to change the value of the
minWildcardWordLength search configuration property. For example, if you set the
property value to zero (0), the search begins as soon as the shopper types a
character.

Keep in mind that setting the value of minWildcardWordLength to less than the default
value (3) might impact performance.

Note that the minWildcardWordLength search configuration property does not apply to
dimension search or compound dimension search, or to the Chinese, Japanese, or
Korean languages.

The following sample shows how you can set the value of minWildcardWordLength to
0 for typeahead and wildcard searches.

PUT /gsadmin/v1/cloud/searchInterfaces/TypeAhead
{
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "isAutoWildcardEnabled": true,
 "minWildcardWordLength": 0,
 "fields": [
 {
 "attribute": "product.displayName"
 },
 {
 "attribute": "ecr:crossField"
 },
 {
 "attribute": "product.category"
 }
]
}

Chapter 47
Index and Query Popular Searches

47-44

Modify data structures to enhance searches and navigation
In some cases, you can enhance the ease and accuracy of navigation or of searches
on search terms by performing operations known as transformations on your data
structures.

Oracle CX Commerce supports three types of transformations:

• split-regex - Splits the value of a dimension or property and assigns each part of
the split value to a new dimension or property.

• split-jsonpath - Replaces the JSON value of a property with values that it
extracts from the JSON.

• concatenate - Concatenates the values of dimensions or properties into a single
new dimension or property.

One or more transformations can be performed on a single attribute (property or
dimension). Transformations are in all cases optional.

The following sections describe each of these transformations.

Configure a split-regex transformation

A split-regex transformation divides the value of a dimension or property into
separate values and assigns each separate value to a new dimension or property.

This transformation is useful when the Catalog contains an attribute whose value is
a delimited list of values. Such a list is not usable for user navigation. However, the
split-regex transformation can split the list into separate values that are useful for
navigation.

The transformation uses a regex pattern to determine where to split the dimension
or property value. The pattern can be either a single character or a more complex
regex pattern; for example, the following pattern specifies that a value is split at any
occurrence either of two dashes or of a comma and a semicolon:

"(\-\-)|[,;]"

Suppose that your product data provides the following different values for a dimension
named country:

"country": "UK, US, DE"

Although such an assignment is acceptable in the Catalog, is it not useful for user
navigation by dimension. The split-regex transformation, however, can convert this
assignment into ones that are useful for navigation, as follows:

"country": "UK",
"country": "US",
"country": "DE"

Chapter 47
Modify data structures to enhance searches and navigation

47-45

The conversion above is performed by the following split-regex transformation:

{
 "ecr:type": "attributes-owner-folder",
 "country": {
 "ecr:type": "dimension",
 "mergeAction": "update",
 "indexingTransforms": [
 {
 "transform": "split-regex",
 "pattern": ","
 }
],
 "ignoreDuplicatePropertyValues": "true"
 }
}

The following table lists the properties of the split-regex transformation:

Property Data type Default value Comments

"transform" String n/a Required.

Must be set to
"split-regex"

Example:

"transform":
"split-regex"

"splitPattern" String none Required.

The regex pattern
must comply with
java.util.regex.P
attern.

Example:

"splitPattern":
"[,;\t]"

"sourcePropertyNa
mes"

JSON Array The name of the
attribute to which this
transform applies.

Optional.

Example:

"sourcePropertyNa
mes": [

"shirt.color",

"dress.color",

"pants.color"

]

"ignoreDuplicate

PropertyValues"

Boolean True Optional.

Example:

"ignoreDuplicateP
ropertyValues":fa
lse

Chapter 47
Modify data structures to enhance searches and navigation

47-46

Property Data type Default value Comments

"trimWhitespace" Boolean True Optional.

Example:

"trimWhitespace":
false

"removeSourceProp
erty

Values"

Boolean True when the source
property is the same
as the attribute name.

False otherwise.

Optional.

Configure a split-jsonpath transformation

The split-jsonpath transformation extracts values from a specified location in the
JSON value of a specified property. The transformation replaces the JSON value of
the property with the extracted values. No other properties are created or modified by
this transformation.

For example, suppose that the following JSON has been assigned as the value of a
property named product.shoeSize:

{
 "product.name": "Suede Shoes",
 "product.childSKUs": [
 {
 "sku.id": "1000-R-M8",
 "shoe.color": "Red",
 "shoe.size": "8"
 },
 {
 "sku.id": "1000-B-M8",
 "shoe.color": "Blue",
 "shoe.size": "8"
 },
 ...
]
}

The following split-jsonpath transformation replaces the JSON value of the property
product.shoeSize with values that it extracts from the JSON value:

{
 "ecr:type": "attributes-owner-folder",
 "product.shoeSize": {
 "ecr:type": "dimension",
 "isAutogen": true,
 "indexingTransforms": [
 {
 "transform": "split-jsonpath",
 "sourcePropertyNames": [
 "product.shoeData"
],
 "splitPaths": [

Chapter 47
Modify data structures to enhance searches and navigation

47-47

 "$['product.childSKUs'][*]['shoe.size']"
]
 }
]
 }
}

The split-jsonpath transformation assigns the extracted values to
product.shoeData as follows:

"product.shoeSize": "8"

The following table lists the properties of a split-jsonpath transformation:

Property Data type Default value Comments

"transform" String N.A. Required.

Must be set to
"split-jsonpath"

Example:

"transform":
"split-jsonpath"

"sourcePropertyNa
mes"

JSON Array The attribute name to
which this transform
belongs

Optional.

Example:

"sourcePropertyNa
mes":

["product.data"
]

"removeSourceProp
erty

Values"

Boolean True when the source
property is identical to
the attribute.

False otherwise.

Optional.

Example:

"removeSourceProp
ertyValues": true

"ignoreDuplicate

PropertyValues"

Boolean True Optional.

Example:

"ignoreDuplicateP
ropertyValues":
false

Chapter 47
Modify data structures to enhance searches and navigation

47-48

Property Data type Default value Comments

"splitPaths" JSON Array Not applicable Required when it is
not an identity
transform. The array
values must comply
with
com.jayway.json
path.JsonPath.

Example:

"splitPaths": [

"$['childSKUs'[*]
['id']"

]

Note: When
splitPaths is not
specified for an
identity transform,
then the source
property values will be
parsed as a JSON
Path and the resulting
JSON key:value pairs
will be added to the
record.

Configure a concatenate transformation

A concatenate transformation can combine the following:

• The different values of a multi-assigned property, or the values of two or more
different properties.

• The values of two or more dimensions.

The concatenated values are assigned to a single new dimension or property.

To include the new property in searches, you must add it to the fields array of your
search interface.

You can concatenate localized properties with non-localized properties. The resulting
property is localized. You cannot, however, concatenate properties that are localized to
different locales.

For example, the following JSON example creates a record property named
all.colors and assigns to it, as a single unitary value, the concatenated values of
the existing record properties shirt.color, dress.color, and pants.color:

{
"ecr:type": "attributes-owner-folder",
"all.colors": {
 "propertyDataType": "ALPHA",
 "ecr:type": "property",
 "indexingTransforms": [
 {
 "transform": "concatenate",
 "sourcePropertyNames": [

Chapter 47
Modify data structures to enhance searches and navigation

47-49

 "shirt.color",
 "dress.color",
 "pants.color"
]
 }
]
 }
}

For example, suppose that values are assigned to the source properties as follows:

"shirt.color": "Red",
"dress.color": "Yellow, Black, Red",
"pants.color": "Orange"

The concatenate transformation above assigns the follow value to the output property
all.colors:

"all.colors": "Red Yellow, Black, Red Orange"

The following table lists the properties of a concatenate transformation:

Property Data type Default value Comments

"transform" String Not applicable Required.

Must be set to
"concatenate"

Example:

"transform":
"concatenate"

"sourcePropertyNa
mes"

JSON Array The attribute
name to which
this transformation
belongs.

Optional.

Example:

"sourcePropertyNa
mes":

["product.brand_
name",
"product.color"]

"removeSourceProp
ertyValues"

Boolean True when the source
property is equivalent
to the attribute name.

False otherwise

Optional.

Example:

"removeSourceProp
ertyValues": true

"ignoreDuplicateP
ropertyValues"

Boolean True Optional.

Example:

"ignoreDuplicateP
ropertyValues":
false

Disable transformations on a property or a dimension

The system owner can disable transformations on a property or dimension specified
by non-system owners. To do this, specify an empty indexingTransforms attribute.

Chapter 47
Modify data structures to enhance searches and navigation

47-50

The following example disables transformations by non-system owners on the property
named product.color:

"product.color": {
 "ecr:lastModifiedBy": "admin",
 "propertyDataType": "ALPHA",
 "indexingTransforms": [],
 "ecr:type": "property"
 }

Applying transformations

Transformations are applied by POST or PUT REST API calls of the following form:

POST | PUT /gsadmin/v1/${appName}/attributes/${owner}

For example:

POST /gsadmin/v1/attributes/owner1

When both the system owner and a non-system owner specify transformations, the
transformation specified by the system owner is used. However, when only a non-
system owner specifies a transformation, the non-system owner’s transformation is
used.

For more information about how to make POST and PUT calls, see Understand how to
execute endpoints.

Configure which properties of aggregated records and their
members are accessible to front end applications

You can configure which properties of aggregated records and their member records
are accessible to services such as guidedsearch (which produces search results) and
typeahead (which controls the typeahead function).

This can reduce the amount of data in the JSON returned by calls to these services.
In particular, it can make inaccessible the data that is irrelevant to shoppers or is
otherwise sensitive, such as profit margins.

Note: By default, all properties of aggregated records are accessible to services.

To configure which properties are accessible, execute the following endpoint with
JSON content that configures which properties are accessible:

PUT /gsadmin/v1/cloud/pages/Default/services/service_name

Where service_name is the name of the service, such as guidedsearch or typeahead,
whose access to properties is limited by this call.

For example:

PUT /gsadmin/v1/cloud/pages/Default/services/guidedsearch

Chapter 47
Configure which properties of aggregated records and their members are accessible to front end applications

47-51

In the JSON content, list the properties that you want to make accessible, as follows:

• List properties of aggregated records in the attributes field of the resultsList
element. These properties hold values such as minimum and maximum prices.
fieldNames is deprecated in this release.

• List properties of member records in the childRecordAttributes field of the
resultsList element. These properties hold values that shoppers search on,
such as names, descriptions, brands, and SKU-level data per product, such as
swatches. subRecordFieldNames is deprecated in this release.
The maxChildRecords specifies the number of child records to be returned. This
configuration expects an integer from the following list:

– 0 (no child records)

– 1 (one child record)

– -1 (all matching child records)

If the specified value is greater than one (> 1) or less than negative one (< -1), it is
reset to -1 indicating that all matching child records are to be included.

For example, execute the following endpoint with the JSON content shown to cause
all matching SKU level data of member records to be accessible to the guidedsearch
service:

PUT /gsadmin/v1/cloud/pages/Default/services/guidedsearch
"resultsList": {
 "@type": "ResultsList",
 "maxChildRecords": -1,
 "attributes": ["product.repositoryId",
"product.displayName"],
 "childRecordAttributes": ["product.repositoryId",
"sku.repositoryId", "product.displayName",
 "sku.listPrice", "sku.activePrice",
"product.primaryFullImageURL", "product.route"]
 }

You can see your changes to the configuration of aggregated records in you Preview
storefront. To see the changes in your Production storefront, you must first publish the
changes.

Note: Setting maxChildRecords to -1 can impact performance both in terms of
response time and the response payload size. We recommend that you use
attributes, childRecordAttributes and maxChildRecords together to minimize
impact on performance.

Configure the order of facets
Oracle CX Commerce uses faceted navigation to support shoppers navigating on the
storefront. The facets are returned in a defined order, which you can change with
either the administration console or Admin API.

Facets are also returned dynamically, meaning if the results in the response contain
appropriate data and that data can change the results. For example, a Brand facet is
not returned if either no products had a brand, or all products had the same brand. If

Chapter 47
Configure the order of facets

47-52

you want to hide a facet in certain situations, you can exclude it from the list for those
situations and set the showAll flag to false.

This section describes how to configure the order of facets with the Admin API. To use
the administration interface to perform this task instead, see Refine and order search
results.

Note: Some Commerce REST APIs use the term dimension instead of facet, but the
two are interchangeable from a functional perspective.

Specify a custom order for facets

To specify a non-default display order for selected facets in your application, follow
these steps:

1. Use one of the following endpoints to export configuration of the Guided
Navigation catalog in JSON format or in ZIP format:

GET /gsadmin/v1/cloud/content/facets/default (JSON format)

GET /gsadmin/v1/cloud/content/facets/default.zip (ZIP format)

The default configuration of the Guided Navigation content item is returned. The
navigation[] attribute is empty. When the navigation attribute is empty, the
facets in the refinements list are not explicitly ordered; instead, they appear in
an order determined by the system. For information about the attributes in this
configuration, see Attributes of the Guided Navigation Content Item.

2. In the navigation attribute, include a RefinementMenu element for each facet
that you want to include among the explicitly ordered facets. Arrange the
RefinementMenu elements in the order in which you want the corresponding facets
to appear. See Example of custom facet ordering.

3. Use one of the following endpoints to import configuration of the Guided
Navigation content item in JSON format or in ZIP format:

PUT /gsadmin/v1/cloud/content/facets/default (JSON format)

PUT /gsadmin/v1/cloud/content/facets/default.zip (ZIP format)

Note: If the GuidedNavigation content item does not exist, you must use the
POST method to create it. You cannot, however, use POST to update an existing
content item.

4. View the changes in your Preview environment to verify that they are correct.

5. Publish your catalog to promote your changes to your production environment.

Example of custom facet ordering

For example, if you want the four following facets to appear in the order Category,
Price Range, Brand, and Color, modify the navigation[] attribute as follows:

"navigation": [
 {

Chapter 47
Configure the order of facets

47-53

 "@type": "RefinementMenu",
 "dimensionName": "product.category"
 },
 {
 "@type": "RefinementMenu",
 "dimensionName": "product.priceRange"
 },
 {
 "@type": "RefinementMenu",
 "dimensionName": "product.brand"
 },
 {
 "@type": "RefinementMenu",
 "dimensionName": "product.color"
 }
]

Attributes of the Guided Navigation Content Item

The following table summarized that attributes of the GuidedNavigation content item.

Attribute Value

@type Required. Must be set to GuidedNavigation

@name Optional. A name for this rule that is displayed
in tools.

showAll Optional. True (the default) causes all facets
applicable to the shopper’s current navigation
state to be displayed in refinement lists, after
the facets explicitly ordered by the navigation
attribute. The facets not included in the
navigation attribute are ordered by the system.

False limits the facets included in the
refinements list to those included in the
navigation attribute.

navigation Required. A list of facet objects. Each facet
object has the following:

• a @type attribute (required) set to
RefinementMenu.

• a dimensionName attribute (required).
The name should be the attribute name
as specified under the /attributes
folder of your application.

In the refinements list, the facets appear in the
order in which the facet objects are listed in
the navigation attribute.

triggers Not applicable. Do not change default.

priority Not applicable. Do not change default.

Configure the order of facet values
You can configure how facets of any given dimension are sorted in refinement lists at
run time.

Chapter 47
Configure the order of facet values

47-54

You can sort the facet values either alphabetically, by frequency (number of matching
results for each facet value), by display order (previously known as rank), or by
statistical significance. In addition, these can be sorted in ascending or descending
order.

To change the ordering of a facet’s values, you use a REST API to specify a sort
option and, optionally, a sort order to apply to all the facet values in the facet.

The sort option determines the order of the facet values with respect to each other.
The following sort options are available:

• displayName or alpha (alphabetical) – Sorts facet values in alphabetical order
using the facet value display name. This is the default order for the Category facet

• count or freq - Sorts facet values by the number of records that are tagged to
each. This is the default order for new facets and for facets other than Category
and Price Range.

• displayOrder or rank – Sorts facet values in the Category facet by the static value
provided separately using the facet data API.

• sig – Sorts facet values according to their statistical significance. For more
information, see Order facet values by statistical significance.

The sort order can be either asc (ascending) or desc (descending). If you do not
specify an order, the sort order is ascending for displayName and descending for
count and displayOrder, by default.

In some cases, a combination of sort option and sort order can assign two or more
facet values to the same location in a refinements list. To further sort the facet values
in such cases, you can specify a second sort option and sort order pair.

The sort option and sort order are specified as values of the facet’s displayConfig
parameter, as in the following example:

"displayConfig": {
 "sort":
 "count,desc;displayName,asc"
},

The example above specifies that facet values first be sorted in descending order of
frequency; any facet values that require further sorting are then sorted in ascending
alphabetical order.

Note: You can specify any number of pairs of sort option and sort order values, but
more than two pairs are seldom needed.

Dynamically order a facet's values

To configure how the facet values of a specified facet are to be ordered, follow these
steps:

1. Export the configuration of the ATG owner’s attributes, using the following
endpoint:
GET /gsadmin/v1/cloud/attributes/ATG

2. In the exported _.json file, copy the facet attribute that you are interested in.

3. Add or update this attribute’s displayConfig parameter, and specify the sort
option and sort order for the facet values in that facet. For example:

Chapter 47
Configure the order of facet values

47-55

"displayConfig": {"sort": "count,desc;displayName,asc"},

4. Upload this updated configuration definition to the following endpoint:
PUT /gsadmin/v1/cloud/attributes/system/<facet-name>

5. Verify your changes have taken effect by calling the following endpoint and
ensuring it shows the new displayConfig property in the list of system attributes:
GET /gsadmin/v1/cloud/attributes/system

6. Run an index to have your changes take effect:
POST /ccadmin/v1/search/index { “op”: “partial” }

Facet values ordered by displayOrder

If the facet is ordered by displayOrder a displayConfig is specified as follows:

"displayConfig": { "sort":
 "displayOrder,desc"
 }

Then, an additional step is required: You must provide the relative order of each value.
To do so, follow these steps:

1. Update the Facets data store with a displayOrder for each value using the API
endpoint POST /gsdata/v1/cloud/facets/<facet-name>. For example, to update
a Decade facet with values of 80s, 90s, 00s, 10s, and so on in logical order, you
would use the following endpoint and payload:

POST /gsdata/v1/cloud/facets/product.x_decade
{
 "items": [
 {
 "key" : "60s",
 "displayOrder" : "6"
 },
 {
 "key" : "70s",
 "displayOrder" : "5"
 },
 {
 "key" : "80s",
 "displayOrder" : "4"
 },
 {
 "key" : "90s",
 "displayOrder" : "3"
 },
 {
 "key" : "00s",
 "displayOrder" : "2"
 },
 {
 "key" : "10s",
 "displayOrder" : "1"
 }
] }

Chapter 47
Configure the order of facet values

47-56

2. Run an index either by triggering a publish event, or by calling the index endpoint,
for example:
POST /ccadmin/v1/search/index { “op”: “partial” }

3. Once the index has completed, as the order is descending (sort:
displayOrder,desc) values will be returned by the value of displayOrder sorting
from high to low, for example:

1. 60s
2. 70s
3. 80s
4. 90s
5. 00s
6. 10s

Notes:

• Values will only be available once an index has run, so if the facet is new and a
publish has not been run, this will return an error.

• If you need to retrieve the values for the facet, you can call the “dimvals” endpoint,
for example:
GET /gsadmin/v1/cloud/dimvals/product.x_decade/children

As noted above, multiple sort options can be provided, therefore you can configure
displayOrder as the primary sort option, and have a secondary sort defined too. With
this combination, facet values will be divided into two buckets, the first containing
values with a displayOrder and ordered using this property, followed by all values
that do not have a displayOrder and ordered by the secondary sort (for example,
alphabetically or by count).

Facet configuration example

This section describes an excerpt from an example _.json file and illustrates how a
facet is configured. The facet is named camera.color.

The displayConfig parameter specifies that facet values in this facet are sorted in
descending order of frequency; ties are sorted in ascending alphabetical order. For
example, suppose that two facet values, “Action Sports Cameras” and “Binoculars”
each have 44 records tagged to them. After being assigned the same location in the
list by descending order of frequency, they are sorted in ascending alphabetical order.
Thus “Action Sports Cameras” comes immediately before “Binoculars” in the list.

The configuration of the camera.color facet includes the parameter "mergeAction" :
"update". This parameter must be included when the owner of the facet is system, as
is currently required.

{
 "camera.color": {
 "isWildcardEnabledInRecordSearch": true,
 "displayOrder": 4,
 "displayConfig": {
 "sort": "freq,desc;alpha,asc"
 },
 "sourcePropertyNames": ["camera.Color of product"],
 "isAutogen": true,

Chapter 47
Configure the order of facet values

47-57

 "isRecordSearchEnabled": true,
 "ecr:type": "facet",
 "mergeAction" : "update"
 }
}

Note: Do not modify facet parameters not discussed in this section unless you are
certain that you have complete and accurate knowledge about those parameters.

Order facet values by statistical significance
To make it easier for shoppers to find the products that best meet their requirements,
you can sort facet values (also known as dimension values) according to their
statistical significance.

When facet values are sorted by statistical significance, shoppers are first presented
with the facet values that are most relevant to their current navigation state.

Highlight relevant facet values

Sorting facet values by statistical significance is a useful technique when you want
to highlight facet values that are relevant to the shopper’s current search rather
than facet values that are generally popular. Sorting facet values by their statistical
significance is especially useful when a facet has a large number of facet values. In
such a case, the shopper is aided by having the facet values that are most relevant to
the current navigation state presented first.

Sorting facet values by frequency, on the other hand, can be useful when the number
of facet values is smaller -- for example, small enough to be displayed in a single facet
values list.

The value of sorting by statistical significance is illustrated by the following use cases.

In a catalog with a feature facet containing 2,000 possible values, you can do the
following:

• Highlight the features that are most relevant to a search for “waterproof camera”,
such as “waterproof”, “shockproof”, “dustproof”, or “GPS-enabled”.

• Highlight the features that are most relevant to a search for “compact camera”,
such as “built-in flash”, “autofocus”, “portrait mode”, or “landscape mode”.

In a catalog with a facet containing 20,000 possible values, you can do the following:

• Highlight the product tags that are most relevant to a search for “landscape
photograph”, such as “mountain”, “forest”, “ocean”.

• Highlight the product tags that are most relevant to a search for “Venice canvas
print”, such as “canal”, “boat”, or “reflection”.

In a catalog with a brand dimension containing 200 possible values, you can do the
following:

• Highlight the brands that specialize in digital SLR cameras when a shopper
searches for “dslr camera”.

• Highlight the brands that specialize in sports cameras when a shopper searches
for “waterproof camera”.

Chapter 47
Order facet values by statistical significance

47-58

Calculate statistical significance

A facet value's statistical significance is based on the difference between the
background frequency of the facet value from its foreground frequency. Frequencies
are defined as follows:

• The background frequency is the number of records in the entire catalog that
match the facet value.

• The foreground frequency is the number of records in the current search that
match the facet value.

A facet value's statistical significance is calculated only after all specified record filters
and security filters have been applied to the set of records in the catalog. Because
different sets of filters can be applied to a catalog on different sites, the statistical
significance of a facet value can vary from site to site.

A facet value is considered statistically significant if its foreground frequency is higher
than its background frequency. The statistical significance of a facet value increases
as the relative difference between foreground and background frequencies of that
facet value increases.

Note that the number of records tagged to each facet value is ignored when facet
values are sorted by statistical significance. For example, three facet values might be
sorted by statistical significance as follows:

naugahyde (10)
polyester (7)
leather (23)

For example, suppose that a brand facet has facet values named Rugged Cameras
and Acme Camera Corporation, and that a shopper is shopping for “waterproof
cameras”. The catalog, which contains a total of 100,000 records, includes the
following:

• 100 records for waterproof cameras manufactured by Acme Camera Corporation,
out of a total of 2,000 records for cameras of any type manufactured by Acme
Camera Corporation.

• 20 records for waterproof cameras manufactured by Rugged Cameras. There are
no other records in the catalog for cameras manufactured by Rugged Cameras,
which makes only waterproof cameras

Selecting the facet value ‘Acme Camera Corporation’ would produce 100 matching
records.

Selecting the facet value ‘Rugged Cameras’ would produce only 20 matching records.
Nevertheless, you might want to list Rugged Cameras in the facet values list before
Acme Camera Corporation, because it has a higher statistical significance.

Rugged Cameras has a higher statistical significance because its foreground
frequency (20 matches out of 20 records in the search) is so much greater than its
background frequency (20 matches out of 100,000 records in the catalog). Acme
records shows a much lesser increase in foreground frequency over background
frequency.

In most cases, a higher statistical significance of a facet value is a sign of a
quality that has relevance or value for the shopper’s search. In the example above,

Chapter 47
Order facet values by statistical significance

47-59

the waterproof cameras manufactured by Rugged Cameras, which have a greater
statistical significance, are preferable to those manufactured by Acme Camera
Corporation because waterproof cameras are the specialty of Rugged Cameras, while
Acme Camera Corporation is a generic manufacturer that does not specialize in one
type of camera.

As with all configuration of facet sorting, sorting by statistical significance must be
configured on a per-dimension basis. There is no mechanism to configure a default
sort behavior across all dimensions.

Configure sorting by statistical significance.

To configure sorting by statistical significance, use the REST API for setting attributes.
For more information, see Sample search and navigation REST API.

To import configuration for sorting facet values by statistical significance, execute an
endpoint similar to the following:

http://host:port/gsadmin/v1/cloud/attributes/system/facet_name

where facet_name is the name of the facet whose facet values are to be sorted.

The body of the request must be a dimension object definition that includes a
displayConfig attribute; for example:

 {
 "ecr:type": "dimension",
 "mergeAction": "UPDATE",
 "displayConfig": {
 "sort": "sig,desc"
 }
}

where sig,desc, specifies that facet values are sorted in descending order of
their statistical significance. Because descending order is the default for sorting by
statistical significance, you can specify sig instead of sig,desc.

Get statistical significance values for debugging

When you sort facet values by statistical significance, the statistical significance of
each facet value is assigned to its DGraph.Significance property. The value of the
DGraph.Significance property can be useful for debugging.

The following example illustrates the Dgraph.Significance property of the Rugged
Sports Camera and Acme Camera Corporation facet values:

{
 "@type": "Facet valueMenu",
 "displayName": "Brand",
 "dimensionName": "product.brand",
 "multiSelect": true,
 "refinements": [
 {
 "label": "Rugged Sports Cameras",
 "link": "?Ntt=waterproof+cameras",

Chapter 47
Order facet values by statistical significance

47-60

 "count": 20,
 "properties": {
 "DGraph.Significance": "99.9",
 "DGraph.Spec": "Rugged Sports Cameras"
 }
 },
 {
 "label": "Acme Camera Corporation",
 "link": "?Ntt=waterproof+cameras",
 "count": 100,
 "properties": {
 "DGraph.Significance": "12.0",
 "DGraph.Spec": "Acme Camera Corporation"
 }
 }
]
}

Add metadata to facet values
You can associate metadata with facet values so it can be displayed on your store.

Associating metadata with facet values is most commonly used to display images
instead of text. For example, you might want to display swatch images instead of
names for Color facets, or display stars instead of a numeric value for an Average
Customer Rating facet.

Any key:value pair can be added as metadata to be returned along with the standard
facet value information; however, the key name must contain an underscore character,
for example x_imageUrl or tool_tip_text, to ensure it does not conflict with existing
system keys. JSON objects cannot be used as a value, however multiple values can
be provided as a list, for example:

"x_imageUrl" : ["/images/one.png", "/images/two.png"]

Add metadata to a facet value

The following procedure shows an example of adding images to an “Average
Customer Rating” facet.

1. Update the Facets data store with metadata for each value using the following -
POST /gsdata/v1/cloud/facets/<facet-name>, using the system property of key
to define which value the metadata should be added to, for example, “key”:
“Red” for the value Red.

 POST /gsdata/v1/cloud/facets/product.x_averageCustomerRating
{
 "items": [
 {
 "key" : "5",
 "x_imageUrl" : "/general/5-star.png"
 },
 {
 "key" : "4",
 "x_imageUrl" : "/general/4-star.png"

Chapter 47
Add metadata to facet values

47-61

 },
 {
 "key" : "3",
 "x_imageUrl " : "/general/3-star.png"
 },
 {
 "key" : "2",
 "x_imageUrl " : "/general/2-star.png"
 },
 {
 "key" : "1",
 "x_imageUrl " : "/general/1-star.png"
 }
] }

2. Run an index either by triggering a publish event, or by calling the index endpoint,
for example, POST /ccadmin/v1/search/index { “op”: “partial” }

Notes:

• Values will only be available once an index has run, so if the facet is new and a
publish has not been run, this will return an error.

• If you need to retrieve the values for the facet, you can call the “dimvals” endpoint,
for example: GET /gsadmin/v1/cloud/dimvals/product.x_decade/children

Use metadata on the storefront

Once you've added the metadata to facet values and the search indexing operation
has completed, the metadata will be returned in the search API endpoint responses
alongside the existing facet value data. Metadata can also be easily accessed in
storefront widgets.

The following snippet shows a knockout if binding that displays an image from the
Commerce media library. When this binding is added to the Product Listing widget on
the Search Results layout, displays an image when iterating through the facet values.

<ko:if: $data.properties[‘x_imageUrl’]-->
 <img data-bind=”attr:{src: ‘file/’
+$data.properties[‘x_imageUrl’]}” />
</ko>

Create custom range facets
By default, a facet displays all the unique values as a list. It can be useful to group all
values between a minimum and maximum value and display a range of values as a
single link. A common example of this is price ranges, for example, $10 - $20.

You create a custom range facet to display a group of values in a single link. To define
a custom range facet, you must first create a new facet by calling the following Admin
API endpoint:

POST /gsadmin/v1/cloud/attributes/system/<facet-name>.

Chapter 47
Create custom range facets

47-62

Specify the following properties for the facet:

• ecr:type: Required. Value must be set to dimension.

• isAutogen: Required. Value must be set to false.

• displayConfig: See Configure the order of facet values for more information
about this property.

• context: Optional. Set to priceGroup if the ranged facet is for pricing, or locale if
the facet is multi-language.

• rangeComparisonType: Required. Value must be set to FLOAT.

• sourcePropertyNames: Required. List of one or more source properties, for
example sku.activePrice, or product.x_megapixels.

Next, define each value in the Facets data store with the following Admin API
endpoint:

POST /gsdata/v1/cloud/facets/<facet-name>

Specify the following properties for the facet values:

• key: Required. System ID for the facet value. Must be unique.

• displayName: Required. The text to display for the facet value.

• priceGroup: Optional. If the new facet will display prices, the price group needs to
be explicitly defined. See Understand Price Navigation for more information.

• displayOrder: Optional. A displayOrder value can be assigned to sequence the
facet value relative to the other values. See Configure the order of facet values for
more information.

• lowerBound: Required. Minimum value to match for the range.

• upperBound: Required. Maximum value to match for the range.

Example: Create a custom price range

This section describes a step-by-step example of adding a custom price range facet.

First, create a new facet by issuing a POST request to the Attributes system endpoint:

POST /gsadmin/v1/cloud/attributes/system/Price
{
 "ecr:type": "dimension",
 "isAutogen" : false,
 "displayConfig": {
 "sort": "displayOrder,asc"
 },

 "context" : ["priceGroup"],
 "rangeComparisonType" : "FLOAT",
 "sourcePropertyNames" : ["sku.activePrice"]
}

Chapter 47
Create custom range facets

47-63

Next, create the associated ranged values by issuing a POST request to the Facets
endpoint:

POST /gsdata/v1/cloud/facets/Price
{
 "items": [
 {
 "displayName": "$0 - $25",
 "priceGroup" : "defaultPriceGroup",
 "displayOrder": "1",
 "key" : "0-25",
 "lowerBound" : "0.00",
 "upperBound" : "25.00"
 },
 {
 "displayName": "$25 - $50",
 "priceGroup" : "defaultPriceGroup",
 "displayOrder": "2",
 "key" : "25-50",
 "lowerBound" : "25.00",
 "upperBound" : "50.00"
 },
 {
 "displayName": "$50 - $100",
 "priceGroup" : "defaultPriceGroup",
 "displayOrder": "3",
 "key" : "50-100",
 "lowerBound" : "50.00",
 "upperBound" : "100.00"
 },
 {
 "displayName": "$100+",
 "priceGroup" : "defaultPriceGroup",
 "displayOrder": "4",
 "key" : "over100",
 "lowerBound" : "100.00",
 "upperBound" : "999999.00"
 },
 {
 "record.action": "OCCForceFlush"
 }
]
}

Finally, initiate an indexing operation, either by triggering a publish event, or by calling
the index endpoint. The following code sample performs incremental indexing:

POST /ccadmin/v1/search/index { “op”: “partial” }

Once the indexing operation is complete, the new facet will be returned in the
response.

Chapter 47
Create custom range facets

47-64

Understand Price Navigation

Price properties in search, such as sku.activePrice and product.listPrice, are
assigned dynamically, based on the relevant price group. If your site uses multiple
price groups, either the default price group or a non-default price group will be
dynamically assigned for the current shopper, and all price properties in search will
contain the values for products and SKUs based on that price group.

For price navigation, you can assign each custom price range facet to only one price
group. If your site has many price groups, a better approach is to use the range filter
parameter Nf and let shoppers specify the minimum and maximum price directly, using
a slider, text boxes, or From and To dropdowns, then use a range filter to restrict the
products by price. For example: Nf=sku.activePrice|BTWN+100+200.

Configure the ranking of records in search results
You can determine the order in which records appear in search results by configuring a
relevance ranking strategy.

The relevance ranking strategy is an ordered list of one or more relevance ranking
modules, each of which uses different criteria to sort the records in the search results.

Note: Oracle CX Commerce includes a basic default relevancy ranking strategy.
Modify this default to order search results in a way that is helpful to your shoppers.
Successful strategies typically include the modules Phrase, MaxField, Glom, Static,
and WFreq.

This section covers the following topics:

• Understand how relevance ranking modules sort results

• Configure your relevance ranking strategy

• Understand each relevance ranking module in detail

Understand how relevance ranking modules sort results

Relevance ranking modules are applied in the order in which they are listed in the
relevance ranking strategy. For example, the following JSON format configuration of a
relevance ranking strategy,

"relRankStrategy":
"exact(considerFieldRanks),glom,static(quantity_sold,descending)"

invokes modules named exact, glom, and static, in that order.

The first module applies its criteria to sort records into various strata. Each stratum
contains records that have the same relevance ranking according to the first module’s
criteria. The next module sorts the records in each stratum into substrata according to
its own criteria; each substratum contains records of the same relevance ranking.

The sorting continues in this fashion until all modules have been applied, or until there
are no further ties among records. If any ties remain after all modules have been
invoked, the ties are resolved by a default sorting rule.

The field and maxfield modules take into account the priority of records. A
record’s priority corresponds to the position in the search interface’s fields array

Chapter 47
Configure the ranking of records in search results

47-65

of the member that the record matches. Records matched to members closer to the
beginning of the fields array have higher priority than records matched to members
closer to the end. If a record matches more than one member, its priority is based on
the member that is closest to the beginning of the fields array.

The exact, first, nterms, and proximity modules can optionally take a parameter
named considerFieldRanks. The considerFieldRanks parameter indicates that the
module should further sort records according to their priority, after the module has
sorted records according to its own criteria. In the relevance ranking strategy, the
parameter is specified in parentheses after the module name; for example:

"relRankStrategy": "exact(considerFieldRanks),glom,static(quantity_sold,
 descending)"

For information about the relevance ranking modules, see Understand each relevance
ranking module in detail.

Understand which modules are more useful for commerce applications

The most commonly used modules in commerce applications are as follows:

• phrase (all options turned on)

• glom

• maxfield

• static

The following modules are less commonly used:

• field

• wfreq

The following modules are not ordinarily useful in commerce applications:

• first

• interp

• nterms

• proximity

• stem

• thesaurus

Oracle recommends against the use of the following modules:

• exact, because of its effect on performance. Use phrase instead.

• freq, because it adds up the counts of every word, affecting performance.

Configure your relevance ranking strategy

You configure your relevance ranking strategy by exporting the entire search
configuration for the cloud application, editing the part of the exported configuration
that applies to the relevance ranking strategy, and then re-importing the entire search
configuration. To do this, follow these steps:

Chapter 47
Configure the ranking of records in search results

47-66

1. Issue the following GET command, which exports the entire search configuration
for the cloud application in a ZIP file:

GET /gsadmin/v1/cloud.zip

For more information about the GET endpoint, see Export all configuration in ZIP
format.

2. Back up the ZIP file before opening it or extracting any of its contents.
IMPORTANT: When you re-import the edited search configuration, you overwrite
all existing search configuration. For this reason, it is important to keep a back-up
of the original configuration.

3. Unzip the zip file and extract the JSON file containing the search configuration.

4. Open the JSON file containing the search configuration and find the
relRankStrategy attribute of the resultsList object, in the contentItem object
named “Guided Search Service”.
Note: If the resultsList object or therelRankStrategy attribute is not defined,
you must add them in the location shown in this example.

5. Edit the value of the relRankStrategy attribute to specify the relevance ranking
modules that you want the strategy to comprise. The order in which you specify
the modules is significant. For more information, see Understand how relevance
ranking modules sort results .

6. Zip up the entire search configuration, including the edits that you made to the
configuration of the relevance ranking strategy.

7. Initiate the following POST command, which imports the search configuration in
the ZIP file:

POST /gsadmin/v1/cloud.zip

8. If your relevance ranking strategy does not produce that results that you intended,
make a copy of your backed up search configuration, edit the relevance ranking
strategy in the copy to produce the intended results, and import the copy.

Understand each relevance ranking module in detail

This section contains detailed descriptions of the relevance ranking modules.

exact module

The exact module groups results into three strata based on how well they match the
query string. This includes the following:

• The highest stratum contains results whose complete text matches the user’s
query exactly.

• The middle stratum contains results that contain the user’s query but are not an
exact match.

• The lowest stratum contains all other types of matches, such as matches that
would not be matches without synonyms.

The exact module can optionally be specified with the considerFieldRanks
parameter, as follows:

exact(considerFieldRanks)

Chapter 47
Configure the ranking of records in search results

47-67

Specifying this parameter causes the exact module to sort records according to their
priorities in your search interface after it has sorted them according to its own criteria.

Important: The exact module is computationally expensive, especially on large text
fields. It is intended for use only on small text fields (such as dimension values or
small property values such as part IDs). Use of this module in these cases will result in
very poor performance and/or application failures due to request timeouts. The phrase
module, with and without approximation turned on, does similar but less complex
ranking that can be used as a higher performance substitute.

field module

The field module ranks records according to their priority in your search interface. A
record’s rank is the priority of the search interface member that the record matches. If
a record matches more than one member, the record’s rank corresponds to the highest
priority among the matching members.

For example, suppose that:

• Record A matches the third, sixth, and eighth members in the fields array of your
search interface.

• Record B matches the first, fourth, and seventh members.

The earliest member that Record B matches is the first member, and the earliest
member that Record A matches is the third member. As a result, Record B has the
higher priority and appears before Record A in the search results.

first module

Note: The first module is not commonly used in commerce applications.

Designed primarily for use with unstructured data, the first module ranks documents
by how close the query terms are to the beginning of the document. The first module
groups its results into strata of different sizes. The strata are not the same size,
because while the first word is probably more relevant than the tenth word, the 301st
is probably not significantly more relevant than the 310th word. This module assumes
that the closer a word is to the beginning of a document, the more likely it is to be
relevant.

The first module works as follows:

When the query has a single term, the first module retrieves the first absolute
position of the word in the document, then calculates which stratum contains that
position. The score for this document is based upon that stratum; earlier strata are
better than later strata.

When the query has multiple terms, first determines the first absolute position for
each of the query terms, and then calculates the median position. This median is
treated as the position of this query in the document and can be used with stratification
as described in the single word case.

With query expansion (using stemming or the thesaurus), the first module treats
expanded terms as if they occurred in the source query. For example, the phrase
glucose intolerance would be corrected to glucose intloerance (with intloerance spell-
corrected to intolerance). first then continues as it does in the non-expansion case.
The first position of each term is computed and the median of these is taken.

Chapter 47
Configure the ranking of records in search results

47-68

In a partially matched query, where only some of the query terms cause a document
to match, first behaves as if the intersection of terms that occur in the document and
terms that occur in the original query were the entire query. For example, if the query
cat bird dog is partially matched to a document on the terms cat and bird, then the
document is scored as if the query were cat bird. If no terms match, then the document
is scored in the lowest strata.

The first module is supported for wildcard queries.

The first module can optionally be specified with the considerFieldRanks
parameter. Specifying this parameter causes the exact module to sort records
according to their priorities in your search interface after it has sorted them according
to its own criteria.

freq module

The freq (frequency) module provides result scoring based on the number of
occurrences of the user’s query terms in the result text.

Results with more occurrences of the user search terms are considered more relevant.

The score produced by the freq module for a result record is the sum of the
frequencies of all user search terms in all fields (properties or dimensions in the
search interface in question) that match a sufficient number of terms. The number of
terms depends on the match mode, such as all terms in a MatchAll query, a sufficient
number of terms in a MatchPartial query, and so on. Cross-field match records are
assigned a score of zero. Total scores are capped at 1024; in other words, if the sum
of frequencies of the user search terms in all matching fields is greater than or equal to
1024, the record gets a score of 1024 from the freq module.

For example, suppose we have the following record:

{Title="test record", Abstract="this is a test", Text="one test this
is"}

A MatchAll search for “test this” causes freq to assign a score of 4, because this
and test occur a total of 4 times in the fields that match all search terms (Abstract
and Text, in this case). The number of phrase occurrences (just one in the Text field)
does not matter, only the sum of the individual word occurrences. Also note that the
occurrence of test in the Title field does not contribute to the score, since that field
did not match all of the terms.

A MatchAll search for one record would hit this record, assuming that cross field
matching was enabled. But the record would get a score of zero from Freq, because
no single field matches all of the terms. Freq ignores matches due to query expansion
(that is, such matches are given a rank of 0)

glom module

The glom module ranks single-field matches ahead of cross-field matches and also
ahead of non-matches (records that do not contain the search term). It serves as a
useful tie-breaker function in combination with the maxfield module and is commonly
used in commerce applications.

If you want a strategy that ranks single-field matches first, cross-field matches second,
and no matches third, then use the glom module followed by the nterms module. glom

Chapter 47
Configure the ranking of records in search results

47-69

treats all matches the same, whether or not they are due to synonyms or other forms
of query expansion.

The glom module considers a single-field match to be one in which a single field has
enough terms to satisfy the conditions of the match mode. or this reason, in MatchAny
search mode, cross-field matches are impossible, because a single term is sufficient
to create a match. Every match is considered to be a single-field match, even if there
were several search terms.

For MatchPartial search mode, if the required number of matches is two, the glom
module considers a record to be a single-field match if it has at least one field that
contains two or more or the search terms. You cannot rank results based on how many
terms match within a single field.

interp module

The interp (interpreted) module assigns a score to each result record based on the
query processing techniques used to obtain the match. These matching techniques
include partial matching, cross-attribute matching, thesaurus, and stemming matching.

Specifically, the Interpreted module ranks results as follows:

1. All non-partial matches are ranked ahead of all partial matches.

2. Within the above strata, all single-field matches are ranked ahead of all cross-field
matches.

3. Within the above strata, all thesaurus matches are ranked below all non-thesaurus
matches.

4. Within the above strata, all stemming matches are ranked below all non-stemming
matches.

Note: Because the interp module comprises the matching techniques of the spell,
glom, stem, and thesaurus modules, there is no need to add them to your relevance
ranking strategy if you are using interp.

proximity module

The proximity module ranks how close the query terms are to each other in a
document by counting the number of intervening words. It is designed primarily for
use with unstructured data.

Like the first module, the proximity module groups its results into variable sized
strata, because the difference in significance of an interval of one word and one of two
words is usually greater than the difference in significance of an interval of 21 words
and 22. If no terms match, the document is placed in the lowest stratum.

Single words and phrases get assigned to the best stratum because there are no
intervening words. When the query has multiple terms, proximity behaves as follows:

1. All of the absolute positions for each of the query terms are computed.

2. The smallest range that includes at least one instance of each of the query terms
is calculated. This range’s length is given in number of words. The score for
each document is the stratum that contains the difference of the range’s length
and the number of terms in the query; smaller differences are better than larger
differences.

Chapter 47
Configure the ranking of records in search results

47-70

Under query expansion (that is, stemming and the thesaurus), the expanded terms
are treated as if they were in the query, so the proximity metric is computed using the
locations of the expanded terms in the matching document.

For example, if a user searches for “big cats” and a document contains the sentence,
“Big Bird likes his cat” (stemming takes cats to cat), then the proximity metric is
computed just as if the sentence were, “Big Bird likes his cats.” The proximity module
scores partially matched queries as if the query contains only the matching terms. For
example, if a user searches for “cat dog fish” and a document is partially matched that
contains only cat and fish, then the document is scored as if the query “cat fish” had
been entered.

Note: The proximity module does not work with Boolean searches, cross-field
matching, or wildcard search. It assigns all such matches a score of zero.

maxfield module

This module ranks based on field priority and gives equal weight to cross-field
matches.

The maxfield (Maximum Field) module behaves in the same way as the field module,
except in how it scores cross-field matches. Unlike field, which assigns a static score
to cross-field matches, maxfield selects the score of the highest-ranked field that
contributed to the match.

nterms module

The nterms (number of terms) module assigns rank based on the number of terms that
it finds.

The nterms module ranks matches according to how many query terms they match.
For example, in a three-word query, results that match all three words will be ranked
above results that match only two, which will be ranked above results that match only
one, which will be ranked above results that had no matches.

numfields module

The numfields (number of fields) module ranks results based on the number of fields
in the associated search interface in which a match occurs.

Note that the whole-field is counted rather than cross-field matches. Therefore, a
result that matches two fields matches each field completely, while a cross-field match
typically does not match any field completely.

numfields treats all matches the same, whether or not they are due to query
expansion. The numfields module is only useful in conjunction with record search
operations.

phrase module

The phrase module states that results containing the user’s query as an exact phrase,
or a subset of the exact phrase, should be considered more relevant than matches
simply containing the user’s search terms scattered throughout the text.

Records that have the phrase are ranked higher than records which do not contain the
phrase.

The phrase module has a variety of options that you use to customize its behavior.
The phrase options are as follows:

Chapter 47
Configure the ranking of records in search results

47-71

• Rank based on length of subphrases

• Use approximate subphrase/phrase matching

• Apply spell correction, thesaurus, and stemming

The various options can go in parentheses, including considerFieldRanks.

Ranking based on length of subphrases

When you configure the phrase module, you have the option of enabling subphrasing.

Subphrasing ranks results based on the length of their subphrase matches. In other
words, results that match three terms are considered more relevant than results that
match two terms, and so on. A subphrase is defined as a contiguous subset of the
query terms the user entered, in the order that he or she entered them. For example,
the query “fax cover sheets” contains the subphrases “fax”, “cover”, “sheets”, “fax
cover”, “cover sheets”, and “fax cover sheets”, but not “fax sheets”.

Content contained inside nested quotes in a phrase is treated as one term. For
example, consider the following phrase:

the question is “to be or not to be”

The quoted text (“to be or not to be”) is treated as one query term, so this example
consists of four query terms even though it has a total of nine words.

When subphrasing is not enabled, results are ranked into two strata: those that
matched the entire phrase and those that did not.

Using approximate matching

Approximate matching provides higher-performance matching, as compared to the
standard phrase module, with somewhat less exact results.

With approximate matching enabled, the phrase module looks for phrase matches in a
limited number of positions in each result, rather than all the positions. Only this limited
number of possible occurrences is considered, regardless of whether there are later
occurrences that are better, more relevant matches.

The approximate setting is appropriate in cases where the runtime performance of the
standard phrase module is inadequate because of large result contents and/or high
site load.

Applying thesaurus and stemming

Applying thesaurus and stemming adjustments to the original phrase is generically
known as query expansion.

With query expansion enabled, the phrase module ranks results that match a phrase’s
expanded forms in the same stratum as results that match the original phrase.
Consider the following example:

• A thesaurus entry exists that expands “US” to “United States”.

• The user queries for “US government”.

The query “US government” is expanded to “United States government” for matching
purposes, but the phrase module gives a score of two to any results matching “United
States government” because the original, unexpanded version of the query, “US
government”, only had two terms.

Summary of phrase option interactions

Chapter 47
Configure the ranking of records in search results

47-72

The three configuration settings for the phrase module can be used in a variety of
combinations for different effects. The following table summarizes the behavior of each
combination.

Subphrase Approximate Expansion Description

Off Off Off Default. Ranks results
into two strata: those
that match the user’s
query as a whole
phrase, and those that
do not.

Off Off On Ranks results into
two strata: those that
match the original, or
an extended version,
of the query as a
whole phrase, and
those that do not.

Off On Off Ranks results into
two strata: those that
match the original
query as a whole
phrase, and those that
do not. Look only
at the first possible
phrase match within
each record.

Off On On Ranks results into
two strata: those that
match the original, or
an extended version,
of the query as a
whole phrase, and
those that do not.
Look only at the first
possible phrase match
within each record.

On Off Off Ranks results into
N strata where N
equals the length of
the query and each
result’s score equals
the length of its
matched subphrase.

Chapter 47
Configure the ranking of records in search results

47-73

Subphrase Approximate Expansion Description

On Off On Ranks results into
N strata where N
equals the length of
the query and each
result’s score equals
the length of its
matched subphrase.
Extend subphrases
to facilitate matching
but rank based on
the length of the
original subphrase
(before extension).
Note This combination
can have a negative
performance impact
on query throughput.

On On Off Ranks results into
N strata where N
equals the length of
the query and each
result’s score equals
the length of its
matched subphrase.
Look only at the first
possible phrase match
within each record.

On On On Ranks results into
N strata where N
equals the length of
the query and each
result’s score equals
the length of its
matched subphrase.
Expand the query to
facilitate matching but
rank based on the
length of the original
subphrase (before
extension). Look only
at the first possible
phrase match within
each record.

Note: You should
only use one phrase
module in any given
search interface and
set all of your options
in it.

Results with multiple matches

If a single result has multiple subphrase matches, either within the same field or in
several different fields, the result is slotted into a stratum based on the length of the
longest subphrase match.

Stop words and phrase behavior

Chapter 47
Configure the ranking of records in search results

47-74

When using the phrase module, stop words are always treated like non-stop word
terms and stratified accordingly.

For example, the query “raining cats and dogs” will result in a rank of two for a result
containing “fat cats and hungry dogs” and a rank of three for a result containing “fat
cats and dogs” (this example assumes subphrase is enabled).

Cross-field matches and phrase behavior

An entire phrase, or subphrase, must appear in a single field in order for it to be
considered a match. (In other words, matches created by concatenating fields are not
considered by the phrase module.)

Treatment of wildcards with the phrase module

The phrase module translates each wildcard in a query into a generic placeholder for a
single term.

Note: Only the asterisk (*) is supported as a wildcard.

For example, the query “sparkling w* wine” becomes “sparkling * wine” during
phrase relevance ranking, where “*” indicates a single term. This generic wildcard
replacement causes slightly different behavior depending on whether subphrasing is
enabled.

When subphrasing is not enabled, all results that match the generic version of the
wildcard phrase exactly are still placed into the first stratum. It is important, however, to
understand what constitutes a matching result from the phrase module’s point of view.

Consider the search query “sparkling w* wine” with the MatchAny mode enabled. In
MatchAny mode, search results only need to contain one of the requested terms to be
valid, so a list of search results for this query could contain phrases that look like this:

sparkling white wine

sparkling refreshing wine

sparkling wet wine

sparkling soda

wine cooler

When phrase relevance ranking is applied to these search results, the phrase module
looks for matches to “sparkling * wine” not “sparkling w* wine.” Therefore, there are
three results—”sparkling white wine,” “sparkling refreshing wine,” and “sparkling wet
wine”—that are considered phrase matches for the purposes of ranking.

These results are placed in the first stratum. The other two results are placed in
the second stratum. When subphrasing is enabled, the behavior becomes a bit more
complex. Again, we have to remember that wildcards become generic placeholders
and match any single term in a result. This means that any subphrase that is adjacent
to a wildcard will, by definition, match at least one additional term (the wildcard).
Because of this behavior, subphrases break down differently. The subphrases for “cold
sparkling w* wine” break down into the following (note that w* changes to *):

Cold

sparkling

* wine

Chapter 47
Configure the ranking of records in search results

47-75

cold sparkling *

sparkling * wine

cold sparkling * wine

Notice that the subphrases “sparkling,” “wine,” and “cold sparkling” are not included
in this list. Because these subphrases are adjacent to the wildcard, we know that the
subphrases will match at least one additional term.

Therefore, these subphrases are subsumed by the “sparkling *”, “* wine”, and “cold
sparkling *” subphrases. Like regular subphrase, stratification is based on the number
of terms in the subphrase, and the wildcard placeholders are counted toward the
length of the subphrase. To continue the example above, results that contain “cold”
get a score of one, results that contain “sparkling *” get a score of two, and so on.
Again, this is the case even if the matching result phrases are different, for example,
“sparkling white” and “sparkling soda.” Finally, it is important to note that, while the
wildcard can be replaced by any term, a term must still exist. In other words, search
results that contain the phrase “sparkling wine” are not acceptable matches for the
phrase “sparkling * wine” because there is no term to substitute for the wildcard.
Conversely, the phrase “sparkling cold white wine” is also not a match because each
wildcard can be replaced by one, and only one, term. Even when wildcards are
present, results must contain the correct number of terms, in the correct order, for
them to be considered phrase matches by the phrase module.

static module

The static module assigns rank based on a configurable sort key.

The static module assigns a static or constant data-specific value to each search
result, depending on the type of search operation performed and depending on
optional parameters that can be passed to the module.

For record search operations, the first parameter to the module specifies a property,
which will define the sort order assigned by the module. The second parameter can be
specified as ascending or descending to indicate the sort order to use for the specified
property.

For example, using the module

static(Availability,descending)

sorts the result records in descending order with respect to their assignments from the
Availability property. Using the module

static(Title,ascending)

sorts the result records in ascending order by their Title property assignments.

In a catalog application, setting the static module by Price, descending leads to more
expensive products being displayed first.

For dimension search, the first parameter can be specified as nbins, depth, or rank:

• Specifying nbins causes the static module to sort result dimension values by the
number of associated records in the full data set.

Chapter 47
Configure the ranking of records in search results

47-76

• Specifying depth causes the static module to sort result dimension values by their
depth in the dimension hierarchy.

• Specifying rank causes dimension values to be sorted by the ranks assigned to
them for the application.

stem module

The stem module ranks matches due to stemming below other kinds of matches.

The stem module assigns a rank of 0 to matches from stemming, and a rank of 1 from
all other sources. That is, it ignores all other sorts of query expansion.

thesaurus module

The thesaurus module ranks matches due to thesaurus entries below other sorts of
matches. It a rank of 0 (the lowest possible priority) to matches from the thesaurus,
and a rank of 1 from all other sources. That is, it ignores all other sorts of query
expansion.

weighted frequency module

Like the freq module, the wfreq (weighted frequency) module scores results based on
the frequency of user query terms in the result.

Additionally, the wfreq module weights the individual query term frequencies for each
result by the information content (overall frequency in the complete data set) of each
query term. Less frequent query terms (that is, terms that would result in fewer search
results) are weighted more heavily than more frequently occurring terms.

Note: The wfreq module ignores matches due to query expansion; that is, it assigned
the lowest possible priority to records included in the search results list because of
such matches.

Link additional content to search results
You can obtain and display additional information, that is, non-catalog and non-
indexed content, along with the search results. Examples include banner images and
links to other pages.

To display additional information, you must take the following steps:

• Verify Guided Search service definition - Verify that the guided search service
definition is located at:

/gsadmin/v1/cloud/pages/Default/services/guidedsearch

and ensure that it is configured to get additionalContent information. If not, use
HTTP PUT to update the service definition.

• Configure a rule trigger - Define a content item, or trigger:

/gsadmin/v1/cloud/content/additionalContent/TriggerName

This trigger is fired when a shopper does a search for the trigger name, for
example, abbreviated form. A business user can make a HTTP POST or PUT
request to create or update the rule trigger definition.

Chapter 47
Link additional content to search results

47-77

• Make a search from the storefront application using search term aboutus to /
ccstore/v1/search and observe the response. You should see a JSON object
with key additionalContent.

Verify Guided Search service definition

You use REST endpoints exposed at /gsadmin/v1/cloud/pages/Default/
services/guidedsearch to ensure that service is updated to return additional
content along with search results.

The following table describes the JSON attributes required to configure the Guided
Search service definition.

Attribute Value

additionalContent Key name to be used to retrieve the additional
content from the search response.

@type Cartridge type to be passed. This must be set
as ContentSlot.

contentPaths Resource path to rule definitions. This should
point to the folder containing rules to evaluate
the additional content. By default this points
to /content/additionalContent.

ruleLimit Number of rules matches will not be more than
the value specified here. The rule engine will
evaluate all the rules in contentPaths based
on the priorities defined.

Example 47-1 Updated Guided Search Service definition

The following JSON illustrates the default guided search service definitions. It can be
updated, if required, by using REST endpoints defined for ecr type page.

{
 "ecr:type" : "page",
 "contentItem":
 {
 "@name": "Guided Search Service",
 "@type": "GuidedSearchService",
 "additionalContent":
 {
 "ruleLimit": 1,
 "@type": "ContentSlot",
 "@contentPaths": ["/content/additionalContent"]
 }
 }
}

Configure a rule trigger

You use REST endpoints exposed at /gsadmin/v1/cloud/content/
additionalContent/TriggerName to define an additional content item, or a
trigger. You can have this trigger either on a search term or on a navigation state,
that is, using dimension value IDs.

Chapter 47
Link additional content to search results

47-78

Example 47-2 Rule trigger definition

You can use the following call to create a new additional content item to trigger on a
search for “about us”.

POST /gsadmin/v1/cloud/content/additionalContent/aboutus
 {
 "ecr:type" : "content-item",
 "priority" : 10,
 "contentItem":
 {
 "@type": "UnstructuredContent",
 "title": "Looking for information about our company?",
 "link-title": "About Us",
 "link-url": "/about-us",
 "image": "company-logo.png"
 },
 "triggers":[
 {
 "searchTerms": "about",
 "matchmode": "MATCHEXACT"
 },
 {
 "searchTerms": "about us",
 "matchmode": "MATCHEXACT"
 }
]
 }

Verify search responses

After configuring the Guided Search service definition and the rule trigger, when a
shopper performs a search or navigates to a specific configured state, it will give back
additionalContent information along with search results.

Search non-catalog data
You can index and search data that is not part of the product catalog.

For example, you may want the Help page on your site to be included in a search. If
a customer searches for “help”, the Help page is returned along with any products that
match. Note the Help page will be returned in addition to the matching product catalog
results.

To index and search additional data, you must take the following steps:

1. Set up the search attributes by performing the following:

• Add attributes using Attributes API
The properties/dimensions used for adding records to newly created record
collections, are either already defined in the application or can be imported
manually using /gsadmin/v1 rest end-point.

• Add attributes to Search interface using Search Interface API

• Create page definition with record filter

Chapter 47
Search non-catalog data

47-79

2. Update the index by taking the following steps:

• Upload records using the Search Data API endpoints

• Manually Trigger Baseline/Partial update

3. Query the index by doing the following:
Make request to new page.

Create a data record collection

You use REST endpoints exposed at /gsdata/v1/cloud/data/{recordCollection} to
create / populate a data record collection.

POST /gsdata/v1/cloud/data/{recordCollection}
Content-Type: application/vnd.oracle.resource+json; type=collection -
if creating/updating bulk of records
<json data>

1. recordCollection - A valid record collection name, as defined by the regular
expression

2. [a-zA-Z][a-zA-Z0-9_-]*. CAS has a limitation that the recordStore name cannot
have more than 128 characters.

Example: Import records to the record collection

You can use the following call to import the specified records to the record collection.

POST /gsdata/v1/cloud/data/storeLocations
"Content-Type: application/vnd.oracle.resource+json; type=collection"
{
 links :[{
 "rel" : "self",
 "href" : "/gsdata/v1/cloud/data/storeLocations"
 }],
 items : [
 {
 "record.action": "deleteAll"
 },
 {
 links :[{
 "rel" : "self",
 "href" : "/gsdata/v1/cloud/data/storeLocations/store1000"
 }],
 "record.id": "store1000",
 "record.action": "upsert",
 "store.state": "CA",
 "store.amenities": [
 "Coffee Shop",
 "Pharmacy"
]
 },
 {
 "record.action": "delete",
 "record.id": "store1011"
 },

Chapter 47
Search non-catalog data

47-80

 ...
]
}

Use Case: Search buying guides

For the sample store, Company A has a range of cameras and camcorders for sale.
To help their customers find the right camera, they have some buying guides that walk
through the features, and they want to include summary information on this so the
information are returned along with the products when relevant.

1. Call the gsdata endpoint to create the new buying guide items.
The following are sample data representing two of these buying guides:

{
 "content.type": "buyingGuide",
 "guides.department": "Electrical",
 "guides.productType": "DSLR Cameras",
 "guides.keywords": "DSLR, Camera, Professional, Zoom,
interchangeable lens",
 "record.locale": "en-US",
 "record.id": "guide1001",
 "guides.description": "Looking for more information on our
DSLR cameras? Read on to learn how to pick the right camera for
you."
 },
 {
 "content.type": "buyingGuide",
 "guides.department": "Electrical",
 "guides.productType": "Compact Cameras",
 "guides.keywords": "compact, camera, holiday, small, point-
and-shoot, automatic",
 "record.locale": "en-US",
 "record.id": "guide1002",
 "guides.description": "Looking for a compact camera to take
on holiday? We compare the best compacts!"
 }

First they upload the following JSON to the server using the new gsdata endpoint.
They use POST to create a new resource, and use the syntax of /gsdata/v1/
cloud/data/buyingGuides, where buyingGuides is the name for the new entry.

POST /gsdata/v1/cloud/data/buyingGuides
{
 "items": [{
 "content.type": "buyingGuide",
 "guides.department": "Electrical",
 "guides.productType": "DSLR Cameras",
 "guides.keywords": "DSLR, Camera, Professional, Zoom,
interchangeable lens",
 "record.locale": "en-US",
 "record.id": "guide1001",
 "guides.description": "Looking for more information on our
DSLR cameras? Read on to learn how to pick the right camera for

Chapter 47
Search non-catalog data

47-81

you."
 },
 {
 "content.type": "buyingGuide",
 "guides.department": "Electrical",
 "guides.productType": "Compact Cameras",
"guides.keywords": "compact, camera, holiday, small, point-and-
shoot, automatic",
 "record.locale": "en-US",
 "record.id": "guide1002",
 "guides.description": "Looking for a compact camera to take
on holiday? We compare the best compacts!"
 },
 {
 "record.action": "OCCForceFlush"
 }]
}

2. They create new attributes.
After the data have been created, they define the attributes that were used. To do
this, they use the standard Attributes API, and use POST to create new attributes
corresponding to the data they uploaded previously. This is the code to create new
attributes of:

• guides.department (as a facet)

• guides.productType (as a searchable property)

• guides.description (as a searchable property)

• content.type (as a filterable property)

POST /gsadmin/v1/cloud/attributes/system/guides.department
{
"ecr:lastModifiedBy": "admin",
"ecr:type": "dimension",
"isAutogen": true
}

POST /gsadmin/v1/cloud/attributes/system/guides.productType
{
"ecr:lastModifiedBy": "admin",
"ecr:type": "property",
"isRecordSearchEnabled": true
}

POST /gsadmin/v1/cloud/attributes/system/guides.description
{
"ecr:lastModifiedBy": "admin",
"ecr:type": "property",
"isRecordSearchEnabled": true
}

POST /gsadmin/v1/cloud/attributes/system/content.type
{
"ecr:lastModifiedBy": "admin",

Chapter 47
Search non-catalog data

47-82

"ecr:type": "property",
"isRecordFilterable": true
}

3. They create new services using the pages endpoint, and add the new fields as
being returned.
They want to define a separate endpoint that they can call to return this
information. This is done using the Pages Admin API. They name the page
“buyingGuide”, and define that they want to return four properties:

guides.description

guides.productType

guides.department

record.id

POST /gsadmin/v1/cloud/pages/Default/buyingGuide
{
 "contentType": "Page",
 "ecr:type": "page",
 "contentItem": {
 "@name": "Content Search Service",
 "@type": "GuidedSearchService",
 "@appFilterState": {
 "@type": "FilterState",
 "recordFilters": [
 "content.type:buyingGuide"
]
 },
 "navigation": {
 "@type": "NavigationContainer",
 "contentPaths": [
 "/content/facets"
]
 },
 "resultsList": {
 "@type": "ResultsList",
 "fieldNames": [
 "guides.description",
 "guides.productType",
 "guides.department",
 "record.id"
],
 "rankingRules": {
 "merchRulePaths": [
 "/content/rankingRules"
],
 "systemRulePaths": [
 "/content/system/rankingRules"
],
 "systemRuleLimit": 10
 }
 },
 "searchAdjustments": {
 "@type": "SearchAdjustments"

Chapter 47
Search non-catalog data

47-83

 }
 }
}

4. Add the properties created above to the “All” search interface.

5. Add the searchable attributes they have just added to the “All” searchable field
ranking. To do this:

a. Open the Oracle CX Commerce administration interface.

b. Click to open the Search section.

c. Click Searchable Field Rankings.

d. Click All.

e. Use the dropdown to add the new attributes to the end of the list, in this order:
guides.department

guides.productType

guides.description

6. Index the data. They use the following API endpoint to run a search index to
update the data:

POST /ccadmin/v1/search/index?op=baseline

They monitor the progress of this using:

GET /ccadmin/v1/search

When success: true is displayed, the indexing has completed.

7. Verify that this works correctly. Query the data by calling the following URL on their
storefront:

/ccstore/v1/assembler/pages/Default/services/buyingGuide?Ntt=camera

Create a widget to support searching data

Custom product listing widget can support searching data that is not part of the
product catalog. For detailed information about creating widgets, see Create a Widget.

Create the widget structure for the product listing sample widget

Widgets that include user interface elements must include display templates. The
following shows an example of the files and directories in a product listing widget.

Widget/
 ext.json
 widget/
 ProductistingForAdditionalContent
 widget.json
 js/
 product-listing.js
 less/
 widget.less

Chapter 47
Search non-catalog data

47-84

 locales/
 en/
 ns.multicart.json
 templates/
 display.template
 paginationControls.template

The JavaScript code you write extends the createsearchViewModel class. For more
information about the widget structure and the contents of the ext.json and
widget.json files, see Understand widgets .

Create the JavaScript file for the product listing sample widget

The widget’s JavaScript file includes functions that let shoppers search data that is not
part of the product catalog.

The following example shows sample JavaScript that implements the createsearch
functionality:

////Non-catalog content
 widget.assemblerPagesPath = "services/storeLocations"; //This
should be services/searchService
 widget.ntk = "stores"; //This should point to the search
interface created
 //Created a function to process the non-catalog content to
display them
 widget.amenitiesToText = function(obj){
 var amenitiestext = obj[0];
 for(var i=1; i < obj.length; i++){
 amenitiestext = amenitiestext + ", " +obj[i];
 }
 return amenitiestext;
 };
///////End non-catalog content }

Create template files for the product listing sample widget

The widget’s display.template file contains the following code for rendering the
page (the following is an excerpt of the display.template):

<!-- ko if: (listingViewModel().display) -->
<div id="CC-productListing" role="alert">
 <!-- ko if: listType() == 'search' -->
 <!-- ko with: listingViewModel -->
 <div class="sr-only" data-bind="text :pageLoadedText"></div>
 <!-- /ko -->
 <!-- /ko -->
 <div id="CC-product-listing-controls" class="row">
 <div class="col-sm-12">
 <!-- ko with: listingViewModel -->
 <!-- ko if: $parent.listType() == 'search' -->
 <h2 id="search-results" class="sr-only" role="alert" data-
bind="widgetLocaleText: 'searchResultsText'"></h2>
 <!-- /ko -->
 <!-- ko if: titleText -->

Chapter 47
Search non-catalog data

47-85

 <div class="row">
 <div class="col-xs-12">
 <h2 id="cc-product-listing-title" data-bind="text:
titleText"></h2>
 </div>
 </div>
 <!-- /ko -->
 <!-- ko if: $parent.listType() == 'search' -->
 <!-- ko if: noSearchResultsText -->
 <div class="row">
 <div id="cc-productlisting-noSearchResults" class="col-xs-12">

 </div>
 </div>
 <!-- /ko -->
 <!-- ko if: suggestedSearches().length > 0 -->
 <div id="cc-productlisting-didYouMean">

 <div id="cc-productlisting-didYouMeanTerms" data-
bind="foreach : suggestedSearches">
 <a data-bind="attr: {id: 'cc-productlisting-didYouMean-
Suggestion-'+$index()}, widgetLocaleText: {value:'dYMTermAriaLabel',
attr:'aria-label'}, click: $data.clickSuggestion" href="#">
 <!-- ko if: ($index() <
($parent.suggestedSearches().length - 1)) -->
 <span data-bind="widgetLocaleText :
{value:'dYMTermTextHasNext', attr:'innerText', params: {label:
$data.label}}">
 <!-- /ko -->
 <!-- ko if: ($index() ==
($parent.suggestedSearches().length - 1)) -->
 <span data-bind="widgetLocaleText : {value:'dYMTermText',
attr:'innerText', params: {label: $data.label}}">
 <!-- /ko -->

 </div>
 </div>
 <!-- /ko -->
Pro <!-- /ko -->
 <!-- /ko -->
 <!-- ko if: (listingViewModel().totalNumber() > 0) -->
 <div data-bind="text: resultsText" class="sr-only" role="alert"></
div>
 <!-- ko if: listType() == 'search' -->
 <h3 class="sr-only" role="alert" data-bind="widgetLocaleText:
'viewingOptionsText'"></h3>
 <!-- /ko -->
 <div class="row">
 <div class="col-sm-12" id="cc-area-controls">
 <div class="row">

Chapter 47
Search non-catalog data

47-86

The widget’s display.template calls another template file,
paginationControls.template. This template file contains the following code for
rendering multiple pages when the list of products is long:

<div class="btn-group">
 <a class="btn btn-default" data-bind="ccNavigation: '', attr :
{href: firstPage()}, widgetLocaleText : {value:'goToFirstPageText',
attr:'aria-label'}, css: { disabled: $data.currentPage() == 1 }"
></
span>
 <a href="#" class="btn btn-default" data-bind="ccNavigation:
'', attr: {href: previousPage()}, widgetLocaleText :
{value:'goToPreviousPageText', attr:'aria-label'}, css:
{ disabled: $data.currentPage() == 1 }" rel="prev"><span data-
bind="widgetLocaleText: 'goToPreviousPagePaginationSymbol'">

 <!-- ko foreach: pages -->
 <a href="#" class="btn btn-default" data-bind="ccNavigation:
'', attr: {href: $parent.goToPage($data)}, css: {active:
$data.pageNumber===$parent.currentPage() }">
 <!-- ko if: $data.selected === true -->
 <span class="sr-only" data-bind="widgetLocaleText :
'activePageText'">
 <!-- /ko -->
 <!-- ko if: $data.selected === false -->
 <span class="sr-only" data-bind="widgetLocaleText :
'goToPageText'">
 <!-- /ko -->

 <!-- /ko -->

 <a href="#" class="btn btn-default" data-bind="ccNavigation:
'', attr: {href: nextPage()}, widgetLocaleText :
{value:'goToNextPageText', attr:'aria-label'}, css: { disabled:
currentPage() == $data.totalNumberOfPages() }" rel="next"><span data-
bind="widgetLocaleText: 'goToNextPagePaginationSymbol'">
 <a href="#" class="btn btn-default" data-bind="ccNavigation: '',
attr: {href: lastPage()}, widgetLocaleText : {value:'goToLastPageText',
attr:'aria-label'}, css: { disabled: currentPage() ==
$data.totalNumberOfPages() }"><span data-bind="widgetLocaleText:
'goToLastPagePaginationSymbol'">

</div>

Machine learning for search
Commerce can identify popular products associated with popular searches based on a
number of factors, including shopper behavior and purchasing history, trend analysis,
and view data, and automatically generate a corresponding set of ranking rules that
boost these products in the related search results.

The machine-learning feature works in conjunction with dynamic curation and search
relevancy. Manually-boosted products take precedence, followed by products identified

Chapter 47
Machine learning for search

47-87

by machine learning, with all remaining products ordered by relevancy and dynamic-
curation criteria.

This feature affects only keyword search results and any subsequent navigation. It
does not affect pages that contain only navigation results.

Understand auto-generated ranking rules

When the feature is enabled, Commerce periodically uploads the auto-generated
popular products ranking rules to the /system/rankingRules endpoint under
internal-keywords. You can view the auto-generated ranking rules by querying the
following endpoint:

GET /gsadmin/v1/cloud/content/system/rankingRules/internal-keywords

Important: Do not attempt to modify the internal-keywords auto-generated ranking
rules. Commerce will overwrite your changes.

The auto-generated popular products ranking rules take effect in your production
environment whenever changes are published.

Only Boost/bury rules have higher precedence than the auto-generated popular
products ranking rules. Popular products ranking rules take precedence over the
default Relevancy ranking, Dynamic Curation, and static ranking rules.

Enable auto-generated popular products ranking rules

To enable this feature, you must use the Admin API:

1. Run GET /gsadmin/v1/cloud/configuration/services/internal-keywords.

2. If boostDisabled is present in the response and set to true, then set it to false.

3. Issue a PUT command to /gsadmin/v1/cloud/configuration/services/
internal-keywords to save your modifications.

Changes will take affect once the overnight process has run.

Disable auto-generated popular products ranking rules

To disable this feature, you must use the Admin API:

1. Run GET /gsadmin/v1/cloud/configuration/services/internal-keywords.

2. If boostDisabled is present in the response and set to false, then add it if
necessary and set it to true.

3. Issue a PUT command to /gsadmin/v1/cloud/configuration/services/
internal-keywords to save your modifications.

4. Issue a DELETE command to /gsadmin/v1/cloud/content/system/rankingRules/
internal-keywords to delete previous rules.

Changes will take affect once the overnight process has run.

Identify Promoted Products

To identify when products have been promoted, you can access your site
using the Preview environment and inspect the underlying ccstore/v1/search

Chapter 47
Machine learning for search

47-88

endpoint call. Each promoted product includes an additional property of
DGraph.RankLabel.bstratify.merch.

Sample Search and Navigation REST API requests using
cURL

This section provides several examples of how common Search and Navigation REST
API requests can be made through the cURL command-line utility.

For general information about how to make requests, see Understand how to execute
endpoints.

Note: Oracle does not recommend the use of any particular UI tool or utility for making
REST API calls.

Log in and get an access token

Use the following POST request to log in to the Admin API on the Oracle CX
Commerce administration server, using an account that has the Administrator role:

curl -X POST
-- data
"grant_type=password&username=user_name&password=password&totp_code=
 passcode" http://host:port/ccadmin/v1/mfalogin > /pathname/
filename.txt

Note that the request must include a user name, password, and passcode. To obtain
passcodes, the login account must be registered with the Oracle Mobile Authenticator
app. See Access the Commerce administration interface for more information.

This POST request returns an OAuth access token, which you must provide in the
authorization headers of all other requests. The following is an example of an access
token, greatly abbreviated:

"token_type":"bearer","access_token":"Authorization:Bearer
 eyJhbGciOiJSUzI1NiIsImprdSI6IjVkYmQyTA4MC9jY2FkbWluL=="

where eyJhbGciOiJSUzI1NiIsImprdSI6IjVkYmQyTA4MC9jY2FkbWluL== is the OAuth
access token (abbreviated) that you must use in the authorization headers of other
requests.

Note: Because the OAuth access token returned by this request must be used by all
other requests, it is convenient to redirect it to a text file, as shown in the example
above. The access token can then be copied from the text file into the other requests.

Export configuration of a search resource

Issue a GET command to export configuration of a search resource. Note that GET is
the default command and need not be specified.

Chapter 47
Sample Search and Navigation REST API requests using cURL

47-89

For example, the following request exports the configuration of the search interface
named ALL. The exported JSON content is displayed on the screen, immediately
beneath the command line:

curl [-X GET] -H "Authorization:Bearer access_token"
http://host:port/gsadmin/v1/searchInterfaces/All.json
{
 "ecr:lastModifiedBy": "admin",
 "ecr:lastModified": "2016-10-17T05:25:35.764-07:00",
 "ecr:createDate": "2016-10-17T05:25:35.764-07:00",
 "ecr:type": "search-interface",
 "crossFieldMatch": "always",
 "fields": [
 {"attribute": "product.displayName"},
 {"attribute": "sku.displayName"},
 {"attribute": "parentCategory.displayName"},
 {"attribute": "product.brand"},
 {"attribute": "parentCategory.keywords"},
 {"attribute": "sku.description"},
 {"attribute": "product.description"},
 {"attribute": "product.category"},
 {"attribute": "ecr:crossField"},
 {"attribute": "product.longDescription"},
 {"attribute": "product.repositoryId"}
]

The following request redirects the exported configuration of the search interface All
to a file:

curl [-X GET] -H "Authorization:Bearer access_token"
http://host:port/gsadmin/v1/searchInterfaces/All.json > /pathname/
filename.txt

The following request exports the configuration of the search interface All in a ZIP file:

curl [-X GET] –H "Authorization:Bearer access_token"
http://host:port/gsadmin/v1/searchInterfaces/All.zip -o pathname/
filename.zip

where:

–o (lower case) pathname/filename.zip causes the ZIP file specified by filename to
be downloaded to the location specified by pathname.

Note: ZIP format exports not only the configuration of the specified object to be
exported, but also the configuration of all its child objects, in separate _.json files.
JSON format, in contrast, exports only the configuration of the specified object to be
exported.

Create a search resource

Chapter 47
Sample Search and Navigation REST API requests using cURL

47-90

In JSON format, use the following POST request to configure the searchInterfaces
folder. The configuration to be imported is provided in a JSON file:

curl -X POST -H "Authorization:Bearer access_token"
–d@pathname/filename.json
–H "Content-Type:application/json"
http://host:port/gsadmin/v1/searchInterfaces

In ZIP format, use the following POST request to configure the searchInterfaces
folder. The configuration to be imported is provided in a ZIP file. The ZIP file must
contain a file named _.json:

curl -X POST -H "Authorization:Bearer access_token"
–F ":file=@pathname/filename.zip"
http://host:port/gsadmin/v1/searchInterfaces

Note: When the POST request is executed in JSON format, the POST request can
create a resource but not overwrite an existing resource. When the POST request is
executed in ZIP format, the POST request can either create the resource or overwrite
it if it already exists.

Modify a search resource

Use the PATCH method to add attributes to an object or change the values of existing
attributes in the object. The PATCH method can be used only in JSON format.

For example, the following PATCH request can modify the values of existing attributes
of a thesaurus-entry object, or add new attributes to that object:

curl -X PATCH -H "Authorization:Bearer access_token"
–d@pathname/filename.json
-H "Content-Type:application/json"
http://host:port/gsadmin/v1/thesaurus/my-thesaurus-entry

Replace configuration of a search resource

In JSON format, execute the following command to replace existing configuration of
the search interface All; in this example, the configuration containing the replacement
is provided in a JSON file named SearchInterface_put.json:

curl -X PUT -H "Authorization:Bearer access_token"
-d@pathname/SearchInterface_put.json
-H "Content-Type:application/json"
http://host:port/gsadmin/v1/cloud/searchInterfaces/All

In ZIP format, execute the following command to replace existing configuration of the
search interface All; in this example, the configuration containing the replacement is
provided in a ZIP file named temp.zip:

curl -X POST -H "Authorization:Bearer access_token"
-F ":file=@temp.zip"
http://host:port/gsadmin/v1/cloud/searchInterfaces/All

Chapter 47
Sample Search and Navigation REST API requests using cURL

47-91

Install cURL

The examples within this chapter use the cURL command-line tool to demonstrate how
to access the Commerce Search and Navigation REST API. To connect securely to a
server, you must install a version of cURL that supports SSL.

The following procedure demonstrates how to install cURL on a Windows 64–bit
system.

1. In your browser, navigate to the cURL home page at http://curl.haxx.se and
click Download in the left navigation menu.

2. On the cURL Releases and Downloads page, locate the SSL-enabled version of
the cURL software that corresponds to your operating system, click the link to
download the ZIP file, and install the software.

You are now ready to send requests to the Commerce Search and Navigation REST
API using cURL.

This table summarizes the cURL options used in the command examples.

cURL Option Description

-d, --data @filename.json Identifies the request document, in JSON
format, on the local machine.

-H Defines one or both of the following:

• - Content type of the request document
• - Custom header to pass to server

-o, --output filename Writes output to a file instead of stdout

-X Indicates the type of request (for example,
GET, POST, and so on).

For example:

curl -X GET -H <request-header>:<value>
https://<subdomain>.<domain>.com/<path>/resource-path>

Chapter 47
Sample Search and Navigation REST API requests using cURL

47-92

48
Use Developer Utilities

This section provides information on useful developer utilities you can use during your
development process.

This section provides information on working with the Cloud Commerce SDK,
developing server-side extensions, the Design Code Utility and JavaScript Code
Layering User Interface.

Download the Commerce SDK
The Commerce SDK helps you create server-side integrations with Commerce.

The Commerce SDK includes a REST client designed to connect to an Oracle
CX Commerce server from a Node.js application. The REST client supports the
Commerce Store API and Admin API, as well as APIs for external systems you want to
integrate with Commerce.

To download the Commerce SDK, do the following:

1. Click the Settings icon menu, click Web APIs, then click the Commerce SDK tab.

2. Click the download link.

3. Specify whether to open the ZIP file or save it.

The ZIP file contains the following files that you can read to learn about the SDK:

• README.md describes how to configure the REST client.

• JSDoc descriptions of the SDK’s classes and global variables. To access the
JSDoc files, open the file /oracle-commerce-sdk/docs/index.html in the
location where you saved the Commerce SDK ZIP file.

Develop server-side extensions
In addition to providing REST APIs and webhooks for integrating with external
systems, and widgets for extending your storefront, Commerce also includes support
for developing server-side extensions written in JavaScript.

Server-side extensions (SSEs) are applications built using the Express web framework
and executed in the Node.js runtime environment. These extensions implement
custom REST endpoints. For example, you could create a custom shipping calculator
whose path is /ccstorex/custom/v1/calculateShipping.

SSEs provide the ability to execute custom logic on the server. This capability allows
you to:

• Run critical code in a secure environment that cannot be easily modified by an end
user.

• Run integration code on Oracle CX Commerce servers in the Commerce PCI
zone, making it easier to achieve PCI compliance with custom extensions.

48-1

• Develop complex flows that integrate Commerce data and logic with external
systems, and present a single endpoint to the storefront or to those systems.

SSEs perform and scale well. Note, however, that the server-side extension
environment is not designed for large application development. It is intended for
implementing integration code or small amounts of custom logic. An SSE application is
limited to 1 GB of memory at runtime.

Access SSEs

Customer and partner developers do not have direct access to the Commerce Node.js
servers. The storefront, admin, and agent server extension requests are routed to the
Node.js servers, and the responses are sent back to the user. The custom server
applications can be accessed using the following URL routes:

• Storefront request route prefix: /ccstorex/custom/*

• Admin request route prefix: /ccadminx/custom/*

• Agent request route prefix: /ccagentx/custom/*

For example, if you develop a storefront endpoint with the route /v1/
calculateShipping, it will be accessed at:

https://<storefront-hostname>:<storefront-port>/ccstorex/custom/v1/
calculateShipping

Note that the /v1 portion is recommended for versioning but not required. This
matches the versioning scheme used for standard Commerce endpoints.

For an admin or agent endpoint, the route prefix includes ccadminx or ccagentx, and
the URL includes the hostname and port for the administration server. Admin and
agent endpoints require authentication using bearer tokens or user credentials, as
described in REST API authentication.

Create an extension

A shipping calculator SSE is an example of a Node.js application that implements
a target for Commerce webhook requests. To make this application available in
Commerce, you would export the Express subapplication object from the /app/
index.js module. For example:

// Export the subapplication to be embedded in the server-side extension
var express = require('express');
var subApplication = express.Router();
module.exports = subApplication;

Extension packaging and structure

An extension consists of a single ZIP file that can be uploaded through the
administration interface. The file should not be larger than 25 MB. The filename
consists of the name of the application plus .zip. If an extension by the same name
has already been uploaded, uploading this file will overwrite the existing extension.

Chapter 48
Develop server-side extensions

48-2

Each extension needs to contain a JSON metadata file named package.json that
provides information about the extension. For example:

{
 "name": "shippingCalculator",
 "version": "0.0.1",
 "description": "SSE that calls an external shipping calculator
service.",
 "main": "/app/index.js",
 "author": "Fred Smith",
 "dependencies" : { "config": "latest" },
 "devDependencies" : { "express" : "latest" },
 "authenticatedUrls": [],
 "publicUrls": [
 "/ccstorex/custom/v1/calculateShipping",
],
...
}

The following describes key properties in the file:

• main: Identifies the JavaScript file that is the entry point into the application. This
is executed and loads the extension to be run. Required.

• publicUrls: List all the routes for the extension that do not require authentication.

• authenticatedUrls: Lists the routes that only logged-in users can access.
Typically used for SSEs that implement admin or agent endpoints.

• dependencies: Specifies the application's runtime dependencies. Ensure any
modules you include here are also packaged with your application and uploaded
to Commerce.

• devDependencies: Specifies the application's development-only dependencies.

At least one route must be listed in either publicUrls or authenticatedUrls.

In addition, if your server-side extension needs to call out to any external domains, you
must use the package.json file's allowedUrls property to specify an array of these
URLs. For example:

"allowedUrls": [
 "https://www.example.com",
 "https://www.example2.com"
]

The domains you specify are added to the list maintained by your Oracle CX
Commerce environment. Calls to domains that are not on this list are blocked. Note
that calls from SSEs must use HTTPS and be sent over port 443.

Note: The allowedUrls property replaces the whitelistUrls property that was
formerly used for specifying external domains. The whitelistUrls property has been
deprecated. If you currently have an SSE that has the whitelistUrls property, you
should rename the property to allowedUrls. If you do not rename the property,
Commerce will continue to permit access to the domains specified in whitelistUrls.
However, if you add the allowedUrls property without removing whitelistUrls,

Chapter 48
Develop server-side extensions

48-3

Commerce will ignore whilelistUrls and permit access only to the domains specified
in allowedUrls.

Development dependencies

The Oracle CX Commerce server-side extension framework includes a number of
libraries that you can use in developing your application. Declare the ones you use as
devDependencies:

• Body-parser: Middleware that parses incoming request bodies.

• Express: Node.js web application framework.

• Jasmine: Development framework for testing JavaScript code.

• Jshint: Tool that helps to detect errors and potential problems in JavaScript code.

• Moment: Tool that parses, validates, manipulates, and displays dates and times in
JavaScript.

• Nconf: Simple key-value store with support for both local and remote storage.

• Winston: Simple and universal logging library with support for multiple transports.

Logging

The SSE framework includes a system logger that uses Winston with the necessary
transports preconfigured. You can access the system logger in your code by including
the global.occ.logger variable. (Inside the route definition, you can use either the
global.occ.logger or res.locals.logger variable; both variables refer to the same
logger.) You can download the logs by using the GET /ccadminx/custom/v1/logs
endpoint.

The following example illustrates using the system logger in SSE code:

if(global.occ) {
 global.occ.logger.debug('Loading sample application.');
}
const response = 'hello system logger!!';
app.get('/v1/helloSystemLogger', function(req, res){

if(global.occ) {
 global.occ.logger.debug('Using global occ variable: ' + response);
 res.locals.logger.debug('Using res.locals.logger within the route
definition');
 res.status(200).send(response);
} else {
 res.status(500).send('error');
 }
});

Supported MIME and file types

Server-side extensions support the following MIME types for inbound communication:

• application/json

• application/xml

• text/xml

Chapter 48
Develop server-side extensions

48-4

• application/x-www-form-urlencoded

Template files, images, and other formats are not supported. You can use any MIME
type for outbound communication.

An SSE's ZIP file should contain the following file types only:

• .json

• .js

• .pem

• .txt

• .properties

SSL certificate files must in PEM format and stored in the top-level ssl/ folder of the
extension. Each certificate must be in a separate file.

Outbound calls

The extension server runs behind a proxy, and all outbound calls from the extension
server must include the proxy details directly or indirectly. The Commerce HTTPS
module indirectly includes the proxy details, so you typically should not need to pass in
the proxy details.

If, however, you are using any other HTTP client libraries (for example, node-fetch or
Axios), check the corresponding library documentation to determine whether you need
to provide the proxy details. If so, they can be accessed using the following:

const nconf = require ('nconf');
const proxyServer = nconf.get ("general:proxy-server");

Upload an extension

Before you upload a server-side extension to Commerce, be sure to clean out
the node_modules folder. You should include only the modules that the application
requires. Also, do not upload any of the Commerce modules listed as dependencies,
such as Express, Winston, or Nconf. These modules, if included in your node_modules
folder, may cause unpredictable behavior, because the Commerce SSE framework will
use the local node_modules copy instead of the global copy.

To upload an extension to Commerce, you must first obtain an application key and use
it to log into the Admin REST API. For example:

POST /ccadmin/v1/login HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Authorization: Bearer <application_key>

grant_type=client_credentials

Commerce returns a bearer token, which you supply with subsequent requests.

Now use the POST /ccadmin/v1/serverExtensions endpoint to upload the extension:

POST /ccadmin/v1/serverExtensions HTTP/1.1
Content-Type: multipart/form-data
Authorization: Bearer <access_token>

Chapter 48
Develop server-side extensions

48-5

filename: <extension_name>.zip
uploadType: extensions
force: true
fileUpload: <open_handle_to_extension_file>

Call SSE endpoints

You can use SSEs to implement custom endpoints for a variety of purposes.
Depending on the logic you implement, the endpoint can be called by a Commerce
component such as a widget or webhook, or by an external system. Note that
widgets and webhooks should call these endpoints on the storefront server, not the
administration server.

A common pattern is to implement an endpoint that is designed to receive a POST
request from a Commerce webhook. The SSE then converts the POST data (if
necessary) and sends it to an external system. When the endpoint receives a
response from the external system, the SSE converts the response (if necessary) and
passes it to the webhook, which sends its response to the storefront.

The external shipping calculator example described in this section can be
implemented in this way. After you install this extension, you configure the Shipping
Calculator webhook to call the /ccstorex/custom/v1/calculateShipping endpoint.
See Configure webhooks for more information.

There are several posts on Oracle Cloud Customer Connect with additional
information about developing server-side extensions. For more information about SSE
configuration management, see:

https://cloudcustomerconnect.oracle.com/posts/b43dfc9484

Use the Design Code Utility
Oracle CX Commerce includes the Design Code Utility, a suite of command-line tools
that allows you to integrate Commerce with the IDE or code editor of your choice.

The Design Code Utility suite is comprised of the following:

• dcu – The core code and metadata synchronization utility.

• ccproxy – The development and debugging proxy.

• ccw – The Content Creation Wizard.

• plsu - The Page Layout Synchronization Utility, which enables you to manage and
edit page layouts.

Download and install the Design Code Utility suite

Before you can use it, you must download the Design Code Utility suite and install it
using Node Package Manager.

To download and install the Design Code Utility suite:

1. Log in to the Commerce administration interface.

2. Click the Design icon.

3. Under Developer, click Developer Tools.

Chapter 48
Use the Design Code Utility

48-6

https://cloudcustomerconnect.oracle.com/posts/b43dfc9484

4. Under Design Code Utility, click the Download button.

5. Save the ZIP file to a location on your local machine and extract its contents.

6. Change directories to the extracted location and run the following command to
install the Design Code Utility script:
npm install -g

The install process makes the Design Code Utility and other utility scripts available
through the dcu.cmd|sh command. At this point, you can either run the dcu command
via a command prompt or by configuring the integrated development environment
(IDE) of your choice to run it.

On Linux systems, performing the following command will put the command line
utilities on your PATH:

sudo npm link

Use the dcu to grab and upload source code and metadata

The dcu is the core code and metadata synchronization utility, which allows you to
grab all of the user modifiable source code and metadata from a Commerce server,
edit it as necessary in your chosen tool, and then upload it back to the server.
The utilities also makes it possible to transfer content between Commerce server
instances. The dcu supports these main operations:

• --grab takes a copy of all, or some of, the available user modifiable source code
and metadata from the specified Commerce server and creates a directory tree on
the local disk.

• --put sends the contents of a single file back to the specified Commerce server.

• --putAll sends all the files underneath a named directory back to the specified
Commerce server.

• --transferAll enables the transfer of content between Commerce server
instances.

• --compileLess combines all off the downloaded less resources for widgets,
elements, stacks and themes and posts them to the node for compilation.

• --clean deletes all local files that have been previously created.

The basic command for grabbing files is:

dcu --grab

The basic command for uploading a single file is:

dcu --put <path to file>

For example:

dcu --put "widget/Add Product To Wish List/instances/
 Add Product To Wish List Widget/display.template"

The basic command for uploading all files under a specified directory is:

dcu --putAll <directory>

Chapter 48
Use the Design Code Utility

48-7

For example:

dcu --putAll theme

During each of these operations, the utility provides messages to tell you the status of
the grab or upload. You can modify these basic commands with the options described
in the Understand dcu options section.

Refresh previously grabbed content

When developing widgets you may find it necessary to refresh your local directory
tree with the latest content from the server. While this can be done by issuing another
grab, this may take a few minutes on a larger site and can be wasteful if you are
only interested in specific changes. You can refresh all of the files within a specified
directory by using the --refresh command. For example, the following would only
refresh all of the files from the widget directory:

dcu –refresh widget

You can run incremental refreshes on the following directories:

• The application-level JavaScript directory, for example global

• The global snippets directory, for example snippets

• Individual global snippets locale directories, for example, snippets/en

• The stack directory, for example stack

• Individual stacks directories, for example stack/MyStack

• The themes directory, for example, themes

• Individual themes directories, for example theme/BlueTheme

• The global elements directory, for example element

• Individual global element directories, for example element/image

• The widgets directory, for example widgets

• Individual widget directories, for example widgets/Header

• The site settings directory.

For example, to refresh a specific stack from within the stack directory, you could
perform the following command:

dcu –-refresh stack/MyStack

Generate a partial grab

For certain workflows, for example when DCU is being used as part of a continuous
integration pipeline, it was be advantageous to grab only objects of a certain type. This
is not the same as a refresh however as refresh requires there to have been at least
one grab in the target directory. You can do a partial grab by supplying a directory with
the –grab option

For example, the following would only grab only the element related content from
server: dcu –--grab element

Chapter 48
Use the Design Code Utility

48-8

You can run incremental grabs on the following directories:

• The application-level JavaScript directory, for example, global

• The global snippets directory, for example, snippets

• Individual global snippets locale directories, for example, snippets/en

• The stack directory, for example, stack

• Individual stacks directories, for example, stack/MyStack

• The themes directory, for example, themes

• Individual themes directories, for example, theme/BlueTheme

• The global elements directory, for example, element

• Individual global element directories, for example, element/image

• The widgets directory, for example, widgets

• Individual widget directories, for example, widgets/Header

• The site settings directory

For example, to grab only a single element you could perform the following command:

dcu –-refresh element/MyElement

Transfer source code and metadata between Commerce instances

You can use the dcu to transfer source code from one Commerce instance to another.
This can be useful for promoting source code from a test environment to production.

To use the transfer feature, you must execute a grab from the source instance, for
example:

dcu --grab --clean --node http://sourceInstance --user username --
password pwd

After the grab is finished, you transfer the files to the destination instance, using a
command similar to the following:

dcu --transferAll path --node http://destinationInstance --user
username --password pwd

The dcu takes a “best effort” approach to transferring content between instances.
In general, it matches by name so that if, for example, a widget instance on the
destination instance has the same name as a widget instance on the source instance,
they are assumed to be the same. The matching rules for each entity type are
described in the table below.

Type Matching rules

Global elements Matches on the <element> tag. If the element
does not exist, a warning is issued.

Application-level JavaScript modules Matches on the JavaScript file name. If the
file name does not exist, it is created on the
destination instance.

Chapter 48
Use the Design Code Utility

48-9

Type Matching rules

Text snippets Matches on locale.

Stacks Matches on the stack instance’s display name.
If the stack instance does not exist, a warning
is issued.

Themes Matches on the theme name. If a matching
theme does not exist, one is created on the
target instance, using the same name and
source code.

Widgets Widgets are matched on version number and
display name. If the widget does not exist,
a warning is issued. Widget instances are
matched on display name. If a matching
widget instance does not exist, a new widget
instance is created on the target instance
using the same display name and source
code.

Elements Widget elements are matched on version
number, display name and <element> tag.
If the element does not exist, a warning is
issued.

Site Settings Site Settings are matched on display name. If
a matching Site Settings group does not exist
on the target server, one is created with the
same name and source code.

Understand dcu options

The following table describes the options you can use with the dcu.

Option Description

-h, --help Provides usage information for the utility.

-V, --version Provides the utility’s version number.

-n, --node <node> The URL for the administration interface on
the target Commerce instance, for example,
http://localhost:9080. Used with --
grab, --put, and --putAll. If --node is not
specified, the utility attempts to use the most
recently specified node.

-k, --applicationKey <key> The application key to use to log into the
target Commerce administration interface. It is
recommended that you create an application
key for authentication purposes. For detailed
information on creating an application key,
refer to the Use the application key for
authentication section.

It is also possible to specify the application
key using the CC_APPLICATION_KEY
environment variable.

-u, --username <userName>

-p, --password <password>

These options are no longer available, having
been replaced by the applicationKey
option.

Chapter 48
Use the Design Code Utility

48-10

Option Description

-g, --grab [<directory>] If no directory is specified, the grab option
copies all available content from the target
Commerce instance into the current working
directory, or the base directory if one has been
specified. If a directory is specified, then only
content associated with that directory will be
grabbed.

Note: During a grab, a new directory
called .ccc is created on disk alongside the
grabbed directories. This is called the Tracking
Directory and holds important metadata used
by the utility. Do not modify this directory.

-t, --put <path to file> Sends the specified file back to the specified
Commerce instance. The <path to file>
can be either a relative or absolute path,
in either Windows or POSIX format. Relative
paths are relative to the base directory, which
you can specify using the --base option. If
the

--base option is not provided, the base
directory is assumed to be the current working
directory.

If a full path is provided, then any value
specified in the

--base option is ignored.

-b, --base <directory> Specifies the base directory. This can be either
a relative or absolute path, in either Windows
or POSIX format.

-l, --locale <locale> Retrieves text snippets and resources for the
specified locale only. Also, the informational
messages displayed by the Design Code Utility
will appear in the locale specified.

-a, --allLocales Gets text data for all locales rather than just
the current locale for the target Commerce
instance.

-e, --refresh <directory> Refreshes content from the Commerce
instance within the specified directory.

-c, --clean Deletes all local files that have been previously
grabbed. Used only with the --grab option.

-m, --putAll <directory> Sends all files back to the target Commerce
instance, beneath the specified directory. The
<directory> can be either a relative or
absolute path, in either Windows or POSIX
format. Relative paths are relative to the base
directory, which you can specify using the
--base option. If the --base option is not
provided, the base directory is assumed to be
the current working directory.

If a full path is provided, then any value
specified in the --base option is ignored.

Chapter 48
Use the Design Code Utility

48-11

Option Description

-x, --transferAll <path> Transfers all files from the local machine to
the specified Commerce instance, matching
by name. For example, if a widget instance is
called Red Footer and the utility finds a widget
instance on the target that is also called Red
Footer, the utility assumes they are the same.

-i, --updateInstances Updates all instance templates, less and locale
strings using their respective base assets. By
default, when a base widget template, less
or locale file is modified, the changes affect
only widget instances that are subsequently
created. When you select this option, all
widget instance assets of a specific type
are overwritten with their corresponding base
contents. You can use this option to correct
issues affecting a large number of existing
instances. It is recommended to use this
option sparingly.

-o, --noInstanceConfigUpdate By default, when performing a put, putAll
or tranferAll, widget instance metadata is
updated on the Commerce instance. However,
you may want to have widget instance
configuration metadata different between
Commerce instances. Use this option to
suppress widget instance metadata updates.

-C, --compileLess [auto] This option, used in conjunction with ccproxy,
prepares a local copy of the rendered
storefronts CSS file. The CCAdminUI endpoint
ensures that all standard storefront styles
are included, as well as any less files you
may have created. If the active site theme is
restricted, the Less Compiler also includes the
current active theme in the CSS output.

-N, --noThemeCompile When DCU puts or transfers a Less file, it
will trigger a Theme recompilation. However,
for large scale transfers, this can significantly
increase transfer time. Therefore, specifying
this option means that a Theme recompilation
is not automatically triggered and, as such,
you are required to manually trigger it once the
transfer completes. See Manage Large Scale
Transfers for further details.

-A, --autofix This option is recommended for use on
large scale transfer operations, and helps to
avoid issues that may arise when transferring
instances of Oracle widgets. See Manage
Large Scale Transfers for further details.

-d, -delete The delete option enables the deletion of
widget instances.

Add JavaScript to existing user-created widgets

You can add JavaScript to an existing user-created widget by creating a new .js file
under the widget’s /js directory and issuing a put, putAll or transferAll.

Chapter 48
Use the Design Code Utility

48-12

Use the ccproxy utility

The ccproxy utility is the proxy that allows you to develop and debug your code.
The script allows you to route your storefront requests through a local node.js
application, which intercepts certain resources and then substitutes them with a local
modified version. When the server starts up, it looks at your widget, element, stack
and theme metadata and then builds mappings of the server data to local files to the
local files downloaded by the dcu utility.

Note: Before you can use ccproxy, you must redirect your browser HTTP traffic to the
port on which ccproxy is listening. Refer to your browser documentation for information
on browser-specific proxy switchers.

Work with HTTPS traffic

When using a proxy to connect to a secure HTTPS site, ccproxy automatically
generates certificates. However, you can import any certificates stored in the .ccc
directory into the browser as a trusted CA. The proxy accepts the browser’s traffic
request and responds with its own certificate. An example of the certificate naming
convention is: ccproxy-<nodeName>-root-ca.crt, where <nodeName> is the URL for
the storefront.

Note: The browser proxy switcher that you use must also be set up to redirect HTTP
and HTTPS traffic to the ccproxy host.

The following table describes the options you can use with the ccproxy utility.

Option Description

-h, --help Provides usage information for the utility.

-V, --version Provides the utility’s version number.

-n, --node <node> The URL for the administration interface on
the target Commerce instance, for example,
http://localhost:9080. Used with --
grab, --put, and --putAll. If --node is not
specified, the utility attempts to use the most
recently specified node.

-P, --port <number> Changes the port on which the ccproxy listens.
The default is 8088. Alternatively, you can set
the CC_DEVPROXY_PORT environment variable.

-b, --base <directory> Uses the directory indicated as the base
directory.

-l, --list List proxy substitution rules.

-d, --disable <list> Specify a set of substitution rules to disable
(overrides -e flag).

-e, --enable <list> Specify a set of substitution rules to enable.

Note: Substitution rules can be enabled/
disabled by name (you can view the rule
names using the -l flag). The -e/-d parameters
will take one or more rules names as a comma
separated list. e.g.

$ ccproxy -e
Javascript,WidgetTemplate

To enable only substitution of JavaScript files
and widget HTML templates.

Chapter 48
Use the Design Code Utility

48-13

Use the ccw utility

Commerce includes the ccw utility, a command-line tool that allows you to create new
content on Commerce with the IDE or code editor of your choice. This tool allows you
to create new widgets, stacks and elements, and then upload them to the server.

For detailed information on working with widgets, stacks and elements, refer to
Understand widgets.

The format for invoking the ccw is:

ccw [options]

Understand ccw utility options

The following table describes the options you can use with the ccw utility.

Option Description

-b, --base <directory> Identifies the base directory.

-h, --help Provides usage information for the utility.

-l, --locale <locale> Uses the supplied locale as the default locale.
Also, the informational messages displayed by
the ccw will appear in the locale specified.

-n, --node <node> The URL for the administration interface on
the target Commerce instance, for example,
http://localhost:9080. If --node is
not specified, the utility attempts to use the
most recently specified node.

-k, --applicationKey <key> The application key to use to log into the
target Commerce administration interface. It is
recommended that you create an application
key for authentication purposes. For detailed
information on creating an application key,
refer to the Use the application key for
authentication section.

It is also possible to specify the application key
using the CC_APPLICATION_KEY environment
variable.

-V, --version Provides the utility’s version number.

-w, --createWidget Creates a new widget.

-e, --createElement
<widgetOrElementDirectory>

Create a new element - optionally under a
widget directory or as child of another element.

-g, --generateMarkup
[elementDirectory]

Generate template mark-up to match the
supplied element including sub-elements.

-s, --createStack Create a new stack.

-t,, --createSiteSettings Create a new group of site settings.

Create a widget with the utility

When you create a new widget, the ccw asks a number of questions so that it may
create a widget. The extension is created by calling the appropriate endpoints.

Initiate the ccw with the option to create a new widget:

ccw -w

Chapter 48
Use the Design Code Utility

48-14

This brings up the following wizard interface:

Understand the ccw utility widget creation questions

When creating the widget, you are prompted to answer a number of questions. The
way that you answer these questions affects the way that the widget is created. The
following section provides details of the questions asked during the creation of the
widget.

Question Explanation

Enter the name of the new widget The textual name used to create the widget
directory. It is also the name used when the
widget is created on the Commerce instance.

Is the new widget global?

(Global widgets are loaded on every page but
have NO display template.)

Global widgets are a way to include common
JavaScript code across every page layout in
the store. A global widget can have only a
single instance.

Note that a global widget is not the same
as a global ViewModel. Should you create
observable properties in your global widget,
they will not be automatically available in any
ViewModel.

Does the new widget require
internationalization?

Internationalized widgets require additional
resource bundles, which are created if you
answer yes.

Is the new widget configurable? If you answer yes , you are indicating that the
widget requires user configurable meta data.
Refer to Understand widgets for information on
configuring widgets.

Should the new widget contain example
source code?

If you respond yes, the generated widget will
contain various instructions and examples to
assist those new to widget development.

Should the new widget be sent to the instance
immediately?

If you respond yes, the new widget will
be created as an extension on the target
Commerce instance. If you answer no, the
widget is created the next time you do a
putAll or transferAll.

Does the new widget require fragmentation? If you answer yes, the widget will be usable
with elements.

After you have answered all of the questions, the responses are validated and a
skeleton widget is created. Once the widget has been created, it is sent to the server
as an extension, unless you requested that it should not. Once you get the response
that the upload is successful, you can drag the widget onto a layout.

Create a simple global element with the ccw utility

Chapter 48
Use the Design Code Utility

48-15

When you create a new element, the ccw asks a number of questions to determine the
kind of element needed. The new global element will be usable with all widget types.

Initiate the ccw with the –e option to create a global element:

ccw –e

This will bring up the following wizard interface:

Create a simple widget element with the ccw utility

New elements can also be created under widgets, provided that the widget has not
already been placed on the Commerce instance. The resultant element will only be
usable with that widget.

Initiate the ccw with the –e option to create a widget element and include a path to the
widget the element is to be added to:

ccw –e widget/Galaxy

This will bring up the same wizard interface used for global elements.

Create a rich element with the ccw utility

Elements can also be created as children of other elements. This enables the creation
of configurable rich elements similar to “Price” or “Inventory Status” in the “Product
Details” widget.

Creating a rich element follows a standard pattern best thought of as a tree:

• At the top level (or root node) must be an element of type “fragment” with the
single configOption “available” selected.

• At middle level, there must be one or more elements of type “container”.
These must be children of the previously described top level element. Only the
configOptions “available”, “actual”, “currentConfig” and “preview” should be used
with container elements.

• At the lowest level (leaf nodes) must be one or more elements of type
“subFragment”, “staticFragment” or “DynamicFragment”. These must be children
of a container element. Only the configOptions ”border”, “collectionPicker”,
“elementName”, “fontPicker”, “horizontalAlignment”, “image”, “padding”, “preview”,
“richText”, “textBox”, and “wrapperTag” can be used with elements of this type.

Also, the markup for a rich element needs to be manually placed in a widget template -
it cannot merely be dragged to a widget within the Design page. The markup for a rich
element has the following general form:

Chapter 48
Use the Design Code Utility

48-16

Creating a rich element is a multi-stage process and ccw tries to make this as smooth
as possible. To create a rich element with ccw:

1. Create the top level element by selecting a type
of “fragment” and answering yes to the sub-elements

question:

2. Create one or more child container elements by specifying the
path to the previously created root element on the ccw command

line:

3. Create one or more child leaf elements by specifying the path
to the previously created container element on the ccw command

line:

Chapter 48
Use the Design Code Utility

48-17

If you do a putAll/transferAll on a directory containing multiple elements, DCU
will send the leaf elements first, then the containers, and finally the top level
elements.

Note that if a user creates an elementized widget, or an element containing sub-
elements using ccw and answers yes to the “example source code” question, a
sample rich element will be created.

Understand the ccw utility element creation questions

When creating the element, you are prompted to answer a number of questions. The
way that you answer these questions affects the way that the element is created. The
following section provides details of the questions asked during the creation of the
element.

Question Explanation

Enter the name of the new element The textual name used to create the element
directory. It is also the name used when the
element is created on the Commerce instance.

Please select the type of the new
element

The type of the element you require.
Depending on the context, the available
options may vary.

Does the new element require
internationalisation?

Internationalized elements require additional
resource bundles, which are created if you
answer yes.

Does the new element require
JavaScript?

If you respond yes, a suitably formatted
JavaScript file will be created and associated
with the new element.

Will the new element have sub-
elements?

If you respond yes, the generated element
will be a rich element like the “Product Price”
element using in the “Product Details” widget.

Please select any configuration
options required in the new element

This enables you to select how the element
can be configured by the user inside the
Design page. The options displayed depend
on your response to the “Please select the
type of the new element” question.

Should the new element be inserted
as a span (if not, it will be
inserted as a div)?

This question determines how the element
mark-up will be inserted in the HTML DOM.

Should the new element contain
example source code?

If you respond yes, the generated element will
contain various instructions and examples to
assist those new to widget development. If you
answered yes to the “Will the new element
have sub-elements?” question, example sub-
elements will be created.

Should the new element be sent to
the instance immediately?

If you respond yes, the new element will
be created as an extension on the target
Commerce instance. If you answer no, the
element is created the next time you do a
putAll or transferAll.

Create a stack with the ccw utility

When you create a new stack, the ccw script asks a number of questions in order to
create a stack.

Understand the ccw utility stack creation questions

Chapter 48
Use the Design Code Utility

48-18

When creating the stack, you are prompted to answer a number of questions. The
answers provided to these questions will determine how the Site Settings are created.
The following section provides details of the questions asked during the creation of the
stack.

Question Explanation

Stack name Name of the new stack type.

Max number of variants Maximum number of sub-regions that the
stack supports.

Default variants Number of sub-regions a new instance of the
stack will have by default.

Requires internationalization Generate additional language resources at
creation time.

Include example code If yes, generate some example template and
style code.

Server Sync If yes, automatically send the new stack to the
server.

Create Site Settings with the ccw utility

When you create a new group of Site Settings, the ccw script asks a number of
questions in order to create a Site Settings group.

Question Explanation

Site Settings name Display name of the new Site Settings group.

Include example code If yes, then generate some example metadata.

Understand the ccw utility Site Settings creation questions

When creating the Site Settings, you are prompted to answer a number of questions.
The answers provided to these questions will determine how the Site Settings are
created. The following table provides details of the questions asked during the creation
of Site Settings:

Delete content with the ccw utility

The ccw utility creates widgets, stacks and elements as extensions, allowing you
to delete previously created widget, stacks, or element content by deactivating and
deleting the corresponding extension.

To delete the widget, stack, or element from your local disk after you have deleted the
extension, issue the following command:

ccw –-grab –-clean

Use the plsu utility

The Page Layout Synchronization Utility (PLSU) enables you to manage and edit page
layouts on your server. You can use the following operations with the pls utility:

• --list – Displays the names of all of the layouts on the specified server

• --delete – Deletes one or more page layouts on the specified server

• --transfer – Copy one or more page layouts from a specified server to another

List page layouts

Chapter 48
Use the Design Code Utility

48-19

The following command lists all of the page layouts available on a server:

plsu -–list –-node http://commerceCloudInstance –-applicationKey
applicationKey

The response might resemble:

Home Layout
Collection Layout
Product Layout
Cart Layout
Cart Layout With Shipping
Checkout Layout
Checkout Layout with GiftCard
Order Confirmation Layout
About Us Layout
Contact Us Layout
Privacy Layout
Returns Layout
Shipping Layout
Error Layout
Search Results Layout
No Search Results Layout
Payer Authentication Layout
Wish List Layout
Purchase List Layout
Profile Layout
Account Based Profile Layout for B2B
Order Details Layout
Order History Layout
Wish List Profile Layout
Scheduled Order Layout
Assets Layout
Asset Details Layout

Delete page layouts

You can delete a page layout using a command similar to the following:

plsu –-delete –-name "page layout to delete" --node http://
commerceCloudInstance –-applicationKey applicationKey

You can specify the --name option more than once. Note that default layouts cannot be
deleted.

Transfer page layouts between servers

You can transfer a single page layout by using the following command:

plsu --transfer --node http://commerceCloudInstance –-applicationKey
applicationKey --name "Page Layout To Transfer" –-destinationNode
http://commerceCloudInstance --destinationNode destinationApplicationKey

You can specify the --name option more than once.

Chapter 48
Use the Design Code Utility

48-20

To transfer all page layouts, use the following command:

plsu --transfer --node http://commerceCloudInstance –-applicationKey
applicationKey --all --destinationNode http://commerceCloudInstance
 --destinationNode destinationApplicationKey

Page layouts that do not exist on the target system will be created. Note that, unlike
dcu --grab,

plsu -–transfer does not create anything on your local disk.

Certain page layout-related features may refer to other content on your Commerce
instance. If this is the case, plsu will not transfer a page layout if it relies on data that is
not already present on the destination system. As such:

• Widget instances used within the layout must already exist. These can be created
by performing a dcu --put or --transfer before calling plsu

• Sites associated with page layouts must already exist. These can be created using
the administration interface

• Audiences associated with page layouts must already exist. These can be created
using the administration interface

Before transferring page layouts, plsu --transfer performs all error checking. If the
utility finds missing data, no page layouts will be transferred.

Understand plsu options

The following options are available with the plsu utility:

Question Explanation

-h, --help Provides information to assist with running the
utility.

-V, --version Provides the utility’s version number.

-n, --node <node> The URL for the administration interface
on the Commerce instance. For example,
http://localhost:9080. This is a
required option. When used with --transfer,
this value indicates the source instance. The
destination instance should be specified by
using --destinationNode.

-k, --applicationKey <key> The application key to use to log into
the Commerce administration interface. This
is required for authentication. For detailed
information on creating an application key,
refer to the Use the application key for
authentication section.

You can also specify the application key
using the CC_APPLICATION_KEY environment
variable.

-l, --locale <locale> Forces the default locale to the supplied value.

-d, --detinationNode <node> The URL of the destination administration
interface on the Commerce instance, for
example: http://localhost:9080.
This option is used with --transfer.

Chapter 48
Use the Design Code Utility

48-21

Question Explanation

-a, --destinationApplicationKey <key> The application key to use when
logging into the destination Commerce
administration interface. This key is required
for authentication purposes. For detailed
information on creating an application key,
refer to the Use the application key for
authentication section.

-y, --name <name> The name of the page layout. You can use this
option multiple times, and with –-delete and
–-transfer. You cannot use this option with --all.

-s. --all Specifies that all page layouts should be
transferred. This option is not available with
--all.

-i, --list This lists all of the page layouts available on
the system.

-e, --delete This option, which must be used in conjunction
with the

--name option, deletes one or more page
layouts from the Commerce system.

-t, --transfer This option transfers one or more page layouts
from one system to another. This option must
be used in conjunction with --name or --all
options.

-g, --ignoreVersions This option enables plsu to transfer layouts
between Commerce instances that are not at
the same release version and, as such, should
be used with caution.

Manage Large Scale Transfers

While DCU is primarily a developer toolchain that bridges the gap between a
developer's machine and a Commerce instance, you can also use it for large scale
transfers, however, there are some limitations.

The quickest and easiest way to promote widget code and assets between Commerce
instances is via a database copy. The promotion of client code between two
Commerce instances will typically require the use of both the plsu and dcu utilities.
Note: when performing a large scale transfer you should run dcu first, this is because
plsu expects all the widget instances used in the page layouts being transferred to be
made available. You should also note that large scale transfers using dcu can take
several hours to run, depending on the network speed and the number and size of
assets being copied.

It is recommended that you should identify what has actually changed and transfer
only those assets, which is a quicker method than copying all assets every time. When
transferring assets between Commerce instances, it is also recommended that they
are at the same release version.

New widgets and other assets should always be created with ccw and not via an
extension. If new widgets are being created using an extension, the version number
should be set to one and never changed. Version numbers are intended to be
used with Oracle widgets only and can cause transfer issues if misused. Adding
non-standard files and directories under widgets is only partly supported by dcu.
When a widget is initially created on the target instance during a transferAll or

Chapter 48
Use the Design Code Utility

48-22

putAll, any unrecognized files found under the widget directory are included in the
extension. However, these non-standard additional files, such as, graphic files, cannot
be changed on the server without first deactivating the corresponding extension and
re-running a transferAll or putAll. Performing a put or transfer on these individual
files will have no effect. Note: you can use dcu to delete unwanted widget instances,
as described later in this section.

Use dcu for large scale transfers

To transfer all Design Studio assets between two Commerce instances, you would
typically call dcu as shown below:

dcu –x . –n https://destinationInstance –k <destinationInstance
Application Key>

However, dcu has a number of additional command line options that may be useful in
large scale transfer scenarios.

The first of these is the --noThemeCompile option. By default, when dcu updates
a less file, the server will trigger a Theme recompilation which can significantly
slow down large scale transfers. Specifying the --noThemeCompile option will mean
that no Theme recompilation is triggered and you will have to manually trigger the
Theme recompilation after the transfer is complete. You can manually trigger a Theme
recompilation either via the UI or by transferring a single less file with dcu when
complete.

The second option to consider with large scale transfers is the --autofix option.
Normally, when dcu finds a missing widget instance during a transfer, it will attempt
to create a new widget instance at the requisite version and apply the changes. For
user created widgets, this works as expected but for Oracle widgets on systems which
may not have exactly the same widget versions, this can cause a conflict if a widget
instance already exists of the same name but a different version. If you supply the --
autofix option and dcu finds a conflicting widget instance, it will attempt to create that
instance at the same version number as on the source instance after first renaming
the conflicting widget instance. The latter assumes that the widget exists on the target
system at the desired version. You may find transfers are somewhat slower when the
--autofix option is used. This option can result in a lot of widget instances existing
on the target system so use it with discretion. Once the DCU transfer is complete, you
should review the output and check for any errors or warnings.

Use plsu for large scale transfers

When all widget and related assets have been transferred, plsu can then be called to
transfer page layouts. To transfer all page layouts between two instances, you would
typically call plsu as shown below:

plsu –n https://sourceInstance –k <sourceInstance Application Key> –d
https://destinationInstance –a <destinationInstance Application Key> -ts

In general, it is recommended that transfers take place between Commerce instances
which are at the same release version. While the plsu utility does have an –
ignoreVersions option, this should be used with care. Transfers using plsu will
typically take much less time than with dcu. Any missing stack instances will be
created during a plsu transfer. Note: plsu does not require a grab to be run first; it
does a point to point data transfer.

Use dcu to delete widget instances

Chapter 48
Use the Design Code Utility

48-23

In order to remove a widget instance from an Oracle CX Commerce instance, you
would typically call dcu as shown below:

dcu -k <destinationInstance Application Key> --delete widget/WidgetName/
instances/WidgetInstanceToDelete

This removes all traces of the widget instance from both the local grab directory and
the Commerce instance.

Use the JavaScript Code Layering User Interface feature
The JavaScript Code Layering feature in the administration interface lets you extend
the JavaScript of an Oracle CX Commerce provided widget with your own custom
JavaScript.

Previously, if you wanted to customize or extend the JavaScript for a provided widget,
you had to download the widget and its related files, edit the code with your own
custom JavaScript, and upload it back to the system as a custom widget type. With
the JavaScript Code Layering User Interface feature you can open an additional user
interface that lets you layer custom JavaScript on top of the provided widget and which
then has the benefit of staying on the provided widget.

Extend JavaScript in a provided widget

As an example of how this feature works, do the following:

1. Open the Design page and click the Components tab.

2. Filter to find the Header widget.

3. Highlight the Header widget.

4. Click the widget name to expand its details.

5. Click Extend JavaScript. This action opens a new JavaScript file user interface
window that acts as a template to be edited and associated with the original
widget. You can edit this file with your own custom code and then save the file.
This custom JavaScript file is then shared between all instances of the widget after
it is saved.

In the case of this Header widget example, when you click Extend JavaScript, a new
JavaScript file is generated that acts as the template for you to begin adding your own
custom JavaScript. With the Header widget the template JavaScript file looks like this:

/**
 * @fileoverview extendheaderWidget_v10.js
 *
 * @author
*/
define(
 //
 // DEPENDENCIES
 //
 [],

 //-------------------
 // MODULE DEFINITION

Chapter 48
Use the JavaScript Code Layering User Interface feature

48-24

 //-------------------
 function() {

 "use strict";
 return {
 onload: function(widget) {
 // console.Log('extendheaderWidget_v10.js onLoad');
 },

 beforeAppear: function () {
 //console.log('extendheaderWidget_v10.js before appear');
 }
 };
 }
);

With the Header widget, there are two functions in the template that it to the current
widget model/lifecycle and these two function are:

• onLoad – runs custom logic when the widget is instantiated

• beforeAppear – used when you want to run custom logic each time the widget
appears on the page

You could now edit this file with some custom code and save it to associate it
with the widget. This code shows an example of some custom JavaScript that was
added to the original template file. The custom code changes create a new knockout
observable on the widget and updates the existing widget knockout observable
variable logoAltText.

/**
 * @fileoverview extendheaderWidget_v10.js
 *
 * @author
*/
define(
 //
 // DEPENDENCIES
 //
 ['knockout'],

 //-------------------
 // MODULE DEFINITION
 //-------------------
 function(ko) {

 "use strict";
 return {
 onload: function(widget) {
 console.Log('extendheaderWidget_v10.js onLoad');
 // declare a new variable
 widget.myTestVariable = ko.observable('');
 // update an existing variable
 widget.logoAltText('Updated logo text in extension');
 },

Chapter 48
Use the JavaScript Code Layering User Interface feature

48-25

 beforeAppear: function (Page) {
 console.log('extendheaderWidget_v10.js before appear');
 }
 };
 }
);

Toggle JavaScript minification in preview
By default, widget and element JavaScript files are minified when you view a storefront
in preview mode.

To aid in debugging your custom widgets, you can turn minification off, allowing you
to see the complete widget and element JavaScript source code in your browser’s
debugging tools.
To toggle JavaScript minification, do the following:

1. Click the Preview button to preview your storefront and its unpublished changes in
Preview mode.

2. Click the Debug Tools menu.

3. Use the Minify JavaScript option to enable or disable minification.

4. Refresh the page or navigate to a new page to force a full page refresh.

Note: The Minify JavaScript option only affects the widget and element JavaScript
files. Other JavaScript libraries will continue to be minified.

Reduce the size of page responses
The first time a page loads in Commerce, the server returns all of the data associated
with the specified page layout, including the widget template source, element source,
and so on.

On subsequent page loads, it is possible to limit the returned data to only those
widgets that have not been previously rendered. This feature is not enabled out of the
box because you should understand the trade-offs involved before using it.

When this feature is disabled, all of the data for the page is returned for every
page call and it is cached, giving you the performance improvements associated with
caching. When the feature is enabled, the system tracks the URLs that have been
visited to determine which widgets have not been previously rendered and then limits
the returned data to those widgets. Caching all of these URLs is not feasible, however,
so caching is turned off when this feature is enabled. Instead, the performance
improvements that are gained are driven by the drastically reduced amount of data
that is returned from the server. This approach is especially beneficial on mobile
devices.

To enable this feature, you must create an extension that uploads an application-
level JavaScript module that depends on the cc-store-configuration-1.0.js
library and sets the enableLayoutsRenderedForLayout flag to true. The following
code sample shows what the contents of this JavaScript module might look like (for

Chapter 48
Toggle JavaScript minification in preview

48-26

general information on creating an application-level JavaScript extension, see Create
an Extension):

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition
 //---
 function(CCStoreConfiguration) {

 "use strict";

 return {

 storeConfiguration: CCStoreConfiguration.getInstance(),

 enableLayoutsRenderedFeature: function() {
 storeConfiguration.prototype.enableLayoutsRenderedForLayout =
true;
 }

 };
});

In addition to enabling the feature, you may also choose to override the
storeLayoutIdsRendered() and getLayoutIdsRendered() methods by doing the
following:

• The storeLayoutIdsRendered() method stores IDs for the layouts visited by the
shopper until the page is refreshed or the browser is closed. The stored layout IDs
let the server know which pages have been cached so it can limit the returned
data to new widgets. The number of IDs that the storeLayoutIdsRendered()
method stores is determined by the size of the layoutsRenderedArraySize object
and is set to 15 out of the box.
You can also choose to override the storeLayoutIdsRendered() method for other
purposes, for example, so that layout IDs are only stored when the store is
accessed on a mobile device.

• The getLayoutIdsRendered() method returns the stored layout IDs to the server.
You can modify this method so that it ignores certain layouts, effectively disabling
the feature for those pages.

The following code sample shows the type of modifications you might choose to make
to the storeLayoutIdsRendered() and getLayoutIdsRendered() methods:

define(
 //---
 // DEPENDENCIES
 //---
 ['ccStoreConfiguration'],
 //---
 // Module definition

Chapter 48
Reduce the size of page responses

48-27

 //---
 function(CCStoreConfiguration) {
 "use strict";
 return {
 storeConfiguration: CCStoreConfiguration.getInstance(),
 enableLayoutsRenderedFeature: function() {
 storeConfiguration.prototype.enableLayoutsRenderedForLayout =
true;
 },
 storeConfiguration.storeLayoutIdsRendered: function(pLayout) {
 // Store layouts only if the device is mobile

storeConfiguration.prototype.layoutIdsRendered.push(pLayout.layout);
 },
 storeConfiguration.getLayoutIdsRendered: function() {
 // Don't return the home page's layout ID, effectively
disabling this
 // feature for the home page.
 if
(storeConfiguration.prototype.layoutIdsRendered.indexOf('home') > -1) {

storeConfiguration.prototype.layoutIdsRendered.splice(

storeConfiguration.prototype.layoutIdsRendered.indexOf(
 'home'), 1);
 }
 return storeConfiguration.prototype.layoutIdsRendered;
 }

 };
})

View client-side error logs
Client-side errors are stored in log files that roll over every day.

Commerce stores 30 days’ worth of these logs files. To access the log files, both the
Store API and the Admin API have a logging endpoint. The syntax for requests sent
to these endpoints is the same, as shown in the following example:

GET /logging?type=clientErrors

A request to the Store API logging endpoint should be sent to a storefront server
where it retrieves client errors logged on that server, for example:

["log line 1",
"log line 2",
"log line 3"]

A request to the Admin API logging endpoint should be sent to the administration
server. The Admin API logging endpoint executes concurrent REST requests to
retrieve client errors from each registered storefront server. The Admin API endpoint

Chapter 48
View client-side error logs

48-28

collates the results from the store requests and returns them as one JSON object,
keyed on the hostname of the storefront server, for example:

{
 "server 1": ["log line 1",
 "log line 2",
 "log line 3"],
 "server 2": ["log line 1"]
}

The log information returned by either endpoint can be filtered using the optional query
parameters described in the following table:

Parameter Format Default Description

since ISO 8601 timestamp
format OR millisecond
value

null The date and time to
start searching from.

until ISO 8601 timestamp
format OR millisecond
value

null The date and time to
search to.

includeArchives boolean false Controls whether
the search includes
archived log files.

numArchiveFiles int 7 Searches the most
recent N archived log
files. A value of 0
searches all archived
log files.

queryText String null Limits the results to
log entries containing
the supplied query
text.

localLogs boolean false This parameter is
supported by the
Admin API endpoint
only. It returns errors
from the local log file
on the administration
server, without calling
out to the storefront
servers. You can use
it to retrieve client-
side errors thrown by
the storefront preview
feature.

Restore or upgrade the storefront framework version
Commerce’s storefront framework provides the foundation for store functionality and
facilitates client-side storefront development.

The framework comprises JavaScript and CSS code and gives access to common
view models, the PubSub event mechanism, third-party libraries, themes, Commerce-
specific libraries and so on. It consists of the following files: require.js, main.js,
store-libs.js, and storefront.css.

Chapter 48
Restore or upgrade the storefront framework version

48-29

The storefront framework is upgraded automatically with each release. While much
care is taken to avoid backwards compatibility issues, the ability to revert an automatic
upgrade provides a stop-gap measure in case an automatic upgrade is incompatible
with custom widget or theme code you have written. This feature allows you to restore
the previous version of the framework while you make the necessary changes to your
custom code and then upgrade to the latest version.

Note: After you restore or upgrade, the changes are effective immediately.

To change the storefront framework version:

1. Click the Design icon.

2. Click the Developer option and select Storefront Framework.

You are presented with one of the following scenarios:

a. The latest version is currently running but no previous version exists. In this
case you will see a message informing you that you cannot be upgraded
as you are running the latest version. This is most likely the case for new
customers.

b. The latest version is currently running, and a previous version exists which can
be restored. Click the Restore button to restore the previous version and then
confirm your choice.

c. An older version is currently running, and the latest version is available as
an upgrade. The Storefront Framework page displays details of the version
currently being used, and details of the latest version. Click the Upgrade
button and then confirm your choice.

Once upgraded, the storefront framework version is set to the latest version by default.

Chapter 48
Restore or upgrade the storefront framework version

48-30

49
Improve System Performance

This section provides information on ways you may be able to improve system
performance by considering specific coding strategies during your development
process.

We recommend that you review this information before your site goes live in
production.

Measure performance often
From the beginning of your project, regular performance measurement using several
tools are key to regularly measure your page load performance.

If you are using http://www.webpagetest.org, you should target a maximum speed
index metric of 3000, ideally striving for a value of less than 2000. Web Page
test can show you how much content you are loading and how your site appears
from multiple locations and in multiple devices. You should also consider using the
Chrome Developer Tools timeline to review how different elements in your pages
load under different circumstances, Google Page Speed, as a best practices reporting
tool, and the Chrome Lighthouse extension to perform an audit of performance, SEO,
accessibility, etc., and provide a best practices report.

After you go live with you project, Chrome User Experience reports can show you real
world measurements of site performance.

Use of these tools and your implementation of the recommendations that follow in this
chapter are your best chance of improving your customer experience.

Monitor your Commerce environments
External monitoring of your Commerce environment, while permitted, should be used
carefully.

External monitoring of your Commerce environments is permitted. Oracle reserves the
right to remove or disable access to any tools or technologies that are, in Oracle's
judgement, impacting the performance or the availability of the Commerce Service or
your own Commerce environments. External monitoring performed by you does not
replace or supersede Oracle's own monitoring for availability measurement and SLA
calculation purposes.

Recommendations for effective monitoring

While monitoring generally generates a low level of traffic to your site, minimizing it
is still worthwhile from a performance perspective. Configuring the monitoring tool to
make HTTP HEAD requests instead of GET or POST requests can minimize the impact
monitoring. Also, choose reasonable monitoring intervals such as 1 or 5 minutes.

Use tools that have multiple, geographically spread out monitoring hosts to help
you separate out issues with reachability of the Commerce service from a given

49-1

http://www.webpagetest.org

location from issues with the Commerce service itself. Given the complexity of the
Internet there are many reasons why Commerce could be temporarily unreachable
(or reachable with delays) from a single, specific location while Commerce is still
available to the rest of the globe and is running without issues. Examples of this type
of reachability issue include local ISP outages or outages with Public DNS services.

Improve performance in REST API Calls
You may be able to improve performance by coding REST API calls in a way that
minimizes the size and number of response from the server.

There are specific query parameters provided in support of this, and we recommend
that use them wherever they are applicable. Avoid using multiple endpoint calls where
a bulk option exists, for example, fetching data per SKU instead of per product, which
for some endpoints would give data for all child SKUs of that product. As discussed in
the section that follows, consider a review of your code.

Review code for possible bulk operation on endpoints

To potentially improve performance, review your endpoint calls to check for code that
invokes the same endpoint multiple times and consider using a bulk version for that
given endpoint.

For example, you can make one call with a comma-separated list of product IDs, as
shown in the example below:

/ccstore/v1/products?productIds=Product_19Cxy,Product_15CD

You could do this instead of making individual calls, as shown below:

/ccstore/v1/products?productIds=Product_19Cxy
 /ccstore/v1/products?productIds=Product_15CD

For more information, see REST API query parameters.

Use cc-storage for Safari private browsing mode
Note that localStorage is not available in Safari in private browsing mode.

For this use case, use cc-storage instead.

Avoid console.log() statements
Check your code for console.log() statements which can reduce performance and
introduce bugs if the log are not available.

Avoid using ko.observable()
To improve performance, do not create ko.observable() for data that does not
change.

Chapter 49
Improve performance in REST API Calls

49-2

Update observable JavaScript arrays
When working with observable JavaScript arrays, update the underlying JavaScript
array and then call valueHasMutated() on the array.

Use Knockout data-binds syntax to attach events to DOM
elements

You may be able to improve performance by avoiding using JQuery to access the
DOM (Document Object Model) and attaching events to DOM elements.

Instead, use the variables on the widget view models to access and modify any
content on the template. You should never access the DOM directly. For more
information, seeUnderstand widgets .

Use onLoad and beforeAppear correctly
You may be able to improve performance by limiting the amount of processing that
has to be done by the browser by avoiding additional coding when using onLoad and
beforeAppear, since the more code that is executed at this point, slower and longer
the page load time may appear.

Also, do not make synchronous endpoint calls in beforeAppear or onLoad since
rendering will be blocked until they return. An example of good practice of
beforeAppear follows:

beforeAppear: function(page) {
 var self = this;
 setTimeout(function () {
 self.pause(2000)
 self.messagge("Pause Completed")
 },
 500);

},
pause function(millis) {
 var date = new Date();
 var curDate = null;
 do {
 curDate = new Date();
 }
 while (curDate - date < millis);
 }

For more information, see Understand widgets.

Chapter 49
Update observable JavaScript arrays

49-3

Use the fields parameter
You may be able to improve performance by using the fields parameter on endpoint
calls wherever possible and by limiting the amount of data you request from the server
for each endpoint call to a specific set.

You should avoid using the default with endpoint calls, since that will fetch all
fields. For example, if you use the default when calling the getCollections and
listProducts endpoints, this would result in a large payload and longer server
response time. Remember that you usually only need a subset of fields for the UI.
For more information, see Understand widgets.

Use persistent filters
You may be able to improve performance by using persistent filters that store the set
of properties to include or exclude in a given REST call’s response, which can make
optimizing the performance of these calls easier and more maintainable.

For more information, see Response filters.

Use minified versions of libraries and widget JavaScript
Use minified versions of JavaScript libraries and widget JavaScript files to help the
libraries load faster.

Also, avoid inline JavaScript since it can be difficult to maintain and instead consider
using widgets and RequireJS modules.

Localize endpoints
You can localize some endpoints to page scope, so that when a page is changed the
success callback is not executed.

This decreases unnecessary view model activities not related to the current page. You
can eliminate issues such as load of previous page and display of redundant error
notifications when you make this change.

To include this behavior, set the discardPageScopedCallResponses flag to true in
cc-store-configuration-1.0.js file. The calls included in the pageScopedCalls
array will be page scoped once you enable this flag.

Enable queueing simultaneous endpoint calls
You can decrease multiple simultaneous calls to the same endpoint and serialize some
of the endpoints.

This will decreases the number of calls to the server as well as decreases the chances
of write locks on the same resource on the server. This will be particularly useful in the
case of pricing calls.

Chapter 49
Use the fields parameter

49-4

To include this behavior, set the enableQueueingSimultaneousCalls flag to true in
cc-store-configuration-1.0.js file. Include the calls you want to be queued in
the queueableCalls array of the same file.

Improve performance in custom widgets
To improve performance in custom widgets, use the unique line item ID distinguisher
commerceItemId.

This field becomes required for split shipping when combineLineItems is set to no.

Optimize Search
Performance gains can be achieved by optimizing search.

The following topics consider search optimization.

Response Optimization for Product Data

The search response will contain any property flagged in the catalog as either
searchable or as a facet. Many of these are not needed for rendering the products
in the search results pages, and are therefore unnecessarily increasing the response
size. The following article on medium.com outlines how to do this:

https://medium.com/oracledevs/limiting-fields-returned-by-search-in-oracle-commerce-
cloud-bcc6e86ec614

Response Optimization for Faceted Navigation

Faceted navigation appears in Oracle CX Commerce anywhere that products are
listed. By default, any facet that has data for the products being shown will
automatically be displayed. If some of these facets are not required either globally
or in a specific destination (for example, you may choose to only display Size when
particular collections have been selected), the Facet Ordering functionality in Search
Admin can be used to limit this via the following steps:

1. In Oracle CX Commerce Admin, select the Search section

2. Choose the Facet Ordering option.

3. Edit the "default" entry to limit facets globally:

a. List the facets you do want to return.

b. De-select the Include remaining facets option.

c. Save and Publish.

4. Alternatively, you can restrict the list of facets for a specific collection or search:

a. Create a new facet list by selecting New Facet Ordering Rule.

b. Edit the Collection or entering one or more search term(s).

c. Choose the facets to be displayed.

d. De-select the Include remaining facets option.

e. Save and Publish.

Chapter 49
Improve performance in custom widgets

49-5

https://medium.com/oracledevs/limiting-fields-returned-by-search-in-oracle-commerce-cloud-bcc6e86ec614
https://medium.com/oracledevs/limiting-fields-returned-by-search-in-oracle-commerce-cloud-bcc6e86ec614

Use preFilter parameter with fields parameter to improve
endpoint performance

The preFilter boolean parameter can be used with fields parameter to improve
endpoint performance, but this can only improve the performance when the resource
being requested has structural depth.

With flat structure resources, your performance may not improve. By default this
feature is not enabled at endpoints. On store side it is enabled on these endpoints.

 listSkus: /ccstoreui/v1/skus GET

 listProducts: /ccstoreui/v1/products GET

 listOrganizations: /ccstoreui/v1/organizations GET

Following is the example of how to use preFilter parameter with the sku endpoint:

/ccstoreui/v1/skus/?
skuIds=ProdId&fields=listPrices.US_Dollar:repositoryId&storePriceListGro
upId=US_Dollar&catalogId=reseller&preFilter=true

You can also use preFilter for listProducts and listOrganizations endpoints
same as the /skus endpoint:

/ccstoreui/v1/skus/?
skuIds=ProdId&fields=listPrices.US_Dollar:repositoryId&storePriceListGro
upId=US_Dollar&catalogId=reseller

/ccstoreui/v1/skus/?
skuIds=ProdId&fields=listPrices.US_Dollar:repositoryId&storePriceListGro
upId=US_Dollar&catalogId=reseller&preFilter=true

Note: The response of these examples may not be same.

Issues with fields parameter

The fields parameter does not provide a performance improvement for the first
endpoint invocation and with non-cached endpoints. If you set preFilter=true, and
if the response contains a nested structure and you do not want nested data always,
in those cases if you are using fields parameter with preFilter flag, you will see a
performance improvement.

Speed up system response on Product Listing and Product
Details

A global configuration setting can be used to skip loading certain information from the
product type data, which can significantly reduce the amount of data returned and
speed up system response on Product Listing and Product Details.

Chapter 49
Use preFilter parameter with fields parameter to improve endpoint performance

49-6

Set the global client-configuration endpoint setting skipLoadingProductTypes flag set
to true to skip loading and using variant information and SKU properties from the
product type data. To enable this flag, invoke this admin endpoint:

PUT /ccadmin/v1/merchant/clientConfiguration

with

{
"skipLoadingProductTypes":true
}

When skipLoadingProductTypes is set to true, Commerce will skip loading all the
productTypes on page endpoint response.

Note: If skipLoadingProductTypes is set to true, the productTypesRequired query
parameter will be set to false in page calls.

Skip retrieving Parent Category information from related products

A global configuration setting can be used to skip retrieving Parent Category
information from related products when not needed. This can significantly reduce
the amount of data returned and speed up system response on Product Listing and
Product Details. Note that the parent category information will be retrieved along with
product information when shopper selects to view a related product.

Set the global client-configuration endpoint
settings optimizeRelatedProductsForPageEndpoint and
optimizeRelatedProductsForListProductsEndpoint flags to true, to skip retrieving
Parent Category information from related products. This flag is set to false by default.
To enable this flag, invoke this admin endpoint:

/ccadminui/v1/merchant/cloudConfiguration

with

{
"optimizeRelatedProductsForPageEndpoint": true
"optimizeRelatedProductsForListProductsEndpoint": true
}

When set to true, optimizeRelatedProductsForPageEndpoint removes
parentCategories, parentCategory, parentCategoryIdPath from Product Details
page endpoint and optimizeRelatedProductsForListProductsEndpoint removes
parentCategories, parentCategory, parentCategoryIdPath from Product Listing
page endpoints, that is, the listProducts and listProductsForLargeCart endpoints.

Clear JSONStoreCache to reflect it in storefront.

Chapter 49
Speed up system response on Product Listing and Product Details

49-7

Enable asynchronous orders flow
You can receive orders and process them asynchronously without waiting for the
client response. Processing performance can be improve in situations where you have
orders with large numbers of items (greater than 250).

To enable async order support feature in production, perform the following steps:

1. Set enableUpdateSettings property to true on the OrderQueueSettings
component.

2. Set the enabled flag using orderRetrySettings admin endpoint:

/ccadminui/v1/merchant/orderRetrySettings PUT
{
"enabled": true
}

3. Use placeOrderAsync flag in the submit order request at order level. Set it as true
to enable async submit for an order. While placing an order through UI, merchant
has to override method isPlaceAsyncOrder in cc-store-configuration.js
using applicationJS. This method will contain the logic to decide whether to place
an order asynchronously or not. OOTB, the order is placed synchronously through
UI (unless resilient orders feature is enabled, in which case, order will follow the
resilient order submit flow).

4. Set appropriate asyncSubmitRetryDelays using orderRetrySettings admin
endpoint:

/ccadminui/v1/merchant/orderRetrySettings PUT
{
"asyncSubmitRetryDelays": [15,20,...]
}

Note: The default asyncSubmitRetryDelays values are 10,25,65,125,185

5. To move a QUEUED order to INCOMPLETE state rather than SUSPENDED
state(default) once retries are exhausted and the latest error is of input kind:

/ccadminui/v1/merchant/orderRetrySettings PUT
{
"moveToIncompleteStateOnInputError" : true
}

Improve Storefront Performance for Large Carts
When a shopper creates an order by adding a large number of items to their shopping
cart, performance can suffer, sometimes to the point where the shopper cannot
complete or submit the order.

This document describes how to configure Commerce to improve performance for
large-cart orders. This section includes the following topics:

• Understand large cart support

Chapter 49
Enable asynchronous orders flow

49-8

• Enable support for large carts

• Understand view model support for large carts

• Sample widgets and elements

Understand large cart support

From a performance perspective, a large cart is a shopper’s cart that contains
200 items or more. Carts this large may experience performance issues. Shoppers
typically create orders this large using the Commerce Quick Order widget.

You can enable large cart support by configuring the
CCStoreConfiguration.largeCart property. This reduces the number of situations
where large cart information is refreshed (price calls), improving overall performance.
All cart information always refreshes during the checkout phase.

New endpoints also enable large cart batching during GET product/SKU calls.

Enable support for large carts

To enable deferred pricing, set this property in application.js:

CCStoreConfiguration.largeCart

By default, this property is not set.

To override deferred pricing, use this method:

CCStoreConfiguration.isLargeCartCCStoreConfiguration.isLargeCart

You do not need to do anything to enable the use of large-cart endpoints, but you can
change the number of items in a cart that triggers large-cart endpoints by using these
properties:

• CCStoreConfiguration.batchSizeForProdAndSkuData is a property that specifies
the number of items that must be in a cart before Commerce automatically uses
listProductsForLargeCart and listSkusForLarge Cart instead of listSkus and
listProducts.

• CCStoreConfiguration.threshholdSizeForStockStatusData is a property
that specifies the number of items that must be in a cart before
Commerce Cloud automatically uses listStockStatusesForLargeCart instead of
getStockStatuses.

Understand view model support for large carts

This section describes the Cart view model properties and methods that support
deferred pricing calls and batching the Store API Products and SKUs endpoints.

CartViewModel.hardPricing is a property that triggers cart pricing when the
CCStoreConfiguration.largeCart flag is set to true. See Sample widgets and
elements for a code sample that uses this property to trigger pricing. The default value
of this property is false.

CartViewModel.userActionPending is a property that you should set to true whenever
you update the cart and the largeCart flag is set to true. Use this flag to display
messages reminding the shopper to save the cart. You can also use this flag to display

Chapter 49
Improve Storefront Performance for Large Carts

49-9

messages that remind customers that prices are approximate and they will have to
click the save cart button to trigger pricing and see the correct prices.

CartViewModel.updateItemPriceForLargeCart is a method to calculate the item total
with an approximate price when you defer pricing calls. This method calculates prices
by using list prices and sale prices. You can override this method to accommodate
manual pricing calculations.

Use the method
CartViewModel.updateItemShippingGroupRelationShipForLargeCart to update
shipping group relationships from the client side when you have deferred pricing calls.

Use CartViewModel to implement these functions to update cart data when you defer
pricing calls:

• CartViewModel.updateCartItemDataForLargeCart is a method to update the cart
total and subtotal list price and the sale price of an item added to the cart when
you defer pricing calls. It also updates numberOfItems for the Cart Summary
widget. You can override this method to accommodate manual pricing calculations.

• CartViewModel.updateCartAfterLoginForLargeCart is a method to update cart
data after a registered shopper logs into their account.

CartViewModel.priceCartBeforeRefreshInLargeCart is a method to reprice the
entire cart.

CartViewModel.getBatchSizeForProdAndSkuData is a method that returns the number
of products or SKUs whose data you need to retrieve in each listProduct or listSku
request. If this is set to 1, it indicates that all products or SKUs will be sent to
listProduct or listSku at once. Any other positive value indicates the number of
products/SKUs sent in one call to the listProduct or listSku endpoint. In this case,
multiple calls to these endpoints retrieve data for all IDs.

CartViewModel.getThreshholdSizeForStockStatusData returns the threshold on the
number of SKUs beyond which a POST equivalent of the stock call would trigger.

Sample widgets and elements

This section describes sample widget code that you can use to implement support for
large carts.

Create an element to manually trigger pricing

The following sample button uses the hardPricing flag to let the shopper manually
price the cart.

saveCartButtonHandler :function(){
 this.cart().hardPricing = true;
 this.cart().markDirty();
},

When pricing calls are deferred and you enable the large cart feature, all the item
update/delete/add operations normally triggered from the Product Details widget,
Shopping Cart widget, Header widget, Quick Order widget, the copy order operation
from Order Details widget, and the Purchase list widget are handled from client side.

Shopping Cart Widget and Header widget implementation

Chapter 49
Improve Storefront Performance for Large Carts

49-10

You can remove line items from the Header mini cart and Shopping Cart widget.
The following code sample is the basic implementation of client side handling for the
removal of line items. Line items here correspond to shipping group relationship and
the removeShippingGroupRelationShip method as the handler for the remove items
event.

removeShippingGroupRelationShip :function(cartItem,shippingGroupRelation
ship){
 if(this.storeConfiguration.isLargeCart() === true){

 var
quantityChange=(-1)*shippingGroupRelationship.updatableQuantity();
 var price=cartItem.productData().childSKUs[0].salePrice ?
cartItem.productData().childSKUs[0].salePrice :
cartItem.productData().childSKUs[0].listPrice;
 //remove the SGR

cartItem.shippingGroupRelationships.remove(shippingGroupRelationship);
 if(cartItem.shippingGroupRelationships().length === 0){
 this.cart().items.remove(cartItem);
 }else{
 cartItem.quantity(data.quantity()+ quantityChange);
 cartItem.itemTotal(data.itemTotal()+price*quantityChange);
 }
 //update the number of items
 this.cart().numberOfItems(this.cart().numberOfItems()
+quantityChange);
 this.cart().updateAllItemsArray();
 this.cart().subTotal(this.cart().subTotal()+price*quantityChange);
 this.cart().total(this.cart().total()+(price)*quantityChange);
 this.cart().userActionPending(true);
 this.cart().saveCartCookie();
 $.Topic(pubsub.topicNames.CART_REMOVE_SUCCESS).publishWith([{message
:"success"}]);
 return true;
 }
}

Widget implementation for update

Line item quantity can be updated from the Shopping Cart widget. The following code
is the basic implementation of client side handling for the update of line items. These
line items correspond to the shipping group relationship and updateQuantity methods
that you can use as a handler for the update item event.

updateQuantity: function(data, event, id, shippingGroup) {

 if('click' === event.type || ('keypress' === event.type &&
event.keyCode === 13)) {
 // update the 'updatableQuantity' to cart-item.
 var cartItemTotal = 0;
 for(var index=0; index < data.shippingGroupRelationships().length;
index++) {
 cartItemTotal = parseInt(cartItemTotal) +

Chapter 49
Improve Storefront Performance for Large Carts

49-11

parseInt(data.shippingGroupRelationships()[index].updatableQuantity());
 }
 data.updatableQuantity(parseInt(cartItemTotal));

 if(data.updatableQuantity && data.updatableQuantity.isValid()) {
 if(this.storeConfiguration.isLargeCart() === true){
 var quantityChange=data.updatableQuantity()-data.quantity();
 var price=data.productData().childSKUs[0].salePrice ?
data.productData().childSKUs[0].salePrice :
data.productData().childSKUs[0].listPrice;
 this.cart().numberOfItems(this.cart().numberOfItems()
+quantityChange);
 data.quantity(data.updatableQuantity());
 data.itemTotal(data.itemTotal()+price*quantityChange);
 shippingGroup.price(shippingGroup.price()+price*quantityChange);
 shippingGroup.quantity(shippingGroup.quantity()+quantityChange);
 this.cart().updateAllItemsArray();
 this.cart().subTotal(this.cart().subTotal()
+price*quantityChange);
 this.cart().shippingSurcharge(this.cart().shippingSurcharge()
+data.shippingSurcharge*quantityChange);

this.cart().total(this.cart().total()+
(price+data.productData().shippingSurcharge)*quantityChange);
 this.cart().userActionPending(true);
 this.cart().saveCartCookie();
 return true;
 }
 $.Topic(pubsub.topicNames.CART_UPDATE_QUANTITY).publishWith(
 data.productData(),[{"message":"success", "commerceItemId":
data.commerceItemId, "shippingGroup": shippingGroup}]);

 var button = $('#' + id);
 button.focus();
 button.fadeOut();
 }
 } else {
 this.quantityFocus(data, event);
 }

 return true;
},

Product Details widget

Adding the product from Product Details widget will not trigger pricing. The added item
updates in the cart view model first and after that, pricing triggers. The new methods
are only called during nested view model logic when the large cart flag is turned on,
just before system shunts the pricing. This ensures that the shopper has a view of the
approximate prices of the items added to cart.

When calculating prices, sale and list prices are used. In the absence of pricing data,
you can override application.js to update the specific item price using other
special parameters such as bundled pricing, volume pricing, or tiered pricing from
existing product data.

Chapter 49
Improve Storefront Performance for Large Carts

49-12

updateItemPriceForLargeCart

The following code is the method to update items during the “single item-add”
operation of updateItemPriceForLargeCart.

CartViewModel.prototype.updateItemPriceForLargeCart =
function(data,cartItem){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 cartItem.itemTotal(cartItem.itemTotal()+price*data.orderQuantity);
};

updateCartItemDataForLargeCart

When calculating prices, sale and list prices are used. You can implement other
scenarios based on your own requirements.

The following code shows the method to update the cart properties during the “single
item-add” operation:

CartViewModel.prototype.updateCartItemDataForLargeCart = function(data){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 self.numberOfItems(self.numberOfItems()+data.orderQuantity);
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+data.shippingSurcharge);
 self.subTotal(price*data.orderQuantity+self.subTotal());
 self.total(self.total()+price+data.shippingSurcharge);
 self.saveCartCookie();
};

You can extend this process by adding any other business related view model
properties.

Adding multiple items at once (Quick order widget, Copy order, Purchase list)

Adding multiple items at once will not trigger pricing calls when large cart flag is true.
Without modification, added items update in cart view model first and then, pricing
triggers. The new methods are called during the nested view model logic when large
cart flag is turned on, just before system shunts the pricing. This ensures that the
shopper has a view of the approximate prices of the item added to cart.

When calculating prices, sale and list prices are used. In the absence of pricing data,
you can override these from application.js to update the item price taking into
account such special parameters such as bundled pricing, volume pricing, or tiered
pricing from existing product data.

updateCartItemsDataForLargeCart

Chapter 49
Improve Storefront Performance for Large Carts

49-13

The following code is a method to update the multiple item during “multiple item-add”
operation:

 CartViewModel.prototype.updateCartItemsDataForLargeCart =
function(data){
 var self =this;

 //NOT REUSING updateCartItemDataForLargeCart to minimise mulple
notifications due to multiple update
 var
i,newQuantitiesAddedToCart=0,newAddedshippingSurcharge=0,newAddedsubTota
l=0;
 for(i=0;i<data.length;i++){
 var price = data[i].childSKUs[0].salePrice ?
data[i].childSKUs[0].salePrice :data[i].childSKUs[0].listPrice;
 newQuantitiesAddedToCart+=data[i].orderQuantity;
 newAddedshippingSurcharge+=data[i].shippingSurcharge;
 newAddedsubTotal+=price*data[i].orderQuantity;
 }
 self.numberOfItems(newQuantitiesAddedToCart+self.numberOfItems());
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+newAddedshippingSurcharge);
 self.subTotal(newAddedsubTotal+self.subTotal());
 self.total(self.total()+newAddedsubTotal+newAddedshippingSurcharge);
 self.saveCartCookie();
 if (self.callbacks &&
self.callbacks.hasOwnProperty(ccConstants.ADD_ITEMS_SUCCESS_CB)
 && typeof self.callbacks[ccConstants.ADD_ITEMS_SUCCESS_CB] ===
'function') {
 self.callbacks[ccConstants.ADD_ITEMS_SUCCESS_CB](data);
 }
}

When calculating prices, sale and list prices are used. You can implement other
scenarios based on your own requirements.

updateCartItemDataForLargeCart

The following code is a method to update the cart properties during a “multiple item-
add” operation:

CartViewModel.prototype.updateCartItemDataForLargeCart = function(data){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 self.numberOfItems(self.numberOfItems()+data.orderQuantity);
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+data.shippingSurcharge);
 self.subTotal(price*data.orderQuantity+self.subTotal());
 self.total(self.total()+price+data.shippingSurcharge);
 self.saveCartCookie();
 };

Chapter 49
Improve Storefront Performance for Large Carts

49-14

You can implement other scenarios based on your own requirements. In the Quick
Order widget, instead of using the existing default widget batching logic, you can
invoke view model methods to add multiple items. You will need to modify the Quick
Order widget /Purchase List widget to accommodate large carts.

Prevent Site Traffic Slowdowns
This section describes the landing page throttling feature.

To prevent traffic from slowing down a website, OCC allows servers to deflect
requests. This prevents the servers from becoming overloaded with traffic. Note that
this deflection does not remove your existing shoppers from the site, nor does it
impede your site functionality.

If your service does exceed its limits during a traffic spike, new shoppers will
be redirected to a temporary waiting room page. Existing shoppers may continue
uninterrupted. The waiting room page displays a white page with a CSS-based spinner
without text. Every 15 seconds, the shopper’s browser will check if the site is accepting
new shoppers. When new shoppers are again accepted, the browser will redirect back
to the original URL the shopper intended to visit. This URL is stored in a target query
parameter as a URL encoded value.

By default, the waiting room page looks for a background image in /file/general/occ-
site-busy.jpg. You can create your own branded waiting room experience by providing
your own background image. Use the Media tab in the administration console to
upload your branded image to /file/general/occ-site-busy.jpg. After you
publish this image, it will be automatically used as your background for the waiting
room page.

Improve performance with large numbers of addresses for
profiles or accounts

When a Commerce environment includes a large number of profile or account
addresses, performance can suffer on the storefront and in the administration interface
when searching for and working with addresses.

This section describes API features that you can use to improve performance when
working with a large number of profile or account addresses.

Filter endpoint results with query parameters

Several query parameters for Admin, Store, and Agent API endpoints let you search
for specific addresses. In a Commerce environment includes a large number of profile
or account addresses, these query parameters help you filter addresses that are
returned in endpoint responses.

The Agent API listAddresses, and searchProfiles endpoints and the Store
API getAddresses and listProfileAddresses endpoints, and the Admin API
listAddresses endpoint all support these query parameters.

For details about the query parameters, supported by these endpoints, see the REST
API for Oracle CX Commerce documentation. For details about how to use query
parameters in a request, see REST API query parameters.

Chapter 49
Prevent Site Traffic Slowdowns

49-15

Exclude addresses from endpoint responses

If you want to exclude secondary addresses and shipping addresses from endpoint
responses that would normally return them, use the updateCloudConfiguration
endpoint in the Admin API to set the excludeAddressList property to true. By default,
excludeAddressList is set to false.

The following Admin API endpoints are affected by setting the
excludeAddressList property to true: createOrganization, updateOrganization,
listOrganizations, getOrganization, listProfiles, getProfile, updateProfile,
getOrganizationRequest, and updateOrganizationRequest.

The following Store API and Agent API endpoints are affected
by setting the excludeAddressList property to true: getOrganization,
updateOrganization, listOrganizations, getProfile, updateProfile, getMember,
listMembers, updateMember, createMember, getAddresses, deleteAddress, getPage,
getCloudConfiguration, and getOrganizationRequest (Agent API only).

Because address details are not included in a number of endpoint responses when
you set excludeAddressList to true, widgets that retrieve addresses from the
responses of endpoints listed above may not behave as expected and may require
customization.

For example, the Agent Console account-addresses.js widget's
fetchAddressesSuccess() method expects secondaryAddresses to be present. When
secondaryAddresses are suppressed from the endpoint response, the widget throws
an error.

• For account-based commerce shoppers, checkout-address-book.js should be
modified to fetch the addresses based on the secondary addresses. Update the
widget to retrieve addresses using the /ccagent/v1/profiles/{id}/addresses
endpoint.

• For individual shoppers, addresses should be loaded using the /ccagent/v1/
addresses endpoint.

• Make sure that updatedShippingAddressBook is not accessed without validating
whether address data exists in the cart-shipping-details.js widget.

Chapter 49
Improve performance with large numbers of addresses for profiles or accounts

49-16

50
Improve Storefront Performance

This section provides information on ways you may be able to improve storefront
performance by considering specific coding strategies during your development
process.

We recommend that you review this information before your site goes live in
production.

Optimize First Meaningful Paint
First Meaningful Paint is the time it takes you page’s primary content to appear on the
screen and is considered a primary metric for gauging how your customer perceives
the loading experience.

Reports using web page test can give you metrics on this loading. To improve your
page First Meaningful Paint timing, you should prioritize above the fold content, such
as marketing banners and delay secondary calls for inventory or data and frequently
retest this metric using web page test.

Lazy load images
Lazy loading of images helps pages to provide more content by recognizing which
images will be presented to the shopper, and loading them first. These images are
known as in focus. Lazy loading is not used for images that are already in focus. It
is instead used for images that will be seen by the shopper only when scrolling, and
do not need to be fully loaded during the initial page draw. Instead, the shopper might
see an initial generic image, such as a blurred/transparent image of the product, or a
spinner. These images are known as out of focus. When the image comes into view on
the page, the required image is rendered.

Enable lazy loading

By default, lazy loading is disabled. To enable this feature, use the loadImagesLazily
client configuration setting in the Admin REST API. For example:

PUT /ccadmin/v1/merchant/clientConfiguration
{
 "loadImagesLazily" : true
}

You can also set the time that out of focus images are loaded. By using
delayBeforeLoadingOutOfFocusImages, you can identify the number of seconds to
wait before loading any remaining out of focus images. Using the Admin REST API,

50-1

you could do the following to set a 10 second delay before the out of focus images are
loaded:

{
"loadImagesLazily" : true,
"delayBeforeLoadingOutOfFocusImages" : 10
}

Once lazy loading is enabled, images rendered using the following image bindings will
be lazily loaded:

• ccResizeImage - Used in the Product Listing widget.

• productVariantImageSource - Used in the Cart Summary and Shipping Options
widgets.

• imageSource - Used in the Cart Summary widget.

• productImageSource - Used in the Scheduled Order and Related Products
widgets.

• Image - This binding can be used to display simple images. Used in the Product
Details widget to display images in the product's image carousel.

You can specify an initial place holder image that is displayed while the image is
out of view from the shopper. When the shopper scrolls through the page, the initial
place holder may be displayed briefly while the requested image is obtained and then
rendered. To set an initial place holder, use the initialSrc attribute in one of the
above image bindings. If the initialSrc attribute is not specified, then the image
specified in site-specific noimage setting will be used as the initial placeholder image.

The following binding attributes can be used with the image bindings listed above:

• lazyLoadingImageClass - The default value for this attribute is ccLazyLoad. This
binding defined the CSS class to use with the temporary image while the actual
image is loaded. By default, this class reduces the opacity of the initial image to
0.1.

• lazyLoadedImageClass - The default value for this attribute is ccLazyLoaded. This
binding defined the CSS class to use with the final loaded image.

• lazyLoadingParentClass - The default value for this attribute in ccLazyload-
background. This attribute defines the CSS class to use with the parent element of
the initial image. By default, the background color of this image is light gray.

• initialSrc - Specifies the initial image source that should be used while the main
image remains out of focus. If the initialSrc attribute is not used, the default
error image is displayed.

• disableLazyImageLoading - Disables lazy loading for the image.

Disable lazy image loading

You can disable lazy image loading for an individual image as follows:

<img data-bind = "image: {src: yourImageSource,
disableLazyImageLoading: true}, ...">

Chapter 50
Lazy load images

50-2

To disable lazy image loading for all images, set the loadImagesLazily client
configuration value back to false.

Improve Storefront Performance for Large Carts
When a shopper creates an order by adding a large number of items to their shopping
cart, performance can suffer, sometimes to the point where the shopper cannot
complete or submit the order.

This document describes how to configure Commerce to improve performance for
large-cart orders. This section includes the following topics:

• Understand large cart support

• Enable support for large carts

• Understand view model support for large carts

• Sample widgets and elements

Understand large cart support

From a performance perspective, a large cart is a shopper’s cart that contains
200 items or more. Carts this large may experience performance issues. Shoppers
typically create orders this large using the Commerce Quick Order widget.

You can enable large cart support by configuring the
CCStoreConfiguration.largeCart property. This reduces the number of situations
where large cart information is refreshed (price calls), improving overall performance.
All cart information always refreshes during the checkout phase.

New endpoints also enable large cart batching during GET product/SKU calls.

Enable support for large carts

To enable deferred pricing, set this property in application.js:

CCStoreConfiguration.largeCart

By default, this property is not set.

To override deferred pricing, use this method:

CCStoreConfiguration.isLargeCartCCStoreConfiguration.isLargeCart

You do not need to do anything to enable the use of large-cart endpoints, but you can
change the number of items in a cart that triggers large-cart endpoints by using these
properties:

• CCStoreConfiguration.batchSizeForProdAndSkuData is a property that specifies
the number of items that must be in a cart before Commerce automatically uses
listProductsForLargeCart and listSkusForLarge Cart instead of listSkus and
listProducts.

• CCStoreConfiguration.threshholdSizeForStockStatusData is a property
that specifies the number of items that must be in a cart before

Chapter 50
Improve Storefront Performance for Large Carts

50-3

Commerce Cloud automatically uses listStockStatusesForLargeCart instead of
getStockStatuses.

Understand view model support for large carts

This section describes the Cart view model properties and methods that support
deferred pricing calls and batching the Store API Products and SKUs endpoints.

CartViewModel.hardPricing is a property that triggers cart pricing when the
CCStoreConfiguration.largeCart flag is set to true. See Sample widgets and
elements for a code sample that uses this property to trigger pricing. The default value
of this property is false.

CartViewModel.userActionPending is a property that you should set to true whenever
you update the cart and the largeCart flag is set to true. Use this flag to display
messages reminding the shopper to save the cart. You can also use this flag to display
messages that remind customers that prices are approximate and they will have to
click the save cart button to trigger pricing and see the correct prices.

CartViewModel.updateItemPriceForLargeCart is a method to calculate the item total
with an approximate price when you defer pricing calls. This method calculates prices
by using list prices and sale prices. You can override this method to accommodate
manual pricing calculations.

Use the method
CartViewModel.updateItemShippingGroupRelationShipForLargeCart to update
shipping group relationships from the client side when you have deferred pricing calls.

Use CartViewModel to implement these functions to update cart data when you defer
pricing calls:

• CartViewModel.updateCartItemDataForLargeCart is a method to update the cart
total and subtotal list price and the sale price of an item added to the cart when
you defer pricing calls. It also updates numberOfItems for the Cart Summary
widget. You can override this method to accommodate manual pricing calculations.

• CartViewModel.updateCartAfterLoginForLargeCart is a method to update cart
data after a registered shopper logs into their account.

CartViewModel.priceCartBeforeRefreshInLargeCart is a method to reprice the
entire cart.

CartViewModel.getBatchSizeForProdAndSkuData is a method that returns the number
of products or SKUs whose data you need to retrieve in each listProduct or listSku
request. If this is set to 1, it indicates that all products or SKUs will be sent to
listProduct or listSku at once. Any other positive value indicates the number of
products/SKUs sent in one call to the listProduct or listSku endpoint. In this case,
multiple calls to these endpoints retrieve data for all IDs.

CartViewModel.getThreshholdSizeForStockStatusData returns the threshold on the
number of SKUs beyond which a POST equivalent of the stock call would trigger.

Sample widgets and elements

This section describes sample widget code that you can use to implement support for
large carts.

Create an element to manually trigger pricing

Chapter 50
Improve Storefront Performance for Large Carts

50-4

The following sample button uses the hardPricing flag to let the shopper manually
price the cart.

saveCartButtonHandler :function(){
 this.cart().hardPricing = true;
 this.cart().markDirty();
},

When pricing calls are deferred and you enable the large cart feature, all the item
update/delete/add operations normally triggered from the Product Details widget,
Shopping Cart widget, Header widget, Quick Order widget, the copy order operation
from Order Details widget, and the Purchase list widget are handled from client side.

Shopping Cart Widget and Header widget implementation

You can remove line items from the Header mini cart and Shopping Cart widget.
The following code sample is the basic implementation of client side handling for the
removal of line items. Line items here correspond to shipping group relationship and
the removeShippingGroupRelationShip method as the handler for the remove items
event.

removeShippingGroupRelationShip :function(cartItem,shippingGroupRelation
ship){
 if(this.storeConfiguration.isLargeCart() === true){

 var
quantityChange=(-1)*shippingGroupRelationship.updatableQuantity();
 var price=cartItem.productData().childSKUs[0].salePrice ?
cartItem.productData().childSKUs[0].salePrice :
cartItem.productData().childSKUs[0].listPrice;
 //remove the SGR

cartItem.shippingGroupRelationships.remove(shippingGroupRelationship);
 if(cartItem.shippingGroupRelationships().length === 0){
 this.cart().items.remove(cartItem);
 }else{
 cartItem.quantity(data.quantity()+ quantityChange);
 cartItem.itemTotal(data.itemTotal()+price*quantityChange);
 }
 //update the number of items
 this.cart().numberOfItems(this.cart().numberOfItems()
+quantityChange);
 this.cart().updateAllItemsArray();
 this.cart().subTotal(this.cart().subTotal()+price*quantityChange);
 this.cart().total(this.cart().total()+(price)*quantityChange);
 this.cart().userActionPending(true);
 this.cart().saveCartCookie();
 $.Topic(pubsub.topicNames.CART_REMOVE_SUCCESS).publishWith([{message
:"success"}]);
 return true;
 }
}

Widget implementation for update

Chapter 50
Improve Storefront Performance for Large Carts

50-5

Line item quantity can be updated from the Shopping Cart widget. The following code
is the basic implementation of client side handling for the update of line items. These
line items correspond to the shipping group relationship and updateQuantity methods
that you can use as a handler for the update item event.

updateQuantity: function(data, event, id, shippingGroup) {

 if('click' === event.type || ('keypress' === event.type &&
event.keyCode === 13)) {
 // update the 'updatableQuantity' to cart-item.
 var cartItemTotal = 0;
 for(var index=0; index < data.shippingGroupRelationships().length;
index++) {
 cartItemTotal = parseInt(cartItemTotal) +
parseInt(data.shippingGroupRelationships()[index].updatableQuantity());
 }
 data.updatableQuantity(parseInt(cartItemTotal));

 if(data.updatableQuantity && data.updatableQuantity.isValid()) {
 if(this.storeConfiguration.isLargeCart() === true){
 var quantityChange=data.updatableQuantity()-data.quantity();
 var price=data.productData().childSKUs[0].salePrice ?
data.productData().childSKUs[0].salePrice :
data.productData().childSKUs[0].listPrice;
 this.cart().numberOfItems(this.cart().numberOfItems()
+quantityChange);
 data.quantity(data.updatableQuantity());
 data.itemTotal(data.itemTotal()+price*quantityChange);
 shippingGroup.price(shippingGroup.price()+price*quantityChange);
 shippingGroup.quantity(shippingGroup.quantity()+quantityChange);
 this.cart().updateAllItemsArray();
 this.cart().subTotal(this.cart().subTotal()
+price*quantityChange);
 this.cart().shippingSurcharge(this.cart().shippingSurcharge()
+data.shippingSurcharge*quantityChange);

this.cart().total(this.cart().total()+
(price+data.productData().shippingSurcharge)*quantityChange);
 this.cart().userActionPending(true);
 this.cart().saveCartCookie();
 return true;
 }
 $.Topic(pubsub.topicNames.CART_UPDATE_QUANTITY).publishWith(
 data.productData(),[{"message":"success", "commerceItemId":
data.commerceItemId, "shippingGroup": shippingGroup}]);

 var button = $('#' + id);
 button.focus();
 button.fadeOut();
 }
 } else {
 this.quantityFocus(data, event);
 }

Chapter 50
Improve Storefront Performance for Large Carts

50-6

 return true;
},

Product Details widget

Adding the product from Product Details widget will not trigger pricing. The added item
updates in the cart view model first and after that, pricing triggers. The new methods
are only called during nested view model logic when the large cart flag is turned on,
just before system shunts the pricing. This ensures that the shopper has a view of the
approximate prices of the items added to cart.

When calculating prices, sale and list prices are used. In the absence of pricing data,
you can override application.js to update the specific item price using other
special parameters such as bundled pricing, volume pricing, or tiered pricing from
existing product data.

updateItemPriceForLargeCart

The following code is the method to update items during the “single item-add”
operation of updateItemPriceForLargeCart.

CartViewModel.prototype.updateItemPriceForLargeCart =
function(data,cartItem){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 cartItem.itemTotal(cartItem.itemTotal()+price*data.orderQuantity);
};

updateCartItemDataForLargeCart

When calculating prices, sale and list prices are used. You can implement other
scenarios based on your own requirements.

The following code shows the method to update the cart properties during the “single
item-add” operation:

CartViewModel.prototype.updateCartItemDataForLargeCart = function(data){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 self.numberOfItems(self.numberOfItems()+data.orderQuantity);
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+data.shippingSurcharge);
 self.subTotal(price*data.orderQuantity+self.subTotal());
 self.total(self.total()+price+data.shippingSurcharge);
 self.saveCartCookie();
};

You can extend this process by adding any other business related view model
properties.

Adding multiple items at once (Quick order widget, Copy order, Purchase list)

Chapter 50
Improve Storefront Performance for Large Carts

50-7

Adding multiple items at once will not trigger pricing calls when large cart flag is true.
Without modification, added items update in cart view model first and then, pricing
triggers. The new methods are called during the nested view model logic when large
cart flag is turned on, just before system shunts the pricing. This ensures that the
shopper has a view of the approximate prices of the item added to cart.

When calculating prices, sale and list prices are used. In the absence of pricing data,
you can override these from application.js to update the item price taking into
account such special parameters such as bundled pricing, volume pricing, or tiered
pricing from existing product data.

updateCartItemsDataForLargeCart

The following code is a method to update the multiple item during “multiple item-add”
operation:

 CartViewModel.prototype.updateCartItemsDataForLargeCart =
function(data){
 var self =this;

 //NOT REUSING updateCartItemDataForLargeCart to minimise mulple
notifications due to multiple update
 var
i,newQuantitiesAddedToCart=0,newAddedshippingSurcharge=0,newAddedsubTota
l=0;
 for(i=0;i<data.length;i++){
 var price = data[i].childSKUs[0].salePrice ?
data[i].childSKUs[0].salePrice :data[i].childSKUs[0].listPrice;
 newQuantitiesAddedToCart+=data[i].orderQuantity;
 newAddedshippingSurcharge+=data[i].shippingSurcharge;
 newAddedsubTotal+=price*data[i].orderQuantity;
 }
 self.numberOfItems(newQuantitiesAddedToCart+self.numberOfItems());
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+newAddedshippingSurcharge);
 self.subTotal(newAddedsubTotal+self.subTotal());
 self.total(self.total()+newAddedsubTotal+newAddedshippingSurcharge);
 self.saveCartCookie();
 if (self.callbacks &&
self.callbacks.hasOwnProperty(ccConstants.ADD_ITEMS_SUCCESS_CB)
 && typeof self.callbacks[ccConstants.ADD_ITEMS_SUCCESS_CB] ===
'function') {
 self.callbacks[ccConstants.ADD_ITEMS_SUCCESS_CB](data);
 }
}

When calculating prices, sale and list prices are used. You can implement other
scenarios based on your own requirements.

updateCartItemDataForLargeCart

Chapter 50
Improve Storefront Performance for Large Carts

50-8

The following code is a method to update the cart properties during a “multiple item-
add” operation:

CartViewModel.prototype.updateCartItemDataForLargeCart = function(data){
 var self =this;
 var price = data.childSKUs[0].salePrice ?
data.childSKUs[0].salePrice :data.childSKUs[0].listPrice;
 self.numberOfItems(self.numberOfItems()+data.orderQuantity);
 self.events=[];
 self.shippingSurcharge(self.shippingSurcharge()
+data.shippingSurcharge);
 self.subTotal(price*data.orderQuantity+self.subTotal());
 self.total(self.total()+price+data.shippingSurcharge);
 self.saveCartCookie();
 };

You can implement other scenarios based on your own requirements. In the Quick
Order widget, instead of using the existing default widget batching logic, you can
invoke view model methods to add multiple items. You will need to modify the Quick
Order widget /Purchase List widget to accommodate large carts.

Add a page level spinner
You can add a page level spinner along with a curtain on page change that can stop
unnecessary clicks while page load is under process.

This will also provide a definitive indicator for the user that a new page is loading. The
curtain also keeps the user from clicking other links while the page is loading.

To include this behavior, set the enableSpinnerOnPageLoad flag to true in cc-store-
configuration-1.0.js.

Enable prioritized loading of Storefront page content
You may be able to speed the loading of some Storefront pages by enabling the
prioritized loading option.

With Prioritized Loading, every region in a page displays in an ordered top-down
fashion, that is, rendering the header section, then the body of the page, and then
the footer. Widgets that need to be rendered are maintained in a queue and are
displayed in order and one widget will not display until the previous one in the queue
has displayed. This works on all pages including cached pages.

To enable the feature, set enablePrioritizedLoading to true, in cc-store-
configuration-1.0.js. If the flag is set to true, prioritized loading is enabled. If
this flag is not set, the page is loaded in the usual way and there would be no impact
on any of the existing functionalities.

Avoid synchronous AJAX calls
Avoid synchronous AJAX calls since they may block other JavaScript processing while
waiting for a response from the server.

Do not use these calls with pageLoad, since they may block the loading of the page.

Chapter 50
Add a page level spinner

50-9

Avoid hiding elements with CSS styling
It is best to avoid using the CSS styles to hide DOM elements.

If you use display:none on a <div>, the contained markup always remains in the
DOM with its data-bind attributes applied, even if the <div> is not displayed and any
changes to the view model keep updating the children. This may result in performance
degradation. Only use this approach if the visible condition changes frequently. This
avoids reconstructing the DOM for every change. In all other situations, use the ko-if
binding if the binding does not construct the DOM when the condition results to false.
When the condition result is true, child nodes are reconstructed and binding of the
view model occurs.

Remove unused UI elements completely from layouts
You may be able to improve performance by removing any unused UI elements
completely from layouts and avoid hiding unused UI elements in the template.

Hidden elements will still be loaded which can add to browser processing time. For
more information, see Understand widgets.

Use viewport specific layouts for mobile
You may be able to improve mobile performance by using viewport specific layouts for
mobile and tablet presentations of the storefront.

This approach limits and optimizes the content that you want to display for each
viewport. Restricting image size may also improve performance.

In general, do not force the browser to render your full desktop layout on mobile
devices. This can overload the user with too much content, appear unpolished, and
produce slower page load times. Also, avoid over using responsive layouts. They can
be helpful, but if overused, can lead to performance eroding DOM node duplication.

For more information, see Create a Widget.

Keep contents of header and footer regions consistent
You may be able to improve performance by keeping the contents of header and
footer regions consistent across page layouts to prevent unnecessary downloading
and re-rendering of these regions during each user page navigation.

You should consider expanding this approach to other page layouts that have similar
content. For example, when a page loads, if any region remains the same (if it
contains exactly the same widget instances), from the previous page, it will not be
reloaded. For more information, see Understand widgets.

Limit DOM node creation
To potentially improve performance, consider limiting the number of DOM nodes you
create, since, in Knockout, the creation and removal of DOM nodes can have a
performance impact.

Chapter 50
Avoid hiding elements with CSS styling

50-10

To see the number of DOM nodes you have created, use http://www.webpagetest.org
and work to reduce the number of nodes to be fewer than 1500. For more information,
see Understand widgets.

Use ccLink binding for quicker page loading
If you use the standard href link syntax, for example, using <a href="/
aboutUs">About Us<a/> within a widget, this will cause the entire page to load.

For better efficiency, instead use the ccLink custom binding. Note that this approach
will only improve performance in internal page-to-page navigation and will not improve
external web link performance. For more information, see the Use ccLink binding for
quicker page loading.

Resize images using the ccResizeImage binding
You may be able to improve performance by using the custom ccResizeImage binding
to provide scaled images for display on the UI.

Important: You should not resize images on the client.

The following is an example of the use of ccResizeImage binding:

<img data-bind="ccResizeImage: {
 source: '/file/v2/products/ST_AntiqueWoodChair_full.jpg',
 xsmall: '80,80',
 medium: '120,120',
 size:'50,50',
 alt: 'Antique Wood Chair',
 errorSrc:'images/noImage.png',
 errorAlt:'No Image Found'}">

In the example, the ccResizeImage binding returns an image of size 80x80, and
120x120 for xsmall and medium viewports, respectively. For all other viewports, it
returns an image of size 50x50. For more information, see Resize Images.

Chapter 50
Use ccLink binding for quicker page loading

50-11

http://www.webpagetest.org

	Contents
	1 Understand Extension Features
	2 Use the REST APIs
	Learn about the APIs
	REST API authentication
	Use the APIs on instances running multiple sites
	CORS support
	REST API query parameters
	Response filters
	Error messages
	Register applications

	3 Use Webhooks
	Understand webhooks
	Configure webhooks
	Secure webhooks
	Troubleshoot webhooks
	Understand webhooks and PCI DSS compliance
	Use the REST API to configure webhooks
	Reduce the size of webhook requests
	Manage failed webhook calls

	4 Manage Shopper Profiles
	Understand shopper profiles and shopper types
	View a shopper profile
	Create a shopper profile
	View a shopper type
	Add custom properties to a shopper type
	Set custom properties on a shopper profile
	Create custom properties for addresses
	Access custom properties using the UserViewModel

	5 Access SKU Properties through Widgets
	Understand APIs for accessing SKU properties
	Create an element to display SKU properties
	SkuPropertiesHandler example

	6 Create Custom Promotions
	Understand PMDL discount rules
	Create a promotion
	View promotions created with the REST API
	Sample promotions
	Create custom properties for promotions
	Assign and manage coupons
	Set up promotion upsell messages

	7 Manage Multiple Inventory Locations
	Access inventory data
	Create locations
	Create inventory data for locations
	Retrieve inventory data for locations

	8 Manage Inventory for Preorders and Backorders
	Understand inventory
	Enable preorder and backorder functionality
	Access and update inventory data
	Update widgets for preorders and backorders
	Customize email templates for preorders and backorders

	9 Manage Orders
	Integrate with an order management system
	Understand order states
	Create custom properties for orders
	Implement robust order capture
	Support zero-cost orders
	Support shopper-initiated order management
	Enable returns on partially fulfilled orders
	Support add-on products

	10 Customize Order Line Items
	Understand customization of order line items
	Create custom properties for line items
	Understand view model support for line items
	Implement a custom cart summary widget

	11 Ship an Order to Multiple Addresses
	Understand view model support for split shipping
	Implement split shipping UI controls
	Understand REST support for split shipping
	Customize email templates for split shipping
	Retaining shipping group information
	Extending the CartItem and ShippingGroupRelationship view models

	12 Exclude Items from Shipping Methods and Costs
	Exclude items from shipping methods
	Exclude items from shipping cost calculations
	Create collections for the excluded items
	Update shipping methods
	Update the Order Summary – Checkout widget

	13 Manage Countries and Regions for Shipping and Billing Addresses
	Understand countries and regions
	Retrieve a list of countries and regions
	Create and update countries and regions
	Delete countries and regions
	Customize address formats using the API
	Work with address types
	Customize address validation

	14 Configure Buy Online Pick Up In Store
	Understand buy online pick up in store
	Manage inventory for in-store pick up
	Configure layouts and widgets for in-store pick up
	Configure products and SKUs for in-store pick up
	Customize email templates for in-store pick up
	Configure payment processing for in-store pick up
	Understand tax processing and in-store pick up
	Configure the Picked Up Items webhook

	15 Create Scheduled Orders
	Configure an invoice payment gateway for scheduled orders
	Configure the scheduled order service
	Configure page layouts for scheduled orders
	Update prices in a scheduled order
	Notify shoppers about scheduled order activity
	Understand shopper tasks for scheduled orders

	16 Notify Shoppers When Items are Back in Stock
	Understand back in stock notifications
	Create and upload the notification extension
	Add the Notify Me element to the Product Details widget
	Configure the scheduler to send the back in stock emails

	17 Enable Purchase Lists
	Understand the difference between wish lists and purchase lists
	Configure purchase lists
	Work with the purchase list API
	Share purchase lists

	18 Enable Order Approvals
	Allow a delegated administrator to control order approvals
	Configure a deferred payment gateway for order approvals
	Set the frequency of canceled order clean up
	Configure page layouts for order approvals
	Manage the checkout flow for orders requiring approval
	Display a contact’s purchase limit in a widget
	Integrate with an external system for order approvals

	19 Assign Catalogs and Price Groups to Shoppers
	Configure the External Price Group and Catalog webhook
	Create a custom shopper context widget

	20 Implement Storefront Single Sign-On
	Understand storefront SSO message flow
	Configure storefront SSO
	Understand storefront SSO limitations
	Implement storefront SSO for account-based shoppers

	21 Implement Single Sign-On for Internal Users
	Configure SSO with OpenID Connect
	Configure SSO with SAML 2.0

	22 Configure Sites
	Understand site objects
	Create a site
	Update a site
	Delete a site

	23 Work with Loyalty Programs
	Implement loyalty points
	Create a custom currency for loyalty points
	Configure a site to use loyalty programs
	Understand tax and shipping calculations with loyalty programs
	Display tax and shipping in currency for points-based orders
	Redeem loyalty points
	Understand currency exchange rates
	Use custom properties in loyalty integration

	24 Integrate with Oracle Content and Experience Cloud
	Enable the integration with Oracle Content and Experience Cloud
	Configure content items to display on the storefront

	25 Integrate with External Shipping Calculators
	Work with externally priced shipping methods
	Upgrading from external shipping methods to externally priced shipping methods
	Work with external shipping methods
	Enable fallback shipping methods

	26 Integrate with an External Pricing System
	Create the widget
	Configure the webhook
	Use promotions from an external system

	27 Customize Email Templates
	Download and edit email templates
	Customize tax display in templates
	Customize line-item display in templates
	Add company name and logo to account-based email templates
	Notify a contact of multiple account or role changes in a single email
	Customize recommendations in templates
	Add a site to a template

	28 Upload Third-Party Files
	Create folders for third-party files
	Upload third-party files to folders
	Upload a Google site ownership verification file
	Upload an Apple Pay merchant identity certificate
	Delete third-party files
	Manage files on multiple sites

	29 Manage Guest Checkout
	Example for restricting guest checkout
	Note about preventing self-registration in account-based storefronts

	30 Manage Saved Carts
	Understand saved carts
	Create a widget to support saved carts
	Customize emails for saved carts

	31 Manage the Use of Personal Data
	Configure consent requests
	Delete shopper information

	32 Implement Access Control for Internal Users
	Use and modify roles
	Create security criteria
	Create generic access rights

	33 Manage Access to Shopper Data
	Implement property access control for internal users

	34 Manage an Account-based Storefront
	Manage account-based shopper profiles
	Implement access control in business accounts
	Create custom properties for accounts
	Add delegated administration to your storefront
	Ensure PayPal shoppers provide first and last name

	35 Integrate With a Procurement System
	Understand punchout
	Enable punchout for an account
	Work with the punchout server-side extension
	Configure your storefront for punchout shoppers

	36 Perform Bulk Export and Import
	Understand Bulk Exporting And Importing
	Export data endpoints
	Import data endpoints
	Understand export and import endpoint parameters
	Export and import account data
	Export and import profile data
	Export and import product data
	Export and import catalog data
	Export and import category data
	Export and import inventory data
	Export and import promotion data
	Export and import price data
	Import address data
	Import relationship data
	Export and import CSV files
	Delete bulk import or export files from repository
	Convert registered shoppers to account-based shoppers
	Improve performance in large bulk imports

	37 Create a Credit Card Payment Gateway Integration
	Understand the credit card payment gateway workflow
	Create a credit card extension
	Install the extension and configure the gateway
	Credit card payment properties

	38 Create a Generic Payment Gateway Integration
	Understand the generic payment gateway architecture
	Supported payment methods and transaction types
	Send custom properties to a payment gateway
	Incorporate 3D-Secure support
	Support stored credit cards

	39 Integrate with a Gift Card Payment Gateway
	Understand the gift card payment gateway workflow
	Create a gift card extension and configure the webhook
	Customize the Gift Card widget
	Gift card payment properties

	40 Integrate with a Store Credit Payment Gateway
	Create a store credit extension and configure the webhook
	Add a Store Credit payment option to the checkout page
	Store credit payment properties

	41 Integrate with a Loyalty Point Payment Gateway
	Understand the loyalty point payment gateway workflow
	Create a loyalty point extension and configure the webhook
	Add a loyalty point payment option to the checkout page
	Loyalty point payment properties
	Use Loyalty Points and Pay with alternate currency

	42 Integrate with a Cash Payment Gateway
	Understand the cash payment gateway workflow
	Create a cash payment extension and configure the webhook
	Cash payment properties

	43 Integrate with an Invoice Payment Gateway
	Understand the invoice payment gateway workflow
	Create an invoice payment extension and modify the checkout page
	Invoice payment properties

	44 Integrate with a Web Checkout System
	Overview of web checkout system integrations
	Initiate the order
	Retrieve the order
	Complete the order

	45 Enable Split Payments
	Understand split payments
	Use the Split Payment widget
	Use webhooks with split payments
	Customize the Split Payment widget

	46 Configure Tax Processors
	Integrate with an external tax processor
	Monitor tax processors

	47 Configure Search Features
	Understand which search features can be configured
	Understand how to execute endpoints
	Understand ZIP format and JSON format
	HTTP methods for configuring search features
	Delete resources
	Understand system-generated object attributes
	Export and import all search configuration
	Configure individual resources using ZIP format
	Back up and restore all application configuration
	Migrate configuration of all search features
	Apply configuration changes to your live storefront
	Configure a thesaurus
	Configure keyword redirects
	Optimize URLs for search engines
	View your changes
	Specify which index fields are included in searches
	Index and Query Popular Searches
	Modify data structures to enhance searches and navigation
	Configure which properties of aggregated records and their members are accessible to front end applications
	Configure the order of facets
	Configure the order of facet values
	Order facet values by statistical significance
	Add metadata to facet values
	Create custom range facets
	Configure the ranking of records in search results
	Link additional content to search results
	Search non-catalog data
	Machine learning for search
	Sample Search and Navigation REST API requests using cURL

	48 Use Developer Utilities
	Download the Commerce SDK
	Develop server-side extensions
	Use the Design Code Utility
	Use the JavaScript Code Layering User Interface feature
	Toggle JavaScript minification in preview
	Reduce the size of page responses
	View client-side error logs
	Restore or upgrade the storefront framework version

	49 Improve System Performance
	Measure performance often
	Monitor your Commerce environments
	Improve performance in REST API Calls
	Use cc-storage for Safari private browsing mode
	Avoid console.log() statements
	Avoid using ko.observable()
	Update observable JavaScript arrays
	Use Knockout data-binds syntax to attach events to DOM elements
	Use onLoad and beforeAppear correctly
	Use the fields parameter
	Use persistent filters
	Use minified versions of libraries and widget JavaScript
	Localize endpoints
	Enable queueing simultaneous endpoint calls
	Improve performance in custom widgets
	Optimize Search
	Use preFilter parameter with fields parameter to improve endpoint performance
	Speed up system response on Product Listing and Product Details
	Enable asynchronous orders flow
	Improve Storefront Performance for Large Carts
	Prevent Site Traffic Slowdowns
	Improve performance with large numbers of addresses for profiles or accounts

	50 Improve Storefront Performance
	Optimize First Meaningful Paint
	Lazy load images
	Improve Storefront Performance for Large Carts
	Add a page level spinner
	Enable prioritized loading of Storefront page content
	Avoid synchronous AJAX calls
	Avoid hiding elements with CSS styling
	Remove unused UI elements completely from layouts
	Use viewport specific layouts for mobile
	Keep contents of header and footer regions consistent
	Limit DOM node creation
	Use ccLink binding for quicker page loading
	Resize images using the ccResizeImage binding

