
Integrating with Oracle CX Commerce

F39848-01
April 2021

Integrating with Oracle CX Commerce,

F39848-01

Copyright © 2021, 2021, Oracle and/or its affiliates.

Primary Authors: (primary author), (primary author)

Contributing Authors: (contributing author), (contributing author)

Contributors: (contributor), (contributor)

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Integrate with Oracle CPQ

Set up OIC integration on Oracle CPQ site 1-1

Download the integration packages 1-1

Import the integration package 1-2

Configure Oracle CPQ connections 1-3

Generate security token for Commerce connections 1-4

Configure Oracle CPQ connections 1-4

Activate the OIC integrations 1-5

Create Sync Quote Action in Oracle CPQ 1-5

Set Sync Quote Action to run Advanced Modify 1-6

Configure Commerce webhooks 1-6

Configure the Commerce server-side extensions 1-8

Set Up Oracle CPQ 1-15

Understand general set up for Oracle CPQ 1-15

Understand Oracle CX Commerce set up 1-19

Understand Oracle CPQ configuration set up 1-27

Set Up Subscription Ordering in Oracle CPQ 1-30

Create an authentication certificate integration type 1-30

Work with in-flight cancellations 1-31

Upgrade an asset 1-32

Enable Integrations in Commerce 1-33

Enable Oracle CPQ configuration integration 1-33

Identify configurable products in the product catalog 1-34

Add Customize Button to the Product Details widget 1-35

Enable Oracle CPQ quoting integration 1-35

Add Quote Button to Checkout and Order Details pages 1-36

Enable Asset Based Ordering 1-37

Enable Subscription Cloud integration 1-37

Appendix A: Understand the Configurator Flow 1-37

Appendix B: Understand the Request for Quote Flow 1-38

Appendix C: Understand the OIC Integration Mappings 1-38

Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and
Earlier) 1-43

iii

Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-
Site Set Up (19D and Later) 1-48

Appendix F: Understand the SyncQuote BML 1-53

2 Use Oracle CPQ Cloud Features

Introduction 2-1

Objective 2-2

Audience 2-2

Prerequisites 2-3

Additional Resources 2-3

Configure the Integration 2-3

Configure the Integration Package 2-4

Configure the Oracle CX Commerce Connection 2-5

Activate the Integrations 2-7

Configure the Commerce Webhooks 2-7

Configure the Server Side Extensions 2-9

Enable the Integrations 2-19

Use the Integration Functionality 2-22

Configure an item 2-22

Request a Quote 2-23

Use account-specific pricing for configured items 2-25

Use multi-level items 2-30

Assign shipping groups to sub-items 2-34

Understand tax calculation and shipping charges when assigning shipping
groups to sub-items 2-37

Understand shipping charge and tax calculation when assigning costs to items
sold as a package 2-38

Understand how promotion discounts are applied to multi-level items 2-39

Understand the Customer Account Model 2-40

Use Recurring Charge Items 2-42

Use Asset Based Ordering 2-43

Customize configurations in Commerce using the CPQ Configuration API 2-54

Implement configuration customization via the CPQ Configuration API. 2-58

Control user interface look and feel using the CPQ Configuration API 2-63

Customize and reconfigure a product by direct use of the CPQ Configuration
API 2-69

Appendix A: Configurator Flow 2-74

Appendix B: Request for Quote Flow 2-74

iv

3 Integrate with Customer Data Management

Integrate with Customer Data Management 3-1

4 Integrate with an External Product Configurator

Enable the integration 4-1

Mark products as configurable 4-1

Add Customize button to Product Details widget 4-2

Configure the webhooks 4-2

5 Integrate with Oracle Infinity to collect data

Integrate Commerce with Infinity 5-1

Understand the role of the Infinity platform in data ingestion 5-2

Tag site pages to use the Infinity data ingestion feature 5-3

Understand Infinity integration parameter mapping 5-3

6 Integrate with Oracle Order Management Cloud

Introduction 6-1

Audience 6-1

Features 6-1

Architectural overview 6-2

Additional documentation 6-2

Prerequisites 6-2

Access rights 6-2

Assumptions 6-2

Configure Oracle CX Commerce 6-3

Submit Order webhook 6-3

Return Order webhook 6-4

Configure the Oracle Integration Cloud Adapter 6-4

Connections 6-4

Lookup configuration 6-5

Integrations 6-5

XSL location 6-5

Configure Order Management Cloud 6-6

Create the source system 6-6

Create defaulting rules 6-8

Create the orchestration process 6-10

Create the connector 6-13

Order creation 6-14

v

SKUs 6-14

Payment 6-14

Order types 6-15

Pricing and tax 6-15

Shipping methods 6-15

Mapping of attributes 6-16

Order Status 6-16

Map attributes for order status 6-17

Returns 6-17

Map attributes for returns 6-17

Exchanges 6-18

7 Integrate with Oracle Responsys

Understand the Oracle Responsys Integration 7-1

Objective 7-1

Audience 7-2

Prerequisites 7-2

Configuring the Integration 7-2

Configure the Integration Package 7-2

Download the integration package 7-3

Import the integration package 7-3

Configure the Oracle Responsys Connection 7-3

Configure the Oracle Responsys Connection 7-4

Configure the Oracle Responsys Database Tables 7-4

Configure the Oracle CX Commerce Connection 7-6

Generate a Security Token 7-7

Activate the Integration 7-7

Configure the Oracle CX Commerce Webhooks 7-8

Using the integration 7-9

Create an Abandoned Cart Program 7-9

8 Integrate with Oracle Retail Order Management System

Introduction 8-1

Audience 8-1

Features 8-1

Architectural Overview 8-2

Additional Documentation 8-2

Prerequisites 8-2

Access Rights 8-3

vi

Data Configuration 8-3

Setting Up the Integration 8-5

Commerce Configuration 8-5

Accessing the Oracle Integrations Console 8-5

Configuring the Integration 8-6

9 Integrate with Oracle Product Hub Cloud

Understand the Product Hub integration 9-1

Configure Oracle CX Commerce 9-3

Configure Oracle Product Hub 9-5

Install and Configure the Integration in OIC 9-5

Understand the integration flows 9-9

10

Integrate with Oracle Subscription Management

Understand the Subscription Management integration 10-1

Configure Oracle CX Commerce 10-2

Install and Configure the Integration in OIC 10-10

Customize Storefront Widgets 10-12

Integration Flows 10-25

Index

vii

1
Integrate with Oracle CPQ

Integrate Oracle CPQ with Oracle CX Commerce.

When you integrate Oracle CPQ with Commerce enable a number of features that
your shoppers can use, including allowing a shopper to configure products, request
quotes, or purchase configurable services.

Set up OIC integration on Oracle CPQ site
You must complete some preliminary OIC integration setup steps on the Oracle CPQ
site for the integration to run successfully.

You must set up the OIC integration on the Oracle CPQ site by completing the
following steps:

1. Click Admin to go to the Admin Home page.

2. Navigate to Integration Platform > Integration Center. The Integration Center
opens.

3. From the Type drop-down menu, select Integration Cloud Service.

4. In the Name field, enter Sync Quote integration. The Variable Name field will
auto-populate.

5. In the Discovery URL field, enter the OIC domain.

6. In the Username field, enter a valid username.

7. In the Password field, enter a valid password.

8. Click Create Integration.

Download the integration packages
To begin the OIC set up portion of the integration, you need to download the OIC
Integration Package.

Complete the following procedure to download the OIC Integration Package.

1. Go to the Integrating Oracle CX and Oracle CPQ article on My Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle CPQ
Configurator, download OCCS-CPQ_CONFIGURATION_INTEGRATION_X.X.par
to a location where it is accessible from OIC.
Note: OCCS_CPQ_GETCONFIGBOM_X.X.par is only needed if you are enabling
Asset Based ordering.

3. If you want to implement the integration between Commerce and Oracle CPQ
Quoting, download OCCS-CPQ_QUOTE_INTEGRATION_X.X.par to a location
that is accessible from OIC.

4. If you want to enable Asset Based Ordering
(ABO) through the integration between Commerce and

1-1

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Oracle CPQ, download OCCS_CPQ_ASSET_INTEGRATION_X.X.par,
OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par, and
OCCS_CPQ_GETCONFIGBOM_1.0.par to a location that is accessible from OIC.
Note: OCCS_CPQ_GETCONFIGBOM_X.X.par is only needed if you are enabling
Asset Based ordering.

Import the integration package
You must import the OIC Integration Package into OIC to create an integration
between Commerce and Oracle CPQ.

To import the OIC Integration Package:

1. Log in to OIC as an admin user.

2. Click the Packages icon.

3. Click the Import button.

4. Click Browse.

5. Select the integration package archive (PAR) file you want to import.

6. Click Import. The package is added to the Packages list.

The OCCS-CPQ_CONFIGURATION_INTEGRATION package includes the OCCS-CPQ
Get Configurations integration flow. This flow is invoked for retrieving a list of
configurationIds fromOracle CPQ of regular configured items (non-ABO items) and
ABO items with actionCodes other than Suspend and Terminate. This integration is
required for the configuration flow and is available to import into OIC. The name of the
target connection for this integration is Oracle CPQ. The target connection identifier
is Oracle CPQ, and the target connection description is Oracle CPQ ICS Adapter
Connection.

The OCCS-CPQ_QUOTE_INTEGRATION package includes the following three
integration flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-
CPQ Sync Quote.

• The OCCS-CPQ Create Quote integration sends quote request information to
Oracle CPQ.

• The OCCS-CPQ Sync Quote integration allows Oracle CPQ to send information
to Commerce at the end of the quoting process and synchronize this information
in Commerce. This ensures that the order information in Commerce matches the
related order information in Oracle CPQ.

• The OCCS-CPQ Update Quote integration sends information to Oracle CPQ
related to accepting, rejecting, or re-requesting a quote.

The OCCS-CPQ_ASSET_INTEGRATION package includes two integration flows:
OCCS-CPQ Get Assets and OCCS-CPQ Asset Actions. This integration is required
for Asset Based ordering.

• The OCCS-CPQ Get Assets integration returns information about assets and
services associated with the shopper’s account(s)

• The OCCS-CPQ Asset Actions integration enables Commerce to modify, renew,
and terminate actions on assets and services associated with the shopper’s
account(s).

Chapter 1
Set up OIC integration on Oracle CPQ site

1-2

The OCC_CPQ_Get_Asset_Upgrade_Options package is needed to retrieve all
upgrade options that are available for an asset. If you want to show upgrade options
to an assets shopper, this integration needs to be configured. When a call is made for
the GetService(s) endpoint, this integration is called from the Services SSE to get all
upgrade options. This call can only be made if expand=occ_upgradeOptions is passed
as a queryparam for the GetService(s) endpoint.

The OCCS_CPQ_GETCONFIGBOM package contains the following OIC integration flow
which is also used in Asset Based ordering:

• GetConfigBom - If an item is an ABO item with actionCode of Terminate or
Suspend, getConfigBom calls are required to be made for each configuratorID
of these filtered items to retrieve a saved Configuration BOM Instance of the item
on Oracle CPQ.

Note: Importing and setting up the OIC Integration Package is a prerequisite
to completing the Sync Quote action in Oracle CPQ. After all setup procedures
are completed, regenerate the OCCS-CPQ Create Quote integration to ensure it
accurately reflects the current state of the Oracle Quote to Order process.

Configure Oracle CPQ connections
You must configure Oracle CPQ connections to correspond to different SOAP or REST
APIs for Oracle CPQ web services used in the integration.

Administrators must configure connections from the integrations referenced in the
previous section to Oracle CPQ.

The following Oracle CPQ connections are part of the integrations: Oracle CPQ,
Oracle CX Commerce, Oracle CPQ getConfigurations, Oracle CPQ Quote, Oracle
CPQ Get Assets, and Oracle CPQ Asset Actions. Each connection corresponds to
different SOAP or REST APIs for Oracle CPQ web services. Setting a connection to
use the wrong API will cause the integrations to fail.

To configure the Oracle CPQ connections:

1. Log in to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle CPQ connection.

4. Click Configure Connectivity.

5. Add the WSDL or REST metadata URL for the Oracle CPQ getConfigurations API.
Note: The Oracle CPQ Asset Actions, Get Assets, and GetConfigBom
connections are REST based and use the REST Catalog URL. The Oracle
CPQ getConfigurations and Oracle CPQ SOAP connections are SOAP based
and use WSDL URLs. The WSDL endpoint for getConfigurations is /v2_0/receiver/
configuration?wsdl and the endpoint for Oracle CPQ SOAP varies by Commerce
Process. For example, the Oracle Quotes and Orders endpoint is /v2_0/receiver/
commerce/oraclecpqo?wsdl.

6. Click OK.

7. Click Configure Security. The Oracle CPQ connection uses the Basic security
policy, so you must enter the login details for your Oracle CPQ account.

8. Click OK.

9. Click Test to test the connection.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-3

10. Click Save.
The Oracle CPQ connection is now configured for the integration. Repeat steps
1-10 for each of the remaining Oracle CPQ connections.

Generate security token for Commerce connections
A security token must be generated to support the Commerce REST web service APIs
used to access Commerce data.

You must generate a security token to support the Commerce REST web service APIs
used to access Commerce data in the integration. Use the following steps:

1. Log in to Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Click Web APIs from the sidebar menu.

5. Click Registered Applications from the Web APIs panel.

6. Click Register Application.

7. Enter a name for the integration. Since you are registering OIC, choose a
meaningful name that reflects the integration.

8. Click Save. The Application ID and Application Key are automatically generated.
The application displays on the Registered Applications page.

9. Click the name of the application you created.

10. Select Click to reveal to display the application key.

Note: You need the application key when configuring the Commerce connection in
OIC. Copy the registration key, so that it is available when you complete the Configure
the Commerce Connection procedure.

Configure Oracle CPQ connections
You must configure Oracle CPQ connections to correspond to different SOAP or REST
APIs for Oracle CPQ web services used in the integration.

Administrators must configure connections from the integrations referenced in the
previous section to Oracle CPQ.

The following Oracle CPQ connections are part of the integrations: Oracle CPQ,
Oracle CX Commerce, Oracle CPQ getConfigurations, Oracle CPQ Quote, Oracle
CPQ Get Assets, and Oracle CPQ Asset Actions. Each connection corresponds to
different SOAP or REST APIs for Oracle CPQ web services. Setting a connection to
use the wrong API will cause the integrations to fail.

To configure the Oracle CPQ connections:

1. Log in to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle CPQ connection.

4. Click Configure Connectivity.

5. Add the WSDL or REST metadata URL for the Oracle CPQ getConfigurations API.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-4

Note: The Oracle CPQ Asset Actions, Get Assets, and GetConfigBom
connections are REST based and use the REST Catalog URL. The Oracle
CPQ getConfigurations and Oracle CPQ SOAP connections are SOAP based
and use WSDL URLs. The WSDL endpoint for getConfigurations is /v2_0/receiver/
configuration?wsdl and the endpoint for Oracle CPQ SOAP varies by Commerce
Process. For example, the Oracle Quotes and Orders endpoint is /v2_0/receiver/
commerce/oraclecpqo?wsdl.

6. Click OK.

7. Click Configure Security. The Oracle CPQ connection uses the Basic security
policy, so you must enter the login details for your Oracle CPQ account.

8. Click OK.

9. Click Test to test the connection.

10. Click Save.
The Oracle CPQ connection is now configured for the integration. Repeat steps
1-10 for each of the remaining Oracle CPQ connections.

Activate the OIC integrations
Once your integrations are configured, you must activate them using the OIC admin
user interface.

Once the Oracle CPQ, Commerce, Oracle CPQ Quote, Oracle CPQ Configure, and
Oracle CPQ getConfigurations connections are configured, you must activate these
integrations.

To activate the OIC (Oracle Integration Cloud) integrations:

1. Log in to OIC as an admin user.

2. Click the Integrations icon to display the Integrations List.

3. Use the Activate slide switch to activate the integrations.

4. Decide whether you want to switch on detailed tracing, which collects information
about messages processed by the integration flow. Administrators may find
detailed tracing helpful when troubleshooting issues with the integration flow, but it
may impact performance.
To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate and then
reactivate the flow to switch detailed tracing on or off.

5. Click Activate.

Create Sync Quote Action in Oracle CPQ
The Sync Quote Action needs to be created for the Oracle CPQ/Commerce integration
to work successfully.

Use the following code to create the following Commerce action at the Commerce
quote level:

Label(Sync Quote), Variable Name(syncQuote), Action Type(Modify).

Chapter 1
Set up OIC integration on Oracle CPQ site

1-5

Set Sync Quote Action to run Advanced Modify
You must set the Sync Quote action to run Advanced Modify for the integration to run
successfully.

Complete the following steps to set the Sync Quote action to run Advanced Modify:

1. Open the Admin Home page.

2. Navigate to Process and Documents > Process Definition. The Processes
page opens with Documents displaying by default in the Navigation drop-down
menu.

3. Click List. The Document List page opens.

4. From the Navigation drop-down menu, select Actions for the Transaction or
Transaction Line.

5. Click List. The Action List page opens.

6. Click the syncQuote link. The Admin Action page opens.

7. Under the General Tab > Advanced Modify > Before Formulas >, select Define
Advanced Modify - Before Formulas.

8. Click Define Function.

9. Select the attributes shown in the following tables:

Variable Name for
(Transaction)

Type Description

cC_LineItem_Data String CC_LineItem_Data

Variable Name for
(Transaction Line)

Type Description

_document_number String Document Number

_model_variable_name String Model Variable Name

cC_ProductId_l String Product ID

cC_CommerceItemId_l String Commerce Item ID

10. Insert the sample BML provided in Appendix F: Understand the SyncQuote BML.

11. Update and click Save.

12. Navigate to the Integration tab and move Sync quote above Modify Functions.

13. Update and click Save.

14. Place the “syncQuote” action on the layout.

Configure Commerce webhooks
You must configure webhooks in Commerce Administration in order to support the
REST API generated by the activation of the OIC integration.

The REST API generated by the activation of the OIC integration can be configured as
webhooks in Commerce Administration. These include the following:

Chapter 1
Set up OIC integration on Oracle CPQ site

1-6

• Request Quote: This webhook is triggered when a request or a re-request for
a quote is submitted by a Commerce self-service user. The webhook pushes
notifications using the OCCS-CPQ Create Quote integration flow.

• Update Quote: This webhook is triggered when a response to a requested quote
is accepted or rejected or the quote order is canceled by the Commerce self-
service user. This webhook pushes notifications using the OCCS-CPQ Update
Quote integration flow.

• External Price Validation: This webhook is triggered at check out when the order
contains one or more items configured by Oracle CPQ. The webhook validates the
configuration and the price provided for configured items.

• Contact Accounts Retrieval: This webhook returns a list of service account IDs
for the shopper.
Note: This webhook has been deprecated.

• Services Retrieval: This webhook returns information about a service or asset
associated with the shopper and uses the OCCS-CPQ Get Assets integration flow.
This webhook calls the Contact Accounts Retrieval webhook, so that webhook
must also be configured for the Services Retrieval webhook to function correctly.
Note: This webhook has been deprecated.

Note: Administrators must configure the Production and Preview versions of the
webhooks to ensure they work in all environments. The Production webhooks send
information from the live Commerce store to the production environments of your live
systems. The Preview webhooks send information from the preview environment to
the test or sandbox environments of external systems.

To configure Request Quote, Update Quote, External Price Validation, Services
Retrieval (deprecated), or Services (deprecated) webhooks:

1. Log in to OIC as an admin user.

2. Click the Integrations icon.

3. Click the Integration Details icon to display information about the integration flow.

• If configuring the Request Quote webhook, display information for the OCCS-
CPQ Create Quote integration flow.

• If configuring the Update Quote webhook, display information for the OCCS-
CPQ Update Quote integration flow.

• If configuring the External Price Validation webhook, display information for
the OCCS-CPQ GetConfigurations integration flow.

• If configuring the Services Retrieval webhook, display information for the
OCCS-CPQ Get Assets integration flow.
Note: This webhook has been deprecated.

• If configuring the Services webhook, display information for the OCCS-CPQ
Asset Actions integration flow.

Note: This webhook has been deprecated.

4. Copy the Endpoint URL for the integration.

5. Log in to Commerce.

6. Click on the Menu icon.

7. Select Settings from the menu.

8. Select Web APIs from the sidebar menu.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-7

9. Click the webhook you want to configure.

10. Paste the Endpoint URL that was copied into the URL field for the webhook.

11. Remove the “metadata” text from the end of the URL.

12. Enter your OIC user name and password.

13. Click Save.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

Note: It is not possible to edit webhooks differently for different sites. Updating
webhooks applies changes regardless of the site selected.

Understand the Services SSE

The Services SSE enables integration with third party asset management systems to
retrieve and execute operations available to a shopper. This SSE also serves as the
API for the integration with Oracle CPQ asset management.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions performed on
a service or asset are done using the Services SSEs (server side extensions); one set
for Storefront and one for Agent.

The Services SSEs call the integrations
in OCCS_CPQ_ASSET_INTEGRATION_X.X.par and
OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par for the asset Upgrade feature.

See the section Configure the Commerce Server Side Extensions in this document for
more information on these actions.

For more information about Commerce webhooks, refer to the Use Webhooks chapter
of the Extending Oracle CX Commerce book.

For more information on understanding and using the asset Upgrade feature, refer to
the Use Asset Based Ordering section of the Using Oracle CPQ Features with Oracle
CX Commerce book.

Note: You can also customize configurations of complex assets in Commerce without
being redirected to an Oracle CPQ hosted iFrame which may have a separate and
distinct user interface look and feel that creates a disjointed user experience. This
capability is known as the Direct API Configuration feature and can be used as
another option for the Modify and Upgrade actions. For more information on the Direct
API configuration feature, refer to the Customize configurations in Commerce using
the Oracle CPQ Configuration API section of the Using Oracle CPQ Features with
Oracle CX Commerce book.

Configure the Commerce server-side extensions
To perform specific functions relating to asset-based orders, you need to install and
configure the related Commerce server-side extensions (SSEs).

Commerce includes some server-side extensions (SSEs) that you can configure to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for
use with Commerce, refer to Develop server-side extensions section in the Extending
Oracle CX Commerce book found in the Commerce Help Library.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-8

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/develop-server-side-extensions.html

The next sections in this topic explain the purpose and configuration of each available
SSE as well as provide information on the inputs required for their respective
endpoints.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit
checking system, the Credit Check SSE is used to connect to a third-party credit check
system so that you can perform a credit check on the logged-in shopper.

As written, this SSE generates outbound calls to a master credit checking system. This
means that the Credit Check SSE calls out to an external system to perform the credit
check. In order to use this SSE to connect to the external checking of your choice,
you must modify the SSE code to provide the specific calls needed to connect to the
correct credit checking system.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-
agent.zip, by first downloading the SSE packages.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by
Commerce. The inputs for this endpoint are:

• Amount information

• Recurring amount frequency

• Recurring amount duration

• Recurring amount

• Contact information

– First Name

– Last Name

– Email Address

– Telephone Number

Chapter 1
Set up OIC integration on Oracle CPQ site

1-9

• Address information

– Address line 1

– Address line 2

– City

– State

– Country

– Postal code

The return for this endpoint is either a TRUE or FALSE value depending on whether
the shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a
registered shopper or to update the customer account model when required.

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts
for the shopper.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• Account Type

• Account Name

• Primary Contact

• Billing Profile(s)

• Address(es)

• Contact ID(s)

• Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles
now associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.

Understand the Query Accounts endpoint

Chapter 1
Set up OIC integration on Oracle CPQ site

1-10

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• The Account ID of the account to which the billing profile is linked.

• The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the assetable property is TRUE the quantity must
be 1 and, if not, return an error indicating that this item can only be purchased one at a
time. This check is done by looking to see if the root item has an assetKey value. For
more information, refer to Use Asset Based Ordering.

You can configure the available SSEs, OrderQualification-store.zip and
OrderQualification-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification endpoint

This endpoint is triggered by the Order Validation webhook when any order containing
a configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

Chapter 1
Set up OIC integration on Oracle CPQ site

1-11

This SSE is used to ensure that an order is valid. It enables an order qualification step
in the purchasing process that can be invoked via the Order Qualification webhook.
The extension can be configured to execute custom order qualification processes
such as checking whether the shopper is eligible to purchase the items in the cart.
It contains a pre-built algorithm to validate that the Customer, Billing, and Service
accounts as well as the Billing Profile assigned to the items in the cart are valid for the
logged in shopper.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification Pipeline endpoint

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:

• Contact record for the shopper

• Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can
be invoked via the Order Validation webhook. The extension can be configured to
execute any final checks particular to the purchasing model before the order payment
is authorized and the order is submitted to the downstream systems for fulfillment and
provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

Configure the Services SSE

The Services SSE enables integration with third party asset management systems to
retrieve and execute operations available to a shopper. This SSE also serves as the
API for the integration with Oracle CPQ asset management. It can be used to retrieve
all the services/assets linked to a shopper’s profile or it can also be used to retrieve
details of just one asset at a time.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions on a service
or asset are performed using the Services SSEs (server side extensions), one set for
Storefront and one for Agent.

The Services SSEs call the integrations
in OCCS_CPQ_ASSET_INTEGRATION_X.X.par and
OCC_CPQ_Get_Asset_Upgrade_Options_1.0.par for the asset Upgrade feature.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-12

You can configure the available SSEs, Services-store.zip and Services-
agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Services SSE endpoints

The endpoints for the Services SSE are the following:

• getServices - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This
endpoint returns the list of services for the shopper based on their service
account(s) and any upgrade options available for those services.

• getService - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This
endpoint returns the details for a single service for the shopper based on their
services account(s) and any upgrade options available for that service.

• Terminate - Calls Get OEC Account Details for OCC Profile (to retrieve the
account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0)
OIC flow, and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Renew - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Suspend - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Resume - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

• Modify - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
retrieves iFrame URL from CPQ, and loads the Oracle CPQ hosted iFrame.

• Upgrade - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
retrieves iFrame URL from CPQ, and loads the Oracle CPQ hosted iFrame.

• Modify (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and CPQ /rest/v9/config{prodFamVarName}.{prodLineVarName}.
{modelVarName}/actions/_configure. This endpoint supports a directOracle CPQ
API Modify action and lets you bypass the use of an iFrame.

• Upgrade (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve the
account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0)
OIC flow, and Oracle CPQ /rest/v9/config{prodFamVarName}.{prodLineVarName}.
{modelVarName}/actions/_configure. This endpoint supports a direct Oracle CPQ
API Upgrade action and lets you bypass the use of an iFrame.

These endpoints are triggered when a shopper performs an operation on an asset.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-13

Note: You can customize configurations of complex assets in Commerce without being
redirected to a an Oracle CPQ hosted iFrame which may have a separate and distinct
user interface look and feel that creates a disjointed user experience. This capability is
known as the Direct API Configuration feature and can be used as another option for
the Modify and Upgrade actions. For more information on the Direct API configuration
feature, refer to Customize configurations in Commerce using the CPQ Configuration
API.

The inputs for these endpoints are:

• Logged in User Token.

• AssetKey, the unique ID for the asset for this operation. This may be a root,
branch or leaf asset.

The returns for the endpoints are a BOM (Bill of Materials) or an Error.

Note: For more information about C endpoints, refer to the Use the REST APIs
chapter of the Extending Oracle CX Commerce book.

For more information about Commerce webhooks, refer to the Use Webhooks chapter
of the Extending Oracle CX Commerce book.

For more information on understanding and using the asset Upgrade feature, refer to
Use Asset Based Ordering.

Configure the Configuration Validation SSE

The Configuration Validation SSE (cpq-config-validation-app) plays an important role in
Asset Based Ordering and validating asset configuration. This specific SSE performs
a configuration validation between items in a shopper's cart and the items captured
in response to configuration validation end points. For more complete information on
Asset Based Ordering, refer to the Using the Integration Functionality section of this
document.

To use this SSE, you should first have the External Pricing webhook set to /ccstorex/
custom/v1/validateCPQConfigurations. This is done on the Settings page of the
Administration user interface.

You should also have the following endpoints configured:

• GET_CONFIGBOM_URI – This is available when
OCCS_CPQ_GETCONFIGBOM is configured.

• GET_CONFIG_URI - This is available when OCCS-
CPQ_CONFIGURATION_INTEGRATION is configured.

The GET_CONFIGBOM_URI URL gets triggered for the Suspend and Terminate
Services. The GET_CONFIG_URI URL gets triggered for the Renew, Modify, and
Resume Services. The SSE does validation between items in cart and items captured
in the response of these two end points.

The SSE package is named cpq-config-validation-app and is downloadable by this
name from the Commerce Administration user interface.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

Chapter 1
Set up OIC integration on Oracle CPQ site

1-14

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-rest-apis1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html

Set Up Oracle CPQ
You must complete some general, configuration, and Commerce steps in Oracle CPQ
to begin working with your integration.

This section contains the general, configuration, and Commerce steps you must
complete in Oracle CPQ.

Understand general set up for Oracle CPQ
Some general set up procedures for Oracle CPQ need to be completed for the
integration to run successfully.

You must complete the following Oracle CPQ general set up procedures:

• Enable Guest Access to Oracle CPQ

• Add Template Dependencies to File Manger

• Make Oracle CPQ Stylesheet Edits

• Synchronize Oracle CPQ Parts with Commerce SKUs

Enable Guest Access to Oracle CPQ

Administrators can allow multiple self-service users in Commerce to access an
Oracle CPQ site as a guest user from an iFrame displaying within Commerce.
When Commerce punches in to Oracle CPQ for configuring items, the system uses
sessions for unregistered users (i.e. guest users). When self-service users access
an Oracle CPQ site, their session parameters pass from Commerce to Oracle CPQ.
This provides a seamless user experience and eliminates the need for Commerce
self-service users to enter login credentials when entering an Oracle CPQ site from
Commerce.

Note: You can now customize the configurations of complex products in Commerce
without being redirected to an Oracle CPQ hosted iFrame. This capability, known as
the Direct API Configuration feature, builds out support in Commerce for direct API
driven product configurations where the user interface experience is controlled instead
by Commerce and can be customized by Commerce partners rather than relying on
the Oracle CPQ hosted iFrame. Refer to the Using Oracle CPQ Features with Oracle
CX Commerce guide in the Oracle CX Commerce Doc Library for complete details.

Session parameters include currency, language, and locale preferences such as
number format, units, and date format. For example: If a Commerce self-service user’s
language preference is set to German, the text in the Oracle CPQ interface displays
in German when the user accesses Oracle CPQ. The user’s currency and locale
preferences are also passed from Commerce and display in Oracle CPQ.

To enable guest access to Oracle CPQ:

1. Open the Admin Home page.

2. Under General, select General Site Options. The Options – General page
opens.

3. Under Options – Login, set Allow Guest Access to Yes.
This setting allows Commerce to punch in to Oracle CPQ.

Chapter 1
Set Up Oracle CPQ

1-15

4. If multi-currency support from Commerce is required, set Allow
Direct Login [Deprecated: Please use SSO feature] to Yes.

5. Under Options – General, set Occupy entire window when
the site is inside a frame to No. This setting improves
usability when punching in to Oracle CPQ from Commerce.

Add Template Dependencies to File Manager

The “Add to Cart” action sends items to a Commerce cart via an Add to Cart button,
which displays on the Commerce integrated Oracle CPQ site following configuration.
Use the information provided in this section to add payload template files to File
Manager. If Commerce requires additional information from Oracle CPQ during the
“Add to Cart” action, administrators can add the information by creating configurable
attributes and modifying the payload templates. Administrators can then export the
configurable attributes as key-value pairs from Oracle CPQ to Commerce.

Payload template files (i.e. Recommended_Items_Payload-Cloud.txt and
AddToCartPayload-Cloud.txt) form the payload structure for sending a
configured item to the Commerce shopping cart. The template files support the “Add
to Cart” action and include configuration information such as config id, quantity, and
BOM items. BML reads the template files and replaces the values in brackets, such as
{{bomitems}}, with dynamic values.

Complete the following steps to add the payload template files to File Manager:

1. Open the Admin Home page.

2. Navigate to Utilities > File Manager. File Manager opens.

3. Create a new folder named CommerceCloud.

4. Under Add Files, click Browse. The Choose File to Upload dialog opens.

5. Navigate to the Recommended_Items_Payload-Cloud.txt file and click Open.

6. Click Add File. The Recommended_Items_Payload-Cloud.txt file displays in
File Manager.

7. Complete steps 1-6 for AddToCartPayload-Cloud.txt.

Shown below is the content of each of the payload template files.

Chapter 1
Set Up Oracle CPQ

1-16

Recommended_Items_Payload-Cloud.txt

{
 "quantity": "{{quantity}}",
 "catalogRefId": "{{part}}",
 "price": "{{price}}",
 "recurringCharge": { "amount":"{{recurringPrice}}",
 "frequency":"{{pricePeriod}}",
 "duration":"{{duration}}" }
}

AddToCartPayload-Cloud.txt

{
 "messageType": "Configuration_Details",
 "quantity": "1",
 "catalogRefId": "{{model}}",
 "amount": "{{totalPrice}}",
 "price": "{{basePrice}}",
 "currencyCode": "{{currency}}",
 "configurationId": "{{ConfigId}}",
 "childItems": [{{ChildItems}}],
 "bomItems": [{{BomItems}}]
}

Make Oracle CPQ Stylesheet Edits

Oracle recommends administrators hide Oracle CPQ navigation options outside the
scope of the integration from Commerce self-service users.

Hide the Oracle CPQ Home Button

By hiding the Oracle CPQ Home button, the Oracle CPQ configurator opens whenever
users access Oracle CPQ. Users cannot navigate away from the original model that
opens in the configurator, which prevents them from configuring a different model or
adding a different model to Commerce.

To hide the Oracle CPQ Home button:

1. Open the Admin Home page.

2. Under Style and Templates, select Stylesheet. The Stylesheet Manager page
opens.

3. Select Download Alternate Stylesheet next to Click to Download Alternate
CSS from the CSS Upload/Download Center.

Chapter 1
Set Up Oracle CPQ

1-17

4. When the alternate CSS file opens, update the CSS to include the following CSS
snippet to hide the Home button within the iFrame.

.nav-links>a img[title="Home"]{
 display: none;
}

Note: If the Home button shows both a label and an icon, administrators cannot
hide the label using only CSS. From the Admin Home page, navigate to Style and
Templates > Navigation Menus > Subheader > Home > Edit. Choose Icon for
Display. The Home button is then hidden with the CSS change.

Hide Price Books

Oracle CPQ uses PriceBooks as a way to associate parts with a price. Oracle
recommends hiding Price Book information from users.

To hide Price Books:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition.The Supported Products page
opens.

3. From the Navigation drop-down menu, select Stylesheets.

4. Click List. The RegularStylesheets List page opens.

5. Download the DefaultRegular Stylesheet.

6. Copy the contents of the DefaultRegular Stylesheet.

7. Create a new stylesheet with a name indicative of the stylesheet’s purpose. For
example: Hide Price Books

8. Paste the contents of the Default Regular Stylesheet into the new stylesheet and
add the following CSS:

.pricebook-container {
 display:
 none;
}

9. Save the stylesheet.

10. On the Regular Stylesheets List page, click Add Alternate. The Configuration
Stylesheet Editor opens.

11. Click Browse.

12. Use the File Upload dialog to locate and select the new stylesheet.

Chapter 1
Set Up Oracle CPQ

1-18

13. Click Open. The stylesheet displays in the Regular Stylesheets List page under
the list of Alternate Stylesheets.

Synchronize Oracle CPQ Parts with Commerce SKUs

In Commerce, SKUs represent a purchasable instance of a product on a Commerce
storefront. Administrators must synchronize Oracle CPQ parts with Commerce SKUs
to ensure the pricing information associated with a part is the same in both Oracle
CPQ and Commerce.

To synchronize Oracle CPQ parts with Commerce SKUs:

1. Open the Admin Home page.

2. Under Products, select Parts. The Part Administration page opens.

3. Add new parts in Oracle CPQ with part numbers that match SKUs in Commerce.

4. Add Part Custom fields for recurring charge price type, frequency, duration, and
cost.

Notes:

• The client-side BML sample included in the Configure Client-Side Integration,
Add To Cart Button, and JSON Response section of this implementation guide
assumes part custom fields 4, 5, 6, and 8 represent recurring period, cost,
duration, and type respectively. In order to use other part custom fields, the Add to
Cart BML and OIC mappings will have to be adjusted accordingly.

• If a non-configurable SKU is later added to Commerce and intended for use by the
Oracle CX Commerce and Oracle CPQ integration, repeat the above procedure to
add the corresponding part in Oracle CPQ.

• In addition toOracle CPQ parts, configurable models must also have a
corresponding SKU in Commerce. The SKU number in Commerce should match
the model’s label and variable name.

Understand Oracle CX Commerce set up
You must complete preliminary Commerce set up steps in Oracle CPQ for the
integration to run successfully.

This topic contains the Commerce set up steps that you must complete in Oracle
CPQ.

Note: Request for Quote and Sync Quote flows do not currently support Asset/
Subscription based orders.

Create Commerce Attributes at the Transaction Level

You must create the Commerce attributes shown in the following table at the
Transaction level and can adjust the attribute labels, as desired.

Note: An asterisk (*) next to the attribute label indicates the attribute should already
exist as part of the Base Reference Application.

Attribute Label Variable Name Attribute Type Additional Settings

CC Order Id cC_OrderId_t Text Field none

Discount Info cC_DiscountInfo_t Text Field none

Chapter 1
Set Up Oracle CPQ

1-19

Attribute Label Variable Name Attribute Type Additional Settings

Requestor Note cC_RequesterNote_t Text Area none

Request Date cC_RequestDate_t Date Default Value:

System Variable:
Current Date

Customer* customer_t Additional Address
Set

none

Reject Explanation* rejectExplanation_t Text Area none

Rejection Date cC_RejectionDate_t Date none

Provider Note cC_ProviderNote_t Text Field none

Price Expiration Date* priceExpirationDate_t Date none

CC External Id cC_ExternalId_t Text Field none

CC External Order
Price

cC_ExternalOrderPric
e_t

Currency Auto Update: Yes
Modify: Revert to
Default
Default Value: Use
the formula provided
in the Apply Formulas
section.

CC External Order
Price Quantity

cC_ExternalOrderPric
eQuantity_t

Integer none

CC Expiration Date cC_ExpirationDate_t Date none

CC Agent Id cC_AgentId_t Text Field none

CC Subtotal cC_Subtotal_t Currency none

CC Order Discount cC_OrderDiscount_t Float Auto Update: Yes

Default Value:
Enter a non-blank
default value to ensure
the value sent to
Commerce during
Sync Quote (i.e.
externalOrderPrice) is
populated.

CC Order Discount
Type

cC_OrderDiscountTyp
e_t

Menu Auto Update: Yes
Menu Options:
Percent Off, Amount
Off, Price Override
Default Value: Enter
a non-blank default
value to ensure
the value sent to
Commerce during
Sync Quote (i.e.
externalOrderPrice) is
populated.

CC_LineItem_Data cC_LineItem_Data_t Text Area none

Chapter 1
Set Up Oracle CPQ

1-20

Attribute Label Variable Name Attribute Type Additional Settings

CC Total Net Price cC_TotalNetPrice_t Currency Auto Update: Yes
Modify: Revert to
Default
Document View:
Hide
Default Value: Use
the formula provided
in the Apply Formulas
section.

Order Discount Total cC_OrderDiscountTota
l_t

Currency Auto Update: Yes
Document View:
Hide
Default Value: Use
the formula provided
in the Apply Formulas
section.

Total (Net)* totalOneTimeNetAmo
unt_t

Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

Total Discount* totalOneTimeDiscount
_t

Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

CC Order Total cC_Order_Total_t Currency none

CC Organization Id cC_OrgId_t Text Field none

CC Site Id cC_SiteId_t Text Field none

CC Site name cC_SiteName_t Text Field none

Ship To Attributes* shipTo_t Additional Address
Set

none

Invoice To Attributes* invoiceTo_t Additional Address
Set

none

Note: For all procedures and SSEs that require address information for endpoint
inputs, in addition to usingCommerce's default address formats, you can also use
the Commerce REST API to create multi-country custom address formats. Refer to
the Configure the Commerce Server-Side Extensions topic in this guide for more
information on address formatting.

Modify the Existing “Status” Transaction Level Attribute

The Status (“status_t”) attribute is an existing Transaction-level attribute that should
already exist on Base Ref App environments. You must modify this attribute as
described below.

• Add the following options:

– Rejected [REJECTED]

– Synced [SYNCED]

• Under Modify, set the attribute to "Use Specified Value" for the following actions:

– Create Order: ORDERED

Chapter 1
Set Up Oracle CPQ

1-21

– Customer Rejection: REJECTED

– Save: CREATED

– Sync Quote: SYNCED

– Cancel Transaction: CANCELED

Create Attributes at the Commerce Line Level and Add Them to the Commerce
Layout

Create the Commerce attributes shown below at the Commerce line level. Once
created, add the attributes to the Commerce layout.

Attribute Label Variable Name Attribute Type Additional Settings

Commerce Item Id cC_CommerceItemId_
l

Text Field none

Product Id cC_ProductId_l Text Field none

Catalog Ref Id cC_CatalogRefId_l Text Field Default Value:
Function

if(_model_variable_na
me <> ""){

return
_model_variable_nam
e;

}

return _part_number;

Note: When creating
the Default value
Function,
_model_variable_n
ame and
_part_number need
to be selected from
the Variable Name for
that Transaction Line
tab.

External Price cC_ExternalPrice_l Currency none

External Price
Quantity

cC_ExternalPriceQua
ntity_l

Integer none

CC Net Price cC_NetPrice_l Currency none

Quantity* requestedQuantity_l Currency none

Price (List)* listPrice_l Currency Default Value: Use
the formula provided
in the Apply Formulas
section.

n/a oRCL_ABO_ActionCo
de_l

Single Select Menu This menu attribute
comes from the ABO
installation package
and is a requirement
for the Sync Quote
action.

Apply Formulas

The following Commerce attributes should already exist on Base Ref App
environments. Apply the listed formulas to the attributes.

Chapter 1
Set Up Oracle CPQ

1-22

Table 1-1 Attributes for Base Ref App environments

Variable Name Formula

cC_ExternalOrderPrice_t if((cC_OrderDiscountType_t = "amountOff"),
(cC_TotalNetPrice_t - cC_OrderDiscount_t),
if((cC_OrderDiscountType_t =
"percentOff"), (cC_TotalNetPrice_t -
(cC_TotalNetPrice_t * (cC_OrderDiscount_t /
100))), if((cC_OrderDiscountType_t
= "priceOverride"),
cC_OrderDiscount_t,cC_TotalNetPrice_t)))

totalOneTimeNetAmount_t* cC_ExternalOrderPrice_t

totalOneTimeDiscount_t* sumIf((priceType_l NOT= "Recurring"),
discountAmount_l) + cC_OrderDiscountTotal_t

cC_OrderDiscountTotal_t if((cC_OrderDiscountType_t = "amountOff"),
cC_OrderDiscount_t,if((cC_OrderDiscountTy
pe_t = "percentOff"),
(cC_ExternalOrderPrice_t -
(cC_OrderDiscount_t / 100)),
if((cC_OrderDiscountType_t =
"priceOverride"), (cC_ExternalOrderPrice_t -
cC_OrderDiscount_t), 0)))

cC_TotalNetPrice_t sumIf((priceType_l NOT= "Recurring"),
netAmount_l)

listPrice_l* if((_model_base_price NOT= 0),
_model_base_price,_price_list_price_each)

if((_model_base_price NOT= 0),
_model_base_price,if((_pricing_rule_price_e
ach NOT= 0),
_pricing_rule_price_each,_price_list_price_ea
ch))

Note: An asterisk (*) next to the variable name indicates that a formula for the attribute
already exists on Base Ref App environments. You must update the existing formulas
as opposed to creating new formulas.

Set Up Commerce Actions

Complete the following steps to set up Commerce actions.

1. Create the following Commerce action at the Transaction level.

Chapter 1
Set Up Oracle CPQ

1-23

Table 1-2 Commerce action

Label Variable Name Action Type Integration Advanced
Modify (Before
Formulas)

Sync Quote cC_syncQuote Modify CPQ-OCCS
Sync Quote

Transaction
Attribute:CC_Li
neItem_Data

Transaction
Line
Attributes:_doc
ument_number

_model_variable
_name

cC_ProductId_l

cC_CommerceIt
emId_l

BML: Refer to
Appendix F:
Understand the
SyncQuote BML

2. Place the Sync Quote action on the Commerce layout.

3. Set the quote level actions “cleanSave_t" and " _remove_transactionLine" to
define the following attributes based on their formula definitions:

• Quote Level Attributes:

– Total Contract Value

– Total Discount Per Month

– Total (List) Per Month

– Total (Net) Per Month

– Total Discount

– Total (List)

– Total (Net)

– Annual Contract Value

– Transaction Total

– Total Contract Discount

– Annual Contract Discount

– CC External Order Price

• Line Level Attributes

– Actual Amount

– Annual Value

– Contract Value

– Amount (List)

– Amount (Net)

– Price (Net)

Chapter 1
Set Up Oracle CPQ

1-24

– Quantity

4. Set the line level action “save_l" to define the following line level attributes based
on their formula definitions:

• Actual Amount

• Annual Value

• Contract Value

• Amount (List)

• Amount (Net)

• Price (Net)

• Quantity

Notes:

• The “Save” action is already setup to use formulas for a majority of these attributes
in the Base Ref Application.

• The Request for Quote and Sync Quote flows do not support the “Copy Line
Items” action. The action is not accessible for Commerce integrated Transactions.

(Optional) Create Commerce Validation Rule

You have the option of creating a Commerce validation rule that blocks users from
editing the quantity of child items.

1. Open the Admin Home page.

2. Under Commerce and Documents, click Process Definition. The Processes
page opens with Documents displaying by default in the Navigation drop-down
menu.

3. Click List next to the Oracle Quote to Order Commerce process. The Document
List page opens.

4. At the Transaction Line level, select Rules from the Navigation drop-down menu.

5. Click List.

6. From the Add menu, select Validation. The Validation: New Rule page opens.

7. In the Name field, enter a name for the validation rule.

8. Click in the Variable Name field to auto-populate the field.

9. For the Condition Type, select Advanced.

10. Click Define Function. The Select Attributes dialog opens.

11. Select the attributes shown in the following tables.

System Variable Name Type Description

_system_current_document_
number

String Current Document Number

Variable Name for
(Transaction Line)

Type Description

_model_variable_name String Model Variable Name

Chapter 1
Set Up Oracle CPQ

1-25

Variable Name for
(Transaction Line)

Type Description

_price_quantity Integer Quantity

12. Click Next.

13. Enter the following BML:

oldvalue = getoldvalue("_price_quantity",
atoi(_system_current_document_number));

if((_model_variable_name == "") AND (_price_quantity <>
atoi(oldvalue))) {

return true;

}
return false;

14. Click Save and Close.

15. On the Validation: New Rule page, select Advanced as the Action Type.

16. Click Define Function. The Select Attributes dialog opens.

17. Select the Variable Name for (Transaction Line) tab.

18. Select the "_price_quantity" attribute.

19. Click Next.

20. Enter the following BML.

attributeDict = dict("dict<string>");

 // inner dictionary for attr2
 attr2ActionDict = dict("string");
 // assembling the constraint action
 put(attr2ActionDict, BM_CM_RULES_MESSAGE, "Please re-configure
the item to change quantity of sub-item");

 // put the inner dictionary into the outer dictionary
 put(attributeDict, "_price_quantity", attr2ActionDict);

// return the outer dictionary
return attributeDict;

21. Click Save and Close

22. In the Components list add the Quantity (_price_quantity) attribute.

23. Click Save to save the Validation Rule.

Set Up Steps

You must use Oracle CPQ to create a Synced step as well as step transitions.

1. Create a new “Synced” step.

Chapter 1
Set Up Oracle CPQ

1-26

2. Create a step transition for the "Sync Quote" action to move from the "In Progress"
step to the "Synced" step.

3. Create a step transition for the “Save" action to move from the "Synced" step to
the "In Progress" step.

4. Create a step transition for the "Customer Rejection" action to move from the
"Synced" step to the "Rejected by Customer" step.

5. Create a step transition for the “Create Order” action to move from the “Synced”
step to the “Ordered” step.

6. Create a step transition for the “Cancel Transaction” action to move from the
“Synced” step to the “Canceled” step.

7. Hide the "Sync Quote" action from the following steps:

• Fulfilled

• Canceled

• Rejected By Customer

8. Hide all Modify actions from the “Synced” step EXCEPT the following:

• Save

• Customer Rejection

• Create Order

• Cancel Transaction

Notes:

• Make sure all of the attributes used in the Request for Quote flow have read/write
access at the Start step.

• For instructions on how to create Commerce attributes, actions, and step
transitions, refer to the Oracle CPQ Administration Help.

Modify Process Manager View

You must complete the following procedure to modify a process manager view.

1. Add a data column named "CC Order Id".

2. Map the data column to the "CC Order Id" quote level attribute.

3. Add a Process Manager column using the "CC Order Id" data column.

Understand Oracle CPQ configuration set up
Specific set up procedures must be completed for the Commerce/Oracle CPQ
Configuration integration to run successfully.

This topic contains the configuration set up procedures that you must complete in
Oracle CPQ.

Configure Client-Side Integration, Add To Cart Button, and JSON Payload
Response

You must configure a client-side integration to add the Add to Cart button on a
Commerce site. The client-side integration enables the sharing of data between Oracle
CPQ and Commerce.

Chapter 1
Set Up Oracle CPQ

1-27

Note: Ensure the appropriate Commerce Product Families and Product Lines are
created in Oracle CPQ prior to starting the Client-Side Integration. Refer to the
Configuration > Product Families articles within the Oracle CPQ Online Help for
instructions.

To configure a client-side integration:

1. Open the Admin Home page.

2. Under Products, click Catalog Definition. The Supported Products page
opens. Product Families displays by default in the Navigation drop-down menu.

3. Click List. The Supported Product Families page opens.

4. Click Integrations from the Navigation drop-down menu for the product of the
Commerce product family.

5. Click List. The Edit Integration page opens.

6. Use the Edit Integration page to create a “Client-side” integration using the
following settings:

• Name: Add To Cart

• Integration Type: Client-side

• Hide in Reconfiguration: No

• Action: Define Advanced Function

7. Click Define Function for the Action and use the sample BML from one of the
following to add the Add to Cart button to the Commerce site:

• Appendix D: Understand the Add to Cart BML – Customized Integrations
(19C and Earlier) - this sample BML is for legacy integration sites who
have previously customized their Add to Cart BML. This sample includes
site-specific reference file locations.

• Appendix E: Understand the Add to Cart BML – Customized Integrations and
Multi-Site Set Up (19D and Later) – this sample BML is for new integrations
and in cases where the setup needs to be duplicated on multiple sites. This
sample does not reference site-specific file locations.

8. Select Simple for the End-Point URL.
Enter the URL of the Commerce site to integrate with Oracle CPQ. The
value entered should include the basic URL or Commerce’s storefront and
administration pages. You can add multiple Commerce sites for a single
integration by listing each site delimited by the pipe delimiter (|) character.

For example:

http://cc-store.oracle.com|http://cc-admin.oracle.com|http://
second-store.oracle.com|http://second-admin.oracle.com

9. Click Apply.

Note: Ensure that all partner site lists of allowed URLs are properly addressed within
Oracle CPQ. These include domains that are allowed to load the Oracle CPQ in
an iFrame and domains that Oracle CPQ is allowed to connect to in the Integration
Center. You may need to file a Service Request (SR) on My Oracle Support to include
these domains on the site list of allowed URLs.

Chapter 1
Set Up Oracle CPQ

1-28

Configure Oracle CPQ Models Corresponding to Products in Commerce

You must create Oracle CPQ models corresponding to SKUs in Commerce.

To configure models corresponding to products in Commerce:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition. The Supported Products page
opens with Product Families displaying by default in the Navigation drop-down
menu.

3. Click List. The Supported Product Families page opens with Product Lines
displaying by default in the Navigation drop-down menu.

4. Click List. The Product Line Administration List page opens with Models
displaying by default in the Navigation drop-down menu.

5. Click List. The Model Administration List page opens.

6. Click Add.

7. Use the Model Administration page to create a new model with both the variable
name and label matching the configurable root SKU in Commerce.

8. Create a pricing rule on the model with a price matching the root SKU in
Commerce.

Configure Child Line Items Corresponding to SKUs in Commerce

For information about setting up BOM Mapping items for a model, refer to the Oracle
CPQ Administrator Online Help.

Note: Quantity for the root BOM should use a configurable integer attribute in
BOM Attribute Mapping. Otherwise, incorrect quantities may be populated during
reconfigure.

Create Configurable Attributes

Configurable attributes define the characteristics of product families. Oracle CPQ
uses configurable attributes in search flows, Configuration flows, and every type of
Configuration rule.

To create configurable attributes:

1. While you can create the following configurable attributes at any level, Oracle
recommends creating the attributes at the Product Family level.

Label Variable Name Attribute Type Additional Settings

Currency Code currencyCode Text Field none

CC Site ID cC_SiteId_t Text Field none

Quantity quantity Integer Required, Default =
1, Positive Number
Validation

2. Create a recommendation rule configured as follows:

Chapter 1
Set Up Oracle CPQ

1-29

Condition Apply Rule
To

Action Type Action
Attribute

Values to
Set

Set Type

Always True Configuration Standard currencyCod
e

Edit Function:

return
_BM_USER_
CURRENCY;

Forced Set

3. Create any additional attributes that suit your organization’s needs and place them
on the Configuration flow layout.

• You must place “currencyCode”, “cC_SiteId_t”, and “quantity” on the layout,
but they do not need to display them.

• For information about configurable attributes and the steps to create them,
refer to the Oracle CPQ Administration Help.

4. Create a hiding rule configured as follows:

Condition Action Attribute

Advanced:

if (_transaction_id == "-1")
{ return true;}
 return false;

quantity

Set Up Subscription Ordering in Oracle CPQ
The subscription ordering feature requires some set up when integrating Oracle CPQ
and Commerce.

The following features require specific attention when integrating Oracle CPQ and
Commerce and running the subscription ordering feature.

For information about setting up Subscription or asset based orders within Oracle
CPQ, refer to the ABO implementation guide and the Oracle CPQ Administrator Online
Help.

Create an authentication certificate integration type
You need to create an Authentication Certificate integration type in the Integration
Center to support access token-based authentication in the Commerce/Oracle CPQ
integration.

Oracle CPQ provides an Authentication Certificate integration type in the Integration
Center to support access token-based authentication. This integration type allows
Oracle CX Commerce self-service users to securely access Oracle CPQ to modify or
reconfigure a Subscription Ordering asset-based Configuration without an Oracle CPQ
user session.

When administrators create a new integration of type Authentication Certificate, they
provide a name and variable name for the authentication certificate and upload

Chapter 1
Set Up Subscription Ordering in Oracle CPQ

1-30

the Commerce authentication certificate. A temporary session is created for the
Commerce self-service user, allowing the user to access theModel Configuration
page via an iFrame within Commerce to modify or reconfigure a specific asset.

To create an Authentication Certificate integration type, perform the following steps:

1. Open the Admin Home page.

2. Select Integration Center under Integration Platform. The Integration Center
opens.

3. Click Create Integration.

4. From the Type drop-down, select Authentication Certificate.

5. In the Name field, enter a name that describes the authentication certificate. For
example: Commerce

6. The Variable Name field auto-populates upon clicking in or tabbing to the field.

7. (Optional) In the Description field, enter a description of the authentication
certificate.

8. Click Browse next to the Authentication Certificate label.

9. Select the Oracle CX Commerce authentication certificate and click Open.

10. ClickSave. The Authentication Certificate integration appears in the left pane of
the Integration Center.

Notes:

• The Save button is disabled upon successfully saving the integration. If the
changes are made after the save is performed, the button is enabled.

• Administrators can modify the name of the integration but not the variable name.
They can also replace the authentication certificate but cannot remove it.

• A single Oracle CPQ site can have any number of Authentication Certificate
integrations. There is no limit.

Work with in-flight cancellations
Custom asset fields must be created in Oracle CPQ to support in-flight cancellations of
orders.

Chapter 1
Set Up Subscription Ordering in Oracle CPQ

1-31

In order to support in-flight cancellations of orders, the following custom asset fields
must be created in Oracle CPQ

Note: Refer to the Custom Asset Attributes article within the Oracle CPQ Online Help
for instructions on adding a custom asset.

Label Variable Name Data Type

Order Id _asset_custom_orderId String

Line Id _asset_custom_lineId String

Source Site _asset_custom_source String

Upgrade an asset
With Asset Based Ordering, the ability to upgrade an existing asset is supported when
you complete some preliminary set up work.

With Asset Based Ordering, the ability to upgrade an existing asset is supported.

Oracle CPQ maintains a custom upgrade options table for Commerce to query in order
to know which upgrades are available for a given asset. The sections that follow in this
topic provide information on how to set up the required tables and how to complete
some basic Oracle CPQ configuration steps to support asset based ordering.

Oracle CPQ Data Table Set Up

Create a data table named "INT_UPGRADE_OPTIONS" with the following schema:

Column Name Data Type

currentOffer String

currentModel String

upgradeName String

upgradeProductId String

The data table column mapping information for this data table is as follows:

• currentModel – Maps to the variable name of the root config model in Oracle
CPQ which the upgrade offer applies to.

• currentOffer – Maps to a configurable attribute on the root config model in Oracle
CPQ. This needs to be stored as an attribute mapping onto the root asset as well.
This value is sent from Oracle Commerce while retrieving the upgrade options.

• upgradeName – Maps to the _config_upgrade_name that is passed from Oracle
CX Commerce to Oracle CPQ, which drives recommendation rules on the
upgrade. Not used by Commerce for any other purpose.

• upgradeProductID – Maps to the Product Id of the upgrade offer in Commerce.
Used to show upgrade details (for example, product display name, description,
images, etc.) to the shopper.

Note: We recommend you index the currentModel and/or currentOffer columns.

The INT_UPGRADE_OPTIONS data table is queried by Oracle CX Commerce to help
identify what upgrades are available for a given asset and present those upgrade
options to the shopper.

Chapter 1
Set Up Subscription Ordering in Oracle CPQ

1-32

For example:

currentOffer currentModel upgradeName upgradeProductId

4ForUDeal nPlay 4ForUDealPlus prod102

Oracle CPQ Upgrade Asset Configuration Set Up

1. Create a configurable text attribute named "currentOffer". This attribute should
have either a default value set or have its value recommended based on
specific criteria on the configuration; however, the value should not be editable
directly by the user. The value of the "currentOffer" attribute is used in the
INT_UPGRADE_OPTIONS data table that Commerce queries.

2. Use (Bulk) Recommendation Rules that run when the value of the
"_config_upgrade_name" attribute matches the value of the "upgradeName"
column in the "INT_UPGRADE_OPTIONS" data table. Part of the rule should update
the "currentOffer" attribute from its previous value to the "upgradeName" as
well. Unlike normal configurable attributes, the value of "_config_upgrade_name"
persists within all models of a system, so inter-model rules are not required to
reference "_config_upgrade_name" and use them in Recommendation Rules on
child models. The value of "_config_upgrade_name" also does not persist on the
configurations, like other attributes do, so whether "_config_upgrade_name" has a
value or not distinguishes asset upgrades from a typical asset modify.

Note: For more information on understanding and using the asset Upgrade feature in
Commerce, refer to Use asset-based ordering.

You can also customize configurations of complex assets in Commerce without being
redirected to an Oracle CPQ hosted iFrame which may have a separate and distinct
user interface look and feel that creates a disjointed user experience. This capability is
known as the Direct API Configuration feature and can be used as another option for
the Modify and Upgrade actions. For more information on the Direct API configuration
feature, refer to Customize configurations in Commerce using the CPQ Configuration
API.

Enable Integrations in Commerce
Some configuration procedures need to be completed in order to enable the features
of this integration.

You must complete the procedures in this section to enable the Oracle CPQ
Configurator integration, the Oracle CPQ Request For Quote integration, and the
Asset Based Ordering (ABO) integration in Commerce.

For additional information about these integrations, refer to Appendix A: Configurator
Flow and Appendix B: Request for Quote Flow.

Enable Oracle CPQ configuration integration
Some feature configuration procedures must be completed to enable the Oracle CPQ
Configuration integration.

To enable the Oracle CPQ Configuration integration, do the following:

1. Log in to Commerce.

Chapter 1
Enable Integrations in Commerce

1-33

2. Navigate to the Settings icons from the sidebar menu.

3. Select Oracle Integrations from the sidebar menu.

4. Select CPQ Configuration from the drop-down menu.

5. Select the Enable Integration check box.

6. Click Preview Confirmation. You need to do this to display the URL fields.

7. Enter the Configuration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

8. Enter the Reconfiguration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

9. Enter the Modification URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.

10. Click Product Configuration. You need to do this to display the URL fields.

11. Enter the Configuration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.

12. Enter the Reconfiguration URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

13. Enter the Modification URL using the following
structure: https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp.
Note: Enter the Configuration URL and the Reconfiguration URL for both the
Production and Preview environments.

14. Click Save. If you are using a multisite environment you must follow these
instructions for each site that uses the Oracle CPQ Configuration integration.

Identify configurable products in the product catalog
It is important to understand which products are configurable in the product catalog to
use this integration..

Before a Commerce self-service user can use the Oracle CPQ Configurator to
configure complex products for purchase in Commerce, you must identify the products
as configurable in the product catalog.

Before doing so, it is important to have a synchronized product catalog to ensure that
products in the Commerce catalog map to corresponding items in the Oracle CPQ
catalog.

To identify a product as configurable:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select the product you wish to identify as configurable from the Catalog Settings
icon in the sidebar menu.

Chapter 1
Enable Integrations in Commerce

1-34

4. Click on the SKUs tab of the product detail pop-up frame.

5. Click on the SKU link of the product you wish to identify as configurable. You need
to do this in order to select the SKU and see the SKU details.

6. Check the Externally Configurable SKU checkbox. This displays three further
fields you must complete.

7. Enter the Model variable name. This should match the Model variable name of a
configurable product in the Oracle CPQ catalog.

8. Enter the Product Line variable name. This should match the Product Line
variable name of a configurable product in the Oracle CPQ catalog.

9. Enter the Product Family variable name. This should match the Product Family
variable name of a configurable product in the Oracle CPQ catalog.

10. Click Save. This returns you to the SKU frame where the SKU you updated should
be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the
SKU import program. From the Catalog tab in Commerce, click Manage Catalog and
select Import. In the Import dialog, click Browse and locate the CSV file to import.
Click Upload File, click Validate, and then click Import.

Add Customize Button to the Product Details widget
A Customize button must be added to the Product details widget to allow product
customization.

You must add a Customize button to the Product Details widget so that the button
is visible to Commerce self-service users from the Product Details page for a
customizable product.

To add a Customize button to the Product Details widget:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Design from the menu.

4. Select Product Layout from the layout list.

5. Delete the Product Details widget from the layout.

6. Place a new product details widget on the layout.

7. Click the Settings icon for the new Product Details widget.

8. From the Element Library, place a Customize button on the new Product
Details widget.

9. Publish the changes.

Enable Oracle CPQ quoting integration
Some feature configuration procedures must be completed to enable the Oracle CPQ
Quoting integration.

To enable the Oracle CPQ quoting integration, do the following

1. Log in to Commerce.

Chapter 1
Enable Integrations in Commerce

1-35

2. Click on the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Quoting from the drop-down menu.

6. Select the Enable Integration check box.

If you are using a multi-site environment you must follow these instructions for each
site that uses the Oracle CPQ Quoting integration.

Add Quote Button to Checkout and Order Details pages
You must add a Quote button to the Checkout layout and the Quote Details widget to
make quoting capability available.

To make the Oracle CPQ quoting capability available to Commerce self-service users,
you must add the Request Quote widget to the Checkout layout and the Quote Details
widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote
button to the Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes
associated with the order to the Order Detail layout. The widget also adds a Reject
Quote, Request Re-Quote, and Accept Quote buttons to the to the Order Detail
layout.

The Quote Details and Request Quote widgets do not display on the layouts by
default. The administrator must first make the widgets available and then place them
on the Checkout and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

1. Log in to Commerce.

2. Click the Menu icon.

3. Select Design from the menu.

4. Select the Components tab on the Design page.

5. Click Show Hidden.

6. Click the Show icon for the Quote Details Widget and the Request Quote
Widget.

7. Within the Design page, select the Layouts tab.

8. From the layout list, select Checkout Layout.

9. Drag and drop the Request Quote widget from the Components menu to the
desired location on the Checkout layout.

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.

Chapter 1
Enable Integrations in Commerce

1-36

Enable Asset Based Ordering
The asset based ordering feature of the integration needs to be enabled before it can
be used.

To enable Asset Based Ordering, you must make sure that you have set up the
right integration webhooks and/or SSEs mentioned in the Configure the Commerce
Webhooks and Configure the Commerce Server Side Extensions sections of this
document.

Enable Subscription Cloud integration
Information about the integration of Oracle CX Commerce and Subscription Cloud
using CPQ which supports Self-Service subscriptions for configurable products.

Integration includes using CPQ, OSS and OCC Support complex OCC-CPQ-OSS
subscription flows such as:

• Create Subscription

• View A Subscription

• Modify/Upgrade/Downgrade a Subscription

• Cancel/Termination a Subscription

• Renew Subscription - this feature is dependent on subscription management
system to provide the renewal details of the subscription products

For the above integration with Subscription Cloud, a Store user must be available in
Customer Data Management System (CDM). The reference which is PrimaryPartyId
would be shared with Subscription System in all functional conversations as
mentioned above. The primary party id is stored as a dynamic property in user profile.

Only the configured product, which has external recurring charge details is considered
as a subscription line items in OIC layer and the rest of the items in the order are
filtered out.

Appendix A: Understand the Configurator Flow
A Configurator process flow occurs between Oracle CPQ and Commerce during the
integration.

The following presents a diagram of the integration Configurator Flow:

Chapter 1
Appendix A: Understand the Configurator Flow

1-37

Appendix B: Understand the Request for Quote Flow
A Request for Quote process flow occurs between Oracle CPQ and Commerce during
the integration.

The following presents a diagram of the integration Request for Quote flow:

Appendix C: Understand the OIC Integration Mappings
You must be able to understand the variable mappings for each integration as a
requirement to complete the Sync Quote action in Oracle CPQ.

Importing and setting up the OIC package is a prerequisite to completing the Sync
Quote action in Oracle CPQ.

After all Oracle CPQ setup is completed, regenerate the OIC integration flows
to ensure they accurately reflect the current state of the Oracle Quote to Order
Commerce process.

Note: Mappings in bold indicate complex, conditional mappings. Mappings in italics
indicate the mappings are a static text value instead of a source attribute.

Integration Flow Target Variable
Name

Mapping Comments

OCCS-CPQ Create Quote >
New_Transaction

* None

 cC_RequesterNote_t requesterNote None

Chapter 1
Appendix B: Understand the Request for Quote Flow

1-38

Integration Flow Target Variable
Name

Mapping Comments

 cC_OrgId_t organizationId None

 cC_OrderId_t id None

 cC_SiteId_t siteId None

 cC_RequesterNote_t requesterNote None

 currencyCode currencyCode None

 _customer_t_address shippingGroups
>address1

None

 _customer_t_state shippingGroups >
state

None

 _customer_t_address
_2

shippingGroups >
address2

None

 _customer_t_company
_name

shippingGroups >
companyName

None

 _customer_t_country shippingGroups >
country

None

 _customer_t_city shippingGroups >
city

None

 _customer_t_zip shippingGroups >
postalCode

None

 _customer_t_phone shippingGroups >
phoneNumber

None

 _customer_t_email email None

 _customer_t_last_na
me

lastName None

 _customer_t_first_na
me

firstName None

 items commerceItems None

 _price_book_var_nam
e

_default_price_book None

 _configuration_id configuratorId None

 cC_CommerceItemId_
l

id None

 _part_number catalogRefId None

 cC_CatalogRefId_l catalogRefId None

 _price_quantity quantity None

 cC_ProductId_l productId None

 cC_NetPrice_l > value priceInfo > amount >
quantity

None

 cC_NetPrice_l >
currency

priceInfo >
currencyCode

None

 _modify_action cleanSave_t None

OCCS-CPQ Create Quote > Update_Quote None

 id id None

 externalId bs_id None

OCCS-CPQ Create Quote > Re-
Request_Quote

 None

 cC_RequesterNote_t requesterNote None

 id externalId None

Chapter 1
Appendix C: Understand the OIC Integration Mappings

1-39

Integration Flow Target Variable
Name

Mapping Comments

OCCS-CPQ Sync
Quote

 None

 id cC_OrderId_t None

 providerNote cC_ProviderNote_t None

 agentId cC_AgentId_t None

 externalId id None

 expirationDate cC_ExpirationDate_t None

 externalPrice totalOneTimeNetAmo
unt_t

None

line-item None

 productId cC_ProductId_l None

 catalogRefId cC_CatalogRefId_l None

 configuratorId _configuration_id None

 externalPrice netPrice_l None

 externalPriceQuantity -1 None

 id cC_CommerceItemId_
l

None

 actionCode oRCL_ABO_ActionCo
de_l

None

 quantity requestedQuantity_l None

Chapter 1
Appendix C: Understand the OIC Integration Mappings

1-40

Integration Flow Target Variable
Name

Mapping Comments

 externalData configattrinfo XSL manipulations to
feed config attributes
as an array of maps.

Format:

<externalData>
<name></name>
<values>
<name></name>
<variableName></
variableName>
<label>Id</
label>
<displayValue></
displayValue>
<value></value>
</values>
</externalData>
< externalData>
<name></name>
<values>
<name></name>
<variableName></
variableName>
<label></label>
<displayValue></
displayValue>
<value></value>
</values>
</ externalData>

OCCS-CPQ Update Quote > Accept Quote None

 id externalId None

 cC_AgentId_t agentId None

OCCS-CPQ Update Quote > Reject Quote None

 id externalId None

 cC_AgentId_t agentId None

 cC_RejectionDate_t date None

 rejectExplanation_t note None

OCCS-CPQ Update Quote > Cancel Quote None

 id externalId None

 cC_AgentId_t agentId None

 cC_RejectionDate_t date None

 rejectExplanation_t note None

OCCS-CPQ Get Configurations None

 locale locale None

 currency currencyCode None

 configurationId configuratorId None

Chapter 1
Appendix C: Understand the OIC Integration Mappings

1-41

Integration Flow Target Variable
Name

Mapping Comments

 price true None

 spare true None

 bomMapping true None

OCCS-CPQ Get Assets
 limit limit None

 offset offset None

 q for-
each(id), for-
each(id), for-
each(recordId),
"{$and:[{$or:[",
"{id:{$eq:
"", recordId,
""}}", ""}},",
"]}", ",",
"{$and:[", "{$or:
[", "{customer:
{$eq:"", id,
""}}", ""}},",
"]}", ",",
"{$or:[",
"{serviceAccount:
{$eq:"", id,
""}}", ""}},",
"]}", "]}"

None

 expand descendantAssets None

OCCS-CPQ Asset Actions (for all flows)
 id recordId None

 sourceIdentifier sourceIdentifier None

 transactionDate transactionDate None

 transactionId transactionId None

OCCS-CPQ Asset Actions (CpqModifyAsset flow)
 productLine product_line None

 configContextKey configContextKey None

 configuratorUrl configuratorURL None

 bomKey bomkey None

 segment segment None

 model model None

OCCS-CPQ Asset Actions (CpqRenewAsset, CpqTerminateAsset, CpqSuspendAsset,
CpqResumeAsset flows)
 configId lineId None

 serviceAccountId serviceAccount None

 deactivationDate endDate None

 amount amount None

 quantity quantity None

 parentServiceId parentId None

 externalRecurringChar
ge

field5 Corresponds to part
custom field 5 in
Oracle CPQ

Chapter 1
Appendix C: Understand the OIC Integration Mappings

1-42

Integration Flow Target Variable
Name

Mapping Comments

 externalData attributes None

 billingAccountId billingAccount None

 externalRecurringChar
geFrequency

field4 Corresponds to part
custom field 4 in
Oracle CPQ

 childItems for-each(children), for-
each(partNumber)

None

 catalogRefId partNumber None

 configuratorId lineId None

 externalRecurringDura
tion

field6 Corresponds to part
custom field 6 in
Oracle CPQ

 externalPrice _price_unit_price_eac
h

None

 assetId id None

 actionCode oRCL_ABO_ActionCo
de_l

None

 serviceId id None

 activationDate startDate None

Appendix D: Understand the Add to Cart BML – Customized
Integrations (19C and Earlier)

Users with legacy integration sites (19C and earlier) who have previously customized
their Add to Cart BML need to modify their BML to include site-specific reference file
locations.

The following provides the Add to Cart BML for Customized Integrations 19C and
Earlier:

// Rec Item Properties
part = String[1];
quantity = String[1];
price = String[1];
selected = String[1];
sparepaths = String[1];
sparepaths[0] = "/configuration/configureResponse/spare/rule/item/part";
sparepaths[1] = "/configuration/configureResponse/spare/rule/item/
quantity";
sparepaths[2] = "/configuration/configureResponse/spare/rule/item/
price";
sparepaths[3] = "/configuration/configureResponse/spare/rule/item/
selected";

// BOM Item Properties
bomItem = String[1];
bomItem[0] = "/configuration/configureResponse/bomItem";

Chapter 1
Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)

1-43

// Model/Price Properties
models = string[1];
configIdSearch = string[1];
currpath = String[1];
totalPrices = string[1];
bomTotals = string[1];
models[0] = "/configuration/configureResponse/item/model";
configIdSearch[0] = "/configuration/configureResponse/item/
@configurationId";
currpath[0] = "/configuration/configureResponse/attributes/
attribute[@_variableName='currencyCode']/value";
totalPrices[0] = "/configuration/configureResponse/price/totalPrice";
bomTotals[0] = "/configuration/configureResponse/price/bomPrice";
priceTotal = 0.0;
baseModelPrice = 0.0;
recurringSubtotal = 0.0;

// Extract data from configXML
outputModel = readxmlsingle(configXML, models);
outputConfigIds = readxmlsingle(configXML, configIdSearch);
currXML = readxmlsingle(configXML, currpath);
currency = get(currXML, currpath[0]);
outputPrices = readxmlsingle(configXML, totalPrices);
bomPrices = readxmlsingle(configXML, bomTotals);
output1 = readxmlmultiple(configXML, sparepaths);
bomItemXMLDict = readxmlsingle(configXML, bomItem);
bomItemString = get(bomItemXMLDict, "/configuration/configureResponse/
bomItem");

payloadTemplate = urldatabyget("https://cpq-046.us.example.com/bmfsweb/
slc10xgj/image/CommerceCloud/AddToCartPayload-Cloud.txt", "", "");
model1 = "";
totalPrice1 = "";

// Get Model data
for model in models {
 model1 = get(outputModel, model);
}

// Get Price data
for totalPrice in totalPrices {
 totalPrice1 = get(outputPrices, totalPrice);
 totalPrice0 = replace(totalPrice1, ",", "");
 if (isnumber(substring(totalPrice0, 1))) {
 totalPrice2 = getcurrencyvalue(totalPrice1, currency);
 priceTotal = priceTotal + totalPrice2;
 }
}
baseModelPrice = priceTotal;

// Add BOM total price
if (containskey(bomPrices, bomTotals[0])) {
 for bomPrice in bomTotals {
 bomTotal = get(bomPrices, bomPrice);
 bomTotalReplace = replace(bomTotal, ",", "");

Chapter 1
Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)

1-44

 if (isnumber(substring(bomTotalReplace, 1))) {
 bomTotalPrice = getcurrencyvalue(bomTotal, currency);
 priceTotal = bomTotalPrice + priceTotal;
 }
 }
}

// Get ConfigID
configId = "";
for id in configIdSearch {
 configId = get(outputConfigIds, id);
}

// Get Recommended Items
for sparepath in sparepaths {
 if (find(sparepath, "part") < > -1) {
 part = get(output1, sparepath);
 }
 elif(find(sparepath, "quantity") < > -1) {
 quantity = get(output1, sparepath);
 }
 elif(find(sparepath, "price") < > -1) {
 price = get(output1, sparepath);
 }
 elif(find(sparepath, "selected") < > -1) {
 selected = get(output1, sparepath);
 }
}

// Format Rec Items payload
recItemList = "";
if (isnull(part)) {
 print("No Recommended Items");
} else {
 recItems = sizeofarray(part);
 recItemsInt = integer[recItems];

 i = 0;
 for recItem in recItemsInt {
 if (selected[i] == "true") {
 //recurring price from parts BMQL
 part_num = part[i];
 partCustomFields = bmql("SELECT part_number, custom_field5,
custom_field4, custom_field6, custom_field8 FROM _parts WHERE
part_number = $part_num");
 recItemPayloadTemplate
= urldatabyget("https://cpq-046.us.example.com/bmfsweb/slc10xgj/image/
CommerceCloud/Recommended_Items_Payload-Cloud.txt", "", "");
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{quantity}}", quantity[i]);
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{part}}", part[i]);

 for each in partCustomFields {
 if (get(each, "custom_field8") == "Recurring") {

Chapter 1
Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)

1-45

 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{pricePeriod}}", get(each, "custom_field4"));
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{recurringPrice}}", get(each, "custom_field5"));
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{duration}}", get(each, "custom_field6"));
 //recurringSubtotal = recurringSubtotal + get(each,
"custom_field5");
 } else {
 childPayloadJson = json(recItemPayloadTemplate);
 jsonremove(childPayloadJson, "recurringCharge");
 recItemPayloadTemplate = jsontostr(childPayloadJson);
 }
 }

 //remove region specific formatting for price
 sPrice0 = substring(price[i], 1);
 sPrice0 = replace(sPrice0, ",", "");

 if (isnumber(sPrice0)) {
 priceTotal = priceTotal + atof(sPrice0);
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{price}}", sPrice0);
 } else {
 recItemPayloadTemplate = replace(recItemPayloadTemplate,
"{{price}}", "0");
 }
 if (recItemList == "") {
 recItemList = recItemPayloadTemplate;
 } else {
 recItemList = recItemList + "," + recItemPayloadTemplate;
 }
 }
 i = i + 1;
 }
}

// Get the BOM Items
if (isnull(bomItemString)) {
 print "No BOM Items";
 bomItemString = "";
 payloadTemplate = replace(payloadTemplate, "{{BomItems}}",
bomItemString);
} else {
 // Get part numbers for each BOM item, convert to string array for
bmql
 bomJson = json(bomItemString);

 // Remove extraneous BOM fields (may have to revert if CC was
expecting to use them)
 jsonpathremove(bomJson, "$..variableName");
 jsonpathremove(bomJson, "$..definition");
 jsonpathremove(bomJson, "$..category");

 // Replacing all 0 prices with actual number 0

Chapter 1
Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)

1-46

 bomPriceArray = jsonpathgetmultiple(bomJson,
"$.._price_unit_price_each");
 replace_lookup = boolean[];
 bomPricesString = jsonarraytostr(bomPriceArray);
 bomPricesString = replace(replace(replace(bomPricesString, "\"", ""),
"[", ""), "]", "");
 bomPricesStringArray = split(bomPricesString, ",");

 i = 0;
 for each in bomPricesStringArray {
 append(replace_lookup, isnumber(each));
 i = i + 1;
 }

 i = 0;
 for each in replace_lookup {
 if (i == 0 and each == false) {
 jsonpathset(bomJson, "$.fields._price_unit_price_each", "0");
 }
 elif(each == false) {
 str = "$.children[" + string(i - 1) +
"].fields._price_unit_price_each";
 jsonpathset(bomJson, str, "0");
 }

 i = i + 1;
 }

 bomItemString = jsontostr(bomJson);
 bomPartsArray = jsonpathgetmultiple(bomJson, "$..partNumber");
 bomPartsString = jsonarraytostr(bomPartsArray);
 bomPartsString = replace(replace(replace(bomPartsString, "\"", ""),
"[", ""), "]", "");
 bomPartsStringArray = split(bomPartsString, ",");
 bomParts = bmql("SELECT part_number, custom_field5, custom_field4,
custom_field6, custom_field8 FROM _parts WHERE part_number IN
$bomPartsStringArray");

 // Get path for each part, add recurringCharge to them all
 for each in bomParts {
 partField = "\"partNumber\":\"" + get(each, "part_number") + "\",";
 recurringTemplate = "\"recurringCharge\":
{ \"amount\":,\"frequency\":,\"duration\":},";

 if (get(each, "custom_field8") == "Recurring") {
 recurringTemplate = replace(recurringTemplate, "frequency\":",
"frequency\":\"" + get(each, "custom_field4") + "\"");
 recurringTemplate = replace(recurringTemplate, "amount\":",
"amount\":\"" + get(each, "custom_field5") + "\"");
 recurringTemplate = replace(recurringTemplate, "duration\":",
"duration\":\"" + get(each, "custom_field6") + "\"");
 } else {
 recurringTemplate = "";
 }
 bomItemString = replace(bomItemString, partField, partField +

Chapter 1
Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)

1-47

recurringTemplate);
 }

 // Unflatten
 bomItemString = replace(bomItemString, "\"partNumber\":",
"\"catalogRefId\":");
 bomItemString = replace(bomItemString, "On Request", "0"); // This
may only fix English users
 bomJson = convertbomtohier(json(bomItemString));
 payloadTemplate = replace(payloadTemplate, "{{BomItems}}",
jsontostr(bomJson));
}

// Format main template with subcomponents and properties
payloadTemplate = replace(payloadTemplate, "{{commerceItemId}}", "");
payloadTemplate = replace(payloadTemplate, "{{ConfigId}}", configId);
payloadTemplate = replace(payloadTemplate, "{{model}}", model1);
payloadTemplate = replace(payloadTemplate, "{{totalPrice}}",
string(priceTotal));
payloadTemplate = replace(payloadTemplate, "{{basePrice}}",
string(baseModelPrice));
payloadTemplate = replace(payloadTemplate, "{{currency}}", currency);
payloadTemplate = replace(payloadTemplate, "{{ChildItems}}",
recItemList);
return payloadTemplate;

Appendix E: Understand the Add to Cart BML – Customized
Integrations and Multi-Site Set Up (19D and Later)

Users with customized integrations and multi-site set ups (19D and later) who have
previously customized their Add to Cart BML need to modify and update their BML.

The following provides the Add to Cart BML for Customized Integrations and Multi-Site
Set Up 19D and later:

// Initialize variables
MODEL_PATH = "/configuration/configureResponse/item/model";
CONFIG_ID_PATH = "/configuration/configureResponse/item/
@configurationId";
CURRENCY_CODE_PATH = "/configuration/configureResponse/attributes/
attribute[@_variableName='currencyCode']/value";
TOTAL_PRICE_PATH = "/configuration/configureResponse/price/totalPrice";
SPARE_PART_PATH = "/configuration/configureResponse/spare/rule/item/
part";
SPARE_QUANTITY_PATH = "/configuration/configureResponse/spare/rule/item/
quantity";
SPARE_PRICE_PATH = "/configuration/configureResponse/spare/rule/item/
price";
SPARE_SELECTED_PATH = "/configuration/configureResponse/spare/rule/item/
selected";
BOM_ITEM_PATH = "/configuration/configureResponse/bomItem";
BOM_PRICE_PATH = "/configuration/configureResponse/price/bomPrice";

Chapter 1
Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)

1-48

CART_TEMPLATE_LOCATION = "$BASE_PATH$/CommerceCloud/AddToCartPayload-
Cloud.txt";
SPARE_TEMPLATE_LOCATION = "$BASE_PATH$/CommerceCloud/
Recommended_Items_Payload-Cloud.txt";

payload = "";
sparesList = "";
priceTotal = 0.0;
baseModelPrice = 0.0;
sparePart = String[1];
spareQuantity = String[1];
sparePrice = String[1];
spareSelected = String[1];
singleSpareDict = dict("string");
configDict = dict("string");

// Create array of XML paths:
pathArray = string[];
sparePathArray = string[];

// For Model/Price Properties
append(pathArray, MODEL_PATH);
append(pathArray, CONFIG_ID_PATH);
append(pathArray, CURRENCY_CODE_PATH);
append(pathArray, TOTAL_PRICE_PATH);

// For BOM Item Property
append(pathArray, BOM_ITEM_PATH);
append(pathArray, BOM_PRICE_PATH);

// For Rec Item Properties (needs its own array)
append(sparePathArray, SPARE_PART_PATH);
append(sparePathArray, SPARE_QUANTITY_PATH);
append(sparePathArray, SPARE_PRICE_PATH);
append(sparePathArray, SPARE_SELECTED_PATH);

// Extract data from configXML
pathDict = readxmlsingle(configXML, pathArray);
spareDict = readxmlmultiple(configXML, sparePathArray);

model = get(pathDict, MODEL_PATH);
configId = get(pathDict, CONFIG_ID_PATH);
currency = get(pathDict, CURRENCY_CODE_PATH);
totalPrice = get(pathDict, TOTAL_PRICE_PATH);
bomPrice = get(pathDict, BOM_PRICE_PATH);
bomItem = get(pathDict, BOM_ITEM_PATH);

// Convert totalPrice (which is a misleading name) to numeric value,
set as baseModelPrice
totalPrice = replace(totalPrice, ",", "");
if (isnumber(substring(totalPrice, 1))) {
 totalPriceNum = getcurrencyvalue(totalPrice, currency);
 priceTotal = priceTotal + totalPriceNum;
}
baseModelPrice = priceTotal;

Chapter 1
Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)

1-49

// Add BOM total price to priceTotal (which is the REAL total price),
with the same conversion as the base price
if (NOT(isnull(bomPrice))) {
 bomPrice = replace(bomPrice, ",", "");
 if (isnumber(substring(bomPrice, 1))) {
 bomPriceNum = getcurrencyvalue(bomPrice, currency);
 priceTotal = bomPriceNum + priceTotal;
 }
}

// Get Recommended Items
for sparepath in sparePathArray {
 if (find(sparepath, "part") <> -1) {
 sparePart = get(spareDict, sparepath);
 }
 elif(find(sparepath, "quantity") <> -1) {
 spareQuantity = get(spareDict, sparepath);
 }
 elif(find(sparepath, "price") <> -1) {
 sparePrice = get(spareDict, sparepath);
 }
 elif(find(sparepath, "selected") <> -1) {
 spareSelected = get(spareDict, sparepath);
 }
}

// Format Rec Items payload
if (isnull(sparePart)) {
 print "No Recommended Items";
} else {
 spareListSize = sizeofarray(sparePart);
 spareArray = integer[spareListSize];

 i = 0;
 for eachSpare in spareArray {
 if (spareSelected[i] == "true") {
 //Convert price, similar to Base and BOM prices above
 priceString = substring(sparePrice[i], 1);
 priceString = replace(priceString, ",", "");
 if (isnumber(priceString)) {
 sparePrice[i] = string(getcurrencyvalue(priceString,
currency));
 priceTotal = priceTotal + atof(sparePrice[i]);
 } else {
 sparePrice[i] = "0";
 }

 // Add basic part fields to dictionary from array dictionary
 put(singleSpareDict, "part", sparePart[i]);
 put(singleSpareDict, "quantity", spareQuantity[i]);
 put(singleSpareDict, "price", sparePrice[i]);

 // Generate template and set values from dictionary
 singleSparePayload = applytemplate(SPARE_TEMPLATE_LOCATION,

Chapter 1
Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)

1-50

singleSpareDict);

 // Get Recurring Charge fields
 part_num = sparePart[i];
 partCustomFieldsDict = bmql("SELECT part_number,
custom_field5, custom_field4, custom_field6, custom_field8 FROM _parts
WHERE part_number = $part_num");

 for each in partCustomFieldsDict {
 if (get(each, "custom_field8") == "Recurring") {
 singleSparePayload = replace(singleSparePayload,
"{{pricePeriod}}", get(each, "custom_field4"));
 singleSparePayload = replace(singleSparePayload,
"{{recurringPrice}}", get(each, "custom_field5"));
 singleSparePayload = replace(singleSparePayload,
"{{duration}}", get(each, "custom_field6"));
 } else {
 childPayloadJson = json(singleSparePayload);
 jsonremove(childPayloadJson, "recurringCharge");
 singleSparePayload = jsontostr(childPayloadJson);
 }
 }

 // Add Item to List
 if (sparesList == "") {
 sparesList = singleSparePayload;
 } else {
 sparesList = sparesList + "," + singleSparePayload;
 }
 }
 i = i + 1;
 }
}

// Get the BOM Items
if (isnull(bomItem)) {
 print "No BOM Items";
 bomItem = "";
} else {
 // Get part numbers for each BOM item, convert to string array for
bmql
 bomJson = json(bomItem);

 // Remove extraneous BOM fields (may have to revert if CC was
expecting to use them)
 jsonpathremove(bomJson, "$..variableName");
 jsonpathremove(bomJson, "$..definition");
 jsonpathremove(bomJson, "$..category");

 // Replacing all 0 prices with actual number 0
 bomPriceArray = jsonpathgetmultiple(bomJson,
"$.._price_unit_price_each");
 replace_lookup = boolean[];
 bomPricesString = jsonarraytostr(bomPriceArray);
 bomPricesString = replace(replace(replace(bomPricesString, "\"",

Chapter 1
Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)

1-51

""), "[", ""), "]", "");
 bomPricesStringArray = split(bomPricesString, ",");

 i = 0;
 for each in bomPricesStringArray {
 append(replace_lookup, isnumber(each));
 i = i + 1;
 }

 i = 0;
 for each in replace_lookup {
 if (i == 0 and each == false) {
 jsonpathset(bomJson, "$.fields._price_unit_price_each",
"0");
 }
 elif(each == false) {
 str = "$.children[" + string(i - 1) +
"].fields._price_unit_price_each";
 jsonpathset(bomJson, str, "0");
 }

 i = i + 1;
 }

 bomItem = jsontostr(bomJson);
 bomPartsArray = jsonpathgetmultiple(bomJson, "$..partNumber");
 bomPartsString = jsonarraytostr(bomPartsArray);
 bomPartsString = replace(replace(replace(bomPartsString, "\"", ""),
"[", ""), "]", "");
 bomPartsStringArray = split(bomPartsString, ",");
 bomParts = bmql("SELECT part_number, custom_field5, custom_field4,
custom_field6, custom_field8 FROM _parts WHERE part_number IN
$bomPartsStringArray");

 // Get path for each part, add recurringCharge to them all
 for each in bomParts {
 partField = "\"partNumber\":\"" + get(each, "part_number") +
"\",";
 recurringTemplate = "\"recurringCharge\":
{ \"amount\":,\"frequency\":,\"duration\":},";

 if (get(each, "custom_field8") == "Recurring") {
 recurringTemplate = replace(recurringTemplate,
"frequency\":", "frequency\":\"" + get(each, "custom_field4") + "\"");
 recurringTemplate = replace(recurringTemplate, "amount\":",
"amount\":\"" + get(each, "custom_field5") + "\"");
 recurringTemplate = replace(recurringTemplate,
"duration\":", "duration\":\"" + get(each, "custom_field6") + "\"");
 } else {
 recurringTemplate = "";
 }
 bomItem = replace(bomItem, partField, partField +
recurringTemplate);
 }

Chapter 1
Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)

1-52

 // Handle 0 prices in configuration (this may only fix English
users)
 bomItem = replace(bomItem, "\"partNumber\":", "\"catalogRefId\":");
 bomItem = replace(bomItem, "On Request", "0");

 // Unflatten
 bomJson = convertbomtohier(json(bomItem));
 bomItem = jsontostr(bomJson);
}

// Format main template with subcomponents and properties
put(configDict, "commerceItemId", "");
put(configDict, "model", model);
put(configDict, "ConfigId", configId);
put(configDict, "currency", currency);
put(configDict, "totalPrice", string(priceTotal));
put(configDict, "basePrice", string(baseModelPrice));
put(configDict, "ChildItems", sparesList);
put(configDict, "BomItems", bomItem);
payload = applytemplate(CART_TEMPLATE_LOCATION, configDict);
payload = replace(payload, """, "\""); // encoding bug on
applytemplate

return payload;

Appendix F: Understand the SyncQuote BML
You must modify the function BML to set the Sync Quote action to run Advanced
Modify for the integration.

The following provides the SyncQuote BML used in the integration:

str = "";

for each in transactionLine{
 if (each._model_variable_name <> ""){
 lineItem_array = split(cC_LineItem_Data_t, "|");
 for lineItem in lineItem_array {
 row = split(lineItem, "~");
 if(row[0] == each._document_number){
 str = str + each._document_number +
"~cC_CommerceItemId_l~" + row[1]+"|";
 str = str + each._document_number + "~cC_ProductId_l~"
+ row[2]+"|";
 }
 }
 }
}

return str;

Chapter 1
Appendix F: Understand the SyncQuote BML

1-53

2
Use Oracle CPQ Cloud Features

Use Oracle CPQ Cloud features in conjunction with Oracle CX Commerce.

Oracle CPQ allows you to create quote-to-cash processes, and guides users towards
product options and configurations. Integrating these features with Commerce allows
you to offer shoppers a method to successfully interact with your business, improving
their contact experience and increasing shopper satisfaction.

Introduction
Many important Oracle CPQ features are available via an integration solution between
Oracle CPQ andOracle CX Commerce.

This document is intended to provide the instructions on how to use Oracle CPQ
features with Oracle CX Commerce - via an integration supported by the two solutions.

Oracle CX Commerce is an eCommerce solution designed specifically to run in the
Oracle Cloud. The service provides you with a range of powerful tools to build a
flexible, feature-rich storefront for your shoppers.

Activities you can perform with Oracle CX Commerce include the following:

• Customize the design and layout of your storefront pages and preview your
changes

• Display your store content in different languages

• Create or import catalog items

• Manage inventory

• Offer promotions

• Manage shopper accounts

• Allow shoppers to set up wish lists

• View reports about your store

• Test the visual elements of your store to determine which design shoppers prefer

• Develop custom features for your store through the Oracle CX Commerce web
services API

Oracle CPQ is the only cloud solution to support the complete quote-to-cash process -
from shopper inquiry to order fulfillment. It guides users to optimal product options and
configurations from simple to complex, automatically applying discounts and relevant
up-sell and cross-sell opportunities.

Integrating these solutions brings together the capabilities of Oracle CX Commerce
and Oracle CPQ to provide a unified solution that enables businesses to offer
shoppers a method of interacting meaningfully with the business during the purchasing
process, and to provide agents with the means to be flexible with shoppers, improving
their contact experience and maximizing shopper satisfaction.

2-1

Objective
By integrating Oracle CX Commerce and Oracle CPQ, you increase the number of
supported available commerce shopper features.

The integration of Oracle CX Commerce and Oracle CPQ targets support for the
following shopper commerce activity:

• Product configuration: The shopper or agent can configure any product that has
been identified as configurable in the product catalog.

• Shopper quote request: The shopper can request a quote for an order.

• Agent quote request: An agent dealing with a shopper contact can request a
quote for a discount on behalf of the shopper.

• Asset Based Ordering - Asset based ordering (ABO) allows you to sell tangible
assets or subscription services delivered over a period of time; for example mobile
phone call and data plans, television and broadband packages, cloud storage
service, music streaming service, etc.

This document provides instructions on how to set up an integration between
Oracle CX Commerce and Oracle CPQ so that relevant Commerce information is
automatically passed to Oracle CPQ, ensuring that the decision process has all the
required information and increasing the speed at which a reply is delivered to the
shopper or agent.

This document describes the setup tasks that must be performed in Oracle CX
Commerce and Oracle Integration Cloud in order to use this integration flow. There are
additional setup tasks that must be performed in Oracle CPQ so that the integration
works as expected. Full information about these tasks that must be performed in
Oracle CPQ can be found in the Integrating Oracle CX Commerce with Oracle CPQ
article on My Oracle Support.

Chapter 2 – Configuring the Integration: provides technical instructions on the
following topics:

• How to download the Oracle Integration Cloud Integration Flows.

• How to configure the Oracle Integration Cloud Integration Flows.

• How to setup the connection to Oracle CPQ.

• How to setup the connection to Oracle CX Commerce.

• How to configure the webhooks to trigger the integration flows.

• How to configure the SSEs (Side-Server Extension) necessary for the integration
flows.

Chapter 3 – Using the Integration Functionality: provides instructions on how to use
the functionality supported by this integration.

Audience
You must follow product-provided documentation to set up and configure the
integration between Oracle CX Commerce and Oracle CPQ systems.

This document is written for Oracle CX Commerce and Oracle CPQ administrators
who need to set up and configure the integration between these two systems.

Chapter 2
Introduction

2-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Readers of this document should have experience with Oracle CX Commerce, Oracle
CPQ and Oracle Integration Cloud (OIC) administration. This document does not
provide instructions on configuring aspects other than the integration for Oracle CX
Commerce and Oracle CPQ.

Prerequisites
In order to configure and use the Oracle CX Commerce/Oracle CPQ integration, there
are specific software, account, and data prerequisites that must be met.

For the purposes of this document, it is assumed that you already have:

• An Oracle CX Commerce account and access to the Oracle CX Commerce 19.1
or later with necessary SSEs enabled (see sections that follow).

• An Oracle CPQ account and access to Oracle CPQ 19.1 or later.

• An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service 18.4.5 or later.

• A synchronized product catalog to ensure that products in the Commerce catalog
map to corresponding items in the Oracle CPQ catalog.

• Pricing Base pricing data which is synchronized from the primary PIM (Product
Information Management)/ERP (Enterprise Resource Planning system to both
Oracle CX Commerce and Oracle CPQ.

• Profiles Shopper/Account data which is synchronized from the primary CRM
(Customer Relationship Management) system to both Oracle CX Commerce and
Oracle CPQ.

• An extension server to support any required Serve-Side Extensions for the
integration.

If you do not have one or more of these, please contact an Oracle sales representative
for information on how to acquire one: http://www.oracle.com/us/corporate/contact/
index.html.

Additional Resources
Addition information about Oracle CX Commerce can be found through the Oracle
Help Center page for Oracle CX Commerce.

If you require further information regarding Oracle CX Commerce, you can access the
latest product documentation and training videos through the Oracle Help Center page
for Oracle CX Commerce.

If you require further information regarding Oracle CPQ, you can access the latest
product documentation through the for Oracle Help Center page Oracle CPQ.

The documentation mentioned contains links to blogs, developer communities, and
Support. (Please note that some of these resources require an account for access.)

Configure the Integration
Several stages are required to configure this integration.

Five stages are required to configure the integration between Oracle CPQ and
Commerce. Each stage is covered in this chapter.

Chapter 2
Configure the Integration

2-3

http://www.oracle.com/us/corporate/contact/index.html
http://www.oracle.com/us/corporate/contact/index.html
https://docs.oracle.com/cloud/latest/cpq_gs/index.html

Configure the Integration Package
In order to use this integration, you must first download the integration package(s) and
then import the package(s) into Oracle Integration Cloud.

This section provides detail about where the integration package(s) can be
downloaded and how to import the integration package.

Importing the integration package in Oracle Integration Cloud (OIC) creates
connections between Oracle CX Commerce and Oracle CPQ in OIC. It also creates an
integration between Commerce and Oracle CPQ with some default mappings in place.

Download the integration package

Follow these steps to download the integration package:

1. Go to the Integrating Oracle CX Commerce and Oracle CPQ with Oracle CPQ
article on My Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle CPQ
Configurator, download OCCS-CPQ_CONFIGURATION_INTEGRATION_X.X.par
to a location where it is accessible from OIC.
Note: _X.X.par refers to the most recent version of all downloadable files
described.

3. If you want to implement the integration between Commerce and Oracle CPQ
Quoting, download OCCS-CPQ_QUOTE_INTEGRATION_X.X.par to a location
that is accessible from OIC.

4. If you want to enable Asset Based Ordering (ABO) through the integration
between Commerce and Oracle CPQ, download the following packages to a
location that is accessible from OIC:

• OCCS_CPQ_ASSET_INTEGRATION_X.X.par

• OCCS_CPQ_GETCONFIGBOM_X.X.par

• OCCS_CPQ_CONFIGURATION_INTEGRATION_X.X.par

• OCC_CPQ_Get_Asset_Upgrade_Options_X.X.par

Import the integration package(s)

Import the OIC Integration Package into OIC to create an integration between
Commerce and Oracle CPQ through OIC.

To import the OIC Integration Package:

1. Log on to OIC as an admin user.

2. Click the Packages icon.

3. Click the Import button.

4. Click Browse to open a navigation pane.

5. Select the integration package archive (.PAR) file you want to import.

6. Click Import. The package is added to the Packages list.

Chapter 2
Configure the Integration

2-4

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

The OCCS-CPQ_CONFIGURATION_INTEGRATION package includes the OCCS-CPQ
Get Configurations integration flow. The GetConfigurations integration flow is used for
the following Asset Based Ordering operations:

• Modify

• Upgrade

• Renew

• Resume

This integration is required for the configuration flow. The name of the target
connection for this integration is “Oracle CPQ”. The target connection identifier is
“Oracle_CPQ”, and the target connection description is “Oracle CPQ ICS Adapter
Connection.”
The OCCS-CPQ_QUOTE_INTEGRATION package includes the following three
integration flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-
CPQ Sync Quote.

• The OCCS-CPQ Create Quote integration sends quote request information to
Oracle CPQ.

• The OCCS-CPQ Update Quote integration sends information to Oracle CPQ
related to accepting, rejecting, or re-requesting a quote.

• The OCCS-CPQ Sync Quote integration allows Oracle CPQ to send information
to Commerce at the end of the quoting process and synchronize this information
in Commerce. This ensures that the order information in Commerce matches the
related order information in Oracle CPQ.

The OCCS_CPQ_ASSET_INTEGRATION package includes two integration flows:
OCCS-CPQ Get Assets and OCCS-CPQ Asset Actions. This integration is required for
Asset Based ordering. The name of the target connection for this integration is “Oracle
CPQ”. The target connection identifier is “Oracle_CPQ”, and the target connection
description is “Oracle CPQ ICS Adapter Connection.”

Note: The OCCS-CPQ Get Assets integration returns information about assets and
services associated with the shopper’s account(s).

The OCCS_CPQ_GETCONFIGBOM package contains the following OIC integration flow
which is also used in Asset Based ordering:

• GetConfigBom - This flow is invoked for the following Asset Based Ordering
operation flows:

– Suspend

– Terminate

GetConfigBom calls are required to be made for each configuratorID of these filtered
items to retrieve a saved Configuration BOM Instance of the item on Oracle CPQ.

The name of the target connection for this integration is “Oracle CPQ”. The target
connection identifier is “Oracle_CPQ”, and the target connection description is “Oracle
CPQ ICS Adapter Connection.”

Configure the Oracle CX Commerce Connection
For the integration to run successful, you need to configure the connection from the
integrations imported to OIC to Commerce.

Chapter 2
Configure the Integration

2-5

You must complete the following steps to configure the connection from the OIC
integrations to Commerce.

1. Log on to OIC as an admin user.

2. Click the Connections icon.

3. Click the Oracle CX Commerce connection.

4. Click the Configure Connectivity button.

5. Enter the Connection base URL. The Connection base URL is derived using the
following structure where <siteURL> is the base URL and port number of the
Oracle CX Commerce site that integrates with OIC. For example:

Connection base URL: https://<siteURL>/ccadmin/v1

6. Click the Configure Security button.

7. The Oracle CX Commerce connection uses the OAuth security policy, so you
must enter a Security token for the connection. This token is generated in Oracle
CX Commerce. Instructions on generating the token can be found in the next
Generate a Security Token section of this document.

8. Click OK.

9. Click Test to test that the connection is working.

10. Click Save.

Your Oracle CX Commerce connection is now configured for the integration.

Generate a Security Token

This integration uses the Oracle CX Commerce REST web services APIs to access
Oracle CX Commerce data. You must register the integration within Oracle CX
Commerce and generate a security token in order for the integration to be granted
access to the data.

Follow these instructions in order to generate a security token:

1. Log onto Oracle CX Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Click Web APIs from the sidebar menu.

5. Click Registered Applications from the Web APIs panel.

6. Click the Register Application button.

7. Enter a name for the integration. The application you are registering is OIC, so you
should choose a meaningful name that reflects this.

8. Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

9. Click on the name of the application you created.

10. Click on Click to reveal to display the application key. You can copy the
application key to use as the security token for the Oracle CX Commerce
connection.

Chapter 2
Configure the Integration

2-6

For more information on managing an application within Oracle CX Commerce, please
refer to Register applications.

Activate the Integrations
Once your integrations are configured, you must activate them using the OIC admin
user interface.

Once the Oracle CPQ, Commerce, Oracle CPQ Quote, Oracle CPQ Configure, and
Oracle CPQ getConfigurations connections are configured, you must activate these
integrations.

Follow these instructions to activate the OIC integrations:

1. Log on to OIC as an admin user.

2. Click on the Integrations icon to display the Integrations list.

3. Click on the Activate button for the integration you wish to activate.

4. Decide whether you want to switch on detailed tracing, which collects information
about messages processed by the integration flow. Administrators may find
detailed tracing helpful when troubleshooting issues with the integration flow, but it
may impact performance.

To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate it and
activate it again to switch detailed tracing on or off.

5. Click Activate.

Configure the Commerce Webhooks
You must configure webhooks in Commerce Administration in order to support the
REST API generated by the activation of the OIC integration.

The REST API generated by activating the OIC integration can be configured as a
Webhook in Commerce Administration. These webhooks include the following:

• Request Quote: This webhook is triggered when a request or re-request for
a quote is submitted by a Commerce self-service user. This webhook pushes
notifications using the OCCS-CPQ Create Quote integration flow.

• Update Quote: This webhook is triggered when a response to a requested quote
is accepted, rejected, or the quote is canceled by a Commerce self-service
user. This webhook pushes notifications using the OCCS-CPQ Update Quote
integration flow.

• External Price Validation: This webhook is triggered at checkout when the order
contains one or more items configured by Oracle CPQ. This webhook should point
to the SSE app URL configured later. The webhook validates the configuration and
price provided for the configured items. It also includes the commerce item ID data
in the request payload and updates the external price information of the commerce
items. Finally, it invokes a re-pricing operation at order checkout.

• Contact Accounts Retrieval: This webhook has been deprecated. The
corresponding SSE endpoints are invoked from the widget. It returns a list of
service account IDs for the shopper. Formerly, this webhook called the Contact

Chapter 2
Configure the Integration

2-7

Accounts Retrieval webhook, so that webhook also had to be configured for the
Services Retrieval webhook to function correctly.

• Services Retrieval: This webhook has been deprecated. The corresponding SSE
endpoints are invoked from the corresponding widget. Formerly, this webhook
returned information about a service or asset associated with the shopper and
used the OCCS-CPQ Get Assets integration flow. This webhook called the
Contact Accounts Retrieval webhook, so that webhook also had to be configured
for the Services Retrieval webhook to function correctly.

You must configure the Production and Preview version of these webhooks to ensure
that they work in all environments. The Production webhooks send information
from your live store to production environments of your live systems, while preview
webhooks send information from your preview environment to the test or sandbox
environments of your external systems.

Follow these instructions to configure the Request Quote, Update Quote, External
Price Validation, Services Retrieval, and Services webhooks:

1. Log on to OIC as an admin user.

2. Click on the Integrations icon.

3. Click on the Integration Details icon to display information about the integration
flow.

• If you are configuring the Request Quote webhook, you should display
information for the OCCS-CPQ Create Quote integration flow.

• If you are configuring the Update Quote webhook, you should display
information for the OCCS-CPQ Update Quote integration flow.

• If you are configuring the External Price Validation webhook, you should
display information for the OCCS-CPQ External Pricing integration flow. For
this webhook, you to configure the SSE app endpoint.

• If you are configuring the Services Retrieval webhook, you should display
information for the OCCS-CPQ Get Assets integration flow. This OIC flows
requires the Services SSE to be set up and invoked from there.

• If you are configuring the Services webhook, you should display information
for the OCCS-CPQ Asset Actions integration flow. This OIC flows requires the
Services SSE to be set up and invoked from there.

4. Copy the Endpoint URL for the integration.

5. Log into Commerce.

6. Click the Menu icon.

7. Select Settings from the menu.

8. Select Web APIs from the sidebar menu.

9. Click the webhook you wish to configure.

10. Paste the Endpoint URL you copied into the URL field for the webhook.

11. Remove the “metadata” text from the end of the URL.

12. Enter the user name and Password for your OIC account.

13. Click the Save button.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

Chapter 2
Configure the Integration

2-8

Note: It is not possible to edit webhooks differently for different sites. Updating
webhooks applies changes regardless of the site selected.

For more information on Oracle CX Commerce webhooks, please refer to Configure
webhooks.

Understand the Services SSE

Modify, renew, terminate, suspend, and resume actions performed on a service or
asset are done using the Services server side extensions, one set for Storefront
and one for Agent. Get Assets and Get Asset details are also performed using the
endpoints in the Services SSE.

See the topic Use developer tools to customize your store for information.

Configure the Server Side Extensions
To perform specific functions relating to asset-based orders, you need to install and
configure the related Commerce server-side extensions (SSEs).

Available Commerce server-side extensions (SSEs) can be installed and configured to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for
use with Commerce, refer to Develop server-side extensions in Extending Oracle CX
Commerce found in the Commerce Help Library.

The next sections in this topic explain the purpose and configuration of each available
SSE as well as provide information on the inputs required for their respective
endpoints. Finally the last section of this topic, Understand the general procedure
for installing and configuring the integration SSEs , provides general instruction on
downloading, installing, and configuring the available SSEs.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit
checking system, the Credit Check SSE is used to connect to a third-party credit check
system so that you can perform a credit check on the logged-in shopper.

Chapter 2
Configure the Integration

2-9

Note: This SSE is optional and can be used if you want a credit check to be done as
part of an order submit task.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-
agent.zip, by first downloading the SSE packages.

Note: As written, this SSE generates outbound calls to an external credit checking
system. This means that the Credit Check SSE calls out to an external system to
perform the credit check. In order to use this SSE to connect to the external checking
of your choice, you must modify the SSE code to provide the specific calls needed to
connect to the correct credit checking system.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by
Commerce.

The inputs for this endpoint are:

• Amount information

• Recurring amount frequency

• Recurring amount duration

• Recurring amount

• Contact information

• First Name

• Last Name

• Email Address

• Telephone Number

• Address information

• Address line 1

• Address line 2

• City

• State

• Country

• Postal code

The return for this endpoint is either a TRUE or FALSE value depending on whether
the shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a
registered shopper or to update the customer account model when required. In detail,
this SSE is meant to get account details from CDM masters like OEC Communications
and is required in Telco kind of installations

Chapter 2
Configure the Integration

2-10

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts
for the shopper.

The inputs for this endpoint are:

• User Token for the logged-in shopper.

• Account Type

• Account Name

• Primary Contact

• Billing Profile(s)

• Address(es)

• Contact ID(s)

• Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles
now associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.

Understand the Query Accounts endpoint

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

Chapter 2
Configure the Integration

2-11

• User Token for the logged-in shopper.

• The Account ID of the account to which the billing profile is linked.

• The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the assetable property is TRUE the quantity must
be 1 and, if not, return an error indicating that this item can only be purchased one at a
time. This check is done by looking to see if the root item has an assetKey value. For
more information, see the Use Asset Based Ordering section of this guide.

You can configure the available SSEs, OrderQualification-store.zip and
OrderQualification-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring integration SSEs section at the end of this
topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification endpoint

This endpoint is triggered by the Order Qualification webhook when any order
containing a configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

This SSE is used to ensure that an order is valid. It enables an order qualification step
in the purchasing process that can be invoked via the Order Qualification webhook.
The extension can be configured to execute custom order qualification processes
such as checking whether the shopper is eligible to purchase the items in the cart.
It contains a pre-built algorithm to validate that the Customer, Billing, and Service
accounts as well as the Billing Profile assigned to the items in the cart are valid for the
logged in shopper. It also contains a module to check if the cancel in-flight is allowed
for a given order.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Chapter 2
Configure the Integration

2-12

Understand the Order Qualification Pipeline endpoint

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:

• Contact record for the shopper

• Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can
be invoked via the Order Validation webhook. The extension can be configured to
execute any final checks particular to the purchasing model before the order payment
is authorized and the order is submitted to the downstream systems for fulfillment and
provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

Configure the Services SSE

The Services SSE is used to perform modify, renew, terminate, suspend, and resume
actions on a service or asset - one SSE for Storefront and one for Agent. The SSE
also contains a module to check if the cancel in-flight feature is allowed for a given
order and is also used to retrieve the assets and asset details

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by
first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Services SSE endpoints

The Server Side Extension Endpoints for the Services SSE are the following:

• Modify

• Renew

• Terminate

• Suspend

• Resume

These endpoints are triggered when a user performs an operation on an asset.

The inputs for these endpoints are:

Chapter 2
Configure the Integration

2-13

• Logged in User Token

• AssetKey, the unique ID for the asset for this operation. This may be a root, branch
or leaf asset.

The returns for this endpoint are BOM (Bill of Materials) and Error.

Configure the Configuration Validation SSE

The Configuration Validation SSE plays an important role in Asset Based Ordering and
validating asset configuration. This specific SSE performs a configuration validation
between items in a shopper's cart and the items captured in response to configuration
validation end points. For more complete information on Asset Based Ordering, refer
to the Using the Integration Functionality section of this document.

To use this SSE, you should first have the External Pricing webhook set to /
ccstorex/custom/v1/validateCPQConfigurations. This is done on the Settings page
of the Administration user interface.

You should also have the following endpoints configured:

• GET_CONFIGBOM_URI

• GET_CONFIG_URI

The GET_CONFIGBOM_URI URL gets triggered for the Suspend and Terminate Services.
The GET_CONFIG_URI URL gets triggered for the Renew, Modify, and Resume Services.
The SSE does validation between items in cart and items captured in the response of
these two end points

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by
first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

Understand the general procedure for installing and configuring the integration
SSEs

To use this integration, you need to install and configure the integration server-side
extensions (SSEs). The SSE code logic allows communication between Commerce
and Oracle CPQ - via Oracle Integration Cloud as part of the data flow. The
Commerce and Oracle CPQ integration functionality/communication is provided
through the configuration of these server-side extensions.

In addition to providing REST APIs and webhooks for integrating with external systems
(as well as widgets for extending your storefront), Commerce also includes support for
developing server-side extensions written in JavaScript. For more information, refer to
Working with Commerce Server-Side Extensions

The general installation and configuration procedure for the integration SSEs uses the
following steps:

• Before you configure and install the integration server-side extensions, first make
sure your custom Node.js server is associated with your Commerce environment.

• Download the integration server-side extension (SSE) files locally, so that you can
install and configure them. Select and remember the desired location where you
want the SSE .ZIP file(s) to be downloaded. See Integrating Oracle CX Commerce
and Oracle CPQ (Doc ID 2214316.1) on the My Oracle Support site for more

Chapter 2
Configure the Integration

2-14

https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/07/21/working-with-commerce-cloud-server-side-extensions
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4

information on the required integration SSE .ZIP files and for the links that let you
download these files.

• After downloading the required files, you need to install them. Use the POST /
ccadmin/v1/serverExtensions endpoint to do this. Specify the Content-Type as
multipart/form-data and include a reference to the file in the body of the
request. For example, your request header might look like the following:

POST /ccadmin/v1/serverExtensions HTTP/1.1
Content-Type: multipart/form-data
Authorization: Bearer <access_token>

• The request body should consist of the <YOUR_SSE_NAME>.zip file, uploaded as
multipart/form data. The response to the request should look similar to this:

{
 "result": {
 "unzipped": false,
 "failedImages": 0,
 "allImagesFailed": false,
 "failedImagesReasons": {},
 "modifiedImages": 0,
 "newImages": 1,
 "assignedImages": 0
 },
 "success": true,
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7002/ccadmin/v1/
serverExtensions"
 }
],
 "token": "d63c663af7f15_cd3d"
}

• Make changes to each server-side extension’s config.json file by providing the
correct URLs to complete the SSE configuration portion of that integration. The
typical steps used for working with the SSE code and making changes to the
config.json file include the following:

– Obtain and download the correct SSE .ZIP file.

– Extract the SSE .ZIP file.

– Edit and save the config.json file.

– Zip the files using the original .ZIP file name as the original.

The following example shows some configuration information (in bold) that must
be added to the config.json file for both the store and agent models of the SSE:

"hostname": "yourhostname.example.com",
"port": "7003",
"timeout": 50000,
"username_env_var": "YOUR_USERNAME",
"password_env_var": "YOUR_PASSWORD",

Chapter 2
Configure the Integration

2-15

"QUERY_CONTACTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_GET_PROFILE_SSE/1.0/contacts",
"CREATE_CONTACT": "/ic/api/integration/v1/flows/rest/
OCC_OEC_CONTACT_CREATE_SSE/1.0/contacts",
"QUERY_ACCOUNTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_GET_ACCNT_DETLS_PROF_SSE/1.0/accounts",
"CREATE_ACCOUNTS": "/ic/api/integration/v1/flows/rest/
OCC_OEC_ACOUNT_CREATE_SSE/1.0/contacts/{currentContactId}/accounts",
"UPDATE_ACCOUNT": "/ic/api/integration/v1/flows/rest/
OCC_OEC_ACCOUNT_UPDATE_SSE/1.0/contacts/{currentContactId}/accounts/
{accountId}"

All of the example endpoint URLs (paths) specified in the example, starting
from the "QUERY_CONTACTS" to the “UPDATE_ACCOUNT" keys, are coming from
Oracle Integration Cloud and are necessary for a successful integration activation
between Commerce and Oracle CPQ. The paths that you would use when editing
your config.json files would be the ones specific to your SSE endpoints. The
ones shown here are for example purposes only. Refer to each specific SSE
section in this topic to obtain the correct SSE and endpoint information.

• Upload the modified SSE .ZIP file. To upload the file, click Settings then
Extensions. On the Extensions page, click Installed and then Upload Extension.
Select the location and name of the ZIP file.

Understand the environment variables supported by the integration SSEs

When communicating with Commerce via its REST APIs, you need to authenticate
your requests using confidential information. The need to authenticate is not just
limited to Commerce as many 3rd party services require the same. It is recommended
that you do not store confidential information in extension files but that you use
environment variables to maintain value confidentiality. In the previous example
config.json file, environment variables are used to make username and password
information confidential. Commerce SSEs include the nconf package which provides
a hierarchical node.js configuration with files, environment variables, command-
line arguments, and atomic object merging. Use the hierarchy provided by nconf
to manage your configuration values and maintain different values for different
environments used in your integration. You can also use environment variables to pass
through API information you want protected. Refer to "REST API authentication" in the
Commerce REST API documentation for more info on how to authenticate Commerce
API calls.

The specific environment variables supported by the integration SSEs are the
following:

Table 2-1 Integration SSE environment variables

SSE name Supported variable name Description

CustomerAccountModel-
Store

CRM_USERNAME Specifies the basic
authentication username for
the accounts integration.
In this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

Chapter 2
Configure the Integration

2-16

Table 2-1 (Cont.) Integration SSE environment variables

SSE name Supported variable name Description

CustomerAccountModel-Store CRM_PASSWORD Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

CustomerAccountModel-
Agent

CRM_USERNAME Specifies the basic
authentication username. In
this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

CustomerAccountModel-Agent CRM_PASSWORD Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

Services-Store OIC_USERNAME Specifies the basic
authentication username for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

Services-Store OIC_PASSWORD Specifies the basic
authentication password for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

Services-Store CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

Services-Store CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Services - Agent OIC_USERNAME Specifies the basic
authentication username for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

Services-Agent OIC_PASSWORD Specifies the basic
authentication password for
the accounts integration and
Oracle CPQ integration that
proxies via OIC.

Services-Agent CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

Services-Agent CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Chapter 2
Configure the Integration

2-17

Table 2-1 (Cont.) Integration SSE environment variables

SSE name Supported variable name Description

Order Qualification Pipeline ORDER_QUALIFICATION_PI
PELINE_USERNAME

Specifies the basic
authentication username
for securing the /v1/
orderQualification route.

Order Qualification Pipeline ORDER_QUALIFICATION_PI
PELINE_PASSWORD

Specifies the basic
authentication password
for securing the /v1/
orderQualification route.

Order Qualification Pipeline VALIDATION_USERNAME Specifies the basic
authentication username for
accessing the /v1/crm/
accounts route in the
Customer Account Model to
retrieve accounts data.

Order Qualification Pipeline VALIDATION_PASSWORD Specifies the basic
authentication password for
accessing the /v1/crm/
accounts route in the
Customer Account Model to
retrieve accounts data.

Order Qualification Pipeline OIC_USER_NAME Specifies the basic
authentication username for
accessing the services
integration that integrates with
Oracle CPQ to retrieve asset/
services data.

Order Qualification Pipeline OIC_PASSWORD Specifies the basic
authentication password for
accessing the services
integration that integrates with
Oracle CPQ to retrieve asset/
services data.

Order Validation Pipeline ORDER_VALIDATION_PIPELI
NE_USERNAME

Specifies the basic
authentication username
for securing the /v1/
orderValidation route.

Order Validation Pipeline ORDER_VALIDATION_PIPELI
NE_PASSWORD

Specifies the basic
authentication password for
the /v1/orderValidation
route

cpq-configurator-app-store CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

cpq-configurator-app-store CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

cpq-configurator-app-agent CPQ_USERNAME Specifies the basic
authentication username for
requests that go directly to
Oracle CPQ.

Chapter 2
Configure the Integration

2-18

Table 2-1 (Cont.) Integration SSE environment variables

SSE name Supported variable name Description

cpq-configurator-app-agent CPQ_PASSWORD Specifies the basic
authentication password for
requests that go directly to
Oracle CPQ.

Note: Commerce provides the admin endpoint that can be used to set an environment
variable on the Commerce server. For additional information on each SSE's supported
environment variables, a README.TXT file is provided along with the config.json file
that has additional usage information.

Enable the Integrations
You need to enable the Oracle CPQ Configurator integration, the Oracle CPQ Request
For Quote integration, and the Asset Based Ordering (ABO) integration in Commerce
for the complete integration to work successfully.

You must complete the procedures in this section to enable the Oracle CPQ
Configurator integration, the Oracle CPQ Request For Quote integration, and the
Asset Based Ordering (ABO) integration in Commerce.

For additional information, refer to Appendix A: Configurator Flow and Appendix B:
Request for Quote Flow.

Enable Oracle CPQ Configuration Integration

Follow these steps to enable the Oracle CPQ Configuration Integration within Oracle
CX Commerce:

1. Log on to Commerce.

2. Click on the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Configuration from the dropdown menu.

6. Check the Enable Integration checkbox.

7. Enter the Configuration URL using the following structure:

https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

8. Enter the Reconfiguration URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpq_domain>/commerce/new_equipment/products/
external_reconfig.jsp

Chapter 2
Configure the Integration

2-19

9. Enter the Modification URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpq_domain>/commerce/new_equipment/products/
model_configs.jsp

10. Click the Save button.

If you are using multiple sites you must follow these instructions for each site that you
operate that uses the Oracle CPQ Configuration integration.

Identify Configurable Products in the Product Catalog

Before a Commerce self-service user can use the Oracle CPQ configurator to
configure complex products for purchase in Commerce, you must identify the products
as configurable in the product catalog. Before doing so, it is important to have a
synchronized product catalog to ensure that products in the Commerce catalog map to
corresponding items in the Oracle CPQ catalog.

To identify a product as configurable:

1. Log in to Commerce.

2. Click on the Menu icon.

3. Select Catalog from the menu.

4. Select the product you wish to identify as configurable.

5. Click on the SKUs tab of the product detail pop-up frame.

6. Select the SKU you wish to identify as configurable.

7. Check the Configurable checkbox. This displays three further fields you must
complete.

8. Enter the Model information. This should match the Model information of a
configurable product in the Oracle CPQ catalog.

9. Enter the Product Line information. This should match the Product Line
information of a configurable product in the Oracle CPQ catalog.

10. Enter the Product Family information. This should match the Product Family
information of a configurable product in the Oracle CPQ catalog.

11. Click Save. This returns you to the SKU frame where the SKU you updated should
be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the SKU
import program. From the Catalog page in Commerce, click Manage Catalog and
select Import. In the Import dialog, click Browse and locate the CSV file to import.
Click Upload File, click Validate, and then click Import.

Add Customize button to the Product Details Widget

Administrators must add a Customize button to the Product Details widget, so the
button is visible to Commerce self-service users from the Product Details page for a
customizable product.

To add a Customize button to the Product Details widget:

1. Log in to Commerce.

Chapter 2
Configure the Integration

2-20

2. Click on the Menu icon.

3. Select Design from the menu.

4. Select Product Layout from the layout list.

5. Delete the Product Details widget from the layout.

6. Place a new product details widget on the layout.

7. Click the Settings icon for the new Product Details widget.

8. From the Element Library, place a Customize button on the new Product Details
widget.

9. Publish the changes.

Enable Oracle CPQ Quoting Integration

Follow these steps to enable the Oracle CPQ Quoting Integration within Oracle CX
Commerce:

1. Log on to Commerce.

2. Click the Menu icon.

3. Select Settings from the menu.

4. Select Oracle Integrations from the sidebar menu.

5. Select CPQ Quoting from the dropdown box.

6. Check the Enable Integration checkbox.

Add Quote Buttons to the Checkout and Order Details Pages

To make the Oracle CPQ quoting capability available to Commerce self-service users,
you must add the Request Quote widget to the Checkout layout and the Quote Details
widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote button
to the Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes
associated with the order to the Order Detail layout. The widget also adds a Reject
Quote, Request Re-Quote, and Accept Quote buttons to the to the Order Detail layout.

The Quote Details and Request Quote widgets do not display on the layouts by
default. You must first make the widgets available and then place them on the
Checkout and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

1. Log in to Commerce.

2. Click the Menu icon.

3. Select Design from the menu.

4. Select the Components tab on the Design page.

5. Click the Show Hidden button.

6. Click the Show icon for the Quote Details Widget and the Request Quote Widget.

7. Within the Design page, select the Layouts tab.

Chapter 2
Configure the Integration

2-21

8. From the layout list, select Checkout Layout.

9. Drag and drop the Request Quote widget from the Components menu to the
desired location on the Checkout layout.

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.

Enable Asset Based Ordering

To enable Asset Based Ordering, you must make sure that you have set up the right
integration webhooks and/or SSEs mentioned in the Configure Oracle CX Commerce.

Use the Integration Functionality
Oracle CPQ provides greater pricing and price quoting features for Oracle CX
Commerce when the two are used together in an integration.

This chapter provides the instructions on how to use this functionality in Oracle CX
Commerce that is supported by the integration with Oracle CPQ.

Configure an item
Items marked as configurable in your catalog can be configured either by an agent via
the Commerce Agent Console or by a shopper via the Commerce Storefront.

Items that have been marked as configurable in your catalog may be configured either
by an agent via the Commerce Agent Console, or by a shopper via the Commerce
Storefront. This section provides instructions for both methods of configuring an item.

Configure an Item by an Agent

These instructions detail how an agent can configure an item via the Agent Console.

1. Log onto Commerce.

2. Using Agent Console, search for the shopper for whom you wish to create a new
order.

3. Click New to create a new order.

4. Select a configurable product from the catalog.

5. Click on the Configure button to open the Oracle CPQ iFrame.
Note: The Oracle CPQ iFrame is optimized for desktop, laptop, or tablet-size
devices and is not recommended for mobile devices. If you need to display on
mobile devices, please contact your Oracle CPQ Implementation team and inquire
about the CPQ Mobile Layout.

6. Select the configuration options required for the order.

7. Click Add to Cart.

Once the configured item has been added to the cart, the agent can complete the
order by going through the normal checkout process.

Chapter 2
Use the Integration Functionality

2-22

There is a validation check before the order is processed to ensure that the
configuration options selected are valid. If they are valid, the order process completes
and the order is placed. If they are not valid, an error message is displayed to the
agent telling them that the configuration is invalid and that the order cannot be placed.

Configure an Item by a Shopper

These instructions detail how a shopper can configure an item via Commerce
Storefront.

1. Shopper selects a configurable item from the product catalog.

2. Shopper clicks on the Customize button which opens the CPQ iFrame.

3. Shopper selects their desired configuration options for the item.

4. Shopper adds customized item to their cart.

5. Shopper goes to checkout and provides shipping and payment details.

There is a validation before the order is processed to ensure that the configuration
options selected are valid. If they are valid, the order process completes and the order
is placed. If they are not valid, an error message is displayed to the shopper telling
them that the configuration is invalid and that the order cannot be place. The shopper
is then unable to place the order until the configuration options have been changed
and the configured item passes the validation check.

Request a Quote
With Oracle CPQ enabled in the integration price quotes may be requested for one or
more items.

Quotes may be requested for one or more items on an order either by an agent from
within the Agent Console, or by a shopper from the checkout page for their order. If
you are also using Oracle CPQ Configuration functionality, the order may contain a
combination of configured and non-configured items.

Request a Quote by an Agent

An agent can request a quote on one or more items in an order from the Commerce
Agent Console. The agent must follow these instructions to request a quote:

1. Log onto the Commerce Agent Console.

2. Search for the shopper for whom you wish to generate a new quote.

3. Click New to create a new order, or select an existing unfulfilled order for the
shopper.

4. Once you have an order with items in the cart, click on the Request Quote link
in the order edit page. You can switch between the Request Quote page and the
Create Order page by clicking on the appropriate link.

5. Add text to the Quote Notes text box as desired.

6. Click on the Request Quote button.
Once the agent has submitted the quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle CPQ for a decision on
the quote. The order status is changed to “Pending quote”. When an order is in
Pending status, the agent cannot perform any operations on the order.

Chapter 2
Use the Integration Functionality

2-23

A confirmation email is sent to the shopper informing them of the status of their
order.

7. Once a response is received, the order status changes to “This order is a quote”,
and the agent then has a number of options about how to proceed. The agent can:
The agent can:

• Accept the quote: If the shopper is satisfied with the quoted price returned
from Oracle CPQ, the agent can accept the quote on their behalf by clicking
on the Accept button and proceeding with the order as normal.
Once payment information has been entered and the order placed the order
status changes to “Submitted for fulfillment”. At this point the Update Quote
webhook is triggered and Oracle CPQ is informed that the quote has been
accepted.

At this stage the agent can click on the Edit Order button, but the only edits
allowed to the quote are changes to the shipping group, or the application of
shipping discounts or promotions. The agent may not add or remove items
from the cart, or change the quantities of items included in the order. The
order status changes to “Order being amended” until the agent clicks on the
Complete Order button.

• Request a requote: If desired, the agent can enter more details in the
Request Quote textbox and click on the Request Requote button to request an
updated quote. When the agent requests a requote the order status changes
to “Pending quote”. When an order is in Pending status, the agent cannot
perform any operations on the order.

• Reject the quote: The agent can click on the Reject Quote button to reject the
quote. This cancels the shopper’s order and the order status changes to “this
quote has been rejected”.
Note: The response to a quote request includes provision for an expiry date
for the quote. If the quote has expired the Accept Quote and Reject Quote
buttons are disabled, but an agent can request a requote for the order.

Once the agent responds to the quote a confirmation email is sent to the
shopper informing them of the status of their quote.

Order statuses relating to quotes are included in the dropdown list of order statuses in
the Order Details section of the Order Search page.

Request a Quote by a Shopper

A shopper can request a quote on one or more items in an order from the checkout
page. The shopper must follow these instructions to request a quote.

1. Add the desired items to the shopping cart.

2. Proceed to the checkout page.

3. On the checkout page, enter supporting details in the Request a Quote text box.

4. Click the Request Quote button.

Once the shopper has submitted their quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle CPQ for a decision on the
quote.

When a decision is made about the quote, the order is updated and the shopper then
has three options about how to proceed.

They can:

Chapter 2
Use the Integration Functionality

2-24

• Accept the quote: This means the shopper is satisfied with the quote and
they may continue through the purchase process with the prices provided. The
checkout page is displayed and the shopper may enter their shipping details and
proceed with payment.

• Reject the quote: This means that the shopper has rejected the quote provided
by CPQ Cloud, and the order is canceled.

• Request a requote: The shopper can use the Request Requote text box to
provide further information and request an updated quote.

Use account-specific pricing for configured items
Account-specific prices configured on Oracle CPQ can be displayed in Commerce.

Account-based shoppers can obtain account-specific prices configured on Oracle CPQ
and display these prices in Commerce. This topic explains the concepts behind this
feature.

Formerly, the Oracle CPQ iFrame would open in an item configuration as part of
anonymous session. All details in the Oracle CPQ page, then, were independent of the
logged in shopper/contact/account. Account-based shoppers can now obtain account-
specific prices configured on Oracle CPQ and display these prices in Commerce.
This is possible because the iFrame displayed on Commerce obtains the context of
the related account as well the contacts associated with it so that the correct account-
based pricing information is returned to Commerce.

For example, consider that an account-based shopper logs in and selects to purchase
a configurable computer package. The prices that Oracle CPQ returns to the shopper
are specific and unique to that shopper's account. The pricing that is specific for one
shopper is not visible to another shopper. The shopper then changes the configuration
of the computer package as needed, enters the quantities needed, and finally submits
the order. In the case of an Agent configuring the package, the agent also sees the
account-specific details when configuring a price.

With the Commerce/Oracle CPQ configuration integration enabled, Commerce sends
different criteria to determine and obtain the account-based price of the configuration
maintained on Oracle CPQ.

Understand a user case as well as the workflow used to obtain correct account-
based pricing

An example of a user case where a shopper (or agent) would want to obtain account-
based pricing could go something like this:

• The shopper selects a commerce site and browses through the items in the
catalog.

• The shopper selects a configurable item and clicks on the Customize button,
which opens an iFrame allowing them to customize/reconfigure the item.

• The shopper configures the item and expects to see the prices for the items which
only that customer would be allowed to see for that account.

• The shopper places the order with the customer-specific pricing. The shopper,
after submitting the order and within the designated remorse period, is able to
update the configurations of the items as well as receive the customer specific
pricing for those items.

Chapter 2
Use the Integration Functionality

2-25

• The shopper can cancel this order containing customer specific priced items
(within the remorse period).

• The shopper can carry out returns and refunds.

• The shopper can exchange within the same configured item(s).

Some variations to this use case could include:

• The shopper gets the account specific pricing but when shopper account details
change, the adjusted price specific to that account would appear.

• An agent placing an order for an account based shopper gets the account specific
pricing specific to that shopper.

The workflow used to obtain the correct account-specific pricing is the following:

• The store sends the Account ID(Customer ID, Customer Name) through the
Configure Product iFrame. The shopper's accountId has been encrypted using
the SSE and the encrypted details are what is sent to the Oracle CPQ iFrame.
Other properties like model, product line, locale, currency are not encrypted.

• The calls made to Oracle CPQ at this point internally call the Oracle CPQ Price
API.

• The iFrame shows the account specific pricing for the account based on the
accountId.

• The Price API looks for any customer pricing rules defined in Oracle CPQ
and returns the correct account-specific pricing for that customer based on the
accountId. If there are no prices configured specifically for the customer, then they
are presented with the default prices.

• A sample widget can be customized by implementers to encrypt and pass
additional properties along with the accountId. The re-configuration flow works
as it already exists.

The main purpose of this workflow is to pass the customer account/organization
details to the Oracle CPQ system and calculate the customer-specific price (if any
pricing rules are defined).

The existing integration components should retain their existing functionality (i.e. the
customer/system implementer should be able to switch as to whether they are using
anonymous or customer specific pricing).

With this workflow, it is assumed that there is data synchronization of Customers
(Commerce account-based customer accounts) across Oracle CPQ and Commerce.
Oracle CPQ is the mechanism that has the ability to set up rule-based pricing which
can be customer specific. The customer specific pricing rule(s) should be the source
for the account-based pricing of the item. Finally, there is a check done that is part of
the integration which makes sure that the logged-in user is validated.

Note: A customer can use Oracle CDM (Oracle Customer Data Management) to
maintain that the accounts (organizations) are synchronized between Commerce and
Oracle CPQ or they can just use the Commerce accounts. The accountId that is
passed in the integration flow varies based on the implementation model.

Understand how Commerce and Oracle CPQ support account-specific pricing

To be able to obtain account-specific prices configured on Oracle CPQ and display it
on Commerce via the returned iFrame, you need the iFrame to be extended to handle
various attributes as part of getting the price from Oracle CPQ. By extending these

Chapter 2
Use the Integration Functionality

2-26

attributes, you can then display the account specific pricing given by the Oracle CPQ
system.

The cpq-config-validation-app SSE now validates the additional accountID from
the getConfiguration call made to Oracle CPQ to find the profile associated with
the order before calling the Submit Order endpoint. An appropriate error message is
returned if the accountId does not match the values of the orgId of the profile in
order.json. By passing these parameters from Commerce to Oracle CPQ during the
Configuration Page launch, the Pricing logic in Oracle CPQ can be triggered within the
Configuration user interface. Commerce provides the initial ability to pass the Account
ID, but an implementer can extend this to pass any other parameters from Commerce
that Oracle CPQ can understand.

The integration takes an Access Token Based security approach to ensure that prices
meant for users of one account are not visible to users of a different account. The key
features of using this approach are the following:

• The authentication into Oracle CPQ continues to be an anonymous/ guest user
method as it is today.

• There is no need for user mapping between the Commerce user and Oracle CPQ
user as well as no need for additional user maintenance between Commerce and
Oracle CPQ.

• The approach follows an established approach based on Assets Modify Punch-In.

SSE flow for Store and Agent

The following describes the SSE flow for Store and Agent

• When an account-based customer clicks on Customize for a product, the SSE
endpoint gets triggered.

• The accountId of the account-based user and other configurable details like
model, product_line, product_family, etc. get passed to the SSE.

• The validation of the accountId takes place first whether the logged in customer is
associated with the accountId being passed or not.

• If the validation is successful, accessTokenData is generated containing the
accountId and the expiration time which is then encrypted and signed with the
private key to form the accessToken.

• A query string is formed using accessToken and another configurable list of
parameters. This is then appended to the base URL and the Oracle CPQ iFrame
that is launched with the account-based prices.

• The accountId is decrypted by Oracle CPQ using the Public key. The true
accountId is then determined and prices are shown as per the pricing rule setup
for this accountId.

The following illustrates a sample request:

{
 "accountId" : "or-100001",
 "configurableSkuDetails" : {
 "currency" : "USD",
 "locale" : "en",
 "model" : "sku50001",
 "product_line" : "laptopConfiguration",

Chapter 2
Use the Integration Functionality

2-27

 "product_family" : "Laptop"
 }
}

The following illustrates a sample response to that request:

{ "queryString":
"_bm_session_currency=USD&_bm_session_locale=en&model=sku50001&product_lin
e=laptopConfiguration&product_family=Laptop&segment=laptop&_from_partner=t
rue&accessTokenData=%7B%22expiryTime%22%3A%222019-11-06T15%3A40%3A49%2B05%
3A30%22%2C+
%22configAttrPunchinValues%22%3A%7B%22accountId%22%3A%22or-100001%22%7D%7D
&publicKeyVarName=shagul_rsa_public&accessToken=xboKIL0YMl1R1IERTBKzzfFbyV
AWq5bZgkWX%2Bf71YOJYlBu1GZ5aZay%2B5FS338joCIs8C7B9RrJlRXXkmd1U4zgqfPD2NJnf
bYzxCelhFpbwdau6n88qVH6WI%2BPCLzUJKrwJdNxuTd9O78ZL4pKW8g9mFhpnZcNec%2FRxpH
MrV%2BYm4S2iS5IZt7apTkt%2Bd%2BDDvm3Y0cmyEyfwcbhTjxKho904dJId0pf%2BU3VKcNIh
MRMtoeFFCskhQNiqA8gyjUqamyB1y%2BgZQ9WKqo84rYsPnjCHvOF5z%2BAjMF5FysbGQxLJAF
PAczACuLhn1XrmDjjYMD6T26ey2d%2BQbKlzGgMIsg%3D%3D" }

SSE flow for validating the account ID

The cpq-config-validation-lib SSE has the functionality to validate the accountId
(part of External Data) from the getConfiguration call to Oracle CPQ with the
organization ID of the account-based profile associated with the order before calling
the Submit Order endpoint.

Understand best practices for using account-specific pricing

Although the integration allows for account-specific pricing, it does not, however, allow
for re-pricing of configured items, when any of the following conditions occur:

• The price list group (currency) is changed by the shopper

• An anonymous user logs in which results in a change of price list group (for
example, an anonymous shopper logs in as an account-based shopper)

• The account based shopper changes the current account in context

Simple (i.e., non-configured) items are re-priced but configured items are not. A
shopper cannot even re-configure the item to get the updated price. This is because
Oracle CPQ does not accept secure punch-in attributes during the process of re-
configuring an item. Unfortunately, the only available option is to delete the configured
item and add it again as a fresh configuration.

To avoid inconvenience to the shopper, it is recommended that you add an information
message to your custom widgets. The message should be seen when an anonymous
shopper tries to add a configured item to cart, (for example, when they click the
Customize button or when they are on the Product Details page. The message should
suggest that the shopper first login and then do the configuration.

Set up and configure Commerce and Oracle CPQ for account-specific pricing

Use the following procedures to set up and configure Commerce and Oracle CPQ for
the account-specific pricing feature:

Configure Oracle Integration for account-specific pricing

Chapter 2
Use the Integration Functionality

2-28

Use the following steps to configure Oracle Integration for account-specific pricing
while using the Commerce/Oracle CPQ integration:

• Download the Oracle Integration packages found in the OCCS-
CPQ_CONFIGURATION_INTEGRATION_4.0.par package file from Oracle Marketplace
or My Oracle Support.

• Import the package into the OIC Environment

• Configure the Oracle CPQ Connection in OIC.

• getConfigurations (4.0) is used to validate configuration and pricing from Oracle
CPQ.

For more information on using Oracle Integration, refer to the product Help Library.

The next steps you need to complete are downloading and configuring the required
Server Side Extensions (SSEs) used for account-specific pricing. There are three
SSEs used by the integration to support this. These are the following:

• cpq-config-validation-app.zip

• cpq-config-punchin-store.zip

• cpq-config-punchin-agent.zip

The information that follows describes how to download and configure these SSEs.

Download and configure cpq-config-validation-app.zip

Use the following steps to download and configure the cpq-config-validation-
app.zip Server Side Extension for account-specific pricing while using the Commerce/
Oracle CPQ integration:

• Login as Administrator to Commerce

• From the Admin interface, download the Server Side Extension (SSE) cpq-
config-validation-app.zip by clicking Design - Developer - Server-Side
Extensions. This SSE triggers the Configuration integration just setup on Oracle
Integration.

• Unzip the file.

• Update the config.json file with the Oracle Integration Hostname and Port
information.

• Also, a the dd extension environment variables for OIC_USERNAME and
OIC_PASSWORD using the Admin endpoint

• Run the Node Package Manager to install in the .ZIP contents in the root folder

• Zip the contents in the root folder.

• Upload to the Extension Server using the serverExtension endpoint

Download and configure cpq-config-punchin-store.zip and cpq-config-
punchin-agent.zip

Use the following steps to download and configure the cpq-config-punchin-
store.zip and cpq-config-punchin-agent.zip Server Side Extensions for account-
specific pricing while using the Commerce/Oracle CPQ integration:

• From the Commerce Admin interface, download the cpq-config-punchin-
store.zip and cpq-config-punchin-agent.zip Server Side Extensions by
clicking Design - Developer - Server-Side Extensions. These use the CPQ

Chapter 2
Use the Integration Functionality

2-29

Punchin Lib to generate a query string with an encrypted accountID that is
passed to the CPQ iFrame. This enables CPQ to show account specific prices.

• Unzip the files.

• Generate a public and private key using the OpenSSL utility.

• Place the private key file in the Keystore folders.

• Specify the public key in the config.json files.

• The public key is also added to the CPQ Integration Center under Authentication
Certificate.

• Run NMP to install the .ZIP files contents in the root folder

• Zip the contents in the root folder

• Upload to the Extension Server.

Configure Commerce for account-specific pricing with Oracle CPQ

Use the following steps configure Commerce for account-specific pricing while using
the Commerce/Oracle CPQ integration:

• Set up the external pricing validation webhook in Commerce: /ccstorex/
custom/v1/validateCPQConfigurations
Do this by going to Settings - Web APIS - Webhook in the Admin user interface.
Choose the External Price Validation function API and enter the requested
information.

• Enable and configure the Commerce/Oracle CPQ Configuration Integration by
going to Settings - Oracle Integrations in the Admin user interface. Select the
Oracle CPQ integration from the list.

• Modify widgets in the following layouts:

– Store layout: Product Details page

– Agent layout: B2B Checkout Layout - Accordion element: Search and Add
Items to Cart popup stack

These take the accountIDs of the user and display the appropriate prices for that
account.

You also need to have synchronized product catalogs between Oracle CPQ and
Commerce. The models available in Oracle CPQ need to have a corresponding
externally configurable SKU in Commerce. Also, make sure you have set up the
accounts and desired users in Commerce and have set up the proper pricing rules in
Oracle CPQ (since it is the provider of the prices to sent to Commerce).

Finally, double check that you have setup pricing rules on Oracle CPQ based on
a parameter (for example, Account Id) and have also added the public key to the
Integration Center - Authentication Certificate in Oracle CPQ.

Use multi-level items
This integration features support for a hierarchical structure for items available to
shoppers for purchase.

This integration provides support for a hierarchical structure for items available for
shoppers to purchase. Commerce supports an “n-level” hierarchical configuration

Chapter 2
Use the Integration Functionality

2-30

model. This means that a configured item can contain sub-items that are also
configurable items and that can in turn contain sub-items that are configurable items.

An example of this would be a bundled package for a cellphone. The bundle itself
would be the top-level item. The cellphone would be a configurable sub-item, but this
could then itself have configurable sub-items, such as an SD card. Commerce can
provide a top-level price for the bundle, but can also provide a price breakdown for
each configurable item within the bundle.

If a shopper adds a multi-level item to their cart, Commerce works with Oracle CPQ
to display the information about the multi-level item in the shopper’s cart. The cart
displays a total price and an item price for any configurable sub-items. If the shopper
changes any of the configurable sub-items, the price displayed for that sub-item
changes and the total price is also amended accordingly.

When a shopper clicks on the Place Order button a validation check is carried out
to ensure that the prices displayed for the configured items is still applicable. If it is
then the order can proceed. If it is not, a message explaining this is displayed to the
shopper and the cart is reloaded with up-to-date price information included for the
configured items.

You can create a multi-level hierarchy in your catalog using either a recommended
items model or a bill of materials model. You must refer to the relevant Oracle CPQ
documentation for instructions on how to do this.

Use Quadplay/NPlay items

A standard, or single play, configured item represents a single service, such as Mobile
Phone or IPTV that has a single set of configuration information, i.e. is based on a
single configuration model in Oracle Oracle CPQ.

A Quadplay or NPlay configured item represents a package or bundle that combines
multiple services in a single purchase and contains multiple sets of configuration
information, i.e. is based on a single configuration model that also contains other
configuration models in Oracle CPQ.

As an example, consider a case where the configured bundle contains 4 separate
services (or ‘plays’) such as Landline, Internet, Mobile and IPTV. In this example, the
bundle is called the Get4 Bundle. Unlike a standard configured item, the Get4 Bundle,
as a Quadplay or NPlay configured item has configuration information at the following
levels:

• Root level - in this example, the Get4 Bundle level.

• Branch level - in this example, the Landline, Internet, Mobile and IPTV levels.

With the support of Quadplay/NPlay configured items, the shopper adds the Get4
Bundle to the Oracle CX Commerce cart as a standard multi-level hierarchical
configured item. This item also has the ability to be reconfigured if needed. The item
is then validated and checked out as usual. For more detailed information working
with Quadplay and NPlay items, refer to CX Communications - How to Customize
and Extend – Configure NPlay Bundles with Oracle CPQ System Configuration white
paper on the My Oracle Support site.

Understand Commerce Cloud Administration support for configuration metadata

In Oracle CPQ, a single model is also able to support multiple NPlay offers and
additional versions of those offers. For example the same Model, Product Line, and

Chapter 2
Use the Integration Functionality

2-31

Product Family might contain 3 variations on the same NPlay bundle such as the
following:

• Starter Home Bundle

• Total Home Bundle

• Friends and Family Bundle

The same model might also support multiple versions of those bundle variations such

• Starter Home Bundle

• Starter Home Bundle 2017

• Starter Home Bundle 2018
and

• Total Home Bundle

• Total Home Bundle 2017

• Total Home Bundle 2018
and

• Friends and Family Bundle

• Friends and Family Bundle 2017

• Friends and Family Bundle 2018

To work with these types of variations, when the shopper selects a version of a
bundle in Commerce and chooses to configure it, the configuration request needs to
include extra information to allow the configurator to load the correct version of the
configuration model. This extra information is provided in what is called configuration
metadata. This data is passed along as a collection of key value pairs and aid in
helping to identify the correct bundle.

Understand configuration metadata details

Where a Oracle CPQ configuration model supports multiple products and product
variations, this information may not be sufficient to pre-load the order iframe with the
correct starting point. In such cases extra information (i.e., configuration metadata) can
included in the iframe URL created by Commerce.

Again, think of configuration metadata as a collection of one or more key value pairs
that identifies the correct starting point for the configuration model. Configuration
metadata can be static or dynamic. Static configuration metadata is manually entered
by the Commerce Cloud Administrator and stored on the SKU record in Commerce.
Dynamic configuration metadata can be captured by the PDP UI widget and can be
entirely implementation specific.

Note: Dynamic configuration metadata is not restricted to being captured on the PDP
UI widget. The dynamic configuration can be derived from any relevant information
such as shopper profile.

This means that merchants can decide what dynamic key value pair data they want
to capture and pass in the configuration request for any SKU. Dynamic configuration
metadata can be mandatory or optional (i.e., in some cases the shopper MUST enter a
value for a key and in some cases they may optionally enter a value for a key).

Configuration metadata lets merchants define a single model for all variants of a
configurable product and at purchase time pre-load the configuration model at the
appropriate starting point based on the shopper’s selection in Commerce.

Chapter 2
Use the Integration Functionality

2-32

The configuration metadata feature builds on the already existing support of the
NPlay feature. Earlier there was support of the purchase of NPlay products but only
where there is a one-to-one relationship between product and model (i.e., each NPlay
product had to have its own unique corresponding configuration model in Oracle
CPQ).

Enter configuration metadata via the administration user interface

To provide the configuration metadata needed for processing an order, the
configurationMetadata property is exposed so that you can enter the information
in the Commerce Cloud Administration interface. To get there click Catalogue then
Product and finally SKU. This Administration panel lets you view, add, delete, and
edit the Configuration Metadata values as required. Any request from Commerce to
configure an item will include configuration metadata where it is available.

An example of using configuration metadata might be a case where a Commerce
Cloud Administrator receives an email from a colleague in Oracle CPQ to advise them
that the configuration model with the correct configuration metadata for the Family
Plan products SKUs is now complete. The email contains the information to further
configure the SKU. The SKU is called sku_fp_001 and the information provided is the
following:

• Product Family – mobile

• Product Line - bundles

• Model - sku_fp_001

• Bundle Version - 18.1

• Region - EMEA

The process for entering the configuration metadata via the Admin interface would go
something like the following:

1. Navigate to the Commerce Cloud administration user interface panel and select
Catalog.

2. Select the Family Plan product and select the SKU sku_fp_001 which is currently
flagged as inactive.

3. Click on Externally Configurable SKU. You see the text “Oracle CPQ can
configure this as a part of a complex product.”
Note: For any SKU where you want to add configuration metadata, you must
make sure that Externally Configurable SKU is checked when you first begin
entering data. A new input property will be displayed which will allow you to begin
to enter one or more key value pairs of data.

4. Slide the panel down until you see the Product Family, Product Line, and Model
fields appear on the panel. Enter all of the correct metadata details (the ones sent
to you in the email from your Oracle CPQ colleague) manually.

5. Slide the panel down to see the Configuration Metadata table, click the Add button
to add a row.

6. Add Bundle Version to the Name field. In the field next to Bundle Version, add
18.1 (as the bundle version number). You can press Tab or Enter to create a value
entry. Click the Add button when done. A new row in the metadata value table
appears.

7. Add Region to the Name field. In the field next to Region, add EMEA. You can
press Tab or Enter to create the value entry.

Chapter 2
Use the Integration Functionality

2-33

8. Slide the panel back up to the top of the SKU ID panel, click Active, and then click
Save.

At this point, you have entered all of the details received from your Oracle CPQ
contact. This information must be entered correctly. The details that are entered are
not seen by the customer. The information is designed to populate the config iframe
window with the correct information. As a final step you activate the SKU and save the
details.

Note: Since the configuration metadata must be entered manually via the Commerce
administration console, keep in mind the following rules:

1. There is no support for versioning of configuration metadata so when an SKU
record is imported, make sure it does not contain any configuration metadata that
should replace any existing configuration metadata assigned to that SKU.

2. If the imported SKU record includes configuration metadata (columns present in
the import file) but there are no values included then any existing configuration
metadata will be deleted.

3. If the import SKU record does not include configuration metadata (no columns
present in the import file), then any existing configuration metadata should be
retained.

A Commerce administrator can view, delete, edit, or add Configuration Metadata
key value pairs for any SKU where the _Externally Configurable SKU_ property is
selected. A Configuration request from Commerce to Oracle CPQ always includes the
configuration metadata set in Commerce for that SKU.

To work with configuration metadata you must have the following prerequisites:

• Oracle CX Commerce account

• Oracle Integration Cloud account

• Oracle CPQ account

Assign shipping groups to sub-items
You can assign different shipping groups to product configuration sub-items and more.

With a configurable item, you have the ability to assign different shipping groups to
product configuration sub-items. Different shipping groups can be assigned to different
levels in a multi-level configurable item.

Previously, you could only assign a shipping group at the root level. Now, with a
configurable item you have the ability to assign different shipping groups to sub-items
of the root item. Different shipping groups can now be assigned to the following levels
in a multi-level configurable item:

• An item contained as the root item

• An item that may be contained at one or more branch items of the root item

• An item that may be contained at one or more of leaf items of a specific branch

Formerly, you assigned a shipping group at the root item level. The assumption was
that the integration layer managed updates to the "shipping group" relationship object.
The result of this was something where "if all sub-items are shipped then set the
shippingGroupItem status on the root item to the status SHIPPED."

Chapter 2
Use the Integration Functionality

2-34

The original method did not work if you sold configured items that are a combination of
goods and services and the services that needed to be assigned to separate shipping
groups. It is important that customers selling nPlay bundles be able to assign each
"play" to its own shipping group. As an example, you should reasonably expect to
be able to assign separate shipping groups to, say, a handset (shipped to your office
via priority mail), a router (shipped to your home via standard mail) and set top box
(shipped to your vacation House via standard mail).

The ability to assign different shipping groups at different levels is also important for
the Cancel In-flight order feature which lets you cancel In-Flight orders. An order which
has been submitted but not fulfilled is considered to be In-Flight. When an In-Flight
order is canceled, the process results in the creation of a new Cancel Order and may
also result in the creation of a Return Request for items that may have already shipped
to the shopper and must be returned, or at least refunded. In order to determine which
items have to be returned, the system must be able to determine the shipping status of
each item in the configuration.

In summary, all items in a multi-item configuration hierarchy from the root to the leaf
level are assigned to a shipping group. You must also be aware that the assignment
of shipping groups is also dependent on other key Commerce product features that
directly impact the assignment of shipping groups.

For customers that are migrating to a release of Commerce that has this shipping
group feature, the assignment of the shipping group logic is not adapted automatically.
They will have to modify their ClientConfiguration settings. For first time users of the
new release, the logic is adapted automatically.

Finally, logic changes are adapted only when the customer is using the Commerce
user interface for all front-end behavior. If the customer is making endpoint calls
directly, then they can call the orders endpoint with the required payloads without
worrying about modifying ClientConfiguration.

Understand the details of assigning separate shipping groups to sub-items

When assigning shipping groups to sub-items, keep in mind the following:

• A shippable product property is provided and should be set to indicate that a
product, whether a hard good or service, can be physically shipped to a purchase.
When the shippable product property for a product is set to FALSE, it can be
assigned to a Virtual Shipping Group so that Oracle CX Commerce does not
attempt to calculate shipping charges for this product..

• If a product is a service then the physical address where the service is to be
provided is provided by the fulfillment system based on the service account
assigned to the item. This information is also provided by the client. Address
information is mandatory for virtual shipping groups as it is required for tax
calculations.

• If the product is a non-shippable good, (for example, a movie download, extended
warranty etc.), address information is again mandatory as it is required for tax
calculations.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses

Chapter 2
Use the Integration Functionality

2-35

appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

An assetable product property is provided which identifies those products that are
sold as a service or subscription (for example a mobile phone tariff, magazine
subscription etc). Assetable products must be assigned to the following when
purchased:

• Customer Account

• Service Account

• Billing Account

• Billing Profile

These type of products are then assigned to a Virtual Shipping Group. Even if the
product is a good (for example, a physical product), it must be assigned to a virtual
shipping group This is because in these circumstances the Commerce purchasing
process is not responsible for calculating shipping charges and the physical address
where the item must be shipped but will be based on the service account assigned to
the item.

The onlineOnly property is provided to identify products that can be purchased online
but cannot be picked up in store. This means that an item can only be assigned an
inStorePickupShippingGroup value if the onlineOnly property value for that product
is FALSE.

In summary, configured item shipping groups are assigned at all of the following levels
of the configured item:

• Root item of type configurableCommerceItem

• Branch items of type configurableSubSkuCommerceItem

• Leaf items of type subSkuCommerceItem

The assignment of shipping groups to configured items is then dependent on whether
individual products are one of (or a combination of) the following types:

• Shippable

• Assetable

• Available for purchase online only

• Being sold as a package (soldAsPackage SKU property). The soldAsPackage
property is available only where the configurable value for the SKU is TRUE.
When soldAsPackage = TRUE, this means that the configurable item is purchased,
shipped, returned, and exchanged as a single item.

Chapter 2
Use the Integration Functionality

2-36

Understand the store features related to assigning shipping groups to sub-items

The following store features are provided to support the assigning of shipping groups
to sub-items:

• The ability to assign all items in a configuration hierarchy to an appropriate
shipping group type.

• The ability to change the assignment of shipping groups at all levels in a
configuration hierarchy.

• The ability to update the tax calculation process to support shipping group
assignment at all levels of a configuration hierarchy.

• The ability to update the shipping charge calculation process to support shipping
group assignment at all levels of a configuration hierarchy.

• The ability to update to the proportional application of promotion discounts to all
items in a configuration hierarchy

See the rest of the topics in this section for more information.

Understand tax calculation and shipping charges when assigning
shipping groups to sub-items

When assigning taxes and shipping charges for shipping groups assigned to sub-
items, you assign different calculating processes from normal customer calculation
processes.

Understand the tax calculation process when assigning shipping groups to sub-
items

The processes for calculating taxes and shipping charges for shipping groups
assigned to sub-items differ slightly than the normal customer calculation process.
In summary, the method used is that if sub-items are shipped separately, then the
root item and the child items are sent as different items to the taxation system which
contains the cost of that item alone and no additional item in the package.

This means that there are two ways that tax calculation occurs with a shipping group.
The first way is that the price of the fully configured package is sent to the taxation
system as all the items in the product configuration have to be delivered to a single
place.

In determining the correct amount of tax payable on a product, the four key
parameters passed to the tax calculator are the following:

• amount - the amount paid by the shopper

• quantity - the quantity of the item being purchases

• shipping charge - the shipping charge that has been calculated for the item

• taxCode - the tax code assigned to the product

For configured items, tax is calculated for each line item in the configuration hierarchy
but the amount passed to the tax calculator is always be the external price returned
from the configurator for that item, in the context of the overall configuration.

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the tax calculator would be zero.

Chapter 2
Use the Integration Functionality

2-37

The net result of this is that, although tax will be calculated for each item in the
configuration hierarchy, all of the appropriate data will be passed to the tax calculator.
It is possible, however, that the amount of tax paid by the shopper may be skewed in
circumstances where the configured item contains products with different tax codes.

Understand the shipping charge calculation process when assigning shipping
groups to sub-items

To determine the correct shipping charges payable on a product, the key parameters
passed to the shipping calculator are the following:

• shippingMethod - the shipping method selected for the item.

• quantity- the quantity of the item being shipped.

• amount - the amount paid by the shopper for the item.

For configured items, shipping charges are calculated for each line item in the
configuration hierarchy. The amount passed to the shipping calculator, however, will
always be the external price returned from the configurator for that item, in the context
of the overall configuration.

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the shipping calculator would be zero.

The net result of this is the following:

• Shipping charges are calculated for each item in the configuration hierarchy and
all of the appropriate data is passed to the shipping calculator. It is possible,
however, that the amount of shipping charges paid by the shopper may be skewed
in circumstances where the configured item price does not accurately reflect the
actual proportional amount paid for an item in the configuration hierarchy.

• Shipping surcharges are included for any item in the hierarchy where such
surcharges have been assigned to that product in Commerce.
Note: The charges are only included for the root item if the whole configuration is
sold as a package

• A merchant can always choose to apply a shipping surcharge for any item where
there is a risk that the shopper will be undercharged for shipping when a particular
product is purchased as part of a configured item.

• Shipping surcharges are not considered if any item presents itself in a virtual
shipping group as those items are non-shippable and are not required to have
shipping surcharges.

Understand shipping charge and tax calculation when assigning costs
to items sold as a package

When assigning costs to items sold as a package, you assign processes for
calculating shipping charges and taxes that differ slightly from normal customer
calculation processes.

Understand the shipping charge calculation process when assigning costs to
items sold as a package

The processes for calculating shipping charges and taxes when assigning costs to
items sold as a package differ slightly from normal customer calculation processes. To

Chapter 2
Use the Integration Functionality

2-38

determine the correct amount of shipping charges payable on an item configured as a
package, the following key parameters are passed to the shipping calculator:

• shippingMethod - the shipping method selected for the item

• quantity - the quantity of the item being shipped

• amount - the amount paid by the shopper for the item

For items sold as a single item (root item) configured as a package, the following
occurs:

• The amount passed to the shipping calculator is always the total price for the
configured item.

• The shippingMethod passed to the shipping calculator will always be the shipping
method assigned to the root item.

• The quantity passed to the shipping calculator is always be the quantity of the
root item.

Shipping charges will be calculated accurately, given that you have decided that the
configured item must be shipped as a unit. Any shipping surcharges assigned to
a sub-item in the configuration hierarchy will not be included in the total shipping
charges.

Understand the tax calculation process when assigning costs to items sold as a
package

In summary, the way that tax calculation occurs with a shipping group sold as a
package is that the price of the fully configured package is sent to the taxation system
as all the items in the product configuration have to be delivered to a single place.

To determine the correct amount of taxes payable on an item configured as a package,
the following key parameters are passed to the tax calculator:

• amount - the amount paid by the shopper

• quantity - the quantity of the item being purchased

• shipping charge - the shipping charge that has been calculated for the package
item

• taxCode - the tax code assigned to the product.

For configured items sold as a package (i.e., where the soldAsPackage value for the
root item = TRUE), taxes are calculated based on the root item only. For configured
items sold as a package, the following occurs:

• The amount passed to the tax calculator is always the total price for the configured
item.

• The taxCode passed to the tax calculator is always the tax code for the root item.
This means that although taxes are calculated for the configured item, the amount
is based only on the tax code of the root item.

Understand how promotion discounts are applied to multi-level items
Promotional discounts can be applied proportionally to multi-level items.

For a multi-level configured item, promotion discounts must be applied proportionally
across the root and all of the sub-items in the hierarchy.

Chapter 2
Use the Integration Functionality

2-39

In Commerce, order level discounts are applied proportionally across all items in the
order (unless an item is specifically excluded from benefiting from such a discount).
For a configured item, a proportional discount must be applied to all items in the
configuration hierarchy. For example if an order level promotion applies a 10%
discount then that 10% discount must be applied to any configured item in the order.

For a multi-level configured item, however, the promotion discount must be applied
proportionally across the root and all of the sub-items in the hierarchy. This applies
only to configured items that are not sold as a package (i.e. where the soldAsPackage
value on the root item = FALSE).

Understand the Customer Account Model
For customers using the Customer Account Model SSE, there are a number of
different account types that can be associated with a shopper within the Oracle CX
Commerce/Oracle CPQ integration.

If you are using the Customer Account Model SSE, there are a number of different
account types that can be associated with a shopper within Oracle CX Commerce.
To configure the Customer Account model, use the provided SSE. To do this, click
the Design icon in the Administration user interface. Then click Developer and
Server-Side Extensions. Select the CustomerAccountModel-store SSE and/or the
CustomerAccountModel-agent SSE.

Both SSEs enable integration with an external CRM system to retrieve and update the
following:

• Contacts

• Accounts (Customer Billing and Service accounts)

• Account Roles (Admin, Buyer and User)

• Billing Profiles

Finally, the SSEs serve as the API for the pre-built integration with Oracle Engagement
Cloud.

There are three account types available within Commerce relating to billable services,
Customer account, Service account, and Billing account.

The details for these three accounts are captured when an order is placed and their
relationship with the service is maintained after an order has been fulfilled.

In many instances these three accounts may all refer to the same person or
organization, but there may also be instances when they differ, and it is important
to understand the relationship between the different types of account.

In addition to the three account types, there is a Billing Profile, which includes
information such as billing preferences.

All of the information required for the Customer, Service, and Billing accounts, and for
the Billing Profile is captured during the order process in Commerce.

Customer Account

This type of account represents the person or organization that owns the service. It
includes basic customer information, such as name and address and can receive both
services and bills.

Chapter 2
Use the Integration Functionality

2-40

Customer accounts are the highest level in the account hierarchy and can perform all
customer, service, or billing functions.

Service Account

This type of account represents the person or organization that receives the service.

The address associated with the Service account defines the physical location where
the service must be delivered. This address is used to verify service and ordering
eligibility.

Service accounts are required when the location and/or party receiving the service
differ from the Customer account. If a Service account is required, it is always a child
of a Customer account. There can be multiple Service accounts associated with a
single Customer account.

A Service account cannot be used to perform any of the functions of a Customer or
Billing account.

Billing Account

This type of account represents the person or organization that pays for the service.

Billing accounts are required when the location and/or party paying for a service differ
from the Customer account. If a Billing account is required, it is always a child of a
Customer account. There can be multiple Billing accounts associated with a single
Customer account.

A Billing account cannot be used to perform any of the functions of a Customer or
Service account.

Billing Profile

A billing profile may be associated with either a Customer account or a Billing account.
It captures information such as billing preferences, method of payment, and contact
details. There may be more than one billing profile associated with a Customer or
Billing account, and the shopper must choose which billing profile to use when placing
an order for a service.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs,
in addition to using Commerce's default address formats, you can also use the
REST API to create multi-country custom address formats. This lets you create
country-specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

• Customize Address Formats using the API in Extending Oracle CX Commerce

• Work with address types in Extending Oracle CX Commerce

• Account Details in Using Oracle CX Commerce

• Work with account addresses in Using Oracle CX Commerce

• Work with account registration requests in Using Oracle CX Commerce

Chapter 2
Use the Integration Functionality

2-41

Use Recurring Charge Items
This integration provides you with the ability to configure items with a recurring charge
that can be passed on in purchase.

This integration enables you to provide items that come with a recurring charge
available for shoppers to purchase. Examples of items that include a recurring charge
include a service such as a data/call minutes/ text message bundle for a cellphone, or
a subscription charge for a cable television package.

Items that include a recurring charge may have just a recurring charge or may have
a recurring charge and a price. If an item has a price and a recurring charge, it is
assumed that the item is not a service or subscription item. In this case the price
represents an upfront payment and the recurring charge is the means by which the
outstanding balance is paid.

Identification of items that include a recurring charge must be carried out through
your Oracle CPQ Admin account. Please refer to the Synchronize Oracle CPQ Cloud
Parts with Commerce SKUs section of the Implementation Guide contained in the
Integrating Oracle CX Commerce with Oracle CPQ article on My Oracle Support.

If a shopper adds a recurring charge item to their cart, Commerce works with Oracle
CPQ to display full information about the recurring charges associated with the order.
This includes how much the recurring charge is for, the frequency of the recurring
charge, and the duration for which the recurring charge will be made.

Note: The default value for frequency is monthly and the default value for duration is
open-ended. If either of these is not the right value for the item they must be corrected
in the Oracle CPQ Part for the item.

Items with a recurring charge are not included in order sub-total passed to the shipping
calculator. If a cart contains only recurring charge items the order sub-total passed to
the shipping calculator is zero, which means that no shipping charge is applied to the
order.

Configure payment for recurring charge items

Commerce includes several built-in integrations with payment gateways that let your
store accept credit cards, debit cards, gift cards, and PayPal payments. However,
these integrations do not currently support recurring charges. If you wish to sell items
with recurring charges you must use one of the methods set out below to configure
Commerce payment processing to support recurring charges.

Configure credit card payments

Follow these instructions to configure your credit card payment processing to handle
recurring charges:

1. Create a custom credit card payment extension.
For detailed instructions about performing this step, refer to Create a credit card
extension.

2. Install the custom credit card payment extension.
For detailed instructions about performing this step, refer to Install the extension
and configure the gateway.

3. Enable the payment gateway.

Chapter 2
Use the Integration Functionality

2-42

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

For detailed instructions about performing this task, refer to Create a Credit
Card Payment Gateway Integration and Create a Generic Payment Gateway
Integration, .

4. Add custom properties to the Credit Card Payment webhook.
For detailed instructions about performing this task, refer to Install the extension
and configure the gateway .

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Configure non-credit card payments

Follow these instructions to configure your generic gateway payment processing to
handle recurring charges:

1. Create a custom generic payment extension.
For detailed instructions on performing this task refer to the Supported payment
methods and transaction types section of Create a Generic Payment Gateway
Integration.

2. Install the generic payment extension.
For detailed instructions about performing this step, refer to the Install the
extension section of Create a Generic Payment Gateway Integration.

3. Enable the payment gateway.
For detailed instructions about performing this task, refer to Create a Credit
Card Payment Gateway Integration and Create a Generic Payment Gateway
Integration.

4. Customize the payment details widget to capture payment information other than
card details.

5. Add custom properties to the Generic Payment webhook.
For detailed instructions about performing this task, refer to Send custom
properties to a payment gateway.

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Use Asset Based Ordering
The Commerce/Oracle CPQ integration features asset based ordering (ABO).

Understand asset definition and related properties

This integration supports an asset based ordering (ABO) model. Asset based ordering
lets you sell tangible assets or subscription services delivered over a period of time;
for example, mobile phone call and data plans, television and broadband packages.
When these orders are subsequently fulfilled, the fulfillment system notifies Oracle
CPQ via an asset API, and Oracle CPQ then creates an asset in the Oracle CPQ
asset repository. To better understand asset based ordering and its related services, it
is important that you first understand asset definition and the related properties.

In the Commerce/Oracle CPQ integration, Commerce acts as the first point of contact
for registered and account-based shoppers. Commerce lets a shopper review and
select their purchases as needed.

Chapter 2
Use the Integration Functionality

2-43

In Telco-related purchases, Oracle CPQ acts as the primary Asset system. Commerce
makes a call to Oracle CPQ to retrieve the assets for a particular profile or account.
Oracle CPQ then manages the retrieval of assets from multiple systems if necessary.

One of the underlying features of any Telco solution is the ability for a self-service
channel (in this case, Commerce) to retrieve and display the complete set of assets
owned by the shopper and then to allow the shopper to trigger operations on those
assets. In order for this to happen, Oracle Commercesupports the following asset-
related information properties at the order item level:

• Asset Key - the assetKey property (formerly assetID) is a unique identifier that
is assigned to potential assets when adding items to a cart. This value is used
throughout the asset life cycle by fulfillment, asset management, and order capture
systems. In this case, the term "potential" is used meaning that not every item
added to a cart gets completely fulfilled, a provisioning system may fail, etc. For
configured items, the assetKey value is assigned as part of the asset configuration
process in Oracle CPQ.

• Parent Asset Key - Some configured items in an order may be many levels deep
in a BOM structure. In order to ensure that the BOM hierarchy is consistent
throughout the asset life cycle, each item in the BOM hierarchy must be able to
identify its direct parent. The parentAssetKey property makes this possible. For
root items in a BOM hierarchy, the parentAssetKey value is NULL.

• Root Asset Key - Again, some configured items in an order may be many levels
deep in a BOM structure. In order to ensure that the BOM hierarchy is consistent
throughout the asset life cycle, each item in the BOM hierarchy must be able to
identify its root asset. The rootAssetKey property makes this possible. For root
items in a BOM hierarchy, the assetKey and the rootAssetKey value is the same.

Understand the mapping of an asset key to an item

In Oracle Commerce, a configurable SKU may be flagged as "non-assetable" which
means that when this item is configured and purchased it will not be assigned a
customer, billing, or service account and will not become an asset for the shopper.
When this item is configured, however, Oracle CPQ returns asset key values for each
item in the BOM by default.

Note: The flag name is assetable and the default value is False.

Commerce only maps asset key values to commerce items that are actually
"assetable." The rules used in this process are the following:

• If the SKU selected for configuration is based on a product where the property
value for assetable = TRUE, map the asset key data.

• If the SKU selected for configuration is based on a product where the property
value for assetable = FALSE do not map the asset key data.

Understand the Asset Root

It is also important to point out that when a shopper chooses to configure a SKU in
Commerce, the root item of the BOM returned from Oracle CPQ may not always be
that same SKU, that is, the root item part number may not map directly to the selected
configurable SKU.

Say, for example, a mobile product bundle that is represented by the "Red Bundle"
SKU in Commerce is configured several ways. At the initial step of the configuration
process, the shopper may be asked to select either the Standard Package, Student

Chapter 2
Use the Integration Functionality

2-44

Package, or Value Package. Depending on the selection made, the root item of the
configuration will be different.

So, based on this example, it is possible that the SKU selected by the shopper to
configure the item will be based on a product where _assetable _= TRUE but the root
item for the resulting configuration may be based on a product where _assetable _=
FALSE.

The rule that decides whether a configured item should be assigned _assetKey _
property is based on whether the SKU that corresponds to the root item of the
configuration is "assetable" and not on whether the item that the shopper selected to
be configured in Commerce is "assetable".

Understand asset based ordering and related service operations

As already discussed, asset based ordering lets you sell assets or subscription
services delivered over a period of time. When these orders are subsequently fulfilled,
the fulfillment system notifies Oracle CPQ via an asset API, and Oracle CPQ then
creates an asset in the Oracle CPQ asset repository.

Once created, assets can subsequently be reviewed by shoppers in the My Services
management area within the shopper account. The shopper can then administer an
asset by creating and placing new commerce orders to perform a number of actions
on the asset. These include the following:

• Modify

• Renew

• Terminate

• Suspend

• Resume

• Upgrade

A Services-store SSE and the Services-agent SSE can be configured from the
administrator’s user interface. To do this, click the Design icon in the Administration
user interface. Then click Developer and Server-Side Extensions. Select the name
of the SSE. Both SSEs enable integration with 3rd party asset management systems
to retrieve and execute operations and services on assets available to the shopper.
They also serve as the API for the pre-built integration with Oracle CPQ asset
management.

For each of these operations the operation flow is basically the following:

• The shopper views their list of assets.

• The shopper selects an asset.

• The shopper selects the desired operation:

– For a Modify operation, the system loads the Oracle CPQ hosted iFrame,
the shopper makes their modifications, and selects to add to cart. This is the
Oracle CPQ hosted iFrame presented to the shopper when they configure a
new purchase prior to adding it the cart, reconfigure a new purchase prior to
checking out, or modify an existing asset.

– For an Upgrade operation, all available upgrade options are displayed on
the Storefront Asset list and then the specific Asset Details pages. After you
have selected a specific Asset, you can select the Upgrade option to view its

Chapter 2
Use the Integration Functionality

2-45

upgrade details. When you click on an upgrade option, an iFrame is returned
and opens up in the context of the available upgrade options. You can then
choose your asset upgrade(s) and add them to your cart.

– For all other operations, the system only makes a call to Oracle CPQ to
execute the operation.

• Oracle CPQ asset records are updated.

• Oracle CPQ returns the required JSON representation of the terminated/renewed/
suspended/resumed/modified/upgraded asset.

• Commerce transforms the JSON returned to a commerce item and adds it the
cart.

– For the Modify and Upgrade operations, the transformation is executed in the
Commerce client layer.

– For all other operations the transformation occurs in the Services SSE which
uses the Asset Action OIC flow.

• The shopper continues shopping.

• When the shopper places the order, the cpq-config-validation-app SSE
is triggered through the External Pricing Webhook. This SSE invokes
getConfiguration for every flow except when the asset actions are Terminate
and Suspend. The response received from OIC gets transformed from the
cpq-config-validation-app SSE as the OIC flows, getConfigurations, and
getConfigBom return a flat structure of items which is converted to a hierarchical
structure. Validation is then done in the cpq-config-validation-app SSE to verify
that data is not manipulated on client-side.

• The order items representing Asset Based Ordering operations are submitted
downstream and contain all of the information required to ensure that the
operation is fulfilled.

The specific Services actions are described in more detail later in this section. These
actions are important for maintaining an efficient self-service channel. When a shopper
performs any one of these actions on an asset, the Oracle CPQ asset repository is
updated accordingly.

Since Commerce serves as the first point of contact for shoppers, it allows shoppers
to review and select their purchases. In the case of a Telco commerce solution, the
Oracle CPQ asset repository acts as the primary Asset system in which Commerce
makes a call to Oracle CPQ to retrieve the assets for a particular profile or account.
Oracle CPQ manages the retrieval of assets from multiple systems.

The Commerce Telco solution gives the shopper the ability to retrieve and display
the complete set of Assets owned by the shopper/account as well as carry out the
mentioned administration operations that can be performed on those assets.

When a shopper opens the My Services management area within their account they
are presented with a list of the assets linked to their account. From here they can
select an asset and click on the Details button next to the desired asset to see the
detailed view of the service.

It is at this point that the shopper can choose between the Modify, Renew, Terminate,
Suspend, Resume, and Upgrade actions.

Chapter 2
Use the Integration Functionality

2-46

Modify

If the shopper chooses Modify, Commerce loads the current configuration for the
service in question and opens a screen that allows the shopper to modify the service
as required. The new monthly charge for the service is updated automatically as the
shopper makes their selections. The shopper can then add the modified service to
their cart.

When the shopper goes through checkout and completes their order, Commerce
submits a service modification request to the fulfillment system.

As mentioned, earlier the steps in this operation are typically the following:

• The shopper views their list of assets.

• The shopper selects an asset.

• The shopper selects a Modify operation. For a Modify operation, the system loads
an Oracle CPQ hosted iFrame. The shopper makes their asset modifications and
selects to add it to cart.

• Oracle CPQ asset records are updated and Oracle CPQ returns the required
JSON representation the terminated/renewed/suspended/resumed/modified asset.

• Commercetransforms the required JSON returned to a commerce item and adds it
the cart. This transformation is executed in the Commerce client layer.

• The shopper continues shopping and then checks out.

The order items representing ABO operations are submitted downstream and contain
all of the information required to ensure that the operation is fulfilled.

Renew

If the shopper chooses Renew, Commerce determines the configuration ID that
represents a renewal of the service in its current configuration and then adds a
renewal instruction to the shopping cart and opens the Shopping Cart Details page.

When the shopper goes through checkout and completes their order, Commerce
submits a service renewal request to the fulfillment system. This is handled and
invoked via the Services SSE endpoint /services/{id}/renewService and the SSE
invokes the OIC flow.

Terminate a service

If the shopper chooses Terminate, a configuration ID is sent back by Oracle CPQ that
represents the termination of the service in question. A termination instruction is added
to the shopping cart and the Shopping Cart Details page is then opened

When the shopper goes through checkout and completes their order, Commerce then
submits the service termination request to the fulfillment system. This is handled
and invoked via the Services SSE endpoint /services/{id}/terminateService which
invokes the OIC flow.

Suspend a service

If the shopper chooses Suspend, it allows them to suspend a service. Commerce
provides an endpoint that is used to suspend a service. When a shopper selects to
suspend a service, they choose the Suspend action and then enter a valid suspend
date.

Chapter 2
Use the Integration Functionality

2-47

By clicking on the Suspend button, Commerce determines the configuration ID that
represents the suspension of the service in question, adds a suspension instruction to
the shopping cart, and opens the Shopping Cart Details page. When the shopper goes
through checkout and completes their order, Commerce submits a service suspension
request to the fulfillment system. Also, when the Suspend action is chosen from the
store user interface, the transaction date is set to current date (i.e., the date that the
shopper suspended the service. This suspension may be indefinite or for set for a
specific period of time by entering a date. A specific shopper use case example might
be letting a shopper suspend a data plan for 30 days.

The Services SSEs support the Suspend operation which returns either a Configured
Item or an Error. Services is part of the Oracle Integrated Cloud flow.

The Services API has an endpoint called Suspend Service. The endpoint can be
triggered when a shopper selects to suspend a service, enters a valid suspend date
and time, and selects to proceed. Inputs include the following:

• Asset Key

• Action - Suspend

• Transaction Date - The valid suspend date and time information that the shopper
entered. The Suspend date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Resume a Service

If the shopper chooses Resume, it allows them to resume a service that was
previously suspended. Commerce provides an endpoint that is used to resume a
service. When a shopper selects to resume a service, they choose the Resume action
and then enter a valid resume date and time to resume the service.

By clicking on the Resume button, Commerce determines the configuration ID that
represents the service in question that is to be resumed, adds a resume instruction to
the shopping cart, and opens the Shopping Cart Details page. When the shopper goes
through checkout and completes their order, Commerce submits a resume service
request to the fulfillment system. Also, when the Resume action is chosen from the
store user interface, the transaction date is set to current date (i.e., the date that the
shopper resumed the service).

The Services SSEs also support this Resume operation which returns either a
Configured Item or an Error. Services is part of the Oracle Integrated Cloud flow.

The Services API has an endpoint called Resume Service. The endpoint can be
triggered when a shopper selects to resume a service, enters a valid resume date and
time and selects to proceed. Inputs include the following:

• AssetKey

• Action: Resume

• Transaction Date: The valid Resume date and time that the shopper entered. The
Resume date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Note: An action code of Renew, Terminate, Suspend, and Resume is assigned to an
item when that respective operation has been applied to that item.

Chapter 2
Use the Integration Functionality

2-48

Upgrade an Asset

With Asset Based Ordering, you have the ability to upgrade an existing asset. If
a shopper chooses the Upgrade operation, they can upgrade an asset to one of
the upgrades available for the product. Any Root asset may have one or more
upgrade options available at any time. Commerce SSE endpoints getServices and
getServices/{id} return the upgrade options for each of the asset if the query param
"expand=occ_upgradeOptions" is passed. Once the shopper selects the Upgrade
action and clicks the Upgrade button, this action invokes the upgradeService SSE
endpoint which gets the upgrade name as input and returns the query string that is to
be used as punchin URL to launch the Oracle CPQ iFrame. From the user interface
point of view, a shopper selects to upgrade an asset, choose the Upgrade action in the
Asset Details view and then select the asset upgrade that they desire.
Oracle CPQ maintains a custom upgrade options table for Commerce to query in order
to know which upgrades are available for a given asset. The key parameter controlling
the operation is the SKU of one or more items that are part of a current asset bundle.
The response received after initiating this operation includes all of the eligible SKUs
that an asset can be upgraded to.

Commerce has an Upgrade endpoint to fetch all available upgrade options. The input
for this endpoint is currentModel and currentOffer. The following presents the details
on the information needed to retrieve the upgrade options table from Oracle CPQ:

• Oracle CPQ Table Name: INT_UPGRADE_OPTIONS

• Input (via URL parameter): occ_Upgrade_options query parameter which is a
list of currentSku plus currentModel for the assets. Type: String. This query
parameter is passed from Commerce to the SSE endpoint (described further
in this section). After a getAssets call, you then pick the currentModel and
currentOffer from each asset and invoke the Oracle CPQ upgrade options table.

• Output: upgradeName, upgradeProductId(OCC)

The following presents the details on the basic schema of the upgrade options table
maintained by Oracle CPQ that contains the specified upgrade information:

Table 2-2 Oracle CPQ Upgrade Table

Column Name Data Type and Description

currentSku String. This value defines the current offer.
This needs to be stored as an attribute
of an asset record. This value is sent
from Commerce while retrieving the upgrade
options.

currentModel String. The model name for which the upgrade
offer is valid.

upgradeName String. This value is passed to he Oracle
CPQ iFrame while upgrading and is used by
Oracle CPQ to default and render the upgrade
options. This is not be used by Commerce for
any purpose.

upgradeProductId String. This is used by Commerce to
identify the product corresponding to upgrade
option. The product display name, description,
images, etc. can be used to show upgrade
details to the shopper.

Chapter 2
Use the Integration Functionality

2-49

Note: A combination of currentSku and currentModel is used as the parameter to find
the matching upgrade options

The Oracle CPQ upgrade table is queried by Commerce to help identify the upgrades
that are available for a given asset. These upgrade options are then presented to
the shopper. An example of what the upgrade information would contain includes the
following:

Table 2-3 Example of upgrade options returned to Commerce

currentSku currentModel upgradeName upgradeProductID

4ForUDeal nPlay 4ForUDeal prod102

It is recommended that the currentSku column is indexed. The following presents
additional details on each returned upgrade option:

• currentOffer - Maps to a configurable attribute on the root config model in Oracle
CPQ. This needs to be stored as an attribute mapping onto the root asset as well.
This value is sent from Commerce while retrieving the upgrade options.

• currentModel - Maps to the variable name of the root config model in Oracle CPQ
which the upgrade offer applies to.

• upgradeName - Maps to the _config_upgrade_name that is passed from
Commerceto Oracle CPQ, which drives recommendation rules on the upgrade.
This is not used by Commerce for any other purpose.

• upgradeProductId - Maps to the Product Id of the upgrade offer in Commerce. This
is used to show upgrade details (product display name, description, images, etc)
to the shopper.

As mentioned, Commerce provides an Upgrade endpoint that is used in the operation
to upgrade the asset. This endpoint is part of the Services SSE which works to
complete multiple service operations (already mentioned in the above sections) via the
Services API. For this operation, the Services API has an endpoint called Upgrade.
The following information provides more detail on what is required by the API to
upgrade an asset using this endpoint:

• SSE name: Services

• Endpoint name: Upgrade

• Endpoint trigger: The endpoint is triggered when the user clicks Upgrade against
an upgrade option

• Inputs:

– Logged in User Token

– AssetID

– upgradeName (returned from Oracle CPQ)

• Returns: Upgrade URL Query String. This is the string of data that is appended to
the base Modify URL to ensure that the upgrade iFrame is correctly pre-populated
based on the product that the shopper is upgrading from and the product that they
are upgrading to.

The activity that occurs at the store user interface level during the Upgrade operation
is the following:

Chapter 2
Use the Integration Functionality

2-50

• Select the Asset List view. This lets you view information about all of your assets/
services. This view will also show the upgrade options (if available) for the asset.
You cannot trigger an Upgrade operation from this view as the actual upgrade URL
is not yet determined until the asset details are retrieved.

• Select the asset you wish to view and click the Details button so that you can view
the asset details and as well as possible upgrade details.

• When you click the Details button of any asset, the asset details page is displayed
which shows all of the details associated with that asset along with available asset
action options.

• The asset details page also has a section showing the upgrade options available
for that asset. When you display the asset details page, the product details of that
SKU/Product are displayed. The Upgrade button is displayed next to any upgrade
available for that asset.

• Click the Upgrade button in the Asset view of the asset that you want upgraded.
Your upgrade option details are then displayed in the Asset Details view. You can
also get the same results by clicking the link for the available upgrade from the
Service list.

• Click Upgrade. When the Upgrade operation is initiated, the following occurs:

– If there are upgrades available for the asset, the SSE endpoint returns an
Upgrade URL Query String and creates the upgrade punch-in URL to load the
iFrame containing the information about the available upgrades.

– When you select to upgrade you are finally presented with a pre-configured
modification to your asset bundle.

– If the SSE endpoint returns an error, this means there are no upgrades
available for this asset and an appropriate error message is displayed.

• Add the upgrade to your cart and submit the order to complete the upgrading
process.

Finally, each of the Asset Based Ordering services operations described earlier may
be carried out by a shopper or by an agent acting on the shopper’s behalf.

Additional information related to using the Upgrade feature with Commerce

The following additional details should be kept in mind when using the Upgrade
feature:

• In Commerce you can start a configuration upgrade from a configurable SKU (for
example, "4ForU Deal") which in turn maps to a model "nPlay" in Oracle CPQ.

• Configuration metadata is set with key "offer" and value "4ForU Deal" for the
above SKU and is passed to Oracle CPQ

• After the configuration upgrade is completed, the BOM returned from the Oracle
CPQ for that configuration may have a different rootSKU (i.e., "nPlay") and that is
what is added to cart. "4ForUDeal" may be a child of "nPlay".

• In Commerce, there is another SKU for "nPlay" that is configurable and maps to
the same model "nPlay" in Oracle CPQ.

• After the order is submitted, an asset with "nPlay" is created which has an asset
attribute of Offer. Offer then has a value of 4ForUDeal.

Chapter 2
Use the Integration Functionality

2-51

Also, via the CommerceAdmin, you can create products with an upgradeProductId as
the productId value, and mark them as 'notForIndividualSale.' This lets you do the
following:

• Have a unique name for each upgrade that can be displayed in the store

• Have a unique description to describe what the upgrade is

• Support locale specific translations

• Have the ability to upload images related to the upgradeOption.

Handle further upgrades to an asset that has already been upgraded

In some use cases, you may have a situation where you have an asset with
currentOffer=sku1234 that is being upgraded to Upgrade 101. When you then visit
the Asset Details page again you are presented with the same upgrade option of
Upgrade101. This can occur because the upgrade does not modify the currentOffer
and it is still sku1234 and its corresponding upgrade options are being fetched during
the getAssets/getAsset flow.

The following details show how you can solve this type of situation:

Table 2-4 Example of how to handle further upgrades to an asset

currentOffer currentModel upgradeName upgradeProductID

4ForUDeal nPlay 4ForUDealPlus 4ForUDealPlus

• Let's say a shopper starts an upgrade configuration from the SKU "4ForUDeal" by
passing the configuration metadata offer=4ForUDeal.

• After upgrading the configuration, the BOM sent from Oracle CPQ may have a
different root SKU id such as "nPlay." "4ForUDeal" may be a child of it. It will also
contain an attribute "offer" with value "4ForUDeal"

• An asset with "nPlay" as the currentModel gets created and the
getAssets/getAsset flows return the asset details along with asset attribute
offer=4ForUDeal.

• The offer attribute is sent as the currentOffer to the Oracle CPQ while retrieving
the upgrade option 4ForUDealPlus.

• Once the upgrade has been performed by passing the upgrade name
4ForUDealPlus to Oracle CPQ in the queryString, the BOM returned from Oracle
CPQ will have the attribute "offer" with value "4ForUDealPlus".

• After submitting the order and updating the asset, the asset attribute "offer" value
now gets updated to "4ForUDealPlus".

• In subsequent getAssets and getAsset calls the asset attribute offer value will
be returned as "4ForUDealPlus", so that there are no matching records for that
currentOffer in upgrade options table in Oracle CPQ.

Understand the Disable Reconfiguration feature

Regarding these operations, the Oracle CX Commerce and Oracle CPQ integration
also has the ability to prevent shoppers from attempting to reconfigure items in their
cart that have been added by any of the following operations:

• Renew

Chapter 2
Use the Integration Functionality

2-52

• Terminate

• Suspend

• Resume

To assist in disabling reconfiguration on already configured items added by any of
these actions, an action code of Renew, Terminate, Suspend, and Resume is assigned
to an item when that respective operation has been applied to that item.

This code is assigned to make sure that shoppers are prevented from attempting
to reconfigure an asset. The purpose of the code is to make sure the reconfigure
session(s) fails, either at reconfiguration or order validation time.

Differentiate between new order items and ABO order items

To identify items in an order that are the result of an operation on an existing asset
(Terminate, Renew, Suspend, Resume, Modify, Upgrade), Commerce has checked to
see if there was an assetId value. If there was, Commerce assumed that the item
is the result of an ABO and not a net new purchase. This approach worked on the
assumption that an asset identifier would only be assigned when the asset record was
created in Oracle CPQ.

Asset identifier values are now assigned at the time when a shopper adds an item
to the cart. To ensure that Commerce can always reliably differentiate between new
order items and ABO order items when an ABO item is added to the cart, a lineType
property for each item in the configuration hierarchy is set to ASSET.

The rule used to differentiate between new order items and ABO order items is the
following: If assetKey value is present and _lineType = NULL then the item is a new
purchase and not an operation on an existing asset.

Retrieve assets for an order with an asset key

For the cancel in-flight feature, Commerceneeds a mechanism for retrieving all of
the assets derived from a particular order. Commerce used to retrieve the assets
for a particular order based on assetID (stored on the asset record in Oracle CPQ).
Commerce now uses the assetKey value.

For any given order Commerce queries the Oracle CPQ assets API to retrieve the
assets for the order based on the collection of assetKey values. This query is limited to
the assetKey values for the root items in the order only

Understand restricting the quantity of assetable items

A shopper used to be able to increase the item quantity for a configured item in the
cart in the same way as any other purchase. This action does not work where an asset
key value has been assigned.

Asset keys are assigned to net new purchases as part of the configuration process.
Oracle CPQ assigns an assetKey for the root and all child items in the configuration. If
an item has been assigned an asset key then this asset key is used to identity a single
instance of this asset throughout the fulfillment, provisioning and asset management
processes. As a result, the quantity of an item cannot be greater than one.

Chapter 2
Use the Integration Functionality

2-53

Customize configurations in Commerce using the CPQ Configuration
API

You can customize the configurations of complex products in Oracle CX Commerce by
using the Oracle CPQ Configuration API to avoid being redirected to a Oracle CPQ
hosted iFrame.

You can now customize the configurations of complex products in Oracle CX
Commerce without being redirected to a Oracle CPQ hosted iFrame.

You can now customize the configurations of complex products in Commerce without
being redirected to a Oracle CPQ hosted iFrame which may have a separate and
distinct user interface look and feel that creates a disjointed user experience. This
capability, known as the Direct API Configuration feature, is provided to build out
support in Commerce for API driven product configurations where the user interface
experience is controlled by Commerce and can be customized by Commerce partners.
At a high level, this feature lets you do the following:

• Create brand specific configuration user interfaces and controls at the global level.

• Create a specific user interface experience for individual customizable products at
the product level.

The goal of this feature is to provide full support of the Oracle CPQ Configuration
API on Commerce Storefront frameworks. This includes providing a mechanism to
dynamically create user interface elements that let shoppers select customizable
products. It then presents them with the appropriate user interface elements to
complete the customization process and add the each item to the cart. These user
interface elements are generated dynamically in response to the selections made by
the shopper at each step of the customization. The functionality of this feature is fully
compliant with current Commerce Storefront frameworks.

The principal benefits of the Direct API Configuration feature are the following:

• iFrame is not required - The current functionality requires that the configuration
system (Oracle CPQ) perform all of the configuration tasks. This means that the
shopper's user interface experience is managed in 2 separate applications. Up to
the point where the shopper selects a customizable product, their user interface
experience is driven by Commerce. On the other hand, the configuration user
experience is managed by Oracle CPQ and when the shopper adds the configured
item to the cart the user experience reverts back to the control of Commerce.
The addition of this feature means that customers will not be required to execute
product configuration via an iFrame. This lets shoppers experience a consistent
user interface with common look and feel across their storefront.

• Decoupling of the user interface and the configuration process - This feature
ensures that the user interface framework is decoupled from the configuration
process. This lets customers do the following:

– Build configuration user interface components using the Commerce Design
Page based on the Store Front 1.0 Framework.

– Build configuration user interface components using a non-Commerce design
user interface framework.

• Performance improvements - The use of the iFrame pattern also creates a
performance concern. The former integration with Oracle CPQ functions well and
the disjointed user experience can be managed to some extent with user interface

Chapter 2
Use the Integration Functionality

2-54

customization. However, there is also no reliable evidence that this design
pattern performs at the levels required for high volume customer-based Telco
implementations, where hundreds of thousands of shoppers may be configuring
complex Telco bundles at the same time. This feature attempts to address this
concern.

The roles that Commerce and Oracle CPQ now take with this feature are the following:

• Oracle CPQ remains the primary configurator and controls the following:

– What needs to be configured

– The sequence in which components/attributes are presented

– The configuration values that are required or accepted

• The Commerce client is responsible for how the configurator is displayed (without
an iFrame).

Additional topics in the current chapter provide you with detailed use cases for this
feature.

Understand the support of the Oracle CPQ Configuration APIs

This feature provides a downloadable extension to the Commerce application
component that provides a collection of endpoints which lets the Storefront UI
(regardless of which user interface framework you are using) do the following:

• Retrieve the end to end UI flow for a given Oracle CPQ Configuration Model

• Retrieve sufficient metadata to identify the user interface elements required for
each attribute of the model. These elements include the following:

– Input Controls (Radio Buttons, List Boxes, Toggles, Date/Time Pickers etc.)

– Navigational Components (Breadcrumbs, Sliders, Image Carousels etc.)

– Information Components (Progress Bars, Tool Tips etc.)

– Containers such as accordion elements

• Retrieve data required to correctly populate each user interface element. This
includes Label Names, Selectable Options, and more

• Create a product configuration

• Update a product configuration

• Update user interface flow

• Update a user interface elements

• Modify a product configuration

• Upgrade a product configuration

• Save a product configuration

• Transform a BOM (bill of materials) to a Commerce cart item

• Reconfigure a saved product configuration

This extension also handles the following management tasks:

• Maintains the state of the configuration until such time as it is saved.

• Makes sure that calls made from the user interface framework to the Commerce
Extension are authorized.

Chapter 2
Use the Integration Functionality

2-55

• Makes sure that calls made from the Commerce Extension to Oracle CPQ
Configuration REST APIs are authorized.

• Ensures that connections are made from the user interface framework to
extension to Oracle CPQ REST APIs without OAIC (Oracle Integration) integration
flows.

• Manages BOM (Bill of Materials) data objects returned from Oracle CPQ when the
configuration is saved.

This Commerce Extension supports any user interface client, including those built on
Commerce Storefront 1.0.

Understand supported integration-specific configuration APIs

The Oracle CPQ (Configure, Price and Quote) Cloud solution supports the complete
quote-to-cash process from customer inquiry to order fulfillment. It guides users to
optimal product options and configurations from simple to complex, automatically
applying discounts and relevant up-sell and cross-sell opportunities. Oracle CPQ
exposes objects and data through REST APIs. By exposing objects and data through
REST APIs, Oracle CPQ promotes simpler API calls and more robust integration using
HTTP standards. For the Direct API Configuration feature and current Oracle CPQ
Integration support, the following configuration APIs are mostly used:

• Configuration Run-Time Data Services APIs - These endpoints expose information
and perform an action for a configuration model. All Configuration Run-Time
Data REST APIs follow a required product hierarchy starting with the product
family then product line followed by the model. A variable name for the product
entity is required. For example, /config{prodFamVarName}.(prodLineVarName}.
{modelVarName}/ is the standard Configuration Run-Time Data product path for an
endpoint URL.

• Configuration Administration REST APIs - These APIs provide product
configuration endpoints that expose configuration definition information for
Configuration Product Families, Product Lines, Models, attributes, array sets,
menu items, and translations. The information for these items is organized
in a hierarchical structure. The Configuration Administration REST API query
parameters are supported to include and exclude child resources in a given
resource. The response for each level in the hierarchy can include the details
of the sub resources based on the query parameter passed in the request.

Customer Configuration flows dictate how users go through the site pages and the
options available as they create a Transaction. Configuration flow rules consist of a
condition and flow attributes. Actions display based on which node in the flow that
the user has available based on defined criteria. Beginning in Oracle CPQ Release
18D,Oracle CPQ transformed the current configuration definition as REST endpoints
to support UI interfaces. These services are available v7 and higher RESTful services.

Refer to the Oracle CPQ REST API documentation for more complete information.

Understand how the Direct API Configuration feature enhances Asset
Operations

As mentioned, this feature provides Commerce with support of the Oracle CPQ
Configuration API Layer while using the Commerce and Oracle CPQ integration. This
means providing functionality that lets customers, using any user interface framework,
configure and/or reconfigure customizable products by invoking the following from
Oracle CPQ:

Chapter 2
Use the Integration Functionality

2-56

• Configuration Run-Time Data Services APIs

• Configuration Administration REST APIs

Building on this foundation, the feature further supports some asset-based operations
whereby the configuration model retrieved from Oracle CPQ represents an existing
asset. This lets the shopper execute the following configuration-related Asset
Operations via direct API calls to the Oracle CPQ Configuration API:

• Modify

• Upgrade

Available Storefront and Agent endpoints for this feature let you modify and upgrade
assets via direct API calls to Oracle CPQ thus removing the need to include an iFrame
in this part of the shopping experience as well. This feature is limited to API only and
customers will need to build their own UI elements to invoke these new endpoints.

By creating your own Modify and Upgrade user interface elements, you can deliver
a seamless and consistent user experience even when modifying or upgrading
complex products or services. The shopper user interface experience while modifying
or upgrading a service can then be consistent with the rest of the site navigation
experience as configuration user interface controls can be created in compliance with
the Site Theme and CSS being used.

To fully implement the Asset Operations portion of this feature you must:

• Download and install the CpqConfiguratorStoreApp and
CpqConfiguratorAgentApp SSEs

• Create a ‘Modify’ user interface element which can be coded into the Asset Details
widget (which is not elementized)

• Create an ‘Upgrade’ user interface element which can also be coded into the
Asset Details widget

The creation of the user interface elements should be a straightforward process for
any developer partner with a working knowledge of Commerce development and
knockout.js.

Refer to Use Asset Based Ordering for more information on these Asset Operations.

Understand Sys Config model support via Commerce and the Oracle CPQ
Configuration API

In Oracle CPQ, certain parts of customizable (configurable) products are based on
"Sys Config" models that are accessible via the Oracle CPQ Configuration API. The
"Sys Config" model consists of a hierarchy of components and associated classes that
are used to model the hierarchical nature of the Product and Promotion structure of
that configurable product.

When products in Oracle CPQ are structured hierarchically, Product Families are
created first. Families provide the broad classifications of products. The next parts
created are Product Lines which are used to describe more specific product areas of
Product Families. Finally, Models are created to provide detail about the most specific
product traits.

Note: In a "Sys Config" model, an attribute of a model can also be another model so it
is important that you fully understand the structured hierarchy of each product family.

Chapter 2
Use the Integration Functionality

2-57

Examples of the product hierarchies just described might look something like the
following:

• Product Family: "Business Laptop"

– Product Line: “EZCompute”

* Model: "EZ"

* Model: "EZ Pro"

• Product Family: ""Gamer Laptop""

– Product Line: "Avenger"

* Model: "Novice"

* Model: "EZ Pro"

Note: In a "Sys Config" model, an attribute of a model can also be another model so
it is important that you fully understand the structured hierarchy of each configured
product family. For example, the "Novice" model in the "Gamer Laptop" product family
could have its own "sub-model" that had a variation of the features (more memory,
better graphics card, and so on) offered in the basic configuration of the parent
"Novice" model. To summarize, this feature lets you reload the configurator with a
model which can be an attribute of the root/parent.

For more complete information on models and Oracle CPQ REST APIs, refer to the
Oracle CPQ documentation.

In the Commerce and Oracle CPQ Integration, Commerce works with the Oracle CPQ
Configuration API to let you execute the configuration of complex "Sys Config" models
via API calls to the Oracle CPQ Configuration API. The Commerce support of the
Oracle CPQ Configuration API lets you open and customize desired models within a
bundle configuration. An example of this might be a product bundle consisting of a
Mobile service attribute as well as a Cable TV service attribute. In this example, each
service attribute (Mobile and Cable TV) is its own model. Commerce support of the
Oracle CPQ Configuration API lets you open a product configurator directly on either
of those service models.

Note: Keep in mind that a shopper can only interact with a model starting from the
root asset of the configured product. Every Configure, Reconfigure, Modify, or Upgrade
operation is an operation carried out on the root asset. Having retrieved the root asset
(the complete product model), the shopper may then navigate to any attributes of the
root. In some cases, an attribute may well be an attribute that is a sub-model.

As far as user cases go, this feature lets you (the developer) build out specific user
interface experiences dealing with the configuration of customizable products from a
desired catalog. In doing so, it lets you apply global, site, or even product-specific
user interface template changes as well as control the user interface flow of the
configuration process for each product. For customers, this feature lets them enjoy
a seamless product customization experience without any indication that multiple
applications are working together as part of an integration to handle the product
configuration.

Implement configuration customization via the CPQ Configuration API.
You need to complete some initial tasks to implement the functionality that directly
customizes configurations using the Oracle CPQ Configuration API for the first time on
a customer storefront.

Chapter 2
Use the Integration Functionality

2-58

https://docs.oracle.com/en/cloud/saas/configure-price-quote/index.html

The Direct API Configuration feature lets you directly customize configurations using
the Oracle CPQ Configuration API. This topic describes the tasks which a developer
and designer would work together to implement this functionality for the first time for a
customer storefront.

This feature lets you directly customize configurations using the Oracle CPQ
Configuration API. This topic describes the tasks which a developer and designer
would work together to implement this functionality for the first time for a customer
storefront. This would be the set of tasks that would be carried out first to allow you to
use the feature.

In this case, the customer does not want to use the hosted iFrame model for
executing product customization on their site but would prefer customization via the
Direct API Configuration feature. The specific reasons the customer is requesting the
implementation of this feature are the following:

• The customer wants the customization user experience to be as seamless as
possible.

• The customer wants their merchandising team to have as much control over the
customization user interface "look and feel" as possible.

• The customer would prefer that the merchandising team manage the user
interface experience in their design tools as much as possible.

The details for implementing and using the Oracle CPQ Configuration API feature
are described in the sections that follow. In these descriptions, it is assumed that the
Commerce and Oracle CPQ Integration is already configured and enabled.

Understand the role of the Commerce Configurator SSE in the Direct API
Configuration feature

The Direct API Configuration feature uses a Commerce server-side extension (SSE)
to provide a collection of endpoints which lets the storefront UI (regardless of the UI
framework used) to configure products and services. The SSE accepts a configurator
request, invokes the corresponding requests in Oracle CPQ, and processes the Oracle
CPQ response before returning an optimized payload.

The SSE performs the following configurator actions:

• Configure - This action corresponds to the Oracle CPQ _configure endpoint and
is the starting point for configuring a model. It returns all the necessary layout data,
attribute, and configuration state data for a user interface to display a configurator
model. Also, where a layout contains Pick Lists and/or Array Sets, it returns all
data required for those components to be rendered.

• Update - This action corresponds to the Oracle CPQ _update endpoint. It
will accept an updated configuration state from the client and return an new
configuration state based on the changes made.

• Next - This action corresponds to the Oracle CPQ _next endpoint. This action
is available when the model configuration is spanned across multiple nodes/
configuration flow layouts. It works similarly to the initial configure action as it
also returns all the necessary layout data, attributes, configuration state, and pick
list/array set data to display the particular layout for a stage in the flow.

• Previous - This action corresponds to the Oracle CPQ _next endpoint. This
action is available when the model configuration is spanned across multiple nodes/
configuration flow layouts. It works similarly to the initial configure action as it also

Chapter 2
Use the Integration Functionality

2-59

returns all the necessary layout data, attributes, configuration state, and pick list/
array set data to display the particular layout for a stage in the flow.

• Add to Cart - This action corresponds to the Oracle CPQ_integration_addToCart
endpoint. This action returns a Commerce commerce item (cart item). It
transforms a Configuration_Details response (returned from Oracle CPQ) to a
Commerce commerce item (cart item). With the embedded configurator, approach
the Configuration_Details response is returned to Commerce and it is the
responsibility of the Commerce client to transform the response to a Commerce
commerce item.

• Reconfigure - This action corresponds to the Oracle CPQ _reconfigureClient
endpoint. It is similar to the Configure action but rather than starting a brand
new configuration, it returns all the necessary layout data, attributes, configuration
state, and pick list/array set data for a user interface to display a configurator
model for an existing configuration. A configId parameter is used to identify the
existing configuration.

• Interact - This action corresponds to the Oracle CPQ _interact endpoint. It is
typically triggered by the user interface in response to a change to an attribute
value when ajaxEnabled has been set to true for the user interface component. It
takes the value for the attribute that has changed and returns a new configuration
state based on the change made.

• Array Set - The action supports the following:

– Add Row - This action corresponds to the Oracle
CPQ _set<arraySetVarName>/actions/_add endpoint. It accepts a
cacheInstanceId and adds a row to the arraySet.

– Delete Row - This action corresponds to the Oracle CPQ
_set<arraySetVarName>/actions/_delete endpoint. It accepts a
cacheInstanceId and removeIndex and removes the row from the supplied
index in the arraySet.

• Layout - This action retrieves the full layoutCache for a particular product and flow.

• Pick Lists - This action retrieves all options available for a particular pick list.

• UI Settings - This action retrieves all general/base user interface configuration
settings from Oracle CPQ.

• Templates - The action retrieves configuration templates that are to be used for
rendering a BOM table and a recommended parts table.

Implement the Direct API Configuration feature

To implement the Direct API Configuration feature in Commerce you must:

• Download and install the Oracle CPQ Configurator (Storefront/Agent) Server-Side
Extension in Commerce.

• Create a "Customize Button for Direct API" user interface element for direct API
configuration.

• Create a "Reconfigure Button for Direct API" user interface element for direct API
reconfiguration."

• Create a JavaScript Library of user interface components that will be used
to render the Layout response from Oracle CPQ (this could be Knockout
Components, React, Commerce elements etc.).

Chapter 2
Use the Integration Functionality

2-60

• Include the "Customize Button for Direct API" element (button) in the Product
Details widget in order to trigger a customization session.

• Include the "Reconfigure Button for Direct API" element (button) in the Shopping
Cart widget in order to trigger a reconfigure session.

• Bundle the user interface elements and JavaScript library into a single extension
that can be uploaded in a single step.

• Log in to Commerce Admin and navigate to Settings → Extensions.

• Upload the Oracle CPQ Configurator server-side extension.

• Upload the new extension containing the user interface elements and JavaScript
library.

Implement the Direct API Configuration feature for Configure

If you decide to implement the Direct API Configuration feature for Configure do the
following:

• Log in to Commerce Admin and navigate to Design → Layout → Product Layout
→ Layout Settings.

• Select Product Layout → Grid View and then select the Product Details widget.

• Select the Element Library. You should see three "Customize Button" user
elements available. These include the following:

– Customize Button - Supports the iFrame customization flow by using the
iFrame URL stored in Commerce Admin and appending values for Product
Line, Product Family and Model to load the iFrame and kick off the
configuration process.

– Customize Button with Configuration Metadata - Supports the iFrame
customization flow by using the iFrame URL stored in Commerce Admin and
appending values for Product Line, Product Family, Model and a collection of
one or more static or dynamic key value pairs of configuration metadata to
load the iFrame in the correct state and kick off the configuration process.

– Customize Button for Direct API - Supports the API driven customization flow.
Note: You created this as directed in the previous section as the "Customize
Button for Direct API" element.

• Add the Customize Button for Direct API to the Product Details widget.

• Save your changes.

• Navigate back to Layout → Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product that lets you buy services for Landline, Mobile, Internet and TV in a single
bundle at a steep discount.

• Save your changes. Select Product Layout → Preview. You are presented with a
preview of the product layout for the 4ForU Deal offer.

• Select to customize the offer. You are presented with the customizable options for
the offer in a combination of user interface components including the following:

– Panels

– Tabs

– Input fields

Chapter 2
Use the Integration Functionality

2-61

– Radio buttons

– Checkboxes

– Multi-select lists

– Single select lists

– Date pickers

– Pick Lists

These components are presented as the default mapping for the corresponding
Oracle CPQ model attributes and layout.

• Publish your changes.

Implement the Direct API Configuration feature for Reconfigure

If you decide to implement the Direct API Configuration feature for Reconfigure do the
following:

• Select Layout → Cart Layout → Grid View and select the Shopping Cart
widget.

• Select Go to widget code.

• Add the Reconfigure Button for Direct API to the Shopping Cart widget.
Note: You created this as directed in the earlier section as the "Reconfigure Button
for Direct API" element.

• Save your changes.

• Navigate back to Layout → Cart Layout → Layout Settings.

• Set the Layout Preview Product ID for the 4ForU Deal offer with a quantity of 1.
This is a configurable product which lets you buy services for Landline, Mobile,
Internet and TV in a single bundle at a steep discount.

• Save your changes.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• Select to customize the offer and add it to the cart.

• Select the cart and choose to edit the configurable item.

• You are presented with customizable options for the offer in a combination of user
interface components including the following:

– Panels

– Tabs

– Input fields

– Radio buttons

– Checkboxes

– Multi-select lists

– Single select lists

– Date pickers

– Pick Lists

Chapter 2
Use the Integration Functionality

2-62

These components are presented as per the default mapping for the
corresponding Oracle CPQ model attributes and layout.

• Publish your changes.

Commerce is now configured to use the direct API configuration process for
customizable products.

Control user interface look and feel using the CPQ Configuration API
The Direct API Configuration feature lets you control user interface "look and feel"
using the Oracle CPQ Configuration API.

You can use the Direct API Configuration feature to control user interface "look and
feel" using the Oracle CPQ Configuration API. This ability lets you do things like the
following:

• Apply a site-specific "Look and Feel" product customization to the user interface
experience.

• Apply site-specific user interface components for a custom user interface
experience.

• Add a new UI component to the configuration flow.

• Remove tabs from the product customization user interface experience.

• Apply a product type specific set of user interface components to the configuration
flow.

Before you can accomplish these tasks, you must first make sure that the API driven
configuration feature has been implemented (described in the previous topic). Also,
it is assumed that the Commerce and Oracle CPQ Integration has already been
configured and enabled.

In the sections that follow, you are provided with details for using this feature to carry
out these customization tasks.

Apply a site-specific "Look and Feel" product customization to the user
interface experience

Consider this situation. Say a customer wants a new custom user interface look and
feel for their site. The customer's in-house design and brand management team have
provided specifications as to:

• Color Schemes

• Style Header and Footer

• Navigation

• Buttons, input fields, check boxes, Multi-select Lists, single select Lists, date
pickers, pick lists

• Component Sizes

• Component Styles

• Component Colors

• Component Fonts

Chapter 2
Use the Integration Functionality

2-63

You are instructed to change the user site interface look and feel so that it reflects
the customer product customization changes. This is done by completing the following
tasks:

• Refer to the Customizing your store layouts section on the Oracle Help Center.
You can see that it is possible to apply the required user in look and feel by cloning
and customizing a Commerce theme.
Note: The included version of the JavaScript Library of Knockout UI Components
used to render the Layout response from Oracle CPQ uses OOTB theme/styles,
(i.e., Bootstrap Forms and Components). Also, by making changes at the provided
Theme level, you can change the look and feel of the configuration UI experience
without making any changes directly to the UI elements or JS Library.

• Clone the provided the theme and apply the required specifications for:

– Backgrounds

– Buttons

– Navigation Menu

– Menu

– Typography

This is done directly in the Design page.

• Use the Design page to access the theme's CSS and apply all of the remaining UI
specifications.

• Save all your changes.

• Navigate to Layout → Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer, this is a configurable
product which allows shoppers to buy services for Landline, Mobile, Internet and
TV in a single bundle at a steep discount.

• Save your changes.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• The system displays the configurable options available in a combination of UI
components such as the following:

– Panels

– Tabs

– Input fields

– Radio buttons

– Checkboxes

– Multi -select lists

– Single select lists

– Date pickers

– Pick Lists

You can now see that all of the user interface components are displayed in accordance
with the new theme that you have created and are in accordance with the rest of the
site.

Chapter 2
Use the Integration Functionality

2-64

Apply site-specific user interface components for a custom user interface
experience

A case may arise where a customer wants the customization user interface experience
to be slightly different from the rest of the site to convey the feeling of personal design
when they are building their tailored product.

The customer's in-house design and brand management team has provided
specifications to make changes to the following user interface elements:

• Buttons - Primary Buttons should contain an icon

• Input Fields - Should all have labels

• Check boxes - Should be rendered as sliders

• Multi-select lists - Should be displayed as a collection of check boxes

• Single select lists - Should be displayed as drop down lists

• Date pickers - Should be displayed as Tumbler Scrolls

• Color pick list - Should be displayed as a swatch matrix with a tone slider

As a member of the SI user interface design team, you are instructed to implement
the new product customization user interface look and feel. You see that in order
to change how the Oracle CPQ model user interface components are rendered
inCommerce, changes must be made to the JavaScript Library of Knockout user
interface components used to render the Layout response from Oracle CPQ. This
JavaScript Library is part of the Oracle CPQ Configurator user interface extension
which was uploaded at feature implementation time.

To implement the new product customization user interface look and feel, complete the
following tasks:

• Log in to Commerce Admin and navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface extension. This extension
includes the Direct API versions of the Configure and Reconfigure user interface
elements as well as a common JavaScript Library that defines the mapping of
Oracle CPQ user interface components to Commerce Knockout Components.

• Create new versions of the following:

– Configure element (if you want the button to appear differently or launch the
configuration in a new widget)

– Reconfigure element (if you want the button to appear differently or launch the
configuration in a new widget)

– JavaScript Library (In the JavaScript library for each component that is to be
rendered differently modify the HTML, JavaScript and define new styles which
must also be added to the global stylesheet).

• Bundle the user interface elements and JavaScript library into a single extension
that can be uploaded in a single step.

• Navigate to Settings → Extensions and upload the new version of Oracle CPQ
Configurator user interface extension.

• Reapply the "Customize via direct API" for Configure by doing the following:

Chapter 2
Use the Integration Functionality

2-65

– Navigate to Design → Layout → Product Layout → Layout Settings.

– Select Product Layout → Grid View and select the Product Details widget.

– Select the Element Library.

– Add the Customize Button for Direct API to the Product Details Widget.

– Save your changes.

– Navigate back to Layout → Product Layout → Layout Settings.

– Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product which allows shoppers to buy services for Landline, Mobile, Internet,
and TV in a single bundle at a steep discount.

– Save your changes.

– Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

– Select to customize the offer. You are presented with the customizable options
for the offer in a combination of user interface components including the
following. These are presented as per the new Knockout user interface
components.

* Buttons

* Input Fields

* Checkboxes

* Multi-select lists

* Single select list

* Date pickers

* Color pick list

• Add the customized offer to the cart.

• Select the cart and chooses to edit the configure item. You are presented with the
customizable options for the offer in a combination of user interface components.
These are presented as per the new Knockout user interface components. These
include the following:

– Buttons

– Input Fields

– Checkboxes

– Multi-select lists

– Single select list

– Date pickers

– Color pick list

• Publish your changes.

Upon completing these tasks, you will see that the product customization user
interface look and feel and components are now distinct from the store design theme
and in accordance with the customer's specifications.

Chapter 2
Use the Integration Functionality

2-66

Add a new user interface component to the configuration user interface flow

Sometimes a customer may want new to add a new user interface component that
shoppers will use to select an image that will be imprinted on the shopper's mobile
phone case.

In this example, the customer's in-house design and brand management team have
developed a new "Image Carousel" user interface component that shoppers will use to
select the image to be imprinted. This new user interface component is used as the
user interface control for Oracle CPQ model attributes which require the shopper to
select an image.

As a member of the SI user interface design team, you are instructed to ensure that
this new user interface component is displayed correctly in Commerce. To add the new
user interface component to the configuration user interface experience via direct API,
complete the following tasks:

• Log in to Commerce Admin and navigate to Settings → Extensions and do the
following:

– Deactivate the Oracle CPQ Configurator user interface extension.

– Delete the Oracle CPQ Configurator user interface extension. This extension
includes the direct API versions of the Configure and Reconfigure user
interface elements as well as a common JavaScript Library of user interface
Components used to render the Layout response from Oracle CPQ.

• Create new versions of the JavaScript Library to include the new 'Image Carousel'
user interface component, including HTML, JavaScript and Style Definitions which
must also be added to the global stylesheet.

• Bundle the user interface elements and new JavaScript library into a single
extension that can be uploaded in a single step.

• Navigate to Settings → Extensions and upload the edited version of the Oracle
CPQ Configurator user interface extension.

• Reapply the '"Customize via direct API" for Configure.

• Preview the product layout and make sure that the new image carousel user
interface component renders correctly when customizing a product.

• Preview product layout and make sure that the new image carousel user interface
component renders correctly when reconfiguring a product.

• Publish your changes.

Upon completing these tasks, you should see that the product customization user
interface now includes a new user interface component in accordance with the
customer's specifications.

Remove tabs from the product customization user interface experience

In this case, the customer's in-house design and brand management team have
requested that all tabs be removed from the product customization user interface as
they have received feedback from customers that they are confusing.

As a member of the user interface design team, you are instructed to remove all tabs
from the customization user interfaces. To remove all tabs, complete the following
tasks:

Chapter 2
Use the Integration Functionality

2-67

• Login to Commerce Admin and navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface extension. This extension
includes the direct API versions of the Configure and Reconfigure user interface
elements as well as the JavaScript Library of user interface Components.

• Edit the JavaScript Library to change how tabs are rendered (stacked, side by side
etc.)

• Navigate to Settings → Extensions and upload the edited version of Oracle CPQ
Configurator user interface Extension.

• Reapply the "Customize via direct API" for Configure Preview the product layout
and make sure that there are no tabs displayed when customizing a product.

• Preview the product layout and make sure that there are no tabs displayed when
reconfiguring a product.

• Publish you changes.

Upon completion of these tasks, you will note that the product customization user
interface no longer displays any tabbed layout in accordance with the customer's
specifications.

Apply a product type specific set of user interface components to the
configuration flow

In this case the, the customer's in-house design and brand management team want
the shopper's configuration experience to be different when they customize shippable
goods (for example, "Build your own laptop") and when they customize services such
as the Phones4All offer.

For this, a new set of "Service Configuration user interface Components" has been
developed by the in-house design and brand management team for the following:

• Buttons

• Input Fields

• Checkboxes

• Multi-select lists

• Single select list

• Date pickers

• Color pick list

As a member of the user interface design team, you are instructed to ensure that
when a shopper is customizing a service these new user interface components will be
displayed. This is done by completing the following tasks:

• Log in to Commerce Admin.

• Navigate to Settings → Extensions.

• Deactivate the Oracle CPQ Configurator user interface extension.

• Delete the Oracle CPQ Configurator user interface Extension. This extension
includes the direct API versions of the Configure and Reconfigure user interface
elements as well as the common JavaScript Library.

Chapter 2
Use the Integration Functionality

2-68

• Edit the JavaScript Library by adding conditional IF statements that map the
Oracle CPQ user interface components to the new "Service Configuration user
interface Components" where Product Type = Service.

• Navigate to Settings → Extensions and upload the edited version of Oracle CPQ
Configurator user interface extension.

• Reapply the "Customize via direct API" for Configure.

• Publish your changes.

• Create a new "Services Product Layout" for products where Product Type =
Service.

• Create a new "Service Product Details Widget."

• Add the "Customize Button for direct API" user interface element to the Product
Details Widget.

• Add the "Service Product Details Widget" to the "Services Product Layout."

• Save your changes.

• Navigate back to Layout → Services Product Layout → Layout Settings.

• Set the Layout Preview Product ID for 4ForU Deal offer.

• Select Product Layout → Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

• Select to customize the offer. You are presented with the customizable options
for the offer in a combination of user interface components. This includes each
of the new "Service Configuration user interface Components." This includes the
following:

– Buttons

– Input Fields

– Checkboxes

– Multi-select lists

– Single select list

– Date pickers

– Color pick list

These are now presented correctly.

• Publish your changes.

Upon completing these tasks, the product customization user interface now displays
the new product type specific user interface components in the configuration flow.

Customize and reconfigure a product by direct use of the CPQ
Configuration API

You can customize and reconfigure a product by directly using of the Oracle CPQ
Configuration API.

You can use the Direct API Configuration feature to customize a product by
implementing and using the Oracle CPQ Configuration API. This feature give you the
ability to do the following:

Chapter 2
Use the Integration Functionality

2-69

• Customize a product where the "Customize via direct API" feature has
implemented in Commerce

• Reconfigure a product before checking out

Before you can accomplish these tasks, you must first make sure that the Direct
API Configuration feature has been implemented (described in a previous topic of
this section of the guide). Also, it is assumed that the Commerce and Oracle CPQ
Integration is already configured and enabled. In the section that follows, you are
provided with details for using the feature to carry out these specific customization
tasks as just described.

Apply customizations to a product by directly using the Oracle CPQ
Configuration API

The list of tasks that follow describe a situation where a shopper customizes a product
where the Direct API Configuration feature has been implemented in Commerce.

In this case, a System Integration Partner has already implemented the feature
and the SI user interface design team may have already done some user interface
customizations by directly using the Oracle CPQ Configuration API.

For this example, it is assumed that the Commerce and Oracle CPQ Integration is
already configured and enabled.

Use the following guidelines to accomplish the specified goals.

• As an example, let us say that the shopper has noticed a lot of web advertising by
their cell phone service for their new Phones4All offer which allows them to buy a
single deal with phones and plans for up to 6 people at huge savings on handsets,
accessories and monthly bills.

• The shopper navigates to their cell phone service and selects the Phones4All
offer. The shopper selects to customize the offer. The UI element Customize
Button for Direct API invokes the .../v1/configurations SSE endpoint
passing the following parameters:

– productFamily

– productLine

– model

– locale

– currency

– configurationMetadata

• The .../v1/configurations SSE endpoint triggers the following Oracle CPQ API
endpoints:

– GET_configUISettings

– GET_pageTemplates

– POST_config

– GET_Layout_ Cache

• The .../v1/configurations SSE collates the data returned from Oracle CPQ, strips
out all extraneous information, and returns a "combined configuration data
response."

Chapter 2
Use the Integration Functionality

2-70

• The shopper is presented with a set of customization options that they can use to
tailor the offer to their specific needs.

• The first option the shopper is presented with is the number of lines required.

• The shopper selects 4 lines.

• The shopper selects Next.

• The UI element Customize Button for Direct API invokes
the .../v1/configurations/{cacheInstanceId}/page SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
by passing the following parameters:

– productFamily

– productLine

– model

– locale

– currency

– op: next

• The .../v1/configurations/{cacheInstanceId}/page SSE endpoint triggers the
following Oracle CPQ API endpoints:

– POST_next

– GET_Layout_ Cache

• The .../v1/configurations/{cacheInstanceId}/page SSE collates the data
returned from Oracle CPQ, strips out all extraneous information, and returns a
"combined configuration data response."

• The shopper is presented with the configuration options for Handset and Plan for
Line 1 including:

– Handset - including Capacity, Color, Tablet, and Watch

– Plan - Silver or Gold

• The shopper selects the "Samsung S10" handset

• The UI element Customize Button for Direct API checks the isUpdatable
property for the handset attribute.

• The isUpdatable property value is TRUE (this means that when an option
is selected for this attribute, the configuration model must be updated as this
selection impacts other model attributes).

• The UI element Customize Button for Direct API invokes the .../v1/
configurations/{cacheInstanceId} SSE endpoint (where cacheInstanceId
represents the current reconfiguration instance in Oracle CPQ) passing the
following parameters:

– productFamily

– productLine

– model

– locale

Chapter 2
Use the Integration Functionality

2-71

• The .../v1/configurations/{cacheInstanceId} SSE endpoint triggers the
POST_update Oracle CPQ API endpoint.

• The .../v1/configurations/{cacheInstanceId} SSE collates the data returned
from Oracle CPQ, strips out all extraneous information and returns a "combined
configuration data response."

• The shopper sees that some of the options that were previously available for
capacity, color, table and watch have been updated and that they are now limited
to those compatible with their selected Samsung S10 handset.

• The shopper selects the 256GB capacity option for the handset.

• The UI element Customize Button for Direct API checks the isUpdatable
property for the handset attribute. The isUpdatable property value is FALSE (this
means that when an option is selected for this attribute the configuration model
need not be updated as this selection does not impact other model attributes).

• The shopper completes the customization for Line 1 and moves on to line 2.

• When the shopper is part way through the customization of Line 2, they decide
that they may need to make a change to the handset capacity for Line 1.

• The shopper selects Previous.

• The UI element Customize Button for Direct API invokes
the .../v1/configurations/{cacheInstanceId}/page SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
passing the following parameters:

– productFamily

– productLine

– model

– locale

– currency

– op: previous

• The .../v1/configurations/{cacheInstanceId}/page SSE endpoint triggers
the POST_previous and GET_Layout_ Cache Oracle CPQ API endpoints.

• The .../v1/configurations/{cacheInstanceId}/page SSE collates the data
returned from Oracle CPQ, strips out all extraneous information, and returns a
"combined configuration data response."

• The shopper is presented with the configuration options that they selected for Line
1.

• The shopper changes the capacity for the Line 1 handset and continues to
customize the rest of the lines.

• The shopper completes the customization of their Phones4All offer.

• The shopper selects Add to Cart.

• The UI element Customize Button for Direct API invokes the .../v1/
configurations/{cacheInstanceId}/add-to-cart SSE endpoint (where
cacheInstanceId represents the current reconfiguration instance in Oracle CPQ)
passing the following parameters:

– productFamily

Chapter 2
Use the Integration Functionality

2-72

– productLine

– model

• The .../v1/configurations/{cacheInstanceId}/add-to-cart SSE endpoint
triggers the POST_integration_add_to_cart Oracle CPQ API endpoint.

• The .../v1/configurations/{cacheInstanceId}/add-to-cart SSE transforms
the Oracle CPQ response to a Commerce cart item and adds the configured item
to the Commerce cart.

• The shopper proceeds to checkout.

When all of this has completed, a multi-level configured item is added to Commerce
cart.

Reconfigure a customized product before checking out

In this situation, a shopper decides to make a change to a customized product after
adding it to the cart but before checking out.

Say, for example, the customer has customized their Phones4All offer and has added
it to the cart. Before checking out, however, the shopper reviews their choices and
realizes that by including the Apple Watch with Line 4 the offer is more than $200 over
their budget. The following details illustrate what occurs if a typical shopper wishes to
reconfigure an already customized product before checking out:

• The shopper selects to edit the Phones4All item in her cart.

• The user interface Shopping Cart widget with a Reconfigure Button for Direct
API invokes the .../v1/configurations SSE endpoint passing the following
parameters:

– productFamily

– productLine

– model

– locale

– currency

– configId (identifies the specific instance of configuration in Oracle CPQ which
is to be reconfigured)

• The .../v1/configurations SSE endpoint triggers the following Oracle CPQ API
endpoints:

– GET_configUISettings

– GET_pageTemplates

– POST_config

– GET_Layout_ Cache

• The .../v1/configurations SSE collates the data returned from Oracle CPQ,
strips out all extraneous information, and returns a "combined configuration data
response."

• The shopper is presented with all of the customization options and selections that
they have made.

• The shopper navigates to Line 4 and removes the Apple Watch selection.

Chapter 2
Use the Integration Functionality

2-73

• The shopper selects to save and their cart is updated.

The Commerce cart is now updated with the newly reconfigured item.

Appendix A: Configurator Flow
A Configurator process flow occurs between Oracle CPQ and Commerce during the
integration.

The following presents a diagram of the integration Configurator Flow:

Appendix B: Request for Quote Flow
A Request for Quote process flow occurs between Oracle CPQ and Commerce during
the Quote integration.

The following presents a diagram of the Request for Quote integration flow between
Commerce, OIC, and Oracle CPQ Cloud when using theOracle CX Commerce-Oracle
CPQ Quote integration

Chapter 2
Appendix A: Configurator Flow

2-74

3
Integrate with Customer Data Management

Integrate Oracle Customer Data Management with Oracle CX Commerce.

You can configure your Commerce environment to integrate with Oracle Customer
Data Management (CDM), a cloud-based application for managing organizations and
contacts.

Integrate with Customer Data Management
Integrate your Oracle CX Commerce environment with Oracle Customer Data
Management.

Oracle CX Commerce can be configured to integrate with Oracle Customer Data
Management (CDM), a cloud-based application for managing organizations and
contacts. (CDM is also referred to as Oracle Engagement Manager or OEM.)
CDM can store organization and contact records that are consolidated from several
different applications deployed throughout your environment. You can use CDM to
identify potential duplicate records and take the necessary actions to edit, remove
or validate your data. For information on obtaining, installing and configuring CDM,
refer to https://docs.oracle.com/en/cloud/saas/customer-data-management/20d/
books.html.

Accounts, contacts and their relationships and addresses can be synchronized from
CDM to Oracle CX Commerce. Similarly, accounts and contacts that are created either
through self-registration or a delegated administrator can be synchronized with CDM
in real time. The integration between Oracle CX Commerce and CDM occurs by both
applications communicating through Oracle Integration Cloud (OIC), a cloud-based
communication platform.

For information on obtaining, installing and configuring OIC, refer to https://
docs.oracle.com/en/cloud/paas/integration-cloud/index.html.

Integrating between CDM and Oracle CX Commerce allows you to create scheduled
jobs that identify changes to data and then perform the following actions:

• Synchronize in bulk or individually accounts that have been created or updated in
Commerce to CDM in real time.

• Synchronize in bulk or individually contacts and profiles that have been created
or updated in Commerce to CDM in real time. Additionally, you can associated
contacts to an account during the synchronization process.

• Maintain organization hierarchy between synchronizations.

Steps and requirements for the integration

Before you can configure the integration, ensure that you have the following:

• An Oracle CX Commerce account and access to Oracle CX Commerce 21A or
later.

• An Oracle Customer Data Management account and access to CDM 21A or later.

3-1

• An Oracle Integration Cloud (OIC) account and access to the Oracle Integration
Cloud Service.

If you require one or more of these applications, please contact your Oracle sales
representative: http://www.oracle.com/us/coporate/contact/index.html.

The integration is delivered as a .par file. To download and import the integration,
perform the following:

1. Open the integration package OCC-OEC_Integration.

2. Import the package by logging into OIC as an admin user.

3. Click the Packages button.

4. Click the Import button.

5. Click Browse to open the navigation pane.

6. Select the OCC-OEC_Integrations package.

7. Click Import.

The package is added to the packages list.

Understand integrations

The OCC-OEC_Integrations package contains three connections and six integrations.

The connections used are:

• Oracle Customer Data Management (CDM), also known as Oracle Engagement
Cloud (OEC) - You must provide a CDM Services Catalog URL and an Interface
Catalog URL. You must also provide the Username and Password for access to the
OEC.

• Oracle Export Download - This connection is a REST API Base URL that requires
a connection URL that points to the Bulk Export Activities resource. You must also
provide the CDM Username and Password for access to CDM.

• Oracle Commerce Cloud - This requires a connection to a Base URL as well as a
security token.

The six integrations configured within the package are:

Bulk Profile Sync from OEC to Commerce

This scheduled flow synchronizes profiles in bulk from CDM to Commerce. The
identifier is BULK_PROFILE_SYNC_OEC_TO_OCC.

When OEC encounters a file that contains more than 50 thousand records, it splits
the records into multiple CSV files. However, the OIC integration does not support the
conversion of multiple CSV files into JSON files. Should your export file contain more
than 50 thousand records, it will be divided into multiple files, however these files will
not be converted. To prevent this from occurring, ensure that you do not export more
than 50 thousand records at a time.

You should also ensure that CDM is configured to store states using the abbreviated
state format, such as CA or VT. This is required because Commerce stores the state
values in the abbreviated format.

The following diagram shows the flow of the integration:

Chapter 3
Integrate with Customer Data Management

3-2

Bulk Account Sync from OEC to Commerce

This scheduled flow synchronizes account data in bulk from CDM to Commerce. Its
identifier is BULK_ACCOUNT_SYNC_OEC_TO_OCC. When you are synchronizing addresses,
the primary address in CDM is marked as the default shipping address in Commerce.

Note that OEC supports multiple accounts with the same name. If a CSV file has
to account records with the same name or email address, only the first instance
will create a record, the second instance will then update the record. Therefore it is
important that you define the appropriate restrictions in CDM to ensure that account
names and profile email addresses are unique.

The following diagram shows the flow of the integration:

Create Account From Commerce to OEC

Chapter 3
Integrate with Customer Data Management

3-3

The following integrations perform individual synchronizations of things such as
profiles, accounts and addresses. This event flow is triggered whenever an account
is created in Commerce. It synchronizes the new account data with CDM. Its identifier
is CREATE_ACCOUNT_OCCS_TO_OEC.

Note that when synchronizing account and contact data from Commerce to CDM, the
default shipping address in Commerce is marked as the primary shipping address
in CDM. Additionally, accounts that are synchronized from Commerce to OEC are
marked as type = CUSTOMER in OEC.

Inherited attribute values are not synchronized to OEC. If an account is a sub-account
and it inherits the Tax and DUNs values from its parent, these values are not
synchronized, and the Tax and DUNs values will be set to NULL. This occurs because
inheritance is not recognized in CDM. The integration uses the following architecture:

Create Profile sync from Commerce to OEC

This even flow is triggered whenever a profile is created in Commerce. It synchronizes
the new profile data with CDM. Its identifier is CREA_PROF_SYNC_FOM_OCC_TO_OEC.

This integration uses the following architecture:

Update Account From Commerce to OEC

Chapter 3
Integrate with Customer Data Management

3-4

This event flow is triggered whenever an account is updated in Commerce.
It synchronizes the new account data with CDM. Its identifier is
UPDATE_ACCOUNTS_OCC_TO_OEC.

Note that when synchronizing account and contact data from Commerce to CDM, the
default shipping address in Commerce is marked as the primary shipping address
in CDM. Additionally, accounts that are synchronized from Commerce to OEC are
marked as type = CUSTOMER in OEC.

Update Profile sync from Commerce to OEC

This event flow is triggered whenever a profile is updated in CDM. It synchronizes the
new profile data with Commerce. Its identifier is UPDA_PROF_SYNC_FROM_OCC_TO_OEC.

Understand account-based contact address synchronization

Commerce supports roles at the account-contact relationship level. However, CDM
does not provide such a dynamic use of roles. Whenever an account or contact is
synchronized from CDM to Commerce, the default role of Buyer is assigned to all
relationships. Because of this, Commerce is unable to assign the Address Manager
role and cannot assign addresses to account-based contacts who only have the role of
Buyer.

Register the integration with Commerce and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

• Log into the Commerce administration interface.

• Click the Settings menu and select Web APIs.

• Click Registered Applications from the Web APIs panel.

• Click the Register Application button.

• Enter a name for the integration application. Create a meaningful name that
reflects the purpose of the application.

• Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

• Click on the name of the application you created.

• Click on Reveal link to display application key. You can copy the application key to
use as the security token for the Oracle Commerce Cloud connection.

For more information on managing an application within Commerce, refer to Register
applications.

Configure the source system reference

Whenever contacts are synchronized from Commerce to CDM, a source system
reference is required in CDM. Source system references allow you to identify the
source of the data. When you create a source system code, ensure that it has a
unique identifier.

Configure the source system code in OIC to pass the value to CDM as part of
the integration flow. For information on setting up OIC mappings, refer to the OIC
documentation.

Chapter 3
Integrate with Customer Data Management

3-5

To configure a Commerce system, log into your CDM application and perform the
following steps:

• Navigate to the Setup and Maintenance tab.

• Select Customer Data Management from the Setup options.

• Select Trading Community Foundation. From there, select the Manage Trading
Community Source Systems.

• Create a Commerce Cloud system with the code COMMERCE_CLOUD. The Type of the
code is Spoke. Provide a full name in the Name field, such as Oracle Commerce
Cloud. Enable the code for Trading Community Members.

• When you have finished, save your changes by publishing the sandbox by using
the drop down menu to select Manage Sandboxes. Select the currently active
sandbox and click Publish.

Configure the Commerce webhook

When an account or profile is created in Commerce, it is synced to OEC.
These synchronizations are triggered by the account, shopper and CreateAnUpdate
webhooks. The webhooks then trigger the integration workflows. You must configure
the profile and account webhook to point to the correct URLs. Follow these steps to
configure the webhooks in the Commerce administration interface:

• Log into the Commerce administration interface.

• Click the Settings icon.

• Click Web APIs and then click the Webhook tab.

• Click the production-updateProfile webhook. Provide the endpoint URL for the
integration:

.../ic/api/integration/v1/flows/rest_oraclecommercecloud/
UPDA_PROF_SYNC_FROM_OCC_TO_OEC/1.0/

• Update the OIC username and password under Basic Authorization.

• Click the production-registerProfile webhook. Enter the integration endpoint
URL in the URL box:

.../ic/api/integration/v1/flows/rest_oraclecommercecloud/
CREA_PROF_SYNC_FROM_OCC_TO_OEC/1.0/

• Update the OIC username and password under Basic Authorization.

• Click the production-createAccount webhook. Enter the integration endpoint
URL in the URL box:

.../ic/api/integration/v1/flows/rest_oraclecommercecloud/
CREATE_ACCOUNT_OCCS_TO OEC/1.0/

• Update the OIC username and password under Basic Authorization.

• Click the production-updateAccount webhook. Enter the integration endpoint
URL in the URL box:

.../ic/api/integration/v1/flows/rest_oraclecommercecloud/
UPDATE_ACCOUNT_OCCS_TO_OEC/1.0/

• Update the OIC username and password under Basic Authorization.

• Click Save.

Chapter 3
Integrate with Customer Data Management

3-6

Configure the connections

Once you have installed the package, you must configure the connections used in the
integration.

• Log in to OIC as an admin user.

• Select Integration and then Connections.

• Select Oracle Engagement Cloud. The Connection Properties dialog appears.

Enter the OEC Services Catalog URL and an Interface Catalog URL.
The OEC Services Catalog URL is: https://hostname/fscmService/
ServiceCatalogService?wsdl

The Interface Catalog URL is: https://hostname/helpProfalApi/
otherResources/latest/interfaceCatalogs

• Enter the Username and Password for access to the OEC.

• Enter the security token value, which you can find in the Commerce administration
settings and click OK.

• Select OEC Export Download. The Connection Properties dialog appears.

• The connection type for this property is restUrl.

Enter the connection URL that points to the Bulk Export Activities resource. For
example, the URL would be: https://CDMServer/crmRestApi/resources/
CDMServer/bulkExportActivities

or

https://CDMServer/crmRestApi/resources/latest/
bulkExportActivities.

• Select Oracle Commerce Cloud.

– Enter the Connection base URL, which would be https://
CommerceHost/ccadmin/v1

– The security token is the application key created in Register the application
and Create a security key.

Activate the integration flows

After you configure the Oracle CDM and Commerce connections, you must activate
the integrations that were created when the integration package was imported to
Oracle Integration Cloud. To do this, follow these steps:

• Log in to Oracle Integration Cloud (OIC) as an admin user.

• Click the Integrations icon to display the Integrations list.

• Click the Activate button for each of the following integrations:

– Bulk Profile Sync from OEC to OCC

– Bulk Account Sync from OEC to OCC – Note that activating both of
these bulk integrations also requires creating a schedule that then runs the
integration.

– Update Account From OEC to OCC

– Update Profile sync from OEC to OCC

Chapter 3
Integrate with Customer Data Management

3-7

– Create Account From OCC to OEC

– Create Profile sync from OCC to OEC

OIC displays a message to indicate that the integration flow was successfully
activated.

Mapping for CDM and Commerce

The following table shows the relationships between the CDM properties and
the Commerce properties. For details on the properties, refer to each product's
documentation:

Property in CDM Property in Commerce

Account Account

Address Address

Address ID Id

Address Line 1 address1

Address Line 2 address2

City city

Country country

DateOfBirth dateOfBirth

DoNotEmailFlag not(receiveEmail)

emailAddress email

FirstName firstName

LastName lastName

MiddleName middleName

Party Number Whenever an account, contact or address
entity is synchronized between CDM and
Commerce, the Party Number information
is stored in externalOrganizationId
property. The Party Number property also
maps to the customerContactId and the
externalAddressId properties.

PartyId (Generated automatically by CDM) None

Person Profile

Postal Code postalCode

Primary address Default shipping address

Primary contact Commerce accounts can have multiple
contacts, and do not recognize a primary
contact.

Province None

Relationship (account-account) Parent Organization

Relationship (account-person of type
contact)

Contact, or Secondary Contact (There is
no distinction between contact or secondary
contact in CDM.)

SourceSystemReferenceValue profileId

State state

Chapter 3
Integrate with Customer Data Management

3-8

4
Integrate with an External Product
Configurator

Integrate an external product configurator with Oracle CX Commerce.

When your store is configured to sell configurable products, you may want to integrate
with an external product configurator. The recommended configuration is to integrate
with Oracle CPQ Cloud, however, you can also integrate with a third-party configurator
application.

Enable the integration
This topic shows how to enable the integration with the third-party configurator within
Oracle CX Commerce.

1. In the Commerce administration interface, select Settings.

2. Select Oracle Integrations from the sidebar menu.

3. Select your configurator from the dropdown menu.

4. Check the Enable Integration checkbox.

5. Enter the Configuration URL.

6. Enter the Reconfiguration URL.

Note: You must enter these values for your production and preview environments.

7. Click Save.

If you are using multiple sites, you must follow these instructions for each site that you
operate.

Mark products as configurable
To identify a product as configurable:

1. In the Commerce administration interface, select Catalog.

2. Select the product you wish to identify as configurable.

3. Click on the SKUs tab of the product detail pop-up frame.

4. Select the SKU you wish to identify as configurable.

5. Check the Configurable checkbox. This displays three further fields you must
complete.

6. Enter the Model information. This should match the Model information of a
configurable product in the catalog on your configurator.

7. Enter the Product Line information. This should match the Product Line
information of a configurable product in the catalog on your configurator.

4-1

8. Enter the Product Family information. This should match the Product Family
information of a configurable product in the catalog on your configurator.

9. Click Save. This returns you to the SKU frame, where the SKU you updated
should be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the
SKU import program. From the Catalog page in Commerce, click Manage Catalog
and select Import. In the Import dialog, click Browse and locate the CSV file to
import. Click Upload File, click Validate, and then click Import.

Add Customize button to Product Details widget
Add a Customize button to the Product Details widget so the button is visible to
Commerce self-service users from the Product Details page for a customizable
product.

To add a Customize button to the Product Details widget:

1. In the Commerce administration interface, Select Design.

2. Select Product Layout from the layout list.

3. Delete the Product Details widget from the layout.

4. Place a new product details widget on the layout.

5. Click the Settings icon for the new Product Details widget.

6. From the Element Library, place a Customize button on the new Product Details
widget.

7. Publish the changes.

Configure the webhooks
A number of webhooks within Commerce provide support for configured items. These
must be set up appropriately for your external configurator.

The following webhooks support configuration:

• Approval

• Cart Idle

• External Price Validation

• Order Submit

• Order Submit for PCI Compliant Target Systems

• Quote Request

• Quote Update

• Return Request Update

Ensure that each of these webhooks is configured to work with your external
configurator. This means providing appropriate URLs, usernames, and passwords to
each of these webhooks.

Chapter 4
Add Customize button to Product Details widget

4-2

5
Integrate with Oracle Infinity to collect data

Through an integration between Oracle Commerce and Oracle Infinity, the Commerce
Data Ingestion feature lets you use a Universal JavaScript tag that ingests all
Commerce Storefront events and sends the data to the Infinity data repository for
analytic purposes.

By using this feature, Oracle provides the Customer Data Platform (CDP) system with
data that lets marketers dynamically generate audience segments based on current
and past behaviors and data attributes.

As a critical part and foundation of the CDP, the Oracle Management Cloud
(OMC) Universal Data Ingestion Framework (DIF), by integrating with the Oracle
Infinity technologies, establishes the common data ingestion framework for collecting
Commerce product behavioral data.

Integrate Commerce with Infinity
This integration establishes a common data ingestion framework for collecting product
behavioral data.

This topic explains how the Commerce and Infinity integration establishes a common
data ingestion framework for collecting product behavioral data.

To integrate Oracle Infinity with Commerce, events are used as starting point. There
are a lot of events which are published from the current store front framework
whenever an event takes place in the store user interface. The events used in the
integration revolve around actions such as Registration, Login, Cart events, Search,
Products viewed, Order placement, and others. These events are subscribed to and
are used to send data to Infinity whenever they occur. Specific examples of the data
that can be collected include the following:

• Page analytics data (URL, referrer, time on page, browser, device operating
system, etc.)

• Commerce specific data

• Products viewed

• Products added to cart

• Categories viewed

• Search terms used

• Order data

• Wish list data

Note: The integration collects data for both account-based and anonymous shoppers.

To collect this data, the presence of an Infinity tag in a site page initiates the
download of an Infinity JavaScript. For that to occur, the Infinity tag has to be in
a "require" dependency. Infinity provides a long list of event parameters which can

5-1

accept Commerce data and send it to the Infinity API. Commerce then subscribes to a
particular set of these events and provides the mappings to send the data to Infinity.

In summary, the integration works as follows:

• Commerce loads Infinity JavaScript to site pages through a "require" dependency
from the Infinity viewmodel.

• Commerce subscribes to particular Infinity events. These are then tracked and
bound with methods.

• Commerce data is mapped with Infinity parameters in the methods and this is sent
to Infinity for collection.

A new setting for the Infinity integration is provided under the Integrations tab available
to Commerce Administrators. After enabling this setting, you must provide the Infinity
tag in the Production URL field required for this setting.

A new viewmodel, infinity.js, is also provided. The Infinity viewmodel loads the
Infinity script into the browser. Subscriptions to the events to be tracked are added in
this viewmodel along with their corresponding methods for correct data mapping. The
methods are kept as prototype methods which makes them extendable if you want to
add more parameters apart from the provided mappings.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

Understand the role of the Infinity platform in data ingestion
Infinity provides a platform for data ingestion when integrated with Commerce.

With the Commerce data ingestion feature enabled, the Oracle Infinity Tag used in
Commerce site pages initiates the collection of data from online systems capable of
executing JavaScript. This data is then saved in the Oracle Infinity data repository.
Though initial configuration is very simple (by using the Infinity tag features), complex
behaviors and site content can be tracked and delivered to the Oracle Infinity reporting
environment. Data collected by using the tag can then be used to drive marketing
activities of any conceivable type, and integrations with Oracle Marketing Cloud
applications.

Oracle Infinity provides the following capabilities:

• Data collection - Collects web and mobile app activity data that interests you. As
data is collected, it is organized in sessions, augmented, and evaluated to identify
if someone is a previously known user or a new user. All data is collected quickly,
processed, and made available for analysis using Infinity's reporting user interface
and APIs. This lets you get immediate feedback on campaigns or new content you
just launched on your site.

• Reports - Analyzes your data and prepares reports immediately. Unlimited
swappable dimensions reduce the need for one-off reports.

• Streams - Gains real-time insights into a continuous flow of visitor activity data.

• Action Center - Integrates in-session, customer-level data with action systems
such as email service providers, CRM systems, and marketing automation
platforms. Action Center enables creation, monitoring, stopping, and starting of
connections.

Chapter 5
Understand the role of the Infinity platform in data ingestion

5-2

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

• Integrations - Provides APIs that let you integrate with your business and
marketing applications.

• Account settings - Defines roles, groups, user privileges, and more.

• Library - The Library application provides you with a way to administer reports,
measures, dimensions, segments, and any other objects that you can administer.

You may encounter the following Infinity terminology when trying to work with the
Commerce and Infinity integration to successfully collect the data that best works for
you:

• Account GUID – A unique value used to identify your account. All collected data is
stored in one place for an account. All tags on an account use the same account
GUID.

• Tag Id – Tag identifier used to put your tags into a hierarchical format. Each tag
has a unique ID that may be set at creation time.

• Context – A Context tag is a unique tag configuration selectable by query
parameter. You may only have one active context at a time for a tag, though you
may have multiple contexts configured for an individual tag.

• Plugin – An add-on to the tag that enables tracking libraries for functions outside of
what the base tag tracks.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

Tag site pages to use the Infinity data ingestion feature
The presence of an Infinity tag in site pages initiates data collection from online
systems capable of executing JavaScript.

As mentioned, complex behaviors and site content can be tracked and delivered to
the Oracle Infinity reporting environment by using the special Commerce Infinity tag
in your store pages. This data is ingested and sent to the Infinity data repository for
analysis.

To use this tag in your store site pages, contact your Oracle account representative to
obtain a base tag for your site. A tag URL will be returned to you that looks something
like this: c.oracleinfinity.io/acs/account/account_guid/my_tagid/odc.js.

A setting for Infinity is available in Commerce Admin application under the
Integrations tab. After enabling the setting, provide the Infinity Tag URL obtained
from Infinity in the Production URL field.

Note: The GUID and tagID are unique strings for your site and tag.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

Understand Infinity integration parameter mapping
Commerce subscribes to particular events in the Storefront which are then tracked and
bound with related methods. Infinity parameters are mapped in these related prototype
methods with Commerce data.

Chapter 5
Tag site pages to use the Infinity data ingestion feature

5-3

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

A site page containing the Infinity tag loads an Infinity script through a "require"
dependency. Commerce then subscribes to particular Infinity events to be tracked
and bound with specific methods. The Commerce data is then mapped with Infinity
parameters in the methods and this is sent to Infinity for collection. The available
Commerce/Infinity parameter mappings are the following:

Note: If for some data field a provided parameter is not available in Infinity, you can
create custom parameters as "wt.z_<yourName>."

Table 5-1 Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

USER_PROFILE_UPDA
TE_SUCCESSFUL

Published when the
user profile is
updated. When the
REST call for profile
update is a success, it
publishes an event.

• page URI
• user-id
• content-group

name ("User
Profile")

• step name
("Update
Successful")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

Chapter 5
Understand Infinity integration parameter mapping

5-4

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

USER_PROFILE_UPDA
TE_SUBMIT

Published from
order.js while
placing an order,
before placing an
order it validates
registered user.

Published from
user.js when the
user locale is updated
if it's not part of
supported locales. On
successful update to
profile, this event is
published.

Published from the
Customer Profile
widget via the widget's
customerProfile.j
s when the user
profile is updated.

Published from
Header widget via the
widget's element.js
when user locale is
updated.

Published from the
Checkout Registration
widget via the widget's
checkoutRegistrat
ion.js, when a place
order button is clicked
and it publishes a
CHECKOUT_VALIDATE
_NOW event. If the user
login is not valid, it
publishes an event to
this topic.

• page URI
• user-id
• content-group

name ("User
Profile")

• step name
("Update Submit")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

USER_LOGOUT_SUBMI
T

Published from
the Logon
Registration widget
(Login-Registration-v2
-> element.js) when
the user clicks logout
or clicks Cancel on
login.

• page URI
• user-id
• content-group

name ("User
Profile")

• step name ("User
Logged Out")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

Chapter 5
Understand Infinity integration parameter mapping

5-5

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

USER_LOGIN_SUCCES
SFUL

Published from
user.js when a user
login is successful or
a SAML callback is
successful.

• page URI
• user-id
• GDPR cookie

consent
• content-group

name
• ("User Profile")

step name
("Logged In")

page-uri

wt.dcsvid

wt.ce

wt.cg_n

wt.si_p

USER_LOGIN_SUBMIT Published from Login-
Registration-v2 ->
element.js (header)
widget and Checkout-
Registration ->
checkoutRegistrat
ion.js (checkout
page), while the user
logs in.

• page URI
• content-group

name ("User
Profile")

• step name ("Log
In Submit")

page-uri

wt.cg_n

wt.si_p

USER_AUTO_LOGIN_S
UCCESSFUL

Published from
user.js when the
user autologin is
successful.

• page URI
• user-id
• GDPR cookie

consent
• content-group

name ("User
Profile")

• step name
("Registered")

page-uri

wt.dcsvid

wt.vt_f

wt.ce

wt.cg_n

wt.si_p

SEARCH_RESULTS_UP
DATED

Published from
search.js page
layout after a search
request is completed.

If the search request
is a success then
it publishes with
the search results
otherwise it publishes
with an error
message.

• page URI
• user-id
• content-group

name ("Search")
• search text total
• records found
• search facet

selected (sent
as <facet name>-
<facet value>)

page-uri

wt.dcsvid

wt.cg_n

wt.oss

wt.oss_r

wt.z_selectedSear
chFacet

Chapter 5
Understand Infinity integration parameter mapping

5-6

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

PRODUCT_VIEWED Published from the
Product Details widget
when a product is
viewed from PDP or
quick view.

• page URI
• user-id
• content-group

name ("Purchase
List")

• step name ("Add
to Purchase List")

• product id
• SKU id
• quantity
• price
• product type
• brand
• transaction event

("w")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

wt.z_currency

PRODUCT_ADDED_TO_
PURCHASE_LIST_SUC
CESS

Published from
Purchase Lists widget
(add-to-purchase-list
-> element.js)
when an item is added
to the purchase list.

• page URI
• user-id
• content-group

name ("Purchase
List")

• step name ("Add
to Purchase List")
product id

• SKU id
• quantity
• price
• product type
• brand transaction

event ("w")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

wt.z_currency

PAYMENT_AUTH_SUCC
ESS

Published from
payment-auth-
response view model
when the response
from the
paymentAuthRespons
e endpoint returns the
state of payment
accepted and the
order status has not
failed.

• page URI
• user-id
• content-group

name ("Payment")
• step name

("Payment
Success")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

Chapter 5
Understand Infinity integration parameter mapping

5-7

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

PAYMENT_AUTH_DECL
INED

Published from
payment-auth-
response view model
when the response
from
paymentAuthRespons
e endpoint returns a
state like "removed" or
when a payment is
authorized but the
order failed.

• page URI
• user-id
• content-group

name ("Payment")
• step name

("Payment Fail")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

PAGE_CHANGED Published
from layout-
container.js after
the layout is loaded.

It publishes with
pageEventData such
as page, pageId, path,
pageRepositoryId, etc.

• page URI
• user-id
• page id
• wt-dcsvid
• In the case of the

of a confirmation
page, the
following is
published:

• shipping method
• shipping cost
• payment gateway

name
• gateway

transaction
amount

• content-group
name(depending
on the page)

page-uri

wt.cg_n

wt.dcsvid

wt.z_shippingMeth
od

wt.z_shippingChar
ges

wt.z_gatewayName

wt.z_gatewayTrans
actionAmount

Chapter 5
Understand Infinity integration parameter mapping

5-8

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

ORDER_SUBMISSION_
SUCCESS

Published from the
order.js view model
when the order
details of the initial
order created during
checkout with PayPal/
PayU is fetched.
If the transaction is
done via PayU and
the status is settled/
approved, this event is
published.

Published from the
order.js view model
when an order is
created or updated
successfully and the
status is submitted or
is pending approval
then this event is
published.

Published from the
order.js view model
when the payment is
authorized. This is
triggered when it
receives a
PAYMENT_AUTH_SU
CCESS event.

• page URI
• user-id
• content-group

name ("Order")
• step name

("Order
Submission
Success")

• SKU id
• product type
• brand
• quantity
• price
• transaction event

("p")
• invoice date
• invoice time
• invoice number

(UUID)
• order id
• conversion

("Purchase")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_sku

wt.pn_fa

wt.pn_ma

wt.tx_u

wt.tx_s

wt.tx_e

wt.tx_id

wt.tx_it

wt.tx_i

wt.tx_cartid

wt.conv

ORDER_SUBMISSION_
FAIL

Published from the
order.js view
model when order
submission fails due to
any of these reasons:
Payment Auth timeout,
Payment declined,
and/or order creation/
update failure.

Published from the
CyberSource Payment
Authorization widget
if there is an error
while generating the
signature in a payment
iFrame.

• page URI
• user-id
• content-group

name ("Order")
• step name

("Order
Submission Fail")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

Chapter 5
Understand Infinity integration parameter mapping

5-9

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

ORDER_COMPLETED Published from
the payment-auth-
response.js view
model when a
payment authorization
is accepted.

Published from the
order.js view model
when the order status
is either submitted or
pending approval.

Published from the
Split Payments widget
when the order state
is either pending
approval or a template
(i.e., the order is
a scheduled order)
or pending scheduled
order approval.

• page URI
• user-id
• content-group

name ("Order")
• step name

("Order
Completed")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

COUPON_APPLY_SUCC
ESSFUL

Published from the
cart view model when
a cart is updated
from the server after
a coupon is applied
successfully.

• page URI
• user-id
• content-group

name ("Coupon")
• coupon id

page-uri

wt.dcsvid

wt.cg_n

wt.mc_id

CHECKOUT_SHIPPING
_METHOD

Published from the
cart.js view model
with shippingOption
when the shipping
methods are loaded.

Published from the
Cart Shipping widget
when a shipping
option is reset or if a
shipping address and
shipping method has
changed.

• page URI
• user-id
• content-group

name ("Shipping
Method")

• step name
("Shipping
Method
Selected")

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

CHECKOUT_SAVE_SHI
PPING_ADDRESS

Published from
order.js view model
with the shipping
address when the
Place Order button is
clicked.

• page URI
• user-id
• content-group

name ("Address")
• country
• state
• city
• postal code

page-uri

wt.dcsvid

wt.cg_n

wt.z_country

wt.z_region

wt.z_city

wt.z_zip

Chapter 5
Understand Infinity integration parameter mapping

5-10

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

CHECKOUT_REGISTER
_USER

Published from the
Checkout Order
Details widget when
all validations for
creating the order
have passed.

• page URI
• user-id
• content-group

name ("User
Profile")

• step name
("Checkout
Register")

• GDPR cookie
consent

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.ce

CART_UPDATE_QUANT
ITY

Published in the
Shopping Cart
widget with the
commerceItemId
when the Quantity
Update button is
clicked.

• page URI
• user-id
• content-group

name ("Cart")
• step name

("Update Cart")
• product id
• SKU id
• updated quantity
• price
• product type
• brand transaction

event ("a")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_id

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

wt.z_currency

CART_REMOVE_SUCCE
SS

Published from
cart.js when an
item is removed from
the cart view model. It
is also published with
a product commerce
id.
Published from
cart.js when a
place holder item is
removed from the cart.

• page URI
• user-id
• content-group

name ("Cart")
• step name

("Remove from
Cart")

• product id
• SKU id
• removed quantity
• price
• product type
• brand
• transaction event

("r")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

wt.z_currency

Chapter 5
Understand Infinity integration parameter mapping

5-11

Table 5-1 (Cont.) Commerce/Infinity parameter mappings

Event Event Details Data tracked Infinity Parameters

CART_ADD_SUCCESS Published from
cart.js when a cart
is updated and the last
cart event is cart-add-
item.

The cart is updated
when the REST call
is made to fetch the
current profile order
and price information
to refresh the cart
data.

• page URI
• user-id
• content-group

name ("Cart")
• step name ("Add

to Cart")
• product id
• SKU id
• quantity
• price
• product type
• brand
• transaction event

("a")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_id

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

ADD_TO_QUICK_ORDE
R

Published from
the product-add-to-
quick-order element
when adding to a
quick order and the
button is clicked.

• page URI
• user-id
• content-group

name ("Quick
Order")

• step name ("Add
to Quick Order")

• product id
• SKU id
• quantity
• price
• product type
• brand
• transaction event

("q")
• currency

page-uri

wt.dcsvid

wt.cg_n

wt.si_p

wt.pn_sku

wt.tx_u

wt.tx_s

wt.pn_fa

wt.pn_ma

wt.tx_e

wt.z_currency

Keep in mind the following about the integration parameters:

• All methods are prototypes, so, if you want to add more parameters, you can
extend them.

• If for some reason a data field is not provided in Infinity, you can create custom
parameters in the following format so that : wt.z_<yourParameterName> the Oracle
Infinity platform will start to record it.

• Some events are published from provided widgets which earlier did not publish
any relevant data. These have since been changed to publish relevant information.
If you are not using the provided widgets in any case, you must publish similar
data in the events. These widgets include ORDER_SUBMISSION_SUCCESS
(Split Payments widget), PRODUCT_ADDED_TO_PURCHASE_LIST_SUCCESS
(Purchase List widget), USER_PROFILE_UPDATE_SUBMIT (Shopper Details,
Address Book, and Update Password widget), and CART_REMOVE_SUCCESS.
It is necessary, then, to take the latest changes accordingly. If you are publishing
any of the events listed in the table and not publishing relevant data similar to the
ones provided, you need to provide updates to correct this.

Chapter 5
Understand Infinity integration parameter mapping

5-12

• The Infinity viewmodel.js depends on the ORA_ANALYTICS_READY event on DOM
(published by the Infinity JS) to initialize the Infinity API. Refer to your Infinity
Administrator to turn on the READY EVENT the tag for the same.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

Chapter 5
Understand Infinity integration parameter mapping

5-13

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

6
Integrate with Oracle Order Management
Cloud

Integration Oracle Order Management Cloud with Oracle CX Commerce.

Oracle Order Management Cloud can improve order handling when working with
order-to-cash processes. You can configure fulfillment monitoring, global availability
and enterprise-wide policies that increase your shopper's satisfaction.

Introduction
Oracle CX Commerce and Oracle Order Management Cloud can be combined through
Oracle Integration Cloud to provide a robust architecture for capturing and fulfilling
orders placed in your online store.

Oracle CX Commerce is an industry-leading commerce platform re-designed for the
modern cloud. Oracle Order Management Cloud is tightly integrated with Oracle
Global Order Promising Cloud. It can improve order handling across the order-to-cash
process. Pre-integration, centrally-managed orchestration policies, global availability,
and fulfillment monitoring can lead to increased customer satisfaction and order
profitability.

This document describes how to integrate these two services.

Audience
This document is written for Commerce and Order Management Cloud administrators
who are setting up and configuring the integration between these two systems.

Readers of this document should have experience with both Commerce and
Order Management Cloud. See Additional documentation for links to comprehensive
information on these services.

Features
The integration of Commerce with Order Management Cloud combines the capabilities
of these two services into a single solution.

This solution provides support for the following:

• Pushing completed Commerce orders to Order Management Cloud for fulfillment.

• Retrieving and updating the status of the order from Oracle Order Management in
Commerce real time for the orders created using Commerce.

• Furnishing returns and exchanges created on Commerce to Order Management
Cloud for fulfillment.

• Retrieving the status of the returns from Order Management into Commerce.

6-1

The default integration assumes that the orders and returns are created using
Commerce channels.

Architectural overview
The message flow of business entities from Commerce to Order Management Cloud
happens through Oracle Integration Cloud.

Commerce includes an Oracle Integration Cloud adapter (the Commerce adapter) that
is used for the integration. The Order Management Cloud part of the integration uses
the generic SOAP adapter of Oracle Integration Cloud to manage the integration. Data
from the Commerce store is transmitted using webhooks through Oracle Integration
Cloud to reach Order Management Cloud. The data from Order Management Cloud
reaches Commerce through Oracle Integration Cloud as well.

Additional documentation
For information about Commerce, and the Oracle Order Management Cloud, refer to
the following Oracle Help Center pages:

Oracle CX Commerce documentation: First Steps.

Documentation of Oracle Order Management Cloud is available through Oracle
Applications Help: Oracle Order Management Cloud documentation.

For information about Oracle Integration Cloud and the Commerce adapter, refer to
Using the Oracle CX Commerce Adapter in the Oracle Help Center at this URL:
Getting Started with the Oracle CX Commerce Adapter.

Prerequisites
Prerequisites for a successful integration include specific access rights to both
systems. In addition, certain assumptions exist about the way each service is used.

This section provides details about the prerequisites.

Access rights
To configure this integration, you need administrator access to the following systems:

• The Oracle CX Commerce administration interface, which enables you to
configure the webhook settings.

• Oracle Integration Cloud, which enables you to map the attributes between
Commerce and Order Management Cloud. Note that in earlier releases, Oracle
Integration Cloud is referred to as Integration Cloud Service (ICS). The instructions
in this guide, as well as the integration itself, apply to both cases.

• Order Management Cloud, which enables you to set up the fulfillment and
configure the products and the activities associated with fulfillment.

Assumptions
This integration makes the following functional assumptions:

Chapter 6
Prerequisites

6-2

https://cloud.oracle.com/opc/order-management-cloud/documentation
https://docs.oracle.com/en/cloud/paas/integration-cloud-service/icscc/getting-started-oracle-commerce-cloud-adapter.html

• Orders can be created only on Commerce channels. Orders created on non-
commerce channels are not within the scope of this integration.

• The Returns and exchange orders are initiated from Commerce. The cases where
the returns and exchanges are created on Order Management Cloud are not
synched back to Commerce.

• Commerce does not capture any credit card settlement information. It is assumed
that the merchant updates the card settlement information about Commerce.

• Purchase Order status payment groups are updated as settled/No Pending Action
after the payment processing is complete.

• The inventory and product SKU information is assumed to be in synch across both
the systems.

• Commerce acts as the pricing and the promotions engine.

• The tax calculation for an order is performed in Commerce.

• The scope of this integration is restricted to simple products. Configurable
products are out of its scope.

This integration is extensible: additional attributes can be mapped on both systems
without interfering with the merchant’s use cases.

Configure Oracle CX Commerce
The integration is configured on the Commerce side by setting up specific web APIs to
use Oracle Integration Cloud endpoints.

Web APIs enable you to subscribe to events for your products and orders by creating
webhooks that push notifications to a specified URL. (For additional information about
webhooks, see Use Webhooks.)

You update the Commerce web APIs through the administration interface to use the
appropriate Oracle Integration Cloud endpoints. The web APIs send order information
to Oracle Integration Cloud, and the orders go to Order Management for fulfillment.

To ensure compliance with PCI requirements, Commerce uses a webhook for
order submission (Order Submit without Payment Details) that discards credit card
information and sends the rest of the Order to external systems. Use of the Order
Submit without Payment Details webhook is recommended in cases where the
merchant wants to send the token details of the credit card.

The topics in this section describe how to make the necessary changes to the
Commerce web APIs.

Submit Order webhook
Configuring the Order Submission webhook makes the order information created in
Commerce available to the Oracle Integration Cloud system.

To configure the Order Submit for Non-PCI Compliant Target Systems Event API,
follow these steps:

1. In the Commerce administration interface, display the Settings page.

2. Select Web APIs and display the Webhook tab.

3. Select the Order Submit without Payment Details event API.

Chapter 6
Configure Oracle CX Commerce

6-3

4. Provide the Oracle Integration Cloud URL that receives the order message.
Include the server name and port used.

5. Provide a user name and password for accessing the server.

6. Click Save.

Return Order webhook
Configuring the Return Request Update for Non-PCI Compliant Target Systems event
API displays the returns workflow.

To configure the Return Request Update for Non-PCI Compliant Target Systems event
API, follow these steps:

1. In the Commerce administration interface, display the Settings page.

2. Select Web APIs and display the Webhook tab.

3. Select the Return Request Update without Payment Details event API.

4. Provide the Oracle Integration Cloud URL that receives the order message.
Include the server name and port used.

5. Provide a user name and password for accessing the server.

6. Click Save.

Configure the Oracle Integration Cloud Adapter
The integration mappings and the associated files you configure for Oracle Integration
Cloud are available in the form of packages. These packages are ready for you to use
as soon as they are imported into the Oracle Integration Cloud infrastructure.

The Commerce team already has a Commerce adapter available for Oracle
Integration Cloud. The generic SOAP adapter is a generic adapter provided by Oracle
Integration Cloud for processing the SOAP-based messages. This adapter is used
when Order Management Cloud sends messages in SOAP format.

The integration package, OracleCommerce-
OrderManagementIntegration.par, is available on My Oracle Support. The
contents of this package are described in the sections that follow.

Connections
The integration package includes the required connections for the servers and events
used by the integration.

• Oracle CX Commerce: The connection to the Commerce admin server

• Oracle CX Commerce Agent: The connection to Commerce agent server

• Oracle Order Management Cloud: The connection to Order Management Order
synch service

• Oracle Order Management Cloud Events: The connection to Order Management
events

• Oracle Order Management Cloud Order Information Service: The connection to
the Order Management order retrieval service

Chapter 6
Configure the Oracle Integration Cloud Adapter

6-4

Lookup configuration
The mappings for the return status, carrier information, and shipping information are
updated as part of the lookup configuration.

You should modify these as required and as configured in your order management
system. Refer to the integration settings to view the lookups used.

Integrations
The package includes integrations for order synch, return synch, and order and return
status synch.

• Order synch from Commerceto Order Management

• Return synch from Commerce to Order Management

• Order and Return status synch from Order Management to Commerce

Unpack the OracleCommerce-OrderManagementIntegration.par package. It
unpacks into three inventory archives (IARs). Unpack each IAR and update the
constants as shown in the following sections. Update the following constants for order
synch from Commerce to the Order Management flow and import using the Oracle
Integration Cloud mapper in Oracle Integration Cloud.

XSL location
XSL location is described in the following section.

<Unpacked

iar>/icspackage/project/RETU_SYNC_FROM_COMM_TO_ORDE_MGMT_01.00.0000/
resources/processor_52/resourcegroup_913
<xsl:variable name="SOURCE_SYSTEM" select="'ATG'"
 xml:id="id_2076"/>
<xsl:variable name="BUSINESS_UNIT_IDENTIFIER"
 select="'204'" xml:id="id_2077"/>
<xsl:variable name="LEGAL_UNIT_IDENTIFIER"
 select="'204'" xml:id="id_2078"/>
<xsl:variable name="FULFILLMENT_ORG_IDENTIFIER"
 select="'207'" xml:id="id_2079"/>
<xsl:variable name="INVENTORY_ORG_IDENTIFIER"
 select="'207'" xml:id="id_2080"/>
<xsl:variable name="UOM_CODE" select="'Ea'"
 xml:id="id_2081"/>

Update the following constant for the return synch from Commerce to the Order
Management flow and import using the Oracle Integration Cloud mapper in Oracle
Integration Cloud.

<Unpacked

Chapter 6
Configure the Oracle Integration Cloud Adapter

6-5

iar>/icspackage/project/RETU_SYNC_FROM_COMM_TO_ORDE_MGMT_01.00.0000/
resources/processor_52/resourcegroup_913
<xsl:variable name="SOURCE_SYSTEM" select="'ATG'"
 xml:id="id_2076"/>
<xsl:variable name="BUSINESS_UNIT_IDENTIFIER"
 select="'204'" xml:id="id_2077"/>
<xsl:variable name="LEGAL_UNIT_IDENTIFIER"
 select="'204'" xml:id="id_2078"/>
<xsl:variable name="FULFILLMENT_ORG_IDENTIFIER"
 select="'207'" xml:id="id_2079"/>
<xsl:variable name="INVENTORY_ORG_IDENTIFIER"
 select="'207'" xml:id="id_2080"/>
<xsl:variable name="UOM_CODE" select="'Ea'"
 xml:id="id_2081"/>

Note: The connection details that come as part of the integration package are empty.
You provide the details of the connections and test them. You can then enable the
integration.

Configure Order Management Cloud
Configuring Order Management Cloud for the integration involves creating the source
system, the default rules, the orchestration process, and the required connectors.

The topics in this section describe how to perform these Order Management Cloud
configuration tasks.

Create the source system
This section describes the steps you follow to create a source system for the
integration.

1. Go to the FSM link https://example.com/setup/faces/
TaskListManagerTop and search for Manage Planning Source Systems.

2. Display the Actions tab.

Chapter 6
Configure Order Management Cloud

6-6

3. Create a source system for Commerce. If necessary, create a new code entry for
Commerce.

4. Select the time zone as required.

5. Disable the cross-references between Commerce and Order Management as the
cross-references are handled by Oracle Integration Cloud.

6. When you have finished entering the setup details, the final screen for the source
system appears:

Chapter 6
Configure Order Management Cloud

6-7

Create defaulting rules
Defaulting rules must be created for this integration in the Order Management system
to ensure that the shipping and scheduling rules cover Commerce as a channel.

The following rules must be defined:

• Shipping Method Defaulting Rule1

• Scheduling Related Rule

• Shipping Method Defaulting Rule2

Note: Ideas for rules to create are provided here; you can configure these as
necessary for your business requirements.

This process ensures that the shipping and scheduling rules cover Commerce as a
channel.

Chapter 6
Configure Order Management Cloud

6-8

Shipping Method Defaulting Rule1

Scheduling Related Rule

Chapter 6
Configure Order Management Cloud

6-9

Shipping Method Defaulting Rule2

Create the orchestration process
This topic describes how to create the orchestration process for the integration.

1. Go to the FSM link https://example.com/setup/faces/
TaskListManagerTop and create the orchestration process:

Chapter 6
Configure Order Management Cloud

6-10

2. Search for Commerce in the Process Name field.

A predefined process, CCATGBusinessEvents, appears.

The process can be created if necessary.

The following screens show the orchestration details:

Chapter 6
Configure Order Management Cloud

6-11

3. Click Edit Status Rule Set.

4. Save the details.

Chapter 6
Configure Order Management Cloud

6-12

5. On the Actions menu, click Release.

Create the connector
Creating a connector with the Oracle Integration Cloud URL is a required step for the
integration.

1. Go to the FSM link https://example.com/setup/faces/
TaskListManagerTop and search for Manage Business Event Trigger Points.

2. Ensure that the fulfillment tabs are enabled.

Chapter 6
Configure Order Management Cloud

6-13

3. Pick the connector to enable.

4. Create a name for the connector and provide the Oracle Integration Cloud
integration details in the connector URL.

5. Verify.

Order creation
Order creation in Commerce requires no change in the functional flow with respect
to this integration. In general, orders created in Commerce are sent to Order
Management Cloud for fulfillment. Several special cases are listed in this section.

The mechanism used to send the orders created in Commerce is webhooks.

Note: Commerce provides a remorse period during which shoppers can edit their
orders. The orders are sent to Order Management Cloud for fulfillment as soon as the
remorse period ends.

SKUs
Commerce supports simple SKUs. It can also support configurable SKUs through an
integration with Oracle CPQ.

As part of this integration, simple SKUs are sent to the fulfillment system. Configurable
SKUs are not sent to the integration workflows. However, configurable SKUs are
available to the webhook and can map to Order Management Cloud attributes if
required. A separate integration exists for Oracle CPQ and Order Management Cloud.

Payment
Order pricing and payment authorization happen in Oracle CX Commerce. The
payment attributes are not mapped to any attribute in Order Management Cloud
because the order management system does not need the payment information for
fulfillment. With account-based (B2B) shopping, the order does have a purchase order
number that is passed on to the order management system.

Chapter 6
Order creation

6-14

Note: The scope of this integration is restricted to Order Management Cloud.
Other Oracle services can perform additional order processing. For example, Order
Management Cloud can integrate with Account Receivables post fulfillment; this
functionality is outside the scope of this integration.

Commerce currently expects the payment capture information to be updated by an
external system. This assumption holds true for this integration as well. The order
payment is authorized by Commerce via the payment gateways before the order is
sent to Order Management for fulfillment.

It is recommended that you verify that the order is ready to be shipped in Order
Management and capture the money against the authorization. This can be done
by integrating with the payment gateways and sending the updated status back to
Commerce as captured/settled. The payment group status would have to be updated
once the transaction is captured in the Commerce repository. This status unavailability
hinders return processing against an order.

Order types
Orders in Commerce can be placed for consumer-based (B2C) and account-based
(B2B) shopping.

These orders, when triggered from Commerce, need to be fed to the order
management system. This integration handles both types of order and maps the
attributes of Commerce and Order Management Cloud accordingly.

Pricing and tax
Pricing and tax calculations are done in Commerce and the order is passed to the
order management system. The orders created in Order Management Cloud are not
synched into Commerce.

The order creation integration workflow can pass the order created in Commerce
to Order Management Cloud for fulfillment using the Order Submit without Payment
Details webhook, which is triggered after the remorse period in Commerce.

Shipping methods
Commerce shipping methods are mapped to Oracle Order Management Cloud
shipping methods. The mappings are made using the Lookup service of Oracle
Integration Cloud.

The shipping methods are sent to Order Management Cloud as part of order creation.
If you create a new shipping method in Commerce, map it to a shipping method in
Order Management Cloud. These mappings ensure that the orders created in Oracle
CX Commerce always use the shipping method chosen by the customer.

Shipping methods are creating in the Shipping Methods tab, which is described
in Work with accounts. For information about Order Management Cloud shipping
methods, refer to the Oracle Order Management Cloud documentation.

Chapter 6
Order creation

6-15

Mapping of attributes
The attribute mapping of Commerce and Order Management Cloud is done through
Oracle Integration Cloud. There could be some additional processing that is needed
on the attributes before pushing the order to Order Management Cloud.

This additional processing of attributes can be can be built into the integration layer
without a need to modify Commerce. You can build an XSLT which acts on top of
the Oracle Integration Cloud UI and provides additional flexibility. A sample XSLT
is also provided as part of the integration package. The XSLT can be uploaded
into any integration in Oracle Integration Cloud as soon as the integration has been
deactivated.

The location of the XSLT for order
creation is ICSpackage9a47f2ae-5f90-4cf7-a87f-cb612dda70d1.iar/
icspackage/project/ORDE_SYNC_FROM_COMM_TO_ORDE_MGMT_01.00.0000/
resources/processor_859/resourcegroup_755/
req_19fd482efc0a4728b838273aec72b649.xsl.

The following figure illustrates the order creation workflow from Commerce to Order
Management Cloud:

Order Status
The status of an order is updated in Commerce by Order Management Cloud. Order
Management Cloud provides notifications on the status changes of the order.

As part of this integration, the shipment group status is updated for the order as No
Pending Action as soon as the shipment is closed in Order Management. The tracking
details of the order are also updated in Commerce as and when they are available in
Order Management. The payment group status for the order is set to Authorized.

The order in Commerce is set to Submitted for fulfillment. You should update the
payment group status details based on your integrations with payment gateways or
using the capabilities of products such as Oracle Fusion Payments.

Chapter 6
Order Status

6-16

Map attributes for order status
The following is the location of the XSL
transformation: icspackage58e6510b-1e7f-491e-903c-bc59e1062bfc.iar/
icspackage/project/ORDER_AND_RETURN_STATUS_SYNC_01.00.0000/
resources/processor_837/resourcegroup_173/
req_f7a1d4886a4b4ca3935231d5421b27ec.xsl

The following diagram illustrates the status workflow:

Returns
The returns created in Commerce are passed to Order Management Cloud for
fulfillment.

Note: All the prerequisites needed for submitting a return on Commerce are valid for
this integration.

As soon as a return is created by Commerce, a new endpoint is created for processing
the return and submitting the return order to Order Management Cloud. Because the
reason code is mandatory when the return is created in Order Management Cloud, as
part of the return submission process, the disposition code of Commerce is mapped to
Return with Refund.

As soon as the return is processed by the Order Management Cloud, the disposition
code is updated with the correct value as sent by Order Management Cloud.

Map attributes for returns
The following is the location of the XSL transformation for
order returns: icspackage58e6510b-1e7f-491e-903c-bc59e1062bfc.iar/
icspackage/project/ORDER_AND_RETURN_STATUS_SYNC_01.00.0000/
resources/processor_943/resourcegroup_124/
req_52e0e60451ef4c66931157e8ea6172ad.xsl

The following diagram illustrates the workflow for returns:

Chapter 6
Returns

6-17

Exchanges
This topic describes exchange processing for this integration.

• The exchange request is created along with a new order for the exchange.

• The exchange and the order are submitted to Order Management Cloud as part of
this integration.

• The exchange request is submitted to Order Management Cloud for receiving the
goods.

• When the status of the exchange is set to Received, the new order created as part
of the exchange is submitted to Order Management Cloud for fulfillment.

The flows for the return and the order creation are the same as described in the
previous sections. The order is submitted to Order Management only when the return
information is available in Commerce. The flows for the exchange are the same as
previously described.

Chapter 6
Exchanges

6-18

7
Integrate with Oracle Responsys

Integrating Oracle Responsys and Oracle CX Commerce.

When you integrate Commerce and Responsys you create a unified solution for your
customers as well as the ability to communicate with those customers in a relevant
and structured dialogue based on their commerce activity.

Understand the Oracle Responsys Integration
This information provides instructions on how to implement the integration between
Oracle CX Commerce and Oracle Responsys.

Oracle Responsys is an application within the Oracle Marketing Cloud suite of
products that empowers data-driven marketing teams with the tools to deliver the
relevant, engaging experiences their customers demand across devices, channels,
and lifecycles. It is easy to make data from disparate sources useful, create precisely
targeted audiences, and then empower customers to determine their own next
experience by interacting with them in near real-time.

Commerce provides the overall customer experience allowing merchants to provide
the most relevant content to shoppers at all times and, by integrating Commerce and
Responsys, retailers can connect online behaviors in near real time to immediately
respond to customer’s actions and trigger personalized communications.

In addition, Commerce data can be used to create a more complete user profile which
allows retailers to deliver a more personalized and engaging experiences to drive
conversions and revenue.

Objective
The integration of Oracle CX Commerce and Oracle Responsys targets support for the
following customer commerce activity:

• Welcome: Communicate with newly registered customers to enhance their
relationship with the merchant.

• Win Back: Communicate with customers who have not created any new orders
in a significant period of time. The message to the customer can be tailored to
include a Commerce promotion to encourage them to return to the website.

• Milestone: Using Commerce profile data, communicate with customers based on
personal milestones such as their birthday or the anniversary of their registration
date.

• Abandoned Cart: Communicate with customers who added items to their shopping
cart and then left the website without purchasing the items they placed in the cart.
The message to the customer can be tailored to include aCommerce promotion to
encourage them to return to the website.

This document provides instructions on how to set up an integration between
Commerce and Responsys so that Commerce information is automatically passed

7-1

to Responsys ensuring that the supported marketing campaigns are always based on
current shopper activity. This document provides instructions on the following topics:

• How to download the Oracle Integration Cloud Integration Flows.

• How to configure and set up the Oracle Integration Cloud Integration Flows.

• How to setup the connection to Responsys.

• How to set up the required data tables in Responsys.

• How to setup the connection to Oracle CX Commerce.

• How to configure the webhooks to trigger the integration flows.

• How to use the abandoned cart functionality supported by the integration.

Audience
This document is written for Oracle CX Commerce and Oracle Responsys
administrators who need to set up and configure the integration between these two
systems.

Readers of this document should have experience with Commerce, Responsys, and
Oracle Integration Cloud administration.

Prerequisites
For the purposes of this document, it is assumed that you already have:

• An Oracle CX Commerce account and access to Oracle CX Commerce 16.6 or
later.

• An Oracle Responsys account and access to Oracle Responsys 6.31 or later.

• An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service 16.4.5 or later.

If you do not have one or more of these, please contact an Oracle sales representative
for information on how to acquire one: http://www.oracle.com/us/corporate/contact/
index.html.

Configuring the Integration
There are four stages to configuring the integration that are covered in this chapter.

This chapter will provide information on each of the stages to assist you in configuring
your integration.

Configure the Integration Package
This section provides detail about where the integration package can be downloaded
and how to import the integration package.

Importing the integration package in Oracle Integration Cloud creates connections
to Oracle CX Commerce and Oracle Responsys in Oracle Integration Cloud. It
also creates an integration between Commerce and Responsys with some default
mappings in place.

Chapter 7
Configuring the Integration

7-2

http://www.oracle.com/us/corporate/contact/index.html
http://www.oracle.com/us/corporate/contact/index.html

Download the integration package
Follow these steps to download the integration package:

1. Log on to My Oracle Support at https://support.oracle.com

2. Search for OCCS-OMC_Integration.

3. Download the OCCS-OMC_Integration_3.0.par file. You should save it to a
location where you can access it from Oracle Integration Cloud.

Import the integration package
Follow these steps to import the integration package on Oracle Integration Cloud.

1. Log on to Oracle Integration Cloud as an administrator.

2. Click the Packages icon.

3. Click the Import Package button.

4. Click Browse to open a navigation pane.

5. Browse for and select the packages archive (PAR) file when prompted.

6. Click Import. The package should be added to the Packages list.

Clicking on the name of the package in the Package list displays the integrations that
are included in the package. This package includes three integrations. These are:

• OCCS-OMC Integration Order

• OCCS-OMC Integration Profile

• OCCS-OMC Idle Cart.

The OCCS-OMC Integration Order integration flow is responsible for sending
information about submitted orders from Commerce to Responsys.

The OCCS-OMC Integration Profile integration flow is responsible for sending
information about customer profiles from Commerce to Responsys.

The OCCS-OMC Idle Cart integration flow is responsible for sending information about
a cart that has been abandoned and adds the visitor to the OMC Abandoned Cart
orchestration program.

You can now configure connections for these integrations.

Configure the Oracle Responsys Connection
This section provides instructions on configuring the connection from the integrations
to Oracle Responsys. Follow these instructions to configure the Responsys
connection:

1. Log on to Oracle Integration Cloud as an administrator.

2. Click the Connections icon.

3. Click the Oracle Marketing Cloud connection.

4. Click the Configure Connectivity button.

5. Add the Responsys Login URL.

Chapter 7
Configuring the Integration

7-3

Note: This is not the URL you use to connect to Responsys. You can get the URL
required here from your Responsys administrator.

6. Click OK.

7. Click on the Configure Security button.

8. Select Custom Security Policy in the Security policy list.

9. Complete the Username, Password, and Confirm Password fields. These are
the credentials required to access your Responsys account.

10. Click OK.

11. Click Test to test your connection.

12. Click Save.

Your Responsys connection is now configured for the integration.

Configure the Oracle Responsys Connection
This section provides instructions on configuring the connection from the integrations
to Oracle Responsys.

Follow these instructions to configure the Responsys connection:

1. Log on to Oracle Integration Cloud as an admin user.

2. Click the Connections icon.

3. Click the Oracle Marketing Cloud connection.

4. Click the Configure Connectivity button.

5. Add the Responsys Login URL.

Note: This is not the URL you use to connect to Responsys. You can get the URL
required here from your Responsys administrator.

6. Click OK.

7. Click on the Configure Security button.

8. Select Custom Security Policy in the Security policy list.

9. Complete the Username, Password, and Confirm Password fields. These are
the credentials required to access your Responsys account.

10. Click OK.

11. Click Test to test your connection.

12. Click Save.

Your Responsys connection is now configured for the integration.

Configure the Oracle Responsys Database Tables
Once you have configured the Oracle Responsys connection, you need to create
two tables to store the information created by the integration. These tables are

Chapter 7
Configuring the Integration

7-4

CC_Master_User_List and CC_Submit_Order. These tables should be created in a
folder called CC in Responsys.

Note: These are the default names of the tables that are populated by this integration.
If you create tables with different names or in a different folder then you must also
modify the adapter configuration to point to the different tables.

This section shows the structure for each of these tables.

CC_Master_User_List Table

The following is a list of fields that must be included in a table called
CC_Master_User_List created in a folder called /CC in Responsys. The first list is
the system fields for the table, and the second list is the custom fields for the table.

Field Name Field Type

RIID_ Integer Field

CREATED_SOURCE_IP_ Text Field (to 255 chars)

CUSTOMER_ID_ Text Field (to 255 chars)

EMAIL_ADDRESS_ Text Field (to 500 chars)

EMAIL_DOMAIN_ Text Field (to 255 chars)

EMAIL_ISP_ Text Field (to 255 chars)

EMAIL_FORMAT_ Single character field

EMAIL_PERMISSION_STATUS_ Single character field

EMAIL_DELIVERABILITY_STATUS_ Single character field

EMAIL_PERMISSION_REASON_ Text Field (to 255 chars)

EMAIL_MD5_HASH_ Text Field (to 50 chars)

EMAIL_SHA256_HASH_ Text Field (to 100 chars)

MOBILE_NUMBER_ Text Field (to 50 chars)

MOBILE_COUNTRY_ Text Field (to 25 chars)

MOBILE_PERMISSION_STATUS_ Single character field

MOBILE_DELIVERABILITY_STATUS_ Single character field

MOBILE_PERMISSION_REASON_ Text Field (to 255 chars)

POSTAL_STREET_1_ Text Field (to 255 chars)

POSTAL_STREET_2_ Text Field (to 255 chars)

CITY_ Text Field (to 50 chars)

STATE_ Text Field (to 50 chars)

POSTAL_CODE_ Text Field (to 25 chars)

COUNTRY_ Text Field (to 50 chars)

POSTAL_PERMISSION_STATUS_ Single character field

POSTAL_DELIVERABILITY_STATUS_ Single character field

POSTAL_PERMISSION_REASON_ Text Field (to 255 chars)

CREATED_DATE_ Time Stamp Field (date + time)

MODIFIED_DATE_ Time Stamp Field (date + time)

LOCALE Text Field (to 25 chars)

FIRST_NAME Text Field (to 100 chars)

LAST_NAME Text Field (to 100 chars)

COMMERCE_REGISTRATION_DATE Time Stamp Field (date + time)

COMMERCE_LAST_ACTIVITY Time Stamp Field (date + time)

Chapter 7
Configuring the Integration

7-5

Field Name Field Type

AGE Number Field

PROFILEATTRIBUTE Text Field (to 100 chars)

CC_Submit_Order Table

The following is a list of fields that must be included in a list extension table called
CC_Submit_Order created in a folder called CC in Responsys.

Field Name Field Type

RIID_ Integer Field

ORDER_ID Text Field (to 25 chars)

NUMBER_OF_ITEMS Number Field

ORDER_DETAILS_URL Text Field (to 100 chars)

ORDER_CURRENCY Text Field (to 25 chars)

ORDER_SUBMIT_TIME Time Stamp Field (date + time)

ORDER_SHIPPING_ADDRESS1 Text Field (to 100 chars)

ORDER_SHIPPING_ADDRESS2 Text Field (to 100 chars)

ORDER_SHIPPING_CITY Text Field (to 25 chars)

ORDER_SHIPPING_STATE Text Field (to 25 chars)

ORDER_SHIPPING_COUNTRY Text Field (to 25 chars)

ORDER_SHIPPING_POSTAL Text Field (to 25 chars)

ORDER_TOTAL Text Field (to 25 chars)

ORDER_SHIPPING_MOBILE Text Field (to 25 chars)

ORDER_ITEM_NAMES Text Field (to 50 chars)

CREATED_DATE_ Time Stamp Field (date + time)

MODIFIED_DATE_ Time Stamp Field (date + time)

SITE_ID Text Field (to 25 chars)

SITE_NAME Text Field (to 500 chars)

Configure the Oracle CX Commerce Connection
This section provides instructions on configuring the connection from the integrations
to Oracle CX Commerce.

Follow these instructions to configure the Oracle CX Commerce connection:

1. Log on to Oracle Integration Cloud as an administrator.

2. Click the Connections icon.

3. Click the Oracle CX Commerce connection.

4. Click the Configure Connectivity button.

5. Enter the Connection base URL. The Connection base URL is derived using the
following structure:

Connection base URL: https://<siteURL>/ccadmin/v1

where <siteURL> is the base URL of the Commerce site that integrates with
Oracle Integration Cloud.

Chapter 7
Configuring the Integration

7-6

6. Click the Configure Security button.

7. The Commerce connection uses the OAuth security policy, so you must enter
a Security token for the connection. This token is generated in Commerce.
Instructions on generating the token can be found in the Generate a Security
Token section of this document.

8. Click OK.

9. Click Test to test that the connection is working.

10. Click Save.

Your Commerce connection is now configured for the integration.

Generate a Security Token
This integration uses the Oracle CX Commerce REST web services APIs to access
Commerce data. You must register the integration within Commerce and generate a
security token in order for the integration to be granted access to the data.

Follow these instructions in order to generate a security token:

1. Log onto Commerce.

2. Click the Settings icon.

3. Click Web APIs from the sidebar menu.

4. Click Registered Applications from the Web APIs panel.

5. Click the Register Application button.

6. Enter a name for the integration. The application you are registering is Oracle
Integration Cloud, so you should choose a name that is meaningful and reflects
this.

7. Click Save.

The Application ID and Application Key are automatically generated and the
application is added to the Registered Applications page.

8. Click on the name of the application you created.

9. Click on Click to reveal to display the application key. You can copy the
application key to use as the security token for the Commerce connection.

For more information on managing an application within Commerce, please refer to
the Register Applications section of the Using Oracle CX Commerce document.

Activate the Integration
Once you have configured the Oracle Responsys and Oracle CX Commerce
connections you can activate the integrations that were created when the integration
package was imported to Oracle Integration Cloud.

Follow these instructions to activate the integrations:

1. Log on to Oracle Integration Cloud as an admin user.

2. Click on the Integrations icon to display the Integrations list.

3. Click on the Activate button for the integration you wish to activate.

Chapter 7
Configuring the Integration

7-7

4. You can choose here whether to switch on detailed tracing. Detailed tracing
collects information about messages processed by the integration flow. This
may assist in troubleshooting issues with the integration flow, but it may impact
performance.

To switch on detailed tracing, check the Enable detailed tracing checkbox.

Note: Once an integration flow is active you must deactivate it and activate it again
to switch detailed tracing on or off.

5. Click Activate.

A message should be displayed to indicate that the integration flow has been
successfully activated.

Configure the Oracle CX Commerce Webhooks
When the integration flows have been activated you must configure the webhooks
in Oracle CX Commerce. These webhooks push a JSON notification to a URL that
you provide to the webhook. The URL you provide maps to the specific integration
workflow set up in Oracle Integration Cloud.

For the integration flows covered by this document there are four webhooks that must
be configured. These are:

• Shopper Registration: This sends a notification when a new user account is
created by a visitor to your website. This webhook pushes notifications using the
OCCS-OMS Integration Profile integration flow.

• ShopperAccount Update: This sends a notification when an already existing user
account is modified by a visitor to your website. This webhook pushes notifications
using the OCCS-OMS Integration Profile integration flow.

• Order Submit: This sends a notification when a registered shopper submits an
order on your website. This webhook pushes notifications using the OCCS-OMS
Integration Order integration flow.

• Cart Idle: This sends a notification when a registered shopper leaves your site
without purchasing items that were added to their cart. This webhook pushes
notifications using the OCCS-OMS Idle Cart integration flow.

You must configure the Production and Preview version of these webhooks to ensure
that they work in all environments. The Production webhooks send information
from your live store to production environments of your live systems, while preview
webhooks send information from your preview environment to the test or sandbox
environments of your external systems.

You can configure these webhooks through Commerce. Follow these instructions to
configure a webhook:

1. Log on to Oracle Integration Cloud as an admin user.

2. Click on the Integrations icon.

3. Click on the Integration Details icon to display information about the integration
flow.

If you are configuring the Shopper Registration or Shopper Account Update
webhooks then you should display information for the OCCS-OMC Integration
Profile integration.

Chapter 7
Configuring the Integration

7-8

If you are configuring the Order Submit webhook then you should display
information for the OCCS-OMC Integration Order integration.

If you are configuring the Cart Idle webhook then you should display information
for the OCCS-OMC Idle Cart integration.

4. Copy the Endpoint URL for the integration.

5. Log on to Oracle CX Commerce.

6. Click on the Settings icon.

7. Select Web APIs from the sidebar menu.

8. Click on the webhook you wish to configure.

9. Paste the Endpoint URL you copied into the URL field for the webhook.

10. Remove the “metadata” text from the end of the URL.

11. Enter the Username and Password for your Oracle Integration Cloud account.

12. Click the Save button.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

For more information on Commerce webhooks, please refer to the Configure
Webhooks chapter of the Using Oracle CX Commerce document.

Using the integration
This chapter provides instruction on how to use the functionality supported by the
integration.

This chapter includes information on creating new custom events and Oracle
Responsys programs,

Create an Abandoned Cart Program
Oracle CX Commerce monitors the shopping cart activities of visitors to your website
and can detect if a shopper has added items to a cart and then abandoned the cart.

When Commerce detects an abandoned cart it triggers a program that is defined in
your Oracle Responsys account. Commerce passes information about the items in the
abandoned cart to Responsys.

This section provides instruction on how to create a new custom event and how to
create a new program that runs when the new custom event occurs.

Create a New Custom Event

Follow these steps to create a new custom event on Oracle Responsys:

1. Log on to Oracle Responsys as an account administrator.

2. Select the Account icon.

3. Click on the Define custom event types link. This link is in the Account
Customization section, under the Global Settings heading.

4. Click on the Add new type link, which can be found under the table of custom
event types.

Chapter 7
Using the integration

7-9

5. Enter “CC_Abandoned_Cart” as the Custom Event Type Name, and enter a
meaningful description in the Description field.

6. Click on the Save button.

7. Click on the Done button.

Create a New Program

You can create a new Oracle Responsys program by selecting the profile list used for
the Oracle CX Commerce integration. This program must start with a custom event
followed by an email campaign that leads to the end of the program. You can see how
the program should be configured in this illustration:

The abandon custom event must listen to a specific event name that is passed
by Commerce in the API call that triggers this program. You must select
CC_Abandoned_Cart from the Listen for custom event type dropdown menu.

Commerce passes a set of dynamic variables to the program through the API
call. These dynamic variables must be specified for the program using the Settings
configuration options.

Chapter 7
Using the integration

7-10

You must then associate a specific email campaign with the Send email campaign
activity.

You should use the Email Message Designer to specify the personalization rules
used by the email campaign associated with the email widget. You can do this using
Responsys Personalization Language (RPL).

The following figure shows a sample HTML code using RPL to personalize the email
message based on the dynamic variables passed by Commerce to the abandoned
cart program.

Chapter 7
Using the integration

7-11

Note: This sample code is provided for guidance only and should not be directly
copied as it will not work with your integration.

When you create the email using RPL you can see a preview of the email message
rendered with some default personalization values.

For more information on using the Email Message Designer functionality, please refer
to your Oracle Responsys documentation.

Chapter 7
Using the integration

7-12

8
Integrate with Oracle Retail Order
Management System

Integrate Oracle Retail Order Management System with Oracle CX Commerce.

Oracle Order Management Cloud is integrated with the Oracle Global Order Promising
Cloud. Together with Commerce they allow you to provide fulfillment monitoring and
global availability for your customers.

Introduction
Oracle Retail Order Management System Cloud Service (OROMS) is an
order management system that supports retail transactions, including fulfillment,
warehousing/inventory control, customer service, merchandising, marketing and
finance.

Commerce and Oracle Retail Order Management can be used together to provide a
robust commerce architecture.

Audience
This document is written for Commerce and Oracle Retail Order Management
administrators who need to set up and configure the integration between these two
systems.

Readers of this document should have experience with both Commerce and Oracle
Retail Order Management administration. This document does not provide instructions
on configuring aspects other than integration for Commerce and Oracle Retail Order
Management. For that information, refer to the product documentation.

Features
The integration between Commerceand Oracle Retail Order Management provides a
solution that combines the capabilities of these two products.

This integration provides the following features:

• Turning integration on and off using the Commerce administration interface

• Providing configuration based on your environment

• Pushing completed Commerce orders to Oracle Retail Order Management for
fulfillment

• Retrieving and displaying Oracle Retail Order Management order status in
Commerce

This integration provides retailers with an opportunity to manage order and fulfillment
information.

8-1

Architectural Overview
Shoppers use the Commerce storefront to place an order.

When a retailer enables integration, the order created in the storefront is sent to
Oracle Retail Order Management where it is fulfilled. Commerce can obtain the details
of the order from Oracle Retail Order Management and display the status in the
customer storefront or the Agent Console of Commerce.

Commerce manages the promotions and discounts for the order and passes the
final price of the order to Oracle Retail Order Management. The shipping methods in
both systems are synchronized, ensuring that the customer is choosing from shipping
methods that are available from Oracle Retail Order Management.

To perform data synchronization, Commerce communicates with Oracle Retail Order
Management using REST. Commerce provides data output in JSON, while Oracle
Retail Order Management exposes REST services that accept XML. Integration
services take the JSON data from Commerce, convert it to XML using XSLT
transformers, and send it to all Oracle Retail Order Management systems. In turn,
XML data sent from Oracle Retail Order Management is read by the integration
service and converted to JSON. The webhook target that communicates with Oracle
Retail Order Management is set using the administration interface. If the integration is
disabled, the transformation logic is skipped and the webhook behaves as a standard
webhook.

Webhooks submit JSON, however, Serenade accepts only XML. When an order is
submit, it is converted from JSON to XML. Webhooks support multiple target orders,
and if the target contains

Integration services are configured using the Commerce administration interface.

When an order or order detail is queried in Commerce, a service call is made to
Oracle Retail Order Management to get the latest status for that order. Orders that
are created in Commerce are synchronized to Oracle Retail Order Management, and
order status updates regarding fulfillment from Oracle Retail Order Management are
requested by Commerce on demand.

Additional Documentation
For additional information on Commerce:

For information on using Commerce, see the Oracle CX Commerce documentation.

For information on customizing and extending Commerce, see the Oracle CX
Commerce documentation.

Prerequisites
This section contains information on prerequisites needed before configuring the
integration.

Before you begin the integration process, you must ensure that you have met the
following conditions.

Chapter 8
Prerequisites

8-2

https://docs.oracle.com/en/cloud/saas/commerce-cloud/index.html
https://docs.oracle.com/en/cloud/saas/commerce-cloud/books.html
https://docs.oracle.com/en/cloud/saas/commerce-cloud/books.html

Access Rights
To configure integration, you need to have administrator access to Commerce.

This allows you to configure the integration settings using the administration interface.

Data Configuration
The product and SKU information should be in sync on both the Commerce and
Oracle Retail Order Management servers.

The following describes the Item and SKU fields and the mapping between them:

Item Configuration

Oracle Retail Order Management allows the ITEM_ID field to contain a maximum of 12
alphanumeric characters. Therefore, items created with Commerce should contain no
more than 12 alphanumeric characters, for example, Item001, wallet, etc.

SKU ID Configuration

The Oracle Retail Order Management system generated short_sku_number number is
unique for a company as well as a site. As such, the Commerce SKU ID should also
have a unique ID for the site. Note that the SKU ID must be numeric and limited to 7
characters.

Variant Configuration

Oracle Retail Order Management allows a maximum of three SKU attributes, for
example, color, size and collar. Note that all items will have the same elements.
For example, both the shirts and the shoe SKUs will contain the same variants, for
example, color, size, and collar.

Commerce allows more than three variants, for example, color, size, collar, and
sleeve. However, Oracle Retail Order Management cannot recognize more than three
variants. If the SKU attribute in Oracle Retail Order Management and the SKU variant
in Commerce both contain fewer than three entries, the SKU attribute will be the same.

While creating items and SKUs in Commerce and Oracle Retail Order Management,
consider the following:

• When creating SKUs, limit variants to less than three

• Create SKUS in Oracle Retail Order Management. The same SKUs with the
short_sku_number field can be manually exported and created in Commerce

• Create variants that are as general as possible so that they can be shared across
items

• Before the integration process begins, the Commerce and Oracle Retail Order
Management inventories should be synchronized

For detailed information on configuring and managing catalogs and SKUs, refer to the
Oracle CX Commerce documentation.

Working with More Than Three Variants

Chapter 8
Prerequisites

8-3

https://docs.oracle.com/en/cloud/saas/commerce-cloud/books.html

Commerce allows you to configure SKUs so that they contain variants, such as color,
size, collar, etc. However, Oracle Retail Order Management can accept only up to
three of these variants. In the following example, the SKU for a shirt, as it is defined in
Commerce, contains the variants for color, size, sleeve and collar. Because Oracle
Retail Order Management can only accept three of these variants to be part of the
SKU, the SKU is could be modified.

Note: If a Commerce SKU contains three or less variants, it is converted into the
Oracle Retail Order Management system without any changes.

In the following example, the Commerce Shirt 1234 item contains the following
variants: color, size, collar, and sleeve. A SKU with the sku_id 1234567 is a
Shirt1234 item that has the variants values of black, small, crew, half.

Because the Commerce SKU has more variants than Oracle Retail Order
Management can accept, you might configure your SKU so that the last variant,
sleeve, is removed, creating three separate items: Shirt1234 Full, Shirt 1234 Half
and Shirt 1234 3/4. The Commerce SKU now matches the Oracle Retail Order
Management Shirt1234 Half item. The SKU with the Commerce sku_id 1234567
receives the system-generated short_sku_number 1234567.

The above diagram shows how the Commerce item Shirt 1234 can be converted into
three separate Oracle Retail Order Management items based on the fourth variant,
sleeve. The diagram also shows how the Commerce SKU Shirt1234 relates to the
Oracle Retail Order Management SKU 1234567.

Chapter 8
Prerequisites

8-4

Setting Up the Integration
The following section provides information on configuring and accessing integration.

This includes configuring both the Oracle CX Commerce and the Production
Integration.

Commerce Configuration
Before you set up the Oracle Retail Order Management integration with Oracle CX
Commerce ensure that the necessary integration software is running on your server.

Configuring Webhooks

As described in the Architectural Overview section, the integration service is based on
the Web API settings in Commerce.

Web APIs allow you to subscribe to events for your products and orders by
creating webhooks that push JSON notifications to a URL you specify. For additional
information on webhooks, refer to Use Webhooks.

Before you can configure the integration settings, the webhook must be configured. To
do this, ensure that the Order Submit Event API has been configured with the URL
necessary to connect to the Oracle Retail Order Management server.

To Configure the Order Submit Event API

1. From the Commerce administration interface, select the Settings menu.

2. Open the Web API page and select the Webhook tab.

3. Open the Order Submit Event API.

4. Provide the URL of the server that will be accepting the order, including the server
name and port used for the CWOrderIn service. For example:
https://my.example.com:8443/SerenadeSeam/sxrs/SerenadeREST/CWOrderIn

5. Provide a user name and password for accessing the server.

6. If you are using HMAC authentication, you can view or reset the key.

7. Click Save to save your changes.

Accessing the Oracle Integrations Console
The Oracle Integrations page is accessed through the Commerce administration
interface.

1. In the Commerce administration interface, click the Settings icon.

2. Click Oracle Integrations in the left navigation pane.

3. Select OROMS (Oracle Retail Order Management) from the Oracle Integrations
menu.

4. To enable the integration, select the Enable integration checkbox.

Chapter 8
Setting Up the Integration

8-5

Configuring the Integration
The following sections describe how to configure components of the integration
procedure.

Production Configuration

The Production Configuration section configures a number of details as well as the
mappings for payment types and shipping methods. These values are passed to
Oracle Retail Order Management allowing the orders to be identified.

Note: These settings are duplicated in the other Oracle Retail Order Management
Integration setting, Preview Configuration.

The following properties are set in the fields provided by the Production Configuration
page. Note that all fields are required unless otherwise noted.

Field Description

XSLT Path Name of the custom XSLT file to load.

Source Identifies the source of the XML message. The
source should default to IDC.

Target Identifies the target of the XML message. The
target should default to RDC.

If multiple webhooks are specified in the Target
field, all of the systems receive the same
data. Transformation for specific URLs can be
performed by adding the URLs to both the
webhook and integration settings.

Company Code Identifies the company for the order. The
company code is validated against the
Company table.

Source Code Updates the source code field in the Order
Header table. The source code provides
information about the currency code. You
must provide the Commerce currency code to
the Oracle Retail Order Management System
source code mapping using the Currency
Code mapping table.

Order Type Updates the order type field in the Order
Header table.

URL The URL path to the Oracle Retail Order
Management Web Service CWMessageIn. For
example:

https://my.example.com:8443/
SerenadeSeam/sxrs/SerenadeREST/

CWMessageIn

Note: Use the same hostname and port
number that you provided for the Order Submit
URL on the Web APIs Webhook page.

User Name The name of the user who should have access
to the Web Service.

Password The password associated with the user name.
To see the password, click the Reveal button to
display the password.

Chapter 8
Setting Up the Integration

8-6

Orders and multiple site configurations

The Commerce currency codes are mapped to the Oracle Retail Order Management
Source Code. For example:

Commerce Currency Code Oracle Retail Order Management Source
Code

USD CC_USD

EUR CC_EUR

In an environment with multiple sites, you could configure the settings like this:

Site Commerce Currency Code Oracle Retail Order
Management Source Code

USA USD CC_USD

UK GBP CC-UK_GBP

UK EUR CC_UK_EUR

Germany EUR CC_DE_EUR

Select the site with the site picker and select the appropriate Oracle Retail Order
Management source code. Each source code points to a single offer record, which
contains the currency code. This is how the offer record can provide the currency
representation for an order.

Using XSLT

You can use the customized XSLT capability to extend the default integration. The
system contains an internal XSLT file that maps all attributes. The merchant does not
have access to this XSLT file; however, you can provide a path to the XSLT. The
XSLT should contain the logic that customizes the Oracle Retail Order Management
createOrder payload so that it includes dynamic properties or makes mapping
changes.

This XSLT workflow is active only when the Oracle Retail Order Management
integration is enabled. The merchant must upload the XSLT using Oracle CX
Commerce’s file upload endpoints. If no customized XSLT file is uploaded, the system
uses the default XSLT file to pass orders, ignoring any custom attributes.

When creating a custom XSLT file:

• The default mapping can be overridden and mapped to other attributes as
necessary.

• The merchant can use dynamic attributes created with Oracle CX Commerce to
map attributes of the Oracle Retail Order Management.

• Because mapping is configured in the customized XSLT file, the merchant can
map custom attributes that were created for an Order header level in Commerce to
an order header or order line status in Oracle Retail Order Management.

To use a customized XSLT file, do the following:

1. Create a new XSLT file mapping.

2. Upload the XSLT file to Commerce using the file endpoints.

Chapter 8
Setting Up the Integration

8-7

3. Use the Oracle Retail Order Management Integration Settings to provide the name
of the uploaded XSLT.

The following illustration defines the way that the merchant’s transformation is applied
when the XSLT path is provided.

XSLT Example

The following is an example of an XSLT file:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="2.0"
 xmlns:str="http://exslt.org/strings" xmlns:exsl="http://exslt.org/
common"
 exclude-result-prefixes="str exsl">
 <xsl:output indent="yes" method="xml" omit-xml-declaration="yes" />
 <xsl:template match="/">
 <xsl:variable name="vOrder" select="request/atgResponse/order" />
 <Message>
 <xsl:copy-of select="request/Message/@*" />
 <Header>
 <xsl:copy-of select="request/Message/Header/@*" />
 <Payments>
 <xsl:for-each select="request/Message/Header/Payments/

Chapter 8
Setting Up the Integration

8-8

Payment">
 <Payment>
 <xsl:copy-of select="@*" />
 </Payment>
 </xsl:for-each>
 </Payments>
 <ShipTos>
 <xsl:for-each select="request/Message/Header/ShipTos/ShipTo">
 <ShipTo>
 <xsl:copy-of select="@*" />
 <Items>
 <xsl:for-each select="Items/Item">
 <Item>
 <xsl:copy-of select="@*" />
<!-- **
 Updating an existing mapping
** -->
<!-- To change the mapping of an existing OROMS attribute, comment the
line
(<xsl:copy-of select="@*" />) and uncomment below line and replace
<oroms_attribute> with the attribute name required in output and
<occ_attribute>
with attribute name in occ XML map an attribute in oroms XML to a
different value,
comment the above line and uncomment below line and replace
<oroms_attribute> with
the attribute name required in output and the <occ_attribute> with
attribute name
in occ XML -->

<!-- <xsl:copy-of select="@*[name()!='<oroms_attribute>']" />
<xsl:attribute
name="tax_override"> <xsl:value-of select="//request/atgResponse/order/
<occ_attribute>" /> </xsl:attribute> -->

<!-- ***
Mapping a dynamic attribute of OCC to a new attribute in OROMS
*** -->
<!-- To add a new attribute "category" at item level in oroms XML,
which reads the
data from the dynamic attribute shopperCategory. Replace
<occ_attribute> with the
dynamic attribute name in occ. -->

<!-- <xsl:attribute name="category"> <xsl:value-of select="//request/
atgResponse/
order/<occ_attribute>" /> </xsl:attribute> -->

<!-- ***
Mapping a dynamic attribute of OCC with comma separated item level
data to a new attribute in OROMS
** -->
<!-- To map a dynamic attribute in occ in format skuId1-value1,skuId2-
value2.
Replace <occ_attribute> with the dynamic attribute name in occ and

Chapter 8
Setting Up the Integration

8-9

<oroms_attribute> with oroms attribute name. -->

<!-- <xsl:variable name="vOromsAttribute" select="@short_sku_number"/>

<xsl:for-each select="str:tokenize($vOrder/<occ_attribute>,',')">
<xsl:variable name="temp" select="str:tokenize(.,'-')"/>
<xsl:if test="$temp[1]=$vOromsAttribute">
<xsl:attribute name="<oroms_attribute>"> <xsl:value-of
select="$temp[2]" />
</xsl:attribute>
</xsl:if>

</xsl:for-each> -->

<!-- ***
Mapping a dynamic attribute of OCC in JSON with a new attribute in OROMS
** -->
<!-- To map a dynamic attribute in occ in json format (sample json
format is given
below). Replace <occ_attribute> with the dynamic attribute name in occ,
<oroms_attribute> with oroms attribute name and
<dynamicAttributeFieldName> with
specific field name in the dynamic attribute json -->

<!-- Sample JSON:
 [
 {
 "giftwraplineId":"gift-wrap-item-gwprod1001-834215",
 "giftWrapSkuId":"gwprod1001",
 "giftWrapSkuDescription":"Gift Wrap Product",
 "giftWrapSkuPrice":5,
 "skuId":"834215",
 "skuDescription":"Opal Innocence Silver 8\" Salad Plate",
 "quantity":1
 },
 {
 "giftwraplineId":"gift-wrap-item-gwprod1001-845353",
 "giftWrapSkuId":"gwprod1001",
 "giftWrapSkuDescription":"Gift Wrap Product",
 "giftWrapSkuPrice":5,
 "skuId":"845353",
 "skuDescription":"Bald Eagle Figurine",
 "quantity":1
 }
]
 -->

<!-- <xsl:variable name="vOromsAttribute" select="@short_sku_number" />
<xsl:attribute name="<oroms_attribute>">
 <xsl:call-template name="readCustomProperty">
 <xsl:with-param name="json" select="$vOrder/<occ_attribute>" />
 <xsl:with-param name="skuId" select="$vOromsAttribute" />
 <xsl:with-param name="dynamicAttributeName" select="
 <dynamicAttributeFieldName>" />
 </xsl:call-template>

Chapter 8
Setting Up the Integration

8-10

</xsl:attribute>
 -->
 </Item>
 </xsl:for-each>
 </Items>
 </ShipTo>
 </xsl:for-each>
 </ShipTos>
 </Header>
 </Message>
 </xsl:template>

 <xsl:variable name="quot" select="'"'" />
 <xsl:variable name="skuIdWithQuots" select="concat('skuId\', $quot,
':\'
 $quot)" />

 <xsl:template name="readCustomProperty">
 <xsl:param name="json" />
 <xsl:param name="skuId" />
 <xsl:param name="dynamicAttributeName" />

 <xsl:variable name="temp" select="normalize-space
 (substring-after($json,'{'))" />
 <xsl:variable name="fullSkuJson" select="normalize-space
 (substring-before($temp,'}'))" />
 <xsl:variable name="remainingJson" select="normalize-space
 (substring-after($temp,'}'))" />

 <xsl:call-template name="readCustomPropertyBySkuId">
 <xsl:with-param name="fullSkuJson" select="$fullSkuJson" />
 <xsl:with-param name="remainingJson" select="$remainingJson" />
 <xsl:with-param name="skuId" select="$skuId" />
 <xsl:with-param name="dynamicAttributeName" select=
 "$dynamicAttributeName" />
 </xsl:call-template>
 </xsl:template>

 <xsl:template name="readCustomPropertyBySkuId">
 <xsl:param name="fullSkuJson" />
 <xsl:param name="remainingJson" />
 <xsl:param name="dynamicAttributeName" />
 <xsl:param name="skuId" />
 <xsl:variable name="temp" select="normalize-space
 (substring-after($fullSkuJson,$skuIdWithQuots))" />
 <xsl:variable name="skuIdValue" select="normalize-space
 (substring-before($temp,'\'))" />

 <xsl:if test='$remainingJson'>
 <xsl:variable name="temp1" select="normalize-space
 (substring-after($remainingJson,'{'))" />
 <xsl:variable name="fullSkuJson1" select="normalize-space
 (substring-before($temp1,'}'))" />
 <xsl:variable name="remainingJson1" select="normalize-space
 (substring-after($temp1,'}'))" />

Chapter 8
Setting Up the Integration

8-11

 <xsl:call-template name="readCustomPropertyBySkuId">
 <xsl:with-param name="fullSkuJson" select="$fullSkuJson1" />
 <xsl:with-param name="remainingJson"
select="$remainingJson1" />
 <xsl:with-param name="skuId" select="$skuId" />
 <xsl:with-param name="dynamicAttributeName"
 select="$dynamicAttributeName" />
 </xsl:call-template>
 </xsl:if>

 <xsl:if test='$skuId = $skuIdValue'>
 <xsl:variable name="attributeNameWithQuots"
 select="concat($dynamicAttributeName, '\', $quot, ':\' ,
$quot)" />
 <xsl:variable name="temp2" select="normalize-space
 (substring-after($fullSkuJson,$attributeNameWithQuots))" />
 <xsl:variable name="attributeValue" select="normalize-space
 (substring-before($temp2,'\'))" />
 <xsl:value-of select="$attributeValue" />
 </xsl:if>
 </xsl:template>
</xsl:stylesheet>

Order Creation

Orders created in Commerce are sent to Oracle Retail Order Management using the
Submit Order webhook.

Note that the Oracle Retail Order Management webhook overrides the Submit Order
Webhook to send XML messages that contain the entire XML payload. If the webhook
is configured to send to multiple destinations, all of the destinations will receive this
XML payload.

The following is an XML example of an order creation message received by Oracle
Retail Order Management.

Sample Order Creation Message

<Message source="IDC" target="RDC" type="CWOrderIn">
 <Header order_number="o60412" order_type="Y" company_code="51"
order_channel="I"
 source_code="A123_USD" payment_only="N" response_type="E"
 order_date="08222016"
 sold_to_prefix=""sold_to_fname="Kim" sold_to_lname="Anderson"
sold_to_suffix=""sold_to_busres="R" sold_to_address1="21 Cedar Ave"
 sold_to_address2=""sold_to_address3="" sold_to_address4=""
 sold_to_city="Syracuse" sold_to_state="NY" sold_to_zip="13202"
 sold_to_country="US"sold_to_email_update="N"
sold_to_day_phone="212-555-977"
 sold_to_eve_phone="212-555-1977"sold_to_address_update="Y"
pay_incl="Y"
 bill_to_prefix=""bill_to_fname="Kim" bill_to_lname="Anderson"
 bill_to_suffix=""bill_to_address1="21 Cedar Ave" bill_to_address2=""
 bill_to_address3=""bill_to_address4="" bill_to_city="Syracuse"
 bill_to_state="NY"bill_to_zip="13202" bill_to_country="US"
 bill_to_day_phone="212-555-1977" bill_to_eve_phone="212-555-1977"

Chapter 8
Setting Up the Integration

8-12

 bill_to_fax_phone=""bill_to_email="kim@example.com"
bill_to_company_name=""
 ind_number=""order_email="kim@example.com"
alternate_sold_to_id="se-570031">
 <Payments>
 <Payment payment_type=""cc_number="9997000108950573"
cc_exp_month="03"
 cc_exp_year="2018" auth_amount="75.88" auth_date="01011970"
 ecommerce_indicator="Y" already_tokenized="Y"
 transaction_id="1ni4eg211lj6iqt6097hopidv7"
vendor_response="100"/>
 </Payments>
 <ShipTos>
 <ShipTo shipping_method="01" freight_tax_override="Y"
 freight_tax_amount="4.22" calc_frt="N" ship_to_fax_phone=""
 ship_to_evening_phone="212-555-1977"
ship_to_day_phone="212-555-1977"
 ship_to_email=kim@example.com ship_to_zip="13202"
ship_to_state="NY"
 ship_to_country="US" ship_to_city="Syracuse" ship_to_address3=""
 ship_to_address2="" ship_to_address1="21 Cedar Ave"
ship_to_company=""
 ship_to_suffix=""ship_to_lname="Anderson" ship_to_fname="Kim"
 ship_to_prefix="" freight="50"contact_name="KimAnderson">
 <Items>
 <Item tax_override="Y" price_override="Y"
short_sku_number="130"
 item_id="LAPTOP" actual_price="6.67" tax_amount="1.11"
quantity="2"/>
 <Item tax_override="Y" price_override="Y"
short_sku_number="130"
 item_id="LAPTOP" actual_price="6.66" tax_amount="0.55"
quantity="1"/>
 </Items>
 <ShipTo>
 <ShipTos>
 </Header>
</Message>

Order Status Updates

Commerce retrieves the order status and tracking information from the Oracle Retail
Order Management System to display in the client. The status, which is obtained when
an order detail is queried, will not be persisted or updated in the repository.

Promotions

Promotions and offers are handled by Commerce with the corresponding discount
price sent as part of the order.

Returns and Exchanges

By default, the Oracle Retail Order Management integration does not support returns
and exchanges.

Configurable Product Support

Chapter 8
Setting Up the Integration

8-13

By default, the Oracle Retail Order Management integration does not support
configurable products.

Payment Methods

Oracle Retail Order Management uses payment methods that are identified with
unique integers. For integration, Commerce Payment Methods are mapped to Oracle
Retail Order Management numeric payment methods.

You can obtain a list of the payment methods available by calling the following
endpoint:

GET /ccadmin/v1/merchant/paymentGateways
This returns a list of available payment methods. The response also includes the ID
of the merchant, whether the method has been enabled, and the repository ID of the
payment method. The repository ID identifies the payment method code to use. The
following example displays a partial response that identifies a CyberSource payment
method:

{
 "paymentGateways": [
 {
 "sopCredentials": {
 "storefront": {
 "sopURL": "http://10.101.101.101:8080/ccstore/v1/PM/
cybersourceSOP",
 "expirationDate": "2019-01-28T11:54:30.207Z",
 "profileId": "Admin",
 "applicationName": "storefront",
 "hasSecretKey": true,
 "hasAccessKey": true,
 "repositoryId": "SOP-A"
 },

In an environment with multiple sites, you need to pass the siteId value in header
to get payment gateway details for the site. To fetch payment gateways specific to a
site, you need to pass x-ccsite header. For example, to fetch payment gateways for
siteUS site, the header should include x-ccsite: siteUS.

You can find information about individual endpoints in the REST API documentation
that is available through the Oracle Help Center.

Note that this documentation reflects the most recent version of Commerce. If you are
currently using an earlier version of Commerce, the API documentation on the Oracle
Help Center may include endpoints that are not available on your version.

Once you have obtained the repository ID, use it to map the payment method as
follows:

Chapter 8
Setting Up the Integration

8-14

As orders are created in Commerce and passed to Oracle Retail Order Management,
the payment mappings are passed to Oracle Retail Order Management for fulfillment
and settlement with the required payment gateways.

Note: To ensure PCI compliance, no credit card or gift card numbers are sent to
Oracle Retail Order Management. The transaction reference and the authorization ID
are sent with the order.

Payment Gateways

Commerce has preconfigured integrations with Chase and CyberSource payment
gateways. By default, the CyberSource payment gateway is selected for the
integration. The Oracle Retail Order Management System requires a credit card to
be provided when using the Chase gateway, however, Commerce does not store credit
cards and cannot provide them. As such, Chase credit cards are not supported with
this integration. Oracle Retail Order Management supports CyberSource and PayPal
gateways by default.

Note: When using the CyberSource payment gateway, you must provide the
AuthNumber for reauthorization and settlement. Because Commerce does not store
the AuthNumber, the field is set to NA by default. You must update this field with the
AuthNumber values for the CyberSource gateway.

To configure integrations with other order processing systems, use the Generic
Payment Framework, as described in the Oracle CX Commerce documentation.
Generic payment is not supported by default; however, Oracle Retail Order
Management APIs can support sending payment details separately for an order.
Whenever a generic payment is used in Commerce, payment details are not sent and
the order is put into an error state. Once you update the payment details for the order,
the Oracle Retail Order Management System changes the order to an open state.

External Pricing

Note that this integration does not support external pricing. If you are using a
combination of external prices and sale prices from Commerce, this integration will
average the prices of items of the same SKU. For example, a customer qualifies for
a promotion in Commerce that enables him to purchase 5 hats for the sales price
of $5 each, instead of the list price of $6. If the customer wants to buy 10 hats, in
Commerce, 5 of the hats would be sold at $5 and 5 of the hats would be sold at $6
for a total of $55. Oracle Retail Order Management does not differentiate between the
price lists. Instead, it averages the final price between all of the hats, therefore all 10
hats are priced at $5.50 each for a total of $55. This may impact return processes, as
in the above example, the return price of a hat would be $5.50 and not $5 or $6.

Payment Types

Payment Types are set up and configured using the Payment Processing setting
and the Payment Types tab, which is described in the Oracle CX Commerce

Chapter 8
Setting Up the Integration

8-15

documentation. For information on Oracle Retail Order Management payment types,
refer to the Oracle Retail Order Management documentation.

Shipping Methods

Oracle Retail Order Management uses shipping methods that are identified by unique
integers. You can configure multiple shipping methods. For integration, Commerce
shipping methods are mapped to Oracle Retail Order Management numeric shipping
methods.

The shipping methods are sent to Oracle Retail Order Management during fulfillment.
Commerce and Oracle Retail Order Management shipping methods should be
synchronized. These mapping ensure that the orders created on Commerce refer to
and use similar shipping method chosen by the customer for shipping.

You can obtain a list of the shipping methods available by calling the following
endpoint:

GET /ccadmin/v1/merchant/shippingMethods
This returns a list of available shipping methods. The response also includes
information on each shipping method, and the repository ID of the shipping method.
The repository ID identifies the shipping method code to use. The following example
displays a partial response that identifies a ground shipping method:

 "enabled": true,
 "displaySequence": 0,
 "eligibleForProductWithSurcharges": false,
 "ranges": [
 {
 "amount": 4.75,
 "high": 14.99,
 "low": 0,
 "repositoryId": "groundRange1"
 }

Once you have obtained the repository ID, use it to map the shipping method:

Shipping methods are set up and configured using the Shipping Methods setting,
which is described in the Oracle CX Commerce documentation. For information
for integrating with external shipping systems, refer to the Oracle CX Commerce
documentation. For information on Oracle Retail Order Management shipping
methods, refer to the Oracle Retail Order Management documentation.

External Shipping Methods

Commerce supports external shipping methods. However, these shipping methods
may not be available in the list of shipping methods displayed in the administration

Chapter 8
Setting Up the Integration

8-16

interface when configuring your Oracle Retail Order Management integration. To use
the shipping methods for your external system you must add them to the Shipping
Methods mapping table.

Once all of the integration parameters have been configured and saved, the
integration process can occur.

Chapter 8
Setting Up the Integration

8-17

9
Integrate with Oracle Product Hub Cloud

Oracle CX Commerce provides an integration with Oracle Product Hub Cloud (PHC)
that you can use to provide a robust commerce architecture for order capture and
product management.

Oracle Cloud Product Hub, part of Oracle Cloud PLM suite, is an enterprise-class
product master data management (PMDM) software, delivered via cloud for lower cost
and faster deployment.

Understand the Product Hub integration
Read this section to learn concepts that are important to know before you configure
and use the integration between Oracle CX Commerce and Oracle Product Hub
Cloud.

This section describes concepts to know before you configure and use the integration
between Commerce and Oracle Product Hub Cloud. It includes the following topics:

• Audience

• Overview

• Prerequisites

• Assumptions

Audience

This section is written for Commerce and Product Hub administrators who want
to set up and configure the integration between these two systems. To use this
documentation, you should have experience with Commerce, Oracle Integration Cloud
(OIC), and Product Hub. This section does not provide any instructions for configuring
any other aspects of these systems beyond those required for the integration. For
information on other configurations, refer to each product’s documentation, available
on the Oracle Help Center.

Overview

This integration provides the following features:

• Syncs products created in Product Hub to Commerce

• Associate collections created in Commerce to the products

• Optionally trigger a publish event in Commerce when import is complete

• Upload images from Product Hub to Commerce and associate them with products

Sync products and SKUs: This integration assumes that products and SKUs are
created and maintained in Product Hub. The integration syncs them to Commerce and
make them available on the storefront, as described by the following process:

• The item publication job can be scheduled in Product Hub with a required
frequency, for example once per day or once every six hours. It exports new and

9-1

updated items based on the defined filter criteria. The job runs as specified by
the schedule, and on completion, it posts the exported files to Oracle Universal
Content Management (UCM) and triggers the item-publication job event.

• The item publication job event triggers the OIC flow. It checks if a publish event is
currently running in Commerce. If Commerce is publishing or if another import or
export job is active, then it cannot accept new requests for import. In these cases,
the integration execution stops and is moved to a queue to be retried at a later
time. When publishing completes, the integration is resumed from the queue.

• The integration downloads the exported file from UCM. The archive file may
contain multiple XML files, which are transformed into Commerce JSON format.
The integration archives the JSON files and uploads them to Commerce. It then
triggers the bulk product import process to load the data into the Commerce Admin
server.

Publish imported items: After the import is successful, the integration flow checks
if auto-publish is enabled in the OIC lookup. If enabled, it gets the total number of
records pending publishing in Commerce for the user/application configured in the OIC
Commerce connection. If it finds any such record and the number of such records
is less than the threshold configured in OIC lookup, it publishes those records. Note
that the publish operation includes all the records for the user, not only the ones
imported as part of the current integration flow. If the threshold exceeds 10 MB, it
sends an email notification to the administrator to inform that publish was not initiated
automatically. A Commerce admin user can manually start a publish in this case.

Upload images: If Media Sync is enabled (that is, if CXCommerceMediaSyncEnabled
is set to true in OIC lookups), then media items are also synced along with the items/
products from Product Hub to Commerce. Supporting formats for images to be linked
with products in Commerce are JPG, JPEG, PNG, and GIF. Separate ZIP file will be
created with all the images of supported formats and then uploaded to Commerce. For
more information about the rules Commerce enforces for images, see Manage Media
for Your Store in Using Oracle CX Commerce.

Prerequisites

Configuring and using this integration requires the following. If you require one or more
of these, please contact an Oracle sales representative.

• A Commerce account and access to Commerce 20D or later.

• An Oracle Fusion Product Hub account and access to Product Hub Cloud 20B or
later.

• An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service.

Assumptions

This integration makes the following functional assumptions. These assumptions
require a functional understanding of both Commerce and Product Hub.

• Catalogs, collections, and product types are created in Commerce before the
products are imported into Commerce by the integration.

• Products and SKUs data is always managed in Oracle Product Hub and is
imported into Commerce. This means that Product Hub is the only source of
products and SKUs for Commerce.

Chapter 9
Understand the Product Hub integration

9-2

• By default, Commerce list prices are mapped to Product Hub's purchase list
prices. It's recommended to create an Extensible Flexfield (EFF) attribute for sale
list price and override the mapping.

• All changes are published on Commerce, once the products are imported.

• Configurable SKUs, add-on products, related SKUs, services and subscriptions
are not supported by default in this integration. You will need to extend the
integration if you wish to support these components.

• PDH Item Number is mapped to Commerce Product ID and SKU ID. While Item
Number can include spaces and have a maximum length of 256 characters,
Commerce IDs do not support spaces and can have a maximum length of 165
characters. Therefore, appropriate rules must be set in PDH to conform data to
Commerce requirements. Also, the Item Number must not be modified in PDH.

• Translations to secondary locales are not supported by default in this integration. If
your Commerce environment requires translations, this requires multiple exports to
be triggered in PDH in different locales, and any extension to this integration must
handle them accordingly in the integration flow.

• You can customize this integration to link Images to SKUs and to map an
image’s path and name under SKUs. Before you can do this, make sure that
the productType is mapped to a Commerce product type for which Allow product
images at the variant property value level is enabled in the Variant properties.

Configure Oracle CX Commerce
This section describes tasks you must perform to configure Commerce for the
integration.

You perform these tasks in the Commerce administration interface and with the
Commerce REST APIs.

Register the application and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

1. Log into the Commerce administration interface.

2. Click the Settings menu and select Web APIs.

3. Click Registered Applications from the Web APIs panel.

4. Click the Register Application button.

5. Enter a name for the integration application. Create a meaningful name that
reflects the purpose of the application.

6. Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

7. Click on the name of the application you created.

8. Click to reveal link to display the application key. You can copy the application key
to use as the security token for the Oracle Commerce connection.

Chapter 9
Configure Oracle CX Commerce

9-3

For more information on managing an application within Commerce, see Register
applications.

Configure the Commerce webhooks

You must configure the Publish Complete and Import Complete webhooks.. Follow
these steps to configure the webhooks in the Commerce administration interface:

1. Log into the Commerce administration interface.

2. Click the Settings icon.

3. Click Web APIs and then click the Webhook tab.

4. Click the Publish Complete (Production) webhook. Enter the integration (Oracle
Commerce OIC ProductHubInt Resubmit Webhook) endpoint URL in the URL box
and enter the OIC username and password, under Basic Authorization.

5. Click the Import Complete (Production) webhook. Enter the integration (Oracle
Commerce OIC ImportComplete Post Processing) endpoint URL in the URL box
and enter the OIC username and password under Basic Authorization.

6. Click Save.

Attribute mappings

The following table shows the relationships between Product Hub product Item
properties and Commerce product properties.

Commerce product property Product Hub product item field

id ItemNumber

displayName ItemDescription

nonreturnable ReturnableFlag

orderLimit MaximumOrderQuantity

description LongDescription

shippable ShippableFlag

taxCode OutputTaxClassificationCodeValue

active ItemStatusValue

listPrice ListPrice

The following table shows the relationships between Product Hub product Item
properties and Commerce SKU properties.

Commerce SKU property Product Hub product item field

id ItemNumber

productId ItemNumber of parent style Item

displayName ItemDescription

nonreturnable ReturnableFlag

active ItemStatusValue

listPrice ListPrice

Chapter 9
Configure Oracle CX Commerce

9-4

Configure Oracle Product Hub
This chapter describes tasks you perform in Oracle Fusion Product Hub to support the
integration

Before you configure the integration, you should also plan the following tasks in
Product Hub:

• Create a Spoke system in Product Hub for which item-publication jobs can be
scheduled.

• Configure the item-publication criteria, select entities Attributes and Item Category
Assignments. You can select a date filter in criteria to filter out items, for example,
items updated within the past day, if the publication job is scheduled for a daily
frequency.

• Configure the size of exported zip file. Remember that OIC will not accept ZIP files
larger than 1GB.
The exported zip files contains ITEM_*.xml files. Configure the size of XML by
providing an optimal number of records an XML file can have, so that the size
of the XML doesn't exceed 10 MB. This is to match OIC restrictions in place for
performance considerations.

• Create a schedule for the publication job.

Install and Configure the Integration in OIC
This section describes how to install the integration package in Oracle Integration
Cloud (OIC).

The OIC Home Page is the starting point for these tasks.

Install the recipe and configure the connections

This integration is provided as a recipe, which is a pre-assembled solutions to help
jump-start your integration development.

First, log into an Oracle Integration instance to display the OIC Home Page. Find the
integration recipe Oracle Product Hub — Oracle CX Commerce | Product Sync from
the OIC home page. and install the recipe by hovering over the card and clicking the +
sign icon.

Once the recipe is installed, hover over the card again to display options to configure,
activate, and delete. Select Configure and then configure the connections used by the
integration:

1. Log in to OIC as an admin user.

2. Select Integration->Connections.

3. Select Oracle CX Commerce. The Connection Properties dialog appears.

• Enter the URL to connect to Commerce as the value of the Connection Base
URL property (https://<hostname>/ccadmin/v1).

• Enter the security token value, which you can find in the Commerce
administration settings and click OK. The security token is the application

Chapter 9
Configure Oracle Product Hub

9-5

key in the OracleCommerce Interface found under Registered Applications
Settings. Contact your Commerce Administrator to get this application key.

4. Select Oracle Integration Connection. The Connection Properties dialog
appears.

• Select the connection type (REST API Base URL) and enter the OIC
connection URL (http://{OIC-server}/ic/api/integration/v1).

• Under Security, select Basic Authentication and provide login credentials to
access the endpoint.

5. Select Oracle Product Hub Connection. The Connection Properties dialog
appears.

• Enter the ERP Services Catalog WSDL URL. For example: https://
{productHub-server}/fscmService/ServiceCatalogService?WSDL

• Enter the ERP Events Catalog URL. For example: https://{productHub-
server}/soa-infra

• Under Security Policy, select Username Password Token and enter the
login credentials to access the endpoint.

6. Select Oracle UCM Connection, The Connection Properties dialog appears.

• Enter the WSDL URL. For example: https://{productHub-server}/
idcws/GenericSoapPort?wsdl

• Under Security Policy, select Basic Authentication and enter the login
credentials to access the endpoint.

Update mapping for prices for products and SKUs

Update the mapping in the integration flow Oracle PRODUCT HUB COMMERCE
ItemToProductSync to map the EFF attribute representing List Price in Product Hub
to List Price in Commerce. By default Product Hub's Purchase List Price is mapped,
but this must be updated to be mapped to the correct EFF attribute. Additionally, since
List Price is required for creating a product in Commerce, the EFF attribute must be
configured as required in Product Hub.

Customize mapping for additional custom fields

If you include additional custom fields in either Commerce products and SKUs or
Product Hub Items, you will need to update the mapping in the integration flow Oracle
PRODUCTHUB COMMERCE ItemToProductSync.

To include additional fields in Product Hub Items:

1. Once you have added new fields, generate the XSD in Product Hub using Item
Publication job. The XSD will include any new fields you added.

2. Open the integration flow Oracle PRODUCTHUB COMMERCE
ItemToProductSync to edit.

3. Navigate to DownloadItemsAndProcess (Scope) > readItemFile (stage
operation).
Edit the stage operation node.

Upload the latest XSD ZIP file.

Select the definition for publication items (.../commmon/
publicationService/}Items)

Chapter 9
Install and Configure the Integration in OIC

9-6

4. Click Next, then click Done.

5. The mapper should show the new fields for Product Hub item.

To include additional fields in Commerce Products and SKUs

1. Once you have added new fields, export a product from Commerce. The exported
data will contain the new fields.

2. Open the integration flow Oracle PRODUCTHUB COMMERCE
ItemToProductSync to edit.

3. Navigate to DownloadItemsAndProcess (Scope) > writeCommerceJsonFile
(stage operation).

• Edit the stage operation.

• Upload the exported sample JSON.

4. Click Next, then click Done.

5. The mapper should show the new fields for Commerce product and SKU.

Configure lookups

You must update the lookup values in the lookup table Oracle-
PDH_Comm_Int_Settings:

• PDHSpokeSystem : Spoke system created in Product Hub for performing item-
publication job. The integration will process the exported file for this spoke system.

• PDHCatalogsForCategory-ProductsLinks : Comma-separated list of catalogs.
Configure if the product in Commerce will be associated with specific collections
and catalogs. If this is not provided, the integration flow will link the product to
all the collections specified by the exported data received from Product Hub. If
no collection or catalog associations are required then configure this variable as
NULL.

• ToEmailAddresses: Recipient email addresses to send error notifications. If an
import fails in Commerce, an email message containing a link to failed records is
sent to this ID.

• FromEmailAddress: Sender email address for the error notifications.

• OICMaximumRetryCount: Maximum number of retry counts for resubmitting failed
instances. There are a number of reasons for integration instance failure, for
example, when publishing is running in Commerce, or if there is a network failure.

• CXCommerceAutoPublishEnabled – Set this to true if all the records imported
to Commerce through specific registered App ID (CXCommerceRegisteredAppId)
needs to be published automatically; otherwise, configure this variable as false.

• CXCommerceRegisteredAppId - Registered Commerce Application ID of the user
for which the all the data in the publishing queue will be published, if automatic
publishing (CXCommerceAutoPublishEnabled) is enabled.

• CXCommerceAutoPublishThreshold - Maximum number of records for which
automatic publishing will be triggered. Otherwise, the integration will send email
to the administrator so they can manually publish.

• CXCommerceMediaSyncEnabled – Set this to true if media items from Product Hub
need to be synced with Commerce; otherwise set to false.

Chapter 9
Install and Configure the Integration in OIC

9-7

The following example shows sample lookup values in the lookup table Oracle-
PDH_Comm_Int_Settings:

FromEmailAddress - emailIdSource@example.com
PDHCatalogsForCategory-ProductsLinks – NULL
PDHSpokeSystem – CXCommerce
OICMaximumRetryCount – 5
CXCommerceRegisteredAppId – EnterYourRegisteredAppId
CXCommerceAutoPublishEnabled – false
CXCommerceAutoPublishThreshold – 1000000
CXCommerceMediaSyncEnabled - true

Configure email notifications

The integration includes the ability to send emails that notify administrators of the
following issues:

• Record imports fail

• The number of items to automatically publish exceeds the specified threshold

• Exported XML/image size exceeds 10 MB

You specify the email address that notifications are sent to with the ToEmailAddresses
lookup value and the email address that notifications are sent from with the
FromEmailAddress lookup value. See Configure lookups for more information.

To learn how to customize and send email with OIC, see the following Oracle blog
posts:

• An Advanced Guide to OIC Notification via Emails

• How to send email with attachments in OIC

Activate the integration flows

After you configure the Oracle Product Hub and Commerce connections, you must
activate the integrations that were created when the integration package was imported
to Oracle Integration Cloud. To do this, follow these steps:

1. Log in to Oracle Integration Cloud (OIC) as an admin user.

2. Click the Integrations icon to display the Integrations list.

3. Click the Activate button for each of the following integrations:

• Oracle Commerce Product Import

• Oracle Product Hub Oracle CX Commerce Products Int

• Oracle Commerce Integration Resubmit

• CX Commerce Product ImportComplete Post Processing

• Oracle Commerce Product Hub Int Resubmit Publish

• Oracle Commerce Product Hub Int Resubmit Schedule

OIC displays a message to indicate that the integration flow was successfully
activated.

Chapter 9
Install and Configure the Integration in OIC

9-8

https://blogs.oracle.com/integration/an-advanced-guide-to-oic-notification-via-emails
https://blogs.oracle.com/integration/how-to-send-email-with-attachments-in-oic

Understand the integration flows
This section describes the out-of-the-box integration flows and includes a diagram that
illustrates the overall integration flow.

The Product Hub integration includes the following flows:

• Oracle PRODUCT HUB COMMERCE ItemToProductSync
Syncs the products, SKUs, and images (if images are enabled in lookup) data
from Product Hub to Commerce. This flow is triggered by the Product Hub item-
publication event.

• Oracle OIC COMMERCE ImportStart
Issues the command to start the import on a file to Commerce.

• Oracle Commerce OIC ImportComplete Post Processing
Includes the flow for automatically publishing the records in Commerce. If the
number of imported records exceeds the limit, sends a notification so publishing
can be manually started in Commerce. This flow is triggered by the Commerce
Import Complete Webhook .It sends a notification to the configured email address
if the import has any failed records.

• Commerce OIC Product HubInt Resubmit Webhook
Listens for the Commerce Publish Complete webhook‘s POST request and
re submits the failed integrations run of Oracle PRODUCT HUB COMMERCE
ItemToProductSync which fails because of publishing is running in Commerce.

• Oracle OIC OICREST RESUBMITERRORRUN
Fetches the failed integrations for the input integration name and resubmit the first
entry in the failed integration.

• Oracle SCHEDULE OIC Product HubInt Resubmit
The schedule integration, which resubmits the failed integrations run of failed
Oracle PRODUCT HUB COMMERCE ItemToProductSync. Failures may occur because
there was a processing error with the exported file in the integration or upload and
import of the products file to Commerce was not successful.

The following diagram shows an overview of the integration flows:

Chapter 9
Understand the integration flows

9-9

Chapter 9
Understand the integration flows

9-10

10
Integrate with Oracle Subscription
Management

Integrating with Oracle Subscription Management allows shoppers on your Oracle CX
Commerce site to purchase and manage their subscriptions.

Subscriptions are an increasingly popular way that allows your shoppers to buy
products and services online. When you offer shopper subscriptions, you help
strengthen customer relationships and take advantage of a solution that supports
complex products and services.

Understand the Subscription Management integration
This integration between Oracle CX Commerce and Oracle Subscription Management
lets shoppers on a Commerce site purchase and manage subscriptions.

Subscriptions are an increasingly popular way to buy products and services online.
Offering subscriptions can help strengthen customer relationships with merchants and
evolve their strategies by taking advantage of a solution that also supports complex
products and services.

This integration offers the following benefits:

• Self-service for managing the entire life cycle of subscription management.

• Self-service capability for subscription management of complex configurable
services

• Subscriptions can be created and modified seamlessly across Commerce, CPQ
and Oracle Subscription Management.

• Allows merchants to offer subscriptions of configurable services to shoppers.

Prerequisites

The following software, account, and data prerequisites are required before you can
install and configure the subscription.

• An Oracle CX Commerce account and access to the Oracle CX Commerce
20.3.12 or later.

• An Oracle CPQ account and access to Oracle CPQ 20D or later. You must have
already configured the integration between Oracle CPQ and Commerce. See
Configure the integration for more information.

• An Oracle Subscription Management Cloud account and access to Subscription
Management Cloud 20C or later.

• Oracle Financials Account Receivables (AR)

• Oracle Customer Data Management (CDM)

• An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service.

10-1

• Oracle Product Master Data Management

• The Oracle CX Commerce to CPQ Get Assets integration - version 7.
(Downloadable as OCCS_CPQ_ASSET_INTEGRATION_7.0.par).

Assumptions

This integration makes the following functional assumptions:

• Profile and Account are in sync with Oracle Customer Data Management.

• Products are in sync between Oracle Product Hub, Oracle CPQ, and Oracle
Subscription Management Cloud.

• Only configurable products from CPQ are eligible for the integration and all
subscription-based products need to be configured in CPQ with recurring prices.

• Asset Based Ordering must be enabled in CPQ, so that Asset Keys get generated
as part of the configuration. These Keys are used to track the relationship
between configuration details in Commerce items, Subscription products and CPQ
Assets. For Commerce to store Asset Keys at Commerce item level, products in
Commerce Catalog must have their assetable property set to TRUE.

Roadmap items and limitations in this release

This section describes limitations in the current release you should keep in mind
before you begin working with this integration.

• An 0rder with modify action (or any other action) on asset includes price for the
new asset/configuration, instead of the change in price.

• Cancellation charges are not supported by this integration.

• CPQ charge structure is not supported in this integration flow. For this flow to work
in conjunction with the CPQ-Subscription flow, do not use the charge structure in
the CPQ-Subscription flow.

• The Commerce-to-CPQ Quotation flow does not support recurring prices.

• A subscription order can have only one shipping group and one payment group.

• A subscription order can have only one shipping group and one payment group.
When you design the checkout widgets on your storefront, make sure that
shoppers cannot select split shipping or split payments for subscription orders.

Configure Oracle CX Commerce
The first step in the subscriptions integration is configuring Oracle CX Commerce.

This section describes tasks you must perform to configure Commerce for the
integration. You perform these tasks in the Commerce administration interface and
with the Commerce REST APIs.

Register the application and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

Chapter 10
Configure Oracle CX Commerce

10-2

1. Log into the Oracle CX Commerce administration interface.

2. Click the Settings menu and select Web APIs.

3. Click Registered Applications from the Web APIs panel.

4. Click the Register Application button.

5. Enter a name for the integration application. Create a meaningful name that
reflects the purpose of the application.

6. Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

7. Click on the name of the application you created.

8. Click the Click to reveal link to display the application key. You can copy the
application key to use as the security token for the Oracle Commerce Cloud
connection.

For more information on managing an application within Oracle Commerce Cloud, see
Register applications in Extending Oracle CX Commerce.

Configure the Oracle CPQ Configuration integration

Configure and enable the Oracle CPQ Configuration integration as described in Using
Oracle CPQ Features with Oracle CX Commerce.

The configuration of Commerce items and corresponding pricing rules must be defined
in Oracle CPQ. External pricing details and recurring charge details for configured
items are retrieved from CPQ during order submission flow.

See Entity mappings for relationships between item properties across different
systems in the integration, including Oracle CPQ.

Configure the Commerce webhooks

You must configure the Order Submit and Order Validation webhooks as follows:

• The Order Submit webhook must point to the OIC Subscription Cloud integration
URL.

• The Order Validation webhook must point to the Subscriptions validation SSE URL
https://<host>/ccstorex/custom/v1/validateSubscriptionOrder.

Follow these steps to configure the webhooks in the Commerce administration
interface:

1. Log into the Commerce administration interface.

2. Click the Settings icon.

3. Click Web APIs and then click the Webhook tab.

4. Click the Order Submit (Production) webhook. Enter the OIC Subscription Cloud
integration URL in the URL box and enter the OIC username and password, under
Basic Authorization.

5. Click the Order Validation (Production) webhook. Enter https://<host>/
ccstorex/custom/v1/validateSubscriptionOrder in the URL box.

6. Click Save.

Chapter 10
Configure Oracle CX Commerce

10-3

Create custom properties

This integration requires a number of custom properties that you create with the
Commerce REST APIs. This section lists the custom properties you must create for
accounts, profiles, addresses, orders, and commerce items.

Account custom properties

You must create the following custom property for accounts. For details, see Create
custom properties for accounts in Extending Oracle CX Commerce.

occ_partyId: The party ID of the account in CDM.

Profile custom properties

You must create the following custom property for profiles. For details, see Manage
Shopper Profiles in Extending Oracle CX Commerce.

occ_partyId: The party ID of the profile in CDM.

Address custom properties

You must create the following custom property for addresses. For details, see Work
with address types in Extending Oracle CX Commerce.

This property will be used at order level addresses, such as shipping and billing
addresses. Widgets must be customized to populate these properties on the
storefront. The value needs to be populated from Account’s or Contact’s address
ExternalAddressId property, which holds CDM’s Address Number value.

occ_AddressNumber: The Address Number of the address in CDM.

Orders custom properties

You must create the following custom properties for orders. For details, see Create
custom properties for orders in Extending Oracle CX Commerce. Widget changes are
required for populating these properties while a shopper checks out the cart or submits
the order.

• occ_accountPartyId: Used to map the primary party ID value of a subscription for
account-based shoppers.

• occ_contactPartyId: For B2C subscriptions, used to map the primary party ID
value of a subscription. For account-based subscriptions, used to map the contact
value of a subscription.

Commerce item custom properties

You must create the following custom properties for commerce items. For details, see
Create custom properties for line items in Extending Oracle CX Commerce. Widget
changes are required for populating these properties while a shopper adds the item to
the cart.

• occ_assetActionReason: Provides a custom action reason for close, suspend and
resume operations.

• occ_assetActionDate: Provides a custom action date for close, suspend and
resume operations.

Chapter 10
Configure Oracle CX Commerce

10-4

Entity mappings

This section shows the relationships between entities across different systems in the
integration. Not all entities are mapped to all systems in the integration.

B2B Account

• CDM: PartyNumber
Commerce:externalOrganizationId

• CDM: PartyId
Commerce: occ_partyId (custom)

B2B Contact

• CDM: PartyNumber
customerContactId

• CDM: PartyId
Commerce: occ_partyId (custom)

B2C Contact

• CDM: PartyNumber
customerContactId

• CDM: PartyId
Commerce: occ_partyId (custom)

Account/Contact Address

• CDM: AddressNumber
Commerce: externalAddressId

• CDM: AddressId

B2B Order Account

• CDM: PartyId
Commerce: occ_accountPartyId (custom)

CPQ: Customer

SMC: PrimaryPartyId

B2B Order Contact

• CDM: PartyId
Commerce: occ_contactPartyId (custom)

CPQ: _asset_custom_contactPartyId (custom)

SMC: QuoteToContactId

B2B Order Address

• CDM: AddressNumber
Commerce: occ_AddressNumber (custom)

• AR: CustomerAccountId
CPQ: accountNumber_t

SMC: BillToAccountId

• AR: CustomerAccountSite > CustomerAccountSiteUse > SiteUseId
CPQ: billToSiteUseId_t

Chapter 10
Configure Oracle CX Commerce

10-5

SMC: BillToSiteId

B2C Order Contact

• CDM: PartyId
Commerce: occ_contactPartyId (custom)

CPQ: customer

SMC: PrimaryPartyId

B2C Order Address

• CDM: AddressNumber
Commerce: occ_AddressNumber (custom)

The following table shows the relationships between products and SKUs across
systems.

Product Hub CX Commerce CPQ Subscription
Management Cloud

ItemId N/A PartnerPartId InventoryItemId

ItemNumber SkuId PartNumber ProductName

ItemDescription DisplayName Description N/A

Configure the server-side extensions

The subscription integration functionality is provided through server-side extensions
that run on the Node.js server associated with your Commerce environment.
Download each extension from the Commerce administration server, then configure
the extension and upload it to your Node.js server. The server-side extensions
implement custom REST endpoints, which have the prefix /ccstorex/custom for the
Commerce storefront and /ccagentx/custom for Oracle CX Commerce Agent.

For the Agent extensions, shopperProfileId should be included in the X-
CCAgentContext header. For account-based shoppers, the X-CCOrganization header
should also be present.

This section describes the server-side extensions that are included with the
integration. For details about server-side extensions and how to develop them for
use with Commerce, see Develop server-side extensions in Extending Oracle CX
Commerce.

• subscriptions-app-store.zip Provides endpoints that fetch subscriptions and
subscription products for the Commerce storefront. Also provides an endpoint that
validates the order for both the storefront and the Agent console.

• subscriptions-app-agent.zip Provides endpoints that fetch subscriptions and
subscription products for the Agent.

• subscriptions-assets-store.zip Provides endpoints that use Oracle CPQ to
view and perform asset-based ordering actions on subscription assets. This
extension is for the Commerce storefront.

• subscriptions-assets-agent.zip Provides endpoints that use Oracle CPQ to
view and perform asset-based ordering actions on subscription assets. This
extension is for the Agent.

Each ZIP file includes readme.md files that describe classes and endpoints and include
information about how to install and extend the extensions.

Chapter 10
Configure Oracle CX Commerce

10-6

Create environment variables

This section describes how to set environment variables required by the server-side
extensions. The integration requires the following environment variables:

• OIC_USERNAME: Specifies the basic authentication username of OIC.

• OIC_PASSWORD: Specifies the basic authentication password of OIC.

• CPQ_USERNAME: Specifies the basic authentication username for requests that go
directly to Oracle CPQ.

• CPQ_PASSWORD: Specifies the basic authentication password for requests that go
directly to Oracle CPQ.

• OSS_USERNAME: Specifies the basic authentication username for requests that go
directly to Oracle Subscription Management.

• OSS_PASSWORD: Specifies the basic authentication password for requests that go
directly to Oracle Subscription Management.

The following example issues a POST request to the doCreateExtensionVariable
endpoint that sets the OSS_USERNAME:

/ccadmin/v1/extensionEnvironmentVariables POST
 {
 "name": "OSS_USERNAME",
 "value": "conmgr"
}

Work with the SSE endpoints

This section describes the storefront and Agent endpoints included in the server-side
extensions. All the endpoints are authenticated URLs and all requests must be sent
via HTTPS.

• /ccstorex/custom/v1/subscriptions?q={query param}
/ccagentx/custom/v1/subscriptions?q={query param}

Issue a GET request to return the details about a particular shopper’s
subscriptions.

• /ccstorex/custom/v1/subscriptions/{subscriptionNumber}
/ccagetx/custom/v1/subscriptions/{subscriptionNumber}

Issue a GET request to return the details of a subscription.

• /ccstorex/custom/v1/subscriptions/{subscriptionNumber}/products?q={query
param}
/ccagentx/custom/v1/subscriptions/{subscriptionNumber}/products?q={query
param}

Issue a GET request to return the line items of a subscription.

• /ccstorex/custom/v1/subscriptions/{subscriptionNumber}/products/
{subscriptionProductPuid}
/ccagentx/custom/v1/subscriptions/{subscriptionNumber}/products/
{subscriptionProductPuid}

Issue a GET request to return the details of a subscription order line item.

• /ccstorex/custom/v1/validateSubscriptionOrder

Chapter 10
Configure Oracle CX Commerce

10-7

Issue a POST request to validate a subscription order. This endpoint can be used
for both storefront and Agent orders.

• /ccstorex/custom/v1/assets
/ccagentx/custom/v1/assets

Issue a GET request to get all assets for a particular shopper.

• /ccstorex/custom/v1/assets/{assetId}
/ccagentx/custom/v1/assets/{assetId}

Issue a GET request to get an asset based on asset ID.

• /ccstorex/custom/v1/assets/{assetId}/modify
/ccagentx/custom/v1/assets/{assetId}/modify

Issue a POST request to modify an asset(with CPQ punch-in).

• /ccstorex/custom/v2/assets/{assetId}/modify
/ccagentx/custom/v2/assets/{assetId}/modify

Issue a POST request to modify an asset (with CPQ configurator API).

• /ccstorex/custom/v1/assets/{assetId}/renew
/ccagentx/custom/v1/assets/{assetId}/renew

Issue a POST request to renew an asset.

• /ccstorex/custom/v1/assets/{assetId}/resume
/ccagentx/custom/v1/assets/{assetId}/resume

Issue a POST request to resume an asset.

• /ccstorex/custom/v1/assets/{assetId}/upgrade
/ccagentx/custom/v1/assets/{assetId}/upgrade

Issue a POST request to upgrade an asset. (with CPQ punchin).

• /ccstorex/custom/v2/assets/{assetId}/upgrade
/ccagentx/custom/v2/assets/{assetId}/upgrade

Issue a POST request to upgrade an asset. (with CPQ configurator API).

• /ccstorex/custom/v1/assets/{assetId}/terminate
/ccagentx/custom/v1/assets/{assetId}/terminate

Issue a POST request to terminate an asset.

• /ccstorex/custom/v1/assets/{assetId}/suspend
/ccagentx/custom/v1/assets/{assetId}/suspend

Issue a POST request to suspend an asset.

Create SSE routes to validate billing addresses

Oracle Subscription Management expects an account level address for a business
account subscription. If an address which is linked to a contact is passed, Subscription
Management rejects it with an appropriate error.

You should design your storefront in a way that allows contacts to select only account
addresses when placing subscription orders. In the case where a contact is allowed to
enter a contact-level address instead, it is a good idea to validate the billing address
before the order is submitted.

Chapter 10
Configure Oracle CX Commerce

10-8

If a contact enters their billing address instead of the account’s billing address when
creating a subscription order, the integration fails and the following error is logged: The
value of the attribute Billing Account is invalid. (OKC-195787).

Since the billing details can be updated even after order validation, this validation
can’t be handled as part of the order validation logic and hence this validation
is not available by default. You can avoid this error by adding validation code
to the payment webhook (genericCardPayment webhook for credit card payments
and genericPayment wehook for invoice payments) and creating a new SSE route
(/v1/validateSubscriptionOrderBillingAddress) to perform the validation. Point the
webhook to the newly created route.

For details about account and contact addresses, see Manage an Account-based
Storefront in Using Oracle CX Commerce.

Configure payments

In this release of the integration, Commerce shoppers can pay for subscription orders
with either a credit card or an invoice. For credit cards, create a custom CyberSource
integration using the Generic Payment webhook. A payment gateway configured with
the Generic Payment webhook handles stored credit cards and tokens, which , which
are required for this integration. See Create a Generic Payment Gateway Integration in
Extending Oracle CX Commerce for more information.

Credit card payments

For credit card payments to work properly, Commerce must send a multi- use token to
Oracle Subscription Management.

Commerce does not store the complete credit card data. Instead, when a shopper
stores a credit card, the payment processor associated with the payment gateway
sends back a token that represents the card number. The token is used for each
transaction associated with a subscription payment.

When the shopper submits a subscription order, Commerce, through the gateway,
authorizes a one-time payment against the card. When you implement this integration,
you should populate the muilti use token for the credit card used to pay for the order in
statusProps.

After the initial one-time charge, further subscription and billing is not authorized by
Commerce. Instead, Commerce will send the multi-use token to Oracle Subscription
Management, which, in turn, sends the token to the Oracle Accounts Receivable
module.

As part of the payment integration, you need to return back a reusable credit
card token to the generic payment webhook response in the property token
under statusProps under authorizationStatus. This value will be sent to Oracle
Subscription Management for the periodic billing.

"paymentGroups": [
 {
 "authorizationStatus": [
 {
 "amount": 50,
 "statusProps": {
 "token": "12345678"
 }
 }

Chapter 10
Configure Oracle CX Commerce

10-9

]
 }
]

Install and Configure the Integration in OIC
This section describes how to install the integration package in Oracle Integration
Cloud (OIC).

You must download and import the integration packages and then configure settings in
OIC.

Download and import the integration

The integration package includes two integrations:

• Oracle_CXCommerce_SubscriptionCloud_Integration is the main integration. It
contains all the subscription flows, such as create, modify, terminate, suspend,
resume, and renew.

• Oracle Financials Bill To Account is the integration flow that is called from the
main Subscription flow.

To download the integration package, find the
Oracle_CXCommerce_SubscriptionCloud_Integration.par on the Oracle Cloud
Marketplace and download it to your local system.

To import the OIC Integration Package:

1. Log on to OIC as an admin user.

2. Click the Packages icon.

3. Click the Import button.

4. Click Browse to open a navigation pane.

5. Select the integration package archive (PAR) file you want to import.

6. Click Import.
The package is added to the Packages list.

Configure the connections

After you install the Oracle_CXCommerce_SubscriptionCloud_Integration.par
package, you must configure the connections used by the integration.

1. Log in to OIC as an admin user.

2. Select Integration->Connections.

3. Select Oracle CX Commerce. The Connection Properties dialog appears.

• Enter the URL to connect to Oracle CX Commerce as the value of the
Connection Base URL property (https://<hostname>/ccadmin/v1).

• Enter the security token value, which you can find in the Oracle CX Commerce
administration settings and click OK. The security token is the application
key in the Oracle CX Commerce administration interface, under Registered
Applications Settings. Contact your Oracle CX Commerce administrator to get
this application key.

Chapter 10
Install and Configure the Integration in OIC

10-10

4. Select Sample Sales Cloud. This is connection to Oracle Subscription Cloud.

• Enter the Subscription Cloud Services Catalog WSDL URL, Interface Catalog
URL, and the Security (Username Password Token). For example:
OSC Services Catalog WSDL URL: https://host/fscmService/
ServiceCatalogService?wsdl

Interface Catalog URL: https://host/helpPortalApi/otherResources/
latest/interfaceCatalogs

5. Select Oracle Engagement Cloud. This is connection to Oracle Customer Data
Management.
Enter the OSC Services Catalog WSDL URL, Interface Catalog URL, and Security
(Username Password Token). For example:

OSC Services Catalog WSDL URL: https://host/fscmService/
ServiceCatalogService?wsdl

Interface Catalog URL: https://host/helpPortalApi/otherResources/latest/
interfaceCatalogs

6. Select Oracle REST Trigger Employee Service. This is the trigger connection for
the child integration Oracle Financials Bill To Account Integration. No configuration
is necessary; just test and save the trigger.

7. Select CDM_AR. This is connection to Oracle Financials Accounts Receivable.
Enter the WSDL URL and Security (Username Password Token). For example:
https://host/foundationParties/CustomerAccountService?WSDL

Assign values to constants in OIC integration flows

The following table describes the default constants values in the integration flows. You
must change these default values so they match your system values.

Constant Value

subscriptionProfile zOSS_SP_ServiceStartFixed_Advance_Month

InternalApproval NOTREQUIRED

SourceSystem CX_CLOUD_COMMERCE

GenerateBillingSchedule Y

GenerateBillingScheduleForfullperiod Y

ChargeDefinition QP_RECURRING_SALE_PRICE,
QP_SALE_PRICE

ExternalKey Recurring fee, Activation fee

ExternalParentKey Mapped to catalogRefId in order payload

PriceSystem CPQ

name Activate , resume, suspend and close

RelationShipTypeCode RENEW, AMEND

PriceType ORA_ONE_TIME, ORA_RECURRING

The constants are configured in mappers of different action nodes, such as
createSubscriptions_OSS, SuspendProduct, and ResumeProduct. Follow these steps
if you need to update any of the default values in the mapper:

1. Log into Oracle Integration Cloud (OIC).

2. Go to the integration Oracle CX Commerce To Subscription Integration.

Chapter 10
Install and Configure the Integration in OIC

10-11

3. Edit the mapper of the action node for which you want to update the constant.
Enter the new value in respective mapping.

4. Save and close.

Configure lookups

You must update the following lookup tables to map the following relationships:

• Site Merchant Details – Provides a mapping relationship between Site id,
Definition Organization ID, Business Unit ID and Legal entity ID.

• Payment Methods – Provides a mapping relationship between the payment
method terms in Commerce and Oracle Subscription Management Cloud.

• Reason_CreditMethod_Lookup – Provides a mapping relationship between the
action code of items and their default reason for some asset-based-order actions
and their corresponding credit methods.

• Duration_OCC_OSS – Provides the mapping relationship between the duration
terms in Commerce and their corresponding time code units in Oracle Subscription
Management Cloud.

Activate the integration flows

After you configure the Oracle Subscription Management Cloud and Oracle CX
Commerce connections, you must activate the integrations that were created when
the integration package was imported to Oracle Integration Cloud. To do this, follow
these steps:

1. Log in to Oracle Integration Cloud (OIC) as an admin user.

2. Click Integrations.

3. Select each of the following integrations and click its Activate button.
Oracle CX Commerce To Subscription Integration

Oracle Financials Bill To Account Integration

OIC displays a message to indicate that the integration flow was successfully
activated.

Customize Storefront Widgets
You must customize two widgets and add them to your storefront layouts so that
shoppers can view and work with subscriptions assigned to their accounts.

This chapter describes how to customize the following widgets:

• The customized Assets widget lets shoppers view all their subscriptions and each
subscription’s line items. This widget uses the Subscriptions-app SSE module to
fetch the details from Oracle Subscription Cloud.

• The customized Asset Details widget lets a shopper modify, renew, cancel,
or change a subscription. This widget uses the Subscription-assets-store SSE
module to perform some of the predefined asset actions, such as renew, modify,
terminate, suspend, or resume.

This chapter describes the changes you need to make to the Assets and Asset Details
widgets so they can display subscriptions. For information about how to access the

Chapter 10
Customize Storefront Widgets

10-12

code for default widgets so you can edit it, see Customize layout components in Using
Oracle CX Commerce.

Note: The SSEs must be installed and configured before you can customize the
widgets and use them on the storefront.

Customize the Assets widget

The Assets widget lets shoppers view a list of services associated with their account.
You can customize this widget so that it displays a list of subscriptions for the logged
in user.. This widget uses the Subscriptions-app server-side extension module to fetch
the details from Oracle Subscription Cloud. The Assets widget appears on the Assets
layout.

The following illustration shows a shopper’s subscriptions, displayed in the widget.

When the shopper clicks the Show Products button, the Subscription Asset Details
widget displays in the Asset Details layout.

Customize the Assets widget code

By default, the Assets widget shows the root level assets on the assets page
and clicking on the Details link redirects the shopper to the asset details. For this
integration, you will customize the widget to show the subscriptions on the page first,
then give the shopper the option to view subscription products. By checking details of
a particular subscription product, the shopper will be directed to the root asset details
associated with the product.

To make these changes to the Assets widget, update the widget’s .js file.

First, add/update the following constants:

 var GET_ALL_SUBSCRIPTIONS = "getAllSubscription";
 var GET_ALL_SUBSCRIPTION_PRODUCTS = "getAllSubscriptionProducts";
 var ENDPOINT_VIEW_ACCOUNT_ASSET = "getServices";

Next, add the following observables:

currentSubscriptionNumber: ko.observable(), productPageSize:
 ko.observableArray([]), productsPageSize:
 ko.observable(ccConstants,DEFAULT_SEARCH_RECORDS_PER_PAGE || 12),
productsOffset:
 ko.observable(0) productshasMore: ko.observable(false),
productsTotalResults:
 ko.observable(0), showProductsFlag: ko.observable(false),

Chapter 10
Customize Storefront Widgets

10-13

Next, update the beforeAppear function:

beforeAppear: function (page) {
 var widget = this;

 if (!this.user().loggedIn()) {
 navigation.doLogin(navigation.getPath(),
this.links().home.route);
 }
 widget.showProductsFlag(false);
 }

Finally, add/update the following methods inside the onload function:

 onLoad: function (widget) {
 // Add the Services SSE endpoints to the ccRestClient endpoint
registry.
 // Update the settings below if the Services SSE has been
customized.
 // ENSURE THAT THE SERVICES SSE IS INSTALLED, CONFIGURED AND
AVAILABLE
 ccRestClient.registerInitCallback(function(){

 ccRestClient.endpointRegistry[ENDPOINT_VIEW_ACCOUNT_ASSET] = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_VIEW_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "GET",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry.getAllSubscription = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": false,
 "httpsRequired": false,
 "id": GET_ALL_SUBSCRIPTIONS,
 "localeHint": "assetLanguageOptional",
 "method": "GET",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/oss/subscription/getAll",
 "useOptimisticLock": false
 }

Chapter 10
Customize Storefront Widgets

10-14

 ccRestClient.endpointRegistry.getAllSubscriptionProducts = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": false,
 "httpsRequired": false,
 "id": GET_ALL_SUBSCRIPTION_PRODUCTS,
 "localeHint": "assetLanguageOptional",
 "method": "GET",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/oss/subscription/products",
 "useOptimisticLock": false
 }

 });
 // Use the widget's asetsPerPage config
 // option value if it has been set
 if (widget.assetsPerPage && !isNaN(widget.assetsPerPage())) {
 widget.pageSize(10);
 }

 // Computeds for paging control
 widget.totalPages = ko.pureComputed(function() {
 var returnValue = Math.ceil(widget.totalResults() /
widget.pageSize());
 return returnValue;
 });

 widget.currentPage = ko.pureComputed(function() {
 var returnValue = Math.ceil((widget.offset() +
widget.pageSize()) / widget.pageSize());
 return returnValue;
 });

 widget.previousPage = ko.pureComputed(function() {
 var calculatedPreviousPage = widget.currentPage() - 1;
 var returnValue = ((calculatedPreviousPage < 1) ? 1 :
calculatedPreviousPage);
 return returnValue;
 });

 widget.nextPage = ko.pureComputed(function() {
 var calculatedNextPage = widget.currentPage() + 1;
 var returnValue = ((calculatedNextPage >
widget.totalPages) ? widget.totalPages : calculatedNextPage);
 return returnValue;
 });

 widget.onFirstPage = ko.pureComputed(function() {
 return (widget.currentPage() === 1);
 });

Chapter 10
Customize Storefront Widgets

10-15

 widget.onLastPage = ko.pureComputed(function() {
 var returnValue = false;

 if (widget.totalPages() > 1) {
 if (widget.currentPage() === widget.totalPages()) {
 returnValue = true;
 }
 }
 else if (!widget.onFirstPage() && !widget.hasMore()) {
 returnValue = true;
 }

 return returnValue;
 });

 widget.pageLinks = ko.pureComputed(function() {
 // This would be a good place to do something more
 // sensible with the individual page links that
 // are displayed when there are a large number of
 // results e.g. could display just the 5 pages either
 // side of the current page. For now display every
 // individual page.
 var links = [];

 for (var i = 1; i <= widget.totalPages(); i++) {
 links.push({
 pageNumber : i,
 active : i === widget.currentPage()
 });
 }

 return links;
 });

 widget.shouldShowGoToLastPage = ko.pureComputed(function() {
 return (widget.totalPages() > 1);
 });

 widget.isPagingRequired = ko.pureComputed(function() {
 var returnValue = false;

 if (widget.totalPages() > 1) {
 returnValue = true;
 }
 else if (widget.hasMore()) {
 returnValue = true;
 }
 else if (!widget.onFirstPage()) {
 returnValue = true;
 }

 return returnValue;
 });

 // The goToPage function handles click events from the

Chapter 10
Customize Storefront Widgets

10-16

 // template's paging links. It takes a single input
 // parameter - pageNumber - which indicates the page
 // of assets to load. If the REST call is successful
 // the assets observable is updated with the returned
 // data and the three paging observables (offset, hasMore
 // and totalResults) are updated with the respective
 // values returned from the REST call.
 widget.goToPage = function (pageNumber) {

 function success (data) {
 var productQuery = '';
 var productIdsSet = new Set();

 widget.assets(data.items);
 widget.offset(data.offset);
 widget.hasMore(data.hasMore);
 // if totalPages is not returned (i.e. is null)
 // then set to -1; in this scenario only simple
 // paging will be available (i.e. go to first page,
 // go to previous page and go to next page) and
 // the hasMore value will be used to control
 widget.totalResults(data.totalResults || -1);

 spinner.destroyWithoutDelay(widget.spinnerOptions.parent);
 // }

 }

 function error (data) {
 if (data.status == ccConstants.HTTP_UNAUTHORIZED_ERROR) {
 widget.user().handleSessionExpired();

 navigation.doLogin(navigation.getPath,
widget.links().home.route);

 } else {
 navigation.goTo(widget.links().profile.route);
 }

 spinner.destroyWithoutDelay(widget.spinnerOptions.parent);
 }

 if (widget.user().loggedIn()) {
 var calculatedOffset = (pageNumber - 1) * widget.pageSize();

 spinner.create(widget.spinnerOptions);
 var queryString = 'Status=ORA_ACTIVE';
 var payload = {
 limit: 10,
 offset:calculatedOffset,
 q: queryString,
 orderBy:"CreationDate:desc"
 };

 ccRestClient.request(

Chapter 10
Customize Storefront Widgets

10-17

 GET_ALL_SUBSCRIPTIONS,
 payload,
 success,
 error
);
 }
 };

 widget.handleQuickViewClick = function(pIsModal) {
 var popup;
 if(pIsModal === true && this.productDetails) {
 widget.productDetails(this.productDetails);
 popup = $("#cc-upgrade-asset-display");
 popup.modal('show');
 }
 };

 //---//
 //Function Specific to subscription products table
 widget.productTotalPages = ko.pureComputed(function(){
 var returnValue = Math.ceil(widget.productsTotalResults()/
widget.productPageSize())
 return returnValue;
 });

 widget.productCurrentPage = ko.pureComputed(function(){
 var returnValue = Math.ceil((widget.productsOffset()
+widget.pageSize())/widget.pageSize());
 return returnValue;
 });

 widget.previousProductPage = ko.pureComputed(function() {
 var calculatedPreviousPage = widget.productCurrentPage()-1;
 var returnValue = ((calculatedPreviousPage < 1) ? 1 :
calculatedPreviousPage);
 return returnValue;
 });

 widget.nextProductPage = ko.pureComputed(function() {
 var calculatedNextPage = widget.productCurrentPage() + 1;
 var returnValue = ((calculatedNextPage >
widget.productTotalPages) ? widget.productTotalPages :
calculatedNextPage);
 return returnValue;
 });

 widget.onProductFirstPage = ko.pureComputed(function() {
 return (widget.productCurrentPage() === 1);
 });

 widget.onProductLastPage = ko.pureComputed(function() {
 var returnValue = false;

 if (widget.productTotalPages() > 1) {
 if (widget.productCurrentPage() ===

Chapter 10
Customize Storefront Widgets

10-18

widget.productTotalPages()) {
 returnValue = true;
 }
 }
 else if (!widget.onProductFirstPage() && !
widget.productshasMore()) {
 returnValue = true;
 }

 return returnValue;
 });

 widget.shouldShowGoToProductsLastPage =
ko.pureComputed(function() {
 return (widget.productTotalPages() > 1);
 });

 widget.isProductPagingRequired = ko.pureComputed(function() {
 var returnValue = false;

 if (widget.productTotalPages() > 1) {
 returnValue = true;
 }
 else if (widget.productshasMore()) {
 returnValue = true;
 }
 else if (!widget.onFirstPage()) {
 returnValue = true;
 }

 return returnValue;
 });

 widget.productPageLinks = ko.pureComputed(function() {
 var links = [];

 for (var i = 1; i <= widget.productTotalPages(); i++) {
 links.push({
 pageNumber : i,
 active : i === widget.productCurrentPage()
 });
 }

 return links;
 });

 widget.goToProductPage = function(pageNumber) {
 function showProductSuccess(data) {
 widget.subscriptionProducts(data.items);
 widget.productsOffset(data.offset);
 widget.productshasMore(data.hasMore);
 widget.productsTotalResults(data.totalResults || -1);
 spinner.destroyWithoutDelay(widget.spinnerOptions.parent);
 }

Chapter 10
Customize Storefront Widgets

10-19

 function showProductFailure(err) {
 if (data.status == ccConstants.HTTP_UNAUTHORIZED_ERROR) {
 widget.user().handleSessionExpired();

 navigation.doLogin(navigation.getPath,
widget.links().home.route);

 } else {
 navigation.goTo(widget.links().profile.route);
 }

 spinner.destroyWithoutDelay(widget.spinnerOptions.parent);
 }

 if (widget.user().loggedIn()){
 var calculatedOffset = (pageNumber - 1) *
widget.pageSize();
 //let queryString = `SubscriptionNumber=$
{widget.currentSubscriptionNumber()};Status=ORA_ACTIVE;ExternalParentAss
etKey is NULL`;
 //var queryString = "SubscriptionNumber=" +
widget.currentSubscriptionNumber();
 var queryString = "SubscriptionNumber=" +
widget.currentSubscriptionNumber();
 var payload = {
 limit: 25,
 offset:calculatedOffset,
 q: queryString,
 orderBy:"StartDate:desc"
 };
 ccRestClient.request(
 GET_ALL_SUBSCRIPTION_PRODUCTS,
 payload,
 showProductSuccess,
 showProductFailure
);
 }
 };

 widget.onShowProductsClicked = function(p1, p2) {
 widget.subscriptionProducts([]);
 widget.currentSubscriptionNumber(p1.SubscriptionNumber);
 widget.showProductsFlag(true);
 spinner.create(widget.spinnerOptions);
 widget.goToProductPage(1);

 }

 widget.backToSubscriptionTable = function(p1, p2) {
 widget.showProductsFlag(false);
 }

 widget.redirectToAssetDetailsPage = function(p1, p2) {
 //let assetKeys = p1.ExternalAssetKey;
 var assetKeys = null;

Chapter 10
Customize Storefront Widgets

10-20

 if(p1.ExternalRootAssetKey) {
 assetKeys= p1.ExternalRootAssetKey;
 } else {
 assetKeys = p1.ExternalAssetKey;
 }
 var payload = {
 // q: queryString,
 limit: 10,
 offset:0,
 assetKeys:assetKeys
 };

 // Call WAPI.
 ccRestClient.request(
 ENDPOINT_VIEW_ACCOUNT_ASSET,
 payload,
 widget.getAssetDetailsSuccess,
 widget.getAssetDetailsError
);
 };

 widget.getAssetDetailsSuccess = function(data) {
 /* if(data && data.items) {
 data.items.forEach(function(item){
 $.extend(item, {
 route:
 `${widget.links().assetDetails.route}/${item.assetId}`
 })
 })
 } */
 if(data.items.length>0)
 navigation.goTo(widget.links().assetDetails.route + "/" +
data.items[0].assetId);
 else
 navigation.goTo(widget.links().profile.route);
 };

 widget.getAssetDetailsError = function(data) {
 if (data.status == ccConstants.HTTP_UNAUTHORIZED_ERROR ||
data.status == ccConstants.BAD_REQUEST) {
 widget.user().handleSessionExpired();
 navigation.doLogin(navigation.getPath,
widget.links().home.route);
 }
 else {
 navigation.goTo(widget.links().profile.route);
 }
 spinner.destroyWithoutDelay(widget.spinnerOptions.parent);
 };

Customize the Asset Details widget

The Asset Details widget lets an account-based contact perform asset-based ordering
actions on asset. This customized widget uses the Subscription-assets-store server-

Chapter 10
Customize Storefront Widgets

10-21

side extension module to perform some of the predefined asset actions. This widget
appears on the Asset Details layout.

• The widget’s display.template file includes predefined action buttons that let
shoppers perform subscription upgrades, renewals, modifications, cancellations,
and suspends/resumes. You can enable or disable these options, based on the
asset status or rules you have defined in Oracle CPQ. The widget uses the
subscription-service-assets-details SSE to perform these actions.

• Once a shopper clicks one of the action buttons, the asset is added to their cart
with the required action code or a configurator window opens with asset details.

• The actions are performed based on the asset’s ID, which the SSE endpoints fetch
from CPQ. The following illustration shows the details of a subscription, displayed
in the widget.

The following illustration shows the details of a subscription, displayed in the widget.

Customize the Asset Details widget

To customize the Asset Details widget, you must update the endpoint references.
All the REST API paths must be changed from /ccstorex/custom/v1/services* to /
ccstorex/custom/v1/assets*.

A total of seven endpoints must be updated. In the widget’s asset_details.js file.
replace the call to ccRestClient.registerInitCallback() in the onLoad() function
with the following:

 onLoad: function (widget) {

 // Add the Subscription-assets-store SSE endpoints to the
ccRestClient endpoint registry.
 // Update the settings below if the SSE has been customized.
 // ENSURE THAT THE SSE IS INSTALLED, CONFIGURED AND AVAILABLE

 ccRestClient.registerInitCallback(function(){

Chapter 10
Customize Storefront Widgets

10-22

 ccRestClient.endpointRegistry[ENDPOINT_VIEW_ACCOUNT_ASSET] = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_VIEW_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "GET",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_RENEW_ACCOUNT_ASSET] = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_RENEW_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/renew",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_MODIFY_ACCOUNT_ASSET] = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_MODIFY_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/modify",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_TERMINATE_ACCOUNT_ASSET]
= {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,

Chapter 10
Customize Storefront Widgets

10-23

 "id": ENDPOINT_TERMINATE_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/terminate",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_SUSPEND_ACCOUNT_ASSET] =
{
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_SUSPEND_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/suspend",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_RESUME_ACCOUNT_ASSET] = {
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_RESUME_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",
 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/resume",
 "useOptimisticLock": false
 };

 ccRestClient.endpointRegistry[ENDPOINT_UPGRADE_ACCOUNT_ASSET] =
{
 "authRequired": true,
 "cachingEnabled": false,
 "hasDoc": false,
 "hasPathParams": true,
 "httpsRequired": false,
 "id": ENDPOINT_UPGRADE_ACCOUNT_ASSET,
 "localeHint": "assetLanguageOptional",
 "method": "POST",
 "requestType": "application/json",
 "responseType": "application/json",

Chapter 10
Customize Storefront Widgets

10-24

 "singular": false,
 "url": "/ccstorex/custom/v1/assets/{}/upgrade",
 "useOptimisticLock": false
 };

 });

Customize text in the widgets

In addition to updating the widget’s code, you can optionally modify its display
text so that shoppers understand that the widgets specifically show details about
subscriptions. For example, you could change the word services to subscriptions
wherever it appears in widget text. To learn how to modify the text a widget displays,
see Modify a component’s code in Using Oracle CX Commerce.

Integration Flows
This integration includes six process flows.

This integration includes the following process flows:

• Create/View Subscription

• Modify Subscription

• Renew Subscription

• Terminate Subscription

• Suspend Subscription

• Resume Subscription

To learn more about the product abbreviations used in these flows, see Understand
the Subscription Management Integration.

Create / View Subscription

The integration creates subscriptions of complex configurable services with recurring
prices and flexible durations as defined in CPQ.

1. CDM: Get AddressId using AddressNumbers (shipping and billing addresses) for
Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumbers
(shipping and billing addresses) for Contact

3. CDM: If Contact addresses are not found, create the addresses

4. AR: Check if a site exists for the addresses

5. AR: If not, then create a site

6. Subscription: Create draft subscription

7. Subscription: Add contact for account-based subscription

8. Subscription: Activate subscription

Chapter 10
Integration Flows

10-25

Modify Subscription

The integration modifies configurations, changes quantities, upgrades or downgrades
the service as defined in the CPQ configuration.

1. CDM: Get AddressId using AddressNumbers (shipping and billing addresses) for
Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumbers
(shipping and billing addresses) for Contact

3. CDM: If Contact addresses are not found, create the addresses

4. AR: Check if a site exists for the addresses

5. AR: If not, then create a site

6. Subscription: Get subscription lines details for each line in a loop

7. Subscription: Add/Update/Delete subscription lines for each line in a loop

8. Subscription: Activate subscription

Suspend Subscription

The integration suspends, but does not terminate, an active subscription.

1. CDM: Get AddressId using AddressNumbers (shipping and billing addresses) for
Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumbers
(shipping and billing addresses) for Contact

3. CDM: If Contact addresses are not found, create the addresses

4. AR: Check if a site exists for the addresses

5. AR: If not, then create a site

6. Subscription: Get subscription lines details for each line in a loop

7. Subscription: Update subscription lines for each line in a loop

Resume Subscripiton

The integration resumes a suspended subscription.

1. CDM: Get AddressId using AddressNumbers (shipping and billing addresses) for
Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumbers
(shipping and billing addresses) for Contact

3. CDM: If Contact addresses are not found, create the addresses

4. AR: Check if a site exists for the addresses

5. AR: If not, then create a site

6. Subscription: Get subscription lines details for each line in a loop

7. Subscription: Update subscription lines (Resume SubscriptionProducts) for each
line in a loop

8. Subscription: Get updated subscription lines details for each line in a loop

9. Subscription: Update subscription lines (with asset key) for each line in a loop

Chapter 10
Integration Flows

10-26

10. Subscription: Activate subscription

Terminate Subscription

The integration deletes a subscription.

1. CDM: Get AddressId using AddressNumber for Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumber
for Contact

3. CDM: If Contact addresses are not found, create address

4. AR: Check if a site exists for the address

5. AR: If not, then create site

6. Subscription: Get subscription lines details for each line in a loop

7. Subscription: Update subscription lines (Close) for each line in a loop

Renew Subscription

The integration renews subscriptions at the end of period of their original subscription
date.

Note that a shopper cannot renew a subscription unless a renewal draft subscription
has been created in Oracle Subscription Management via the ESS job. The
Subscription Management GET subscription product endpoint returns renew as a valid
action if a draft subscription is present for the current subscription.

1. CDM: Get AddressId using AddressNumber for Account

2. CDM: If Account addresses are not found, get AddressId using AddressNumber
for Contact

3. CDM: If Contact addresses are not found, create address

4. AR: Check if a site exists for the address

5. AR: If not, then create site

6. Subscription: Get draft renew subscription

7. Subscription: Get original subscription lines

8. Subscription: Create new subscription

9. Subscription: Add contact for account-based subscription

10. Subscription: Activate subscription

11. Subscription: Update original subscription lines to do-not-renew

12. Subscription: Delete draft subscription lines for each line in a loop

Chapter 10
Integration Flows

10-27

Glossary

Glossary-1

Index

Index-1

	Contents
	1 Integrate with Oracle CPQ
	Set up OIC integration on Oracle CPQ site
	Download the integration packages
	Import the integration package
	Configure Oracle CPQ connections
	Generate security token for Commerce connections
	Configure Oracle CPQ connections
	Activate the OIC integrations
	Create Sync Quote Action in Oracle CPQ
	Set Sync Quote Action to run Advanced Modify
	Configure Commerce webhooks
	Configure the Commerce server-side extensions

	Set Up Oracle CPQ
	Understand general set up for Oracle CPQ
	Understand Oracle CX Commerce set up
	Understand Oracle CPQ configuration set up

	Set Up Subscription Ordering in Oracle CPQ
	Create an authentication certificate integration type
	Work with in-flight cancellations
	Upgrade an asset

	Enable Integrations in Commerce
	Enable Oracle CPQ configuration integration
	Identify configurable products in the product catalog
	Add Customize Button to the Product Details widget
	Enable Oracle CPQ quoting integration
	Add Quote Button to Checkout and Order Details pages
	Enable Asset Based Ordering
	Enable Subscription Cloud integration

	Appendix A: Understand the Configurator Flow
	Appendix B: Understand the Request for Quote Flow
	Appendix C: Understand the OIC Integration Mappings
	Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)
	Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)
	Appendix F: Understand the SyncQuote BML

	2 Use Oracle CPQ Cloud Features
	Introduction
	Objective
	Audience
	Prerequisites
	Additional Resources

	Configure the Integration
	Configure the Integration Package
	Configure the Oracle CX Commerce Connection
	Activate the Integrations
	Configure the Commerce Webhooks
	Configure the Server Side Extensions
	Enable the Integrations

	Use the Integration Functionality
	Configure an item
	Request a Quote
	Use account-specific pricing for configured items
	Use multi-level items
	Assign shipping groups to sub-items
	Understand tax calculation and shipping charges when assigning shipping groups to sub-items
	Understand shipping charge and tax calculation when assigning costs to items sold as a package
	Understand how promotion discounts are applied to multi-level items
	Understand the Customer Account Model
	Use Recurring Charge Items
	Use Asset Based Ordering
	Customize configurations in Commerce using the CPQ Configuration API
	Implement configuration customization via the CPQ Configuration API.
	Control user interface look and feel using the CPQ Configuration API
	Customize and reconfigure a product by direct use of the CPQ Configuration API

	Appendix A: Configurator Flow
	Appendix B: Request for Quote Flow

	3 Integrate with Customer Data Management
	Integrate with Customer Data Management

	4 Integrate with an External Product Configurator
	Enable the integration
	Mark products as configurable
	Add Customize button to Product Details widget
	Configure the webhooks

	5 Integrate with Oracle Infinity to collect data
	Integrate Commerce with Infinity
	Understand the role of the Infinity platform in data ingestion
	Tag site pages to use the Infinity data ingestion feature
	Understand Infinity integration parameter mapping

	6 Integrate with Oracle Order Management Cloud
	Introduction
	Audience
	Features
	Architectural overview
	Additional documentation

	Prerequisites
	Access rights
	Assumptions

	Configure Oracle CX Commerce
	Submit Order webhook
	Return Order webhook

	Configure the Oracle Integration Cloud Adapter
	Connections
	Lookup configuration
	Integrations
	XSL location

	Configure Order Management Cloud
	Create the source system
	Create defaulting rules
	Create the orchestration process
	Create the connector

	Order creation
	SKUs
	Payment
	Order types
	Pricing and tax
	Shipping methods
	Mapping of attributes

	Order Status
	Map attributes for order status

	Returns
	Map attributes for returns

	Exchanges

	7 Integrate with Oracle Responsys
	Understand the Oracle Responsys Integration
	Objective
	Audience
	Prerequisites

	Configuring the Integration
	Configure the Integration Package
	Download the integration package
	Import the integration package
	Configure the Oracle Responsys Connection

	Configure the Oracle Responsys Connection
	Configure the Oracle Responsys Database Tables
	Configure the Oracle CX Commerce Connection
	Generate a Security Token

	Activate the Integration
	Configure the Oracle CX Commerce Webhooks

	Using the integration
	Create an Abandoned Cart Program

	8 Integrate with Oracle Retail Order Management System
	Introduction
	Audience
	Features
	Architectural Overview
	Additional Documentation

	Prerequisites
	Access Rights
	Data Configuration

	Setting Up the Integration
	Commerce Configuration
	Accessing the Oracle Integrations Console
	Configuring the Integration

	9 Integrate with Oracle Product Hub Cloud
	Understand the Product Hub integration
	Configure Oracle CX Commerce
	Configure Oracle Product Hub
	Install and Configure the Integration in OIC
	Understand the integration flows

	10 Integrate with Oracle Subscription Management
	Understand the Subscription Management integration
	Configure Oracle CX Commerce
	Install and Configure the Integration in OIC
	Customize Storefront Widgets
	Integration Flows

	Glossary
	Index

