Developing Open Storefront Framework
Applications for Oracle CX Commerce

F38425-01

a April 2021
ORACLE

Developing Open Storefront Framework Applications for Oracle CX Commerce,
F38425-01
Copyright © 2020, 2021, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government
end users are "commercial computer software" or "commercial computer software documentation" pursuant
to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such,
the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works,
and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not

be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 About This Guide

Prerequisites 1-1
Open Storefront Framework accessibility 1-1
2 Understand the Open Storefront Framework
Understand the OSF architecture 2-1
Understand OSF applications 2-2
Use a local workspace 2-3
Use the workspaces on server environments 2-3
Design assets 2-4
OSF registry 24
Command-line interface 2-4
3 Set Up a Development Environment
Install required software 3-1
Configure npm to access Commerce packages 3-1
Set up a workspace 3-2
Create a workspace from a deployed application 3-5
Upgrade the version of OSF in a workspace 3-5
Workspace commands and scripts 3-7

4 Develop and Deploy Applications

Create a new application by copying a template 4-1
Create components using command-line tools 4-2
Deploy the application 4-5
Promote the application to the live context 4-6
Sync assets on a Commerce server with a local workspace 4-6
Access local development applications on a Commerce server 4-8
Monitor deployed applications 4-10

ORACLE iii

5 Create Custom Widgets

Understand widgets 5-1
Understand plug-ins 5-8
Understand helper components 5-8

Build a widget 5-9
Create a subscriber 5-18
Configure a widget to use REST endpoints 5-19
Create a selector 5-23
Write a fetcher 5-24
Create an endpoint 5-26
Write an action 5-28

6 Design Storefront Pages

Understand Default Open Storefront Framework Widgets 6-1
Understand how to use the Design page with OSF applications 6-4
Select an application 6-4
Configure widgets in the administration interface 6-5
Configure and display color swatches 6-6
Work with Cart REST API Endpoints 6-7
7 Develop for Performance
Prevent useEffect() from executing unnecessarily 7-1
Avoid unnecessary rerendering 7-1
Use useCallback() and useMemo() efficiently 7-2
Use React.lazy() to render components conditionally 7-4
Identify and optimize inefficient code 7-5
Remove unnecessary CSS 7-5
8 Build Payment Integrations
Understand payment integrations 8-1
Supported payment methods and transaction types 8-2
Create an extension for a gateway integration 8-3
Install the extension and configure the gateway 8-7
Send transaction data to a payment gateway 8-8
Look up payment configurations 8-10

ORACLE iv

About This Guide

This guide is intended for developers who want to use the Open Storefront Framework
to create Oracle CX Commerce storefront applications.

It describes how to set up the developer environment and create and deploy
applications. It also explains how to create Open Storefront Framework widgets.

Note: For this release, product documentation relating to the Open Storefront
Framework is contained only in this guide; the other books in the Commerce
documentation set continue to apply to the original storefront framework, Storefront
Classic. If you are developing Open Storefront Framework applications, assume that
anything presented in this guide supersedes similar content in the other Commerce
books.

Prerequisites

Before you start building applications with the Open Storefront Framework, it is highly
recommended that you become familiar with the concepts and tools on which the
framework is based.

Ensure you have a working knowledge of the following:
e JavaScript

e Yarn package manager

* Node.js and Node Package Manager (npm)

e React

* Redux

* Redux Saga

Open Storefront Framework accessibility

ORACLE

Oracle's goal is to make its products, services, and supporting documentation
accessible to all users, including users with disabilities.

The Open Storefront Framework includes a command-line interface that supports
accessibility. For example:

e The contrast ratio is set by the user, either at the system level or in the terminal
program used to access the remote machine. The product's display of foreground
and background text is a function of the settings in a GUI-based terminal
application.

* The application does not change accessibility features provided by the underlying
operating system.

The command-line interface is described throughout this guide. For additional
information about Oracle CX Commerce accessibility, see Accessibility Tasks.

1-1

Understand the Open Storefront
Framework

The Open Storefront Framework (OSF) is the next generation framework from Oracle
CX Commerce for building commerce storefronts.

OSF runs exclusively on Oracle Cloud Infrastructure (OCI), Oracle’s next generation
purpose-built, best-in-class cloud platform for enterprise applications. OSF is an
important leap forward in the evolution of Commerce storefront technology, focused

on minimizing coding required, maintaining business level control, leveraging the latest
technology frameworks, and providing robust tooling for the modern developer.

OSF has a number of benefits, including:

* Enabling front-end developers to deliver faster, more responsive, richer user
experiences.

* Being built in React, but allowing flexibility to develop in any front-end library
without risk of lock-in.

* Leveraging the fully-featured Oracle CX Commerce solution with drag-and-drop
experience tools, context-aware preview, personalization, content, merchandising,
search, catalog, inventory, reporting, and more.

* Providing a clean separation between the presentation layer and the state model
to support local development and testing.

* Allowing micro (not macro) updates to simplify how experiences are assembled
and delivered with reusable, granular components that minimize the need to write
new code.

OSF is based on industry-standard JavaScript tools such as Yarn, Node.js, React, and
Redux, and supports popular design patterns through an extensible architecture that
uses modular building blocks. OSF enables a range of development strategies, from
working with the complete framework to using only the REST API to build headless
applications.

This chapter provides an overview of the Open Storefront Framework and how to
develop storefront applications using it that run on mobile devices and desktops.

For additional best practice and how-to material on OSF, visit the Customer Connect
forum.

Understand the OSF architecture

ORACLE

A key part of OSF is the use of a Node.|s server to perform server-side rendering
of pages, make REST API calls to the storefront server, and communicate with the
shopper’s browser.

On a production system, the Node.js server runs in the same Oracle-hosted
environment as the Commerce servers. When it renders a page, it sends it to the
shopper’s browser to be displayed.

2-1

https://cloudcustomerconnect.oracle.com/resources/7f8654d874/summary

Chapter 2
Understand OSF applications

For development purposes, Commerce supplies tools for setting up a workspace in
your local environment. The workspace provides access to an npm (Node Package
Manager) registry where you obtain OSF packages and their dependencies, as well
as a Node.js server that runs JavaScript application code locally while communicating
with Oracle-hosted Commerce servers. Storefront applications can be developed and
run locally and then deployed to the Oracle environment for testing and production.

The Open Storefront Framework is designed to render pages quickly and to support
rapid development. Its key features include:

e Optimized page loading — OSF supports single-page applications, in which pages
are rendered on the Node.js server, and only the code needed for the specific
features on a page is loaded. Pages load quickly and are SEO-friendly.

e Accelerated development — Development is done using industry-standard,
developer-friendly tools, including Yarn and Node.js. The JavaScript APIs support
best-practice design patterns.

e Layered, extensible architecture — The OSF architecture is based on modular
building blocks, in which features are loaded as needed at runtime.

e Framework-neutral presentation layer — The storefront user interface is built using
React by default, but you can substitute a different JavaScript framework.

The following diagram provides a high-level overview of the OSF architecture:

o Open Storefront Application
5 R,
ol]
% o CX Commerce Widgets ‘ Custom Widgets
= =
[T}
aFe
Open Storefront Framework
User Interface]
State Management]
JavaScript Web API J

CX Commerce REST API

Understand OSF applications

You develop OSF storefront applications in a Yarn workspace on your local
workstation, on which you are running a local Node.js instance.

The packages in the workspace organize the JavaScript code plus the layouts

and other assets used in the storefront presentation layer. The workspace includes
native Yarn tools for managing the packages, as well as Oracle-supplied scripts
and commands for configuring and building applications. Setting up the workspace
is described in Set Up a Development Environment.

By default, the widgets for the storefront presentation are written as React
components. Widgets are used in conjunction with other elements (plug-ins) to
implement their functionality. These elements include:

» fetchers — Obtain data to generate the initial display of a widget.

ORACLE"

2-2

Chapter 2
Use a local workspace

» subscribers — Passively observe store events and trigger communication of these
events to external services.

* actions — When invoked by widgets, send data that typically results in modification
of the application's state.

* endpoints — Assemble the payloads for, and make calls to, Store REST API
endpoints.

The following diagram illustrates the roles of the various types of OSF application
elements:

Open Storefront Application Plugin

User Interface

- ~

Widgets [Dynamic display code

I Fetchers { Load initial state J

State Management Subscribers ‘ Watch for changes in state ‘

- -,

Actions l Handle changes in state ‘

Endpoints ‘ Invoke 1S wrapped APIs ‘

JavaScript Web API

See Create Custom Widgets for more information about these elements.

Once you have created your application, you can deploy it to one of the three server
environments (test, staging, and production) that have been provided for you, as
described in Develop and Deploy Applications.

Use a local workspace

You can create a storefront application and run the JavaScript components in a
workspace on your local workstation.

A local workspace includes a Node.js server that runs JavaScript application code
locally while communicating with Oracle-hosted Commerce servers. You can also
use this workspace in local render mode, in which all design assets defined in the
local workspace take precedence over those on the server. For example, if the local
workspace has a home layout defined, it will be rendered instead of the home layout
on the server. This approach provides you with the ability to do development in
isolation, without your work being affected by code on the server or the work of other
developers.

Use the workspaces on server environments

ORACLE"

There are limitations to how much of the dynamic behavior that is provided on the
server can be replicated when using local render mode.

For example, in local render mode, an individual developer can have only a single
version of a layout, which is rendered in all cases. On the server, there can be multiple

2-3

Chapter 2
Design assets

versions of a given layout, with rules used at runtime to determine which one is
rendered.

If you need access to this dynamic behavior, you can instead use a workspace

in a server environment (typically the test environment) for rendering. Since this
environment can be shared by multiple developers, you will need to coordinate with
others to avoid conflicts. See Access local development applications on a Commerce
server for information about OSF tools that support this.

Your organization is provided access to three server environments: test, staging, and
production. Each environment includes administration, storefront, and Node.js servers.
You use workspace with these environments to manage the lifecycle of the application
code, and to access presentation content such as layouts that business users create
using the Design tools in the administration interface.

You can interact with all three server environments in similar ways. You can deploy

an application from a local workspace to a server environment’s preview Node.js
server, and publish a snapshot, including the workspace and design assets, to the live
context. New development can then continue in the preview context and be published
as desired.

Design assets

In an OSF local workspace, in addition to writing JavaScript code, you can create
design assets such as layouts.

When you deploy an application to a server environment, the design assets are
deployed along with the application code. As part of the deployment process, assets
are extracted from the deployed workspace and used to update the assets in the
server environment.

You also have the option of downloading the assets from the server environment’'s
preview or live context to the local workspace for local development or committing to
source control.

OSF registry

Oracle CX Commerce provides a read-only npm (Node Package Manager) registry
that you can access to obtain OSF packages and their dependencies.

As part of creating a workspace, you configure Yarn so that when the yarn instal |
command is executed, required packages are downloaded from the registry.

You can download packages and their dependencies at various points in the
development cycle, such as when creating a local workspace and when deploying
an application. You can also create new packages and declare dependencies in your
local workspace, and these will be included when the application is deployed.

Command-line interface

ORACLE

Commerce provides a command-line interface (CLI) that you can use to manage your
local workspace.

The CLI provides tools that you can use to create, configure, build, run, deploy, check
deployment status and logs, and sync workspaces. Note that if you have multiple

2-4

Chapter 2
Command-line interface

workspaces, each workspace has its own matching version of the CLI (the version that
was used to create the workspace).

ORACLE 2-5

Set Up a Development Environment

You can set up an environment for developing OSF applications on your local
workstation.

This chapter describes how to set up an Oracle CX Commerce local storefront
development environment using a provided accelerator template. It assumes that you
have already read Understand the Open Storefront Framework and are familiar with
the OSF architecture.

Once you have set up your environment, you can make a copy of the template and
use it as a starting point for building your own application. This process is described in
Develop and Deploy Applications.

Install required software

Before you can set up your development environment, you must install certain third-
party software tools.

In addition to software supplied by Oracle, a storefront development environment
requires the following:

* Node.js — Install the most recent LTS (long-term support) version of Node.js 12.x
on your system. (Do not install a different major version number.) Node.js 12.x is
available at:

https://nodejs.org/dist/latest-v12.x

The Node.js installation also includes npm.

e Yarn — Install the latest stable version of Yarn 1.x on your system. (Do not install
Yarn 2.x) .Yarn 1.x is available at:

https://1egacy. yarnpkg. com docs/instal |

Configure npm to access Commerce packages

ORACLE

The Commerce npm packages use the @r acl e- cx- comer ce scope and are hosted in
an OSF registry that is separate from the primary npm registry.

To access this registry, enter the following command:

npm config set @racle-cx-comerce:registry https://oracl e-cx-comerce-
repository.occa. ocs. oracl ecl oud. com

3-1

Chapter 3
Set up a workspace

Set up a workspace

ORACLE

A workspace is a local directory hierarchy containing code and configuration for your
storefront applications.

To create a workspace, you copy resources from one of the following:

e A prepackaged Commerce application that serves as an accelerator template.
e An existing deployed application.

This section describes how to create a workspace from an accelerator template. For
information about creating a workspace from a deployed application, see Create a
workspace from a deployed application.

Create a workspace from an accelerator template

You can use one of the following applications as a template for creating a workspace:
e bl ank- st or e —a minimal application that contains a single custom component

e core-comerce-reference-store —a more complete application that includes
reference implementations of widgets and other components

To create the workspace, enter the following command:

npx @racl e-cx-conmmerce/cli-init create-workspace <workspace-dir> --
tenpl ate <tenpl at e- name>

<wor kspace- di r > is the absolute or relative path to the top-level directory of the
workspace. This directory must currently not exist or else be empty.

For example:

npx @racl e-cx-commerce/cli-init create-workspace ny-workspace --
tenpl ate bl ank-store

This command uses the cl i -i nit tool in the registry to run the Commerce cr eat e-
wor kspace command. The command creates a subdirectory named ny- wor kspace that
contains the files and directories from the bl ank- st or e application.

The workspace top-level directory contains a number of files and directories, including
the following:

* A package. j son file that designates the workspace as a private package, specifies
package dependencies, and defines several scripts.

e A packages/ apps directory with a child directory containing the selected
application (for example, packages/ apps/ bl ank- st ore).

You can also specify a different package name and Node.js module for your
application when you create a workspace, by using the - - appPackageNane flag. For
example:

npx @racl e-cx-commerce/cli-init create-workspace another-workspace --
tenpl ate bl ank-store --appPackageNane @ry-nodul e/ nmy- st orefront

3-2

ORACLE

Chapter 3
Set up a workspace

This command creates a new workspace with an application named ny- st oref ront in
a module named @ry- nodul e.

Once you have created a workspace, you can begin creating your application by
modifying or replacing the application code and configuration in the workspace.

Install package dependencies

Now install the package dependencies for the workspace. (These include the
Commerce storefront framework and its dependencies.) To do this, go to the
workspace directory and enter this command:

yarn install

This creates and populates the node_nodul es directory under your workspace
directory. Notice that the node_nodul es/ @r acl e- cx- conmer ce subdirectory contains
a symbolic link to the application directory (such as bl ank- st or e) in your workspace’s
packages/ apps directory.

Note: When you run yarn instal |, you may see warnings similar to the following:

warning " > @racl e-cx-commerce/cli@.0.0" has unnet peer dependency
"react@".

You can safely ignore these warnings. For further information, see the following:

https://github. conf yarnpkg/ yarn/i ssues/ 5347#i ssueconment - 463038189

Configure the workspace to access your server

Your local workspace requires access to a Commerce administration server
environment to upload your application to and invoke REST API endpoints on.
Typically, your organization is provided with three server environments (test, staging,
and production). The process for configuring access to any of these servers is the
same, differing only by which environment’s URL you specify.

The first step is to generate an application key by registering the application on the
specific server you want to access, as described in Extending Oracle CX Commerce.
Then enter the following command to configure your workspace:

yarn occ configure --appKey --appServerAdm n <admi n-server - URL>

where <adm n- server - URL> is the URL of your Commerce administration interface.
For example:

yarn occ configure --appKey --appServerAdmn https://nyhost-adm n. oc-
test.com

When you enter this command, you are prompted for an application key:

Pl ease provide an appKey:

3-3

ORACLE

Chapter 3
Set up a workspace

Enter the application key that was generated when you registered the application.
(See Register applications.) When the command completes, it returns a listing of the
various configuration settings for the workspace. Many of these settings are stored
in the confi g. j s file in the . occ directory of the workspace. You can update these
settings with the confi gur e command.

Build the application

To build the application in development mode, enter the following command:

yarn build

This invokes a script that runs Babel and Rollup to transpile all of the application’s
source code into code that is suitable for use in environments such as Node.js and
web browsers.

Note: In development mode, Rollup remains active and occupies the shell window it
is in, watching for changes in the source code to rebuild its output accordingly. If you
want to build just once, you can safely use Ctrl-C to exit from Rollup once you see the
"waiting for changes" message.

Upload the application to the administration server

To make your application’s page layouts and components available in the
administration interface, and to be able to preview and publish the application, you
need to deploy the application to the administration server you configured access to.
To deploy the application, enter this command:

yarn occ depl oy
To move these assets from the preview context to the live context, log into the
administration interface and publish the current change list.

Note that to see your deployed application’s layouts and other assets you may need
to change the active application to the one you uploaded. To do this, select the
application from the dropdown list near the top right corner of the Design page.

Run the application

Enter the following command to run the application in development mode:

yarn start

This invokes a script that uses the nodemon utility to start a local Express web server.
The server hosts the application, and is restarted whenever the application is updated.
You can now access the application’s home page at http://1 ocal host: 80.

Note: The default port for the web server is 80, which may conflict with other web
servers you have running locally. You can use a different port for the Express web
server if necessary. For example, to use port 3000, enter the command:

yarn occ configure --httpPort 3000

This setting is stored in the workspace's . occ/ confi g. | s file.

3-4

Chapter 3
Create a workspace from a deployed application

Create a workspace from a deployed application

Support personnel who need to troubleshoot issues can create a workspace by
copying a deployed application.

Note: This option is intended for support purposes only, and is not intended as a way
to set up new developers on a project. Code and configuration should be maintained in
source control, and developers should create their workspaces from these files rather
than by copying a deployed application.

To create a workspace from a deployed application, enter the following command:

npx @racl e-cx-commerce/cli-init create-workspace <workspace-dir> --
depl oyl d <depl oyment | d> - -appServer Admi n <adni n- server-URL> --appKey

where <depl oyment | d> is the deployment ID of the deployed application, <adni n-
server - URL> is the URL of your Commerce administration interface, and <wor kspace-
di r > is the absolute or relative path to the top-level directory of the workspace. This
directory must currently not exist or else be empty. You can find the deployment ID

of the application by using the depl oy- st at us command, as described in Monitor
deployed applications.

For example:

npx @racl e-cx-commerce/cli-init create-workspace ny-workspace —-
depl oyl d 200004 —- appServerAdnmin https://nyhost-adm n. oc-test.com --

appKey

You will be prompted to specify an application key for downloading the deployed
application. After you enter the application key, Commerce creates a new local
workspace named ny- wor kspace on your workstation by copying the specified
workspace from the server.

As an alternative, you can specify the deployed application by indicating the
environment it is running in and whether to use the live or preview version. For
example:

npx @racl e-cx-comerce/cli-init create-workspace ny-workspace —- app-
nane ny-storefront — appServerAdmin https://nmyhost-adnin. oc-test.com —-
live --appKey

Upgrade the version of OSF in a workspace

ORACLE

Oracle CX Commerce provides tools for upgrading your version of OSF to a newer
version.

The OSF version in the Commerce registry is updated regularly. When you first create
a workspace from the registry, the workspace has the latest version of OSF.

If you have been using a workspace that has an earlier version of OSF, you can
upgrade the workspace using the upgr ade command. This command updates the
version of OSF packages used throughout the workspace. Typically it is used to

3-5

ORACLE

Chapter 3
Upgrade the version of OSF in a workspace

upgrade to a higher-numbered version, though in certain cases it can also be used to
downgrade to a lower-numbered version. Note that it does not update the version of
non-OSF packages.

The primary way to use the upgrade command is to update the version of OSF in

a workspace to the latest version allowed by your Commerce server, provided that
both versions have the same major version humber. To do this, invoke the command
without any flags:

yarn occ upgrade

So, for example, if the current OSF version is 2.2.3 and the latest version the server
supports is 2.6.7, this command updates the workspace to version 2.6.7.

If you're uncertain of the effect an upgr ade command will have on your workspace, you
can invoke the command with the - - dr yRun flag. This returns a list of the changes the
command would make but does not actually make them. For example:

yarn occ upgrade --dryRun

If the changes are what you expect, you can then run the command without the
- - dryRun flag.

If the current workspace version of OSF is newer than the latest version the
Commerce server supports, or if the workspace has a different major version number
from the server, the upgr ade command produces a warning and exits. You can
override this behavior by using one or both of these flags:

e --accept Downgr ade — If the current workspace version of OSF is newer than the
latest version the Commerce server supports, the workspace is downgraded to the
latest version that the server supports.

e --latest — The workspace is updated to the latest version the server supports,
even if the workspace and the server have different major version numbers. Be
aware that updating to a different major version may introduce breaking changes.

To upgrade to a specific version of OSF, specify the version number explicitly in the
command. For example:

yarn occ upgrade 2.13.6

If the specified version number is lower than the current workspace version, include
the - - accept Downgr ade flag.
Special options

The following flags may be useful in certain circumstances, but you should use them
with caution:

e --no-verifyQGcc — The command does not check the server version when
determining what version of OSF to upgrade to.

e --force — The command attempts to continue rather than exiting when
encountering errors (version incompatibilities, inability to contact the registry or

3-6

Chapter 3
Workspace commands and scripts

Commerce servers, etc.). Can be used only if a specific version of OSF is
specified. For example:
yarn occ upgrade 2.0.0 --force

If you use either of these flags, be sure you understand the implications. It is a good
idea to try the command with the - - dr yRun flag first to see the changes it will make
before running it normally.

Workspace commands and scripts

ORACLE

The OSF workspace includes commands and scripts that you use to build, deploy, and
manage the lifecycle of storefront applications.

This section describes the OSF commands and scripts and how they are used.

Commands

The OSF commands are found in the node_nodul es/ . bi n subdirectory of the
workspace. The commands all begin with occ and accept flags for specifying

options. For example, the following command deploys the specified application without
performing a build:

occ deploy ny-storefront --no-build

Some of the flags take arguments. For example, the following command specifies the
URL of the administration server to deploy the application to:

occ deploy ny-storefront — appServerAdmin https://myhost-adm n. oc-
test.com

The following table summarizes the available commands:

Command Description

bui l d Build an OSF application

configure Update the configuration of a workspace

confi gure-app Update the configuration of an application

create-action Create an action for an application

creat e- endpoi nt Create an endpoint from a Swagger document
ora URL

create-fetcher Create a fetcher for an application

create-tenpl ate Create a workspace template archive
containing the application

creat e-w dget Create a widget plug-in for an application

del ete Delete an OSF application from the specified
server

depl oy Deploy an OSF application

depl oy-1 og Query the deployment logs for an application

depl oy- st at us Query the deployment status of an application

3-7

ORACLE

Chapter 3
Workspace commands and scripts

Command Description

downl oad Download the current deployment of an
application to the workspace

down| oad- asset s Download design assets from a server to the
workspace

list-apps List the applications on a server

l'ist-endpoints List all of the endpoints in a Swagger
document

out put Generate the deployment files for the
application

redepl oy Resend a deployment to a cluster

serve Start a presentation server

set -1 oggi ng- opti ons Set the logging options for a cluster

upgr ade Update the versions of OSF packages in a
workspace

upl oad- cust om t ypeahead- keywor ds Upload custom keywords for typeahead search

upl oad- search-config Upload the search configuration for an
application

You can also see a complete list of the occ commands by entering the following
command:

occ —help

To see a help page about the syntax of an individual command and the options it
supports, enter the command with the - - hel p flag. For example:

occ list-apps —help

The response is similar to the following:
Usage: cli list-apps [options]

List the applications that are on the server.

Opti ons:

--json Qutput the results as raw JSON instead of
formatted text.

-V, --version out put the version nunber

--verbhose Provi des verbose | oggi ng where avail able

--no-verbose Di sabl es verbose | oggi ng

--appKey [key] Wth this option you will be pronpted for an
application key (QAuth access token)

--appServer <url> Application server URL

--appServerAdnin <url> Application adnin server URL

--serverEnv <env> Cl oud Commerce server environment to use

-h, --help di splay help for command

Access the commands

3-8

ORACLE

Chapter 3
Workspace commands and scripts

Each workspace has its own version of the CLI. If you have multiple workspaces,
you must use the version of the CLI associated with the workspace you are currently
working in. To ensure that you access the correct version of the CLI, preface the
commands with yar n and invoke the command from within the workspace.

For example, suppose you want to invoke the following command:

occ deploy ny-storefront --no-build

Instead, enter the following from anywhere in the workspace you are working in:

yarn occ deploy my-storefront --no-build

When you call an occ command this way, Yarn uses Node.js module resolution to
ensure that the correct version is executed.

Scripts

In addition to the occ commands, the workspace provides several scripts that can also
be run from the command line. These scripts are defined in the scri pt s object of the
package. j son file in the top-level directory of the workspace. For example:

"scripts": {
"stylelint": "stylelint **/* css --ignore-disabl es",
"eslint": "eslint .",
"eslint:fix": "eslint --fix .",

“prettier:fix": "prettier --config .prettierrc.js --wite
\"{packages, ga}/**/*.js\"",
“lint": "yarn eslint & yarn stylelint",
“build:prod": "occ build --production”,
“build": "occ build --watch",
“test:int": "jest -c jest.config.int.js",
"test:int:debug": "node --inspect-brk node_nodul es/jest/bin/jest.js
c jest.config.int.js",
"test": "jest -c jest.config.js",
"test:debug": "node --inspect-brk node nmodul es/jest/bin/jest.js -i
-c jest.config.js",
"test:api": "jest -c jest.config.api.js",
"test:api:debug": "node --inspect-brk node_nodul es/jest/bin/jest.js
c jest.config.api.js",

"perf": "jest -i -c jest.config.perf.js",
"perf:lighthouse": "jest -i -c jest.config.perf.lighthouse.js",
"perf:wpt": "jest -i -c jest.config.perf.wpt.js",

"perf:debug": "node --inspect-brk node nmodul es/jest/bin/jest.js -i
-c jest.config.perf.js",

“depl oy": "occ deploy",

“delete": "occ delete",

"downl oad": "occ downl oad",

"output": "occ output",

"seed": "yarn deploy --reset --publish",

“start:prod": "occ serve",

"start": "nodenon --inspect node_nodul es/ @r acl e-cx-commerce/cli/
cli.js serve",

“configure": "occ configure",

3-9

ORACLE

Chapter 3
Workspace commands and scripts

"depl oy-status": "occ depl oy-status",
"depl oy-10g": "occ depl oy-10g",
"redepl oy": "occ redepl oy",

"downl oad- assets": "occ downl oad-assets",

"upl oad- search-config": "occ upl oad-search-config",

"upl oad- cust om t ypeahead- keywords": "occ upl oad- cust omt ypeahead-
keywor ds",

"list-apps": "occ |ist-apps”

}

Each entry in the scri pt s object consists of a Yarn command and the value it maps to.
So, for example, suppose you enter this command:

yarn buil d: prod

This is equivalent to the following:
yarn occ build --production

As you can see, many of the scripts are equivalent to occ commands.

You can also display a complete list of the scripts, and select one to run, by entering
the following command:

yarn run

The Yarn scripts use Node.js module resolution to locate the commands they call.
This ensures that as long as a script is called from within a workspace, it will find the
version of the command that is appropriate for that workspace.

3-10

Develop and Deploy Applications

Once you have set up an OSF development environment on your local workstation,
you can build applications and deploy them to server environments.

This chapter provides an overview of working in OSF workspaces to develop and
deploy storefront applications. More detailed information about creating storefront
components is available in other chapters of this manual.

Create a new application by copying a template

You can create the basic directory structure for your application by copying an
existing application directory from your workspace’s packages/ apps directory into a
new subdirectory of packages/ apps.

For example, if you have downloaded the bl ank- st or e template and you want your
new application to be named ny- app, go to your workspace’s packages/ apps directory
and copy the entire bl ank- st or e directory and its subdirectories into a new directory
named ny- app. Then enter the following command:

yarn occ configure --appName ny-app

This modifies the confi g. j s file in the workspace’s . occ directory to make ny- app the
default application for the workspace. Now the workspace commands and scripts such
as bui | d, depl oy, and st art will operate on this application instead of the template
application.

At this point, the ny- app application is identical to bl ank- st or e. You can now modify
the ny- app application to implement your own application.
Modify the application’s package. j son file

The top-level directory of an application (for example, ny- wor kspace/ packages/ apps/
ny- app) contains an application-specific package. j son file. This file is distinct from the
package. j son file in the top level of the workspace.

After creating a new application, you need to modify this package. j son file. Change
the values of the following settings:

* nane — The name for your application (for example, @y- apps/ ny- app).

e versi on — The version number for your application (for example, 0. 0. 1). You can
use whatever numbering scheme you want, but it is a good idea to track the
version using this field.

e description— The value of this setting is used to identify your application in the
Design page application selector dropdown.

ORACLE 4-1

Chapter 4
Create components using command-line tools

For example:

nane": "@y-apps/ nmy-app",

"version": "0.0.1",

"private": true,

"description": "My storefront application",

In addition, change these settings in the file’s occ object:

* local es — An array of the locales for which you are including translation strings for
your application. You may want to set this to a single locale while you're getting
started and update the setting later.

* whiteListedUr|s — An array of the domains that the application calls out to.
These domains are added to the list maintained by your Oracle CX Commerce
environment. Calls to domains that are not on this list are blocked.

For example:

"occ": |
"namespace": "occ.react",
"l ocal es": |
"en",
" de"
1,

"whiteListedUrls": [
"http://ww. exanpl e. cont,
"http://ww. exanpl e2. cont

]
}

After you have updated the settings in this package. j son file, runyarn instal | to
create the symbolic link to your application directory.

At this point, if you build, upload, and start the application, you will see your application
in your browser when you access the local web server. You can now proceed to make
functional changes to the application by creating your own pages and components.

For information about how to build storefront components and include them in pages,
see Create Custom Widgets and Design Storefront Pages.

Create components using command-line tools

ORACLE

The OSF command-line interface includes several commands that you can use to
simplify the process of creating a widget and supporting components.

You can use these commands to create templates for building the following types of
components:

e widgets
e actions
» fetchers

e endpoints

4-2

ORACLE

Chapter 4
Create components using command-line tools

The commands create the files and folders that make up the structure of the
components. Many of these files include comments that supply guidance about writing
the code and supplying the configuration for the component. The guidance assumes
you are writing a sample currency selector widget and the supporting components, but
you can supply logic for any type of widget you want.

Create a widget

To create a widget, you use the cr eat e-wi dget command. For example:

yarn occ create-w dget --nane MyW dget

[cli] info: Creating Wdget: MyW dget

[cli] info: Wdget path: packages\apps\bl ank-

st ore\src\ pl ugi ns\ conponent s

[cli] info: App locals - en,de

[cli] info: Creating new widget folder packages\apps\blank-
st ore\src\ pl ugi ns\ conponent s\ ny-wi dget

[cli] info: Witing tenplate files to packages\apps\ bl ank-
st ore\src\ pl ugi ns\ conponent s\ ny- wi dget

[cli] info: config\index.js

[cli] info: config\locales\en.js

[cli] info: config\locales\de.js

[cli] info: i ndex.js

[cli] info: | ocal es\en.js

[cli] info: | ocal es\de.js

[cli] info: meta.js

[cli] info: README. md

[cli] info: styles.css

[cli] info: __test__\ny-w dget-w dget.spec.js
[cli] info: __test__\ny-wdget.spec.js

[cli] info: Updating exports for files

[cli] info: packages\ apps\ bl ank-
store\src\pl ugi ns\ conponent s\i ndex.j s

[cli] info: packages\ apps\ bl ank- st or e\ src\ pl ugi ns\ conponents\neta.js

This command creates a widget named MyW dget in the default application in the
workspace. For example, if the default application is named ny- app, the widget files
are created in packages/ apps/ bl ank- st or e/ src/ pl ugi ns/ conponent s/ ny-wi dget .

To create a widget in an application other than the default application, you can specify
the application name in the command. For example:

yarn occ create-w dget ny-other-app --name Anot her W dget
Create an action
To create an action, you use the cr eat e- act i on command. For example:

yarn occ create-action --name nyAction
[cli] info: Creating action: nyAction

[cli] info: Action exported as _nyAction
[cli] info: Action's Path: src/plugins/actions

4-3

ORACLE

Chapter 4
Create components using command-line tools

[cli] info: Creating new action fol der packages\apps\bl ank-
store\src\plugins\actions\ny-action

[cli] info: Witing tenplate files to packages\apps\ bl ank-
store\src\plugins\actions\ny-action

[cli] info: i ndex.js

[cli] info: meta.js

[cli] info: schema\ i nput. j son

[cli] info: __test__\index.spec.js

[cli] info: Updating exports for files:

[cli] info: packages\ apps\ bl ank- st or e\ src\ pl ugi ns\ acti ons\index.js
[cli] info: packages\ apps\ bl ank- st ore\ src\plugins\actions\neta.js

When you create an action, you can also create a reducer that the action invokes:

yarn occ create-action --name nyAction --reducer

The reducer is created in the action's i ndex. j s file.

You can also specify an endpoint that the action invokes:

yarn occ create-action --nane nyAction --endpoi nt myEndPoi nt

Note that this command doesn't create the endpoint, it just specifies the name of

the endpoint required by the action. You can either specify an endpoint that has
already been created, or write one afterward with the name you specified. (If you use
- - endpoi nt but omit the endpoint name, the name defaults to the name of the action.)

Create a fetcher

To create a fetcher, you use the creat e- f et cher command. For example, the following
command create a fetcher for the Hel | oWor | d widget:

yarn occ create-fetcher --name nyFetcher --endpoint getOrder --selector
nySel ector --forConmponent Hel |l oVrld

Note that the specified widget must already exist. The specified endpoint and selector
can already exist, or you can write ones afterward with the specified names.

You can create a global fetcher by using the - - gl obal flag rather than the - -
f or Conponent flag. For example:

yarn occ create-fetcher --name nyFetcher --endpoint getSite --selector
nySel ector --gl obal

Create an endpoint

To create an endpoint, you use the cr eat e- endpoi nt command. The version of the
command that you use depends on whether your organization maintains a Swagger-
based document containing a JSON representation of the REST API endpoints that
can be called from widget code.

4-4

Chapter 4
Deploy the application

To create an endpoint from a Swagger document, you use the - - swagger Ul flag. For
example:

yarn occ create-endpoint --directoryName swagger-endpoints --swagger Ul
http://wwv. exanpl e. com cat al ogApi - -endpoi nts get Order, put O der

The - - di r ect or yName flag specifies the subdirectory (relative to the application's
\'src\ pl ugi ns\ endpoi nt s directory) to create the endpoint in. The command creates
the specified directory; it cannot already exist.

The - - endpoi nt s flag is used to specify a comma-separated list of the IDs of the
REST endpoints in the JSON document. There are two ways to specify these IDs:

» If the JSON document includes an oper at i onl d value for each endpoint, use
these values to specify the endpoints. The example above illustrates using these
values.

* If the JSON document does not include oper at i onl d values, use the zero-based
index of the ordering of the REST endpoints in the document. For example, to
specify the first and fifth endpoints in the file, you would use - - endpoi nts 0, 4.

Note that you can display a list of all the endpoints in a Swagger document by using
the | i st - endpoi nt s command. For example:

yarn occ |ist-endpoints --swaggerUr |l http://ww. exanpl e. conl cat al ogApi

To create an endpoint without a Swagger document, you use the - -ur| flag to specify
the URL of an individual REST endpoint, and the - - ver b flag to specify the HTTP verb.
For example:

yarn occ create-endpoint --directoryName other-endpoints --url http://
www. exanpl e. conf orders --verb CGET

Deploy the application

ORACLE

In OSF, much of the work of serving the presentation layer is delegated to a Node.js
server. Widget code, for example, is part of the Node.js application.

In a development environment, the Node.js application runs in your local workspace,
and communicates with Oracle-hosted Commerce servers. The JavaScript application
can then be uploaded to a Node.js instance on a Commerce server environment,
where it runs alongside administration and storefront instances. Each environment can
run separate preview and live versions of the application.

Typically, developers have access to three server environments: test, staging, and
production (see below). To deploy application changes to a server environment, you
will need an application key specifically for that environment. You should be assigned
a unique application key for each environment you have access to. Other developers
may require access to different environments. For security purposes, you should avoid
sharing your application keys with other developers or checking them into your source-
control system.

When an application is deployed, the workspace itself is uploaded to the
administration server. You can use the CLI to prepare the workspace for deployment,

4-5

Chapter 4
Promote the application to the live context

upload it, and track its status. See Workspace commands and scripts for information
about the command-line tools available for managing storefront applications.

Because the entire workspace is deployed, it is possible for other developers to create
their own workspaces from the deployed application, although it is recommended that
they create their workspaces from source control. See Create a workspace from a
deployed application.

Server environments
This section describes the test, staging, and production server environments.
Test environment

The test environment is intended to be used when creating an application. Developers
create the initial set of components and layouts in their local workspaces and deploy
them to the test environment as needed.

Staging environment

The staging environment is intended to be used as a pre-production environment

for running the developed application. The application running in this environment
should be similar to the production version in terms of business data and integrations.
Developers and business users can test and refine the application in a simulated
production environment.

Production environment

The production environment is where the public-facing version of the application runs.
Major changes should not be rolled out to the production environment without first
being tested in the test or staging environment. Access to the production environment
should be strictly controlled to allow only a limited group of developers to update the
production version of the application.

Deployment status

OSF provides commands for accessing deployment logs and monitoring the
deployment status of applications. See Monitor deployed applications for more
information.

Promote the application to the live context

After you deploy an application to the preview context on a Commerce server
environment, its assets appear in the publishing list along with all the other assets
that have pending updates.

To complete an application deployment and update the live instance, you perform a
publishing operation in the administration interface. You should view the publishing list
carefully and explicitly specify whether the preview application, the design assets, or
both should be published by checking or unchecking the corresponding items in the
list.

Sync assets on a Commerce server with a local workspace

Oracle CX Commerce provides tools for keeping assets on server environments in
sync with local workspaces.

ORACLE 4-6

ORACLE

Chapter 4
Sync assets on a Commerce server with a local workspace

Your development team should maintain application code and configuration in a
source control system. Developers can access the source control system on their
workstations, build and modify applications in their local workspaces, and then deploy
the applications to Commerce server environments. Working this way helps ensure
that the assets on the server match the ones in the source control system.

However, not all assets are necessarily created by developers in local workspaces.
The Design page in the administration interface provides tools that designers can

use to create assets such as layouts and containers. In order to keep these assets

up to date in the source control system, the OSF command-line interface includes
options for syncing assets between a server environment and a local workspace. This
section describes how to use these commands. The assets they affect include layouts
(pages), widgets and widget instances, containers (widgets that can contain other
widgets), text snippets, and slot instances.

Note that you should be careful when you use these options to ensure that you get
the results you expect. Depending on which commands you use and the flags you
specify, the logic associated with deleting or overwriting existing assets on the target
system may differ. Be sure you understand what the effect of a given command will
be before you execute it, to ensure that you do not lose any changes. To help avoid
conflicts, it is a good idea for each developer working on an application to create a
local development version, as described in Access local development applications on
a Commerce server.

Upload assets from a local workspace to a server

To copy assets from a local workspace to a server environment, you use the depl oy
command. For example:

yarn occ depl oy bl ank-store

When you run this command, Commerce creates only new assets on the server. Any
asset that already exists on the server will not be overwritten by an asset with the
same name from the local workspace.

Run the depl oy command with the - -reset flag to make the workspace on the
administrative server match the local workspace. The server will contain just the
assets that were uploaded from the local workspace. For example:

yarn occ depl oy blank-store --reset

Note that with this option, any changes that have been made to assets on the
server that are not also on the local workspace will be lost. To avoid losing these
changes, you should download these assets to the workspace first, and then deploy
the application.

Download assets from a server to a local workspace

The CLI includes a downl oad- asset s command for copying assets from a server
environment to a local workspace. For example:

yarn occ downl oad-assets bl ank-store

Any asset in the workspace whose name matches an asset downloaded from the
server is overwritten; other assets in the workspace remain as is. To avoid losing

4-7

Chapter 4
Access local development applications on a Commerce server

changes that you have made to assets in your workspace, you should first commit
these changes to your source control system before downloading assets from the
server, and then resolve any conflicts afterward.

Run the downl oad- asset s command with the - - reset flag to make the local
workspace match the administration server. The local workspace will contain just the
assets that were downloaded from the server. For example:

yarn occ downl oad-assets bl ank-store --reset

Note that with this option, any changes that have been made to assets in the
workspace that are not also on the server will be lost. To avoid losing changes that
you have made in your workspace, you should first commit these changes to your
source control system before downloading assets from the server, and then resolve
any conflicts afterward. Or you can first deploy the changes to the server, and then
download the assets from there.

Access local development applications on a Commerce

server

ORACLE

OSF supports isolating different versions of assets on a Commerce server instance,
allowing developers to work on local versions of an application independently while
taking advantage of the features provided by remote rendering.

The key to sharing a Commerce server instance is for each developer to supply a
local development application name for his or her version of the application. The local
development application name should be different for each developer, and each local
development name should be different from the hosted application name (which is
the same for every developer). For example, the name for the hosted application
might be st or ef r ont - app, while the local development names could be f sni t h- app,
j j ones-app, and so on.

The location of the source code for the application is the same in each local
workspace, and reflects the hosted application name (for example, / packages/ apps/
storefront-app).

Use the local development applica