Integrating with Oracle Commerce

F41722-01

a July 2021
ORACLE

Integrating with Oracle Commerce,

F41722-01

Copyright © 2021, 2021, Oracle and/or its affiliates.

Primary Authors: (primary author), (primary author)
Contributing Authors: (contributing author), (contributing author)
Contributors: (contributor), (contributor)

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and maodifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Integrate with Oracle CPQ

Introduction to Integrating with Oracle CPQ 1-1
Set Up OIC Integrations 1-2
Download the integration packages 1-2
Import the integration package 1-2
Configure Oracle Configure, Price, Quote connections 1-4
Generate security token for Commerce connections 1-4
Configure the Commerce connection 1-5
Activate the OIC integrations 1-5
Create Sync Quote Action in Oracle Configure, Price, Quote 1-6
Set up OIC integration on Oracle Configure, Price, Quote site 1-6
Create the Sync Quote Integration 1-7
Set Sync Quote Action to run Advanced Modify 1-7
Configure Commerce webhooks 1-8
Configure the Commerce server-side extensions 1-10
Set Up Oracle Configure, Price, Quote 1-16
Understand general set up for Oracle Configure, Price, Quote 1-16
Understand Oracle Commerce set up 1-21
Understand Oracle Configure, Price, Quote configuration set up 1-28
Set Up Subscription Ordering in Oracle Configure, Price, Quote 1-31
Create an authentication certificate integration type 1-31
Work with in-flight cancellations 1-32
Upgrade an asset 1-33
Enable Integrations in Commerce 1-34
Enable Oracle Configure, Price, Quote configuration integration 1-35
Identify configurable products in the product catalog 1-35
Add Customize Button to the Product Details widget 1-36
Enable Oracle Configure, Price, Quote quoting integration 1-37
Add Quote Button to Checkout and Order Details pages 1-37
Enable Asset Based Ordering 1-38
Enable Subscription Cloud integration 1-38
Appendix A: Understand the Configurator Flow 1-38
Appendix B: Understand the Request for Quote Flow 1-39

ORACLE iii

Appendix C: Understand the OIC Integration Mappings 1-39
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier) 1-43
Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set
Up (19D and Later) 1-48
Appendix F: Understand the SyncQuote BML 1-53
Appendix G: AddToCartPayload-Cloud 1-53
2 Use Oracle CPQ Cloud Features
Introduction 2-1
Objective 2-2
Audience 2-2
Prerequisites 2-3
Additional Resources 2-3
Configure the Integration 2-3
Configure the Integration Package 2-4
Configure the Oracle Commerce Connection 2-5
Activate the Integrations 2-7
Configure the Commerce Webhooks 2-7
Configure the Server Side Extensions 2-9
Enable the Integrations 2-19
Use the Integration Functionality 2-22
Configure an item 2-22
Request a Quote 2-23
Use account-specific pricing for configured items 2-25
Use multi-level items 2-31
Assign shipping groups to sub-items 2-34
Understand tax calculation and shipping charges when assigning shipping groups to
sub-items 2-37
Understand shipping charge and tax calculation when assigning costs to items sold as
a package 2-39
Understand how promotion discounts are applied to multi-level items 2-40
Add payment details to customer billing profile 2-40
Understand the Customer Account Model 2-45
Use Recurring Charge Items 2-46
Use Asset Based Ordering 2-48
Customize configurations in Commerce using the CPQ Configuration API 2-58
Implement configuration customization via the CPQ Configuration API. 2-63
Control user interface look and feel using the CPQ Configuration API 2-68
Customize and reconfigure a product by direct use of the CPQ Configuration API 2-74
Appendix A: Configurator Flow 2-78

ORACLE

Appendix B: Request for Quote Flow 2-79

3 Integrate with Customer Data Management
Integrate with Customer Data Management 3-1
4 Integrate with an External Product Configurator
Enable the integration 4-1
Mark products as configurable 4-1
Add Customize button to Product Details widget 4-2
Configure the webhooks 4-2
5 Integrate with Oracle Infinity to collect data
Integrate Commerce with Infinity 5-1
Understand the role of the Infinity platform in data ingestion 5-2
Tag site pages to use the Infinity data ingestion feature 5-3
Understand Infinity integration parameter mapping 5-3
6 Integrate with Oracle Order Management Cloud
Introduction 6-1
Audience 6-1
Features 6-1
Architectural overview 6-2
Additional documentation 6-2
Prerequisites 6-2
Access rights 6-2
Assumptions 6-2
Configure Oracle Commerce for Oracle Management Cloud 6-3
Submit Order webhook 6-3
Return Order webhook 6-4
Configure the Oracle Integration Cloud Adapter 6-4
Connections 6-4
Lookup configuration 6-5
Integrations 6-5
XSL location 6-5
Configure Order Management Cloud 6-6
Create the source system 6-6
Create defaulting rules 6-8
Create the orchestration process 6-10

ORACLE Y

Create the connector 6-13

Order creation 6-14
SKUs 6-14
Payment 6-15
Order types 6-15
Pricing and tax 6-15
Shipping methods 6-15
Mapping of attributes 6-16

Order Status 6-16
Map attributes for order status 6-17

Returns 6-17
Map attributes for returns 6-17

Exchanges 6-18

7 Integrate with Oracle Responsys

Understand the Oracle Responsys Integration 7-1
Objective 7-1
Audience 7-2
Prerequisites 7-2

Configuring the Integration 7-2
Configure the Integration Package 7-2

Download the integration package 7-3
Import the integration package 7-3
Configure the Oracle Responsys Connection 7-3
Configure the Oracle Responsys Connection 7-4
Configure the Oracle Responsys Database Tables 7-4
Configure the Oracle Commerce Connection 7-6
Generate a Security Token 7-7
Activate the Integration 7-7
Configure the Oracle Commerce Webhooks 7-8

Using the integration 7-9

Create an Abandoned Cart Program 7-9
8 Integrate with Oracle Retail Order Management System

Introduction 8-1
Audience 8-1
Features 8-1
Architectural Overview 8-1
Additional Documentation 8-2

ORACLE vi

Prerequisites 8-2

Access Rights 8-2
Data Configuration 8-3
Setting Up the Integration 8-4
Commerce Configuration 8-5
Accessing the Oracle Integrations Console 8-5
Configuring the Integration 8-5

o Integrate with Oracle Product Hub Cloud

Understand the Product Hub integration 9-1
Configure Oracle Commerce with Oracle Product Hub 9-3
Configure Oracle Product Hub 9-4
Install and Configure the Integration in OIC 9-5
Understand the integration flows 9-8

10 Integrate with Oracle Subscription Management

Understand the Subscription Management integration 10-1
Configure Oracle Commerce with Oracle Subscription Management 10-2
Install and Configure the Integration in OIC 10-9
Customize Storefront Widgets 10-12
Integration Flows 10-25

11 Integrate with Oracle Content Management

Enable the integration with Oracle Content Management 11-1
Configure content items to appear on the storefront 11-2
Index

ORACLE vii

Integrate with Oracle CPQ

Integrate Oracle CPQ with Oracle Commerce.

When you integrate Oracle CPQ with Commerce enable a number of features that your
shoppers can use, including allowing a shopper to configure products, request quotes, or
purchase configurable services.

Introduction to Integrating with Oracle CPQ

ORACLE

The Oracle Commerce/Oracle Configure, Price, Quote integration lets you configure complex
products for purchase in Commerce by using the Oracle Configure, Price, Quote configurator.

Self-service users in Oracle Commerce (formerly Oracle Commerce Cloud) can configure
complex products for purchase in Commerce using the Oracle Configure, Price, Quote
configurator.

They can also request an Oracle Configure, Price, Quote quote, thereby initiating an Oracle
Configure, Price, Quote Transaction a sales specialist can modify, reconfigure, or discount.
Once finalized in Oracle Configure, Price, Quote, the quote returns to Commerce for
acceptance and ordering by the self-service user. For additional information, refer to
Appendix A: Configurator Flow and Appendix B: Request for Quote Flow.

Note: The integration of Commerce with Oracle Configure, Price, Quote uses the Oracle
Integration Cloud Service (OIC) to provide pre-built integrations for the two user flows.

Purpose

The purpose of this implementation guide is to provide the steps that administrators must
complete in Oracle Configure, Price, Quote, OIC, and Oracle Commerce to prepare for a
Commerce and Oracle Configure, Price, Quote integration.

Audience

This implementation guide is for administrators who are setting up and configuring the
integration. The guide assumes administrators have prior Commerce, Oracle Configure,
Price, Quote, and OIC administration experience.

Prerequisites
The following is a list of integration prerequisites:

A Commerce 19D or later site setup as described in this implementation guide.

* An Oracle Configure, Price, Quote 19C or later Base Ref App site set up as described in
this implementation guide. The integration between Commerce and Oracle Configure,
Price, Quote adds attributes to the Base Ref App site that correspond to required
Commerce order data.

* A synchronized product catalog to ensure that products in the Commerce catalog map to
corresponding items in the Oracle Configure, Price, Quote catalog.

* Oracle Integration Cloud Service (OIC) 18.3.5 or later.

1-1

Chapter 1
Set Up OIC Integrations

Note: For information about how to obtain any of the above prerequisites, contact an
Oracle sales representative.

Set Up OIC Integrations

To begin setting up your integration, you must first import an OIC Integration Package
to the OIC environment that connects Commerce and Oracle Configure, Price, Quote
through a common configuration.

You must import an OIC Integration Package to an OIC environment that connects
Commerce and Oracle Configure, Price, Quote through a common configuration.

The OIC Integration Package creates web service connections that allow users to
adjust order and quote details in Oracle Configure, Price, Quote, approve or reject
changes in Commerce, and complete or cancel orders in Commerce. This section
contains the steps you must complete to set up and activate the OIC integrations.

Download the integration packages

To begin the OIC set up portion of the integration, you need to download the OIC
Integration Package.

Complete the following procedure to download the OIC Integration Package.

1. Go to the Integrating Oracle CX and Oracle Configure, Price, Quote article on My
Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle
Configure, Price, Quote Configurator, download OCCS-
CPQ_CONFI GURATI ON_I NTEGRATI ON_X. X. par to a location where it is
accessible from OIC.
Note: OCCS_CPQ GETCONFI GBOM X. X. par is only needed if you are enabling
Asset Based ordering.

3. If you want to implement the integration between Commerce and Oracle
Configure, Price, Quote Quoting, download OCCS-
CPQ _QUOTE_| NTEGRATI ON_X. X. par to a location that is accessible from OIC.

4. If you want to enable Asset Based Ordering (ABO) through the integration
between Commerce and Oracle Configure, Price, Quote, download
OCCS_CPQ_ASSET_| NTEGRATI ON_X. X. par,

OCC_CPQ Cet _Asset _Upgrade_Options_X. X. par, and

OCCS_CPQ GETCONFI GBOM 1. 0. par to a location that is accessible from OIC.
Note: OCCS_CPQ GETCONFI GBOM _X. X. par is only needed if you are enabling
Asset Based ordering.

Import the integration package

ORACLE

You must import the OIC Integration Package into OIC to create an integration
between Commerce and Oracle Configure, Price, Quote.

To import the OIC Integration Package:

1. Loginto OIC as an admin user.
2. Click the Packages icon.

3. Click the Import button.

1-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

ORACLE

Chapter 1
Set Up OIC Integrations

4. Click Browse.
5. Select the integration package archive (PAR) file you want to import.
6. Click Import. The package is added to the Packages list.

The OCCS- CPQ_CONFI GURATI ON_I NTEGRATI ON package includes the OCCS-CPQ Get
Configurations integration flow. This flow is invoked for retrieving a list of configurationlds
fromOracle Configure, Price, Quote of regular configured items (non-ABO items) and ABO
items with actionCodes other than Suspend and Terminate. This integration is required for the
configuration flow and is available to import into OIC. The name of the target connection for
this integration is Oracle Configure, Price, Quote. The target connection identifier is Oracle
Configure, Price, Quote, and the target connection description is Oracle Configure, Price,
Quote ICS Adapter Connection.

The OCCS- CPQ_QUOTE_I NTEGRATI ON package includes the following three integration
flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-CPQ Sync Quote.

* The OCCS-CPQ Create Quote integration sends quote request information to Oracle
CPQ.

* The OCCS-CPQ Sync Quote integration allows Oracle Configure, Price, Quote to send
information to Commerce at the end of the quoting process and synchronize this
information in Commerce. This ensures that the order information in Commerce matches
the related order information in Oracle Configure, Price, Quote.

* The OCCS-CPQ Update Quote integration sends information to Oracle Configure, Price,
Quote related to accepting, rejecting, or re-requesting a quote.

The OCCS- CPQ _ASSET | NTEGRATI ON package includes two integration flows: OCCS-CPQ
Get Assets and OCCS-CPQ Asset Actions. This integration is required for Asset Based
ordering.

e The OCCS-CPQ Get Assets integration returns information about assets and services
associated with the shopper’s account(s)

e« The OCCS-CPQ Asset Actions integration enables Commerce to modify, renew, and
terminate actions on assets and services associated with the shopper’s account(s).

The OCC _CPQ Get Asset Upgrade_Opti ons package is needed to retrieve all upgrade
options that are available for an asset. If you want to show upgrade options to an assets
shopper, this integration needs to be configured. When a call is made for the GetService(s)
endpoint, this integration is called from the Services SSE to get all upgrade options. This call
can only be made if expand=occ_upgradeQpti ons is passed as a queryparam for the
GetService(s) endpoint.

The OCCS_CPQ_CETCONFI GCBOMpackage contains the following OIC integration flow which is
also used in Asset Based ordering:

» GetConfigBom - If an item is an ABO item with actionCode of Terminate or Suspend,
getConfigBom calls are required to be made for each configuratorID of these filtered
items to retrieve a saved Configuration BOM Instance of the item on Oracle Configure,
Price, Quote.

Note: Importing and setting up the OIC Integration Package is a prerequisite to completing
the Sync Quote action in Oracle Configure, Price, Quote. After all setup procedures are
completed, regenerate the OCCS-CPQ Create Quote integration to ensure it accurately
reflects the current state of the Oracle Quote to Order process.

1-3

Chapter 1
Set Up OIC Integrations

Configure Oracle Configure, Price, Quote connections

You must configure Oracle Configure, Price, Quote connections to correspond to
different SOAP or REST APIs for Oracle Configure, Price, Quote web services used in
the integration.

Administrators must configure connections from the integrations referenced in the
previous section to Oracle Configure, Price, Quote.

The following Oracle Configure, Price, Quote connections are part of the integrations:
Oracle Configure, Price, Quote, Oracle Commerce, Oracle Configure, Price, Quote
getConfigurations, Oracle Configure, Price, Quote Quote, Oracle Configure, Price,
Quote Get Assets, and Oracle Configure, Price, Quote Asset Actions. Each connection
corresponds to different SOAP or REST APIs for Oracle Configure, Price, Quote web
services. Setting a connection to use the wrong API will cause the integrations to fail.

To configure the Oracle Configure, Price, Quote connections:

Log in to OIC as an admin user.

Click the Connections icon.

1

2

3. Click the Oracle CPQ connection.
4. Click Configure Connectivity.

5

Add the WSDL or REST metadata URL for the Oracle Configure, Price, Quote
getConfigurations API.

Note: The Oracle Configure, Price, Quote Asset Actions, Get Assets, and
GetConfigBom connections are REST based and use the REST Catalog URL. The
Oracle Configure, Price, Quote getConfigurations and Oracle Configure, Price,
Quote SOAP connections are SOAP based and use WSDL URLs. The WSDL
endpoint for getConfigurations is /v2_0/receiver/configuration?wsdl and the
endpoint for Oracle Configure, Price, Quote SOAP varies by Commerce Process.
For example, the Oracle Quotes and Orders endpoint is /v2_0/receiver/commerce/
oraclecpgo?wsdl.

6. Click OK.

7. Click Configure Security. The Oracle Configure, Price, Quote connection uses
the Basic security policy, so you must enter the login details for your Oracle
Configure, Price, Quote account.

8. Click OK.
9. Click Test to test the connection.

10. Click Save.
The Oracle Configure, Price, Quote connection is now configured for the
integration. Repeat steps 1-10 for each of the remaining Oracle Configure, Price,
Quote connections.

Generate security token for Commerce connections

ORACLE

A security token must be generated to support the Commerce REST web service APIs
used to access Commerce data.

You must generate a security token to support the Commerce REST web service APls
used to access Commerce data in the integration. Use the following steps:

1-4

N o o kM w d PR

9.

Chapter 1
Set Up OIC Integrations

Log in to Commerce.

Click the Menu icon.

Select Settings from the menu.

Click Web APIs from the sidebar menu.

Click Registered Applications from the Web APIs panel.
Click Register Application.

Enter a name for the integration. Since you are registering OIC, choose a meaningful
name that reflects the integration.

Click Save. The Application ID and Application Key are automatically generated. The
application displays on the Registered Applications page.

Click the name of the application you created.

10. Select Click to reveal to display the application key.

Note: You need the application key when configuring the Commerce connection in OIC. Copy
the registration key, so that it is available when you complete the Configure the Commerce
Connection procedure.

Configure the Commerce connection

You must configure the connection from the OIC integrations to Commerce for the integration
to run successfully.

An administrator must complete the following steps to configure the connection from the OIC
integrations to Commerce. Use the following steps to do this:

1.
2.
3.
4
5

Log in to OIC as an admin user.

Click the Connections icon.

Click the Oracle Commerce connection.
Click Configure Connectivity.

Enter the Connection base URL, which is derived using the below structure, where
<si t eURL> is the base URL of the Commerce site that integrates with OIC.

Connection base URL: https://<hostnane>: <port>/ccadm n/vl

Click Configure Security. The Commerce connection uses the OAuth security policy, so
you must enter the security token for the connection. The security token was generated in
the Generate Security Token section.

Click OK.
Click Test.

Click Save.
Your Commerce connection is now configured for the integration.

Activate the OIC integrations

Once your integrations are configured, you must activate them using the OIC admin user
interface.

ORACLE

1-5

Chapter 1
Set Up OIC Integrations

Once the Oracle Configure, Price, Quote, Commerce, Oracle Configure, Price, Quote
Quote, Oracle Configure, Price, Quote Configure, and Oracle Configure, Price, Quote
getConfigurations connections are configured, you must activate these integrations.

To activate the OIC (Oracle Integration Cloud) integrations:

1. Loginto OIC as an admin usetr.

2. Click the Integrations icon to display the Integrations List.
3. Use the Activate slide switch to activate the integrations.
4

Decide whether you want to switch on detailed tracing, which collects information
about messages processed by the integration flow. Administrators may find
detailed tracing helpful when troubleshooting issues with the integration flow, but it
may impact performance.

To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate and then
reactivate the flow to switch detailed tracing on or off.

5. Click Activate.

Create Sync Quote Action in Oracle Configure, Price, Quote

The Sync Quote Action needs to be created for the Oracle Configure, Price, Quote/
Commerce integration to work successfully.

Use the following code to create the following Commerce action at the Commerce
guote level:

Label (Sync Quote), Variable Nanme(syncQuote), Action Type(Mdify).

Set up OIC integration on Oracle Configure, Price, Quote site

ORACLE

You must complete some preliminary OIC integration setup steps on the Oracle
Configure, Price, Quote site for the integration to run successfully.

You must set up the OIC integration on the Oracle Configure, Price, Quote site by
completing the following steps:

1. Click Admin to go to the Admin Home page.

2. Navigate to Integration Platform > Integration Center. The Integration Center
opens.

3. From the Type drop-down menu, select Integration Cloud Service.

4. In the Name field, enter Sync Quote integration. The Variable Name field will auto-
populate.

5. In the Discovery URL field, enter the OIC domain.

6. Inthe Username field, enter a valid username.

7. Inthe Password field, enter a valid password.

8. Click Create Integration.

1-6

Chapter 1
Set Up OIC Integrations

Create the Sync Quote Integration

You must configure the integration of the Sync Quote system.

Administrators must create the Sync Quote integration by completing the following steps:
Click Admin to go to the Admin Home page.

Under the Navigation dropdown, select Integrations and click List.

Click Add.

For Select Integration Types, select Integration Cloud Service.

Click Next.

Name the action "Sync Quote" (var nane: syncQuot e)

Set timeout as 60000.

set Action as Import.

© ©®© N o o p W NP

For Services, choose OCCS-CPQ Sync Quote from the dropdown.
10. Click Apply/Update.

Set Sync Quote Action to run Advanced Modify

ORACLE

You must set the Sync Quote action to run Advanced Modify for the integration to run
successfully.

Complete the following steps to set the Sync Quote action to run Advanced Modify:

1. Open the Admin Home page.

2. Navigate to Process and Documents > Process Definition. The Processes page
opens with Documents displaying by default in the Navigation drop-down menu.

3. Click List. The Document List page opens.

4. From the Navigation drop-down menu, select Actions for the Transaction or Transaction
Line.

5. Click List. The Action List page opens.
6. Click the syncQuote link. The Admin Action page opens.

7. Under the General Tab > Advanced Modify > Before Formulas >, select Define
Advanced Modify - Before Formulas.

8. Click Define Function.

9. Select the attributes shown in the following tables:

Variable Name for Type Description
(Transaction)

cC LineltemData String CC LineltemData
Variable Name for Type Description

(Transaction Line)

_docunent _nunber String Document Number

1-7

Chapter 1
Set Up OIC Integrations

Variable Name for Type Description
(Transaction Line)

_nodel _vari abl e_nane String Model Variable Name
cC Product!d_| String Product ID

cC Commerceltenld_| String Commerce Item ID

10. Insert the sample BML provided in Appendix F: Understand the SyncQuote BML.
11. Update and click Save.
12. Navigate to the Integration tab and move Sync quote above Modify Functions.
13. Update and click Save.

14. Place the “syncQuote” action on the layout.

Configure Commerce webhooks

ORACLE

You must configure webhooks in Commerce Administration in order to support the
REST API generated by the activation of the OIC integration.

The REST API generated by the activation of the OIC integration can be configured as
webhooks in Commerce Administration. These include the following:

* Request Quote: This webhook is triggered when a request or a re-request for a
guote is submitted by a Commerce self-service user. The webhook pushes
notifications using the OCCS-CPQ Create Quote integration flow.

* Update Quote: This webhook is triggered when a response to a requested quote
is accepted or rejected or the quote order is canceled by the Commerce self-
service user. This webhook pushes notifications using the OCCS-CPQ Update
Quote integration flow.

* External Price Validation: This webhook is triggered at check out when the order
contains one or more items configured by Oracle Configure, Price, Quote. The
webhook validates the configuration and the price provided for configured items.

« Contact Accounts Retrieval: This webhook returns a list of service account IDs
for the shopper.
Note: This webhook has been deprecated.

» Services Retrieval: This webhook returns information about a service or asset
associated with the shopper and uses the OCCS-CPQ Get Assets integration flow.
This webhook calls the Contact Accounts Retrieval webhook, so that webhook
must also be configured for the Services Retrieval webhook to function correctly.
Note: This webhook has been deprecated.

Note: Administrators must configure the Production and Preview versions of the
webhooks to ensure they work in all environments. The Production webhooks send
information from the live Commerce store to the production environments of your live
systems. The Preview webhooks send information from the preview environment to
the test or sandbox environments of external systems.

To configure Request Quote, Update Quote, External Price Validation, Services
Retrieval (deprecated), or Services (deprecated) webhooks:

1. Loginto OIC as an admin user.
2. Click the Integrations icon.

3. Click the Integration Details icon to display information about the integration flow.

1-8

Chapter 1
Set Up OIC Integrations

» If configuring the Request Quote webhook, display information for the OCCS-CPQ
Create Quote integration flow.

* If configuring the Update Quote webhook, display information for the OCCS-CPQ
Update Quote integration flow.

» If configuring the External Price Validation webhook, display information for the
OCCS-CPQ GetConfigurations integration flow.

» If configuring the Services Retrieval webhook, display information for the OCCS-
CPQ Get Assets integration flow.
Note: This webhook has been deprecated.

* If configuring the Services webhook, display information for the OCCS-CPQ Asset
Actions integration flow.

Note: This webhook has been deprecated.
Copy the Endpoint URL for the integration.
Log in to Commerce.

Click on the Menu icon.

Select Settings from the menu.

Select Web APIs from the sidebar menu.

© ® N o g »

Click the webhook you want to configure.

10. Paste the Endpoint URL that was copied into the URL field for the webhook.
11. Remove the “metadata” text from the end of the URL.

12. Enter your OIC user name and password.

13. Click Save.

The webhook is now configured and is triggered each time the relevant event occurs, which
in turn triggers the relevant integration flow.

Note: It is not possible to edit webhooks differently for different sites. Updating webhooks
applies changes regardless of the site selected.

Understand the Services SSE

The Services SSE enables integration with third party asset management systems to retrieve
and execute operations available to a shopper. This SSE also serves as the API for the
integration with Oracle Configure, Price, Quote asset management.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions performed on a
service or asset are done using the Services SSEs (server side extensions); one set for
Storefront and one for Agent.

The Services SSEs call the integrations in OCCS_CPQ_ASSET | NTEGRATI ON_X. X. par and
OCC_CPQ Get _Asset Upgrade_Options_X. X. par for the asset Upgrade feature.

See the section Configure the Commerce Server Side Extensions in this document for more
information on these actions.

For more information about Commerce webhooks, refer to the Use Webhooks chapter of the
Extending Oracle Commerce book.

ORACLE 1-9

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html

Chapter 1
Set Up OIC Integrations

For more information on understanding and using the asset Upgrade feature, refer to
the Use Asset Based Ordering section of the Using Oracle Configure, Price, Quote
Features with Oracle Commerce book.

Note: You can also customize configurations of complex assets in Commerce without
being redirected to an Oracle Configure, Price, Quote hosted iFrame which may have
a separate and distinct user interface look and feel that creates a disjointed user
experience. This capability is known as the Direct API Configuration feature and can
be used as another option for the Modify and Upgrade actions. For more information
on the Direct API configuration feature, refer to the Customize configurations in
Commerce using the Oracle Configure, Price, Quote Configuration API section of Use
Oracle CPQ Cloud Features.

Configure the Commerce server-side extensions

ORACLE

To perform specific functions relating to asset-based orders, you need to install and
configure the related Commerce server-side extensions (SSEs).

Commerce includes some server-side extensions (SSEs) that you can configure to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for
use with Commerce, refer to Develop server-side extensions section in the Extending
Oracle Commerce book found in the Commerce Help Library.

The next sections in this topic explain the purpose and configuration of each available
SSE as well as provide information on the inputs required for their respective
endpoints.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs, in
addition to using Commerce's default address formats, you can also use the REST
API to create multi-country custom address formats. This lets you create country-
specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

e Customize Address Formats using the API in Extending Oracle Commerce
e Work with address types in Extending Oracle Commerce

e Account Details in Using Oracle Commerce

e Work with account addresses in Using Oracle Commerce

« Work with account registration requests in Using Oracle Commerce

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit
checking system, the Credit Check SSE is used to connect to a third-party credit check
system so that you can perform a credit check on the logged-in shopper.

As written, this SSE generates outbound calls to a master credit checking system. This
means that the Credit Check SSE calls out to an external system to perform the credit
check. In order to use this SSE to connect to the external checking of your choice, you

1-10

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/use-asset-based-ordering.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/cccpq/customize-configurations-commerce-cloud-using-cpq-configuration-api.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/develop-server-side-extensions.html

ORACLE

Chapter 1
Set Up OIC Integrations

must modify the SSE code to provide the specific calls needed to connect to the correct credit
checking system.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-agent.zip, by
first downloading the SSE packages.

To complete installing and configuring the SSE, refer to Understanding the general procedure
for installing and configuring the integration SSEs.

Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by Commerce.
The inputs for this endpoint are:

* Amount information
* Recurring amount frequency
* Recurring amount duration
* Recurring amount
* Contact information
— First Name
— Last Name
— Email Address
— Telephone Number
* Address information
— Address line 1
— Address line 2
— City
— State
— Country
— Postal code
The return for this endpoint is either a TRUE or FALSE value depending on whether the

shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a registered
shopper or to update the customer account model when required.

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general procedure
for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts for
the shopper.

1-11

ORACLE

Chapter 1
Set Up OIC Integrations

The inputs for this endpoint are:

* User Token for the logged-in shopper.
e Account Type

* Account Name

e Primary Contact

» Billing Profile(s)

e Address(es)

e Contact ID(s)

e Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles
now associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.
Understand the Query Accounts endpoint

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.
The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

* User Token for the logged-in shopper.
* The Account ID of the account to which the billing profile is linked.
* The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

1-12

ORACLE

Chapter 1
Set Up OIC Integrations

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the assetable property is TRUE the quantity must be 1
and, if not, return an error indicating that this item can only be purchased one at a time. This
check is done by looking to see if the root item has an assetKey value. For more information,
refer to Use Asset Based Ordering.

You can configure the available SSEs, OrderQualification-store.zip and OrderQualification-
agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general procedure
for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Order Qualification endpoint

This endpoint is triggered by the Order Validation webhook when any order containing a
configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether the order
passed the validation check or not. If the value is FALSE the return also includes information
about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

This SSE is used to ensure that an order is valid. It enables an order qualification step in the
purchasing process that can be invoked via the Order Qualification webhook. The extension
can be configured to execute custom order qualification processes such as checking whether
the shopper is eligible to purchase the items in the cart. It contains a pre-built algorithm to
validate that the Customer, Billing, and Service accounts as well as the Billing Profile
assigned to the items in the cart are valid for the logged in shopper.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general procedure
for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Order Qualification Pipeline endpoint

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:

» Contact record for the shopper
e Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether the order
passed the validation check or not. If the value is FALSE the return also includes information
about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can be invoked
via the Order Validation webhook. The extension can be configured to execute any final

1-13

ORACLE

Chapter 1
Set Up OIC Integrations

checks particular to the purchasing model before the order payment is authorized and
the order is submitted to the downstream systems for fulfillment and provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

Configure the Services SSE

The Services SSE enables integration with third party asset management systems to
retrieve and execute operations available to a shopper. This SSE also serves as the
API for the integration with Oracle Configure, Price, Quote asset management. It can
be used to retrieve all the services/assets linked to a shopper’s profile or it can also be
used to retrieve details of just one asset at a time.

The Modify, Renew, Terminate, Suspend, Resume, and Upgrade actions on a service
or asset are performed using the Services SSEs (server side extensions), one set for
Storefront and one for Agent.

The Services SSEs call the integrations in
OCCS_CPQ _ASSET_| NTEGRATI ON_X. X. par and
OCC_CPQ CGet _Asset Upgrade_Options_1. 0. par for the asset Upgrade feature.

You can configure the available SSEs, Ser vi ces- st ore. zi p and Servi ces-
agent . zi p, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Services SSE endpoints
The endpoints for the Services SSE are the following:

* getServices - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This
endpoint returns the list of services for the shopper based on their service
account(s) and any upgrade options available for those services.

* getService - Calls Get OEC Account Details for OCC Profile OIC flow (to retrieve
the account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS
(6.0) OIC flow, and OCC_CPQ_Get_Asset_Upgrade_Options_1.0 OIC Flow. This
endpoint returns the details for a single service for the shopper based on their
services account(s) and any upgrade options available for that service.

* Terminate - Calls Get OEC Account Details for OCC Profile (to retrieve the
account model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0)
OIC flow, and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

* Renew - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

e Suspend - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow,
and OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

1-14

Chapter 1
Set Up OIC Integrations

* Resume - Calls Get OEC Account Details for OCC Profile (to retrieve the account model
for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow, and
OCCS_CPQ_ASSET_ACTIONS (5.0) OIC flow.

* Modify - Calls Get OEC Account Details for OCC Profile (to retrieve the account model
for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow, retrieves
iFrame URL from CPQ, and loads the Oracle Configure, Price, Quote hosted iFrame.

* Upgrade - Calls Get OEC Account Details for OCC Profile (to retrieve the account model
for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow, retrieves
iFrame URL from CPQ, and loads the Oracle Configure, Price, Quote hosted iFrame.

* Modify (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow, and
CPQ /rest/v9/config{prodFamVarName}.{prodLineVarName}.{modelVarName}/actions/
_configure. This endpoint supports a directOracle Configure, Price, Quote APl Modify
action and lets you bypass the use of an iFrame.

* Upgrade (v2) - Calls Get OEC Account Details for OCC Profile (to retrieve the account
model for the shoppers OCC Profile), OCCS_CPQ_GET_ASSETS (6.0) OIC flow, and
Oracle Configure, Price, Quote /rest/v9/config{prodFamVarName}.{prodLineVarName}.
{modelVarName}/actions/_configure. This endpoint supports a direct Oracle Configure,
Price, Quote APl Upgrade action and lets you bypass the use of an iFrame.

These endpoints are triggered when a shopper performs an operation on an asset.

Note: You can customize configurations of complex assets in Commerce without being
redirected to a an Oracle Configure, Price, Quote hosted iFrame which may have a separate
and distinct user interface look and feel that creates a disjointed user experience. This
capability is known as the Direct API Configuration feature and can be used as another
option for the Modify and Upgrade actions. For more information on the Direct API
configuration feature, refer to Customize configurations in Commerce using the CPQ
Configuration API.

The inputs for these endpoints are:

* Logged in User Token.

* AssetKey, the unique ID for the asset for this operation. This may be a root, branch or
leaf asset.

The returns for the endpoints are a BOM (Bill of Materials) or an Error.

Note: For more information about C endpoints, refer to the Use the REST APIs chapter of the
Extending Oracle Commerce book.

For more information about Commerce webhooks, refer to the Use Webhooks chapter of the
Extending Oracle Commerce book.

For more information on understanding and using the asset Upgrade feature, refer to Use
Asset Based Ordering.

Configure the Configuration Validation SSE

The Configuration Validation SSE (cpg-config-validation-app) plays an important role in Asset
Based Ordering and validating asset configuration. This specific SSE performs a
configuration validation between items in a shopper's cart and the items captured in response
to configuration validation end points. For more complete information on Asset Based
Ordering, refer to the Using the Integration Functionality section of this document.

ORACLE 1-15

https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-rest-apis1.html
https://docs.oracle.com/en/cloud/saas/cx-commerce/20b/ccdev/use-webhooks1.html

Chapter 1
Set Up Oracle Configure, Price, Quote

To use this SSE, you should first have the External Pricing webhook set to /ccstorex/
custom/vl/validateCPQConfigurations. This is done on the Settings page of the
Administration user interface.

You should also have the following endpoints configured:

e GET_CONFIGBOM_URI — This is available when
OCCS_CPQ_GETCONFIGBOM is configured.

e GET_CONFIG_URI - This is available when OCCS-
CPQ_CONFIGURATION_INTEGRATION is configured.

The GET_CONFIGBOM_URI URL gets triggered for the Suspend and Terminate
Services. The GET_CONFIG_URI URL gets triggered for the Renew, Modify, and
Resume Services. The SSE does validation between items in cart and items captured
in the response of these two end points.

The SSE package is nhamed cpg-config-validation-app and is downloadable by this
name from the Commerce Administration user interface.

To complete installing and configuring the SSE, refer to Understanding the general
procedure for installing and configuring the integration SSEs.

Set Up Oracle Configure, Price, Quote

You must complete some general, configuration, and Commerce steps in Oracle
Configure, Price, Quote to begin working with your integration.

This section contains the general, configuration, and Commerce steps you must
complete in Oracle Configure, Price, Quote.

Understand general set up for Oracle Configure, Price, Quote

ORACLE

Some general set up procedures for Oracle Configure, Price, Quote need to be
completed for the integration to run successfully.

You must complete the following Oracle Configure, Price, Quote general set up
procedures:

» Enable Guest Access to Oracle Configure, Price, Quote
* Add Template Dependencies to File Manger
* Make Oracle Configure, Price, Quote Stylesheet Edits

» Synchronize Oracle Configure, Price, Quote Parts with Commerce SKUs

Enable Guest Access to Oracle Configure, Price, Quote

Administrators can allow multiple self-service users in Commerce to access an Oracle
Configure, Price, Quote site as a guest user from an iFrame displaying within
Commerce. When Commerce punches in to Oracle Configure, Price, Quote for
configuring items, the system uses sessions for unregistered users (i.e. guest users).
When self-service users access an Oracle Configure, Price, Quote site, their session
parameters pass from Commerce to Oracle Configure, Price, Quote. This provides a
seamless user experience and eliminates the need for Commerce self-service users to
enter login credentials when entering an Oracle Configure, Price, Quote site from
Commerce.

1-16

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

Note: You can now customize the configurations of complex products in Commerce without
being redirected to an Oracle Configure, Price, Quote hosted iFrame. This capability, known
as the Direct APl Configuration feature, builds out support in Commerce for direct API driven
product configurations where the user interface experience is controlled instead by
Commerce and can be customized by Commerce partners rather than relying on the Oracle
Configure, Price, Quote hosted iFrame. Refer to the Using Oracle Configure, Price, Quote
Features with Oracle Commerce guide in the Oracle Commerce Doc Library for complete
details.

Session parameters include currency, language, and locale preferences such as number
format, units, and date format. For example: If a Commerce self-service user’s language
preference is set to German, the text in the Oracle Configure, Price, Quote interface displays
in German when the user accesses Oracle Configure, Price, Quote. The user’s currency and
locale preferences are also passed from Commerce and display in Oracle Configure, Price,
Quote.

To enable guest access to Oracle Configure, Price, Quote:
1. Open the Admin Home page.

2. Under General, select General Site Options. The Options — General page opens.

3. Under Options - Login, set Allow Guest Access to Yes.
This setting allows Commerce to punch in to Oracle Configure, Price, Quote.

4. If multi-currency support from Commerce is required, set Allow Direct Login [Deprecated:
Please use SSO feature] to Yes.

rrOptions - Login

Allow Guest Access "5 Yes = No Guest Profile

Allow Direct Login

[Deprecated: Please use SSO @ Yes " No :
feature] ;

‘Display Home Page Greeting [Yes @ No

.Enable Quick Registration '-‘.-:l‘.'Yes ") No Email Message

View Login History
b e s s e e e cmf e cccccceccccmmccmccmmsmsmmcmsmsmmememeem==== == -

5. Under Options — General, set Occupy entire window when the site is inside a frame to
No. This setting improves usability when punching in to Oracle Configure, Price, Quote
from Commerce.

Options - General
Show the Oracle Logo at the bottom of each page) Yes @ No

Occupy entire window when the site is inside a frame () Yes @ No

Add Template Dependencies to File Manager

The “Add to Cart” action sends items to a Commerce cart via an Add to Cart button, which
displays on the Commerce integrated Oracle Configure, Price, Quote site following
configuration. Use the information provided in this section to add payload template files to
File Manager. If Commerce requires additional information from Oracle Configure, Price,

1-17

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

Quote during the “Add to Cart” action, administrators can add the information by
creating configurable attributes and modifying the payload templates. Administrators
can then export the configurable attributes as key-value pairs from Oracle Configure,
Price, Quote to Commerce.

Payload template files (i.e. Recommended_| t ems_Payl oad- C oud. t xt and
AddToCar t Payl oad- O oud. t xt) form the payload structure for sending a
configured item to the Commerce shopping cart. The template files support the “Add to
Cart” action and include configuration information such as config id, quantity, and BOM
items. BML reads the template files and replaces the values in brackets, such as
{{bomitems}}, with dynamic values.

Complete the following steps to add the payload template files to File Manager:

Open the Admin Home page.

Navigate to Utilities > File Manager. File Manager opens.

Create a new folder named CommerceCloud.

Under Add Files, click Browse. The Choose File to Upload dialog opens.

Navigate to the Recommended_Items_Payload-Cloud.txt file and click Open.

@ o w0 N P

Click Add File. The Recommended_Items_Payload-Cloud.txt file displays in
File Manager.

7. Complete steps 1-6 for AddToCartPayload-Cloud.txt.

Shown below is the content of each of the payload template files.

Recommended_Items_Payload-Cloud.txt

{

"quantity": "{{quantity}}",

"catal ogRefld": "{{part}}",

"price": "{{price}}",

"recurringCharge": { "amount":"{{recurringPrice}}",
"frequency":"{{pricePeriod}}",
"duration":"{{duration}}" }

AddToCartPayload-Cloud.txt

{

"messageType": "Configuration_Details",
"quantity": "1",
"catal ogRefld": "{{rmodel }}",
"amount": "{{total Price}}",
"price": "{{basePrice}}",
"currencyCode": "{{currency}}",
"configurationld": "{{Configld}}",
"childltenms": [

{{Childltens}}

]

'on1tems": [
{{Bom tens}}

1-18

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

For an example of an AddToCar t Payl oad- Cl oud. t xt file, refer to Appendix G.

Make Oracle Configure, Price, Quote Stylesheet Edits

Oracle recommends administrators hide Oracle Configure, Price, Quote navigation options
outside the scope of the integration from Commerce self-service users.

Hide the Oracle Configure, Price, Quote Home Button

By hiding the Oracle Configure, Price, Quote Home button, the Oracle Configure, Price,
Quote configurator opens whenever users access Oracle Configure, Price, Quote. Users
cannot navigate away from the original model that opens in the configurator, which prevents
them from configuring a different model or adding a different model to Commerce.

To hide the Oracle Configure, Price, Quote Home button:
1. Open the Admin Home page.
2. Under Style and Templates, select Stylesheet. The Stylesheet Manager page opens.

3. Select Download Alternate Stylesheet next to Click to Download Alternate CSS from
the CSS Upload/Download Center.

Stylesheet Manager

P L L T T T T T L L L L L L L L T e L. L T T -
i
i

ICSS Upload/Download Center

Click to Download CSS: Download Stylesheet

Alternate CSS File: Choose File | No file chosen
Click to Download Alternate CSS: | Download Stylesheet
Delete Alternate CSS:

4. When the alternate CSS file opens, update the CSS to include the following CSS shippet
to hide the Home button within the iFrame.

.nav-links>a ing[title="Home"]{
di spl ay: none;

}

Note: If the Home button shows both a label and an icon, administrators cannot hide the
label using only CSS. From the Admin Home page, navigate to Style and Templates >
Navigation Menus > Subheader > Home > Edit. Choose Icon for Display. The Home
button is then hidden with the CSS change.

Hide Price Books

Oracle Configure, Price, Quote uses PriceBooks as a way to associate parts with a price.
Oracle recommends hiding Price Book information from users.

To hide Price Books:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition.The Supported Products page opens.

1-19

Chapter 1
Set Up Oracle Configure, Price, Quote

3. From the Navigation drop-down menu, select Stylesheets.
4. Click List. The RegularStylesheets List page opens.

5. Download the DefaultRegular Stylesheet.

Regular Stylesheets List
Delete Name Stylesheet Type Download Stylesheet

Default Regular Download

Il Testbed Regular Download
Alternate Stylesheets

I:‘ Default Alternate Download

] hidePB Alternate Download

6. Copy the contents of the DefaultRegular Stylesheet.

7. Create a new stylesheet with a name indicative of the stylesheet’s purpose. For
example: Hide Price Books

8. Paste the contents of the Default Regular Stylesheet into the new stylesheet and
add the following CSS:

. pri cebook- contai ner {
di spl ay:
none;
}

9. Save the stylesheet.

10. On the Regular Stylesheets List page, click Add Alternate. The Configuration
Stylesheet Editor opens.

11. Click Browse.

12. Use the File Upload dialog to locate and select the new stylesheet.

13. Click Open. The stylesheet displays in the Regular Stylesheets List page under
the list of Alternate Stylesheets.

Synchronize Oracle Configure, Price, Quote Parts with Commerce SKUs

In Commerce, SKUs represent a purchasable instance of a product on a Commerce
storefront. Administrators must synchronize Oracle Configure, Price, Quote parts with
Commerce SKUSs to ensure the pricing information associated with a part is the same
in both Oracle Configure, Price, Quote and Commerce.

To synchronize Oracle Configure, Price, Quote parts with Commerce SKUSs:
1. Open the Admin Home page.
2. Under Products, select Parts. The Part Administration page opens.

3. Add new parts in Oracle Configure, Price, Quote with part numbers that match
SKUs in Commerce.

4. Add Part Custom fields for recurring charge price type, frequency, duration, and
cost.

Notes:

* The client-side BML sample included in the Configure Client-Side Integration, Add
To Cart Button, and JSON Response section of this implementation guide

ORACLE 1-20

Chapter 1

Set Up Oracle Configure, Price, Quote

assumes part custom fields 4, 5, 6, and 8 represent recurring period, cost, duration, and
type respectively. In order to use other part custom fields, the Add to Cart BML and OIC
mappings will have to be adjusted accordingly.

* If a non-configurable SKU is later added to Commerce and intended for use by the
Oracle Commerce and Oracle Configure, Price, Quote integration, repeat the above
procedure to add the corresponding part in Oracle Configure, Price, Quote.

* In addition toOracle Configure, Price, Quote parts, configurable models must also have a
corresponding SKU in Commerce. The SKU number in Commerce should match the
model’s label and variable name.

Understand Oracle Commerce set up

ORACLE

You must complete preliminary Commerce set up steps in Oracle Configure, Price, Quote for
the integration to run successfully.

This topic contains the Commerce set up steps that you must complete in Oracle Configure,

Price, Quote.

Note: Request for Quote and Sync Quote flows do not currently support Asset/Subscription

based orders.

Create Commerce Attributes at the Transaction Level

You must create the Commerce attributes shown in the following table at the Transaction
level and can adjust the attribute labels, as desired.

Note: An asterisk (*) next to the attribute label indicates the attribute should already exist as
part of the Base Reference Application.

Attribute Label

Variable Name

Attribute Type

Additional Settings

CC Order Id
Discount Info
Requestor Note
Request Date

Customer*

Reject Explanation*
Rejection Date

Provider Note

Price Expiration Date*
CC External Id

CC External Order Price

CC External Order Price
Quantity

CC Expiration Date
CC Agent Id

cC_Orderld_t
cC_Discountinfo_t
cC_RequesterNote_t
cC_RequestDate _t

customer_t
rejectExplanation_t
cC_RejectionDate_t
cC_ProviderNote _t
priceExpirationDate_t
cC_Externalld_t

cC_ExternalOrderPrice_
t

cC_ExternalOrderPrice
Quantity _t

cC_ExpirationDate_t
cC_Agentld_t

Text Field
Text Field
Text Area
Date

Additional Address Set
Text Area

Date

Text Field

Date

Text Field

Currency

Integer

Date
Text Field

none
none
none
Default Value:

System Variable:
Current Date

none
none
none
none
none
none
Auto Update: Yes

Modify: Revert to
Default

Default Value: Use the
formula provided in the
Apply Formulas section.

none

none
none

1-21

Chapter 1

Set Up Oracle Configure, Price, Quote

Attribute Label

Variable Name

Attribute Type

Additional Settings

CC Subtotal
CC Order Discount

cC_Subtotal_t
cC_OrderDiscount_t

Currency
Float

CC Order Discount Type cC_OrderDiscountType_ Menu

CC_Lineltem_Data
CC Total Net Price

Order Discount Total

Total (Net)*

Total Discount*

CC Order Total

CC Organization Id
CC Site Id

CC Site name

Ship To Attributes*
Invoice To Attributes*

t

cC_Lineltem_Data_t
cC_TotalNetPrice_t

cC_OrderDiscountTotal_
t

totalOneTimeNetAmoun
tt

totalOneTimeDiscount_t

c¢C_Order_Total_t
cC_Orgld_t
cC_Siteld_t
cC_SiteName_t
shipTo_t
invoiceTo t

Text Area
Currency

Currency

Currency

Currency

Currency
Text Field
Text Field
Text Field
Additional Address Set
Additional Address Set

none
Auto Update: Yes
Default Value:

Enter a non-blank
default value to ensure
the value sent to
Commerce during Sync
Quote (i.e.
externalOrderPrice) is
populated.

Auto Update: Yes

Menu Options: Percent
Off, Amount Off, Price
Override

Default Value: Enter a
non-blank default value
to ensure the value sent
to Commerce during
Sync Quote (i.e.
externalOrderPrice) is
populated.

none

Auto Update: Yes

Modify: Revert to
Default

Document View: Hide
Default Value: Use the
formula provided in the
Apply Formulas section.
Auto Update: Yes

Document View: Hide

Default Value: Use the
formula provided in the
Apply Formulas section.

Default Value: Use the
formula provided in the
Apply Formulas section.

Default Value: Use the
formula provided in the
Apply Formulas section.

none
none
none
none
none
none

Note: For all procedures and SSEs that require address information for endpoint
inputs, in addition to usingCommerce's default address formats, you can also use the
Commerce REST API to create multi-country custom address formats. Refer to the

ORACLE

1-22

ORACLE

Chapter 1

Set Up Oracle Configure, Price, Quote

Configure the Commerce Server-Side Extensions topic in this guide for more information on

address formatting.

Modify the Existing “Status” Transaction Level Attribute

The Status (“status_t") attribute is an existing Transaction-level attribute that should already
exist on Base Ref App environments. You must modify this attribute as described below.

* Add the following options:
— Rejected [REJECTED]
— Synced [SYNCED]

« Under Modify, set the attribute to "Use Specified Value" for the following actions:
— Create Order: ORDERED
— Customer Rejection: REJECTED
— Save: CREATED
— Sync Quote: SYNCED
— Cancel Transaction: CANCELED

Create Attributes at the Commerce Line Level and Add Them to the Commerce Layout

Create the Commerce attributes shown below at the Commerce line level. Once created, add
the attributes to the Commerce layout.

Attribute Label

Variable Name

Attribute Type

Additional Settings

Commerce ltem Id
Product Id
Catalog Ref Id

External Price
External Price Quantity

CC Net Price
Quantity*
Price (List)*

cC_Commerceltemid_|
c¢C_Productld_|
cC_CatalogRefld_I

cC_ExternalPrice_|
cC_ExternalPriceQuanti
ty |

cC_NetPrice_|
requestedQuantity_|
listPrice_|

Text Field
Text Field
Text Field

Currency
Integer

Currency
Currency
Currency

none
none
Default Value: Function

if(_model_variable_nam
e <> ™Y

return
_model_variable_name;

}

return _part_number;

Note: When creating

the Default value
Function,

_nodel _variabl e_nam
e and _part_nunber
need to be selected

from the Variable Name
for that Transaction Line
tab.

none
none

none
none

Default Value: Use the
formula provided in the
Apply Formulas section.

1-23

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

Attribute Label Variable Name Attribute Type Additional Settings
n/a OoRCL_ABO_ActionCod Single Select Menu This menu attribute
e | comes from the ABO

installation package
and is a requirement
for the Sync Quote
action.

Apply Formulas

The following Commerce attributes should already exist on Base Ref App
environments. Apply the listed formulas to the attributes.

Table 1-1 Attributes for Base Ref App environments

Variable Name

Formula

cC_ExternalOrderPrice_t

if((cC_OrderDiscountType_t = "amountOff"),
(cC_TotalNetPrice_t - cC_OrderDiscount_t),
if((cC_OrderDiscountType_t = "percentOff"),
(cC_TotalNetPrice_t - (cC_TotalNetPrice_t *
(cC_OrderDiscount_t/100))),

if((cC_OrderDiscountType_t =
"priceOverride"),
cC_OrderDiscount_t,cC_TotalNetPrice_t)))

totalOneTimeNetAmount_t*

cC_ExternalOrderPrice_t

totalOneTimeDiscount_t*

sumlf((priceType_| NOT= "Recurring"),
discountAmount_I) + cC_OrderDiscountTotal_t

cC_OrderDiscountTotal_t

if((cC_OrderDiscountType_t = "amountOff"),
cC_OrderDiscount_t,if((cC_OrderDiscountTy
pe_t = "percentOff"),

(cC_ExternalOrderPrice_t -

(cC_OrderDiscount_t/100)),

if((cC_OrderDiscountType_t =
"priceOverride"), (cC_ExternalOrderPrice_t -
cC_OrderDiscount_t), 0)))

cC_TotalNetPrice_t

sumlf((priceType_| NOT= "Recurring"),
netAmount_l)

listPrice_I*

if((_model_base_price NOT=0),
_model_base_price,_price_list_price_each)
if((_model_base_price NOT=0),
_model_base_price,if((_pricing_rule_price_e
ach NOT=0),
_pricing_rule_price_each,_price_list_price_ea
ch))

Note: An asterisk (*) next to the variable name indicates that a formula for the attribute
already exists on Base Ref App environments. You must update the existing formulas

as opposed to creating new formulas.

Set Up Commerce Actions

Complete the following steps to set up Commerce actions.

1. Create the following Commerce action at the Transaction level.

1-24

ORACLE

Table 1-2 Commerce action

Chapter 1

Set Up Oracle Configure, Price, Quote

Label Variable Name Action Type Integration Advanced
Modify (Before
Formulas)

Sync Quote cC_syncQuote Modify CPQ-OCCS Sync Transaction

Quote

Attribute:CC_Lin
eltem_Data

Transaction Line
Attributes:_docu
ment_number

_model_variable_
name
cC_Productld_|I
cC_Commercelte
mid_|

BML: Refer to
Appendix F:

Understand the
SyncQuote BML

Place the Sync Quote action on the Commerce layout.

Set the quote level actions “cleanSave_t" and " _remove_transactionLine" to define the

following attributes based on their formula definitions:

* Quote Level Attributes:

Total Contract Value
Total Discount Per Month
Total (List) Per Month
Total (Net) Per Month

Total Discount
Total (List)
Total (Net)

Annual Contract Value

Transaction Total

Total Contract Discount
Annual Contract Discount
CC External Order Price

e Line Level Attributes

Actual Amount
Annual Value
Contract Value
Amount (List)
Amount (Net)
Price (Net)

1-25

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

— Quantity
4. Setthe line level action “save_I" to define the following line level attributes based
on their formula definitions:
e Actual Amount
* Annual Value
» Contract Value
* Amount (List)
* Amount (Net)
* Price (Net)
* Quantity
Notes:

The “Save” action is already setup to use formulas for a majority of these attributes
in the Base Ref Application.

The Request for Quote and Sync Quote flows do not support the “Copy Line
Items” action. The action is not accessible for Commerce integrated Transactions.

(Optional) Create Commerce Validation Rule

You have the option of creating a Commerce validation rule that blocks users from
editing the quantity of child items.

1.
2.

© ©®@ N o g »

11.

Open the Admin Home page.

Under Commerce and Documents, click Process Definition. The Processes
page opens with Documents displaying by default in the Navigation drop-down
menu.

Click List next to the Oracle Quote to Order Commerce process. The Document
List page opens.

At the Transaction Line level, select Rules from the Navigation drop-down menu.
Click List.

From the Add menu, select Validation. The Validation: New Rule page opens.
In the Name field, enter a name for the validation rule.

Click in the Variable Name field to auto-populate the field.

For the Condition Type, select Advanced.

. Click Define Function. The Select Attributes dialog opens.

Select the attributes shown in the following tables.

System Variable Name Type Description
_system_current_document_ String Current Document Number
number

Variable Name for Type Description

(Transaction Line)

_model_variable_name String Model Variable Name

1-26

ORACLE

12.
13.

14.
15.
16.
17.
18.
19.
20.

21.
22.

23.

Chapter 1
Set Up Oracle Configure, Price, Quote

Variable Name for Type Description
(Transaction Line)

_price_quantity Integer Quantity
Click Next.

Enter the following BML:

ol dval ue = getol dval ue("_price_quantity",
atoi (_system current _document numnber));

i f((_nodel variable name == "") AND (_price_quantity <> atoi (ol dval ue)))

{

return true;

}

return fal se;

Click Save and Close.

On the Validation: New Rule page, select Advanced as the Action Type.
Click Define Function. The Select Attributes dialog opens.

Select the Variable Name for (Transaction Line) tab.

Select the "_price_quantity" attribute.

Click Next.

Enter the following BML.

attributebDict = dict("dict<string>");

[l inner dictionary for attr2

attr2ActionDict = dict("string");

/'l assenmbling the constraint action

put (attr2ActionDict, BM CM RULES MESSAGE, "Please re-configure the
itemto change quantity of sub-itent);

[l put the inner dictionary into the outer dictionary
put(attributeDict, " _price _quantity", attr2ActionDict);

[l return the outer dictionary

return attributeDict;

Click Save and Close

In the Components list add the Quantity (_price_quantity) attribute.

Click Save to save the Validation Rule.

Set Up Steps

You must use Oracle Configure, Price, Quote to create a Synced step as well as step
transitions.

1.

Create a new “Synced” step.

1-27

Chapter 1
Set Up Oracle Configure, Price, Quote

2. Create a step transition for the "Sync Quote" action to move from the "In Progress"
step to the "Synced" step.

3. Create a step transition for the “Save" action to move from the "Synced" step to
the "In Progress" step.

4. Create a step transition for the "Customer Rejection” action to move from the
"Synced" step to the "Rejected by Customer" step.

5. Create a step transition for the “Create Order” action to move from the “Synced”
step to the “Ordered” step.

6. Create a step transition for the “Cancel Transaction” action to move from the
“Synced” step to the “Canceled” step.

7. Hide the "Sync Quote" action from the following steps:
e Fulfilled
e Canceled
* Rejected By Customer
8. Hide all Modify actions from the “Synced” step EXCEPT the following:
* Save
» Customer Rejection
* Create Order
» Cancel Transaction

Notes:

» Make sure all of the attributes used in the Request for Quote flow have read/write
access at the Start step.

* For instructions on how to create Commerce attributes, actions, and step
transitions, refer to the Oracle Configure, Price, Quote Administration Help.

Modify Process Manager View
You must complete the following procedure to modify a process manager view.
1. Add a data column named "CC Order Id".

2. Map the data column to the "CC Order Id" quote level attribute.

3. Add a Process Manager column using the "CC Order Id" data column.

Understand Oracle Configure, Price, Quote configuration set up

ORACLE

Specific set up procedures must be completed for the Commerce/Oracle Configure,
Price, Quote Configuration integration to run successfully.

This topic contains the configuration set up procedures that you must complete in
Oracle Configure, Price, Quote.

Configure Client-Side Integration, Add To Cart Button, and JSON Payload
Response

You must configure a client-side integration to add the Add to Cart button on a
Commerce site. The client-side integration enables the sharing of data between Oracle
Configure, Price, Quote and Commerce.

1-28

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

Note: Ensure the appropriate Commerce Product Families and Product Lines are created in
Oracle Configure, Price, Quote prior to starting the Client-Side Integration. Refer to the
Configuration > Product Families articles within the Oracle Configure, Price, Quote Online
Help for instructions.

To configure a client-side integration:

1.
2.

9.

Open the Admin Home page.

Under Products, click Catalog Definition. The Supported Products page opens.
Product Families displays by default in the Navigation drop-down menu.

Click List. The Supported Product Families page opens.

Click Integrations from the Navigation drop-down menu for the product of the
Commerce product family.

Click List. The Edit Integration page opens.

Use the Edit Integration page to create a “Client-side” integration using the following
settings:

* Name: Add To Cart

e Integration Type: Client-side

e Hide in Reconfiguration: No

* Action: Define Advanced Function

Click Define Function for the Action and use the sample BML from one of the following
to add the Add to Cart button to the Commerce site:

e Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and
Earlier) - this sample BML is for legacy integration sites who have previously
customized their Add to Cart BML. This sample includes site-specific reference file
locations.

e Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-
Site Set Up (19D and Later) — this sample BML is for new integrations and in cases
where the setup needs to be duplicated on multiple sites. This sample does not
reference site-specific file locations.

Select Simple for the End-Point URL.

Enter the URL of the Commerce site to integrate with Oracle Configure, Price, Quote.
The value entered should include the basic URL or Commerce’s storefront and
administration pages. You can add multiple Commerce sites for a single integration by
listing each site delimited by the pipe delimiter (|) character.

For example:

http://cc-store.oracle.comhttp://cc-adnin.oracle.conjfhttp://
second-store. oracle.conf http://second-adni n. oracle.com

Click Apply.

Note: Ensure that all partner site lists of allowed URLSs are properly addressed within Oracle
Configure, Price, Quote. These include domains that are allowed to load the Oracle
Configure, Price, Quote in an iFrame and domains that Oracle Configure, Price, Quote is
allowed to connect to in the Integration Center. You may need to file a Service Request (SR)
on My Oracle Support to include these domains on the site list of allowed URLSs.

1-29

ORACLE

Chapter 1
Set Up Oracle Configure, Price, Quote

Configure Oracle Configure, Price, Quote Models Corresponding to Products in
Commerce

You must create Oracle Configure, Price, Quote models corresponding to SKUs in
Commerce.

To configure models corresponding to products in Commerce:

1. Open the Admin Home page.

2. Under Products, select Catalog Definition. The Supported Products page
opens with Product Families displaying by default in the Navigation drop-down
menu.

3. Click List. The Supported Product Families page opens with Product Lines
displaying by default in the Navigation drop-down menu.

4. Click List. The Product Line Administration List page opens with Models
displaying by default in the Navigation drop-down menu.

5. Click List. The Model Administration List page opens.
6. Click Add.

7. Use the Model Administration page to create a new model with both the variable
name and label matching the configurable root SKU in Commerce.

8. Create a pricing rule on the model with a price matching the root SKU in
Commerce.

Configure Child Line Items Corresponding to SKUs in Commerce

For information about setting up BOM Mapping items for a model, refer to the Oracle
Configure, Price, Quote Administrator Online Help.

Note: Quantity for the root BOM should use a configurable integer attribute in BOM
Attribute Mapping. Otherwise, incorrect quantities may be populated during
reconfigure.

Create Configurable Attributes

Configurable attributes define the characteristics of product families. Oracle Configure,
Price, Quote uses configurable attributes in search flows, Configuration flows, and
every type of Configuration rule.

To create configurable attributes:

1. While you can create the following configurable attributes at any level, Oracle
recommends creating the attributes at the Product Family level.

Label Variable Name Attribute Type Additional Settings

Currency Code currencyCode Text Field none

CC Site ID cC_Siteld_t Text Field none

Quantity quantity Integer Required, Default =
1, Positive Number
Validation

2. Create a recommendation rule configured as follows:

1-30

Chapter 1
Set Up Subscription Ordering in Oracle Configure, Price, Quote

Condition Apply Rule To Action Type Action Values to Set Set Type
Attribute
Always True Configuration ~ Standard currencyCode Edit Function: Forced Set
return
_BM USER C
URRENCY;

3. Create any additional attributes that suit your organization’s needs and place them on the
Configuration flow layout.

* You must place “currencyCode”, “cC_Siteld_t", and “quantity” on the layout, but they
do not need to display them.

» For information about configurable attributes and the steps to create them, refer to
the Oracle Configure, Price, Quote Administration Help.

4. Create a hiding rule configured as follows:

Condition Action Attribute
Advanced: guantity

if (_transaction_id == "-1")

{ return true;}

return fal se;

Set Up Subscription Ordering in Oracle Configure, Price, Quote

The subscription ordering feature requires some set up when integrating Oracle Configure,
Price, Quote and Commerce.

The following features require specific attention when integrating Oracle Configure, Price,
Quote and Commerce and running the subscription ordering feature.

For information about setting up Subscription or asset based orders within Oracle Configure,

Price, Quote, refer to the ABO implementation guide and the Oracle Configure, Price, Quote
Administrator Online Help.

Create an authentication certificate integration type

You need to create an Authentication Certificate integration type in the Integration Center to

support access token-based authentication in the Commerce/Oracle Configure, Price, Quote
integration.

Oracle Configure, Price, Quote provides an Authentication Certificate integration type in the
Integration Center to support access token-based authentication. This integration type allows
Oracle Commerce self-service users to securely access Oracle Configure, Price, Quote to
modify or reconfigure a Subscription Ordering asset-based Configuration without an Oracle
Configure, Price, Quote user session.

When administrators create a new integration of type Authentication Certificate, they provide
a name and variable name for the authentication certificate and upload the Commerce

ORACLE 1-31

Chapter 1
Set Up Subscription Ordering in Oracle Configure, Price, Quote

authentication certificate. A temporary session is created for the Commerce self-
service user, allowing the user to access theModel Configuration page via an iFrame
within Commerce to modify or reconfigure a specific asset.

To create an Authentication Certificate integration type, perform the following steps:

1. Open the Admin Home page.
2. Select Integration Center under Integration Platform. The Integration Center
opens.
3. Click Create Integration.
4. From the Type drop-down, select Authentication Certificate.
5. In the Name field, enter a name that describes the authentication certificate. For
example: Commerce
6. The Variable Name field auto-populates upon clicking in or tabbing to the field.
7. (Optional) In the Description field, enter a description of the authentication
certificate.
8. Click Browse next to the Authentication Certificate label.
9. Select the Oracle Commerce authentication certificate and click Open.
10. ClickSave. The Authentication Certificate integration appears in the left pane of
the Integration Center.
Integration Center N Back Create Integration
eSignature
‘ Type Authentication Certificate v:
Integration Cloud Service
2506 1 *Name [Ccr'-‘wmerce Cloud
Remots Approval “Variable Name [commerceCloud
Description
DataCube Integration
Contract Management mmh;g:;?:i;g T
Authentication Certificate
< > M
< >
Notes:

The Save button is disabled upon successfully saving the integration. If the
changes are made after the save is performed, the button is enabled.

Administrators can modify the name of the integration but not the variable name.
They can also replace the authentication certificate but cannot remove it.

A single Oracle Configure, Price, Quote site can have any number of
Authentication Certificate integrations. There is no limit.

Work with in-flight cancellations

Custom asset fields must be created in Oracle Configure, Price, Quote to support in-
flight cancellations of orders.

ORACLE

1-32

Chapter 1
Set Up Subscription Ordering in Oracle Configure, Price, Quote

In order to support in-flight cancellations of orders, the following custom asset fields must be
created in Oracle Configure, Price, Quote

Note: Refer to the Custom Asset Attributes article within the Oracle Configure, Price, Quote
Online Help for instructions on adding a custom asset.

Label Variable Name Data Type
Order Id _asset_custom_orderld String
Line Id _asset_custom_lineld String
Source Site _asset_custom_source String

Upgrade an asset

ORACLE

With Asset Based Ordering, the ability to upgrade an existing asset is supported when you
complete some preliminary set up work.

With Asset Based Ordering, the ability to upgrade an existing asset is supported.

Oracle Configure, Price, Quote maintains a custom upgrade options table for Commerce to
query in order to know which upgrades are available for a given asset. The sections that
follow in this topic provide information on how to set up the required tables and how to
complete some basic Oracle Configure, Price, Quote configuration steps to support asset
based ordering.

Oracle Configure, Price, Quote Data Table Set Up
Create a data table named "I NT_UPGRADE_OPTI ONS" with the following schema:

Column Name Data Type
currentOffer String
currentModel String
upgradeName String
upgradeProductld String

The data table column mapping information for this data table is as follows:

e currentModel — Maps to the variable name of the root config model in Oracle Configure,
Price, Quote which the upgrade offer applies to.

e currentOffer — Maps to a configurable attribute on the root config model in Oracle
Configure, Price, Quote. This needs to be stored as an attribute mapping onto the root
asset as well. This value is sent from Oracle Commerce while retrieving the upgrade
options.

- upgradeName — Maps to the _config_upgrade_name that is passed from Oracle
Commerce to Oracle Configure, Price, Quote, which drives recommendation rules on the
upgrade. Not used by Commerce for any other purpose.

e upgradeProductID — Maps to the Product Id of the upgrade offer in Commerce. Used to
show upgrade details (for example, product display name, description, images, etc.) to
the shopper.

Note: We recommend you index the currentModel and/or currentOffer columns.

1-33

Chapter 1
Enable Integrations in Commerce

The INT_UPGRADE_OPTIONS data table is queried by Oracle Commerce to help
identify what upgrades are available for a given asset and present those upgrade
options to the shopper.

For example:
currentOffer currentModel upgradeName upgradeProductid
4ForUDeal nPlay 4ForUDealPlus prod102

Oracle Configure, Price, Quote Upgrade Asset Configuration Set Up

1. Create a configurable text attribute named "currentOffer". This attribute should
have either a default value set or have its value recommended based on specific
criteria on the configuration; however, the value should not be editable directly by
the user. The value of the "currentOffer" attribute is used in the
INT_UPGRADE_OPTIONS data table that Commerce queries.

2. Use (Bulk) Recommendation Rules that run when the value of the
"_config_upgrade_name" attribute matches the value of the "upgradeName"
column in the "I NT_UPGRADE_OPTI ONS" data table. Part of the rule should update
the "currentOffer" attribute from its previous value to the "upgradeName" as well.
Unlike normal configurable attributes, the value of " _confi g_upgrade_name"
persists within all models of a system, so inter-model rules are not required to
reference "_confi g_upgrade_nane" and use them in Recommendation Rules on
child models. The value of " _confi g_upgrade_nane" also does not persist on the
configurations, like other attributes do, so whether "_confi g_upgrade_nane" has a
value or not distinguishes asset upgrades from a typical asset modify.

Note: For more information on understanding and using the asset Upgrade feature in
Commerce, refer to Use asset-based ordering.

You can also customize configurations of complex assets in Commerce without being
redirected to an Oracle Configure, Price, Quote hosted iFrame which may have a
separate and distinct user interface look and feel that creates a disjointed user
experience. This capability is known as the Direct API Configuration feature and can
be used as another option for the Modify and Upgrade actions. For more information
on the Direct API configuration feature, refer to Customize configurations in
Commerce using the CPQ Configuration API.

Enable Integrations in Commerce

ORACLE

To enable the features of this integration, you must configure some settings and
storefront widgets in Commerce.

You must complete the procedures in this section to enable the Oracle Configure,
Price, Quote Configurator integration, the Oracle Configure, Price, Quote Request For
Quote integration, and the Asset Based Ordering (ABO) integration in Commerce.

This section describes how to configure Storefront Classic widgets to support the
integration. To learn how to configure Open Storefront Framework widgets instead,
see Design Configure-Price Components.

For additional information about these integrations, refer to Appendix A: Configurator
Flow and Appendix B: Request for Quote Flow.

1-34

Chapter 1
Enable Integrations in Commerce

Enable Oracle Configure, Price, Quote configuration integration

Some feature configuration procedures must be completed to enable the Oracle Configure,
Price, Quote Configuration integration.

To enable the Oracle Configure, Price, Quote Configuration integration, do the following:

Log in to Commerce.

Navigate to the Settings icons from the sidebar menu.
Select Oracle Integrations from the sidebar menu.
Select CPQ Configuration from the drop-down menu.
Select the Enable Integration check box.

Click Preview Confirmation. You need to do this to display the URL fields.

N o g & w bdh PR

Enter the Configuration URL using the following structure: htt ps://<cpg_domai n>/
conmer ce/ new_equi prent / product s/ model _configs.jsp

8. Enter the Reconfiguration URL using the following structure: htt ps: // <cpq_domai n>/
conmrer ce/ new_equi prent / product s/ external _reconfig.jsp

9. Enter the Modification URL using the following structure: ht t ps: // <cpq_domai n>/
conmer ce/ new_equi prent / product s/ model _confi gs. | sp.

10. Click Product Configuration. You need to do this to display the URL fields.

11. Enter the Configuration URL using the following structure: htt ps:// <cpg_donmai n>/
comer ce/ new_equi pnent / product s/ nodel _configs.jsp.

12. Enter the Reconfiguration URL using the following structure: https://
<cpg_donmai n>/ conmer ce/ new_equi pnent / product s/ external _reconfig.jsp

13. Enter the Modification URL using the following structure: htt ps:// <cpq_donai n>/
conmer ce/ new_equi prrent / product s/ model _confi gs.j sp.
Note: Enter the Configuration URL and the Reconfiguration URL for both the Production
and Preview environments.

14. Click Save. If you are using a multisite environment you must follow these instructions for
each site that uses the Oracle Configure, Price, Quote Configuration integration.

Identify configurable products in the product catalog

ORACLE

It is important to understand which products are configurable in the product catalog to use
this integration..

Before a Commerce self-service user can use the Oracle Configure, Price, Quote
Configurator to configure complex products for purchase in Commerce, you must identify the
products as configurable in the product catalog.

Before doing so, it is important to have a synchronized product catalog to ensure that
products in the Commerce catalog map to corresponding items in the Oracle Configure,
Price, Quote catalog.

To identify a product as configurable:

1. Log in to Commerce.

2. Click on the Menu icon.

1-35

10.

Chapter 1
Enable Integrations in Commerce

Select the product you wish to identify as configurable from the Catalog Settings
icon in the sidebar menu.

Click on the SKUs tab of the product detail pop-up frame.

Click on the SKU link of the product you wish to identify as configurable. You need
to do this in order to select the SKU and see the SKU details.

Check the Externally Configurable SKU checkbox. This displays three further
fields you must complete.

Enter the Model variable name. This should match the Model variable name of a
configurable product in the Oracle Configure, Price, Quote catalog.

Enter the Product Line variable name. This should match the Product Line
variable name of a configurable product in the Oracle Configure, Price, Quote
catalog.

Enter the Product Family variable name. This should match the Product Family
variable name of a configurable product in the Oracle Configure, Price, Quote
catalog.

Click Save. This returns you to the SKU frame where the SKU you updated should
be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the SKU
import program. From the Catalog tab in Commerce, click Manage Catalog and
select Import. In the Import dialog, click Browse and locate the CSV file to import.
Click Upload File, click Validate, and then click Import.

Add Customize Button to the Product Details widget

A Customize button must be added to the Product details widget to allow product
customization.

You must add a Customize button to the Product Details widget so that the button is
visible to Commerce self-service users from the Product Details page for a
customizable product.

To add a Customize button to the Product Details widget:

@ N o O kw6 b PR

ORACLE

Log in to Commerce.

Click on the Menu icon.

Select Design from the menu.

Select Product Layout from the layout list.

Delete the Product Details widget from the layout.

Place a new product details widget on the layout.

Click the Settings icon for the new Product Details widget.

From the Element Library, place a Customize button on the new Product
Details widget.

Publish the changes.

1-36

Chapter 1
Enable Integrations in Commerce

Enable Oracle Configure, Price, Quote quoting integration

Some feature configuration procedures must be completed to enable the Oracle CPQ
Quoting integration.

To enable the Oracle Configure, Price, Quote quoting integration, do the following
Log in to Commerce.

Click on the Menu icon.

Select Settings from the menu.

Select Oracle Integrations from the sidebar menu.

A

Select CPQ Quoting from the drop-down menu.
6. Select the Enable Integration check box.

If you are using a multi-site environment you must follow these instructions for each site that
uses the Oracle Configure, Price, Quote Quoting integration.

Add Quote Button to Checkout and Order Details pages

ORACLE

You must add a Quote button to the Checkout layout and the Quote Details widget to make
guoting capability available.

To make the Oracle Configure, Price, Quote quoting capability available to Commerce self-
service users, you must add the Request Quote widget to the Checkout layout and the Quote
Details widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote button to
the Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes associated
with the order to the Order Detail layout. The widget also adds a Reject Quote, Request
Re-Quote, and Accept Quote buttons to the to the Order Detail layout.

The Quote Details and Request Quote widgets do not display on the layouts by default. The
administrator must first make the widgets available and then place them on the Checkout
and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

Log in to Commerce.

Click the Menu icon.

Select Design from the menu.

Select the Components tab on the Design page.

Click Show Hidden.

Click the Show icon for the Quote Details Widget and the Request Quote Widget.
Within the Design page, select the Layouts tab.

From the layout list, select Checkout Layout.

© ® N o o p ® NP

Drag and drop the Request Quote widget from the Components menu to the desired
location on the Checkout layout.

1-37

Chapter 1
Appendix A: Understand the Configurator Flow

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.

Enable Asset Based Ordering

The asset based ordering feature of the integration needs to be enabled before it can
be used.

To enable Asset Based Ordering, you must make sure that you have set up the right
integration webhooks and/or SSEs mentioned in the Configure the Commerce
Webhooks and Configure the Commerce Server Side Extensions sections of this
document.

Enable Subscription Cloud integration

Information about the integration of Oracle Commerce and Subscription Cloud using
CPQ which supports Self-Service subscriptions for configurable products.

Integration includes using CPQ, OSS and OCC Support complex OCC-CPQ-0SS
subscription flows such as:

» Create Subscription

* View A Subscription

* Modify/Upgrade/Downgrade a Subscription
e Cancel/Termination a Subscription

* Renew Subscription - this feature is dependent on subscription management
system to provide the renewal details of the subscription products

For the above integration with Subscription Cloud, a Store user must be available in
Customer Data Management System (CDM). The reference which is Pri maryPartyld
would be shared with Subscription System in all functional conversations as
mentioned above. The primary party id is stored as a dynamic property in user profile.

Only the configured product, which has external recurring charge details is considered
as a subscription line items in OIC layer and the rest of the items in the order are
filtered out.

Appendix A: Understand the Configurator Flow

A Configurator process flow occurs between Oracle Configure, Price, Quote and
Commerce during the integration.

The following presents a diagram of the integration Configurator Flow:

ORACLE 1-38

Chapter 1

Appendix B: Understand the Request for Quote Flow

. Shopper Product Select Configure NO Checkout Checkout
ORACLE Visits Web f—s] Details |—| Configure Items in Reconfigure? —{ Complete
Commerce Cloud Site Order

ORACLE’ 7
Integration YES lidate
Cloud Service c“'ﬁ"""
ORACLE’ Display :

Configure, Price, and Select f—] C%’gg:{::'e"" Ca;cr;::l:te Co‘rf;]g':::ion
and Quote Cloud Options

Appendix B: Understand the Request for Quote Flow

A Request for Quote process flow occurs between Oracle Configure, Price, Quote and
Commerce during the integration.

The following presents a diagram of the integration Request for Quote flow:

) Shopper Shopper Update NO YES
ORACLE Adds Submits Order and Reﬂ”e'-“, écoatap: goheckn;n
Commerce Cloud ltems to Request Quote Re-quote? uote? mplete

Order for Quote Information
. NO
YES |

ORACLE’

Integration Request Sync Quote Update Quote

Cloud Service Quote Flow Flow flow
O'?ACLE" T Sales Rep Updates ot Sync Quote to Update
Configure, Price, Giasii |+ Pricing, Adds Terms, |— vote. L.l Commerce = -
and Quote Cloud il Comments Apprae Cloud fansaction

Appendix C: Understand the OIC Integration Mappings

You must be able to understand the variable mappings for each integration as a requirement
to complete the Sync Quote action in Oracle Configure, Price, Quote.

ORACLE

Importing and setting up the OIC package is a prerequisite to completing the Sync Quote
action in Oracle Configure, Price, Quote.

After all Oracle Configure, Price, Quote setup is completed, regenerate the OIC integration

flows to ensure they accurately reflect the current state of the Oracle Quote to Order

Commerce process.

Note: Mappings in bold indicate complex, conditional mappings. Mappings in italics indicate
the mappings are a static text value instead of a source attribute.

Integration Flow

Target Variable Name

Mapping

Comments

OCCS-CPQ Create Quote > New_Transaction
cC_RequesterNote_t

*

requesterNote

None
None

1-39

ORACLE

Chapter 1
Appendix C: Understand the OIC Integration Mappings

Integration Flow Target Variable Name Mapping Comments
cC _Orgld_t organizationld None
cC_Orderld_t id None
cC_Siteld_t siteld None
cC_RequesterNote_t requesterNote None
currencyCode currencyCode None
_customer_t_address shippingGroups None

>addressl
_customer_t_state shippingGroups > None
state
_customer_t_address_2 shippingGroups > None
address?2
_customer_t_company_ shippingGroups > None
name companyName
_customer_t_country shippingGroups > None
country
_customer_t_city shippingGroups > city None
_customer_t_zip shippingGroups > None
postalCode
_customer_t_phone shippingGroups > None
phoneNumber
_customer_t_email email None
_customer_t_last_name lastName None
_customer_t_first name firstName None
items commerceltems None
_price_book_var_name _default_price_book None
_configuration_id configuratorld None
cC_Commerceltemid | id None
_part_number catalogRefld None
cC_CatalogRefld_I catalogRefld None
_price_quantity quantity None
cC_Productld_| productld None
cC_NetPrice_| >value pricelnfo >amount > None
guantity
cC_NetPrice_| > pricelnfo > None
currency currencyCode
_modify_action cleanSave_t None

OCCS-CPQ Create Quote > Update_Quote None
id id None
externalld bs_id None

OCCS-CPQ Create Quote > Re-Request_Quote None
cC_RequesterNote_t requesterNote None
id externalld None

OCCS-CPQ Sync None

Quote
id cC_Orderld_t None
providerNote cC_ProviderNote_t None
agentld cC_Agentld_t None
externalld id None

1-40

ORACLE

Chapter 1

Appendix C: Understand the OIC Integration Mappings

Integration Flow Target Variable Name Mapping Comments
expirationDate cC_ExpirationDate_t None
externalPrice totalOneTimeNetAmoun None

tt

line-item None
productid cC_Productid_| None
catalogRefld cC_CatalogRefld_| None
configuratorld _configuration_id None
externalPrice netPrice_| None
externalPriceQuantity -1 None
id cC_Commerceltemld_| None
actionCode OoRCL_ABO_ActionCod None

e |
guantity requestedQuantity_| None

externalData

OCCS-CPQ Update Quote > Accept Quote

id
cC_Agentld_t

OCCS-CPQ Update Quote > Reject Quote

id
cC_Agentld_t

configattrinfo

externalld
agentld

externalld
agentld

XSL manipulations to
feed config attributes as
an array of maps.

Format:

<ext er nal Dat a>
<nane></ nane>
<val ues>
<nane></ nane>
<vari abl eName></
vari abl eName>

<l abel >l d</ | abel >
<di spl ayVal ue></
di spl ayVal ue>
<val ue></val ue>
</val ues>

</ ext er nal Dat a>
< external Dat a>
<nane></ nane>
<val ues>
<nane></ nane>
<vari abl eName></
vari abl eName>

<l abel ></| abel >
<di spl ayVal ue></
di spl ayVal ue>
<val ue></val ue>
</val ues>

</ external Dat a>

None
None
None
None
None
None

1-41

ORACLE

Chapter 1

Appendix C: Understand the OIC Integration Mappings

Integration Flow Target Variable Name Mapping Comments
cC_RejectionDate_t date None
rejectExplanation_t note None

OCCS-CPQ Update Quote > Cancel Quote None
id externalld None
cC_Agentld_t agentld None
cC_RejectionDate_t date None
rejectExplanation_t note None

OCCS-CPQ Get Configurations None
locale locale None
currency currencyCode None
configurationld configuratorld None
price true None
spare true None
bomMapping true None

OCCS-CPQ Get Assets
limit limit None
offset offset None
q for-each(id), for- None

each(id), for-
each(recordl d),
"{$and: [{$or:[",
"{id:{%eq: "",
recordld, ""}}",
N L
“{$and:[", "{$or:
[", "{custoner:
{seq:"", id, ""}}",
REOTTEO
"{$or:[",
"{serviceAccount:
{Seq:"", id, ""}}",
S TR A
expand descendantAssets None
OCCS-CPQ Asset Actions (for all flows)
id recordld None
sourceldentifier sourceldentifier None
transactionDate transactionDate None
transactionld transactionld None

OCCS-CPQ Asset Actions (CpgModifyAsset flow)
productLine product_line None
configContextKey configContextKey None
configuratorUrl configuratorURL None
bomKey bomkey None
segment segment None
model model None

OCCS-CPQ Asset Actions (CpgRenewAsset, CpgTerminateAsset, CpgSuspendAsset,
CpgResumeAsset flows)

configld

lineld

None

1-42

Chapter 1
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier)

Integration Flow Target Variable Name Mapping Comments

serviceAccountld serviceAccount None

deactivationDate endDate None

amount amount None

quantity quantity None

parentServiceld parentld None

externalRecurringCharg field5 Corresponds to part

e custom field 5 in Oracle
CPQ

externalData attributes None

billingAccountld billingAccount None

externalRecurringCharg field4 Corresponds to part

eFrequency custom field 4 in Oracle
Configure, Price, Quote

childltems for-each(children), for- None

each(partNumber)

catalogRefld partNumber None

configuratorld lineld None

externalRecurringDurati field6 Corresponds to part

on custom field 6 in Oracle
Configure, Price, Quote

externalPrice _price_unit_price_each None

assetld id None

actionCode ORCL_ABO_ActionCod None

e |
serviceld id None
activationDate startDate None

Appendix D: Understand the Add to Cart BML — Customized
Integrations (19C and Earlier)

ORACLE

Users with legacy integration sites (19C and earlier) who have previously customized their
Add to Cart BML need to modify their BML to include site-specific reference file locations.

The following provides the Add to Cart BML for Customized Integrations 19C and Earlier:

/1 Rec Item Properties
part = String[1];
quantity = String[1];
price = String[1];
selected = String[1];
sparepaths = String[1];

sparepat hs[0] = "/configuration/configureResponse/spare/rulelitenm part";
sparepat hs[1] = "/configuration/configureResponse/spare/rule/itenm quantity";
sparepat hs[2] = "/configuration/configureResponse/spare/rule/itenprice";
sparepat hs[3] = "/configuration/configureResponse/spare/rule/iten selected";

/1 BOM Item Properties
bomtem= String[1];
bomtenf0] = "/configuration/configureResponse/bomtent;

1-43

ORACLE

Chapter 1
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier)

/1 Model /Price Properties

nmodel s = string[1];

configldSearch = string[1];

currpath = String[1];

total Prices = string[1];

bonTotal s = string[1];

model s[0] = "/configuration/configureResponse/iten model ";
configldSearch[0] = "/configuration/configureResponse/item
@onfigurationld";

currpath[0] = "/configuration/configureResponse/attributes/
attribute[@vari abl eName=' currencyCode']/ val ue";

total Prices[0] = "/configuration/configureResponse/price/total Price";
bonfTot al s[0] = "/configuration/configureResponse/price/bonPrice";

priceTotal = 0.0;
baseModel Price = 0.0;
recurringSubtotal = 0.0;

/1 Extract data from configXM

out put Mbdel = readxn singl e(confi gXM., nodels);

out put Confi gl ds = readxm si ngl e(confi gXM., confi gl dSearch);
curr XML = readxm si ngl e(confi gXM.,, currpath);

currency = get(currXM, currpath[0]);

out put Prices = readxnl singl e(configXM., total Prices);

bonPri ces = readxm singl e(confi gXM., bonilot al s);

outputl = readxm nultiple(configXM., sparepaths);

bom t emXMLDi ct = readxm singl e(configXM., bomtem;
bomtenttring = get(bomtenXM.Dict, "/configuration/configureResponse/
bomtent);

payl oadTenpl ate = url databyget ("https://cpg- 046. us. exanpl e. con bnf sweb/
sl c10xgj /i mage/ Comrer ceCl oud/ AddToCart Payl oad- O oud. txt", "", "");

nodel 1 = ;
total Pricel = "";

Il Get Model data
for model in nodels {
model 1 = get (out put Mbdel , nodel);

}

Il Get Price data
for totalPrice in total Prices {
total Pricel = get(outputPrices, total Price);
total Price0 = replace(total Pricel, ",", "");
i f (isnumber(substring(total Price0, 1))) {
total Price2 = getcurrencyval ue(total Pricel, currency);
priceTotal = priceTotal + total Price2;

}
}

baseMdel Price = priceTotal ;

/1 Add BOMtotal price
i f (containskey(bonPrices, boniotals[0])) {
for bonPrice in bonfotals {
boniTotal = get (bonPrices, bonPrice);

1-44

ORACLE

Chapter 1
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier)

bonirot al Repl ace = repl ace(bonTotal , ",", "");

i f (isnunber(substring(boniotal Replace, 1))) {
bonirot al Pri ce = getcurrencyval ue(bonTotal, currency);
priceTotal = boniotal Price + priceTotal

}
}
}

/1 Get ConfiglD
configld = "";
for id in configldSearch {
configld = get(outputConfiglds, id);
}

Il Get Recommended Itemns
for sparepath in sparepaths {
if (find(sparepath, "part") < > -1) {
part = get(outputl, sparepath);

elif(find(sparepath, "quantity") < > -1) {
quantity = get(outputl, sparepath)

}

elif(find(sparepath, "price") < > -1) {
price = get(outputl, sparepath);

elif(find(sparepath, "selected") < > -1) {
selected = get(outputl, sparepath)
}
}

/] Format Rec Items payl oad
recltentist = "";
if (isnull(part)) {
print("No Reconrended Items");
} else {
recltems = sizeofarray(part);
recltensint = integer[recltens];

i =0;
for recltemin recltemslnt {
if (selected[i] == "true") {
[/recurring price fromparts BMXL
part_num = part[i];
part Cust onti el ds = byl (" SELECT part _nunber, customfiel d5
customfiel d4, customfield6, customfield8 FROM _parts WHERE part _nunber
= $part_nunt');
recltenPayl oadTenpl ate = url databyget ("https://cpg-046. us. exanpl e. conl
bnf sweb/ sl ¢10xgj / i mage/ Commer ceC oud/ Recommended_I t ens_Payl oad- Cl oud. t xt "

C ")
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e

“{{quantity}}", quantity[i]);
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl ate, "{{part}}",
part[i]);

for each in partCustonfields {

1-45

ORACLE

Chapter 1
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier)

if (get(each, "customfield8") == "Recurring") {
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e
“{{pricePeriod}}", get(each, "customfield4"));
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e
“{{recurringPrice}}", get(each, "customfield5"));
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e
“{{duration}}", get(each, "customfiel d6"));
[IrecurringSubtotal = recurringSubtotal + get(each
"custom field5");
} else {
chi | dPayl cadJson = json(recltenPayl oadTenpl ate);
j sonrenove(chil dPayl oadJson, "recurringCharge");
recltenPayl oadTenpl ate = jsontostr(childPayl oadJson);
}
}

//remove region specific formatting for price
sPrice0 = substring(price[i], 1);
sPrice0 = replace(sPrice0, ",", "");

if (isnunber(sPrice0)) {
priceTotal = priceTotal + atof(sPrice0)
recl tenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e
“{{price}}", sPrice0);
} else {
recltenPayl oadTenpl ate = repl ace(recltenPayl oadTenpl at e

"{{pri;e}}". "0");

if (recltemlist =="") {
recltenlist = recltenPayl oadTenpl at e
} else {
recltemlist = recltenlist + "," + recltenPayl oadTenpl ate
}
}
=i + 1

Il Get the BOM Itens
if (isnull(bomtenString)) {
print "No BOM Itens";
bomtenttring = "";
payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{Bonltens}}",
bom tenttring);
} else {
/1 CGet part numbers for each BOMitem convert to string array for
by
bomJson = json(bonltenttring);

/1 Remove extraneous BOMfields (may have to revert if CC was
expecting to use them

j sonpat hrenove(bomlson, "$..variabl eNane");

j sonpat hrenove(bomlson, "$..definition");

j sonpat hrenove(bomlson, "$..category");

1-46

Chapter 1
Appendix D: Understand the Add to Cart BML — Customized Integrations (19C and Earlier)

/1 Replacing all 0 prices with actual number 0

bonPriceArray = jsonpathgetmultiple(bomlson, "$.. price_unit_price_each");

repl ace_| ookup = bool ean[];

bonPricesString = jsonarraytostr(bonPriceArray);

bonPricesString = replace(repl ace(repl ace(bonPricesString, "\"", ""), "[",
)Lttt

bonPricesStringArray = split(bonPricesString, ",");

i =0;

for each in bonPricesStringArray {

append(repl ace_I ookup, isnunber(each));

=i + 1
}
i =0;
for each in replace_|l ookup {
if (i == 0 and each == fal se) {
j sonpat hset (bomJson, "$.fields._price_unit_price_each", "0");

elif(each == false) {
str = "$.children[" + string(i - 1) +
"].fields. _price_unit_price_each";
j sonpat hset (bomJson, str, "0");

bomtenttring = jsontostr(bomlson);

bonPart sArray = jsonpathgetmultiple(bomlson, "$..partNunber");

bonPartsString = jsonarraytostr(bonPartsArray);

bonPartsString = repl ace(repl ace(repl ace(bonPartsString, "\"", ""), "[",
)ttt

bonPartsStringArray = split(bonPartsString, ",");

bonParts = bngl (" SELECT part_nunber, customfield5, customfield4,
custom fiel d6, customfield8 FROM parts WHERE part_nunber
IN $bonPartsStringArray");

/1 CGet path for each part, add recurringCharge to themall
for each in bonParts {
partField = "\"partNunber\":\"" + get(each, "part_nunber") + "\" ";
recurringTenplate = "\"recurringCharge\":
{ \"amount\": \"frequency\": ,\"duration\":},";

if (get(each, "customfield8") == "Recurring") {
recurringTenpl ate = replace(recurringTenplate, "frequency\":",
"frequency\":\ + get (each, "customfield4") + "\"");
recurringTenpl ate = replace(recurringTenpl ate, "amunt\":",
"amount\":\ + get (each, "customfield5") + "\"");
recurringTenpl ate = replace(recurringTenplate, "duration\":",
“duration\":\ + get (each, "customfield6") + "\"");
} else {
recurringTenplate = "";
}

bomtenttring = replace(bomtenttring, partField, partField +

ORACLE 1-47

Chapter 1

Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set Up (19D and Later)

recurringTenpl ate);

}

Il Unflatten

bomtenttring = replace(bomtenttring, "\"partNunber\":",
"“\"catal ogRefld\":");

bomtenttring = replace(bomtenttring, "On Request", "0"); // This
may only fix English users

bomlson = convert bont ohi er (j son(bom tenString));

payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{Bonltens}}",
j sontostr(bomison));

}

/] Format main tenplate wth subconponents and properties

payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{conmerceltem d}}", "");
payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{Configld}}", configld);
payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{rodel}}", nodel 1);

payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{total Price}}",
string(priceTotal));

payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{basePrice}}",
string(baseMdel Price));

payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{currency}}", currency);
payl oadTenpl ate = repl ace(payl oadTenpl ate, "{{Childltems}}",
recltemnlist);

return payl oadTenpl at e;

Appendix E: Understand the Add to Cart BML — Customized
Integrations and Multi-Site Set Up (19D and Later)

ORACLE

Users with customized integrations and multi-site set ups (19D and later) who have
previously customized their Add to Cart BML need to modify and update their BML.

The following provides the Add to Cart BML for Customized Integrations and Multi-Site
Set Up 19D and later:

[l Initialize variables

MODEL_PATH = "/ confi guration/confi gureResponse/itenf nodel ";

CONFI G_I D_PATH = "/configuration/configureResponse/iten
@onfigurationld";

CURRENCY_CODE_PATH = "/ confi guration/ confi gureResponse/ attributes/
attribute[@vari abl eName=' currencyCode']/ val ue";

TOTAL_PRI CE_PATH = "/confi guration/confi gureResponse/ price/total Price";
SPARE_PART_PATH = "/confi guration/configureResponse/ spare/rule/itemn

part";

SPARE_QUANTI TY_PATH = "/ configuration/ confi gureResponse/spare/rule/iten
quantity";

SPARE_PRI CE_PATH = "/ confi guration/configureResponse/spare/rul e/item
price";

SPARE_SELECTED PATH = "/configuration/configureResponse/spare/rule/itent
sel ected";

BOM | TEM PATH = "/ confi gurati on/ confi gur eResponse/ bom tent;

BOM PRI CE_PATH = "/configuration/configureResponse/ price/ bonPrice";

1-48

Chapter 1
Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set Up (19D and Later)

CART_TEMPLATE_LOCATI ON = "$BASE_PATH$/ Commer ceC oud/ AddToCar t Payl oad-
Coud. txt";

SPARE_TEMPLATE_LCCATI ON = " $BASE_PATHS$/ Commer ceCl oud/

Recommended_I t ems_Payl oad- O oud. txt";

payl oad = "";
sparesList ="";

priceTotal = 0.0;

baseModel Price = 0.0;

sparePart = String[1];
spareQuantity = String[1];
sparePrice = String[1];

spareSel ected = String[1];

singl eSpareDict = dict("string");
configDict = dict("string");

/] Create array of XM paths:
pathArray = string[];
sparePat hArray = string[];

/1 For Nbdel /Price Properties

append(pat hArray, MODEL_PATH);
append(pat hArray, CONFI G ID PATH);
append(pat hArray, CURRENCY_CODE PATH);
append(pat hArray, TOTAL_PRI CE_PATH);

/1 For BOM Item Property
append(pat hArray, BOM | TEM PATH);
append(pat hArray, BOM PRI CE_PATH);

/1 For Rec ItemProperties (needs its own array)
append(spar ePat hArray, SPARE PART PATH);

append(spar ePat hArray, SPARE_QUANTI TY_PATH);
append(spar ePat hArray, SPARE PRI CE_PATH);
append(spar ePat hArray, SPARE_SELECTED PATH);

/1 Extract data from configXM
pat hDi ct = readxmn si ngl e(confi gXM., pat hArray);
spareDict = readxm nul tiple(configXM., sparePathArray);

nmodel = get(pathDict, MODEL_PATH);

configld = get(pathDict, CONFIG_|ID PATH);
currency = get(pathDict, CURRENCY CODE PATH);
total Price = get(pathDict, TOTAL_PRI CE_PATH);
bonPrice = get(pathDict, BOM PRI CE_PATH);
bom tem = get (pat hDi ct, BOM | TEM PATH);

/1 Convert totalPrice (which is a msleading nane) to nuneric value, set as
baseMbdel Price
total Price = replace(total Price, ",", "");
if (isnunmber(substring(totalPrice, 1))) {
total PriceNum = get currencyval ue(total Price, currency);
priceTotal = priceTotal + total PriceNum

}

baseMdel Price = priceTotal ;

ORACLE 1-49

Chapter 1

Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set Up (19D and Later)

ORACLE

/1 Add BOMtotal price to priceTotal (which is the REAL total price),
wi th the same conversion as the base price
if (NOT(isnull(bonPrice))) {
bonPrice = replace(bonPrice, ",", "");
i f (isnunber(substring(bonPrice, 1))) {
bonPri ceNum = get currencyval ue(bonPrice, currency);
priceTotal = bonPriceNum + priceTotal;

}

/] Get Recommended |tens
for sparepath in sparePathArray {
if (find(sparepath, "part") <> -1) {
sparePart = get(spareDict, sparepath);
!
elif(find(sparepath, "quantity") <> -1) {
spareQuantity = get(spareDict, sparepath);
!
elif(find(sparepath, "price") <> -1) {
sparePrice = get(spareDict, sparepath);
!
elif(find(sparepath, "selected") <> -1) {
spareSel ected = get(spareDict, sparepath);
1
}

/1 Format Rec Items payl oad

if (isnull(sparePart)) {
print "No Recommended Items";

} else {
spareli st Size = sizeofarray(sparePart);
spareArray = integer[spareListSize];

i =0;
for eachSpare in spareArray {
if (spareSelected[i] == "true") {
/I Convert price, simlar to Base and BOM prices above
priceString = substring(sparePrice[i], 1);
priceString = replace(priceString, ",", "");
if (isnunber(priceString)) {
sparePrice[i] = string(getcurrencyval ue(priceString,
currency));
priceTotal = priceTotal + atof(sparePrice[i]);
} else {
sparePrice[i] = "0";

}

Il Add basic part fields to dictionary fromarray dictionary
put (singl eSpareDict, "part", sparePart[i]);

put (singl eSpareDict, "quantity", spareQuantity[i]);

put (singl eSpareDict, "price", sparePrice[i]);

Il CGenerate tenplate and set values fromdictionary
si ngl eSpar ePayl oad = appl yt enpl at e(SPARE_TEMPLATE_LOCATI ON,

1-50

ORACLE

Chapter 1
Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set Up (19D and Later)

singl eSpareDict);

Il Get Recurring Charge fields

part_num = sparePart[i];

part Cust onfi el dsDi ct = bngl (" SELECT part_nunber, custom fi el d5,
customfiel d4, customfield6, customfield8 FROM _parts WHERE part _nunber
= $part_nunt');

for each in partCustonFieldsDict {
if (get(each, "customfield8") == "Recurring") {
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{pricePeriod}}", get(each, "customfield4"));
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{recurringPrice}}", get(each, "customfield5"));
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{duration}}", get(each, "customfiel d6"));
} else {
chi | dPayl oadJson = json(si ngl eSpar ePayl oad) ;
j sonrenove(chi | dPayl oadJson, "recurringCharge");
si ngl eSpar ePayl oad = jsontostr(chil dPayl cadJson);

}
}
[/ Add Itemto List
if (sparesList =="") {
sparesLi st = singl eSparePayl oad;
} else {
sparesList = sparesList + "," + singl eSparePayl oad;
}
}
[I

Il Get the BOM Itens
if (isnull(bomtem) {
print "No BOM Itens";
bomtem="";
} else {
Il Get part numbers for each BOMitem convert to string array for bnyl
bomlson = json(bomtem;

/'l Renove extraneous BOMfields (may have to revert if CC was expecting
to use them

j sonpat hrenove(bomlson, "$..variabl eNane");

j sonpat hrenove(bomlson, "$..definition");

j sonpat hrenove(bomlson, "$..category");

Il Replacing all 0 prices wth actual nunmber 0
bonPri ceArray = jsonpathgetmultiple(bomlson,
"$.. price_unit_price_each");
repl ace_| ookup = bool ean[];
bonPricesString = jsonarraytostr(bonPriceArray);
bonPricesString = replace(repl ace(repl ace(bonPricesString, "\"", ""),

R R R

1-51

Chapter 1

Appendix E: Understand the Add to Cart BML — Customized Integrations and Multi-Site Set Up (19D and Later)

ORACLE

bonPri cesStringArray = split(bonPricesString, ",");

i =0;
for each in bonPricesStringArray {
append(repl ace_| ookup, isnunber(each));

=0+
}
i =0;
for each in replace_|l ookup {

if (i == 0 and each == fal se) {

j sonpat hset (bomJson, "$.fields._price_unit_price_each"
"0");
}

elif(each == false) {
str = "$.children[" + string(i - 1) +
"].fields. _price_unit_price_each"
j sonpat hset (bomJson, str, "0");

bomtem = j sont ostr (bomison)

bonPartsArray = jsonpathgetnul tiple(bomJson, "$..partNunber");

bonPartsString = jsonarraytostr(bonPartsArray);

bonPartsString = repl ace(repl ace(repl ace(bonPartsString, "\"", ""),
S R PR R

bonPartsStringArray = split(bonPartsString, ",");

bonParts = bnygl ("SELECT part_nunber, customfield5, customfield4,
customfiel d6, customfield8 FROM parts WHERE part_nunber
IN $bonPartsStringArray");

Il Get path for each part, add recurringCharge to them al
for each in bomParts {
partField = "\"partNunber\":\"" + get(each, "part_nunber") +
"\"l";
recurringTenplate = "\"recurringCharge\":
{ \"amount\": ,\"frequency\":,\"duration\":},";

if (get(each, "customfield8") == "Recurring") {
recurringTenpl ate = replace(recurringTenpl ate
"frequency\":", "frequency\":\ + get (each, "customfield4") + "\"")
recurringTenpl ate = replace(recurringTenplate, "amunt\":",
"" + get(each, "customfield5") + "\"");
recurringTenpl ate = replace(recurringTenpl ate
“duration\":", "duration\":\ + get (each, "customfield6") + "\"");
} else {

recurringTenplate = "";

"anmount\":\

}
bomtem = replace(bomtem partField, partField +

recurringTenpl ate);

}

/1l Handle O prices in configuration (this may only fix English

1-52

Appendix

Chapter 1
Appendix F: Understand the SyncQuote BML

users)
bomtem = repl ace(bomtem "\"partNumber\":", "\"catal ogRefld\":");
bomtem = repl ace(bomtem "On Request", "0");

Il Unflatten
bomlson = convert bont ohi er (j son(bomtem);
bomtem = j sontostr(bomison);

}

/1 Format main tenplate wth subconponents and properties
put (configDict, "comrerceltem d", "");

put (configDict, "model", model);

put (configDict, "Configld", configld);

put (configDict, "currency", currency);

put (configDict, "total Price", string(priceTotal));

put (configDict, "basePrice", string(baseMdel Price));

put (configDict, "Childltems", spareslList);

put (configDict, "Bomtenms", bomten);
payl oad = appl yt enpl at e(CART_TEMPLATE_LCCATI ON, configDict);
payl oad = repl ace(payl oad, """, "\""); // encoding bug on applytenplate

return payl oad;

F: Understand the SyncQuote BML

You must modify the function BML to set the Sync Quote action to run Advanced Modify for
the integration.

The following provides the SyncQuote BML used in the integration:
str =""

for each in transactionLine{
if (each._nodel _variable_name <> ""){

lineltemarray = split(cC LineltemData t, "|");
for lineltemin lineltemarray {
row = split(lineltem "~");

if(rowf 0] == each._docunent nunber){
str = str + each. _docurment nunber + "~cC Commerceltem d | ~"
+ row 1]+ |";
str = str + each. _docunent nunber + "~cC Productld |~" +
row 2] +"|";

}

}

}

return str;

Appendix G: AddToCartPayload-Cloud

ORACLE

Example of the AddToCar t Payl oad- C oud. t xt file.

1-53

ORACLE

Chapter 1
Appendix G: AddToCartPayload-Cloud

The following is an example of the AddToCar t Payl oad- C oud. t xt file.

[l Initialize variables

MODEL_PATH = "/ confi guration/confi gureResponse/itenf nodel *;

CONFI G_I D_PATH = "/configuration/configureResponse/iten
@onfigurationld";

CURRENCY_CODE_PATH = "/ confi guration/ confi gureResponse/ attributes/
attribute[@vari abl eName=' currencyCode']/ val ue";

TOTAL_PRI CE_PATH = "/confi guration/confi gureResponse/ price/total Price";
SPARE_PART_PATH = "/confi guration/configureResponse/ spare/rule/iten
part";

SPARE_QUANTI TY_PATH = "/ configuration/ confi gureResponse/spare/rul e/iten
quantity";

SPARE_PRI CE_PATH = "/ configuration/configureResponse/spare/rule/item
price";

SPARE_SELECTED PATH = "/configuration/configureResponse/spare/rule/itent
sel ected";

BOM | TEM PATH = "/ confi gurati on/ confi gureResponse/ bom tent;

BOM PRI CE_PATH = "/configuration/configureResponse/ price/ bonPrice";
DELTA PRI CE_PATH = "/configuration/configureResponse/ price/deltaPrice";

CART_TEMPLATE_LOCATI ON = "$BASE_PATH$/ Commer ceCl oud/ AddToCar t Payl oad-
doud. txt";

SPARE_TEMPLATE_LCCATI ON = " $BASE_PATHS$/ Commrer ceCl oud/

Recommended_I t ens_Payl oad- O oud. txt";

payl oad = "";
sparesList ="";

priceTotal = 0.0;

baseModel Price = 0.0;

total DeltaPrice = 0.0;

sparePart = String[1];
spareQuantity = String[1];
sparePrice = String[1];

spareSel ected = String[1];
singleSpareDict = dict("string");
configDict = dict("string");

/] Create array of XM paths:
pathArray = string[];
sparePat hArray = string[];

/1 For Nbdel /Price Properties

append(pat hArray, MODEL_PATH);
append(pat hArray, CONFI G ID PATH);
append(pat hArray, CURRENCY_CODE PATH);
append(pat hArray, TOTAL_PRI CE_PATH);
append(pat hArray, DELTA PRI CE_PATH);

/1 For BOM Item Property
append(pat hArray, BOM | TEM PATH);
append(pat hArray, BOM PRI CE_PATH);

/1 For Rec ItemProperties (needs its own array)
append(sparePat hArray, SPARE PART_PATH);

1-54

ORACLE

Chapter 1
Appendix G: AddToCartPayload-Cloud

append(spar ePat hArray, SPARE_QUANTI TY_PATH);
append(spar ePat hArray, SPARE PRI CE_PATH);
append(spar ePat hArray, SPARE_SELECTED PATH);

/1 Extract data from configXM
pat hDi ct = readxmn si ngl e(confi gXM., pat hArray);
spareDict = readxm nul tiple(configXM., sparePathArray);

nmodel = get(pathDict, MODEL_PATH);

configld = get(pathDict, CONFIG_|ID PATH);
currency = get(pathDict, CURRENCY CODE PATH);
total Price = get(pathDict, TOTAL_PRI CE_PATH);
bonPrice = get(pathDict, BOM PRI CE_PATH);
deltaPrice = get(pathDict, DELTA PRI CE_PATH);
bom tem = get (pat hDi ct, BOM. | TEM PATH);

/] Convert totalPrice (which is a msleading nane) to nuneric val ue, set as
baseMbdel Price
total Price = replace(total Price, ",", "");
if (isnunmber(substring(totalPrice, 1))) {
total Pri ceNum = get currencyval ue(total Price, currency);
priceTotal = priceTotal + total PriceNum

}

baseMdel Price = priceTotal ;

/1 Convert deltaPrice to nuneric value, set as total DeltaPrice
if (NOT(isnull(deltaPrice))) {
deltaPrice = replace(deltaPrice, ",", "");
i f (isnumber(substring(deltaPrice, 1))) {
total DeltaPrice = getcurrencyval ue(del taPrice, currency);

}
}

// Add BOMtotal price to priceTotal (which is the REAL total price), wth
t he same conversion as the base price
if (NOT(isnull(bonPrice))) {
bonPrice = replace(bonPrice, ",", "");
i f (isnunber(substring(bonPrice, 1))) {
bonPri ceNum = get currencyval ue(bonPrice, currency);
priceTotal = bonPriceNum + priceTotal;

}
Il Get Recommended Items
for sparepath in sparePathArray {
if (find(sparepath, "part") <> -1) {
sparePart = get(spareDict, sparepath);

}
elif(find(sparepath, "quantity") <> -1) {
spareQuantity = get(spareDict, sparepath);

}
elif(find(sparepath, "price") <> -1) {
sparePrice = get(spareDict, sparepath);

elif(find(sparepath, "selected") <> -1) {

1-55

Chapter 1
Appendix G: AddToCartPayload-Cloud

spareSel ected = get(spareDict, sparepath);

}

/] Format Rec Items payl oad

if (isnull(sparePart)) {
print("No Reconmended Items");

} else {
spareli st Size = sizeofarray(sparePart);
spareArray = integer[sparelistSize];

i =0;
for eachSpare in spareArray {
if (spareSelected[i] == "true") {
/I Convert price, simlar to Base and BOM prices above
priceString = substring(sparePrice[i], 1);
priceString = replace(priceString, ",", "");
if (isnunber(priceString)) {
sparePrice[i] = string(getcurrencyval ue(priceString,
currency));
priceTotal = priceTotal + atof(sparePrice[i]);
} else {
sparePrice[i] = "0";

}

Il Add basic part fields to dictionary fromarray dictionary
put (singl eSpareDict, "part", sparePart[i]);

put (singl eSpareDict, "quantity", spareQuantity[i]);

put (singl eSpareDict, "price", sparePrice[i]);

Il CGenerate tenplate and set values fromdictionary
si ngl eSpar ePayl oad = appl yt enpl at e(SPARE_TEMPLATE_LOCATI ON,
singl eSpareDict);

Il Get Recurring Charge fields

part_num = sparePart[i];

part Cust onfi el dsDi ct = bnygl (" SELECT part _nunber,
custom fiel d5, customfield4, customfield6, customfield8 FROM parts
VWHERE part_nunber = $part_nunt);

for each in partCustonFieldsDict {
if (get(each, "customfield8") == "Recurring") {
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{pricePeriod}}", get(each, "customfield4"));
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{recurringPrice}}", get(each, "customfield5"));
si ngl eSpar ePayl oad = repl ace(singl eSpar ePayl oad,
“{{duration}}", get(each, "customfiel d6"));
} else {
chi | dPayl oadJson = json(si ngl eSpar ePayl oad) ;
j sonrenove(chi | dPayl oadJson, "recurringCharge");
si ngl eSpar ePayl oad = jsontostr(chil dPayl cadJson);

ORACLE 1-56

Chapter 1
Appendix G: AddToCartPayload-Cloud

/!l Add Itemto List

if (sparesList =="") {
sparesLi st = singl eSparePayl oad;
} else {
sparesList = sparesList + "," + singl eSparePayl oad;
}
}
=0+

Il Get the BOM Itens
if (isnull(bomtem) {
print “"No BOM Itens";
bomtem="";
} else {
Il Get part numbers for each BOMitem convert to string array for bngl
bomlson = json(bomtem;

/'l Renove extraneous BOMfields (may have to revert if CC was expecting
to use them

j sonpat hrenove(bomlson, "$..variabl eNane");

j sonpat hrenove(bomlson, "$..definition");

j sonpat hrenove(bomlson, "$..category");

Il Replacing all 0 prices wth actual nunmber 0

bonPri ceArray = jsonpathgetmultiple(bomlson,
"$.. price_unit_price_each");

repl ace_| ookup = bool ean[];

bonPricesString = jsonarraytostr(bonPriceArray);

bonPricesString = replace(replace(repl ace(bonPricesString, "\"", ""),
S R FER R

bonPricesStringArray = split(bonPricesString, ",");

i =0;
for each in bonPricesStringArray {
append(repl ace_| ookup, isnunber(each));

=0+l
}
i =0;
for each in replace_|l ookup {
if (i == 0 and each == fal se) {
j sonpat hset (bomJson, "$.fields._price_unit_price_each", "0");

elif(each == false) {
str = "$.children[" + string(i - 1) +
"].fields. _price_unit_price_each";
j sonpat hset (bomJson, str, "0");

ORACLE 1-57

ORACLE

Chapter 1
Appendix G: AddToCartPayload-Cloud

Il Replacing all 0 delta with actual nunber 0

borDel taArray = jsonpathgetnultiple(bomJson, "$.. delta_price");

repl ace_| ookupDel ta = bool ean[];

bonDel taString = jsonarraytostr(bonmDel taArray);

bonDel taString = repl ace(repl ace(repl ace(bonDel taString, "\"", ""),
S R PR S

bonDel taStringArray = split(bonDeltaString, ",");

i =0;
for each in bomDeltaStringArray {
append(repl ace_| ookupDel ta, isnumber (each));

=0+
}
i =0;
for each in replace_|l ookupDelta {
if (i == 0 and each == fal se) {
j sonpat hset (bomJson, "$.fields._delta_price", "0");
}

elif(each == false) {
str = "$.children[" + string(i - 1) +
"].fields. _delta price";
j sonpat hset (bomJson, str, "0");

bomtem = j sont ostr (bomison)

bonPartsArray = jsonpathgetnul tiple(bomJson, "$..partNunber");

bonPartsString = jsonarraytostr(bonPartsArray);

bonPartsString = repl ace(repl ace(repl ace(bonPartsString, "\"", ""),
S R PR R

bonPartsStringArray = split(bonPartsString, ",");

bonParts = bnygl ("SELECT part_nunber, customfield5, customfield4,
custom fiel d6, customfield8 FROM parts WHERE part_nunber
IN $bonPartsStringArray");

Il Get path for each part, add recurringCharge to them al
for each in bomParts {
partField = "\"partNunber\":\"" + get(each, "part_nunber") +
"\"l";
recurringTenplate = "\"recurringCharge\":
{ \"amount\": \"frequency\": ,\"duration\":},";

if (get(each, "customfield8") == "Recurring") {
recurringTenpl ate = replace(recurringTenpl ate
"frequency\":", "frequency\":\ + get (each, "customfield4") + "\"")
recurringTenpl ate = replace(recurringTenplate, "amunt\":",
"" + get(each, "customfield5") + "\"");
recurringTenpl ate = replace(recurringTenpl ate
“duration\":", "duration\":\ + get (each, "customfield6") + "\"");
} else {

recurringTenplate = "";

"anmount\":\

1-58

ORACLE

Chapter 1
Appendix G: AddToCartPayload-Cloud

}
bomtem = replace(bomtem partField, partField + recurringTenplate);

}

/1 Handle O prices in configuration (this may only fix English users)
bomtem = repl ace(bomtem "\"partNumber\":", "\"catal ogRefld\":");
bomtem = repl ace(bomtem "On Request", "0");

Il Unflatten
bomlson = convert bont ohi er (j son(bomtem);
bomtem = j sontostr(bomison);

}

/] Format main tenplate wth subconponents and properties
put (configDict, "comrerceltem d", "");

put (configDict, "model", model);

put (configDict, "Configld", configld);

put (configDict, "currency", currency);

put (configDict, "total Price", string(priceTotal));

put (configDict, "basePrice", string(baseMdel Price));
put (configDict, "deltaPrice", string(total DeltaPrice));
put (configDict, "Childltems", spareslList);

put (configDict, "Bomtenms", bomten);

payl oad = appl yt enpl at e(CART_TEMPLATE_LCCATI ON, configDict);
payl oad = repl ace(payl oad, """, "\""); /1 encodi ng bug on
appl ytenpl ate

return payl oad;

1-59

Use Oracle CPQ Cloud Features

Use Oracle CPQ features in conjunction with Oracle Commerce.

Oracle CPQ allows you to create quote-to-cash processes, and guides users towards product
options and configurations. Integrating these features with Commerce allows you to offer
shoppers a method to successfully interact with your business, improving their contact
experience and increasing shopper satisfaction.

Introduction

ORACLE

Many important Oracle Configure, Price, Quote features are available via an integration
solution between Oracle Configure, Price, Quote andOracle Commerce.

This document is intended to provide the instructions on how to use Oracle Configure, Price,
Quote features with Oracle Commerce - via an integration supported by the two solutions.

Oracle Commerce is an eCommerce solution designed specifically to run in the Oracle Cloud.
The service provides you with a range of powerful tools to build a flexible, feature-rich
storefront for your shoppers.

Activities you can perform with Oracle Commerce include the following:

e Customize the design and layout of your storefront pages and preview your changes

e Display your store content in different languages

e Create or import catalog items

e Manage inventory

e Offer promotions

¢ Manage shopper accounts

e Allow shoppers to set up wish lists

e View reports about your store

e Test the visual elements of your store to determine which design shoppers prefer

e Develop custom features for your store through the Oracle Commerce web services API

Oracle Configure, Price, Quote is the only cloud solution to support the complete quote-to-
cash process - from shopper inquiry to order fulfillment. It guides users to optimal product
options and configurations from simple to complex, automatically applying discounts and
relevant up-sell and cross-sell opportunities.

Integrating these solutions brings together the capabilities of Oracle Commerce and Oracle
Configure, Price, Quote to provide a unified solution that enables businesses to offer
shoppers a method of interacting meaningfully with the business during the purchasing
process, and to provide agents with the means to be flexible with shoppers, improving their
contact experience and maximizing shopper satisfaction.

2-1

Objective

Audience

ORACLE

Chapter 2
Introduction

By integrating Oracle Commerce and Oracle Configure, Price, Quote, you increase the
number of supported available commerce shopper features.

The integration of Oracle Commerce and Oracle Configure, Price, Quote targets
support for the following shopper commerce activity:

* Product configuration: The shopper or agent can configure any product that has
been identified as configurable in the product catalog.

e Shopper quote request: The shopper can request a quote for an order.

* Agent quote request: An agent dealing with a shopper contact can request a
guote for a discount on behalf of the shopper.

» Asset Based Ordering - Asset based ordering (ABO) allows you to sell tangible
assets or subscription services delivered over a period of time; for example mobile
phone call and data plans, television and broadband packages, cloud storage
service, music streaming service, etc.

This document provides instructions on how to set up an integration between Oracle
Commerce and Oracle Configure, Price, Quote so that relevant Commerce information
is automatically passed to Oracle Configure, Price, Quote, ensuring that the decision
process has all the required information and increasing the speed at which a reply is
delivered to the shopper or agent.

This document describes the setup tasks that must be performed in Oracle Commerce
and Oracle Integration Cloud in order to use this integration flow. There are additional
setup tasks that must be performed in Oracle Configure, Price, Quote so that the
integration works as expected. Full information about these tasks that must be
performed in Oracle Configure, Price, Quote can be found in the Integrating Oracle CX
Commerce with Oracle Configure, Price, Quote article on My Oracle Support.

Chapter 2 — Configuring the Integration: provides technical instructions on the
following topics:

e How to download the Oracle Integration Cloud Integration Flows.
e How to configure the Oracle Integration Cloud Integration Flows.
e How to setup the connection to Oracle Configure, Price, Quote.
e How to setup the connection to Oracle Commerce.

e How to configure the webhooks to trigger the integration flows.

e How to configure the SSEs (Side-Server Extension) necessary for the integration
flows.

Chapter 3 — Using the Integration Functionality: provides instructions on how to use
the functionality supported by this integration.

You must follow product-provided documentation to set up and configure the
integration between Oracle Commerce and Oracle Configure, Price, Quote systems.

2-2

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Chapter 2
Configure the Integration

This document is written for Oracle Commerce and Oracle Configure, Price, Quote
administrators who need to set up and configure the integration between these two systems.

Readers of this document should have experience with Oracle Commerce, Oracle Configure,
Price, Quote and Oracle Integration Cloud (OIC) administration. This document does not
provide instructions on configuring aspects other than the integration for Oracle Commerce
and Oracle Configure, Price, Quote.

Prerequisites

In order to configure and use the Oracle Commerce/Oracle Configure, Price, Quote
integration, there are specific software, account, and data prerequisites that must be met.

For the purposes of this document, it is assumed that you already have:

 An Oracle Commerce account and access to the Oracle Commerce 19.1 or later with
necessary SSEs enabled (see sections that follow).

* An Oracle Configure, Price, Quote account and access to Oracle Configure, Price, Quote
19.1 or later.

* An Oracle Integration Cloud account and access to Oracle Integration Cloud Service
18.4.5 or later.

* A synchronized product catalog to ensure that products in the Commerce catalog map to
corresponding items in the Oracle Configure, Price, Quote catalog.

* Pricing Base pricing data which is synchronized from the primary PIM (Product
Information Management)/ERP (Enterprise Resource Planning system to both Oracle
Commerce and Oracle Configure, Price, Quote.

» Profiles Shopper/Account data which is synchronized from the primary CRM (Customer
Relationship Management) system to both Oracle Commerce and Oracle Configure,
Price, Quote.

* An extension server to support any required Serve-Side Extensions for the integration.

If you do not have one or more of these, please contact an Oracle sales representative for
information on how to acquire one: http://www.oracle.com/us/corporate/contact/index.html.

Additional Resources

Addition information about Oracle Commerce can be found through the Oracle Help Center
page for Oracle Commerce.

If you require further information regarding Oracle Commerce, you can access the latest
product documentation and training videos through the Oracle Help Center page for Oracle
Commerce.

If you require further information regarding Oracle Configure, Price, Quote, you can access
the latest product documentation through the for Oracle Help Center page Oracle Configure,
Price, Quote.

The documentation mentioned contains links to blogs, developer communities, and Support.
(Please note that some of these resources require an account for access.)

Configure the Integration

Several stages are required to configure this integration.

ORACLE 2-3

http://www.oracle.com/us/corporate/contact/index.html
https://docs.oracle.com/cloud/latest/cpq_gs/index.html

Chapter 2
Configure the Integration

Five stages are required to configure the integration between Oracle Configure, Price,
Quote and Commerce. Each stage is covered in this chapter.

Configure the Integration Package

ORACLE

In order to use this integration, you must first download the integration package(s) and
then import the package(s) into Oracle Integration Cloud.

This section provides detail about where the integration package(s) can be
downloaded and how to import the integration package.

Importing the integration package in Oracle Integration Cloud (OIC) creates
connections between Oracle Commerce and Oracle Configure, Price, Quote in OIC. It
also creates an integration between Commerce and Oracle Configure, Price, Quote
with some default mappings in place.

Download the integration package
Follow these steps to download the integration package:

1. Go to the Integrating Oracle Commerce and Oracle Configure, Price, Quote with
Oracle Configure, Price, Quote article on My Oracle Support.

2. If you want to implement the integration between Commerce and the Oracle
Configure, Price, Quote Configurator, download OCCS-
CPQ_CONFI GURATI ON_| NTEGRATI ON_X. X. par to a location where it is
accessible from OIC.
Note: _X. X. par refers to the most recent version of all downloadable files
described.

3. If you want to implement the integration between Commerce and Oracle
Configure, Price, Quote Quoting, download OCCS-
CPQ QUOTE_ | NTEGRATI ON_X. X. par to a location that is accessible from OIC.

4. If you want to enable Asset Based Ordering (ABO) through the integration
between Commerce and Oracle Configure, Price, Quote, download the following
packages to a location that is accessible from OIC:

« OCCS_CPQ ASSET | NTEGRATI ON_X. X. par
« (OCCS_CPQ_GETCONFI GBOM _X. X. par

e (OCCS_CPQ _CONFI GURATI ON_I NTEGRATI ON_X. X. par
e (OCC CPQ Get_ Asset Upgrade Options_X X par

Import the integration package(s)

Import the OIC Integration Package into OIC to create an integration between
Commerce and Oracle Configure, Price, Quote through OIC.

To import the OIC Integration Package:
Log on to OIC as an admin user.
Click the Packages icon.

Click the Import button.

Click Browse to open a navigation pane.

g H @ b P

Select the integration package archive (.PAR) file you want to import.

2-4

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Chapter 2
Configure the Integration

6. Click Import. The package is added to the Packages list.

The OCCS- CPQ_CONFI GURATI ON_I NTEGRATI ON package includes the OCCS-CPQ Get
Configurations integration flow. The GetConfigurations integration flow is used for the
following Asset Based Ordering operations:

¢ Modify
e Upgrade
* Renew
* Resume

This integration is required for the configuration flow. The name of the target connection for
this integration is “Oracle CPQ”. The target connection identifier is “Oracle_CPQ”, and the
target connection description is “Oracle CPQ ICS Adapter Connection.”

The OCCS- CPQ_QUOTE_| NTEGRATI ON package includes the following three integration
flows: OCCS-CPQ Create Quote, OCCS-CPQ Update Quote, and OCCS-CPQ Sync Quote.

e The OCCS-CPQ Create Quote integration sends quote request information to Oracle
Configure, Price, Quote.

« The OCCS-CPQ Update Quote integration sends information to Oracle Configure, Price,
Quote related to accepting, rejecting, or re-requesting a quote.

The OCCS-CPQ Sync Quote integration allows Oracle Configure, Price, Quote to send
information to Commerce at the end of the quoting process and synchronize this
information in Commerce. This ensures that the order information in Commerce matches
the related order information in Oracle Configure, Price, Quote.

The OCCS_CPQ ASSET | NTEGRATI ON package includes two integration flows: OCCS-CPQ
Get Assets and OCCS-CPQ Asset Actions. This integration is required for Asset Based
ordering. The name of the target connection for this integration is “Oracle CPQ”. The target
connection identifier is “Oracle_CPQ”, and the target connection description is “Oracle CPQ
ICS Adapter Connection.”

Note: The OCCS-CPQ Get Assets integration returns information about assets and services
associated with the shopper’s account(s).

The OCCS_CPQ_GETCONFI GBOMpackage contains the following OIC integration flow which is
also used in Asset Based ordering:

e Cet ConfigBom- This flow is invoked for the following Asset Based Ordering operation
flows:

— Suspend
— Terminate

Cet Confi gBomcalls are required to be made for each confi gur at or | D of these filtered items
to retrieve a saved Configuration BOM Instance of the item on Oracle Configure, Price,
Quote.

The name of the target connection for this integration is “Oracle CPQ". The target connection
identifier is “Oracle_CPQ”, and the target connection description is “Oracle CPQ ICS Adapter
Connection.”

Configure the Oracle Commerce Connection

For the integration to run successful, you need to configure the connection from the
integrations imported to OIC to Commerce.

ORACLE 2-5

ORACLE

Chapter 2
Configure the Integration

You must complete the following steps to configure the connection from the OIC
integrations to Commerce.

Log on to OIC as an admin user.
Click the Connections icon.
Click the Oracle Commerce connection.

Click the Configure Connectivity button.

@ H w b P

Enter the Connection base URL. The Connection base URL is derived using the
following structure where <siteURL> is the base URL and port number of the
Oracle Commerce site that integrates with OIC. For example:

Connection base URL: https://<siteURL>/ccadnin/vl

6. Click the Configure Security button.

7. The Oracle Commerce connection uses the OAuth security policy, so you must
enter a Security token for the connection. This token is generated in Oracle
Commerce. Instructions on generating the token can be found in the next
Generate a Security Token section of this document.

8. Click OK.
9. Click Test to test that the connection is working.
10. Click Save.

Your Oracle Commerce connection is now configured for the integration.

Generate a Security Token

This integration uses the Oracle Commerce REST web services APIs to access
Oracle Commerce data. You must register the integration within Oracle Commerce
and generate a security token in order for the integration to be granted access to the
data.

Follow these instructions in order to generate a security token:

Log onto Oracle Commerce.

Click the Menu icon.

Select Settings from the menu.

Click Web APIs from the sidebar menu.

Click Registered Applications from the Web APIs panel.
Click the Register Application button.

N o g ;M 0w Db P

Enter a name for the integration. The application you are registering is OIC, so you
should choose a meaningful name that reflects this.

8. Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

9. Click on the name of the application you created.

10. Click on Click to reveal to display the application key. You can copy the
application key to use as the security token for the Oracle Commerce connection.

For more information on managing an application within Oracle Commerce, please
refer to Register applications.

2-6

Chapter 2
Configure the Integration

Activate the Integrations

Once your integrations are configured, you must activate them using the OIC admin user
interface.

Once the Oracle Configure, Price, Quote, Commerce, Oracle Configure, Price, Quote Quote,
Oracle Configure, Price, Quote Configure, and Oracle Configure, Price, Quote
getConfigurations connections are configured, you must activate these integrations.

Follow these instructions to activate the OIC integrations:

1. Log onto OIC as an admin user.

2. Click on the Integrations icon to display the Integrations list.

3. Click on the Activate button for the integration you wish to activate.
4.

Decide whether you want to switch on detailed tracing, which collects information about
messages processed by the integration flow. Administrators may find detailed tracing
helpful when troubleshooting issues with the integration flow, but it may impact
performance.

To switch on detailed tracing, select the Enable detailed tracing check box.

Note: Once an integration flow is active, administrators must deactivate it and activate it
again to switch detailed tracing on or off.

5. Click Activate.

Configure the Commerce Webhooks

ORACLE

You must configure webhooks in Commerce Administration in order to support the REST API
generated by the activation of the OIC integration.

The REST API generated by activating the OIC integration can be configured as a Webhook
in Commerce Administration. These webhooks include the following:

* Request Quote: This webhook is triggered when a request or re-request for a quote is
submitted by a Commerce self-service user. This webhook pushes notifications using the
OCCS-CPQ Create Quote integration flow.

e Update Quote: This webhook is triggered when a response to a requested quote is
accepted, rejected, or the quote is canceled by a Commerce self-service user. This
webhook pushes natifications using the OCCS-CPQ Update Quote integration flow.

- External Price Validation: This webhook is triggered at checkout when the order
contains one or more items configured by Oracle Configure, Price, Quote. This webhook
should point to the SSE app URL configured later. The webhook validates the
configuration and price provided for the configured items. It also includes the commerce
item ID data in the request payload and updates the external price information of the
commerce items. Finally, it invokes a re-pricing operation at order checkout.

e Contact Accounts Retrieval: This webhook has been deprecated. The corresponding
SSE endpoints are invoked from the widget. It returns a list of service account IDs for the
shopper. Formerly, this webhook called the Contact Accounts Retrieval webhook, so that
webhook also had to be configured for the Services Retrieval webhook to function
correctly.

e Services Retrieval: This webhook has been deprecated. The corresponding SSE
endpoints are invoked from the corresponding widget. Formerly, this webhook returned

2-7

Chapter 2
Configure the Integration

information about a service or asset associated with the shopper and used the
OCCS-CPQ Get Assets integration flow. This webhook called the Contact
Accounts Retrieval webhook, so that webhook also had to be configured for the
Services Retrieval webhook to function correctly.

You must configure the Production and Preview version of these webhooks to ensure
that they work in all environments. The Production webhooks send information from
your live store to production environments of your live systems, while preview
webhooks send information from your preview environment to the test or sandbox
environments of your external systems.

Follow these instructions to configure the Request Quote, Update Quote, External
Price Validation, Services Retrieval, and Services webhooks:

1. Log onto OIC as an admin user.
2. Click on the Integrations icon.

3. Click on the Integration Details icon to display information about the integration
flow.

e If you are configuring the Request Quote webhook, you should display
information for the OCCS-CPQ Create Quote integration flow.

e If you are configuring the Update Quote webhook, you should display
information for the OCCS-CPQ Update Quote integration flow.

e If you are configuring the External Price Validation webhook, you should
display information for the OCCS-CPQ External Pricing integration flow. For
this webhook, you to configure the SSE app endpoint.

e If you are configuring the Services Retrieval webhook, you should display
information for the OCCS-CPQ Get Assets integration flow. This OIC flows
requires the Services SSE to be set up and invoked from there.

e If you are configuring the Services webhook, you should display information
for the OCCS-CPQ Asset Actions integration flow. This OIC flows requires the
Services SSE to be set up and invoked from there.

Copy the Endpoint URL for the integration.
Log into Commerce.

Click the Menu icon.

Select Settings from the menu.

Select Web APIs from the sidebar menu.

© ©@ N o g »

Click the webhook you wish to configure.

10. Paste the Endpoint URL you copied into the URL field for the webhook.
11. Remove the “metadata” text from the end of the URL.

12. Enter the user name and Password for your OIC account.

13. Click the Save button.

The webhook is now configured and is triggered each time the relevant event occurs,
which in turn triggers the relevant integration flow.

Note: It is not possible to edit webhooks differently for different sites. Updating
webhooks applies changes regardless of the site selected.

ORACLE 2-8

Chapter 2
Configure the Integration

For more information on Oracle Commerce webhooks, please refer to Configure webhooks.

Understand the Services SSE

Modify, renew, terminate, suspend, and resume actions performed on a service or asset are
done using the Services server side extensions, one set for Storefront and one for Agent. Get
Assets and Get Asset details are also performed using the endpoints in the Services SSE.

See the topic Use developer tools to customize your store for information.

Configure the Server Side Extensions

ORACLE

To perform specific functions relating to asset-based orders, you need to install and configure
the related Commerce server-side extensions (SSEs).

Available Commerce server-side extensions (SSEs) can be installed and configured to
perform specific functions relating to asset-based orders.

For more complete information on server-side extensions and how to develop them for use
with Commerce, refer to Develop server-side extensions in Extending Oracle Commerce
found in the Commerce Help Library.

The next sections in this topic explain the purpose and configuration of each available SSE
as well as provide information on the inputs required for their respective endpoints. Finally the
last section of this topic, Understand the general procedure for installing and configuring
the integration SSEs , provides general instruction on downloading, installing, and
configuring the available SSEs.

Note: Address information is something used extensively in Commerce transactions. For all
procedures and SSEs that require address information for endpoint inputs, in addition to
using Commerce's default address formats, you can also use the REST API to create multi-
country custom address formats. This lets you create country-specific address formats to
ensure that your address formats align with the requirements of any external service that you
might use. This means that addresses appearing in profiles, accounts, registration requests,
order addresses and more can be customized. For more complete information on creating
custom addresses and understanding how to use custom address formatting, refer to the
following:

e Customize Address Formats using the API in Extending Oracle Commerce
e Work with address types in Extending Oracle Commerce

e Account Details in Using Oracle Commerce

e Work with account addresses in Using Oracle Commerce

e Work with account registration requests in Using Oracle Commerce

Configure the Credit Check SSE

Since Commerce does not provide a pre-built integration with any particular credit checking
system, the Credit Check SSE is used to connect to a third-party credit check system so that
you can perform a credit check on the logged-in shopper.

Note: This SSE is optional and can be used if you want a credit check to be done as part of
an order submit task.

You can configure the available SSEs, CheckCredit-store.zip and CheckCredit-agent.zip,
by first downloading the SSE packages.

2-9

ORACLE

Chapter 2
Configure the Integration

Note: As written, this SSE generates outbound calls to an external credit checking
system. This means that the Credit Check SSE calls out to an external system to
perform the credit check. In order to use this SSE to connect to the external checking
of your choice, you must modify the SSE code to provide the specific calls needed to
connect to the correct credit checking system.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Check Credit endpoint

The Check Credit endpoint is triggered whenever a credit check is requested by
Commerce.

The inputs for this endpoint are:

* Amount information

* Recurring amount frequency
* Recurring amount duration
* Recurring amount

* Contact information

* First Name

* Last Name

* Email Address

* Telephone Number

e Address information

* Addressline 1

e Address line 2

* City
o State
Country

* Postal code
The return for this endpoint is either a TRUE or FALSE value depending on whether
the shopper passed the credit check or not.

Configure the Customer Account Model SSE

This SSE is used to return information about the customer account model for a
registered shopper or to update the customer account model when required. In detail,
this SSE is meant to get account details from CDM masters like OEC Communications
and is required in Telco kind of installations

You can configure the available SSEs, CustomerAccountModel-store.zip and
CustomerAccountModel-agent.zip, by first downloading the SSE package.

2-10

ORACLE

Chapter 2
Configure the Integration

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of this
topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Create Accounts endpoint

This endpoint is triggered if the Query Accounts endpoint does not return any accounts for
the shopper.

The inputs for this endpoint are:

» User Token for the logged-in shopper.
e Account Type

e Account Name

e Primary Contact

« Billing Profile(s)

e Address(es)

e Contact ID(s)

e Contact Role(s)

The returns for this endpoint are the accounts, roles, addresses, and business profiles now
associated with the shopper.

Understand the Create Contact endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.

The return for this endpoint is the new External Contact ID created for the shopper.
Understand the Query Accounts endpoint

This endpoint is triggered when a shopper logs in to Commerce and when they go to
Checkout for an order that contains service items.

The input for this endpoint is the User Token for the logged-in shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Understand the Query Contacts endpoint

This endpoint is triggered when a shopper logs in to Commerce.

The input for this endpoint is the User Token for the logged-in shopper.
The return for this endpoint is the External Contact ID for the shopper.

Understand the Update Accounts endpoint

This endpoint is triggered when a shopper saves an account address.

The inputs for this endpoint are:

* User Token for the logged-in shopper.

» The Account ID of the account to which the billing profile is linked.

2-11

ORACLE

Chapter 2
Configure the Integration

* The new address as provided by the shopper.

The returns for this endpoint are the accounts, roles, addresses, and business profiles
associated with the shopper.

Configure the Order Qualification SSE

This SSE is used to perform any final checks on an order before payment is
authorized and the order is submitted to downstream systems for processing and
fulfillment.

It also validates that for any item in the order which is based on a SKU where the
configurable property is TRUE and the asset abl e property is TRUE the quantity must
be 1 and, if not, return an error indicating that this item can only be purchased one at a
time. This check is done by looking to see if the root item has an asset Key value. For
more information, see the Use Asset Based Ordering section of this guide.

You can configure the available SSEs, OrderQualification-store.zip and
OrderQualification-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring integration SSEs section at the end of this
topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Order Qualification endpoint

This endpoint is triggered by the Order Qualification webhook when any order
containing a configured item is submitted.

The input for this endpoint is the order containing the configured item.

The return for this endpoint is either a TRUE or FALSE value depending on whether
the order passed the validation check or not. If the value is FALSE the return also
includes information about which item(s) in the order failed validation.

Configure the Order Qualification Pipeline SSE

This SSE is used to ensure that an order is valid. It enables an order qualification step
in the purchasing process that can be invoked via the Order Qualification webhook.
The extension can be configured to execute custom order qualification processes such
as checking whether the shopper is eligible to purchase the items in the cart. It
contains a pre-built algorithm to validate that the Customer, Billing, and Service
accounts as well as the Billing Profile assigned to the items in the cart are valid for the
logged in shopper. It also contains a module to check if the cancel in-flight is allowed
for a given order.

You can configure the available SSEs, OrderQualificationPipeline-store.zip and
OrderQualificationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.

Understand the Order Qualification Pipeline endpoint

2-12

ORACLE

Chapter 2
Configure the Integration

This endpoint is triggered when a shopper goes to checkout for an order that contains
configured items.

The inputs for this endpoint are:
e Contact record for the shopper

e Order containing configured items.

The return for this endpoint is either a TRUE or FALSE value depending on whether the order
passed the validation check or not. If the value is FALSE the return also includes information
about which item(s) in the order failed validation.

Configure the Order Validation Pipeline SSE

This SSE enables an order qualification step in the purchasing process that can be invoked
via the Order Validation webhook. The extension can be configured to execute any final
checks particular to the purchasing model before the order payment is authorized and the
order is submitted to the downstream systems for fulfillment and provisioning.

You can configure the available SSEs, OrderValidationPipeline-store.zip and
OrderValidationPipeline-agent.zip, by first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of this
topic.

Configure the Services SSE

The Services SSE is used to perform modify, renew, terminate, suspend, and resume actions
on a service or asset - one SSE for Storefront and one for Agent. The SSE also contains a
module to check if the cancel in-flight feature is allowed for a given order and is also used to
retrieve the assets and asset details

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by first
downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of this
topic.

The subsection(s) that follows describe the relevant endpoint(s) for this SSE.
Understand the Services SSE endpoints

The Server Side Extension Endpoints for the Services SSE are the following:
¢ Modify

* Renew

e Terminate

e Suspend

* Resume
These endpoints are triggered when a user performs an operation on an asset.
The inputs for these endpoints are:

* Logged in User Token

2-13

ORACLE

Chapter 2
Configure the Integration

* Asset Key, the unique ID for the asset for this operation. This may be a root, branch
or leaf asset.

The returns for this endpoint are BOM (Bill of Materials) and Error.

Configure the Configuration Validation SSE

The Configuration Validation SSE plays an important role in Asset Based Ordering and
validating asset configuration. This specific SSE performs a configuration validation
between items in a shopper's cart and the items captured in response to configuration
validation end points. For more complete information on Asset Based Ordering, refer
to the Using the Integration Functionality section of this document.

To use this SSE, you should first have the External Pricing webhook set to /
ccstorex/ custonf vl/val i dat eCPQConfi gurati ons. This is done on the Settings page
of the Administration user interface.

You should also have the following endpoints configured:
e GET_CONFI GBOM URI
e GET_CONFIG_URI

The GET_CONFI GBOM_URI URL gets triggered for the Suspend and Terminate Services.
The GET_CONFI G_URI URL gets triggered for the Renew, Modify, and Resume Services.
The SSE does validation between items in cart and items captured in the response of
these two end points

You can configure the available SSEs, Services-store.zip and Services-agent.zip, by
first downloading the SSE package.

To complete installing and configuring the SSE, refer to the Understand the general
procedure for installing and configuring the integration SSEs section at the end of
this topic.

Understand the general procedure for installing and configuring the integration
SSEs

To use this integration, you need to install and configure the integration server-side
extensions (SSEs). The SSE code logic allows communication between Commerce
and Oracle Configure, Price, Quote - via Oracle Integration Cloud as part of the data
flow. The Commerce and Oracle Configure, Price, Quote integration functionality/
communication is provided through the configuration of these server-side extensions.

In addition to providing REST APIs and webhooks for integrating with external systems
(as well as widgets for extending your storefront), Commerce also includes support for
developing server-side extensions written in JavaScript. For more information, refer to

Working with Commerce Server-Side Extensions

The general installation and configuration procedure for the integration SSEs uses the
following steps:

« Before you configure and install the integration server-side extensions, first make
sure your custom Node.js server is associated with your Commerce environment.

e Download the integration server-side extension (SSE) files locally, so that you can
install and configure them. Select and remember the desired location where you
want the SSE .ZIP file(s) to be downloaded. See Integrating Oracle CX Commerce
and Oracle CPQ (Doc ID 2214316.1) on the My Oracle Support site for more

2-14

https://community.oracle.com/groups/oracle-commerce-cloud-group/blog/2017/07/21/working-with-commerce-cloud-server-side-extensions
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4
https://mosemp.us.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=292718955530062&id=2214316.1&_afrWindowMode=0&_adf.ctrl-state=x4uzsnsdd_4

ORACLE

Chapter 2
Configure the Integration

information on the required integration SSE .ZIP files and for the links that let you
download these files.

After downloading the required files, you need to install them. Use the POST /

ccadnmi n/ vl/ server Ext ensi ons endpoint to do this. Specify the Content-Type as

mul ti part/form data and include a reference to the file in the body of the request. For
example, your request header might look like the following:

POST /ccadmi n/vl/serverExtensions HITP/ 1.1
Content-Type: nultipart/formdata
Aut hori zation: Bearer <access_token>

The request body should consist of the <YOUR_SSE_NAME>. zi p file, uploaded as
mul ti part/form data. The response to the request should look similar to this:

{

"result": {
"unzi pped": fal se,
“failedl mages": 0,
"al | | mgesFail ed": false,
“fail edl magesReasons": {},
"modi fiedl mages": 0,
"new mages": 1,
"assi gnedl mages": 0

}l
"success": true,
"links": [
{
"rel": "self",

“href": "http://myserver.exanmpl e.com 7002/ ccadmi n/v1l/
server Ext ensi ons"

}
]l
"token": "d63c663af 7f 15 cd3d"
}

Make changes to each server-side extension’s confi g. j son file by providing the correct
URLSs to complete the SSE configuration portion of that integration. The typical steps
used for working with the SSE code and making changes to the confi g. j son file include
the following:

— Obtain and download the correct SSE .ZIP file.

— Extract the SSE .ZIP file.

— Edit and save the confi g.j son file.

— Zip the files using the original .ZIP file name as the original.

The following example shows some configuration information (in bold) that must be
added to the confi g. j son file for both the store and agent models of the SSE:

"host nane": "your host nane. exanpl e. cont',
“port": "7003",

"tinmeout": 50000,

"usernanme_env_var": "YOUR_USERNAME",
"password_env_var": "YOUR_PASSWORD',

2-15

ORACLE

Chapter 2
Configure the Integration

"QUERY_CONTACTS": "/ic/api/integration/vl/flows/rest/

OCC_OEC GET_PROFI LE_SSE/ 1. 0/ cont act s",

" CREATE_CONTACT": "lic/api/integration/vl/flows/rest/
OCC_OEC_CONTACT_CREATE_SSE/ 1. 0/ cont act s",

"QUERY_ACCOUNTS": "lic/apilintegration/vl/flows/rest/
OCC_CEC_GET_ACCNT_DETLS_PROF_SSE/ 1. 0/ account s",

" CREATE_ACCOUNTS": "[ic/api/integration/vl/flows/rest/
OCC_OEC_ACOUNT_CREATE_SSE/ 1. 0/ cont act s/ { current Cont act | d}/ accounts",
" UPDATE_ACCOUNT": "/ic/api/integration/vl/flows/rest/
OCC_OEC_ACCOUNT_UPDATE_SSE/ 1. 0/ cont act s/ {current Cont act | d}/ account s/
{account|d}"

All of the example endpoint URLSs (paths) specified in the example, starting from
the "QUERY_CONTACTS" to the “UPDATE_ACCOUNT" keys, are coming from Oracle
Integration Cloud and are necessary for a successful integration activation
between Commerce and Oracle Configure, Price, Quote. The paths that you would
use when editing your confi g. j son files would be the ones specific to your SSE
endpoints. The ones shown here are for example purposes only. Refer to each
specific SSE section in this topic to obtain the correct SSE and endpoint
information.

e Upload the modified SSE .ZIP file. To upload the file, click Settings then
Extensions. On the Extensions page, click Installed and then Upload Extension.
Select the location and name of the ZIP file.

Understand the environment variables supported by the integration SSEs

When communicating with Commerce via its REST APlIs, you need to authenticate
your requests using confidential information. The need to authenticate is not just
limited to Commerce as many 3rd party services require the same. It is recommended
that you do not store confidential information in extension files but that you use
environment variables to maintain value confidentiality. In the previous example

confi g. j son file, environment variables are used to make username and password
information confidential. Commerce SSEs include the nconf package which provides a
hierarchical node. j s configuration with files, environment variables, command-line
arguments, and atomic object merging. Use the hierarchy provided by nconf to
manage your configuration values and maintain different values for different
environments used in your integration. You can also use environment variables to pass
through API information you want protected. Refer to "REST API authentication” in the
Commerce REST API documentation for more info on how to authenticate Commerce
API calls.

The specific environment variables supported by the integration SSEs are the
following:

Table 2-1 Integration SSE environment variables
|

SSE name Supported variable name Description
CustomerAccountModel- CRM_USERNAME Specifies the basic
Store authentication username for

the accounts integration. In
this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

2-16

ORACLE

Chapter 2
Configure the Integration

Table 2-1 (Cont.) Integration SSE environment variables

SSE name

Supported variable name

Description

CustomerAccountModel-Store

CRM_PASSWORD

Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

CustomerAccountModel-
Agent

CRM_USERNAME

Specifies the basic
authentication username. In
this case, for Oracle
Integration Cloud (OIC) which
integrates OEC Comms.

CustomerAccountModel-Agent

CRM_PASSWORD

Specifies the basic
authentication password for
accounts integration. In this
case, for OIC which integrates
OEC Comms.

Services-Store

OIC_USERNAME

Specifies the basic
authentication username for
the accounts integration and
Oracle Configure, Price, Quote
integration that proxies via
oIC.

Services-Store

OIC_PASSWORD

Specifies the basic
authentication password for
the accounts integration and
Oracle Configure, Price, Quote
integration that proxies via
oIC.

Services-Store

CPQ_USERNAME

Specifies the basic
authentication username for
requests that go directly to
Oracle Configure, Price,
Quote.

Services-Store

CPQ_PASSWORD

Specifies the basic
authentication password for
requests that go directly to
Oracle Configure, Price,
Quote.

Services - Agent

OIC_USERNAME

Specifies the basic
authentication username for
the accounts integration and
Oracle Configure, Price, Quote
integration that proxies via
olIC.

Services-Agent

OIC_PASSWORD

Specifies the basic
authentication password for
the accounts integration and
Oracle Configure, Price, Quote
integration that proxies via
OlIC.

2-17

ORACLE

Chapter 2
Configure the Integration

Table 2-1 (Cont.) Integration SSE environment variables

SSE name

Supported variable name

Description

Services-Agent

CPQ_USERNAME

Specifies the basic
authentication username for
requests that go directly to
Oracle Configure, Price,
Quote.

Services-Agent

CPQ_PASSWORD

Specifies the basic
authentication password for
requests that go directly to
Oracle Configure, Price,
Quote.

Order Qualification Pipeline

ORDER_QUALIFICATION_PI
PELINE_USERNAME

Specifies the basic
authentication username for
securing the / v1/

order Qual i fication route.

Order Qualification Pipeline

ORDER_QUALIFICATION_PI
PELINE_PASSWORD

Specifies the basic
authentication password for
securing the / v1/
orderQualification route.

Order Qualification Pipeline

VALIDATION_USERNAME

Specifies the basic
authentication username for
accessing the /v1l/crm
account s route in the
Customer Account Model to
retrieve accounts data.

Order Qualification Pipeline

VALIDATION_PASSWORD

Specifies the basic
authentication password for
accessing the /vl/crm
account s route in the
Customer Account Model to
retrieve accounts data.

Order Qualification Pipeline

OIC_USER_NAME

Specifies the basic
authentication username for
accessing the services
integration that integrates with
Oracle Configure, Price, Quote
to retrieve asset/services data.

Order Qualification Pipeline

OIC_PASSWORD

Specifies the basic
authentication password for
accessing the services
integration that integrates with
Oracle Configure, Price, Quote
to retrieve asset/services data.

Order Validation Pipeline

ORDER_VALIDATION_PIPELI
NE_USERNAME

Specifies the basic
authentication username for
securing the /v1/

or der Val i dat i on route.

Order Validation Pipeline

ORDER_VALIDATION_PIPELI
NE_PASSWORD

Specifies the basic
authentication password for
the /v1/orderValidation
route

2-18

SSE name

Supported variable name

Chapter 2

Configure the Integration

Table 2-1 (Cont.) Integration SSE environment variables

Description

cpg-configurator-app-store

CPQ_USERNAME

Specifies the basic
authentication username for
requests that go directly to
Oracle Configure, Price,
Quote.

cpg-configurator-app-store

CPQ_PASSWORD

Specifies the basic
authentication password for
requests that go directly to
Oracle Configure, Price,
Quote.

cpg-configurator-app-agent

CPQ_USERNAME

Specifies the basic
authentication username for
requests that go directly to
Oracle Configure, Price,
Quote.

cpg-configurator-app-agent

CPQ_PASSWORD

Specifies the basic
authentication password for
requests that go directly to
Oracle Configure, Price,
Quote.

Note: Commerce provides the adni n endpoint that can be used to set an environment
variable on the Commerce server. For additional information on each SSE's supported

environment variables, a READVE. TXT file is provided along with the confi g. j son file that has

additional usage information.

Enable the Integrations

You need to enable the Oracle Configure, Price, Quote Configurator integration, the Oracle
Configure, Price, Quote Request For Quote integration, and the Asset Based Ordering (ABO)
integration in Commerce for the complete integration to work successfully.

ORACLE

You must complete the procedures in this section to enable the Oracle Configure, Price,

Quote Configurator integration, the Oracle Configure, Price, Quote Request For Quote

integration, and the Asset Based Ordering (ABO) integration in Commerce.

For additional information, refer to Appendix A: Configurator Flow and Appendix B: Request

for Quote Flow.

Enable Oracle Configure, Price, Quote Configuration Integration

Follow these steps to enable the Oracle Configure, Price, Quote Configuration Integration

within Oracle Commerce:

Log on to Commerce.

Click on the Menu icon.

Select Oracle Integrations from the sidebar menu.

1.
2.
3. Select Settings from the menu.
4,
5.

Select CPQ Configuration from the dropdown menu.

2-19

ORACLE

Chapter 2
Configure the Integration

6. Check the Enable Integration checkbox.
7. Enter the Configuration URL using the following structure:

https://<cpg_domai n>/ cormer ce/ new_equi pnent / product s/
nmodel _configs.jsp

8. Enter the Reconfiguration URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpg_domai n>/ cormer ce/ new_equi prent / product s/
external _reconfig.jsp

9. Enter the Modification URL using the following structure. You must enter these
values for your production and preview environments.

https://<cpg_domai n>/ comer ce/ new_equi prent / product s/
nmodel _configs.jsp
10. Click the Save button.
If you are using multiple sites you must follow these instructions for each site that you

operate that uses the Oracle Configure, Price, Quote Configuration integration.

Identify Configurable Products in the Product Catalog

Before a Commerce self-service user can use the Oracle Configure, Price, Quote
configurator to configure complex products for purchase in Commerce, you must
identify the products as configurable in the product catalog. Before doing so, it is
important to have a synchronized product catalog to ensure that products in the
Commerce catalog map to corresponding items in the Oracle Configure, Price, Quote
catalog.

To identify a product as configurable:

Log in to Commerce.

Click on the Menu icon.

Select Catalog from the menu.

Select the product you wish to identify as configurable.
Click on the SKUs tab of the product detail pop-up frame.

Select the SKU you wish to identify as configurable.

N o g & w dh PR

Check the Configurable checkbox. This displays three further fields you must
complete.

8. Enter the Model information. This should match the Model information of a
configurable product in the Oracle Configure, Price, Quote catalog.

9. Enter the Product Line information. This should match the Product Line
information of a configurable product in the Oracle Configure, Price, Quote
catalog.

10. Enter the Product Family information. This should match the Product Family
information of a configurable product in the Oracle Configure, Price, Quote
catalog.

2-20

ORACLE

Chapter 2
Configure the Integration

11. Click Save. This returns you to the SKU frame where the SKU you updated should be
marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the SKU import
program. From the Catalog page in Commerce, click Manage Catalog and select Import. In
the Import dialog, click Browse and locate the CSV file to import. Click Upload File, click
Validate, and then click Import.

Add Customize button to the Product Details Widget

Administrators must add a Customize button to the Product Details widget, so the button is
visible to Commerce self-service users from the Product Details page for a customizable
product.

To add a Customize button to the Product Details widget:

Log in to Commerce.

Click on the Menu icon.

Select Design from the menu.

Select Product Layout from the layout list.

Delete the Product Details widget from the layout.

Place a new product details widget on the layout.

Click the Settings icon for the new Product Details widget.

From the Element Library, place a Customize button on the new Product Details widget.

© ® N o o ® NP

Publish the changes.

Enable Oracle Configure, Price, Quote Quoting Integration

Follow these steps to enable the Oracle Configure, Price, Quote Quoting Integration within
Oracle Commerce:

Log on to Commerce.

Click the Menu icon.

Select Settings from the menu.

Select Oracle Integrations from the sidebar menu.

Select CPQ Quoting from the dropdown box.

o a0 kM w NP

Check the Enable Integration checkbox.

Add Quote Buttons to the Checkout and Order Details Pages

To make the Oracle Configure, Price, Quote quoting capability available to Commerce self-
service users, you must add the Request Quote widget to the Checkout layout and the Quote
Details widget to the Order Details layout.

The Request Quote widget adds a Quote Notes text box and a Request Quote button to the
Checkout layout.

The Quote Details widget adds a Quote Notes text box populated with any notes associated
with the order to the Order Detail layout. The widget also adds a Reject Quote, Request Re-
Quote, and Accept Quote buttons to the to the Order Detail layout.

2-21

Chapter 2
Use the Integration Functionality

The Quote Details and Request Quote widgets do not display on the layouts by
default. You must first make the widgets available and then place them on the
Checkout and Order Detail pages.

To add quote buttons to the Checkout and Order Details pages:

Log in to Commerce.

Click the Menu icon.

Select Design from the menu.

Select the Components tab on the Design page.

Click the Show Hidden button.

Click the Show icon for the Quote Details Widget and the Request Quote Widget.
Within the Design page, select the Layouts tab.

From the layout list, select Checkout Layout.

© ® N o a M ® NP

Drag and drop the Request Quote widget from the Components menu to the
desired location on the Checkout layout.

10. From the layout list, select Order Details.

11. Drag and drop the Quote Details widget from the Components menu to the
desired location on the Order Details layout.

12. Publish the changes.
Enable Asset Based Ordering

To enable Asset Based Ordering, you must make sure that you have set up the right
integration webhooks and/or SSEs mentioned in the Extending Oracle Commerce.

Use the Integration Functionality

Oracle Configure, Price, Quote provides greater pricing and price quoting features for
Oracle Commerce when the two are used together in an integration.

This chapter provides the instructions on how to use this functionality in Oracle
Commerce that is supported by the integration with Oracle Configure, Price, Quote.

Configure an item

ORACLE

Items marked as configurable in your catalog can be configured either by an agent via
the Commerce Agent Console or by a shopper via the Commerce Storefront.

Items that have been marked as configurable in your catalog may be configured either
by an agent via the Commerce Agent Console, or by a shopper via the Commerce
Storefront. This section provides instructions for both methods of configuring an item.

Configure an Item by an Agent
These instructions detail how an agent can configure an item via the Agent Console.

1. Log onto Commerce.

2. Using Agent Console, search for the shopper for whom you wish to create a new
order.

2-22

Chapter 2
Use the Integration Functionality

3. Click New to create a new order.
4. Select a configurable product from the catalog.

5. Click on the Configure button to open the Oracle Configure, Price, Quote iFrame.
Note: The Oracle Configure, Price, Quote iFrame is optimized for desktop, laptop, or
tablet-size devices and is not recommended for mobile devices. If you need to display on
mobile devices, please contact your Oracle Configure, Price, Quote Implementation team
and inquire about the CPQ Mobile Layout.

6. Select the configuration options required for the order.
7. Click Add to Cart.

Once the configured item has been added to the cart, the agent can complete the order by
going through the normal checkout process.

There is a validation check before the order is processed to ensure that the configuration
options selected are valid. If they are valid, the order process completes and the order is
placed. If they are not valid, an error message is displayed to the agent telling them that the
configuration is invalid and that the order cannot be placed.

Configure an Item by a Shopper
These instructions detail how a shopper can configure an item via Commerce Storefront.

Shopper selects a configurable item from the product catalog.

Shopper clicks on the Customize button which opens the CPQ iFrame.

1.
2.
3. Shopper selects their desired configuration options for the item.
4. Shopper adds customized item to their cart.

5.

Shopper goes to checkout and provides shipping and payment details.

There is a validation before the order is processed to ensure that the configuration options
selected are valid. If they are valid, the order process completes and the order is placed. If
they are not valid, an error message is displayed to the shopper telling them that the
configuration is invalid and that the order cannot be place. The shopper is then unable to
place the order until the configuration options have been changed and the configured item
passes the validation check.

Request a Quote

ORACLE

With Oracle Configure, Price, Quote enabled in the integration price quotes may be
requested for one or more items.

Quotes may be requested for one or more items on an order either by an agent from within
the Agent Console, or by a shopper from the checkout page for their order. If you are also
using Oracle Configure, Price, Quote Configuration functionality, the order may contain a
combination of configured and non-configured items.

Request a Quote by an Agent

An agent can request a quote on one or more items in an order from the Commerce Agent
Console. The agent must follow these instructions to request a quote:

1. Log onto the Commerce Agent Console.
2. Search for the shopper for whom you wish to generate a new quote.

3. Click New to create a new order, or select an existing unfulfilled order for the shopper.

2-23

ORACLE

Chapter 2
Use the Integration Functionality

Once you have an order with items in the cart, click on the Request Quote link in
the order edit page. You can switch between the Request Quote page and the
Create Order page by clicking on the appropriate link.

Add text to the Quote Notes text box as desired.

Click on the Request Quote button.

Once the agent has submitted the quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle Configure, Price, Quote
for a decision on the quote. The order status is changed to “Pending quote”. When
an order is in Pending status, the agent cannot perform any operations on the
order.

A confirmation email is sent to the shopper informing them of the status of their
order.

Once a response is received, the order status changes to “This order is a quote”,
and the agent then has a number of options about how to proceed. The agent can:
The agent can:

* Accept the quote: If the shopper is satisfied with the quoted price returned
from Oracle Configure, Price, Quote, the agent can accept the quote on their
behalf by clicking on the Accept button and proceeding with the order as
normal.

Once payment information has been entered and the order placed the order
status changes to “Submitted for fulfillment”. At this point the Update Quote
webhook is triggered and Oracle Configure, Price, Quote is informed that the
guote has been accepted.

At this stage the agent can click on the Edit Order button, but the only edits
allowed to the quote are changes to the shipping group, or the application of
shipping discounts or promotions. The agent may not add or remove items
from the cart, or change the quantities of items included in the order. The order
status changes to “Order being amended” until the agent clicks on the
Complete Order button.

* Request a requote: If desired, the agent can enter more details in the
Request Quote textbox and click on the Request Requote button to request an
updated quote. When the agent requests a requote the order status changes
to “Pending quote”. When an order is in Pending status, the agent cannot
perform any operations on the order.

* Reject the quote: The agent can click on the Reject Quote button to reject the
guote. This cancels the shopper’s order and the order status changes to “this
guote has been rejected”.

Note: The response to a quote request includes provision for an expiry date
for the quote. If the quote has expired the Accept Quote and Reject Quote
buttons are disabled, but an agent can request a requote for the order.

Once the agent responds to the quote a confirmation email is sent to the
shopper informing them of the status of their quote.

Order statuses relating to quotes are included in the dropdown list of order statuses in
the Order Details section of the Order Search page.

Request a Quote by a Shopper

A shopper can request a quote on one or more items in an order from the checkout
page. The shopper must follow these instructions to request a quote.

Add the desired items to the shopping cart.

2-24

Chapter 2
Use the Integration Functionality

2. Proceed to the checkout page.
3. On the checkout page, enter supporting details in the Request a Quote text box.
4. Click the Request Quote button.

Once the shopper has submitted their quote request, the Request Quote webhook is
triggered and all relevant information is passed to Oracle Configure, Price, Quote for a
decision on the quote.

When a decision is made about the quote, the order is updated and the shopper then has
three options about how to proceed.

They can:

* Accept the quote: This means the shopper is satisfied with the quote and they may
continue through the purchase process with the prices provided. The checkout page is
displayed and the shopper may enter their shipping details and proceed with payment.

* Reject the quote: This means that the shopper has rejected the quote provided by CPQ
Cloud, and the order is canceled.

* Request a requote: The shopper can use the Request Requote text box to provide
further information and request an updated quote.

Use account-specific pricing for configured items

ORACLE

Account-specific prices configured on Oracle Configure, Price, Quote can be displayed in
Commerce.

Account-based shoppers can obtain account-specific prices configured on Oracle Configure,
Price, Quote and display these prices in Commerce. This topic explains the concepts behind
this feature.

Formerly, the Oracle Configure, Price, Quote iFrame would open in an item configuration as
part of anonymous session. All details in the Oracle Configure, Price, Quote page, then, were
independent of the logged in shopper/contact/account. Account-based shoppers can now
obtain account-specific prices configured on Oracle Configure, Price, Quote and display
these prices in Commerce. This is possible because the iFrame displayed on Commerce
obtains the context of the related account as well the contacts associated with it so that the
correct account-based pricing information is returned to Commerce.

For example, consider that an account-based shopper logs in and selects to purchase a
configurable computer package. The prices that Oracle Configure, Price, Quote returns to the
shopper are specific and unique to that shopper's account. The pricing that is specific for one
shopper is not visible to another shopper. The shopper then changes the configuration of the
computer package as needed, enters the quantities needed, and finally submits the order. In
the case of an Agent configuring the package, the agent also sees the account-specific
details when configuring a price.

With the Commerce/Oracle Configure, Price, Quote configuration integration enabled,
Commerce sends different criteria to determine and obtain the account-based price of the
configuration maintained on Oracle Configure, Price, Quote.

Understand a user case as well as the workflow used to obtain correct account-based
pricing

An example of a user case where a shopper (or agent) would want to obtain account-based
pricing could go something like this:

2-25

ORACLE

Chapter 2
Use the Integration Functionality

* The shopper selects a commerce site and browses through the items in the
catalog.

* The shopper selects a configurable item and clicks on the Customize button,
which opens an iFrame allowing them to customize/reconfigure the item.

* The shopper configures the item and expects to see the prices for the items which
only that customer would be allowed to see for that account.

» The shopper places the order with the customer-specific pricing. The shopper,
after submitting the order and within the designated remorse period, is able to
update the configurations of the items as well as receive the customer specific
pricing for those items.

» The shopper can cancel this order containing customer specific priced items
(within the remorse period).

* The shopper can carry out returns and refunds.
* The shopper can exchange within the same configured item(s).

Some variations to this use case could include:

» The shopper gets the account specific pricing but when shopper account details
change, the adjusted price specific to that account would appear.

* An agent placing an order for an account based shopper gets the account specific
pricing specific to that shopper.

The workflow used to obtain the correct account-specific pricing is the following:

e The store sends the Account |D(Customer |ID, Custoner Nane) through the
Configure Product iFrame. The shopper's account | d has been encrypted using
the SSE and the encrypted details are what is sent to the Oracle Configure, Price,
Quote iFrame. Other properties like model, product line, locale, currency are not
encrypted.

* The calls made to Oracle Configure, Price, Quote at this point internally call the
Oracle Configure, Price, Quote Price API.

* The iFrame shows the account specific pricing for the account based on the
account I d.

* The Price API looks for any customer pricing rules defined in Oracle Configure,
Price, Quote and returns the correct account-specific pricing for that customer
based on the accountld. If there are no prices configured specifically for the
customer, then they are presented with the default prices.

A sample widget can be customized by implementers to encrypt and pass
additional properties along with the account | d. The re-configuration flow works as
it already exists.

The main purpose of this workflow is to pass the customer account/organization
details to the Oracle Configure, Price, Quote system and calculate the customer-
specific price (if any pricing rules are defined).

The existing integration components should retain their existing functionality (i.e. the
customer/system implementer should be able to switch as to whether they are using
anonymous or customer specific pricing).

With this workflow, it is assumed that there is data synchronization of Customers
(Commerce account-based customer accounts) across Oracle Configure, Price, Quote
and Commerce. Oracle Configure, Price, Quote is the mechanism that has the ability

2-26

ORACLE

Chapter 2
Use the Integration Functionality

to set up rule-based pricing which can be customer specific. The customer specific pricing
rule(s) should be the source for the account-based pricing of the item. Finally, there is a
check done that is part of the integration which makes sure that the logged-in user is
validated.

Note: A customer can use Oracle CDM (Oracle Customer Data Management) to maintain
that the accounts (organizations) are synchronized between Commerce and Oracle
Configure, Price, Quote or they can just use the Commerce accounts. The account | d that is
passed in the integration flow varies based on the implementation model.

Understand how Commerce and Oracle Configure, Price, Quote support account-
specific pricing

To be able to obtain account-specific prices configured on Oracle Configure, Price, Quote and
display it on Commerce via the returned iFrame, you need the iFrame to be extended to
handle various attributes as part of getting the price from Oracle Configure, Price, Quote. By
extending these attributes, you can then display the account specific pricing given by the
Oracle Configure, Price, Quote system.

The cpg- confi g-val i dati on-app SSE now validates the additional account | D from the

get Confi gurati on call made to Oracle Configure, Price, Quote to find the profile associated
with the order before calling the Submit Order endpoint. An appropriate error message is
returned if the account | d does not match the values of the or gl d of the profile in or der. j son.
By passing these parameters from Commerce to Oracle Configure, Price, Quote during the
Configuration Page launch, the Pricing logic in Oracle Configure, Price, Quote can be
triggered within the Configuration user interface. Commerce provides the initial ability to pass
the Account ID, but an implementer can extend this to pass any other parameters from
Commerce that Oracle Configure, Price, Quote can understand.

The integration takes an Access Token Based security approach to ensure that prices meant
for users of one account are not visible to users of a different account. The key features of
using this approach are the following:

e The authentication into Oracle Configure, Price, Quote continues to be an anonymous/
guest user method as it is today.

e There is no need for user mapping between the Commerce user and Oracle Configure,
Price, Quote user as well as no need for additional user maintenance between
Commerce and Oracle Configure, Price, Quote.

e The approach follows an established approach based on Assets Modify Punch-In.

SSE flow for Store and Agent
The following describes the SSE flow for Store and Agent

* When an account-based customer clicks on Customize for a product, the SSE endpoint
gets triggered.

* The account | d of the account-based user and other configurable details like model,
product_line, product_family, etc. get passed to the SSE.

e The validation of the account | d takes place first whether the logged in customer is
associated with the account | d being passed or not.

e If the validation is successful, accessTokenDat a is generated containing the account | d
and the expiration time which is then encrypted and signed with the private key to form
the accessToken.

2-27

ORACLE

Chapter 2
Use the Integration Functionality

* A query string is formed using accessToken and another configurable list of
parameters. This is then appended to the base URL and the Oracle Configure,
Price, Quote iFrame that is launched with the account-based prices.

e The account | d is decrypted by Oracle Configure, Price, Quote using the Public
key. The true account | d is then determined and prices are shown as per the
pricing rule setup for this account | d.

The following illustrates a sample request:

{
"account!d" : "or-100001",
"configurabl eSkuDetails" : {
“currency" : "USD',
“locale" : "en",
“model " : "sku50001",
"product line" : "laptopConfiguration",
"product famly" : "Laptop"
1
}

The following illustrates a sample response to that request:

{ "queryString":

" _bm session_currency=USD& bm sessi on_| ocal e=en&mdel =sku50001&pr oduct |in
e=l apt opConfi gur ati on&product _fami | y=Lapt op&segnent =l apt op& from part ner=t

rue&accessTokenDat a=%/BY22expi ryTi me%22%38A%222019- 11- 06 T15%3A40%BA4992B05%
3A309R22%R2C+

9%22confi gAttrPunchi nVal ues%22%8A% BYR2account | d%22%3A%220r - 100001%22% D%’ D
&publ i cKeyVar Name=shagul _rsa_publ i c&accessToken=xboKlI LOYM 1R1l ERTBKzzf FbyV
AWI5bZgk VWK92Bf 71YQD Yl BulGZ5aZay%2B5FS338j 0Cl s8C7BIRr JI RXXknd1U4zgqf PD2NInf

bYzxCel hFpbwdau6n88qVHEW %2 BPCLz UJKr wIdNxuTd9078ZL4pKWBg9nFhpnZcNec %2 FRxpH
M VO2BYmAS2i S51 Zt 7apTkt 9%2Bd%2BDDvnBYO0cnyEyf webhTj xKho904dJ !l dOpf 9%2BU3VKCNI h
MRM oeFFCskhQNi gA8gyj UganyBly%2BgZ@VKqo84r YsPnj CHvOF5z %2 BA] MF5FysbhGXLIAF
PAczACuLhn1Xr nDj j YMD6T26ey2d%2BQoKI zGgM sg93D¥8D" }

SSE flow for validating the account ID

The cpg-config-validation-Iib SSE has the functionality to validate the account 1 d
(part of External Data) from the get Conf i gur ati on call to Oracle Configure, Price,
Quote with the organization ID of the account-based profile associated with the order
before calling the Submit Order endpoint.

Understand best practices for using account-specific pricing

Although the integration allows for account-specific pricing, it does not, however, allow
for re-pricing of configured items, when any of the following conditions occur:

e The price list group (currency) is changed by the shopper

e An anonymous user logs in which results in a change of price list group (for
example, an anonymous shopper logs in as an account-based shopper)

e The account based shopper changes the current account in context

Simple (i.e., non-configured) items are re-priced but configured items are not. A
shopper cannot even re-configure the item to get the updated price. This is because
Oracle Configure, Price, Quote does not accept secure punch-in attributes during the

2-28

ORACLE

Chapter 2
Use the Integration Functionality

process of re-configuring an item. Unfortunately, the only available option is to delete the
configured item and add it again as a fresh configuration.

To avoid inconvenience to the shopper, it is recommended that you add an information
message to your custom widgets. The message should be seen when an anonymous
shopper tries to add a configured item to cart, (for example, when they click the Customize
button or when they are on the Product Details page. The message should suggest that the
shopper first login and then do the configuration.

Set up and configure Commerce and Oracle Configure, Price, Quote for account-
specific pricing

Use the following procedures to set up and configure Commerce and Oracle Configure,
Price, Quote for the account-specific pricing feature:

Configure Oracle Integration for account-specific pricing

Use the following steps to configure Oracle Integration for account-specific pricing while using
the Commerce/Oracle Configure, Price, Quote integration:

» Download the Oracle Integration packages found in the OCCS-
CPQ_CONFI GURATI ON_I NTEGRATI ON_4. 0. par package file from Oracle Marketplace or My
Oracle Support.

* Import the package into the OIC Environment
» Configure the Oracle Configure, Price, Quote Connection in OIC.

e getConfigurations (4.0) is used to validate configuration and pricing from Oracle
Configure, Price, Quote.

For more information on using Oracle Integration, refer to the product Help Library.

The next steps you need to complete are downloading and configuring the required Server
Side Extensions (SSEs) used for account-specific pricing. There are three SSEs used by the
integration to support this. These are the following:

e cpg-config-validation-app.zip

e cpg-config-punchin-store. zip

e cpg-config-punchin-agent.zip

The information that follows describes how to download and configure these SSEs.
Download and configure cpg- confi g-val i dati on-app. zi p

Use the following steps to download and configure the cpg- confi g-val i dati on-app. zi p
Server Side Extension for account-specific pricing while using the Commerce/Oracle
Configure, Price, Quote integration:

* Login as Administrator to Commerce

* From the Admin interface, download the Server Side Extension (SSE) cpg- confi g-
val i dati on- app. zi p by clicking Design - Developer - Server-Side Extensions. This
SSE triggers the Configuration integration just setup on Oracle Integration.

e Unzip the file.
e Update the confi g. son file with the Oracle Integration Hostname and Port information.

* Also, a the dd extension environment variables for O C_USERNAVE and O C_PASSWORD
using the Admi n endpoint

2-29

ORACLE

Chapter 2
Use the Integration Functionality

* Run the Node Package Manager to install in the .ZIP contents in the root folder
e Zip the contents in the root folder.
* Upload to the Extension Server using the ser ver Ext ensi on endpoint

Download and configure cpg- confi g- punchi n-store. zi p and cpg- confi g-
punchi n-agent. zi p

Use the following steps to download and configure the cpg- confi g- punchi n-
store. zi p and cpg- confi g- punchi n-agent .. zi p Server Side Extensions for account-
specific pricing while using the Commerce/Oracle CPQ integration:

* From the Commerce Admin interface, download the cpg- confi g- punchi n-
store. zi p and cpg- confi g- punchi n-agent . zi p Server Side Extensions by
clicking Design - Developer - Server-Side Extensions. These use the CPQ
Punchi n Li b to generate a query string with an encrypted account | Dthat is
passed to the CPQ iFrame. This enables CPQ to show account specific prices.

* Unzip the files.

* Generate a public and private key using the OpenSSL utility.
* Place the private key file in the Keystore folders.

» Specify the public key in the confi g. j son files.

* The public key is also added to the CPQ Integration Center under Authentication
Certificate.

* Run NMP to install the .ZIP files contents in the root folder
e Zip the contents in the root folder
* Upload to the Extension Server.

Configure Commerce for account-specific pricing with Oracle Configure, Price,
Quote

Use the following steps configure Commerce for account-specific pricing while using
the Commerce/Oracle Configure, Price, Quote integration:

e Set up the external pricing validation webhook in Commerce: / ccst or ex/
custom v1/val i dat eCPQConfi gurati ons
Do this by going to Settings - Web APIS - Webhook in the Admin user interface.
Choose the External Price Validation function APl and enter the requested
information.

e Enable and configure the Commerce/Oracle Configure, Price, Quote Configuration
Integration by going to Settings - Oracle Integrations in the Admin user interface.
Select the Oracle Configure, Price, Quote integration from the list.

e Modify widgets in the following layouts:
— Store layout: Product Details page

— Agent layout: B2B Checkout Layout - Accordion element: Search and Add
Items to Cart popup stack

These take the account | Ds of the user and display the appropriate prices for that
account.

You also need to have synchronized product catalogs between Oracle Configure,
Price, Quote and Commerce. The models available in Oracle Configure, Price, Quote
need to have a corresponding externally configurable SKU in Commerce. Also, make

2-30

Chapter 2
Use the Integration Functionality

sure you have set up the accounts and desired users in Commerce and have set up the
proper pricing rules in Oracle Configure, Price, Quote (since it is the provider of the prices to
sent to Commerce).

Finally, double check that you have setup pricing rules on Oracle Configure, Price, Quote
based on a parameter (for example, Account Id) and have also added the public key to the
Integration Center - Authentication Certificate in Oracle Configure, Price, Quote.

Use multi-level items

ORACLE

This integration features support for a hierarchical structure for items available to shoppers
for purchase.

This integration provides support for a hierarchical structure for items available for shoppers
to purchase. Commerce supports an “n-level” hierarchical configuration model. This means

that a configured item can contain sub-items that are also configurable items and that can in
turn contain sub-items that are configurable items.

An example of this would be a bundled package for a cellphone. The bundle itself would be
the top-level item. The cellphone would be a configurable sub-item, but this could then itself
have configurable sub-items, such as an SD card. Commerce can provide a top-level price

for the bundle, but can also provide a price breakdown for each configurable item within the
bundle.

If a shopper adds a multi-level item to their cart, Commerce works with Oracle Configure,
Price, Quote to display the information about the multi-level item in the shopper’s cart. The
cart displays a total price and an item price for any configurable sub-items. If the shopper
changes any of the configurable sub-items, the price displayed for that sub-item changes and
the total price is also amended accordingly.

When a shopper clicks on the Place Order button a validation check is carried out to ensure
that the prices displayed for the configured items is still applicable. If it is then the order can
proceed. If it is not, a message explaining this is displayed to the shopper and the cart is
reloaded with up-to-date price information included for the configured items.

You can create a multi-level hierarchy in your catalog using either a recommended items
model or a bill of materials model. You must refer to the relevant Oracle Configure, Price,
Quote documentation for instructions on how to do this.

Use Quadplay/NPlay items

A standard, or single play, configured item represents a single service, such as Mobile Phone
or IPTV that has a single set of configuration information, i.e. is based on a single
configuration model in Oracle Oracle Configure, Price, Quote.

A Quadplay or NPlay configured item represents a package or bundle that combines multiple
services in a single purchase and contains multiple sets of configuration information, i.e. is
based on a single configuration model that also contains other configuration models in Oracle
Configure, Price, Quote.

As an example, consider a case where the configured bundle contains 4 separate services
(or ‘plays’) such as Landline, Internet, Mobile and IPTV. In this example, the bundle is called
the Get4 Bundle. Unlike a standard configured item, the Get4 Bundle, as a Quadplay or
NPlay configured item has configuration information at the following levels:

* Root level - in this example, the Get4 Bundle level.

* Branch level - in this example, the Landline, Internet, Mobile and IPTV levels.

2-31

ORACLE

Chapter 2
Use the Integration Functionality

With the support of Quadplay/NPlay configured items, the shopper adds the Get4
Bundle to the Oracle Commerce cart as a standard multi-level hierarchical configured
item. This item also has the ability to be reconfigured if needed. The item is then
validated and checked out as usual. For more detailed information working with
Quadplay and NPlay items, refer to CX Communications - How to Customize and
Extend — Configure NPlay Bundles with Oracle Configure, Price, Quote System
Configuration white paper on the My Oracle Support site.

Understand Commerce Cloud Administration support for configuration metadata

In Oracle Configure, Price, Quote, a single model is also able to support multiple
NPlay offers and additional versions of those offers. For example the same Model,
Product Line, and Product Family might contain 3 variations on the same NPlay
bundle such as the following:

e Starter Home Bundle
e Total Home Bundle
e Friends and Family Bundle

The same model might also support multiple versions of those bundle variations such

e Starter Home Bundle
e Starter Home Bundle 2017

e Starter Home Bundle 2018
and

» Total Home Bundle
e Total Home Bundle 2017

e Total Home Bundle 2018
and

e Friends and Family Bundle
e Friends and Family Bundle 2017
e Friends and Family Bundle 2018

To work with these types of variations, when the shopper selects a version of a bundle
in Commerce and chooses to configure it, the configuration request needs to include
extra information to allow the configurator to load the correct version of the
configuration model. This extra information is provided in what is called configuration
metadata. This data is passed along as a collection of key value pairs and aid in
helping to identify the correct bundle.

Understand configuration metadata details

Where a Oracle Configure, Price, Quote configuration model supports multiple
products and product variations, this information may not be sufficient to pre-load the
order iframe with the correct starting point. In such cases extra information (i.e.,
configuration metadata) can included in the iframe URL created by Commerce.

Again, think of configuration metadata as a collection of one or more key value pairs
that identifies the correct starting point for the configuration model. Configuration
metadata can be static or dynamic. Static configuration metadata is manually entered
by the Commerce Cloud Administrator and stored on the SKU record in Commerce.
Dynamic configuration metadata can be captured by the PDP Ul widget and can be
entirely implementation specific.

2-32

ORACLE

Chapter 2
Use the Integration Functionality

Note: Dynamic configuration metadata is not restricted to being captured on the PDP Ul
widget. The dynamic configuration can be derived from any relevant information such as
shopper profile.

This means that merchants can decide what dynamic key value pair data they want to
capture and pass in the configuration request for any SKU. Dynamic configuration metadata
can be mandatory or optional (i.e., in some cases the shopper MUST enter a value for a key
and in some cases they may optionally enter a value for a key).

Configuration metadata lets merchants define a single model for all variants of a configurable
product and at purchase time pre-load the configuration model at the appropriate starting
point based on the shopper’s selection in Commerce.

The configuration metadata feature builds on the already existing support of the NPlay
feature. Earlier there was support of the purchase of NPlay products but only where there is a
one-to-one relationship between product and model (i.e., each NPlay product had to have its
own unique corresponding configuration model in Oracle Configure, Price, Quote).

Enter configuration metadata via the administration user interface

To provide the configuration metadata needed for processing an order, the

confi gurati onMet adat a property is exposed so that you can enter the information in the
Commerce Cloud Administration interface. To get there click Catalogue then Product and
finally SKU. This Administration panel lets you view, add, delete, and edit the Configuration
Metadata values as required. Any request from Commerce to configure an item will include
configuration metadata where it is available.

An example of using configuration metadata might be a case where a Commerce Cloud
Administrator receives an email from a colleague in Oracle Configure, Price, Quote to advise
them that the configuration model with the correct configuration metadata for the Family Plan
products SKUs is now complete. The email contains the information to further configure the
SKU. The SKU is called sku_fp_001 and the information provided is the following:

e Product Family — mobile
* Product Line - bundles

e Model - sku_fp_001

* Bundle Version - 18.1

e Region - EMEA

The process for entering the configuration metadata via the Admin interface would go
something like the following:

1. Navigate to the Commerce Cloud administration user interface panel and select Catalog.

2. Select the Family Plan product and select the SKU sku_fp_001 which is currently
flagged as inactive.

3. Click on Externally Configurable SKU. You see the text “Oracle Configure, Price, Quote
can configure this as a part of a complex product.”
Note: For any SKU where you want to add configuration metadata, you must make sure
that Externally Configurable SKU is checked when you first begin entering data. A new
input property will be displayed which will allow you to begin to enter one or more key
value pairs of data.

4. Slide the panel down until you see the Product Family, Product Line, and Model fields
appear on the panel. Enter all of the correct metadata details (the ones sent to you in the
email from your Oracle Configure, Price, Quote colleague) manually.

2-33

Chapter 2
Use the Integration Functionality

5. Slide the panel down to see the Configuration Metadata table, click the Add button
to add a row.

6. Add Bundle Version to the Name field. In the field next to Bundle Version, add 18.1
(as the bundle version number). You can press Tab or Enter to create a value
entry. Click the Add button when done. A new row in the metadata value table
appears.

7. Add Region to the Name field. In the field next to Region, add EMEA. You can
press Tab or Enter to create the value entry.

8. Slide the panel back up to the top of the SKU ID panel, click Active, and then click
Save.

At this point, you have entered all of the details received from your Oracle Configure,
Price, Quote contact. This information must be entered correctly. The details that are
entered are not seen by the customer. The information is designed to populate the
config iframe window with the correct information. As a final step you activate the SKU
and save the details.

Note: Since the configuration metadata must be entered manually via the Commerce
administration console, keep in mind the following rules:

1. There is no support for versioning of configuration metadata so when an SKU
record is imported, make sure it does not contain any configuration metadata that
should replace any existing configuration metadata assigned to that SKU.

2. If the imported SKU record includes configuration metadata (columns present in
the import file) but there are no values included then any existing configuration
metadata will be deleted.

3. If the import SKU record does not include configuration metadata (no columns
present in the import file), then any existing configuration metadata should be
retained.

A Commerce administrator can view, delete, edit, or add Configuration Metadata key
value pairs for any SKU where the _Externally Configurable SKU_ property is
selected. A Configuration request from Commerce to Oracle Configure, Price, Quote
always includes the configuration metadata set in Commerce for that SKU.

To work with configuration metadata you must have the following prerequisites:

* Oracle Commerce account
* Oracle Integration Cloud account

» Oracle Configure, Price, Quote account

Assign shipping groups to sub-items

ORACLE

You can assign different shipping groups to product configuration sub-items and more.

With a configurable item, you have the ability to assign different shipping groups to
product configuration sub-items. Different shipping groups can be assigned to different
levels in a multi-level configurable item.

Previously, you could only assign a shipping group at the root level. Now, with a
configurable item you have the ability to assign different shipping groups to sub-items
of the root item. Different shipping groups can now be assigned to the following levels
in a multi-level configurable item:

* Anitem contained as the root item

2-34

ORACLE

Chapter 2
Use the Integration Functionality

* Anitem that may be contained at one or more branch items of the root item

* Anitem that may be contained at one or more of leaf items of a specific branch

Formerly, you assigned a shipping group at the root item level. The assumption was that the
integration layer managed updates to the "shipping group" relationship object. The result of
this was something where "if all sub-items are shipped then set the shi ppi ngG oupl t em
status on the root item to the status SHIPPED."

The original method did not work if you sold configured items that are a combination of goods
and services and the services that needed to be assigned to separate shipping groups. It is
important that customers selling nPlay bundles be able to assign each "play"” to its own
shipping group. As an example, you should reasonably expect to be able to assign separate
shipping groups to, say, a handset (shipped to your office via priority mail), a router (shipped
to your home via standard mail) and set top box (shipped to your vacation House via
standard mail).

The ability to assign different shipping groups at different levels is also important for the
Cancel In-flight order feature which lets you cancel In-Flight orders. An order which has been
submitted but not fulfilled is considered to be In-Flight. When an In-Flight order is canceled,
the process results in the creation of a new Cancel Order and may also result in the creation
of a Return Request for items that may have already shipped to the shopper and must be
returned, or at least refunded. In order to determine which items have to be returned, the
system must be able to determine the shipping status of each item in the configuration.

In summary, all items in a multi-item configuration hierarchy from the root to the leaf level are
assigned to a shipping group. You must also be aware that the assignment of shipping
groups is also dependent on other key Commerce product features that directly impact the
assignment of shipping groups.

For customers that are migrating to a release of Commerce that has this shipping group
feature, the assignment of the shipping group logic is not adapted automatically. They will
have to modify their O i ent Confi gur ati on settings. For first time users of the new release,
the logic is adapted automatically.

Finally, logic changes are adapted only when the customer is using the Commerce user
interface for all front-end behavior. If the customer is making endpoint calls directly, then they
can call the or der s endpoint with the required payloads without worrying about modifying
Cdient Configuration.

Understand the details of assighing separate shipping groups to sub-items

When assigning shipping groups to sub-items, keep in mind the following:

* A shippabl e product property is provided and should be set to indicate that a product,
whether a hard good or service, can be physically shipped to a purchase. When the
shi ppabl e product property for a product is set to FALSE, it can be assigned to a Virtual
Shipping Group so that Oracle Commerce does not attempt to calculate shipping charges
for this product..

» Ifaproduct is a service then the physical address where the service is to be provided is
provided by the fulfillment system based on the service account assigned to the item.
This information is also provided by the client. Address information is mandatory for
virtual shipping groups as it is required for tax calculations.

» If the product is a non-shippable good, (for example, a movie download, extended
warranty etc.), address information is again mandatory as it is required for tax
calculations.

2-35

ORACLE

Chapter 2
Use the Integration Functionality

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs, in
addition to using Commerce's default address formats, you can also use the REST
API to create multi-country custom address formats. This lets you create country-
specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

* Customize Address Formats using the API in Extending Oracle Commerce
* Work with address types in Extending Oracle Commerce

* Account Details in Using Oracle Commerce

* Work with account addresses in Using Oracle Commerce

* Work with account registration requests in Using Oracle Commerce

An asset abl e product property is provided which identifies those products that are
sold as a service or subscription (for example a mobile phone tariff, magazine
subscription etc). Assetable products must be assigned to the following when
purchased:

e Customer Account
e Service Account

* Billing Account

» Billing Profile

These type of products are then assigned to a Virtual Shipping Group. Even if the
product is a good (for example, a physical product), it must be assigned to a virtual
shipping group This is because in these circumstances the Commerce purchasing
process is not responsible for calculating shipping charges and the physical address
where the item must be shipped but will be based on the service account assigned to
the item.

The onl i neOnl y property is provided to identify products that can be purchased online
but cannot be picked up in store. This means that an item can only be assigned an

i nSt or ePi ckupShi ppi ngG oup value if the onl i neOnl y property value for that product
is FALSE.

In summary, configured item shipping groups are assigned at all of the following levels
of the configured item:

* Root item of type confi gur abl eComrer cel t em
e Branch items of type confi gur abl eSubSkuComer cel t em

e Leaf items of type subSkuComer cel t em

The assignment of shipping groups to configured items is then dependent on whether
individual products are one of (or a combination of) the following types:

e Shippable
e Assetable

* Available for purchase online only

2-36

Chapter 2
Use the Integration Functionality

Being sold as a package (sol dAsPackage SKU property). The sol dAsPackage property is
available only where the configurable value for the SKU is TRUE. When sol dAsPackage =
TRUE, this means that the configurable item is purchased, shipped, returned, and
exchanged as a single item.

Understand the store features related to assigning shipping groups to sub-items

The following store features are provided to support the assigning of shipping groups to sub-
items:

The ability to assign all items in a configuration hierarchy to an appropriate shipping
group type.

The ability to change the assignment of shipping groups at all levels in a configuration
hierarchy.

The ability to update the tax calculation process to support shipping group assignment at
all levels of a configuration hierarchy.

The ability to update the shipping charge calculation process to support shipping group
assignment at all levels of a configuration hierarchy.

The ability to update to the proportional application of promotion discounts to all items in
a configuration hierarchy

See the rest of the topics in this section for more information.

Understand tax calculation and shipping charges when assigning shipping
groups to sub-items

When assigning taxes and shipping charges for shipping groups assigned to sub-items, you
assign different calculating processes from normal customer calculation processes.

ORACLE

Understand the tax calculation process when assigning shipping groups to sub-items

The processes for calculating taxes and shipping charges for shipping groups assigned to
sub-items differ slightly than the normal customer calculation process. In summary, the
method used is that if sub-items are shipped separately, then the root item and the child items
are sent as different items to the taxation system which contains the cost of that item alone
and no additional item in the package.

This means that there are two ways that tax calculation occurs with a shipping group. The
first way is that the price of the fully configured package is sent to the taxation system as all
the items in the product configuration have to be delivered to a single place.

In determining the correct amount of tax payable on a product, the four key parameters
passed to the tax calculator are the following:

anmount - the amount paid by the shopper
quantity - the quantity of the item being purchases
shi ppi ng char ge - the shipping charge that has been calculated for the item

t axCode - the tax code assigned to the product

For configured items, tax is calculated for each line item in the configuration hierarchy but the
amount passed to the tax calculator is always be the external price returned from the
configurator for that item, in the context of the overall configuration.

2-37

Chapter 2
Use the Integration Functionality

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the tax calculator would be zero.

The net result of this is that, although tax will be calculated for each item in the
configuration hierarchy, all of the appropriate data will be passed to the tax calculator.
It is possible, however, that the amount of tax paid by the shopper may be skewed in
circumstances where the configured item contains products with different tax codes.

Understand the shipping charge calculation process when assigning shipping
groups to sub-items

To determine the correct shipping charges payable on a product, the key parameters
passed to the shipping calculator are the following:

» shi ppi nghet hod - the shipping method selected for the item.
* quantity- the quantity of the item being shipped.

e amount - the amount paid by the shopper for the item.

For configured items, shipping charges are calculated for each line item in the
configuration hierarchy. The amount passed to the shipping calculator, however, will
always be the external price returned from the configurator for that item, in the context
of the overall configuration.

For any configured item, the price of a sub-item may be included in the price of the
root item, so that the amount passed to the shipping calculator would be zero.

The net result of this is the following:

» Shipping charges are calculated for each item in the configuration hierarchy and
all of the appropriate data is passed to the shipping calculator. It is possible,
however, that the amount of shipping charges paid by the shopper may be skewed
in circumstances where the configured item price does not accurately reflect the
actual proportional amount paid for an item in the configuration hierarchy.

* Shipping surcharges are included for any item in the hierarchy where such
surcharges have been assigned to that product in Commerce.
Note: The charges are only included for the root item if the whole configuration is
sold as a package

* A merchant can always choose to apply a shipping surcharge for any item where
there is a risk that the shopper will be undercharged for shipping when a particular
product is purchased as part of a configured item.

* Shipping surcharges are not considered if any item presents itself in a virtual
shipping group as those items are non-shippable and are not required to have
shipping surcharges.

ORACLE 2-38

Chapter 2
Use the Integration Functionality

Understand shipping charge and tax calculation when assigning costs to
items sold as a package

ORACLE

When assigning costs to items sold as a package, you assign processes for calculating
shipping charges and taxes that differ slightly from normal customer calculation processes.

Understand the shipping charge calculation process when assigning costs to items
sold as a package

The processes for calculating shipping charges and taxes when assigning costs to items sold
as a package differ slightly from normal customer calculation processes. To determine the
correct amount of shipping charges payable on an item configured as a package, the
following key parameters are passed to the shipping calculator:

* shi ppi nghet hod - the shipping method selected for the item

e quantity - the quantity of the item being shipped

e amount - the amount paid by the shopper for the item

For items sold as a single item (root item) configured as a package, the following occurs:

* The amount passed to the shipping calculator is always the total price for the configured
item.

e The shi ppi ngMet hod passed to the shipping calculator will always be the shipping
method assigned to the root item.

 The quantity passed to the shipping calculator is always be the quantity of the root item.

Shipping charges will be calculated accurately, given that you have decided that the
configured item must be shipped as a unit. Any shipping surcharges assigned to a sub-item
in the configuration hierarchy will not be included in the total shipping charges.

Understand the tax calculation process when assigning costs to items sold as a

package

In summary, the way that tax calculation occurs with a shipping group sold as a package is
that the price of the fully configured package is sent to the taxation system as all the items in
the product configuration have to be delivered to a single place.

To determine the correct amount of taxes payable on an item configured as a package, the
following key parameters are passed to the tax calculator:

e amount - the amount paid by the shopper
e quantity - the quantity of the item being purchased
e shi pping charge - the shipping charge that has been calculated for the package item

« taxCode - the tax code assigned to the product.

For configured items sold as a package (i.e., where the sol dAsPackage value for the root item
= TRUE), taxes are calculated based on the root item only. For configured items sold as a
package, the following occurs:

e The anmount passed to the tax calculator is always the total price for the configured item.

2-39

Chapter 2
Use the Integration Functionality

* The t axCode passed to the tax calculator is always the tax code for the root item.
This means that although taxes are calculated for the configured item, the amount
is based only on the tax code of the root item.

Understand how promotion discounts are applied to multi-level items

Promotional discounts can be applied proportionally to multi-level items.

For a multi-level configured item, promotion discounts must be applied proportionally
across the root and all of the sub-items in the hierarchy.

In Commerce, order level discounts are applied proportionally across all items in the
order (unless an item is specifically excluded from benefiting from such a discount).
For a configured item, a proportional discount must be applied to all items in the
configuration hierarchy. For example if an order level promotion applies a 10%
discount then that 10% discount must be applied to any configured item in the order.

For a multi-level configured item, however, the promotion discount must be applied
proportionally across the root and all of the sub-items in the hierarchy. This applies
only to configured items that are not sold as a package (i.e. where the sol dAsPackage
value on the root item = FALSE).

Add payment details to customer billing profile

ORACLE

You must add payment details to customer billing profiles so that this information is
passed downstream to fulfillment and provisioning systems.

In Telco transactions there is critical contact information that must be passed
downstream to fulfillment and provisioning systems. Based on the Customer Account
Model, this information is the following:

* Customer Account

* Service Account

» Billing Account

» Billing Profile

This topic covers the processes involved in the updating of payment details in a Billing
Profile.

Understand how billing profiles are handled

A Contact (that is a user, shopper, or customer) may have the following information in
Oracle Commerce transactions:

e A Customer Account (Account of type “Customer”).

e Alink to other Customer Accounts. This would occur where the merchant supports
account models such as “Family Account,” “Household,” or “Family and Friends.”

e Alink to one or more Service Accounts (Accounts of type “Service”).
e Alink to one or more Billing Accounts (Accounts of type “Billing”).
e Alink to one or more Billing Profiles.

In this type of transaction model, Commerce has the important ability to create or
update a hilling profile with payment details. This is important because the payment
information for the billing profile needs to be captured and passed on to the primary

2-40

ORACLE

Chapter 2
Use the Integration Functionality

CRM (Customer Relationship Management) system in a PCI compliant manner. For the
Oracle Telco CX Solution, the primary CRM system is Oracle Engagement Cloud (OEC).

Note: In an integration like this, transaction payment details that are stored in the CRM
system are used for recurring payments. This info is pulled by the billing system from CRM.
To compare this with Commerce, Commerce handles one time/upfront payments by
interacting with payment gateways.

At this point in time, Commerce is PCI compliant whereas Oracle Integration Cloud and
Oracle Engagement Cloud are not. Commerce supports the storing of credit cards against a
shopper profile. The card details are captured, however, in the store as part of the checkout
flow and subsequently a tokenized version of the card is obtained from an integrated
payment system as part of the payment authorization process. This token, along with a
masked version of card number and the expiration date are then stored against the shopper’s
profile so that the shopper can easily use the same card for future purchases.

A feature is now supported that offers a generic horizontal benefit to Commerce and
contributes to the Telco specific vertical requirement. This feature uses a store API endpoint
that allows a shopper to store credit cards as part of their profile without actually purchasing
an order. This endpoint can then be used to enable Commerce to pass credit card
information to Oracle Engagement Cloud as part of the shopper billing profile when creating
or for updating accounts in OEC.

Understand the Update Profile endpoint and Generic Payment webhook

As mentioned, Commerce provides an Admin and Agent Update Profile store APl endpoint
that lets you add and store customer credit cards as part of a shopper Billing Profile without
actually purchasing an order.

The name of the endpoint is addCr edi t Car d. The Admin URI for the endpoint is POST /
ccstoreui/vl/current/creditCards/. The Agent URI for the endpoint is POST /
ccagentui/vl/profiles/{id}/creditCards.

The endpoint can be used to invoke Add Card requests multiple times to let you add more
than one card to a shopper Profile. Each new card is then stored against the profile. The
inputs of this endpoint are:

e cardType

* nameOnCard
e cardNunber
° expiryMnth
* expiryYear

Both versions of this endpoint trigger the Generic Payment webhook for a Tokenize operation
on the payment system. The payment system is expected to return a tokenized value of the
card which is then saved against the billing profile. The endpoint then returns back a stored
card ID.

The Admin Get Profile endpoint can then be used to get the token value of the card using the
stored card ID. See Configure Payment Processing and Create a Generic Payment Gateway
Integration for more complete information on this subject.

Add and update a Billing Profile to include a card token

There are two processes/flows that Commerce uses to capture the billing profile information
that can be passed on to the primary CRM system. These are the following:

2-41

ORACLE

Chapter 2
Use the Integration Functionality

» Commerce creates an account(s) for a contact which includes creating one or
more billing profiles.

» Commerce updates an existing billing profile.

To assist in these processes, Commerce provides a Customer Account Model Server
Side Extension (SSE). The sections that follow provide the details on the various
processes and flows that this SSE supports

Understand the OCC to OEC Account Create flow
The basic information on this flow is the following:

e SSE Name: Customer Account Model
* Endpoint Name: Create Accounts
* Flow Name: OCC to OEC Account Create flow

In this process, the SSE first identifies the payment type. If the payment type is Card, a
check is done to see if the token for the card has been passed in (i.e., an existing card
stored on the shopper’s Commerce profile). If the token has been passed in, then a
check is done to see that the basic card information has also been passed in the form
of maskedCar dNunber and expi r yMont h. If the token has not been passed in (i.e., a
new card is being introduced), then a check is made to look for the following “full card”
information being passed in:

e Card Type

* Name on Card

e Card Number

* CVN (card verification number)
* Expiry Month

* Expiry Year

There is also a step in the SSE execution whereby an API call can be made to the
storefront Profiles/Update Profile endpoint to retrieve a tokenized version of the card.
The billing profile information passed to the OCC to OEC Account Create flow
includes:

* Payment Method=Card

* Masked Card Number

e Card Expiry Date

» Tokenized representation of the card

The next section provides details on an update process/flow that the SSE handles.
Understand the OCC to OEC Account Update flow

The basic information on this flow is the following:

e SSE: Customer Account Model

* Endpoint Name: Update Accounts

* Flow Name: OCC to OEC Account Update flow

In this process, the SSE first identifies the payment type. If the payment type is Card, a
check is made to see if the token for the card has been passed in (i.e., there is an
existing card stored on the shopper’'s Commerce profile). If the token has been passed

2-42

ORACLE

Chapter 2
Use the Integration Functionality

in, then a check is made that the basic card information has also been passed in the form of
maskedCar dNumber and expi r yMont h.

If the token has not been passed in (i.e., a new card has been introduced), then a check is
made to look for the following “full card” information:

Card Type

Name on Card

Card Number

CVN (card verification number)
Expiry Month

Expiry Year

The billing profile information passed to the OCC to OEC Account Update flow includes:

Payment Method=Card
Masked Card Number
Card Expiry Date

Tokenized representation of the card

Note: Keep in mind the following additional details regarding the OCC OEC Comms: Account
Update flow:

A check is made to verify that the payment type is credit card/debit card. If it is credit
card/debit card, then a check is made to verify whether cr edi t Car dNunber is masked or
non-masked.

If credit Car dNunber is masked, an additional check is made to verify that the masked
credi t CardNunber and credi t Car dl d values provided are valid. If both are valid, then
only credi t Car dNi cknane is allowed to update. All other fields/properties are not allowed
to update.

If credi t Car dNunmber is unmasked, then the card is considered a new card. Tokenization
occurs with the provided card details is similar to the Create Account flow. The process
ends with the new card and token details stored in CDM.

Understand fields and properties supported by the billing profile

For the credit card or debit card payment type, the following fields/properties are supported:

paymentMethod: “debitcard”/"creditcard”
creditCardNumber (mandatory field)
creditCardExpiryMonth (mandatory field)
creditCardExpiryYear (mandatory field)
creditCardContactName (mandatory field)
creditCardType (mandatory field)
creditCardSecurityCode
creditCardNickname

creditCardlin

For the bank transfer payment type, the following fields/properties are supported:

2-43

ORACLE

Chapter 2
Use the Integration Functionality

e paymentMethod: “bankTransfer”

* bankAccountNumber (This is the only mandatory field for bankTransfer payment
type.)

* bankRoutingNumber

* bankAccountType

* bankAccountName

* bankSortCode

* bankName

* bankAddress

* banklban

* bankSwiftCode

Understand the process changes as seen in the store interface

With a standard checkout flow where the shopper does not yet have a customer
account model and is purchasing a service, the store interface captures the payment
card details. This includes the following:

e The shopper is prompted to identify the payment type. If the payment type is
“Credit/DebitCard,” the shopper is prompted to select either an existing card or
enter new card details.

« Ifitis a new card the user interface captures the following required card
information:

— Card Type

— Name on Card

— Card Number

— CVN (card verification number)
— Expiry Month

— Expiry Year

For a billing profile update checkout flow where the shopper, who does not have a
customer account model and is purchasing a service, the store interface captures the
payment card details. These details include the following:

e The shopper is prompted to identify payment type.

e If the payment type is “Credit/DebitCard,” the user interface captures the following
the required card information:

— Card Type

— Name on Card

— Card Number

— CVN (card verification number)
— Expiry Month

— Expiry Year

2-44

Chapter 2
Use the Integration Functionality

Understand the Customer Account Model

ORACLE

For customers using the Customer Account Model SSE, there are a number of different
account types that can be associated with a shopper within the Oracle Commerce/Oracle
Configure, Price, Quote integration.

If you are using the Customer Account Model SSE, there are a number of different account
types that can be associated with a shopper within Oracle Commerce. To configure the
Customer Account model, use the provided SSE. To do this, click the Design icon in the
Administration user interface. Then click Developer and Server-Side Extensions. Select the
CustomerAccountModel-store SSE and/or the CustomerAccountModel-agent SSE.

Both SSEs enable integration with an external CRM system to retrieve and update the
following:

e Contacts

e Accounts (Customer Billing and Service accounts)
e Account Roles (Admin, Buyer and User)

e Billing Profiles

Finally, the SSEs serve as the API for the pre-built integration with Oracle Engagement
Cloud.

There are three account types available within Commerce relating to billable services,
Customer account, Service account, and Billing account.

The details for these three accounts are captured when an order is placed and their
relationship with the service is maintained after an order has been fulfilled.

In many instances these three accounts may all refer to the same person or organization, but
there may also be instances when they differ, and it is important to understand the
relationship between the different types of account.

In addition to the three account types, there is a Billing Profile, which includes information
such as billing preferences.

All of the information required for the Customer, Service, and Billing accounts, and for the
Billing Profile is captured during the order process in Commerce.

Customer Account

This type of account represents the person or organization that owns the service. It includes
basic customer information, such as name and address and can receive both services and
bills.

Customer accounts are the highest level in the account hierarchy and can perform all
customer, service, or billing functions.

Service Account
This type of account represents the person or organization that receives the service.

The address associated with the Service account defines the physical location where the
service must be delivered. This address is used to verify service and ordering eligibility.

2-45

Chapter 2
Use the Integration Functionality

Service accounts are required when the location and/or party receiving the service
differ from the Customer account. If a Service account is required, it is always a child
of a Customer account. There can be multiple Service accounts associated with a
single Customer account.

A Service account cannot be used to perform any of the functions of a Customer or
Billing account.

Billing Account
This type of account represents the person or organization that pays for the service.

Billing accounts are required when the location and/or party paying for a service differ
from the Customer account. If a Billing account is required, it is always a child of a
Customer account. There can be multiple Billing accounts associated with a single
Customer account.

A Billing account cannot be used to perform any of the functions of a Customer or
Service account.

Billing Profile

A billing profile may be associated with either a Customer account or a Billing account.
It captures information such as billing preferences, method of payment, and contact
details. There may be more than one billing profile associated with a Customer or
Billing account, and the shopper must choose which billing profile to use when placing
an order for a service.

Note: Address information is something used extensively in Commerce transactions.
For all procedures and SSEs that require address information for endpoint inputs, in
addition to using Commerce's default address formats, you can also use the REST
API to create multi-country custom address formats. This lets you create country-
specific address formats to ensure that your address formats align with the
requirements of any external service that you might use. This means that addresses
appearing in profiles, accounts, registration requests, order addresses and more can
be customized. For more complete information on creating custom addresses and
understanding how to use custom address formatting, refer to the following:

* Customize Address Formats using the APl in Extending Oracle Commerce
* Work with address types in Extending Oracle Commerce

e Account Details in Using Oracle Commerce

* Work with account addresses in Using Oracle Commerce

» Work with account registration requests in Using Oracle Commerce

Use Recurring Charge ltems

ORACLE

This integration provides you with the ability to configure items with a recurring charge
that can be passed on in purchase.

This integration enables you to provide items that come with a recurring charge
available for shoppers to purchase. Examples of items that include a recurring charge
include a service such as a data/call minutes/ text message bundle for a cellphone, or
a subscription charge for a cable television package.

Items that include a recurring charge may have just a recurring charge or may have a
recurring charge and a price. If an item has a price and a recurring charge, it is

2-46

ORACLE

Chapter 2
Use the Integration Functionality

assumed that the item is not a service or subscription item. In this case the price represents
an upfront payment and the recurring charge is the means by which the outstanding balance
is paid.

Identification of items that include a recurring charge must be carried out through your Oracle
Configure, Price, Quote Admin account. Please refer to the Synchronize Oracle Configure,
Price, Quote Cloud Parts with Commerce SKUs section of the Implementation Guide
contained in the Integrating Oracle CX Commerce with Oracle Configure, Price, Quote article
on My Oracle Support.

If a shopper adds a recurring charge item to their cart, Commerce works with Oracle
Configure, Price, Quote to display full information about the recurring charges associated with
the order. This includes how much the recurring charge is for, the frequency of the recurring
charge, and the duration for which the recurring charge will be made.

Note: The default value for frequency is monthly and the default value for duration is open-
ended. If either of these is not the right value for the item they must be corrected in the
Oracle Configure, Price, Quote Part for the item.

Items with a recurring charge are not included in order sub-total passed to the shipping
calculator. If a cart contains only recurring charge items the order sub-total passed to the
shipping calculator is zero, which means that no shipping charge is applied to the order.

Configure payment for recurring charge items

Commerce includes several built-in integrations with payment gateways that let your store
accept credit cards, debit cards, gift cards, and PayPal payments. However, these
integrations do not currently support recurring charges. If you wish to sell items with recurring
charges you must use one of the methods set out below to configure Commerce payment
processing to support recurring charges.

Configure credit card payments

Follow these instructions to configure your credit card payment processing to handle
recurring charges:

1. Create a custom credit card payment extension.
For detailed instructions about performing this step, refer to Create a credit card
extension.

2. Install the custom credit card payment extension.
For detailed instructions about performing this step, refer to Install the extension and
configure the gateway.

3. Enable the payment gateway.
For detailed instructions about performing this task, refer to Create a Credit Card
Payment Gateway Integration and Create a Generic Payment Gateway Integration, .

4. Add custom properties to the Credit Card Payment webhook.
For detailed instructions about performing this task, refer to Install the extension and
configure the gateway .

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Configure non-credit card payments

Follow these instructions to configure your generic gateway payment processing to handle
recurring charges:

2-47

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=179544281714306&id=2214316.1&_adf.ctrl-state=6nvflli99_29

Chapter 2
Use the Integration Functionality

1. Create a custom generic payment extension.
For detailed instructions on performing this task refer to the Supported payment
methods and transaction types section of Create a Generic Payment Gateway
Integration.

2. Install the generic payment extension.
For detailed instructions about performing this step, refer to the Install the
extension section of Create a Generic Payment Gateway Integration.

3. Enable the payment gateway.
For detailed instructions about performing this task, refer to Create a Credit Card
Payment Gateway Integration and Create a Generic Payment Gateway
Integration.

4. Customize the payment details widget to capture payment information other than
card details.

5. Add custom properties to the Generic Payment webhook.
For detailed instructions about performing this task, refer to Send custom
properties to a payment gateway.

Note: This webhook is not site-specific. If you are running multiple sites on your
Commerce instance, the configuration you supply applies to all sites that use this
webhook.

Use Asset Based Ordering

ORACLE

The Commerce/Oracle Configure, Price, Quote integration features asset based
ordering (ABO).

Understand asset definition and related properties

This integration supports an asset based ordering (ABO) model. Asset based ordering
lets you sell tangible assets or subscription services delivered over a period of time; for
example, mobile phone call and data plans, television and broadband packages.
When these orders are subsequently fulfilled, the fulfillment system notifies Oracle
Configure, Price, Quote via an asset API, and Oracle Configure, Price, Quote then
creates an asset in the Oracle Configure, Price, Quote asset repository. To better
understand asset based ordering and its related services, it is important that you first
understand asset definition and the related properties.

In the Commerce/Oracle Configure, Price, Quote integration, Commerce acts as the
first point of contact for registered and account-based shoppers. Commerce lets a
shopper review and select their purchases as needed.

In Telco-related purchases, Oracle Configure, Price, Quote acts as the primary Asset
system. Commerce makes a call to Oracle Configure, Price, Quote to retrieve the
assets for a particular profile or account. Oracle Configure, Price, Quote then manages
the retrieval of assets from multiple systems if necessary.

One of the underlying features of any Telco solution is the ability for a self-service
channel (in this case, Commerce) to retrieve and display the complete set of assets
owned by the shopper and then to allow the shopper to trigger operations on those
assets. In order for this to happen, Oracle Commercesupports the following asset-
related information properties at the order item level:

» Asset Key - the asset Key property (formerly asset | D) is a unique identifier that is
assigned to potential assets when adding items to a cart. This value is used
throughout the asset life cycle by fulfilment, asset management, and order capture

2-48

ORACLE

Chapter 2
Use the Integration Functionality

systems. In this case, the term "potential” is used meaning that not every item added to a
cart gets completely fulfilled, a provisioning system may fail, etc. For configured items,
the assetKey value is assigned as part of the asset configuration process in Oracle
Configure, Price, Quote.

» Parent Asset Key - Some configured items in an order may be many levels deep in a
BOM structure. In order to ensure that the BOM hierarchy is consistent throughout the
asset life cycle, each item in the BOM hierarchy must be able to identify its direct parent.
The par ent Asset Key property makes this possible. For root items in a BOM hierarchy,
the par ent Asset Key value is NULL.

* Root Asset Key - Again, some configured items in an order may be many levels deep in a
BOM structure. In order to ensure that the BOM hierarchy is consistent throughout the
asset life cycle, each item in the BOM hierarchy must be able to identify its root asset.
The r oot Asset Key property makes this possible. For root items in a BOM hierarchy, the
asset Key and the r oot Asset Key value is the same.

Understand the mapping of an asset key to an item

In Oracle Commerce, a configurable SKU may be flagged as "non-assetable" which means

that when this item is configured and purchased it will not be assigned a customer, billing, or
service account and will not become an asset for the shopper. When this item is configured,

however, Oracle Configure, Price, Quote returns asset key values for each item in the BOM

by default.

Note: The flag name is asset abl e and the default value is Fal se.

Commerce only maps asset key values to commerce items that are actually "assetable." The
rules used in this process are the following:

» If the SKU selected for configuration is based on a product where the property value for
asset abl e = TRUE, map the asset key data.

» If the SKU selected for configuration is based on a product where the property value for
asset abl e = FALSE do not map the asset key data.

Understand the Asset Root

It is also important to point out that when a shopper chooses to configure a SKU in
Commerce, the root item of the BOM returned from Oracle Configure, Price, Quote may not
always be that same SKU, that is, the root item part number may not map directly to the
selected configurable SKU.

Say, for example, a mobile product bundle that is represented by the "Red Bundle" SKU in
Commerce is configured several ways. At the initial step of the configuration process, the
shopper may be asked to select either the Standard Package, Student Package, or Value
Package. Depending on the selection made, the root item of the configuration will be
different.

So, based on this example, it is possible that the SKU selected by the shopper to configure
the item will be based on a product where _asset abl e _= TRUE but the root item for the
resulting configuration may be based on a product where _assetable = FALSE.

The rule that decides whether a configured item should be assigned _asset Key _ property
is based on whether the SKU that corresponds to the root item of the configuration is
"assetable" and not on whether the item that the shopper selected to be configured in
Commerce is "assetable”.

2-49

Chapter 2
Use the Integration Functionality

Understand asset based ordering and related service operations

As already discussed, asset based ordering lets you sell assets or subscription
services delivered over a period of time. When these orders are subsequently fulfilled,
the fulfillment system notifies Oracle Configure, Price, Quote via an asset API, and
Oracle Configure, Price, Quote then creates an asset in the Oracle Configure, Price,
Quote asset repository.

Once created, assets can subsequently be reviewed by shoppers in the My Services
management area within the shopper account. The shopper can then administer an

asset by creating and placing new commerce orders to perform a number of actions
on the asset. These include the following:

e Modify
¢ Renew

* Terminate

e Suspend
* Resume
e Upgrade

A Services-store SSE and the Services-agent SSE can be configured from the
administrator’s user interface. To do this, click the Design icon in the Administration
user interface. Then click Developer and Server-Side Extensions. Select the name
of the SSE. Both SSEs enable integration with 3rd party asset management systems
to retrieve and execute operations and services on assets available to the shopper.
They also serve as the API for the pre-built integration with Oracle Configure, Price,
Quote asset management.

For each of these operations the operation flow is basically the following:

* The shopper views their list of assets.
* The shopper selects an asset.
* The shopper selects the desired operation:

— For a Modify operation, the system loads the Oracle Configure, Price, Quote
hosted iFrame, the shopper makes their modifications, and selects to add to
cart. This is the Oracle Configure, Price, Quote hosted iFrame presented to
the shopper when they configure a new purchase prior to adding it the cart,
reconfigure a new purchase prior to checking out, or modify an existing asset.

— For an Upgrade operation, all available upgrade options are displayed on the
Storefront Asset list and then the specific Asset Details pages. After you have
selected a specific Asset, you can select the Upgrade option to view its
upgrade details. When you click on an upgrade option, an iFrame is returned
and opens up in the context of the available upgrade options. You can then
choose your asset upgrade(s) and add them to your cart.

— For all other operations, the system only makes a call to Oracle Configure,
Price, Quote to execute the operation.

e Oracle Configure, Price, Quote asset records are updated.

» Oracle Configure, Price, Quote returns the required JSON representation of the
terminated/renewed/suspended/resumed/modified/upgraded asset.

ORACLE 2-50

Chapter 2
Use the Integration Functionality

« Commerce transforms the JSON returned to a commerce item and adds it the cart.

— For the Modify and Upgrade operations, the transformation is executed in the
Commerce client layer.

— For all other operations the transformation occurs in the Services SSE which uses
the Asset Action OIC flow.

* The shopper continues shopping.

* When the shopper places the order, the cpg- confi g-val i dati on- app SSE is triggered
through the External Pricing Webhook. This SSE invokes get Confi gur ati on for every
flow except when the asset actions are Terminate and Suspend. The response received
from OIC gets transformed from the cpg- confi g-val i dati on-app SSE as the OIC flows,
get Confi gurati ons, and get Conf i gBomreturn a flat structure of items which is converted
to a hierarchical structure. Validation is then done in the cpg- confi g-val i dati on-app
SSE to verify that data is not manipulated on client-side.

* The order items representing Asset Based Ordering operations are submitted
downstream and contain all of the information required to ensure that the operation is
fulfilled.

The specific Services actions are described in more detail later in this section. These actions
are important for maintaining an efficient self-service channel. When a shopper performs any
one of these actions on an asset, the Oracle Configure, Price, Quote asset repository is
updated accordingly.

Since Commerce serves as the first point of contact for shoppers, it allows shoppers to
review and select their purchases. In the case of a Telco commerce solution, the Oracle
Configure, Price, Quote asset repository acts as the primary Asset system in which
Commerce makes a call to Oracle Configure, Price, Quote to retrieve the assets for a
particular profile or account. Oracle Configure, Price, Quote manages the retrieval of assets
from multiple systems.

The Commerce Telco solution gives the shopper the ability to retrieve and display the
complete set of Assets owned by the shopper/account as well as carry out the mentioned
administration operations that can be performed on those assets.

When a shopper opens the My Services management area within their account they are
presented with a list of the assets linked to their account. From here they can select an asset
and click on the Details button next to the desired asset to see the detailed view of the
service.

It is at this point that the shopper can choose between the Modify, Renew, Terminate,
Suspend, Resume, and Upgrade actions.

Modify

If the shopper chooses Modify, Commerce loads the current configuration for the service in
guestion and opens a screen that allows the shopper to modify the service as required. The
new monthly charge for the service is updated automatically as the shopper makes their
selections. The shopper can then add the modified service to their cart.

When the shopper goes through checkout and completes their order, Commerce submits a
service modification request to the fulfillment system.

As mentioned, earlier the steps in this operation are typically the following:

* The shopper views their list of assets.

* The shopper selects an asset.

ORACLE 2-51

Chapter 2
Use the Integration Functionality

* The shopper selects a Modify operation. For a Modify operation, the system loads
an Oracle Configure, Price, Quote hosted iFrame. The shopper makes their asset
modifications and selects to add it to cart.

» Oracle Configure, Price, Quote asset records are updated and Oracle Configure,
Price, Quote returns the required JSON representation the terminated/renewed/
suspended/resumed/modified asset.

e Commercetransforms the required JSON returned to a commerce item and adds it
the cart. This transformation is executed in the Commerce client layer.

* The shopper continues shopping and then checks out.

The order items representing ABO operations are submitted downstream and contain
all of the information required to ensure that the operation is fulfilled.

Renew

If the shopper chooses Renew, Commerce determines the configuration ID that
represents a renewal of the service in its current configuration and then adds a
renewal instruction to the shopping cart and opens the Shopping Cart Details page.

When the shopper goes through checkout and completes their order, Commerce
submits a service renewal request to the fulfillment system. This is handled and
invoked via the Services SSE endpoint / servi ces/ {i d}/renewServi ce and the SSE
invokes the OIC flow.

Terminate a service

If the shopper chooses Terminate, a configuration ID is sent back by Oracle Configure,
Price, Quote that represents the termination of the service in question. A termination
instruction is added to the shopping cart and the Shopping Cart Details page is then
opened

When the shopper goes through checkout and completes their order, Commerce then
submits the service termination request to the fulfillment system. This is handled and
invoked via the Services SSE endpoint / servi ces/{i d}/term nat eServi ce which
invokes the OIC flow.

Suspend a service

If the shopper chooses Suspend, it allows them to suspend a service. Commerce
provides an endpoint that is used to suspend a service. When a shopper selects to
suspend a service, they choose the Suspend action and then enter a valid suspend
date.

By clicking on the Suspend button, Commerce determines the configuration ID that
represents the suspension of the service in question, adds a suspension instruction to
the shopping cart, and opens the Shopping Cart Details page. When the shopper goes
through checkout and completes their order, Commerce submits a service suspension
request to the fulfillment system. Also, when the Suspend action is chosen from the
store user interface, the transaction date is set to current date (i.e., the date that the
shopper suspended the service. This suspension may be indefinite or for set for a
specific period of time by entering a date. A specific shopper use case example might
be letting a shopper suspend a data plan for 30 days.

The Services SSEs support the Suspend operation which returns either a Configured
Item or an Error. Services is part of the Oracle Integrated Cloud flow.

ORACLE 2-52

ORACLE

Chapter 2
Use the Integration Functionality

The Services API has an endpoint called Suspend Service. The endpoint can be triggered
when a shopper selects to suspend a service, enters a valid suspend date and time, and
selects to proceed. Inputs include the following:

* Asset Key
e Action - Suspend

e Transaction Date - The valid suspend date and time information that the shopper entered.
The Suspend date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Resume a Service

If the shopper chooses Resume, it allows them to resume a service that was previously
suspended. Commerce provides an endpoint that is used to resume a service. When a
shopper selects to resume a service, they choose the Resume action and then enter a valid
resume date and time to resume the service.

By clicking on the Resume button, Commerce determines the configuration ID that
represents the service in question that is to be resumed, adds a resume instruction to the
shopping cart, and opens the Shopping Cart Details page. When the shopper goes through
checkout and completes their order, Commerce submits a resume service request to the
fulfillment system. Also, when the Resume action is chosen from the store user interface, the
transaction date is set to current date (i.e., the date that the shopper resumed the service).

The Services SSEs also support this Resume operation which returns either a Configured
Item or an Error. Services is part of the Oracle Integrated Cloud flow.

The Services API has an endpoint called Resume Service. The endpoint can be triggered
when a shopper selects to resume a service, enters a valid resume date and time and selects
to proceed. Inputs include the following:

* AssetKey
e Action: Resume

e Transaction Date: The valid Resume date and time that the shopper entered. The
Resume date is not equal to or later than the asset end date.

The API returns either a Configured Item or an Error.

Note: An action code of Renew, Terminate, Suspend, and Resume is assigned to an item
when that respective operation has been applied to that item.

Upgrade an Asset

With Asset Based Ordering, you have the ability to upgrade an existing asset. If a shopper
chooses the Upgrade operation, they can upgrade an asset to one of the upgrades available
for the product. Any Root asset may have one or more upgrade options available at any time.
Commerce SSE endpoints get Servi ces and get Servi ces/ {i d} return the upgrade options
for each of the asset if the query param "expand=occ_upgr adeQpt i ons" is passed. Once the
shopper selects the Upgrade action and clicks the Upgrade button, this action invokes the
upgr adeSer vi ce SSE endpoint which gets the upgrade name as input and returns the query
string that is to be used as punchin URL to launch the Oracle Configure, Price, Quote iFrame.
From the user interface point of view, a shopper selects to upgrade an asset, choose the
Upgrade action in the Asset Details view and then select the asset upgrade that they desire.
Oracle Configure, Price, Quote maintains a custom upgrade options table for Commerce to
query in order to know which upgrades are available for a given asset. The key parameter
controlling the operation is the SKU of one or more items that are part of a current asset

2-53

Chapter 2
Use the Integration Functionality

bundle. The response received after initiating this operation includes all of the eligible
SKUs that an asset can be upgraded to.

Commerce has an Upgrade endpoint to fetch all available upgrade options. The input
for this endpoint is current Model and current O f er. The following presents the details
on the information needed to retrieve the upgrade options table from Oracle Configure,
Price, Quote:

* Oracle Configure, Price, Quote Table Name: | NT_UPGRADE_OPTI ONS

e Input (via URL parameter): occ_Upgrade_opti ons query parameter which is a list
of current Sku plus current Model for the assets. Type: String. This query
parameter is passed from Commerce to the SSE endpoint (described further in
this section). After a get Asset s call, you then pick the cur r ent Model and
current O f er from each asset and invoke the Oracle Configure, Price, Quote
upgrade options table.

e Output: upgr adeNane, upgradeProduct | d(OCC)

The following presents the details on the basic schema of the upgrade options table
maintained by Oracle Configure, Price, Quote that contains the specified upgrade
information:

Table 2-2 Oracle Configure, Price, Quote Upgrade Table

|
Column Name Data Type and Description

currentSku String. This value defines the current offer.
This needs to be stored as an attribute of an
asset record. This value is sent from
Commerce while retrieving the upgrade

options.

currentModel String. The model name for which the upgrade
offer is valid.

upgradeName String. This value is passed to he Oracle

Configure, Price, Quote iFrame while
upgrading and is used by Oracle Configure,
Price, Quote to default and render the upgrade
options. This is not be used by Commerce for
any purpose.

upgradeProductld String. This is used by Commerce to identify
the product corresponding to upgrade option.
The product display name, description,
images, etc. can be used to show upgrade
details to the shopper.

Note: A combination of currentSku and currentModel is used as the parameter to find
the matching upgrade options

The Oracle Configure, Price, Quote upgrade table is queried by Commerce to help
identify the upgrades that are available for a given asset. These upgrade options are
then presented to the shopper. An example of what the upgrade information would
contain includes the following:

ORACLE 2-54

ORACLE

Chapter 2
Use the Integration Functionality

Table 2-3 Example of upgrade options returned to Commerce

- ___|
currentSku currentModel upgradeName upgradeProductiD

4ForUDeal nPlay 4ForUDeal prod102

It is recommended that the currentSku column is indexed. The following presents additional
details on each returned upgrade option:

» currentOffer - Maps to a configurable attribute on the root config model in Oracle
Configure, Price, Quote. This needs to be stored as an attribute mapping onto the root
asset as well. This value is sent from Commerce while retrieving the upgrade options.

e currentModel - Maps to the variable name of the root config model in Oracle Configure,
Price, Quote which the upgrade offer applies to.

e upgradeName - Maps to the _confi g_upgrade_nane that is passed from Commerceto
Oracle Configure, Price, Quote, which drives recommendation rules on the upgrade. This
is not used by Commerce for any other purpose.

e upgradeProductld - Maps to the Product Id of the upgrade offer in Commerce. This is
used to show upgrade details (product display name, description, images, etc) to the
shopper.

As mentioned, Commerce provides an Upgrade endpoint that is used in the operation to
upgrade the asset. This endpoint is part of the Services SSE which works to complete
multiple service operations (already mentioned in the above sections) via the Services API.
For this operation, the Services API has an endpoint called Upgrade. The following
information provides more detail on what is required by the API to upgrade an asset using
this endpoint:

* SSE name: Services
* Endpoint name: Upgr ade

* Endpoint trigger: The endpoint is triggered when the user clicks Upgrade against an
upgrade option

* Inputs:
— Logged in User Token
— AssetlD
— upgradeName (returned from Oracle Configure, Price, Quote)

* Returns: Upgrade URL Query String. This is the string of data that is appended to the
base Modify URL to ensure that the upgrade iFrame is correctly pre-populated based on
the product that the shopper is upgrading from and the product that they are upgrading
to.

The activity that occurs at the store user interface level during the Upgrade operation is the
following:

* Select the Asset List view. This lets you view information about all of your assets/
services. This view will also show the upgrade options (if available) for the asset. You
cannot trigger an Upgrade operation from this view as the actual upgrade URL is not yet
determined until the asset details are retrieved.

» Select the asset you wish to view and click the Details button so that you can view the
asset details and as well as possible upgrade details.

2-55

Chapter 2
Use the Integration Functionality

* When you click the Details button of any asset, the asset details page is displayed
which shows all of the details associated with that asset along with available asset
action options.

* The asset details page also has a section showing the upgrade options available
for that asset. When you display the asset details page, the product details of that
SKU/Product are displayed. The Upgrade button is displayed next to any upgrade
available for that asset.

» Click the Upgrade button in the Asset view of the asset that you want upgraded.
Your upgrade option details are then displayed in the Asset Details view. You can
also get the same results by clicking the link for the available upgrade from the
Service list.

» Click Upgrade. When the Upgrade operation is initiated, the following occurs:

— If there are upgrades available for the asset, the SSE endpoint returns an
Upgrade URL Query String and creates the upgrade punch-in URL to load the
iFrame containing the information about the available upgrades.

— When you select to upgrade you are finally presented with a pre-configured
modification to your asset bundle.

— If the SSE endpoint returns an error, this means there are no upgrades
available for this asset and an appropriate error message is displayed.

* Add the upgrade to your cart and submit the order to complete the upgrading
process.

Finally, each of the Asset Based Ordering services operations described earlier may
be carried out by a shopper or by an agent acting on the shopper’s behalf.

Additional information related to using the Upgrade feature with Commerce

The following additional details should be kept in mind when using the Upgrade
feature:

e In Commerce you can start a configuration upgrade from a configurable SKU (for
example, "4ForU Deal") which in turn maps to a model "nPlay" in Oracle
Configure, Price, Quote.

e Configuration metadata is set with key "offer" and value "4ForU Deal" for the
above SKU and is passed to Oracle Configure, Price, Quote

e After the configuration upgrade is completed, the BOM returned from the Oracle
Configure, Price, Quote for that configuration may have a different rootSKU (i.e.,
"nPlay") and that is what is added to cart. "4ForUDeal" may be a child of "nPlay".

e In Commerce, there is another SKU for "nPlay" that is configurable and maps to
the same model "nPlay" in Oracle Configure, Price, Quote.

e After the order is submitted, an asset with "nPlay" is created which has an asset
attribute of O fer. O f er then has a value of 4For UDeal .

Also, via the CommerceAdmin, you can create products with an upgr adePr oduct | d as
the product | d value, and mark them as 'not For | ndi vi dual Sal e." This lets you do the
following:

e Have a unigue name for each upgrade that can be displayed in the store
e Have a unique description to describe what the upgrade is

e Support locale specific translations

ORACLE 2-56

ORACLE

Chapter 2
Use the Integration Functionality

* Have the ability to upload images related to the upgr adeOpt i on.

Handle further upgrades to an asset that has already been upgraded

In some use cases, you may have a situation where you have an asset with

current O f er=skul234 that is being upgraded to Upgrade 101. When you then visit the
Asset Details page again you are presented with the same upgrade option of Upgrade101.
This can occur because the upgrade does not modify the current O f er and it is still sku1234
and its corresponding upgrade options are being fetched during the getAssets/getAsset flow.

The following details show how you can solve this type of situation:

Table 2-4 Example of how to handle further upgrades to an asset

- ___|
currentOffer currentModel upgradeName upgradeProductiD

4ForUDeal nPlay 4ForUDealPlus 4ForUDealPlus

« Let's say a shopper starts an upgrade configuration from the SKU "4ForUDeal" by
passing the configuration metadata of f er =4For UDeal .

» After upgrading the configuration, the BOM sent from Oracle Configure, Price, Quote may
have a different root SKU id such as "nPlay." "4ForUDeal" may be a child of it. It will also
contain an attribute "offer" with value "4ForUDeal"

* An asset with "nPlay" as the currentModel gets created and the getAssets/getAsset flows
return the asset details along with asset attribute of f er =4For UDeal .

e The offer attribute is sent as the currentOffer to the Oracle Configure, Price, Quote while
retrieving the upgrade option 4ForUDealPlus.

e Once the upgrade has been performed by passing the upgrade name 4ForUDealPlus to
Oracle Configure, Price, Quote in the queryString, the BOM returned from Oracle
Configure, Price, Quote will have the attribute "offer" with value "4ForUDealPlus".

e After submitting the order and updating the asset, the asset attribute "offer" value now
gets updated to "4ForUDealPlus".

e In subsequent getAssets and getAsset calls the asset attribute offer value will be returned
as "4ForUDealPlus", so that there are no matching records for that currentOffer in
upgrade options table in Oracle Configure, Price, Quote.

Understand the Disable Reconfiguration feature

Regarding these operations, the Oracle Commerce and Oracle Configure, Price, Quote
integration also has the ability to prevent shoppers from attempting to reconfigure items in
their cart that have been added by any of the following operations:

°* Renew

e Terminate
e Suspend
°* Resume

To assist in disabling reconfiguration on already configured items added by any of these
actions, an action code of Renew, Terminate, Suspend, and Resume is assigned to an item
when that respective operation has been applied to that item.

2-57

Chapter 2
Use the Integration Functionality

This code is assigned to make sure that shoppers are prevented from attempting to
reconfigure an asset. The purpose of the code is to make sure the reconfigure
session(s) fails, either at reconfiguration or order validation time.

Differentiate between new order items and ABO order items

To identify items in an order that are the result of an operation on an existing asset
(Terminate, Renew, Suspend, Resume, Modify, Upgrade), Commerce has checked to
see if there was an asset | d value. If there was, Commerce assumed that the item is
the result of an ABO and not a net new purchase. This approach worked on the
assumption that an asset identifier would only be assigned when the asset record was
created in Oracle Configure, Price, Quote.

Asset identifier values are now assigned at the time when a shopper adds an item to
the cart. To ensure that Commerce can always reliably differentiate between new order
items and ABO order items when an ABO item is added to the cart, a | i neType
property for each item in the configuration hierarchy is set to ASSET.

The rule used to differentiate between new order items and ABO order items is the
following: If asset Key value is present and _| i neType = NULL then the item is a new
purchase and not an operation on an existing asset.

Retrieve assets for an order with an asset key

For the cancel in-flight feature, Commerceneeds a mechanism for retrieving all of the
assets derived from a particular order. Commerce used to retrieve the assets for a
particular order based on asset | D (stored on the asset record in Oracle Configure,
Price, Quote). Commerce now uses the asset Key value.

For any given order Commerce queries the Oracle Configure, Price, Quote assets API
to retrieve the assets for the order based on the collection of asset Key values. This
query is limited to the asset Key values for the root items in the order only

Understand restricting the quantity of assetable items

A shopper used to be able to increase the item quantity for a configured item in the
cart in the same way as any other purchase. This action does not work where an asset
key value has been assigned.

Asset keys are assigned to net new purchases as part of the configuration process.
Oracle Configure, Price, Quote assigns an asset Key for the root and all child items in
the configuration. If an item has been assigned an asset key then this asset key is
used to identity a single instance of this asset throughout the fulfillment, provisioning
and asset management processes. As a result, the quantity of an item cannot be
greater than one.

Customize configurations in Commerce using the CPQ Configuration

AP]

ORACLE

You can customize the configurations of complex products in Oracle Commerce by
using the Oracle Configure, Price, Quote Configuration API to avoid being redirected
to a Oracle Configure, Price, Quote hosted iFrame.

You can now customize the configurations of complex products in Oracle Commerce
without being redirected to a Oracle Configure, Price, Quote hosted iFrame.

2-58

Chapter 2
Use the Integration Functionality

You can now customize the configurations of complex products in Commerce without being
redirected to a Oracle Configure, Price, Quote hosted iFrame which may have a separate
and distinct user interface look and feel that creates a disjointed user experience. This
capability, known as the Direct APl Configuration feature, is provided to build out support in
Commerce for API driven product configurations where the user interface experience is
controlled by Commerce and can be customized by Commerce partners. At a high level, this
feature lets you do the following:

» Create brand specific configuration user interfaces and controls at the global level.

» Create a specific user interface experience for individual customizable products at the
product level.

The goal of this feature is to provide full support of the Oracle Configure, Price, Quote
Configuration APl on Commerce Storefront frameworks. This includes providing a
mechanism to dynamically create user interface elements that let shoppers select
customizable products. It then presents them with the appropriate user interface elements to
complete the customization process and add the each item to the cart. These user interface
elements are generated dynamically in response to the selections made by the shopper at
each step of the customization. The functionality of this feature is fully compliant with current
Commerce Storefront frameworks.

The principal benefits of the Direct API Configuration feature are the following:

e iFrame is not required - The current functionality requires that the configuration system
(Oracle Configure, Price, Quote) perform all of the configuration tasks. This means that
the shopper's user interface experience is managed in 2 separate applications. Up to the
point where the shopper selects a customizable product, their user interface experience
is driven by Commerce. On the other hand, the configuration user experience is
managed by Oracle Configure, Price, Quote and when the shopper adds the configured
item to the cart the user experience reverts back to the control of Commerce. The
addition of this feature means that customers will not be required to execute product
configuration via an iFrame. This lets shoppers experience a consistent user interface
with common look and feel across their storefront.

» Decoupling of the user interface and the configuration process - This feature ensures that
the user interface framework is decoupled from the configuration process. This lets
customers do the following:

— Build configuration user interface components using the Commerce Design Page
based on the Store Front 1.0 Framework.

— Build configuration user interface components using a non-Commerce design user
interface framework.

e Performance improvements - The use of the iFrame pattern also creates a performance
concern. The former integration with Oracle Configure, Price, Quote functions well and
the disjointed user experience can be managed to some extent with user interface
customization. However, there is also no reliable evidence that this design pattern
performs at the levels required for high volume customer-based Telco implementations,
where hundreds of thousands of shoppers may be configuring complex Telco bundles at
the same time. This feature attempts to address this concern.

The roles that Commerce and Oracle Configure, Price, Quote now take with this feature are
the following:

» Oracle Configure, Price, Quote remains the primary configurator and controls the
following:

— What needs to be configured

ORACLE 2-59

ORACLE

Chapter 2
Use the Integration Functionality

— The sequence in which components/attributes are presented
— The configuration values that are required or accepted

The Commerce client is responsible for how the configurator is displayed (without
an iFrame).

Additional topics in the current chapter provide you with detailed use cases for this
feature.

Understand the support of the Oracle Configure, Price, Quote Configuration
APIs

This feature provides a downloadable extension to the Commerce application
component that provides a collection of endpoints which lets the Storefront Ul
(regardless of which user interface framework you are using) do the following:

Retrieve the end to end Ul flow for a given Oracle Configure, Price, Quote
Configuration Model

Retrieve sufficient metadata to identify the user interface elements required for
each attribute of the model. These elements include the following:

— Input Controls (Radio Buttons, List Boxes, Toggles, Date/Time Pickers etc.)
— Navigational Components (Breadcrumbs, Sliders, Image Carousels etc.)

— Information Components (Progress Bars, Tool Tips etc.)

— Containers such as accordion elements

Retrieve data required to correctly populate each user interface element. This
includes Label Names, Selectable Options, and more

Create a product configuration

Update a product configuration

Update user interface flow

Update a user interface elements

Modify a product configuration

Upgrade a product configuration

Save a product configuration

Transform a BOM (bill of materials) to a Commerce cart item

Reconfigure a saved product configuration

This extension also handles the following management tasks:

Maintains the state of the configuration until such time as it is saved.

Makes sure that calls made from the user interface framework to the Commerce
Extension are authorized.

Makes sure that calls made from the Commerce Extension to Oracle Configure,
Price, Quote Configuration REST APIs are authorized.

Ensures that connections are made from the user interface framework to
extension to Oracle Configure, Price, Quote REST APIs without OAIC (Oracle
Integration) integration flows.

2-60

ORACLE

Chapter 2
Use the Integration Functionality

* Manages BOM (Bill of Materials) data objects returned from Oracle Configure, Price,
Quote when the configuration is saved.

This Commerce Extension supports any user interface client, including those built on
Commerce Storefront 1.0.

Understand supported integration-specific configuration APIs

The Oracle Configure, Price, Quote (Configure, Price and Quote) Cloud solution supports the
complete quote-to-cash process from customer inquiry to order fulfillment. It guides users to
optimal product options and configurations from simple to complex, automatically applying
discounts and relevant up-sell and cross-sell opportunities. Oracle Configure, Price, Quote
exposes objects and data through REST APIs. By exposing objects and data through REST
APIs, Oracle Configure, Price, Quote promotes simpler API calls and more robust integration
using HTTP standards. For the Direct API Configuration feature and current Oracle
Configure, Price, Quote Integration support, the following configuration APIs are mostly used:

» Configuration Run-Time Data Services APIs - These endpoints expose information and
perform an action for a configuration model. All Configuration Run-Time Data REST APIs
follow a required product hierarchy starting with the product family then product line
followed by the model. A variable name for the product entity is required. For example, /
confi g{ pr odFamvar Nanme} . (pr odLi neVar Nane} . { model Var Nane}/ is the standard
Configuration Run-Time Data product path for an endpoint URL.

e Configuration Administration REST APIs - These APIs provide product configuration
endpoints that expose configuration definition information for Configuration Product
Families, Product Lines, Models, attributes, array sets, menu items, and translations. The
information for these items is organized in a hierarchical structure. The Configuration
Administration REST API query parameters are supported to include and exclude child
resources in a given resource. The response for each level in the hierarchy can include
the details of the sub resources based on the query parameter passed in the request.

Customer Configuration flows dictate how users go through the site pages and the options
available as they create a Transaction. Configuration flow rules consist of a condition and
flow attributes. Actions display based on which node in the flow that the user has available
based on defined criteria. Beginning in Oracle Configure, Price, Quote Release 18D,Oracle
Configure, Price, Quote transformed the current configuration definition as REST endpoints
to support Ul interfaces. These services are available v7 and higher RESTful services.

Refer to the Oracle Configure, Price, Quote REST API documentation for more complete
information.

Understand how the Direct API Configuration feature enhances Asset Operations

As mentioned, this feature provides Commerce with support of the Oracle Configure, Price,
Quote Configuration API Layer while using the Commerce and Oracle Configure, Price,
Quote integration. This means providing functionality that lets customers, using any user
interface framework, configure and/or reconfigure customizable products by invoking the
following from Oracle Configure, Price, Quote:

» Configuration Run-Time Data Services APIs
» Configuration Administration REST APIs

Building on this foundation, the feature further supports some asset-based operations
whereby the configuration model retrieved from Oracle CPQ represents an existing asset.
This lets the shopper execute the following configuration-related Asset Operations via direct
API calls to the Oracle Configure, Price, Quote Configuration API:

2-61

Chapter 2
Use the Integration Functionality

* Modify
* Upgrade

Available Storefront and Agent endpoints for this feature let you modify and upgrade
assets via direct API calls to Oracle Configure, Price, Quote thus removing the need to
include an iFrame in this part of the shopping experience as well. This feature is
limited to API only and customers will need to build their own Ul elements to invoke
these new endpoints.

By creating your own Modify and Upgrade user interface elements, you can deliver a
seamless and consistent user experience even when modifying or upgrading complex
products or services. The shopper user interface experience while modifying or
upgrading a service can then be consistent with the rest of the site navigation
experience as configuration user interface controls can be created in compliance with
the Site Theme and CSS being used.

To fully implement the Asset Operations portion of this feature you must:

* Download and install the CpgConfiguratorStoreApp and
CpqConfiguratorAgentApp SSEs

» Create a ‘Modify’ user interface element which can be coded into the Asset Details
widget (which is not elementized)

» Create an ‘Upgrade’ user interface element which can also be coded into the
Asset Details widget

The creation of the user interface elements should be a straightforward process for
any developer partner with a working knowledge of Commerce development and
knockout . j s.

Refer to Use Asset Based Ordering for more information on these Asset Operations.

Understand Sys Config model support via Commerce and the Oracle Configure,
Price, Quote Configuration API

In Oracle Configure, Price, Quote, certain parts of customizable (configurable)
products are based on "Sys Config" models that are accessible via the Oracle
Configure, Price, Quote Configuration API. The "Sys Config" model consists of a
hierarchy of components and associated classes that are used to model the
hierarchical nature of the Product and Promotion structure of that configurable product.

When products in Oracle Configure, Price, Quote are structured hierarchically, Product
Families are created first. Families provide the broad classifications of products. The
next parts created are Product Lines which are used to describe more specific product
areas of Product Families. Finally, Models are created to provide detail about the most
specific product traits.

Note: In a "Sys Config" model, an attribute of a model can also be another model so it
is important that you fully understand the structured hierarchy of each product family.

Examples of the product hierarchies just described might look something like the
following:

e Product Family: "Business Laptop"
— Product Line: "EZCompute”
* Model: "EZ"
* Model: "EZ Pro"

ORACLE 2-62

Chapter 2
Use the Integration Functionality

e Product Family: ""Gamer Laptop
— Product Line: "Avenger"
* Model: "Novice"
* Model: "EZ Pro"

Note: In a "Sys Config" model, an attribute of a model can also be another model so it is
important that you fully understand the structured hierarchy of each configured product family.
For example, the "Novice" model in the "Gamer Laptop" product family could have its own
"sub-model" that had a variation of the features (more memory, better graphics card, and so
on) offered in the basic configuration of the parent "Novice" model. To summarize, this feature
lets you reload the configurator with a model which can be an attribute of the root/parent.

For more complete information on models and Oracle Configure, Price, Quote REST APls,
refer to the Oracle Configure, Price, Quote documentation.

In the Commerce and Oracle Configure, Price, Quote Integration, Commerce works with the
Oracle Configure, Price, Quote Configuration API to let you execute the configuration of
complex "Sys Config" models via API calls to the Oracle Configure, Price, Quote
Configuration API. The Commerce support of the Oracle Configure, Price, Quote
Configuration API lets you open and customize desired models within a bundle configuration.
An example of this might be a product bundle consisting of a Mobile service attribute as well
as a Cable TV service attribute. In this example, each service attribute (Mobile and Cable TV)
is its own model. Commerce support of the Oracle Configure, Price, Quote Configuration API
lets you open a product configurator directly on either of those service models.

Note: Keep in mind that a shopper can only interact with a model starting from the root asset
of the configured product. Every Configure, Reconfigure, Modify, or Upgrade operation is an
operation carried out on the root asset. Having retrieved the root asset (the complete product
model), the shopper may then navigate to any attributes of the root. In some cases, an
attribute may well be an attribute that is a sub-model.

As far as user cases go, this feature lets you (the developer) build out specific user interface
experiences dealing with the configuration of customizable products from a desired catalog.
In doing so, it lets you apply global, site, or even product-specific user interface template
changes as well as control the user interface flow of the configuration process for each
product. For customers, this feature lets them enjoy a seamless product customization
experience without any indication that multiple applications are working together as part of an
integration to handle the product configuration.

Implement configuration customization via the CPQ Configuration API.

ORACLE

You need to complete some initial tasks to implement the functionality that directly
customizes configurations using the Oracle Configure, Price, Quote Configuration API for the
first time on a customer storefront.

The Direct API Configuration feature lets you directly customize configurations using the
Oracle Configure, Price, Quote Configuration API. This topic describes the tasks which a
developer and designer would work together to implement this functionality for the first time
for a customer storefront.

This feature lets you directly customize configurations using the Oracle Configure, Price,
Quote Configuration API. This topic describes the tasks which a developer and designer
would work together to implement this functionality for the first time for a customer storefront.
This would be the set of tasks that would be carried out first to allow you to use the feature.

2-63

https://docs.oracle.com/en/cloud/saas/configure-price-quote/index.html

ORACLE

Chapter 2
Use the Integration Functionality

In this case, the customer does not want to use the hosted iFrame model for executing
product customization on their site but would prefer customization via the Direct API
Configuration feature. The specific reasons the customer is requesting the
implementation of this feature are the following:

e The customer wants the customization user experience to be as seamless as
possible.

e The customer wants their merchandising team to have as much control over the
customization user interface "look and feel" as possible.

* The customer would prefer that the merchandising team manage the user
interface experience in their design tools as much as possible.

The details for implementing and using the Oracle Configure, Price, Quote
Configuration API feature are described in the sections that follow. In these
descriptions, it is assumed that the Commerce and Oracle Configure, Price, Quote
Integration is already configured and enabled.

Understand the role of the Commerce Configurator SSE in the Direct API
Configuration feature

The Direct API Configuration feature uses a Commerce server-side extension (SSE) to
provide a collection of endpoints which lets the storefront Ul (regardless of the Ul
framework used) to configure products and services. The SSE accepts a configurator
request, invokes the corresponding requests in Oracle Configure, Price, Quote, and
processes the Oracle Configure, Price, Quote response before returning an optimized
payload.

The SSE performs the following configurator actions:

» Configure - This action corresponds to the Oracle Configure, Price, Quote
_confi gure endpoint and is the starting point for configuring a model. It returns all
the necessary layout data, attribute, and configuration state data for a user
interface to display a configurator model. Also, where a layout contains Pick Lists
and/or Array Sets, it returns all data required for those components to be
rendered.

e Update - This action corresponds to the Oracle Configure, Price, Quote _updat e
endpoint. It will accept an updated configuration state from the client and return an
new configuration state based on the changes made.

* Next - This action corresponds to the Oracle Configure, Price, Quote _next
endpoint. This action is available when the model configuration is spanned across
multiple nodes/configuration flow layouts. It works similarly to the initial configure
action as it also returns all the necessary layout data, attributes, configuration
state, and pick list/array set data to display the particular layout for a stage in the
flow.

e Previous - This action corresponds to the Oracle Configure, Price, Quote _next
endpoint. This action is available when the model configuration is spanned across
multiple nodes/configuration flow layouts. It works similarly to the initial configure
action as it also returns all the necessary layout data, attributes, configuration
state, and pick list/array set data to display the particular layout for a stage in the
flow.

» Add to Cart - This action corresponds to the Oracle Configure, Price,
Quote_integration_addToCart endpoint. This action returns a Commerce
commerce item (cart item). It transforms a Confi gurati on_Det ai | s response
(returned from Oracle Configure, Price, Quote) to a Commerce commerce item

2-64

ORACLE

Chapter 2
Use the Integration Functionality

(cart item). With the embedded configurator, approach the Confi guration_Detail s
response is returned to Commerce and it is the responsibility of the Commerce client to
transform the response to a Commerce commerce item.

Reconfigure - This action corresponds to the Oracle Configure, Price, Quote
_reconfiguredient endpoint. It is similar to the Configure action but rather than starting
a brand new configuration, it returns all the necessary layout data, attributes,
configuration state, and pick list/array set data for a user interface to display a
configurator model for an existing configuration. A confi gl d parameter is used to identify
the existing configuration.

Interact - This action corresponds to the Oracle Configure, Price, Quote _i nt eract
endpoint. It is typically triggered by the user interface in response to a change to an
attribute value when aj axEnabl ed has been set to true for the user interface component.
It takes the value for the attribute that has changed and returns a new configuration state
based on the change made.

Array Set - The action supports the following:

— Add Row - This action corresponds to the Oracle Configure, Price, Quote
_set<arraySet Var Name>/ act i ons/ _add endpoint. It accepts a cachel nst ancel d and
adds a row to the arraySet.

— Delete Row - This action corresponds to the Oracle Configure, Price, Quote
_set<arraySet Var Name>/ act i ons/ _del et e endpoint. It accepts a cachel nst ancel d
and r enovel ndex and removes the row from the supplied index in the ar r aySet .

Layout - This action retrieves the full | ayout Cache for a particular product and flow.
Pick Lists - This action retrieves all options available for a particular pick list.

Ul Settings - This action retrieves all general/base user interface configuration settings
from Oracle Configure, Price, Quote.

Templates - The action retrieves configuration templates that are to be used for rendering
a BOM table and a recommended parts table.

Implement the Direct API Configuration feature

To implement the Direct APl Configuration feature in Commerce you must:

Download and install the Oracle Configure, Price, Quote Configurator (Storefront/Agent)
Server-Side Extension in Commerce.

Create a "Customize Button for Direct API" user interface element for direct API
configuration.

Create a "Reconfigure Button for Direct API" user interface element for direct API
reconfiguration."

Create a JavaScript Library of user interface components that will be used to render the
Layout response from Oracle Configure, Price, Quote (this could be Knockout
Components, React, Commerce elements etc.).

Include the "Customize Button for Direct API" element (button) in the Product Details
widget in order to trigger a customization session.

Include the "Reconfigure Button for Direct API" element (button) in the Shopping Cart
widget in order to trigger a reconfigure session.

Bundle the user interface elements and JavaScript library into a single extension that can
be uploaded in a single step.

2-65

ORACLE

Chapter 2
Use the Integration Functionality

Log in to Commerce Admin and navigate to Settings — Extensions.
Upload the Oracle Configure, Price, Quote Configurator server-side extension.

Upload the new extension containing the user interface elements and JavaScript
library.

Implement the Direct API Configuration feature for Configure

If you decide to implement the Direct API Configuration feature for Configure do the
following:

Log in to Commerce Admin and navigate to Design - Layout — Product Layout
- Layout Settings.

Select Product Layout — Grid View and then select the Product Details widget.

Select the Element Library. You should see three "Customize Button" user
elements available. These include the following:

— Customize Button - Supports the iFrame customization flow by using the
iFrame URL stored in Commerce Admin and appending values for Product
Line, Product Family and Model to load the iFrame and kick off the
configuration process.

— Customize Button with Configuration Metadata - Supports the iFrame
customization flow by using the iFrame URL stored in Commerce Admin and
appending values for Product Line, Product Family, Model and a collection of
one or more static or dynamic key value pairs of configuration metadata to
load the iFrame in the correct state and kick off the configuration process.

— Customize Button for Direct API - Supports the API driven customization flow.
Note: You created this as directed in the previous section as the "Customize
Button for Direct API" element.

Add the Customize Button for Direct API to the Product Details widget.
Save your changes.
Navigate back to Layout — Product Layout - Layout Settings.

Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product that lets you buy services for Landline, Mobile, Internet and TV in a single
bundle at a steep discount.

Save your changes. Select Product Layout — Preview. You are presented with a
preview of the product layout for the 4ForU Deal offer.

Select to customize the offer. You are presented with the customizable options for
the offer in a combination of user interface components including the following:

— Panels

— Tabs

— Input fields

— Radio buttons

— Checkboxes

— Multi-select lists
— Single select lists

— Date pickers

2-66

Chapter 2
Use the Integration Functionality

— Pick Lists

These components are presented as the default mapping for the corresponding Oracle
Configure, Price, Quote model attributes and layout.

Publish your changes.

Implement the Direct API Configuration feature for Reconfigure

If you decide to implement the Direct API Configuration feature for Reconfigure do the
following:

Select Layout - Cart Layout — Grid View and select the Shopping Cart widget.
Select Go to widget code.

Add the Reconfigure Button for Direct API to the Shopping Cart widget.
Note: You created this as directed in the earlier section as the "Reconfigure Button for
Direct API" element.

Save your changes.
Navigate back to Layout - Cart Layout - Layout Settings.

Set the Layout Preview Product ID for the 4ForU Deal offer with a quantity of 1. This is a
configurable product which lets you buy services for Landline, Mobile, Internet and TV in
a single bundle at a steep discount.

Save your changes.

Select Product Layout - Preview. You are presented with a preview of the product
layout for the 4ForU Deal offer.

Select to customize the offer and add it to the cart.
Select the cart and choose to edit the configurable item.

You are presented with customizable options for the offer in a combination of user
interface components including the following:

— Panels

— Tabs

— Input fields

— Radio buttons

— Checkboxes

— Multi-select lists
— Single select lists
— Date pickers

— Pick Lists

These components are presented as per the default mapping for the corresponding
Oracle Configure, Price, Quote model attributes and layout.

Publish your changes.

Commerce is how configured to use the direct API configuration process for customizable
products.

ORACLE

2-67

Chapter 2
Use the Integration Functionality

Control user interface look and feel using the CPQ Configuration API

ORACLE

The Direct API Configuration feature lets you control user interface "look and feel"
using the Oracle Configure, Price, Quote Configuration API.

You can use the Direct API Configuration feature to control user interface "look and
feel" using the Oracle Configure, Price, Quote Configuration API. This ability lets you
do things like the following:

e Apply a site-specific "Look and Feel" product customization to the user interface
experience.

e Apply site-specific user interface components for a custom user interface
experience.

e Add a new Ul component to the configuration flow.
e Remove tabs from the product customization user interface experience.

e Apply a product type specific set of user interface components to the configuration
flow.

Before you can accomplish these tasks, you must first make sure that the API driven
configuration feature has been implemented (described in the previous topic). Also, it
is assumed that the Commerce and Oracle Configure, Price, Quote Integration has
already been configured and enabled.

In the sections that follow, you are provided with details for using this feature to carry
out these customization tasks.

Apply a site-specific "Look and Feel" product customization to the user
interface experience

Consider this situation. Say a customer wants a new custom user interface look and
feel for their site. The customer's in-house design and brand management team have
provided specifications as to:

e Color Schemes
e Style Header and Footer
* Navigation

* Buttons, input fields, check boxes, Multi-select Lists, single select Lists, date
pickers, pick lists

e Component Sizes
e Component Styles
e Component Colors
* Component Fonts

You are instructed to change the user site interface look and feel so that it reflects the
customer product customization changes. This is done by completing the following
tasks:

» Refer to the Customizing your store layouts section on the Oracle Help Center.
You can see that it is possible to apply the required user in look and feel by cloning
and customizing a Commerce theme.

2-68

ORACLE

Chapter 2
Use the Integration Functionality

Note: The included version of the JavaScript Library of Knockout Ul Components used to
render the Layout response from Oracle Configure, Price, Quote uses OOTB theme/
styles, (i.e., Bootstrap Forms and Components). Also, by making changes at the provided
Theme level, you can change the look and feel of the configuration Ul experience without
making any changes directly to the Ul elements or JS Library.

» Clone the provided the theme and apply the required specifications for:
— Backgrounds
— Buttons
— Navigation Menu
— Menu
— Typography
This is done directly in the Design page.

* Use the Design page to access the theme's CSS and apply all of the remaining Ul
specifications.

» Save all your changes.
* Navigate to Layout - Product Layout - Layout Settings.

» Set the Layout Preview Product ID for 4ForU Deal offer, this is a configurable product
which allows shoppers to buy services for Landline, Mobile, Internet and TV in a single
bundle at a steep discount.

e Save your changes.

» Select Product Layout -, Preview. You are presented with a preview of the product
layout for the 4ForU Deal offer.

* The system displays the configurable options available in a combination of Ul
components such as the following:

— Panels
— Tabs
— Input fields
— Radio buttons
— Checkboxes
— Multi -select lists
— Single select lists
— Date pickers
— Pick Lists
You can now see that all of the user interface components are displayed in accordance with

the new theme that you have created and are in accordance with the rest of the site.

Apply site-specific user interface components for a custom user interface experience

A case may arise where a customer wants the customization user interface experience to be
slightly different from the rest of the site to convey the feeling of personal design when they
are building their tailored product.

The customer's in-house design and brand management team has provided specifications to
make changes to the following user interface elements:

2-69

Chapter 2
Use the Integration Functionality

Buttons - Primary Buttons should contain an icon

Input Fields - Should all have labels

Check boxes - Should be rendered as sliders

Multi-select lists - Should be displayed as a collection of check boxes
Single select lists - Should be displayed as drop down lists

Date pickers - Should be displayed as Tumbler Scrolls

Color pick list - Should be displayed as a swatch matrix with a tone slider

As a member of the Sl user interface design team, you are instructed to implement the
new product customization user interface look and feel. You see that in order to
change how the Oracle Configure, Price, Quote model user interface components are
rendered inCommerce, changes must be made to the JavaScript Library of Knockout
user interface components used to render the Layout response from Oracle Configure,
Price, Quote. This JavaScript Library is part of the Oracle Configure, Price, Quote
Configurator user interface extension which was uploaded at feature implementation
time.

To implement the new product customization user interface look and feel, complete the
following tasks:

ORACLE

Log in to Commerce Admin and navigate to Settings - Extensions.

Deactivate the Oracle Configure, Price, Quote Configurator user interface
extension.

Delete the Oracle Configure, Price, Quote Configurator user interface extension.
This extension includes the Direct API versions of the Configure and Reconfigure
user interface elements as well as a common JavaScript Library that defines the
mapping of Oracle Configure, Price, Quote user interface components to
Commerce Knockout Components.

Create new versions of the following:

— Configure element (if you want the button to appear differently or launch the
configuration in a new widget)

— Reconfigure element (if you want the button to appear differently or launch the
configuration in a new widget)

— JavaScript Library (In the JavaScript library for each component that is to be
rendered differently modify the HTML, JavaScript and define new styles which
must also be added to the global stylesheet).

Bundle the user interface elements and JavaScript library into a single extension
that can be uploaded in a single step.

Navigate to Settings — Extensions and upload the new version of Oracle
Configure, Price, Quote Configurator user interface extension.

Reapply the "Customize via direct API" for Configure by doing the following:

— Navigate to Desigh — Layout - Product Layout - Layout Settings.

— Select Product Layout - Grid View and select the Product Details widget.
— Select the Element Library.

— Add the Customize Button for Direct API to the Product Details Widget.

— Save your changes.

2-70

ORACLE

Chapter 2
Use the Integration Functionality

— Navigate back to Layout - Product Layout - Layout Settings.

— Set the Layout Preview Product ID for 4ForU Deal offer. This is a configurable
product which allows shoppers to buy services for Landline, Mobile, Internet, and TV
in a single bundle at a steep discount.

— Save your changes.

— Select Product Layout - Preview. You are presented with a preview of the product
layout for the 4ForU Deal offer.

— Select to customize the offer. You are presented with the customizable options for the
offer in a combination of user interface components including the following. These
are presented as per the new Knockout user interface components.

* Buttons
* Input Fields
* Checkboxes
* Multi-select lists
* Single select list
* Date pickers
* Color pick list
* Add the customized offer to the cart.

» Select the cart and chooses to edit the configure item. You are presented with the
customizable options for the offer in a combination of user interface components. These
are presented as per the new Knockout user interface components. These include the
following:

— Buttons
— Input Fields
— Checkboxes
— Multi-select lists
— Single select list
— Date pickers
— Color pick list
* Publish your changes.

Upon completing these tasks, you will see that the product customization user interface look
and feel and components are now distinct from the store design theme and in accordance
with the customer's specifications.

Add a new user interface component to the configuration user interface flow

Sometimes a customer may want new to add a new user interface component that shoppers
will use to select an image that will be imprinted on the shopper's mobile phone case.

In this example, the customer's in-house design and brand management team have
developed a new "Image Carousel" user interface component that shoppers will use to select
the image to be imprinted. This new user interface component is used as the user interface
control for Oracle Configure, Price, Quote model attributes which require the shopper to
select an image.

2-71

ORACLE

Chapter 2
Use the Integration Functionality

As a member of the Sl user interface design team, you are instructed to ensure that
this new user interface component is displayed correctly in Commerce. To add the new
user interface component to the configuration user interface experience via direct API,
complete the following tasks:

* Login to Commerce Admin and navigate to Settings - Extensions and do the
following:

— Deactivate the Oracle Configure, Price, Quote Configurator user interface
extension.

— Delete the Oracle Configure, Price, Quote Configurator user interface
extension. This extension includes the direct API versions of the Configure
and Reconfigure user interface elements as well as a common JavaScript
Library of user interface Components used to render the Layout response from
Oracle Configure, Price, Quote.

* Create new versions of the JavaScript Library to include the new 'Image Carousel'
user interface component, including HTML, JavaScript and Style Definitions which
must also be added to the global stylesheet.

* Bundle the user interface elements and new JavaScript library into a single
extension that can be uploaded in a single step.

* Navigate to Settings — Extensions and upload the edited version of the Oracle
Configure, Price, Quote Configurator user interface extension.

* Reapply the "Customize via direct API" for Configure.

* Preview the product layout and make sure that the new image carousel user
interface component renders correctly when customizing a product.

* Preview product layout and make sure that the new image carousel user interface
component renders correctly when reconfiguring a product.

* Publish your changes.

Upon completing these tasks, you should see that the product customization user
interface now includes a new user interface component in accordance with the
customer's specifications.

Remove tabs from the product customization user interface experience

In this case, the customer's in-house design and brand management team have
requested that all tabs be removed from the product customization user interface as
they have received feedback from customers that they are confusing.

As a member of the user interface design team, you are instructed to remove all tabs
from the customization user interfaces. To remove all tabs, complete the following
tasks:

* Login to Commerce Admin and navigate to Settings - Extensions.

» Deactivate the Oracle Configure, Price, Quote Configurator user interface
extension.

» Delete the Oracle Configure, Price, Quote Configurator user interface extension.
This extension includes the direct API versions of the Configure and Reconfigure
user interface elements as well as the JavaScript Library of user interface
Components.

» Edit the JavaScript Library to change how tabs are rendered (stacked, side by side
etc.)

2-72

ORACLE

Chapter 2
Use the Integration Functionality

* Navigate to Settings — Extensions and upload the edited version of Oracle Configure,
Price, Quote Configurator user interface Extension.

* Reapply the "Customize via direct API" for Configure Preview the product layout and
make sure that there are no tabs displayed when customizing a product.

* Preview the product layout and make sure that there are no tabs displayed when
reconfiguring a product.

» Publish you changes.
Upon completion of these tasks, you will note that the product customization user interface no
longer displays any tabbed layout in accordance with the customer's specifications.

Apply a product type specific set of user interface components to the configuration
flow

In this case the, the customer's in-house design and brand management team want the
shopper's configuration experience to be different when they customize shippable goods (for
example, "Build your own laptop”) and when they customize services such as the Phones4All
offer.

For this, a new set of "Service Configuration user interface Components" has been developed
by the in-house design and brand management team for the following:

e Buttons

e Input Fields

* Checkboxes

¢ Multi-select lists
e Single select list
e Date pickers

e Color pick list

As a member of the user interface design team, you are instructed to ensure that when a
shopper is customizing a service these new user interface components will be displayed. This
is done by completing the following tasks:

* Login to Commerce Admin.
* Navigate to Settings — Extensions.
» Deactivate the Oracle Configure, Price, Quote Configurator user interface extension.

* Delete the Oracle Configure, Price, Quote Configurator user interface Extension. This
extension includes the direct API versions of the Configure and Reconfigure user
interface elements as well as the common JavaScript Library.

» Edit the JavaScript Library by adding conditional | F statements that map the Oracle
Configure, Price, Quote user interface components to the new "Service Configuration
user interface Components" where Product Type = Servi ce.

* Navigate to Settings — Extensions and upload the edited version of Oracle Configure,
Price, Quote Configurator user interface extension.

* Reapply the "Customize via direct API" for Configure.
* Publish your changes.

* Create a new "Services Product Layout" for products where Product Type = Servi ce.

2-73

Chapter 2
Use the Integration Functionality

» Create a new "Service Product Details Widget."

« Add the "Customize Button for direct API" user interface element to the Product
Details Widget.

* Add the "Service Product Details Widget" to the "Services Product Layout."
e Save your changes.

* Navigate back to Layout - Services Product Layout - Layout Settings.
* Set the Layout Preview Product ID for 4ForU Deal offer.

» Select Product Layout —. Preview. You are presented with a preview of the
product layout for the 4ForU Deal offer.

» Select to customize the offer. You are presented with the customizable options for
the offer in a combination of user interface components. This includes each of the
new "Service Configuration user interface Components." This includes the
following:

— Buttons

— Input Fields

— Checkboxes

— Multi-select lists

— Single select list

— Date pickers

— Color pick list

These are now presented correctly.
* Publish your changes.

Upon completing these tasks, the product customization user interface now displays
the new product type specific user interface components in the configuration flow.

Customize and reconfigure a product by direct use of the CPQ
Configuration API

ORACLE

You can customize and reconfigure a product by directly using of the Oracle Configure,
Price, Quote Configuration API.

You can use the Direct AP| Configuration feature to customize a product by
implementing and using the Oracle Configure, Price, Quote Configuration API. This
feature give you the ability to do the following:

» Customize a product where the "Customize via direct API" feature has
implemented in Commerce

» Reconfigure a product before checking out

Before you can accomplish these tasks, you must first make sure that the Direct API
Configuration feature has been implemented (described in a previous topic of this
section of the guide). Also, it is assumed that the Commerce and Oracle Configure,
Price, Quote Integration is already configured and enabled. In the section that follows,
you are provided with details for using the feature to carry out these specific
customization tasks as just described.

2-74

Chapter 2
Use the Integration Functionality

Apply customizations to a product by directly using the Oracle Configure, Price, Quote
Configuration API

The list of tasks that follow describe a situation where a shopper customizes a product where
the Direct API Configuration feature has been implemented in Commerce.

In this case, a System Integration Partner has already implemented the feature and the Si
user interface design team may have already done some user interface customizations by
directly using the Oracle Configure, Price, Quote Configuration API.

For this example, it is assumed that the Commerce and Oracle Configure, Price, Quote
Integration is already configured and enabled.

Use the following guidelines to accomplish the specified goals.

* As an example, let us say that the shopper has noticed a lot of web advertising by their
cell phone service for their new Phones4All offer which allows them to buy a single deal
with phones and plans for up to 6 people at huge savings on handsets, accessories and
monthly bills.

» The shopper navigates to their cell phone service and selects the Phones4All offer. The
shopper selects to customize the offer. The Ul element Customize Button for Direct
APl invokes the .../v1/configurations SSE endpoint passing the following
parameters:

— product Fani |y

— productLine

— nodel

— locale

— currency

— configurationMetadata

e The.../vl/configurations SSE endpoint triggers the following Oracle Configure,
Price, Quote API endpoints:

— CGET_configU Settings
— CGET_pageTenpl ates

— POST_config

— CGET_Layout _ Cache

e The .../vl/configurations SSE collates the data returned from Oracle Configure, Price,
Quaote, strips out all extraneous information, and returns a "combined configuration data
response."

* The shopper is presented with a set of customization options that they can use to tailor
the offer to their specific needs.

e The first option the shopper is presented with is the number of lines required.
e The shopper selects 4 lines.
* The shopper selects Next.

* The Ul element Customize Button for Direct API invokes the .../v1/configurations/
{cachel nst ancel d}/ page SSE endpoint (where cachel nst ancel d represents the current

ORACLE 2-75

ORACLE

Chapter 2
Use the Integration Functionality

reconfiguration instance in Oracle Configure, Price, Quote) by passing the
following parameters:

— product Fani |y
— product Line
— model

— locale

— currency

— op: next

The .../vl/ configurations/{cachel nstancel d}/ page SSE endpoint triggers the
following Oracle Configure, Price, Quote API endpoints:

— POST_next
— CGET_Layout _ Cache

The .../vl/ configurations/{cachel nstancel d}/ page SSE collates the data
returned from Oracle Configure, Price, Quote, strips out all extraneous information,
and returns a "combined configuration data response."

The shopper is presented with the configuration options for Handset and Plan for
Line 1 including:

— Handset - including Capacity, Color, Tablet, and Watch
— Plan - Silver or Gold
The shopper selects the "Samsung S10" handset

The Ul element Customize Button for Direct API checks the i sUpdat abl e
property for the handset attribute.

The i sUpdat abl e property value is TRUE (this means that when an option is
selected for this attribute, the configuration model must be updated as this
selection impacts other model attributes).

The Ul element Customize Button for Direct API invokes the ... /v1/
configurations/{cachel nstancel d} SSE endpoint (where cachel nstancel d
represents the current reconfiguration instance in Oracle Configure, Price, Quote)
passing the following parameters:

— product Fani |y
— productLine

— nodel

— locale

The .../vl/ configurations/{cachel nstancel d} SSE endpoint triggers the
POST _updat e Oracle Configure, Price, Quote API endpoint.

The .../vl/configurations/{cachel nstancel d} SSE collates the data returned
from Oracle Configure, Price, Quote, strips out all extraneous information and
returns a "combined configuration data response."

The shopper sees that some of the options that were previously available for
capacity, color, table and watch have been updated and that they are now limited
to those compatible with their selected Samsung S10 handset.

The shopper selects the 256GB capacity option for the handset.

2-76

ORACLE

Chapter 2
Use the Integration Functionality

The Ul element Customize Button for Direct API checks the i sUpdat abl e property for
the handset attribute. The i sUpdat abl e property value is FALSE (this means that when
an option is selected for this attribute the configuration model need not be updated as this
selection does not impact other model attributes).

The shopper completes the customization for Line 1 and moves on to line 2.

When the shopper is part way through the customization of Line 2, they decide that they
may need to make a change to the handset capacity for Line 1.

The shopper selects Previous.

The Ul element Customize Button for Direct API invokes the .. . /v1/ configurations/
{cachel nst ancel d}/ page SSE endpoint (where cachel nst ancel d represents the current
reconfiguration instance in Oracle Configure, Price, Quote) passing the following
parameters:

— product Fani |y
— product Line
— nodel

— locale

— currency

— op: previous

The .../vl/ configurations/{cachel nstancel d}/page SSE endpoint triggers the
POST _previ ous and GET_Layout _ Cache Oracle Configure, Price, Quote API endpoints.

The.../vl/configurations/{cachel nstancel d}/page SSE collates the data returned
from Oracle Configure, Price, Quote, strips out all extraneous information, and returns a
"combined configuration data response."

The shopper is presented with the configuration options that they selected for Line 1.

The shopper changes the capacity for the Line 1 handset and continues to customize the
rest of the lines.

The shopper completes the customization of their Phones4All offer.
The shopper selects Add to Cart.

The Ul element Customize Button for Direct API invokes the .../ v1/ configurations/
{cachel nst ancel d}/ add-t o- cart SSE endpoint (where cachel nst ancel d represents the
current reconfiguration instance in Oracle Configure, Price, Quote) passing the following

parameters:

— product Fani |y
— productLine
— nodel

The .../vl/configurations/{cachel nstancel d}/add-to-cart SSE endpoint triggers
the POST _integration_add_to_cart Oracle Configure, Price, Quote API endpoint.

The .../vl/configurations/{cachelnstancel d}/add-to-cart SSE transforms the
Oracle Configure, Price, Quote response to a Commerce cart item and adds the
configured item to the Commerce cart.

The shopper proceeds to checkout.

When all of this has completed, a multi-level configured item is added to Commerce cart.

2-77

Chapter 2
Appendix A: Configurator Flow

Reconfigure a customized product before checking out

In this situation, a shopper decides to make a change to a customized product after
adding it to the cart but before checking out.

Say, for example, the customer has customized their Phones4All offer and has added
it to the cart. Before checking out, however, the shopper reviews their choices and
realizes that by including the Apple Watch with Line 4 the offer is more than $200 over
their budget. The following details illustrate what occurs if a typical shopper wishes to
reconfigure an already customized product before checking out:

e The shopper selects to edit the Phones4All item in her cart.

e The user interface Shopping Cart widget with a Reconfigure Button for Direct API
invokes the ... /v1l/ configurations SSE endpoint passing the following
parameters:

— product Fani |y
— productLine
— nodel

— locale

— currency

— confi gl d (identifies the specific instance of configuration in Oracle Configure,
Price, Quote which is to be reconfigured)

e The.../vllconfigurations SSE endpoint triggers the following Oracle
Configure, Price, Quote API endpoints:

— CGET_configU Settings
— CET_pageTenpl ates

— POST_config

— CGET_Layout _ Cache

e The.../vl/configurations SSE collates the data returned from Oracle
Configure, Price, Quote, strips out all extraneous information, and returns a
"combined configuration data response."

* The shopper is presented with all of the customization options and selections that
they have made.

* The shopper navigates to Line 4 and removes the Apple Watch selection.
* The shopper selects to save and their cart is updated.

The Commerce cart is now updated with the newly reconfigured item.

Appendix A: Configurator Flow

ORACLE

A Configurator process flow occurs between Oracle Configure, Price, Quote and
Commerce during the integration.

The following presents a diagram of the integration Configurator Flow:

2-78

Chapter 2
Appendix B: Request for Quote Flow

Configurator Flow
Oracle Commerce Cloud Service — CPQ Cloud Service Integration
ORACLE -
COMMERCE g Dutaits e Canes et *({“m? e e
cLoup o
[}
.
ORACLE’ Validate
INTEGRATION Y COmQuas
CLOUD SERVICE
1
ORACLE’ Display & Consiguration | | Calculate Valiate
CONFIGURE, PRICE, Select Opticns Complete Price Configuration
AND QUOTE
cLouD l
L

Appendix B: Request for Quote Flow

A Request for Quote process flow occurs between Oracle Configure, Price, Quote and
Commerce during the Quote integration.

The following presents a diagram of the Request for Quote integration flow between
Commerce, OIC, and Oracle CPQ Cloud when using theOracle Commerce-Oracle CPQ
Quote integration

Request for Quote Flow
Oracle Commerce Cloud Service — CPQ Cloud Service Integration
P o~
Shopper P TN
h Shopper Adds Submi Update Order A
ORACLE | [so=gal | =m e | < ,:m% o, [tz ve] conpem
COMMERCE ok g R >
CLOUD ¥ T k3 \[
. No |
| L =
|
L] L] 1
ORACLE’ ot .
L&
INTEGRATION Racynmt Caioks oo a4
CLOUD SERVICE
i t ¥
1
v ' L]
ORACLE Transaction || eesfAnUnones | uow || SymcOuiten Update
COMNFIGURE, PRICE, Crand Comments Approved Em“ Transaction
AND QUOTE
cLoUD T]

ORACLE 2-79

Integrate with Customer Data Management

Integrate Oracle Customer Data Management with Oracle Commerce.

You can configure your Commerce environment to integrate with Oracle Customer Data
Management (CDM), a cloud-based application for managing organizations and contacts.

Integrate with Customer Data Management

ORACLE

Integrate your Oracle Commerce environment with Oracle Customer Data Management.

Oracle Commerce can be configured to integrate with Oracle Customer Data Management
(CDM), a cloud-based application for managing organizations and contacts. (CDM is also
referred to as Oracle Engagement Manager or OEM.) CDM can store organization and
contact records that are consolidated from several different applications deployed throughout
your environment. You can use CDM to identify potential duplicate records and take the
necessary actions to edit, remove or validate your data. For information on obtaining,
installing and configuring CDM, refer to ht t ps: // docs. or acl e. com en/ cl oud/ saas/

cust omer - dat a- managenent / 20d/ books. ht ni .

Accounts, contacts and their relationships and addresses can be synchronized from CDM to
Oracle Commerce. Similarly, accounts and contacts that are created either through self-
registration or a delegated administrator can be synchronized with CDM in real time. The
integration between Oracle Commerce and CDM occurs by both applications communicating
through Oracle Integration Cloud (OIC), a cloud-based communication platform.

For information on obtaining, installing and configuring OIC, refer to https://
docs. oracl e. conf en/ ¢l oud/ paas/ i nt egration-cloud/index. htm .

Integrating between CDM and Oracle Commerce allows you to create scheduled jobs that
identify changes to data and then perform the following actions:

* Synchronize in bulk or individually accounts that have been created or updated in
Commerce to CDM in real time.

« Synchronize in bulk or individually contacts and profiles that have been created or
updated in Commerce to CDM in real time. Additionally, you can associated contacts to
an account during the synchronization process.

* Maintain organization hierarchy between synchronizations.

Steps and requirements for the integration

Before you can configure the integration, ensure that you have the following:

* An Oracle Commerce account and access to Oracle CX Commerce 21A or later.
e An Oracle Customer Data Management account and access to CDM 21A or later.

e An Oracle Integration Cloud (OIC) account and access to the Oracle Integration Cloud
Service.

If you require one or more of these applications, please contact your Oracle sales
representative: http://wmw. oracl e. com us/ coporat e/ contact/i ndex. htni .

3-1

Chapter 3
Integrate with Customer Data Management

The integration is delivered as a . par file. To download and import the integration,
perform the following:

Open the integration package OCC- CEC | nt egr ati on.
Import the package by logging into OIC as an admin user.

Click the Packages button.

1

2

3

4. Click the Import button.

5. Click Browse to open the navigation pane.
6. Selectthe OCC- OEC | nt egr ati ons package.
7. Click Import.

The package is added to the packages list.
Understand integrations
The OCC- CEC | nt egr at i ons package contains three connections and six integrations.

The connections used are:

e Oracle Customer Data Management (CDM), also known as Oracle Engagement
Cloud (OEC) - You must provide a CDM Services Catalog URL and an Interface
Catalog URL. You must also provide the User name and Passwor d for access to the
OEC.

* Oracle Export Download - This connection is a REST API Base URL that requires
a connection URL that points to the Bulk Export Activities resource. You must also
provide the CDM User nane and Passwor d for access to CDM.

e Oracle Commerce Cloud - This requires a connection to a Base URL as well as a
security token.

The six integrations configured within the package are:
Bulk Profile Sync from OEC to Commerce

This scheduled flow synchronizes profiles in bulk from CDM to Commerce. The
identifier is BULK_PROFI LE_SYNC CEC TO OCC.

When OEC encounters a file that contains more than 50 thousand records, it splits the
records into multiple CSV files. However, the OIC integration does not support the
conversion of multiple CSV files into JSON files. Should your export file contain more
than 50 thousand records, it will be divided into multiple files, however these files will
not be converted. To prevent this from occurring, ensure that you do not export more
than 50 thousand records at a time.

You should also ensure that CDM is configured to store states using the abbreviated
state format, such as CA or VT. This is required because Commerce stores the state
values in the abbreviated format.

The following diagram shows the flow of the integration:

ORACLE 3-2

Chapter 3
Integrate with Customer Data Management

= e) @ é o . Mﬂ.' - O O

*0**Q@OO~¢~0-0*0Q*@*-

Mg o Cetizos | Geerndis FasSim rpCotsreslosd - e SIConischinSagm MapsywsteConisct | wiisloniacSeghi wpielonec el

00000*

* arrearie

O R S

Otarmisa

It g e i upsadmp Tyt lep 1 g msmpt ScreciePum

Bulk Account Sync from OEC to Commerce

This scheduled flow synchronizes account data in bulk from CDM to Commerce. Its identifier
is BULK_ACCOUNT_SYNC CEC TO OCC. When you are synchronizing addresses, the primary
address in CDM is marked as the default shipping address in Commerce.

Note that OEC supports multiple accounts with the same name. If a CSV file has to account
records with the same name or email address, only the first instance will create a record, the
second instance will then update the record. Therefore it is important that you define the
appropriate restrictions in CDM to ensure that account names and profile email addresses
are unique.

The following diagram shows the flow of the integration:

Schwdde Mepioowsfool cssftion Foxtertismen JobSmauratis EbSAnCoTCes Wi orktConpetsr MapiogeLibSisn elceSista

=0 - 0 O .é 0 0 m?m S T -0

-9-*000@000000*

Mapts Oolinuried . Oellpuried'is Foadfin Unoplortinedlel S prdminA T bt

& O .90 .,u:.?...,,. o

¥ sawarie

Qo—0 000 A1~—0Q >0 —0

ORI Mg e RO (POCIMAION TR Mg el ATt g MmO et Lpaa T

ORACLE 33

ORACLE

Chapter 3
Integrate with Customer Data Management

Create Account From Commerce to OEC

The following integrations perform individual synchronizations of things such as
profiles, accounts and addresses. This event flow is triggered whenever an account is
created in Commerce. It synchronizes the new account data with CDM. lts identifier is
CREATE_ACCOUNT_OCCS_TO CEC.

Note that when synchronizing account and contact data from Commerce to CDM, the
default shipping address in Commerce is marked as the primary shipping address in
CDM. Additionally, accounts that are synchronized from Commerce to OEC are
marked as t ype = CUSTOMER in OEC.

Inherited attribute values are not synchronized to OEC. If an account is a sub-account
and it inherits the Tax and DUNs values from its parent, these values are not
synchronized, and the Tax and DUNSs values will be set to NULL. This occurs because
inheritance is not recognized in CDM. The integration uses the following architecture:

® 06 - O O 0 i © | -

ervateCrganizaton MESSAGESOURGCE! Map o croateAccount croaloAcoouet Mapto spdaaOegant .. updateOrganization Addressiocp Map @ Map ipd twihi.

MG omtactaintorma . MR 16 geiCentact eatefalatongh MIP 1 SR erosALconContat

0 0 0 o0 O

© 0

Create Profile sync from Commerce to OEC

This even flow is triggered whenever a profile is created in Commerce. It synchronizes
the new profile data with CDM. Its identifier is CREA_PROF_SYNC FOM OCC TO CEC.

This integration uses the following architecture:

3-4

ORACLE

Chapter 3
Integrate with Customer Data Management

© 6 & © * 0 0 0 0 0 -
° !
° !
¢ 10 0 - e 0 0
wﬁ 4
,o .

Otherwise

o ¢ o

ShippingAddraasList
e IF primaryShipAdd

. o ° . ° . . " O

Map to creataContac.. createContactiddros Ma 16 updateAddre. . updateAddrossExtid
Otnerwise

Update Account From Commerce to OEC

This event flow is triggered whenever an account is updated in Commerce. It synchronizes
the new account data with CDM. lts identifier is UPDATE_ACCOUNTS OCC TO CEC.

Note that when synchronizing account and contact data from Commerce to CDM, the default
shipping address in Commerce is marked as the primary shipping address in CDM.
Additionally, accounts that are synchronized from Commerce to OEC are marked astype =
CUSTOMVER in OEC.

Update Profile sync from Commerce to OEC

This event flow is triggered whenever a profile is updated in CDM. It synchronizes the new
profile data with Commerce. Its identifier is UPDA_PROF_SYNC FROM OCC TO CEC.

Understand account-based contact address synchronization

Commerce supports roles at the account-contact relationship level. However, CDM does not
provide such a dynamic use of roles. Whenever an account or contact is synchronized from
CDM to Commerce, the default role of Buyer is assigned to all relationships. Because of this,
Commerce is unable to assign the Address Manager role and cannot assign addresses to
account-based contacts who only have the role of Buyer.

Register the integration with Commerce and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

* Log into the Commerce administration interface.

* Click the Settings menu and select Web APIs.

3-5

ORACLE

Chapter 3
Integrate with Customer Data Management

» Click Registered Applications from the Web APIs panel.
» Click the Register Application button.

» Enter a name for the integration application. Create a meaningful name that
reflects the purpose of the application.

» Click Save. The Application ID and Application Key are automatically generated
and the application is added to the Registered Applications page.

» Click on the name of the application you created.

» Click on Reveal link to display application key. You can copy the application key to
use as the security token for the Oracle Commerce Cloud connection.

For more information on managing an application within Commerce, refer to Register
applications.

Configure the source system reference

Whenever contacts are synchronized from Commerce to CDM, a source system
reference is required in CDM. Source system references allow you to identify the
source of the data. When you create a source system code, ensure that it has a

unique identifier.

Configure the source system code in OIC to pass the value to CDM as part of the
integration flow. For information on setting up OIC mappings, refer to the OIC
documentation.

To configure a Commerce system, log into your CDM application and perform the
following steps:

* Navigate to the Setup and Maintenance tab.
e Select Customer Data Management from the Setup options.

e Select Trading Community Foundation. From there, select the Manage Trading
Community Source Systems.

e Create a Commerce Cloud system with the code COWERCE_CLQOUD. The Type of the
code is Spoke. Provide a full name in the Name field, such as Oracle Commerce
Cloud. Enable the code for Trading Community Members.

e When you have finished, save your changes by publishing the sandbox by using
the drop down menu to select Manage Sandboxes. Select the currently active
sandbox and click Publish.

Configure the Commerce webhook

When an account or profile is created in Commerce, it is synced to OEC. These
synchronizations are triggered by the account, shopper and Cr eat eAnUpdat e
webhooks. The webhooks then trigger the integration workflows. You must configure
the profile and account webhook to point to the correct URLs. Follow these steps to
configure the webhooks in the Commerce administration interface:

* Log into the Commerce administration interface.
* Click the Settings icon.
* Click Web APIs and then click the Webhook tab.

* Click the producti on- updat eProf i | e webhook. Provide the endpoint URL for the
integration:

3-6

ORACLE

Chapter 3
Integrate with Customer Data Management

.liclapi/integration/vl/flows/rest_oracl ecormercecl oud/
UPDA_PROF_SYNC_FROM OCC_TO CEC/ 1. 0/

e Update the OIC user nane and passwor d under Basic Authorization.

* Click the producti on-regi sterProfil e webhook. Enter the integration endpoint URL in
the URL box:

.liclapi/integration/vl/flows/rest_oracl ecommercecl oud/
CREA_PROF_SYNC _FROM OCC TO CEC/ 1. 0/

» Update the OIC user nane and passwor d under Basic Authorization.

e Click the producti on-creat eAccount webhook. Enter the integration endpoint URL in the
URL box:

../liclapi/integration/vl/flows/rest_oracl econmercecl oud/
CREATE ACCOUNT_COCCS_TO CEC/ 1. 0/

* Update the OIC user name and passwor d under Basic Authorization.

* Click the producti on- updat eAccount webhook. Enter the integration endpoint URL in the
URL box:

..liclapil/integration/vl/flows/rest_oracl econercecl oud/
UPDATE ACCOUNT_OCCS_TO_CEC/ 1. 0/

» Update the OIC user nane and passwor d under Basic Authorization.
* Click Save.

Configure the connections

Once you have installed the package, you must configure the connections used in the
integration.

e Loginto OIC as an admin user.
e Select Integration and then Connections.
e Select Oracle Engagement Cloud. The Connection Properties dialog appears.

Enter the OEC Services Catalog URL and an Interface Catalog URL. The OEC Services
Catalog URL is: ht t ps: // host nane/ f scnSer vi ce/ Ser vi ceCat al ogSer vi ce?wsdl

The Interface Catalog URL is: ht t ps: // host nane/ hel pPr of al Api /
ot her Resour ces/ | atest/interfaceCat al ogs

e Enter the User nane and Passwor d for access to the OEC.

» Enter the security token value, which you can find in the Commerce administration
settings and click OK.

e Select OEC Export Download. The Connection Properties dialog appears.
e The connection type for this property isrest Ul .

Enter the connection URL that points to the Bulk Export Activities resource. For example, the
URL would be: htt ps:// CDVSer ver/ crnRest Api / r esour ces/ CDMSer ver /
bul kExport Activities

or

https:// CDVBerver/crnRest Api / resour ces/ | at est/ bul kExport Activiti es.

3-7

ORACLE

Chapter 3
Integrate with Customer Data Management

e Select Oracle Commerce Cloud.

Enter the Connection base URL, which would be htt ps: //
Commer ceHost / ccadmi n/ vl

The security token is the application key created in Register the application
and Create a security key.

Activate the integration flows

After you configure the Oracle CDM and Commerce connections, you must activate
the integrations that were created when the integration package was imported to
Oracle Integration Cloud. To do this, follow these steps:

* Log in to Oracle Integration Cloud (OIC) as an admin user.

* Click the Integrations icon to display the Integrations list.

* Click the Activate button for each of the following integrations:

Bulk Profile Sync fromOEC to OCC

Bul k Account Sync from CEC to OCC — Note that activating both of these
bulk integrations also requires creating a schedule that then runs the
integration.

Updat e Account From CEC to OCC
Update Profile sync fromCOEC to OCC
Create Account From OCC to CEC
Create Profile sync fromOCC to CEC

OIC displays a message to indicate that the integration flow was successfully
activated.

Mapping for CDM and Commerce

The following table shows the relationships between the CDM properties and the
Commerce properties. For details on the properties, refer to each product's
documentation:

Property in CDM Property in Commerce
Account Account

Addr ess Addr ess

Address ID Id

Address Line 1 addressl

Address Line 2 addr ess?2

Gty city

Country country
DateOBirth dateOfBirth

DoNot Emai | Fl ag not (recei veEmail)
emai | Addr ess emai |

Fi r st Nane firstName

Last Name | ast Name

M ddl eNare m ddl eNare

3-8

ORACLE

Chapter 3
Integrate with Customer Data Management

Property in CDM

Property in Commerce

Party Number

Partyl d (Generated automatically by CDM)
Person

Postal Code

Primary address

Primary contact

Province
Rel ationshi p (account-account)

Rel ationship (account-person of type
contact)

Sour ceSyst enRef er enceVal ue
State

Whenever an account, contact or address
entity is synchronized between CDM and
Commerce, the Party Nunber information is
stored in ext er nal Or gani zati onl d
property. The Party Number property also
maps to the cust orrer Cont act | d and the
ext er nal Addr essl d properties.

None

Profile

post al Code

Def aul t shi ppi ng address

Commerce accounts can have multiple
contacts, and do not recognize a primary
contact.

None
Parent Organi zation

Cont act, or Secondary Cont act (There is
no distinction between contact or secondary
contact in CDM.)

profileld
state

3-9

Integrate with an External Product
Configurator

Integrate an external product configurator with Oracle Commerce.

When your store is configured to sell configurable products, you may want to integrate with
an external product configurator. The recommended configuration is to integrate with Oracle
CPQ, however, you can also integrate with a third-party configurator application.

Enable the integration

This topic shows how to enable the integration with the third-party configurator within Oracle
Commerce.

e g kM B NP

7.

In the Commerce administration interface, select Settings.

Select Oracle Integrations from the sidebar menu.

Select your configurator from the dropdown menu.

Check the Enable Integration checkbox.

Enter the Configuration URL.

Enter the Reconfiguration URL.

Note: You must enter these values for your production and preview environments.
Click Save.

If you are using multiple sites, you must follow these instructions for each site that you
operate.

Mark products as configurable

To identify a product as configurable:

ORACLE

@ o » w N PR

In the Commerce administration interface, select Catalog.

Select the product you wish to identify as configurable.

Click on the SKUs tab of the product detail pop-up frame.

Select the SKU you wish to identify as configurable.

Check the Configurable checkbox. This displays three further fields you must complete.

Enter the Model information. This should match the Model information of a configurable
product in the catalog on your configurator.

Enter the Product Line information. This should match the Product Line information of a
configurable product in the catalog on your configurator.

Enter the Product Family information. This should match the Product Family information
of a configurable product in the catalog on your configurator.

4-1

Chapter 4
Add Customize button to Product Details widget

Click Save. This returns you to the SKU frame, where the SKU you updated
should be marked with an asterisk to identify it as a configurable SKU.

Note: Administrators can also perform the above setup steps in bulk by using the
SKU import program. From the Catalog page in Commerce, click Manage Catalog
and select Import. In the Import dialog, click Browse and locate the CSV file to
import. Click Upload File, click Validate, and then click Import.

Add Customize button to Product Details widget

Add a Customize button to the Product Details widget so the button is visible to
Commerce self-service users from the Product Details page for a customizable
product.

To add a Customize button to the Product Details widget:

1
2
3
4,
5
6

In the Commerce administration interface, Select Design.
Select Product Layout from the layout list.

Delete the Product Details widget from the layout.

Place a new product details widget on the layout.

Click the Settings icon for the new Product Details widget.

From the Element Library, place a Customize button on the new Product Details
widget.

Publish the changes.

Configure the webhooks

A number of webhooks within Commerce provide support for configured items. These
must be set up appropriately for your external configurator.

The following webhooks support configuration:

Approval

Cart Idle

External Price Validation

Order Submit

Order Submit for PCI Compliant Target Systems
Quote Request

Quote Update

Return Request Update

Ensure that each of these webhooks is configured to work with your external
configurator. This means providing appropriate URLS, usernames, and passwords to
each of these webhooks.

ORACLE

4-2

Integrate with Oracle Infinity to collect data

Through an integration between Oracle Commerce and Oracle Infinity, the Commerce Data
Ingestion feature lets you use a Universal JavaScript tag that ingests all Commerce
Storefront events and sends the data to the Infinity data repository for analytic purposes.

By using this feature, Oracle provides the Customer Data Platform (CDP) system with data
that lets marketers dynamically generate audience segments based on current and past
behaviors and data attributes.

As a critical part and foundation of the CDP, the Oracle Management Cloud (OMC) Universal
Data Ingestion Framework (DIF), by integrating with the Oracle Infinity technologies,
establishes the common data ingestion framework for collecting Commerce product
behavioral data.

Integrate Commerce with Infinity

ORACLE

This integration establishes a common data ingestion framework for collecting product
behavioral data.

This topic explains how the Commerce and Infinity integration establishes a common data
ingestion framework for collecting product behavioral data.

To integrate Oracle Infinity with Commerce, events are used as starting point. There are a lot
of events which are published from the current store front framework whenever an event
takes place in the store user interface. The events used in the integration revolve around
actions such as Registration, Login, Cart events, Search, Products viewed, Order placement,
and others. These events are subscribed to and are used to send data to Infinity whenever
they occur. Specific examples of the data that can be collected include the following:

e Page analytics data (URL, referrer, time on page, browser, device operating system, etc.)
e Commerce specific data

¢ Products viewed

* Products added to cart

e Categories viewed

* Search terms used

* Order data

* Wish list data

Note: The integration collects data for both account-based and anonymous shoppers.

To collect this data, the presence of an Infinity tag in a site page initiates the download of an
Infinity JavaScript. For that to occur, the Infinity tag has to be in a "require" dependency.
Infinity provides a long list of event parameters which can accept Commerce data and send it
to the Infinity API. Commerce then subscribes to a particular set of these events and provides
the mappings to send the data to Infinity.

In summary, the integration works as follows:

5-1

Chapter 5
Understand the role of the Infinity platform in data ingestion

» Commerce loads Infinity JavaScript to site pages through a "require" dependency
from the Infinity viewmodel.

» Commerce subscribes to particular Infinity events. These are then tracked and
bound with methods.

» Commerce data is mapped with Infinity parameters in the methods and this is sent
to Infinity for collection.

A new setting for the Infinity integration is provided under the Integrations tab available
to Commerce Administrators. After enabling this setting, you must provide the Infinity
tag in the Production URL field required for this setting.

A new viewmodel, infinity.js, is also provided. The Infinity viewmodel loads the
Infinity script into the browser. Subscriptions to the events to be tracked are added in
this viewmodel along with their corresponding methods for correct data mapping. The
methods are kept as prototype methods which makes them extendable if you want to
add more parameters apart from the provided mappings.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

Understand the role of the Infinity platform in data ingestion

ORACLE

Infinity provides a platform for data ingestion when integrated with Commerce.

With the Commerce data ingestion feature enabled, the Oracle Infinity Tag used in
Commerce site pages initiates the collection of data from online systems capable of
executing JavaScript. This data is then saved in the Oracle Infinity data repository.
Though initial configuration is very simple (by using the Infinity tag features), complex
behaviors and site content can be tracked and delivered to the Oracle Infinity reporting
environment. Data collected by using the tag can then be used to drive marketing
activities of any conceivable type, and integrations with Oracle Marketing Cloud
applications.

Oracle Infinity provides the following capabilities:

» Data collection - Collects web and mobile app activity data that interests you. As
data is collected, it is organized in sessions, augmented, and evaluated to identify
if someone is a previously known user or a new user. All data is collected quickly,
processed, and made available for analysis using Infinity's reporting user interface
and APIs. This lets you get immediate feedback on campaigns or new content you
just launched on your site.

* Reports - Analyzes your data and prepares reports immediately. Unlimited
swappable dimensions reduce the need for one-off reports.

» Streams - Gains real-time insights into a continuous flow of visitor activity data.

* Action Center - Integrates in-session, customer-level data with action systems
such as email service providers, CRM systems, and marketing automation
platforms. Action Center enables creation, monitoring, stopping, and starting of
connections.

* Integrations - Provides APIs that let you integrate with your business and
marketing applications.

* Account settings - Defines roles, groups, user privileges, and more.

5-2

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

Chapter 5
Tag site pages to use the Infinity data ingestion feature

» Library - The Library application provides you with a way to administer reports, measures,
dimensions, segments, and any other objects that you can administer.

You may encounter the following Infinity terminology when trying to work with the Commerce
and Infinity integration to successfully collect the data that best works for you:

» Account GUID — A unique value used to identify your account. All collected data is stored
in one place for an account. All tags on an account use the same account GUID.

» Tag |d — Tag identifier used to put your tags into a hierarchical format. Each tag has a
unique ID that may be set at creation time.

* Context — A Context tag is a unique tag configuration selectable by query parameter. You
may only have one active context at a time for a tag, though you may have multiple
contexts configured for an individual tag.

* Plugin — An add-on to the tag that enables tracking libraries for functions outside of what
the base tag tracks.

For more complete details on using Infinity and its capabilities, refer to the Oracle Infinity
documentation.

Tag site pages to use the Infinity data ingestion feature

The presence of an Infinity tag in site pages initiates data collection from online systems
capable of executing JavaScript.

As mentioned, complex behaviors and site content can be tracked and delivered to the
Oracle Infinity reporting environment by using the special Commerce Infinity tag in your store
pages. This data is ingested and sent to the Infinity data repository for analysis.

To use this tag in your store site pages, contact your Oracle account representative to obtain
a base tag for your site. A tag URL will be returned to you that looks something like this:
c.oracleinfinity.iofacs/account/account_guid/ ny_tagid/odc.js.

A setting for Infinity is available in Commerce Admin application under the Integrations tab.
After enabling the setting, provide the Infinity Tag URL obtained from Infinity in the
Production URL field.

Note: The GUI D and t agl D are unique strings for your site and tag.

For more complete details on using Infinity and its capabilities, refer to the Oracle Infinity
documentation.

Understand Infinity integration parameter mapping

ORACLE

Commerce subscribes to particular events in the Storefront which are then tracked and
bound with related methods. Infinity parameters are mapped in these related prototype
methods with Commerce data.

A site page containing the Infinity tag loads an Infinity script through a "require" dependency.
Commerce then subscribes to particular Infinity events to be tracked and bound with specific
methods. The Commerce data is then mapped with Infinity parameters in the methods and
this is sent to Infinity for collection. The available Commerce/Infinity parameter mappings are
the following:

Note: If for some data field a provided parameter is not available in Infinity, you can create
custom parameters as "wt . z_<your Nane>."

5-3

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

ORACLE

Chapter 5
Understand Infinity integration parameter mapping

Table 5-1 Commercellnfinity parameter mappings

Event Event Details Data tracked Infinity Parameters
USER PROFI LE_UPDA Published when the * page URI page- uri
TE_SUCCESSFUL user profile is + user-id wt . desvid
updated. When the . content-grou
REST call for profile name ("Sserp We.cg_n
update is a success, it Profile”) w.si_p
publishes an event. step name
("Update
Successful")
USER_PROFI LE_UPDA Published from * page URI page- uri
TE SUBM T order.js while . user-id W . desvi d
placing an order, .+ content-group
order it validates Profile") w.si_p
registered user. . step name

Published from
user.j s when the
user locale is updated
if it's not part of
supported locales. On
successful update to
profile, this event is
published.

Published from the
Customer Profile
widget via the widget's
customerProfile.]
S when the user
profile is updated.

Published from
Header widget via the
widget's el ement . j s
when user locale is
updated.

Published from the
Checkout Registration
widget via the widget's
checkout Regi st rat
i on.j s, when a place
order button is clicked
and it publishes a
CHECKQUT_VALI DATE
_NOWevent. If the user
login is not valid, it
publishes an event to
this topic.

("Update Submit”)

5-4

ORACLE

Chapter 5
Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

Event

Event Details

Data tracked

Infinity Parameters

USER_LOGOUT_SUBM
T

USER LOG N_SUCCES
SFUL

USER_LOG N_SUBM T

USER_AUTO LOG N_S
UCCESSFUL

SEARCH_RESULTS_UP
DATED

Published from the
Logon Registration
widget (Login-
Registration-v2 ->

el enent . j s) when
the user clicks logout
or clicks Cancel on
login.

Published from

user.j s when a user
login is successful or a
SAML callback is
successful.

Published from Login-
Registration-v2 ->

el ement . j s (header)
widget and Checkout-
Registration ->
checkout Regi st rat
i on. | s (checkout
page), while the user
logs in.

Published from
user.j s when the
user autologin is
successful.

Published from
search. | s page
layout after a search
request is completed.

If the search request
is a success then it
publishes with the
search results
otherwise it publishes
with an error
message.

page URI page- uri
user-id wt . desvi d
content-group W . cg_n
name ("User CUY=
Profile") W.si_p
step name ("User

Logged Out")

page URI page- uri
user-id Wt . desvi d
GDPR cookie W . ce
consent '
content-group W cg_n
name W.si_p
("User Profile™)

step name

("Logged In")

page URI page- uri
content-group w.cg. n
name ("User W si -
Profile”) -St_p
step name ("Log

In Submit")

page URI page- uri
user-id W . desvi d
GDPR cookie Wwovt f
consent -
content-group w. ce
name ("User W .cg_n
Profile") Ww.si_p
step name B
("Registered")

page URI page-url
user-id W . desvi d
content-group W .ca n
name ("Search") -0
search text total WE. 0ss
records found Wt . 0ss_r

search facet W . z_sel ect edSear
selected (sentas chFacet

<facet name>-

<facet value>)

5-5

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

]
Data tracked

Event

Event Details

Infinity Parameters

PRODUCT_VI EMED

PRODUCT_ADDED_TO_
PURCHASE LI ST_SUC

CESS

PAYMENT _AUTH_SUCC

ESS

Published from the

Product Details widget

when a product is
viewed from PDP or
quick view.

Published from

Purchase Lists widget
(add-to-purchase-list -

>elenent.js)

when an item is added

to the purchase list.

Published from
payment-auth-
response view model
when the response
from the

paymentAuthRespons
e endpoint returns the

state of payment
accepted and the
order status has not
failed.

page URI

user-id
content-group
name ("Purchase
List")

step name ("Add
to Purchase List")
product id

SKU id

quantity

price

product type
brand
transaction event
(W)

currency

page URI

user-id
content-group
name ("Purchase
List")

step name ("Add
to Purchase List")
product id

SKU id

quantity

price

product type
brand transaction
event ("w")
currency

page URI

user-id
content-group
name ("Payment")

step name
("Payment
Success")

page- uri
.dcsvid
.cg_n
.Sl p

. pn_sku
JIx_u
JIX_s
.pn_fa
.pn_ma
tx e
.z_currency

EE=E==Es8&8&8 &8 &

page- uri
.dcsvid
.cg_n
.si_p

. pn_sku
X u
XS
.pn_fa
. pn_ma
tx_e
.Z_currency

EEEE5sE&8&8&8 &8 &

page- uri

wt . desvid

w.cg._n
si_p

5-6

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

]
Data tracked

Event

Event Details

Infinity Parameters

PAYMENT_AUTH_DECL
I NED

PAGE_CHANGED

Published from
payment-auth-
response view model
when the response
from
paymentAuthRespons
e endpoint returns a
state like "removed" or
when a payment is
authorized but the
order failed.

Published from

[ayout -

contai ner. j s after
the layout is loaded.

It publishes with
pageEventData such
as page, pageld, path,
pageRepositoryld, etc.

page URI

user-id
content-group
name ("Payment")
step name
("Payment Fail")

page URI

user-id

page id
wt-dcsvid

In the case of the
of a confirmation
page, the
following is
published:
shipping method
shipping cost
payment gateway
name

gateway
transaction
amount
content-group
name(depending
on the page)

page- uri
wt . dcsvid
wt.cg_n
w.si_p

page- uri
wt.cg_n
wt. desvid

Wt . z_shi ppi ngMet h
od

wt . z_shi ppi ngChar
ges

Wt . z_gat ewayName

wt. z_gat ewayTrans
acti onAnmount

5-7

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

Event

Event Details

Data tracked

Infinity Parameters

CRDER_SUBM SSI ON_
SUCCESS

ORDER SUBM SSI ON_
FAI L

Published from the
order.js view model
when the order details
of the initial order
created during
checkout with PayPal/
PayU is fetched.

If the transaction is
done via PayU and the
status is settled/
approved, this event is
published.

Published from the
order.j s view model
when an order is
created or updated
successfully and the
status is submitted or
is pending approval
then this event is
published.

Published from the
order.j s view model
when the payment is
authorized. This is
triggered when it
receives a
PAYMENT_AUTH_SU
CCESS event.

Published from the
order. s view model
when order
submission fails due to
any of these reasons:
Payment Auth timeout,
Payment declined,
and/or order creation/
update failure.

Published from the
CyberSource Payment
Authorization widget if
there is an error while
generating the
signature in a payment
iFrame.

e page URI

e user-id

e content-group
name ("Order")

e step name

("Order
Submission
Success")

e SKUid

e product type

e brand

e quantity

e price

e transaction event
("'p")

e invoice date

* invoice time

e invoice number
(UUID)

e orderid

e conversion
("Purchase")

¢ page URI

e user-id

e content-group
name ("Order")

e step name
("Order
Submission Fail")

page- uri
.dcsvid
.cg_n
.Sl p

. pn_sku
.pn_fa
.pn_ma
X u
JIXxCs
tx e
tx id
Jx it
S
.tx_cartid
.conv

E EEE=E&8=s5s2&8=s58&8&8 &

page- uri
wt . desvid
w.cg_n
w.si_p

5-8

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

]
Data tracked

Event

Event Details

Infinity Parameters

CRDER_COMPLETED

COUPON_APPLY_SUCC
ESSFUL

CHECKOUT_SHI PPI NG
_METHOD

CHECKQUT_SAVE_SHI
PPI NG_ADDRESS

Published from the
paynent - aut h-
response. j s view
model when a
payment authorization
is accepted.

Published from the
order.j s view model
when the order status
is either submitted or
pending approval.

Published from the
Split Payments widget
when the order state
is either pending
approval or a template
(i.e., the order is a
scheduled order) or
pending scheduled
order approval.

Published from the
cart view model when
a cart is updated from
the server after a
coupon is applied
successfully.

Published from the
cart.js view model
with shippingOption
when the shipping
methods are loaded.

Published from the
Cart Shipping widget
when a shipping
option is reset or if a
shipping address and
shipping method has
changed.

Published from
order.j s view model
with the shipping
address when the
Place Order button is
clicked.

page URI
user-id
content-group
name ("Order")
step name
("Order
Completed")

page URI

user-id
content-group
name ("Coupon")
coupon id

page URI
user-id
content-group
name ("Shipping
Method")

step name
("Shipping
Method
Selected")

page URI

user-id
content-group
name ("Address")
country

state

city

postal code

page- uri
wt . dcsvid
w.cg_n
w.si_p

page- uri
wt . dcsvid
w.cg_n
w.nc id

page- uri
wt . desvid
wt.cg_n
w.si_p

page- uri
wt . desvid
w.cg.n
wt.z_country
Wwt.z_region
w.z city
w.z zip

5-9

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

___|
Infinity Parameters

Event

Event Details

Data tracked

CHECKOUT REG STER
_USER

CART_UPDATE_QUANT
I TY

CART_REMOVE_SUCCE
SS

Published from the
Checkout Order
Details widget when
all validations for
creating the order
have passed.

Published in the
Shopping Cart widget
with the
commerceltemd
when the Quantity
Update button is
clicked.

Published from
cart.js whenan
item is removed from

the cart view model. It

is also published with
a product commerce
id.

Published from
cart.js whena
place holder item is

removed from the cart.

e page URI

e user-id

e content-group
name ("User
Profile™)

e step name
("Checkout
Register")

« GDPR cookie
consent

e page URI

e user-id

e content-group
name ("Cart")

e step name
("Update Cart")

e productid

e SKUid

e updated quantity
e price

e product type

e brand transaction
event ("a")

e currency

e page URI

e user-id

e content-group
name ("Cart")

e step name
("Remove from
Cart")

e productid
SKU id
e removed quantity
e price
e product type
* brand

e transaction event
(Ilrll)

. currency

page- uri

W .
.cg_n
.Sl p
.ce

£ 2 =

decsvi d

page- uri

EE=EEsEsE&8&8&s58%&8°&

EEEE255=2:%

.dcsvid
.cg_n
.si_p
.pn_id
. pn_sku
Stx_u
tx_s
.pn_fa
.pn_ma
.tx_e
.Z_currency

. pn_sku
Jtx_u

tx_s
.pn_fa
.pn_ma
tx e
.Z_currency

5-10

ORACLE

Chapter 5

Understand Infinity integration parameter mapping

Table 5-1 (Cont.) Commercelinfinity parameter mappings

___|
Infinity Parameters

Event

Event Details

Data tracked

CART_ADD_SUCCESS

ADD_TO QUi CK_ORDE
R

Published from
cart.js when acart
is updated and the last
cart event is cart-add-
item.

The cart is updated
when the REST call is
made to fetch the
current profile order
and price information
to refresh the cart
data.

Published from the
product-add-to-quick-
order element when
adding to a quick
order and the button is
clicked.

e page URI

e user-id

e content-group
name ("Cart")

- step name ("Add

to Cart")

e productid

e SKUid
quantity
price

e product type

* brand

e transaction event
(‘a)

e currency

¢ page URI

e user-id

e content-group
name ("Quick
Order")

e step name ("Add
to Quick Order")

e productid

e SKUid

e quantity

e price

e product type

e brand

e transaction event
("a")

. currency

page- uri

EE=SE==sEs8&8&s88 &

.dcsvid
.cg_n
.Sl p
.pn_id
. pn_sku
Jtx_u
JIXxCs
.pn_fa
. pn_ma
tx e

page- uri

EEEs5sE&8&8&8 &8 &

.dcsvid
.cg_n

.si_p

. pn_sku
X u

XS
.pn_fa

. pn_ma
tx_e
.Z_currency

Keep in mind the following about the integration parameters:

* All methods are prototypes, so, if you want to add more parameters, you can extend

them.

« If for some reason a data field is not provided in Infinity, you can create custom
parameters in the following format so that : wt . z_<your Par anet er Nane> the Oracle
Infinity platform will start to record it.

* Some events are published from provided widgets which earlier did not publish any
relevant data. These have since been changed to publish relevant information. If you are
not using the provided widgets in any case, you must publish similar data in the events.
These widgets include ORDER_SUBMISSION_SUCCESS (Split Payments widget),
PRODUCT_ADDED_TO_PURCHASE_LIST_SUCCESS (Purchase List widget),
USER_PROFILE_UPDATE_SUBMIT (Shopper Details, Address Book, and Update
Password widget), and CART_REMOVE_SUCCESS. It is necessary, then, to take the
latest changes accordingly. If you are publishing any of the events listed in the table and
not publishing relevant data similar to the ones provided, you need to provide updates to

correct this.

5-11

Chapter 5
Understand Infinity integration parameter mapping

e The Infinity vi ewnodel . j s depends on the ORA_ANALYTI CS_READY event on DOM
(published by the Infinity JS) to initialize the Infinity API. Refer to your Infinity
Administrator to turn on the READY EVENT the tag for the same.

For more complete details on using Infinity and its capabilities, refer to the Oracle
Infinity documentation.

ORACLE 5-12

https://docs.oracle.com/en/cloud/saas/marketing/infinity.html
https://docs.oracle.com/en/cloud/saas/marketing/infinity.html

Integrate with Oracle Order Management

Cloud

Integration Oracle Order Management Cloud with Oracle Commerce.

Oracle Order Management Cloud can improve order handling when working with order-to-
cash processes. You can configure fulfillment monitoring, global availability and enterprise-
wide policies that increase your shopper's satisfaction.

Introduction

Audience

Features

ORACLE

Oracle Commerce and Oracle Order Management Cloud can be combined through Oracle
Integration Cloud to provide a robust architecture for capturing and fulfilling orders placed in
your online store.

Oracle Commerce is an industry-leading commerce platform re-designed for the modern
cloud. Oracle Order Management Cloud is tightly integrated with Oracle Global Order
Promising Cloud. It can improve order handling across the order-to-cash process. Pre-
integration, centrally-managed orchestration policies, global availability, and fulfillment
monitoring can lead to increased customer satisfaction and order profitability.

This document describes how to integrate these two services.

This document is written for Commerce and Order Management Cloud administrators who
are setting up and configuring the integration between these two systems.

Readers of this document should have experience with both Commerce and Order
Management Cloud. See Additional documentation for links to comprehensive information on
these services.

The integration of Commerce with Order Management Cloud combines the capabilities of
these two services into a single solution.

This solution provides support for the following:

» Pushing completed Commerce orders to Order Management Cloud for fulfillment.

» Retrieving and updating the status of the order from Oracle Order Management in
Commerce real time for the orders created using Commerce.

* Furnishing returns and exchanges created on Commerce to Order Management Cloud
for fulfillment.

* Retrieving the status of the returns from Order Management into Commerce.

The default integration assumes that the orders and returns are created using Commerce
channels.

6-1

Chapter 6
Prerequisites

Architectural overview

The message flow of business entities from Commerce to Order Management Cloud
happens through Oracle Integration Cloud.

Commerce includes an Oracle Integration Cloud adapter (the Commerce adapter) that
is used for the integration. The Order Management Cloud part of the integration uses
the generic SOAP adapter of Oracle Integration Cloud to manage the integration. Data
from the Commerce store is transmitted using webhooks through Oracle Integration
Cloud to reach Order Management Cloud. The data from Order Management Cloud
reaches Commerce through Oracle Integration Cloud as well.

Additional documentation

For information about Commerce, and the Oracle Order Management Cloud, refer to
the following Oracle Help Center pages:

Oracle Commerce documentation: First Steps.

Documentation of Oracle Order Management Cloud is available through Oracle
Applications Help: Oracle Order Management Cloud documentation.

For information about Oracle Integration Cloud and the Commerce adapter, refer to
Using the Oracle Commerce Adapter in the Oracle Help Center at this URL: Getting
Started with the Oracle CX Commerce Adapter.

Prerequisites

Prerequisites for a successful integration include specific access rights to both
systems. In addition, certain assumptions exist about the way each service is used.

This section provides details about the prerequisites.

Access rights

To configure this integration, you need administrator access to the following systems:

* The Oracle Commerce administration interface, which enables you to configure
the webhook settings.

* Oracle Integration Cloud, which enables you to map the attributes between
Commerce and Order Management Cloud. Note that in earlier releases, Oracle
Integration Cloud is referred to as Integration Cloud Service (ICS). The instructions
in this guide, as well as the integration itself, apply to both cases.

e Order Management Cloud, which enables you to set up the fulfillment and
configure the products and the activities associated with fulfillment.

Assumptions

This integration makes the following functional assumptions:

e Orders can be created only on Commerce channels. Orders created on non-
commerce channels are not within the scope of this integration.

ORACLE 6-2

https://cloud.oracle.com/opc/order-management-cloud/documentation
https://docs.oracle.com/en/cloud/paas/integration-cloud-service/icscc/getting-started-oracle-commerce-cloud-adapter.html
https://docs.oracle.com/en/cloud/paas/integration-cloud-service/icscc/getting-started-oracle-commerce-cloud-adapter.html

Chapter 6
Configure Oracle Commerce for Oracle Management Cloud

* The Returns and exchange orders are initiated from Commerce. The cases where the
returns and exchanges are created on Order Management Cloud are not synched back
to Commerce.

» Commerce does not capture any credit card settlement information. It is assumed that
the merchant updates the card settlement information about Commerce.

» Purchase Order status payment groups are updated as settled/No Pending Action after
the payment processing is complete.

* The inventory and product SKU information is assumed to be in synch across both the
systems.

» Commerce acts as the pricing and the promotions engine.
* The tax calculation for an order is performed in Commerce.

* The scope of this integration is restricted to simple products. Configurable products are
out of its scope.

This integration is extensible: additional attributes can be mapped on both systems without
interfering with the merchant’s use cases.

Configure Oracle Commerce for Oracle Management Cloud

The integration is configured on the Commerce side by setting up specific web APIs to use
Oracle Integration Cloud endpoints.

Web APIs enable you to subscribe to events for your products and orders by creating
webhooks that push notifications to a specified URL. (For additional information about
webhooks, see Use Webhooks.)

You update the Commerce web APIs through the administration interface to use the
appropriate Oracle Integration Cloud endpoints. The web APIs send order information to
Oracle Integration Cloud, and the orders go to Order Management for fulfillment.

To ensure compliance with PCI requirements, Commerce uses a webhook for order
submission (Order Submit without Payment Details) that discards credit card information and
sends the rest of the Order to external systems. Use of the Order Submit without Payment
Details webhook is recommended in cases where the merchant wants to send the token
details of the credit card.

The topics in this section describe how to make the necessary changes to the Commerce
web APIs.

Submit Order webhook

ORACLE

Configuring the Order Submission webhook makes the order information created in
Commerce available to the Oracle Integration Cloud system.

To configure the Order Submit for Non-PCI Compliant Target Systems Event API, follow
these steps:

1. Inthe Commerce administration interface, display the Settings page.
2. Select Web APIs and display the Webhook tab.

3. Select the Order Submit without Payment Details event API.

4

Provide the Oracle Integration Cloud URL that receives the order message. Include the
server name and port used.

6-3

Chapter 6
Configure the Oracle Integration Cloud Adapter

5. Provide a user name and password for accessing the server.

6. Click Save.

Return Order webhook

Configuring the Return Request Update for Non-PCl Compliant Target Systems event
API displays the returns workflow.

To configure the Return Request Update for Non-PCl Compliant Target Systems event
API, follow these steps:

1. Inthe Commerce administration interface, display the Settings page.

2. Select Web APIs and display the Webhook tab.

3. Select the Return Request Update without Payment Details event API.
4

Provide the Oracle Integration Cloud URL that receives the order message.
Include the server name and port used.

o

Provide a user name and password for accessing the server.

6. Click Save.

Configure the Oracle Integration Cloud Adapter

The integration mappings and the associated files you configure for Oracle Integration
Cloud are available in the form of packages. These packages are ready for you to use
as soon as they are imported into the Oracle Integration Cloud infrastructure.

The Commerce team already has a Commerce adapter available for Oracle
Integration Cloud. The generic SOAP adapter is a generic adapter provided by Oracle
Integration Cloud for processing the SOAP-based messages. This adapter is used
when Order Management Cloud sends messages in SOAP format.

The integration package, Or acl eCommer ce-
Or der Managenent | nt egr ati on. par, is available on My Oracle Support. The
contents of this package are described in the sections that follow.

Connections

ORACLE

The integration package includes the required connections for the servers and events
used by the integration.

e Oracle Commerce: The connection to the Commerce admin server
* Oracle Commerce Agent: The connection to Commerce agent server

* Oracle Order Management Cloud: The connection to Order Management Order
synch service

* Oracle Order Management Cloud Events: The connection to Order Management
events

e Oracle Order Management Cloud Order Information Service: The connection to
the Order Management order retrieval service

6-4

Chapter 6
Configure the Oracle Integration Cloud Adapter

Lookup configuration

Integrations

The mappings for the return status, carrier information, and shipping information are updated
as part of the lookup configuration.

You should modify these as required and as configured in your order management system.
Refer to the integration settings to view the lookups used.

The package includes integrations for order synch, return synch, and order and return status
synch.

e Order synch from Commerceto Order Management
e Return synch from Commerce to Order Management
e Order and Return status synch from Order Management to Commerce

Unpack the Or acl eConmer ce- Or der Managenent | nt egr at i on. par package. It
unpacks into three inventory archives (IARs). Unpack each IAR and update the constants as
shown in the following sections. Update the following constants for order synch from
Commerce to the Order Management flow and import using the Oracle Integration Cloud
mapper in Oracle Integration Cloud.

XSL location

ORACLE

XSL location is described in the following section.

<Unpacked
i ar>/i cspackage/ proj ect/ RETU SYNC FROM COMM TO ORDE_MaMT_01. 00. 0000/
resour ces/ processor 52/ resour cegroup_913
<xsl:variabl e nane="SOURCE_SYSTEM' sel ect="" ATG "
xm :id="id_2076"/>
<xsl :variabl e name="BUSI NESS_UNI T_| DENTI FI ER"
select=""204"" xm:id="id_2077"/>
<xsl:variabl e nanme="LEGAL_UN T_I DENTI FI ER"
select=""'204"" xm:id="id_2078"/>
<xsl :variabl e name="FULFI LLVENT_ORG | DENTI FI ER"
select=""207"" xm:id="id_2079"/>
<xsl:variabl e name="1 NVENTORY_ORG | DENTI FI ER"
sel ect=""207"" xm:id="id_2080"/>
<xsl:variabl e nanme="UOM CODE" select=""'Ea'"
xm :id="id_2081"/>

Update the following constant for the return synch from Commerce to the Order Management
flow and import using the Oracle Integration Cloud mapper in Oracle Integration Cloud.

<Unpacked

i ar>/i cspackage/ proj ect/ RETU_SYNC FROM COMM TO ORDE_MGMTI_01. 00. 0000/
resour ces/ processor_52/resour cegroup_913
<xsl :variabl e name="SCURCE SYSTEM' sel ect=""'ATG "

6-5

Chapter 6
Configure Order Management Cloud

xm :id="id 2076"/>
<xsl :variabl e name="BUSI NESS UNI T | DENTI FI ER"'
select=""'204"" xm:id="id 2077"/>
<xsl :variabl e name="LEGAL_UN T_I DENTI FI ER"
select=""'204"" xm:id="id 2078"/>
<xsl :variabl e name="FULFI LLMENT _ORG | DENTI FI ER'
select=""207"" xm:id="id 2079"/>
<xsl :variabl e name="1 NVENTORY_ORG | DENTI FI ER"'
select=""207"" xm:id="id 2080"/>
<xsl :variabl e name="UOM CODE" sel ect=""Ea'"
xm :id="id 2081"/>

Note: The connection details that come as part of the integration package are empty.
You provide the details of the connections and test them. You can then enable the
integration.

Configure Order Management Cloud

Configuring Order Management Cloud for the integration involves creating the source
system, the default rules, the orchestration process, and the required connectors.

The topics in this section describe how to perform these Order Management Cloud
configuration tasks.

Create the source system

ORACLE

This section describes the steps you follow to create a source system for the
integration.

1. Gotothe FSMlink htt ps:// exanpl e. com set up/ f aces/
TaskLi st Manager Top and search for Manage Planning Source Systems.

¢ 0a ¥ s prwchecom ctup T d -t 3 T E 9 +h 4B - =

Setup and Maintenance R p— R

Offerings 4

Actions v Sewp

2. Display the Actions tab.

6-6

Chapter 6
Configure Order Management Cloud

Create Source System ko

Code Gl -] Cobections alswid
Hame CEV] Enabis data oros s-olemncs

Duseription | To-SourceSyiiem pri il Achn Fumion Frodset

* Tima Zone
Version

v Onchepatration g || goonre

OPS Save Save and Close Cancel

3. Create a source system for Commerce. If necessary, create a new code entry for
Commerce.

4. Select the time zone as required.

Search and Selecl Time Zome
E i Soarch
Teme Fone Conlaks |E| s

Timve Fona

UsS Cenbal Teme
LS Mouniain Tims
LR Pacsic Tine
Wi

S Eddbiim Tiree
Camasous
Jerunalem
Wuscal

Rrusssis

ik

5. Disable the cross-references between Commerce and Order Management as the cross-
references are handled by Oracle Integration Cloud.

6. When you have finished entering the setup details, the final screen for the source system
appears:

ORACLE" 6-7

Chapter 6
Configure Order Management Cloud

Manage Planning Source Systems

Destination System

Actons w x
Code Hame Description Enable for CNIS'EC;::I\.UMHBB'I‘!IIIDHIEE Order Time Zone
aen aesinsance v us paccTime
Souree Systems
Akons = Vew v Fomat v 4 # 3 0 ManageOrgenization List 13 (-] Detach
Location of the Oracle
code Hame Omcription TimaZona Version G bt ol PG o et Vo
arence Cammunity Model
- SteFumten. . Gonamanan.. Omers E— . .
o S — F— . .
- — o . .
ou.cra
oma_am_cra omers
cu {=t] Gl Ingtance Hairabi thers
e . .
ruson 473 . .
sz . .
FS—— . .

Create defaulting rules

ORACLE

Defaulting rules must be created for this integration in the Order Management system
to ensure that the shipping and scheduling rules cover Commerce as a channel.

The following rules must be defined:

* Shipping Method Defaulting Rulel
* Scheduling Related Rule

e Shipping Method Defaulting Rule2

D@ oracie.com.

HE D4 AAB e

Search
Manage Prevanstormation Detseiting Rules L
Match Wit Tasis Tasx Lists Business Otjects

— Typa Dotalls

Manage Prevanstomiston Defauting Rules -

= ORACLE A x O 0O rec-

Manage Pretransformation Defaulting Rules Release Revert Ssve SevwandCose Camcel

{x) Glovas
£ Bucketsats View IFITHEN Ruses - o & S0
& unks
+ F AR
{ Deasicn Funclions
(3 o

Rarnots

& PraTranstormaticaRs.

bw

(3

[
g Wetiod etiutng
Ruie2

»

Business Rule Vsidaton - Log
Message Déctionary Object Proparty.

Note: Ideas for rules to create are provided here; you can configure these as
necessary for your business requirements.

This process ensures that the shipping and scheduling rules cover Commerce as a
channel.

6-8

Chapter 6
Configure Order Management Cloud

Shipping Method Defaulting Rulel

IF
isa Headervo - + X $ Xy B~
T & v AddTest
and
sa FulNaLineVO va RGO RY B
U Ry 8.
[] PreTranstormationRules FufiLinev0.Soun &, In [+] -at6*, 1e6° Q and -
[PreTranstormationRules FulliLinev'O.Catey @, s [+ orpEr Q and -
[] PreTranstormationRules FulliLinevO.Ship¢ ‘@, isnt [~ o Q and -
[] PreTranstormationRules FulfiiLineViO.Ship¢ ‘@, contains o e Q -
THEN

v X T O N

[asseninew v PreTranstormationRules. ModifyEntity - { attrName:*ShipModeOfTransport®, attrValue:*38°, FulfiiLineVO. it

[asserinew v PreTranstormationRules. ModifyEntity w | atirName:*Camierid", atirValse:"325107,

Scheduling Related Rule

4 ¥ [7] wouling Related Rule

IF

TV IR IR

[F] PreTranssormationRules. Headervo Q is E| PreTransformationfules Headervo @, and -

[l PreTranstormationRules FusaLinevo @, is E PreTransformationRules FuliiLinevo &, -

THEN

*r X T IO A~

] M 2 et Rules FulfilLin fum"u ?

ORACLE' 6-9

Shi

Chapter 6
Configure Order Management Cloud

pping Method Defaulting Rule2

] thod Detauling Rule2

isa PreTi HeaderV'0 t + B G X B~

g w AddTest

and
Pre isa PreT FulfillLingV0 t and o B ¢ oy 8«
H oy & v
| PreTransformationRules FuliliLinevO.S q in F'ATG LLEG R and -
| PreTransformationRules FuliiLinevo.c G is |L “ORDER" @ and -
PreTransformationRules FulliLinevo.s & isnt F null Q, ang -
| PreTransformationRules FulfliLinev0.s ‘@, contains |L 821" u‘\ -
THEN
* v M oo
assertnew v PreTransformationRules ModtyEntity ¥ | [atrName ShiphodeOrransport, atirvalue: 36", pIPrE FulfiiLingvo ol VP
assertnew v PreTransformationRules ModifyEntity - (atirdame “Carrierd”, atirvalue:"32512", viewRowlmpl PreTransformationRules FulliliLineVO ViewRowimpl) 59

Create the orchestration process

This topic describes how to create the orchestration process for the integration.

1.

Go to the FSM link htt ps: / / exanpl e. com set up/ f aces/
TaskLi st Manager Top and create the orchestration process:

Search
M3NG08 OrENeSYINen PrOcH:S DHIVONS q
WALCR W T35k Task LS Busingss O%9aS
Name Type Details
Manage Grchestration Process Biefinibons Task

Manage Orchestration Process Definitions Save SaweandClose ¥ Cancel

4 Search Advanced | Saved Search Al Drchasiration Frocusses |,

Seath | Reset Save..
Search Results.
acons v View w Fomsl v o < Detach

Description Elfective StartDate Effective End Date Statas. WVersion

ORACLE"

6-10

Chapter 6

Configure Order Management Cloud

Search for Commerce in the Process Name field.

Manage O Process Swve | SawandCbss w Cancel
b Search Agvanced | Saved Soarch A3 Crchastrafion Processes E
Search Results
Aions v Vieww Famaty 4 B S ¥ ! Detach
Validation Process Name Descripsion Effective Start Dato Effective End Date Status. Version
'CCATGBusinessEvents ARENT New 1
Columas Higden 2
CCATGBusinessEvents: Step Details
Maw v Format v 1] = Detach
Step Step Name Task Type Task Service Subprocess Hame
100 Create Resenaton Resenation Resene Creats Inventory Resensaton
300 Wait for Shipment Advice Erpment Ship Waitfer Shipment
00 Create bvosce e Invoice: Create Biling Lines
T00 Wat for Recsipt Retum RetwrnReceipt Wil e Receipt
800 Croate RMA Invoice iy Involce Create Blling Lines
[
A predefined process, CCATGBuUsi nessEvent s, appears.
The process can be created if necessary.
The following screens show the orchestration details:
— Prosess | Py |
* Search Afvences Sered Lear(h W OroResvanen Priieiies =
Search Results
EREE - romee 4+ m S X Rpe—
beam mame oenceion inscie st tmcetsate s e
Cvancane AT Clusm e s sl vents wany s 1
- I
.
CCATGBuUsinessEvents: Step Datails
S
o -
= =
Edit © Process D (CopyOf)CCATGBusinessEvents Adions v Sawe SavesdClose ¥ Cancel
4 Orchestration Process
" Process Name TestCCATGButinessEvints Description
Status New
Version 1 Coslorcn;.:‘y: Click e Rule
* Process Despiay Name Eflective Start Date 130017 [Paremt process
" Process Class | Rehum Order Class B Effectrve End Dto % T Use Nextiel attbues
Status Catsiog ol = $ut [Commnon el = ¥ Use transactnsi Hem attributes
2 Seven o
Changeniode asancen [3] P
4 Additional Infermation
-
wawcn 7]
Process Details
Step Definibon Status Condlons
Adfions w View w Formatw o 3 =" Dotack
Sleps Dependencies Panning Change Managemen! Addional information
Steps
T Sep T Step Mame Stap Task
° Swp Type Type Parent Sep Subprocess Nome Task Type Type Task Service
Indicator Indicatos

ORACLE"

6-11

Chapter 6

Configure Order Management Cloud

Process Details

Step Definition | Status Condions

Aoas v Veww Fomatw 4 X Frose] Detach
Smps Depend Planning
Stops
“Swep ° Step Name Stop Task
© Step Typo Typa Pasent Step Subprocess Hame. sk Typa Type Task Service
Indicatar Indicator
09 Create Resenaton - % v Resenvation v @ Ressn - Create Inven
00 Create Shipment Reauest e w - Shipmaet v ® e - Croate Shipt
W Waltoe Shipmaet Ados - 20 v Shipmed v ® e - Waiklor Stig
a0 Create Inwice e wme - Invsice - = moke - Croate Bimn
00 Waitoe voice -oe am - Inwoic - = ivoks - Waiktor Bille
L] Crests Recuhing Aice - “s 00 A Retum - o Retumfeceiot - Cancel Epe.
o0 Wait for Receipt 2 e o Retam - & Rstumfecsipt - watior Rec:
800 Creste RA invios Ser - e we - Iowoice - = ke - Create Sinn
w00 Waittor R dwcica - e e - Invoice - = ke - Wakor Bilke
Process Details
P—
Grchesiration Process Status Valees Fulliiment Line Status Values
Mns vy Vewy Fomaly 4+ X 7 Wrap
* Sequence ” Status Value * Expression Lost Updated Date Last Updated By
0| Recesing Completsc w “Retum Reeceipt = “COMPLETED i [T, AmonT SCUOPERATIONS
1 mmegRecieg v “Return Receipt = AWAT_RECENNG' [, 130n7 SCUOPERATIONS
2 Recewed - “Return Recelor = RECENED" [1307 ‘SCMOPERATIONS
1 Delwered - “Return Breceipr = DELVERED" [3, 107 SCMOFERATIONS
4 Rewmwaw customs v Faetum Recipt = RETURNED" [oy SCMOPERATIONS
5 AmategBming o7 ‘SCMOPERATIONS
& Blleg - Imvoics” = BILLED" (&, 30T SCMOPERATIONS
7 PaMayRecked v et Recipr » "PARTIAL_REC [, T SCMOPERATIONS
Process Details
Step Deteition Status Comdtions
853 Stalus Values Statws Vaives
Adions w View v Format v B were] Detach
&l‘::ﬂl';“ Lisw Sormes * Dascription Status Rule Set Edit Stotus Rule Set
Ot Copy o COATGRUSINgsSRuse v Edit Status Rule Sot
3. Click Edit Status Rule Set.
Conditions
Atons v Viewy Fomaty 4 X [Froete s Datach
“ Sequence ° StatusValue * Expression '“""s":;l'“" Last Updated Date Last Updated By
1 Resered w Resew"= RESERVED" [(£ w7 SCMOPERATIONS
2 Sniceed w CShip = SHIPPED' [, T SCHOPERATIONS
3 i v s BLLED [T SCMOFERATIONS
4 PasayRecow RemRecsict = PARTAL RECT [,] w7 SCMOPERATIONS
6 Recewsd w RelumReceict = RECEVED" [, T SCMOPERATIGNS
& Duwema v RoumRocwsr = DELVERED” [, a7 ScmoPERATIONS

4. Save the details.

ORACLE

6-12

Chapter 6
Configure Order Management Cloud

On the Actions menu, click Release.

Ble ESt Giow Higlory Bockmas Tooh bide R ==
£l Lser Dee X/] sewen - seupana amte.. % | +
D . orace.comsetup/oce s TashL ctbinagerTop®_alLoag T r— c|[as 4B 9+ Hh 4B e =

Bt & Process 0 Testcca [=c0: - [T
vabsatn
4 Orchestration Process
" ProcessName TesICCATGBUSMASSEws Descripoon L
Lol Ch Status MNew I
[—
version 1 098 Click or Rul
* Process Display Name TessCCATGEUSNe3SEvents EMecti Stait Dale 1720117 9] Parest pro<ass Generate Process Diagram
. o Reass
frocessClass Rewm Oroer Class - EMective End Date e Y Ty p—
Samius Catalog - * sal Comm =] Use irassacucnal
| Replan nstanty
Change Moge Adnced [+
g Aachments None e
4 Additional Information
HADITY
tBADFFcont =
Process Details
Stap Dadnition Status Co
Acions v Vieww Formatw b 3 < Detnch
Sleps Depensencies Plannng Adamonal Infmatee
Staps
“Step " Step Home Step Task
* Siop Type Typs ParentSiop Subprocess Hame Task Type Type Task Sorvico
Indicatos Indicator
100 A — - Resanaion - B Resene - Creata inan

G o - \.|A:)1|]‘|ifonu.|i,'i

Create the connector

Creating a connector with the Oracle Integration Cloud URL is a required step for the
integration.

1.

Go to the FSM link ht t ps: / / exanpl e. cont set up/ f aces/ TaskLi st Manager Top
and search for Manage Business Event Trigger Points.
=

CL

Uanage Business Ew

Trigge: Points Q

Match With Tasks Tas

Hame Type Details
Manage Business Event Trigger Foints Task
Manage Business Event Trigger Points Swe SweandCikse v Cancel
Format w
Hame Description Active
T onCo. | G#nerat a business eventwhenever fie compensatan of 3 change orer s 5
. compieted
FuBliment Ling Clasad Ganarath 3 BUSINGSS evom Whenover 3 Sdtment ing SEalUS is o500 v
Generate 3 business eveni whenever e status of 3 furl ne is updated io one of
Fusitir E! z
ulliment Line Stats Update e i
Hoig Ganeraie 3 DUSINESS EVENIWNENEVET 3 Mk |3 ApDik v
s Ganerate 3 buSINEss venl whenger hamentling eogardy ooy lakes any of e
Jaops anciarea va e
Ooder atbibols updste Generate a b the dedared atiribules of the sales sederis u

upaated

Ganarate a bu:
one of the dedare

Orer header status update et whenever the status of he sales order header is updatedia
o

Seit Ganarate 3 busINgss svent whengver a Adflment line 35

Change Order € Complete; Associated Ci

Aty 4 X

" Connector Mame Ovarride Default Visibility

- 7

ORACLE"

6-13

Chapter 6
Order creation

2. Ensure that the fulfillment tabs are enabled.

Change Order Compensation Complete: Associated Connectors

Actions w

+ X
AddRow 3me Override Default Visibility

Delete -
v 52

3. Pick the connector to enable.

Search Ogme

Name Type Details

4. Create a name for the connector and provide the Oracle Integration Cloud
integration details in the connector URL.

Manage Connector Details Download VWSO for EXtersaiinlograion Save SHmandclose ¥ Camcel

Web Service Details
cioos w Vieww Formstw 4 B X D7 R Detsch

" Torget

Sy Connector Hame Connactor URL

Connacior Dascripsion

ATG

5. Verify.

Search Dooe

Order creation

SKUs

ORACLE

Order creation in Commerce requires no change in the functional flow with respect to
this integration. In general, orders created in Commerce are sent to Order
Management Cloud for fulfillment. Several special cases are listed in this section.

The mechanism used to send the orders created in Commerce is webhooks.

Note: Commerce provides a remorse period during which shoppers can edit their
orders. The orders are sent to Order Management Cloud for fulfillment as soon as the
remorse period ends.

Commerce supports simple SKUs. It can also support configurable SKUs through an
integration with Oracle CPQ.

As part of this integration, simple SKUs are sent to the fulfilment system. Configurable
SKUs are not sent to the integration workflows. However, configurable SKUs are
available to the webhook and can map to Order Management Cloud attributes if
required. A separate integration exists for Oracle CPQ and Order Management Cloud.

6-14

Payment

Order types

Chapter 6
Order creation

Order pricing and payment authorization happen in Oracle Commerce. The payment
attributes are not mapped to any attribute in Order Management Cloud because the order
management system does not need the payment information for fulfillment. With account-
based (B2B) shopping, the order does have a purchase order number that is passed on to
the order management system.

Note: The scope of this integration is restricted to Order Management Cloud. Other Oracle
services can perform additional order processing. For example, Order Management Cloud
can integrate with Account Receivables post fulfillment; this functionality is outside the scope
of this integration.

Commerce currently expects the payment capture information to be updated by an external
system. This assumption holds true for this integration as well. The order payment is
authorized by Commerce via the payment gateways before the order is sent to Order
Management for fulfillment.

It is recommended that you verify that the order is ready to be shipped in Order Management
and capture the money against the authorization. This can be done by integrating with the
payment gateways and sending the updated status back to Commerce as captured/settled.
The payment group status would have to be updated once the transaction is captured in the
Commerce repository. This status unavailability hinders return processing against an order.

Orders in Commerce can be placed for consumer-based (B2C) and account-based (B2B)
shopping.

These orders, when triggered from Commerce, need to be fed to the order management
system. This integration handles both types of order and maps the attributes of Commerce
and Order Management Cloud accordingly.

Pricing and tax

Pricing and tax calculations are done in Commerce and the order is passed to the order
management system. The orders created in Order Management Cloud are not synched into
Commerce.

The order creation integration workflow can pass the order created in Commerce to Order
Management Cloud for fulfillment using the Order Submit without Payment Details webhook,
which is triggered after the remorse period in Commerce.

Shipping methods

ORACLE

Commerce shipping methods are mapped to Oracle Order Management Cloud shipping
methods. The mappings are made using the Lookup service of Oracle Integration Cloud.

The shipping methods are sent to Order Management Cloud as part of order creation. If you
create a new shipping method in Commerce, map it to a shipping method in Order
Management Cloud. These mappings ensure that the orders created in Oracle Commerce
always use the shipping method chosen by the customer.

6-15

Chapter 6
Order Status

Shipping methods are creating in the Shipping Methods tab, which is described in
Work with accounts. For information about Order Management Cloud shipping
methods, refer to the Oracle Order Management Cloud documentation.

Mapping of attributes

The attribute mapping of Commerce and Order Management Cloud is done through
Oracle Integration Cloud. There could be some additional processing that is needed
on the attributes before pushing the order to Order Management Cloud.

This additional processing of attributes can be can be built into the integration layer
without a need to modify Commerce. You can build an XSLT which acts on top of the
Oracle Integration Cloud Ul and provides additional flexibility. A sample XSLT is also
provided as part of the integration package. The XSLT can be uploaded into any
integration in Oracle Integration Cloud as soon as the integration has been
deactivated.

The location of the XSLT for order creation is | CSpackage9a47f 2ae- 5f 90- 4c¢f 7-
a87f-cb612dda70dl. i ar/i cspackage/ proj ect/
ORDE_SYNC_FROM COVM TO ORDE_MGMT_01. 00. 0000/ r esour ces/
processor 859/ resour cegroup_ 755/

req_19f d482ef c0a4728b838273aec72b649. xsl .

The following figure illustrates the order creation workflow from Commerce to Order
Management Cloud:

Return Request Flow: OCC to OOMC
occ ics ocMCc

Return/Exchange

Reguest

Triggers
L
Webhook OCC connection for
Retum Request listening to Return
Update for Non- Invokes ICS integration Flow —s Request webhook
PCI Compliant
Target System

SOAP Connection to Service
OOMC . (Pr R

Order Status

ORACLE

The status of an order is updated in Commerce by Order Management Cloud. Order
Management Cloud provides notifications on the status changes of the order.

As part of this integration, the shipment group status is updated for the order as No
Pending Action as soon as the shipment is closed in Order Management. The tracking
details of the order are also updated in Commerce as and when they are available in
Order Management. The payment group status for the order is set to Authorized.

6-16

Chapter 6
Returns

The order in Commerce is set to Submitted for fulfilment. You should update the payment
group status details based on your integrations with payment gateways or using the
capabilities of products such as Oracle Fusion Payments.

Map attributes for order status

The following is the location of the XSL transformation:

i cspackage58e6510b- 1e7f - 491e- 903c- bc59e1062bf c. i ar/i cspackage/
proj ect/ ORDER_AND RETURN STATUS SYNC 01. 00. 0000/ r esour ces/
processor_837/resourcegroup_173/

req_f 7al1d4886a4b4ca3935231d5421b27ec. xsl

The following diagram illustrates the status workflow:

Status Sync: OOMC to OCC
(Oroer ana Return/Excnanges|

oOMC

IS
(Crehestration Flow)

Line Update
evenis generater

Triggers

L3 SOAP Connection To
OOMC for Event
Listening.

Yes

Connector for OCC

o 1 e ke GatOriaDetats of FOM SOAF Connection To
rderinformation v L=

26 of GetiderCisiads Order/Return details
(GetOrderDetails) Respense of GetDiderDetad » sty

Order update or o Order update
Return update 2 S service.
Fuatuin upase

Retum
update

|

Returns

The returns created in Commerce are passed to Order Management Cloud for fulfillment.

Note: All the prerequisites needed for submitting a return on Commerce are valid for this
integration.

As soon as a return is created by Commerce, a new endpoint is created for processing the
return and submitting the return order to Order Management Cloud. Because the reason
code is mandatory when the return is created in Order Management Cloud, as part of the

return submission process, the disposition code of Commerce is mapped to Return with
Refund.

As soon as the return is processed by the Order Management Cloud, the disposition code is
updated with the correct value as sent by Order Management Cloud.

Map attributes for returns

The following is the location of the XSL transformation for order returns:

i cspackage58e6510b- 1e7f-491e- 903c- bc59e1062bfc. i ar/i cspackage/
proj ect/ ORDER_AND_RETURN_STATUS_SYNC 01. 00. 0000/ r esour ces/
processor_943/ resour cegroup_124/

req_52e0e60451ef 4c66931157e8ea6l72ad. xsl

ORACLE 6-17

Chapter 6

Exchanges
The following diagram illustrates the workflow for returns:
Return Request Flow: OCC to OOMC
oce ics ooMc
Return/Exchange
Request
!
]lojo’l’l
v
Webhook OCC connection for
Retum Request listening to Return
Update for Non- |~ Invokes ICS integration Flow —s{ Request webhook
PCI Compliant
Target System
SOAP Connection to Service
OOMC (Pro

Exchanges

This topic describes exchange processing for this integration.

* The exchange request is created along with a new order for the exchange.

* The exchange and the order are submitted to Order Management Cloud as part of
this integration.

* The exchange request is submitted to Order Management Cloud for receiving the
goods.

* When the status of the exchange is set to Received, the new order created as part
of the exchange is submitted to Order Management Cloud for fulfillment.

The flows for the return and the order creation are the same as described in the
previous sections. The order is submitted to Order Management only when the return
information is available in Commerce. The flows for the exchange are the same as
previously described.

ORACLE 6-18

Integrate with Oracle Responsys

Integrating Oracle Responsys and Oracle Commerce.

When you integrate Commerce and Oracle Responsys you create a unified solution for your
customers as well as the ability to communicate with those customers in a relevant and
structured dialogue based on their commerce activity.

Understand the Oracle Responsys Integration

Objective

ORACLE

This information provides instructions on how to implement the integration between Oracle
Commerce and Oracle Responsys.

Oracle Responsys is an application within the Oracle Marketing Cloud suite of products that
empowers data-driven marketing teams with the tools to deliver the relevant, engaging
experiences their customers demand across devices, channels, and lifecycles. It is easy to
make data from disparate sources useful, create precisely targeted audiences, and then
empower customers to determine their own next experience by interacting with them in near
real-time.

Commerce provides the overall customer experience allowing merchants to provide the most
relevant content to shoppers at all times and, by integrating Commerce and Responsys,
retailers can connect online behaviors in near real time to immediately respond to customer’s
actions and trigger personalized communications.

In addition, Commerce data can be used to create a more complete user profile which allows
retailers to deliver a more personalized and engaging experiences to drive conversions and
revenue.

The integration of Oracle Commerce and Oracle Responsys targets support for the following
customer commerce activity:

* Welcome: Communicate with newly registered customers to enhance their relationship
with the merchant.

* Win Back: Communicate with customers who have not created any new orders in a
significant period of time. The message to the customer can be tailored to include a
Commerce promotion to encourage them to return to the website.

* Milestone: Using Commerce profile data, communicate with customers based on
personal milestones such as their birthday or the anniversary of their registration date.

* Abandoned Cart: Communicate with customers who added items to their shopping cart
and then left the website without purchasing the items they placed in the cart. The
message to the customer can be tailored to include aCommerce promotion to encourage
them to return to the website.

This document provides instructions on how to set up an integration between Commerce and
Responsys so that Commerce information is automatically passed to Responsys ensuring

7-1

Chapter 7
Configuring the Integration

that the supported marketing campaigns are always based on current shopper activity.
This document provides instructions on the following topics:

* How to download the Oracle Integration Cloud Integration Flows.

* How to configure and set up the Oracle Integration Cloud Integration Flows.
* How to setup the connection to Responsys.

* How to set up the required data tables in Responsys.

* How to setup the connection to Oracle Commerce.

* How to configure the webhooks to trigger the integration flows.

* How to use the abandoned cart functionality supported by the integration.

Audience
This document is written for Oracle Commerce and Oracle Responsys administrators
who need to set up and configure the integration between these two systems.
Readers of this document should have experience with Commerce, Responsys, and
Oracle Integration Cloud administration.

Prerequisites

For the purposes of this document, it is assumed that you already have:

* An Oracle Commerce account and access to Oracle Commerce 16.6 or later.
* An Oracle Responsys account and access to Oracle Responsys 6.31 or later.

* An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service 16.4.5 or later.

If you do not have one or more of these, please contact an Oracle sales representative
for information on how to acquire one: http://www.oracle.com/us/corporate/contact/
index.html.

Configuring the Integration

There are four stages to configuring the integration that are covered in this chapter.

This chapter will provide information on each of the stages to assist you in configuring
your integration.

Configure the Integration Package

ORACLE

This section provides detail about where the integration package can be downloaded
and how to import the integration package.

Importing the integration package in Oracle Integration Cloud creates connections to
Oracle Commerce and Oracle Responsys in Oracle Integration Cloud. It also creates
an integration between Commerce and Responsys with some default mappings in
place.

7-2

http://www.oracle.com/us/corporate/contact/index.html
http://www.oracle.com/us/corporate/contact/index.html

Chapter 7
Configuring the Integration

Download the integration package

Follow these steps to download the integration package:
1. Log onto My Oracle Support at https://support.oracle.com
2. Search for OCCS-OMC_ Integration.

3. Download the OCCS- OMC_I nt egr ati on_3. 0. par file. You should save it to a location
where you can access it from Oracle Integration Cloud.

Import the integration package

Follow these steps to import the integration package on Oracle Integration Cloud.

1. Log on to Oracle Integration Cloud as an administrator.

2. Click the Packages icon.

3. Click the Import Package button.

4. Click Browse to open a navigation pane.

5. Browse for and select the packages archive (PAR) file when prompted.
6. Click Import. The package should be added to the Packages list.

Clicking on the name of the package in the Package list displays the integrations that are
included in the package. This package includes three integrations. These are:

e OCCS-OMC Integration Order
e OCCS-OMC Integration Profile
* OCCS-OMC Idle Cart.

The OCCS-OMC Integration Order integration flow is responsible for sending information
about submitted orders from Commerce to Responsys.

The OCCS-OMC Integration Profile integration flow is responsible for sending information
about customer profiles from Commerce to Responsys.

The OCCS-OMC Idle Cart integration flow is responsible for sending information about a cart
that has been abandoned and adds the visitor to the OMC Abandoned Cart orchestration
program.

You can now configure connections for these integrations.

Configure the Oracle Responsys Connection

ORACLE

This section provides instructions on configuring the connection from the integrations to
Oracle Responsys. Follow these instructions to configure the Responsys connection:

Log on to Oracle Integration Cloud as an administrator.
Click the Connections icon.
Click the Oracle Marketing Cloud connection.

Click the Configure Connectivity button.

g @ b P

Add the Responsys Login URL.

7-3

Chapter 7
Configuring the Integration

Note: This is not the URL you use to connect to Responsys. You can get the URL
required here from your Responsys administrator.

Click OK.
Click on the Configure Security button.

Select Custom Security Policy in the Security policy list.

© ® N 9

Complete the Username, Password, and Confirm Password fields. These are
the credentials required to access your Responsys account.

10. Click OK.
11. Click Test to test your connection.
12. Click Save.

Your Responsys connection is now configured for the integration.

Configure the Oracle Responsys Connection

This section provides instructions on configuring the connection from the integrations
to Oracle Responsys.

Follow these instructions to configure the Responsys connection:
1. Log on to Oracle Integration Cloud as an admin user.

2. Click the Connections icon.

3. Click the Oracle Marketing Cloud connection.

4. Click the Configure Connectivity button.

5. Add the Responsys Login URL.

Note: This is not the URL you use to connect to Responsys. You can get the URL
required here from your Responsys administrator.

Click OK.
Click on the Configure Security button.

Select Custom Security Policy in the Security policy list.

© ® N 9

Complete the Username, Password, and Confirm Password fields. These are
the credentials required to access your Responsys account.

10. Click OK.
11. Click Test to test your connection.
12. Click Save.

Your Responsys connection is now configured for the integration.

Configure the Oracle Responsys Database Tables

Once you have configured the Oracle Responsys connection, you need to create two
tables to store the information created by the integration. These tables are

ORACLE 7-4

ORACLE

CC Master _User List and CC Submit_Order. These tables should be created in a folder

called CC in Responsys.

Chapter 7

Configuring the Integration

Note: These are the default names of the tables that are populated by this integration. If you

create tables with different names or in a different folder then you must also modify the

adapter configuration to point to the different tables.

This section shows the structure for each of these tables.

CC_Master _User_List Table

The following is a list of fields that must be included in a table called CC_Mast er _User _Li st
created in a folder called / CCin Responsys. The first list is the system fields for the table,

and the second list is the custom fields for the table.

Field Name Field Type

RIID_ Integer Field
CREATED_SOURCE_IP_ Text Field (to 255 chars)
CUSTOMER_ID_ Text Field (to 255 chars)

EMAIL_ADDRESS_

Text Field (to 500 chars)

EMAIL_DOMAIN_

Text Field (to 255 chars)

EMAIL_ISP_

Text Field (to 255 chars)

EMAIL_FORMAT _

Single character field

EMAIL_PERMISSION_STATUS

Single character field

EMAIL_DELIVERABILITY_STATUS_

Single character field

EMAIL_PERMISSION_REASON_

Text Field (to 255 chars)

EMAIL_MD5_HASH_

Text Field (to 50 chars)

EMAIL_SHA256_HASH_

Text Field (to 100 chars)

MOBILE_NUMBER_

Text Field (to 50 chars)

MOBILE_COUNTRY_

Text Field (to 25 chars)

MOBILE_PERMISSION_STATUS_

Single character field

MOBILE_DELIVERABILITY_STATUS_

Single character field

MOBILE_PERMISSION_REASON_

Text Field (to 255 chars)

POSTAL_STREET 1_

Text Field (to 255 chars)

POSTAL_STREET 2_

Text Field (to 255 chars)

CITY_ Text Field (to 50 chars)
STATE Text Field (to 50 chars)
POSTAL_CODE_ Text Field (to 25 chars)
COUNTRY_ Text Field (to 50 chars)

POSTAL_PERMISSION_STATUS

Single character field

POSTAL_DELIVERABILITY_STATUS_

Single character field

POSTAL_PERMISSION_REASON_

Text Field (to 255 chars)

CREATED_DATE_

Time Stamp Field (date + time)

MODIFIED_DATE_

Time Stamp Field (date + time)

LOCALE Text Field (to 25 chars)
FIRST_NAME Text Field (to 100 chars)
LAST_NAME Text Field (to 100 chars)

COMMERCE_REGISTRATION_DATE

Time Stamp Field (date + time)

COMMERCE_LAST_ACTIVITY

Time Stamp Field (date + time)

7-5

Chapter 7
Configuring the Integration

Field Name

Field Type

AGE

Number Field

PROFILEATTRIBUTE

Text Field (to 100 chars)

CC_Submit_Order Table

The following is a list of fields that must be included in a list extension table called
CC_Subnit _Order created in a folder called CC in Responsys.

Field Name Field Type

RID_ Integer Field
ORDER_ID Text Field (to 25 chars)
NUMBER_OF_ITEMS Number Field

ORDER_DETAILS_URL
ORDER_CURRENCY
ORDER_SUBMIT_TIME
ORDER_SHIPPING_ADDRESS1
ORDER_SHIPPING_ADDRESS?2
ORDER_SHIPPING_CITY
ORDER_SHIPPING_STATE
ORDER_SHIPPING_COUNTRY
ORDER_SHIPPING_POSTAL
ORDER_TOTAL
ORDER_SHIPPING_MOBILE
ORDER_ITEM_NAMES
CREATED_DATE_
MODIFIED_DATE_

SITE_ID

SITE_NAME

Text Field (to 100 chars)

Text Field (to 25 chars)

Time Stamp Field (date + time)
Text Field (to 100 chars)

Text Field (to 100 chars)

Text Field (to 25 chars)

Text Field (to 25 chars)

Text Field (to 25 chars)

Text Field (to 25 chars)

Text Field (to 25 chars)

Text Field (to 25 chars)

Text Field (to 50 chars)

Time Stamp Field (date + time)
Time Stamp Field (date + time)
Text Field (to 25 chars)

Text Field (to 500 chars)

Configure the Oracle Commerce Connection

This section provides instructions on configuring the connection from the integrations

ORACLE

to Oracle Commerce.

Follow these instructions to configure the Oracle Commerce connection:

g w0 b P

following structure:

Click the Connections icon.

Click the Oracle Commerce connection.

Log on to Oracle Integration Cloud as an administrator.

Click the Configure Connectivity button.

Enter the Connection base URL. The Connection base URL is derived using the

Connection base URL: https://<siteURL>/ ccadm n/ vl

where <si t eURL> is the base URL of the Commerce site that integrates with

Oracle Integration Cloud.

7-6

Chapter 7
Configuring the Integration

6. Click the Configure Security button.

7. The Commerce connection uses the OAuth security policy, SO you must enter a Security
token for the connection. This token is generated in Commerce. Instructions on
generating the token can be found in the Generate a Security Token section of this
document.

8. Click OK.
9. Click Test to test that the connection is working.
10. Click Save.

Your Commerce connection is now configured for the integration.

Generate a Security Token

This integration uses the Oracle Commerce REST web services APIs to access Commerce
data. You must register the integration within Commerce and generate a security token in
order for the integration to be granted access to the data.

Follow these instructions in order to generate a security token:
Log onto Commerce.

Click the Settings icon.

Click Web APIs from the sidebar menu.

Click Registered Applications from the Web APIs panel.
Click the Register Application button.

@ g » 8w d PR

Enter a name for the integration. The application you are registering is Oracle Integration
Cloud, so you should choose a nhame that is meaningful and reflects this.

7. Click Save.

The Application ID and Application Key are automatically generated and the application is
added to the Registered Applications page.

8. Click on the name of the application you created.

9. Click on Click to reveal to display the application key. You can copy the application key
to use as the security token for the Commerce connection.

For more information on managing an application within Commerce, please refer to the
Register Applications section of the Using Oracle Commerce document.

Activate the Integration

ORACLE

Once you have configured the Oracle Responsys and Oracle Commerce connections you
can activate the integrations that were created when the integration package was imported to
Oracle Integration Cloud.

Follow these instructions to activate the integrations:

1. Log on to Oracle Integration Cloud as an admin user.
2. Click on the Integrations icon to display the Integrations list.

3. Click on the Activate button for the integration you wish to activate.

7-7

Chapter 7
Configuring the Integration

4. You can choose here whether to switch on detailed tracing. Detailed tracing
collects information about messages processed by the integration flow. This may
assist in troubleshooting issues with the integration flow, but it may impact
performance.

To switch on detailed tracing, check the Enable detailed tracing checkbox.

Note: Once an integration flow is active you must deactivate it and activate it again
to switch detailed tracing on or off.

5. Click Activate.

A message should be displayed to indicate that the integration flow has been
successfully activated.

Configure the Oracle Commerce Webhooks

ORACLE

When the integration flows have been activated you must configure the webhooks in
Oracle Commerce. These webhooks push a JSON notification to a URL that you
provide to the webhook. The URL you provide maps to the specific integration
workflow set up in Oracle Integration Cloud.

For the integration flows covered by this document there are four webhooks that must
be configured. These are:

e Shopper Registration: This sends a natification when a new user account is
created by a visitor to your website. This webhook pushes notifications using the
OCCS-OMS Integration Profile integration flow.

e ShopperAccount Update: This sends a notification when an already existing user
account is modified by a visitor to your website. This webhook pushes notifications
using the OCCS-OMS Integration Profile integration flow.

e Order Submit: This sends a notification when a registered shopper submits an
order on your website. This webhook pushes notifications using the OCCS-OMS
Integration Order integration flow.

e Cart Idle: This sends a notification when a registered shopper leaves your site
without purchasing items that were added to their cart. This webhook pushes
notifications using the OCCS-OMS Idle Cart integration flow.

You must configure the Production and Preview version of these webhooks to ensure
that they work in all environments. The Production webhooks send information from
your live store to production environments of your live systems, while preview
webhooks send information from your preview environment to the test or sandbox
environments of your external systems.

You can configure these webhooks through Commerce. Follow these instructions to
configure a webhook:

1. Log on to Oracle Integration Cloud as an admin user.
2. Click on the Integrations icon.

3. Click on the Integration Details icon to display information about the integration
flow.

If you are configuring the Shopper Registration or Shopper Account Update
webhooks then you should display information for the OCCS-OMC Integration
Profile integration.

7-8

Using the

Chapter 7
Using the integration

If you are configuring the Order Submit webhook then you should display information for
the OCCS-OMC Integration Order integration.

If you are configuring the Cart Idle webhook then you should display information for the
OCCS-OMC Idle Cart integration.

Copy the Endpoint URL for the integration.
Log on to Oracle Commerce.

Click on the Settings icon.

Select Web APIs from the sidebar menu.

Click on the webhook you wish to configure.

© ® N o 0o

Paste the Endpoint URL you copied into the URL field for the webhook.

10. Remove the “metadata” text from the end of the URL.

11. Enter the Username and Password for your Oracle Integration Cloud account.
12. Click the Save button.

The webhook is now configured and is triggered each time the relevant event occurs, which
in turn triggers the relevant integration flow.

For more information on Commerce webhooks, please refer to the Configure Webhooks
chapter of the Using Oracle Commerce document.

Integration
This chapter provides instruction on how to use the functionality supported by the integration.

This chapter includes information on creating new custom events and Oracle Responsys
programs,

Create an Abandoned Cart Program

ORACLE

Oracle Commerce monitors the shopping cart activities of visitors to your website and can
detect if a shopper has added items to a cart and then abandoned the cart.

When Commerce detects an abandoned cart it triggers a program that is defined in your
Oracle Responsys account. Commerce passes information about the items in the abandoned
cart to Responsys.

This section provides instruction on how to create a new custom event and how to create a
new program that runs when the new custom event occurs.

Create a New Custom Event
Follow these steps to create a new custom event on Oracle Responsys:

1. Log on to Oracle Responsys as an account administrator.
2. Select the Account icon.

3. Click on the Define custom event types link. This link is in the Account Customization
section, under the Global Settings heading.

4. Click on the Add new type link, which can be found under the table of custom event
types.

7-9

ORACLE

Chapter 7
Using the integration

5. Enter “CC_Abandoned_Cart” as the Custom Event Type Name, and enter a
meaningful description in the Description field.

6. Click on the Save button.
7. Click on the Done button.

Create a New Program

You can create a new Oracle Responsys program by selecting the profile list used for
the Oracle Commerce integration. This program must start with a custom event
followed by an email campaign that leads to the end of the program. You can see how
the program should be configured in this illustration:

Send email campaign activity

4 Stage

4 Campaign

ARANDON_CART o Sekect

4 Settings & options

: Cancil (2]

The abandon custom event must listen to a specific event name that is passed by
Commerce in the API call that triggers this program. You must select
CC Abandoned_Cart from the Listen for custom event type dropdown menu.

Commerce passes a set of dynamic variables to the program through the API call.
These dynamic variables must be specified for the program using the Settings
configuration options.

7-10

Chapter 7
Using the integration

Settngs Closs Save v
Settings Showall % I
¥k General

k Options

4 Tracking and vanables

Entry racking @)
Whad indormiation would you bioe 5o Frack per program entry?
[+ I -]
Column Name + Data Type
EMS Teat
QRDER_ID Thit
ORDER_SITE,cll. Vel Cancel
ORDER_SITE_URL . Teat -

Cancel Ok

You must then associate a specific email campaign with the Send email campaign activity.

ORACLE | responsys

Pebished Rarning
Ha g b I

sbarzcesd cararal

Duzsonpiiot

Tha cral carosgn vl br poronsioed et on
Bra e hoppieg can sk

Camzapn
o B sturgcasd_order H u
—= P o
o e [Erabie ssed binch saen B sy s eecres [l
atarden eeet skandcnsd L
1o tml [0 Apok iaurch trakling

[Sendgmageess aeds iz

Yhen? afw pupry 10 DD et

Flausch ki nekly

NRERE 0050 BE0RE0

You should use the Email Message Designer to specify the personalization rules used by the
email campaign associated with the email widget. You can do this using Responsys
Personalization Language (RPL).

The following figure shows a sample HTML code using RPL to personalize the email
message based on the dynamic variables passed by Commerce to the abandoned cart
program.

Note: This sample code is provided for guidance only and should not be directly copied as it
will not work with your integration.

ORACLE"

7-11

Chapter 7
Using the integration

Emal Meszage Deangner Shiw B0 E m
Fuats v~ WO Siow saiell orepiw A cfitere nget.com a Setecr 3 megiRe

submct: Do Eack wnd i whar i s oing Er
&

"AriplTsdavrergrlame B(fizre_namal,s)/recengs o femaesafp S

When you create the email using RPL you can see a preview of the email message
rendered with some default personalization values.

For more information on using the Email Message Designer functionality, please refer
to your Oracle Responsys documentation.

ORACLE"

7-12

Integrate with Oracle Retail Order
Management System

Integrate Oracle Retail Order Management System with Oracle Commerce.

Oracle Order Management Cloud is integrated with the Oracle Global Order Promising Cloud.
Together with Commerce they allow you to provide fulfillment monitoring and global
availability for your customers.

Introduction

Audience

Features

Oracle Retail Order Management System Cloud Service (OROMS) is an order management
system that supports retail transactions, including fulfillment, warehousing/inventory control,
customer service, merchandising, marketing and finance.

Commerce and Oracle Retail Order Management can be used together to provide a robust
commerce architecture.

This document is written for Commerce and Oracle Retail Order Management administrators
who need to set up and configure the integration between these two systems.

Readers of this document should have experience with both Commerce and Oracle Retalil
Order Management administration. This document does not provide instructions on
configuring aspects other than integration for Commerce and Oracle Retail Order
Management. For that information, refer to the product documentation.

The integration between Commerceand Oracle Retail Order Management provides a solution
that combines the capabilities of these two products.

This integration provides the following features:

e Turning integration on and off using the Commerce administration interface

* Providing configuration based on your environment

* Pushing completed Commerce orders to Oracle Retail Order Management for fulfillment
* Retrieving and displaying Oracle Retail Order Management order status in Commerce

This integration provides retailers with an opportunity to manage order and fulfillment
information.

Architectural Overview

ORACLE

Shoppers use the Commerce storefront to place an order.

8-1

Chapter 8
Prerequisites

When a retailer enables integration, the order created in the storefront is sent to
Oracle Retail Order Management where it is fulfilled. Commerce can obtain the details
of the order from Oracle Retail Order Management and display the status in the
customer storefront or the Agent Console of Commerce.

Commerce manages the promotions and discounts for the order and passes the final
price of the order to Oracle Retail Order Management. The shipping methods in both
systems are synchronized, ensuring that the customer is choosing from shipping
methods that are available from Oracle Retail Order Management.

To perform data synchronization, Commerce communicates with Oracle Retail Order
Management using REST. Commerce provides data output in JSON, while Oracle
Retail Order Management exposes REST services that accept XML. Integration
services take the JSON data from Commerce, convert it to XML using XSLT
transformers, and send it to all Oracle Retail Order Management systems. In turn,
XML data sent from Oracle Retail Order Management is read by the integration
service and converted to JSON. The webhook target that communicates with Oracle
Retail Order Management is set using the administration interface. If the integration is
disabled, the transformation logic is skipped and the webhook behaves as a standard
webhook.

Webhooks submit JSON, however, Serenade accepts only XML. When an order is
submit, it is converted from JSON to XML. Webhooks support multiple target orders,
and if the target contains

Integration services are configured using the Commerce administration interface.

When an order or order detail is queried in Commerce, a service call is made to Oracle
Retail Order Management to get the latest status for that order. Orders that are
created in Commerce are synchronized to Oracle Retail Order Management, and
order status updates regarding fulfillment from Oracle Retail Order Management are
requested by Commerce on demand.

Additional Documentation

For additional information on Commerce:

For additional information on using Commerce, see the Oracle Commerce
documentation.

Prerequisites

This section contains information on prerequisites needed before configuring the
integration.

Before you begin the integration process, you must ensure that you have met the
following conditions.

Access Rights

ORACLE

To configure integration, you need to have administrator access to Commerce.

This allows you to configure the integration settings using the administration interface.

8-2

https://docs.oracle.com/en/cloud/saas/commerce-cloud/index.html
https://docs.oracle.com/en/cloud/saas/commerce-cloud/index.html

Chapter 8
Prerequisites

Data Configuration

ORACLE

The product and SKU information should be in sync on both the Commerce and Oracle Retail
Order Management servers.

The following describes the Item and SKU fields and the mapping between them:

Item Configuration

Oracle Retail Order Management allows the | TEM | Dfield to contain a maximum of 12
alphanumeric characters. Therefore, items created with Commerce should contain no more
than 12 alphanumeric characters, for example, It en001, wal | et , etc.

SKU ID Configuration

The Oracle Retail Order Management system generated short _sku_nunmber number is
unique for a company as well as a site. As such, the Commerce SKU ID should also have a
unique ID for the site. Note that the SKU ID must be numeric and limited to 7 characters.

Variant Configuration

Oracle Retail Order Management allows a maximum of three SKU attributes, for example,
col or, si ze and col | ar. Note that all items will have the same elements. For example, both
the shirts and the shoe SKUs will contain the same variants, for example, col or, si ze, and
collar.

Commerce allows more than three variants, for example, col or, si ze, col | ar, and sl eeve.
However, Oracle Retail Order Management cannot recognize more than three variants. If the
SKU attribute in Oracle Retail Order Management and the SKU variant in Commerce both
contain fewer than three entries, the SKU attribute will be the same.

While creating items and SKUs in Commerce and Oracle Retail Order Management, consider
the following:

* When creating SKUs, limit variants to less than three

» Create SKUS in Oracle Retail Order Management. The same SKUs with the
short _sku_nunber field can be manually exported and created in Commerce

e Create variants that are as general as possible so that they can be shared across items

- Before the integration process begins, the Commerce and Oracle Retail Order
Management inventories should be synchronized

For detailed information on configuring and managing catalogs and SKUs, refer to the Oracle
Commerce documentation.

Working with More Than Three Variants

Commerce allows you to configure SKUs so that they contain variants, such as col or, si ze,
col | ar, etc. However, Oracle Retail Order Management can accept only up to three of these
variants. In the following example, the SKU for a shirt, as it is defined in Commerce, contains
the variants for col or, si ze, sl eeve and col | ar. Because Oracle Retail Order Management
can only accept three of these variants to be part of the SKU, the SKU is could be modified.

Note: If a Commerce SKU contains three or less variants, it is converted into the Oracle
Retail Order Management system without any changes.

8-3

https://docs.oracle.com/en/cloud/saas/commerce-cloud/books.html
https://docs.oracle.com/en/cloud/saas/commerce-cloud/books.html

Chapter 8
Setting Up the Integration

In the following example, the Commerce Shirt 1234 item contains the following
variants: col or, si ze, col | ar, and sl eeve. A SKU with the sku_i d 1234567 is a
Shirt1234 item that has the variants values of bl ack, snal |, crew, half.

Because the Commerce SKU has more variants than Oracle Retail Order
Management can accept, you might configure your SKU so that the last variant,

sl eeve, is removed, creating three separate items: Shirt1234 Full, Shirt 1234 Half and
Shirt 1234 3/4. The Commerce SKU now matches the Oracle Retail Order
Management Shirt1234 Half item. The SKU with the Commerce sku_i d 1234567
receives the system-generated short _sku_nunber 1234567.

OCC SKU OROM SKU

Shirt 1234 Full

Color: Black, Red
Size: Small, Medium, Large
Collar: Crew, V-Meack

Shirt 1234 J Shirt 1234 Half

Color: Black, Red
Size: Small, Medium, Large
Collar: Crew, V-Nack

Color: Black, Red
Size: Small, Medium, Large
Collar: Crew, V-Neck

Steeve: Full, Half, 3/4
\ Shirt 1234 14
Color; Black, Red
Size: Small, Medium, Large
Collar; Crew, V-Neck
sku_id: 1234567 short_sku_number:
Which is SKU Shirt 1234567 now matchos
1234 with: Shirt1234 Half
Color: Black =
Size: Small Color: Black
Collar: Crow Size: Small
Sleeve: Half Collar; Crew

The above diagram shows how the Commerce item Shirt 1234 can be converted into
three separate Oracle Retail Order Management items based on the fourth variant,
sl eeve. The diagram also shows how the Commerce SKU Shirt1234 relates to the
Oracle Retail Order Management SKU 1234567.

Setting Up the Integration

The following section provides information on configuring and accessing integration.

This includes configuring both the Oracle Commerce and the Production Integration.

ORACLE 8-4

Chapter 8
Setting Up the Integration

Commerce Configuration

Before you set up the Oracle Retail Order Management integration with Oracle Commerce
ensure that the necessary integration software is running on your server.

Configuring Webhooks

As described in the Architectural Overview section, the integration service is based on the
Web API settings in Commerce.

Web APIs allow you to subscribe to events for your products and orders by creating
webhooks that push JSON notifications to a URL you specify. For additional information on
webhooks, refer to Use Webhooks.

Before you can configure the integration settings, the webhook must be configured. To do
this, ensure that the Order Submit Event API has been configured with the URL necessary to
connect to the Oracle Retail Order Management server.

To Configure the Order Submit Event API

1. From the Commerce administration interface, select the Settings menu.
2. Open the Web API page and select the Webhook tab.

3. Open the Order Submit Event API.
4

Provide the URL of the server that will be accepting the order, including the server name
and port used for the CWOrderln service. For example:
https://my. exampl e. com 8443/ Ser enadeSean sxr s/ Ser enadeREST/ CWDr der I n

5. Provide a user name and password for accessing the server.
6. If you are using HMAC authentication, you can view or reset the key.

7. Click Save to save your changes.

Accessing the Oracle Integrations Console

The Oracle Integrations page is accessed through the Commerce administration interface.

1. Inthe Commerce administration interface, click the Settings icon.

2. Click Oracle Integrations in the left navigation pane.

3. Select OROMS (Oracle Retail Order Management) from the Oracle Integrations menu.
4.

To enable the integration, select the Enable integration checkbox.

Configuring the Integration

ORACLE

The following sections describe how to configure components of the integration procedure.

Production Configuration

The Production Configuration section configures a number of details as well as the mappings
for payment types and shipping methods. These values are passed to Oracle Retail Order
Management allowing the orders to be identified.

Note: These settings are duplicated in the other Oracle Retail Order Management Integration
setting, Preview Configuration.

8-5

ORACLE

Chapter 8
Setting Up the Integration

The following properties are set in the fields provided by the Production Configuration
page. Note that all fields are required unless otherwise noted.

Field Description

XSLT Path Name of the custom XSLT file to load.

Source Identifies the source of the XML message. The
source should default to IDC.

Target Identifies the target of the XML message. The

Company Code

Source Code

Order Type

URL

User Name

Password

target should default to RDC.

If multiple webhooks are specified in the Target
field, all of the systems receive the same data.
Transformation for specific URLs can be
performed by adding the URLSs to both the
webhook and integration settings.

Identifies the company for the order. The
company code is validated against the
Company table.

Updates the source code field in the Order
Header table. The source code provides
information about the currency code. You must
provide the Commerce currency code to the
Oracle Retail Order Management System
source code mapping using the Currency
Code mapping table.

Updates the order type field in the Order
Header table.

The URL path to the Oracle Retail Order
Management Web Service CWMessageln. For
example:

https://ny. exanpl e. com 8443/
Ser enadeSeant sxr s/ Ser enadeREST/

CWivessagel n

Note: Use the same hostname and port
number that you provided for the Order Submit
URL on the Web APIs Webhook page.

The name of the user who should have access
to the Web Service.

The password associated with the user name.
To see the password, click the Reveal button to
display the password.

Orders and multiple site configurations

The Commerce currency codes are mapped to the Oracle Retail Order Management

Source Code. For example:

Commerce Currency Code

Oracle Retail Order Management Source
Code

usD
EUR

CC_USD
CC_EUR

In an environment with multiple sites, you could configure the settings like this:

8-6

Chapter 8
Setting Up the Integration

Site Commerce Currency Code Oracle Retail Order
Management Source Code

USA usD CC_USD

UK GBP CC-UK_GBP

UK EUR CC_UK_EUR

Germany EUR CC_DE_EUR

Select the site with the site picker and select the appropriate Oracle Retail Order
Management source code. Each source code points to a single offer record, which contains
the currency code. This is how the offer record can provide the currency representation for an
order.

Using XSLT

You can use the customized XSLT capability to extend the default integration. The system
contains an internal XSLT file that maps all attributes. The merchant does not have access to
this XSLT file; however, you can provide a path to the XSLT. The XSLT should contain the
logic that customizes the Oracle Retail Order Management cr eat eOr der payload so that it
includes dynamic properties or makes mapping changes.

This XSLT workflow is active only when the Oracle Retail Order Management integration is
enabled. The merchant must upload the XSLT using Oracle Commerce’s file upload
endpoints. If no customized XSLT file is uploaded, the system uses the default XSLT file to
pass orders, ignoring any custom attributes.

When creating a custom XSLT file:

* The default mapping can be overridden and mapped to other attributes as necessary.

* The merchant can use dynamic attributes created with Oracle Commerce to map
attributes of the Oracle Retail Order Management.

* Because mapping is configured in the customized XSLT file, the merchant can map
custom attributes that were created for an Order header level in Commerce to an order
header or order line status in Oracle Retail Order Management.

To use a customized XSLT file, do the following:

1. Create a new XSLT file mapping.
2. Upload the XSLT file to Commerce using the file endpoints.

3. Use the Oracle Retail Order Management Integration Settings to provide the name of the
uploaded XSLT.

The following illustration defines the way that the merchant’s transformation is applied when
the XSLT path is provided.

ORACLE .

ORACLE

Chapter 8
Setting Up the Integration

‘ Order Webhook XML ‘

K5LT (Map File) Q—D[Transformation Logic]
-

\. l
Oracle Retail Order Management-

specific Drder XML [without custom
attribruites)

Custom
X5LT
uploaded?

Yes

+

Combine Order Webhook XMLs

¥SLT (Mlap File) }.—.{ Transformation Logic J
\,

Webhook Response 4

XSLT Example

The following is an example of an XSLT file:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl:styl esheet xm ns:xsl="http://ww:.w3.org/ 1999/ XSL/ Tr ansf or n{
version="2.0"

xmns:str="http://exslt.org/strings" xmns:exsl="http://exslt.org/
common”

exclude-resul t-prefixes="str exsl">

<xsl:output indent="yes" method="xm" onit-xnl-declaration="yes" />
<xsl:tenplate match="/">
<xsl:variable name="vOrder" sel ect="request/at gResponse/order" />

<Message>
<xsl:copy-of sel ect="request/Message/ @" />
<Header >
<xsl:copy-of sel ect="request/Message/ Header/ @" />
<Payment s>

<xsl:for-each sel ect ="request/ Message/ Header/ Paynent s/
Payment " >
<Payment >
<xsl:copy-of select="@" />
</ Paynent >
</xsl:for-each>

8-8

ORACLE

Chapter 8
Setting Up the Integration

</ Paynment s>
<Shi pTos>
<xsl:for-each sel ect ="request/Message/ Header/ Shi pTos/ Shi pTo" >
<Shi pTo>
<xsl:copy-of select="@" />
<Itens>
<xsl:for-each select="Items/lteni>
<ltenp
<xsl:copy-of select="@" />

4IRS R R R EEEEEEEEEEEEEEEERREEEEEEEEEEEEEEEEEEEEEEEE]

Updating an existing mapping
khkkkhkkkhhkhkhhkhhhkdhhhhkdhhdhdhhkdrhdhdhhkdrhdrdrhhkdrhddxdrxdxhxxx >
<I'-- To change the mapping of an existing OROVS attribute, coment the line
(<xsl:copy-of select="@" />) and unconment bel ow |ine and repl ace
<orons_attribute> with the attribute name required in output and
<occ_attribute>
with attribute name in occ XM. map an attribute in orons XM. to a different
val ue,
comrent the above |ine and unconment bel ow |ine and repl ace
<oroms_attribute> with
the attribute name required in output and the <occ_attribute> with attribute
name
inocc XM -->

<l-- <xsl:copy-of select="@][name()!="<orons_attribute>]" /> <xsl:attribute
nanme="t ax_override"> <xsl:val ue-of select="//request/atgResponse/order/
<occ_attribute>" /> </xsl:attribute> -->

<R EEEEEEEEEEEEEEEEEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEE]

Mapping a dynanmic attribute of OCCto a new attribute in OROVS
khkkkhkkkhhkhkhhkhhhkhhhkhhkhhhdhhkdhkhhhdhhdhhdhxdhhkdhkhdxdrkdrxdrxdxkxs*x >

<I-- To add a new attribute "category" at itemlevel in oroms XM, which
reads the

data fromthe dynamc attribute shopperCategory. Replace <occ_attribute>
with the

dynamic attribute nanme in occ. -->

<I-- <xsl:attribute nane="category"> <xsl:val ue-of select="//request/
at gResponse/
order/<occ_attribute>" /> </xsl:attribute> -->

4R R R R EEEEEEEEEEEEEEEEEERREEEEEEEEEEEEEEEEEEEEEEEEEEEE]

Mapping a dynanmic attribute of OCC with comma separated itemleve

data to a new attribute in OROVB
khkkkhkhkkhhkhkhhkhhhkdhhhhkhhhdhhkhhkhhhdhhdhddhdhhdhkdrhxdrhkdrkdrxdrkkxxkdx*x%x >

<I-- To map a dynamc attribute in occ in format skuldl-val uel, skul d2-val ue2
Repl ace <occ_attribute> with the dynamc attribute name in occ and
<oroms_attribute> with orons attribute nane. -->

<l-- <xsl:variable name="vOronmsAttribute" select="@hort sku_number"/>
<xsl:for-each sel ect="str:tokeni ze($vOrder/<occ_attribute> "', ")">
<xsl:variabl e nanme="tenmp" select="str:tokenize(.,'-")"/>

<xsl:if test="$tenp[1] =$vOromsAttribute">
<xsl:attribute name="<orons_attribute>"> <xsl:val ue-of select="$temp[2]" />

8-9

ORACLE

Chapter 8
Setting Up the Integration

</xsl:attribute>
</xsl:if>

</xsl:for-each> -->

'<IFER LR R EEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEE]

Mapping a dynamic attribute of OCCin JSONwith a new attribute in OROVS
khkkkhkkkhhkhkhkhhhkhhhhhkhhhdhhhhkdhhdhdhhkdrhhdhdhhkdrhdrdrhhkdrxhdrdrkdxdrxdrxs >
<l-- To map a dynamic attribute in occ in json format (sanple json
format is given

bel ow). Replace <occ_attribute> with the dynamic attribute nane in occ,
<oroms_attribute> with orons attribute nane and

<dynami cAttri but eFi el dName> with

specific field nane in the dynamc attribute json -->

<l-- Sample JSON:

[

{
"giftwaplineld":"gift-wap-item gwprodl001-834215",
"gi ft WapSkul d": "gwprod1001",
"gi ft WapSkuDescription":"Gft Wap Product",
"gi ft WapSkuPrice":5,
"skul d": "834215",
"skuDescription":"Opal Innocence Silver 8\" Salad Plate",
"quantity":1

b,

{
"giftwaplineld":"gift-wap-item gwprod1001-845353",
"gi ft WapSkul d": "gwprod1001",
"gi ft WapSkuDescription":"Gft Wap Product",
"gi ft WapSkuPrice":5,
"skul d": "845353",
"skuDescription":"Bald Eagle Figurine",
"quantity":1

}

]
-->

<l-- <xsl:variable nane="vOronsAttribute" select="@hort _sku number" />
<xsl:attribute name="<orons_attribute>">
<xsl:call-tenpl ate name="readCust onProperty">
<xsl:w t h-param name="j son" sel ect="$vOrder/<occ_attribute>" />
<xsl:wi t h- param nane="skul d" sel ect="$vOronsAttribute" />
<xsl :with-param name="dynam cAttri but eName" sel ect ="
<dynami cAttri but eFi el dName>" />
</xsl:call-tenplate>
</xsl:attribute>
-->
</ltenp
</xsl:for-each>
</ltenms>
</ Shi pTo>
</ xsl : for-each>
</ Shi pTos>
</ Header >

8-10

ORACLE

Chapter 8
Setting Up the Integration

</ Message>
</xsl:tenpl ate>

<xsl:variabl e name="quot" sel ect=""""'" />
<xsl:variabl e name="skul dWthQuots" sel ect="concat (' skuld\', $quot, ':\'
$quot)" />

<xsl:tenpl ate name="readCust onProperty">
<xsl : param name="j son" />
<xsl : param nanme="skul d" />
<xsl : param name="dynam cAttri but eName" />

<xsl:variabl e name="tenp" sel ect="normalize-space
(substring-after($json,'{'))" />

<xsl:variabl e name="ful | SkuJson" sel ect="normal i ze- space
(substring-before($temp,'}'))" />

<xsl:variabl e name="remai ni ngJson" sel ect="normal i ze- space
(substring-after($temp,'}'))" />

<xsl:call-tenpl ate name="readCust onPropertyBySkul d">
<xsl : wi t h-param name="ful | SkuJson" sel ect ="$ful | SkuJson" />
<xsl : wi t h- param name="renai ni ngJson" sel ect =" $r emai ni ngJson" />
<xsl : wi t h- param nane="skul d" sel ect =" $skul d" />
<xsl :wi t h- param name="dynam cAttri but eNane" sel ect =

"$dynami cAttribut eNanme" />
</xsl:call-tenpl ate>
</xsl:tenpl ate>

<xsl:tenpl ate name="readCust onPropert yBySkul d">

<xsl : param name="ful | SkuJson" />

<xsl : param name="r enai ni ngJson" />

<xsl : param name="dynam cAttri but eName" />

<xsl : param name="skul d" />

<xsl:variabl e name="tenp" sel ect="normalize-space

(substring-after($full SkuJson, $skul dWthQuots))" />

<xsl :variabl e name="skul dVal ue" sel ect ="nornal i ze- space

(substring-before($tenp,"\"))" />

<xsl:if test=' $remainingJson' >
<xsl:variabl e nanme="tenpl" sel ect="nornalize-space
(substring-after($reminingJson,'{"))" />
<xsl:variabl e name="ful | SkuJsonl" sel ect="nornalize-space
(substring-before($tenpl,'}'))" />
<xsl :variabl e name="remai ni ngJsonl" sel ect="nornmnal i ze- space
(substring-after($tenpl,'}'))" />
<xsl:call-tenpl ate nanme="readCust onPropertyBySkul d">
<xsl:wi th-param name="ful | SkuJson" sel ect="$ful | SkuJsonl" />
<xsl :wi t h- param name="r enai ni ngJson" sel ect ="$renai ni ngJsonl" />
<xsl:wi th-param name="skul d" sel ect ="$skul d" />
<xsl :with-param name="dynam cAttri but eName"
sel ect ="$dynam cAttri but eName" />
</xsl:call-tenplate>
</xsl:if>

<xsl:if test="$skuld = $skul dval ue' >

8-11

ORACLE

Chapter 8
Setting Up the Integration

<xsl:variabl e name="attri but eNaneWt hQuot s"
sel ect ="concat ($dynam cAttributeNane, '\', $quot,
i\, $quot)" />
<xsl:variabl e nanme="tenmp2" sel ect="nornal i ze- space
(substring-after($full SkuJson, $attributeNameWthQuots))" />
<xsl:variabl e nanme="attributeVal ue" sel ect="normnalize-space
(substring-before($tenp2,'\'))" />
<xsl:val ue-of select="$attributeVal ue" />
</xsl:if>
</xsl:tenplate>
</ xsl :styl esheet >

Order Creation

Orders created in Commerce are sent to Oracle Retail Order Management using the
Submit Order webhook.

Note that the Oracle Retail Order Management webhook overrides the Submit Order
Webhook to send XML messages that contain the entire XML payload. If the webhook
is configured to send to multiple destinations, all of the destinations will receive this
XML payload.

The following is an XML example of an order creation message received by Oracle
Retail Order Management.

Sample Order Creation Message

<Message source="I1DC' target="RDC' type="CW\Oderln">
<Header order _number="060412" order _type="Y" conpany_code="51"
order_channel ="1"
sour ce_code="A123_USD' paynent_onl y="N' response_type="E"
or der _dat e="08222016"
sold to prefix=""sold to fname="Kinf sold to_| nane="Anderson"
sold to suffix=""sold to busres="R' sold to_address1="21 Cedar Ave"
sold_to_address2=""sold to_address3="" sol d_to_address4=
sold_to city="Syracuse" sold to state="NY" sold to_zip="13202"
sold to country="US"sol d to_enail update="N'
sold_to_day_phone="212-555-977"
sold_to_eve phone="212-555-1977"sol d_to_address_update="Y"
pay_incl="Y"
bill to prefix=""bill _to fnane="Kinm' bill _to_| nane="Anderson"
bill to suffix=""bill _to addressl="21 Cedar Ave" bill to_address2=""
bill to address3=""hill _to_address4="" bill _to_city="Syracuse"
bill to state="NY"bill to_zip="13202" bill _to_country="US"
bill _to _day phone="212-555-1977" bill _to_eve phone="212-555-1977"
bill to fax_phone=""bill to_email="ki m@xanpl e. con
bill _to_company_name=""
i nd_nunber=""order_emai | ="ki m@xanpl e. conf
alternate_sold to id="se-570031">
<Payment s>
<Payment paynent type=""cc_nunber="9997000108950573"
cc_exp_nont h="03"
cc_exp_year="2018" auth_anount="75.88" auth_date="01011970"
ecomer ce_i ndi cator="Y" al ready_t okeni zed="Y"
transaction_i d="1ni 4eg211lj 6i qt 6097hopi dv7"
vendor _response="100"/>

8-12

ORACLE

Chapter 8
Setting Up the Integration

</ Payment s>
<Shi pTos>
<Shi pTo shi ppi ng_net hod="01" frei ght_tax_override="Y"
freight _tax_anmount="4.22" calc_frt="N'" ship_to_fax_phone=
ship_to_eveni ng_phone="212-555-1977" ship_to_day_phone="212-555-1977"
ship_to_email =ki m@xanpl e. com shi p_to_zi p="13202" ship_to_state="NY"
ship_to_country="US" ship_to_city="Syracuse" ship_to_address3=""
ship_to_address2=""
ship_to_suffix=""
ship_to_prefix=
<l tenms>
<Itemtax_override="Y" price_override="Y" short_sku_number="130"
itemid="LAPTOP" actual price="6.67" tax_amunt="1.11"
quantity="2"/>
<Itemtax_override="Y" price_override="Y" short_sku_number="130"
itemid="LAPTOP" actual price="6.66" tax_amunt="0.55"
quantity="1"/>
</ltenms>
<Shi pTo>
<Shi pTos>
</ Header >
</ Message>

—nn

ship_to_address1="21 Cedar Ave" ship_to_conpany=
ship_to_I name="Anderson" ship_to_fname="Kinf
frei ght="50"cont act _name="Ki mAnder son" >

Order Status Updates

Commerce retrieves the order status and tracking information from the Oracle Retail Order
Management System to display in the client. The status, which is obtained when an order
detail is queried, will not be persisted or updated in the repository.

Promotions

Promotions and offers are handled by Commerce with the corresponding discount price sent
as part of the order.

Returns and Exchanges

By default, the Oracle Retail Order Management integration does not support returns and
exchanges.

Configurable Product Support

By default, the Oracle Retail Order Management integration does not support configurable
products.

Payment Methods

Oracle Retail Order Management uses payment methods that are identified with unique
integers. For integration, Commerce Payment Methods are mapped to Oracle Retail Order
Management numeric payment methods.

You can obtain a list of the payment methods available by calling the following endpoint:

CGET /ccadm n/v1/ mer chant/ payment Gat eways
This returns a list of available payment methods. The response also includes the ID of the
merchant, whether the method has been enabled, and the repository ID of the payment

8-13

ORACLE

Chapter 8
Setting Up the Integration

method. The repository ID identifies the payment method code to use. The following
example displays a partial response that identifies a CyberSource payment method:

{
"paynment Gat eways": [
{
"sopCredential s": {
“storefront": {
"sopURL": "http://10.101.101.101: 8080/ ccstore/ vl/ PM
cyber sour ceSOP",
“expirationDate": "2019-01-28T11:54:30.207Z",
“profileld": "Admn",
“applicationName": "storefront",
"hasSecret Key": true,
"hasAccessKey": true,
“repositoryld": "SOP-A"
¥

In an environment with multiple sites, you need to pass the si t el d value in header to
get payment gateway details for the site. To fetch payment gateways specific to a site,
you need to pass x- ccsi t e header. For example, to fetch payment gateways for

si t eUS site, the header should include x-ccsite: siteUS.

You can find information about individual endpoints in the REST API documentation
that is available through the Oracle Help Center.

Note that this documentation reflects the most recent version of Commerce. If you are
currently using an earlier version of Commerce, the API documentation on the Oracle
Help Center may include endpoints that are not available on your version.

Once you have obtained the repository ID, use it to map the payment method as
follows:

Payment Methods (required)

Cloud Commerce OROMS

CS5-A SOP-A Remove

As orders are created in Commerce and passed to Oracle Retail Order Management,
the payment mappings are passed to Oracle Retail Order Management for fulfillment
and settlement with the required payment gateways.

Note: To ensure PCI compliance, no credit card or gift card numbers are sent to
Oracle Retail Order Management. The transaction reference and the authorization ID
are sent with the order.

Payment Gateways

Commerce has preconfigured integrations with Chase and CyberSource payment
gateways. By default, the CyberSource payment gateway is selected for the
integration. The Oracle Retail Order Management System requires a credit card to be

8-14

ORACLE

Chapter 8
Setting Up the Integration

provided when using the Chase gateway, however, Commerce does not store credit cards
and cannot provide them. As such, Chase credit cards are not supported with this integration.
Oracle Retail Order Management supports CyberSource and PayPal gateways by default.

Note: When using the CyberSource payment gateway, you must provide the AuthNumber for
reauthorization and settlement. Because Commerce does not store the AuthNumber, the field
is set to NA by default. You must update this field with the AuthNumber values for the
CyberSource gateway.

To configure integrations with other order processing systems, use the Generic Payment
Framework, as described in the Oracle Commerce documentation. Generic payment is not
supported by default; however, Oracle Retail Order Management APIs can support sending
payment details separately for an order. Whenever a generic payment is used in Commerce,
payment details are not sent and the order is put into an error state. Once you update the
payment details for the order, the Oracle Retail Order Management System changes the
order to an open state.

External Pricing

Note that this integration does not support external pricing. If you are using a combination of
external prices and sale prices from Commerce, this integration will average the prices of
items of the same SKU. For example, a customer qualifies for a promotion in Commerce that
enables him to purchase 5 hats for the sales price of $5 each, instead of the list price of $6. If
the customer wants to buy 10 hats, in Commerce, 5 of the hats would be sold at $5 and 5 of
the hats would be sold at $6 for a total of $55. Oracle Retail Order Management does not
differentiate between the price lists. Instead, it averages the final price between all of the
hats, therefore all 10 hats are priced at $5.50 each for a total of $55. This may impact return
processes, as in the above example, the return price of a hat would be $5.50 and not $5

or $6.

Payment Types

Payment Types are set up and configured using the Payment Processing setting and the
Payment Types tab, which is described in the Oracle Commerce documentation. For
information on Oracle Retail Order Management payment types, refer to the Oracle Retalil
Order Management documentation.

Shipping Methods

Oracle Retail Order Management uses shipping methods that are identified by unique
integers. You can configure multiple shipping methods. For integration, Commerce shipping
methods are mapped to Oracle Retail Order Management numeric shipping methods.

The shipping methods are sent to Oracle Retail Order Management during fulfillment.
Commerce and Oracle Retail Order Management shipping methods should be synchronized.
These mapping ensure that the orders created on Commerce refer to and use similar
shipping method chosen by the customer for shipping.

You can obtain a list of the shipping methods available by calling the following endpoint:

CGET /ccadm n/v1/ merchant/shi ppi ngMet hods

This returns a list of available shipping methods. The response also includes information on
each shipping method, and the repository ID of the shipping method. The repository 1D
identifies the shipping method code to use. The following example displays a partial response
that identifies a ground shipping method:

"enabl ed": true,
"di spl aySequence": 0,

8-15

ORACLE

Chapter 8
Setting Up the Integration

"eli gi bl eFor Product Wt hSurcharges": fal se,

"ranges": [
{
“amount": 4.75,
“high": 14.99,
"low': 0,

"repositoryld": "groundRangel"

Once you have obtained the repository ID, use it to map the shipping method:

=hipping Methods (required)

Cloud Commerce OROMS

grounds groundR Remove

Shipping methods are set up and configured using the Shipping Methods setting,
which is described in the Oracle Commerce documentation. For information for
integrating with external shipping systems, refer to the Oracle Commerce

documentation. For information on Oracle Retail Order Management shipping
methods, refer to the Oracle Retail Order Management documentation.

External Shipping Methods

Commerce supports external shipping methods. However, these shipping methods
may not be available in the list of shipping methods displayed in the administration
interface when configuring your Oracle Retail Order Management integration. To use
the shipping methods for your external system you must add them to the Shipping
Methods mapping table.

Once all of the integration parameters have been configured and saved, the
integration process can occur.

8-16

Integrate with Oracle Product Hub Cloud

Oracle Commerce provides an integration with Oracle Product Hub Cloud (PHC) that you can
use to provide a robust commerce architecture for order capture and product management.

Oracle Cloud Product Hub, part of Oracle Cloud PLM suite, is an enterprise-class product
master data management (PMDM) software, delivered via cloud for lower cost and faster
deployment.

Understand the Product Hub integration

ORACLE

Read this section to learn concepts that are important to know before you configure and use
the integration between Oracle Commerce and Oracle Product Hub Cloud.

This section describes concepts to know before you configure and use the integration
between Commerce and Oracle Product Hub Cloud. It includes the following topics:

e Audience
Overview
* Prerequisites

e Assumptions

Audience

This section is written for Commerce and Product Hub administrators who want to set up and
configure the integration between these two systems. To use this documentation, you should
have experience with Commerce, Oracle Integration Cloud (OIC), and Product Hub. This
section does not provide any instructions for configuring any other aspects of these systems
beyond those required for the integration. For information on other configurations, refer to
each product’s documentation, available on the Oracle Help Center.

Overview
This integration provides the following features:

e Syncs products created in Product Hub to Commerce

» Associate collections created in Commerce to the products

e Optionally trigger a publish event in Commerce when import is complete

e Upload images from Product Hub to Commerce and associate them with products

Sync products and SKUs: This integration assumes that products and SKUs are created
and maintained in Product Hub. The integration syncs them to Commerce and make them
available on the storefront, as described by the following process:

e The item publication job can be scheduled in Product Hub with a required frequency, for
example once per day or once every six hours. It exports new and updated items based
on the defined filter criteria. The job runs as specified by the schedule, and on
completion, it posts the exported files to Oracle Universal Content Management (UCM)
and triggers the item-publication job event.

9-1

ORACLE

Chapter 9
Understand the Product Hub integration

* The item publication job event triggers the OIC flow. It checks if a publish event is
currently running in Commerce. If Commerce is publishing or if another import or
export job is active, then it cannot accept new requests for import. In these cases,
the integration execution stops and is moved to a queue to be retried at a later
time. When publishing completes, the integration is resumed from the queue.

* The integration downloads the exported file from UCM. The archive file may
contain multiple XML files, which are transformed into Commerce JSON format.
The integration archives the JSON files and uploads them to Commerce. It then
triggers the bulk product import process to load the data into the Commerce Admin
server.

Publish imported items: After the import is successful, the integration flow checks if
auto-publish is enabled in the OIC lookup. If enabled, it gets the total number of
records pending publishing in Commerce for the user/application configured in the OIC
Commerce connection. If it finds any such record and the number of such records is
less than the threshold configured in OIC lookup, it publishes those records. Note that
the publish operation includes all the records for the user, not only the ones imported
as part of the current integration flow. If the threshold exceeds 10 MB, it sends an
email notification to the administrator to inform that publish was not initiated
automatically. A Commerce admin user can manually start a publish in this case.

Upload images: If Media Sync is enabled (that is, if CXConmer ceMedi aSyncEnabl ed is
set to true in OIC lookups), then media items are also synced along with the items/
products from Product Hub to Commerce. Supporting formats for images to be linked
with products in Commerce are JPG, JPEG, PNG, and GIF. Separate ZIP file will be
created with all the images of supported formats and then uploaded to Commerce. For
more information about the rules Commerce enforces for images, see Manage Media
for Your Store in Using Oracle Commerce.

Prerequisites

Configuring and using this integration requires the following. If you require one or more
of these, please contact an Oracle sales representative.

A Commerce account and access to Commerce 20D or later.

e An Oracle Fusion Product Hub account and access to Product Hub Cloud 20B or
later.

* An Oracle Integration Cloud account and access to Oracle Integration Cloud
Service.

Assumptions

This integration makes the following functional assumptions. These assumptions
require a functional understanding of both Commerce and Product Hub.

e Catalogs, collections, and product types are created in Commerce before the
products are imported into Commerce by the integration.

e Products and SKUs data is always managed in Oracle Product Hub and is
imported into Commerce. This means that Product Hub is the only source of
products and SKUs for Commerce.

e By default, Commerce list prices are mapped to Product Hub's purchase list
prices. It's recommended to create an Extensible Flexfield (EFF) attribute for sale
list price and override the mapping.

e All changes are published on Commerce, once the products are imported.

9-2

Chapter 9
Configure Oracle Commerce with Oracle Product Hub

» Configurable SKUs, add-on products, related SKUs, services and subscriptions are not
supported by default in this integration. You will need to extend the integration if you wish
to support these components.

* PDH Item Number is mapped to Commerce Product ID and SKU ID. While ltem Number
can include spaces and have a maximum length of 256 characters, Commerce IDs do
not support spaces and can have a maximum length of 165 characters. Therefore,
appropriate rules must be set in PDH to conform data to Commerce requirements. Also,
the Item Number must not be modified in PDH.

» Translations to secondary locales are not supported by default in this integration. If your
Commerce environment requires translations, this requires multiple exports to be
triggered in PDH in different locales, and any extension to this integration must handle
them accordingly in the integration flow.

* You can customize this integration to link Images to SKUs and to map an image’s path
and name under SKUs. Before you can do this, make sure that the pr oduct Type is
mapped to a Commerce product type for which Allow product images at the variant
property value level is enabled in the Variant properties.

Configure Oracle Commerce with Oracle Product Hub

ORACLE

This section describes tasks you must perform to configure Commerce for the integration.

You perform these tasks in the Commerce administration interface and with the Commerce
REST APIs.

Register the application and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

Log into the Commerce administration interface.
Click the Settings menu and select Web APIs.

1
2
3. Click Registered Applications from the Web APIs panel.
4. Click the Register Application button.

5

Enter a name for the integration application. Create a meaningful name that reflects the
purpose of the application.

6. Click Save. The Application ID and Application Key are automatically generated and the
application is added to the Registered Applications page.

7. Click on the name of the application you created.

8. Click to reveal link to display the application key. You can copy the application key to use
as the security token for the Oracle Commerce connection.

For more information on managing an application within Commerce, see Register
applications.

Configure the Commerce webhooks

You must configure the Publish Complete and Import Complete webhooks.. Follow these
steps to configure the webhooks in the Commerce administration interface:

9-3

Click the Settings icon.

P W NP

Chapter 9
Configure Oracle Product Hub

Log into the Commerce administration interface.

Click Web APIs and then click the Webhook tab.
Click the Publish Complete (Production) webhook. Enter the integration (Oracle

Commerce OIC ProductHubInt Resubmit Webhook) endpoint URL in the URL box
and enter the OIC username and password, under Basic Authorization.

5. Click the Import Complete (Production) webhook. Enter the integration (Oracle
Commerce OIC ImportComplete Post Processing) endpoint URL in the URL box
and enter the OIC username and password under Basic Authorization.

6. Click Save.

Attribute mappings

The following table shows the relationships between Product Hub product Iltem
properties and Commerce product properties.

Commerce product property

Product Hub product item field

id

di spl ayName
nonr et ur nabl e
orderLimt
description
shi ppabl e

t axCode
active
listPrice

It emNunber

ItenDescription

Ret ur nabl eFl ag

Maxi munQr der Quant ity
LongDescription

Shi ppabl eFl ag

Qut put Taxd assi fi cat i onCodeVal ue
| t enfSt at usVal ue

ListPrice

The following table shows the relationships between Product Hub product Item

properties and Commerce SKU properties.

Commerce SKU property

Product Hub product item field

id

product |l d

di spl ayName
nonr et urnabl e
active
listPrice

It emNunber

It emNunber of parent style Item
It enDescription

Ret ur nabl eFl ag

|t entt at usVal ue

ListPrice

Configure Oracle Product Hub

This chapter describes tasks you perform in Oracle Fusion Product Hub to support the

ORACLE

integration

Before you configure the integration, you should also plan the following tasks in

Product Hub:

e Create a Spoke system in Product Hub for which item-publication jobs can be

scheduled.

9-4

Chapter 9
Install and Configure the Integration in OIC

* Configure the item-publication criteria, select entities Attributes and Item Category
Assignments. You can select a date filter in criteria to filter out items, for example, items
updated within the past day, if the publication job is scheduled for a daily frequency.

» Configure the size of exported zip file. Remember that OIC will not accept ZIP files larger
than 1GB.
The exported zip files contains | TEM *. xm files. Configure the size of XML by providing
an optimal number of records an XML file can have, so that the size of the XML doesn't
exceed 10 MB. This is to match OIC restrictions in place for performance considerations.

e Create a schedule for the publication job.

Install and Configure the Integration in OIC

ORACLE

This section describes how to install the integration package in Oracle Integration Cloud
(OIC).

The OIC Home Page is the starting point for these tasks.

Install the recipe and configure the connections

This integration is provided as a recipe, which is a pre-assembled solutions to help jump-start
your integration development.

First, log into an Oracle Integration instance to display the OIC Home Page. Find the
integration recipe Oracle Product Hub — Oracle CX Commerce | Product Sync from the OIC
home page. and install the recipe by hovering over the card and clicking the + sign icon.

Once the recipe is installed, hover over the card again to display options to configure,
activate, and delete. Select Configure and then configure the connections used by the
integration:

1. Log into OIC as an admin usetr.
2. Select Integration->Connections.
3. Select Oracle CX Commerce. The Connection Properties dialog appears.

« Enter the URL to connect to Commerce as the value of the Connection Base URL
property (htt ps: // <host name>/ ccadmi n/ v1).

» Enter the security token value, which you can find in the Commerce administration
settings and click OK. The security token is the application key in the
OracleCommerce Interface found under Registered Applications Settings. Contact
your Commerce Administrator to get this application key.

4. Select Oracle Integration Connection. The Connection Properties dialog appears.

» Select the connection type (REST API Base URL) and enter the OIC connection URL
(http://{A Cserver}/iclapi/integration/vl).

* Under Security, select Basic Authentication and provide login credentials to
access the endpoint.

5. Select Oracle Product Hub Connection. The Connection Properties dialog appears.

» Enter the ERP Services Catalog WSDL URL. For example: htt ps://
{product Hub- server}/fscnBervi cel/ Servi ceCat al ogSer vi ce?WsDL

* Enter the ERP Events Catalog URL. For example: ht t ps: // { pr oduct Hub-
server}/soa-infra

9-5

ORACLE

Chapter 9
Install and Configure the Integration in OIC

* Under Security Policy, select Username Password Token and enter the
login credentials to access the endpoint.

6. Select Oracle UCM Connection, The Connection Properties dialog appears.

» Enter the WSDL URL. For example: ht t ps: //{pr oduct Hub- server}/
i dcws/ Generi cSoapPort ?wsdl

» Under Security Policy, select Basic Authentication and enter the login
credentials to access the endpoint.

Update mapping for prices for products and SKUs

Update the mapping in the integration flow Oracle PRODUCT HUB COMMERCE

It eniToPr oduct Sync to map the EFF attribute representing List Price in Product Hub to
List Price in Commerce. By default Product Hub's Purchase List Price is mapped, but
this must be updated to be mapped to the correct EFF attribute. Additionally, since List
Price is required for creating a product in Commerce, the EFF attribute must be
configured as required in Product Hub.

Customize mapping for additional custom fields

If you include additional custom fields in either Commerce products and SKUs or
Product Hub Items, you will need to update the mapping in the integration flow Oracle
PRODUCTHUB COMMERCE | t enfToPr oduct Sync.

To include additional fields in Product Hub Items:

1. Once you have added new fields, generate the XSD in Product Hub using Item
Publication job. The XSD will include any new fields you added.

2. Open the integration flow Oracle PRODUCTHUB COMMERCE
I t enffoPr oduct Sync to edit.

3. Navigate to DownloaditemsAndProcess (Scope) > readitemFile (stage
operation).
Edit the stage operation node.

Upload the latest XSD ZIP file.

Select the definition for publication items (. . . / cormmon/
publicati onService/}ltens)

4. Click Next, then click Done.
5. The mapper should show the new fields for Product Hub item.

To include additional fields in Commerce Products and SKUs

1. Once you have added new fields, export a product from Commerce. The exported
data will contain the new fields.

2. Open the integration flow Oracle PRODUCTHUB COMMERCE
| t enffoPr oduct Sync to edit.

3. Navigate to DownloadltemsAndProcess (Scope) > writeCommerceJsonFile
(stage operation).

e Edit the stage operation.
e Upload the exported sample JSON.
4. Click Next, then click Done.

9-6

ORACLE

Chapter 9
Install and Configure the Integration in OIC

5. The mapper should show the new fields for Commerce product and SKU.

Configure lookups
You must update the lookup values in the lookup table Oracle-PDH_Comm_Int_Settings:

e PDHSpokeSyst em: Spoke system created in Product Hub for performing item-publication
job. The integration will process the exported file for this spoke system.

» PDHCat al ogsFor Cat egor y- Product sLi nks : Comma-separated list of catalogs. Configure
if the product in Commerce will be associated with specific collections and catalogs. If
this is not provided, the integration flow will link the product to all the collections specified
by the exported data received from Product Hub. If no collection or catalog associations
are required then configure this variable as NULL.

e ToEni | Addr esses: Recipient email addresses to send error notifications. If an import
fails in Commerce, an email message containing a link to failed records is sent to this ID.

e Frontnmai | Addr ess: Sender email address for the error notifications.

e O CMaxi munRet r yCount : Maximum number of retry counts for resubmitting failed
instances. There are a number of reasons for integration instance failure, for example,
when publishing is running in Commerce, or if there is a network failure.

e CXCommer ceAut oPubl i shEnabl ed — Set this to t r ue if all the records imported to
Commerce through specific registered App ID (CXComer ceRegi st er edAppl d) needs to be
published automatically; otherwise, configure this variable as f al se.

e CXCommer ceRegi st er edAppl d - Registered Commerce Application ID of the user for which
the all the data in the publishing queue will be published, if automatic publishing
(CXConmer ceAut oPubl i shEnabl ed) is enabled.

e CXCommer ceAut oPubl i shThreshol d - Maximum number of records for which automatic
publishing will be triggered. Otherwise, the integration will send email to the administrator
so they can manually publish.

e CXCommer ceMedi aSyncEnabl ed — Set this to t r ue if media items from Product Hub need to
be synced with Commerce; otherwise set to f al se.

The following example shows sample lookup values in the lookup table Oracle-
PDH_Comm_Int_Settings:

FronEmai | Address - enai | | dSour ce@xanpl e. com

PDHCat al ogsFor Cat egor y- Product sLi nks — NULL
PDHSpokeSyst em — CXCommer ce

O Cvaxi nunRet ryCount — 5

CXConmrer ceRegi st er edAppl d — Ent er Your Regi st er edAppl d
CXConmer ceAut oPubl i shEnabl ed — fal se

CXConmer ceAut oPubl i shThreshol d — 1000000

CXConmmer ceMedi aSyncEnabl ed - true

Configure email notifications

The integration includes the ability to send emails that notify administrators of the following
issues:

* Record imports fail
* The number of items to automatically publish exceeds the specified threshold

* Exported XML/image size exceeds 10 MB

9-7

Chapter 9
Understand the integration flows

You specify the email address that notifications are sent to with the ToEnai | Addr esses
lookup value and the email address that notifications are sent from with the
FronEnai | Addr ess lookup value. See Configure lookups for more information.

To learn how to customize and send email with OIC, see the following Oracle blog
posts:

* An Advanced Guide to OIC Noaotification via Emails

¢ How to send email with attachments in OIC

Activate the integration flows

After you configure the Oracle Product Hub and Commerce connections, you must
activate the integrations that were created when the integration package was imported
to Oracle Integration Cloud. To do this, follow these steps:

1. Log into Oracle Integration Cloud (OIC) as an admin user.

2. Click the Integrations icon to display the Integrations list.

3. Click the Activate button for each of the following integrations:
e Oracle Commerce Product Import
e Oracle Product Hub Oracle CX Commerce Products Int
e Oracle Commerce Integration Resubmit
e CX Commerce Product ImportComplete Post Processing
* Oracle Commerce Product Hub Int Resubmit Publish
* Oracle Commerce Product Hub Int Resubmit Schedule

OIC displays a message to indicate that the integration flow was successfully
activated.

Understand the integration flows

ORACLE

This section describes the out-of-the-box integration flows and includes a diagram that
illustrates the overall integration flow.

The Product Hub integration includes the following flows:

e (Oracle PRODUCT HUB COMMERCE It eniToProduct Sync
Syncs the products, SKUs, and images (if images are enabled in lookup) data
from Product Hub to Commerce. This flow is triggered by the Product Hub item-
publication event.

e Oacle OC COMWERCE InportStart
Issues the command to start the import on a file to Commerce.

e Oacle Coomerce O C Inport Conpl ete Post Processing
Includes the flow for automatically publishing the records in Commerce. If the
number of imported records exceeds the limit, sends a notification so publishing
can be manually started in Commerce. This flow is triggered by the Commerce
Import Complete Webhook .1t sends a notification to the configured email address
if the import has any failed records.

e Commerce O C Product Hublnt Resubnmit Webhook

9-8

https://blogs.oracle.com/integration/an-advanced-guide-to-oic-notification-via-emails
https://blogs.oracle.com/integration/how-to-send-email-with-attachments-in-oic

ORACLE

Chapter 9
Understand the integration flows

Listens for the Commerce Publish Complete webhook's POST request and re submits
the failed integrations run of Oracl e PRODUCT HUB COMMERCE |t enifoPr oduct Sync which
fails because of publishing is running in Commerce.

Oacle O C O CREST RESUBM TERRORRUN
Fetches the failed integrations for the input integration name and resubmit the first entry
in the failed integration.

Oracl e SCHEDULE QO C Product Hublnt Resubmit

The schedule integration, which resubmits the failed integrations run of failed Or acl e
PRODUCT HUB COWMERCE |t emToPr oduct Sync. Failures may occur because there was a
processing error with the exported file in the integration or upload and import of the
products file to Commerce was not successful.

The following diagram shows an overview of the integration flows:

9-9

Chapter 9
Understand the integration flows

Product Sync
Product Hub Oracle Integration CX Commerce
Scheduled
Publication
Export
File export to
UCM
Publication Download
Complete P File from
Event UCcm
Unzip and
parse
content
Collectall
images toa
folder and zip

Process all
Products data

Aftribute:
Mapping

:

Write JSON
files and zip

h 4
Upload
images and File

JSON zip to Uploaded
Commerce

h 4

Trigger import
Product Products &
Import SKUs

Y

Listen to :
import
Import
Complete ‘Webhook

;

Pull Import
Status File

-

I;:L;bt::::tsehd . Selective
assets Publish

-

Report
Errors to
Admin

f ¥

ORACLE 9-10

Integrate with Oracle Subscription
Management

Integrating with Oracle Subscription Management allows shoppers on your Oracle Commerce
site to purchase and manage their subscriptions.

Subscriptions are an increasingly popular way that allows your shoppers to buy products and
services online. When you offer shopper subscriptions, you help strengthen customer
relationships and take advantage of a solution that supports complex products and services.

Understand the Subscription Management integration

ORACLE

This integration between Oracle Commerce and Oracle Subscription Management lets
shoppers on a Commerce site purchase and manage subscriptions.

Subscriptions are an increasingly popular way to buy products and services online. Offering
subscriptions can help strengthen customer relationships with merchants and evolve their
strategies by taking advantage of a solution that also supports complex products and
services.

This integration offers the following benefits:
» Self-service for managing the entire life cycle of subscription management.
» Self-service capability for subscription management of complex configurable services

e Subscriptions can be created and modified seamlessly across Commerce, CPQ and
Oracle Subscription Management.

» Allows merchants to offer subscriptions of configurable services to shoppers.

Prerequisites

The following software, account, and data prerequisites are required before you can install
and configure the subscription.

« An Oracle Commerce account and access to the Oracle Commerce 20.3.12 or later.

* An Oracle CPQ account and access to Oracle CPQ 20D or later. You must have already
configured the integration between Oracle CPQ and Commerce. See Configure the
integration for more information.

e An Oracle Subscription Management Cloud account and access to Subscription
Management Cloud 20C or later.

* Oracle Financials Account Receivables (AR)

e Oracle Customer Data Management (CDM)

* An Oracle Integration Cloud account and access to Oracle Integration Cloud Service.
* Oracle Product Master Data Management

e The Oracle CX Commerce to CPQ Get Assets integration - version 7. (Downloadable as
OCCS_CPQ_ASSET_INTEGRATION_7.0.par).

10-1

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

Assumptions
This integration makes the following functional assumptions:

* Profile and Account are in sync with Oracle Customer Data Management.

» Products are in sync between Oracle Product Hub, Oracle CPQ, and Oracle
Subscription Management Cloud.

* Only configurable products from CPQ are eligible for the integration and all
subscription-based products need to be configured in CPQ with recurring prices.

» Asset Based Ordering must be enabled in CPQ, so that Asset Keys get generated
as part of the configuration. These Keys are used to track the relationship between
configuration details in Commerce items, Subscription products and CPQ Assets.
For Commerce to store Asset Keys at Commerce item level, products in
Commerce Catalog must have their asset abl e property set to TRUE.

Roadmap items and limitations in this release

This section describes limitations in the current release you should keep in mind
before you begin working with this integration.

* An Order with modify action (or any other action) on asset includes price for the
new asset/configuration, instead of the change in price.

» Cancellation charges are not supported by this integration.

» CPQ charge structure is not supported in this integration flow. For this flow to work
in conjunction with the CPQ-Subscription flow, do not use the charge structure in
the CPQ-Subscription flow.

* The Commerce-to-CPQ Quotation flow does not support recurring prices.
* A subscription order can have only one shipping group and one payment group.

* A subscription order can have only one shipping group and one payment group.
When you design the checkout widgets on your storefront, make sure that
shoppers cannot select split shipping or split payments for subscription orders.

Configure Oracle Commerce with Oracle Subscription
Management

ORACLE

The first step in the subscriptions integration is configuring Oracle Commerce.

This section describes tasks you must perform to configure Commerce for the
integration. You perform these tasks in the Commerce administration interface and
with the Commerce REST APIs.

Register the application and generate a security token

This integration uses the Commerce REST APIs to access Commerce data. You must
register the integration within Commerce and generate a security token in order for the
integration to be granted access to the data.

To generate a security token:

1. Log into the Oracle Commerce administration interface.

10-2

ORACLE

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

Click the Settings menu and select Web APIs.
Click Registered Applications from the Web APIs panel.
Click the Register Application button.

g o W D

Enter a name for the integration application. Create a meaningful name that reflects the
purpose of the application.

6. Click Save. The Application ID and Application Key are automatically generated and the
application is added to the Registered Applications page.

7. Click on the name of the application you created.

8. Click the Click to reveal link to display the application key. You can copy the application
key to use as the security token for the Oracle Commerce Cloud connection.

For more information on managing an application within Oracle Commerce Cloud, see
Register applications in Extending Oracle Commerce.

Configure the Oracle CPQ Configuration integration

Configure and enable the Oracle CPQ Configuration integration as described in Use Oracle
CPQ Cloud Features.

The configuration of Commerce items and corresponding pricing rules must be defined in
Oracle CPQ. External pricing details and recurring charge details for configured items are
retrieved from CPQ during order submission flow.

See Entity mappings for relationships between item properties across different systems in the
integration, including Oracle CPQ.

Configure the Commerce webhooks
You must configure the Order Submit and Order Validation webhooks as follows:

* The Order Submit webhook must point to the OIC Subscription Cloud integration URL.

* The Order Validation webhook must point to the Subscriptions validation SSE URL
https://<host >/ ccstorex/custontvl/validateSubscriptionGO der.

Follow these steps to configure the webhooks in the Commerce administration interface:

1. Log into the Commerce administration interface.
2. Click the Settings icon.

3. Click Web APIs and then click the Webhook tab.
4

Click the Order Submit (Production) webhook. Enter the OIC Subscription Cloud
integration URL in the URL box and enter the OIC username and password, under Basic
Authorization.

5. Click the Order Validation (Production) webhook. Enter htt ps://<host >/ ccst orex/
custonf vl/val i dateSubscripti onOr der in the URL box.

6. Click Save.

Create custom properties

This integration requires a number of custom properties that you create with the Commerce
REST APIs. This section lists the custom properties you must create for accounts, profiles,
addresses, orders, and commerce items.

Account custom properties

10-3

ORACLE

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

You must create the following custom property for accounts. For details, see Create
custom properties for accounts in Extending Oracle Commerce.

occ_partyld: The party ID of the account in CDM.
Profile custom properties

You must create the following custom property for profiles. For details, see Manage
Shopper Profiles in Extending Oracle Commerce.

occ_partyl d: The party ID of the profile in CDM.
Address custom properties

You must create the following custom property for addresses. For details, see Work
with address types in Extending Oracle Commerce.

This property will be used at order level addresses, such as shipping and billing
addresses. Widgets must be customized to populate these properties on the
storefront. The value needs to be populated from Account’s or Contact’s address
Ext er nal Addr essl d property, which holds CDM’s Address Number value.

occ_AddressNunber : The Address Number of the address in CDM.
Orders custom properties

You must create the following custom properties for orders. For details, see Create
custom properties for orders in Extending Oracle Commerce. Widget changes are
required for populating these properties while a shopper checks out the cart or submits
the order.

e occ_account Partyl d: Used to map the primary party ID value of a subscription for
account-based shoppers.

e occ_contactPartyld: For B2C subscriptions, used to map the primary party 1D
value of a subscription. For account-based subscriptions, used to map the contact
value of a subscription.

Commerce item custom properties

You must create the following custom properties for commerce items. For details, see
Create custom properties for line items in Extending Oracle Commerce. Widget
changes are required for populating these properties while a shopper adds the item to
the cart.

e occ_asset Acti onReason: Provides a custom action reason for close, suspend and
resume operations.

e occ_asset Acti onDat e: Provides a custom action date for close, suspend and
resume operations.

Entity mappings

This section shows the relationships between entities across different systems in the
integration. Not all entities are mapped to all systems in the integration.

B2B Account

* CDM: PartyNumber
Commerce:externalOrganizationld

* CDM: Partyld

10-4

ORACLE

Chapter 10

Configure Oracle Commerce with Oracle Subscription Management

Commerce: occ_partyld (custom)

B2B Contact

* CDM: PartyNumber
customerContactld

* CDM: Partyld
Commerce: occ_partyld (custom)

B2C Contact

e CDM: PartyNumber
customerContactld

e CDM: Partyld
Commerce: occ_partyld (custom)

Account/Contact Address

e CDM: AddressNumber
Commerce: externalAddressld

e CDM: Addressld
B2B Order Account

* CDM: Partyld
Commerce: occ_accountPartyld (custom)

CPQ: Customer
SMC: PrimaryPartyld
B2B Order Contact

e CDM: Partyld
Commerce: occ_contactPartyld (custom)

CPQ: _asset _custom_contactPartyld (custom)
SMC: QuoteToContactld
B2B Order Address

* CDM: AddressNumber
Commerce: occ_AddressNumber (custom)

¢ AR: CustomerAccountld
CPQ: accountNumber _t

SMC: BillToAccountld

¢ AR: CustomerAccountSite > CustomerAccountSiteUse > SiteUseld

CPQ: billToSiteUseld_t
SMC: BillToSiteld
B2C Order Contact

* CDM: Partyld
Commerce: occ_contactPartyld (custom)

CPQ: customer
SMC: PrimaryPartyld
B2C Order Address

10-5

ORACLE

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

* CDM: AddressNumber
Commerce: occ_AddressNumber (custom)

The following table shows the relationships between products and SKUs across
systems.

Product Hub Commerce CPQ Subscription

Management Cloud
Itemlid N/A PartnerPartld Inventoryltemld
IltemNumber Skuld PartNumber ProductName
ItemDescription DisplayName Description N/A

Configure the server-side extensions

The subscription integration functionality is provided through server-side extensions
that run on the Node.js server associated with your Commerce environment.
Download each extension from the Commerce administration server, then configure
the extension and upload it to your Node.js server. The server-side extensions
implement custom REST endpoints, which have the prefix / ccst or ex/ cust omfor the
Commerce storefront and / ccagent x/ cust omfor Oracle Commerce Agent.

For the Agent extensions, shopper Prof i | el d should be included in the X-
CCAgent Cont ext header. For account-based shoppers, the X- CCOr gani zat i on header
should also be present.

This section describes the server-side extensions that are included with the
integration. For details about server-side extensions and how to develop them for use
with Commerce, see Develop server-side extensions in Extending Oracle Commerce.

e subscriptions-app-store.zi p Provides endpoints that fetch subscriptions and
subscription products for the Commerce storefront. Also provides an endpoint that
validates the order for both the storefront and the Agent console.

e subscriptions-app-agent. zi p Provides endpoints that fetch subscriptions and
subscription products for the Agent.

e subscriptions-assets-store. zi p Provides endpoints that use Oracle CPQ to
view and perform asset-based ordering actions on subscription assets. This
extension is for the Commerce storefront.

e subscriptions-assets-agent.zip Provides endpoints that use Oracle CPQ to
view and perform asset-based ordering actions on subscription assets. This
extension is for the Agent.

Each ZIP file includes r eadre. nd files that describe classes and endpoints and include
information about how to install and extend the extensions.

Create environment variables

This section describes how to set environment variables required by the server-side
extensions. The integration requires the following environment variables:

e O C_USERNAME: Specifies the basic authentication username of OIC.
e O C_PASSWORD: Specifies the basic authentication password of OIC.

* CPQ_USERNAME: Specifies the basic authentication username for requests that go
directly to Oracle CPQ.

10-6

ORACLE

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

CPQ_PASSWORD: Specifies the basic authentication password for requests that go directly to
Oracle CPQ.

OSS_USERNAME: Specifies the basic authentication username for requests that go directly
to Oracle Subscription Management.

OSS_PASSWORD: Specifies the basic authentication password for requests that go directly to
Oracle Subscription Management.

The following example issues a POST request to the doCr eat eExt ensi onVari abl e endpoint
that sets the OSS_USERNAME:

[ccadm n/ v1/ ext ensi onEnvi r onment Vari abl es POST

nane": " OSS_USERNAME",
“val ue": "conngr"

Work with the SSE endpoints

This section describes the storefront and Agent endpoints included in the server-side
extensions. All the endpoints are authenticated URLs and all requests must be sent via
HTTPS.

/ccstorex/custom/vl/subscriptions?q={query param}
/ccagentx/custom/v1/subscriptions?q={query param}

Issue a GET request to return the details about a particular shopper’s subscriptions.

/ccstorex/custom/vl/subscriptions/{subscriptionNumber}
/ccagetx/custom/v1/subscriptions/{subscriptionNumber}

Issue a GET request to return the details of a subscription.

/ccstorex/custom/vl/subscriptions/{subscriptionNumber}/products?g={query param}
/ccagentx/custom/v1/subscriptions/{subscriptionNumber}/products?q={query param}

Issue a GET request to return the line items of a subscription.

/ccstorex/custom/vl/subscriptions/{subscriptionNumber}/products/
{subscriptionProductPuid}
/ccagentx/custom/v1/subscriptions/{subscriptionNumber}/products/
{subscriptionProductPuid}

Issue a GET request to return the details of a subscription order line item.

/ccstorex/custom/vl/validateSubscriptionOrder
Issue a POST request to validate a subscription order. This endpoint can be used for
both storefront and Agent orders.

/ccstorex/custom/vl/assets
/ccagentx/custom/v1/assets

Issue a GET request to get all assets for a particular shopper.

/ccstorex/custom/vl/assets/{assetld}
/ccagentx/custom/vl/assets/{assetld}

Issue a GET request to get an asset based on asset ID.

/ccstorex/custom/vl/assets/{assetld}/modify
/ccagentx/custom/vl/assets/{assetld}/modify

10-7

Chapter 10
Configure Oracle Commerce with Oracle Subscription Management

Issue a POST request to modify an asset(with CPQ punch-in).

* [ccstorex/custom/v2/assets/{assetld}/modify
/ccagentx/custom/v2/assets/{assetld}/modify

Issue a POST request to modify an asset (with CPQ configurator API).

» [ccstorex/custom/vl/assets/{assetld}/renew
/ccagentx/custom/vl/assets/{assetld}/renew

Issue a POST request to renew an asset.

* [ccstorex/custom/vl/assets/{assetld}/resume
/ccagentx/custom/vl/assets/{assetld}/resume

Issue a POST request to resume an asset.

» [ccstorex/custom/vl/assets/{assetld}/upgrade
/ccagentx/custom/vl/assets/{assetld}/upgrade

Issue a POST request to upgrade an asset. (with CPQ punchin).

» [ccstorex/custom/v2/assets/{assetld}/upgrade
/ccagentx/custom/v2/assets/{assetld}/upgrade

Issue a POST request to upgrade an asset. (with CPQ configurator API).

* [ccstorex/custom/vl/assets/{assetld}/terminate
/ccagentx/custom/vl/assets/{assetld}/terminate

Issue a POST request to terminate an asset.

* [ccstorex/custom/vl/assets/{assetld}/suspend
/ccagentx/custom/vl/assets/{assetld}/suspend

Issue a POST request to suspend an asset.

Create SSE routes to validate billing addresses

Oracle Subscription Management expects an account level address for a business
account subscription. If an address which is linked to a contact is passed, Subscription
Management rejects it with an appropriate error.

You should design your storefront in a way that allows contacts to select only account
addresses when placing subscription orders. In the case where a contact is allowed to
enter a contact-level address instead, it is a good idea to validate the billing address
before the order is submitted.

If a contact enters their billing address instead of the account’s billing address when
creating a subscription order, the integration fails and the following error is logged: The
value of the attribute Billing Account is invalid. (OKC 195787).

Since the billing details can be updated even after order validation, this validation can’t
be handled as part of the order validation logic and hence this validation is not
available by default. You can avoid this error by adding validation code to the payment
webhook (generi cCar dPaynent webhook for credit card payments and

generi cPaynment wehook for invoice payments) and creating a new SSE route (/ v1/
val i dat eSubscriptionOrderBillingAddress) to perform the validation. Point the
webhook to the newly created route.

For details about account and contact addresses, see Manage an Account-based
Storefront in Using Oracle Commerce.

ORACLE 10-8

Chapter 10
Install and Configure the Integration in OIC

Configure payments

In this release of the integration, Commerce shoppers can pay for subscription orders with
either a credit card or an invoice. For credit cards, create a custom CyberSource integration
using the Generic Payment webhook. A payment gateway configured with the Generic
Payment webhook handles stored credit cards and tokens, which , which are required for this
integration. See Create a Generic Payment Gateway Integration in Extending Oracle
Commerce for more information.

Credit card payments

For credit card payments to work properly, Commerce must send a multi- use token to Oracle
Subscription Management.

Commerce does not store the complete credit card data. Instead, when a shopper stores a
credit card, the payment processor associated with the payment gateway sends back a token
that represents the card number. The token is used for each transaction associated with a
subscription payment.

When the shopper submits a subscription order, Commerce, through the gateway, authorizes
a one-time payment against the card. When you implement this integration, you should
populate the muilti use token for the credit card used to pay for the order in st at usPr ops.

After the initial one-time charge, further subscription and billing is not authorized by
Commerce. Instead, Commerce will send the multi-use token to Oracle Subscription
Management, which, in turn, sends the token to the Oracle Accounts Receivable module.

As part of the payment integration, you need to return back a reusable credit card token to
the generic payment webhook response in the property t oken under st at usPr ops under
aut hori zat i onSt at us. This value will be sent to Oracle Subscription Management for the
periodic billing.

"paynent Groups": [

{
"authorizationStatus": [
{
"amount": 50,
"statusProps": {
"token": "12345678"
}
}
]
}

Install and Configure the Integration in OIC

ORACLE

This section describes how to install the integration package in Oracle Integration Cloud
(OIC).

You must download and import the integration packages and then configure settings in OIC.

Download and import the integration

The integration package includes two integrations:

10-9

ORACLE

Chapter 10
Install and Configure the Integration in OIC

Oracl e_CXComrer ce_Subscri ptionC oud_I ntegration is the main integration. It
contains all the subscription flows, such as create, modify, terminate, suspend,
resume, and renew.

Oacle Financials Bill To Account is the integration flow that is called from the
main Subscription flow.

To download the integration package, find the
Oracl e_CXComrer ce_Subscri ptionC oud_I ntegration. par on the Oracle Cloud
Marketplace and download it to your local system.

To import the OIC Integration Package:

1.
2.
3.
4
5
6

Log on to OIC as an admin user.

Click the Packages icon.

Click the Import button.

Click Browse to open a navigation pane.

Select the integration package archive (PAR) file you want to import.

Click Import.
The package is added to the Packages list.

Configure the connections

After you install the Oracl e_CXConmrer ce_Subscri ptionC oud_I nt egrati on. par
package, you must configure the connections used by the integration.

1.
2.
3.

Log in to OIC as an admin user.
Select Integration->Connections.
Select Oracle Commerce. The Connection Properties dialog appears.

* Enter the URL to connect to Oracle Commerce as the value of the Connection
Base URL property (htt ps://<host nane>/ ccadni n/ v1).

» Enter the security token value, which you can find in the Oracle Commerce
administration settings and click OK. The security token is the application key
in the Oracle Commerce administration interface, under Registered
Applications Settings. Contact your Oracle Commerce administrator to get this
application key.

Select Sample Sales Cloud. This is connection to Oracle Subscription Cloud.

» Enter the Subscription Cloud Services Catalog WSDL URL, Interface Catalog
URL, and the Security (Username Password Token). For example:
OSC Services Catalog WSDL URL: https://host/fscnBervicel
Servi ceCat al ogSer vi ce?wsdl|

Interface Catalog URL: htt ps://host/ hel pPort al Api / ot her Resour ces/
| atest/interfaceCatal ogs

Select Oracle Engagement Cloud. This is connection to Oracle Customer Data
Management.

Enter the OSC Services Catalog WSDL URL, Interface Catalog URL, and Security
(Username Password Token). For example:

OSC Services Catalog WSDL URL: https://host/fscnBervicel
Servi ceCat al ogSer vi ce?wsd|

10-10

ORACLE

Chapter 10
Install and Configure the Integration in OIC

Interface Catalog URL: htt ps://host/ hel pPort al Api/ ot her Resour ces/ | at est/
i nterfaceCatal ogs

Select Oracle REST Trigger Employee Service. This is the trigger connection for the child
integration Oracle Financials Bill To Account Integration. No configuration is necessary;
just test and save the trigger.

Select CDM_AR. This is connection to Oracle Financials Accounts Receivable.
Enter the WSDL URL and Security (Username Password Token). For example: htt ps://
host/foundati onParties/ Cust omer Account Ser vi ce?\WSDL

Assign values to constants in OIC integration flows

The following table describes the default constants values in the integration flows. You must
change these default values so they match your system values.

Constant Value

subscriptionProfile zOSS_SP_ServiceStartFixed_Advance Month

InternalApproval NOTREQUIRED

SourceSystem CX_CLOUD_COMMERCE

GenerateBillingSchedule Y

GenerateBillingScheduleForfullperiod Y

ChargeDefinition QP_RECURRING_SALE_PRICE,
QP_SALE_PRICE

ExternalKey Recurring fee, Activation fee

ExternalParentKey Mapped to catalogRefld in order payload

PriceSystem CPQ

name Activate , resume, suspend and close

RelationShipTypeCode RENEW, AMEND

PriceType ORA_ONE_TIME, ORA_RECURRING

The constants are configured in mappers of different action nodes, such as
creat eSubscri ptions_GSS, SuspendProduct , and ResunmePr oduct . Follow these steps if you
need to update any of the default values in the mapper:

1.
2.
3.

4.

Log into Oracle Integration Cloud (OIC).
Go to the integration Oracle CX Commerce To Subscription Integration.

Edit the mapper of the action node for which you want to update the constant. Enter the
new value in respective mapping.

Save and close.

Configure lookups

You must update the following lookup tables to map the following relationships:

Site Merchant Details — Provides a mapping relationship between Site id, Definition
Organization ID, Business Unit ID and Legal entity ID.

Payment Methods — Provides a mapping relationship between the payment method
terms in Commerce and Oracle Subscription Management Cloud.

Reason_CreditMethod_Lookup — Provides a mapping relationship between the action
code of items and their default reason for some asset-based-order actions and their
corresponding credit methods.

10-11

Chapter 10
Customize Storefront Widgets

» Duration_OCC_OSS — Provides the mapping relationship between the duration
terms in Commerce and their corresponding time code units in Oracle Subscription
Management Cloud.

Activate the integration flows

After you configure the Oracle Subscription Management Cloud and Oracle
Commerce connections, you must activate the integrations that were created when the
integration package was imported to Oracle Integration Cloud. To do this, follow these
steps:

1. Log into Oracle Integration Cloud (OIC) as an admin user.
2. Click Integrations.

3. Select each of the following integrations and click its Activate button.
Oracle CX Commerce To Subscription Integration

Oracle Financials Bill To Account Integration

OIC displays a message to indicate that the integration flow was successfully
activated.

Customize Storefront Widgets

ORACLE

You must customize two widgets and add them to your storefront layouts so that
shoppers can view and work with subscriptions assigned to their accounts.

This chapter describes how to customize the following widgets:

* The customized Assets widget lets shoppers view all their subscriptions and each
subscription’s line items. This widget uses the Subscriptions-app SSE module to
fetch the details from Oracle Subscription Cloud.

* The customized Asset Details widget lets a shopper modify, renew, cancel, or
change a subscription. This widget uses the Subscription-assets-store SSE
module to perform some of the predefined asset actions, such as renew, modify,
terminate, suspend, or resume.

This chapter describes the changes you need to make to the Assets and Asset Details
widgets so they can display subscriptions. For information about how to access the
code for default widgets so you can edit it, see Customize layout components in Using
Oracle Commerce.

Note: The SSEs must be installed and configured before you can customize the
widgets and use them on the storefront.

Customize the Assets widget

The Assets widget lets shoppers view a list of services associated with their account.
You can customize this widget so that it displays a list of subscriptions for the logged in
user.. This widget uses the Subscriptions-app server-side extension module to fetch
the details from Oracle Subscription Cloud. The Assets widget appears on the Assets
layout.

The following illustration shows a shopper’s subscriptions, displayed in the widget.

10-12

Chapter 10
Customize Storefront Widgets

ALL PRODUCTS GIFT CARDS

<< Back to My Account

My Account
Subscription Number Status Start Date BillToAccountld BillToSiteUseld Billing Frequency
0CC_030725 ORA_ACTIVE 2020-10-27 300100185830431 300100185830636 MONTH
0CC_030721 ORA_ACTIVE 2020-10-27 300100185830431 300100185830601 MONTH
0CC_030714 ORA_ACTIVE 2020-10-27 300100185830431 300100185830490 MONTH
0CC_030710 ORA_ACTIVE 2020-10-27 300100185830431 300100185830433 MONTH

When the shopper clicks the Show Products button, the Subscription Asset Details widget
displays in the Asset Details layout.

Customize the Assets widget code

By default, the Assets widget shows the root level assets on the assets page and clicking on
the Details link redirects the shopper to the asset details. For this integration, you will
customize the widget to show the subscriptions on the page first, then give the shopper the
option to view subscription products. By checking details of a particular subscription product,
the shopper will be directed to the root asset details associated with the product.

To make these changes to the Assets widget, update the widget's . j s file.

First, add/update the following constants:

var GET_ALL_SUBSCRI PTI ONS = "get Al | Subscri ption";
var GET_ALL_SUBSCRI PTI ON_PRODUCTS = "get Al | Subscri ptionProducts";
var ENDPO NT_VI EW ACCOUNT_ASSET = "get Servi ces";

Next, add the following observables:

current Subscri pti onNunber: ko. observabl e(), productPageSi ze:

ko. observabl eArray([]), productsPageSi ze:

ko. observabl e(ccConst ant s, DEFAULT_SEARCH RECORDS PER PACGE || 12),
product sOf f set :

ko. observabl e(0) productshasMore: ko.observabl e(fal se),
product sTot al Resul ts:

ko. observabl e(0), showProductsFl ag: ko.observabl e(fal se),

Next, update the bef or eAppear function:

bef or eAppear: function (page) {
var widget = this;

if (!'this.user().loggedin()) {
navi gati on. doLogi n(navi gation. getPath(), this.links().home.route);

}
wi dget . showPr oduct sFl ag(f al se);

}

ORACLE 10-13

Chapter 10
Customize Storefront Widgets

Finally, add/update the following methods inside the onl oad function:

onLoad: function (w dget) {
/] Add the Services SSE endpoints to the ccRestdient endpoint

registry.

/] Update the settings belowif the Services SSE has been
cust oni zed.

/] ENSURE THAT THE SERVI CES SSE |'S | NSTALLED, CONFlI GURED AND
AVAI LABLE

ccRestClient.registerlnitCallback(function(){

ccRest i ent. endpoi nt Regi st ry[ENDPO NT_VI EW ACCOUNT_ASSET] = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ams": true,
"httpsRequired": false,
"id": ENDPO NT_VI EW ACCOUNT_ASSET,
"l ocal eHint": "assetlLanguageOptional ",
“method": "GET",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,
"url": "/ccstorex/custonm vl/assets",
"useOptimsticLock": false

b

ccRest i ent. endpoi nt Regi stry. get Al l Subscription = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ans": fal se,
"httpsRequired": false,
"id": GET_ALL_SUBSCRI PTI ONS,
"l ocal eHint": "assetlLanguageOptional ",
“nethod": "GET",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,
"url™: "/ccstorex/custom vl/ oss/subscription/getAl",
"useOptimsticLock": false

}

ccRest i ent. endpoi nt Regi stry. get Al | Subscri ptionProducts = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ans": fal se,
"httpsRequired": false,
"id": GET_ALL_SUBSCRI PTI ON_PRODUCTS,
"l ocal eHint": "assetlLanguageOptional ",
“method": "GET",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,

ORACLE 10-14

ORACLE

Chapter 10
Customize Storefront Widgets

"url™: "/ccstorex/custom vl/oss/ subscription/products”,
"useOptimsticLock": false

}

IOF
Il Use the widget's asetsPerPage config
/] option value if it has been set
if (wdget.assetsPerPage &% !isNaN(wi dget.assetsPerPage())) {
wi dget . pageSi ze(10);
}

/] Conputeds for paging control
wi dget . t ot al Pages = ko. pureConput ed(function() {
var returnValue = Math.ceil(w dget.total Results() /
wi dget . pageSi ze());
return returnval ue;

b

wi dget . current Page = ko. pureConput ed(function() {
var returnValue = Math.ceil ((w dget.offset() +
wi dget . pageSi ze()) / widget.pageSize());
return returnval ue;

b

wi dget . previ ousPage = ko. pureConput ed(function() {
var cal cul at edPrevi ousPage = wi dget. currentPage() - 1;
var returnValue = ((calcul atedPreviousPage < 1) ? 1:
cal cul at edPr evi ousPage);
return returnval ue;

19K

wi dget . next Page = ko. pureConput ed(function() {
var cal cul at edNext Page = wi dget. current Page() + 1;
var returnValue = ((cal cul at edNext Page > wi dget.total Pages) ?
wi dget . t ot al Pages : cal cul at edNext Page);
return returnval ue;

¥

wi dget . onFi rst Page = ko. pureConput ed(function() {
return (wdget.currentPage() ===1);

¥

Wi dget . onLast Page
var returnVal ue

ko. pureConput ed(function() {
fal se;

if (widget.total Pages() > 1) {
if (widget.currentPage() === w dget.total Pages()) {
returnVal ue = true;
}

}
else if (!'widget.onFirstPage() &% !wi dget.hashre()) {

returnVal ue = true;

}

return returnVval ue;

10-15

Chapter 10
Customize Storefront Widgets

1

wi dget . pageLi nks = ko. pureConput ed(function() {
/1 This woul d be a good place to do something nore
/1 sensible with the individual page |inks that
/1 are displayed when there are a | arge nunber of
/] results e.g. could display just the 5 pages either
/1 side of the current page. For now display every
/1 individual page.
var links =1[];

for (var i =1; i <= widget.total Pages(); i++) {
l'i nks. push({
pageNunber : i,
active : i === widget.currentPage()
b
}

return |inks;

b

wi dget . shoul dShowGoToLast Page = ko. pureConput ed(function() {
return (widget.total Pages() > 1);

b

wi dget . i sPagi ngRequi red = ko. pureConput ed(function() {
var returnVal ue = fal se;

if (widget.total Pages() > 1) {
returnVal ue = true;

}

else if (wdget.hasMre()) {
returnVal ue = true;

}

else if (!'widget.onFirstPage()) {
returnVal ue = true;

}

return returnVval ue;

b

/1 The goToPage function handles click events fromthe

/] template's paging links. It takes a single input

/] parameter - pageNumber - which indicates the page

/] of assets to load. If the REST call is successful

/] the assets observable is updated with the returned

/] data and the three paging observables (offset, hashMre
/] and total Results) are updated with the respective

/1 values returned fromthe REST call.

wi dget . goToPage = function (pageNumber) {

function success (data) {

var productQuery ="'";
var productldsSet = new Set();

ORACLE 10-16

Chapter 10
Customize Storefront Widgets

Wi dget . asset s(data.itens);

wi dget . of f set (dat a. of f set);

wi dget . hasMor e(dat a. hashore) ;

[l if totalPages is not returned (i.e. is null)

Il then set to -1; in this scenario only sinple

Il paging will be available (i.e. go to first page,
Il go to previous page and go to next page) and

Il the hasMore value will be used to control

wi dget . total Resul ts(data.total Results || -1);

spi nner. destroyW t hout Del ay(w dget . spi nner Opti ons. parent);
I}

}

function error (data) {
if (data.status == ccConstants. HTTP_UNAUTHORI ZED ERROR) {
wi dget . user () . handl eSessi onExpi red();

navi gati on. doLogi n(navi gati on. get Pat h,
wi dget . links().hone.route);

} else {
navi gati on. goTo(wi dget.links().profile.route);

}

spi nner. dest royW t hout Del ay(w dget . spi nner Opti ons. parent);

}

if (widget.user().loggedin()) {
var cal cul atedOffset = (pageNumber - 1) * widget.pageSize();

spi nner. creat e(w dget. spi nner Opti ons) ;
var queryString = ' Status=0RA_ACTI VE ;
var payload = {

limt: 10,

of f set: cal cul at edOf f set,

g: queryString,

order By: " CreationDat e: desc”
b

ccRestClient.request(
CGET_ALL_SUBSCRI PTI ONS,
payl oad,
success,

error

);
}
b

wi dget . handl eQui ckVi end i ck = function(plshbdal) {
var popup;
i f(plsMdal === true && this.productDetails) {
wi dget . product Det ai | s(this. productDetails);
popup = $("#cc-upgrade-asset -display");

ORACLE 10-17

ORACLE

Chapter 10
Customize Storefront Widgets

popup. modal (" show);

/I Function Specific to subscription products table
wi dget . product Tot al Pages = ko. pur eConput ed(function(){
var returnValue = Math. ceil (w dget. productsTotal Results()/
wi dget . product PageSi ze())
return returnVal ue;

s

wi dget . product Current Page = ko. pureConput ed(function(){
var returnValue = Math. ceil ((w dget. productsOifset()
+w dget . pageSi ze())/w dget. pageSi ze());
return returnVal ue;

s

wi dget . previ ousProduct Page = ko. pureConput ed(function() {
var cal cul at edPrevi ousPage = wi dget . product Current Page() - 1;
var returnValue = ((calculatedPreviousPage < 1) ? 1:
cal cul at edPr evi ousPage);
return returnVal ue;

s

wi dget . next Product Page = ko. pureConput ed(function() {
var cal cul at edNext Page = wi dget . product Current Page() + 1;
var returnValue = ((cal cul at edNext Page >
wi dget . product Tot al Pages) ? wi dget . product Tot al Pages :
cal cul at edNext Page);
return returnVal ue;

1

wi dget . onProduct Fi r st Page = ko. pureConput ed(function() {
return (widget.productCurrentPage() === 1);

¥

wi dget . onProduct Last Page = ko. pureConput ed(function() {
var returnVal ue = fal se;

if (wdget.productTotal Pages() > 1) {
if (widget.productCurrentPage() ===
wi dget . product Tot al Pages()) {
returnVal ue = true;

}

}
else if (!w dget.onProductFirstPage() &% !

wi dget . product shashore()) {
returnVal ue = true;

}

return returnval ue;

s

wi dget . shoul dShowGoToPr oduct sLast Page =

10-18

Chapter 10
Customize Storefront Widgets

ko. pureConput ed(function() {
return (widget.product Total Pages() > 1);

s

wi dget . i sProduct Pagi ngRequi red = ko. pureConput ed(function() {
var returnVal ue = fal se;

if (wdget.productTotal Pages() > 1) {
returnval ue = true;

}
el se if (widget.productshasMre()) {

returnVal ue = true;

}
else if (!'wdget.onFirstPage()) {

returnVal ue = true;

}

return returnval ue;

s

wi dget . product PageLi nks = ko. pureConput ed(function() {
var links =1[];

for (var i =1; i <= wdget.productTotal Pages(); i++) {
['i nks. push({
pageNunber : i,
active : i === widget. product Current Page()
IOF
}

return |inks;

s

wi dget . goToProduct Page = function(pageNunber) {
function showProduct Success(data) {
wi dget . subscri pti onProducts(data.itens);
wi dget . product sOf f set (dat a. of f set) ;
wi dget . product shasMor e(dat a. hashore) ;
wi dget . product sTot al Resul t s(data.total Results || -1);
spi nner. destroyW t hout Del ay(w dget . spi nner Opti ons. parent);

}

function showProduct Failure(err) {
if (data.status == ccConstants. HTTP_UNAUTHORI ZED ERROR) {
wi dget . user (). handl eSessi onExpi red();

navi gati on. doLogi n(navi gati on. get Pat h,
wi dget . links().hone.route);

} else {
navi gati on. goTo(wi dget.links().profile.route);
}
spi nner. destroyW t hout Del ay(w dget . spi nner Opti ons. parent);

}

ORACLE 10-19

ORACLE

Chapter 10
Customize Storefront Widgets

if (widget.user().loggedin()){
var cal cul atedOfset = (pageNumber - 1) *
wi dget . pageSi ze();
Il1et queryString = "~ SubscriptionNurber=$
{wi dget. current Subscri ptionNunber()}; St at us=ORA_ACTI VE; Ext er nal Par ent Ass
etKey is NULL ;
[Ivar queryString = "SubscriptionNunber=" +
wi dget . current Subscri pti onNunber () ;
var queryString = "SubscriptionNunmber=" +
wi dget . current Subscri pti onNunber () ;
var payload = {
limt: 25,
of f set: cal cul atedOf f set,
q: queryString,
orderBy: " Start Dat e: desc”
b
ccRest i ent.request (
GET_ALL_SUBSCRI PTI ON_PRCDUCTS,
payl oad,
showPr oduct Success,
showPr oduct Fai l ure
);
}
b

wi dget . onShowPr oduct sC i cked = function(pl, p2) {
wi dget . subscri ptionProducts([]);
wi dget . current Subscri pti onNurber (pl. Subscri pti onNunber) ;
wi dget . showPr oduct sFl ag(true);
spi nner. creat e(w dget. spi nner Opti ons) ;
wi dget . goToPr oduct Page(1);

}

wi dget . backToSubscri ptionTabl e = function(pl, p2) {
wi dget . showPr oduct sFl ag(f al se);

}

wi dget . redirect ToAsset Det ai | sPage = function(pl, p2) {
/Ilet assetKeys = pl. External Asset Key;
var assetKeys = null;
i f(pl. External Root Asset Key) {
asset Keys= pl. Ext er nal Root Asset Key;

} else {

asset Keys = pl. Ext ernal Asset Key;
}
var payload = {

Il q: queryString,

limt: 10,

of fset: 0,

asset Keys: asset Keys

b

[l Call WAPI.

10-20

Chapter 10
Customize Storefront Widgets

ccRestClient.request(
ENDPQOl NT_VI EW ACCOUNT_ASSET,
payl oad,
wi dget . get Asset Det ai | sSuccess,
wi dget . get Asset Det ai | sError
);
b

wi dget . get Asset Det ai | sSuccess = function(data) {
[* if(data & data.itens) {
data.items.forEach(function(item{
$.extend(item {
route:
“${widget.links().assetDetails.route}/${itemassetld}"

)
1y

bl
i f(data.itens.|ength>0)

navi gation. goTo(wi dget.links().assetDetails.route + "/" +

data.itens[0].assetld);

el se

navi gati on. goTo(wi dget.links().profile.route);

b

wi dget . get Asset Detai l sError = function(data) {
if (data.status == ccConstants. HTTP_UNAUTHORI ZED ERRCR | |
dat a. status == ccConst ants. BAD REQUEST) {
wi dget . user () . handl eSessi onExpi red();
navi gati on. doLogi n(navi gati on. get Pat h,
wi dget . links().hone.route);

el se {
navi gati on. goTo(wi dget.links().profile.route);

}
spi nner. dest royWt hout Del ay(w dget . spi nner Opti ons. parent);

b

Customize the Asset Details widget

The Asset Details widget lets an account-based contact perform asset-based ordering
actions on asset. This customized widget uses the Subscription-assets-store server-side
extension module to perform some of the predefined asset actions. This widget appears on
the Asset Details layout.

e The widget's di spl ay. t enpl at e file includes predefined action buttons that let shoppers
perform subscription upgrades, renewals, modifications, cancellations, and suspends/
resumes. You can enable or disable these options, based on the asset status or rules you
have defined in Oracle CPQ. The widget uses the subscription-service-assets-details
SSE to perform these actions.

* Once a shopper clicks one of the action buttons, the asset is added to their cart with the
required action code or a configurator window opens with asset details.

* The actions are performed based on the asset’s ID, which the SSE endpoints fetch from
CPQ. The following illustration shows the details of a subscription, displayed in the
widget.

ORACLE 10-21

ORACLE

ALL PRODUCTS

Chapter 10
Customize Storefront Widgets

The following illustration shows the details of a subscription, displayed in the widget.

GIFT CARDS

<< Back to My Services

My Services
Service Details

Asset Key: abo_a57a48¢2-670d-401b-ba4df-11a45f64bbb5 (Active)

Service ID Service Account ID

VideoConfSolution-36826070-1

Root Asset Key SKU
abo_a57a48c2-670d-401b- VideoConfSolution
ba4f-11a45f64bbb5

Attributes
i3

Quantity & Charges

Quantity Usage Net Amount Price Discount Amount

1

Recurring Charge

History

Date Added
October 27, 2020

Date Modified Activation Date Deactivation Date Resume Date

October 27, 2020

Suspend Date

Customize the Asset Details widget

To customize the Asset Details widget, you must update the endpoint references. All

the REST API paths must be changed from / ccst or ex/ cust om v1/ servi ces* to/
ccstorex/ cust om vl/ asset s*.

A total of seven endpoints must be updated. In the widget's asset _det ai | s. | s file.
replace the call to ccRest O i ent.registerlnitCallback() inthe onLoad() function

with the following:

onLoad: function (w dget) {

/] Add the Subscription-assets-store SSE endpoints to the
ccRestCli ent endpoint registry.

/1 Update the settings belowif the SSE has been custonized.

/] ENSURE THAT THE SSE IS I NSTALLED, CONFI GURED AND AVAI LABLE

ccRestClient.registerlnitCallback(function(){

ccRest O i ent. endpoi nt Regi st ry[ENDPO NT_VI EW ACCOUNT_ASSET] = {

"aut hRequired": true,

"cachi ngEnabl ed": fal se,

"hasDoc": fal se,

"hasPat hPar ams": true,
"httpsRequired": false,

"id": ENDPO NT_VI EW ACCOUNT_ASSET,

"l ocal eHint": "assetlLanguageOptional ",
"nethod": "GET",

"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,

"url™: "/ccstorex/custom vl/assets/{}",
"useOptimsticLock": false

Discount Percent

Chapter 10
Customize Storefront Widgets

b

ccRest C i ent. endpoi nt Regi st ry[ENDPO NT_RENEW ACCOUNT_ASSET] = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ams": true,
"httpsRequired": false,
"id": ENDPO NT_RENEW ACCOUNT_ASSET,
"l ocal eHint": "assetlLanguageOptional ",
"method": "POST",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,
"url™: "/ccstorex/custom vl/assets/{}/renew',
"useOptimsticLock": false

b

ccRest i ent. endpoi nt Regi st ry[ENDPO NT_MODI FY_ACCOUNT_ASSET] = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ams": true,
"httpsRequired": false,
"id": ENDPO NT_MODI FY_ACCOUNT_ASSET,
"l ocal eHint": "assetlLanguageOptional ",
"met hod": "POST",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,
"url": "/ccstorex/custom vl/assets/{}/ nodify",
"useOptimsticlLock": false

b

ccRest i ent. endpoi nt Regi st ry[ENDPO NT_TERM NATE_ACCOUNT_ASSET] = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ams": true,
"httpsRequired": false,
"id": ENDPO NT_TERM NATE_ACCOUNT_ASSET,
"l ocal eHint": "assetlLanguageOptional ",
"method": "POST",
"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,
"url™: "/ccstorex/custom vl/assets/{}/termnate",
"useOptimsticlLock": false

b

ccRest C i ent. endpoi nt Regi st ry[ENDPO NT_SUSPEND ACCOUNT_ASSET] = {
"aut hRequired": true,
"cachi ngEnabl ed": fal se,
"hasDoc": fal se,
"hasPat hPar ams": true,

ORACLE 10-23

ORACLE

b

Chapter 10
Customize Storefront Widgets

"httpsRequired": false,

"id": ENDPO NT_SUSPEND ACCOUNT_ASSET,

"l ocal eHint": "assetlLanguageOptional ",
"method": "POST",

"request Type": "application/json",
"responseType": "application/json",

"singular": fal se,

“url": "/ccstorex/custom vl/assets/{}/suspend",
"useOptimsticlLock": false

ccRest i ent. endpoi nt Regi st ry[ENDPO NT_RESUME_ACCOUNT_ASSET] = {

b

"aut hRequired": true,

"cachi ngEnabl ed": fal se,

"hasDoc": fal se,

"hasPat hPar ams": true,
"httpsRequired": false,

"id": ENDPO NT_RESUME_ACCOUNT_ASSET,
"l ocal eHint": "assetlLanguageOptional ",
"method": "POST",

"request Type": "application/json",
"responseType": "application/json",
"singular": fal se,

"url": "/ccstorex/custom vl/assets/{}/resume",
"useOptimsticlLock": false

ccRest C i ent. endpoi nt Regi st ry[ENDPO NT_UPGRADE_ACCOUNT_ASSET] =

1)

"aut hRequired": true,

"cachi ngEnabl ed": fal se,

"hasDoc": fal se,

"hasPat hPar ans": true,
"httpsRequired": false,

"id": ENDPO NT_UPGRADE_ACCOUNT_ASSET,

"l ocal eHint": "assetLanguageOptional ",
"nethod": "POST",
"request Type": "application/json",

"responseType": "application/json",

"singular": false,

"url": "/ccstorex/custom vl/assets/{}/upgrade",
"useOptimsticLock": false

Customize text in the widgets

In addition to updating the widget's code, you can optionally modify its display text so
that shoppers understand that the widgets specifically show details about
subscriptions. For example, you could change the word services to subscriptions
wherever it appears in widget text. To learn how to modify the text a widget displays,
see Modify a component’s code in Using Oracle Commerce.

10-24

Chapter 10
Integration Flows

Integration Flows

This integration includes six process flows.

ORACLE

This integration includes the following process flows:

Create/View Subscription
Modify Subscription
Renew Subscription
Terminate Subscription
Suspend Subscription

Resume Subscription

To learn more about the product abbreviations used in these flows, see Understand the
Subscription Management Integration.

Create |/ View Subscription

The integration creates subscriptions of complex configurable services with recurring prices
and flexible durations as defined in CPQ.

1.
2.

® N o O M ®w

CDM: Get Addressld using AddressNumbers (shipping and billing addresses) for Account

CDM: If Account addresses are not found, get Addressld using AddressNumbers
(shipping and billing addresses) for Contact

CDM: If Contact addresses are not found, create the addresses
AR: Check if a site exists for the addresses

AR: If not, then create a site

Subscription: Create draft subscription

Subscription: Add contact for account-based subscription

Subscription: Activate subscription

Modify Subscription

The integration modifies configurations, changes quantities, upgrades or downgrades the
service as defined in the CPQ configuration.

1.
2.

©® N o a0 ;@

CDM: Get Addressld using AddressNumbers (shipping and billing addresses) for Account

CDM: If Account addresses are not found, get Addressld using AddressNumbers
(shipping and billing addresses) for Contact

CDM: If Contact addresses are not found, create the addresses

AR: Check if a site exists for the addresses

AR: If not, then create a site

Subscription: Get subscription lines details for each line in a loop
Subscription: Add/Update/Delete subscription lines for each line in a loop

Subscription: Activate subscription

10-25

ORACLE

Chapter 10
Integration Flows

Suspend Subscription

The integration suspends, but does not terminate, an active subscription.

1.

N o g ;@

CDM: Get Addressld using AddressNumbers (shipping and billing addresses) for
Account

CDM: If Account addresses are not found, get Addressld using AddressNumbers
(shipping and billing addresses) for Contact

CDM: If Contact addresses are not found, create the addresses
AR: Check if a site exists for the addresses

AR: If not, then create a site

Subscription: Get subscription lines details for each line in a loop

Subscription: Update subscription lines for each line in a loop

Resume Subscripiton

The integration resumes a suspended subscription.

1.

N o g » w

9.

CDM: Get Addressld using AddressNumbers (shipping and billing addresses) for
Account

CDM: If Account addresses are not found, get Addressld using AddressNumbers
(shipping and billing addresses) for Contact

CDM: If Contact addresses are not found, create the addresses
AR: Check if a site exists for the addresses

AR: If not, then create a site

Subscription; Get subscription lines details for each line in a loop

Subscription; Update subscription lines (Resume SubscriptionProducts) for each
line in a loop

Subscription; Get updated subscription lines details for each line in a loop

Subscription; Update subscription lines (with asset key) for each line in a loop

10. Subscription: Activate subscription

Terminate Subscription

The integration deletes a subscription.

1.
2.

N o g M w

CDM: Get Addressld using AddressNumber for Account

CDM: If Account addresses are not found, get Addressld using AddressNumber
for Contact

CDM: If Contact addresses are not found, create address

AR: Check if a site exists for the address

AR: If not, then create site

Subscription: Get subscription lines details for each line in a loop

Subscription: Update subscription lines (Close) for each line in a loop

10-26

ORACLE

Chapter 10
Integration Flows

Renew Subscription

The integration renews subscriptions at the end of period of their original subscription date.

Note that a shopper cannot renew a subscription unless a renewal draft subscription has
been created in Oracle Subscription Management via the ESS job. The Subscription
Management GET subscription product endpoint returns r enew as a valid action if a draft
subscription is present for the current subscription.

1.
2.

10. Subscription:
11. Subscription:

12. Subscription:

3
4
5
6.
7
8
9

CDM: Get Addressld using AddressNumber for Account

CDM: If Account addresses are not found, get Addressld using AddressNumber for

Contact

CDM: If Contact addresses are not found, create address

AR: Check if a site exists for the address

AR: If not, then create site

Subscription:
Subscription:
Subscription:

Subscription:

Get draft renew subscription

Get original subscription lines

Create new subscription

Add contact for account-based subscription
Activate subscription

Update original subscription lines to do-not-renew

Delete draft subscription lines for each line in a loop

10-27

Integrate with Oracle Content Management

Oracle Commerce provides an integration with Oracle Content Management that you can use
to display content items such as blog posts and articles on your storefront.

Oracle Content Management is a cloud-based content hub used to drive omni-channel
content management from where you can manage your content, digital assets, and websites.
The features you can access, and the Ul you can view, are dependent on your assigned role.
For more information, see the Oracle Content Management documentation available in the
Oracle Help Center.

Enable the integration with Oracle Content Management

You can enable the integration with Oracle Content and Experience Cloud via the Settings
page in the administration interface.

To enable the integration, perform the following steps:

1.
2.
3.

ORACLE

Open the Settings page and select Oracle Integrations.
Choose Content and Experience from the dropdown list.

Check the Enable Integration checkbox, and expand the Product Configuration
options.

Enter the Server URL, Channel Token, and Channel ID, the details of which you can
locate within your content management system.

A channel ID and a channel token are assigned to a channel when it is created within
OCE. Refer to the Oracle Content and Experience Cloud documentation for further
details.

Click Add User and enter the username and password of the OCE user you want to add.
Note: these user credentials are provided within Oracle Content Management along with
the appropriate permissions for the dedicated integration user. The user must enter the
exact username as provided within Oracle Content Management, and not the user's
email address.

Click Save.

Once saved, a newly created webhook enables communication between Oracle
Commerce and your content management system, and retrieves all content items from
the specified channel. Each channel contains a variety of different content types (an
example of a content type might be a blog). These content types and items are available
to the storefront via the Content Listing widget, and the Content Item layout, which is
configurable within the Design tab.

11-1

Chapter 11
Configure content items to appear on the storefront

Configure content items to appear on the storefront

When configuring content items for your storefront, you must utilize the Design page
layouts. The content items are listed on the storefront. Each of the individual items on
that list can be selected and the item details viewed.

To configure content items to display on the storefront:

1.

ORACLE

Open the Design page and choose any layout to clone. For further information,
refer to Create a new layout instance (cloning).

Configure the Settings for the newly cloned layout, and click Save.

Open grid view and drag the Content Listing widget to the layout. For further
information, refer to Customize your store layouts.

Open the Content Listing widget's Settings and select the content type from the
dropdown list. Note that you can only associate one content type with a Content
Listing widget, and as such, you must repeat this step for each content type you
wish to display on your storefront. For example, the content type ‘blog’ should be
created separately from the content type ‘recipes’.

Click Save.

You must now edit the widget’s code in order to ensure that the content item fields
match those on your own content management system, and to tailor the look of
the list as required.

Open the About tab and click Go to widget code, which enables you to go
directly to the widget's template. From here you can update the code references
for the content item fields. Note: You must ensure the content identifier is up to
date so it matches your own fields.

Click Save.

Publish the changes in order to see the content pages, containing a link to the
content details, displayed on the storefront.

The content details use a Content Item layout to render this information. The page
URL of the content item corresponds to the mapped content table. If, at any point,
you make updates to the content and then re-publish, this is automatically sent to
Commerce.

All content items are by default, rendered on the storefront using the Content Item
layout. However, you can create another version of that layout for a selected
content type by cloning the Content Item layout and associating one or more
content types to that layout within the layout settings. As per Step 6 above, you
can configure the Content Iltem layout code to ensure the content item is displayed
on the storefront.

11-2

Glossary

ORACLE Glossary-1

Index

ORACLE Index-1

	Contents
	1 Integrate with Oracle CPQ
	Introduction to Integrating with Oracle CPQ
	Set Up OIC Integrations
	Download the integration packages
	Import the integration package
	Configure Oracle Configure, Price, Quote connections
	Generate security token for Commerce connections
	Configure the Commerce connection
	Activate the OIC integrations
	Create Sync Quote Action in Oracle Configure, Price, Quote
	Set up OIC integration on Oracle Configure, Price, Quote site
	Create the Sync Quote Integration
	Set Sync Quote Action to run Advanced Modify
	Configure Commerce webhooks
	Configure the Commerce server-side extensions

	Set Up Oracle Configure, Price, Quote
	Understand general set up for Oracle Configure, Price, Quote
	Understand Oracle Commerce set up
	Understand Oracle Configure, Price, Quote configuration set up

	Set Up Subscription Ordering in Oracle Configure, Price, Quote
	Create an authentication certificate integration type
	Work with in-flight cancellations
	Upgrade an asset

	Enable Integrations in Commerce
	Enable Oracle Configure, Price, Quote configuration integration
	Identify configurable products in the product catalog
	Add Customize Button to the Product Details widget
	Enable Oracle Configure, Price, Quote quoting integration
	Add Quote Button to Checkout and Order Details pages
	Enable Asset Based Ordering
	Enable Subscription Cloud integration

	Appendix A: Understand the Configurator Flow
	Appendix B: Understand the Request for Quote Flow
	Appendix C: Understand the OIC Integration Mappings
	Appendix D: Understand the Add to Cart BML – Customized Integrations (19C and Earlier)
	Appendix E: Understand the Add to Cart BML – Customized Integrations and Multi-Site Set Up (19D and Later)
	Appendix F: Understand the SyncQuote BML
	Appendix G: AddToCartPayload-Cloud

	2 Use Oracle CPQ Cloud Features
	Introduction
	Objective
	Audience
	Prerequisites
	Additional Resources

	Configure the Integration
	Configure the Integration Package
	Configure the Oracle Commerce Connection
	Activate the Integrations
	Configure the Commerce Webhooks
	Configure the Server Side Extensions
	Enable the Integrations

	Use the Integration Functionality
	Configure an item
	Request a Quote
	Use account-specific pricing for configured items
	Use multi-level items
	Assign shipping groups to sub-items
	Understand tax calculation and shipping charges when assigning shipping groups to sub-items
	Understand shipping charge and tax calculation when assigning costs to items sold as a package
	Understand how promotion discounts are applied to multi-level items
	Add payment details to customer billing profile
	Understand the Customer Account Model
	Use Recurring Charge Items
	Use Asset Based Ordering
	Customize configurations in Commerce using the CPQ Configuration API
	Implement configuration customization via the CPQ Configuration API.
	Control user interface look and feel using the CPQ Configuration API
	Customize and reconfigure a product by direct use of the CPQ Configuration API

	Appendix A: Configurator Flow
	Appendix B: Request for Quote Flow

	3 Integrate with Customer Data Management
	Integrate with Customer Data Management

	4 Integrate with an External Product Configurator
	Enable the integration
	Mark products as configurable
	Add Customize button to Product Details widget
	Configure the webhooks

	5 Integrate with Oracle Infinity to collect data
	Integrate Commerce with Infinity
	Understand the role of the Infinity platform in data ingestion
	Tag site pages to use the Infinity data ingestion feature
	Understand Infinity integration parameter mapping

	6 Integrate with Oracle Order Management Cloud
	Introduction
	Audience
	Features
	Architectural overview
	Additional documentation

	Prerequisites
	Access rights
	Assumptions

	Configure Oracle Commerce for Oracle Management Cloud
	Submit Order webhook
	Return Order webhook

	Configure the Oracle Integration Cloud Adapter
	Connections
	Lookup configuration
	Integrations
	XSL location

	Configure Order Management Cloud
	Create the source system
	Create defaulting rules
	Create the orchestration process
	Create the connector

	Order creation
	SKUs
	Payment
	Order types
	Pricing and tax
	Shipping methods
	Mapping of attributes

	Order Status
	Map attributes for order status

	Returns
	Map attributes for returns

	Exchanges

	7 Integrate with Oracle Responsys
	Understand the Oracle Responsys Integration
	Objective
	Audience
	Prerequisites

	Configuring the Integration
	Configure the Integration Package
	Download the integration package
	Import the integration package
	Configure the Oracle Responsys Connection

	Configure the Oracle Responsys Connection
	Configure the Oracle Responsys Database Tables
	Configure the Oracle Commerce Connection
	Generate a Security Token

	Activate the Integration
	Configure the Oracle Commerce Webhooks

	Using the integration
	Create an Abandoned Cart Program

	8 Integrate with Oracle Retail Order Management System
	Introduction
	Audience
	Features
	Architectural Overview
	Additional Documentation

	Prerequisites
	Access Rights
	Data Configuration

	Setting Up the Integration
	Commerce Configuration
	Accessing the Oracle Integrations Console
	Configuring the Integration

	9 Integrate with Oracle Product Hub Cloud
	Understand the Product Hub integration
	Configure Oracle Commerce with Oracle Product Hub
	Configure Oracle Product Hub
	Install and Configure the Integration in OIC
	Understand the integration flows

	10 Integrate with Oracle Subscription Management
	Understand the Subscription Management integration
	Configure Oracle Commerce with Oracle Subscription Management
	Install and Configure the Integration in OIC
	Customize Storefront Widgets
	Integration Flows

	11 Integrate with Oracle Content Management
	Enable the integration with Oracle Content Management
	Configure content items to appear on the storefront

	Glossary
	Index

