
Developing Open Storefront Framework
Applications for Oracle Commerce

F48919-01
January 2022

Developing Open Storefront Framework Applications for Oracle Commerce,

F48919-01

Copyright © 2020, 2022, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 About This Guide

Prerequisites 1-1

Open Storefront Framework accessibility 1-1

2 Understand the Open Storefront Framework

Understand the OSF architecture 2-1

Understand OSF applications 2-2

Use a local workspace 2-3

Use the workspaces on server environments 2-3

Design assets 2-4

OSF registry 2-4

Command-line interface 2-4

3 Set Up a Development Environment

Install required software 3-1

Configure npm to access Commerce packages 3-1

Set up a workspace 3-1

Create a workspace from a deployed application 3-5

Upgrade the version of OSF in a workspace 3-5

Workspace commands and scripts 3-7

4 Develop and Deploy Applications

Create a new application by copying a template 4-1

Create components using command-line tools 4-2

Specify environment-specific configuration values for an application 4-6

Configure search 4-12

Deploy the application 4-14

Promote the application to the live context 4-15

Sync assets on a Commerce server with a local workspace 4-15

Access local development applications on a Commerce server 4-16

iii

Monitor deployed applications 4-19

5 Create Custom Widgets

Understand widgets 5-1

Understand plug-ins 5-8

Understand helper components 5-8

Build a widget 5-9

Create a subscriber 5-18

Configure a widget to use REST endpoints 5-19

Create a selector 5-23

Write a fetcher 5-24

Create an endpoint 5-26

Write an action 5-28

6 Design Storefront Pages

Understand Default Open Storefront Framework Widgets 6-1

Understand how to use the Design page with OSF applications 6-4

Select an application 6-4

Configure widgets in the administration interface 6-5

Configure and display color swatches 6-6

Work with Cart REST API Endpoints 6-7

7 Design Account-Based Storefront Pages

Understand default account-based OSF widgets 7-1

8 Design Configure-Price Components

Understand the configure-price components 8-1

9 Develop for Performance

Prevent useEffect() from executing unnecessarily 9-1

Avoid unnecessary rerendering 9-1

Use useCallback() and useMemo() efficiently 9-2

Use React.lazy() to render components conditionally 9-4

Identify and optimize inefficient code 9-5

Remove unnecessary CSS 9-5

iv

10

Build Payment Integrations

Understand payment integrations 10-1

Supported payment methods and transaction types 10-2

Create an extension for a gateway integration 10-3

Install the extension and configure the gateway 10-7

Send transaction data to a payment gateway 10-8

Look up payment configurations 10-10

v

1
About This Guide

This guide is intended for developers who want to use the Open Storefront Framework to
create Oracle Commerce storefront applications.

It describes how to set up the developer environment and create and deploy applications. It
also explains how to create Open Storefront Framework widgets.

Note: For this release, product documentation relating to the Open Storefront Framework is
contained only in this guide; the other books in the Commerce documentation set continue to
apply to the original storefront framework, Storefront Classic. If you are developing Open
Storefront Framework applications, assume that anything presented in this guide supersedes
similar content in the other Commerce books.

Prerequisites
Before you start building applications with the Open Storefront Framework, it is highly
recommended that you become familiar with the concepts and tools on which the framework
is based.

Ensure you have a working knowledge of the following:

• JavaScript

• Yarn package manager

• Node.js and Node Package Manager (npm)

• React

• Redux

• Redux Saga

Open Storefront Framework accessibility
Oracle's goal is to make its products, services, and supporting documentation accessible to
all users, including users with disabilities.

The Open Storefront Framework includes a command-line interface that supports
accessibility. For example:

• The contrast ratio is set by the user, either at the system level or in the terminal program
used to access the remote machine. The product's display of foreground and background
text is a function of the settings in a GUI-based terminal application.

• The application does not change accessibility features provided by the underlying
operating system.

The command-line interface is described throughout this guide. For additional information
about Oracle Commerce accessibility, see Accessibility Tasks.

1-1

2
Understand the Open Storefront Framework

The Open Storefront Framework (OSF) is the next generation framework from Oracle
Commerce for building commerce storefronts.

OSF runs exclusively on Oracle Cloud Infrastructure (OCI), Oracle’s next generation purpose-
built, best-in-class cloud platform for enterprise applications. OSF is an important leap
forward in the evolution of Commerce storefront technology, focused on minimizing coding
required, maintaining business level control, leveraging the latest technology frameworks,
and providing robust tooling for the modern developer.

OSF has a number of benefits, including:

• Enabling front-end developers to deliver faster, more responsive, richer user experiences.

• Being built in React, but allowing flexibility to develop in any front-end library without risk
of lock-in.

• Leveraging the fully-featured Oracle Commerce solution with drag-and-drop experience
tools, context-aware preview, personalization, content, merchandising, search, catalog,
inventory, reporting, and more.

• Providing a clean separation between the presentation layer and the state model to
support local development and testing.

• Allowing micro (not macro) updates to simplify how experiences are assembled and
delivered with reusable, granular components that minimize the need to write new code.

OSF is based on industry-standard JavaScript tools such as Yarn, Node.js, React, and
Redux, and supports popular design patterns through an extensible architecture that uses
modular building blocks. OSF enables a range of development strategies, from working with
the complete framework to using only the REST API to build headless applications.

This chapter provides an overview of the Open Storefront Framework and how to develop
storefront applications using it that run on mobile devices and desktops. For additional best
practice and how-to material on OSF, visit the Customer Connect forum.

Understand the OSF architecture
A key part of OSF is the use of a Node.js server to perform server-side rendering of pages,
make REST API calls to the storefront server, and communicate with the shopper’s browser.

On a production system, the Node.js server runs in the same Oracle-hosted environment as
the Commerce servers. When it renders a page, it sends it to the shopper’s browser to be
displayed.

For development purposes, Commerce supplies tools for setting up a workspace in your local
environment. The workspace provides access to an npm (Node Package Manager) registry
where you obtain OSF packages and their dependencies, as well as a Node.js server that
runs JavaScript application code locally while communicating with Oracle-hosted Commerce
servers. Storefront applications can be developed and run locally and then deployed to the
Oracle environment for testing and production.

2-1

https://cloudcustomerconnect.oracle.com/resources/7f8654d874/summary

The Open Storefront Framework is designed to render pages quickly and to support
rapid development. Its key features include:

• Optimized page loading – OSF supports single-page applications, in which pages
are rendered on the Node.js server, and only the code needed for the specific
features on a page is loaded. Pages load quickly and are SEO-friendly.

• Accelerated development – Development is done using industry-standard,
developer-friendly tools, including Yarn and Node.js. The JavaScript APIs support
best-practice design patterns.

• Layered, extensible architecture – The OSF architecture is based on modular
building blocks, in which features are loaded as needed at runtime.

• Framework-neutral presentation layer – The storefront user interface is built using
React by default, but you can substitute a different JavaScript framework.

The following diagram provides a high-level overview of the OSF architecture:

Understand OSF applications
You develop OSF storefront applications in a Yarn workspace on your local
workstation, on which you are running a local Node.js instance.

The packages in the workspace organize the JavaScript code plus the layouts and
other assets used in the storefront presentation layer. The workspace includes native
Yarn tools for managing the packages, as well as Oracle-supplied scripts and
commands for configuring and building applications. Setting up the workspace is
described in Set Up a Development Environment.

By default, the widgets for the storefront presentation are written as React
components. Widgets are used in conjunction with other elements (plug-ins) to
implement their functionality. These elements include:

• fetchers – Obtain data to generate the initial display of a widget.

• subscribers – Passively observe store events and trigger communication of these
events to external services.

• actions – When invoked by widgets, send data that typically results in modification
of the application's state.

Chapter 2
Understand OSF applications

2-2

• endpoints – Assemble the payloads for, and make calls to, Store REST API endpoints.

The following diagram illustrates the roles of the various types of OSF application elements:

See Create Custom Widgets for more information about these elements.

Once you have created your application, you can deploy it to one of the three server
environments (test, staging, and production) that have been provided for you, as described in
Develop and Deploy Applications.

Use a local workspace
You can create a storefront application and run the JavaScript components in a workspace on
your local workstation.

A local workspace includes a Node.js server that runs JavaScript application code locally
while communicating with Oracle-hosted Commerce servers. You can also use this
workspace in local render mode, in which all design assets defined in the local workspace
take precedence over those on the server. For example, if the local workspace has a home
layout defined, it will be rendered instead of the home layout on the server. This approach
provides you with the ability to do development in isolation, without your work being affected
by code on the server or the work of other developers.

Use the workspaces on server environments
There are limitations to how much of the dynamic behavior that is provided on the server can
be replicated when using local render mode.

For example, in local render mode, an individual developer can have only a single version of
a layout, which is rendered in all cases. On the server, there can be multiple versions of a
given layout, with rules used at runtime to determine which one is rendered.

If you need access to this dynamic behavior, you can instead use a workspace in a server
environment (typically the test environment) for rendering. Since this environment can be
shared by multiple developers, you will need to coordinate with others to avoid conflicts. See
Access local development applications on a Commerce server for information about OSF
tools that support this.

Chapter 2
Use a local workspace

2-3

Your organization is provided access to three server environments: test, staging, and
production. Each environment includes administration, storefront, and Node.js servers.
You use workspace with these environments to manage the lifecycle of the application
code, and to access presentation content such as layouts that business users create
using the Design tools in the administration interface.

You can interact with all three server environments in similar ways. You can deploy an
application from a local workspace to a server environment’s preview Node.js server,
and publish a snapshot, including the workspace and design assets, to the live
context. New development can then continue in the preview context and be published
as desired.

Design assets
In an OSF local workspace, in addition to writing JavaScript code, you can create
design assets such as layouts.

When you deploy an application to a server environment, the design assets are
deployed along with the application code. As part of the deployment process, assets
are extracted from the deployed workspace and used to update the assets in the
server environment.

You also have the option of downloading the assets from the server environment’s
preview or live context to the local workspace for local development or committing to
source control.

OSF registry
Oracle Commerce provides a read-only npm (Node Package Manager) registry that
you can access to obtain OSF packages and their dependencies.

As part of creating a workspace, you configure Yarn so that when the yarn install
command is executed, required packages are downloaded from the registry.

You can download packages and their dependencies at various points in the
development cycle, such as when creating a local workspace and when deploying an
application. You can also create new packages and declare dependencies in your local
workspace, and these will be included when the application is deployed.

Command-line interface
Commerce provides a command-line interface (CLI) that you can use to manage your
local workspace.

The CLI provides tools that you can use to create, configure, build, run, deploy, check
deployment status and logs, and sync workspaces. Note that if you have multiple
workspaces, each workspace has its own matching version of the CLI (the version that
was used to create the workspace).

Chapter 2
Design assets

2-4

3
Set Up a Development Environment

You can set up an environment for developing OSF applications on your local workstation.

This chapter describes how to set up an Oracle Commerce local storefront development
environment using a provided accelerator template. It assumes that you have already read
Understand the Open Storefront Framework and are familiar with the OSF architecture.

Once you have set up your environment, you can make a copy of the template and use it as
a starting point for building your own application. This process is described in Develop and
Deploy Applications.

Install required software
Before you can set up your development environment, you must install certain third-party
software tools.

In addition to software supplied by Oracle, a storefront development environment requires the
following:

• Node.js – Install the most recent LTS (long-term support) version of Node.js 14.x on your
system. (Do not install a different major version number.) Node.js 14.x is available at:

https://nodejs.org/dist/latest-v14.x

The Node.js installation also includes npm.

• Yarn – Install the latest stable version of Yarn 1.x on your system. (Do not install Yarn
2.x) .Yarn 1.x is available at:

https://legacy.yarnpkg.com/docs/install

Configure npm to access Commerce packages
The Commerce npm packages use the @oracle-cx-commerce scope and are hosted in an
OSF registry that is separate from the primary npm registry.

To access this registry, enter the following command:

npm config set @oracle-cx-commerce:registry https://oracle-cx-commerce-
repository.occa.ocs.oraclecloud.com

Set up a workspace
A workspace is a local directory hierarchy containing code and configuration for your
storefront applications.

To create a workspace, you copy resources from one of the following:

3-1

• A prepackaged Commerce application that serves as an accelerator template.

• An existing deployed application.

This section describes how to create a workspace from an accelerator template. For
information about creating a workspace from a deployed application, see Create a
workspace from a deployed application.

Create a workspace from an accelerator template

You can use one of the following applications as a template for creating a workspace:

• blank-store – a minimal application that contains a single custom component

• core-commerce-reference-store – a more complete application that includes
reference implementations of widgets and other components for consumer-based
commerce

• account-based-commerce-reference-store – a more complete application that
includes reference implementations of widgets and other components for account-
based commerce

To create the workspace, enter the following command:

npx @oracle-cx-commerce/cli-init create-workspace <workspace-dir> --
template <template-name>

<workspace-dir> is the absolute or relative path to the top-level directory of the
workspace. This directory must currently not exist or else be empty.

For example:

npx @oracle-cx-commerce/cli-init create-workspace my-workspace --
template blank-store

This command uses the cli-init tool in the registry to run the Commerce create-
workspace command. The command creates a subdirectory named my-workspace that
contains the files and directories from the blank-store application.

The workspace top-level directory contains a number of files and directories, including
the following:

• A package.json file that designates the workspace as a private package, specifies
package dependencies, and defines several scripts.

• A packages/apps directory with a child directory containing the selected
application (for example, packages/apps/blank-store).

You can also specify a different package name and Node.js module for your
application when you create a workspace, by using the --appPackageName flag. For
example:

npx @oracle-cx-commerce/cli-init create-workspace another-workspace --
template blank-store --appPackageName @my-module/my-storefront

This command creates a new workspace with an application named my-storefront in
a module named @my-module.

Chapter 3
Set up a workspace

3-2

Once you have created a workspace, you can begin creating your application by modifying or
replacing the application code and configuration in the workspace.

Install package dependencies

Now install the package dependencies for the workspace. (These include the Commerce
storefront framework and its dependencies.) To do this, go to the workspace directory and
enter this command:

yarn install

This creates and populates the node_modules directory under your workspace directory.
Notice that the node_modules/@oracle-cx-commerce subdirectory contains a symbolic link to
the application directory (such as blank-store) in your workspace’s packages/apps directory.

Note: When you run yarn install, you may see warnings similar to the following:

warning " > @oracle-cx-commerce/cli@1.0.0" has unmet peer dependency
"react@*".

You can safely ignore these warnings. For further information, see the following:

https://github.com/yarnpkg/yarn/issues/5347#issuecomment-463038189

Configure the workspace to access your server

Your local workspace requires access to a Commerce administration server environment to
upload your application to and invoke REST API endpoints on. Typically, your organization is
provided with three server environments (test, staging, and production). The process for
configuring access to any of these servers is the same, differing only by which environment’s
URL you specify.

The first step is to generate an application key by registering the application on the specific
server you want to access, as described in Extending Oracle Commerce. Then enter the
following command to configure your workspace:

yarn occ configure --appKey --appServerAdmin <admin-server-URL>

where <admin-server-URL> is the URL of your Commerce administration interface. For
example:

yarn occ configure --appKey --appServerAdmin https://myhost-admin.oc-test.com

When you enter this command, you are prompted for an application key:

Please provide an appKey:

Enter the application key that was generated when you registered the application. (See
Register applications.) When the command completes, it returns a listing of the various
configuration settings for the workspace. Many of these settings are stored in the config.js
file in the .occ directory of the workspace. You can update these settings with the configure
command.

Chapter 3
Set up a workspace

3-3

Build the application

To build the application in development mode, enter the following command:

yarn build

This invokes a script that runs Babel and Rollup to transpile all of the application’s
source code into code that is suitable for use in environments such as Node.js and
web browsers.

Note: In development mode, Rollup remains active and occupies the shell window it is
in, watching for changes in the source code to rebuild its output accordingly. If you
want to build just once, you can safely use Ctrl-C to exit from Rollup once you see the
"waiting for changes" message.

Upload the application to the administration server

To make your application’s page layouts and components available in the
administration interface, and to be able to preview and publish the application, you
need to deploy the application to the administration server you configured access to.
To deploy the application, enter this command:

yarn occ deploy

To move these assets from the preview context to the live context, log into the
administration interface and publish the current change list.

Note that to see your deployed application’s layouts and other assets you may need to
change the active application to the one you uploaded. To do this, select the
application from the dropdown list near the top right corner of the Design page.

Run the application

Enter the following command to run the application in development mode:

yarn start

This invokes a script that uses the nodemon utility to start a local Express web server.
The server hosts the application, and is restarted whenever the application is updated.

You can now access the application’s home page at http://localhost:80.

Note: The default port for the web server is 80, which may conflict with other web
servers you have running locally. You can use a different port for the Express web
server if necessary. For example, to use port 3000, enter the command:

yarn occ configure --httpPort 3000

This setting is stored in the workspace's .occ/config.js file.

Chapter 3
Set up a workspace

3-4

Create a workspace from a deployed application
Support personnel who need to troubleshoot issues can create a workspace by copying a
deployed application.

Note: This option is intended for support purposes only, and is not intended as a way to set
up new developers on a project. Code and configuration should be maintained in source
control, and developers should create their workspaces from these files rather than by
copying a deployed application.

To create a workspace from a deployed application, enter the following command:

npx @oracle-cx-commerce/cli-init create-workspace <workspace-dir> --deployId
<deploymentId> --appServerAdmin <admin-server-URL> --appKey

where <deploymentId> is the deployment ID of the deployed application, <admin-server-
URL> is the URL of your Commerce administration interface, and <workspace-dir> is the
absolute or relative path to the top-level directory of the workspace. This directory must
currently not exist or else be empty. You can find the deployment ID of the application by
using the deploy-status command, as described in Monitor deployed applications.

For example:

npx @oracle-cx-commerce/cli-init create-workspace my-workspace –-deployId
200004 –-appServerAdmin https://myhost-admin.oc-test.com --appKey

You will be prompted to specify an application key for downloading the deployed application.
After you enter the application key, Commerce creates a new local workspace named my-
workspace on your workstation by copying the specified workspace from the server.

As an alternative, you can specify the deployed application by indicating the environment it is
running in and whether to use the live or preview version. For example:

npx @oracle-cx-commerce/cli-init create-workspace my-workspace –-appName my-
storefront –-appServerAdmin https://myhost-admin.oc-test.com –-live --appKey

Upgrade the version of OSF in a workspace
Oracle Commerce provides tools for upgrading your version of OSF to a newer version.

When you first create a workspace from the Commerce registry, the workspace has the latest
version of OSF. However, the OSF version in the registry is updated regularly, so the version
in your workspace may no longer be the latest. To receive new features and enhancements, it
is a good idea to upgrade your workspace periodically.

To determine the version of OSF your workspace is currently running, use the version
command. For example:

yarn occ version

[cli] info: Versions:
[cli] info: - OSF CLI: 2.26.0

Chapter 3
Create a workspace from a deployed application

3-5

[cli] info: - core-commerce-reference-store: 2.26.0
[cli] info: - OCC server: 21.3.9
[cli] info: OSF v2.26.0
[cli] info: Latest available version of OSF is v2.27.1

If your workspace does not have the latest version of OSF, you can upgrade to the
latest version using the upgrade command. This command updates the version of OSF
packages used throughout the workspace. Typically it is used to upgrade to a higher-
numbered version, though in certain cases it can also be used to downgrade to a
lower-numbered version. Note that it does not update the version of non-OSF
packages.

The primary way to use the upgrade command is to update the version of OSF in a
workspace to the latest version allowed by your Commerce server, provided that both
versions have the same major version number. To do this, invoke the command
without any flags:

yarn occ upgrade

So, for example, if the current OSF version is 2.2.3 and the latest version the server
supports is 2.6.7, this command updates the workspace to version 2.6.7.

If you're uncertain of the effect an upgrade command will have on your workspace, you
can invoke the command with the --dryRun flag. This returns a list of the changes the
command would make but does not actually make them. For example:

yarn occ upgrade --dryRun

If the changes are what you expect, you can then run the command without the --
dryRun flag.

If the current workspace version of OSF is newer than the latest version the
Commerce server supports, or if the workspace has a different major version number
from the server, the upgrade command produces a warning and exits. You can
override this behavior by using one or both of these flags:

• --acceptDowngrade – If the current workspace version of OSF is newer than the
latest version the Commerce server supports, the workspace is downgraded to the
latest version that the server supports.

• --latest – The workspace is updated to the latest version the server supports,
even if the workspace and the server have different major version numbers. Be
aware that updating to a different major version may introduce breaking changes.

To upgrade to a specific version of OSF, specify the version number explicitly in the
command. For example:

yarn occ upgrade 2.13.6

If the specified version number is lower than the current workspace version, include
the --acceptDowngrade flag.

Chapter 3
Upgrade the version of OSF in a workspace

3-6

Special options

The following flags may be useful in certain circumstances, but you should use them with
caution:

• --no-verifyOcc – The command does not check the server version when determining
what version of OSF to upgrade to.

• --force – The command attempts to continue rather than exiting when encountering
errors (version incompatibilities, inability to contact the registry or Commerce servers,
etc.). Can be used only if a specific version of OSF is specified. For example:

yarn occ upgrade 2.0.0 --force

If you use either of these flags, be sure you understand the implications. It is a good idea to
try the command with the --dryRun flag first to see the changes it will make before running it
normally.

Workspace commands and scripts
The OSF workspace includes commands and scripts that you use to build, deploy, and
manage the lifecycle of storefront applications.

This section describes the OSF commands and scripts and how they are used.

Commands

The OSF commands are found in the node_modules/.bin subdirectory of the workspace. The
commands all begin with occ and accept flags for specifying options. For example, the
following command deploys the specified application without performing a build:

occ deploy my-storefront --no-build

Some of the flags take arguments. For example, the following command specifies the URL of
the administration server to deploy the application to:

occ deploy my-storefront –-appServerAdmin https://myhost-admin.oc-test.com

The following table summarizes the available commands:

Command Description

build Build an OSF application

configure Update the configuration of a workspace

configure-app Update the configuration of an application

create-action Create an action for an application

create-app Create a new application in an existing workspace
from an accelerator template

create-endpoint Create an endpoint from a Swagger document or
a URL

create-fetcher Create a fetcher for an application

create-selector Create a selector for a specific state object

Chapter 3
Workspace commands and scripts

3-7

Command Description

create-subscriber Create a subscriber for an application

create-template Create a workspace template archive containing
the application

create-widget Create a widget plug-in for an application

delete Delete an OSF application from the specified
server

deploy Deploy an OSF application

deploy-log Query the deployment logs for an application

deploy-status Query the deployment status of an application

download Download the current deployment of an
application to the workspace

download-assets Download design assets from a server to the
workspace

list-apps List the applications on a server

list-endpoints List all of the endpoints in a Swagger document

output Generate the deployment files for the application

redeploy Resend a deployment to a cluster

serve Start a presentation server

set-logging-options Set the logging options for a cluster

upgrade Update the versions of OSF packages in a
workspace

upload-custom-typeahead-keywords Upload custom keywords for typeahead search

upload-search-config Upload the search configuration for an application

version Return version information about the OSF
environment

You can also see a complete list of the occ commands by entering the following
command:

occ –-help

To see a help page about the syntax of an individual command and the options it
supports, enter the command with the --help flag. For example:

occ list-apps –-help

The response is similar to the following:

Usage: cli list-apps [options]

List the applications that are on the server.

Options:
 --json Output the results as raw JSON instead of
formatted text.
 -V, --version output the version number
 --verbose Provides verbose logging where available

Chapter 3
Workspace commands and scripts

3-8

 --no-verbose Disables verbose logging
 --appKey [key] With this option you will be prompted for an
application key (OAuth access token)
 --appServer <url> Application server URL
 --appServerAdmin <url> Application admin server URL
 --serverEnv <env> Cloud Commerce server environment to use
 -h, --help display help for command

Access the commands

Each workspace has its own version of the CLI. If you have multiple workspaces, you must
use the version of the CLI associated with the workspace you are currently working in. To
ensure that you access the correct version of the CLI, preface the commands with yarn and
invoke the command from within the workspace.

For example, suppose you want to invoke the following command:

occ deploy my-storefront --no-build

Instead, enter the following from anywhere in the workspace you are working in:

yarn occ deploy my-storefront --no-build

When you call an occ command this way, Yarn uses Node.js module resolution to ensure that
the correct version is executed.

Scripts

In addition to the occ commands, the workspace provides several scripts that can also be run
from the command line. These scripts are defined in the scripts object of the package.json
file in the top-level directory of the workspace. For example:

"scripts": {
 "stylelint": "stylelint **/*.css --ignore-disables",
 "eslint": "eslint .",
 "eslint:fix": "eslint --fix .",
 "prettier:fix": "prettier --config .prettierrc.js --write
\"{packages,qa}/**/*.js\"",
 "lint": "yarn eslint && yarn stylelint",
 "build:prod": "occ build --production",
 "build": "occ build --watch",
 "test:int": "jest -c jest.config.int.js",
 "test:int:debug": "node --inspect-brk node_modules/jest/bin/jest.js -i -
c jest.config.int.js",
 "test": "jest -c jest.config.js",
 "test:debug": "node --inspect-brk node_modules/jest/bin/jest.js -i -c
jest.config.js",
 "test:api": "jest -c jest.config.api.js",
 "test:api:debug": "node --inspect-brk node_modules/jest/bin/jest.js -i -
c jest.config.api.js",
 "perf": "jest -i -c jest.config.perf.js",
 "perf:lighthouse": "jest -i -c jest.config.perf.lighthouse.js",
 "perf:wpt": "jest -i -c jest.config.perf.wpt.js",
 "perf:debug": "node --inspect-brk node_modules/jest/bin/jest.js -i -c

Chapter 3
Workspace commands and scripts

3-9

jest.config.perf.js",
 "deploy": "occ deploy",
 "delete": "occ delete",
 "download": "occ download",
 "output": "occ output",
 "seed": "yarn deploy --reset --publish",
 "start:prod": "occ serve",
 "start": "nodemon --inspect node_modules/@oracle-cx-commerce/cli/
cli.js serve",
 "configure": "occ configure",
 "deploy-status": "occ deploy-status",
 "deploy-log": "occ deploy-log",
 "redeploy": "occ redeploy",
 "download-assets": "occ download-assets",
 "upload-search-config": "occ upload-search-config",
 "upload-custom-typeahead-keywords": "occ upload-custom-typeahead-
keywords",
 "list-apps": "occ list-apps"
}

Each entry in the scripts object consists of a Yarn command and the value it maps to.
So, for example, suppose you enter this command:

yarn build:prod

This is equivalent to the following:

yarn occ build --production

As you can see, many of the scripts are equivalent to occ commands.

You can also display a complete list of the scripts, and select one to run, by entering
the following command:

yarn run

The Yarn scripts use Node.js module resolution to locate the commands they call. This
ensures that as long as a script is called from within a workspace, it will find the
version of the command that is appropriate for that workspace.

Chapter 3
Workspace commands and scripts

3-10

4
Develop and Deploy Applications

Once you have set up an OSF development environment on your local workstation, you can
build applications and deploy them to server environments.

This chapter provides an overview of working in OSF workspaces to develop and deploy
storefront applications. More detailed information about creating storefront components is
available in other chapters of this manual.

Create a new application by copying a template
You can create the basic directory structure for your application by copying an existing
application directory from your workspace’s packages/apps directory into a new subdirectory
of packages/apps.

For example, if you have downloaded the blank-store template and you want your new
application to be named my-app, go to your workspace’s packages/apps directory and copy
the entire blank-store directory and its subdirectories into a new directory named my-app.
Then enter the following command:

yarn occ configure --appName my-app

This modifies the config.js file in the workspace’s .occ directory to make my-app the default
application for the workspace. Now the workspace commands and scripts such as build,
deploy, and start will operate on this application instead of the template application.

At this point, the my-app application is identical to blank-store. You can now modify the my-
app application to implement your own application.

Modify the application’s package.json file

The top-level directory of an application (for example, my-workspace/packages/apps/my-app)
contains an application-specific package.json file. This file is distinct from the package.json
file in the top level of the workspace.

After creating a new application, you need to modify this package.json file. Change the
values of the following settings:

• name – The name for your application (for example, @my-apps/my-app).

• version – The version number for your application (for example, 0.0.1). You can use
whatever numbering scheme you want, but it is a good idea to track the version using this
field.

• description – The value of this setting is used to identify your application in the Design
page application selector dropdown.

4-1

For example:

"name": "@my-apps/my-app",
"version": "0.0.1",
"private": true,
"description": "My storefront application",

In addition, change these settings in the file’s occ object:

• locales – An array of the locales for which you are including translation strings for
your application. You may want to set this to a single locale while you’re getting
started and update the setting later.

• allowedUrls – An array of the URLs that the application calls out to. These URLs
are added to the list maintained by your Oracle Commerce environment. Calls to
these URLs (including any subpaths) are permitted. Calls to domains that are not
on this list are blocked.

For example:

"occ": {
 "namespace": "occ.react",
 "locales": [
 "en",
 "de"
],
 "allowedUrls": [
 "http://www.example.com",
 "http://www.example2.com"
]
}

Note: The allowedUrls property replaces the whiteListedUrls property that was
formerly used for specifying external domains. The whiteListedUrls property has
been deprecated. If you currently have an application whose package.json file has the
whiteListedUrls property, you should rename the property to allowedUrls. If you do
not rename the property, Commerce will continue to permit access to the domains
specified in whiteListedUrls. However, if you add the allowedUrls property without
removing whiteListedUrls, Commerce will ignore whiteListedUrls and permit
access only to the domains specified in allowedUrls.

After you have updated the settings in this package.json file, run yarn install to
create the symbolic link to your application directory.

At this point, if you build, upload, and start the application, you will see your application
in your browser when you access the local web server. You can now proceed to make
functional changes to the application by creating your own pages and components.

For information about how to build storefront components and include them in pages,
see Create Custom Widgets and Design Storefront Pages.

Create components using command-line tools
The OSF command-line interface includes several commands that you can use to
simplify the process of creating a widget and supporting components.

Chapter 4
Create components using command-line tools

4-2

You can use these commands to create templates for building the following types of
components:

• widgets

• actions

• fetchers

• endpoints

• selectors

• subscribers

The commands create the files and directories that make up the structure of the components.
The files include comments that provide guidance about writing the code and supplying the
configuration for the component.

Create a widget

To create a widget from a template, you use the create-widget command. You can use this
command with the --template flag to specify the template to use (either Blank to create a
basic widget, or CurrencySelector to create a widget whose files include specific
implementation logic and instructions for creating a currency selector). If you omit the flag,
the widget is created from the Blank template.

For example, the following command creates a widget named MyWidget from the Blank
template:

yarn occ create-widget --name MyWidget

[cli] info: Creating Widget: MyWidget
[cli] info: Widget path: packages\apps\blank-store\src\plugins\components
[cli] info: App locals - en,de
[cli] info: Creating new widget folder packages\apps\blank-
store\src\plugins\components\my-widget
[cli] info: Writing template files to packages\apps\blank-
store\src\plugins\components\my-widget
[cli] info: config\index.js
[cli] info: config\locales\en.js
[cli] info: config\locales\de.js
[cli] info: index.js
[cli] info: locales\en.js
[cli] info: locales\de.js
[cli] info: meta.js
[cli] info: README.md
[cli] info: styles.css
[cli] info: __test__\my-widget-widget.spec.js
[cli] info: Updating exports for files:
[cli] info: packages\apps\blank-store\src\plugins\components\index.js
[cli] info: packages\apps\blank-store\src\plugins\components\meta.js

This command creates a widget from the CurrencySelector template:

yarn occ create-widget --name MyWidget --template CurrencySelector

Chapter 4
Create components using command-line tools

4-3

The widget is created in the default application in the workspace. For example, if the
default application is named my-app, the widget files are created in packages/apps/my-
app/src/plugins/components/my-widget. To create a widget in an application other
than the default application, you can specify the application name in the command. For
example:

yarn occ create-widget my-other-app --name AnotherWidget

Create an action

To create an action, you use the create-action command. For example:

yarn occ create-action --name myAction

[cli] info: Creating action: myAction
[cli] info: Action exported as _myAction
[cli] info: Action's Path: src/plugins/actions
[cli] info: Creating new action folder packages\apps\blank-
store\src\plugins\actions\my-action
[cli] info: Writing template files to packages\apps\blank-
store\src\plugins\actions\my-action
[cli] info: index.js
[cli] info: meta.js
[cli] info: schema\input.json
[cli] info: __test__\index.spec.js
[cli] info: Updating exports for files:
[cli] info: packages\apps\blank-store\src\plugins\actions\index.js
[cli] info: packages\apps\blank-store\src\plugins\actions\meta.js

When you create an action, you can also create a reducer that the action invokes:

yarn occ create-action --name myAction --reducer

The reducer is created in the action's index.js file.

You can also specify an endpoint that the action invokes:

yarn occ create-action --name myAction --endpoint myEndPoint

Note that this command doesn't create the endpoint, it just specifies the name of the
endpoint required by the action. You can either specify an endpoint that has already
been created, or write one afterward with the name you specified. (If you use --
endpoint but omit the endpoint name, the name defaults to the name of the action.)

Create a fetcher

To create a fetcher, you use the create-fetcher command. For example:

yarn occ create-fetcher --name myFetcher --endpoint getSite --selector
mySelector

Chapter 4
Create components using command-line tools

4-4

By default, the create-fetcher command creates a global fetcher. To create a fetcher for a
specific widget, use the --forComponent flag. For example:

yarn occ create-fetcher --name myFetcher --endpoint getOrder --selector
mySelector --forComponent HelloWorld

Note that the specified widget must already exist. The specified endpoint and selector can
already exist, or you can write ones afterward with the specified names.

Create an endpoint

To create an endpoint, you use the create-endpoint command. The version of the command
that you use depends on whether your organization maintains a Swagger-based document
containing a JSON representation of the REST API endpoints that can be called from widget
code.

To create an endpoint from a Swagger document, you use the --swagger flag to specify the
location of the Swagger document, which can be either a URL or a local file. For example:

yarn occ create-endpoint --directoryName swagger-endpoints --swagger http://
www.example.com/catalogApi --endpoints getOrder,putOrder

The --directoryName flag specifies the subdirectory (relative to the application's
\src\plugins\endpoints directory) to create the endpoint in. The command creates the
specified directory; it cannot already exist. If you do not include the --directoryName flag, the
directory name is based on the pathname of the Swagger document's URL or file.

The --endpoints flag is used to specify a comma-separated list of the IDs of the REST
endpoints in the JSON document. There are two ways to specify these IDs:

• If the JSON document includes an operationId value for each endpoint, use these
values to specify the endpoints. The example above illustrates using these values.

• If the JSON document does not include operationId values, the identifier for an endpoint
is constructed by concatenating the method and pathname, removing non-alphabetic
characters, and then converting the result to camel case. For example, the identifier for a
POST /invoice/payments endpoint would be postInvoicePayments, and the identifier for
a GET /invoice/payments/{id} endpoint would be getInvoicePaymentsId.

Note that you can display a list of all the endpoints in a Swagger document by using the
list-endpoints command. Like the create-endpoint command, list-endpoints uses the
--swagger flag to specify the location of the Swagger document, which can be either a URL
or a local file. For example:

yarn occ list-endpoints --swagger http://www.example.com/catalogApi

To create an endpoint from a document that is not in Swagger format, you use create-
endpoint with the --url flag to specify the URL of the document, and the --verb flag to
specify the HTTP verb. For example:

yarn occ create-endpoint --directoryName other-endpoints --url http://
www.example.com/orders --verb GET

Chapter 4
Create components using command-line tools

4-5

If you do not include the --directoryName flag, the directory name is based on the
pathname of the API document's URL.

Create a selector

To create a selector, you use the create-selector command. For example:

yarn occ create-selector --name mySelector --repository myRepository

You use the --repository flag to specify the state subobject that the selector
accesses. You can also specify a table of that repository using the --table flag:

yarn occ create-selector --name mySelector --repository myRepository --
table myTable

You can specify an entity of the table as well:

yarn occ create-selector --name mySelector --repository myRepository --
table myTable --entity myEntity --entityId myEntityId

Note that you must include both --entity and --entityId to specify the entity.

Create a subscriber

To create a subscriber, you use the create-subscriber command. For example:

yarn occ create-subscriber --name mySubscriber

This command creates the index.js and meta.js files for the subscriber.

Specify environment-specific configuration values for an
application

OSF provides a mechanism that you can use to create separate application
configuration for development, test, and production environments, and to automatically
apply the correct configuration for whichever environment the application is currently
running in.

Configuration files

A workspace includes an index.js configuration file in its node_modules/@oracle-cx-
commerce/osf-config/app-config/ directory. The settings in this file apply by default
to all of the applications in the workspace.

The settings in the configuration files are specified as JSON key/value pairs. The
default configuration file contains the following settings:

module.exports = {
 cacheEnabled: true, // whether to enable cache or not
 cacheOptions: {
 validityPeriod: 2 * 60 * 1000, // validity period of the req to be

Chapter 4
Specify environment-specific configuration values for an application

4-6

in cache. If expired, the request goes to OCC for re-validation.
 ttl: 30 * 60, // if expired, the response against respective request
stored in cache gets removed.
 max: 99999, // maximum objects to be stored in the cache.
 cacheableUrlPatterns: {
 // url patterns for which the urls should be cached. If the url
doesn't fall under any of these, it is not cache-able.
 default: {
 urlPatterns: [
 '/ccstore/v1/collections',
 '/ccstore/v1/countries',
 '/ccstore/v1/files/',
 '/ccstore/v1/itemTypes',
 '/ccstore/v1/locations',
 '/ccstore/v1/merchant/cancelReasons',
 '/ccstore/v1/merchant/cloudConfiguration',
 '/ccstore/v1/merchant/paymentConfigurations',
 '/ccstore/v1/merchant/production-Experiments',
 '/ccstore/v1/merchant/production-Facebook',
 '/ccstore/v1/merchant/returnReasons',
 '/ccstore/v1/merchant/samlSettings',
 '/ccstore/v1/merchant/shopperSettings',
 '/ccstore/v1/payment/types',
 '/ccstore/v1/priceListGroups',
 '/ccstore/v1/prices/',
 '/ccstore/v1/products',
 '/ccstore/v1/productTypes',
 '/ccstore/v1/registry',
 '/ccstore/v1/shippingRegions',
 '/ccstore/v1/shippingMethods/',
 '/ccstore/v1/sites',
 '/ccstore/v1/xregistry'
]
 }
 }
 }
};

To override settings in this file or create additional configuration, you should not modify the
default configuration file directly, because the values in the file will be restored if you perform
certain operations in the workspace. Instead, create an application-specific index.js file in
the packages/apps/<app-name>/config/app-config/ directory. When an application is
started up, the system checks for this file, and if it exists, merges it in memory with the default
configuration to produce the configuration for the application. Both files are packaged up with
the application and uploaded to the Commerce environment and OSF controllers.

You can use predefined properties for application-specific settings in this file, as well as
custom keys to specify additional configuration. The predefined properties available include:

• configRepositoryState – This object appears at the top level of the merged
configuration. It contains settings for the client state, which are loaded at runtime.

• endpointOrigins – This object specifies mappings of keys to associated URL domains
for calling endpoints.

Chapter 4
Specify environment-specific configuration values for an application

4-7

• liveConfigurations – This object contains settings that supplement or modify the
merged configuration if the application is running in live mode.

• appContextConfigurations – This object contains development, test, and
production subobjects. Depending on the application context the application is
running in, the settings in the associated subobject are merged with the
configuration.

These properties are discussed below.

Local development mode

If the application is running in local development mode, the system also checks for a
config.js file in the packages/apps/<app-name>/.occ/ directory. If the file exists, the
configuration in it is merged as well. This file can include the same predefined
properties listed above. The file is not included with the application when it is
uploaded, since it applies only to local development environments.

The next section describes the logic used in merging the configuration in memory and
how to create application-specific configuration files based on this logic.

How the configuration is merged

When configuration is merged, the properties from multiple sources are combined in
memory to create the configuration for the application. Properties that do not conflict
are simply added to the configuration, while properties that are specified in multiple
sources must be resolved to determine which values to use.

You can set the same property to different values in multiple configuration files or even
in multiple places in the same configuration file. When configuration is merged in
memory, the system can override values with ones that apply in specific contexts. This
section illustrates how the configuration is merged, using examples of application-
specific index.js files.

Note that overriding values applies only to top-level properties in the merged
configuration. So overriding a scalar property simply replaces the property value in the
merged configuration, but overriding a top-level property whose value is an object
replaces the object in its entirety, including any subobjects. Properties within objects
are not added or overridden individually.

In the following example, the application-specific configuration file includes
configRepositoryState and endpointOrigins settings as well as custom properties:

module.exports = {
 // Values to add to the client state
 "configRepositoryState": {
 "client-state-value-1": 1,
 "client-state-value-2": [1000, 2000, 3000],
 "client-state-value-3": {
 "pizza": "cheese",
 "topping": ["olives"]
 }
 },
 // Endpoint Origins for constructing endpoint calls
 "endpointOrigins": {
 "pizza-endpoint": {
 "origin": "https://development.pizza-endpoint.com"
 }

Chapter 4
Specify environment-specific configuration values for an application

4-8

 },
 // Top-Level Custom Properties
 "example-top-level-property-string": "sample-value",
 "example-top-level-property-array": ["string-1", "string-2"],
 "example-top-level-property-object": {
 "object-key-a": "nested-object-string",
 "object-key-b": ["value-1", "value-2"],
 "object-key-c": { "arg1": 1, "arg2": 2 }
 },
};

The default configuration file does not contain a configRepositoryState or endpointOrigins
object, so these objects in the application-specific settings are added to the merged
configuration without overriding anything. The same is true for the custom properties in the
application-specific file. You can use application-specific values to override settings from the
default configuration file, but typically the default settings can be left as is.

Merge a live object

In the next example, we add a liveConfigurations object to the application-specific file
shown above:

 // Merged with above when --live flag is turned on
 "liveConfigurations": {
 "example-top-level-property-string": "override-sample-value",
 "configRepositoryState": {
 "client-state-value-1": 777,
 "client-state-live-value": "in client state when live flag is turned
on"
 }
 }

The liveConfigurations object contains settings that are merged into the configuration only
if the application is running in live mode. (They are omitted if the application is run in preview
mode.) The live settings are merged if the application is running on a live controller, or if it is
running locally and is started up with the --live flag.

In this example, the properties in the liveConfigurations object override the equivalent top-
level properties in the merged configuration. The value of the example-top-level-property-
string property is changed from sample-value to override-sample-value in the merged
configuration, and the entire top-level configRepositoryState object is replaced by the one
under liveConfigurations.

Context-specific configuration

In addition to the settings in the examples above, the application-specific configuration file
can also have an appContextConfigurations object that includes settings that are merged
conditionally, depending on the environment (development, test, or production) the
application is running in. For example:

 "appContextConfigurations": {
 // will be merged with top-level properties when --appContext
development or ENV_TYPE=DEV
 "development": {

Chapter 4
Specify environment-specific configuration values for an application

4-9

 "example-top-level-property-string": "sample-value-development",
 "configRepositoryState": {
 "client-state-value-1": 333
 },
 // Merged with above when --live flag is turned on
 "liveConfigurations": {
 "example-top-level-property-string": "override-sample-value-
development-live"
 }
 },
 // will be merged with top-level properties when --appContext test
or ENV_TYPE=TST
 "test": {
 "example-top-level-property-string": "sample-value-test",
 "configRepositoryState": {
 "client-state-value-1": 444
 },
 // Merged with above when --live flag is turned on
 "liveConfigurations": {
 "example-top-level-property-string": "override-sample-value-
test-live"
 }
 },
 // will be merged with top-level properties when --appContext test
or ENV_TYPE=PRD
 "production": {
 "example-top-level-property-string": "sample-value-production",
 "configRepositoryState": {
 "client-state-value-1": 555
 },
 // Merged with above when --live flag is turned on
 "liveConfigurations": {
 "example-top-level-property-string": "override-sample-value-
production-live"
 }
 }
 }

As this example shows, the appContextConfigurations object can have development,
test, and production subobjects. When the application is started up, the settings
associated with the environment the application is running in are merged. The
environment is determined by an environment variable on the controller, or by the --
appContext flag if the application is started up locally.

In this example, if the application is running in the test environment, the test object is
merged. The value of example-top-level-property-string is changed to sample-
value-test, and the configRepositoryState object in test overrides the top-level
configRepositoryState.

Notice, though, that each environment-specific object can also have a
liveConfigurations subobject. If the application is running in live mode, the
liveConfigurations subobject is merged after the rest of the environment-specific
object. In this example, merging the liveConfigurations subobject changes the value
of example-top-level-property-string to override-sample-value-test-live.

Chapter 4
Specify environment-specific configuration values for an application

4-10

Finally, if an application is running in local development mode, the packages/apps/<app-
name>/.occ/config.js file is also merged. This file can also contain
configRepositoryState, endpointOrigins, liveConfigurations, and
appContextConfigurations objects, as well as custom properties, to override or supplement
the properties set elsewhere.

View the merged configuration

You can debug the merged configuration to ensure that it is what you expect it to be. To do
this, enter the following command to display the configuration without starting up the
application:

yarn occ serve --listConfig

When you use the serve command with the --listConfig flag, you can also use other
command-line flags to specify the application context. These settings override the values
supplied in environment variables and in the workspace's .occ/config.js file. For example,
the following command returns the merged configuration for running an application in the live
context of the test environment:

yarn occ serve --listConfig --live --appContext test

Endpoint origins

The endpointOrigins object provides a way to store the base URLs for endpoints in
application configuration files. This makes it possible to override these URLs on a context-
specific basis.

When you create endpoints from a Swagger catalog using the create-endpoint command,
an entry is automatically added to the top-level endpointOrigins object of the application's /
config/app-config/index.js file. (If the file does not already exist, it is created
automatically.) For example, you can create an endpoint like this:

yarn occ create-endpoint --directoryName my-endpoints --swagger http://
www.example.com/catalogApi --endpoints getOrder

An entry for the specified directory name (in this case, my-endpoints) is added to the file:

"endpointOrigins": {
 "my-endpoints": {
 "origin": "http://www.example.com/catalogApi:443"
 }
}

The value of the origin property is set to value of the host property in the Swagger catalog.
If the location specified with the --swagger flag does not exactly match the value from the
catalog, the entry also includes a catalogOrigin property with the specified value. For
example:

"endpointOrigins": {
 "my-endpoints": {
 "origin": "http://www.example.com/catalogApi:443",
 "catalogOrigin": "http://www.example.com/catalogApi"

Chapter 4
Specify environment-specific configuration values for an application

4-11

 }
}

For more information about using the create-endpoint command, see Create
components using command-line tools.

Context-specific endpoint origins

By default, the endpointOrigins settings apply to all environments, but you can
override them for specific environments using the appContextConfigurations object.
For example, if the production environment accesses the Swagger catalog in a
different location, you might specify:

"appContextConfigurations": {
 "production": {
 "endpointOrigins": {
 "my-endpoints": {
 "origin": "http://www.example.com/PRODcatalogApi"
 }
 }
 }
}

Configure search
You can configure Commerce search features that enable shoppers to search for
products and other items in an OSF application.

This section describes how to configure search services and the search typeahead
feature in an OSF application. For more information about configuring these and other
search features, see Configure Search Features.

Configure search services

Each OSF application includes its own search configuration files that control the
application’s search features, such as guided navigation. These files are found under
the workspace's packages/apps/{appName} directory. Several of the widgets included
with OSF use these configuration files to determine some aspects of their behavior.

The primary search configuration file is for the catalog search service. The location of
this file within the application directory is:

config/search/config/pages/Default/osf/catalog.js

Each OSF accelerator template includes a sample catalog.js file. You can copy this
file to your own application and modify it.

You can configure other search services for an application by creating a new service-
name.js file in the directory config/search/config/pages/Default/osf. For example,
you could add a file named store-locations.js to this directory with configuration for
the Store Locations search service.

Note that you can use whatever naming convention you want for these search
configuration files, but the name you give a configuration file is then used as a path

Chapter 4
Configure search

4-12

parameter in REST API endpoints that access the service configured by the file. For
example, for a configuration file named store-locations.js, the endpoints for accessing the
configuration would use the following path:

/gsadmin/v1/cloud/pages/Default/osf/store-locations

Endpoints for querying the search service would use this path:

/ccstore/v1/assembler/pages/Default/osf/store-locations

Upload search configuration files

To upload search configuration files to the administration server, use the upload-search-
config command:

yarn occ upload-search-config

This command uploads all search configuration files in the application's config/search/
config/pages/Default/osf folder to the preview context. You can then promote these files to
the live context by publishing them.

Configure typeahead keywords

In addition to the files for configuring search services, you can create a file for specifying
custom typeahead keywords for an application. The location of the file within the application
directory is:

config/search/data/keywords.js

Each OSF accelerator template includes a sample keywords.js file. You can copy this file to
your own application and modify it.

When you upload the keywords.js file, the records in the file are appended to any existing
custom typeahead keyword records. You can instead delete the existing custom keywords
before adding the ones in the file by uncommenting the following lines:

// {
// // Uncomment this "deleteAll" record to truncate existing
// // supplemental(custom) typeahead keyword records.
// 'record.action': 'deleteAll'
// },

Upload a keyword file

To upload a keywords.js file to the administration server, use the upload-custom-
typeahead-keywords command:

yarn occ upload-custom-typeahead-keywords

After you upload the file, make the keywords available by using the POST /ccadmin/v1/
search/index endpoint to initiate indexing.

Chapter 4
Configure search

4-13

Deploy the application
In OSF, much of the work of serving the presentation layer is delegated to a Node.js
server. Widget code, for example, is part of the Node.js application.

In a development environment, the Node.js application runs in your local workspace,
and communicates with Oracle-hosted Commerce servers. The JavaScript application
can then be uploaded to a Node.js instance on a Commerce server environment,
where it runs alongside administration and storefront instances. Each environment can
run separate preview and live versions of the application.

Typically, developers have access to three server environments: test, staging, and
production (see below). To deploy application changes to a server environment, you
will need an application key specifically for that environment. You should be assigned
a unique application key for each environment you have access to. Other developers
may require access to different environments. For security purposes, you should avoid
sharing your application keys with other developers or checking them into your source-
control system.

When an application is deployed, the workspace itself is uploaded to the
administration server. You can use the CLI to prepare the workspace for deployment,
upload it, and track its status. See Workspace commands and scripts for information
about the command-line tools available for managing storefront applications.

Because the entire workspace is deployed, it is possible for other developers to create
their own workspaces from the deployed application, although it is recommended that
they create their workspaces from source control. See Create a workspace from a
deployed application.

Server environments

This section describes the test, staging, and production server environments.

Test environment

The test environment is intended to be used when creating an application. Developers
create the initial set of components and layouts in their local workspaces and deploy
them to the test environment as needed.

Staging environment

The staging environment is intended to be used as a pre-production environment for
running the developed application. The application running in this environment should
be similar to the production version in terms of business data and integrations.
Developers and business users can test and refine the application in a simulated
production environment.

Production environment

The production environment is where the public-facing version of the application runs.
Major changes should not be rolled out to the production environment without first
being tested in the test or staging environment. Access to the production environment
should be strictly controlled to allow only a limited group of developers to update the
production version of the application.

Chapter 4
Deploy the application

4-14

Deployment status

OSF provides commands for accessing deployment logs and monitoring the deployment
status of applications. See Monitor deployed applications for more information.

Promote the application to the live context
After you deploy an application to the preview context on a Commerce server environment,
its assets appear in the active workset in the administration interface.

To complete an application deployment and update the live instance, you publish the workset
that contains the application and its assets. You should view the contents of the workset
carefully and decide whether the preview application, the design assets, or both should be
published and, if appropriate, move some or all of the corresponding items to a new workset.
For details about publishing worksets, see Publish Changes.

Sync assets on a Commerce server with a local workspace
Oracle Commerce provides tools for keeping assets on server environments in sync with
local workspaces.

Your development team should maintain application code and configuration in a source
control system. Developers can access the source control system on their workstations, build
and modify applications in their local workspaces, and then deploy the applications to
Commerce server environments. Working this way helps ensure that the assets on the server
match the ones in the source control system.

However, not all assets are necessarily created by developers in local workspaces. The
Design page in the administration interface provides tools that designers can use to create
assets such as layouts and containers. In order to keep these assets up to date in the source
control system, the OSF command-line interface includes options for syncing assets between
a server environment and a local workspace. This section describes how to use these
commands. The assets they affect include layouts (pages), widgets and widget instances,
containers (widgets that can contain other widgets), text snippets, and slot instances.

Note that you should be careful when you use these options to ensure that you get the results
you expect. Depending on which commands you use and the flags you specify, the logic
associated with deleting or overwriting existing assets on the target system may differ. Be
sure you understand what the effect of a given command will be before you execute it, to
ensure that you do not lose any changes. To help avoid conflicts, it is a good idea for each
developer working on an application to create a local development version, as described in
Access local development applications on a Commerce server.

Upload assets from a local workspace to a server

To copy assets from a local workspace to a server environment, you use the deploy
command. For example:

yarn occ deploy blank-store

When you run this command, Commerce creates only new assets on the server. Any asset
that already exists on the server will not be overwritten by an asset with the same name from
the local workspace.

Chapter 4
Promote the application to the live context

4-15

Run the deploy command with the --reset flag to make the workspace on the
administrative server match the local workspace. The server will contain just the
assets that were uploaded from the local workspace. For example:

yarn occ deploy blank-store --reset

Note that with this option, any changes that have been made to assets on the server
that are not also on the local workspace will be lost. To avoid losing these changes,
you should download these assets to the workspace first, and then deploy the
application.

Download assets from a server to a local workspace

The CLI includes a download-assets command for copying assets from a server
environment to a local workspace. For example:

yarn occ download-assets blank-store

Any asset in the workspace whose name matches an asset downloaded from the
server is overwritten; other assets in the workspace remain as is. To avoid losing
changes that you have made to assets in your workspace, you should first commit
these changes to your source control system before downloading assets from the
server, and then resolve any conflicts afterward.

Run the download-assets command with the --reset flag to make the local
workspace match the administration server. The local workspace will contain just the
assets that were downloaded from the server. For example:

yarn occ download-assets blank-store --reset

Note that with this option, any changes that have been made to assets in the
workspace that are not also on the server will be lost. To avoid losing changes that you
have made in your workspace, you should first commit these changes to your source
control system before downloading assets from the server, and then resolve any
conflicts afterward. Or you can first deploy the changes to the server, and then
download the assets from there.

Access local development applications on a Commerce
server

OSF supports isolating different versions of assets on a Commerce server instance,
allowing developers to work on local versions of an application independently while
taking advantage of the features provided by remote rendering.

The key to sharing a Commerce server instance is for each developer to supply a local
development application name for his or her version of the application. The local
development application name should be different for each developer, and each local
development name should be different from the hosted application name (which is the
same for every developer). For example, the name for the hosted application might be
storefront-app, while the local development names could be fsmith-app, jjones-
app, and so on.

Chapter 4
Access local development applications on a Commerce server

4-16

The location of the source code for the application is the same in each local workspace, and
reflects the hosted application name (for example, /packages/apps/storefront-app).

Use the local development application name

You can use the --localDevAppName flag to specify the local development application name
to use when deploying and accessing the assets that are specific to the local workspace. For
example, you could enter:

yarn occ deploy storefront-app --localDevAppName fsmith-app

This command deploys the local version of the application to the Commerce server as
fsmith-app.

The following commands all accept the --localDevAppName flag:

create-template, delete, deploy, deploy-log, deploy-status, download,
download-assets, serve, upload-demo-search-keywords, upload-search-config

A local development name can also be configured persistently for an application so that it
does not have to be included explicitly in commands. For example:

yarn occ configure-app storefront-app --localDevAppName fsmith-app

The setting is stored in the application configuration file (/packages/apps/storefront-
app/.occ/config.js). For example:

module.exports = {
 "localDevAppName": "fsmith-app"
};

Override the local development application name

A developer can use the --no-localDevAppName flag to remove the local development name
from the application configuration. For example, the following command deletes the setting
from the application's .occ/config.js file:

yarn occ configure-app blank-store --no-localDevAppName

The --no-localDevAppName flag can also be used with the commands that accept --
localDevAppName to override the local development application name without removing the
name from the application configuration. For example:

yarn occ deploy storefront-app --no-localDevAppName

This command deploys the application to the server as storefront-app, but leaves the local
development application name setting in the application configuration. For example, a
developer might use this to check the deployment status of the hosted application in the
preview or live context.

Chapter 4
Access local development applications on a Commerce server

4-17

Render a local development application in a local workspace

Local development applications deployed to a Commerce server cannot access the
Node.js instances on the server, and therefore cannot be hosted in the server's
preview or live context. Only the hosted version of the application can be installed in
these environments.

To view and test a local application while accessing the application-specific asset
versions, a local workspace's Node.js instance must be used to render the design
assets that are on the Commerce server. So, for example, the following commands
might be used to specify the local application name, deploy the application to the
Commerce server, and then run the application locally while accessing assets on the
server:

yarn occ configure-app blank-store --localDevAppName fsmith-app
yarn occ deploy blank-store
yarn occ serve blank-store --dsAssetMode remote

Access local application assets in the administration interface

Although a local development application that is deployed to a Commerce server
cannot be rendered on the server, its assets can be accessed in the administration
interface. Multiple developers may have their own local development versions of the
same application, and to avoid conflicts, each version has a separate entry in the
application selector dropdown on the Design page. To distinguish the different
versions, the description that appears for each application in the dropdown is prefixed
by the local development name of the application.

Update a hosted application

Each local application can have a separate version of a specific asset. Even when a
local asset is deployed to a Commerce server and published, each version of the
application can have a different version of that asset.

This means that developers must ensure that they do not overwrite each other's
changes when they commit them to version control. Code must be merged carefully to
resolve conflicts. Keep in mind that in addition to changes made in local workspaces,
developers and designers may also makes changes on the server that must be
managed as well, as discussed in Sync assets on a Commerce server with a local
workspace.

To minimize risks, it is a good idea to use a continuous integration server that runs the
code that has been committed to version control, and deploy changes to the hosted
application from there.

Deploy a local development application as the hosted application

As discussed above, a local development application's assets can be deployed to a
Commerce server, but for the application to run it must be rendered in a local
workspace.

In some cases, a developer may want to deploy a local version of an application to the
server, and have it be rendered there so other developers can access the running
application. Before doing this, make sure that all of the assets from the "true" hosted
version have been checked into source control so that the version can easily be re-
created later; there should be no pending changes. Then deploy the local application

Chapter 4
Access local development applications on a Commerce server

4-18

using the --no-localDevAppName flag, so that it becomes the hosted application. For
example:

yarn occ configure-app blank-store --reset --no-localDevAppName

Note that the --reset flag forces all of the assets from the local application to be deployed to
the server, overwriting the assets from the hosted version.

Monitor deployed applications
OSF provides tools that you can use for monitoring deployed applications by querying the
deployment controllers running on the storefront server.

A controller instance is a Node.js application that manages the availability of a new
deployment. The controller receives the deployment from the administration server, installs it,
and then spawns application instances from it. The controller then switches incoming HTTP
traffic to the new instances and takes the previous deployment offline. Each deployment is
assigned a unique ID that can be used to identify it for monitoring.

The controller produces logs related to the process of accepting, installing, starting, and
switching deployments. These logs are particularly helpful in cases where the application
does not install successfully. For example, if the deployment status indicates that a
deployment is not active on a controller, the logs for the controller will contain information that
can help you determine why.

A cluster is a group of preview and live controllers. A cluster has one or more controllers
configured for the preview context and one or more controllers configured for the live context.

When a deployment is uploaded, the administration server pushes it to the preview
controllers in the cluster. When each preview controller receives the new application, it makes
the previous preview application inactive. The controller deletes the inactive application's
files, sets up the new application, starts it, and then makes it active by beginning to route
traffic to it. Similarly, when a preview application is published, it is pushed from the preview
context to the live context controllers, which inactivate the previous live application and
activate the newly published application.

View deployment status

You can use the deploy-status command to return status information about a deployed
application. The command supports a variety of options for querying about the status of
deployments. These include options that return:

• The status of the preview and live deployments for a specified application.

• The status of a deployment specified by ID.

• The status of the deployments in a cluster.

Different information is returned for each of these queries. The responses are described
below.

Query by application

To see the status of the preview and live deployments for an application, specify the name of
the application in the command like this:

yarn occ deploy-status <app-name>

Chapter 4
Monitor deployed applications

4-19

If you do not supply the application name, it defaults to the value of the appName setting
in the workspace's .occ/config.js file. You can change this setting using the
configure command or edit the setting in the file directly.

The deploy-status command returns information about the preview and live
deployments that have been received by the administration server and their status on
their respective controllers. For example:

yarn occ deploy-status my-app

[cli] info: Getting status for application my-app
[cli] info: Deployment 300322 found in preview.
[cli] info: - Deployment: 300322 -
[cli] info: application id: my-app
[cli] info: creation date: 2020-06-10T03:50:27.087Z
[cli] info: tags: username:fsmith
[cli] info: Deployment 300322 is fully installed in preview.
[cli] info: Deployment 300322 found in live.
[cli] info: - Deployment: 300322 -
[cli] info: application id: my-app
[cli] info: creation date: 2020-06-10T03:50:27.087Z
[cli] info: tags: username:fsmith
[cli] info: Deployment 300322 is fully installed in live.

The response includes the deployment ID for each deployment. In this example, the
same deployment (ID = 300322) is present in both the preview and live contexts, but
that may not always be the case.

If the response indicates that a deployment is fully installed in the preview or live
context, this means it is currently running on that context’s controllers. However, if you
see a message like the following, the deployment was received by the administration
server but has failed to install and run successfully:

[cli] info: Deployment 300322 found in preview.
. . .
[cli] info: Deployment 300322 is not fully installed in preview.

See Redeploy an application for information for information about what to do if this
occurs.

Query by deployment ID

To see the status of a single deployment specified by deployment ID, use the –-
deployment option:

yarn occ deploy-status --deployment <deployID>

The deployment can be one currently running in the preview or live context, or any
earlier deployment for which Commerce still has a record. If there is a record of the
specified deployment on the administration server, information like the following is
returned:

[cli] info: Getting status for deployment 300322
[cli] info: - Deployment: 300322 -

Chapter 4
Monitor deployed applications

4-20

[cli] info: application id: my-app
[cli] info: creation date: 2020-06-10T03:50:27.087Z
[cli] info: tags: username:fsmith

If the specified deployment is the current preview or live deployment, information like the
following is also returned:

[cli] info: Deployment 300322 found in preview.
[cli] info: Deployment 300322 is fully installed in preview.
[cli] info: Deployment 300322 found in live.
[cli] info: Deployment 300322 is fully installed in live.

Query by cluster

You can query deployment status by cluster to return information about the deployments
running on the controllers in the cluster, and about earlier deployments that are now inactive.
The information returned reflects only deployments that have been successfully installed, not
deployments that were received by the administration server but were not installed
successfully.

To return the status of the deployments in a cluster, use the –-cluster option:

yarn occ deploy-status --cluster <clusterID>

If <clusterID> is omitted, its value defaults to storefront. This is the only value currently
supported.

The response is returned in JSON format, as in the following example:

[cli] info: Getting status for cluster storefront
[cli] info: {
 "preview": [
 {
 "registry": "https://myhost-npmregistry.oc-test.com",
 "host": "https://myhost-previewsf2.oc-test.com/gcommerce-
osfcontroller1",
 "containerId": "b593ddef66b6",
 "controllerVersion": "1.8.0",
 "status": [
 {
 "appCapacity": 0,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "STOPPED",
 "deployId": "300321"
 },
 {
 "appCapacity": 1,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "ACTIVE",
 "deployId": "300322"
 }
]

Chapter 4
Monitor deployed applications

4-21

 },
 {
 "registry": "https://myhost-npmregistry.oc-test.com",
 "host": "https://myhost-previewsf2.oc-test.com/gcommerce-
osfcontroller2",
 "containerId": "50c631159649",
 "controllerVersion": "1.8.0",
 "status": [
 {
 "appCapacity": 0,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "STOPPED",
 "deployId": "300321"
 },
 {
 "appCapacity": 1,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "ACTIVE",
 "deployId": "300322"
 }
]
 }
],
 "deployments": [
 {
 "metadata": "{\"appName\":\"my-app\",\"appDir\":\"packages/
apps/my-app\",\"tags\":[\"username:fsmith\"]}",
 "repositoryId": "300322",
 "clusterId": "storefront",
 "id": "300322",
 "applicationId": "my-app",
 "creationDate": "2020-06-10T03:50:27.087Z"
 },
 {
 "metadata": "{\"appName\":\"my-app\",\"appDir\":\"packages/
apps/my-app\",\"tags\":[\"username:fsmith\"]}",
 "repositoryId": "300321",
 "clusterId": "storefront",
 "id": "300321",
 "applicationId": "my-app",
 "creationDate": "2020-06-10T03:48:29.049Z"
 }
],
 "links": [
 {
 "rel": "self",
 "href": "https://myhost-admin.oc-test.com/ccadmin/v1/
deploymentEnvironment/storefront/status"
 }
],
 "live": [
 {
 "registry": "https://myhost-npmregistry.oc-test.com",

Chapter 4
Monitor deployed applications

4-22

 "host": "https://myhost-livesf2.oc-test.com/gcommerce-osfcontroller1",
 "containerId": "eb262e366c7f",
 "controllerVersion": "1.8.0",
 "status": [
 {
 "appCapacity": 0,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "STOPPED",
 "deployId": "300321"
 },
 {
 "appCapacity": 1,
 "instanceFailures": 0,
 "appName": "my-app",
 "state": "ACTIVE",
 "deployId": "300322"
 }
]
 }
]
}

View deployment logs

You can use the deploy-log command to return controller logs for a deployed application.
The command supports a variety of ways to specify a cluster to return logs for. These include
supplying one of the following:

• The name of the application deployed in the cluster.

• The cluster ID.

• The ID of the deployment that the cluster is associated with.

You can specify the name of the application in the command like this:

yarn occ deploy-log <app-name>

If you do not supply the application name, it defaults to the value of the appName setting in the
workspace's .occ/config.js file. You can change this setting using the configure command
or edit the setting in the file directly.

The command determines the current preview deployment for the specified application,
determines what cluster that deployment was installed on, and then queries that cluster for its
logs related to that deployment. This enables you to retrieve the logs even if you do not know
the deployment ID.

You can specify the cluster by using the –-cluster option:

yarn occ deploy-log --cluster <clusterID>

Specifying the cluster ID overrides the application name. Note that if you include the –-
cluster option but omit the cluster ID, the cluster ID defaults to storefront. This is the only
value currently supported.

Chapter 4
Monitor deployed applications

4-23

You can specify the deployment by using the –-deployment option:

yarn occ deploy-log --deployment <deployID>

The deployment ID is required. This option overrides the application name and the --
cluster option if they are specified.

Return the system log

To see the system log for the cluster rather than the application log, use the --system
option. For example:

yarn occ deploy-log -–system

[cli] info: Connecting to https://myhost-admin.oc-test.com
[cli] info: Getting logs for application my-app
[cli] info: logs for http://10.74.98.250:4080
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] info:
[1/5] Validating package.json...
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] info:
[2/5] Resolving packages...
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] info:
[3/5] Fetching packages...
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] info:
[4/5] Linking dependencies...
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] warn:
warning " > @oracle-cx-commerce/cli@1.8.0" has unmet peer dependency
"@oracle-cx-commerce/rollup-config@*".
2020-05-19 17:30:15 - [storefront-60e98a0a1f6e-controller-104] warn:
warning " > @oracle-cx-commerce/cli@1.8.0" has unmet peer dependency
"builtin-modules@*".
...
2020-05-19 17:30:17 - [storefront-60e98a0a1f6e-controller-104] info:
[5/5] Building fresh packages...
...

Redeploy an application

If you detect issues with an existing deployment or if a new deployment fails, you can
use the redeploy command to resend the deployment to the cluster. You can use this
command to retry a failed installation or to synchronize the controllers on the same
deployment. The deployment is determined based on the application that was last
deployed to the cluster.

You can use command options to specify the server environment and context. For
example, use the –-live option to specify the live context:

yarn occ redeploy --live

Chapter 4
Monitor deployed applications

4-24

By default, the deployment is pushed only to the controllers that are not already running it. To
force controllers to reinstall the deployment regardless of whether they are currently running it
already, use the –-live option. For example:

yarn occ redeploy --force

Tag deployments

To help you to track your deployments, the deploy command includes a –-tag option that you
can use to add custom metadata to deployments to distinguish them from one another. This
option enables you to label your deployments in a way that is meaningful within your
organization. For example, the following command deploys an application and adds tags that
specify the build number (using whatever convention your team prefers) as well as a feature
in the build:

yarn deploy my-app --tag build1.2.3 --tag featureX

The following example illustrates how the tags are returned by the deploy-status command:

yarn deploy-status --deployment 2300001

[cli] info: Getting status for deployment 2300001
[cli] info: - Deployment: 2300001 -
[cli] info: application id: my-app
[cli] info: creation date: 2020-05-07T22:32:26.754Z
[cli] info: tags: build1.2.3, featureX, username:fsmith
[cli] info: Deployment 2300001 found in preview.
[cli] info: Deployment 2300001 found in live.

Note that the username tag is added automatically. It reflects the username on the machine
where the deployment was created.

Chapter 4
Monitor deployed applications

4-25

5
Create Custom Widgets

Widgets are added to the layouts that provide the user interface for your storefront.

Note that the widgets used in the Open Storefront Framework (OSF) are implemented
differently from the widgets used in previous Oracle Commerce versions. This section
describes OSF-based widgets. For information on widgets used in Oracle Commerce in the
19.x storefront framework, refer to Create a Widget.

Understand widgets
Widgets, which work together with plug-ins and other components, help you create your
website user interface.

Before you can create custom widgets, ensure that your development environment is
configured correctly. For detailed information on creating your environment, refer to Set Up a
Development Environment.

Widgets are user interface elements of your application that work in tandem with plug-ins.
Plug-ins are elements that have been configured or created to support your application. Each
widget, which is also a plug-in, is an individual piece of code that performs specific tasks that
interact with other plug-ins, such as actions, and can be re-used as needed. Widgets are the
only component that is displayed on the Design page in the administration interface, and
must be exported to be visible.

Widgets in OSF are state driven and are composed on the OSF server. Widgets be
constructed from a broad spectrum of JavaScript technologies and are typically more
concentrated and lightweight. OSF widgets can be grouped together into a container for easy
placement on your layouts, or they can be referenced independently.

Design features with widgets

Use widgets when you want to design features that are available in different contexts on
multiple pages. Widgets are also useful if you want to place an element in several locations
or target specific audiences.

OSF provides several default widgets that give you the ability to interact with your customers,
update and modify profile information, customize product information, and display payment
and shipping methods. However, you may want to create a new widget or customize an
existing widget.

For example, you might want to create a new widget that presents your shoppers with upsell
information or customize an existing widget that allows your shoppers to set up a default
favorite store. Or you may want to create a page where your shoppers can select a specific
currency. Widgets allow you to create these interfaces.

Prerequisites for widgets

Before you create or customize widgets, you should be familiar with the technologies
described in the Prerequisites section. You should also be familiar with creating and using the
following:

5-1

• Redux Store – (Information can be found at https://redux.js.org/api/store/)

• Actions – (Information can be found at https://redux.js.org/basics/actions)

• Sagas– (Information can be found at https://redux-saga.js.org/docs/introduction/
BeginnerTutorial.html)

• Reducers – (Information can be found at https://redux.js.org/basics/reducers/)

• Promises – (Information can be found at https://developer.mozilla.org/enUS/
docs/Web/JavaScript/Reference/Global_Objects/Promise)

You must also create a workspace in which your widgets will reside. You do this using
the create-workspace tool, which is described in Set up a workspace.

Understand how widgets work

Widgets are React function components that do the following:

• Export a function that accesses a props object that defines its properties.

• Return a React element that is specified with the JSX syntax.

The following is an example of a very basic widget. This example shows a simple
component that takes props and then returns a <div> with a text string:

import React from 'react';
const MyWidget = props => {
 return (
 <div>
 This is my widget!
 </div>
);
 };
 export default MyWidget;

Widgets typically display information from the Redux store. OSF provides a higher-
order connect component that allows a widget to update its display when specific
properties change within the Redux store. Widgets can also invoke actions, which are
payloads of information that perform specific tasks and can result in updates to the
Redux store.

Widgets are modules that export a function. Functions accept a props object that
contains the properties of the component. This allows you to include that component in
another component or page. The function returns a React element that is added to the
DOM. React uses a JSX syntax that allows you to create composite elements that are
expressed in an HTML-like manner.

The following is a high-level overview of how a typical widget works:

1. A widget’s initial display is generated on the server using information that has
been applied to the Redux store by a data fetcher. Fetchers determine actions that
the component takes when generating the initial state and typically invoke an
Oracle Commerce REST API endpoint and apply the response to the Redux store.
Fetchers run on the server if the widget is rendered due to a full page request.
However, if the widget is rendered while dynamically creating a layout as a result
of navigation within a single-page application, the fetcher runs on the client.

Chapter 5
Understand widgets

5-2

https://redux.js.org/api/store/
https://redux.js.org/basics/actions
https://redux-saga.js.org/docs/introduction/BeginnerTutorial.html
https://redux.js.org/basics/reducers/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

2. The widget invokes an action, for example, in response to a user gesture. An action is a
function in the store’s API that accepts an action type and an optional payload containing
additional information.

3. Using information from the action, the Redux store invokes a Saga effect, resulting in an
asynchronous call to an endpoint of the Oracle Commerce REST API.

4. The endpoint response is applied to a specific area of the Redux store.

5. The widget displays the updates that reflect that were made in the Redux store.

Before you can use a widget, you must export the widget information to your server's
framework. When you call the client, meta, or server start functions, using the client, meta,
or server.js files located in your application's /src directory, the system registers all of
the exported sub-modules from the /plugins directory as parameters to those functions.
This tells the framework of their availability. The root widget, which is a required component,
is rendered as the top-level React component. There are additional components that are
required by applications, including the container and the connect components. These
required components are available to you by default.

Identify types of widgets

There are three different types of widgets, which are set using the type attribute in the
component-level meta.js file. You should declare the type of widget you are creating based
upon how you intend to use it:

• Container – Containers are place holders on a layout. You can drag other widgets into a
container, thereby grouping a number of related widgets together on the layout. You can
also use containers to duplicate a set of widgets across a layout. Container widgets can
be nested within other containers up to five levels. Containers identify regions on the
layout that allow you to add components. Refer to Understand containers for information
on containers.

• Stacks – Stacks are like containers. The following stacks types are available: Accordion,
Tab, Popup, and the Checkout Layout Progress Tracker.

• Individual – Individual widgets are singular widgets that can be added to layouts, as well
as to container or stack widgets. This is the default setting. If you do not specify a type,
the widget you create is an individual widget.

Review widget file structure

Widgets have a specific directory structure. The path structure uses several files that
communicate with one another to share data. Note that there are application-level files, plug-
in level files, and component-specific files.

As described in Develop and Deploy Applications, when you create an application, you define
specific files and file structures. In addition to creating assets, you create a /src directory,
which contains a /plugins directory. This directory contains all of the components needed
to work with widgets.

The /src directory should also contain the following application-level files:

• client.js - This file provides client-side JavaScript entry points to your application. The
client-side application code registers components and other entities by passing them in to
a createClient function, which initializes a Redux store.

• server.js - This file initiates the createServer function, which creates a server factory.
Components and other metadata is available to your application when you provide
information to the server factory.

Chapter 5
Understand widgets

5-3

• meta.js - This file creates an object that contains your application's metadata,
which is then passed to the createServer function in the server.js file.

The /src/plugins directory contains the code used by your widget. As an example,
the currency-selector widget, located in the /my_app/src/ directory, has the
following data structure and files:

 /plugins
 /actions
 index.js
 meta.js
 /get-currency
 index.js
 meta.js
 /components
 index.js
 meta.js
 /currency-selector
 index.js
 meta.js
 styles.css
 /locales
 de.js
 en.js
 /endpoints
 index.js
 meta.js
 /get-currency
 index.js
 meta.js

Understand widget composition

All widgets are composed of some combination of the following files. These files are
laid out in the file structure specified in the description:

File name Description

index.js Each plug-in type has its own index.js file.
For example, the /package/plugins/
actions/index.js file contains a
dynamic import reference to the module-based
actions.

Each widget has its own component-level
index.js file. This /packages/
plugins/component/component-
name/index.js file performs a dynamic
import of the helper components, classes, and
plug-in-specific objects.

Chapter 5
Understand widgets

5-4

File name Description

meta.js The meta.js file stores metadata of the
component, such as resources, configurations,
actions, endpoints, fetchers and the type of
component. It is best to limit meta.js file
dependencies to contain only fetchers, locales,
configurations, type and packageId.

Each plug-in has its own root meta.js file.
This meta.js file makes a dynamic
reference to the module-based plug-in
directory.

Each widget has its own component-level
meta.js file. This /packages/
plugins/component/component-
name/meta.js file identifies fetchers and
actions, as well as performs a dynamic import
of dependencies required for the component.

selectors.js This file contains helper methods that select
the required data from the store state, inject
that data into a props object, and share the
data with the widget. Selectors are written at
the component-level or the application-level.
(Application-level selectors can be shared
among multiple widgets.)

styles.css This component-level file defines widget-
specific CSS styles.

config.js This component-level file provides the widget
settings that are imported in the meta.js
file. It is recommended that you write a
config.js file that contains the necessary
configuration settings and refer to the
config.js file from the meta.js file.

Understand containers

You can use containers to nest components within other components. Containers, which are
regular components with associated layouts, can be nested up to five levels deep. Container
components are React components that provide a list of regions as part of their state model.
Containers can also pass context down to child components.

The component is responsible for rendering the layout. The following is an example of a
container widget’s /plugins/components/container/index.js file:

import React from 'react';
 import Region from '@oracle-cx-commerce/react-components/region';
 import Styled from '@oracle-cx-commerce/react-components/styled';
 import css from './styles.css';

 const Container = props => {
 const {regions = [], configuration = {}} = props;
 const {className = ''} = configuration || {};

 return (
 <Styled id="Container" css={css}>

Chapter 5
Understand widgets

5-5

 {/* render each child region */}
 <section className={`Container__Section ${className}`}>
 {regions.map(regionId => (
 <Region key={regionId} regionId={regionId} />
))}
 </section>
 </Styled>
);
 };
 export default Container;

This example shows how the container defines regions and the container class name.

The following is an example of a container widget’s /plugins/components/
container/meta.js file. The metadata for a container widget might contain
information such as the following:

import config from '../../config/general/config.json';
 import de from '../../config/general/locales/de.json';
 import en from '../../config/general/locales/en.json';

 export const Container = {
 type: 'container',
 config: {
 ...config,
 locales: {
 en,
 de
 }
 }
};

Containers can also be preconfigured and uploaded with an application. This allows
you to associate a predefined layout with a default container component. For example,
you could upload a custom header that is comprised of nested components.
Predefined containers that use predefined layouts are stored in your /assets/
containers directory. Once you have uploaded a predefined container, it is available
in the component drawer in the administrative interface and can be dragged onto a
layout. Once it has been dragged onto a layout, the administrative interface creates a
component instance that uses the associated predefined layout.

When you create a predefined container, you create the necessary JSON files in the /
container directory in the root level of your application.

For example, if you were to create a /src/components/container/
header.json file, it might contain the following:

{
 "title": "Header",
 "component": "Container",
 "layout": [
 {
 "width": 2,
 "components": [

Chapter 5
Understand widgets

5-6

 "MenuMobile"
]
 },
 {
 "width": 8,
 "components": [
 "Logo"
]
 },
 {
 "width": 1,
 "components": [
 "SearchMobile"
]
 },
 {
 "width": 1,
 "components": [
 "CartStatusMobile"
]
 }
]
}

The metadata of this container contains the title, base component and the layout.

Once you have created the container, you can reference it from the default page layouts,
located in the /pages/home.json file:

{
 "title": "Homepage",
 "address": "/home",
 "shortName": "home",
 "layout": [{
 "type": "header",
 "width": 12,
 "components": [
 "Header"
]
 },
 {
 "type": "main",
 "width": 12,
 "components": [
 "Placeholder"
]
 },
 {
 "type": "footer",
 "width": 12,
 "components": [
 "Footer"
]
 }

Chapter 5
Understand widgets

5-7

]
}

Understand plug-ins
Widgets are used in conjunction with the specific elements, known as plug-ins. Plug-
ins enable a widget to invoke API functions, retrieve state information, send and
retrieve data from your application and watch for registered actions.

Plug-ins can be used independently, but are usually combined to create functionality:

• Endpoints – Endpoints allow you to create an adapter to Oracle Commerce REST
API functions. For detailed information on creating and working with endpoints,
refer to Create an endpoint.

• Actions – Actions, which are invoked by widgets, send data from your application
to the state store, as well as identify any behavior that should occur in response to
a change of state. For detailed information on creating and working with actions,
refer to Write an action.

• Fetchers – Before they can be rendered, widgets require that data from many
sources be uploaded to the state model. Fetchers, which allow you to identify this
data, are functions that use the current store and widget instance configuration
values to return a promise. The promise is resolved once the fetcher has
completed loading data. Fetchers load data into the state using the
store.endpoint method. For detailed information on creating and working with
fetchers, refer to Write a fetcher.

• Subscribers – Subscribers passively watch for registered actions that occur
outside of the component. Once an action is recognized, sagas dispatch them.
Subscribers do not invoke Redux store actions. They can, however, invoke
endpoints independent of the Redux store. Note that subscribers run only on the
client. For information on subscribers, refer to Create a subscriber.

• Helper components – Helper components are any framework module that can be
individually referenced. For information on components, refer to Understand helper
components.

Understand helper components
Widgets access and use built-in plug-ins that perform various functions. These
functions, or helper components, allow you to further customize your widgets by
enabling formats, reading forms, and performing other functions.

Widgets can reference helper components exposed by the application, such as those
provided in the /react-components directory, or custom components that are defined
explicitly within your application’s /plugin directory. Helper components exist under
your application and can be referenced in other components or widgets. These helper
components include formats for adding icons, images, links, styles, and others. For
example, the Form component allows you to display HTML in a form.

Helper components are abstract, reusable lower-level components or utilities.
Although not exposed in the Design page of the administration interface, they can be
used when coding widgets and containers. Note that these components are not
connected to the state model and get their state information from widgets.

Chapter 5
Understand widgets

5-8

Important: Do not modify the generic helper components, as you may affect the functionality
and performance of your application.

The following are some of the helper components that are available:

• Form - The Form component displays HTML forms. It supports callback methods to invoke
actions, for submissions and errors. This component has default form field validation and
uses the validationMessage class. You can add custom validation into the Form
component. When Form validation occurs, it is best to ensure that it is using HTML5
validation. Note that any form validation should be displayed above the form.

• Img - This component displays images. It takes callback methods and fallback images
when working with failed images.

• Icons - Icons should be created as a separate component in your application. They must
be defined with an SVG paths defined in the component.

• Styled - This component reads CSS and appends it to the HTML header. The Styled
component should be wrapped around all components that have a CSS style.

• Link - This component should be used on all page navigation that call a URL, as
opposed to using an anchor tag with href links. Using an anchor tab with an href link
causes the entire page to refresh every time one of the links is selected.

Build a widget
Widgets allow you to create graphic elements for your storefront. There are several steps to
creating a widget, including planning, associating layouts, creating components and
registering.

This section takes the concepts discussed earlier and walks you through the building of a
widget. The following is an example of a widget that allows a shopper to see a currency
symbol for a specific currency, or the CurrencySelector widget. The widget example shows
you how to get data from a REST API call for your initial display and then get additional data
from another API function that you can use to update your display.

This example application has a single currency selector widget that presents a dropdown list
of all of the available currencies as returned by the list-currencies JavaScript endpoint.

Chapter 5
Build a widget

5-9

This example has an event listener that listens for selections from this list. When a
selection occurs, the ID of the selected currency is passed to the getCurrency REST
endpoint to get specific details. When that information is received, it is displayed in an
auxiliary panel, showing you the currency symbols for the available currencies. For
example:

Steps to create a widget

Creating new widgets allows you to customize your website's interface, as well as
provide additional functionality to your shoppers. Before you begin to develop new
widgets, it is best to plan out your requirements.

Note: Before you create a widget, ensure that you have correctly configured your OSF
workspace. Refer to Set Up a Development Environment for information on setting up
and configuring your OSF workspace.

It is important that you have identified the task that your widget is going to perform.
Additionally, identify if your widget needs data to be added to the Redux store, and if
that data needs to be available during server-side rendering (SSR).

Ideally, a component should only perform one task. When creating a widget, try and
make your components smaller, which will make your code reusable across different
pages. It is also recommended that you create functional components, which consume
less than a class-based component.

Once you have determined what and how your widget will work, perform the following
tasks:

Chapter 5
Build a widget

5-10

1. Create the plug-in directory structure needed for your new widget, as described in
Review widget file structure.

2. Create the initial widget index and metadata JavaScript files, as described in . These files
will be modified as you continue to add other plug-in components.

3. Add the widget to your application as described later in this section.

4. Add your widget to your home page layout as described in Identify the layout.

5. Create and generate the CSS files that your widget will use as described in Set the
widget style sheet.

6. Display localized strings, if necessary, which is described in Create locale information.

7. If you have determined that your data needs to be available during SSR, add a new
selector to the widget to access the data, as described in Create a selector.

8. To obtain the necessary data for the widget to run, create fetchers, as described in Write
a fetcher.

9. To access an endpoint, write an action, as described in Write an action.

10. Create an endpoint, as described in Create an endpoint.

11. If you need to deploy a global widget that has no user interface, create a subscriber as
described in Create a subscriber.

Create a widget directory structure

Your widget needs to follow a specific file structure. Create the file structure for you widget
similar to that described in Review widget file structure. When you create a new widget, you
will have to create these directories. If you clone and then modify an existing widget, these
directories may already exist.

For our example, create the widget in the /plugins/components/currency-selector/
directory. This directory will contain the widget you create for the currency selection.

Create widget files

As described in Understand widget composition, all widgets contain, at the very least, both an
index.js file and a meta.js file. Note that these are different than the index.js and
meta.js files that reside in the /plugins directory.

Using the currency selector example, when you write your widget, you must add it to the
components directory in the /plugins/components/currency-selector directory that
you just created. For example, the following /plugins/components/currency-
selector/index.js file defines the widget:

import React from 'react';
const CurrencySelector = () => {
 const currencies = [
 {repositoryId: 'c1', displayName: 'Franc', currencyCode: 'FRA'},
 {repositoryId: 'c2', displayName: 'Pound', currencyCode: 'GBP'},
 {repositoryId: 'c3', displayName: 'Yen', currencyCode: 'JPY'}
];
 const selectedCurrency = currencies[0];

 return (
 <div>
 {currencies && (

Chapter 5
Build a widget

5-11

 <div>
 <Dropdown
 id="CurrencySelector-list"
 name="CurrencySelector-list"
 label="Currencies:"
 aria-label="Currencies:"
 value={selectedCurrency && selectedCurrency.repositoryId}
 onChange={event => {
 console.log(`selected ${event.target.value}`);
 }}
 onBlur={() => {}}
 >
 <option value="">Select a currency...</option>
 {currencies.map(currency => (
 <option key={currency.repositoryId}
value={currency.repositoryId}>
 {currency.displayName}
 </option>
))}
 </Dropdown>
 </div>
)}
 {selectedCurrency && (
 <div>
 Selected currency: {selectedCurrency.displayName}
({selectedCurrency.currencyCode})
 </div>
)}
 </div>
);
};
export default CurrencySelector;

Widget code has associated metadata, so whenever you create a module that
implements your widget, you must also create a parallel metadata object. The
following is an example of an undefined /plugins/components/currency-
selector/meta.js file:

/**
 * Metadata for the currencySelector component.
 */
 export default {};

Add your widget to your application

OSF provides a number of default widgets that you can use when creating your own
widget. To add a default widget and make it available to the system, edit the
index.js and the meta.js files in the component directory, for example, /
plugins/component/index.js. This index.js file exports a number of functions
whose names correspond to the name of your application's widgets. Each function
returns a dynamic import that resolves to a module whose default export is the React
component that initiates the widget.

Chapter 5
Build a widget

5-12

By default, when the system generates an application, it exports of all of the default widgets,
which are available to you should you choose. Your application may not require all of the
default widgets.

For example, to create the currency-selector widget, you would add the following to the /
plugins/components/index.js file:

 // Export a reference to our _CurrencySelector widget.
export const _CurrencySelector = () => import('./currency-selector');

Whenever you create a new widget, you must add a reference to it.

Add the following to the /plugins/components/meta.js file:

export {default as _CurrencySelector} from './currency-selector/meta';

Note: Preceding the names of your new components with an underscore is the
recommended naming convention for custom widgets, as it will prevent naming collisions with
default widgets. For example, _CurrencySelector.

Identify the layout

Before creating the widget, set the layout page that the widget will use by setting the
my_app/assets/pages/home.json file. Set the layout page as follows:

{
 "title": Home Page",
 "address": "/home",
 "shortName": "home",
 "defaultPage": true,
 "layout": [
 {
 "type": "main",
 "width": 12,
 "components": [
 "_CurrencySelector"
]
 }
]
 }

Note that the _CurrencySelector has been added as a component.

You initially create your layouts locally, and then upload them to the Design page of the
administration interface.

Set the widget style sheet

Our example, the CurrencySelector widget, uses a default CSS style sheet that creates a
CSS class called CurrencySelector. This file, which is defined in the /plugins/
components/currency-selector/styles.css file, contains standard CSS styling:

/**
 * CurrencySelector CSS definitions.

Chapter 5
Build a widget

5-13

 */

 .CurrencySelector {
 padding: 10px;
 }
 .CurrencySelector__Label {
 padding-right: 10px;
 }
 .CurrencySelector__SelectedCurrencyInfo {
 padding-top: 10px;
 }

If you create or use any CSS that is specific to a user interface component, that CSS
should be stored within the widget's styles.css file. Note that UI components should
be plain CSS, which will enable you to apply styles on your UI components. It is also
recommended that you use flex or grid CSS layouts.

Once you have created the CSS, you must update the Currency Selector widget to
use the CSS:

1. Import the contents of the styles.css file into a string constant named css.

2. Wrap the widget's React element in a Styled component, with an id property
named after the widget (in this case, CurrencySelector) and a css property
that contains the imported CSS. This inserts the CSS into an HTML style element
before rendering the widget.

3. Use class names from the CSS by setting the React className property on
individual React elements.

Note: Always import or export individual constants, classes or functions separately
and not by using wildcards. The following example shows how to take the <div> of the
className and put it inside the Styled component. It gives it a unique ID, and then
pulls in the CSS file as a plain string named CSS. This lets you set it as a property on
the Styled component. That causes the CSS from that style sheet to be added to the
DOM and makes it available for you to use. Then set the class name of the <div> to
the CurrencySelector class that was identified in the style sheet. This is a portion of
the example /plugins/components/currency-selector/index.js file:

import React from 'react';
import Styled from '@oracle-cx-commerce/react-components/styled';
import css from './styles.css';

const CurrencySelector = () => {
 const currencies = [
 {repositoryId: 'c1', displayName: 'Franc', currencyCode: 'FRA'},
 {repositoryId: 'c2', displayName: 'Pound', currencyCode: 'GBP'},
 {repositoryId: 'c3', displayName: 'Yen', currencyCode: 'JPY'}
];
 const selectedCurrency = currencies[0];

 return (
 <Styled id="CurrencySelector" css={css}>
 <div className="CurrencySelector">
 {currencies && (
 <div>

Chapter 5
Build a widget

5-14

 Currencies:

 <select
 value={selectedCurrency && selectedCurrency.repositoryId}
 onChange={event => {
 console.log(`selected ${event.target.value}`);
 }}
 onBlur={() => {}}
 >
 <option value="">Select a currency...</option>

 {currencies.map(currency => (
 <option key={currency.repositoryId}
value={currency.repositoryId}>
 {currency.displayName}
 </option>
))}
 </select>
 </div>
)}

 {selectedCurrency && (
 <div className="CurrencySelector__SelectedCurrencyInfo">
 Selected currency: {selectedCurrency.displayName}
({selectedCurrency.currencyCode})
 </div>
)}
 </div>
 </Styled>
);
};
export default CurrencySelector;

Note that the /plugins/components/currency-selector/meta.js file should contain
the following:

import * as de from './locales/de.json';
import * as en from './locales/en.json';

export default {
 resources: {
 de,
 en
 }
};

For additional information on CSS performance, refer to Remove unnecessary CSS.

Create locale information

You can add styling and localized strings to your widget. The widget obtains localized text
from a resource bundle that identifies the language of the shopper's browser.

Chapter 5
Build a widget

5-15

Your application can store the necessary code in the /locales directory under your
widget’s component directory. For example, /plugins/components/currency-
selector/locales. Note that all shared locale strings should be put into this
common resource directory, however, component-specific locales should never be
added to the common directory. CSS classes will also identify how to display your
widget based upon the device used to view the site. For example, you may want to
create mobile-specific CSS and desktop-specific CSS. These CSS classes can be
differentiated using a @media query to identify different resolution and size images.

This directory should contain resource bundles for all of the supported locales. These
resource bundles contain strings. For example, the English locale, or the en.json file,
contains the following for the CurrencySelector widget:

{
 "labelCurrencies": "Currencies:",
 "labelSelectACurrency": "Select a currency...",
 "labelSelectedCurrency": "Selected Currency:"
}

Since resources are passed into widgets as normal props, it is best to use a naming
convention that differentiates resource props from other props. It is recommended that
you reuse labels, and avoid duplication.

And the German locale, or the /plugins/components/currency-selector/
locales/de.json file, contains the following:

{
 "labelCurrencies": "[de]Currencies:[de]",
 "labelSelectACurrency": "[de]Select a currency...[de]",
 "labelSelectedCurrency": "[de]Selected Currency:[de]"
}

So that resources can be passed in as component props, replace your widget's
meta.js file to be similar to the following:

import de from './locales/de.json';
import en from './locales/en.json';

/**
 * Metadata for the CurrencySelector component.
 */
export default {
 // Include references to all of our resource strings in all
supported locales.
 // This will enable the component to access any resource string via
its props,
 // using the locale that is currently in effect.
 resources: {
 de,
 en
 }
};

Chapter 5
Build a widget

5-16

Replace the hard-coded strings in your widget with resource prop values:

import React from 'react';
import Styled from '@oracle-cx-commerce/react-components/styled';
import css from './styles.css';

const CurrencySelector = ({labelCurrencies, labelSelectACurrency,
labelSelectedCurrency}) => {
 const currencies = [
 {repositoryId: 'c1', displayName: 'Franc', currencyCode: 'FRA'},
 {repositoryId: 'c2', displayName: 'Pound', currencyCode: 'GBP'},
 {repositoryId: 'c3', displayName: 'Yen', currencyCode: 'JPY'}
];
 const selectedCurrency = currencies[0];
 return (
 <Styled id="CurrencySelector" css={css}>
 <div className="CurrencySelector">
 {currencies && (
 <div>
 {labelCurrencies}</
span>
 <select
 value={selectedCurrency && selectedCurrency.repositoryId}
 onChange={event => {
 console.log(`selected ${event.target.value}`);
 }}
 onBlur={() => {}}
 >
 <option value="">{labelSelectACurrency}</option>

 {currencies.map(currency => (
 <option key={currency.repositoryId}
value={currency.repositoryId}>
 {currency.displayName}
 </option>
))}
 </select>
 </div>
)}
 {selectedCurrency && (
 <div className="CurrencySelector__SelectedCurrencyInfo">
 {labelSelectedCurrency} {selectedCurrency.displayName}
({selectedCurrency.currencyCode})
 </div>
)}
 </div>
 </Styled>
);
};
export default CurrencySelector;

Note that you must redeploy your application for localization to take effect as the localization
mechanism requires that Design Studio text snippets have been created to contain the
translated strings.

Chapter 5
Build a widget

5-17

When you create shared locale resource strings, they should go into a common
resource directory. However, ensure that you do not add component-specific locales
into a common resource directory.

Now that you have created your widget, you can configure it to communicates with
REST API endpoints.

Create a subscriber
Subscriber plug-ins are passive observers that allow you to deploy a global widget that
has no user interface.

Subscribers allow you to add connections to other independent endpoints. For
example, if you want to add Google Analytics to your site, use a subscribers plug-in.
Subscribers do not invoke store actions, and as such, they receive read-only versions
of the Redux store’s API. You can, however, use subscribers to invoke endpoints
independent of the Redux store. Note that subscribers are run only on the client-side.

Use a subscriber for any feature where you want to passively observe an event. If your
feature needs to update the application state, then you should create an action.
Creating a subscriber is similar to creating an action or an initializer. The following
example shows how to create a subscriber named my-subscriber:

1. Create a /plugins/subscribers/my-subscriber directory to store your
subscriber index and meta.js files.

2. Create the /plugins/subscribers/my-subscriber/index.js file. For
example:

export default ({endpoint, getState, subscribeDispatch}) => {
 // Get value form the selector
 // const someValueFromTheState = someSelector(getState());
 return subscribeDispatch(action, state) => {
 // const {type} = action;
 // Track getState action
 if (type === 'getState') {
 // Add connections to other independent endpoints
 // endpoint ('someEndpointName', somePayload, state);
 }
 else if (type === 'myOtherAction') {
 // Track myOtherAction action
 }
 });
};

3. Create the /plugins/subscribers/my-subscribers/meta.js file. For
example:

export default {
 packageId: '@oracle-cx-commerce/subscribers',
 description: 'Add your description',
 //endpoints: ['yourEndpointName' || ''],
 //triggers: 'someActionType',
 author: 'yourUserName'
};

Chapter 5
Build a widget

5-18

4. Export your subscriber by creating a /plugins/subscriber/index.js file that
contains the following:

export const mySubscriber = () => import('./my-subscriber');

5. Then export your subscriber's metadata by creating a /plugins/subscribers/
meta.js file that contains the following:

export (default as mySubscriber) from './my-subscriber/meta';

6. You must add the subscribers to your application's client.js file. For example:

import * as actions from './plugins/actions';
 import * as components from './plugins/components';
 import * as endpoints from './plugins/endpoints';
 import * as subscribers from './plugins/subscribers';
 import {createClient} from '@oracle-commerce/react-app/client';
 createClient({
 actions,
 components,
 endpoints,
 subscribers
}). then(({start}) => start ());

7. Finally, you must add the subscriber information to your application's meta.js file. For
example:

import * as actions from './plugins/actions/meta';
 import * as components from './plugins/components/meta';
 import * as endpoints from './plugins/endpoints/meta';
 import * as initializers from './plugins/initializers/meta';
 import * as subscribers from './plugins/subscribers/meta';
 import {createMeta} from '@oracle-commerce/react-app/meta';
 export default createMeta({
 actions,
 components,
 endpoints,
 initializers,
 subscribers
});

Configure a widget to use REST endpoints
Once you have created a custom widget, you can update your application to communicate
with the REST API.

To continue creating the widget code that displays a list of currencies, you must obtain the
location from which the data should be retrieved. For this example, assume that you get the
data from the Redux store. First, you must declare the component. Do this by exporting a
connect component. It acts as a wrapper around your component and lets you connect your
component to a specific part of the state located in the Redux store. This allows properties to
be passed in as props to your component. Then you pass a selector that points to a specific
part of the Redux store into the constructor for that component. Whenever those properties

Chapter 5
Build a widget

5-19

change, your component will re-render. The connect component binds the display of
your component to the values of your properties.

This is how your component obtains data. You can also use the connect component to
perform specific tasks, which might result in updates to the data in the Redux store.
This would result in re-rendering certain parts of your application.

This is an example of the widget’s /plugin/components/currency-selector/
index.js file where the wrapped component is identified:

/**
 * Wrap the component with a "connect" object that supplies the state's
 * currency information as props and redisplays the component when any
of those
 * props change.
 */
 export default connect(getCurrencyInfo)(CurrencySelector);

When you create a widget that may have significant differences between user
interfaces, it is recommended that you create separate widgets.

In the following code, the HTML looks up the currencies array. Then it takes the given
currency and adds options using the displayName of the given currency. This is
defined in the /plugin/components/currency-selector/index.js file.

Once you have configured your widget to use endpoints, this is what the index.js
file for the currency selector should resemble:

import React, {useContext} from 'react';
import {StoreContext} from '@oracle-cx-commerce/react-ui/contexts';
import Styled from '@oracle-cx-commerce/react-components/styled';
import {connect} from '@oracle-cx-commerce/react-components/provider';
import css from './styles.css';
import {getCurrencyInfo} from '../../selectors';
import {listCurrenciesFetcher} from '../../fetchers';
import {useListCurrenciesFetcher} from '../../fetchers/hooks';

// The server-side rendering framework checks each component for a
"fetchers" array
// to determine what actions to take in order to populate the initial
state. For this
// component, we need the currency list.
export const fetchers = [listCurrenciesFetcher];

/**
 * The CurrencySelector component.
 *
 * @param {object} props.currencies Array of info about available
currencies
 * @param {object} props.selectedCurrency Info about the selected
currency
 * @param {string} props.label* Resource strings
 */
const CurrencySelector = ({
 currencies,

Chapter 5
Build a widget

5-20

 selectedCurrency,
 labelCurrencies,
 labelSelectACurrency,
 labelSelectedCurrency
}) => {
 // Make sure we have the latest currency list during client-side rendering.
 const store = useContext(StoreContext);
 useListCurrenciesFetcher(store);

 // Invoked when the user selects a currency from the
 // select element. Invokes the '_getCurrency' action to
 // update the selected currency with info from the server.
 const onCurrencyChange = event => {
 const repositoryId = event.target.value;
 if (repositoryId) {
 store.action('_getCurrency', {repositoryId});
 }
 };

 // Display a panel with:
 // * a select element with a placeholder and all available currencies
 // * a panel with information about the selected currency
 return (
 <Styled id="CurrencySelector" css={css}>
 <div className="CurrencySelector">
 {currencies && (
 <div>
 {labelCurrencies}</
span>

 <select
 value={selectedCurrency && selectedCurrency.repositoryId}
 onChange={onCurrencyChange}
 onBlur={onCurrencyChange}
 >
 <option value="">{labelSelectACurrency}</option>

 {currencies.map(currency => (
 <option key={currency.repositoryId}
value={currency.repositoryId}>
 {currency.displayName}
 </option>
))}
 </select>
 </div>
)}

 {selectedCurrency && (
 <div className="CurrencySelector__SelectedCurrencyInfo">
 {labelSelectedCurrency} {selectedCurrency.displayName}
({selectedCurrency.currencyCode})
 </div>
)}
 </div>
 </Styled>

Chapter 5
Build a widget

5-21

);
};

/**
 * Wrap the component with a "connect" object that supplies the state's
 * currency info as props and redisplays the component when any of
those
 * props change.
 */
export default connect(getCurrencyInfo)(CurrencySelector);

The select attribute has an onChange handler, and a function that is defined named
onCurrencyChange. The value={currency.repositoryId} uses the ID of the currency
as the value of the option. If the ID is defined, the code calls an action, which allows
the widget to react to changes made in the currency list.

Widgets share detailed information using context. For example, the StoreContext is a
store object method used to invoke actions. The store object has an action method
that uses the action name and parameters to invoke actions on the store. Each action
should have a corresponding saga or reducer to update the store with the new state.

Context provides a framework for component communication. The useContext React
hook allows actions to read and access default context to the widget. Use the
useContext hook to obtain the context of an application. There are several context that
can be used within an application. The contexts used by each widget indicates what
methods and utilities will be available. Context invokes actions and returns action
methods.

To reference the action in the example, use the React useContext hook. The
storeContext allows you to get the value of a global variable, or a reference to the
applications state. Once you have referenced the action, use the action function to
dispatch actions. The action this example dispatches is the _getCurrency action. This
example passes in the payload, which is the repository ID of the currency requested.
This is described in the /plugin/components/currency-selector/index.js
file. Note that this is a portion of the code example referenced above:

import React, {useContext} from 'react';
 import {StoreContext} from '@oracle-cx-commerce/react-ui/contexts';
...
 // Make sure we have the latest currency list during client-side
rendering.
 const store = useContext(StoreContext);
 useListCurrenciesFetcher(store);

 // Invoked when the user selects a currency from the
 // select element. Invokes the '_getCurrency' action to
 // update the selected currency with info from the server.
 const onCurrencyChange = event => {
 const repositoryId = event.target.value;
 if (repositoryId) {
 store.action('_getCurrency', {repositoryId});
 }
 };

Chapter 5
Build a widget

5-22

When this action is invoked, the getCurrency endpoint is called with the given ID and a part
of the state identified as myRepository.currencyInfo.selectedCurrency is updated.
Because the code is listening for changes in CurrencyInfo, it re-renders when there are
changes. The following example uses a <div> that is rendered when there is a selected
currency. This <div> contains a source string, a displayName and a currencyCode. This is
added to the /plugin/components/currency-selector/index.js file. Note that this
is a portion of the code example referenced above:

 {selectedCurrency && (
 <div className="CurrencySelector__SelectedCurrencyInfo">
 {labelSelectedCurrency} {selectedCurrency.displayName}
 ({selectedCurrency.currencyCode})
 </div>
)}

When you access store data on your UI components, use selectors and pass them using the
connect method. It is important that you use the correct selector method to fetch the precise
information required for rendering the UI component. There are a number of default selectors
that enable you to retrieve store state, however, if you cannot find a selector that meets your
needs, you will have to create a custom selector. You can also use the useSelector hook to
obtain part of the state information.

When you use the StoreContext hook to get the store object, you must us an action method
that uses the action's name and parameters to invoke actions on the Redux store. Each
action must have a corresponding saga or reducer that updates the store with the new state.
Note that the action dispatch call should happen only when using the useEffect hook. It is
best not to invoke any action calls in a React function component render method or useMemo
hook.

Create a selector
Use a selector to access state models.

Selectors return specified data from the data store. If the data has not been updated, it will
not be selected.

In actuality, you are exporting a wrapper around the component. The code arranges for the
properties in this part of the Redux store to be passed into the component as props, and will
redisplay the components if any of the properties change.

In this example, the selector named getCurrencyInfo is added within your widget’s
index.js file. However, you can define selectors in other modules and reference them in
your widget. For this example, this widget looks for the currency information in the state and
looks in a sub-property of the state called myRepository. Within that repository there is a sub-
property called currencyInfo. This is the convention for referring to parts of the state, which
allows you to create individual functions that return the values of specific parts of the state. If
you have not defined a function, it returns an empty object.

The following example uses props that are a combination of resource strings and props that
are in the currencyInfo object. The currencies property populates the drop-down list.

Chapter 5
Build a widget

5-23

Before you can create a selector, you must create a /selectors sub-directory in
the /src/plugins directory. This is an example of the selector added to the /src/
plugin/selectors/index.js file:

/**
 * Selector to extract myRepository from a state object.
 */
export const getMyRepository = state => state.myRepository || {};

/**
 * Selector to extract myRepository.currencyInfo from a state object.
 */
export const getCurrencyInfo = state =>
getMyRepository(state).currencyInfo || {};

/**
 * Selector to extract myRepository.currencyInfo.currencies from a
state object.
 */
export const getCurrencies = state =>
getCurrencyInfo(state).currencies || {};

Write a fetcher
Typically, a widget renders your page on the server as the initial display for the widget
is generated. The data needed to do this is obtained using data fetchers.

There are many default data fetchers, which you can reference from the /oracle-
cx-commerce/fetchers directory, but you can also create your own.

Data fetchers are plug-ins that can be included in your application to identify what your
widget needs before it can be rendered. When you use a template to create a widget,
the template pulls in all default fetchers. Fetchers that you create to use with your
widget are stored in your application’s /plugins/fetchers directory.

There are two types of fetchers. The first is a global fetcher that is independent of the
widget. This means that the widget does not use the widgetConfig parameter. Global
fetchers can be used by any widget, or by multiple widgets simultaneously. This is a
generic fetcher that loads the current site:

const fetchSite = store => store.endpoint('getSite');

The other type of fetcher is a component-specific fetcher, or one that is dependent on
the widget configuration. These fetchers create requests that are specific to the widget
instance and may return unique results per widget instance.

The following is a generic global fetcher that loads the category menu data:

const fetchMenuCategories = (store, widgetConfig) => {
 // Get the necessary values from widget config
 const {numberOfChildCategoriesToDisplay = 3,
hideCategoryIfOutOfStock = false} = widgetConfig;

 // Pass the widget config values to the endpoint call

Chapter 5
Build a widget

5-24

 return store.endpoint('getCollectionMenu', {
 categoryId: 'rootCategory',
 filterKey: 'categoryNavData',
 expandChildren: true,
 maxLevel: numberOfChildCategoriesToDisplay,
 disableActiveProdCheck: hideCategoryIfOutOfStock
 });
};

Fetcher loads data into the state using the store.endpoint method. For example:

interface Fetcher {
 (store: Store, [widgetConfig: Object]): Promise<*>
}

Use the following steps to create an fetcher:

1. Create the appropriate applications /plugin directory.

2. Once you have the application directory, create a directory named /plugins/
fetchers. This directory should contain an index.js that contains the following:

/**
 * References to the application's custom data fetchers.
 */
export {listCurrenciesFetcher} from './list-currencies';

3. In the /plugins/fetchers directory, create a hooks.js file that contains the following:

/**
 * References to the application's custom data fetcher hooks.
 */
export {useListCurrenciesFetcher} from './list-currencies/hook';

4. Now create a sub-directory within the /plugins/fetchers directory, for example /
plugins/fetchers/list-currencies/. This directory will also contain an
index.js and a hook.js file.

5. Create the fetcher index.js file. For example, create the /plugins/fetchers/
list-currencies/index.js file:

/**
 * Fetcher that requests the currency list using an endpoint.
 */
export const listCurrenciesFetcher = store =>
 store.endpoint('_listCurrencies');
};

6. Create the fetcher hook.js file. The hook file allows fetchers to be run inside React
components. Fetcher hooks are based on the useEffect hook and run only in the
browser. The useEffect hook allows you to invoke the fetcher only after the page has

Chapter 5
Build a widget

5-25

been rendered. For example, create the /plugins/fetchers/list-
currencies/hook.js file:

import {useEffect} from 'react';
import {isEmptyObject} from '@oracle-cx-commerce/utils/generic';
import {getCurrencies} from '../../selectors';
import {listCurrenciesFetcher} from '..';

/**
 * This hook will invoke the listCurrenciesFetcher if the currency
 * list is not already available in the application state.
 */
export const useListCurrenciesFetcher = store =>
 useEffect(() => {
 if (isEmptyObject(getCurrencies(store.getState()))) {
 listCurrenciesFetcher(store);
 }
 }, [store]);
};

It is a good practice to conditionally invoke the fetcher in the hook.js file to ensure
that the fetcher is not already executed on the server-side. The above example
conditionally invokes the fetcher after the isEmptyObject validation.

For performance information, refer to Prevent useEffect() from executing
unnecessarily.

Create an endpoint
You can use an OSF function called createEndpoint to create an adapter to
Commerce REST API functions.

Endpoints handle information provided to the REST URL and return information on
how to implement the response.

Endpoints use the processInput and processOutput functions to provide and return
information.

When you create a new endpoint, import the createOccRestRequest function to make
calls to the REST endpoints. This function contains all the necessary information to
ensure that correct headers are included when you create a REST request.

The following is an example of a /plugins/endpoint/list-currencies/
index.js file. In this example, the adapter takes a payload sent to the action and
converts it into whatever form is required by the REST endpoint:

import {createEndpoint, getBodyAsJson} from '@oracle-cx-commerce/wapi/
endpoint';
import {populateError} from '@oracle-cx-commerce/wapi/utils';

/**
 * Adapter for the _listCurrencies endpoint.
 */
export default createEndpoint('listCurrencies', {
 /**

Chapter 5
Build a widget

5-26

 * Perform any necessary extra processing on the payload object that is
 * included when dispatching an action that invokes this endpoint.
 *
 * @param {object} payload The action payload
 *
 * @return {object} Object with extra info to be included with endpoint
request
 */
 processInput() {
 // Include a query parameter that limits the set of returned property
values.
 return {
 query: {fields: 'repositoryId,displayName'}
 };
 },

 /**
 * Convert the response from the endpoint invocation into an object
 * to be merged into the application state.
 *
 * @param {object} response The response from the endpoint call
 *
 * @return {object} An object to be merged into the application state
 */
 async processOutput(response) {
 const json = await getBodyAsJson(response);
 // Store the response "items" array under
myRepository.currencyInfo.currencies.

 return response.ok
 ? {
 myRepository: {
 currencyInfo: {
 currencies: json.items
 }
 }
 }
 : populateError(response, json);
 }
});

The processOutput function takes the response of the API call and stores it within the
appropriate place in the state. This endpoint identifies an endpoint ID, which is how you
associate this endpoint with the getCurrency Commerce REST API. The index.js file take
the repository ID from the payload and adds it to the path of the URL. For example, if you
call /ccstore/v1/store/currencies endpoint, your response will contain currency. It
returns this because the repository ID is added to the path. Because this example only uses
the currencyCode and displayName fields a query parameter limits the set of properties
returned.

The code also shows you how to return an object that augments the URL for the endpoint.
This utility function gets an object out of the returned response and takes that object and
merges it into the correct part of the Redux state. This is what changes the panel that is
displayed to the shopper. The get-currency endpoint was invoked for this currency, and the
display name and the currency code were returned.

Chapter 5
Build a widget

5-27

Create a corresponding /plugins/endpoint/list-currencies/meta.js file
that indicates the name of the associated endpoint by doing the following:

/**
 * Metadata for the _listCurrencies endpoint.
 */
export const _listCurrencies = { }

You must export the endpoint so that your application can recognize it. The /
plugins/endpoint/index.js file contains a set of functions with names that
correspond to the names of your application's endpoints. Edit the /plugins/
endpoint/index.js file to contain the following:

/**
 * This module exports references that enable the application's
 * endpoints to be accessed using dynamic imports.
 */

// By default, all available endpoints are exported.
export * from '@oracle-cx-commerce/endpoints';

// Export a reference to our _getCurrency endpoint.
export const _getCurrency = () => import('./list-currencies');

You must also edit the /plugins/endpoint/meta.js file:

/**
 * This module exports references to metadata for the application's
endpoints.
 */
export * from '@oracle-cx-commerce/endpoints/meta';
export {_getCurrency} from './list-currencies/meta';

Write an action
Actions are payloads of information that identify the state of your application. Actions,
which are JavaScript objects, use a type property that indicates the type of action it
performs, such as a subscription, get state, or a process input.

When your widget is displaying its initial data you may want to configure a button that
invokes an action that generates data. When you invoke an action, you specify the
type of action so that the system knows what to do. You may also choose to include
additional information. The system takes that action and invokes an endpoint in the
REST API. It does this using Redux-Saga, which enables asynchronous calls. Once
the endpoint is invoked, the system takes its response and places it into a specific part
of the Redux store. Selectors that listen to that part of the Redux store (using the
connect elements described earlier) will be updated to reflect the new data.

Actions return promises, which represent the eventual completion of an operation and
its resulting value. Promises are either resolved, where no exception occurs, or
rejected, where an exception occurs. Resolved actions are identified by the OK status
of the response. Once an action is either resolved or rejected, it is completed.

Chapter 5
Build a widget

5-28

Actions do not describe how the application state changes, however they do use reducers,
which specify how an application’s state changes in response to actions that are sent to the
state tree. A reducer is a pure function that takes the previous state and an action and returns
the next state. OSF provides several default actions, which are found in the @oracle-cx-
commerce/actions/<action_type> directory, that contain information that sends data to
an application. Information is also sent to and from a state tree for your application. You can
use default actions to perform such tasks as displaying product information or profile
addresses, retrieving inventory and adding or removing shipping group information.

When you create your own action, it should be stored in your /plugins/actions/
<action_type> directory.

The following example of a /plugin/actions/get-currency/meta.js file creates the
get-currency action. The metadata for this action specifies an endpoint property, which is
required to associate this action with an endpoint:

/**
 * Metadata for the _getCurrency action.
 */
 export const _getCurrency = {

 // This action uses a Saga to invoke the _getCurrency endpoint.
 endpoints: ['_getCurrency']
};

The action /plugin/actions/get-currency/index.js file contains a saga:

import {endpointSaga, takeLatest} from '@oracle-cx-commerce/store/utils';
 /**
 * The getCurrency action.
 *
 * This exports an object with a generator function named "saga", whose
presence
 * signals OSF to pass the generator function to Redux-Saga's middleware.run
API
 * the first time the action is dispatched via the store API.
 *
 * The generator function results in an asynchronous endpoint invocation
 * when the action is dispatched.
 */

 export default {
 *saga() {
 yield takeLatest('_getCurrency', endpointSaga);
 }
 };

When you create an action that exports an object with a generator function, whose name is
saga, the system adds it to the saga middleware to execute an endpoint. This means that
when the action is dispatched, the get-currency endpoint will be asynchronously executed.

Sagas use the takeEvery and takeLatest functions. The takeEvery function allows multiple
instances to be started concurrently. The takeLatest function allows only the latest request
fired (displaying the latest version of data). It only allows one task to run at any moment.

Chapter 5
Build a widget

5-29

Once you have created your actions, you must add them to the /plugins/actions/
index.js and meta.js files. The following is an example of an index.js file:

/**
 * This module exports references that enable the application's
 * actions to be accessed using dynamic imports.
 */
 // By default, all available actions are exported.
 export * from '@oracle-cx-commerce/actions';
 // Export a reference to our getCurrency action.
 export const getCurrency = () => import('./get-currency');

The following is an example of the /plugins/actions/meta.js file:

/**
 * This module exports references to metadata for the application's
actions.
 */
 export * from '@oracle-cx-commerce/actions/meta';
 export {getCurrency} from './get-currency/meta';

To invoke an endpoint response from the _getCurrency action, you must create an
endpoint adapter similar to the one you created in the CREATE AN ENDPOINT
section.

To do this, create a /get-currency subdirectory in your application's /src/
plugins/endpoints directory. Within this directory, create an index.js file similar
to the following:

import {createEndpoint, getBodyAsJson} from '@oracle-cx-commerce/wapi/
endpoint';
import {populateError} from '@oracle-cx-commerce/wapi/utils';

/**
 * Adapter for the _getCurrency endpoint.
 */
export default createEndpoint('getCurrency', {
 /**
 * Perform any necessary extra processing on the payload object that
is
 * included when dispatching an action that invokes this endpoint.
 *
 * @param {object} payload The action payload
 *
 * @return {object} Object with extra info to be included with
endpoint request
 */
 processInput({repositoryId}) {
 // Append to the REST resource URL the repository id of the
requested
 // currency object, and include a query parameter that limits the
set
 // of returned property values.

Chapter 5
Build a widget

5-30

 return {
 params: [repositoryId],
 query: {fields: 'currencyCode,displayName'}
 };
 },

 /**
 * Convert the response from the endpoint invocation into an object
 * to be merged into the application state.
 *
 * @param {object} response The response from the endpoint call
 *
 * @return {object} An object to be merged into the application state
 */
 async processOutput(response) {
 const json = await getBodyAsJson(response);
 // Store the returned currency info under
myRepository.currencyInfo.selectedCurrency.

 return response.ok
 ? {
 myRepository: {
 currencyInfo: {
 selectedCurrency: json
 }
 }
 }
 : populateError(response, json);
 }
});

Once you have created the index.js file, create the meta.js file:

/**
 * Metadata for the _getCurrency endpoint.
 */
export const _getCurrency = {};

Once you have created these files, you must add an endpoint adapter to your application. To
do this, edit the src/plugins/endpoints/index.js and meta.js files. The following is
an example of the index.js file:

/**
 * This module exports references that enable the application's
 * endpoints to be accessed using dynamic imports.
 */

// By default, all available endpoints are exported.
export * from '@oracle-cx-commerce/endpoints';

// Export references to our own endpoints.
export const _getCurrency = () => import('./get-currency');
export const _listCurrencies = () => import('./list-currencies');

Chapter 5
Build a widget

5-31

The following is an example of the meta.js file:

/**
 * This module exports references to metadata for the application's
endpoints.
 */
export * from '@oracle-cx-commerce/endpoints/meta';
export {_getCurrency} from './get-currency/meta';
export {_listCurrencies} from './list-currencies/meta';

Chapter 5
Build a widget

5-32

6
Design Storefront Pages

This chapter describes how designers and business users can work with Open Storefront
Framework (OSF) design assets in the Oracle Commerce administration interface. It
assumes you have some experience working with layouts and widgets in the administration
interface.

Understand Default Open Storefront Framework Widgets
The Open Storefront Framework (OSF) includes a number of default layouts and widgets that
you can customize as you build your store.

This release of OSF includes a template that acts as a core reference store with a library of
reference components and core shopping flows, leveraging best practice UX, to help
accelerate new deployments and maintain a best practice implementation. The application is
optimized for mobile storefronts.

Layouts represent different page types, such as product details, checkout, and order
confirmation. The default layouts act as templates, and you use them to design, adjust, and
preview your pages before publishing live. Each layout has access to a group of layout-
specific widgets that are individual pieces of code that perform specific tasks.

Note: OSF includes layouts and widgets for the storefront only. The Agent interface continues
to be managed with the classic framework.

This section describes each of the default layouts in OSF, including the default widgets
available for each layout. Detailed information about each widget's code, including actions,
selectors, fetchers, and endpoints, is available in the JS API documentation that you can
download from Oracle Customer Connect.

The reference application includes the following shopper flows:

• Registered & Anonymous Shoppers Visits

• Browse/Search

• Add to Cart

• Shopping Cart

• Checkout

• Split Shipping

• Login

• Register

• Managing Shopper Profile

Home page widgets

The reference template includes the following widgets for the store's home page.

• Progress Bar

6-1

• Cart Link

• Country Store/Language/Currency Picker - Mobile

• Image Widget (similar to a promotion banner)

• Footer Container, including Footer Link, Copyright WebContent, and Social Links

• Header Container Widget - Mobile

• Profile Registration, Login, Forgot Password Update Password, Update Expired
Password

Product Listing and Search widgets

The reference template includes the following widgets for the store's product listing
pages, including search containers.

• Back to Top Link

• Faceted Navigation - Mobile

• Product Listing Container, including the listing-summary and load-more-button -
Mobile

• Typeahead Search - Mobile

• Dynamic Breadcrumbs

• Result List Table - Mobile

Product Details page widgets

The reference template includes the following widgets for a product's details page.
These widgets are all included in the Product Details Container widget.

• Product Add To Cart Button

• Product Inventory Status

• Product Details Container

• Product Variant Options

• Product Long Description

• Widget Product Summary (Short Description)

• Product Image Viewer

• Product Name

• Product Price

• Product Quantity

• Shipping Surcharge

• Social Sharing Widget

Shopper Profile widgets

The reference template includes the following widgets for the registered shopper
profile.

• Profile Order Actions

Chapter 6
Understand Default Open Storefront Framework Widgets

6-2

• Profile Email Marketing Preferences Summary, Profile Email Marketing Preferences

• Profile Recent Orders

• Profile Welcome

• Navigation Breadcrumbs

• Profile Return Details

• Profile Account Details and Update Password

• Profile Order Information, Profile Order Details Container

• Profile Order History

• Profile Submit Order Cancellation

• Profile Address Book Widget (summary, address book list, create and edit address)

• Profile Return Items Request Container

Shopping Cart widgets

The reference template includes the following widgets for the cart.

• PromotionsDisplay

• PromotionCodeEntry and Promotion Container

• CartOrderSummary, ProfileOrderSummary

• Add Gift With Purchase Support to CartItemDetails

• CheckoutButton with Validate Cart

• CartItemDetails Widget

Checkout widgets

The reference template includes the following widgets for the cart.

• PromotionsDisplay

• PromotionCodeEntry and Promotion Container

• CartOrderSummary, ProfileOrderSummary

• Add Gift With Purchase Support for CartItemDetails

• CheckoutButton with Cart Validation

• CartItemDetails Widget

Payment widgets

The reference template includes the following widgets that handle order payments. For
details about configuring payments in an OSF storefront, see Supported payment methods
and transaction types.

• Checkout Payment Methods Container

• Profile Saved Cards Widget

• Profile Saved Cards - Add Credit Card

• Profile Saved Card Summary

• Checkout Gift Card Status Widget - Show Gift Card Applied status

Chapter 6
Understand Default Open Storefront Framework Widgets

6-3

• Checkout Gift Card Entry Widget - Apply Gift Card

Understand how to use the Design page with OSF
applications

If you are experienced using the Design page in the administration interface to work
with classic framework design assets, you will find working with OSF design assets to
be a nearly identical experience.

Not all Design page features you are used to using with the classic framework are
available for OSF applications. This section describes differences you may encounter
when working with OSF design assets in the administration interface.

• OSF widgets and layouts are associated with applications that have been
deployed to the Commerce server. In order to view and access an application's
widgets and layouts on the Design page, you must first select the application. See
Select an application for more information.

• The Design Code Utility (on the Design page's Developer tab) is still available to
download and use with classic framework applications, but it is not available to use
with OSF applications. OSF application code is managed in a developer’s local
workspace. See Develop and Deploy Applications for more information.

• In the classic framework, global text snippets enable you to directly access your
web store’s customizable global text, which can include messages, labels and help
tips. In OSF applications, shared locale strings are the equivalent of global text
snippets. You cannot use the administration interface to edit an application's
shared locale strings. These can be edited only in a local workspace. See
Configure widgets in the administration interface for more information.

• In the classic framework, a theme is a set of styling configurations, including
colors, fonts, and other design elements, that defines the overall look and feel of
the online store. OSF applications do not use themes and so the Theme tab is not
available for OSF applications. Design elements controlled by themes in classic
storefront are controlled by CSS styling in OSF applications. CSS files must be
configured by a developer in a local workspace. See Build a Widget for an
example of creating styles CSS files in a local workspace.

• On a widget’s details page, the Extend JavaScript, Go to Widget Code, and
Download Source buttons are not available. This is because OSF widget code is
created and edited in a developer’s local workspace. See Create Custom Widgets
for more information.

Select an application
Once a developer has built an OSF application and deployed it to the Commerce
server environment, designers and other business users can work with it on the
Design page in the administration interface.

Before you can work with the design assets in a deployed application, you must select
the application on the Design page.

1. Log into Commerce and click the Design icon in the left pane. In the top-right
corner of the Design page, you should see a dropdown menu where you can
select a deployed OSF application.

Chapter 6
Understand how to use the Design page with OSF applications

6-4

If the dropdown menu does not appear on the Design page, then no OSF applications
have been deployed to the Commerce server you are logged into. See Deploy the
application for information about deploying applications to a Commerce server.

2. Select an OSF application from the dropdown menu.
You can now use the Design page tabs to view and work with the widgets, containers,
and layouts that are part of the application you selected.

You will notice that the Design page looks different when an OSF application is loaded than it
does when you work with classic design assets. Some tools and tabs you are used to seeing
are not available because they cannot be used with OSF applications. For example:

• The Theme tab is not available for OSF applications because the design elements
controlled by themes in classic storefront are controlled by CSS styling in OSF
applications. (See Build a Widget for an example of creating styles CSS files in a local
workspace.)

• On a widget’s details page, the Extend JavaScript, Go to Widget Code, and Download
Source buttons are not available. This is because OSF widget code is created and edited
in a developer’s workspace. See Create Custom Widgets for more information.

Configure widgets in the administration interface
Developers create and configure default settings for OSF widgets in a local workspace. Once
an application is downloaded to a server environment, designers can update a number of
settings for the application's widgets on the administration interface Design page.

You can customize the following widget settings in the administration interface:

• Configuration options for the widget. These options are included when a developer
creates a widget and are specific to how you want that particular widget to behave on the
storefront. For example,

• Text snippets let you customize the default text contained within an individual widget.

• The widget’s display name and internal notes. See Design Your Store Layout for details
about working with widgets in the administration interface.

Edit widget configuration options

Keep in mind that not every widget has configuration options.

Edit text snippets

Text snippets let you customize the component-specific text contained within an individual
widget. You must also use text snippets to translate widget text into the different languages
your store supports.

Note that you must redeploy your application for localization to take effect as the localization
mechanism requires that Design Studio text snippets have been created to contain the
translated strings.

Note: In this release, you cannot use the administration interface to edit an application's
shared locale strings. These can be edited only in a local workspace. See Create locale
information to learn more about shared strings.

Chapter 6
Configure widgets in the administration interface

6-5

Configure and display color swatches
Swatches let shoppers see images of a product in all its available colors without
leaving the product details page.

When a shopper clicks a swatch, the main product image changes to display the
product in the selected color. If applicable, other product information, such as price,
description, and sizes, is also updated along with the product image.

To display swatches on a product details page, you must configure catalog, widget,
and image settings.

Configure catalog settings

First, you must create a custom property on productType and set both its name and ID
to x_swatchMapping. Make sure you select Allow property to be searched for this
property in order to enable color swatches to appear on the product listing page.

You can create the custom property on either the Base product type or any custom
product type that requires swatches. See Create and edit product types for more
information about creating custom product-type properties.

Once you have created the custom property, modify packages/tools/cli/config/
search/index.js to include product.x_swatchMapping under attributes and
sku.<colorProperty> (for example sku.color) under childRecordAttributes, and
run the command yarn occ upload-search-config. For more information, see
Develop and Deploy Applications.

Finally, populate the product property (x_swatchMapping) on a product with mapping
information. For example:

{"Gray":"gry","Red":"red","Pale Green/New Green":"pgn"}

The key must match the color values configured on the product. The value can be any
short string.

To see the colors configured on the product, open the Commerce administration
interface. Edit the product and click its SKUs tab. Under Configure Storefront Display,
look for colors available for that product.

Configure the Product Variant Options widget

The Product Variant Options widget displays a product's variant options, such as color
or size. To display color swatches, you configure the widget to display the options as
swatch images. Before you configure the widget, make sure you have configured
catalog settings and uploaded the images you want to use.

You can configure the widget on the Design page in the Commerce administration
interface. Edit the following options:

• Color Swatch Variant Option (Variant Option To Be Displayed As Swatch Image):
Leave the setting at the default value, which is Color.

• Product Property for Color Swatch Mapping (Product Property that contains
swatches mapping information) The default value is x_swatchMapping. If you
change the name from x_swatchMapping, an additional step must be taken to

Chapter 6
Configure and display color swatches

6-6

ensure this value is returned in search results. First, edit the file packages/tools/cli/
config/search/index.js to change the x_swatchMapping in product.x_swatchMapping
to your new property name, then run yarn occ upload-search-config to upload this new
configuration.

• Color Swatch URL placeholder. (The URL template used for product color swatch
images). You can modify this URL if you want to fetch JPG images instead of PNG
images, or if you are looking for images in a different path. The default value is:

/ccstore/v1/images/?source=/file/products/
__productId__.__swatchKey__.png&outputFormat=JPEG&quality=0.8&height=__hei
ght__&width=__width__

When the widget renders a product, it replaces the __productId__ and __swatchKey__
and finally resolves to a valid image URL. For example, the __swatchKey__ is replaced
with gry, red or pgn values from the following mapping on the product:
{"Gray":"gry","Red":"red","Pale Green":"pgn"}.

• Overlay Image for Unavailable Color Swatch (The image used to overlay on a swatch
image, if the swatch is invalid or unavailable) The default value is /file/general/
outofstock_overlay.png.

Configure site-level settings

Upload the swatch images on the administration interface Media page, under Products. For
example, the gray swatch image in media could be named prod10004.gry.png.

Now when the widget replaces __productId__ and __swatchKey__ parts of
swatchUrlPlaceholder to a valid URL, it finds the image in the media library and renders it
on the UI. The final URL might look like this:

/ccstore/v1/images/?source=/file/products/
prod10004.gry.png&outputFormat=JPEG&quality=0.8&height=40&width=40

where __productId__ = prod and 10004 __swatchKey__ = gry

Work with Cart REST API Endpoints
The Store REST API endpoints for cart tasks have been enhanced to optimize cart and
checkout flows for OSF widgets.

Cart REST API endpoints have been enhanced for use with OSF widgets. allow for more
granular cart functions. The core business logic has been shifted to the server-side, and they
support server-side shopping carts for anonymous shoppers. Note that with the exception of
these Cart API updates, all Commerce REST APIs are backward-compatible and support
both Storefront Classic and OSF storefronts.

Granular control is possible because the endpoints break an order down into individual, parts.
Each part can be updated separately with the HTTP PATCH method. PATCH requests modify
the specified resource by importing new or modified attributes into it. This allows for changes
to individual parts of the order.

Chapter 6
Work with Cart REST API Endpoints

6-7

Order endpoints

This section describes the endpoints you can use to individually manage parts of an
order. All requests for these endpoints require the X-CCVisitorId header parameter.
This parameter specifies the ID provided by the Oracle Commerce Visit Service to
uniquely identify the current visitor. It is required for every request to enable full
endpoint capabilities for all shopper types.

The following endpoints manage the current order for both logged-in shoppers and
guests.

Endpoint HTTP Method Path

getIncompleteOrder
Returns incomplete order of
the logged- in user

GET /ccstore/v1/orders/current

removeCurrentProfileInc
ompleteOrder
Removes the persisted order
for the logged in user

DELETE /ccstore/ v1/orders/current

submitCurrentOrder
Submits current order;
captures and authorizes
payment before submitting
order

POST /ccstore/ v1/orders/current/
submit

updateCurrentProfileOrd
er
Updates the persisted order
for the logged in user

POST /ccstore/ v1/orders/current

updateIncompleteOrder
Update the current incomplete
order

PATCH /ccstore/ v1/orders/current

The following endpoints manage commerce items within the context of the current
order.

Endpoint HTTP Method Path

addCartItems
Add one or more items to the
cart

POST /ccstore/v1/orders/current/
items/add

deleteCartItem
Delete the item in the cart for
the given id

DELETE /ccstore/v1/orders/current/
items/{id}

getCartItems
Get all the items in the cart

GET /ccstore/v1/orders/current/
items

makeGiftWithPurchaseSel
ection
Enables selection of a gift
item, based on qualified Gift
with Purchase promotion

POST /ccstore/v1/orders/current/
items/makeGWPSelection

Chapter 6
Work with Cart REST API Endpoints

6-8

removeAllSelectableQuan
tity
Remove all selectable gift
quantity.

POST /ccstore/v1/orders/current/
items/
removeAllSelectableQuantity

removeSelectableQuantit
y
Remove selectable gift
quantity

POST /ccstore/v1/orders/current/
items/
removeSelectableQuantity

updateCartItem
Update the item in the cart
specified by the item's ID.

PATCH /ccstore/v1/orders/current/
items/{id}

Chapter 6
Work with Cart REST API Endpoints

6-9

7
Design Account-Based Storefront Pages

This chapter describes how to work with the design assets that ship with Open Storefront
Framework (OSF) to create a storefront for account-based shopping.

Understand default account-based OSF widgets
The Open Storefront Framework (OSF) includes a number of default layouts and widgets that
you can customize as you build your account-based store.

OSF includes a template that acts as a core account-based reference store with a library of
reference components and core shopping flows, leveraging best practices, to help accelerate
new deployments and maintain a best practice implementation. The application supports
responsive design for mobile and desktop storefronts.

Note: To learn about account-based stores in Commerce, see Configure Business Accounts.

This section describes each of the default account-based layouts in OSF, including the
default widgets available for each layout. Detailed information about each widget's code,
including actions, selectors, fetchers, and endpoints, is available in the JS API documentation
that you can download from Oracle Customer Connect.

The reference application includes the following account-based shopper flows:

• Account/Contact self registration

• Contact login

• Purchase lists

• Scheduled orders

• Quick order and copy order

• Order capture (Volume pricing, account-specific shipping and payments, and invoice
payments)

• Order approvals

• Account-level address management

7-1

8
Design Configure-Price Components

Open Storefront Framework (OSF) includes a set of components that support integrations
with Oracle Configure Price Quote (CPQ) in price-and-configure scenarios.

Understand the configure-price components
Commerce includes a set of components you can use to integrate with Oracle CPQ in price-
and-configure scenarios.

These scenarios allow shoppers to customize and buy complex products. For example, if
your store sells laptops, a shopper can configure their laptop by choosing options like
processor, memory, and storage.

The configure-price components support the integration with CPQ with the following:

• Support in the OSF JS API to interface with the Commerce Server-Side Extension (SSE)
that handles orchestration with the CPQ Rest API. See Implement configuration
customization via the CPQ Configuration API for details about the SSE.

• The Configure button you add to the Product Detail Page layout. This allows a shopper to
open a configuration dialog.

• Components that let you provide common configuration types. These include selector
types (radio buttons, drop-down lists, toggles, date/time picker.

• Support for CPQ array set selections in a table.

• Displays updated product pricing based on the configuration selections a shopper
chooses.

• Lets the shopper add the configured product to the cart.

• Lets the shopper edit the configured product from the cart.

• Lets the shopper check out with the configured product in the cart.

Detailed information about each widget's code, including actions, selectors, fetchers, and
endpoints, is available in the JS API documentation that you can download from Oracle
Customer Connect.

Include CPQ plug-ins in OSF applications

The CPQ configure-price plug-ins are included with Commerce, but they are not enabled and
available by default in reference applications. This section describes how to add them to an
OSF application.

First, you must add extensions dependencies to your application since the CPQ integration is
managed by SSEs:

1. Navigate to your <workspace-dir>/packages/apps/<appname> folder

2. Run the following commands:
yarn add @oracle-cx-commerce/extensions-endpoints
yarn add @oracle-cx-commerce/extensions-actions

8-1

yarn install
3. Make sure the dependencies are installed to your local node_modules/@oracle-

cx-commerce folder.

Now configure the application.

First, open the following file, or create it if it does not exist:

packages/apps/<appname>/assets/components/product-configure/index.json
Add the ProductConfigure button type to the file:

{
 "type": "ProductConfigure"
}

Next, open the following file, or create it if it does not exist:

packages/apps/<appname>/assets/components/product-details-container/
layout.json
Add a Configure button to the Product Details page by including the product-
configure component in ProductDetailsContainer layout. For example:

{
 "layout": [
 {
 "components": [
 "product-image-viewer",
 "product-name",
 "product-price",
 "product-variant-options",
 "product-inventory-status",
 "product-add-to-cart-button",
 "product-configure",
 "product-social-sharing",
 "product-long-description"
],
 "width": 12
 }
],
 "component": "ProductDetailsContainer",
 "title": "ProductDetails"
 }

Finally, add plug-in exports to your application:

1. Navigate to your <workspace-dir>/packages/apps/<appname>/src/plugins/
actions/index.js file and add the following line:
export * from '@oracle-cx-commerce/extensions-actions';

2. Navigate to your <workspace-dir>/packages/apps/<appname>/src/plugins/
actions/meta.js file and add the following line:
export * from '@oracle-cx-commerce/extensions-actions/meta';

Chapter 8
Understand the configure-price components

8-2

3. Navigate to <workspace-dir>/packages/apps/<appname>/src/plugins/endpoints/
index.js file and add the following line:
export * from '@oracle-cx-commerce/extensions-endpoints';

4. Navigate to <workspace-dir>/packages/apps/<appname>/src/plugins/endpoints/
meta.js file and add the following line:
export * from '@oracle-cx-commerce/extensions-endpoints/meta';

Chapter 8
Understand the configure-price components

8-3

9
Develop for Performance

When you develop a storefront application, it is important to ensure that it is fast and
responsive.

To help avoid performance issues, this chapter discusses potential problems to look out for
when you code your pages and components, and how to fix these issues when you find
them.

For more information about Oracle Commerce performance, see Extending Oracle
Commerce. For more information about using React efficiently, go to reactjs.org.

Prevent useEffect() from executing unnecessarily
If a component includes the React useEffect() hook, it runs immediately after the
component is rendered, and then each time any of its declared dependencies change. To
avoid executing useEffect() unnecessarily, you should construct your code so that
useEffect() runs only when it is actually needed.

In the following example, useEffect() is invoked after the component is first rendered, but
the conditional statement ensures that the method’s logic is executed only if any of the variant
options change. The logic is skipped if no option is selected:

useEffect(() => {
 // Fire action only if variantOptions exist and an option is changed
 if (variantOptions && optionChanged) {
 // Get the latest selected item from the options
 const currentSelectedItem = getCurrentSelectedItem(variantOptions);
 const variantOptionsLite = {};
 // Remaining code
 }
}, [variantOptions,variantOptionPermutations, optionChanged, widgetId,
action,variantToSkuLookup]);

Avoid unnecessary rerendering
As you write your code, be aware of situations where React components may be rerendered
unnecessarily.

Common situations to avoid include:

• Rendering a component multiple times when a page is first loaded.

• Rerendering a component even though the props have not changed.

Avoid rerendering widgets when a page is initially loaded

When debugging a widget’s render() method, check how many times the widget is rendered
when a page is loaded. Ideally, a widget should be rendered only once when the page is first

9-1

loaded. If a widget is rendered more than once, try to identify why and rewrite your
code to rectify this. For example, you might be modifying a state variable or props in
the useEffect() hook, resulting in the widget rendering again.

In the following example, a state variable is declared and then its value is set in
useEffect():

const [quantity, setQuantity] = useState(null);

useEffect(() => {
 ...
 setQuantity(1);
 ...
}, []);

This results in the component being rendered twice. After the first render, useEffect()
is executed and the quantity is changed from null to 1. The rerendering can be avoided
by setting the value when the variable is declared. For example:

const [quantity, setQuantity] = useState(1);

Avoid rerendering with the same props

Although React updates only the DOM nodes that have changed, rerendering still
takes some time. If your widget is rerendered frequently with the same set of props,
you can use the React.memo() higher-order component to reduce unnecessary
rendering.

In the following example, the Child() function would be forced to render by the
Parent() function, but React.memo() is used to prevent this:

function Parent() {
 const currentDate = 10/10/2020;
 const dynValue = "Test";
 return(
 <Child dynValue ={dynValue} currentValue = {currentDate }/>
);
}

function Child({ someFn, currentDate }) { ... };

export default React.memo(Child);

Note: If the component is rerendered due to changes in a Context object, using
React.memo() may not improve performance.

Use useCallback() and useMemo() efficiently
Functions defined inside function components are recreated each time the component
is rendered, resulting in referential inequality. This causes these components to
rerender, in some cases unnecessarily.

Chapter 9
Use useCallback() and useMemo() efficiently

9-2

To prevent rerendering components, you can use the useCallback() and useMemo() hooks.
The useCallback() hook returns a memoized callback to maintain referential equality
between renders of functions, and the useMemo() hook returns a memoized value to maintain
referential equality between renders of values.

Note that useCallback() and useMemo() can result in more memory being allocated, so they
must be used appropriately or they may actually reduce performance.

When to use useCallback()

This section describes situations where it is desirable to use useCallback():

• Avoiding rerendering a child component when a function is recreated.

• Preventing useEffect() from creating an infinite loop.

Avoid rerendering a child component when a function is recreated

If you have a parent component that passes a callback function to a child component that
uses React.memo(), rerendering the parent component recreates the function, which forces
the child component to rerender, despite it using React.memo(). To avoid rerendering the
child component, wrap the function with useCallback(). For example:

function Parent() {
 const currentDate = 10/10/2020;
 const someFn = () => {
 ...
 };

 return(
 <Child someFn={someFn} currentValue = {currentDate }/>
);
}

function Child({ someFn, currentDate }) { ... };

 // Wrap function in useCallback() to prevent rerendering the child
component
 const someFn = useCallback(() => {
 ...

 }, [dependencies]);

export default React.memo(Child);

Prevent useEffect() from creating an infinite loop

If you invoke a function inside the useEffect() hook, useEffect() expects the function to be
declared as a dependency. So each time the function changes, useEffect() runs. But
running useEffect() causes the component to recreate the function, which then causes
useEffect() to run again, resulting in an infinite loop. For example, the code below can
cause an infinite loop:

const getItemFromCart = skuId => {
 const cartItems = Object.values(commerceItems);
 return cartItems.find(cartItem => cartItem.catRefId === skuId);

Chapter 9
Use useCallback() and useMemo() efficiently

9-3

}

useEffect(() => {
 const selectedCartItem = getItemFromCart(skuId);
 setSomeState(someNewState);
 ...
}, [getItemFromCart]);

To avoid an infinite loop, wrap functions that run inside useEffect() with
useCallback(). Wrapping the function in useCallback() ensures the function is not
recreated, so useEffect() is not triggered to run again.

When to use useMemo()

If a function includes a complex calculation, you can avoid recomputing it by using the
useMemo() hook. This hook returns a memoized value that is not recomputed unless
the dependencies change.

In the following example, code that displays images is wrapped in useMemo() to
prevent the images from being rerendered whenever the state changes:

<div
 className="ProductImageSlider__Wrapper"
 style={{transform: `translateX(${translateValue}px)`}}
 ref={slideWrapperEl}
 onTouchStart={handleTouchStart}
 onTouchMove={handleTouchMove}
 onClick={() => setPortalRenderedCallback(!portalRendered)}
>
 {useMemo(() => {
 return images.map(image => <Slide key={image} image={image} />);
 }, [images])}
</div>

Use React.lazy() to render components conditionally
You can use the React.lazy() function conditionally to ensure a component is
rendered only if it is needed.

OSF makes extensive use of server-side rendering to speed up loading of pages. In
some cases, however, a component will have code that should not be rendered in
advance, such as a user interface element that is displayed conditionally. For example,
a popup that is displayed when an item is added to the shopping cart should be
rendered only when the shopper clicks the Add to Cart button.

In the following example, LazyComponent is rendered only if the shopper clicks the
Show Component button:

const LazyComponent = React.lazy(() => import('./component));

const [showComponent, setShowComponent] = useState(false);

const ParentComponent = () => {
 return (

Chapter 9
Use React.lazy() to render components conditionally

9-4

 <div>
 <button onClick={() => setShowComponent(!showComponent)}> Show
Component
 </button>
 {showComponent && <LazyComponent />}
 </div>
);
};

This approach can be used for CSS as well. Styles that apply only to the lazy-loaded
component can be placed in the component-specific CSS file, so they will also be loaded only
when needed.

Identify and optimize inefficient code
React uses the browser’s User Timing API to mark events and measure the time between
them.

For example, in the Chrome browser, the Developer tools Performance tab has a Timings
section that uses the User Timing API. You can use the Timings section to identify tasks that
are CPU-intensive, so you can target these tasks for potential improvements.

It is a good idea to run your browser in private browsing mode (for example, an incognito
window in Chrome) when running performance timings. This ensures that results are not
affected by cached content and that most extensions are disabled.

In addition to your browser’s native developer tools, you can also install the React DevTools
profiler and use it to identify widgets and other components that take a long time to run or are
rendered multiple times.

Remove unnecessary CSS
It is a good idea to eliminate unused CSS, as it can make your pages load more slowly.

When a page loads, the browser must construct the CSSOM before it can start rendering
content. If there is unused CSS, the time it takes to load delays rendering.

To help find unused CSS, you can use the Coverage tab in Chrome developer tools. Or you
can also use one of the many browser extensions or plugins available for finding unused
CSS, and in some cases, removing it automatically.

Note: Be careful not to remove CSS that is loaded and used conditionally. Styles that are
loaded as part of a lazy-loaded component may be reported as unused if the component is
not present on the page, but they will be needed when the component actually loads.

You can also trim the size of the CSS by omitting values for properties whose defaults you
want to accept. Consider the following example:

.ABC__XYZ form {
 display: flex;
 flex-direction: row;
}

Chapter 9
Identify and optimize inefficient code

9-5

The default value of the flex-direction property is row, so you can omit it, and just
specify the following instead:

.ABC__XYZ form {
 display: flex;
}

Chapter 9
Remove unnecessary CSS

9-6

10
Build Payment Integrations

You can use tools that Commerce provides to create custom integrations with payment
gateways.

Commerce includes built-in integrations with CyberSource, PayPal, and Chase Paymentech
gateways. These integrations are described in Extending Oracle Commerce. Note, however,
that the built-in PayPal and CyberSource integrations support storefronts built using the
Storefront Classic framework only; they do not work with storefronts built using OSF.

You can build custom integrations using the Generic Payment webhook, the Store REST API
endpoints, server-side extensions, and storefront components you create in OSF. This
chapter describes how to build payment gateway integrations that work with OSF storefronts.

Understand payment integrations
You can use tools that Commerce provides to create custom integrations with payment
gateways.

Oracle Commerce provides a framework for building custom integrations with payment
gateways. The framework supports integrating with a variety of different payment types,
including:

• credit cards

• gift cards

• invoices and purchase orders

• cash

• store credit

• loyalty points

A key aspect of these integrations is the use of payment webhooks. When a shopper places
an order, the POST /ccstore/v1/orders/current/submit endpoint triggers a call by a
webhook. The webhook sends a request to a specified URL and includes the payment-
related data it received from the endpoint. The target system processes the payment data
and then sends a response that indicates success or failure and other information about the
transaction.

Except for loyalty points, the payment types listed above are all supported through the
Generic Payment webhook. Loyalty point payments are supported through the Custom
Currency webhook.

In addition to supporting integrations that can handle one or more of these payment types
directly, the Generic Payment webhook can also be used for implementations in which
Commerce delegates the payment handling to an external web payment system such as
Amazon Payments and PayPal.

Creating a custom payment integration involves a number of steps. These include:

10-1

• Creating a gateway extension to configure access to the gateway. The extension
defines configuration options that merchants can set on the Payment Gateways
tab of the Payment Processing page in the administration interface.

• Developing storefront checkout pages that work with the integration. You may
need to customize your payment widgets to supply specific information to the
payment or order endpoints.

• Configuring the Generic Payment webhook to send payment data to the gateway.

Depending on the gateway and payment providers, there may be additional steps
involved in creating an integration. You need to configure settings on the gateway
itself, and if your integration handles credit cards, you must ensure it is PCI-compliant.
Also, you will typically need to create a custom payment integration service for routing
transaction data from the Generic Payment webhook to the gateway and mapping the
webhook data properties to fields used by the gateway.

One way to create a payment integration service is to write a server-side extension
(SSE) that functions as a translation and routing layer. For example, the sample
Worldpay integration available on the Cloud Customer Connect site is designed to
work like this:

1. When a shopper or agent submits or modifies an order, a payment transaction is
initiated (an authorization, void, or refund, depending on what the shopper or
agent is trying to do).

2. The Generic Payment webhook sends a POST request to a REST endpoint that a
server-side extension implements.

3. The server-side extension’s JavaScript code transforms the JSON from the
Generic Payment webhook into the XML format that Worldpay supports, and
sends it to Worldpay.

4. Worldpay processes the transaction, and sends an XML response to the server-
side extension.

5. The server-side extension’s JavaScript code transforms the XML response to the
JSON format that Commerce supports, and sends the JSON to the Commerce
server as the Generic Payment webhook response.

6. The Commerce server returns the results of the transaction to the storefront.

Supported payment methods and transaction types
The Generic Payment webhook supports a wide range of options for integrating with
gateways that handle a variety of different payment methods.

The following table summarizes the available payment methods and the transaction
types they support. Note that in addition to the methods listed here for the Generic
Payment webhook, Commerce supports loyalty point payments using the Custom
Currency webhook.

Method Supported Transaction Types

card – credit card payment authorization – approve payment for an
order

void – cancel an order or a payment

refund – issue a credit to the shopper after a
return

Chapter 10
Supported payment methods and transaction types

10-2

Method Supported Transaction Types

cash – cash payment initiate – create an order to be completed
later

cancel – cancel an order or a payment

physicalGiftCard – pay with gift card balanceInquiry – return current available
balance

authorize – approve payment for an order

void – cancel an order or a payment

refund – issue a credit to the shopper after a
return

invoice – generate an invoice to bill the
buyer

authorization – approve payment for an
order

storeCredit – pay with store credit balanceInquiry – return current available
balance

authorize – approve payment for an order

void – cancel an order or a payment

refund – issue a credit to the shopper after a
return

generic – supports more complex payment
logic, such as is needed for integrating with
web checkout systems

initiate – create an order to be completed
later

retrieve – return an initiated order to
complete it

authorization – approve payment for an
order

void – cancel an order or a payment

refund – issue a credit to the shopper after a
return

Create an extension for a gateway integration
You use payment gateway extensions to specify settings for a gateway integration, and to
create controls in your administration interface for configuring those settings.

These settings appear on the Payment Processing page’s Payment Gateways tab.

Before you develop an extension, you must generate an ID that you will include in your
extension file. After you develop the extension, you install it by uploading it to Oracle
Commerce as a ZIP file. For a payment gateway, the directory structure of the ZIP file looks
like this:

<extension-name>
 ext.json
 gateway/
 <gateway ID>/
 gateway.json
 config/
 config.json
 locales/
 <locale>.json

Chapter 10
Create an extension for a gateway integration

10-3

The JSON files in this structure are used to set various properties that configure the
behavior of the extension. These files are discussed below, using a sample credit card
payment gateway extension to illustrate their contents.

ext.json
The ext.json file contains metadata for the extension. For example:

{
 "extensionID": "c2e6a60e-579a-4190-af3e-5edc0cd8a725",
 "developerID": "999999",
 "createdBy": "Demo Corp.",
 "name": "DemoPaymentGateway",
 "version": 1,
 "timeCreated": "2021-01-01",
 "description": "Demo Payment Gateway"
}

Note that the extension ID must match the value generated on the Extensions page in
the administration interface. See Install the extension and configure the gateway for
more information.

gateway.json
The gateway.json file configures the following gateway settings:

• provider – A label describing the payment provider.

• paymentMethodTypes – A list of the payment method types supported for the
gateway.

• transactionTypes – A list of supported transaction types for each supported
payment type. For a credit card payment gateway, valid values are
authorization, void, and refund.

• processors – Including the card3ds processor adds support for 3D-Secure credit
card payments.

In the following example, the Demo Payment Provider is configured to support credit
card authorization, void, and refund transactions, and cash initiate and cancel
transactions:

{
 "provider": "Demo Payment Provider",
 "paymentMethodTypes": ["card", "cash"],
 "transactionTypes": {
 "card": ["authorization", "void", "refund"],
 "cash": ["initiate", "cancel"]
 },
 "processors": {
 "card": "card3ds"
 }
}

config.json

Chapter 10
Create an extension for a gateway integration

10-4

The config.json file creates user interface elements in the administration interface for
configuring gateway settings. For example:

{
 "configType": "payment",
 "titleResourceId": "title",
 "descriptionResourceId": "description",
 "instances": [
 {
 "id": "agent",
 "instanceName": "agent",
 "labelResourceId": "agentInstanceLabel"
 },
 {
 "id": "preview",
 "instanceName": "preview",
 "labelResourceId": "previewInstanceLabel"
 },
 {
 "id": "storefront",
 "instanceName": "storefront",
 "labelResourceId": "storefrontInstanceLabel"
 }
],
 "properties": [
 {
 "id": "paymentMethodTypes",
 "type": "multiSelectOptionType",
 "name": "paymentMethodTypes",
 "required": true,
 "helpTextResourceId": "paymentMethodsHelpText",
 "labelResourceId": "paymentMethodsLabel",
 "defaultValue": "card",
 "displayAsCheckboxes": true,
 "public": true,
 "options": [
 {
 "id": "cash",
 "value": "cash",
 "labelResourceId": "cashPayLabel"
 },
 {
 "id": "card",
 "value": "card",
 "labelResourceId": "cardLabel"
 }
]
 },
 {
 "id": "includeOrderInWebhookPayload",
 "type": "booleanType",
 "name": "includeOrderInWebhookPayload",
 "helpTextResourceId": "includeOrderHelpText",
 "labelResourceId": "includeOrderLabel",
 "defaultValue": true,

Chapter 10
Create an extension for a gateway integration

10-5

 "public": true
 }
]
}

Notice the following settings in the example above:

• The configType property specifies the type of configuration the file contains. For a
payment gateway, the value of this property should be payment.

• The instances property specifies an array of different instances of the resource
being configured, which makes it possible to have multiple groups of the same
settings in the administration interface. In the example above, there are separate
settings created for the storefront, the Agent Console, and preview.

• The type attribute of the paymentMethodTypes property is set to
multiSelectOptionType, which means that multiple methods can be selected (for
example, card and cash). By default the control created for selecting the methods
is a drop-down list, but setting displayAsCheckboxes to true specifies that a set of
checkboxes should be used instead.

• The includeOrderInWebhookPayload property creates a checkbox for specifying
whether or not to include the order data in the webhook call.

• The file specifies a number of resource properties. The labels used in the user
interface are mapped to the resource IDs in the <locale>.json files, as
described below.

<locale>.json
You create a separate <locale>.json file for each language supported in your
administration interface. For example, you might have an en.json file for English,
fr.json for French, and de.json for German. These files contain labels that appear
in the administration interface when you select the Payment Gateways tab. For
example:

{
 "resources": {
 "paymentMethodsLabel": "Payment Methods",
 "merchantIdLabel": "Merchant ID",
 "cardLabel": "Credit/Debit Card",
 "cashPayLabel: "Cash In-Store Payment",
 "title": "Demo Payment Gateway Config",
 "description":"Demo Payment Gateway configuration",
 "agentInstanceLabel": "Agent Configuration",
 "previewInstanceLabel": "Preview Configuration",
 "storefrontInstanceLabel": "Storefront Configuration"
 "merchantIdHelpText": "Enter your Merchant ID",
 "paymentMethodsHelpText": "Select your payment method"
 "includeOrderLabel": "Include order data in webhook call?"
 }
}

The values of the properties in the file are applied to the corresponding resource ID in
the config.json file. For example, the value of the paymentMethodsLabel property is

Chapter 10
Create an extension for a gateway integration

10-6

used to set the value of the labelResourceID property of the JSON object in config.json
that specifies the user interface controls.

Install the extension and configure the gateway
Once you create the extension, you need to install it and configure the payment gateway.

Install the extension

To install the extension, do the following in the administration interface:

1. Click the Settings icon.

2. Click Extensions and display the Developer tab.

3. Click Generate ID. In the dialog, fill in the extension name and click Save. A new
extension ID is created.

4. Set the extensionID property in the ext.json file to the value of the ID.

5. Package the extension in a ZIP file.

6. In the Installed tab, click Upload Extension. Select the ZIP file.

Once the extension is uploaded, it appears in the list of installed extensions.

Enable the gateway

To enable the new payment gateway:

1. Click the Settings icon.

2. Select the site you want to configure the gateway for.

3. Click Payment Processing and display the Payment Gateways tab.

4. Select the payment gateway integration you installed from the Service Type drop-down
list.

5. Select the Payment Gateway Enabled checkbox.

6. Configure any other settings required by the integration. For example, there should be
checkboxes for enabling payment options under Preview Configuration, Agent
Configuration, and Storefront Configuration.

If you enable a credit card payment gateway for a site, make sure that other credit card
gateways are disabled on that site. Only one credit card gateway integration should be
enabled for an individual site.

Configure the Generic Payment webhook

When you create an integration for a payment gateway, the integration uses the Generic
Payment webhook to send authorization requests to the gateway. To configure the webhook:

1. Click the Settings icon.

2. Click Web APIs and display the Webhook tab.

3. Select the Generic Payment webhook that you want to configure. Note that there are
separate Preview and Production versions of the webhook.

4. In the URL field, enter the URL for accessing the payment gateway. The URL must use
HTTPS.

Chapter 10
Install the extension and configure the gateway

10-7

5. Under Basic Authorization, fill in the username and password for accessing your
gateway account.

6. If your gateway requires any additional HTTP request headers, click Add New
Header Property and fill in the property name and value.

7. Click Save.

Note that webhook settings are not site-specific. The configuration you supply applies
to all sites that use this webhook.

Send transaction data to a payment gateway
When payment transaction data is sent to a payment provider by the Generic Payment
webhook, the provider processes the payment and returns data about the transaction.

The webhook sends out a predefined set of properties in the request, and expects to
receive another predefined set of properties back in the response. The set of
properties differs depending on the payment method and the type of transaction. For
example, the following is a sample payload for a gift card authorization request:

{
 "transactionType": "0100",
 "currencyCode": "USD",
 "locale": "en",
 "customProperties": { },
 "channel": "storefront",
 "siteId": "siteUS",
 "siteURL": "https://www.example.com",
 "orderId": "o50415",
 "paymentRequests": [
 {
 "transactionId": "o50415-pg50417-1464958982609",
 "paymentId": "pg50417",
 "customProperties": { },
 "gatewaySettings": {
 "paymentMethodTypes":"physicalGiftCard"
 },
 "cardDetails":{
 "giftCardNumber": "12393678",
 "giftCardPin": ""
 },
 "amount":"000000002499",
 "billingAddress": { },
 "transactionTimestamp": "2019-12-03T13:03:02+0000",
 "referenceInfos": { },
 "shippingAddress": { },
 "paymentMethod": "physicalGiftCard",
 "gatewayId": "demoGiftCardGateway",
 }
],
 "profile": {
 "id": "120002",
 "phoneNumber": "1234512345",
 "email": "ab@abc.com"
 }

Chapter 10
Send transaction data to a payment gateway

10-8

 "profileDetails": {
 "id": "120002",
 "lastName": "Shopper",
 "firstName": "Test",
 "taxExempt": false,
 "profileType": "b2c_user",
 "receiveEmail": "no",
 "registrationDate": "2019-10-15T06:50:51.000Z",
 "lastPasswordUpdate": "2019-10-15T06:50:51.000Z",
 }
}

The request and response payload properties for the payment methods Commerce supports
are described in detail in Extending Oracle Commerce.

Send custom properties

Depending on the payment method and the provider you integrate with, there may be
additional payment data that you need to send. If so, you can include this data in the POST /
ccstore/v1/orders/current/submit endpoint request. Each payments object in the request
can include a customProperties subobject that you can use to send additional data as key/
value pairs. For example:

...
"payments": [
 {
 "endYear": 2018,
 "cardTypeName": "Visa",
 "nameOnCard": "Fred Smith",
 "customProperties": {
 "monthlyCharge": "$77",
 "numberOfPayments": "12"
 },
 "cardCVV": "123",
 "type": "card",
 "cardType": "visa",
 "endMonth": "02",
 "cardNumber": "4055011111111111"
 }
],
...

The custom properties from the endpoint request are then included in the customProperties
object in the webhook call to the payment provider. For example:

{
 "transactionId": "o60412-pg60411-1465342612829",
 "currencyCode": "USD",
 "paymentId": "pg60411",
 "siteId": "siteUS",
 "locale": "en",
 "customProperties": {
 "monthlyCharge": "$77",
 "numberOfPayments": "12"

Chapter 10
Send transaction data to a payment gateway

10-9

 },
 "gatewaySettings": [{
 "paymentMethodTypes": "card",
 "filteredFields": ["paymentMethodTypes"]
 }],
 "amount": "000000007700",
 "transactionType": "0100",
...

Note that for gift card payments, in addition to the top-level customProperties object,
each paymentRequests object also has a customProperties object. See Integrate with
a Gift Card Payment Gateway for more information.

Return custom properties in the webhook response

The webhook can also return custom properties from the payment provider as an
additionalProperties object in the response. This data is saved with the payment
group for the order. In addition, the webhook can return a customPaymentProperties
object that specifies a list of the properties in the additionalProperties object that
should be returned to the storefront in the endpoint response. For example:

{
 "orderId": "o60412",
 "paymentId": "pg60411",
 "siteId": "siteUS",
 "merchantTransactionId": "324a5107-8fe5-4dd7-aa1f-8b7e2e0ec8df",
 "hostTransactionId": "o60412-pg60411-1465342612829",
 "transactionTimestamp": "2016-06-07T23:36:52+0000",
 "hostTimestamp": "2016-06-07T23:36:52+0000",
 "transactionType": "0100",
 "additionalProperties": {
 "interestRate": "0.05",
 "remainingPayments": "5",
 "latePayment": false,
 },
 "customPaymentProperties": ["remainingPayments", "latePayment"],
 "amount": "000000007700",
 "currencyCode": "USD",
...

Look up payment configurations
Commerce provides a REST endpoint that your OSF applications can use to return
configuration information about your sites' payment gateways.

You can use the getPaymentConfigurations endpoint in the Store API to return
information about the payment gateways for a site. For example:

GET /ccstore/v1/merchant/paymentConfigurations HTTP/1.1
x-ccsite: 100002

Chapter 10
Look up payment configurations

10-10

The response is similar to the following:

{
 "settings": [
 {
 "paymentMethods": "card",
 "enabledForScheduledOrder": false,
 "enabledForApproval": false
 }
],
 "paymentMethods": [
 "physicalGiftCard",
 "card"
],
 "links": [
 {
 "rel": "self",
 "href": "http://myserver.example.com:7003/ccstore/v1/merchant/
paymentConfigurations"
 }
]
}

Note that the endpoint returns configuration information only for gateway integrations that are
enabled on the site. If a site is not specified with the x-ccsite header, the endpoint returns
the gateway configuration for the default site. The endpoint returns only those properties
whose public attribute is set to true in the gateway extension's config.json file.

Chapter 10
Look up payment configurations

10-11

	Contents
	1 About This Guide
	Prerequisites
	Open Storefront Framework accessibility

	2 Understand the Open Storefront Framework
	Understand the OSF architecture
	Understand OSF applications
	Use a local workspace
	Use the workspaces on server environments
	Design assets
	OSF registry
	Command-line interface

	3 Set Up a Development Environment
	Install required software
	Configure npm to access Commerce packages
	Set up a workspace
	Create a workspace from a deployed application
	Upgrade the version of OSF in a workspace
	Workspace commands and scripts

	4 Develop and Deploy Applications
	Create a new application by copying a template
	Create components using command-line tools
	Specify environment-specific configuration values for an application
	Configure search
	Deploy the application
	Promote the application to the live context
	Sync assets on a Commerce server with a local workspace
	Access local development applications on a Commerce server
	Monitor deployed applications

	5 Create Custom Widgets
	Understand widgets
	Understand plug-ins
	Understand helper components

	Build a widget
	Create a subscriber
	Configure a widget to use REST endpoints
	Create a selector
	Write a fetcher
	Create an endpoint
	Write an action

	6 Design Storefront Pages
	Understand Default Open Storefront Framework Widgets
	Understand how to use the Design page with OSF applications
	Select an application
	Configure widgets in the administration interface
	Configure and display color swatches
	Work with Cart REST API Endpoints

	7 Design Account-Based Storefront Pages
	Understand default account-based OSF widgets

	8 Design Configure-Price Components
	Understand the configure-price components

	9 Develop for Performance
	Prevent useEffect() from executing unnecessarily
	Avoid unnecessary rerendering
	Use useCallback() and useMemo() efficiently
	Use React.lazy() to render components conditionally
	Identify and optimize inefficient code
	Remove unnecessary CSS

	10 Build Payment Integrations
	Understand payment integrations
	Supported payment methods and transaction types
	Create an extension for a gateway integration
	Install the extension and configure the gateway
	Send transaction data to a payment gateway
	Look up payment configurations

