
Oracle Fusion Field
Service

Mobile Plugin Framework

Oracle Fusion Field Service
Mobile Plugin Framework

F75115-20

Copyright © 2003, 2025, Oracle and/or its affiliates.

Authors: The Field Service Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release,
display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs(including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Oracle Fusion Field Service
Mobile Plugin Framework

Contents

Preface .. i

1 Overview of the Plugin Framework 1
The Plugin Framework ... 1

About the Plugin API ... 2

Accessing REST APIs from the Plugin Framework ... 2

Plugin Lifecycle ... 83

Plugin Rules and Guidelines .. 88

Flowcharts .. 89

2 Plugin API Messages 93
Message Formats ... 93

Available Methods ... 94

ready Method .. 95

init Method ... 102

initEnd Method ... 107

open Method ... 107

close Method ... 123

update Method .. 154

updateResult Method .. 155

callProcedure Method .. 156

callProcedureResult Method .. 194

sleep Message ... 194

wakeup Message .. 195

Supported Functions ... 198

Avoid Cross-Domain Communication Blocking .. 204

3 Use a Plugin 205
Add a Plugin ... 205

Modify the Settings of a Plugin ... 206

Change the Code of a Plugin ... 206

Oracle Fusion Field Service
Mobile Plugin Framework

Install the Sample Plugin ... 207

Metadata API for Plugin Installation ... 207

Debrief Plugin .. 210

Asset Details Plugin ... 218

Order and Receive Parts using Parts Ordering Plugin ... 222

4 Use a Custom Plugin 231
Types of Plugins .. 231

Add a Plugin Archive ... 231

Add an External Plugin ... 237

Add an External Application .. 239

Configure a Plugin to Add to the Main Menu .. 240

Change the Plugin Tile Appearance .. 243

Add a plugin to a page .. 248

Export and Import Plugins .. 254

Oracle Fusion Field Service
Mobile Plugin Framework

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Videos included in this guide are provided as a media alternative for text-based topics also available in this guide.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases
thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our
employees, customers, and partners, we're working to remove insensitive terms from our products and documentation.
We're also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to
ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints,
our effort to remove insensitive terms is ongoing and will take time and external cooperation.

Contacting Oracle

Access to Oracle Support
Customers can access electronic support through Oracle Support. For information, visit My Oracle Support or visit
Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides. Please take one of the following surveys:

• For web-based user guide, Web-based User Guide Survey

• For tutorial feedback, Tutorial Survey

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://support.oracle.com
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
http://ora-gcp1.custhelp.com/ci/documents/detail/5/2295/12/369d658f1a7917d7400a4e1af2bef7eaac486b07
http://ora-gcp1.custhelp.com/ci/documents/detail/5/2296/12/43f59803d4b334caea4e74d1546a10a0d99ff420

Oracle Fusion Field Service
Mobile Plugin Framework

Preface

ii

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

1 Overview of the Plugin Framework

The Plugin Framework
Oracle Fusion Field Service is a highly developed application that can be customized for the unique purposes and
specialized business needs of organizations. That extensibility is achieved in part through the use of plugins, which can
perform actions not found in the standard solution. Plug-ins appear as selectable links on the application. They open a
new window, tab, or frame in a browser where an external HTML5 application is processed.

Plug-ins can be internal or external. Internal plugins can be created only by Oracle developers. External plugins,
however, can be developed by anyone; they use externally stored data and communicate with the application by HTTP
requests. The external plugins use HTML5 features such as offline work and persistence storage. However, be aware
that if an external plugin has its own domain, offline mode is not supported for iOS Native Application. The plugin
framework also allows these applications to exchange data with Oracle Fusion Field Service, in two ways:

• Traditional one-way communication when the plugin receives data from Oracle Fusion Field Service through
the HTTP GET and POST parameters.

• Two-way communication using Oracle Fusion Field Service Plug-in API

The plugin framework offers these features:

• Integration with Oracle Fusion Field Service through an API and, therefore, the ability to perform complex tasks
which could previously be performed only by internal plugins

• Ability to work offline with Mobility Cloud Service

• Plugin development by your organization or third-party developers without requiring Oracle developers

The plugins can manipulate these entities:

• Resource

• Activity

• Inventory

• Activity list

• Inventory list

Consequently, the plugins can be added to these contexts:

• Activity list

• Activity Details

• Inventory grid

• Add/Details inventory

• Route Map/Team Map (for Custom Map Layer assets)

1

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

About the Plugin API
The Plugin API enables customers or third-party integrators to extend the functionality of Oracle Fusion Field Service.
Plugins that utilize this API are launched within Oracle Fusion Field Service, functioning as regular pages. These
plugins can support complex business workflows, even in offline mode. The data exchanged between the plugin and
Oracle Fusion Field Service is synchronized with the server-side automatically, eliminating the need for manual data
transmission from the plugin to the server.

Accessing REST APIs from the Plugin Framework
This section outlines how you can access Rest APIs from custom plugins, and the ways in which you can authorize the
APIs using different OAuth flows from plugins. Let's look at some of these options to determine the most appropriate
approach for specific needs.

To determine the most appropriate method for accessing the REST API, you must consider these factors:

Which REST API is required?

• Field Service API: You can use this API to interact directly with Oracle Fusion Field Service data and
functionality.

• Fusion API: Refers to the REST APIs provided by Oracle Fusion Cloud Applications, which you can access from
within or alongside Oracle Fusion Field Service workflows.

• Other API: This encompasses any other external REST APIs you might need to connect to.

What Identity Provider is used to log in to Oracle Fusion Field Service?

An Identity Provider (IdP) manages your user identities and authentication for Oracle Fusion Field Service. Knowing
which one you use is crucial for understanding the available authorization methods.

• Internal Field Service: Oracle Fusion Field Service uses its own internal user management system.

• IDCS (Oracle Identity Cloud Service): Your organization uses Oracle's cloud-based identity and access
management service for Oracle Fusion Field Service login.

• Other Identity Provider: Your organization uses a different third-party identity management system for Oracle
Fusion Field Service login.

What OAuth Authorization Grant Flow is supported by the Identity Provider?

OAuth 2.0 is a standard protocol for authorization. Different grant flows define how your application obtains permission
to access protected resources. The supported flows depend on the Identity Provider in use.

• OAuth Client Credentials Grant Flow: This flow is typically used for server-to-server communication where an
application (the "client") authenticates itself using its own credentials (a Client ID and Client Secret) to access
resources. OAuth Client Credentials Grant flow doesn't involve a specific user's direct interaction.

• OAuth User Assertion Grant Flow: In this flow, the application uses an existing user's credentials or a signed
assertion (like a JWT - JSON Web Token) to request an access token. This is often used when the application
already can authenticate the user.

• OAuth Authorization Code Grant Flow: This flow involves a multi-step process. The user is redirected to the
Identity Provider to grant permission. After the user authorizes, the application receives an authorization code,

2

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

which it then exchanges for an access token. This flow is commonly used for web and mobile applications
involving user interaction.

You can consider these three factors to determine the most suitable method for accessing the required REST API and
the appropriate OAuth authorization flow. The specific steps for implementation depends on the selected API, your
organization's identity provider configuration, and the capabilities of the application or tool you are using to access the
API.

Accessing Oracle Fusion Field Service REST API
If a plugin requires access to the Oracle Fusion Field Service API, the most straightforward approach is to request a
JSON Web Token (access tokens) directly from Oracle Fusion Field Service. Keep in mind that the JSON Web Tokens may
be issued on a per-user basis.

This diagram illustrates the process workflow for a custom plugin accessing the Oracle Fusion Field Service API.

Advantage:

• The easiest way to obtain access to Oracle Fusion Field Service REST API.

Process Workflow Summary:

1. Add the Oracle Fusion Field Service API application using the Configuration → Applications page.
2. Configure API access as needed.
3. Register an application to the plugin using the Edit Plugin page.
4. Call the getAccessToken procedure from the plugin, providing this application in the procedure parameters.
5. Receive a JWT access token in the procedure's response.
6. Use the JWT access token for authorization in REST API requests.

Create Oracle Fusion Field Service Application

Note: Before you start creating an application, ensure to download the application’s public key certificate.

3

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

To create an application with stricter API limitations,

1. Navigate to Configuration > Applications and then click Add Application. The Add Application page appears.
2. Select Applications using Rest/SOAP API from the Application Type drop-down list.
3. In the Application Name field, type the name of the application that you want to use/display on the

Applications page.
4. Select Field Service API from the Authenticate and Authorize drop-down list.
5. In the Application ID field, specify the application ID.

Note: Ensure that the application ID you provide begins with an alphabet and contains only lowercase
alphabets, numbers, and underscores (a-z, 0-9, _).

6. Click Add. The application is created and added to the Applications page.
7. Now, click the newly created application to modify the following:

a. Select the Active checkbox to activate the application.
b. In the Authentication settings section, select any of the following OAuth 2.0 authentication method.

i. Authenticate using Client ID/Client Secret for Client Credentials: Note the generated Client ID
and Client Secret.

ii. Authenticate using JWT assertion: Upload your application's public key certificate.
c. In the API access section, add and update the API access details per your requirement.
d. In the Additional restrictions section, the Allow access only to resources that are visible to the user

(applicable for Plugin Framework) checkbox.

Note: Enabling this setting ensures that the JWT access token is limited to the visibility scope of the
user currently logged into the browser where the plugin is used. If the Allow access only to certain
resources field is selected, the restrictions are applied in combination with this setting.

8. Click Save.

Configure Oracle Fusion Field Service Application to a Plugin
You can connect your Oracle Fusion Field Service application to a plugin through the Oracle Fusion Field Service
configuration interface. The process involves making the plugin known to your Oracle Fusion Field Service environment
and then making it accessible within the application's user interface.

4

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Plugins extend the functionality of Oracle Fusion Field Service, allowing you to integrate with external applications,
adding custom UI elements, and automating specific workflows.

To connect the Oracle Fusion Field Service Application to a plugin:

1. Navigate to Configuration > Displays > Forms and Plugins.

Note: You can also access an active standard plugin using the Configurations >Users Type> Screens
option.

2. Select the plugin from the available list that you would like to connect.
3. Click Edit from the Action menu. The Edit Plugin page appears.
4. In the Applications for Rest API section, click Add and specify the application key and select the required

application from the list of Applications.

5. Click Update.

Sample Plugin to Obtain Access Token
This topic outlines the typical flow when using the Sample Plugin to obtain an access token and subsequently fetch data
from a REST API. This sample plugin example facilitates end-users' successful connection to and retrieval of data from
REST APIs.

Initial Application List

Upon initialization, the plugin receives a message containing a list of available applications. This message includes the
resourceUrl field for each application.

The resourceUrl is directly obtained from the plugin's configuration and is used by the Sample Plugin in its subsequent
API requests.

The following screenshot provides details of the Initialization data, demonstrating how the plugin receives and utilizes
the resourceUrlfield from the configuration during its initialization process.

5

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Obtaining an Access Token

To acquire an access token using the Sample Plugin, you use the Procedures functionality as shown in the screenshot
below. You can

• Send a callProcedure method call to the plugin.

• Specify getAccessToken as the desired procedure within the callProcedure call.

Retrieving the Token

Once the callProcedure with getAccessToken is processed, the resulting access token is available in the
callProcedureResult response method as shown below:

Validate the Token by Fetching Data

With the access token obtained, you can now fetch data from a REST API to verify its validity.

6

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Note: When making requests to the Oracle Fusion Field Service API, the Sample Plugin supports calls not only to the
base Oracle Fusion Field Service domain but also to domains prefixed with plugins-0- or plugins-1-. This allows for
flexibility in accessing different environments or instances.

fetch("https://field-service-instance.com/rest/api", {
 headers: {
 Authorization: "Bearer <accessToken>"
 }
})
.then(resp => resp.json())
.then(json => console.log(json));

Accessing OAuth supported API
When Oracle Fusion Field Service acts as a client to access an external API secured with OAuth 2.0, it needs to obtain an
access token. The method of obtaining this token depends on the OAuth 2.0 grant type supported by the target API and
the capabilities of how Oracle Fusion Field Service (or its plugins/integrations) can interact with the authorization server.

If a plugin requires access to an API other than the Oracle Fusion Field Service API, these are the supported
authorization flows:

• OAuth Authorization Code Grant Flow (OAuth Authorization Code Flow – getAuthorizationCode Procedure)

• OAuth User Assertion Grant Flow (OAuth User Assertion Flow (getAccessToken procedure))

• OAuth Client Credentials Grant Flow (OAuth Client Credentials Flow (getAccessToken procedure))

Let's look at each of these in detail.

OAuth Authorization Code Flow – getAuthorizationCode Procedure
In this flow, authorization occurs by redirecting the user from the plugin to the Identity Provider's login page, returning
to the plugin after authorization. If SSO is enabled and the user's session is active, the user is redirected without being
prompted for login credentials.

This diagram provides a visual representation of the OAuth Authorization Code Grant Flow, illustrating the sequence of
steps involved in obtaining authorization for accessing the API.

7

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Advantages:

• JWT is issued on behalf of the user, not the application.

• No sensitive information is stored on the Oracle Fusion Field Service side.

Process Workflow Summary:

1. Configure an application on the Identity Provider to support the OAuth Authorization Code Flow.
2. Use credentials (Client ID, Scope, Identity Provider endpoint) to generate the URL to the Identity Provider's

Authorization Code Endpoint.
3. Call the getAuthorizationCode procedure from the plugin with this URL in the procedure parameters.
4. Obtain an authorization code in the procedure response.
5. Obtain a JWT access token with this authorization code from the plugin.
6. Use the JWT access token for REST API request authorization.

This section outlines the process to:

1. Create an integrated application with OAuth support in Oracle Identity Cloud Service (IDCS), which will return an
authorization code or access token (JWT).

2. Use a plugin to obtain an access token (JWT). This step assists in setting up the Fusion REST API backend in a
Visual Builder Cloud Service (VBCS) application. You can skip this step if your VBCS instance already includes
Fusion REST API in the Catalog.

3. Develop a simple VBCS application to demonstrate how to retrieve a JWT from a plugin and use it to send a
standard Fusion REST API request.

IDCS Configuration for OAuth Authorization Code Flow
The setup aims to create an integrated application in IDCS that obtains an access token (JWT) using an authorization
code to make authorized requests to REST APIs accessible through the application.

Steps to Create an Integrated Application in IDCS:

1. Navigate to the Identity Domain Configuration in IDCS.
2. Select the Integrated Applications section from the left pane.

8

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

3. Click Add application at the top of the page.
The Add application dialog box appears.

4. In the Add application dialog box, select Mobile Application and then click Launch Workflow. The Add Mobile
Application page appears.

9

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

5. Name your application and click Next to proceed to the Configure OAuth step.

6. In the Authorization section, enable the Authorization code grant type. Uncheck other grant types unless
necessary.

Note: Enable the Refresh Token grant type if the plugin uses refresh token functionality.

7. In the Redirect URL field, enter the URL for redirection to your Field Service instance, appended with /plugin-auth-
redirect/ For example: https://<your-field-service-instance-domain>/plugin-auth-redirect/.

8. In the Allowed Operations section, enable the On behalf of checkbox. This allows the client application to access
user-endpoints based on their privileges.

9. In the Token Issuance Policy section, select Add resources if you want your application to access the APIs of other
applications.

10. In the Resources section, click Add Scope. A list of applications appears in the Add scope dialog box.
11. Select Fusion Applications Cloud Service and then click Add.

The selected application is added to the Resource scope.

Note: If Fusion Applications Cloud Service is not listed, it means Fusion Service is not linked with the IDCS domain.
You need to create the application in the domain linked to Fusion Service.

10

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

12. Click Finish. The newly created application is now listed on the Integrated Applications page and its status is
Inactive.

11

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

13. Click the Activate icon to activate the application. Once activated, your application appears as follows:

12

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

13

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Simple Authorization Plugin (Pure JavaScript)
This topic provides step-by-step instructions to use a simple JavaScript plugin to showcase the OAuth Authorization
Code flow within Oracle Fusion Field Service.

The plugin enables you to:

• Obtain an Authorization Code,

• Retrieve a JWT (JSON Web Token), and

• Leverage the JWT to access data from a REST API, with Fusion as an example.

Note: This plugin is intended for demonstration and testing to understand the authorization flow. It works
with Oracle Fusion Field Service version 25B and later.

Prerequisites

Before using this plugin, ensure that:

• IDCS Application Configuration: You have a properly configured application within Oracle Identity Cloud
Service (IDCS) or your chosen Identity Provider. This application is set up to support the OAuth Authorization
Code grant type.

• Plugin Installation: The Simple Authorization Plugin is successfully installed and configured within your Oracle
Fusion Field Service environment.

Plugin Parameters

14

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

These parameters are configured at the plugin level and define the endpoints and credentials required for the
authorization flow. Your administrator will typically configure these.

• getCodeEndpoint: The authorization endpoint of your Identity Provider. This is where the user will be redirected
to authenticate and authorize the application. URL for obtaining the authorization code, For example:

◦ IDCS: https://{idcsUrl}/oauth2/v1/authorize

◦ Microsoft: https://login.microsoftonline.com/{tenantId}/oauth2/v2.0/authorize

• getTokenEndpoint: The token endpoint of your Identity Provider. This endpoint exchanges the Authorization
Code for an Access Token (JWT). URL for obtaining the token (For example:

◦ IDCS: https://{idcsUrl}/oauth2/v1/token

◦ Microsoft: https://login.microsoftonline.com/{tenantId}/oauth2/v2.0/token)

• restUrl: The URL of the REST API you want to access. (For example: IDCS: https://{fusionUrl}/hcmRestApi/
resources/latest/selfDetails, Microsoft: https://graph.microsoft.com/v1.0/me)

• clientId: The client ID of the application you configured in your Identity Provider. This identifies your application
to the Identity Provider.

15

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

• scope: The permissions your application requests from the user. These are defined in your Identity Provider
application configuration.

Example of plugin parameters configuration:

Example of button parameters configuration:

Basic Plugin Workflow

You can utilize the Simple Authorization Plugin to go through the complete OAuth 2.0 Authorization Code flow and
interact with protected REST APIs. Here's a step-by-step guide on how to use it.

1. Click Get Code within the plugin's user interface in Oracle Fusion Field Service. You will be automatically redirected
to the login page of your configured Identity Provider. On desktop browsers, a new popup window or a separate tab
appears if you are using the Oracle Fusion Field Service Mobile Application for user login.

2. On the Identity Provider's login page, enter your username and password to authenticate your identity.

Note: If you have an active Single Sign-On (SSO) session, you might be automatically redirected to Oracle Fusion
Field Service without having to enter your credentials again.

3. Upon successful authentication and authorization, the Identity Provider will redirect you to the Oracle Fusion Field
Service application. The URL in your browser will now contain an Authorization Code. This code is a temporary,
single-use credential.

16

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

4. Click Get JWT. The plugin will communicate with the Identity Provider's token endpoint to obtain the access token
(JWT). Upon a successful request, the Identity Provider will respond with an Access Token. This token is a JWT
(JSON Web Token) and is a temporary credential granting access to protected resources.

5. Click Get Data to retrieve data from the REST API (restUrl from plugin parameters). The plugin will use the obtained
JWT to request to the configured REST API endpoint in the background. If the Access Token is valid and the API
call is successful, the REST API will respond with the requested data. This data will be displayed within the Simple
Authorization Plugin user interface in Oracle Fusion Field Service.

6. This plugin can also be used to test the flow on pure JS to check if everything works fine. Moreover, you could use an
access token to authorize the wizard of the REST API backend in the creation of a VBCS application (it is applicable if
the VBCS instance has no access to REST API without authorization).
Here is an example plugin screen with successfully received code:

The listing of plugin's code:

!--
Oracle Field Service Sample plugin
Copyright (c) 2023 Oracle and/or its affiliates.
Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/
-->

<!DOCTYPE html>
<html lang="en-us">
<head>
 <title>Authorization micro plugin</title>
</head>
<body>

<p>1. Configuration.</p>
<p>Use plugin 'Secure Parameters' configuration to provide clientId, getCodeEndpoint and getTokenEndpoint
 parameters, or fill them manually.</p>
<div>

17

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 <label for="field_get_code_endpoint">getCodeEndpoint: </label><input id="field_get_code_endpoint">

 Example: https://login.microsoftonline.com/{tenantId}/oauth2/v2.0/authorize
 Example: https://{idcsUrl}/oauth2/v1/authorize
</div>
<div>
 <label for="field_get_token_endpoint">getTokenEndpoint: </label><input id="field_get_token_endpoint">

 Example: https://login.microsoftonline.com/{tenantId}/oauth2/v2.0/token
 Example: https://{idcsUrl}/oauth2/v1/token
</div>
<div>
 <label for="field_rest_url">restUrl: </label><input id="field_rest_url">

 Example: https://graph.microsoft.com/v1.0/me
 Example: https://{fusionUrl}/hcmRestApi/resources/latest/selfDetails
</div>
<div><label for="field_client_id">clientId: </label><input id="field_client_id"></div>

<div><label for="field_scope">scope: </label><input id="field_scope"></div>
<hr>
<div><label for="field_ofs_origin">Redirect URI: (used in generation of redirect URI)</label><input disabled
 id="field_ofs_origin">/plugin-auth-redirect/</div>
<div>redirectUri must be the same while get authorization code and access token</div>
<hr>
<input id="field_include_code_challenge" type="checkbox" value="field_include_code_challenge"> Include Code
 Challenge
<p>Auto-generated code challenge that will be used in Plugin API Call Procedure request (to obtain
 Authorization Code) and HTTP fetch (to obtain JWT Access Token).</p>
<div><label for="field_code_verifier">Code Verifier (random string): </label><input
 id="field_code_verifier"></div>
<div><label for="field_code_challenge">Code Challenge (signature): </label><input
 id="field_code_challenge"></div>
<button id="button_generate_code_challenge">Regenerate</button>
<p>Auto-generated unique procedure call ID (will be used in Plugin API Call Procedure request).</p>
<div><label for="field_call_id">Procedure call ID: </label><input id="field_call_id"></div>
<button id="button_generate_call_id">Regenerate</button>
<hr>

<p>2. Obtain Code using call procedure 'getAuthorizationCode' of Plugin API to open Secure Tab to authorize
 and get auth code.</p>
<div><textarea id="field_procedure_request" title="Procedure request" rows="10" cols="100"></textarea></div>
<button id="button_get_auth_code">Get code</button>
<div>List of called procedures:</div>
<pre id="call_procedures_list"></pre>
<div><label for="field_auth_code">Last received code: </label><input id="field_auth_code"></div>
<hr>

<p>3. Obtain Access Token (JWT) using Code by HTTP fetch function.</p>
<!--<button id="button_generate_jwt_fetch_request_for_debug">Generate JWT fetch request</button>-->
<pre id="field_jwt_fetch_request_for_debug"></pre>
<button id="button_get_auth_token">Get JWT</button>
<pre id="field_auth_response"></pre>
<div><label for="field_auth_token">Token: </label><input id="field_auth_token"></div>
<hr>

<p>4. Obtain REST data using JWT Access Token by HTTP fetch function. Please note to request new JWT you need
 request new code.</p>
<!--<button id="button_generate_rest_data_fetch_request_for_debug">Generate Data fetch request</button>-->
<pre id="field_rest_data_fetch_request_for_debug"></pre>
<button id="button_get_rest_data">Get Data</button>
<pre id="field_rest_data"></pre>

</body>
<script>
 const INIT_FLOW = 'init';
 const OPEN_FLOW = 'open';

18

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 let currentFlow;

 let resolveReadyMessage;
 let listOfRunProcedures = [];

 function getRandomString() {
 return crypto.randomUUID().replace(/\+/g, '-');
 }

 function base64UrlEncode(str) {
 return btoa(String.fromCharCode.apply(null, new Uint8Array(str)))
 .replace(/\+/g, '-')
 .replace(/\//g, '_')
 .replace(/=+$/, '');
 }

 async function generateCodeChallenge(codeVerifier) {
 const encoder = new TextEncoder();
 const data = encoder.encode(codeVerifier);
 const digest = await crypto.subtle.digest('SHA-256', data);

 return base64UrlEncode(digest);
 }

 async function fillCodeChallenge() {
 let codeVerifier = getRandomString();
 let codeChallenge = await generateCodeChallenge(codeVerifier);

 document.getElementById('field_code_verifier').value = codeVerifier;
 document.getElementById('field_code_challenge').value = codeChallenge;

 prepareCallProcedureMessage();
 }

 function handleInitMessage(message, event) {
 localStorage.setItem("field_ofs_origin", message.origin);

 currentFlow = INIT_FLOW;

 let initEndMessage = {
 apiVersion: 1,
 method: 'initEnd'
 };

 sendPostMessage(initEndMessage);

 resolveReadyMessage();
 }

 function handleOpenMessage(message, event) {
 currentFlow = OPEN_FLOW;

 if (!message.allowedProcedures) {
 console.error("allowedProcedures is not found in open message", JSON.stringify(message));
 }

 if (!message.allowedProcedures.getAuthorizationCode) {
 console.error("getAuthorizationCode procedure must be allowed in 'open' plugin API message",
 JSON.stringify(message));

 alert('getAuthorizationCode procedure must be allowed');
 }

 let openParams = message.openParams || {};
 let securedData = message.securedData || {};

19

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 document.getElementById('field_client_id').value = openParams.clientId || securedData.clientId || '';
 document.getElementById('field_scope').value = openParams.scope || securedData.scope || '';
 document.getElementById('field_get_code_endpoint').value = openParams.getCodeEndpoint ||
 securedData.getCodeEndpoint || '';
 document.getElementById('field_get_token_endpoint').value = openParams.getTokenEndpoint ||
 securedData.getTokenEndpoint || '';
 document.getElementById('field_rest_url').value = openParams.restUrl || securedData.restUrl || '';

 resolveReadyMessage();
 }

 function updateListOfProcedures() {
 document.getElementById('call_procedures_list').innerText = JSON.stringify(listOfRunProcedures, null, 4);
 }

 function handleProcedureResultMessage(message, event) {
 //just log the response
 const foundCallIndex = listOfRunProcedures.find(procedureCall => procedureCall.callId === message.callId);

 if (foundCallIndex !== -1) {
 foundCallIndex.response = message;
 }

 updateListOfProcedures();

 //keep code if request is successful
 if (message.resultData.result === 'completed') {
 document.getElementById('field_auth_code').value = message.resultData.code;
 generateJwtFetchRequestForConsole();
 }
 }

 function handleProcedureErrorMessage(message, event) {

 //just log the response
 const foundCallIndex = listOfRunProcedures.find(procedureCall => procedureCall.callId === message.callId);

 if (foundCallIndex !== -1) {
 foundCallIndex.response = message;
 }

 updateListOfProcedures();
 }

 function sendPostMessage(message) {
 window.parent.postMessage(message, document.referrer);
 }

 function prepareCallProcedureMessage() {
 let getCodeEndpoint = document.getElementById('field_get_code_endpoint').value.trim();
 let clientId = document.getElementById('field_client_id').value.trim();
 let redirectUri = encodeURIComponent(document.getElementById('field_ofs_origin').value.trim() + '/plugin-
auth-redirect/');
 let scope = document.getElementById('field_scope').value.trim();
 // let state = document.getElementById('field_client_id').value.trim();
 let includeCodeChallenge = document.getElementById('field_include_code_challenge').checked;
 let codeChallenge = document.getElementById('field_code_challenge').value.trim();
 let callId = document.getElementById('field_call_id').value.trim();

 let getCodeUrl = `${getCodeEndpoint}?response_type=code&client_id=${clientId}&redirect_uri=
${redirectUri}&scope=${scope}`;

 if (includeCodeChallenge) {
 getCodeUrl += `&code_challenge_method=S256&code_challenge=${codeChallenge}`;
 }

20

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 // if (state) {
 // getCodeUrl += `&state=${state}`;
 // }

 let message = {
 apiVersion: 1,
 method: 'callProcedure',
 procedure: "getAuthorizationCode",
 callId: callId,
 params: {
 "url": getCodeUrl
 }
 };

 document.getElementById('field_procedure_request').value = JSON.stringify(message, null, 4);
 }

 function refreshCallId() {
 let callId = getRandomString();
 document.getElementById('field_call_id').value = callId;

 prepareCallProcedureMessage();
 }

 function sendCallProcedureMessage() {
 let callProcedureMessage = document.getElementById('field_procedure_request').value

 try {
 let parsedCallProcedureMessage = JSON.parse(callProcedureMessage);
 listOfRunProcedures.push({
 callId: parsedCallProcedureMessage.callId,
 request: parsedCallProcedureMessage,
 response: 'Wait for response..'
 });
 updateListOfProcedures();

 sendPostMessage(parsedCallProcedureMessage);
 refreshCallId();
 } catch(e) {
 console.error(e);
 }
 }

 function sendReadyMessage() {
 let readyMessage = {
 apiVersion: 1,
 method: 'ready',
 sendInitData: true,
 sendMessageAsJsObject: true
 };

 return new Promise((resolve, reject) => {
 sendPostMessage(readyMessage);
 resolveReadyMessage = resolve;
 })
 }

 function generateJwtFetchRequestForConsole() {
 if (!document.getElementById('field_auth_code').value) {
 console.error('Auth code could not be empty');
 alert('Auth code could not be empty');

 return;
 }

21

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 let getTokenEndpoint = document.getElementById('field_get_token_endpoint').value.trim();
 let clientId = document.getElementById('field_client_id').value.trim();
 let redirectUri = document.getElementById('field_ofs_origin').value.trim() + '/plugin-auth-redirect/';
 let authCode = document.getElementById('field_auth_code').value.trim();
 let codeVerifier = document.getElementById('field_code_verifier').value.trim();
 let includeCodeChallenge = document.getElementById('field_include_code_challenge').checked;

 let requestParams = {
 client_id: clientId,
 grant_type: 'authorization_code',
 redirect_uri: redirectUri,
 code: authCode
 };

 if (includeCodeChallenge) {
 requestParams.code_verifier = codeVerifier;
 }

 let getAccessTokenBody = new URLSearchParams(requestParams).toString();

 let fetchRequestForDebug = `
fetch('${getTokenEndpoint}', {
 headers: {
 "content-type": "application/x-www-form-urlencoded; charset=UTF-8",
 },
 method: "POST",
 body: '${getAccessTokenBody}'
});
`;

 document.getElementById('field_jwt_fetch_request_for_debug').innerText = fetchRequestForDebug;
 }

 async function fetchToken() {
 if (!document.getElementById('field_auth_code').value) {
 console.error('Auth code could not be empty');
 alert ('Auth code could not be empty');

 return;
 }

 let getTokenEndpoint = document.getElementById('field_get_token_endpoint').value.trim();
 let clientId = document.getElementById('field_client_id').value.trim();
 let redirectUri = document.getElementById('field_ofs_origin').value.trim() + '/plugin-auth-redirect/';
 let authCode = document.getElementById('field_auth_code').value.trim();
 let codeVerifier = document.getElementById('field_code_verifier').value.trim();
 let includeCodeChallenge = document.getElementById('field_include_code_challenge').checked;

 let requestParams = {
 client_id: clientId,
 grant_type: 'authorization_code',
 redirect_uri: redirectUri,
 code: authCode
 }

 if (includeCodeChallenge) {
 requestParams.code_verifier = codeVerifier;
 }

 let getAccessTokenBody = new URLSearchParams(requestParams).toString();

 let response = await fetch(`${getTokenEndpoint}`, {
 "headers": {
 "content-type": "application/x-www-form-urlencoded; charset=UTF-8",
 },

22

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 "method": "POST",
 "body": getAccessTokenBody
 });

 if (response.status !== 200) {
 console.error('Token was not obtained');
 alert ('Token was not obtained');

 return;
 }

 let jsonResponse = await response.json();
 document.getElementById('field_auth_response').innerText = JSON.stringify(jsonResponse, null, 4);

 if (jsonResponse.access_token) {
 document.getElementById('field_auth_token').value = jsonResponse.access_token;
 generateRestDataFetchRequestForConsole();
 }
 }

 function generateRestDataFetchRequestForConsole() {
 let authToken = document.getElementById('field_auth_token').value.trim();
 let restUrl = document.getElementById('field_rest_url').value.trim();

 let fetchRequestForDebug = `
fetch("${restUrl}", {
 headers: {
 authorization: 'Bearer ${authToken}'
 }
});
`;

 document.getElementById('field_rest_data_fetch_request_for_debug').innerText = fetchRequestForDebug;

 }

 async function getRestData() {
 if (!document.getElementById('field_auth_token').value) {
 console.error('Auth token could not be empty');
 alert ('Auth token could not be empty');

 return;
 }

 let authToken = document.getElementById('field_auth_token').value.trim();
 let restUrl = document.getElementById('field_rest_url').value.trim();

 let response = await fetch(restUrl, {
 "headers": {
 authorization: `Bearer ${authToken}`
 }
 });

 if (response.status !== 200) {
 console.error('Data was not obtained');
 alert ('Data was not obtained');

 return;
 }

 let jsonResponse = await response.json();

 document.getElementById('field_rest_data').innerText = JSON.stringify(jsonResponse, null, 4);
 }

 function initButtonHandling() {

23

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 document.getElementById('button_generate_code_challenge').addEventListener('click', async function () {
 await fillCodeChallenge();
 });
 document.getElementById('button_generate_call_id').addEventListener('click', function () {
 refreshCallId();
 });

 document.getElementById('button_get_auth_code').addEventListener('click', function () {
 sendCallProcedureMessage();
 });

 // document.getElementById('button_generate_jwt_fetch_request_for_debug').addEventListener('click', function
 () {
 // generateJwtFetchRequestForConsole();
 // });

 document.getElementById('button_get_auth_token').addEventListener('click', async function () {
 await fetchToken();
 });

 // document.getElementById('button_generate_rest_data_fetch_request_for_debug').addEventListener('click',
 function () {
 // generateRestDataFetchRequestForConsole();
 // });

 document.getElementById('button_get_rest_data').addEventListener('click', async function () {
 await getRestData();
 });

 document.getElementById('field_get_code_endpoint').addEventListener('change', function () {
 prepareCallProcedureMessage();
 });

 document.getElementById('field_include_code_challenge').addEventListener('change', function () {
 prepareCallProcedureMessage();
 });

 document.getElementById('field_get_token_endpoint').addEventListener('change', function () {
 generateJwtFetchRequestForConsole();
 });

 document.getElementById('field_client_id').addEventListener('change', function () {
 prepareCallProcedureMessage();
 });

 document.getElementById('field_rest_url').addEventListener('change', function () {
 generateRestDataFetchRequestForConsole();
 });

 document.getElementById('field_scope').addEventListener('change', function () {
 prepareCallProcedureMessage();
 });
 }

 function initPostMessageHandling() {
 window.addEventListener("message", function(event) {
 if (event.source === window) {
 // ignore messages from itself

 return;
 }

 if (new URL(event.origin).host !== new URL(document.referrer).host) {
 console.info("Came message from another origin", JSON.stringify(event.data));

 return; // Ensure the message is from the expected origin

24

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 }

 if (!event.data.apiVersion) {
 // is not considered as a message from Plugin API

 return;
 }

 if (!event.data.method) {
 console.warn("No 'method' field in post message", JSON.stringify(event.data));

 return;
 }

 switch (event.data.method) {
 case 'init':
 handleInitMessage(event.data, event);
 break;

 case 'open':
 handleOpenMessage(event.data, event);
 break;

 case 'callProcedureResult':
 handleProcedureResultMessage(event.data, event);
 break;

 case 'error':
 handleProcedureErrorMessage(event.data, event);
 break;
 }
 });
 }

 initPostMessageHandling();

 document.getElementById('field_ofs_origin').value = localStorage.getItem("field_ofs_origin");

 sendReadyMessage().then(() => {
 if (currentFlow === OPEN_FLOW) {
 initButtonHandling();

 fillCodeChallenge();
 refreshCallId();
 }
 });

</script>

Use VBCS Application as an Oracle Fusion Field Service External Plugin for REST API Access
This section describes how to use a VBCS application embedded as an Oracle Fusion Field Service external plugin to
authorize and retrieve data from a REST API (specifically Oracle Fusion in this example). The authorization relies on a
JWT obtained through the Plugin Framework's access code flow.

Prerequisites

• You have configured an IDCS application for the OAuth Authorization Code flow.

• You have created, staged, and configured a VBCS application as an external plugin in Oracle Fusion Field
Service.

• You have run the whole flow. You have opened the VBCS Plugin, authorized, and obtained REST API data from
Fusion.

25

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Create a VBCS Application for Oracle Fusion Field Service Plugin Integration
This topic provides the steps to create a VBCS (Visual Builder Cloud Service) application that can be used as an external
plugin within Oracle Fusion Field Service to access a REST API.

Create a New VBCS Application

To create a new VBCS application:

1. Open your VBCS environment.
2. Create a new VBCS application and specify a suitable name and ID for your application.
3. Within your newly created VBCS application, navigate to the Variables section.

a. Create the necessary variables that your application will use during its operation. The specific variables
you required depend on the logic of your plugin. You can use this code to add the required variables:

"variables": {
 "authClientId": {
 "type": "string"
 },
 "authGetCodeEndpoint": {
 "type": "string"
 },
 "authGetTokenEndpoint": {
 "type": "string"
 },
 "authHeaders": {
 "type": "object"
 },
 "authScope": {
 "type": "string"
 },
 "ofsGetCodeRedirectUri": {
 "type": "string"
 },
 "ofsConnector": {
 "type": "any"
 },
 ...}

26

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Add a Backend

1. Navigate to the Backend section in VBCS.
2. Click the button to create a new backend.

27

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

3. Select Custom as the backend type.

4. Enter a name for your custom backend. For example, hcm.

28

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

5. To allow VBCS to understand the structure of the REST API during development:
a. Add a custom header named Authorization.
b. Set the Value of this header to Bearer xxxx, where xxxx is a valid JWT (obtained through a tool like the

Simple Authorization Plugin described in the earlier topic).

Note: This header serves a temporary function to facilitate the design process and will be removed
in a subsequent phase. The JWTs have a finite lifespan and will require periodic updates during
development.

Add a 'Public Workers' Service Connection

1. Next, navigate to the Service Connections section.
2. Click the button to add a new service connection.
3. Click Select from Catalog.
4. In the Custom section, select the custom backend you just created (for example, hcm).
5. Select Define by endpoint.
6. Set the Service Name and Title to publicWorkers.

7. Set the URL suffix to /publicWorkers. This will be appended to the base URL of your HCM backend. In our
example, the plugin will request data from Public Workers HCM REST API https://docs.oracle.com/en/cloud/
saas/human-resources/24c/farws/op-publicworkers-get.html

29

https://docs.oracle.com/en/cloud/saas/human-resources/24c/farws/op-publicworkers-get.html
https://docs.oracle.com/en/cloud/saas/human-resources/24c/farws/op-publicworkers-get.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Implement Plugin Framework Initialization

1. Navigate to the main page or the relevant flow where the plugin will be used.

2. Open the Event Listeners tab for the page.
3. Select the vbEnter event.
4. Click Add Action Chain to create a new Action Chain _init associated with this event.
5. Within this _init Action Chain, add the following code:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (
 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class _init extends ActionChain {

 /**
 * @param {Object} context
 */
 async run(context) {
 const { $application, $constants, $variables } = context;
 //---------------------------------------

 class OfsConnector {
 constructor(params) {
 const {
 apiVersion = 1,
 onInit = (jsonData) => {},
 onOpen = (jsonData) => {},
 onCallProcedureResult = (jsonData) => {},
 onError = (jsonData) => {
 alert(jsonData);
 }
 } = params;

 this.API_VERSION = apiVersion;

 this.onInit = onInit.bind(this);
 this.onOpen = onOpen.bind(this);

30

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 this.onCallProcedureResult = onCallProcedureResult.bind(this);
 this.onError = onError.bind(this);

 this.TRANSMIT_METHODS = {
 METHOD_READY: 'ready',
 METHOD_INIT_END: 'initEnd',
 METHOD_CLOSE: 'close',
 METHOD_UPDATE: 'update',
 METHOD_CALL_PROCEDURE: 'callProcedure',
 METHOD_SLEEP: 'sleep'
 };

 this.RECEIVE_METHODS = {
 METHOD_ERROR: 'error',
 METHOD_INIT: 'init',
 METHOD_OPEN: 'open',
 METHOD_UPDATE_RESULT: 'updateResult',
 METHOD_CALL_PROCEDURE_RESULT: 'callProcedureResult',
 METHOD_WAKEUP: 'wakeup'
 };

 window.addEventListener("message", this.onPostMessage.bind(this), false);
 }

 /**
 * @param {Object} dataToSend
 * @returns {void}
 */
 sendMessage(dataToSend) {
 const originUrl = this.constructor._getOriginUrl();
 const origin = originUrl ? this.constructor._getOrigin(originUrl) : '*';

 dataToSend.apiVersion = this.API_VERSION;

 parent.postMessage(dataToSend, origin);
 }

 onPostMessage(event) {
 // Accept only external messages
 if (event.source === window) {
 return;
 }

 const jsonData = event.data;

 if (!jsonData) {
 this.onError('Received message without data: ' + jsonData);

 return;
 }

 switch (jsonData.method) {
 case this.RECEIVE_METHODS.METHOD_INIT:
 this.onInit(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_OPEN:
 this.onOpen(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_CALL_PROCEDURE_RESULT:
 this.onCallProcedureResult(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_ERROR:

31

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 this.onError('Received message with error method: ' + jsonData);
 break;

 default:
 this.onError('Received message with unsupported method: ' + jsonData);
 }
 }

 static generateRandomString (length) {
 return btoa(String.fromCharCode.apply(null, window.crypto.getRandomValues(new Uint8Array(length))))
 .replaceAll('=', '')
 .replaceAll('/', '')
 .replaceAll('+', '').substr(0, length);
 }

 static _getOrigin(url) {
 if (typeof url === 'string' && url !== '') {
 if (url.indexOf("://") > -1) {
 return (window.location.protocol || 'https:') + url.split('/')[2];
 } else {
 return (window.location.protocol || 'https:') + url.split('/')[0];
 }
 }

 return '';
 }

 static _getOriginUrl() {
 if (document.referrer) {
 return document.referrer;
 }

 if (document.location.ancestorOrigins && document.location.ancestorOrigins[0]) {
 return document.location.ancestorOrigins[0];
 }

 return null;
 }
 }

 //---------------------------------------

 const onInit = function(jsonData) {
 if (jsonData.origin) {
 localStorage.setItem('authRedirectOrigin', jsonData.origin || '');
 }

 this.sendMessage({
 method: this.TRANSMIT_METHODS.METHOD_INIT_END
 });
 };

 const onOpen = function(jsonData) {
 let openParams = jsonData.openParams || {};
 let securedData = jsonData.securedData || {};

 // getCodeEndpoint
 // Example: https://{idcsUrl}/oauth2/v1/authorize

 // getTokenEndpoint
 // Example: https://{idcsUrl}/oauth2/v1/token

 $application.variables.authClientId = openParams.clientId || securedData.clientId || '';
 $application.variables.authScope = openParams.scope || securedData.scope || '';
 $application.variables.authGetCodeEndpoint = openParams.getCodeEndpoint || securedData.getCodeEndpoint
 || '';

32

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 $application.variables.authGetTokenEndpoint = openParams.getTokenEndpoint ||
 securedData.getTokenEndpoint || '';

 $application.variables.ofsGetCodeRedirectUri = localStorage.getItem('authRedirectOrigin') + '/plugin-
auth-redirect/';
 };

 $application.variables.ofsConnector = new OfsConnector({
 onInit: onInit,
 onOpen: onOpen
 });

 $application.variables.ofsConnector.sendMessage({
 method: $application.variables.ofsConnector.TRANSMIT_METHODS.METHOD_READY,
 sendInitData: true,
 sendMessageAsJsObject: true
 });

 //---------------------------------------

 }
 }

 return _init;
});

This code helps you:
a. Include the Plugin Framework connector class into your VBCS application.
b. Store this connector class in an application variable.
c. Initiate the communication with the Field Service Plugin Framework.

Create Authorization and Data Retrieval

1. On your VBCS page, place a Button with the label 'Authorize and get workers'.

2. Create a new Action Chain named _authorize and associate it with the button's ojAction event listener.
3. Change code of the '_authorize' Action Chain, and add the following:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (

33

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class _authorize extends ActionChain {

 /**
 * @param {Object} context
 */
 async run(context) {
 const { $application, $constants, $variables } = context;

 //---------------------------------------

 // const state = '';
 // let authCodeChallenge = $application.variables.ofsConnector.constructor.generateRandomString(45);

 const callId = $application.variables.ofsConnector.constructor.generateRandomString(16);

 let authUrl = $application.variables.authGetCodeEndpoint
 + "?client_id=" + $application.variables.authClientId
 + '&response_type=code'
 // + '&challenge_method=plain'
 // + "&code_challenge=" + authCodeChallenge
 + "&scope=" + encodeURIComponent($application.variables.authScope)
 //+ "&state=" + JSON.stringify(state)
 + "&redirect_uri=" + encodeURIComponent($application.variables.ofsGetCodeRedirectUri);

 $application.variables.ofsConnector.onCallProcedureResult = async function(procedureResult) {
 if (!procedureResult.callId || procedureResult.callId !== callId) {
 return;
 }

 let code = procedureResult.resultData.code;

 const result = await fetch(
 $application.variables.authGetTokenEndpoint,
 {
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded; charset=UTF-8'
 },
 body: new URLSearchParams({
 client_id: $application.variables.authClientId,
 grant_type: "authorization_code",
 redirect_uri: $application.variables.ofsGetCodeRedirectUri,
 // code_verifier: authCodeChallenge,
 code: code,
 })
 }
);

 const jsonData = await result.json();

 if (jsonData.access_token) {
 $application.variables.authHeaders = { 'Authorization': 'Bearer ' + jsonData.access_token };
 }
 };

34

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 $application.variables.ofsConnector.sendMessage({
 method: $application.variables.ofsConnector.TRANSMIT_METHODS.METHOD_CALL_PROCEDURE,
 callId: callId,
 procedure: "getAuthorizationCode",
 params: {
 url: authUrl
 }
 });

 //---------------------------------------

 }
 }

 return _authorize;
});

4. Click the Authorize button to trigger the Action chain. It calls the Plugin Framework function to get an
authorization code. Next, by code it obtains a token and gets the REST API data into the table.

Display Data in a Table

1. Drag a Table component onto your VBCS page layout.\

35

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. As the data source for the table, select the Public Workers service connection you created earlier.

3. Select the specific fields from the Public Workers endpoint structure that you want to display in the table. For
example, PersonId, FirstName, LastName. Specify PersonId as the key field.

36

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

4. Navigate to the automatically created Service Data Provider variable, getPublicWorkersListSDP.

5. Click Customize Fetch Action Chain.
6. Within the getPublicWorkersFetch Action Chain, add the following code to the "Headers" section:

headers: $application.variables.authHeaders,

This ensures that the authorization header (containing the JWT obtained via the Plugin Framework) is included
when fetching data for the table.

7. To list 'getPublicWorkersFetch' Action Chain, use the following code:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (
 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class getPublicWorkersFetch extends ActionChain {

 /**

37

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 * @param {Object} context
 * @param {Object} params
 * @param {{hookHandler:'vb/RestHookHandler'}} params.configuration
 */
 async run(context, { configuration }) {
 const { $page, $flow, $application, $constants, $variables } = context;
 const callRestEndpoint1 = await Actions.callRest(context, {
 endpoint: 'publicWorkers/getPublicWorkers',
 responseType: 'getPublicWorkersResponse',
 hookHandler: configuration.hookHandler,
 requestType: 'json',
 //---
 headers: $application.variables.authHeaders,
 //---
 });

 return callRestEndpoint1;
 }
 }

 return getPublicWorkersFetch;
});

Configure Application Security

1. Navigate to the Security tab of your VBCS application.

38

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. Deselect the authentication access requirement at all three levels: Application, Flows, and Pages. This is
necessary because the plugin will be loaded in a context where the user might not be directly authenticated
with the VBCS application itself.

3. On the Security tab, configure the Embedding settings to allow embedding from any domain. This is crucial for
the VBCS application to function correctly when embedded as an external plugin in Oracle Fusion Field Service.

Remove Temporary Authorization Header

1. Navigate to the Backend section and select the custom backend (hcm in this scenario) you created.
2. Remove the temporary Authorization header that you added in the Add an HCM Backend section. The

authorization header is used only to help the VBCS wizard obtain data from the REST API and configure
columns and primary key. This header is only for design-time assistance and is no longer needed as the
authorization will be handled dynamically through the Plugin Framework at runtime.

Stage VBCS Application for Oracle Fusion Field Service

1. Once your VBCS application is developed and tested, stage it to generate a URL that can be used as an external
plugin in Oracle Fusion Field Service.

39

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. Next in Oracle Fusion Field Service, navigate to Configuration → Forms & Plugins → Add Plugin → External
Plugin and open the external plugin that you have added.

3. Configure the staged VBCS application as an external plugin within your Oracle Fusion Field Service
environment. This involves providing the staged URL and configuring the necessary plugin parameters (for
example, getCodeEndpoint, getTokenEndpoint, clientId, scope).

VBCS application supports both button parameters and plugin parameters:

a. getCodeEndpoint Example for IDCS: https://{idcsUrl}/oauth2/v1/authorize
b. getTokenEndpoint Example for IDCS: https://{idcsUrl}/oauth2/v1/token
c. clientId
d. scope

Sample Plugin for Authorization Flow

The Sample Plugin can call the getAuthorizationCode procedure. When redirected to the Identity Provider, the plugin
receives the callProcedureResult in response as shown below:

40

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Obtain and Use a Refresh Token
This topic outlines how to obtain a refresh token and subsequently use it to acquire a new access token.

To obtain a refresh token, you need to explicitly request it during the initial authorization code retrieval. This is done by
including the "offline_access" value in the scope parameter of the "getAuthorizationCode" procedure call.

The Plugin API message would then appear as follows:

{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "getAuthorizationCode",
 "callId": "d18243f2-e4f9-4cd2-a357-102fda444c6a",
 "params": {
 "url": "https://idcs-****.example.com/oauth2/v1/authorize?
response_type=code&client_id=****&redirect_uri=https%3A%2F%2Ffield-service-doamin.com%2Fplugin-auth-redirect
%2F&scope=urn:opc:resource:faaas:fa:****urn:opc:resource:consumer::all%20offline_access"
 }
}

After the receiving code and requesting access token in the usual way (request to "/oauth2/v1/token") the response
looks like:

{
 "access_token": "eyJ4NXQjUzI1NiI6Ink5bm...6VBDe_Utj5C0kA",
 "token_type": "Bearer",
 "expires_in": 3349,
 "refresh_token": "AgAgZDliM2M1OGUwY...yVHFGigEP5AB7zfYQ=="
}

To get a new access token by using the refresh token you need to call the following request:

CLIENT_ID='****'
CLIENT_SECRET='****'
REFRESH_TOKEN='****'
curl --noproxy '*' --url 'https://idcs-****.com/oauth2/v1/token' -X POST \

41

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 -H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' \
 -u "$CLIENT_ID:$CLIENT_SECRET" \
 -d grant_type=refresh_token \
 -d refresh_token="$REFRESH_TOKEN"

As an alternative the credentials could be sent in data fields:
CLIENT_ID='****'
CLIENT_SECRET='****'
REFRESH_TOKEN='****'
curl --noproxy '*' --url 'https://idcs-****.com/oauth2/v1/token' -X POST \
 -H 'Content-Type: application/x-www-form-urlencoded;charset=UTF-8' \
 -d grant_type=refresh_token \
 -d client_id="$CLIENT_ID" \
 -d client_secret="$CLIENT_SECRET" \
 -d refresh_token="$REFRESH_TOKEN"

The same request using Fetch API (JS):

fetch("https://idcs-****.com/oauth2/v1/token", {
 method: 'POST',
 headers: {
 'Content-Type': 'application/x-www-form-urlencoded;charset=UTF-8'
 },
 body: new URLSearchParams({
 grant_type: "refresh_token",
 client_secret: "****",
 client_id: "****",
 refresh_token: "****"
 })
})
.then(resp => resp.json())
.then(json => console.log(json));

For more information: see https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ACWebServerAppAuth.html

Troubleshooting
This section describes the troubleshooting tips that can help resolve common issues encountered when integrating
your VBCS application with Oracle Fusion Field Service.

1. HTTP 403 Error (Forbidden): If you encounter a "403 Forbidden" error, it might indicate
that your user account in Fusion does not have the necessary permissions. Ensure that the
ORA_HRC_HUMAN_CAPITAL_MANAGEMENT_INTEGRATION_SPECIALIST_JOB role is assigned to your Fusion
user. You can check and assign this role in Fusion through Tools -> Security Console -> Users.

2. CORS Error: If you see a CORS (Cross-Origin Resource Sharing) error, the browser is preventing the VBCS
application from making requests to the REST API due to security restrictions. Contact your Oracle Fusion Field
Service administrator to verify the ORA_CORS_ORIGINS profile option code in Fusion: My Enterprise -> Setup
and Maintenance → Tasks (visible in the Right Side of the screen) -> Search -> Manage Administrator Profile
Values task -> Add full URL (including "https" prefix and without trailing slash) to Profile Value field. The
value is a domain from which the plugin is loaded. For more information, see https://docs.oracle.com/en/cloud/
saas/fusion-service/facoe/c_chat_configure_for_cors.html

The domains that should be listed in the CORS policy field:

a. for VBCS plugins - domain of VBCS application
b. for standard plugins - plugins-1-{FS domain}, use environment name in the domain, for example, ofsc-

******.test instead of alias for hosted plugins - plugins-0-{FS domain}, use environment name in the
domain, for example, ofsc-******.test instead of alias

42

https://docs.oracle.com/en/cloud/paas/identity-cloud/rest-api/ACWebServerAppAuth.html
https://docs.oracle.com/en/cloud/saas/fusion-service/facoe/c_chat_configure_for_cors.html
https://docs.oracle.com/en/cloud/saas/fusion-service/facoe/c_chat_configure_for_cors.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

c. for requests from browser's console - name of the domain where request is called

OAuth User Assertion Flow (getAccessToken procedure)
You can use the OAuth User Assertion Flow to obtain an access to REST API on behalf of user that is logged in to Oracle
Fusion Field Service using Single Sign On.

The diagram below illustrates the OAuth User Assertion Grant Flow, detailing the process of obtaining access to the
REST API on behalf of a user logged in through Single Sign-On.

Advantages:

• Associates REST API access with specific user privileges.

• Suitable for scenarios requiring differentiation based on user credentials for REST API calls.

Process Workflow Summary:

1. Add the OAuth User Assertion application to the Configuration → Applications page.
2. Download the Field Service certificate. This certificate is used for upload to the Identity Provider side when you

configure the IDCS application.
3. Configure the application on the Identity Provider to support the OAuth User Assertion Flow.
4. Enter credentials (Client ID, Scope, Identity Provider endpoint) on the Oracle Fusion Field Service side.
5. Add the application to the plugin using the Edit Plugin page.
6. Call the getAccessToken procedure from the plugin with this application in the procedure parameters.
7. Obtain a JWT access token in the procedure response.
8. Use the JWT access token for REST API request authorization.

43

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Note: This flow may not work with certain Identity Providers that require additional parameters not outlined in the
RFC standard. For example: Microsoft Identity Platform requires the "requested_token_use" parameter in the token
request. In that case, the OAuth Authorization Code Grant Flow could be used as an alternative.

Oracle Fusion Field Service Application Configuration for OAuth User Assertion
This topic outlines the steps to create and configure a Field Service application using the OAuth User Assertion flow to
obtain an access token.

1. Navigate to Configuration → Applications.

44

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. Click Add Application. The Add Application page appears.

3. Select Applications using REST/SOAP API. You will be prompted to enter a name for this application; provide a
descriptive name.

45

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

4. From the available application security types, select OAuth User Assertion. This indicates that this application will
use a JWT assertion to obtain an access token from the Identity Provider.

5. In the Resource URL field, specify the URL that represents the OAuth 2.0 Resource Server (the server that provides
REST data). It will be included in the "applications" section during the "init" method to avoid hardcoding the URL in
the plugin.

6. In the Token URL field, enter the URL of the OAuth 2.0 Authorization Server (Identity Provider) that issues access
tokens. For example, https://{idcsUrl}/oauth2/v1/token .

Note: In some cases, the OAuth 2.0 Resource Server and Authorization Server share the same domain.

7. Select which username will be included in the JWT assertion.

◦ Predefined User: Select this option to use a fixed, predefined username. This is often used for testing
purpose.

◦ Identify User Based on Login : Select this option to use the username derived from a property of the
currently logged-in Field Service user (commonly the "Login" property).

8. Enter the Identity Provider Details.
a. Client ID: Obtained from the Identity Provider configuration while creating the application in the

Authorization Server.
b. Client Secret: Also retrieved from the Identity Provider configuration.
c. Scope: A space-separated string used to restrict access. For example:

urn:opc:resource:fusion:xxxxxxxx:field-service

9. Click Download Certificate to download the certificate. This certificate is used by the Identity Provider to verify the
signature of the JWT assertion sent by Oracle Fusion Field Service. You must import this certificate into the Identity
Provider's configuration for the integrated application.

IDCS Configuration for OAuth User Assertion
This topic describes how to configure an integrated application within Oracle Identity Cloud Service (IDCS) to enable the
OAuth User Assertion flow and issue access tokens for use by Oracle Fusion Field Service.

1. Navigate to the identity domain configuration in IDCS.
2. Select the Integrated Applications section from the left pane.
3. Click Add Application at the top of the page. The Add application dialog box appears.
4. In the Add application dialog box, select Confidential Application and click Launch Workflow. The Add

Confidential Application dialog box appears.
5. Provide a name for your new application.
6. Click Submit.
7. Next, click Edit OAuth configuration to proceed to the Edit OAuth configuration step.
8. In the Client Configuration section, select Configure this application as a client now.
9. Select the JWT Assertion grant type in the Authorization section. Leave all other grant types unchecked. In this

example, only one grant type is used, but real integrations may involve multiple grant types for a single application.
10. In the Client Type section, select Trusted. Trusted clients can generate self-signed user assertions using the Field

Service certificate.
11. Import the Field Service signing certificate, which can be downloaded from: Configuration → Applications → Add

Application (OAuth User Assertion support) → Download Certificate.
12. In the Allowed Operations section, optionally select On behalf of. This allows the client application to access

endpoints the user can access, even if the client doesn't have direct access.

46

https://%7bidcsUrl%7d/oauth2/v1/token

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

13. In the Token Issuance Policy section, select Add resources if you want your application to access the APIs of other
applications.

14. In the Resources section, click Add Scope. A list of applications appears in the Add scope dialog box.
15. Select the scope of the target resource, such as Fusion Applications Cloud Service, and then click Add.

The selected application is added to the Resource scope.

Note: If Fusion Applications Cloud Service is not listed as a resource, it indicates that Fusion Service is not linked
to the IDCS domain. In this case, you must create the integrated application in the domain linked to Fusion Service.

16.Click Finish to complete the creation of the integrated application.
17. After creation, ensure that you activate the newly created IDCS application.

47

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

18.Once activated, your application appears as configured and ready for integration.

48

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

49

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Plugin Configuration to Connect Oracle Fusion Field Service Application
This topic explains how to link the Oracle Fusion Field Service application configured for OAuth User Assertion to a
plugin within Oracle Fusion Field Service.

To connect the Oracle Fusion Field Service Application to a plugin:

1. Navigate to Configuration > Displays > Forms and Plugins. Or, click the Configurations >Users Type>
Screens and then select the required plugin.

2. Select the plugin from the available list that you would like to connect.
3. Click Edit from the Action menu. The Edit Plugin page appears.
4. In the Applications for Rest API section, click Add.
5. Select the Oracle Fusion Field Service application you created in Oracle Fusion Field Service Application

Configuration for OAuth User Assertion from the drop-down list of available applications for a specific

50

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

application key (for example, "oauth_user_assertion_application"). This establishes the connection between the
plugin and the configured application.

6. Click Update.

Sample Plugin to Obtain Access Token
This topic describes how a plugin, such as the Sample Plugin, can use the configured Oracle Fusion Field Service
application to obtain an access token using the getAccessToken procedure.

Initial Application List

Upon initialization, the plugin receives a message containing a list of available applications. This message includes the
resourceUrl field for each application.

The resourceUrl is obtained from the plugin's configuration and is used by the Sample Plugin in subsequent API
requests.

The following screenshot illustrates the Initialization data, showcasing how the plugin obtains and employs the
resourceUrl field from its configuration during the initialization process.

51

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Obtain an Access Token

To acquire an access token using the Sample Plugin, you need to utilize the Procedures functionality as shown in the
screenshot below. You can

• Send a callProcedure method call to the plugin.

• Within the callProcedure call, specify getAccessToken as the desired procedure.

52

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Retrieve the Token

Once the callProcedure with getAccessToken is processed, the resulting access token will be available in the
callProcedureResult response method as shown below:

Validate the Token by Fetching Data

With the access token obtained, you can now fetch data from a REST API to verify its validity.

53

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

fetch("https://fusion-instance.com/hcmRestApi/resources/latest/workers", {
 headers: {
 Authorization: "Bearer <accessToken>"
 }
})
.then(resp => resp.json())
.then(json => console.log(json));

VBCS Application as an Oracle Fusion Field Service External Plugin
This topic provides information on how to create a VBCS application that acts as an Oracle Fusion Field Service plugin
and obtains data from a REST API using the OAuth User Assertion flow.

First, you need to configure the IDCS application which gives you the ability to authorize using the OAuth Authorization
Code flow.

1. Create a VBCS application.
2. Configure the plugin in Oracle Fusion Field Service.
3. Execute the complete workflow: open the VBCS plugin, authorize, and retrieve REST API data from Fusion.

Create a VBCS Application
This topic provides a step-by-step guide to create a VBCS application that acts as an Oracle Fusion Field Service plugin
and obtains data from a REST API using the OAuth User Assertion flow.

To create a new VBCS application:

1. Open your VBCS environment.
2. Create a new VBCS application and specify a suitable name and ID for your application.
3. Within your newly created VBCS application, navigate to the Variables section.

a. Create the necessary variables that your application will use during its operation. The specific variables
required will depend on the logic of your plugin. Use the following code to add the required variables:

"variables": {
 "authHeaders": {
 "type": "object"
 },
 "ofsConnector": {
 "type": "any"
 },
 ...
}

54

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Add a Backend

1. Navigate to the Backend section in VBCS.
2. Click the button to create a new backend.

55

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

3. Select Custom as the backend type.

4. Enter a name for your custom backend. For example, hcm.

56

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

5. To allow VBCS to understand the structure of the REST API during development:
a. Add a custom header named Authorization.
b. Set the Value of this header to Bearer xxxx, where xxxx is a valid JWT (obtained through a tool like the

Simple Authorization Plugin described in previous documentation).

Note: This header serves a temporary function to facilitate the design process and will be removed
in a subsequent phase. The JWTs have a finite lifespan and will require periodic updates during
development.

Add a 'Public Workers' Service Connection

1. Next, navigate to the Service Connections section.
2. Click the button to add a new service connection.
3. Click Select from Catalog.
4. In the Custom section, select the custom backend you just created (e.g., hcm).
5. Select Define by endpoint.
6. Set the Service Name and Title to publicWorkers.

7. Set the URL suffix to /publicWorkers. This will be appended to the base URL of your HCM backend. In this
example, the plugin will request data from Public Workers HCM REST API. For more information, see https://
docs.oracle.com/en/cloud/saas/human-resources/24c/farws/op-publicworkers-get.html

57

https://docs.oracle.com/en/cloud/saas/human-resources/24c/farws/op-publicworkers-get.html
https://docs.oracle.com/en/cloud/saas/human-resources/24c/farws/op-publicworkers-get.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Implement Plugin Framework Initialization

1. Navigate to the main page or the relevant flow where the plugin will be used.

2. Open the Event Listeners tab for the page.
3. Select the vbEnter event.
4. Click Add Action Chain to create a new Action Chain _init associated with this event.
5. Within this _init Action Chain, add the following code :

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (
 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class _init extends ActionChain {

 /**
 * @param {Object} context
 */
 async run(context) {
 const { $application, $constants, $variables } = context;
 //---------------------------------------

 class OfsConnector {
 constructor(params) {
 const {
 apiVersion = 1,
 onInit = (jsonData) => {},
 onOpen = (jsonData) => {},
 onCallProcedureResult = (jsonData) => {},
 onError = (jsonData) => {
 alert(jsonData);
 }
 } = params;

 this.API_VERSION = apiVersion;

 this.onInit = onInit.bind(this);
 this.onOpen = onOpen.bind(this);

58

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 this.onCallProcedureResult = onCallProcedureResult.bind(this);
 this.onError = onError.bind(this);

 this.TRANSMIT_METHODS = {
 METHOD_READY: 'ready',
 METHOD_INIT_END: 'initEnd',
 METHOD_CLOSE: 'close',
 METHOD_UPDATE: 'update',
 METHOD_CALL_PROCEDURE: 'callProcedure',
 METHOD_SLEEP: 'sleep'
 };

 this.RECEIVE_METHODS = {
 METHOD_ERROR: 'error',
 METHOD_INIT: 'init',
 METHOD_OPEN: 'open',
 METHOD_UPDATE_RESULT: 'updateResult',
 METHOD_CALL_PROCEDURE_RESULT: 'callProcedureResult',
 METHOD_WAKEUP: 'wakeup'
 };

 window.addEventListener("message", this.onPostMessage.bind(this), false);
 }

 /**
 * @param {Object} dataToSend
 * @returns {void}
 */
 sendMessage(dataToSend) {
 const originUrl = this.constructor._getOriginUrl();
 const origin = originUrl ? this.constructor._getOrigin(originUrl) : '*';

 dataToSend.apiVersion = this.API_VERSION;

 parent.postMessage(dataToSend, origin);
 }

 onPostMessage(event) {
 // Accept only external messages
 if (event.source === window) {
 return;
 }

 const jsonData = event.data;

 if (!jsonData) {
 this.onError('Received message without data: ' + jsonData);

 return;
 }

 switch (jsonData.method) {
 case this.RECEIVE_METHODS.METHOD_INIT:
 this.onInit(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_OPEN:
 this.onOpen(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_CALL_PROCEDURE_RESULT:
 this.onCallProcedureResult(jsonData);
 break;

 case this.RECEIVE_METHODS.METHOD_ERROR:

59

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 this.onError('Received message with error method: ' + jsonData);
 break;

 default:
 this.onError('Received message with unsupported method: ' + jsonData);
 }
 }

 static generateRandomString (length) {
 return btoa(String.fromCharCode.apply(null, window.crypto.getRandomValues(new Uint8Array(length))))
 .replaceAll('=', '')
 .replaceAll('/', '')
 .replaceAll('+', '').substr(0, length);
 }

 static _getOrigin(url) {
 if (typeof url === 'string' && url !== '') {
 if (url.indexOf("://") > -1) {
 return (window.location.protocol || 'https:') + url.split('/')[2];
 } else {
 return (window.location.protocol || 'https:') + url.split('/')[0];
 }
 }

 return '';
 }

 static _getOriginUrl() {
 if (document.referrer) {
 return document.referrer;
 }

 if (document.location.ancestorOrigins && document.location.ancestorOrigins[0]) {
 return document.location.ancestorOrigins[0];
 }

 return null;
 }
 }

 //---------------------------------------

 const onInit = function(jsonData) {
 if (jsonData.origin) {
 localStorage.setItem('authRedirectOrigin', jsonData.origin || '');
 }

 this.sendMessage({
 method: this.TRANSMIT_METHODS.METHOD_INIT_END
 });
 };

 const onOpen = function(jsonData) {
 let openParams = jsonData.openParams || {};
 let securedData = jsonData.securedData || {};

 // getCodeEndpoint
 // Example: https://{idcsUrl}/oauth2/v1/authorize

 // getTokenEndpoint
 // Example: https://{idcsUrl}/oauth2/v1/token

 $application.variables.authClientId = openParams.clientId || securedData.clientId || '';
 $application.variables.authScope = openParams.scope || securedData.scope || '';
 $application.variables.authGetCodeEndpoint = openParams.getCodeEndpoint || securedData.getCodeEndpoint
 || '';

60

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 $application.variables.authGetTokenEndpoint = openParams.getTokenEndpoint ||
 securedData.getTokenEndpoint || '';

 $application.variables.ofsGetCodeRedirectUri = localStorage.getItem('authRedirectOrigin') + '/plugin-
auth-redirect/';
 };

 $application.variables.ofsConnector = new OfsConnector({
 onInit: onInit,
 onOpen: onOpen
 });

 $application.variables.ofsConnector.sendMessage({
 method: $application.variables.ofsConnector.TRANSMIT_METHODS.METHOD_READY,
 sendInitData: true,
 sendMessageAsJsObject: true
 });

 //---------------------------------------

 }
 }

 return _init;
});

This code helps you to:
a. Include the Plugin Framework connector class into your VBCS application.
b. Store this connector class in an application variable.
c. Initiate the communication with the Field Service Plugin Framework

Create Authorization and Data Retrieval

1. On your VBCS page, place a Button with the label 'Authorize and get workers'.

2. Create a new Action Chain named _authorize and associate it with the button's ojAction event listener.
3. Change code of the '_authorize' Action Chain, and add the following:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (

61

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class _authorize extends ActionChain {

 /**
 * @param {Object} context
 */
 async run(context) {
 const { $application, $constants, $variables } = context;

 //---------------------------------------

 const callId = $application.variables.ofsConnector.constructor.generateRandomString(16);

 $application.variables.ofsConnector.onCallProcedureResult = async function(procedureResult) {
 if (!procedureResult.callId || procedureResult.callId !== callId) {
 return;
 }

 let token = procedureResult.resultData.token;

 if (token) {
 $application.variables.authHeaders = { 'Authorization': 'Bearer ' + token };
 }
 };

 $application.variables.ofsConnector.sendMessage({
 method: $application.variables.ofsConnector.TRANSMIT_METHODS.METHOD_CALL_PROCEDURE,
 callId: callId,
 procedure: "getAccessToken",
 params: {
 applicationKey: "oauth_user_assertion_application"
 }
 });

 //---------------------------------------

 }
 }

 return _authorize;
});

4. This Action chain will be triggered on Authorize button click. It will call the Plugin Framework function to get an
authorization code. Next by code it will obtain a token and get the REST API data into the table.

62

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Display Data in a Table

1. Drag and drop a Table component onto your VBCS page layout.

2. As the data source for the table, select the Public Workers service connection you created earlier.

3. Select the specific fields from the Public Workers endpoint structure that you want to display in the table . For
example, PersonId, FirstName, LastName. Specify PersonId as the key field.

63

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

4. Navigate to the automatically created Service Data Provider variable, getPublicWorkersListSDP.

5. Click Customize Fetch Action Chain.
6. Within the getPublicWorkersFetch Action Chain, add the following code to the "Headers" section:

headers: $application.variables.authHeaders,

This will ensure that the authorization header (containing the JWT obtained via the Plugin Framework) is
included when fetching data for the table.

7. To list 'getPublicWorkersFetch' Action Chain, use the following code:

define([
 'vb/action/actionChain',
 'vb/action/actions',
 'vb/action/actionUtils',
], (
 ActionChain,
 Actions,
 ActionUtils
) => {
 'use strict';

 class getPublicWorkersFetch extends ActionChain {

 /**

64

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

 * @param {Object} context
 * @param {Object} params
 * @param {{hookHandler:'vb/RestHookHandler'}} params.configuration
 */
 async run(context, { configuration }) {
 const { $page, $flow, $application, $constants, $variables } = context;
 const callRestEndpoint1 = await Actions.callRest(context, {
 endpoint: 'publicWorkers/getPublicWorkers',
 responseType: 'getPublicWorkersResponse',
 hookHandler: configuration.hookHandler,
 requestType: 'json',
 //---
 headers: $application.variables.authHeaders,
 //---
 });

 return callRestEndpoint1;
 }
 }

 return getPublicWorkersFetch;
});

Configure Application Security

1. Navigate to the Security tab of your VBCS application.

65

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. Uncheck the authentication access requirement at all three levels: Application, Flows, and Pages. This is
necessary because the plugin will be loaded in a context where the user might not be directly authenticated
with the VBCS application itself.

3. Configure the Embedding settings to allow embedding from any domain. This is crucial for the VBCS
application to function correctly when embedded as an external plugin in Oracle Fusion Field Service.

Remove Temporary Authorization Header

1. Navigate to the Backend section and select the custom backend (hcm in this scenario) you created.
2. Remove the temporary Authorization header that you added in the Add an HCM Backend section. The

authorization header is used only to help VBCS wizard to obtain data from the REST API and configure columns
and primary key. This header is only for design-time assistance and is no longer needed as the authorization
will be handled dynamically through the Plugin Framework at runtime.

Configure IDCS and Oracle Fusion Field Service Applications
Ensure that you use the credentials of the IDCS application to configure Oracle Fusion Field Service with Oauth User
Assertion for authorization as shown below.

66

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

67

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Configure VBCS Application as an Oracle Fusion Field Service External Plugin
Once your VBCS application is developed and tested, stage it to generate a URL that can be used as an external plugin
in Oracle Fusion Field Service.

To configure the VBCS application as Oracle Fusion Field Service external plugin:

1. Navigate to Configuration → Forms & Plugins → Add Plugin → External Plugin. The Add External Plugin page
appears.

2. In the Plugins settings section, specify the stage URL of VBCS as plugin URL.

3. In the Applications for REST API section, click the + sign to add an application with the
oauth_user_assertion_application key. Select the Oracle Fusion Field Service application you configured in the
Configure IDCS and Oracle Fusion Field Service Applications section.

4. Click Update.

68

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Troubleshooting
This section describes the troubleshooting tips that can help resolve common issues encountered when integrating
your VBCS application with Oracle Fusion Field Service.

1. HTTP 403 Error (Forbidden): If you encounter a "403 Forbidden" error, it might indicate
that your user account in Fusion does not have the necessary permissions. Ensure that the
ORA_HRC_HUMAN_CAPITAL_MANAGEMENT_INTEGRATION_SPECIALIST_JOB role is assigned to your Fusion
user. You can check and assign this role in Fusion through Tools -> Security Console -> Users.

2. CORS Error: If you see a CORS (Cross-Origin Resource Sharing) error, the browser is preventing the VBCS
application from making requests to the REST API due to security restrictions. Contact your Oracle Fusion Field
Service administrator to verify the ORA_CORS_ORIGINS profile option code in Fusion: My Enterprise -> Setup
and Maintenance → Tasks (visible in the Right Side of the screen) -> Search -> Manage Administrator Profile
Values task -> Add full URL (including "https" prefix and without trailing slash) to Profile Value field. The
value is a domain from which the plugin is loaded. For more information, see https://docs.oracle.com/en/cloud/
saas/fusion-service/facoe/c_chat_configure_for_cors.html

The domains that should be listed in the CORS policy field:

a. for VBCS plugins - domain of VBCS application
b. for standard plugins - plugins-1-{FS domain}, use environment name in the domain, for example, ofsc-

******.test instead of alias for hosted plugins - plugins-0-{FS domain}, use environment name in the
domain, for example, ofsc-******.test instead of alias

c. for requests from browser's console - name of the domain where request is called

Obtain and Use a Refresh Token

Refresh tokens are not provided in the current version of the Plugin API. If your access token expires, you should
request a new one instead.

OAuth Client Credentials Flow (getAccessToken procedure)
OAuth Client Credentials Flow is widely supported by numerous Identity Providers and is used when REST API calls
are made on behalf of an application. In this setup, multiple users share the same application for REST API calls.
However, this may be unsuitable in cases where user-specific API calls are required. The OAuth User Assertion or OAuth
Authorization Code Grant Flows are recommended for such scenarios.

This diagram illustrates the OAuth Client Credentials Grant Flow, showcasing how applications can make REST API calls
on behalf of multiple users while highlighting its suitability and limitations in different scenarios.

69

https://docs.oracle.com/en/cloud/saas/fusion-service/facoe/c_chat_configure_for_cors.html
https://docs.oracle.com/en/cloud/saas/fusion-service/facoe/c_chat_configure_for_cors.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Advantages:

• Broadly used and supported by most OAuth Identity Providers.

• This is ideal when the plugin's access to the REST API is not tied to user-specific privileges. All users accessing
the plugin share the same level of access, which is managed by the configuration on the Identity Provider side.

Process Workflow Summary:

1. Add the OAuth Client Credentials application to the Configuration → Applications page.
2. Configure an Identity Provider application that supports the OAuth Client Credentials Flow.
3. Enter the credentials (Client ID, Client Secret, Scope, Identity Provider endpoint) on the Oracle Fusion Field

Service side.
4. Add the application to the plugin using the Edit Plugin page.
5. Call the "getAccessToken" procedure from the plugin with this application in the procedure parameters.
6. Obtain a JWT access token in the procedure response.
7. Use the JWT access token for REST API request authorization.

Oracle Fusion Field Service Application Configuration for OAuth Client Credentials Flow
This topic outlines the steps to create and configure a Oracle Fusion Field Service application using the OAuth Client
Credentials flow to obtain an access token. This flow is suitable for scenarios where a user context is not required, but
keep in mind that all users of the same plugin will share the same application and thus use the same access token.

To create an Oracle Fusion Field Service application:

1. Navigate to Configuration → Applications.

70

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

2. Click Add Application. The Add Application page appears.

71

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

72

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

3. Select Applications using REST/SOAP API as the application type. You will be prompted to enter a name for this
application; provide a descriptive name.

4. From the available application security types, select OAuth Client Credentials. This indicates that this application
will use its own credentials (Client ID and Client Secret) to obtain an access token from the Identity Provider without
involving a specific user's context.

5. In the Resource URL (Optional) field, specify the URL that represents the OAuth 2.0 Resource Server (the server that
provides REST data). It will be included in the "applications" section during the "init" method to avoid hardcoding the
URL in the plugin.

6. In the Token URL field, enter the URL of the OAuth 2.0 Authorization Server (Identity Provider) that issues access
tokens. For example, https://{idcsUrl}/oauth2/v1/token .

Note: In some cases, the OAuth 2.0 Resource Server and Authorization Server might share the same domain.

7. Enter Client ID Obtained from the Identity Provider configuration while creating the application in the Authorization
Server.

8. Enter Client Secret Also retrieved from the Identity Provider configuration.
9. Specify Scope . This is a string (usually space-separated) that defines the permissions the Field Service application

will request when obtaining an access token. The value is provided by the Identity Provider's configuration. For
example: urn:opc:resource:fusion:xxxxxxxx:field-service

10.Click Add.
Examples of credentials:

◦ Resource Server URL: https://graph.microsoft.com/v1.0/users

◦ Auth Server URL:https://login.microsoftonline.com/{tenant}/oauth2/v2.0/token

◦ Client ID: "{clientId}"

◦ Client Secret: "{clientSecret}"

◦ Scope: https://graph.microsoft.com/.default

IDCS Configuration for OAuth Client Credentials Flow
This topic describes how to configure an integrated application within Oracle Identity Cloud Service (IDCS) to enable the
OAuth Client Credentials flow and issue access tokens for use by Oracle Fusion Field Service.

To create an integrated application:

1. Navigate to the identity domain configuration in IDCS.
2. Select the Integrated Applications section from the left pane.
3. Click Add Application, which is available at the top of the page.
4. In the Add application dialog box, select Confidential Application as the application type, and then click Launch

Workflow The Add Confidential Application dialog box appears.
5. Enter a descriptive name for your new integrated application.
6. Click Submit.
7. Next, click Edit OAuth configuration to proceed to the Edit OAuth configuration step.
8. In the Client Configuration section, select Configure this application as a client now.
9. In the Authorization section, select the Client credentials grant type. Ensure all other grant types are unchecked for

this specific scenario, although real-world integrations might use multiple grant types for a single application.

Note: If your plugin intends to use refresh tokens functionality (although the Plugin API currently doesn't directly
return them), you can optionally check the Refresh token grant type here.

73

https://%7bidcsUrl%7d/oauth2/v1/token

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

10. In the Token Issuance Policy section, select Add resources if you want your application to access the APIs of other
applications.

11. In the Resources section, click Add Scope. A list of applications appears in the Add scope dialog box.
12. Select the Fusion Applications Cloud Service and then click Add.

The selected application is added to the Resource scope.

Note: If Fusion Applications Cloud Service is not listed as a resource, it indicates that Fusion Service is not linked
to the IDCS domain. In this case, the integrated application must be created in the domain linked to Fusion Service.

13. Click Next.
14.Skip Web tier policy.
15. Click Finish. The newly created application is now listed on the Integrated Applications page and its status is

Inactive.

74

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

16.Click the Activate icon to activate the application. Once activated, your application appears as configured and ready
for integration.

75

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Plugin Configuration to Connect Oracle Fusion Field Service Application
This topic explains how to link the Oracle Fusion Field Service application configured for the OAuth Client Credentials
flow to a plugin within Oracle Fusion Field Service. The steps are identical to those for the User Assertion flow.

76

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

To connect the Oracle Fusion Field Service Application to a plugin:

1. Navigate to Configuration > Displays > Forms and Plugins. Or, click the Configurations >Users Type>
Screens and then select the required plugin.

2. Select the plugin from the available list that you would like to connect.
3. Click Edit from the Action menu. The Edit Plugin page appears.
4. In the Applications for Rest API section, click Add.
5. Select the Oracle Fusion Field Service application you created in Oracle Fusion Field Service Application

Configuration for OAuth Client Credentials Flow from the drop-down list of available applications. This
establishes the connection between the plugin and the configured application.

6. Click Update.

Sample Plugin to Obtain Access Token (Client Credentials)
This topic outlines how a plugin, such as the Sample Plugin, can use the configured Oracle Fusion Field Service
application (for Client Credentials flow) to obtain an access token using the "getAccessToken" procedure. The process is
the same as for the User Assertion flow.

Initial Application List

Upon initialization, the plugin receives a message containing a list of available applications. This message includes the
resourceUrl field for each application.

The resourceUrl is obtained from the plugin's configuration and is used by the Sample Plugin in its subsequent API
requests.

The following screenshot illustrates the Initialization data, showcasing how the plugin obtains and employs the
resourceUrl field from its configuration during the initialization process.

77

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Obtain an Access Token

To acquire an access token using the Sample Plugin, you need to utilize the Procedures functionality as shown below in
the screenshot. You can

• Send a callProcedure method call to the plugin.

• Within the callProcedure call, specify getAccessToken as the desired procedure.

78

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Retrieve the Token

Once the callProcedure with getAccessToken is processed, the resulting access token will be available in the
callProcedureResult response method as shown below:

79

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Validate the Token by Fetching Data

With the access token obtained, you can fetch data from a REST API to verify its validity.

fetch("https://rest-api-instance.com/rest/api", {
 headers: {
 Authorization: "Bearer <accessToken>"
 }
})
.then(resp => resp.json())
.then(json => console.log(json));

VBCS Application as Oracle Fusion Field Service External Plugin

The application for Client credentials flow is the same as for User Assertion Flow.

Obtain and Use a Refresh Token

Refresh tokens are not provided in the current version of the Plugin API. If your access token expires, you should
request a new one instead.

getAccessToken Procedure Errors

Error Type Error Code Example Possible Reason and Solution

TYPE_PROCEDURE_PARAM CODE_PROCEDURE_PARAM_
VALUE_INVALID

Application Identifier
<applicationKey> is not a string,
 null or number,boolean, object,
array, empty string is invalid. Check
the applicationKey parameter.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_GET_ACCESS_TOKEN_
WRONG_APPLICATION_KEY

Procedure is called with Application
Identifier <applicationKey> that is
absent in Plugin's configuration.
Do not call the procedure with
an application differ from the
applications that were received in
the init method.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_GET_ACCESS_TOKEN_
APPLICATION_NOT_CONFIGURED

Application Identifier
<applicationKey> is not chosen
in Plugin's configuration, or
it's type is not supported by
getAccessToken procedure.
Choose an Application on Plugin
Configuration Screen.

80

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Error Type Error Code Example Possible Reason and Solution

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_GET_ACCESS_TOKEN_
OFFLINE_NOT_SUPPORTED

The getAccessToken procedure
is called while device is offline.
Run procedure when the device is
online.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_GET_ACCESS_TOKEN_
PROCEDURE_TIMEOUT

Field Service couldn't get access
token from server in 15 seconds.
Usually such long timeout caused
problems with internet connection
or problems of Authorization
server. Normally it should respond
in 4 sec.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "no_
access",
 "detail": "",
 "token": ""
}

Exceptional case. Contact
administrator.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "app_
misconfigured",
 "detail": "",
 "token": ""
}

1. Application Identifier
<applicationKey> is
not chosen in Plugin's
configuration.

2. The OFS Application is not
active.

3. Chosen Applicaion is not
found.

4. Choose an Application on
Plugin Configuration Screen.

5. Activate an OFS Application.
6. Exceptional case

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "unexpected_
response",
 "detail": "",
 "token": ""
}

Field Service got an unexpected
response from Identity Provider.

Token URL has wrong suffix. For
IDCS the right one is https://
{idcsUrl}/oauth2/v1/token

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "cannot_infer_user_
id",
 "detail": "",
 "token": ""
}

The field of user should be filled.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "token_service_
error",
 "detail":
 "invalid_request",

Check the scope field is not
empty, in case of Fusion it is
mandatory.Exceptional case.
Contact administrator.

81

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Error Type Error Code Example Possible Reason and Solution

 "token": ""

}

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "token_service_
error",
 "detail":
 "invalid_client",
 "token": ""

}

1. Activate an IDCS Application
2. Check that Client ID / Client

Secret is correct

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "token_
service_error",
 "detail":
 "invalid_grant",
 "token": ""

}

Check the username is correct

Check that certificate is valid

The client type (IDCS application
configuration) should be "Trusted"
not "Confidential" (to generate
self-signed user assertions).

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "token_
service_error",
 "detail":
 "unauthorized_
client",
 "token": ""
}

Check that OAuth client has
authorization to use the requested
grant.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "token_
service_error",
 "detail":
 "unsupported_grant_
type",
 "token": ""

}

Exceptional case. Contact
administrator.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status": "token_
service_error",
 "detail":
 "invalid_scope",
 "token": ""

}

Check the scope value

TYPE_PROCEDURE_GET_
ACCESS_TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "internal_error",
 "detail": "...",
 "token": ""

Exceptional case. Contact
administrator.

82

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Error Type Error Code Example Possible Reason and Solution

}

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "connection_error",
 "detail": "",
 "token": ""
}

Field Service didn't get a valid
response from Identity Provider.
The reasons could be differ from
timeout to wrong content. Check
that Auth Server URL is correct.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

CODE_PROCEDURE_FAILED "data": {
 "status":
 "unexpected_
response",
 "detail": "",
 "token": ""
}

TYPE_PROCEDURE_ERROR CODE_PROCEDURE_UNKNOWN Check the procedure name

TYPE_INTERNAL CODE_UNKNOWNCODE_JSON_
INVALIDCODE_METHOD_NOT_
SUPPORTED

Check JSON syntax and method
that is sent

Related Standards

OAuth 2.0 Client Credentials Grant https://datatracker.ietf.org/doc/html/rfc6749#section-4.4

JSON Web Token (JWT) https://datatracker.ietf.org/doc/html/rfc7519

OAuth 2.0 User Assertion

Assertion Framework for OAuth 2.0 Client
Authentication and Authorization Grants

https://datatracker.ietf.org/doc/html/rfc7521

OAuth 2.0 Authorization Code Grant https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

Plugin Lifecycle
This topic provides the lifecycle diagram of a plugin.

83

https://datatracker.ietf.org/doc/html/rfc6749#section-4.4
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc7521
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

The plugin lifecycle diagram is divided into four parts:

• Plugin is initialized: This diagram shows the initialization of the plugin:

• Plugin is opened by a user: This diagram shows the flow when a user opens the plugin:

84

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

• Plugin switches online with retries: This diagram shows the flow of background synchronization performed by
the plugin, when Oracle Fusion Field Service detects that the plugin is online:

• Plugin doesn’t respond: This diagram shows the flow when the plugin doesn’t send the sleep message within
two minutes:

85

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

• Plugin is opened by the user: This diagram shows the flow when the plugin is opened by the user when the
background synchronization is still in progress:

This flowchart shows the background synchronization of the plugin for the online event:

86

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

This flowchart shows the background synchronization of the plugin for the timer event:

87

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Plugin Rules and Guidelines
You create a plugin on the Forms & Plugins page and add it as a button on the required page. You can also add buttons
on the activity hint. You can configure the plugin during creation or editing of an Action link.

88

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

Here are some rules and guidelines that you must follow, while creating a plugin:

• Plugin URL must point to the main page of the plugin's source files. The plugin needs the HTTPS protocol.
Main page of the plugin must be accessible via configured Plugin URL. Its content is a valid HTML/XHTML
page, that should load JavaScript code sources, static resources (images, .css stylesheets) or contain them
itself.

• For a plugin to be treated as a valid plugin, the main page must run the JavaScript code that interacts with
Oracle Fusion Field Service through the Plugin API.

• To make a plugin accessible offline, it must use a Service Worker that loads its resources for offline use.
However, you must be aware of their availability in different versions of browsers and operating systems.

• A plugin can save data for offline locally on the user's device using cookies, the localStorage property, or the
IndexedDB object.

• The plugin’s URL is loaded into iframe, and the URL points outside the Oracle Fusion Field Service domain.
Therefore the plugin’s application cache, cookies, the localStorage property, and the IndexedDB object are
separated from that of Oracle Fusion Field Service. These elements can't interfere with one another, according
to the Same origin policy, described on the https://www.w3.org website. Most properties of the parent window
(window.parent property) are also unavailable for the plugin's JavaScript. So, the only way to interact with
Oracle Fusion Field Service is through the Plugin API

• The plugin API is based on messages. Oracle Fusion Field Service sends the messages and the plugin receives
them. Similarly, the plugin sends the messages and Oracle Fusion Field Service receives them. JavaScript code
uses the window.postMessage() method to send the messages, and the receiver receives by subscribing to the
window.addEventListener() method.

Transport

Plugin API is based on postMessages - https://developer.mozilla.org/ru/docs/Web/API/Window/postMessage ,
that can be sent by OFS and received by Plugin and vice versa.

postMessages are sent by JavaScript code using window.postMessage() method, and received by subscribing to
messages using window.addEventListener().

Debugging

Use:

setOfscDebugModes(true, 'pluginApi');

in Browser Console to enable debugging mode. It will show information about stages of initialization and all post
messages between platform and plugin. To disable the debugging mode use:

setOfscDebugModes(false, 'pluginApi');

Flowcharts
This topic provides the flowcharts that show how the plugin framework works.

This flowchart shows the plugin’s initialization flow:

89

https://developer.mozilla.org/ru/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/EventTarget/addEventListener

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

This flowchart shows the plugin’s main flow:

90

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

91

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 1
Overview of the Plugin Framework

92

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

2 Plugin API Messages

Message Formats
You can send a message to a plugin as a string, containing serialized JSON data, or as a raw JavaScript object.

Here’s an example of a message that's sent as a string containing serialized JSON data:
window.parent.postMessage('{"apiVersion":1,"method":"close","activity":{"cname":"John"}}', targetOrigin);

Here’s an example of a message that's sent as a raw JavaScript object:
window.parent.postMessage({
 apiVersion: 1,
 method: 'close',
 activity: {
 cname: 'John'
 }
}, targetOrigin);

You can update file properties only by using a JavaScript object as message data. See File properties for details.
Similarly, the plugin must process the messages that it receives. Oracle Fusion Field Service always sends the data to the
plugin as a serialized JSON string and never as a raw object. For example:

function getPostMessageData(event)
{
 var data = JSON.parse(event.data);
 switch (data.method)
 {
 case 'open':
 pluginOpen(data);
 break;
 default:
 showError();
 }
};

window.addEventListener("message", _getPostMessageData, false);

JSON data is an object (hash) of a defined format, and contains common fields (that describe the message itself) and
fields that are specific for different 'methods' (for example, that hold Oracle Fusion Field Service entities data), for
example:

{
 "apiVersion": 1,
 "method": "open",
 "entity": "activity",
 "resource": {
 "pid": 5000038
 },
 "inventoryList": {
 "20997919": {
 "invid": 20997919,
 "inv_pid": 5000038,
 }
 }
}

93

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Where:

• apiVersion, method: Common fields.

• entity: Name of the Oracle Fusion Field Service entity that's to be processed by the plugin. Available only for
the 'open' method.

• resource, inventoryList: Entity data collections. Available only for 'open' and 'close' methods.

Common Fields

• apiVersion: Version of the plugin API that's used for interaction between and Oracle Fusion Field Service
and the plugin. Available methods and data depend on it. This is a required parameter. You must include this
parameter in the message for the plugin to be processed without any errors.

• method: Describes the action initiated by Oracle Fusion Field Service or the plugin, and the actions that should
be performed by other side.

Related Topics
• Does the plugin apply limits to property values?

Available Methods
Initiated by Oracle Fusion Field Service:

• init: The plugin is loaded when Oracle Fusion Field Service is initialized, and the initialization data can be stored
by the plugin.

• open: The plugin content is to be shown on the page in Oracle Fusion Field Service.

• error: Data submitted by the plugin is invalid, or some internal errors have occurred.

• wakeup: Oracle Fusion Field Service detected that a connection to a server is available and the plugin has
requested to be activated on this event.

• callProcedureResult: Oracle Fusion Field Service returns the result of running the procedure (RPC).

Initiated by the plugin:

• ready: The plugin is loaded and is ready to receive messages.

• initEnd: The Plugin finished processing the initialization data.

• close: The plugin submits data and its window will be closed if data is valid.

• update: The plugin updates OFS entities data without closing its window.

• sleep: Lets the plugin finish the background activity (started by “wakeup” method) when all data is
synchronized with the server. If the plugin is not able to synchronize with its own server because network
connectivity is not available, it can notify Oracle Fusion Field Service to wake it up in the background when the
connectivity is available.

• callProcedure: The plugin requests the Oracle Fusion Field Service to run the procedure (RPC) without closing
the plugin's window.

94

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

ready Method
A message that includes the ready method indicates that all the resources needed for the plugin's functioning are
loaded; the plugin has started listening to the messages from Oracle Fusion Field Service Core Application and is ready
to process them.

The plugin sends the ready message every time it's loaded. When Oracle Fusion Field Service Core Application is being
loaded or a page is being refreshed, the message, 'Preparing data for offline' is shown to the user. The message is
displayed until every plugin sends the ready message. If a plugin doesn’t send the ready message within 120 seconds,
Oracle Fusion Field Service Core Application marks the plugin as ‘Failed to init’ and shows the corresponding message
to the user ("This plugin has not been loaded: ..."). If a plugin is marked as ‘Failed to init’, Oracle Fusion Field Service Core
Application tries to re-initialize it when the user opens the plugin by clicking a button. When a user opens the plugin
through a button, the message, 'Screen is loading. Please wait.' is shown. This message is shown until the plugin sends
the ready message. If a plugin doesn’t send the ready message within 120 seconds, Oracle Fusion Field Service Core
Application displays the message, 'The plugin has not loaded.'.

Message Format

Messages of this method have this format:
{
 "apiVersion": 1,
 "method": "ready",
 "sendInitData": true,
 "showHeader": true,
 "enableBackButton": true
}

Initialization

If you have set the field 'sendInitData' to true, and Oracle Fusion Field Service Core Application has loaded the plugin
while initializing (not when the user opens the plugin), Oracle Fusion Field Service Core Application sends an additional
init message with initialization data to the plugin such as attribute description. It destroys the plugin's iframe only
when the plugin sends the initEnd message. If you have not set the field 'sendInitData' or set it as not equal to true,
and Oracle Fusion Field Service Core Application loads the plugin while initializing Oracle Fusion Field Service Core
Application (not when the user opens the plugin), Oracle Fusion Field Service Core Application destroys the plugin's
iframe immediately after the 'ready' message received. If the user opens the plugin, the field 'sendInitData' is ignored.

Amount of Data Sent to Plug-In

Oracle Fusion Field Service Core Application sends the open message with all data available for entity collections,
according to the context layout, where the plugin's button is placed and depending on how the Available Properties
section is configured. For example, if a plugin is opened from the Activity List page, the data of all the activities for the
selected day's queue is sent with the data of all non-scheduled activities of the selected resource. Oracle Fusion Field
Service Core Application collects and serializes the data, and the plugin un-serializes it, thereby increasing the loading
time for the plugin. To reduce the amount of this data, the optional parameter, " dataItems " is supported for the ready
message. The value of this parameter defines the items that are present in the entity collections. Using this parameter,
a plugin can prevent Oracle Fusion Field Service Core Application from sending certain items in the available entity
collections, but it can't broaden the set of entity collections that is sent to the plugin. This set is predefined and depends
on the page from which the plugin is opened.

Format of dataItems

dataItems is an array, where each item is a label of a certain data subset. If the item with the label of some subset is
absent in this array, Oracle Fusion Field Service Core Application does not send the corresponding items in the entity

95

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

collections of the open message. If dataItems is not set in the ready message, no filtering is applied and the full data set
is sent to the plugin. Here is the list of available keys and data subsets:

Key Affected Collections Description

team team Information about assistants and resources who the current resource is
assisting to

resource resource Properties of the current selected resource

scheduledActivities activityList Activities, scheduled (belongs to the queue) for the selected date

nonScheduledActivities activityList Non-scheduled activities that don't belong to any date's queue

resourceInventories inventoryList Inventories in the "provider" pool

installedInventories inventoryList Inventories in the "install" pool

deinstalledInventories inventoryList Inventories in the "deinstall" pool

customerInventories inventoryList Inventories in the "customer" pool

Example of a Message with "dataItems"
{
 "apiVersion": 1,
 "method": "ready",
 "sendInitData": true,
 "dataItems": ["team",
 "resource",
 "scheduledActivites",
 "nonScheduledActivites",
 "resourceInventories",
 "installedInventories",
 "deinstalledInventories",
 "customerInventories"
]
}

Restriction of Navigation with the ready Method

Users can click Back on the header of the page or the browser to exit the plugin page. Some business flows require
mobile users to stay on the required action page until the action is finished. Further, users may be required to go to a
specific page after leaving the current page. For example, during the completion flow, a mobile user is required to fill a
custom checklist and only after filling it that the regular completion page is displayed. To support such business flows,
the parameters "showHeader" and "enableBackButton" are available for the ready method. Here are the details of the
“showHeader” and “enableBackButton” parameters:

Param Name Mandatory Default Value Type Description

enableBackButton No true boolean If the flag value is set to true, then the Oracle Fusion Field Service
Core Application "< Back" button is shown and its navigation is not
locked.
If the flag value is set to false, then the Oracle Fusion Field Service
Core Application "< Back" button is hidden and the navigation is

96

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Param Name Mandatory Default Value Type Description

locked. (The browser's native Back and Forward buttons are blocked,
 notification is shown if the user uses the native Back button).

showHeader No true boolean If the flag value is set to true, then the Oracle Fusion Field Service
Core Application header is shown.
If the flag value is set to false, then the header is hidden.

Users can be redirected to a specific page after the plugin is closed. See the close method for details. This table shows
the behavior of the plugin for different values of the showHeader param.

enableBackButton Value showHeader = True showHeader = False

enableBackButton = True In this scenario:

• Navigation is possible

• Global header is visible

• Page header is visible

In this scenario:

• Navigation is possible

• Global header is not visible

• Page header is not visible

enableBackButton = False In this scenario:

• Navigation is not possible

• Global header is not visible

• Page header is visible

In this scenario:

• Navigation is not possible

• Global header is not visible

• Page header is not visible

This screenshot shows the scenario when enableBackButton is True and showHeader is True.

97

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

This screenshot shows the scenario when enableBackButton is True and showHeader is False.

98

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

This screenshot shows the scenario when enableBackButton is False and showHeader is True.

99

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

This screenshot shows the scenario when enableBackButton is False and showHeader is False.

100

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Examples of the "ready" Message

// the header is shown but the "back" button is hidden:
{
 "apiVersion": 1,
 "method": "ready",
 "showHeader": true,
 "enableBackButton": false
}

// the header is hidden but the user can go back using browser's back button:
{
 "apiVersion": 1,
 "method": "ready",

101

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "showHeader": false,
 "enableBackButton": true
}

// the header is hidden and the user can leave the plugin only when the plugin sends the "close" message via
 Plugin API (the browser's back button does not work):
{
 "apiVersion": 1,
 "method": "ready",
 "showHeader": false,
 "enableBackButton": false
}

sendMessageAsJsObject - use JSON or JS object in transfer

PostMessage technology on early stage had some limitations in some browsers to type of data that is transferred. So on
very beginning of Plugin API was decided to use JSON string as simple type of data to communication between Plugin
and OFS. During some time OFS start to support receiving of JS object instead of JSON string, but responses still were
sent as JSON string.

"TakePhoto" procedure which requires to send photo as a file from OFS to plugin as a result of procedure calling. So in
23.5 was added functionality to send data as JS object from OFS to Plugin. In order to keep backward compatibility it
was added "sendMessageAsJsObject" flag that by default is equal to true.

Benefits that brings using of JS object:

• ability to send files from OFS to Plugin

• faster transfer, because it is absent parsing and validation of JSON format

It is highly recommended to use "sendMessageAsJsObject": true in all modern plugins

OFS keep information about choosen variant of transfer in browser's memory. So if "sendMessageAsJsObject":true
flag was sent, OFS will transfer data as a JS object until the "sendMessageAsJsObject": false will be sent or while the
browser tab will be opened.

Examples of the "ready" message

{
 "apiVersion": 1,
 "method": "ready",
 "sendMessageAsJsObject": true
}

Related Topics
• How do I use the open method in the Plugin API?

• close Method

init Method
A message with the init method indicates that Oracle Fusion Field Service Core Application has started initializing the
plugin.

The init message contains these fields:
{
 "apiVersion": 1,

102

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "method": "init",
 "attributeDescription": {}
}

attributeDescription

The attributeDescription field is an object that contains the descriptions of all the properties that are configured for the
plugin.

List of all buttons that are configured for a plugin is sent to the plugin in the 'buttons' field of the 'init' message.
This field is a list of objects that contains the 'buttonId' and 'params' fields. buttonId is the 'context layout item
id' of the button. 'params' is an object that represents the parameters that are configured for the corresponding
context layout item. Each enum items of the "aworktype" (Activity type) property contains the "features" object. If the
"Enable segmenting and extended duration" option is enabled for the activity type, the "features" object contains the
"isSegmentingEnabled" field with a value equal to true.

Example of the init method
{
 "apiVersion": 1,
 "method": "init",
 "attributeDescription": {
 "pid": {
 "entity": "ENTITY_PROVIDER",
 "fieldType": "field",
 "gui": "text",
 "label": "pid",
 "title": "ID",
 "type": "string",
 "access": "READ_ONLY"
 },
 "pname": {
 "entity": "ENTITY_PROVIDER",
 "fieldType": "field",
 "gui": "text",
 "label": "pname",
 "title": "Name",
 "type": "string",
 "access": "READ_ONLY"
 },
 "invtype": {
 "entity": "ENTITY_INVENTORY",
 "enum": {
 "NT": {
 "label": "NT",
 "text": "Internet"
 },
 "DT": {
 "label": "DT",
 "text": "Digital Telephony"
 },
 "AT": {
 "label": "AT",
 "text": "Analog Telephony"
 }
 },
 "fieldType": "field",
 "gui": "combobox",
 "label": "invtype",
 "title": "Inventory Type",
 "type": "enum",
 "access": "READ_WRITE"
 },
 "invpool": {
 "entity": "ENTITY_INVENTORY",

103

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "fieldType": "field",
 "gui": "text",
 "label": "invpool",
 "title": "Inventory pool",
 "type": "string",
 "access": "READ_WRITE"
 },
 "invsn": {
 "entity": "ENTITY_INVENTORY",
 "fieldType": "field",
 "gui": "text",
 "label": "invsn",
 "title": "Serial Number",
 "type": "string",
 "access": "READ_WRITE"
 },
 "aid": {
 "entity": "ENTITY_ACTIVITY",
 "fieldType": "field",
 "gui": "text",
 "label": "aid",
 "title": "Activity ID",
 "type": "string",
 "access": "READ_ONLY"
 },
 "aworktype": {
 "entity": "ENTITY_ACTIVITY",
 "enum": {
 "27": {
 "label": "27",
 "text": "Multi-type Unwired Installs"
 },
 "55": {
 "label": "55",
 "text": "Maintenance"
 },
 "WH": {
 "label": "WH",
 "text": "Warehouse Activity"
 },
 "installation": {
 "label": "installation",
 "text": "Installation"
 },
 },
 "fieldType": "field",
 "groups": [
 {
 "label": "task",
 "text": "Task",
 "items": [
 "55"
]
 },
 {
 "label": "teamwork",
 "text": "Teamwork",
 "items": [
 "teamwork_type"
]
 },
 {
 "label": "internal",
 "text": "Internal",
 "items": [
 "WH"

104

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

]
 },
 {
 "label": "customer",
 "text": "Customer",
 "items": [
 "27",
 "installation"
]
 }
],
 "gui": "grouped-combobox",
 "label": "aworktype",
 "title": "Activity type",
 "type": "enum",
 "access": "READ_ONLY"
 },
 "no_ports": {
 "entity": "ENTITY_ACTIVITY",
 "fieldType": "property",
 "gui": "text",
 "label": "no_ports",
 "title": "# Ports",
 "type": "int",
 "access": "READ_WRITE"
 },
 "CANCEL_REASON": {
 "entity": "ENTITY_ACTIVITY",
 "enum": {
 "1": {
 "text": "M1 REQUESTED BY ISP"
 },
 "2": {
 "text": "M2 PC INADEQUATE"
 },
 "3": {
 "text": "M8 - TAP CHANGEOUT REQUIRED"
 },
 "4": {
 "text": "SS - STORM SERVICE CALL FOLLOW-UP"
 },
 "5": {
 "text": "W1 - JUST BROWSING AT THIS TIME"
 }
 },
 "fieldType": "property",
 "gui": "combobox",
 "label": "CANCEL_REASON",
 "title": "Cancellation Reason",
 "type": "enum",
 "access": "READ_WRITE"
 }
 }
}

Activity type features in "init" message

The "attributeDescription" field of "init" message contains "features" object inside enum items of the
"aworktype" (activity type) property. If the "Enable segmenting and extended duration" option is enabled for the activity
type, the "features" object contains "isSegmentingEnabled" with value equal to true.

Example of "init" message

{
 "apiVersion": 1,

105

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "method": "init",
 "attributeDescription": {
 "WO_COMMENTS": {
 "fieldType": "property",
 "entity": "ENTITY_ACTIVITY",
 "gui": "text",
 "label": "WO_COMMENTS",
 "title": "WO Comments",
 "type": "string",
 "access": "READ_WRITE",
 "lines": 4
 },
 "aworktype": {
 "fieldType": "field",
 "entity": "ENTITY_ACTIVITY",
 "gui": "grouped-combobox",
 "label": "aworktype",
 "title": "Activity type",
 "type": "enum",
 "access": "READ_WRITE",
 "enum": {
 "5": {
 "label": "5",
 "text": "Inv Pick up",
 "features": {}
 },

 "VH": {
 "label": "VH",
 "text": "Vehicle Maintenance",
 "features": {}
 },
 "Multiday": {
 "label": "Multiday",
 "text": "Multi-day activities",
 "features": {
 "isSegmentingEnabled": true
 }
 },
 },
 "groups": [
 {
 "label": "internal",
 "text": "Internal",
 "items": [
 "VH"
]
 },
 {
 "label": "customer",
 "text": "Customer",
 "items": [
 "5",
 "Multiday"
]
 }
]
 }
 },
 "buttons": [
 {
 "buttonId": "20348",
 "params": {}
 }
]

106

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

}

initEnd Method
The messages with this method indicate that the plugin has finished processing the initialization data.

When Oracle Fusion Field Service Core Application receives the initEnd message from a plugin, it destroys the plugin’s
iframe. The message may also contain the optional 'wakeupNeeded' field, which allows to continue background activity
of the plugin after a page is reloaded. See the description of the wakeup method for details. You can change the
appearance of the plugin tile (the icon image), status text, and color using the optional iconData parameter. See the
corresponding section for details.

Example of the initEnd message
{
 "apiVersion": 1,
 "method": "initEnd",
 "wakeupNeeded": false,
 "iconData": {
 "text": "89"
 }
}

Oracle Fusion Field Service ignores all other fields.

Related Topics
• wakeup Message

open Method
When a user opens a plugin through a button, a message with the open method is sent to the plugin after Oracle Fusion
Field Service receives the ready message. The response of the 'open' method contains the 'user' item, includes the
'main_resource_id' field that represents the resource which is referenced to the current user. Similarly, the response of
the 'open' method includes the 'team' item, which contains information about teamwork. The response of the 'open'
method also contains the 'queue' key with current queue state (activated, not activated, or deactivated). The 'resource'
key contains the time-related fields such as the current resource's time, resource's time zone difference, and the
difference between a device's clock and UTC.

The open message contains entity collections, for example, data of available Oracle Fusion Field Service entities such
as activities and inventories. See Available entities and data collections for details. The 'dataItems' option of the 'ready'
method controls the availability of the ‘team’ item. The 'team' item is not sent if the plugin is opened from the Main
menu. The response of the 'open' method is extended with the activity and inventory lists when they are available.

Example of open message
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activity",
 "user": {
 "uid": 38,
 "ulogin": "rayner",
 "uname": "RAYNER, Faye",

107

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "format": {
 date: "m/d/y",
 long_date: "l, F jS, Y",
 time: "h:i A",
 datetime: "m/d/y h:i A"
 },
 "su_zid": 4,
 "week_start": 0,
 "ulanguage": 1,
 "languageCode": "en",
 "design_theme": 11,
 "allow_vibration": 1,
 "allow_desktop_notifications": 0,
 "sound_theme": 11,
 "providers": [
 "5000038",
 "5000039"
],
 "main_resource_id": 5000038
 },
 "team": {
 "assistingTo": {
 "3000001": [
 "3000008",
 "3000037"
],
 "3000015": []
 },
 "assistingMe": [
 "3000003",
 "3000008"
],
 "teamMembers": {
 "3000001": {
 "uid": 1000001,
 "external_id": "resource_1",
 "pname": "Resource 1",
 "pactive": 1
 },
 "3000003": {
 "uid": 1000003,
 "external_id": "resource_13",
 "pname": "Resource 3",
 "pactive": 1
 },
 "3000008": {
 "uid": 1000008,
 "external_id": "resource_8",
 "pname": "Resource 8",
 "pactive": 1
 },
 "3000015": {
 "uid": 1000015,
 "external_id": "resource_15",
 "pname": "Resource 15",
 "pactive": 1
 },
 "3000037": {
 "uid": 1000037,
 "external_id": "resource_37",
 "pname": "Resource 37",
 "pactive": 1
 }
 }
 },
 "resource": {

108

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "pid": 5000038,
 "pname": "RAYNER, Faye",
 "external_id": "55038",
 "gender": "1"
 },
 "activityiList": {
 "3956534": {
 "WO_COMMENTS": "AUTOMATIC TRANSFER WORK ORDER\n\n",
 "astatus": "started",
 "aid": 3956534
 }
 },
 "activity": {
 "WO_COMMENTS": "AUTOMATIC TRANSFER WORK ORDER\n\n",
 "astatus": "started",
 "aid": 3956534
 },
 "inventoryList": {
 "20997919": {
 "invid": 20997919,
 "inv_aid": 3956534,
 "inv_pid": 5000038,
 "invpool": "install",
 "invsn": "SABDFWKNZ"
 },
 "20998078": {
 "invid": 20998078,
 "inv_aid": 3956532,
 "invpool": "customer",
 "invsn": "5CTBME4AW090379"
 },
 "20998080": {
 "invid": 20998080,
 "inv_aid": 3956533,
 "invpool": "customer",
 "invsn": "SABGZTWGM"
 }
 }
}

Example of the open message for a plugin opened from the Main menu (only 'user' collection is available)
{
 "apiVersion": 1,
 "method": "open",
 "entity": "user",
 "user": {
 "uid": 2315,
 "ulogin": "admin",
 "uname": "Admin",
 "format": {
 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
 },
 "week_start": 0,
 "ulanguage": 1,
 "language": "en",
 "design_theme": 1,
 "allow_vibration": 0,
 "allow_desktop_notifications": 0,
 "sound_theme": 0,
 "providers": [
 2
]

109

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 }
}

Example of the open message for a plugin opened from the Parts Catalog
{
 "apiVersion": 1,
 "method": "open",
 "entity": "partsCatalogItem",
 "team": {
 "assistingTo": {},
 "assistingMe": [],
 "teamMembers": {}
 },
 "user": {
 "uid": 2315,
 "ulogin": "admin",
 "uname": "Admin",
 "format": {
 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
 },
 "week_start": 0,
 "ulanguage": 1,
 "languageCode": "en",
 "design_theme": 1,
 "allow_vibration": 0,
 "allow_desktop_notifications": 0,
 "sound_theme": 0,
 "providers": [
 2
]
 },
 "partsCatalogItem": {
 "catalogId": 2,
 "label": "a5123-df"
 },
 "resource": {
 "pid": 5000038,
 "pname": "RAYNER, Faye",
 "external_id": "55038",
 "gender": "1"
 },
 "activityiList": {
 "3956534": {
 "WO_COMMENTS": "AUTOMATIC TRANSFER WORK ORDER\n\n",
 "astatus": "started",
 "aid": 3956534
 }
 },
 "inventoryList": {
 "20997919": {
 "invid": 20997919,
 "inv_aid": 3956534,
 "inv_pid": 5000038,
 "invpool": "install",
 "invsn": "SABDFWKNZ"
 }
 }
}

Structure of the 'team' collection in the ‘open’ method when teamwork is not set:
"team": {
 "assistingTo": {},

110

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "assistingMe": [],
 "teamMembers": {}
}

Structure of the 'team' collection in the ‘open’ method when teamwork is set:
"team": {
 "assistingTo": { - object with list of resources who I am assisting to
 "3000001": [- array with list of additional resources who is assisting to user who I am assisting to
 (current user 3000035 is absent in this list!)
 "3000008", - resource ID who is also assisting to resource 3000001
 "3000037"
],
 "3000015": []
 }
 "assistingMe": [- array with list of resources who is assisting me
 "3000003", - resource ID who is assisting to me
 "3000008"
]
 "teamMembers": { - object with information of all team members
 "3000001": {
 "uid": 1000001, - the resource is main resource for this user ID
 "external_id": "resource_1", - resource external ID
 "pname": "Resource 1", - resource name
 },
 "3000003": {
 "uid": 1000003,
 "external_id": "resource_13",
 "pname": "Resource 3"
 },
 "3000008": {
 "uid": 1000008,
 "external_id": "resource_8",
 "pname": "Resource 8"
 },
 "3000015": {
 "uid": 1000015,
 "external_id": "resource_15",
 "pname": "Resource 15"
 },
 "3000037": {
 "uid": 1000037,
 "external_id": "resource_37",
 "pname": "Resource 37"
 }
 }
}

Example of "open" message for Plugin opened via deep link

{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "resource": {},
 "team": {
 "assistingTo": {},
 "assistingMe": [],
 "teamMembers": {}
 },
 "user": {
 "uid": 2315,
 "ulogin": "admin",
 "uname": "Admin",
 "format": {

111

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
 },
 "week_start": 0,
 "ulanguage": 1,
 "languageCode": "en",
 "design_theme": 1,
 "allow_vibration": 0,
 "allow_desktop_notifications": 0,
 "sound_theme": 0,
 "providers": [
 2
]
 },
 "activityList": {
 "4225438": {
 "aid": "4225438"
 },
 "4225439": {
 "aid": "4225439"
 }
 },
 "inventoryList": {
 "21064417": {
 "invid": "21064417"
 },
 "21064418": {
 "invid": "21064418"
 }
 },
 "openParams": {},
 "externalData": {
 "zipcodes": ["35801", "06101", "62701"],
 "status": "completed"
 }
}

Available Entities and Data Collections

The field 'entity' and entity data collections are available only for 'open' and 'close' methods. The value of the special
'entity' field depends on the Oracle Fusion Field Service Core Application page from which the user opens the plugin.
Availability of entity data collections that are sent within the message data, depends on the value of 'entity'. this table
gives the available entities and data collections for the open method:

Page Entity Field Value Available Collections

Main menu
Team Map

user user

Activity List
Route Map

activitiyList

Activity List -> Inventory List inventoryList

user

team

queue

resource
activitiyList

112

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Page Entity Field Value Available Collections

inventoryList

Activity List -> Activity Details activity

Activity List -> Activity Details -> Inventory List activityInventoryList

user

team

queue

resource
activityList

activity

inventoryList

Activity List -> Inventory List -> Inventory Details inventory user

team

queue

resource
activitiyList

inventoryList

inventory

Activity List -> Activity Details -> Inventory List -> Inventory Details activityInventory user

team

queue

resource
activityList

activity

inventoryList

inventory

Inventory Search -> Parts Catalog Item Details partsCatalogItem user

team

113

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Page Entity Field Value Available Collections

queue

resource
activitiyList

inventoryList

partsCatalogItem

Entity Data Collections

• team: Information about assistants and resources who are assisting to the current resource

• resource: Element in the resource tree representing a defined company asset

• activity: Entity of Oracle Fusion Field Service that represents any time-consuming activity of the resource

• activityList: Activity list

• inventory: Equipment that can be installed or deinstalled during an activity

• inventoryList: Inventory list

• user: User who has currently logged in to Oracle Fusion Field Service Core Application and opens the plugin

• partsCatalogItem: Information that identifies the parts catalog item, so it can be retrieved using the getParts
procedure

Note: The 'team', 'resource', 'user', and 'partsCatalogItem' collections can't be updated through the plugin API and are
ignored if they're sent with the 'close' message.

Availability of activity, inventory, and resource properties depends on the configuration of the plugin. See Available
Properties for details.

Available Fields for 'user' Entity Collection

The available properties for this entity are predefined and do not depend on the configuration of the plugin. this table
provides the available fields for the ‘user’ entity collection:

Field Type Example Value Description

uid Number 2315 Internal id of user

ulogin String admin Login

uname String Admin Name

format Object<String,
 String>

{
 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
}

Collection of date format strings in the
PHP's style

114

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Type Example Value Description

su_zid Number 2 Time Zone id

week_start Number 0 Week start day (0-6)
0 - Sunday, 1 - Monday

ulanguage Number 1 Language id (1 - English)

languageCode String en Two-letter code for the language

design_theme Number 1 Design theme ID

allow_vibration Number 0 1 - Vibration on mobile devices is
allowed, 0 - disallowed

allow_desktop_notifications Number 0 1 - Browser desktop notifications are
allowed, 0 - disallowed

sound_theme Number 0 Sound notification settings
0 - Off, 1 - Quiet, 2 - Loud, 3 - Persistent

providers Array<Number> [38, 3000001] List of resources, that are visible to user,
 excluding their descendants

main_resource_id (optional) Number 1111 Resource ID, which is set as the main
resource

Available Fields for 'activity' Entity Collection

This table provides the available fields for the ‘activity’ entity collection:

Field Description

cname Name

caddress Address

ccity City

czip ZIP/Postal Code

cstate State

customer_number Account Number

c_zid Time Zone

cphone Phone

cemail Email

115

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Description

ccell Cellular Phone

atype Activity Type

position_in_route Position in Route

aworktype Activity type

time_slot Time Slot

service_window Service Window

appt_number Work Order

clanguage Message Language

cmessagetime Reminder

activity_workskills Work Skill

length Duration

ETA Start

astatus Activity status

aid Activity ID

end_time End

delivery_window Delivery Window

acoord_status Coordinate Status

acoord_x Coordinate X

acoord_y Coordinate Y

travel Traveling Time

sla_window_start SLA Start

sla_window_end SLA End

atime_of_booking Activity Time of Booking

atime_of_assignment Activity Time of Assignment

activity_flow Activity workflow

Non-Available Fields for 'activity' Entity Collection

This table provides the fields that are not available for the ‘activity’ entity collection:

116

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Description

aworkzone Work Zone

time_delivered Time Notified

eta_end_time Start - End

date Date

pid Resource ID

apoints Points

atravelarea Travel Area

activity_capacity_categories Capacity Categories

activity_alerts Alerts

activity_compliance Compliance Alerts

auto_routed_to_provider_id Auto-Routed to Resource

auto_routed_to_date Auto-Routed to Date

first_manual_operation First Manual Operation

first_manual_operation_user_id First Manual Operation Performed by User

first_manual_operation_interface First Manual Operation Interface

auto_routed_to_provider_name Auto-Routed to Resource (Name)

first_manual_operation_user_name First Manual Operation Performed by User (Name)

first_manual_operation_user_login First Manual Operation Performed by User (Login)

access_hours Access Hours

access_schedule Access Schedule

'activity_flow'

The "activity_flow" field can be set from the plugin, or it will be calculated dynamically based on the workflow
conditions created. The "activity_flow" field can be set for only those activities in status 'Pending' or 'En route'. Also, the
"activity_flow" field can be set when the activity status is changed from 'Pending' or 'En route' to 'Started'. The dynamic
calculation works when the activity status is changed from 'Pending' or 'En route' to 'Started' and "activity_flow" field
was not ser previously; the application associates the workflow with the activity permanently, saves the workflow ID into
the "activity_flow" field, and stops recalculation. It is prohibited to change the "activity_flow" field after an activity is
started; a corresponding error message will be displayed.

'masterActivityId'

117

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Each segment of a segmentable activity has a field called "masterActivityId". It's and id of the main activity which
the segment belongs to. This field may be usable in a scenario when a plugin needs to deinstall inventory from a
segmentable activity because customer pool inventory is assigned to the main segmentable activity (via "inv_aid" field)
which is absent in the activity list. Using the "masterActivityId" activity field, the plugin can filter inventories from the
"inventoryList" which belong to the main segmentable activity.

Example of an "open" message which contains segments of a segmentable activity and customer pool inventory
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "user": {
 "allow_desktop_notifications": 1,
 "allow_vibration": 1,
 "design_theme": 11,
 "format": {
 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
 },
 "providers": [
 2
],
 "sound_theme": 2,
 "su_zid": 15,
 "uid": 2315,
 "ulanguage": 1,
 "languageCode": "en",
 "ulogin": "admin",
 "uname": "Admin",
 "week_start": 0
 },
 "resource": {
 "pid": 3000037,
 "currentTime": "2021-08-30 05:21:23",
 "deviceUTCDiffSeconds": 0,
 "timeZoneDiffSeconds": -14400
 },
 "team": {
 "teamMembers": {},
 "assistingTo": {},
 "assistingMe": []
 },
 "queue": {
 "date": "2021-08-30",
 "status": "notActivated",
 "isActual": true
 },
 "activityList": {
 "4227119": {
 "acoord_status": null,
 "acoord_x": null,
 "acoord_y": null,
 "aworktype": "LU",
 "appt_number": null,
 "astatus": "pending",
 "aid": "4227119"
 },
 "4227120": {
 "acoord_status": null,
 "acoord_x": null,
 "acoord_y": null,
 "aworktype": "4",

118

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "appt_number": null,
 "astatus": "pending",
 "aid": "4227120"
 },
 "4227122": {
 "acoord_status": null,
 "acoord_x": null,
 "acoord_y": null,
 "aworktype": "Multiday",
 "appt_number": null,
 "astatus": "pending",
 "aid": "4227122",
 "masterActivityId": 4227121
 },
 "4227123": {
 "acoord_status": null,
 "acoord_x": null,
 "acoord_y": null,
 "aworktype": "Multiday",
 "appt_number": null,
 "astatus": "pending",
 "aid": "4227123",
 "masterActivityId": 4227121
 },
 "4227133": {
 "acoord_status": null,
 "acoord_x": null,
 "acoord_y": null,
 "aworktype": "Multiday",
 "appt_number": null,
 "astatus": "pending",
 "aid": "4227133",
 "masterActivityId": 4227132
 }
 },
 "inventoryList": {
 "21258560": {
 "invpool": "customer",
 "invid": "21258560",
 "inv_aid": 4227121,
 "inv_pid": null,
 "invsn": null,
 "invtype": "EC",
 "quantity": 42
 },
 "21258561": {
 "invpool": "customer",
 "invid": "21258561",
 "inv_aid": 4227132,
 "inv_pid": null,
 "invsn": null,
 "invtype": "HD12",
 "quantity": 100
 }
 },
 "buttonId": "20360",
 "openParams": {}
}

Available Fields for 'inventory' Entity Collection

This table provides the available fields for the ‘inventory’ entity collection:

119

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Description

invsn Serial Number

invpool Inventory pool

invtype Inventory Type

invid Inventory Id

inv_aid Activity Id

inv_pid Resource Id

inv_change_invid Changed Inventory ID

quantity Quantity

Available Fields for ‘resource’ Entity Collection

This table provides the available fields for the ‘resource’ entity collection:

Field Description

email Email address

external_id External ID

pdate_fid Date format

pactive Status

pid ID

planguage Message Language

pname Name

pphone Phone

ptime_fid Time format

ptype Resource type

time_zone Time zone

currentTime Current time in "YYYY-MM-DD hh:mm:ss" format in the resource's time zone at the time of generating
the "open" message.

deviceUTCDiffSeconds

Difference between browser's time and UTC (server time) in seconds.

A plugin can calculate the actual UTC time using this formula: UTC = Math.round(new
Date().getTime() / 1000) - deviceUTCDiffSeconds.

120

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Description

timeZoneDiffSeconds Provider's timezone diff in seconds at the time of generating the "open" message.

Unavailable Fields for 'resource' Entity Collection

This table provides the fields that are not available for the ‘resource’ entity collection:

Field Description

alerts Alerts

calendar Calendar

oncall_calendar On-call Calendar

organization_id Organization

p_rprid Routing profile

pcapacity_bucket Use as Capacity Area

pending Pending

pinitial_ratio Initial Ratio for Activity Duration

queue_status Queue status

reactivated Reactivated

resource_capacity_categories Capacity Categories

resource_effective_workskills Effective Work Skills

resource_time_slots Time slots

resource_workskills Work Skills

resource_workzones Work Zones

skip_days_for_stats Working days left for reported data to start impacting duration estimations

total Total

Available Fields for "partsCatalogItem" Entity Collection

This table provides the available fields for the ‘partsCatalogItem’ entity collection:

Field Example Value Description Mandatory

catalogId 17 A unique identifier of a catalog which contains the item.
Is returned by the getPartsCatalogsStructure procedure and is
required by getParts procedure.

Yes

121

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Example Value Description Mandatory

label a5123-df A unique identifier of a part within a catalog.
Is required by getParts procedure.

Yes

Available Fields for "user" Entity Collection

This table provides the available fields for the ‘user’ entity collection:

Field Type Example Value Description

allow_desktop_notifications Number 0 1 - Browser desktop notifications are allowed,0 - disallowed

allow_vibration Number 0 1 - Vibration on mobile devices is allowed,0 - disallowed

design_theme Number 1 Design theme ID

format Object<String,
 String>

{

"date": "m/d/y",

"long_date": "l, F jS, Y",

"time": "h:i A",

"datetime": "m/d/y h:i A"

}

Collection of date format strings in the PHP's style

main_resource_id (optional) Number 1111 Resource ID which is set as main resource

providers Array<Number> [38, 3000001] List of resources, that are visible to user, excluding their
descendants

sound_theme Number 0 Sound notification settings.0 - Off, 1 - Quiet, 2 - Loud, 3 -
Persistent

su_zid Number 2 Time Zone id

uid Number 2315 Internal id of user

ulanguage Number 1 Language id (1 - English)

ulogin String admin Login

uname String Admin Name

week_start Number 0 Week start day (0-6).

122

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Type Example Value Description

0 - Sunday, 1 - Monday

Available Fields for "team" Entity Collection

This table provides the available fields for the ‘team’ entity collection:

Field Description

assistingTo Object with resources to assist (each item is an array with other resources who assists)

assistingMe Array with IDs of assistants

teamMembers Object as plain collection with information about assistants. The information consists of the following
four fields:

• external_id

• pactive

• pname

• uid

close Method
The message format for the close method is similar to the open method. When Oracle Fusion Field Service receives
a message from a plugin with the close method, it validates all the entity properties and their values, and applies the
update only if no rules are violated. After updating, it closes the plugin. If there are violations, Oracle Fusion Field
Service sends a message with the error method, which includes a list of errors (see example).

There's no need to send all the collections and properties received through the open method. The plugin can send only
those entities and properties that have to be updated. The remaining entities and properties are left unchanged. Oracle
Fusion Field Service Core Application updates only those entity collections that were sent with the open message. If
the plugin sends extra entities with the close message, they're ignored. Oracle Fusion Field Service Core Application
updates only the properties that are configured for the plugin. If the plugin sends extra properties with the close
message, they're ignored. The property values that are sent are validated according to the type and attributes of the
updated property. See Error codes for details.

Related Topics
• How do I use the open method in the Plugin API?

123

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Error Types and Error Codes
This topic describes the error types and error codes related to the close message.

The error types related to the close message are:

Type Occurs When Available Message Fields

TYPE_ENTITY_ACTION Requested action is inapplicable for the specified entity • entity

• entityId

TYPE_ENTITY_PROPERTY Value of one of the properties, submitted by the plugin to be updated,
 has an invalid value or violates a business rule for the given entity and
conditions

• entity

• entityId

• propertyLabel

TYPE_INTERNAL Oracle Fusion Field Service is unable to process message due to:

• Invalid format or contents of message, or

• Unexpected internal error

NA

These error message fields are available:

• entity: Data for the listed entity is invalid ("activity" or "inventory")

• entityId: Id of the entity, for which the data is invalid (such as aid for activity and invid for inventory, for
example, "10028719")

• propertyLabel: Label of the property, for which the value is invalid, for example, "customer_number",
"WO_TYPE"

These error codes are available for the close message:

Code Occurs When

TYPE_ENTITY_ACTION

CODE_ACTION_ON_PAST_DATE_NOT_
ALLOWED

The requested action is forbidden for the entity, if it's assigned for an archived (past) queue:

• The plugin tries to update the activity properties that are in the past and overnight or overtime
limit is elapsed

• The plugin tries to update the inventory properties in the customer, installed, or deinstalled pool
of activity, which is in the past and overnight or overtime limit is elapsed

TYPE_ENTITY_PROPERTY

CODE_PROPERTY_VALUE_TOO_LARGE Any of these:

• Property type is 'field' and length of its value exceeds 119 UTF-16 codepoints

• Property type is 'file', its GUI type is 'signature' and length of its value exceeds 102400 UTF-16
codepoints

• Property is neither field nor signature and length of its value exceeds 32767 UTF-16 codepoints

See the Property Value Length and Limits section for details.

CODE_MANDATORY_PROPERTY_EMPTY Any of these:

124

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Occurs When

For activity

• 'astatus' value is empty

For inventory

• 'invpool' is 'install', 'deinstall' or 'customer' and 'inv_aid' value is empty

• 'invpool' is 'install', 'deinstall' or 'provider' and 'inv_pid' value is empty

• 'invpool' value is empty

CODE_ACTIVITY_STATUS_INVALID Any of these:

• 'astatus' of the activity doesn't equal one of: 'pending', 'started', 'enroute', 'complete', 'suspended',
 'notdone', 'cancelled'

• 'astatus' of the activity is 'enroute' and 'Enroute Support' option is disabled on the 'Business
Rules' page.

• Transition from the current activity status to the new one, specified in 'astatus', is not allowed.

See the Possible transitions between activity statuses graph for details.

CODE_INVENTORY_POOL_INVALID Any of these:

• 'invpool' of inventory doesn't equal one of: 'customer', 'install', 'deinstall', 'provider'

• Transition from the current inventory pool to the new one, specified in 'invpool', is not allowed

See the Possible transitions between inventory pools graph for details.

CODE_INVENTORY_AID_INVALID Any of these:

• 'invpool' of inventory is 'provider' and 'inv_aid' value is not empty

• 'invpool' of inventory is 'customer' or 'deinstall' and submitted 'inv_aid' value doesn't equal
current value of 'inv_aid'

• 'inv_aid' doesn't equal 'aid' of the started activity in the same queue and submitted 'inv_aid' value
doesn't equal the current value of 'inv_aid'

CODE_INVENTORY_PID_INVALID Any of these:

• 'invpool' of the inventory is 'customer' and 'inv_pid' value is not empty

• 'invpool' of the inventory is 'deinstall' and 'inv_pid' value doesn't equal the current value of 'inv_
pid' and doesn't equal the 'pid' of the currently selected resource or the resource’s teammates

• 'invpool' of the inventory is 'provider', 'install', or 'deinstall' and submitted 'inv_pid' value doesn't
equal the current value of 'inv_pid'

CODE_ACTIVITY_STATUS_INVALID_FOR_
FUTURE

'astatus' is not 'pending' or 'cancelled' and activity is assigned for the day in future relative to the
current date in the provider's time zone

CODE_ACTIVITY_STATUS_STARTED_
ALREADY_IN_QUEUE

'astatus' is 'started' or 'enroute' and there is another started activity in the same queue

CODE_ACTIVITY_STATUS_ENROUTE_
ALREADY_IN_QUEUE

'astatus' is 'started' or 'enroute' and there is another en route activity in the same queue

CODE_ACTIVITY_STATUS_INVALID_FOR_
INACTIVE_QUEUE

'astatus' is not 'pending' or 'cancelled' and the activity is assigned for a queue that is not activated or is
deactivated

125

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Occurs When

CODE_ACTIVITY_STATUS_INVALID_FOR_
NON_TRAVEL_ACTIVITY

'astatus' is 'enroute' and the activity doesn't support "calculate travel" feature (is a non-travel activity)

CODE_ACTIVITY_STATUS_REORDERING_
IS_NOT_ALLOWED

'astatus' is 'enroute', activity is ordered and is not first in the route, and "Allow activity reorder inside
the route" option is not selected for the user type of the current user

TYPE_INTERNAL

CODE_UNKNOWN Oracle Fusion Field Service is unable to process the message due to:

• Invalid format or contents of message, or

• Unexpected internal error occurred

TYPE_MESSAGE_FORMAT

CODE_METHOD_NOT_SUPPORTED Any of these:

• Wrong value in the method field

• Broken sequence of the method calls (for example, something is sent after the 'close' message, or
before the 'update' method is processed)

Related Topics
• Activity Status and Inventory Pool Changes

Property Value Length and Limits
Limits are applied to property values that are submitted by the plugin through the Plugin API for update. If a value
length exceeds the limit, Oracle Fusion Field Service returns an error message as part of the message with the error
method.

Fields (property type is 'field')

Maximum un-formatted data to store is 239 bytes. JavaScript uses UTF-16 for strings, so one Unicode character may
take up 2 to 4 bytes. But, the String.length property uses UTF-16 code points for counting, which is 2 bytes. This means,
the length of the string containing one 4-byte UTF-16 char is 2. So, only ceil(239/2) = 119 code points can be stored
without truncating.

Signatures (property type is 'file' and GUI option is 'Signature')

We assume that the value contains only MIME-type and correct base64 string. So, each character takes up 2 bytes as
JavaScript uses UTF-16. To avoid overflow of LocalStorage, each signature is limited with 200 KB (1024*200/2 = 102400
characters).

File Properties (property type is 'file' and GUI is not 'Signature')

Maximum allowed length for a file property value depends on the "File size limit" attribute configured for the property,
but it can't exceed 20 MB (20971520 bytes) in any case.

Properties (any other property type)

126

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Maximum amount of data to store is 65 535 bytes (2^16 - 1). Oracle Fusion Field Service internally uses the UTF-8
encoding, so the value is converted to UTF-8 representation before checking against the limit. One Unicode character
(code point) may take up 1 to 4 bytes in UTF-8. But, JavaScript uses UTF-16 for strings, so one character takes up 2 to
4 bytes. The String.length property uses UTF-16 code units for counting, which is 2 bytes. So the length of the string
that contains one 1 or 2-byte Unicode char is 1. The length of the string that contains one 3 or 4-byte Unicode char (code
point) is 2. There's also a range of 2-byte Unicode code points (U+0800 - U+10000) that take up 2 bytes (1 code unit)
in UTF-16 (e.g. ¿ - \u20AC), but require 3 bytes in UTF-8. So, only 65535/3 = 21845 code units are always under limit. If
the length of the string is grater that 21845, it may or may not pass the validation depending on its contents. To know
whether the property value is of valid length, it must be converted to UTF-8, for example:

function isPropertyLengthValid(value) {

 if (('' + value).length <= }}{{21845) {
 return true;
 }

 if (('' + value).length > }}{{65535) {
 return false;
 }

 var utf8Encoder = }}{{new TextEncoder();
 var utf8BytesArray = utf8Encoder.encode(value);

 utf8Encoder = }}{{null;

 if (utf8BytesArray.length <= }}{{65535) {
 return true;
 }

 return false;
}

File Properties

Plugin API supports updating of file properties. The plugin sends the values of file properties with the regular
properties in the entity collections or inventory actions as part of the close message. Due to performance limitations,
it's not rational to send the file contents using JSON strings, so the Plugin API accepts raw JS objects as the value for
PostMessage data. File properties can be updated only using JS objects as message data. The value of the file property
in the PostMessage data must be an object that has two properties:

• fileName: Name of the file, that will be shown on the Oracle Fusion Field Service user interface

• fileContents: Blob object that contains the file contents. It can be constructed and filled with the data generated
by JS code in runtime, or just obtained from the file input and sent to Oracle Fusion Field Service Core
Application without any transformation, as the File object inherits the Blob.

Contents of the file property value is validated against these rules:

• Length of the file must be less than or equal to the configured File size limit

• MIME type of the file must be equal to one of the configured Allowed MIME types

Examples of close Method with File Properties

Sending Uploaded Content
var file = document.querySelector('input[type=file]').files[0];

127

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

window.parent.postMessage
(
{
apiVersion: 1,
method: 'close',
activity:
{
aid:132,
ccity: 'Cleveland',
door_photo:

{ fileName: 'DCIM_20170425_203115.jpg', fileContents: file }
}
},
targetOrigin
);

Sending Generated Content
var text =
 '<?xml version="1.0" encoding="UTF-8"?>' +
 '<test></test>';

var blob = new Blob([text], { type: 'text/xml' });

window.parent.postMessage
(
 {
 apiVersion: 1,
 method: 'close',
 activity:
 {
 ccity: 'Cleveland',
 XML_DATA_PROP:
 {
 fileName: 'test_data.xml',
 fileContents: blob
 }
 }
 },
 targetOrigin
);

Activity Status and Inventory Pool Changes
You can change the activity status (such as start, suspend, complete activity) by simply updating the field 'astatus'
taking into account the available status transitions. You can perform actions (such as install, deinstall inventory, undo
install) on the inventory pool for serialized inventory by simply updating the field 'pool' taking into account the available
pool transitions, and update the required fields for the pool (for example, inv_aid for install pool).

Order of Applying Changes to Entity Data Collections

If a plugin sends a few collections such as, 'activityList', 'activity', 'inventoryList', and 'inventory' in the 'close' method,
the application tries to apply the changes in this order:

1. 'activityList'
2. 'activity'
3. 'inventoryList'

128

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

4. 'inventory'

If a plugin receives the same activity changes in the 'activityList' and 'activity' entity data collections, only the changes
from the 'activity' entity data collection are applied. The changes from the 'activityList' entity data collection are
ignored. However, the current activity in the 'activityList' can be changed, if the 'activity' entity data collection is not sent
to the plugin. This example shows the activity changes that can and cannot be applied:

{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "default",
 "wakeupNeeded": false,
 "activity": {
 "aid": "8761055",
 "ACTIVITY_NOTES": "new changes 1" <--- these changes will be applied
 },
 "activityList": {
 "8761054": {
 "ACTIVITY_NOTES": "another activity"
 },
 "8761055": {
 "ACTIVITY_NOTES": "new changes 2" <--- these changes won't be applied, they will be ignored
 }
 }
}

If a plugin receives the same activity changes in the 'inventoryList' and 'inventory' entity data collections, only the
changes from the 'inventory' entity data collection are applied. The changes from the 'inventoryList' entity data
collection are ignored. However, the current inventory in the 'inventoryList' can be changed, if the 'inventory' entity data
collection is not sent to the plugin. This example shows the inventory changes that can and cannot be applied:

{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "default",
 "wakeupNeeded": false,
 "inventory": {
 "invid": "1055",
 "INVENTORY_NOTES": "new changes 1" <--- these changes will be applied
 },
 "inventoryList": {
 "1054": {
 "INVENTORY_NOTES": "another inventory"
 },
 "1055": {
 "INVENTORY_NOTES": "new changes 2" <--- these changes won't be applied, they will be ignored
 }
 }
}

Changing of Activity status

Activity status can be changed (e.g. start, suspend, complete activity) by simple update of field 'astatus' regarding the
available status transitions. This image shows the possible transitions between activity statuses:

129

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

This image shows the possible transitions between inventory pools:

130

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Inventory Glossary
This table provides the meaning of commonly used inventory terms:

Term Description

Inventory The term inventory describes equipment that is used – or in the language of inventory – consumed by
activities. Inventory items can be located at the customer's home or business or carried in a resource's
truck. Modems, faceplates, wire, cable, and electrical tape are all examples of inventory.
Inventory includes both serialized and non-serialized items. Serialized inventory consists of individual
pieces with serial numbers that identify both the type of inventory and the manufacturer/distributor.
Non-serialized inventory, such as faceplates, wire, and electrical type don't have serial numbers. This
type of inventory is generic. One manufacturer's supply can be exchanged for another based on a
model number. Non-serialized inventory is often accounted for in bulk by units of measure, such as
feet, pounds, dozen, and so on. These items are usually carried in the resource's truck, although the
amounts required for individual activities are recorded with serialized inventory on the Activity Details
page and on the Inventory List in the resource's Oracle Fusion Field Service.

Inventory type Inventory type is used to identify the business logic linked with inventory of such type:

• whether inventory of the type is serialized or non-serialized

• whether inventory of the type can use additional model property

• if inventory of the type is non-serialized then what Unit of measure is used to count them

You can change the inventory type after creating inventory. Further, you can change one inventory
type to another any time.

Default inventory type For compatibility with the companies that don't need inventory type when a new inventory is created
and if there are no "Inventory type" configured in the application, then:

• New inventory is created without setting inventory type. (The id of the type is set to 0).

• Inventory is serialized and its quantity is forced to be 1.

• Model is empty.

• Such inventory cannot be listed in required inventories, because there is no defined inventory
type.

Non-Serialized Inventory Update
You cannot install or deinstall non-serialized inventory through a simple update of properties in the 'inventory' or
'inventoryList' entity data collection. This is because, updating non-serialized inventory requires creating new inventory
in the target inventory pool. You can process non-serialized inventory only using Inventory Actions.

You can add decimal values for the "quantity" field of inventory in the "inventory" and "inventoryList" collections and for
the "quantity" param of all of inventory actions (create, delete, install, deinstall, undo_install, and undo_deinstall).

131

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Oracle Fusion Field Service rounds off the value before applying the update or action. Therefore, it won't have more
digits after the decimal point than what is configured for the inventory type (the "Quantity precision" option). The value
for "quantity" must satisfy these requrements:

• Is a Number or a String for which the parseFloat() function returns the Number (not NaN)

• Is less than 9999999999.99999

• Is greater that -9999999999.99999 for "inventory" and "inventoryList" collections

• Is greater that 0 for inventory actions

If these requirements are not satisfied, these error messages are shown:

• For "inventory" and "inventoryList" collections, the error type is TYPE_ENTITY_PROPERTY, the code is
CODE_PROPERTY_VALUE_INVALID

• For inventory actions the error type is TYPE_ACTION_PARAM and the code is
CODE_ACTION_PARAM_VALUE_INVALID

Inventory Actions
To support complex business flows that require the creation of activities, or deal with non-serialized inventory types, the
optional field "actions" is supported for the close method. This field contains a list of objects, whose fields represent the
parameters of actions (such as "install", "create") that are applied by Oracle Fusion Field Service on both the client and
server side.

Example of a Message Sequence This diagram shows an example of a message sequence:

132

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Order of Processing of Actions
Actions are applied in the same order as sent by the plugin in the "actions" array.

Actions are run after applying all the data collection updates that are sent by plugin in the same close message. No
actions are applied if errors occur during the validation of data collections and all actions. All validation errors are sent
to a plugin within the error message. If some actions fail to run, the remaining actions are applied anyway, and the

133

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

processing errors are sent to the plugin within the error message. Each error contains the id of action that is failed,
or the id of the action that doesn't pass validation. Id is the order number of the action in the actions list, sent by the
plugin.

Here is how Oracle Fusion Field Service processes the close message:

1. Validate entity data collections.
2. Validate actions.
3. If there are any validation errors, send the error message to the plugin; if not, proceed to the next step.
4. Apply entity data collections update.
5. Apply actions.
6. If there are any errors during the update of data collections or running of actions, send the error message to the

plugin; if not, proceed to the next step.
7. Close the plugin window.

Inventory Action Parameters
Each action is an object, whose fields are the action parameters. Every action must contain at least two fields
(parameters) - ‘entity’ and ‘action’.

This table describes the ‘entity’ and ‘action’ parameters for inventory:

Parameter Mandatory Type Description

entity Yes String Must be either "activity" or "inventory"

action Yes String Must be equal to one of the supported inventory actions or supported
activity actions (such as "install", "create")

Parameters that are specific for each action are described in the Supported Inventory Actions and Supported Activity
Actions sections. Parameters that contain the ids of Oracle Fusion Field Service entities (invid, inv_aid, inv_pid) are
of the type "string" and not "number". This is because, entities that are created on the client side have ids similar to
"1234567890-1234", before they're synchronized with the server.

Labels and values of all parameters are case-sensitive, for example, all these parameters are invalid:
{
 ACTION: "INSTALL"
 entity: "Inventory",
 Inv_Aid: ""
}

Supported Inventory Actions
The Plug-in API supports install, deinstall, undo install, undo deinstall, create, and delete actions for inventory.

install

This table describes the parameters supported for the install inventory action:

134

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Mandatory Type Description

invid Yes String Id of an existing inventory that is in the "provider" pool of the
current resource or the resource’s teammates.

inv_aid Yes String Id of the started activity. Inventory will be installed to its "install"
pool. Must contain the id of started segment for segmentable
activities.

quantity Yes/No Number Is mandatory and must be > 0 for non-serialized inventory.
Is forbidden for serialized inventory.

properties No Object Is a key-value object, where keys are the labels of Oracle Fusion
Field Service inventory properties to be updated.
Properties are validated and processed according to the plugin
configuration.

deinstall

This table describes the parameters supported for the deinstall inventory action:

Parameter Mandatory Type Description

invid Yes String Id of an existing inventory that is in the "customer" pool of a
started activity.

inv_aid Yes String Id of the current resource or the resource’s teammates. Inventory
will be deinstalled to its "deinstall" pool.

quantity Yes/No Number Is mandatory and must be > 0 for non-serialized inventory.
Is forbidden for serialized inventory.

properties No Object Is a key-value object, where keys are the labels of Oracle Fusion
Field Service inventory properties to be updated.
Properties are validated and processed according to the plugin
configuration.

undo_install

This table describes the parameters supported for the undo-install inventory action:

Parameter Mandatory Type Description

invid Yes String Id of an existing inventory that is in the "install" pool of a started
activity.

quantity Yes/No Number Is mandatory and must be > 0 for non-serialized inventory.

135

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Mandatory Type Description

Is forbidden for serialized inventory.

properties No Object Is a key-value object, where keys are the labels of Oracle Fusion
Field Service inventory properties to be updated.
Properties are validated and processed according to the plugin
configuration.

undo_deinstall

This table describes the parameters supported for the undo-deinstall inventory action:

Parameter Mandatory Type Description

invid Yes String Id of an existing inventory that is in the "deinstall" pool of the
current resource or the resource’s teammates.

quantity Yes/No Number Is mandatory and must be > 0 for non-serialized inventory.
Is forbidden for serialized inventory.

properties No Object Is a key-value object, where keys are the labels of Oracle Fusion
Field Service inventory properties to be updated.
Properties are validated and processed according to the plugin
configuration.

create

This table describes the parameters supported for the create inventory action:

Parameter Mandatory Type Description

invtype Yes String Label of one of the Inventory Types, configured for Oracle Fusion
Field Service (for example, "NT")

invpool Yes String Inventory pool in which the inventory is created. It can be one of:
"customer", "install", "deinstall", "provider".

inv_aid Yes/No String Id of the started activity. Inventory will be created in its pool. Must
contain the id of the started segment for segmentable activities.
Is mandatory if invpool is one of: "customer", "install", or
"deinstall".

Is forbidden for invpool equal to "provider".

136

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Mandatory Type Description

inv_pid Yes/No String Id of the current resource or the resource’s teammates. Inventory
will be created in the resource’s pool.
Is mandatory if invpool is one of: "provider", "install", "deinstall".

Is forbidden for invpool equal to "customer".

quantity Yes/No Number Is mandatory and must be > 0 for non-serialized inventory.
Is forbidden for serialized inventory.

Note: If the quantity is not present in the Add Plugin or Modify
Plugin page, Available properties section or present and set to
"Read-only" and if it’s not configured as available for the plugin,
then it is set to "1" for non-serialized inventory by Oracle Fusion
Field Service Core Application itself.

properties No Object Is a key-value object, where keys are the labels of Oracle Fusion
Field Service inventory properties to be updated.
Properties are validated and processed according to the plugin
configuration.

delete

This table describes the parameters supported for the delete inventory action:

Parameter Mandatory Type Description

invid Yes String Id of an existing inventory that is in the "provider" pool of the
current resource or the resource’s teammates, or in "install",
 "deinstall" or "customer" pool of the started activity.

Note: There is no quantity parameter for the delete action.
The entire record with any quantity is deleted from the
corresponding pool.

Example of the close Message
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "default",
 "actions":
 [
 // INSTALL
 {
 "entity": "inventory",

137

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "action": "install",
 "invid": 21258426,
 "inv_aid": 4224031,
 "properties": // Properties can be updated too
 {
 "PORT_INFO": "A0|1|1|0|7.9|QF9-0719537",
 "EQUIPMENT_ETHERNET": "08:00:27:ea:d1:bd"
 }
 },
 {
 "entity": "inventory",
 "action": "install",
 "invid": 21229417,
 "inv_aid": 4224031,
 "quantity": 12, // Install only 12 pieces of NSI

 "properties": // Model should be set if needed
 {
 "inventory_model": "RG6 - BLK"
 }
 },

 // DEINSTALL
 {
 "entity": "inventory",
 "action": "deinstall",
 "invid": 21064418,
 "inv_pid": 3000001
 },

 // CREATE
 {
 "entity": "inventory",
 "action": "create",
 "invtype": "NT",
 "invpool": "installed",
 "inv_aid": 4224031,
 "inv_pid": 3000001,
 "quantity": 100,

 "properties":
 {
 "inventory_model": "RG6 - BLK"
 }
 },

 // DELETE
 {
 "entity": "inventory",
 "action": "delete",
 "invid": "1484311067004-9891"
 }
]
}

Error Types for Inventory Actions
You can encounter validation, run, or internal type of errors when your plugin performs an action.

Validation Errors

If the error message contains only validation type of errors, it means that no actions are applied and no entity
collections are updated. So, the close message can be sent again with the same actions, corrected to eliminate the
errors. This table describes the validation errors:

138

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Type Occurs When Available Message Fields

TYPE_ACTION_ERROR Actions have an invalid format or are inapplicable • actionId

• entity

• entityId

TYPE_ACTION_PARAM Action param has an invalid value or mandatory param is missing • actionId

• entity

• entityId

• paramName

TYPE_ACTION_PROPERTY Value of a property submitted by the plugin to be updated in the
"properties" param, has an invalid value

• actionId

• entity

• entityId

• propertyLabel

Run Errors

Run errors are errors that are generated when actions are applied. As actions are applied one after the other, some may
fail and some may be applied successfully. The error message contains run errors, for failed actions. This means that
the entity collections may be updated after some actions are applied, and it didn't produce any run errors (or there are
no errors, which contain their index). So, actions which don't fail, must not be sent again. This table describes the run
errors:

Type Occurs When Available Message Fields

TYPE_ACTION_FAILED Action is rejected due to incorrect value of action params,
 which can't be checked at the validation stage

• actionId

• entity

• entityId

Internal Errors

The error message contains errors of these types, if the validation has passed successfully, but entity collection update,
or some actions have failed. This means that the entity collection update may not be applied, so as actions which didn't
cause errors . In this case, the entities are in a state that is unknown to the plugin, so the close message containing any
updates, must not be sent. This table describes the internal errors:

Type Occurs When Available Message Fields

TYPE_INTERNAL Oracle Fusion Field Service is unable to process the
message due to an unexpected change of the system's
state.
Doesn't contain information about the action, which
caused it.

NA

139

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Type Occurs When Available Message Fields

Both actions and entity collection updates may lead to
such errors.

Available Message Fields

• entity: Entity type on which the action is performed ("inventory")

• entityId: Id of the entity, which is updated by action (equals invid for inventory, for example, "10028719")

• actionId: Zero-based order number of erroneous action in the actions list, sent by the plugin. For example, 0, 1,
17.

• paramName: Name of the action parameter, whose value is invalid, for example, "entity", "inv_aid".

• propertyLabel: Label of the property, whose value is invalid, for example, "customer_number", "WO_TYPE".

Error Codes for Inventory Actions
This table describes the errors that are available for inventory-related actions:

Code Caused by Action Cause

TYPE_ACTION_ERROR

CODE_ACTION_NUMBER_LIMIT_
EXCEEDED

create Number of items in the "actions" field of close or update message is
greater than 10,000.

CODE_ACTION_ON_PAST_DATE_NOT_
ALLOWED

• install

• deinstall

• undo_install

• undo_deinstall

• create

• delete

Any of these:

• "inv_aid" param of "install", "deisntall", "undo_install" or "undo_
deinstall" action is equal to id of activity that is assigned for a past
date

• "inv_aid" param of "create" or "delete" action is equal to id of
the activity that is assigned for a past date, and "invpool" is
"customer", "install" or "deinstall"

CODE_ENTITY_ID_INVALID • install

• deinstall

• undo_install

• undo_deinstall

• create

• delete

"invid" param is not equal to the id of any inventory in available pools

CODE_ACTION_UNKNOWN — "action" param is not equal to any of the supported inventory actions
(for example, "install", "create")

CODE_ACTION_ENTITY_UNKNOWN — "entity" param is not equal to "inventory"

TYPE_ACTION_PARAM

140

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Caused by Action Cause

CODE_ACTION_INVENTORY_AID_
INVALID

create "inv_aid" param is sent for the "create" action, and "invpool" is
"provider"

CODE_ACTION_INVENTORY_PID_
INVALID

• deinstall

• create

Any of these:

• "inv_pid" param value is not equal to id of current resource or his
teammates

• "inv_pid" param is sent for "create" action, and "invpool" is
"customer"

CODE_ACTION_INVENTORY_POOL_
INVALID

create "invpool" param value is not equal to one of: "customer", "install",
 "deinstall", "provider"

CODE_ACTION_INVENTORY_TYPE_
INVALID

create "invtype" param value is not equal to the label of any of the Inventory
Types, configured for Oracle Fusion Field Service

CODE_ACTION_MANDATORY_PARAM_
EMPTY

• install

• deinstall

• undo_install

• undo_deinstall

• create

• delete

Any of these:

• "invid" param is not sent or its value is empty for "install",
 "deinstall", "undo_install", "undo_deinstall" or "delete" action

• "invpool" param of "create" action is not sent or is empty

• "inv_aid" param of "install" action is not sent or is empty

• "inv_pid" param of "deinstall" action is not sent or is empty

• "inv_aid" param of "create" action is not sent or is empty, and
"invpool" is "customer", "install" or "deinstall"

• "inv_pid" param of "create" action is not sent or is empty, and
"invpool" is "provider", "install" or "deinstall"

• "quantity" is not sent or is empty for inventory of non-serialized
type

CODE_ACTION_PARAM_VALUE_INVALID • install

• deinstall

• undo_install

• undo_deinstall

• create

Any of these:

• "properties" param value is sent but is not a plain object

• "quantity" is sent for inventory of serialized type

• "quantity" is not a positive integer number

TYPE_ACTION_PROPERTY

CODE_ACTION_MANDATORY_
PROPERTY_EMPTY

• install

• deinstall

• undo_install

• undo_deinstall

• create

[Reserved]

CODE_ACTION_PROPERTY_VALUE_
INVALID

• install

• deinstall

• undo_install

• undo_deinstall

Any of these:

• Property type is 'file', its GUI type is 'signature' and its value is not
a valid Data URI, or it has an invalid MIME-type

• Property type is 'enumeration', and its value is not a valid
enumeration item's index

141

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Caused by Action Cause

• create

CODE_ACTION_PROPERTY_VALUE_
TOO_LARGE

• install

• deinstall

• undo_install

• undo_deinstall

• create

Any of these:

• Property type is 'field' and the length of its value exceeds 119
UTF-16 codepoints

• Property type is 'file', its GUI type is 'signature' and the length of
its value exceeds 102400 UTF-16 codepoints

• Property is neither field nor signature and the length of its value
exceeds 32767 UTF-16 codepoints

See Property Value Length and Limits for details.

TYPE_ACTION_FAILED

CODE_ACTION_INVENTORY_ACTIVITY_
STATUS_INVALID

• install

• deinstall

• undo_install

• undo_deinstall

• create

• delete

Any of these:

• "inv_aid" param of "install", "deinstall", "undo_install" or "undo_
deinstall" action is not equal to the id of a started activity

• "inv_aid" param of "create" or "delete" action is not equal to the id
of a started activity, and "invpool" is "install" or "deinstall"

• "inv_aid" param of "create" or "delete" action is equal to the id
of a completed, not done, or cancelled activity, and "invpool" is
"customer"

• "invid" param of "deisntall", "undo_install" or "undo_deinstall"
action is equal to the id of an inventory, associated with a not
started regular activity

• "invid" param of "deisntall", "undo_install" or "undo_deinstall"
action is equal to the id of an inventory, associated with a
segmentable activity that is not a master activity of the currently
started segment

CODE_ACTION_INVENTORY_ACTIVITY_
TYPE_INVALID

• install

• create

"inv_aid" param equal to the id of an activity, whose type doesn't
support inventories

CODE_ACTION_INVENTORY_ACTIVITY_
UNKNOWN

• install

• create

"inv_aid" param isn't equal to:

• Id of one of the activities in the queue of current provider / his
teammates

• Id of one of the activities in the unscheduled pool

CODE_ACTION_INVENTORY_POOL_
TRANSITION_INVALID

• install

• deinstall

Any of these:

• "invid" param of "install" action is equal to the id of inventory,
 whose "invpool" isn't equal to "provider"

• "invid" param of "deinstall" action is equal to the id of inventory,
 whose "invpool" isn't equal to "customer"

• "invid" param of "undo_install" action is equal to the id of
inventory, whose "invpool" isn't equal to "install"

• "invid" param of "undo_deinstall" action is equal to the id of
inventory, whose "invpool" isn't equal to "deinstall"

TYPE_INTERNAL

142

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Caused by Action Cause

CODE_UNKNOWN • install

• deinstall

• undo_install

• undo_deinstall

• create

Oracle Fusion Field Service is unable to process the message due to an
unexpected change of the system's state

Related Topics
• Which inventory actions does the plugin API support?

Supported Activity Actions
You can create scheduled and non-scheduled activities through custom plugins. For example, a custom plugin to check
the expected delivery of a part can create a follow-up activity for a repair job using the part. You can achieve this using
the activity action ‘create’, which is available for the ‘close’ method.

Note: The plugin can create activities only on the route of the currently selected resource.

create Method Parameters

This table provides the parameters of the create method.

Parameter Name Mandatory Type Description

temporaryAid No String Temporary ID of a created activity. If the param is not set, the temporary aid is
generated by Oracle Fusion Field Service.

The value must be unique, that is, must not duplicate a temporary aid of any
existing activity.

The value must be a string that matches the regular expression: /^\d+\-
\d{4}p?$/ . The length of the string must be less than or equal to 25.

activityType Yes String Label of one of the Activity Types, configured for Oracle Field Service (for
example, "LU"). Activity types with enabled features "Allow mass activities",
 "Allow repeating activities" or "Enable segmenting and extended duration" are
not allowed.

date No String Date in YYYY-MM-DD format defined by ISO 8601 (for example, "2019-11-28")
If the date is not set, or is empty (null or empty string), the activity is created
for the date of the currently selected route. Is forbidden for scheduled equal to
false.

143

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Name Mandatory Type Description

scheduled No Boolen If scheduled is true, the activity is scheduled for date defined by value of date
parameter. If scheduled is false, the activity is created as not scheduled. Non-
scheduled activities can be created only for Activity types that have the "Allow
non-scheduled" feature enabled. Default value: true

positionInRoute No Object The value of this parameter determines the position of the activity in the route.
It's the object with two fields:

• position (string) - one of these values: "first", "last", "notOrdered",
"afterActivity"

• activityId (string) - the unique identifier of the activity in Oracle Fusion
Field Service. If the value of the field 'position' is 'afterActivity', then
created activity is scheduled right after activity with given activityId

The "afterActivity" value of position field is not allowed, if the date parameter
is not empty and is not equal to the date of the currently selected route. Not-
ordered activities can be created only for Activity types that have the "Support
of not-ordered activities" feature enabled.
Default value: { position: "last" }

duration No Number Duration of activity in minutes (integer number). Minimal value: 0, maximal
value: 65535. Duration can be set only for Activity types that have the "Calculate
activity duration using statistics" feature disabled.

timeSlot No String The label of one of Time Slots configured in Oracle Fusion Field Service. The
time slot defines the service window for the activity. The timeSlot parameter
can be set only for Activity types that have the "Support of time slots" feature
enabled.
If set, the value of timeSlot must contain the label of one of the timeslots that
are selected in the "Available time slots" section of Activity Type configuration.

serviceWindowStart No String The time when the service window starts for the activity in hh:mm format
defined by ISO 8601 (for example, "14:07") The serviceWindowStart parameter
can be set only for Activity types that have the "Support of time slots" feature
disabled.

serviceWindowEnd No String The time when the service window ends for the activity in hh:mm format
defined by ISO 8601 (e.g. "09:56") The serviceWindowStart parameter can be
set only for Activity types that have the "Support of time slots" feature disabled.

slaWindowStart No String The time when the service level agreement (SLA) window starts. The date
and time must be in the format "YYYY-MM-DD hh:mm" or "YYYY-MM-DD
hh:mm:ss" (for example, "2019-12-16 16:42").

slaWindowEnd No String The time when the service level agreement (SLA) window ends. The date
and time must be in the format "YYYY-MM-DD hh:mm" or "YYYY-MM-DD
hh:mm:ss" (for example, "2019-12-20 16:42").
If slaWindowStart is specified then slaWindowEnd must be equal or greater
than slaWindowStart (slaWindowEnd ≥ slaWindowStart).

144

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Name Mandatory Type Description

properties No Object Is a key-value object, where keys are the labels of Oracle Field Service activity
properties to be written. Properties are validated and processed according to
the way the plugin is configured.

Error Codes for Activity Actions

This table describes the error codes that are displayed for activity actions, and the reason for which they are displayed.

Code Caused by Action Cause

CODE_ACTION_PARAM_NOT_UNIQUE create Value of "temporary_aid" param of "create" activity action
duplicates the value of "temporary_aid" field of another
activity in the route.

TYPE_ACTION_ERROR

CODE_ACTION_NUMBER_LIMIT_EXCEEDED create Number of items in the "actions" field of close or update
message is greater than 10,000.

CODE_ACTION_ON_PAST_DATE_NOT_ALLOWED create Any of these:

• "date" parameter of "create" action is set and
the currently selected queue is in the past (and
overnight has ended).

• "date" parameter of the "create" action equals
the date of the currently selected queue and the
selected queue is in the past (and overnight has
ended).

• "date" parameter of the "create" action contains the
date, which is earlier than the local date (that is, the
date in the Resource's time zone) of currently the
selected Resource.

CODE_ACTION_UNKNOWN N/A "action" parameter is not equal to one of the "create"

CODE_ACTION_ENTITY_UNKNOWN N/A "entity" parameter is not equal to "activity" or "inventory"

TYPE_ACTION_PARAM

CODE_ACTION_ACTIVITY_TYPE_INVALID create Any of these:

• "activityType" parameter value is not equal to the
label of one of the Activity Types, configured for
Oracle Fusion Field Service

• "activityType" parameter contains the label of
Activity type, for which any of these features is
enabled:

◦ Allow mass activities

◦ Allow repeating activities

◦ Enable segmenting and extended duration

145

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Caused by Action Cause

CODE_ACTION_DATE_FORBIDDEN create The "scheduled" parameter is false and "date" parameter
is set.

CODE_ACTION_NOT_SCHEDULED_FORBIDDEN create The "scheduled" parameter is false and the "activityType"
parameter contains the label of the Activity type for which
the feature "Allow non-scheduled" is disabled.

CODE_ACTION_TIME_SLOT_FORBIDDEN create The "timeSlot" parameter is set and the "activityType"
parameter contains the label of Activity type for which the
feature "Support of time slots" is disabled.

CODE_ACTION_TIME_SLOT_NOT_AVAILABLE create The "timeSlot" parameter contains the label of the time
slot, which is not selected in the "Available time slots"
section of Activity Type configuration.

CODE_ACTION_SW_FORBIDDEN create "serviceWindowStart" or "serviceWindowEnd" parameter
is set and "activityType" parameter contains the label of
the Activity type for which the feature "Support of time
slots" is enabled.

CODE_ACTION_MANDATORY_PARAM_EMPTY create The "activityType" parameter is not set.

CODE_ACTION_PARAM_VALUE_INVALID create Any of these:

• "date" parameter is set and its value is not a valid
date string in YYYY-MM-DD format defined by ISO
8601

• "scheduled" parameter is set and its value is not a
boolean

• "duration" parameter is not an integer or out of
range

• "timeSlot" parameter is set and its value is not equal
to the label of one of the Time Slots, configured for
OFS

• "timeSlot" parameter is set and its value is not a
string

• "serviceWindowStart" parameter is set and its value
is not a valid time sting in hh:mm format defined by
ISO 8601

• "serviceWindowEnd" parameter is set and its value
is not a valid time string in hh:mm format defined by
ISO 8601

• "positionInRoute" is set and is not an object

• "position" field's value of "positionInRoute"
parameter doesn't equal one of these: "first", "last",
 "notOrdered", "afterActivity"

• "position" field of "positionInRoute" is "afterActivity"
and "scheduled" parameter is false

• "position" field of "positionInRoute" is "afterActivity"
and "date" parameter is set and it is not equal to the
date of the currently selected queue

146

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Caused by Action Cause

• The "position" field of "positionInRoute" is
"afterActivity" and the "activityId" field of the
"positionInRoute" parameter is not set, or it is not
equal to the Activity ID of one of the activities in the
currently-selected queue.

TYPE_ACTION_PROPERTY

CODE_ACTION_PROPERTY_VALUE_INVALID create Any of these:

• Property type is 'file', its GUI type is 'signature' and
its value is not a valid Data URI or it has the invalid
MIME-type.

• Property type is 'enumeration', and its value is not a
valid enumeration item's index.

CODE_ACTION_PROPERTY_VALUE_TOO_LARGE create Any of these:

• Property type is 'field' and length of its value
exceeds 119 UTF-16 code points.

• Property type is 'file', its GUI type is 'signature' and
length of its value exceeds 102400 UTF-16 code
points.

• Property is neither field nor signature and length of
its value exceeds 32767 UTF-16 code points.

See Property value's length limits for details.

TYPE_INTERNAL

CODE_UNKNOWN create Oracle Fusion Field Service is unable to process the
message due to an unexpected change in the system's
state.

Example of close Method to Create an Activity
{
 "apiVersion": 1,
 "method": "close",
 "actions": [
 {
 "entity": "activity",
 "action": "create",
 "activityType": "SDI",
 "scheduled": true,
 "date": "2019-12-12",
 "timeSlot": "",
 "positionInRoute": {
 "position": "afterActivity",
 "activityId": "4225450"
 },
 "serviceWindowStart": "10:00",
 "serviceWindowEnd": "11:30",
 "properties": {
 "WO_COMMENTS": "Follow-up activity"
 }
 }
]

147

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

}

Temporary ID

Each time a new instance of an Oracle Fusion Field Service entity (Activity or Inventory) is created on a user's device,
a temporary ID is generated. This happens regardless of whether the instance is created through the plugin API or
through a standard page such as Add activity or one of the Inventory pages. The temporary ID used as a value of the
Activity ID (aid) and Inventory ID (invid) fields until data is synchronized with the server, so the user and the plugins may
operate the newly created entities even offline. After synchronization, the temporary ID is replaced with an actual aid or
invid generated by the server.

To allow the plugin perform any operation on activities created on the client-side (using the "create" action of the plugin
API or the standard Add activity page), both in offline in online, the plugin API provides the following:

• The value of the client-generated temporary id is stored in the "temporary_aid" field of the activity, which
persists even after data is synced with server and a permanent aid (generated by a server) is obtained.

• Temporary aid may be used as a valid value of the "inv_aid" param for all inventory actions, "inv_aid" field
for "inventoryList" and "inventory" collection updates, and as an activity key for the "activityList" collection
updates even after synchronization with server.

• The plugin may generate a temporary id for activities on its own and send it in the "temporaryAid" param of the
"create" activity action. The plugin may store this value and use it to reference a created activity in later acctions
not even knowing the actual aid.

• The plugin can use the value of the generated temporaryAid as a value of the inv_aid param for inventory
actions even in the same close or update message as the create activity action itself.

The temporary_aid field is not available for segmentable, mass, and repeating activities as the number and actual IDs of
segments or instances may be changed at any time.

Example of actions that make use of temporaryAid:

{
 "apiVersion": 1,
 "method": "update",
 "activityList": {
 "16297679485790-0793": {
 "astatus": "cancelled"
 }
 }
 "actions": [
 {
 "entity": "activity",
 "action": "create",
 "temporaryAid": "16297673252100-2175p",
 "activityType": "4",
 "scheduled": true,
 "date": "2021-08-23"
 },
 {
 "entity": "inventory",
 "action": "create",
 "inv_aid": "16297673252100-2175p",
 "invtype": "NT",
 "invpool": "customer",
 "properties": {
 "invsn": "KCD1403WH"
 }
 }
]

148

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

}

Background Activity
See the wakeup method topic.

Example of close message with the wakeupNeeded param
{
 "apiVersion": 1,
 "method": "close",
 "activity":
 {
 cname: "John"
 },
 "wakeupNeeded": true
}

Related Topics
• wakeup Message

Redirection with the close Method
After the close method is applied, Oracle Fusion Field Service Application closes the plugin and redirects the user to
another page. By default, the user is redirected to the same page from which the plugin was opened. However, you can
specify which page the user must be redirected to, by setting the value of the optional field, "backScreen" in the close
message.

This table provides the possible values for the backScreen field:

Page Name Required Parameters Optional Parameters Description

activity_by_id backActivityId None Details page for the activity with the given ID. If there's no
activity with the given ID in a queue, the user is redirected to
the previous page. ID of the activity must be sent in the field
"backActivityId".

If backActivityId contains ID of non-scheduled activity, user
will be redirected to the details page of that activity only if it's
visible on Activity list screen. If activity is not visible because of
applied filter or because of "Mobile Activity Count" limitation,
user will be redirected to the previous page.

next_activity None None Details of the next pending activity by ETA, or the first pending
activity, if there are no pending activities after the current
activity. If there are no pending activities in a queue, user is
redirected to the Activity List page.

149

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Page Name Required Parameters Optional Parameters Description

activity_list None None Activity List page

start_activity backActivityId None Start Activity page

end_activity backActivityId None Complete Activity page

cancel_activity backActivityId None Cancel Activity page

notdone_activity backActivityId None Not done Activity page

suspend_activity backActivityId None Suspend Activity page

enroute_activity backActivityId None En route page for the activity with the given ID. If there's no
activity with the given ID in a queue or the activity is not
Pending, the user is redirected to the previous page. ID of the
activity must be sent in the backActivityId field.

stop_travel backActivityId None Stop travel page for the activity with the given ID. If there's no
activity with the given ID in a queue or the activity is not in the
Enroute status, the user is redirected to the previous page. ID
of the activity must be sent in the backActivityId field.

delay_activity backActivityId None Adjust Time page

inventory_list None backActivityId List of inventories. If no additional params sent, Inventory
List is shown as if it was opened from Activity List. If
"backActivityId" contains a valid id of an activity, which is in the
current queue, Inventory List is shown as if it was opened from
the Activity Details page of the given activity.

inventory_by_id backInventoryId backActivityId Inventory Details page for an inventory with id equal to the
value of the backInventoryId field. If no additional params are
sent, the page is shown as if it was opened from Activity List >
Inventories. If "backActivityId" contains a valid id of an activity,
 which is in the current queue, Inventory List is shown as if it
was opened from the Activity Details page of the given activity.

install_inventory backInventoryId
backActivityId

None "Install" page for inventory with the id equal to the value of
the backInventoryId field. After confirmation, inventory is
installed to an Activity with an id which equals to the value of
the backActivityId field.

deinstall_inventory backInventoryId
backActivityId

None "Deinstall" page for inventory with the id equal to the value
of the backInventoryId field. After confirmation, inventory is
installed to an Activity with the id equal to the value of the
backActivityId field.

plugin_by_label backPluginLabel backPluginOpenParams The plugin with a label equal to the value of the
"backPluginLabel" field. See "Navigation to another plugin" for
details.

150

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

If the backScreen or other required parameters are inappropriate, or aren't set, the user is redirected to the previous
page. Redirection to the 'reopen_activity' page is not available.

Examples of close Message with Redirection
// start_activity
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "start_activity",
 "backActivityId": "4225473"
}

// end_activity
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "end_activity",
 "backActivityId": "4225473"
}

// cancel_activity
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "cancel_activity",
 "backActivityId": "4225473"
}

// notdone_cancel
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "notdone_activity",
 "backActivityId": "4225473"
}

// suspend_activity
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "suspend_activity",
 "backActivityId": "4225473"
}

// delay_activity
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "delay_activity",
 "backActivityId": "4225473"
}

// inventory_list
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "inventory_list"
 "backActivityId": "4225473",
}

// inventory_by_id

151

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "inventory_by_id",
 "backInventoryId": "3547689"
}

// install_inventory
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "install_inventory",
 "backActivityId": "4225473",
 "backInventoryId": "3547689"
}

// deinstall_inventory
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "deinstall_inventory",
 "backActivityId": "4225473",
 "backInventoryId": "3547689"
}

// plugin_by_label
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "plugin_by_label",
 "backPluginLabel": "plugin_b"
}

Navigation with the close Method
After a plugin page is closed, you can open the page of another or even of the same plugin. This allows you to
implement complex business flows using several different plugins, or update Oracle Fusion Field Service entities
without exiting the plugin's page. From the current plugin, you can redirect only to those plugins that use the Plugin
API. The value of the Disable Plugin in offline option is not taken into account, so the plugin must handle the offline
mode properly.

Additional Parameters for Plug-in on Redirection

List of all buttons that are configured for a plugin is sent to the plugin in the 'buttons' field of the 'init' message. This
field is a list of objects that contains the 'buttonId' and 'params' fields. buttonId is the 'context layout item id' of the
button. 'params' is an object that represents the parameters that are configured for the corresponding context layout
item.

You can send additional parameters on redirection to a plugin using the backScreen param of the close message. With
this, you can open the plugin in various states or show different pages of the plugin depending on the context. You can
also use redirection to implement strict business flows using several plugins. Here are some examples:

• The plugin navigates to one of the many different plugins according to some business logic.

• The plugin shows some data only if it receives correct parameters from another plugin. It does not show the
data if it's opened directly from a button, to force the user to follow business process.

• The plugin implements some business logic that is based on the data from another plugin, without the need to
store this data in the entities' properties or the browser's local storage.

152

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Navigation flow from plugin A to plugin B when sending parameters

The navigation flow is as follows:

• Plug-in A sends the close message with the backpluginLabel and backpluginOpenParams fields.
backpluginLabel equals to the label of plugin B. backpluginOpenParams is an object, which contains the data
needed by plugin B.

• After successful processing of the close message, plugin A is closed.

• Plug-in B is opened immediately and is shown on the page after the ready message is received.

• Plug-in B receives the open message, which contains the openParams field. The value of this field equals to the
value of backpluginOpenParams sent by plugin A.

Requirements for the "backPluginOpenParams" Field

The requirements are as follows:

• backPluginOpenParams is a plain object.

• The maximum number of the object's fields is 20.

• Each field of the object has a scalar value (string, number, bool, null, undefined). Nested objects are forbidden.

• The size is limited to 5 KB and includes JSON structure overhead. That is, the limit is applied to the length of the
serialized JSON string.

Example of the close message sent by plugin A

{
 "apiVersion": 1,
 "method": "close",
 "entity": "activity",
 "backScreen": "plugin_by_label",
 "backPluginLabel": "plugin_b",
 "backPluginOpenParams": {
 "foo": "bar"
 }
}

Example of the open message received by plugin B

{
 "apiVersion": 1,
 "method": "open",
 "entity": "activity",
 "openParams": {
 "foo": "bar"
 }
 ...
}

error Method
The message for the error method always has the 'errors' field that contains the list of errors.

Example of error Method Message
{

153

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "apiVersion": 1,
 "method": "error",
 "entity": "activityList",
 "errors": [
 {
 "type": "TYPE_ENTITY_PROPERTY",
 "code": "CODE_ACTIVITY_STATUS_INVALID",
 "entity": "activity",
 "entityId": "3956532",
 "propertyLabel": "astatus"
 },
 {
 "type": "TYPE_ENTITY_PROPERTY",
 "code": "CODE_MANDATORY_PROPERTY_EMPTY",
 "entity": "inventory",
 "entityId": "20998086",
 "propertyLabel": "inv_aid"
 }
]
}

Each element of the errors list is an object and contains these fields:

• type: Describes the type of error that occurred while processing a message, for example, invalid property value,
internal error. Type determines the additional fields that are available in the error object, for example, property
label.

• code: Describes the error more specifically, for example, a validation rule that is violated by the data sent by a
plugin.

The elements may contain additional fields, such as entity, entityId, propertyLabel depending on the type of the error.

Related Topics
• Error Types and Error Codes

• Error Types for Inventory Actions

• callProcedure Error Handling

update Method
You can use the update method to update Oracle Fusion Field Service entities through a plugin, without leaving the
plugin's page.

Oracle Fusion Field Service validates the format of the update message and processes it in the same way as the close
message. The differences between the update and close methods are:

• update messages may be sent by the plugin multiple times before closing. However, the plugin cannot send the
next update message until the previous update is applied and the updateResult message is sent to the plugin.

• The plugin page is not closed after applying of update message and its iframe is not destroyed.

• The message fields wakeupNeeded, backScreen, backActivityId, backInventoryId, backPluginLabel,
backPluginButtonId, backPluginOpenParams, and iconData are ignored.

• Upon successful processing of the update message, Oracle Fusion Field Service sends a message with the
updateResult method.

154

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

If the validation or processing of the update message fails, the Plugin API sends the "error" message of same format
(with the same "type" and "code" values) that is sent for the close message.

If a user has to stay on the plugin page after applying the updates, the best practice is to use the update method instead
of close. This improves the user experience and reduces the consumption of the device's resources (RAM and CPU), as
the plugin page won't be recreated and the plugin doesn't have to process the open data again.

Example of the update method:

{
 "apiVersion": 1,
 "method": "update",
 "activity": {
 "caddress": "Cleveland",
 "aid": "4224031"
 }
}

updateResult Method
Oracle Fusion Field Service sends the updateResult message in response to the update message. It contains the latest
available entity data, including the changes applied by the last update message. The updateResult message has the
same format and contents as an open message. This allows the plugin to work with actual data without having to close
and reopen the plugin page.

If plugin has to get the latest entity data without changing anything, it may just send the update message with no
entity collections. However, be aware that the changes applied on the server by other users or through REST API are
not delivered instantly to the user's device, and the contents of the updateResult message show the current state of the
entities on a device (in a particalar session of a browser or the installed app).

Example of update message:

{
 "apiVersion": 1,
 "method": "updateResult",
 "activityList": {
 "4224031": {
 "WO_COMMENTS": null,
 "cname": null,
 "caddress": "Cleveland",
 "ccity": null,
 "aworktype": "4",
 "astatus": "pending",
 "aid": "4224031",
 "atype": "regular"
 }
 },
 "inventoryList": {
 "21064417": {
 "invsn": "PTI1234789",
 "invpool": "provider",
 "invid": "21064417",
 "inv_aid": null,
 "inv_pid": 3000001
 }
 },
 "queue": {

155

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "date": "2021-08-17",
 "status": "notActivated",
 "isActual": true
 },
 "resource": {
 "pid": 3000001,
 "external_id": "33001",
 "currentTime": "2021-08-17 20:48:26",
 "deviceUTCDiffSeconds": 0,
 "timeZoneDiffSeconds": -14400
 },
 "team": {
 "teamMembers": {},
 "assistingTo": {},
 "assistingMe": []
 },
 "user": {
 "allow_desktop_notifications": 1,
 "allow_vibration": 1,
 "design_theme": 11,
 "format": {
 "date": "m/d/y",
 "long_date": "l, F jS, Y",
 "time": "h:i A",
 "datetime": "m/d/y h:i A"
 },
 "providers": [
 2
],
 "sound_theme": 2,
 "su_zid": 2,
 "uid": 2315,
 "ulanguage": 1,
 "language": "en",
 "ulogin": "admin",
 "uname": "Admin",
 "week_start": 0
 },
 "buttonId": "20348",
 "openParams": {}
}

Example of an empty update message for data refresh:

{
 "apiVersion": 1,
 "method": "update"
}

callProcedure Method
The callProcedure method lets the plugin interact with Oracle Fusion Field Service Core Application without leaving the
plugin's page. This method is implemented using the remote procedure call (RPC) approach.

The callProcedureResult method returns the result of running the callProcedure. As you can run multiple procedures
simultaneously, it is possible that the plugin sends the next callProcedure messages to Oracle Fusion Field Service
before it sends the callProcedureResult message back. These results can be associated with the procedure calls using

156

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

the callId parameter. For backward compatibility, simultaneous calls of multiple openLink procedures or multiple
scanBarcode procedures cause an error with the error code CODE_METHOD_UNEXPECTED.

You can perform these actions on a plugin through the callProcedure method:

• Open a plugin in the background (wake up) even when the device is offline.

• Define a delay for opening a plugin in the background after closing its window. You can set it as short as 10
seconds.

• Extend the period of background operation for a plugin before being required to close (sleep). You can set it
between 10 seconds and 1 hour.

• Update the appearance (icon, color, text) of a plugin's button (or multiple buttons) on My Route without closing
a plugin that is working in the background.

• Navigate to En route and Stop travel pages when the plugin is closed.

• Call some procedures through the Plugin API without actually calling them.

callProcedure Sequence

This diagram shows the sequence in which callProcedure is run:

157

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

callProcedure method parameters

This table lists the parameters of the callProcedure method:

Parameter Name Mandatory Type Description

apiVersion Yes Integer Plugin API version.

method Yes String Must equal callProcedure.

procedure Yes String Procedure name.

158

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameter Name Mandatory Type Description

callId Yes String Unique string identifier, which is used to apply the procedure
response within the plugin.

Example of callId Generation
function generateCallId() {
 return btoa(String.fromCharCode.apply(null, window.crypto.getRandomValues(new Uint8Array(16))));
}

Calling of Procedures

You can send the callProcedure messages for plugins that are opened in background after they receive a wakeup
message. You can use only the updateIconData and updateButtonsIconData procedures with the plugins that are
opened in background. These procedures help the plugin update the appearance of its buttons in real-time to notify the
user about the updates it has received.

Related Topics
• callProcedureResult Method

scanBarcode Procedure
Parts and equipment usually have barcodes printed on their package. The scanBarcode procedure provides the barcode
and 2D (for example, QR, DATAMATRIX) code scanner functionality that helps searching for items in the inventory pools
easy.

When the plugin calls this procedure, the scanner window opens and shows the live camera picture. When the barcode
is recognized, the scanner window closes, and the result is sent to the plugin through the callProcedureResult method.
If the barcode scanner is unavailable or Oracle Fusion Field Service Core Application isn't run inside the Oracle Fusion
Field Service Mobile (for Android or iOS) application, an error code is returned to the plugin through an error message.
For more information about the callProcedureResult method, see the callProcedureResult Method topic in the Mobile
Plug-in Framework guide.

Note: You must have the Oracle Fusion Field Service Mobile (for Android or iOS) application to use the Barcode
Scanner through the plugin API and to search by barcode.

Supported Barcode and 2D Code Types

This table provides the barcode and 2D code types:

Barcode Type Android iOS

QR_CODE Yes Yes

DATA_MATRIX Yes Yes

UPC_A Yes Yes

UPC_E Yes Yes

159

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Barcode Type Android iOS

EAN_8 Yes Yes

EAN_13 Yes Yes

CODE_39 Yes Yes

CODE_93 Yes No

CODE_128 Yes Yes

CODABAR Yes No

ITF Yes Yes

RSS14 Yes No

PDF417 Yes No

RSS_EXPANDED Yes No

Example of the callProcedure Message
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "scanBarcode",
 "callId": "123abc"
}

Result of the callProcedure Procedure

For this procedure, the resultData param of the callProcedureResult message is an object, which contains these fields:

Parameter Type Description

apiVersion String Plugin API version.

format String Type of recognized barcode. See Supported barcode and 2D code types.

cancelled String Equals true if user closed the scanner window before the code's
recognized.

Example of the callProcedureResult Message

When the barcode is scanned successfully:
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123abc",
 "resultData": {
 "text": "PT9012308",
 "format": "QR_CODE",
 "cancelled": false
 }
}

160

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

When user cancels scanning:
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123abc",
 "resultData": {
 "text": "",
 "format": "",
 "cancelled": true
 }
}

openLink Procedure
The openLink procedure provides a common way to open external URLs from Oracle Fusion Field Service Core
Application run either in a web browser or in the Oracle Fusion Field Service Mobile for Android and iOS app. If Oracle
Fusion Field Service Core Application is run in the Oracle Fusion Field Service Mobile for Android and iOS app, the URL
is opened in a new web browser window. If not, it's opened as a new browser tab.

Example of the callProcedure Message
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "openLink",
 "callId": "123abc",
 "params": {
 "url": "https://play.google.com/store/apps/details?id=com.oracle.ofs"
 }
}

Result of the Procedure

The result is sent through the callProcedureResult message, just to indicate that the procedure is run successfully. The
resultData param doesn't contain any data.

getPartsCatalogStructure Procedure
The getPartsCatalogStructure procedure returns the field type and schema for the available Parts Catalogs through
the callProcedureResult method. This is the same data that you have configured using the create method of the Parts
Catalog API.

Parameters

The getPartsCatalogStructure procedure doesn’t accept any parameters.

Response for the getPartsCatalogStructure Procedure

Here are the fields that are returned for every Parts Catalog:

161

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Parts Catalog API
Parameter

Description

catalogId Number None None

label String label None

language String language None

name String name Name of the catalog to be displayed in the user-interface.

fieldSchemas Array field_schemas Array of fieldSchema items, each of which contains one of
the fields to be set for the catalog.

typeSchemas Array type_schemas Array of typeSchema items, each of which contains an item
type and may also contain the inventory type corresponding
to the item type.

cacheLoadingState Object None Status of loading the Parts Catalog contents to the device
storage to be available in offline. Can be used to visualize the
progress of loading.

fieldSchema Item Structure

Here is the structure of the fieldSchema item:

Field Name Type Parts Catalog API
‘typeSchema’ Element
Parameter

Description

label String label Field identifier

name String name Name of the field to be displayed in the user-interface.

propertyLabel String property_label Label of the corresponding inventory property in Oracle
Fusion Field Service.

searchable Boolean searchable Whether the field is used for search.

preview Boolean preview Whether the field is cached in offline mode and displayed in
the offline search results.

typeSchema Item Structure

Here is the structure of the typeSchema item:

Field Name Type Parts Catalog API
‘typeSchema’ Element
Parameter

Description

itemType String item_type Item type according to the catalog.

162

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Parts Catalog API
‘typeSchema’ Element
Parameter

Description

inventoryType String inventory_type Inventory type according to Oracle Fusion Field Service
settings.

cacheLoadingState Item Structure

Here is the structure of the cacheLoadingState item:

Field Name Type Description

isLoaded String Whether the all needed data of Parts catalog is loaded and is available offline

loadedItemsNumber Number Number of catalog items that are loaded to the device

totalItemsNumber Number Total number of catalog items to be loaded to the device

loadedSize Number Amount of data that's loaded to the device (bytes)

Example of a Request
{
 "apiVersion": 1,
 "callId": "CMFYN5AKpc9Yg1POv6773g==",
 "method": "callProcedure",
 "procedure": "getPartsCatalogsStructure"
}

Example of a Response
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "CMFYN5AKpc9Yg1POv6773g==",
 "resultData": [
 {
 "catalogId": 2,
 "label": "network",
 "language": "en",
 "name": "Network devices",
 "fieldSchemas": [
 {
 "label": "model",
 "name": "Model",
 "propertyLabel": "switch_model",
 "searchable": true,
 "preview": true
 },
 {
 "label": "ports",
 "name": "Ports",
 "propertyLabel": false,
 "searchable": true,
 "preview": false
 },
 {

163

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "label": "price",
 "name": "Price",
 "propertyLabel": "switch_price",
 "searchable": false,
 "preview": false
 },
 {
 "label": "vendor",
 "name": "Vendor",
 "propertyLabel": false,
 "searchable": false,
 "preview": true
 }
],
 "typeSchemas": [
 {
 "itemType": "switch_type",
 "inventoryType": "switch_general"
 },
 {
 "itemType": "router_type",
 "inventoryType": "router_general"
 }
],
 "cacheLoadingState": {
 "isLoaded": true,
 "loadedItemsNumber": 2,
 "loadedSize": 1138,
 "totalItemsNumber": 2
 }
 },
 {
 "catalogId": 4,
 "label": "misc",
 "language": "en",
 "name": "Miscellaneous parts",
 "fieldSchemas": [
 {
 "label": "item_type",
 "name": "Item Type",
 "propertyLabel": false,
 "searchable": false,
 "preview": false
 },
 {
 "label": "description",
 "name": "Item description",
 "propertyLabel": false,
 "searchable": true,
 "preview": true
 },
],
 "typeSchemas": [
 {
 "itemType": "parts",
 "inventoryType": "PART"
 }
],
 "cacheLoadingState": {
 "isLoaded": true,
 "loadedItemsNumber": 3558,
 "loadedSize": 2793309,
 "totalItemsNumber": 3558
 }
 }
]

164

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

}

getParts Procedure
The getParts procedure returns all the information for a Parts Catalog item, that was added using the upload method of
the Parts Catalog API.

Parameters

Here are the parameters of the getParts procedure:

Parameter Name Mandatory Type Description

items Yes Array Array of itemKey objects that identify the catalog items to get
info for.

itemKey Object Structure

Here is the structure of the itemKey object:

Parameter Name Mandatory Type Parts Catalog API
Parameter for ‘item’
Element of ‘upload_
catalog’ Request

Description

catalogId Yes Integer None A unique identifier of a catalog, which
contains the item. Id can be retrieved using the
getPartsCatalogsStructure procedure.

label Yes String label A unique identifier of a part within a catalog. Can
be changed after updating the catalog.

Response for the getParts Procedure

Here are the fields that are returned:

Field Name Type Description

items Array Array of FoundItem objects. Each object represents one item whose data is
available.

notFoundItems String Array of itemKey objects. Each object contains the key fields of an item
whose data is not available.

foundItem Object Structure

Here is the structure of the foundItem object:

165

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Parts Catalog API
Parameter for ‘item’
Element of ‘upload_
catalog’ Request

Description

catalogId Integer None A unique identifier of a catalog.

itemId Integer None A unique identifier of a part within a catalog. Can be changed
after catalog update.

label String label A unique identifier of a part within a catalog.

itemType String type Item type

inventoryType String None Label of a corresponding inventory type in Oracle Fusion
Field Service. Can be empty if the mapping of item types
to inventory types isn’t configured in the catalog schema.
Mapping between itemType and inventoryType can be found
in the typeSchemas field of the getPartsCatalogStructure
procedure result.

fields Object fields An object (dictionary) that contains the item's fields by it's
labels.

linkedItems Array linked_items Array of LinkedItem objects.

images Array images An array of strings, where each string is a URL of an image.

LinkedItem Object Structure

Here is the structure of the linkedItem object:

Field Name Type Parts Catalog API
Parameter for
‘LinkedItem’ Element of
‘upload_catalog’ Request

Description

id Integer None A unique identifier of a linked part within a catalog. Can be
changed after catalog update.

label String label A unique identifier of a linked part within a catalog.

displayData String display_data Text comments to the linked item to be displayed in GUI.

Example of a Request
{
 "apiVersion": 1,
 "callId": "KnnXUxS7APzLBVIzY+8B0g==",
 "method": "callProcedure",
 "procedure": "getParts",
 "params": {
 "items": [
 {

166

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "catalogId": "2",
 "label": "Switch_model_001"
 },
 {
 "catalogId": "2",
 "label": "Switch_009"
 },
 {
 "catalogId": "4",
 "label": "FM3-2048-007"
 }
]
 }
}

Example of a Response
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "KnnXUxS7APzLBVIzY+8B0g==",
 "resultData": {
 "items": [
 {
 "catalogId": 2,
 "itemId": 2,
 "label": "Switch_001",
 "itemType": "switch_type",
 "inventoryType": "switch_general_eta",
 "linkedItems": [
 {
 "id": 3,
 "label": "Switch_002",
 "displayData": "better"
 }
],
 "fields": {
 "descr": "Automatic direction",
 "model": "Switch_model_001",
 "ports": "8 x Fast Ethernet (10/100 Mbit/s)",
 "price": "25$",
 "size": "151x81x33 mm,200 g",
 "vendor": "Oracle"
 },
 "images": [
 "https://example.com/switch_1.jpg"
]
 },
 {
 "catalogId": 4,
 "itemId": 3463,
 "label": "FM3-2048-007",
 "itemType": "parts",
 "inventoryType": "",
 "linkedItems": [
 {
 "id": 2350,
 "label": "Z4603011",
 "displayData": "5"
 },
 {
 "id": 3160,
 "label": "Z0293015",
 "displayData": "7"
 },
],

167

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "fields": {
 "cost": "54.2346747003",
 "description": "NETWORK I/F BOARD PCB ASSY\nFirmware update 2",
 "item_disposition": "Repairable",
 "item_type": "BOARD",
 "price": "174.85",
 "vendor": "ORCL"
 },
 "images": [
 "https://example.com/pictures/12.jpg",
 "https://example.com/pictures/8.jpg",
 "https://example.com/pictures/23.jpg",
 "https://example.com/pictures/14.jpg"
]
 }
],
 "notFoundItems": [
 {
 "catalogId": 2,
 "label": "Switch_009"
 }
]
 }
}

getAuthorizationCode

OAuth Code Authorization Flow in Plugin API
The OAuth Code Authorization flow in the Plugin API enables the acquisition of a JWT (access token) by using an
already authenticated user session in Oracle Fusion Field Service through an Identity Provider. With the JWT access
token, you must authenticate to the REST API of your Identity Provider to execute necessary actions, such as verifying
user permissions, tracking data updates made by the user, and so forth.

The flow is detailed here:

• Configure an application on an Identity Provider that supports the OAuth Code Authorization flow.

• Use credentials such as Client ID, Scope, and Identity Provider endpoint to generate the URL to the Identity
Provider Code Authorization endpoint.

• Call the "getAuthorizationCode" procedure from the plugin with this URL in the procedure parameters.Obtain
an authorization code in the procedure response.

• Obtain a JWT access token by this authorization code from the plugin.

• Use the JWT access token in the REST API request authorization.

Note: The JWT access token is issued on behalf of a user rather than an application.

This flowchart shows the OAuth Code Authorization Flow in Plugin API:

168

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

getAuthorizationCode Procedure
The getAuthorizationCode procedure is used to obtain an Access token (JWT) using the OAuth 2.0 Authorization Code
Grant flow. The code needs to obtain a JWT (access token) which is used to authorize REST API calls to the Resource
Server.

Procedure Overview
The procedure accepts only one mandatory parameter - URL. This is the URL of the Identity Provider endpoint, which
provides authorization by OAuth 2.0 Authorization Code Grant Flow. Usually the URL contains the "/authorize" suffix.

Parameters
The URL consists of several parameters as shown in the table:

Parameters Required/Optional Description

REST API Endpoint Required Provides OAuth 2.0 Authorization
Code Flow.For example: https://idcs-
instance.example.com/oauth2/v1/authorize

response_type=code Required The parameter that points to the Authorization
Code Flow.

client_id Required The Client ID, provided by Identity Provider
during the creation of OAuth 2.0 Authorization
Code application. For example: client_
id=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

redirect_uri Required The URL to which the user
 will be redirected. It is

169

https://idcs-instance.example.com/oauth2/v1/authorize
https://idcs-instance.example.com/oauth2/v1/authorize

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameters Required/Optional Description

 URL encoded and consists
 of Oracle Fusion Field
 Service instance domain and
 "/plugin-auth-redirect/"
 suffix. For example:
 &redirect_uri=https%3A%2F
%2Fofs-instance.example.com
%2Fplugin-auth-redirect%2F

scope Required The scope requested for authorization. For
example: '&scope=xxxx'. It should be one
of scopes that is supported by OAuth 2.0
Authorization Code application (configured on
Identity Provider).

Optional parameters, to support Proof Key for Code Exchange (PKCE) https://tools.ietf.org/html/rfc7636

code_challenge_method=S256 Optional The type of encryption method used. For
example: code_challenge_method=S256. (The
value could be "plain" but in that case Code
Verifier and Code Challenge is equal)

code_challenge Optional The signature of the Code Verifier string that is
generated by the following code example:

async function
generateCodeChallenge(codeVerifier) {

const encoder = new TextEncoder();

const data = encoder.encode(codeVerifier);

const digest = await
crypto.subtle.digest('SHA-256', data);

return base64UrlEncode(digest);

}

The Code Verifier string should be used in the
request to obtain JWT.

state Optional This can be used to keep some information
when user will be redirected. Usually, the
parameter is used to keep the information
of plugin's current screen or some other

170

https://tools.ietf.org/html/rfc7636

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameters Required/Optional Description

information of navigation inside the plugin
before the procedure had been called.

Note: Oracle Fusion Field Service environment domain can be taken from the 'origin' item of the init message.

Example of a Request

The example of the procedure request to IDCS Identity Provider:
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "getAuthorizationCode",
 "callId": "1111111111",
 "params": {
 "url": "https://idcs-instance.example.com/oauth2/v1/authorize?
response_type=code&client_id=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx&redirect_uri=https%3A%2F%2Fofs-
instance.example.com%2Fplugin-auth-redirect%2F
 &scope=urn:opc:resource:faaas:fa:XXXXXXXXX-XXXXurn:opc:resource:consumer::all"
 }
 }

The documentation of configuration of Authorization Code Flow in IDCS - https://docs.oracle.com/en-us/iaas/Content/
Identity/api-getstarted/AuthCodeGT.htm

The example of the procedure request to Microsoft Entra Identity Provider:

{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "getAuthorizationCode",
 "callId": "1111111111",
 "params": {
 "url": "https://login.microsoftonline.com/{tenantId}/oauth2/v2.0/authorize?
response_type=code&client_id=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
 &redirect_uri=https%3A%2F%2Fofs-instance.example.com%2Fplugin-auth-redirect
%2F&scope=User.Read&code_challenge_method=S256&code_challenge=VmLy6wpzYdHI99H0yeP64qEAyjJL_gu915gJUplobBA"
 }
}

The documentation of configuration of Authorization Code Flow in Microsoft Entra - https://learn.microsoft.com/en-
us/entra/identity-platform/v2-oauth2-auth-code-flow.

callProcedureResult method - success, completed

The response contains three fields:

• redirectUrl (mandatory) - the full URL which was used to redirect user to Oracle Fusion Field Service.

• code (mandatory) - the authorization code.

• state (optional) - if such parameter is present in redirectUrl it will be returned separately, just to make easier to
get it, without parsing the redirectUrl.

{

 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "1111111111",

171

https://docs.oracle.com/en-us/iaas/Content/Identity/api-getstarted/AuthCodeGT.htm
https://docs.oracle.com/en-us/iaas/Content/Identity/api-getstarted/AuthCodeGT.htm

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "procedure": "getAuthorizationCode",
 "resultData": {
 "result": "completed",
 "code": "xxxxx",
 "redirectUri": "https://ofs-instance.example.com/plugin-auth-redirect/?
code=xxxxxx&some_other_return_param=xxxxx",
 "state": "some_state"
 }
}

callProcedureResult method - success, cancelled

This occurs when a new request is made. Once a new browser tab is opened, Oracle Field Service cannot track the
user's actions and won't receive an event if the tab is closed. Therefore, the only way to obtain the code is by making
an additional request. In this scenario, the previous procedure call will return a "callProcedureResult" with a "cancelled"
result.

{

 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "1111111111",
 "procedure": "getAuthorizationCode",
 "resultData": {
 "result": "cancelled",
 "reason": "SAME_PROCEDURE_NEW_CALL_BEFORE_COMPLETION"
 }
}

callProcedureResult method - error

The example of the error messages that could be returned:

{

 "apiVersion": 1,

 "method": "error",

 "errors": [

 {

 "type": "TYPE_PROCEDURE_ERROR",

 "code": "CODE_UNKNOWN",

 "procedure": "getAuthorizationCode", "data": "Authorization Code obtaining is rejected. The mandatory
 parameter \"code\" is absent in redirect URI: https://ofs-instance.example.com/plugin-auth-redirect/

 ?error=invalid_request&error_description=Client+xxxx+provided+an+invalid+response+mode%3A+query."

 }

],

 "callId": "xxxx"

}

{

 "apiVersion": 1,

172

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_UNAVAILABLE",

 "procedure": "getAuthorizationCode"
 }
],

}

The example of fetch requests that could be used to get JWT and RESt API data from Microsoft:

fetch('https://login.microsoftonline.com/xxxx/oauth2/v2.0/token', {
 headers: {
 "content-type": "application/x-www-form-urlencoded; charset=UTF-8",
 },
 method: "POST",
 body: 'client_id=xxxx&grant_type=authorization_code&redirect_uri=https%3A%2F%2Fofs-instance.example.com
%2Fplugin-auth-redirect%2F&code=xxxx'
});

fetch("https://graph.microsoft.com/v1.0/me", {
 headers: {
 authorization: 'Bearer xxxx'
 }
});

searchParts Procedure
The searchParts procedure searches for parts in the Parts Catalog.

Parameters

Here are the parameters of the searchParts procedure:

Parameter Name Mandatory Type Description

query Yes String Search query. Minimum length - 3 symbols (spaces symbols
at the beginning and at the end are trimmed), maximum
length - 100 symbols.

limit No Integer Maximum number of results returned as a result. Minimum
value - 1, maximum - 1000. Default is 10.

cacheOnly No Boolean Whether the search is to be performed only in cache, or it can
make a network request to finish the search. If set to true,
 the search is performed in offline mode without any network
requests. Default is false.

Response

Here is the response for of the searchParts procedure:

173

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Description

items Array Array of FoundItem objects. Found parts. Limited by the limit parameter.

source String Source of the search. Possible values:

• "cache": The search is performed only in the cache, no network
request is sent.

• "server": The search is performed with a network request.

searchId Integer A unique id of the search procedure within the plugin’s open session. Used
as a parameter for the searchPartsContinue procedure.

isContinueAvailable Boolean Indicates whether the total number of results overflows the limit parameter
or not. If it's true - then the searchPartsContinue procedure can be used to
return more results (limited by the limit parameter).

foundItem Object Structure

Here is the structure of the foundItem object:

Field Name Type Parts Catalog API
Parameter for ‘item’
Element of ‘upload_
catalog’ Request

Description

catalogId Integer None A unique identifier of a catalog.

itemId Integer None A unique identifier of a part within a catalog. Can be changed
after catalog update.

label String label A unique identifier of a part within a catalog.

itemType String type Item type

inventoryType String None Label of a corresponding inventory type in Oracle Fusion
Field Service. Can be empty if the mapping of item types
to inventory types isn’t configured in the catalog schema.
Mapping between itemType and inventoryType can be found
in the typeSchemas field of the getPartsCatalogStructure
procedure result.

fields Object fields An object (dictionary) that contains the item's fields by it's
labels.

linkedItems Array linked_items Array of LinkedItem objects.

images Array images An array of strings, where each string is a URL of an image.

LinkedItem Object Structure

Here is the structure of the linkedItem object:

174

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Parts Catalog API
Parameter for
‘LinkedItem’ Element of
‘upload_catalog’ Request

Description

id Integer None A unique identifier of a linked part within a catalog. Can be
changed after catalog update.

label String label A unique identifier of a linked part within a catalog.

displayData String display_data Text comments to the linked item to be displayed in GUI.

Loading More Search Results

If the searchParts procedure returns isContinueAvailable as true, then you can load more search results through the
searchPartsContinue method using the returned searchId. The searchPartsContinue method is available for 10 most
recent searchId. The searchId values returned by the searchParts procedure are stored in a queue for 10 most recent
calls that have isContinueAvailable = true. If the queue overflows, the searchId for the first calls are removed and
searchPartsContinue isn't available for them any more. Each searchPartsContinue call moves it's searchId to the top of
the queue (makes it most recent) and when searchPartsContinue returns isContinueAvailable as false, the searchId is
removed from the queue.

Example of a Request
{
 "apiVersion": 1,
 "callId": "3quvGlWIgNJlQhHrYRN4vg==",
 "method": "callProcedure",
 "procedure": "searchParts",
 "params": {
 "query": "055",
 "limit": 5
 }
}

Example of a Response
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "3quvGlWIgNJlQhHrYRN4vg==",
 "resultData": {
 "items": [
 {
 "catalogId": 3,
 "itemId": 4179,
 "label": "XG9-0552-000",
 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [
 {
 "id": 4298,
 "label": "D3625170",
 "displayData": "9"
 },
 {
 "id": 4547,
 "label": "D5853100",
 "displayData": "2"
 },

175

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 {
 "id": 4824,
 "label": "D8093048",
 "displayData": "8"
 },
 {
 "id": 6310,
 "label": "AB014229",
 "displayData": "7"
 }
],
 "fields": {
 "description": "BEARING NP6560",
 "vendor": "AGHA",
 "cost": "5.704125031",
 "price": "22.7",
 "item_type": "NA",
 "item_disposition": "NA"
 },
 "images": [
 "https://example.com/picture/15.jpg",
 "https://example.com/picture/10.jpg",
 "https://example.com/picture/18.jpg",
]
 },
 {
 "catalogId": 3,
 "itemId": 5631,
 "label": "KHB670550A00",
 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [],
 "fields": {
 "description": "KID-MOD MF16, TENSION-DETACK",
 "vendor": "KODAK",
 "cost": "742.5143066464",
 "price": "1270.86",
 "item_type": "NA",
 "item_disposition": "NA"
 },
 "images": [
 "https://example.com/picture/26.jpg"
]
 },
 {
 "catalogId": 3,
 "itemId": 5029,
 "label": "D0605507",
 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [
 {
 "id": 3972,
 "label": "FB6-2374-000",
 "displayData": "0"
 },
 {
 "id": 4975,
 "label": "B1253830",
 "displayData": "8"
 }
],
 "fields": {
 "description": "PCB:B-C4B:SERVICE:ASS'Y",
 "vendor": "HYTEC",
 "cost": "1427.04",

176

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "price": "2854.08",
 "item_type": "BOARD",
 "item_disposition": "Repairable"
 },
 "images": []
 },
 {
 "catalogId": 3,
 "itemId": 7551,
 "label": "D3305502",
 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [],
 "fields": {
 "description": "[XREF TO HD3305502] DF MAIN BOARD",
 "vendor": "NWRS",
 "cost": "191.5",
 "price": "480.95",
 "item_type": "BOARD",
 "item_disposition": "Repairable"
 },
 "images": [
 "https://example.com/picture/2.jpg"
]
 },
 {
 "catalogId": 3,
 "itemId": 4203,
 "label": "D0746055",
 "itemType": "other",
 "inventoryType": "",
 "linkedItems": [
 {
 "id": 4037,
 "label": "AB012067",
 "displayData": "1"
 }
],
 "fields": {
 "description": "FLAT BELT-TRANSFER SERVICE PARTS",
 "vendor": "SUNRISE",
 "cost": "902.0665087976",
 "price": "1848.46",
 "item_type": "NA",
 "item_disposition": "NA"
 },
 "images": [
 "https://example.com/picture/26.jpg"
]
 }
],
 "isContinueAvailable": true,
 "source": "cache",
 "searchId": 1
 }
}

searchPartsContinue Procedure
The searchPartsContinue procedure returns additional results for a search that is initiated by the searchParts procedure.

177

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Parameters

Here are the parameters of the searchPartsContinue procedure:

Parameter Name Mandatory Type Description

searchId Yes Integer A unique id of the search procedure within a plugin’s open
session. Minimum value: 0, Maximum value: 2147483647 For
more information, see Loading More Search Results.

Response

Here is the response for of the searchPartsContinue procedure:

Field Name Type Description

items Array Array of FoundItem objects. Found parts. Limited by the limit parameter.

source String Source of the search. Possible values:

• "cache": The search is performed only in the cache, no network
request is sent.

• "server": The search is performed with a network request.

searchId Integer A unique id of the search procedure within the a plugin’s open session.
Used as a parameter for the searchPartsContinue procedure.

isContinueAvailable Boolean Indicates whether the total number of results overflows the limit parameter
or not. If it's true - then the procedure can be called once more to return
more results (limited by the limit parameter for the searchParts procedure).

foundItem Object Structure

Here is the structure of the foundItem object:

Field Name Type Parts Catalog API
Parameter for ‘item’
Element of ‘upload_
catalog’ Request

Description

catalogId Integer None A unique identifier of a catalog.

itemId Integer None A unique identifier of a part within a catalog. Can be changed
after catalog update.

label String label A unique identifier of a part within a catalog.

itemType String type Item type

inventoryType String None Label of a corresponding inventory type in Oracle Fusion
Field Service. Can be empty if the mapping of item types

178

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Name Type Parts Catalog API
Parameter for ‘item’
Element of ‘upload_
catalog’ Request

Description

to inventory types isn’t configured in the catalog schema.
Mapping between itemType and inventoryType can be found
in the typeSchemas field of the getPartsCatalogStructure
procedure result.

fields Object fields An object (dictionary) that contains the item's fields by it's
labels.

linkedItems Array linked_items Array of LinkedItem objects.

images Array images An array of strings, where each string is a URL of an image.

LinkedItem Object Structure

Here is the structure of the linkedItem object:

Field Name Type Parts Catalog API
Parameter for
‘LinkedItem’ Element of
‘upload_catalog’ Request

Description

id Integer None A unique identifier of a linked part within a catalog. Can be
changed after catalog update.

label String label A unique identifier of a linked part within a catalog.

displayData String display_data Text comments to the linked item to be displayed in GUI.

Example of a Request
{
 "apiVersion": 1,
 "callId": "J3wa6jhKxwf6xfAZbsCdjQ==",
 "method": "callProcedure",
 "procedure": "searchPartsContinue",
 "params": {
 "searchId": 1
 }
}

Example of a Response
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "J3wa6jhKxwf6xfAZbsCdjQ==",
 "resultData": {
 "items": [
 {
 "catalogId": 3,
 "itemId": 7300,
 "label": "MU220055000",

179

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [
 {
 "id": 4481,
 "label": "CF064-67901",
 "displayData": "0"
 },
 {
 "id": 4986,
 "label": "B2469510",
 "displayData": "5"
 }
],
 "fields": {
 "description": "INTRACK JOGGER AY F4100-02",
 "vendor": "KODAK",
 "cost": "341.4693432572",
 "price": "799.075",
 "item_type": "NA",
 "item_disposition": "NA"
 },
 "images": [
 "https://example.com/picture/4.jpg",
 "https://example.com/picture/26.jpg",
 "https://example.com/picture/10.jpg",
 "https://example.com/picture/8.jpg"
]
 },
 {
 "catalogId": 3,
 "itemId": 6337,
 "label": "B8305562",
 "itemType": "parts",
 "inventoryType": "PT",
 "linkedItems": [],
 "fields": {
 "description": "STEPPER MOTOR DC1 .56V 3.7W",
 "vendor": "RICOH",
 "cost": "36.97",
 "price": "185.7",
 "item_type": "NA",
 "item_disposition": "NA"
 },
 "images": [
 "https://example.com/picture/14.jpg",
 "https://example.com/picture/15.jpg",
 "https://example.com/picture/4.jpg"
]
 }
],
 "isContinueAvailable": false,
 "source": "server",
 "searchId": 1
 }
}

Error handling

Examples of the error message

{
 "apiVersion": 1,
 "method": "error",
 "callId": "123abc",

180

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_UNKNOWN"
 }
]
}

{
 "apiVersion": 1,
 "callId": "KnnXUxS7APzLBVIzY+8B0g==",
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_PARAM_ITEM",
 "code": "CODE_PROCEDURE_PARAM_ITEM_MANDATORY_FIELD_EMPTY",
 "procedure": "getParts",
 "paramName": "items",
 "itemId": 2,
 "itemField": "label"
 }
]
}

Get Access Token
Customers will now get an opportunity to access the Field Service REST API, Fusion REST API or External API from their
custom plugin via JWT Access Token. The plugin configuration screen has been extended with the new ‘Applications’
section that allows to choose the available application. Once it’s configured, the Mobile Plugin Framework sends all
configured applications to the plugin on ‘init’ stage. The new “getAccessToken” procedure returns the JWT access token
that is used for authorization of direct API calls.

Companies have an opportunity to access the Field Service REST API, Fusion REST API or External API from their
custom plugin via JWT Access Token. The “getAccessToken” procedure returns the JWT access token that is used
for authorization of direct API calls. The procedure is listed in the "allowedProcedure" collection that is sent in the
"open"/"wakeup” method and says that the procedure is available.

{
 "apiVersion": 1,
 "method": "open"/"wakeup",
 "entity": "...",
 ...
 "buttonId": "...",
 "openParams": {},
 "allowedProcedures": {
 ...
 "getAccessToken": true
 }
}

On init stage, OFS returns the data of the configured Application for the particular Plugin in the "init" method.

The "resourceUrl" field is populated with the URL of the resource server. In case of Field Service API application, it is
populated with the URL of the Plugin in order to use it in direct REST API requests. In the case of OAuth User Assertion
or OAuth Client Credentials application, it is retuned the same as it is configured on the Modify Application screen.

init method

{
 "apiVersion": 1,

181

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "method": "init",
 "attributeDescription": {},
 "buttons": [],
 "applications": {
 "ofs_rest_api": {
 "type": "ofs",
 "resourceUrl": "https:// plugins-0-ofsc-xxxx.test.fs.ocs.oc-test.example.com",
 },
 "fusion_rest_api": {
 "type": “oath_user_assertion",
 "resourceUrl": "https://fa-xxxx-pintlabfadev.fa.ocs.oc-test.example.com"
 },
 "external_rest_api": {
 "type": "oauth_client_credentials"
 "resourceUrl": "https://external-rest-api-url.example.com"
 }
 }
}

init method with application that is not configured on Plugin Edit screen

{
 "empty": {
 "type": "unknown",
 "resourceUrl": ""
 }
 }
}

callProcedure method

{
 "apiVersion": 1,
 "method": "callProcedure",
 "callId": "1111111111",
 "procedure": "getAccessToken",
 "params": {
 "applicationKey": "ofs_rest_api"
 }
}

callProcedureResult method - success case

{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "1111111111",
 "resultData": {
 "token": "...",
 "status": "success",
 "detail": ""
 }
}

callProcedureResult method - fail case

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_PARAM",
 "code": "CODE_PROCEDURE_PARAM_VALUE_INVALID",
 "procedure": "getAccessToken",
 "paramName": "applicationKey"
 }

182

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

],
 "callId": "1111111111"
}

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_GET_ACCESS_TOKEN_ERROR",
 "code": "CODE_GET_ACCESS_TOKEN_APPLICATION_NOT_CONFIGURED",
 "procedure": "getAccessToken",
 "data": {
 "status": "unexpected_response",
 "detail": "",
 "token": ""
 }
 }
],
 "callId": "1111111111"
}

print Procedure
You can use the print procedure to implement scenarios when users can print text, text files, or images of pdf files from
their devices using the installed Oracle Fusion Field Service applications. When you call this procedure, the Plugin API
validates the parameters and calls the native (device or browser) print functionality with the provided parameters. The
Plugin API doesn't return information about or respond to problems such as no printer or cancellation.

Example of the callProcedure message:
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "print",
 "callId": "123abc",
 "params": {
 "documentType": "pdf",
 "fileObject": "fileObject",
 "text": "Some text string"
 }
}

You can see the resultData message in response to the print message, only if there are no validation errors.

Here is an example of the resultData message:
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123abc",
 "resultData": {
 "status": "ok"
 }
}

Print procedure params

183

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Param Value is Required Description

documentType string yes Document type of the file to be printed (text,
 image, html, pdf)

fileObject fileObject required

Not required only if documentType param
is text

Value from the input file with maximum size
10MB (10240kb) for image, HTML, and PDF.

text string required only if documentType param is
text

Text string to be printed

If the documentType is text and the fileObject and text parameters are not empty, the text param is printed.

Supported Document Types

documentType Dependent Field

text text or fileObject

image fileObject is required

html fileObject is required

pdf fileObject is required

If the HTML file contains JavaScript code, then the code is not processed based on the web security policy. Only the
static content is printed.

Supported File Types

File Type Example of the file name

image/jpeg *.jpg

image/png *.png

image/gif *.gif

text/html *.html

text/plain *.txt

application/pdf *.pdf

For image/gif file type that contains animation, only the first frame is printed. For application/pdf file type, the
browser’s built-in PDF Viewer is required.

184

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Note: If you want to use the browser for printing, you must make sure that the version of the browser supports
printing these types of documents.

Validation

If an error appears, it means that no actions are applied.

Example of an error message:
[
 {
 "type": "TYPE_PROCEDURE_PARAM",
 "code": "CODE_PROCEDURE_MANDATORY_PARAM_EMPTY",
 "procedure": "print",
 "paramName": "fileObject"
 }
]

updateIconData Procedure
You can implement a plugin to update the appearance of its button (or multiple buttons at once to make it look the
same) on My Route without closing the plugin page or interrupting its background operation.

The procedure has only the parameter iconData that is mandatory and has the same format as the iconData field for the
close, sleep, and initEnd messages.

Example of the callProcedure message with the updateIconData procedure:
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "updateIconData",
 "callId": "123abc",
 "params": {
 "iconData": {
 "color": "highlight",
 "text": "117",
 "image": new Blob([
 '<?xml version="1.0"?>' +
 '<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" viewBox="0 0 64 64">' +
 '<rect x="16" y="16" width="32" height="32" fill="#fff" />' +
 '</svg>'
], { type: 'image/svg+xml' });
 }
 }
}

185

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

updateButtonsIconData Procedure
You can implement a plugin to update the appearance of its buttons individually without closing the plugin page or
interrupting its background operation.

The updateButtonsIconData procedure has only the buttonsIconData parameter that is mandatory and has the same
format as the buttonsIconData field for the close, sleep, initEnd messages.

Example of callProcedure message with updateIconData procedure
{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "updateButtonsIconData",
 "callId": "123abc",
 "params": {
 "buttonsIconData": {
 "17156": {
 "color": "highlight",
 "text": "123",
 "image": {}
 },
 "17155": {
 "color": "default",
 "text": null,
 "image": {}
 }
 }
 }
}

Errors of updateIconData and updateButtonsIconData
This topic contains information about errors, error codes and their descriptions when trying to work with
updaeIconData and updateButtonsIconData.

Share Procedure
The Plugin API Framework has been extended with the new share procedure that allows you to save and send files that
you uploaded from your device or files that were generated by plugins themselves.

Integrators can use the share procedure to address the following scenarios:

• Send text or any type of files through natively available options, such as Outlook, Gmail, WhatsApp, AirDrop,
Google Drive, and so on (the application must be installed on your device) using the mobile device with
installed iOS or Android Oracle Field Service applications or browser application.

• Save any types of files to the gallery using a mobile device through the installed iOS or Android Oracle Fusion
Field Service application or the Oracle Fusion Field Service web application.

186

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

• Save any types of files to the local computer using a desktop browser (Sending is not supported on desktop
devices).

• Open files with the applications available on the mobile device.

This share procedure is supported in both online and offline modes.

By calling the share procedure, the Plugin API validates parameters and calls the native (device or browser) share
functionality with those provided parameters. The plugin API doesnt return info about or respond to problems such as
cancellation, no printer, and so on.

Example of the "callProcedure" message:

{
 "apiVersion": 1,
 "method": "callProcedure",
 "procedure": "share",
 "callId": "123abc",
 "params": {
 "title": "Some text string",
 "fileObject": "fileObject",
 "text": "Some text string"
 }
 }

Oracle Fusion Field Service sends the "resultData" message in response to the "share" message only if there are no
validation errors.

Example of the "callProcedureResult" message:

{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123abc",
 "resultData": {
 "status": "ok"
 }
 }

Share procedure parameters:

Parameters of share procedure are as follows:

This table lists the details of each parameter such as the value, whether the parameter is required, and description:

Parameter Value is Required Description

title string yes text string to be shared

fileObject fileObject required only if the 'text' parameter
is empty

value from input file with max size
50MB (51200kb) for file

text string required only if the 'fileObject'
parameter is empty

text string to be shared with max
length equal to 50MB (51200kb)

If the parameter fileObject is empty but the text parameter is not empty, then the title is used like a file name to send (on
mobile devices) or save (on desktop).

Supported File Types

187

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

There are no restrictions of the file format for the share option. All file types supported by default web sharing API -
https://www.w3.org/TR/web-share/

Validation

If an error appears then no actions have been applied.

allowedProcedures Field
The open and wakeup messages contain the allowedProcedures field, which contains a list of procedures that the plugin
is allowed to send before it's closed. With this list, a plugin may check the procedures that are available for the current
device without calling them. This helps the plugin disable its functions and/or user interface elements that depend on
some procedures (for example, scanBarcode, which is available only in Oracle Fusion Field Service Mobile native app).

Only updateIconData and updateButtonsIconData are available when plugins work in the background. To consider a
procedure as available, the plugin must assure that the key for a field in allowedProcedures corresponds to the name of
the procedure and its value is true.

Example of open message with allowedProcedures
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "activityList": {
 "4224031": {
 "aworktype": "4",
 "astatus": "pending",
 "aid": "4224031"
 },
 },
 "buttonId": "20361",
 "openParams": {},
 "allowedProcedures": {
 "openLink": true,
 "searchParts": true,
 "searchPartsContinue": true,
 "getParts": true,
 "getPartsCatalogsStructure": true,
 "updateIconData": true,
 "updateButtonsIconData": true,
 "scanBarcode": true
 }
}

Example of wakeup message with allowedProcedures
{
 "apiVersion": 1,
 "method": "wakeup",
 "event": "timer",
 "allowedProcedures": {
 "updateIconData": true,
 "updateButtonsIconData": true
 }
}

188

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

callProcedure Error Handling
This topic describes the error messages and error codes returned by the callProcedure method.

Examples of Error Messages
{
 "apiVersion": 1,
 "method": "error",
 "callId": "123abc",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_UNKNOWN"
 }
]

}

{
 "apiVersion": 1,
 "callId": "KnnXUxS7APzLBVIzY+8B0g==",
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_PARAM_ITEM",
 "code": "CODE_PROCEDURE_PARAM_ITEM_MANDATORY_FIELD_EMPTY",
 "procedure": "getParts",
 "paramName": "items",
 "itemId": 2,
 "itemField": "label"
 }
]
}

Example Error Message for share Procedure
[
 {
 "type": "TYPE_PROCEDURE_PARAM",
 "code": "CODE_PROCEDURE_MANDATORY_PARAM_EMPTY",
 "procedure": "share",
 "paramName": "fileObject"
 }
]

Types of Error Messages

The error message contains only errors of these types:

Type Occurs When Available Message Fields

TYPE_PROCEDURE_ERROR Procedure call is not valid due to missed
parameters, and procedure is run with errors.

• procedure: Name of procedure on which the error
has occurred.

• callId (if available): Id of the procedure call that has
caused the error. This is same as the callId param
of callProcedure method received.

189

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Type Occurs When Available Message Fields

TYPE_PROCEDURE_PARAM Invalid or missed procedure parameters. • procedure: Name of procedure on which the error
has occurred.

callId: Id of the procedure call that has caused
the error. This is same as the callId param of
callProcedure method received.

TYPE_PROCEDURE_GET_ACCESS_
TOKEN_ERROR

Procedure is called with issue in Access Token
that is absent in Plugin's configuration.

• procedure: Name of procedure on which the error
has occurred.

callId: Id of the procedure call that has caused
the error. This is same as the callId param of
callProcedure method received.

Error Codes

The error codes generated by callProcedure are as follows:

Code Error Type Cause

TYPE_PROCEDURE_ERROR

CODE_CALL_ID_EMPTY Validation error Empty callId param.

CODE_CALL_ID_INVALID Validation error Invalid callId param.

CODE_CALL_ID_DUPLICATE Validation error Duplicate callId param.

CODE_PROCEDURE_FAILED Run error Running of procedure failed due to various reasons.

CODE_PROCEDURE_UNKNOWN Run error Procedure was called with unknown procedure name.

CODE_PROCEDURE_UNAVAILABLE Internal error Oracle Fusion Field Service Core Application service related to
procedure is not available.

CODE_PROCEDURE_ACCEPTS_NO_PARAMS Validation error Procedure was called with params.

CODE_PROCEDURE_DEMAND_AT_LEAST_
ONE_PARAM

Validation error The params field of the callProcedure message is empty or is
not an object.

CODE_PROCEDURE_MANDATORY_PARAM_
EMPTY

Validation error One of these:

• iconData param of updateIconData procedure is not
sent or is empty.

• buttonsIconData param of updateButtonsIconData
procedure is not set.

CODE_PROCEDURE_PARAM_VALUE_INVALID Validation error The buttonsIconData param of the updateButtonsIconData
procedure is not an object or is empty.

TYPE_PROCEDURE_PARAM

CODE_PROCEDURE_MANDATORY_PARAM_
EMPTY

Validation error Mandatory param is missed.

190

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Error Type Cause

CODE_PROCEDURE_PARAM_VALUE_INVALID Validation error Param value is not valid.

CODE_PRINT_UNSUPPORTED_PRINT_FILE_
TYPE

Validation error Uploaded file type is not allowed.

CODE_PRINT_ATTACHED_FILE_IS_TOO_LARGE Validation error Uploaded file size is more then 50MB

CODE_PRINT_TYPE_AND_PRINT_FILE_
FORMAT_NOT_MATCHED

Validation error documentType and fileObject.type do not match.

CODE_PRINT_BROWSER_DOES_NOT_
SUPPORT_PDF_VIEW

Validation error The browser's built-in PDF Viewer is unavallible.

CODE_SHARE_ATTACHED_FILE_IS_TOO_LARGE Validation error Uploaded file size is more then 50 MB.

CODE_SHARE_TEXT_FIELD_IS_TOO_LARGE Validation error The 'text' field can not be larger than 52 428 800 symbols,
which equals to 50 MB (51200 kb) file size when saved as text
in UTF-8.

CODE_SHARE_INVALID_SHARE_FILE Validation error Error reading the file, if the file is not a file or is not a blob.

TYPE_PROCEDURE_PARAM_ITEM

CODE_PROCEDURE_PARAM_ITEM_
MANDATORY_FIELD_EMPTY

Validation error Mandatory field of the item is missing.

CODE_PROCEDURE_PARAM_ITEM_
MANDATORY_PARAM_EMPTY

Validation error One of required fields is empty

CODE_PROCEDURE_PARAM_ITEM_FIELD_
INVALID

Validation error Value of item field is not valid.

TYPE_WAKEUP_PARAM

CODE_WAKEUP_EVENTS_INVALID Validation error wakeOnEvents is not a plain object.

CODE_WAKEUP_EVENT_NOT_SUPPORTED Validation error wakeOnEvents contains a field, whose key is not online or
timer.

CODE_WAKEUP_EVENT_PARAMS_INVALID Validation error wakeOnEvents contains a field which in not null and is not a
plain object.

CODE_WAKEUP_EVENT_PARAM_VALUE_
INVALID

Validation error One of these:

• Value of wakeupDelay is not an integer number.

• Value of wakeupDelay is less than 10.

• Value of sleepTimeout is not an integer number.

• Value of sleepTimeout is less than 10 or greater than
3600.

TYPE_INTERNAL

191

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Error Type Cause

CODE_UNKNOWN

CODE_JSON_INVALID

CODE_METHOD_NOT_SUPPORTED

Validation error Check JSON syntax and method that is sent

TYPE_PROCEDURE_GET_ACCESS_TOKEN_ERROR

CODE_GET_ACCESS_TOKEN_WRONG_
APPLICATION_KEY

Validation error Do not call the procedure with an application differ from the
applications that were received in init method

CODE_GET_ACCESS_TOKEN_APPLICATION_
NOT_CONFIGURED

Validation error Choose an Application on Plugin Configuration Screen

CODE_GET_ACCESS_TOKEN_OFFLINE_NOT_
SUPPORTED

Validation error Run procedure when the device is online

CODE_GET_ACCESS_TOKEN_PROCEDURE_
TIMEOUT

Validation error Usually such long timeout caused problems with internet
connection or problems of Authorization server. Normally it
should respond in <4 sec.

App misconfigured Choose an Application on Plugin Configuration Screen

Activate an OFS Application

Unexpected response Check that Auth Server URL is correct.
Example: Fusion Token URL is set without suffix "/oauth2/v1/
token"

Cannot infer used id The field of user should be filled.

Token service error - invalid
request

Check the scope field is not empty, in case of Fusion it is
mandatory.

Token service error - invalid
client

Activate an IDCS Application

Check that Client ID / Client Secret is correct

Token service error - invalid grant Check that certificate is valid

Token service error -
unauthorized client

Check that client has authorization to use the requested
grant.

Token service error -
unsupported grant type

Check is Authorization server supports grant_type:
client_credentials or urn:ietf:params:oauth:grant-type:jwt-
bearer

CODE_PROCEDURE_FAILED

Token service error - invalid
scope

Check the scope value

192

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Error Type Cause

Connection error Check that Auth Server URL is correct.

Internal Error Exceptional case. Contact Administrator.

Access denied Exceptional case. Contact Administrator.

Provide Key and Comments of required API to plugin Configurator

Developer can prepare an XML file of a plugin where they can specify the Key and Comment of the application which
is required for Plugin to request API. So, once a configurator imports the plugin XML, they can see the ‘Applications’
section on the Plugin Edit screen with applications that should be assigned to a plugin to provide access to the required
API.

• Key could be hardcoded in the Plugin's code. Configurator will choose some application from the list that will be
used for it.

• Comment is used to give to Configurator more details which application should be chosen.

Example of Plugin Applications in import.xml file
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<root>
<format version="1"/>
<product version="24.4.0"/>
<plugins>
<plugin label="hosted" action_label="" action_entity="" action_type="addon_action" type="addon">
 <translations>
 <translation lang="en" val="hosted"/>
 </translations>
 <fields>
 <field label="atype" entity="activity"/>
 <field label="aworktype" entity="activity"/>
 <field label="astatus" entity="activity"/>
 </fields>
 <plugin_applications>
 <plugin_application name="EXT" type="oauth_client_credentials" key="external_api" comment=“API to update
 work orders in CRM"/>
 <plugin_application name="FUSION" type="oauth_user_assertion" key="employees_api" comment=“API to get
 statuses of ordered parts"/>
 <plugin_application name="OFS" type="ofs" key="activity_api" comment=“API to get a list of user’s
 activities"/>
 </plugin_applications>
 <plugin_data>
 <plugin_data_item path="" post_data="" width="" height="" options="32" user_agent_mask="" sort_order="0"
 native_app_label="" auth_type="" auth_login="">
 <hosted_plugin_data name="hosted" content_hash="...">
 <content><![CDATA[...]]></content>
 </hosted_plugin_data>
 </plugin_data_item>
 </plugin_data>
</plugin>
</plugins>
</root>

193

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

callProcedureResult Method
A message with the callProcedureResult method is sent by Oracle Fusion Field Service to a plugin when Oracle Fusion
Field Service calls a procedure using the callProcedure method successfully. The message data contains the callId
field, which is same as the callId parameter of the callProcedure message, so that the request and response can be
unambiguously associated with each other.

callProcedureResult Method Parameters

Here are the parameters of the callProcedureResult method:

Parameter Name Mandatory Type Description

apiVersion Yes Integer Plugin API version.

method Yes String callProcedureResult.

procedure Yes String Procedure name.

callId Yes String Id of the procedure call, for which the result is returned. This
is same as the received callId param of the callProcedure
method.

resultData No String Result of running the procedure.

Example of the callProcedureResult Message
{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "1111111111",
 "resultData": {
 "token": "...",
 "status": "success",
 "detail": ""
 }
}

For more information about the possible responses, see the description of procedures in the callProcedure section.

sleep Message
For the description of the sleep method, see the wakeup method. The appearance of a plugin button, that is, icon
image, status text, and color can be changed using the optional "iconData" parameter. See the Change the Plug-In Tile
Appearance section for details.

Example of "sleep" message

{
 "apiVersion": 1,

194

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 "method": "sleep",
 "wakeupNeeded": true,
 "iconData": {
 "color": "highlight"
 }
}

Related Topics
• Change the Plugin Tile Appearance

wakeup Message
Oracle Fusion Field Service destroys a plugin's iframe window after the close message is successfully run, regardless
of whether the device is online or offline. So, no JavaScript code runs after the plugin is closed. However, the plugin
may have data, which must be synchronized with its server side, Oracle Fusion Field Service REST API, or third-party
services. Hence, the wakeup parameter is available with the close message.

wakeupNeeded with close

The optional parameter wakeupNeeded is added to the close message to let the plugin synchronize its data as
mentioned earlier. If wakeupNeeded is set to true, the Oracle Fusion Field Service Core Application opens the plugin's
hidden iframe in the background, as soon as Oracle Fusion Field Service Core Application is online, but no earlier than
10 seconds after the plugin is closed. After the plugin iframe is opened, Oracle Fusion Field Service Core Application
sends the wakeup message to the plugin, in response to the ready message. The plugin then sends the sleep message
back to Oracle Fusion Field Service Core Application, when it finishes synchronization. This lets Oracle Fusion Field
Service Core Application destroy the iframe.

If the plugin tries to synchronize, but still has data to be sent, it sends the sleep message with the wakeupNeeded param
set to true. In this case, Oracle Fusion Field Service Core Application opens the plugin's iframe in the background again,
as soon as Oracle Fusion Field Service Core Application is online, but no earlier than five minutes after the plugin is
closed. If the plugin doesn't send the sleep message in two minutes (120 s) after the wakeup message is sent, Oracle
Fusion Field Service Core Application destroys its iframe and reopens it again, as if the plugin sent the sleep message
with the wakeupNeeded param set to true.

Example of close with wakeupNeeded
{
 "apiVersion": 1,
 "method": "close",
 "activity": {
 cname: "John"
 },
 "wakeupNeeded": true,
 "wakeOnEvents": {
 "online": { wakeupDelay: 120 },
 "timer": { wakeupDelay: 10, sleepTimeout: 1800 }
 }
}

wakeupNeeded with initEnd

The optional parameter wakeupNeeded is added to the initEnd message, to let the plugin synchronize even after
refreshing Oracle Fusion Field Service Core Application or closing the browser. If the plugin doesn't synchronize within
two minutes that is allowed for initialization, it sends the initEnd message with the wakeupNeeded parameter set to true.

195

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

In this case, Oracle Fusion Field Service Core Application opens the plugin's iframe in the background, as soon as Oracle
Fusion Field Service Core Application is online, but no earlier than five minutes after it receives the initEnd message.

The plugin opens in five minutes after it's closed, if the wakeupNeeded parameter of close, sleep, or initEnd messages
is set to true. This happens even if Oracle Fusion Field Service Core Application doesn't detect the offline mode, when
the plugin is opened or closed. If the user opens the plugin by clicking its button, the background iframe is destroyed
without sending any messages to the plugin. If the plugin still has data to be synchronized, it sends the close message
with the wakeupNeeded parameter set to true.

Example of wakeup Message for the online event
{
 "apiVersion": 1,
 "method": "wakeup",
 "event": online
}

Example of wakeup Message for the timer event
{
 "apiVersion": 1,
 "method": "wakeup",
 "event": timer
}

Configure the Frequency and Duration of a Background Operation

Apart from the wakeupNeeded field, you can also use the optional field wakeOnEvents to control the frequency and
duration of a plugin's background operation. This field is applicable only for close, initEnd, and sleep methods. If the
wakeupNeeded field is absent, empty, or is set to false, then the wakeOnEvents field is ignored.

The value of wakeOnEvents is an object with two possible keys, which define the event for which the plugin must be
opened for background operation:

• online: If this field is set and is not null, the plugin is opened in the background only when Oracle Fusion Field
Service is online, as if wakeOnEvents field was not sent.

• timer: If this field is set and is not null, the plugin is opened in the background regardless of the connection
status.

The value of these fields has the same format - it's an object with two optional fields:

Field Type Min Value Max Value Default Value Description

wakeupDelay Number (integer) 10 - 300 Delay (in seconds), after which Oracle
Fusion Field Service opens the plugin
in the background and sends a wakeup
message.

Oracle Fusion Field Service wakes
a plugin as close as possible to the
requested time, but not earlier than that.
The actual time may be longer because of
the browser's limitations.

196

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Field Type Min Value Max Value Default Value Description

sleepTimeout Number

(integer)

10 3600 120 Duration in seconds, after which Oracle
Fusion Field Service forcibly closes a
background frame of the plugin if it
hasn't sent a sleep message explicitly.
This period starts when Oracle Fusion
Field Service sends the wakeup message
to the plugin.

If both online and timer are set, the plugin is opened on the first event for which all conditions are met (wakeupDelay
period has passed, Oracle Fusion Field Service is online (for the online event)).

If both fields have the same value for wakeupDelay and Oracle Fusion Field Service is online, then there's no guaranteed
order of wakeup events.

The default value for wakeOnEvents is { online: {} }. That is, the plugin is woken only on an online event with a default
delay to maintain backward compatibility.

If wakeOnEvents is set and is empty, or all its fields equal to null, it's equivalent to wakeupNeeded: false.

Background synchronization schedule is discarded as soon as the plugin sends the close, initEnd, or sleep message.
So if a plugin has to be opened in the background again after that, it must send the new (or the same) value of
wakeupNeeded and wakeOnEvents in the close, initEnd, or sleep message.

Note: Constant working of plugins in the background is not advised, as it may negatively affect a device's
performance (hence the user experience) and its battery life. However, if it is necessary for your business, then the
best practice is to set a higher value for sleepTimeout (up to 3600 s (1 hour)). This helps to avoid repeated reopening
and closing of the plugin's frame in high-frequency series (which will be the case if the values of wakeupDelay and
sleepTimeout both set to low values and waking up is requested by each sleep message).

Available Message Fields for wakeup:

• eventName: Name of the wakeup event which caused the error (if applicable).

• paramName: Name of the event field which caused error (if applicable).

error_codes_wakeup
You can find the errors codes and their relevent descriptions of the errors that are created by the wakeup method.

Following table describes the various error codes and their descriptions that are created by the wakeup method.

Code Cause

TYPE_WAKEUP_PARAM

CODE_WAKEUP_EVENTS_INVALID "wakeOnEvents" is not a plain object

CODE_WAKEUP_EVENT_NOT_
SUPPORTED

"wakeOnEvents" contains a field which key is not one of: "online", "timer"

197

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Code Cause

CODE_WAKEUP_EVENT_PARAMS_
INVALID

"wakeOnEvents" contains a field which in not null and is not a plain object

CODE_WAKEUP_EVENT_PARAM_VALUE_
INVALID

One of:

• "wakeupDelay" field value is not an integer number

• "wakeupDelay" field value is less than 10

• "sleepTimeout" field value is not an integer number

• "sleepTimeout" field value is less than 10 or greater than 3600

Supported Functions
The in-app camera module provides several useful benefits to the user such as control of flashlight, zoom, autofocus
adjustment, retake photo and front/back camera switch. The resulting photo can be controlled by additional
parameters: quality, targetWidth and targetHeight. Masking secure plugin parameters helps you prevent unauthorized
access to sensitive data, enhance clarity and consistency and ensure compliance with regulations.

The Mobile Plugin Framework now supports a new 'takePhoto' procedure that provides the ability for the user to use
their device camera to get a picture into a plugin. This procedure utilizes the in-app-camera that works for 'image'
properties within OFS. Masking secure plugin parameters helps you prevent unauthorized access to sensitive data,
enhance clarity and consistency and ensure compliance with regulations.

For more details on Camera support and Masking securing plugin parameters, see:

• Mask Secure Plugin Parameters

• Camera support in Mobile Plugin

Camera support in Mobile Plugin Framework
The in-app camera module provides several useful benefits to the user such as control of flashlight, zoom, autofocus
adjustment, retake photo and front/back camera switch. The resulting photo can be controlled by additional
parameters: quality, targetWidth and targetHeight. These provide the opportunity to control the size of the photo and
it's resolution. The resulting photo that is returned by the "takePhoto" procedure is in JPEG format.

The Mobile Plugin Framework supports a new 'takePhoto' procedure that provides the ability for the user to use their
device camera to get a picture into a plugin. This procedure utilizes the in-app-camera that works for 'image' properties
within Oracle Field Service. This feature is designed for use within the installed iOS and Android applications. Browser
support is not available.

• The resulting photo can be controlled by additional parameters: quality, targetWidth and targetHeigh. These
provide the opportunity to control the size of the photo and it's resolution.

• The resulting photo that is returned by the "takePhoto" procedure is in JPEG format.

• The resolution of the photo is based on a device's camera module and it is cropped according to the screen
aspect ratio. So the final image aspect ratio could differ between portrait and landscape modes. Also, the final
image can be cropped via functionality of the in-app camera; in this case the width or height of the photo will
be cut.

198

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

How To Use

1. Add "sendMessageAsJsObject": true item to "ready method"
2. Open the plugin on iOS/Android device (not in browser)
3. Check that the "takePhoto" procedure is available in the list of "allowedProcedures" in "open" method
4. Run the "takePhoto" procedure by using the following code:

let data = {
 "apiVersion": 1,
 "method": "callProcedure",
 "callId": "123",
 "procedure": "takePhoto"
}
parent.postMessage(data, document.referrer);

Request

The request could be called with or without parameters. These parameters are all optional:

• quality - the percent of JPEG compression
◦ min: 1

◦ max: 100

◦ default: 50

• targetWidth - maximal width of a picture
◦ min: 10

◦ max: 7000

◦ default: no fixed value, depends on resolution of device camera

• targetHeight - maximal height of a picture
◦ min: 10

◦ max: 7000

◦ default: no fixed value, depends on resolution of device camera

• The quality of the picture set to '50' by default. The maximum supported size of the photo is 8Mb. If the photo
exceeds this value, the error 'CODE_TAKE_PHOTO_FILE_IS_TOO_LARGE' is returned.

• Please take into account that the size of the picture can influence the device's performance.

• The targetWidth and targetHeight parameters can be used to resize the final picture. The aspect ratio won't be
changed, and the picture can be reduced or increased in size in order to fit the target width and target height.

Example of ready method with the "sendMessageAsJsObject" flag (Plugin -> OFS):

{
 "apiVersion": 1,
 "method": "ready",
 ...
 "sendMessageAsJsObject": true
}

Example of open method with the availability of the "takePhoto" procedure that reflects that the "takePhoto" procedure
is available: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "open",

199

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

 ...
 "allowedProcedures": {
 ...
 "takePhoto": true
 }
}

Example of the calling of the "takePhoto" procedure: (Plugin -> OFS)

{
 "apiVersion": 1,
 "method": "callProcedure",
 "callId": "123",
 "procedure": "takePhoto"
}

Example of the calling of the "takePhoto" procedure with params: (Plugin -> OFS)

{
 "apiVersion": 1,
 "method": "callProcedure",
 "callId": "123",
 "procedure": "takePhoto",
 "params": {
 "quality": 50,
 "targetWidth": 1000,
 "targetHeight": 1000
 }
}

Success response

Any success response will contain a "cancelled" field with the boolean value. In the case of where the photo has been
taken and was sent to a plugin, the result will contain a "photo" field with a Blob file of the photo.

Example of the "takePhoto" procedure calling result: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123",
 "resultData": {
 "cancelled": false,
 "photo": [Blob]
 }
}

Example of the "takePhoto" procedure calling the result in case the camera was closed without a photo: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "callProcedureResult",
 "callId": "123",
 "resultData": {
 "cancelled": true
 }
}

Error response

Error responses will include an error type and an error code. The following errors can be returned:

200

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

TYPE_INTERNAL CODE_UNKNOWN - Common errors

TYPE_MESSAGE_FORMAT CODE_METHOD_UNEXPECTED - Is returned if the plugin tries to run
the "takePhoto" procedure while
this procedure is already running.
Plugin should wait for a result of
this procedure before calling it
again.

TYPE_PROCEDURE_ERROR CODE_PROCEDURE_
UNAVAILABLE

procedure Is returned if the procedure is not
available. (i.e. OFS is not open in
iOS/Android Mobile Application)

TYPE_PROCEDURE_ERROR CODE_PROCEDURE_JS_OBJECT_
FLAG_REQUIRED

procedure, data Is returned if the plugin tries to run
the "takePhoto" procedure without
plugin request to transfer data
with the JS object (i.e. didn't send
"sendMessageAsJsObject": true
on "ready" method). "procedure"
= procedure name, "data" = error
message.

TYPE_PROCEDURE_ERROR CODE_PROCEDURE_PARAMS_IS_
NOT_OBJECT

procedure Is returned if the "params" item
was sent and it is not an object.

TYPE_PROCEDURE_TAKE_PHOTO_
ERROR

CODE_TAKE_PHOTO_FILE_IS_
TOO_LARGE

procedure, data Is returned if the photo file that is
returned by the camera is larger
than 8Mb (for example if quality
parameter is too high). "procedure"
= procedure name, "data" = error
message.

TYPE_PROCEDURE_TAKE_PHOTO_
ERROR

CODE_PROCEDURE_FAILED procedure, data Any other error that is not listed
here. "procedure" = procedure
name, "data" = error message.

TYPE_PROCEDURE_PARAM CODE_PROCEDURE_PARAM_
VALUE_INVALID

procedure, paramName Is returned if:
• quality is out of range (1..100)

• targetWidth is out of range
(10..7000)

• targetHeight is out of range
(10..7000)

Example of an error if the procedure "takePhoto" is called from plugin that was opened not from the native Android/iOS
App, or the procedure "takePhoto" is called on the OFS platform: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_UNAVAILABLE",
 "procedure": "takePhoto"
 }
],
 "callId": "123"
}

Example of an error where the procedure "takePhoto" is called with "params" that is not an object: (OFS -> Plugin)

201

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_PARAMS_IS_NOT_OBJECT",
 "procedure": "takePhoto"
 }
],
 "callId": "123"
}

Example of an error where the procedure "takePhoto" is called with a "quality", "targetWidth" or "targetHeight"
parameter that is not an integer, or if the value is larger or smaller than the minimum or maximum values: (OFS ->
Plugin)

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_PARAM",
 "code": "CODE_PROCEDURE_PARAM_VALUE_INVALID",
 "procedure": "takePhoto",
 "paramName": "quality"
 }
],
 "callId": "123"
}

Example of an error where the procedure "takePhoto" is called and the resulting file is too large: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_TAKE_PHOTO_ERROR",
 "code": "CODE_TAKE_PHOTO_FILE_IS_TOO_LARGE",
 "procedure": "takePhoto",
 "data": "..."
 }
],
 "callId": "123"
}

Example of an error where the plugin is not requesting transfer with the JS object in "ready" method: (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_ERROR",
 "code": "CODE_PROCEDURE_JS_OBJECT_FLAG_REQUIRED",
 "procedure": "takePhoto",
 "data": "..."
 }
],
 "callId": "123"
}

202

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Example of an error for any other reason of procedure processing (OFS -> Plugin)

{
 "apiVersion": 1,
 "method": "error",
 "errors": [
 {
 "type": "TYPE_PROCEDURE_TAKE_PHOTO_ERROR",
 "code": "CODE_PROCEDURE_FAILED",
 "procedure": "takePhoto",
 "data": "..."
 }
],
 "callId": "123"
}

Data transfer format (JSON / JS object)

The data between a Plugin and OFS can be transferred in two formats: as a JSON string (initially) and as a JS object
(since 23C).

Transferring data as a JS object has a couple benefits that makes it more useful:

• it allows the sending of files from OFS to a Plugin (in the case of the "takePhoto" procedure)

• the data transferring is faster because there is no parsing and validation of the JSON format

It is highly recommended to send a "sendMessageAsJsObject": true item in "ready" method within all modern plugins.

OFS keeps information about the chosen variant of transfer in the browser's memory. So, if a
"sendMessageAsJsObject":true flag was sent, OFS will transfer data as a JS object until either the
"sendMessageAsJsObject": false is sent or while the browser tab is open.

Example of the "ready" message:

{
 "apiVersion": 1,
 "method": "ready",
 "sendMessageAsJsObject" :true
}

Mask Secure Plugin Parameters
Masking secure plugin parameters helps you prevent unauthorized access to sensitive data, enhance clarity and
consistency and ensure compliance with regulations.

Oracle considers security one of its main priorities, and therefore continuously evolves applications to comply with
higher security standards. To this point, this new feature introduces improvements in the configuration of any secure
parameters of plugins. With the 23B update, it will be possible to define parameters containing secure data and mask
their values, therefore preventing unauthorized access. The feature solves two challenges:

the situation known as "man behind"inadvertent access to values of secure parameters by other people who have
privileges to configure the application

How it works

203

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 2
Plugin API Messages

Let's take a typical example of a plugin interacting with some other system via Oracle Integration Cloud. To make it
happen, you have to configure the Client ID of the OIC application as one of the plugin parameters.

When adding this new parameter to a plugin, you should check the "Secure parameter" checkbox identifying that the
parameter contains sensitive data. When enabling the checkbox, the application will mask a value of the parameter
within the UI, replacing it with a series of "dots".

You'll be able to uncheck the checkbox and verify that the value is correct until you save the configuration of the plugin.
Once the configuration is saved, the application will mask the value of the parameter on the following screens:

• "Edit plugin"

• "View parameter"

However, you'll still be able to edit the parameter and change its name and value.

Note: When opening previously saved secure parameters for editing, you'll have to replace the values and specify
them over again as the system will delete the value from the field. This is needed in order to not confuse users, as
they won't be able to edit masked data since the real values cannot be accessed under any conditions.

Avoid Cross-Domain Communication Blocking
To avoid cross-domain communication blocking when an Oracle Fusion Field Service API is called from a plugin:

• For Oracle Fusion Field Service hosted plugins: When calling an Oracle Fusion Field Service API, the plugin must
use a plugin hosting domain (available in Java script as a value of window.location.hostname property) instead
of <instance_name>.fs.ocs.oraclecloud.com.

• For externally hosted plugins: The plugin must not call an Oracle Fusion Field Service API directly from the
browser. Instead, the plugin must call its server side. All the API calls must be performed by the server side and
the call results transmitted to the plugin.

204

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

3 Use a Plugin

Add a Plugin
A plugin is available out-of-the-box in Oracle Fusion Field Service and is supported by Oracle. It contains the logic that
covers specific business scenarios and can support integrations with other Oracle products such as Service Logistics.
You cannot change a plugin.

1. Click Configuration > Forms & Plugins.
The Forms & Plugins page appears and displays the existing forms and plugins.

2. Click Add Plugin.
3. Select any of these plugin type and then click Next.

Plugin Type Description

Plugin Archive An archive plugin is hosted in Oracle Fusion Field Service and uses the Plugin API to interact with
Oracle Fusion Field Service. This means, if your plugin consists only of HTML, CSS, and JavaScript
files and doesn't contain server-side files, then you can host it in Oracle Fusion Field Service. No
other hosting is required. The plugin framework handles the communication between the hosted
plugin and Oracle Fusion Field Service.

External Plugin An external plugin is hosted elsewhere and communicates with Oracle Fusion Field Service through
the Plugin API. You add only a link to the plugin here.

External Application An external application can be added as a plugin and it will be opened as a web page in a new
window, or the same window within Oracle Fusion Field Service.

Sample Plugin There are some sample plugins such as Meter Reading plugin that you can use. You can download
the sample plugins from the "www-sites.oracle.com/downloads/samplecode/ofsc-samplecode-
downloads.html" page. You may need to use the secure protocol https and a user account to access
this site. Unless explicitly identified as such, the sample code available on this page isn't certified or
supported by Oracle; it's intended for educational or testing purposes only.

4. For example, click Sample Plugin.
These sections are displayed:

◦ Properties will be installed. These are the properties that are automatically installed with the plugin.
These properties will be available on the Configuration > Properties page. If you de-install this plugin in
the future, these properties will still remain on the Properties page.

◦ Existing properties will be used. These are the properties that are required for the plugin and are
currently present in Oracle Fusion Field Service.

Note: If a property has an incorrect configuration (for example, for property type or entity), then you will
see a corresponding message. Open the plugin's documentation, find the property requirements, and
change the property settings accordingly.

205

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

5. Click Activate and confirm the installation.
A message similar to, 'Sample Plugin Successfully activated.' is displayed on the Forms and Plugins page after the
installation You can install a plugin only once. The Activate button is disabled when you try to activate the plugin
again. Be aware that plugins are supported only in the English language.

6. To delete the plugin that is not in use:
a. Click Configuration > Forms & Plugins.
b. Locate the plugin that you want to delete.
c. Click the actions icon and then click Delete.

The plugin is deleted and is no longer displayed on the Forms and Plugins page.

Modify the Settings of a Plugin
You can modify the settings of a plugin with some exceptions. You cannot change the required fields and the plugin
label. If a plugin is designed to work with some specific properties and parameters, you cannot change them either.

1. Click Configuration > Forms & Plugins.
2. Click View to search for the plugin for which you want to modify the settings.
3. Click the actions icon and then click Edit.
4. On the Edit Plugin page, change the details as required and click Update.

Change the Code of a Plugin
You can change the code for a plugin to suit your business requirements and upload it back as a Hosted plugin.

Note: If you change the code for a plugin, the plugin becomes your custom plugin and it will no longer be supported
by Oracle.

1. Click Configuration > Forms & Plugins.
2. Click View to search for the Standard plugin for which you want to change the code.
3. Click the actions icon and then click Edit.
4. On the Edit Plugin page, click Download Source and download the source files to the required folder.
5. Unzip the files and change the code as required.
6. Follow instructions in the README.md and create an archive to upload the plugin back as a Hosted plugin.
7. Follow the instructions in the Add a Hosted Plugin topic and add the modified plugin as a new hosted plugin.
8. Add a button for the plugin on the required page.
9. Open the plugin and test your scenarios.

206

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Install the Sample Plugin
The Sample plugin is available and accessible out-of-the-box within Oracle Fusion Field Service. You can install and use
it as a sandbox for testing, checking requests, and checking features such as the Barcode scanner, Print file, and Service
Worker.

1. Use the procedure described in the Add a Plugin topic and install the plugin.
2. Verify the available features of the plugin.
3. Add the required settings to the plugin (properties, secure parameters, and so on).
4. Add a button for the plugin on the required page.
5. Open the plugin and test your business scenarios.
6. Learn the source code:

a. Go to the Plugins page and click Sample plugin.
b. Click Download Source.
c. Verify the implementation (for example, how to implement the Service Worker to support in offline mode).
d. Update the code as required.
e. Follow the instructions in the README.md file to create an archive to upload it back as a Hosted plugin for

testing.
f. Upload the plugin either using the Plugin archive section on the Edit Plugin page, or through a REST API.

g. Add a button for the plugin on the required page.
h. Open the plugin and test your business scenarios.

7. Deinstall the plugin if you don't need it for testing purposes.

Metadata API for Plugin Installation
The metadata API for plugin installation helps in faster, seamless implementation of the plugins. Automate the testing
and development process by minimizing manual configurations of plugins.

You can use the Metadata API method to automate the installation of plugins such as "Debrief" and Asset View" as part
of your business process. Also, Fusion Service configuration via Configuration | Applications page now supports the
automatic installation of the Debrief plugin.

A new Metadata API request is available to install standard plugins in OFS.

Request

POST rest/ofscMetadata/v1/plugins/{pluginLabel}/custom-actions/install

URL data params:

• pluginLabel [Required] - String containing the plugin which is to be installed

This operation installs the plugins as defined in the path parameter. If a plugin with the given label is already in place,
then it will return "Plugin already existing" error message; otherwise the plugin will get installed successfully.

207

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Response

204 Response - This response code 204 indicates that the operation completed successfully. This operation does not
return any elements in the response body.

Use Case Status Response

Standard plugin installation is successful 204

No permission 403 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.4",
"title": "Forbidden", "status": "403", "detail":
"Authentication was provided, but the
authenticated user is not permitted to perform
the requested operation." }

No standard plugin exists for the provided
pluginLabel

404 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.5", "title":
"Not Found", "status": 404, "description":
"Plugin {LABEL} not found",}

Validation Errors

Error Codes

LABEL_NOT_UNIQUE

OLDER_PRODUCT_VERSION

EXISTING_PROPERTY_TYPE_MISMATCH

INVALID_PROPERTY

Use Case Status Response

Plugin is already installed 409 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10",
"title": "Plugin's label is already in use",
"status": 409, "description": "A plugin with
label "{PLUGIN_LABEL}" already exists.
Remove it to proceed", "o:errorCode":
"LABEL_NOT_UNIQUE"}

Platform version is less than the required
version

409 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10", "title":
"Plugin cannot be installed", "status": 409,
"description": "Field Service version must be
22.08.0 or higher in order to install the plugin",
"o:errorCode": "OLDER_PRODUCT_VERSION"}

Existing property type mismatch 409 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10",
"title": "Existing property type
mismatch", "status": 409, "description":
"A property {PROPERTY_LABEL}
has type {CURRENT_TYPE} but the
plugin requires it to be with type

208

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Use Case Status Response

{EXPECTED_TYPE}", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

{ "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10",
"title": "Existing property gui mismatch",
"status": "409", "detail": "A property
{PROPERTY_LABEL} has GUI {CURRENT_GUI}
but the plugin requires it to be with
type {EXPECTED_GUI}", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

{ "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10", "title":
"Existing property entity mismatch", "status":
"409", "detail": "A property {PROPERTY_LABEL}
is created for entity {CURRENT_ENTITY}
but the plugin requires it to be created for
entity {EXPECTED_ENTITY}", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

{ "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10",
"title": "Existing property mime_types
mismatch", "status": 409, "description": "A
property {PROPERTY_LABEL} has MIME
types {CURRENT_CONFIGURED_MIME_TYPE}
but the plugin requires it to be with types
{EXPECTED_MIME_TYPE}", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

{ "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10", "title":
"Existing property mime_types mismatch",
"status": 409, "description": "MIME types
value of property {PROPERTY_LABEL}
must be in array format", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

{ "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.4.10", "title":
"Existing property mime_types mismatch",
"status": 409, "description": "The MIME types
is required for property {PROPERTY_LABEL}.
OFS is configured with the following:
{EXPECTED_MIME_TYPES}", "o:errorCode":
"EXISTING_PROPERTY_TYPE_MISMATCH"}

Modify Property

For resolving the "EXISTING_PROPERTY_TYPE_MISMATCH" validation error, in the Configuration | Properties screen,
the problematic property's type can be changed to the required property type shown in the error response. Or, the
property could also be deleted and the plugin installation would automatically install the property with the needed
values.

Other unexpected errors

209

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Use Case Status Response

Unable to get plugin data from the Plugin
Repository service

(This occurs when the plugin repository service
is unavailable)

500 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.5.1", "title":
"Internal Server Error", "status": "500", "detail":
"Unable to install plugin {pluginLabel}"}

Unable to create property {propertyLabel} of
plugin {pluginName} from Plugin Repository
service

(This occurs when the property creating throws
an exception. This should not occur in normal
cases)

500 { "type": "http://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10.5.1", "title":
"Internal Server Error", "status": "500", "detail":
"Unable to create property {propertyLabel} of
plugin {pluginName}"}

Debrief Plugin
Debriefing involves documenting the time and materials used during an activity. Mobile workers can click the Debrief
button on an ongoing activity to record time, expenses, or materials information for an invoice report. They can save
this information and obtain the customer’s signature.

A mobile worker uses the debriefing process to report this information:

• Labor: Includes travel time and working time (measured in hours)

• Parts: Parts and materials used while performing the activity

• Charges: Any extra charges such as tolls or parking (measured in money spent)

All parts, labor, and expense items are stored in the installed inventory pool of the corresponding customer activity. The
invoice is saved as a PDF file to the file property of the activity.

Configure the Debrief Plugin
Here are the high-level steps to configure the Debrief plugin. You must follow the order given here strictly to configure
the plugin.

1. Activate the plugin.
2. Create or configure the required inventory types and user types.
3. Add the URL of the company logo that must displayed on the invoice.
4. Upload the Parts Catalog, if you don't have one.

210

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Activate the Debrief plugin
Debrief is available as a part of the Screens-> Activity in Oracle Fusion Field Service. Debriefing require additional set up
before mobile workers can use it.

You can add additional secure parameters to the plugin, but you can't change the label, or available properties.

1. On the User Types page, navigate to Screens-> Activity->Debriefing.
The Debriefing Activate Screen page appears and these sections are displayed:

◦ Properties to be added. These are the properties that are automatically installed with the plugin. These
properties will be available on the Configuration > Properties page. If you de-install this plugin in the
future, these properties will still remain on the Properties page.

◦ Existing properties to be used. These are the properties that are required for the plugin and are currently
present in Oracle Fusion Field Service.

Note: If a property has an incorrect configuration (for example, for property type or entity), then you'll
see a corresponding message. Open the plugin's documentation, find the property requirements, and
change the property settings accordingly.

2. Click Activate and confirm the activation.
A message similar to, 'Debriefing Successfully activated.' is displayed after the activation. You can activate the
Debrief plugin only once. The Activate button is not available after the activation. Be aware that plugins are
supported only in the English language. Further, the Debrief plugin doesn't work in offline mode.

Note: You can download the plugin source by clicking Download as Plugin Source.

Oracle Fusion Field Service creates the required properties automatically or notifies you that some existing
properties will be used by the plugin, if they're already configured. If you've created the properties in the application
with the corresponding names and labels, but with the improper configuration, you must change the property
settings and activate the plugin again. Here are the properties for resource, activity, and inventory entities that the
plugin uses:

Resource entity properties

Name Label Type GUI Description

ID pid Internal ID of the resource.

Name pname Name of the resource.

Activity entity properties

Name Label Type GUI Description

Invoice

invoice

File

File

PDF file of the
generated invoice. For

211

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

example, mime_types
=”application/pdf”

Company name

ccompany

String

Text

Customer’s company
name, displayed as the title
of the invoice.

Activity ID

aid

Internal ID of the activity.

Name

cname

Name of activity used in
the PDF invoice.

Address

caddress

Activity address used in
the invoice.

City

ccity

Activity city used in the
invoice.

State

cstate

Activity state used in the
invoice.

ZIP/Postal Code

czip

Postal code used in the
invoice.

Work Order

appt_number

Work order used in the
invoice.

Signature

csign

Customer signature,
 required prior to saving
the invoice as PDF.

Inventory entity properties

Name Label Type GUI Description

Expense

expense_amount

String

Text

Amount of expense.

Expense Currency

expense_currency_
code

Enumeration

Combobox

Value of each enumeration item is separated
with the “|” character.

212

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

Index Value

USD $|US Dollars

EUR €|Euro

Part Disposition

part_disposition_code

Enumeration

Combobox

The value that identifies whether the inventory
is consumable by the customer and there is
no need to track it anymore, or whether the
inventory is returnable. If the inventory is
returnable, the Inventory Management system
of Oracle SCM Cloud must track the part until
it is returned by the customer.

Part Unit of Measure

part_uom_code

Enumeration

Combobox

The unit of measurement (UOM) of parts
(inventories).

Part Item Description

part_item_desc

String

Text

The description of the part. For example,
 'Magnetic hard drive'. It is used to search for
inventory in the catalog.

Part Item Number

part_item_number

String

Text

The number of the part that has been installed
or taken from the customer. It is specified as a
code. For example, FS908765.

Part Item Revision

part_item_revision

String

Text

A single-letter code, for example, "A" or "B".
Also, it is possible to have a single digit like
"1" or "2". Usually, the inventory is identified
by Part Item + Part Item Revision, but Item
Revision is optional.

Part Item Number +
Revision

part_item_number_
rev

String

Text

The Part Item number concatenated with the
Part Item Revision. For example, FS908765A,
 where "FS908765" is a Part Item Number and
"A" is a Part Item Revision. It is used to search
for inventory in the catalog.

Expense Activity

expense_service_
activity

Enumeration

Combobox

Type of expense.

Expense Item

expense_item_
number

Enumeration

Combobox

The subtype of expense.

213

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

Expense Item
Description

expense_item_desc

Enumeration

Combobox

The description of expense subtypes. The
indices must be the same as in the expense_
item_number property.

The values must describe the corresponding
expense_item_number element.

Labor End Time

labor_end_time

String

Text

The time when a mobile worker stops working
on particular service activity. It must be not
later than the end time of the work order
(Oracle Fusion Field Service activity). Also,
there must be no overlap between the items in
the labor list. The format is T24:59:59.

Labor Start Time

labor_start_time

String

Text

The time when a mobile worker starts working
on a particular service activity. It must be not
be earlier than the start time of the work order
(Oracle Fusion Field Service activity). Also,
there must be no overlap between the items in
the labor list. The format is T24:59:59.

Labor Activity

labor_service_activity

Enumeration

Combobox

The type of labor.

Labor Item

labor_item_number

Enumeration

Combobox

The subtype of labor.

Labor Item
Description

labor_item_desc

Enumeration

Combobox

The description of labor subtype. The indices
must be the same as in labor_item_number
property. The values must describe the
corresponding labor_item_number element.

Labour Hours laborItemNumberForRegLaborEnumeration Combobox This is updated with the billing item under
which the Labor hours can be tracked.

FS Travel Time laborItemNumberForTravelEnumeration Combobox This is updated with the billing item under
which the Travel Time can be tracked

Inventory ID

invid

Internal ID of the inventory.

Activity ID

inv_aid

Internal ID of the activity to which the
inventory is assigned.

Resource ID

inv_pid

Internal ID of the resource to which the
inventory is assigned.

214

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

Inventory Pool

invpool

The inventory pool (Resource, Customer,
Installed, De- installed).

Inventory Type

invtype

Type of inventory. See Add Inventory Types for
the Plug-In.

Quantity

quantity

The installed parts or the parts taken from the
customer. It can be either counted or specified
in inches, feet, and so on. The quantity is
defined as an integer number.

Serial Number

invsn

Field

Text

The serial number of the inventory.

3. To add your company logo in the Time & Labor Report, add a new secure parameter with the name "logoUrl" with the
value "url of the company logo".
Logo only supports .jpeg images and the recommended size of the image is less than "150X60 ".

Add the Inventory Types
You must add inventory types (expense, labor, part, part_sn) to capture the information about the time and materials
used for the activity. The plugin stores the reported information about time and expense in the installed pool of the
activity. However the parts used and parts returned are stored in the resource and customer pools respectively.

1. Log in to Oracle Fusion Field Service as an administrator.
2. Click Configuration > Inventory Types and click Add New.
3. To add the 'Expense' inventory type:

a. Type 'expense' in the Label field.
b. Type 'Expense' in the Name field.
c. Select 'Expense_item' from the Model Property drop-down list.
d. Click Add.

4. To add the 'Labor' inventory type:
a. Type 'labor' in the Label field.
b. Type 'Labor' in the Name field.
c. Select 'Labor_Item' from the Model Property drop-down list.
d. Click Add.

5. To add the 'Part' inventory type:
a. Type 'part' in the Label field.
b. Type 'Part' in the Name field.
c. Select 'Part_item+Revision' from the Model Property drop-down list.
d. Click Add.

215

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

6. To add the 'Part SN' inventory type:
a. Type 'part_sn' in the Label field.
b. Type 'Serialized Part' in the Name field.
c. Select 'Part_item+Revision' from the Model Property drop-down list.
d. Click Add.

Add the Parts Catalog
You can search for the parts used or returned from the catalog and then add these parts to an invoice. To view the parts
from the catalog, you must create the catalog using the create_catalog method of the SOAP API or the REST API.

1. Use this code sample to understand how to create a catalog for Debrief:
{
 "name": "my_catalog",
 "fieldSchemas": [
 {
 "label": "part_disposition_code",
 "name": "Part Disposition Code",
 "searchable": true,
 "preview": false
 },
 {
 "label": "part_item_number",
 "name": "Item Number",
 "searchable": true,
 "preview": true
 },
 {
 "label": "part_item_revision",
 "name": "Item Revision",
 "searchable": true
 },
 {
 "label": "part_item_desc",
 "name": "Item Description",
 "preview": true
 },
 {
 "label": "part_uom_code",
 "name": "UOM",
 "preview": true,
 "searchable": true
 }
],
 "typeSchemas": [
 {
 "itemType": "part",
 "inventoryType": "part_general"
 },
 {
 "itemType": "cartridge",
 "inventoryType": "part_cartridge"
 }
]
}

216

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

2. Use this code sample to understand how to create or update parts catalog items for Debrief scenarios:
"type": "part",
 "fields": [
 {
 "label": "part_disposition_code",
 "value": "ECM100001A"
 },
 {
 "label": "part_item_number",
 "value": "ECM100000"
 },
 {
 "label": "part_item_revision",
 "value": "ECM100000A"
 },
 {
 "label": "part_item_desc",
 "value": "2" x 5" Robotically Welded Steel Frame"
 },
 {
 "label": "part_uom_code",
 "value": "ea"
 }

],
 "tags": [
 "Printer",
 "Cartridge"
],
 "linkedItems": [
 {
 "itemLabel": "RG5-7691-250CN",
 "data": "1"
 },
 {
 "itemLabel": "RG5-7691-250CF",
 "data": "2"
 },
 {
 "itemLabel": "RG5-7691-250CZ",
 "data": "3"
 }
],
 "images": [
 {
 "imageURL": "https://www.storage-service.com/rg5_7691_250cz.png"
 },
 {
 "imageURL": "https://www.storage-service.com/rg5_7691_250cf.png"
 }
]
}

217

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

3. Double check the value for the type field as follows:

◦ The 'type' field within the 'create' or 'update' parts catalog calls must be set as "part" for serialized
inventory.

◦ The 'type' field within the 'create' or 'update' parts catalog calls must be set as "part_sn" for non-serialized
inventory.

◦ Each item's 'Fields' schemas must contain these elements:

Label Property Label Searchable

part_uom_code part_uom_code 0

part_item_revision part_item_revision 0

part_item_number part_item_number 0

part_item_desc part_item_desc 1

part_disposition_code part_disposition_code 0

Add the Debrief Plugin to a Page
To make the plugin available to multiple user types, you must associate it with the corresponding pages for the required
user types. As debriefing is done only for Started activities, you must add the Debrief button to the Activity Details
page so that it is visible only when the activities are in that status.

1. To add the Debrief button to a page, follow the instructions in the Add a plugin to a page topic.
2. Be sure to add the visibility condition as Activity status in (equal) Started.

Asset Details Plugin

The "Asset Details" standard plugin provides comprehensive asset information for mobile resources and dispatchers, to
carry out their work more effectively. It includes asset pictures, maintenance orders, warranty details, asset notes, and
history. Seamlessly integrated with Oracle Supply Chain, it requires no additional development effort. Customers can
tailor it using the Plugin Framework and integrate it with third-party supply chain solutions if required.

1. Open the Asset Details page to view the basic information of the asset.

Field Description

Asset ID Value that uniquely identifies the asset

Asset Description Description of the asset features, characteristics, and other details.

Item ID Value that uniquely identifies the item referenced by the asset.

218

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Field Description

Serial Number Numeric value that uniquely identifies the serial number referenced by the asset.

Primary Contact Name of the contact person associated with the asset.

Address Name of the location where the asset currently resides.

Image The item image. (You can view the full image by clicking the image; if there are multiple images, you
can click Next to view the other images.)

2. To view the future work orders associated with the asset, click View Details and then Future Work Orders.

Field Description

Work Order Number The alternate unique identifier of the work order.

Scheduled On The date when the service is scheduled to be performed.

Mobile Worker The scheduled resource assigned to complete the work order.

Problem Description The information captured to share with the field resource assigned to the work order.

The page displays up to 15 work orders. Mobile workers can use OFS capabilities such as self-assignment to prepare
for upcoming tasks while on site.

3. To view the warranty, active subscriptions, and service level coverage details associated with the asset, click View
Details and then Warranty and Subscriptions.

Field Description

Coverage Name The name of the coverage.

Coverage Description The description of the coverage.

Subscription Number The alternate unique identifier of the subscription.

Coverage Product Name The name of the product associated with the coverage.

Service Activity Name The name of the service activity.

Adjustment Type The code associated with the adjustment type. The type can be either Markup or Discount.

Adjustment Amount The value of the adjustment. Adjustment amount can be percentage or a Fixed value.

4. You can view the latest 15 notes associated with an asset in the Notes section.

Field Description

Created Date Date when the note was created.

Created Time Time when the note was created.

Author Name of the user who created the note for the asset.

Note text Decoded note text.

219

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

5. You can view past records of up to 15 work orders in the History section.

Field Description

Work Order The alternate unique identifier of the work order.

Completed On The date when the service was performed.

Mobile Worker The scheduled resource assigned to complete the work order.

Problem Description The additional information captured to share with the field service resource assigned to the work
order.

Resolution The information added to the work order from Oracle Field Service Cloud activity integration.

Activate the Asset Details Plugin

Asset Details is available as a Standard plugin in Oracle Fusion Field Service. You can install it from the User Types &
Screens page.

1. On the User Types page, navigate to Screens-> Inventory->Asset Details.
The Asset Details Activate Screen page appears and these sections are displayed:

◦ Properties will be added. These are the properties that are automatically installed with the plugin. These
properties will be available on the Configuration > Properties page. If you de-install this plugin in the future,
these properties will still remain on the Properties page. Make sure you configure Note Type as a plugin
parameter. Note type is the comma separated note type codes of asset notes. You can access Note type
codes from the Fusion Manage Contract Note Types.

◦ Existing properties to be used. These are the properties that are required for the plugin and are currently
present in Oracle Fusion Field Service.

◦ Applications.

The plugin requires connection to REST API. Select the following applications:
- Fusion application configured in the OFS Applications screen to authenticate the plugin.
- Oracle Fusion Field Service application configured in the OFS Applications screen to authenticate the

plugin.
2. Click Activate and confirm the activation.

A message similar to "Asset Details Successfully activated" is displayed after the activation.

The following Activity entity properties are installed and used as part of Asset Details plugin.

Name Label Type GUI Description

Asset Id wo_asset_id string text The asset id of install
base asset associated with
the activity. This custom
property will be populated
when the work order sync
happens. See, Work Order
Created Field Mappings

220

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

R13 (1.0) in the Integrating
Fusion Service with Field
Service guide.

Work Order Number wo_number string text The Fusion work order
number associated with
the activity. This custom
property will be populated
when the work order sync
happens. See, Work Order
Created Field Mappings
R13 (1.0) in the Integrating
Fusion Service with Field
Service guide.

Date date field text Date when the activity
was assigned to route.
Based on the activity date,
 you can view the history,
 warranty information,
 future work orders, and
past work orders.

Modify the Parameters of Asset Details Plugin

You can modify the following parameters of Asset Details plugin. You cannot change the mandatory fields and the
plugin label.

1. Click Configuration > User Types > Screens.
2. Select the Asset Details plugin.
3. On the Asset Details Edit Screen page, modify the following parameters as required and click Update.

Parameter Description Secure Parameter

fusionRestEndpoint The Fusion end point URL. N

fusionLogin Fusion Login with roles mentioned as in the
"APIs and Roles" section.

N

fusionPassword Fusion Password. Y

noteTypeCodes Comma separated note type codes of asset
notes, that can be shown to the mobile worker.

If not configured, the Notes section will
show the message "Please configure
noteTypeCodes in Plugin Parameters."

N

221

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Parameter Description Secure Parameter

plannedActivityMaxDays If checked, parameter's value will be masked
on the screen after saving. It will be possible to
replace the value or delete the parameter.

N

nearbyRadius If checked, parameter's value will be masked
on the screen after saving. It will be possible to
replace the value or delete the parameter.

N

nearbyRadiusUnit If checked, parameter's value will be masked
on the screen after saving. It will be possible to
replace the value or delete the parameter.

N

Extend the Asset Details Plugin

You can extend Asset Details plugin for your organization specific requirements and upload it back as a hosted plugin. If
you change the code for Asset Details plugin, it becomes your custom plugin and will no longer be supported by Oracle.
See, Change the Code of a Plugin .

Asset Details Plugin APIs and Roles

The Fusion user configured in the fusionLogin secure parameter should have the below privileges to get the data in
Asset Details plugin.

API Reference Role

Installed Base Assets REST Endpoints Maintenance Technician (Job Role)

Work Orders REST Endpoints Customer Service Representative (Job Role)

Entitlements REST Endpoints Customer Service Representative (Job Role)

Product Image Attachments REST
Endpoints

Employee (Abstract Role)

Order and Receive Parts using Parts Ordering Plugin
Parts Ordering is a standard plugin that comes with Oracle Fusion Field Service; it automates the process of ordering
and receiving parts. You can use the plugin to order parts when the parts you need aren’t available with nearby mobile
workers, warehouses, or in your van.

222

https://docs.oracle.com/en/cloud/saas/supply-chain-and-manufacturing/24c/fasrp/api-maintenance-installed-base-assets.html
https://docs.oracle.com/en/cloud/saas/supply-chain-and-manufacturing/24c/fammm/Maintenance_Technician_job_roles.html
https://docs.oracle.com/en/cloud/saas/sales/faaps/api-work-orders.html
https://docs.oracle.com/en/cloud/saas/sales/oaslm/Customer_Service_Representative_job_roles.html
https://docs.oracle.com/en/cloud/saas/sales/faaps/api-entitlements.html
https://docs.oracle.com/en/cloud/saas/sales/oaslm/Customer_Service_Representative_job_roles.html
https://docs.oracle.com/en/cloud/saas/sales/faaps/api-products-product-image-attachments.html
https://docs.oracle.com/en/cloud/saas/sales/faaps/api-products-product-image-attachments.html
https://docs.oracle.com/en/cloud/saas/sales/oaslm/Employee_job_roles.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

You can see the Parts Ordered tile on the My Route page only if your administrator has added it. For more information,
refer to Add the Parts Cart and Ordered Parts Buttons.

You can order for a part to perform a follow up activity for a customer, or to replenish the stock in your van. When you
order a part, the plugin creates a not-ordered activity in Oracle Fusion Field Service and an order in Oracle Supply Chain
& Manufacturing. Currently you can order parts only for yourself.

Here's a general outline of the process:

• Install and Activate the Plug-In: Ensure the Parts Ordering Plug-In is installed and activated in your system.
For more information, see Activate the Parts Ordering Plugin.

• Navigate to the Activity: Log in as a technician or user with the appropriate permissions and locate the activity
where you want to add parts. For more information, see Add the Activity Type Required for the Parts Ordered
Plugin.

• Order Parts: Use the plugin to order the required parts. For more information, see Order a Part topic in the
Using Core Application Guide.

• Add Parts to the Activity: Once the parts are ordered and received, you can associate them with the specific
activity. For more information, see Receive an Ordered Part in the Using Core Application Guide.

Activate the Parts Ordering Plugin
Parts Ordering is a standard plugin that comes with Oracle Fusion Field Service; it automates the process of ordering
and receiving parts. Mobile workers can use the plugin to order parts when the parts they need aren’t available with
nearby mobile workers, warehouses, or in their van.

High-level steps to activate the Parts Ordering plugin:

1. Create an application for Oracle Fusion Field Service REST API and add the required entities.
2. Install the plugin.
3. Add the activity and inventory types.
4. Add the buttons for the plugin on the pages that mobile workers need.
5. Register a parts catalog. See the Register an Item Catalog topic in the Administering Oracle Fusion Field

Service guide and register the parts catalog that you want to use.
6. Optionally, integrate with Workflow Manager.

To activate the Parts Ordering plugin:

1. Create an application to connect to Oracle Fusion Field Service REST API from the Configuration > Applications
page. This application is used to connect Oracle Fusion Field Service with Oracle Fusion.

a. Select OFSC in the Token Service field and Authenticate using Client ID/Client Secret in the
Authentication settings field.

b. Provide ReadWrite access for Activity and Inventory entities in the Core API section.

223

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

2. On the User Types page, navigate to Screens-> Inventory->Parts Ordering.
The Parts Ordering Activate Screen page appears and these sections are displayed:

◦ Properties to be installed: These are the properties that are automatically installed with the plugin. These
properties are available on the Configuration > Properties page. If you de-install this plugin in the future,
these properties will remain on the Properties page.

◦ Existing properties to be used: These are the properties that are required for the plugin and are currently
present in Oracle Fusion Field Service.

Note: If a property has an incorrect configuration (for example, for property type or entity), then you'll
see a corresponding message. Open the plugin's documentation, find the property requirements, and
change the property settings accordingly.

3. Select the application that you created in Step 1.
4. Click Activate and confirm the activation.

A message similar to, 'Parts Ordering Successfully activated.' is displayed after the activation. You can activate Parts
Ordering plugin only once and the Activate button is activate button is not available. The plugins are supported only
in the English language and the Parts Ordering plugin doesn't work in offline mode.
Oracle Fusion Field Service creates the required properties automatically or notifies you that some existing
properties will be used by the plugin, if they're already configured. If you've created the properties in the application
with the corresponding names and labels, but with an improper configuration, you must change the property
settings and install the plugin again. Here are the properties for activity and inventory entities that the plugin uses:

Name Label Type GUI Description

Resource entity

External ID external_id field text External id of resource

Order Warehouse List order_warehouse_list string text Order Warehouse List

Activity entity

Address caddress field text Address field

City ccity field text City field

ZIP/Postal Code czip field text ZIP/Postal Code field

State cstate field text State filed

Activity status astatus field text Activity status field

Activity type aworktype field combobox Type of activity

Work Order appt_number field text Activity Work order filed

SLA End sla_window_end field text End of SLA window

Order Date order_date string text Date on which the
requester at the
destination wants the
Order to be delivered at

224

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

the destination. That is this
is the Need By Date. This
should include both date
and timestamp.

Order Number order_number string text Activity ID of Receive
Order activity

Order Items order_items string text Is filled by JSON array in
Receive Order activity.
Plugin uses this property
for internal purposes.

Order Destination Type order_destination_type string text This specifies the
destination type to which
the Order is to be received.
Current values are 'activity'
and 'van'

Order Received Items order_received_items string text

Order Status order_status string text Duplicates Order Item
Status inventory property
in Receive Order activity

Order Arrival Date order_arrival_date string text Can be updated by
external integration script.
Represents approximate
available date to receive
ordered parts.

Order Follow-up Activity ID order_followup_aid string text Is filled by follow-up
activity Id in Receive Order
activity. If Order is created
with follow-up activity.

Order Follow-up Activity
Number

order_followup_
apptnumber

string text Is filled by follow-up
activity Work order in
Receive Order activity.
If Order is created with
follow-up activity.

Order Initial Activity ID order_initial_aid string text Is filled by id of activity
which order was created
for in Receive Order
activity. If option 'Activity'
is set in 'Order is for' plugin
field.

Order Initial Activity
Number

order_initial_apptnumber string text Is filled by appt_number
of activity which order
was created for in Receive

225

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

Order activity. If option
'Activity' is set in 'Order is
for' plugin field.

Order Initial Activity Type order_initial_type string text Is filled by aworktype of
activity which order was
created for in Receive
Order activity. If option
'Activity' is set in 'Order is
for' plugin field.

Order Initial Activity
Address

order_initial_address string text Is filled by concatenation
of Address, City, State,
 Zip/Postal code fields
of activity which order
was created for in Receive
Order activity. If option
'Activity' is set in 'Order is
for' plugin field.

Transfer Order Header transfer_order_header_id string string Can be updated by
external integration
script. Stores the value of
Transfer Order Header ID
filed

Inventory entity

Serial Number invsn field text The serial number of
inventory

Inventory pool invpool field text Inventory pool (Resource,
 Customer, Installed,
 Deinstalled)

Inventory Type invtype field combobox Type of inventory

Inventory Id invid field text Internal id of inventory

Activity Id inv_aid field text Internal id of activity the
inventory belongs to

Resource Id inv_pid field text Internal id of resource the
inventory belongs to

Quantity quantity field text Describes how many parts
have been installed or
taken from the customer.
It could be either counted
or specified in "inches",
 "feets" etc. Quantity is
defined as an integer

226

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

number, fractions are
unavailable.

Order Item Initial Activity
ID

order_item_initial_aid string text Contains Initial activity ID
value when Ordered part is
created

Order Item Status order_item_status string text Represents current status
of ordered parts in SCM.
Is updated by external
integration script. Can
be found in Transfer
order line payload as
'FulfillmentStatusLookup'.
Default value is 'WAIT_
FULFILL' for parts ordered
by the plugin. Possible
values are 'WAIT_FULFILL',
 'SHIPPED', 'SHIPPED_
RECEIVED', 'RECEIVED',
 'P_SHIPPED_RECEIVED',
 'P_SHIPPED'. Technician
can receive parts if value is
'SHIPPED_RECEIVED'.

Order Item Shipment
Number

order_item_shipment_
number

string text Is updated by external
integration script by value
of shipment number when
it submitted in SCM.

Order Item Received
Quantity

order_item_received_
quantity

string text Describes how many parts
have been Received. It
could be either counted
or specified in "inches",
 "feets" etc. Quantity is
defined as an integer
number, fractions are
unavailable.

Part Item + Revision part_item_number_rev string text Part Item Number
concatenated with Part
Item Revision.For example
"FS908765A", where
"FS908765" is a Part Item
Number and "A" is a Part
Item Revision.

It's used to search for
inventory.

227

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Name Label Type GUI Description

Part Item Number part_item_number string text Defines the part number
of the part that has been
installed or taken from
the customer. It's usually
specified in the form of
some code. For example:
"FS908765".

Part Item Revision part_item_revision string text Usually a single letter
code, e.g. "A" or "B". Also
it is possible to have a
single digit like "1" or "2".
Usually, the inventory is
fully identified by Part Item
+ Part Item Revision, but
Item Revision is optional.

Order Item Details order_item_details string text Details of ordered item

Order Item Description order_item_description string text Description of ordered
item

If mobile workers see an error and are unable to order for a part, the reason could be:

◦ A configuration item required for the plugin is missing in the environment.

◦ The parts catalog structure doesn't contain a required field.

◦ A required permission in the configuration of the activity or inventory types is missing.

Verify these thoroughly before adding the buttons for the plugin to any page.

Add the Activity Type Required for the Parts Ordered Plugin
You must add a new activity type ORD to capture the details of the orders placed using the Parts Ordered plugin.

1. Sign in to Oracle Fusion Field Service as an administrator.
2. Click Configuration > Activity Types > Add New.
3. Add the label as ORD.
4. Select the Active check box.
5. Add a name for the activity type in the English language and other required languages.
6. Select Customer in the Group field.
7. Enter 60 in the Default duration, minutes field.
8. Select these features: Support of not-ordered activities, Allow non-scheduled, Support of inventory, Support of

required inventory, and Allow to create from Incoming interface.
9. Click Add.

228

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Add the Inventory Types Required for the Parts Ordered Plugin
You must add three inventory types part, ordered_part, and received_part to capture the details of the orders placed
using the Parts Ordered plugin.

1. Sign in to Oracle Fusion Field Service as an administrator.
2. Click Configuration > Inventory Types > Add New.
3. Complete the fields for each inventory type as given in this table:

Label Active Model Property Name Inventory is Non-
serialized

Unit of
Measurement

part Selected Part Item Number Part Selected Each

ordered_part Selected Part Item Number Ordered part Selected Each

received_part Selected Part Item Number Received part Selected Each

4. Click Add.

Add the Parts Cart and Ordered Parts Buttons
To make the plugin available to mobile workers, you must associate it with the required pages. As only mobile workers
can order for parts, you must add the Parts Cart and Ordered Parts buttons to the plugin on the Activity List/My
Route, Parts details, and Activity Details pages.

To add the buttons, follow the instructions in the Add a plugin to a page topic and the details given in this table:

Page Button Name Screen Type Plug-In Parameter

Part Cart Plugins Parts Ordering Parameter: defaultScreen
Value: new-order-screen

Activity List/My Route

Ordered Parts Plugins Parts Ordering Parameter: defaultScreen
Value: order-list-screen

Parts details Order Part Plugins Parts Ordering Parameter: defaultScreen
Value: new-order-screen

Activity Details Ordered Parts Plugins Parts Ordering Parameter: defaultScreen
Value: order-list-screen

229

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 3
Use a Plugin

Integrations for Parts Ordering Plugin
You can integrate the Parts Ordering plugin with Oracle Fusion Field Service Workflow Management and Oracle Supply
Chain Management.

Workflow Management: You might add the plugin to the Workflow Manager. Remember to configure the Workflow
steps using the same rules for name naming conventions and parameters as that of User Types.

Oracle Supply Chain Management: You can install the Service Logistics accelerator in Oracle Integration and configure
it to get the 'activityCreated' and 'activityUpdated' events. Use 'filterExpressions' in the event subscription to get events
for only the 'Order' type of activity.

230

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

4 Use a Custom Plugin

Types of Plugins
You can add a hosted plugin, an external plugin, or an external application as a plugin. You can also download and use
sample plugins that are shipped with Oracle Fusion Field Service.

Oracle Fusion Field Service supports the following type of plugins:

• PlugIn Archive: An archive plugin is hosted in Oracle Fusion Field Service and uses the Plugin API to interact
with Oracle Fusion Field Service. This means, if your plugin consists only of HTML, CSS, and JavaScript files
and doesn't contain server-side files, then you can host it in Oracle Fusion Field Service. No other hosting is
required. The plugin framework handles the communication between the hosted plugin and Oracle Fusion
Field Service.

• External PlugIn: An external plugin is hosted elsewhere and communicates with Oracle Fusion Field Service
through the Plugin API. You add only a link to the plugin here.

• External Application: An external application can be added as a plugin and it will be opened as a web page in
a new window, or the same window within Oracle Fusion Field Service.

• Sample Plugin: There are some sample plugins such as Meter Reading plugin that you can use. You can
download the sample plugins from the https://www.oracle.com/downloads/samplecode/ofsc-samplecode-
downloads.html page. You may need to use the secure protocol https and a user account to access this site.
Unless explicitly identified as such, the sample code available on this page isn't certified or supported by Oracle;
it's intended for educational or testing purposes only.

Migration of Standard Plugins

Standard Plugins are integrated into the main structure of the application. They can now be found under User types →
Screen in the following sections:

• Asset Details, Debriefing - located in the Activity section

• Parts Ordering - located in the Inventory section

This change means that the concept of Standard Plugins has been discontinued and is replaced by a set of default
screens, but you can add more by creating forms or plugins.

Note: Asset Details, Debriefing, and Parts Ordering require additional setup before mobile workers can use them. For
more information, refer to the activation steps mentioned in their sections.

Add a Plugin Archive
A plugin archive is hosted in Oracle Fusion Field Service and uses the Plugin API to interact with it. The hosted plugin
can contain multiple pages and have its own navigation flow. This topic describes the high-level steps to configure and
host a plugin.

231

https://www.oracle.com/downloads/samplecode/ofsc-samplecode-downloads.html
https://www.oracle.com/downloads/samplecode/ofsc-samplecode-downloads.html

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

1. Determine whether you want to host the plugin in Oracle Fusion Field Service. If yes, prepare your plugin for upload.
2. Configure the plugin.

a. Upload the hosted plugin.
b. Add the available properties.

3. Add the plugin to the required page.

How Plug-Ins are Hosted
If your plugin consists only of HTML, CSS, and JavaScript files and doesn't contain server-side files, then you can upload
it in Oracle Fusion Field Service. No additional hosting is required. The plugin framework handles the communication
between the hosted plugin and Oracle Fusion Field Service.

You can host a maximum of 35 plugins per environment. This limitation doesn't include the Standard plugins.

The steps to host a plugin are:

• Complete the prerequisites to upload the plugin.

• Upload the plugin.

After hosting a plugin, you can:

• Use it on a page

• Move between environments

• Modify

• Rollback to a previous version

• Delete

Note: A hosted plugin works only with Oracle Fusion Field Service Mobility Cloud Service.

Prerequisites to Upload a Plug-In
The plugin must be in a specific format to be uploaded. If not, you cannot upload it, you must host it elsewhere.

The plugin files must meet these requirements:

• You must upload a ZIP archive of the plugin files.

• You can upload only the files of following types:

◦ .html

◦ .css

◦ .js

◦ .jpg

◦ .jpeg

◦ .png

◦ .gif

◦ .svg

232

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

◦ appcache

• You can organize files in sub-directories, but you must have the "index.html" file in the root folder.

• Each file can be a maximum of 1 MB and the total size of the compressed archive must be less than 500 KB.

• You can have a maximum of 10 files or directories in the archive.

Note: The plugin files uploaded in Oracle Fusion Field Service are available by unique URLs on the Internet. The URLs
are generated automatically and contain a long string. There is no authentication to access these files, so anyone
who has the direct link to the file can download the file. Therefore, don't store any sensitive information such as
passwords or login names in the plugin archive. If you don't want your code to be available without authentication, we
recommend that you don't use the hosted plugin functionality. Be aware that the communication between the plugin
and Oracle Fusion Field Service starts only when a user successfully logs in to Oracle Fusion Field Service.

Add a Hosted Plug-In
A Hosted plugin is hosted in Oracle Fusion Field Service and uses the Plugin API to interact with Oracle Fusion Field
Service.

Note: You can host a maximum of 35 internal plugins excluding Standard plugins. However, there is no restriction on
hosting external plugins.

1. Click Configuration > Forms & Plugins.
The Forms & Plugins page appears and displays the existing forms and plugins.

2. Click Add Plugin.
3. Click Plugin Archive and then click Next.
4. Complete these fields:

Field Name Description

General Information section

Label A required field defining a unique action or a label for the plugin.

Entity Entity (activity, inventory, required inventory, resource, service request, user) to which the action
or plugin is to be related. For example, if you select Inventory, the action will appear only in the
contexts related to inventory. Leave the field blank for the action to be available in all contexts of all
the entities.

Visibility rules similar to The base action from which the plugin is to be derived, if needed. When a base action is selected,
the resulting plugin functions per the same rules as the base action. The base action affects only the
visibility of buttons and not the functioning of the plugin. It appears only in the contexts in which
the base action appears and is shown or hidden according to the same visibility conditions. For
example, if start_activity is selected as the base action for a plugin, the plugin is only be shown in
the context of a pending activity when there's no started activity in the same route, similar to the
Start action. The list of available base actions is filtered according to the Entity that's selected.

Name (English) A required field defining the plugin name in the English language. The action or plugin appears
under this name in the actual context.

233

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

Name (other languages) Plug-in name translations to other languages, if used.

Plugin settings section

Plugin archive The zip file for the Hosted plugin, which contains HTML, CSS, and JavaScript files. Click the field to
browse and select file, or drag a file.

Disable plugin in offline Determines whether you want to disable the pluginug-in when Oracle Fusion Field Service is offline.
Clear this check box forpluginug-in to work in offline mode.

Plugin parameters The section where sensitive information such as a user name and password that is used to access
external sites is entered. Click plus to add the parameters. The Add new parameter dialog box
appears with these fields:

◦ Name: Enter a name for the parameter that is used to access an external application. For example,
 Client ID.

◦ Value: Enter a value for the parameter.

◦ Secure parameter: Select the check box to indicate that the parameter contains sensitive data.
When you enable the check box, the application masks the value of the parameter and replaces it
with a series of dots.

You can deselect the check box and verify that the value is correct until you save the
configuration of the pluginug-in. Once you save the configuration, the application masks the
value of the parameter on the Edit Plugin and Modify parameter pages.

However, when you open an existing secure parameter, you can only replace the value, as the
application deletes the value from the field.

◦ Click Add. The parameter is added topluginug-in.

You can add a maximum of 20 key-value textbox pairs, after which the icon is hidden. The
maximum size of the parameters allowed is 5 KB. This size includes the data structure overhead and
doesn't correspond to the length of keys and values of strings. Changes to the secure data are sent
to Oracle Fusion Field Service during the next synchronization. The data is sent topluginug-in when
the next message is sent.
If you open the values saved earlier, the application deletes them. You must add them again.

Available properties The properties that you want to be passed topluginug-in or updated bypluginug-in. These
properties are added as read-only and are available through the Plugin API. Click the field to select
the properties. You need not define the visibility for the properties explicitly.

These properties can't be updated through the Plug-in API:

◦ activity_capacity_categories

◦ auto_routed_to_date

◦ auto_routed_to_provider_id

◦ aworkzone

◦ date

◦ time_delivered

You can't add these properties to the list of Available properties:

◦ activity_alerts

◦ access_hours

◦ activity_compliance

◦ atravelarea

234

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

◦ travel_estimation_method

◦ service_window_end

◦ service_window_start

◦ eta_end_time

◦ pid (it's still available for the Resource entity)

◦ ctime_delivered_start

◦ ctime_delivered_end

5. Click Add.
The archive is uploaded only if these conditions are met:

◦ The archive is a ZIP archive and has the extension .zip.

◦ The size of the archive is less than 500 KB.

◦ The archive includes only directories and files of these types:
- .html files
- .css files
- .js files
- .appcache files
- .jpg, .jpeg, .png, .gif, .svg files
- Directories

◦ Files are less than 1 MB.

◦ The "index.html" file is found in the root of the archive.

◦ The archive includes a maximum of 10 entries, including empty directories.
If any of these conditions isn't met, an error message is displayed and the archive isn't uploaded.
To usepluginug-in, you must add it to a button or a link. See the Add the Plug-In to a Page topic. The URL for the
hosted pluginug-in is typically https://plugins-0-instance_name.fs.ocs.oraclecloud.com.

Working Offline
You can create the plugin to work offline using two possible approaches, or a combination of them.

The approaches are:

• Using Service Worker API (See https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API): This
is the preferred way to implement the offline functionality for the plugin. It is supported by most browsers,
except Internet Explorer 11.

• Using Application Cache API (deprecated) (See https://developer.mozilla.org/en-US/docs/Web/HTML/
Using_the_application_cache): This is deprecated and will be removed in the future versions of modern
browsers, but it's supported by Internet Explorer 11. The WHATWG (Web Hypertext Application Technology
Working Group) notifies that Application Cache API feature is being removed from the web platform. Using any
of the offline web application features at this time is highly discouraged. Use service workers instead.

• Combination approach: Use the Service Worker API for modern browsers and Application Cache API as a
fallback mechanism for Internet Explorer 11. The basic principles of this solution are:

235

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

a. Create the mainfest.appcache file and link it with the index.html by adding the "manifest" attribute to
main html tag:
<html manifest="manifest.appcache">

The manifest.appcache must contain the list of cached files in the "CACHE" section.

Tip: Do not add "index.html" to the CACHE section to enable possible future updates of the plugin's
resources.

b. Create the Service Worker javascript file (for example, service-worker.js). This file must implement
the network behavior of your plugin using ServiceWorker API. It may load "manifest.appcache" file on
the "install" event, parse the Application Cache file and add all the files from the "CACHE" section to
browser's cache using the CacheStorage interface. After that you can implement any network behavior
strategies to handle the "fetch" event: "network first then cache", "cache first then network", or "network
only".

c. Register your Service Worker file at the JS part of your plugin, before sending the "ready" post message,
for example:
if (navigator.serviceWorker) {
 navigator.serviceWorker.register('service-worker.js').then(function (registration) {
 this.startApplication();
 }.bind(this), function (error) {
 console.error('Service Worker registration failed: ', error);
 startApplication();
 }.bind(this));
} else {
 startApplication();
}

In this code example, the `startApplication()` function sends the "ready" post message. It's important to postpone
sending the "ready" message until the "install" event is handled properly and all files from the CACHE section of
manifest.appcache are loaded to the browser's cache.

Modify, Download, or Delete an Archive
After uploading a plugin archive, you might want to modify it, download it, or delete it.

1. To modify a hosted plugin, you upload a newer version. To upload a newer version of the archive, click Browse on the
Modify plugin page and upload it again.
You can have only two versions of the plugin at any time. Whenever you upload a newer version of a plugin:

◦ The current version becomes a historical one.

◦ The newly uploaded version becomes the current one.

◦ The newly uploaded version is displayed in the first row of the Version history table.

◦ The previous version is moved to the second row of the Version history table.

2. To download a plugin, click Download in the Version history section. Save it to the desired location.
3. To rollback to a previous version, download the version that you want to rollback to. Click Browse and upload it

again.
4. To delete a plugin, first unassign it from all the buttons it's added to. Then, click Delete on the Forms & Plugins

page.
The plugin is deleted with all its historical versions.

236

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

5. To move all the uploaded plugins between environments, export from the required environment using the
Export function on the Forms & Plugins page. Import the exported files using the Import function in the target
environment.

6. To move a single plugin between environments, download it from the required environment. Upload it in the target
environment. You can use the Export option here as well.

Add an External Plugin
An external plugin is hosted elsewhere and communicates with Oracle Fusion Field Service through the Plugin API. You
add only a link to the plugin here.

1. Click Configuration > Forms & Plugins.
2. Click Add Plugin.
3. Click External Plugin and then click Next.
4. Complete these fields:

Field Name Description

General Information section

Label A mandatory field defining a unique action or a label for the plugin.

Entity Entity (activity, inventory, required inventory, resource, service request, user) to which the action
or plugin is to be related. For example, if you select Inventory, the action will appear only in the
contexts related to inventory. Leave the field blank for the action to be available in all contexts of all
the entities.

Visibility rules similar to The base action from which the plugin is to be derived, if needed. When a base action is selected,
the resulting plugin functions per the same rules as the base action. The base action affects only the
visibility of buttons and not the functioning of the plugin. It appears only in the contexts in which
the base action appears and is shown or hidden according to the same visibility conditions. For
example, if start_activity is selected as the base action for a plugin, the plugin is only be shown in
the context of a pending activity when there is no started activity in the same route, similar to the
Start action. The list of available base actions is filtered according to the Entity that is selected.

Name (English) A mandatory field defining the plugin name in the English language. The action or plugin appears
under this name in the actual context.

Name (other languages) Plug-in name translations to other languages, if used.

Plugin settings section

URL The path to the URL of the external plugin. This URL processes the HTML5 application and it runs
the plugin in the entire browser window. The URL must start with the protocol (https) and must
point to the main file of the plugin.
Oracle Fusion Field Service adds the backUrl parameter to the URL automatically. This parameter
contains the address of the current page of Oracle Fusion Field Service.

Disable button in Offline Determines whether you want to disable the plugin when Oracle Fusion Field Service is offline. Clear
this check box for the plugin to work in offline mode.

Authentication The type of authentication used by the external server hosting the plugin source to verify access to
the plugin. Select one of these options:

237

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

◦ Basic HTTP: The Basic Access Authentication method working over HTTP or HTTPS. The Basic
HTTP authentication method requires a valid login and password. When the entered login and
password are verified by the server, the server returns the plugin content.

◦ HMAC: Hash-based message authentication code verifying that the data is received from an
authorized source. HMAC authentication method requires a secret key configured for each plugin.
This field is hidden, if Hosted plugin is selected.

Note: The best practice is to use HMAC authentication instead of basic HTTP authentication.
This is because, Google Chrome doesn't support the use of Basic HTTP authentication in sub-
resources starting from release 59.

Login/Password The user name and password to log in to the plugin. These fields are displayed only when Basic
HTTP is selected for Authentication.

Plugin parameters The section where sensitive information such as a user name and password that is used to access
external sites is entered. Click plus to add the parameters. The Add new parameter dialog box
appears with these fields:

◦ Name: Enter a name for the parameter that is used to access an external application. For example,
 Client ID.

◦ Value: Enter a value for the parameter.

◦ Secure parameter: Select this check box to mask this value. When you save this value, the Edit
Plugin and View Parameters pages show 'dots' in this field.

◦ Click Add. The parameter is added to the plugin.

You can add a maximum of 20 key-value textbox pairs, after which the icon is hidden. The
maximum size of the parameters allowed is 5 KB. This size includes the data structure overhead and
doesn't correspond to the length of keys and values of strings. Changes to the secure data are sent
to Oracle Fusion Field Service during the next synchronization. The data is sent to the plugin when
the next message is sent.
If you open the values saved earlier, the application deletes them. You must add them again.

Available properties The properties that you want to be passed to the plugin or updated by the plugin. These properties
are added as read-only and are available through the Plugin API. Click the field to select the
properties. You need not define the visibility for the properties explicitly.

These properties can't be updated through the Plug-in API:

◦ activity_capacity_categories

◦ auto_routed_to_date

◦ auto_routed_to_provider_id

◦ aworkzone

◦ date

◦ time_delivered

You cannot add these properties to the list of Available properties:

◦ activity_alerts

◦ access_hours

◦ activity_compliance

◦ atravelarea

◦ travel_estimation_method

◦ service_window_end

238

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

◦ service_window_start

◦ eta_end_time

◦ pid (it's still available for the Resource entity)

5. Click Add.

Add an External Application
You can add an external application as a plugin and it will be opened as a web page in a new window, or the same
window within Oracle Fusion Field Service.

1. Click Configuration > Forms & Plugins.
2. Click Add Plugin.
3. Click External Application and then click Next.
4. Complete these fields:

Field Name Description

General Information section

Label A mandatory field defining a unique action or plugin label.

Entity Entity (activity, inventory, required inventory, resource, service request, user) to which the action
or plugin is to be related. For example, if you select Inventory, the action will appear only in the
contexts related to inventory. Leave the field blank for the action to be available in all contexts of all
the entities.

Visibility rules similar to The base action from which the plugin is to be derived, if needed. When a base action is selected,
the resulting plugin functions per the same rules as the base action. The base action affects only the
visibility of buttons and not the functioning of the plugin. It appears only in the contexts in which
the base action appears and is shown or hidden according to the same visibility conditions. For
example, if start_activity is selected as the base action for a plugin, the plugin is only be shown in
the context of a pending activity when there is no started activity in the same route, similar to the
Start action. The list of available base actions is filtered according to the Entity that is selected.

Name (English) A mandatory field defining the plugin name in the English language. The action or plugin appears
under this name in the actual context.

Name (other languages) Plug-in name translations to other languages, if used.

Plugin settings section

Fields for the Open as Web Link Option

Open as Web Link Shows the fields to open an external web page from the plugin.

URL The path to a URL for the external plugin. This URL processes the HTML5 application and it runs the
plugin in the entire browser window. The URL must start with the protocol (https) and must point to
the main file of the plugin.

239

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

Oracle Fusion Field Service adds the backUrl parameter to the URL automatically. This parameter
contains the address of the current page of Oracle Fusion Field Service.

POST Data The data that you want to be sent to the external plugin.

Disable button in Offline Determines whether you want to disable the plugin when Oracle Fusion Field Service is offline. Clear
this check box for the plugin to work in offline mode.

Open inside Field Service Determines whether the plugin uses the iframe layout. If the field is cleared, the plugin’s URL is
opened in a new browser tab or window.

Show scrollbars on Dialog Determines whether the window in which the plugin runs has scroll bars. This setting is applicable to
the Legacy Manage application.

Dialog Width in Pixels/ Dialog Height in
Pixels

The width and height of the plugin window in pixels. This setting is applicable to the Legacy Manage
application.

Fields for the Open as another Application on the same device Option

Open as another Application on the same
device

Shows the fields to open a native app from the plugin.

Native application name The name of the application to be launched by the plugin.

User-Agent string mask The browser in which the application is to be launched. The Native application link will be available
in GUI, if the browser user agent matches the specified mask. For example, Safari, Android, iPad,
 iPhone.

Launch application URL The template for building the external application URL from properties. The URL template
contains parameters key and placeholders for parameters value. Properties are interpolated with
placeholders, surrounded with braces "{" and "}". For example: http://www.example.com/android?
type=LOCATION'&'action=View'&'alt={acoord_y}'&'long=| {acoord_x}'&'address={caddress|
url}'&'city={ccity|url}'&'state={cstate}'&'zip={czip}

Add The button to add another User-Agent string mask.

5. Click Add.

Configure a Plugin to Add to the Main Menu
You can add plugins that are created as HTML5 applications to the Main menu. You cannot add native application
plugins.

1. Click Configuration > Forms & Plugins.
2. Click Add Plugin.
3. Complete these fields on the Add Plugin page:

Field Name Description

General Information section

240

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Field Name Description

Name (English) A mandatory field defining the plugin name in the English language. The action or plugin appears
under this name in the actual context.

Name (other languages) Plugin name translations to other languages, if used.

Label A mandatory field defining a unique action or plugin label.

Entity Entity (activity, inventory, required inventory, resource, service request, user) to which the action
or plugin is to be related. For example, if you select Inventory, the action will appear only in the
contexts related to inventory. Leave the field blank for the action to be available in all contexts of all
the entities.

Visibility rules similar to The base action from which the plugin is to be derived, if needed. When a base action is selected,
the resulting plugin functions per the same rules as the base action. The base action affects only the
visibility of buttons and not the functioning of the plugin. It appears only in the contexts in which
the base action appears and is shown or hidden according to the same visibility conditions. For
example, if start_activity is selected as the base action for a plugin, the plugin is only be shown in
the context of a pending activity when there is no started activity in the same route, similar to the
Start action. The list of available base actions is filtered according to the Entity that is selected.

Type The type of plugin you want to use. Select HTML5 application.

This means, the plugin uses an external application to extend the functionality. The HTML5 plugin is
a URL of an external resource that is opened in a new window or in an iframe.

Fields for the HTML 5 Application Option

Use Plugin API Determines whether you want the plugin to communicate with Oracle Fusion Field Service using the
Plugin API. Clear this check box.

When you do not use the Plugin API, the URL is opened in a new tab, window, or iframe. To interact
with Oracle Fusion Field Service you must pass some data (such as activity id, resource name) to the
plugin using the placeholders in the "POST Data" and "URL" fields.

URL The path to a URL (for external plugins). This URL processes the HTML5 application and it runs the
plugin in the entire browser window. The URL must start with the protocol (https). The URL must
point to an external resource, which is opened either in a new window or inside Oracle Fusion Field
Service in an iframe (if the “Tab or iframe layout” option is selected).

POST Data The data that you want to be sent to the external plugin. You can use only User entity fields as
placeholders.

Disable plugin in offline Determines whether you want to disable the plugin when Oracle Fusion Field Service is offline. Clear
this check box for the plugin to work in offline mode.

Open in iframe Determines whether the plugin uses the iframe layout. If you clear the field, the plugin’s URL is
opened in a new browser tab or window.

4. Click Save.
If you set the external plugin as the first item on the Main menu context layout, the menu item is displayed in the
correct order. However, the plugin does not open when a user logs in to the application. Instead, a standard page or a
plugin that you have created using the Plugin API Framework that is next in the order is opened.

Available Placeholders for POST Data for Main Menu Plug-Ins
You can use only User entity fields as placeholders for the POST data and URL.

241

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Here are the fields that you can use as placeholders:

Placeholder User Property

allow_desktop_notifications Popup Notification

allow_vibration Vibration

design_theme Design Theme

main_resource_id Main Resource

mobile_activity_count Mobile Activity Count

mobile_inventory_count Mobile Inventory Count

mobile_provider_count Mobile Resource Count

sudate_fid Date Format

sulong_date_fid Long Date Format

sustatus Status

sutime_fid Time Format

su_zid Time zone

uid User ID

ulanguage Language

ulogin Login

uname User

uname User Name

user_type_id User Type

Some of these properties are available only if you add them to an application page, either directly or through a button
for a Form for which you have configured these fields.

Plugin Configuration Screen

The new "Applications" section has been added to the screen for hosted and external plugins.

Each Application in this section has the following attributes:

• Key - identifier of an application that's used in plugin code that should be associated with the existing
application in Field Service.

242

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

• Comment - description of the required application that can provide more details about this API (e.g. "for
obtaining inventory list from Fusion SCM”).

Once the plugin is imported with XML file and the required applications were specified there, then configurator will see
keys and descriptions in the list of ‘Application’ section, then they can select an appropriate application from the drop
down list. In case the application is not associated, then the API access is not provided to the plugin. In case the selected
application is not of a supported type, then the mobile plugin framework will return an Error.

If the plugin was added from the Forms & Plugins screen, the Application section is empty by default and the
Configurator can add it from scratch, by clicking the ‘Add’ button, specifying the application identifier in the Key field
and adding necessary Comment.

Control Field Service REST API calls according to current user visibility

In case you want to restrict access to the REST API calls by JWT access token to the visibility of the current user, the
checkbox “Application details" should be enabled. If a REST API call tries to obtain data from a resource outside of the
Visible Resources list of the current user, it will be denied.

Change the Plugin Tile Appearance
Use the iconData parameter to change the appearance of the plugin button on the Landing page. You can change
the status text, icon image, and color of the plugin button. The status you can show includes number of processed
activities, status of the order, number of pending actions, and so on. When the data is synchronized successfully, you
can even change the icon to indicate it.

1. Determine the data that you want to display or update and the message through which you want to update.
2. Send the information that you want to display or update, in the iconData parameter.

iconData is available for close, initEnd, and sleep messages. The data is applied real time. That is, if the plugin is
woken up when the user is on the Landing page, the icon is updated immediately after the plugin sends the iconData
parameter in the sleep message. The iconData parameter includes these fields:

Field Type Limits Description

color String One of:

◦ "default"

◦ "highlight"

If the value is set to "highlight", the plugin's button on
the Landing page changes its color to get the user's
attention.

image Blob ◦ Max size: 64 KiB

◦ Allowed types:

- image/svg+xml

- image/png

Icon picture. It's recommended to use a scalable
monochrome white icon in SVG format.
If the bitmap picture is in PNG format, it must not be
smaller than 64x64 px.

text String Max length: 3 chars The short text that is shown as large title on the
plugin's button. May contain both letters and digits.

Example of the close Message:
{
var closeData = {
 "apiVersion": 1,

243

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

 "method": "close",
 "iconData": {
 "color": "highlight",
 "text": "117",
 "image": new Blob([
 '<?xml version="1.0"?>' +
 '<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" viewBox="0 0 64 64">' +
 '<rect x="16" y="16" width="32" height="32" fill="#fff" />' +
 '</svg>'
], { type: 'image/svg+xml' });
 }
}

window.parent.postMessage(closeData, origin);
}

Placeholders in the URL
You can use several placeholders in the plugin’s URL. The placeholders are replaced with the values of the
corresponding properties and are processed by the server that hosts the plugin

This table describes the placeholders.

Placeholder Description

{user_id}, {uid} ID of current user

{date} current date

{uname} User name

{ulanguage} ID of user language

{ulogin} User login

{su_zid} User timezone

{allow_desktop_notifications} Parameter defining whether the user allows HTML5 notifications

{allow_vibration} Parameter defining whether the user allows vibration alerts

Authentication
You can use the HTTP Basic or HMAC method of authentication to load the plugin's URL securely in the init stage.

HTTP Basic

The HTTP Basic method uses the standard method, which is a part of the HTTP 1.0 standard (RFC 1945) called Basic
Access Authentication. It works over HTTPS as well. Check whether your browser supports this, before you decide to use
this method. This table describes the three conditions you must fulfill to implement the HTTP Basic method.

244

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Condition Description

Oracle Fusion Field Service Configuration On the Forms & Plugins page, select "HTTP Basic" authentication type. Fill up the Login and
Password fields. These credentials are encrypted and saved to the Oracle Fusion Field Service
database.

Server Side Configure the web server on which the plugin sources are hosted to return the HTTP 401 Unauthorized
status, if you are requesting the configured plugin URL without the credentials. See the NGINX and
Apache documents for details.
The server must return the plugin content if its URL is requested with the HTTP header.
Authorization: Basic bXlsb2dpbjpteXBhc3M= Where bXlsb2dpbjpteXBhc3M= is a valid
Base64 - encoded pair of login:password. The credentials configured for the plugin in the Add plugin
and Modify plugin pages must be accepted as valid.

Client Side When the user logs in, Oracle Fusion Field Service reads the credentials from the database
and loads the plugin URL into the hidden iframe as follows: <iframe src="https://
mylogin:mypass@example.com/myPlugin.php"/> This way, the browser loads the plugin sources
over HTTPS using HTTP Basic Authentication:

GET /myPlugin.php HTTP/1.1
Host: example.com
Authorization: Basic bXlsb2dpbjpteXBhc3M=

HMAC Authentication

HMAC (Hash based message authentication code) lets you sign HTTP requests and their GET parameters. The HMAC
signature ensures that the URL is generated by an authorized source. The MAC signature (digest) is added as an
additional GET parameter at the end of a query string: <!CDATA[[http://www.example.com/path?user=test§ion=D
%26G&activity=33&hmac=D2BJn9P1EcLhaFrNhbAzCQTVQXCCwCBQsrg8V6h4YoU%3D]]>

HMAC Function Algorithm

The algorithm is defined in RFC 2104 , and can be very roughly described as: hmac = BASE64(HMAC-SHA-256(data,
SHA256(SecretKey))). SHA - 256 accepts SecretKey as a string and returns the hash string. The secret key is configured
per plugin in the Add plugin and Modify plugin pages in Oracle Fusion Field Service Core Application, hashed by
SHA256, encrypted and stored in the database. HMAC-SHA-256 accepts data and key as strings and returns a binary
array of HMAC signature. BASE64 accepts the binary array and returns BASE64 encoded string. Data required for
generating HMAC is query resource location with query parameters sorted lexicographically:

• Remove the protocol identifier from the URL together with colon and slashes (http:// or https://).

• Remove the resource name and port from the URL.

• Append query location to the output string.

• If there are query parameters append the character ? to the output string.

• Decode every name and value for URL parameters.

• Sort the list of parameters alphabetically by name.

• For each name/value pair:

◦ Append the encoded name to the output string.

◦ Append the ‘=’ character to the output string.

◦ Append the encoded value to the output string.

245

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

• If there are more key/value pairs remaining, append an & character to the output string.

Example: Request URL: http://www.example.com/path?user=test§ion=D%26G&activity=33

SecretKey : 'mysecret'

1. http://www.example.com/path?user=test§ion=D%26G&activity=33 => www.example.com/path?
user=test§ion=D%26G&activity=33

2. www.example.com/path?user=test§ion=D%26G&activity=33 => /path?user=test§ion=D
%26G&activity=33

3. data = '/path'
4. data = '/path?'
5. ['user'='test','section'='D&G','activity'=33]
6. ['activity'=33,'section'='D&G','user'='test']
7. ['activity'=33,'section'='D&G', 'user'='test'] => data
8. data = '/path? activity'
9. data = '/path? activity='

10. data = '/path? activity=33'
11. data = '/path? activity=33&'
12. data = '/path? activity=33§ion=D %26G&user=test'

hmac = BASE64(HMAC-SHA-256('/path?activity=33§ion=D%26G&user=test',SHA256('mysecret'))) =
BASE64(HMAC - SHA - 256('/path? activity=33§ion=D %26G&user =
test' ,'652c7dc687d98c9889304ed2e408c74b611e86a40caa 51c4b43f1dd5913c5cd0')) =
BASE64([0f,60,49,9f,d3,f5,11,c2,e1,68,5a,cd,85,b0,33,09,04,d5,41,70,82,c0,20,5 0,b2,b8,3c,57,a8,78,62, 85]) =
'D2BJn9P1EcLhaFrNhbAzCQTVQXCCwCBQsrg8V6h4YoU='

The full signed URL is 'http://www.example.com/path?user=test§ion=D
%26G&activity=33&hmac=D2BJn9P1EcLhaFrNhbAzC QTVQXCCwCBQsrg8V6h4YoU%3D'

Sensitive Data
You can set key-value pairs of sensitive data that is securely stored by Oracle Fusion Field Service on both, client and
server sides. Examples of sensitive data include passwords and endpoints for Oracle Fusion Field Service Core API or
external APIs.

Sensitive data is passed to the plugin through the plugin API in decrypted form, so the plugin can access APIs or third-
party services without having to store and secure the credentials. The plugin stores the sensitive data in a JavaScript
variable every time it receives a message from Oracle Fusion Field Service. Changes to this data are sent to Oracle
Fusion Field Service during the next synchronization. This data is sent to the plugin when the next message is sent. The
plugin also receives the up-to-date data with every message.

Configure Sensitive Data

You add sensitive information in the Secure parameters section on the Configuration > Forms & Plugins > Add/
Modify plugin page. You can add up to 20 key-value pairs. When the plugin is modified, JSON is read from the
database, decrypted, parsed, and displayed as key-value text box pairs, maintaining original order. Key and values are
validated against length limitations in this way:

• Key-value pairs are translated to JSON.

• Length of the resulting JSON string (in bytes) is displayed on the page.

• If the length exceeds 5 KB, a warning message is shown.

246

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Additionally, to prevent request forging, the resulting string is validated on the server to be:

• Valid JSON string

• Has correct format

• Doesn't exceed length limit

If these requirements aren't met, a warning message is shown. Each message sent by Oracle Fusion Field Service Core
Application to a plugin, where the method is one of the supported methods, contains the field securedData. Format of
the messages for other methods, for example, 'error' does not change. The message contains securedData, if at least
one key-value pair is configured on the Configuration > Forms & Plugins > Add/Modify plugin page.

Supported Methods

The securedData parameter is available for the messages of init, open, and wakeup methods.

Format of securedData

securedData is an object, where:

• Each key is a String, which equals to the contents of "key" text input on the Add/Modify plugin page.

• Each value is a String, which equals to the contents of "value" text input for the corresponding key on the Add/
Modify plugin page.

• Order of entries is not guaranteed to be identical to the order of key-value pairs on the Add/Modify plugin
page.

Example of open method data for Supervisor Plug-in

If your configuration is as given in the screenshot:

Here's the message the plugin receives when opened:
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "resource": {
 "external_id": "33001",
 "manager": "admin"
 },
 "activityList": {
 "4224031": {
 "aid": "4224031"
 }
 },
 "inventoryList": {
 "21064417": {

247

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

 "invid": "21064417"
 }
 },
 "securedData": {
 "ofsInstance": "sunrise.test",
 "ofsRestEndpoint": "https://<instance_name>.fs.ocs.oraclecloud.com/rest/",
 "ofsRestClientId": "sample_app",
 "ofsRestClientSecret": "d1e0f03636747b968cd66ead50bd53984e1f1393a3e1503c4e4be9421be00aa5"
 }
}

Add a plugin to a page
You add a plugin to a context layout page, so that Mobile Workers can open it. You can configure the parameters for a
button to send the parameters to the plugin, or to open a specific page, or another plugin.

1. 1. Click Configuration > User Types.
2. Select the type of user for which you want to add the plugin.
3. Click Screens.
4. Find and click the page to which you want to add the plugin.

The Visual Form Editor page appears. Plug-ins are available not only on the Visual Form Editor, but on old context
layout structures such as Parts Details as well. On such pages, add an action and select a plugin from the list.

5. Drag-and-drop the Button element to the section from where you want to invoke the plugin.

Note: You cannot add buttons to context layout structures that are responsible for changing the state of an
activity, simultaneously with submitting data. Some of the context layout structures where you cannot add buttons
are Add activity, Not done activity, Install inventory, End activity. Further, you cannot remove or change the
visibility of the two predefined buttons on these pages: Dismiss and Submit. This is to preserve the data integrity
within transitions between states.

6. Click the button.
7. In the Standard action screen field, click the pencil icon.
8. Select Plug-ins.
9. In the Screens list, select the name of the plugin that you want to open and click OK.

The label of the plugin is displayed in the Plug-in field. By default all plugins have a visibility of Read-only.
10. In the Visibility section, add the conditions based on which the plugin is visible.

248

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

11. In the Translations section, add a name for the plugin. [Optional]
This name is displayed on the page from which the plugin will be invoked. This screenshot shows the Visual Form
Editor page where a plugin is added to a Button element:

If you retain the default name and if you happen to change the name of the plugin later, the new default name is
populated automatically.

12. To configure the parameters:
a. Click Add new in the Parameters section.
b. Enter a name for the parameter in the Name field.

For example, enter defaultScreen to define a page as the default page in the plugin. The maximum length
of the name that you can enter is 248 characters.

c. Enter a value for the parameter.
For example, enter part_order to display the Part order page as the default page in the plugin. The
maximum length of the value that you can enter is 4000 characters.

d. Click Save.
e. Repeat the procedure for all the parameters that you want to configure.

The total combined length of all parameter names and values must not exceed 5000 characters. These
parameters are not encrypted when sent to the plugin.

13. Click Save on the Visual Form Editor page.
The plugin is added to the selected page.

249

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Plugin Buttons and Icons
Let's say you use a plugin that contains several pages and you want to configure links that open different pages of the
plugin. Or, you want to configure different icons for different tiles of the plugin on the Landing page and change the
icon of the tile according to the data in the plugin.

You can configure the plugin for all these scenarios, using the Parameters option:

• Configure parameters for a button associated with a plugin: You can specify custom parameters for each
button of a plugin. For example, when you click the button, you can open a specific page in the plugin. You can
implement this on multiple pages, by uploading a single plugin archive.

• Update icons for a button on the Landing page: You can update the appearance of each button on the Landing
Page separately. You can change the icon when you open Oracle Fusion Field Service Core Application
('initEnd'), after closing ('close') a plugin, or when a plugin receives new data in the background mode ('sleep').
You can also associate each plugin's page or function with its own icon and text. You can update each icon as
needed, no matter with which button you open the plugin.

How it Works

The data sent to the plugin during initialization includes the list of all buttons configured for each plugin with the key-
value pairs of configured parameters. When a user opens the plugin, the ID of the button is passed to the plugin with
the parameters configured for this button. When a user closes the plugin, you can redirect the user to another plugin,
as if the plugin has been opened through a button, and parameters that are configured for this button are passed to the
plugin.

Modify the Icons and Text of a Plug-In Tile
You can implement a flexible flow for the buttons of a plugin on the Landing Page. You can change the icons on the
buttons individually, or all at once. The icon can be changed when the Oracle Fusion Field Service Core Application is
opened ('initEnd'), after plugin is closed ('close'), or when a plugin gets new data in the background mode (‘sleep’). See
the Example of Changing Buttons in a Plug-in topic to understand how it works.

List of all buttons that are configured for a plugin is sent to the plugin in the 'buttons' field of the 'init' message. This
field is a list of objects that contain the 'buttonId' and 'params' fields. buttonId is the 'context layout item id' of the
button. 'params' is an object that represents the parameters that are configured for the corresponding context layout
item.

The 'open' message contains the buttonId and openParams fields. buttonId is the 'context layout item id' of the button
that the user clicks to open the plugin. openParams contains the parameters that are configured for this button.

If a plugin is opened by sending the backScreen: "plugin_by_label" from another plugin, the buttonId and openParams
fields are sent in accordance with the backPluginButtonId param of the 'close' message. If the backPluginOpenParams
field of the 'close' message contains the key, which is already configured for the button, the openParams field contains
the value that's sent in backPluginOpenParams.

If backPluginButtonId was not set, the 'open' message doesn't contain the buttonId and openParams fields. This table
shows the data in the 'init', ‘open’ and ‘close' messages that is used for changing appearances:

250

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Message Type Field Description

init buttons List of objects that contain the 'buttonId' and 'params' fields.

• buttonId: Context layout item id of the button.

• params: Object that represents the parameters, configured for
the corresponding context layout item.

buttonId Context layout item id of the button that the user clicks to open the
plugin.

open

openParams The parameters that are configured for this button.

buttonId Context layout item id of the button that the user clicks to open the
plugin.

openParams The parameters that are configured for this button.

close

backPluginButtonId

init Message
{
 "apiVersion": 1,
 "method": "init",
 "attributeDescription": {
 "aid": {
 "fieldType": "field",
 "entity": "ENTITY_ACTIVITY",
 "gui": "text",
 "label": "aid",
 "title": "Activity ID",
 "type": "string",
 "access": "READ_WRITE"
 }
 },
 "buttons": [
 {
 "buttonId": "17155",
 "params": {
 "defaultScreen": "order-part",
 "someOptions": "{showCart: true}"
 }
 },
 {
 "buttonId": "17156",
 "params": {
 "defaultScreen": "search-parts"
 }
 }
]
}

open Message
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "resource": {
 "pid": 8100059
 },
 "activityList": {

251

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

 "4225376": {
 "aid": "4225376"
 }
 },
 "inventoryList": {},
 "buttonId": "17155",
 "openParams": {
 "defaultScreen": "order-part",
 "someOptions": "{showCart: true}"
 }
}

close Message: Navigate to Another Plug-in
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "plugin_by_label",
 "wakeupNeeded": false,
 "backPluginLabel": "sample_plugin",
 "backPluginButtonId": "17155",
 "backPluginOpenParams": {
 "someOptions": "{ anotherOption: 123 }",
 "thirdParam": null
 }
}

open Message: Navigated from Another Plug-In
{
 "apiVersion": 1,
 "method": "open",
 "entity": "activityList",
 "resource": {
 "pid": 3000001
 },
 "activityList": {},
 "inventoryList": {},
 "buttonId": "17155",
 "openParams": {
 "defaultScreen": "order-part",
 "someOptions": "{ anotherOption: 123 }",
 "thirdParam": null
 }
}

close Message: Update Icons
{
 "apiVersion": 1,
 "method": "close",
 "backScreen": "default",
 "wakeupNeeded": false,
 "buttonsIconData": {
 "17156": {
 "color": "highlight",
 "text": "123",
 "image": {}
 },
 "17155": {
 "color": "default",
 "text": null,
 "image": {}
 }
 }
}

252

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

Example of Changing Buttons in a Plugin
Consider the example of a catalog and a cart. The Order List Button changes its color when the supervisor approves the
order.

1. There's a plugin, which implements three pages: "Catalog", "Cart" and "Order List". Each button has a
corresponding icon:

2. User clicks "Catalog" and the plugin shows the list of items available for order.
3. User selects the items to order and closes the plugin page.
4. The plugin updates the "Cart", so that it shows the count of the items in the cart:

5. User clicks "Cart" and the plugin shows the list of ordered items.
6. User confirms the order and closes the plugin page.

253

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

7. The plugin clears the counter on the "Cart" button and updates the "Order List" button so it shows the number
of orders for approval:

8. The plugin prompts Oracle Fusion Field Service to run it in the background every five minutes to get the
updated information from the server.

9. The supervisor of the user approves the order.
10. The plugin runs in the background and receives the updated status of the order from the server. It clears the

counter on the "Order List" button and highlights it:

User sees that the order is processed and approved without the need to reopen the plugin.

Export and Import Plugins
When you've plugins that work in a similar way, you can export the properties and configuration from one plugin and
import them into another. You can export or import multiple plugins simultaneously.

1. Click Configuration > Forms & Plugins.
2. Click Export in the header.
3. On the Export Forms or Plugins dialog box, select Export plugins.
4. Select the checkbox against the plugins that you want to export.

A counter shows the total number of plugins available in the environment and the number you've selected.
5. Click Export.

254

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

The selected plugins are exported with their configuration as a single .xml file. Plug-ins with secure parameters are
exported with the keys, but without their values.

6. To import a plugin configuration, click Import > Plugins.
7. Drag the XML file that you've exported.
8. Click Continue.

The plugins are validated and errors, if any, are displayed.
9. Fix the errors and import the file again.
10.Click Apply.

The plugins are imported.

255

Oracle Fusion Field Service
Mobile Plugin Framework

Chapter 4
Use a Custom Plugin

256

Oracle Fusion Field Service
Mobile Plugin Framework

Revision History

Revision History
This document will continue to evolve as existing sections change and new information is added.

Date What’s Changed Notes

February 2023 These topics are updated:
• Add a Hosted Plug-In

• open Method

These topics are added:

• Add a Standard Plug-In

• Modify the Settings of a Standard Plug-In

• Change the Code of a Standard Plug-In

• Install the Sample Plug-In

• Overview of Debrief Plug-In

• Configure the Debrief Plug-In

• Install the Debrief Plug-In

• Add the Inventory Types

• Add the Parts Catalog

• Add the Debrief Plug-In to a Page

• Add an External Plug-In

• Add an External Application

This topic is deleted:

• A Sample Plug-In

August 2022 These topics are updated:
• callProcedure Error Handling

• Sample Plug-In

These topics are added:
• share Procedure

• Configure a Custom Domain for the Where is My Technician
URL

February 2022 These topics are added:
• print Procedure

• updateIconData Procedure

• updateButtonsIconData Procedure

• allowedProcedures Field

These topics are updated:
• Export and Import Plug-Ins

257

Oracle Fusion Field Service
Mobile Plugin Framework

Revision History

Date What’s Changed Notes

• callProcedure Error Handling

• callProcedure Method

• wakeup Message

• Plug-In Lifecycle

• Redirection with the close Method

• Sample Plug-In

November 2021 These topics are added:
• update Method

• updateResult Method

These topics are updated:
• Supported Activity Actions

• init Method

• Error Codes for Inventory Actions

• A Sample Plug-in

August 2021 These topics are updated:
• The Plug-in Framework

• open Method

May 2021 These topics are added:
• Available Fields for the 'queue' Entity Collection

• Supported Queue Actions

• Error Codes for Queue Actions

These topics are updated:

• open Method

• close Method

• Sample Plug-In

February 2021 These topics are updated:
• init Method

• open Method

• Non-Serialized Inventory Update

• Example of the close Message

258

	Mobile Plugin Framework
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Diversity and Inclusion
	Contacting Oracle

	Overview of the Plugin Framework
	The Plugin Framework
	About the Plugin API
	Accessing REST APIs from the Plugin Framework
	Accessing Oracle Fusion Field Service REST API
	Create Oracle Fusion Field Service Application
	Configure Oracle Fusion Field Service Application to a Plugin
	Sample Plugin to Obtain Access Token

	Accessing OAuth supported API
	OAuth Authorization Code Flow – getAuthorizationCode Procedure
	IDCS Configuration for OAuth Authorization Code Flow
	Simple Authorization Plugin (Pure JavaScript)
	Use VBCS Application as an Oracle Fusion Field Service External Plugin for REST API Access
	Create a VBCS Application for Oracle Fusion Field Service Plugin Integration

	Sample Plugin for Authorization Flow
	Obtain and Use a Refresh Token
	Troubleshooting

	OAuth User Assertion Flow (getAccessToken procedure)
	Oracle Fusion Field Service Application Configuration for OAuth User Assertion
	IDCS Configuration for OAuth User Assertion
	Plugin Configuration to Connect Oracle Fusion Field Service Application
	Sample Plugin to Obtain Access Token
	VBCS Application as an Oracle Fusion Field Service External Plugin
	Create a VBCS Application
	Configure VBCS Application as an Oracle Fusion Field Service External Plugin
	Troubleshooting

	Obtain and Use a Refresh Token

	OAuth Client Credentials Flow (getAccessToken procedure)
	Oracle Fusion Field Service Application Configuration for OAuth Client Credentials Flow
	IDCS Configuration for OAuth Client Credentials Flow
	Plugin Configuration to Connect Oracle Fusion Field Service Application
	Sample Plugin to Obtain Access Token (Client Credentials)
	VBCS Application as Oracle Fusion Field Service External Plugin
	Obtain and Use a Refresh Token

	getAccessToken Procedure Errors
	Related Standards

	Plugin Lifecycle
	Plugin Rules and Guidelines
	Flowcharts

	Plugin API Messages
	Message Formats
	Available Methods
	ready Method
	init Method
	initEnd Method
	open Method
	close Method
	Error Types and Error Codes
	Property Value Length and Limits
	Examples of close Method with File Properties
	Activity Status and Inventory Pool Changes
	Inventory Glossary
	Non-Serialized Inventory Update
	Inventory Actions
	Order of Processing of Actions
	Inventory Action Parameters
	Supported Inventory Actions
	Example of the close Message
	Error Types for Inventory Actions
	Error Codes for Inventory Actions

	Supported Activity Actions
	Background Activity
	Redirection with the close Method
	Examples of close Message with Redirection
	Navigation with the close Method

	error Method

	update Method
	updateResult Method
	callProcedure Method
	scanBarcode Procedure
	openLink Procedure
	getPartsCatalogStructure Procedure
	getParts Procedure
	getAuthorizationCode
	searchParts Procedure
	searchPartsContinue Procedure
	Get Access Token
	print Procedure
	updateIconData Procedure
	updateButtonsIconData Procedure
	Errors of updateIconData and updateButtonsIconData
	Share Procedure
	allowedProcedures Field
	callProcedure Error Handling

	callProcedureResult Method
	sleep Message
	wakeup Message
	error_codes_wakeup

	Supported Functions
	Camera support in Mobile Plugin Framework
	Mask Secure Plugin Parameters

	Avoid Cross-Domain Communication Blocking

	Use a Plugin
	Add a Plugin
	Modify the Settings of a Plugin
	Change the Code of a Plugin
	Install the Sample Plugin
	Metadata API for Plugin Installation
	Debrief Plugin
	Configure the Debrief Plugin
	Activate the Debrief plugin
	Add the Inventory Types
	Add the Parts Catalog
	Add the Debrief Plugin to a Page

	Asset Details Plugin
	Activate the Asset Details Plugin
	Modify the Parameters of Asset Details Plugin
	Extend the Asset Details Plugin
	Asset Details Plugin APIs and Roles

	Order and Receive Parts using Parts Ordering Plugin
	Activate the Parts Ordering Plugin
	Add the Activity Type Required for the Parts Ordered Plugin
	Add the Inventory Types Required for the Parts Ordered Plugin
	Add the Parts Cart and Ordered Parts Buttons
	Integrations for Parts Ordering Plugin

	Use a Custom Plugin
	Types of Plugins
	Add a Plugin Archive
	How Plug-Ins are Hosted
	Prerequisites to Upload a Plug-In
	Add a Hosted Plug-In
	Working Offline
	Modify, Download, or Delete an Archive

	Add an External Plugin
	Add an External Application
	Configure a Plugin to Add to the Main Menu
	Available Placeholders for POST Data for Main Menu Plug-Ins
	Plugin Configuration Screen

	Change the Plugin Tile Appearance
	Placeholders in the URL
	Authentication
	Sensitive Data

	Add a plugin to a page
	Plugin Buttons and Icons
	Modify the Icons and Text of a Plug-In Tile
	Example of Changing Buttons in a Plugin

	Export and Import Plugins

	Revision History

