
Oracle Responsys

SOAP API Developer’s Guide — Standard

November 2020
Documentation for developers who use the Oracle Responsys SOAP API to access
the data, content, and campaign management features of Oracle Responsys.

IMPORTANT: The Oracle Responsys Web Services SOAP API is in maintenance
mode. There will be no new enhancements to the SOAP API.

Oracle Responsys continues to support the SOAP API but encourages you to use
the REST API. Documentation for the REST API can be found on the Responsys
documentation page:
https://docs.oracle.com/cloud/latest/marketingcs_gs/responsys.html

Oracle Responsys SOAP API Developer’s Guide

E65152-18

Copyright © 2020, Oracle and/or its affiliates. All rights reserved.
Information in this document is subject to change without notice. Data used as examples in this
document is fictitious. No part of this document may be reproduced or transmitted in any form or by
any means, electronic or mechanical, without prior written permission of Oracle Responsys.

Address permission requests, comments, or suggestions about Oracle Responsys documentation by
creating a MOS Service Request at https://support.oracle.com.

Contents — iii

Contents

Oracle Responsys API functionality . .1

Oracle Responsys platform and data model overview .4
Oracle Responsys Platform .4
Oracle Responsys Object Data Model .4

API Call Processing . .7
How Enactment Batching Affects Processing . .8

Access Controls . .8
Organizational access control . .8
Functional access control .9
Login IP enforcement access control . .9

Getting started with the Oracle Responsys API . .9
Authenticate Using Username and Password (Login) . 18
Logout . 19
Authentication with Certificates (authenticateServer + loginWithCertificate) 19
AuthenticateServer . 21
LoginWithCertificate . 22
CreateContentLibraryFolder. . 24
CreateFolder. . 24
DeleteContentLibraryFolder. . 25
DeleteFolder. . 25
DoesContentLibraryFolderExist . 26
ListContentLibraryFolders . 26
ListFolders . 27

List Management API calls. . 27
MergeListMembers. . 27
MergeListMembersRIID . 28
DeleteListMembers. . 29
RetrieveListMembers. . 30

Table Management API calls . 31
CreateProfileExtensionTable . 31
Response. . 31

iv — Contents

CreateTable . 31
CreateTableWithPK. . 32
DeleteProfileExtensionMembers . 33
DeleteTable . 34
MergeIntoProfileExtension . 34
MergeTableRecords . 35
MergeTableRecordsWithPK . 36
DeleteTableRecords . 37
RetrieveTableRecords . 38
RetrieveProfileExtensionRecords . 38
TruncateTable . 39

Content Management API calls . 40
CopyContentLibraryItem. . 40
CreateContentLibraryItem. . 41
CreateDocument . 41
DeleteContentLibraryItem. . 42
DeleteDocument . 42
GetContentLibraryItem . 43
GetDocumentContent . 43
GetDocumentImages. . 44
MoveContentLibraryItem . 44
SetDocumentContent . 45
SetDocumentImages . 45
UpdateContentLibraryItem . 46

Campaign Management API calls . 47
GetLaunchStatus . 47
LaunchCampaign . 48
MergeTriggerEmail . 49
MergeTriggerSMS. . 50
ScheduleCampaignLaunch. . 51
TriggerCustomEvent . 52
TriggerCampaignMessage . 53

Interact Data Types . 55

Interact Objects. . 55
CharacterEncoding . 56
ContentFormat . 56
CustomEvent . 56
DeleteResult . 56
EmailFormat . 57
Field. . 57
FieldType. . 57

Contents — v

FolderResult . 57
ImageData . 58
InteractObject . 58
LaunchPreferences . 58
LaunchResult . 59
ListMergeRule . 59
LoginResult . 61
MatchOperator . 61
MergeResult . 61
OptionalData . 61
ProofLaunchOptions . 62
ProofLaunchType . 62
QueryColumn . 62
Recipient . 62
RecipientData . 63
RecipientResult . 63
Record . 63
RecordData . 63
ServerAuthResult . 64
TriggerData . 64
TriggerResult . 64
UnsubscribeOption . 65
UpdateOnMatch . 65
Result Codes. . 66
Exception Codes. . 67

Sample Code for Handling Exceeded Account Limits . 73
Sample Java code . 73
Sample C# code . 74
Sample PHP code . 74

Sample Code for Certificate Authentication (Java) . 75

vi — Contents

 1

Introducing the Oracle Responsys Interact API
The Oracle Responsys® Interact API (Oracle Responsys API) gives you standards-
based access to the data, content, and campaign management features of Oracle
Responsys. Using the Oracle Responsys API, you can build solutions for marketing
data automation, customize your campaign and content management processes, and
remotely trigger events for recipients thereby entering them into Oracle Responsys-
based life cycle messaging programs.

Specifically, you may want to use the Oracle Responsys API to:
 Synchronize marketing data between enterprise and partner systems
 Trigger individual email or mobile messages in response to some external event or

activity detected by your web site or enterprise information systems
 Automate the import of creative content needed for your campaigns
This conceptual diagram shows how to use the Oracle Responsys API.

Because the Oracle Responsys API is based on a service-oriented architecture (SOA)
and other industry-standard technologies such as SOAP and WSDL, your developers
can use their choice of programming language and development environment to gain
full programmatic access to your organization's Oracle Responsys account. The
Oracle Responsys API supports easy integration of your enterprise systems with the
campaigns and data stored in your Oracle Responsys account - enabling greater
automation of marketing tasks and processes.

Oracle Responsys API functionality

The Oracle Responsys API supports the following subset of the functionality of the
Oracle Responsys user interface and platform.
Session Management

 Login/Logout of an Oracle Responsys API session
 Retrieving the current Oracle Responsys timestamp

2 

List and Data Management

 Insert, update, and delete records in Lists and Supplemental Tables
 Retrieve records from Lists, Supplemental Tables, and Profile Extension Tables
 Retrieve updated list member records

Content Management

 Create or delete document objects
 Set or get image files for a document object
 Set or get the markup content for a document object

Campaign Management

 Launch a campaign
 Get campaign launch status

Lifecycle Messaging Programs

 Trigger campaign messages to individual recipients
 Trigger custom events for individual recipients

About Oracle Responsys API URLs

When your account is enabled for access to the Oracle Responsys API, the Responsys
Support team gives you the Web Services URLs you need to develop your projects.
Depending on where your account is set up in the Responsys data center, you’ll get
Web Services URLs for the Interact 2 pod, the Interact 5 pod, or the Interact 8 pod.

Development environments

The Oracle Responsys API works with modern SOAP development environments
such as Visual Studio .NET, Apache Axis, and others. Development platforms vary in
their SOAP implementations and differences in implementation might prevent
access to some or all of the features in the API. If you are using Visual Studio for .NET
development, we recommend that you use Visual Studio 2003 or later.

Oracle Responsys maintenance and downtime

Oracle Responsys undergoes maintenance downtimes on a monthly or bi-monthly
schedule. During these downtimes, Campaign login sessions are not available.
Attempts to create a login session during downtimes return an error and client
applications need to take the appropriate action, which may include alerts to support
staff, integration job queuing, and/or scheduled re-tries.

Monitoring and throttling the frequency of API requests

Responsys monitors and throttles the frequency of API requests that are submitted
from each Oracle Responsys account. This is to ensure that the best possible level of
service is offered to API clients in a shared environment.

You can use the Get Throttling Limits REST API to obtain a list of API throttling
limits for key interfaces for your Responsys account. For more information about
using this API, see the Get Throttling Limits topic in the REST API for Oracle
Responsys Marketing Cloud Service guide.

https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCED/Throttling.html

 3

Depending on the type of API function, a specific frequency rate limit is imposed on
the basis of an account's number of requests made per minute for that function. For
example, the API function for triggering email messages can be called more times per
minute than the API function for launching a campaign. By default, the throttling
limit for high volume API functions (for example, triggering email messages or
merging records into a profile list) is set to 200 requests per minute.

When an account exceeds its allowable frequency rate limit for an API request, you
see the error code API_LIMIT_EXCEEDED and this message “You exceeded your allowable

limit to call the <function_name> API function. Please try again in a minute.” (See Sample

Code for Handling Exceeded Account Limits on page 73 for the appropriate block of sample
code.) On the other hand, if a specific user of an account is blocked from using
selected API functions, the user sees the error code API_BLOCKED with this message:
“The <function_name> is currently not available to this user. Please contact tech

support.”

Backward compatibility

Responsys supports backward compatibility as new versions of the Oracle Responsys
API are released. This means that an application created to work with a given Oracle
Responsys API version will continue to work with that same Oracle Responsys API
version in future platform releases. Each version of the Oracle Responsys API has a
unique endpoint URL. Your applications will continue to work with the Oracle
Responsys API endpoint URLs of previous releases. You can migrate your client
applications to newer Oracle Responsys API version endpoint URLs to take
advantage of enhanced functionality and bug fixes on a schedule that meets your
needs.

Responsys does not guarantee that an application written against one Oracle
Responsys API version will work with future API versions, because changes in
method signatures and data representations are often required to enhance Oracle
Responsys. However, we strive to keep the Oracle Responsys API consistent from
version to version with minimal if any changes required to port applications to newer
Oracle Responsys API versions. When an API version is to be deprecated, advance
end-of-life notice will be given at least 9 months before support for the API version is
ended. Oracle Responsys will directly notify customers using API versions planned
for deprecation.

Web service standards compliance

The Oracle Responsys API was implemented in compliance with these specifications:
 Simple Object Access Protocol (SOAP) 1.1

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

 Web Service Description Language (WSDL) 1.1
http://www.w3.org/TR/2001/NOTE-wsdl-20010315

 WS-I Basic Profile 1.1
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.1-2004-08-24.html

4 

Oracle Responsys platform and data model overview

Oracle Responsys is a comprehensive on-demand marketing platform with a fully
integrated suite of software applications—all built from the ground up on a single-
instance, multi-tenant architecture.

Oracle Responsys Platform

Oracle Responsys platform currently offers the following on-demand applications:
 Campaign? for multichannel campaign management lets you efficiently create, test,

execute, and measure high-volume, highly individualized marketing campaigns
across touch-points for compelling ROI.

 Program? for dialogue and event-based marketing helps you orchestrate and
automate intelligent, customer-driven dialogs at desired moments in the customer
lifecycle for more relevant, profitable interactions.

 Team? for marketing process management is designed to help you plan, coordinate,
and monitor marketing projects and resources for greater marketing efficiency and
improved collaboration among geographically distributed marketing teams.

 Insight? for predictive analytics and contact optimization uses cutting-edge
analytical models to identify your most relevant customer segments and produce
contact strategies optimized for each segment.

 Connect? for data integration makes it easy to integrate Oracle Responsys with your
enterprise or marketing information systems to better utilize marketing data and
gain a complete view of customers at every interaction point.

Oracle Responsys Object Data Model

You can use the Oracle Responsys platform to create and manage a variety of objects
to manage your marketing database and execute your marketing campaigns. The
Oracle Responsys object model consists of these types of objects:
 Programs let you assemble multi-campaign dialogs.
 Campaigns help you execute email campaigns in batch launch or triggered modes.
 Forms enable you to collect data via web forms (not currently supported via the

Oracle Responsys API).
 Documents consist of re-usable creative content that is available for use in any

Campaign or Form.
 Data objects enable you to store and use data for a variety of purposes.
 Lists and related objects (Filters, Proof Groups, Segmentations) store recipient audience

records and are used primarily for campaign targeting and personalization.
 Profile Extension Tables store additional information for each unique recipient in

your profile list table.
 Supplemental Tables and related objects (Filters, SQL object, Join objects) store miscellaneous

data that can be used to define a multi-table relational schema for advanced
levels of segmentation, targeting and message personalization.

 Link Tables store campaign link tracking information.

  5

The Oracle Responsys API provides control over many of these objects, allowing
client applications to create, change, or remove these objects in a programmatic way
to accomplish a variety of marketing automation goals.

Programs

Program objects define multi-step dialogs that involve a variety of campaign
messaging and routing rules based on individual profile and behavioral attributes.
Creation of an individual Program takes place in a visual, drag-and-drop user
interface that is part of Program. The Oracle Responsys API can be used to trigger
Custom Events which enter an individual into or affect the individual's routing in a
program.

Campaigns

Campaign objects define the basic behavior of an email campaign in terms of
audience, message, and settings.
 General properties include name, type (email or mobile), description,

categorization, and other fields that identify the campaign.
 Audience selectors include a list, inclusion filters, exclusion filters, and

suppression data.
 Message elements include From header, Reply-to header, Subject header, and

HTML/Text message documents.
 Settings control tracking options, auto-close behavior, default variables, and so

forth.
You can launch a campaign in bulk immediately or schedule it for a later launch. You
can also trigger messages from a campaign on demand using form handler rules or
program rules.

Forms

Form objects provide functionality for hosting web forms and collecting/processing
the data that is submitted. You can use forms to gather customer preferences or for
general purpose surveys. Data collected from forms can be merged into a list or
supplemental table. Form responses can trigger follow-up emails and custom events
that place the responder in a Program dialog.

Documents

Document objects contain the creative content used for campaigns and forms. The
two types of the document object are HTML and text. For example, an email
campaign usually consists of an HTML and a corresponding text document
reference. The campaign handles the display of HTML-only, text-only, or multi-part
emails automatically based on the recipient profile. Documents can be re-used across
multiple campaigns and forms, copied, edited, and deleted via Campaign.

6 

Lists and related objects

Lists are used to store audience database records—members of your audience might
be leads, prospects, customers, contacts, consumers, or visitors, depending on your
terminology. The standard set of fields in a list includes:
 Recipient ID (RIID), an internalOracle Responsys-assigned identifier that allows

the behavior of individual recipients to be tracked over time.
 Email address, mobile number, postal address, which are standard contact channel

fields
 Permission/Opt-in status fields for the various marketing channels (email, mobile,

postal)
 Email format preference (HTML or text)
 Derived fields for ISP and domain
 Last modified and created timestamps
In addition, lists can have a number of custom, user-defined fields that you use to
maintain a rich audience profile for targeting and personalization purposes.

» Note An account can have any number of lists, but it is recommended that a
single central list is used for a given enterprise marketing objective. In some
cases, it may make sense to have multiple lists, but use of multiple lists can
generate duplicate identities for the same individual audience member.

These are the list-based objects:
 List filters are user-defined segments that contain a subset of the members of a list.

You can use list filters to include or exclude members from any given campaign
launch.

 List segmentations are a way of understanding how a list breaks down in terms of a
given set of segments. For example, multiple purchasers, one-time purchasers, and
non-purchasers.

 List seeds store records that share the same schema for a given list, but are used for
testing and seeding of campaigns. These records do not represent real members
(prospects, customers, and so forth).

Profile extension tables

One or more Profile Extension Tables can be associated with a Profile List. There
must be a one-to-one relationship between a record in a Profile Extension Table and
its parent Profile List. Profile Extension Tables provide an attractive and efficient way
to organize and process audience data. Similar to data in Profile Lists, audience data
in Profile Extension Tables can be used for segmentation and targeting in Filters as
well as Programs.

  7

Supplemental tables and related objects

As its name indicates, a supplemental table is a collection of database records that
supplements a list with additional related information. The connections between a
table and a list is made via a data extraction key, or key field, that is present in both
the table and the list. Because you define the schema for any tables you create, you can
use them for a wide variety of purposes, ranging from message personalization and
dynamic content to storing form responses and campaign events.

There are several type of table-based data sources: tables, filters on tables, SQL views
(on tables and/or lists), and joins on tables.

» Tip When you use tables to extend a list to represent a multi-table relational
marketing database (where a variety of queries or joins could be made on the
table), be sure to index your tables to reduce the performance impact
associated with full table scans on tables being queried or joined.

Link Tables

Link Tables are used to store data about the links that are tracked for a campaign. The
schema for a Link Table is fixed and consists of the following fields:
 LINK_NAME defines user-friendly name for the link.
 LINK_URL defines the destination URL for a tracked link.
 LINK_CATEGORY defines a category for links and is available for reporting.
 EXTERNAL_TRACKING defines optional parameters that can be appended to the

query-string of the destination URL.

API Call Processing

Web Services API calls are processed synchronously. For most calls, you should
receive a response shortly after Responsys finishes processing the call. However, some
of the API calls trigger system actions that are performed after the system receives the
API call and sends the positive response. If those attempts fail for some reason, you
may have received a “true” response for the system receiving the API call, but the
failure would be recorded elsewhere.

Examples:
 API calls that trigger messages requiring personalization processing. Responsys

processes personalization asynchronously after the API call has returned a positive
response. If the personalization fails, then you may receive a positive API response,
even though the message was not sent to the recipient.

 Trigger custom event API calls. These calls do not actually send the email or
mobile messages. The triggerCustomEvent API call merely sends a group of
recipients (that is, enactments) to a Program. The Program subsequently uses its
own logic to determine if those enactments will be added to campaigns within that
Program. The campaigns ultimately send the email or mobile messages.

8 

How Enactment Batching Affects Processing

Oracle Responsys enables cross-channel orchestrations with email, SMS, and Push. If
you plan to use the trigger custom event API call with cross-channel marketing
programs, please review this section first.

Responsys requires the Enactment Batching feature to be enabled when using trigger
custom event with mobile app campaigns in Program. Otherwise, the mobile app
campaign events in the program will not be processed. However, there are some
trade-offs to consider before enabling the feature. When an account has Enactment
Batching enabled, triggering a custom event cannot be used to perform near-real-
time processing for any campaign type. Responsys will batch enactments together
into a single enactment group before entering the enactments into a program. This
results in at least a 10-minute delay between custom event triggering and entry into
a Program. If your account has Enactment Batching enabled and you need to send
near-real-time messages, such as event reactions, then we highly recommend
having your account enabled for the Real-time Events feature.

The Real-time Events feature is intended for Responsys customers who use the
Mobile App channel. Part of this feature enables you to create real-time custom
events. Real-time custom events are a special type of custom event that override how
Responsys handles enactments when the Enactment Batching feature is enabled.
When a real-time custom event is triggered, Responsys handles the enactments in
near real-time instead of batching them. This ensures that your customers receive the
campaign messages (including Email, SMS, Push, and In-app) without the delay
imposed by enactment batching. To have this feature enabled for your account,
contact your Oracle Customer Success Manager. For more information, see the
Defining Custom Event Types topic in the Oracle Responsys Help Center.

Access Controls

This section presents Oracle Responsys capabilities for controlling user access to
APIs.

Organizational access control

When Organizational Access Control is enabled for an Oracle Responsys account, it
will be enforced for all users in that account, including API users. This means that the
API user's access to Oracle Responsys objects will be limited by the organizational
units to which the user is assigned. Similarly, objects created through the API will
inherit organizational membership of the API user. For the API user to access all
objects within the account, that API user should be assigned to the Root node in the
organizational hierarchy.

Organizational Access Control is configured through “Account | Manage Users |
Organization Assignment”. Please contact your Oracle Responsys account
administrator to set up access control.

https://docs.oracle.com/cloud/latest/marketingcs_gs/OMCEA/CustomEvent_Define.htm

  9

Functional access control

API user's access level to a specific object is determined by functional roles that are
assigned to that user. Functional Access Control and Organizational Access Control
work together. Organizational Access Control determines whether the API user has
access to a particular object, and Functional Access Control determines what
operations the user can perform with that object.

Best practice recommendation is to use a dedicated user for API operations. API user
should be assigned one or more functional roles (Campaign Web Services Manager,
Folder Web Services Manager, Table Web Services Manager, Content Web Services
Manager, or List Web Services Manager) to ensure adequate access level to the
appropriate set of objects.

Functional Access Control is configured through “Account | Manage Users | Role
Assignment”. Please contact your Oracle Responsys account administrator to setup
access controls.

Login IP enforcement access control

Oracle Responsys enables customers to limit login access based on their defined
range(s) of authorized login IP addresses. The system immediately denies any login
attempts initiated outside of your authorized ranges of login IP addresses. These
restrictions apply to the API user as well as to users logging in to the Responsys user
interface.

To view the IP access list settings, a Responsys account administrator can log in and
to go “Account | View login IP restrictions”.

Getting started with the Oracle Responsys API

This section contains general instructions for using the Oracle Responsys API as well
as guidelines and sample code for using the Oracle Responsys API in a Java or C#
application.

» Note We assume that you have a basic familiarity with software development,
SOAP-based Web Services, and the Oracle Responsys platform and user
interface.

10 

To get started with the Oracle Responsys API:

1 Obtain the Oracle Responsys API WSDL that corresponds to the Oracle Responsys
pod for your account:
Interact 5: https://ws5.responsys.net/webservices/wsdl/ResponsysWS_Level1.wsdl

or
Interact 2: https://ws2.responsys.net/webservices/wsdl/ResponsysWS_Level1.wsdl

or
Interact 8: https://ws.rsys8.net/webservices/wsdl/ResponsysWS_Level1.wsdl

or
Interact 9: https://ws.rsys9.net/webservices/wsdl/ResponsysWS_Level1.wsdl

Or your unique global routing endpoint. In the Responsys interface, select
Account > Global settings > Account configuration and look for the endpoint in
the WS End Point field.

2 Use the Oracle Responsys API WSDL to generate supporting code for creating SOAP
calls on the Oracle Responsys API.
Your development environment or programming language should provide the
necessary support for accomplishing this step. The benefit of SOAP/WSDL-based
APIs is that most programming languages provide support for managing SOAP
requests and responses.
NOTE: If the error File Not Found occurs while generating the stub using wsdl2java or
a similar WSDL utility, the actual WSDL URL should be used as shown above instead
of downloading the WSDL locally and generating the functions from there.

3 Ensure that your client systems use Transport Layer Security (TLS) version 1.2.
4 Establish a session with the Oracle Responsys Web Service, using one of the following

methods of authentication:
 Authenticate with username and password using the Login call
 Authenticate with certificates using the authenticateServer and

LoginWithCertificate calls.
These calls return a session identifier.

5 Place the session identifier returned by Responsys into the SOAP header of all
subsequent calls to the Oracle Responsys API to authenticate the client application.

6 Place a session cookie (JSESSIONID) on the client application after the first successful
API call.
This cookie should be persisted for the duration of the session. Make sure that your
client accepts session cookies.

7 Use the available API calls to accomplish a desired goal, including:
 Data API calls to create, modify or delete individual records.
 Connect API calls to import or export data in bulk.
 Campaign API calls to create or modify campaign definitions or launch

campaigns.
 Content API calls to create, modify or delete content documents.

https://ws5.responsys.net/webservices/wsdl/ResponsysWS_Level1.wsdl
https://ws2.responsys.net/webservices/wsdl/ResponsysWS_Level1.wsdl
https://ws.rsys8.net/webservices/wsdl/ResponsysWS_Level1.wsdl
https://ws.rsys9.net/webservices/wsdl/ResponsysWS_Level1.wsdl

  11

» Note Some Oracle Responsys API calls have a maximum number of records that
can be processed per invocation (triggerCustomEvent, plus all data source
merge, retrieve, and delete calls). For example, the Oracle Responsys API
limit for calls for triggering campaign messages and merging records into a
list is 200 recipients or records. Therefore, you may need to execute these
calls in a loop to process additional records during a given client session.

8 If your client application is inactive for longer than two hours and the session
identifier becomes invalid, start a new session with a new Login call.

9 Use the Logout call to end the Oracle Responsys API session.
» Note You should explicitly log out before attempting a new login call, because

there is a limit of 100 concurrent SOAP API sessions (by default) that you
can create for each Oracle Responsys account.

Java Applications

These are general instructions for getting started with the Oracle Responsys API from
a Java application.

To get started with a Java application:

1 Download the WSDL document. Name the downloaded file ResponsysWS.wsdl and
place it in your project directory.
Responsys Support will provide the Oracle Responsys API URLs to you when your
account is enabled for Oracle Responsys API access.

2 Use the Apache Axis2 WSDL2Java utility, as described on the Apache Axis2 web site,
to generate Web Services API stub classes:
 %AXIS2_HOME%\bin\WSDL2Java -uri ResponsysWS.wsdl -u -d adb -s -p

com.rsys.ws.client

 Assuming the following environment variables are defined:
 AXIS2_HOME = C:\axis2-1.3 (or location of the Apache Axis2 Standard

Distribution)
 AXIS2_LIB = %AXIS2_HOME%\lib

 AXIS2CLASSPATH =
%AXIS2_LIB%\axis.jar;%AXIS2_LIB%\jaxrpc.jar;%AXIS2_LIB%\saaj.jar;%AXIS2_LIB%\c
ommons-logging.jar;%AXIS2_LIB%\commons-discovery.jar;%AXIS2_LIB%\wsdl4j.jar

3 In your Java application, make sure that the generated Oracle Responsys API stub
classes are available to your project build path.

4 Import the following WSDL2Java-generated packages or specific classes needed for
your client application calls:
import com.rsys.ws.*;

import com.rsys.ws.client.*;

5 Instantiate a Oracle Responsys API service object:
service = new ResponsysWSServiceStub("...WS Endpoint URL...");

6 Maintain the JSESSIONID cookie between requests with the following statement:
service._getServiceClient().getOptions().setManageSession(true);

http://axis.apache.org/axis2/java/core/

12 

7 Instantiate a new Login request object and call the login method of the stub object:
Login login = new Login();

login.setUsername("username");

login.setPassword("password");

LoginResponse response = service.login(login);

8 Retrieve the sessionId string from the login result.
9 Submit this sessionId in the SOAP header for all following Oracle Responsys API

calls.
10 Continue with client application logic.
11 End session by logging out when client application task is completed.

Java example
import com.rsys.ws.*;
import com.rsys.ws.client.*;
import java.rmi.RemoteException;

public class APITestLoginLogout {
 ResponsysWSServiceStub stub;
 SessionHeader sessionHeader;

 public static void main(String[] args) {
APITestLoginLogout test = new APITestLoginLogout();
test.login();

}

private void login() {
 try {
 stub = new ResponsysWSServiceStub("https://...WS Endpoint URL...");
 // maintain session between requests
 stub._getServiceClient().getOptions().setManageSession(true);
// CAUTION: It is important that the user session be maintained. Do no omit preceding step.
 Login login = new Login();
 login.setUsername("...username...");// substitute actual username for username
 login.setPassword("...password.."); // substitute actual password for password
 LoginResponse response = stub.login(login);
 String sessionId = response.getResult().getSessionId();
 System.out.println ("Login Result = " + sessionId);
 if (sessionId != null) {
 sessionHeader = new SessionHeader();
 sessionHeader.setSessionId(sessionId);
 // Set optional timeout to two minutes
 stub._getServiceClient().getOptions().setTimeOutInMilliSeconds(1000*60*2);
// CAUTION: It is important to set a timeout that is appropriate for the maximum expected duration of

API calls
 ListFolders listFolders = new ListFolders();
 ListFoldersResponse listFoldersResponse = stub.listFolders(listFolders, sessionHeader);
 FolderResult[] folders = listFoldersResponse.getResult();
 if (folders != null) {
 System.out.println ("Folders length = " + folders.length);
 int i = 0;
 for (FolderResult folder : folders) {
 System.out.println ("Folder Name = " + folder.getName());
 i++;
 }
 }
 LogoutResponse logoutResponse = stub.logout(new Logout(), sessionHeader);
 boolean loggedOut = logoutResponse.getResult();
 System.out.println("Logout Result = " + loggedOut);
 }
 } catch (AccountFault accountEx) {
 System.out.println ("Ex Code = " + accountEx.getFaultMessage().getExceptionCode());
 System.out.println ("Ex Msg = " + accountEx.getFaultMessage().getExceptionMessage());
 } catch (UnexpectedErrorFault unexpectedEx) {
 System.out.println ("Ex Code = " + unexpectedEx.getFaultMessage().getExceptionCode());

  13

 System.out.println ("Ex Msg = " + unexpectedEx.getFaultMessage().getExceptionMessage());
 } catch (RemoteException remoteEx) {
 System.out.println ("Ex Msg = " + remoteEx.getMessage());
 }
 }
}

C# Applications

These are general instructions for getting started with the Oracle Responsys API from
a C# application.

To get started with a C# application:

1 Download the WSDL document. Name the downloaded file ResponsysWS.wsdl.
Responsys Support will provide the Oracle Responsys API URLs to you when your
account is enabled for Oracle Responsys API access.

2 Generate the client-side code needed to support your client application's
programmatic calls on the Responsys Web service.
 Open the command window from the Visual Studio menu or include the .NET

Framework's bin directory in path environment variable. Type the command
WSDL ResponsysWS.wsdl

 Copy the resulting C# file, ResponsysWSService.cs, to your project directory.
3 In your C# application, get a handle for the Web Service, and ensure the user session

will be maintained. See example provided below.
4 Use the C# compiler to create an executable named fileName.exe, where fileName is

the .CS file that contains the Main() method.
csc *.cs

5 Be sure that csc.exe is in your path, usually:
C:\WINDOWS\Microsoft.NET\Framework\v2.0.xxx\)

C# example
namespace WSCSharpClient {
 using System;
 using System.Net;
 using System.IO;
 using System.Xml;
 using System.Web.Services.Protocols;

 class TestResponsysWS {
 ResponsysWSService stub;
 bool loggedIn = false;
 SessionHeader sessionHeader;

 private bool login() {
 bool result = false;
 try {
 string url = "... WS Endpoint URL ...";
 Console.WriteLine("Web Services URL = " + url);

 string username = "username"; // substitute actual user name for username
 string password = "password"; // substitute actual password for password

 stub = new ResponsysWSService();
 stub.CookieContainer = new CookieContainer();
// Caution: It is important that the user session be maintained, so do not omit the preceding step.
 stub.Url = url;
 // Call the login method
 LoginResult loginResult = stub.login(username, password);

14 

 string sessionId = loginResult.sessionId;

 if (sessionId != null) {
 // Create the sessionHeader object and set it to the stub.
 // The sessionHeader is passed to every other API call after the login.
 sessionHeader = new SessionHeader();
 sessionHeader.sessionId = sessionId;
 stub.SessionHeaderValue = sessionHeader;
// Caution: It is important to set a sessionHeader object to the stub as it is used in all the subsequent

calls.
 sop("Setting the Client Timeout to 2 minutes");

 // Set timeout
 stub.Timeout = 1000 * 60 * 2;
// Caution: It is important to set a timeout that is appropriate for the maximum expected duration of API

calls.
 loggedIn = true;
 result = true;
 }
 } catch (System.Web.Services.Protocols.SoapException e) {
 Console.WriteLine("SoapException in login : " + e.Message);
 Console.WriteLine("SoapException in login : " + e.Detail.InnerText);
 } catch (Exception e) {
 Console.WriteLine("Exception in login : " + e.Message);
 }
 return result;
 }
 }
}

Important .NET WSDL edits required

If you are using the Microsoft .NET WSDL, you must make a correction to the
RecordData element in the ResponsysWS.wsdl file. This element contains an array of
Record elements, each of which contains an array of Strings.

However, the Microsoft .NET wsdl.exe has a defect that affects arrays inside of other
arrays. It creates the recordsField as a two-dimensional string array instead of an array
of Record class. Furthermore, the Record class is not created at all in the
ResponsysWSService.cs class. You can fix this by editing the ResponsysWSService.cs
class to create a Record class and changing the two-dimensional string array in the
RecordData class to an array of Record objects.

To make required .NET WSDL edits to the ResponsysWSService.cs class:

1 Create the following Record class.
/// <remarks/>
 [System.CodeDom.Compiler.GeneratedCodeAttribute("wsdl", "2.0.50727.42")]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute("code")]
 [System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:ws.rsys.com")]
 public partial class Record {

 private string[] fieldValuesField;

 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("fieldValues", IsNullable=true)]
 public string[] fieldValues {
 get {
 return this.fieldValuesField;
 }
 set {

  15

 this.fieldValuesField = value;
 }
 }
 }

2 Change the string[][] recordsField in RecordData class to Record[] recordsField by
replacing the contents of the RecordData class with this:
/// <remarks/>
 [System.CodeDom.Compiler.GeneratedCodeAttribute("wsdl", "2.0.50727.42")]
 [System.SerializableAttribute()]
 [System.Diagnostics.DebuggerStepThroughAttribute()]
 [System.ComponentModel.DesignerCategoryAttribute("code")]
 [System.Xml.Serialization.XmlTypeAttribute(Namespace="urn:ws.rsys.com")]
 public partial class RecordData {
 private string[] fieldNamesField;
 private Record[] recordsField;
 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("fieldNames", IsNullable=true)]
 public string[] fieldNames {
 get {
 return this.fieldNamesField;
 }
 set {
 this.fieldNamesField = value;
 }
 }
 /// <remarks/>
 [System.Xml.Serialization.XmlElementAttribute("records", IsNullable=true)]
 public Record[] records {
 get {
 return this.recordsField;
 }
 set {
 this.recordsField = value;
 }
 }
 }

16 

  17

Interact Calls, Types, Objects, and Result and
Exception Codes

The Interact calls are divided into these categories:
 Session Management API calls on page 18
 Folder Management API calls on page 24
 List Management API calls on page 27
 Table Management API calls on page 31
 Content Management API calls on page 40
 Campaign Management API calls on page 47
The Interact also contains standard primitive types—boolean, string, int and long, and
dateTime—as well as a collection of objects to be used with API calls.

 Interact Data Types on page 55
 Interact Objects on page 55
In addition, the Interact provides result codes and exception codes divided into these
categories:

 General result codes on page 66
 Merge and launch failure result codes on page 66
 Login failure result codes on page 66
 Access exception codes on page 67
 Data exception codes on page 68
 Campaign and launch exception codes on page 69
 Trigger custom event exception codes on page 69
 Create and retrieve Oracle Responsys object exception codes on page 70
 General exception codes on page 71

18 

Session Management API calls

The Session Management API calls are:

Authenticate Using Username and Password (Login)

Syntax:

LoginResult = service.login(string username, string password)

Usage

The first step for any client application is to establish a login session. This can be
achieved using the login call.

When a client application invokes the login call, it passes a username and password as
user credentials. Upon receiving the client application login request, the API
authenticates these credentials, and returns a LoginResult object. This object can be
inspected to retrieve a session token that is required for use in all subsequent API
calls. After successfully completing the login call and retrieving the session token, a
client application needs to set this session token in the SOAP header for subsequent
calls as a means of authentication.

Session tokens expire automatically after two hours of inactivity. Client
applications that make infrequent login calls should make explicit logout calls to
prevent the accumulation of unnecessary open sessions. By default, Oracle
Responsys limits the number of concurrent API sessions that an account can
initiate to 100 SOAP API sessions. It is important to properly manage API sessions
to avoid exceeding this limit. If the limit is reached, an error message will be returned,
stating that the allowed number of concurrent sessions has been exceeded.

A JSESSIONID cookie is also set on the client application with the response from the
login call. This cookie must be persisted for use in subsequent API calls in the session.

» Note If you are using either Axis2, C# or any other .Net language, the
JSESSIONID is automatically captured and sent in subsequent requests.
However, if you are not using one of these languages, you must capture the
JSESSIONID and Path from the login response HTTP Headers and set
them in a cookie in the HTTP headers of all subsequent requests until you
log out. This will prevent errors.

Example
HTTP/1.1 200 OK
Date: Tue, 16 Nov 2010 14:52:14 GMT
Set-Cookie: JSESSIONID=C1DC1654EE6BBEEBE94043EE4D006F59.tmws2; Path=/tmws
Content-Type: text/xml;charset=UTF-8
Connection: close
Transfer-Encoding: chunked

 Authenticate Using Username and Password (Login)  LoginWithCertificate

 Logout  AuthenticateServer

  19

Request Arguments

Response

The login call returns a LoginResult object, which has the following property:

Logout

Syntax

boolean = service.logout()

Usage

Use the logout call to end an API session. The last step for any client application is to
end a session by logging out. Note that sessions are terminated automatically after
two hours of inactivity.

Request Arguments

None

Response

Authentication with Certificates (authenticateServer +

loginWithCertificate)

Authentication with certificates is based on the use of a digital certificate in
accordance with the X.509 standard for public key infrastructure (PKI). It is available
for developers that require the security advantages of PKI over password-based
authentication.

Authentication with certificates requires using both the authenticateServer and
loginWithCertificate calls, which are described in the next two sections.

Name Type Description

username string User name for the Oracle Responsys account.

password string Password for the specified user.

Name Type Description

sessionId string Unique Session ID associated with this session. Your
client application needs to set this value in the session
header of subsequent API calls.

Name Type Description

result boolean Flag representing the success of a request to end the API
session.

20 

To develop a client application with this type of authentication, the Oracle Responsys
account administrator must perform the following steps in Responsys:

1 Log into the Oracle Responsys user interface and navigate to the admin console.
2 Upload a digital certificate (client user public key).
3 Download the Interact server digital certificate (server public key).

These certificates will be used by the client application to log in with the
authenticateServer and loginWithCertificate calls.
The client application establishes an authenticated session as follows:

 First, the client application uses the authenticateServer call (described in the next
section) with a user name and client challenge.

 The server returns a server challenge (a byte array), an encrypted response to the
client challenge (that is, the client challenge encrypted using the server certificate’s
private key), and a temporary session ID (authSessionId) for this authentication
step.

 The client application confirms that the server is authentic by decrypting the client
challenge returned from Responsys (using the server public key), and then
comparing it with the original challenge sent by the client. If they match, the client
application is communicating with a valid Responsys server. The client application
prepares a response to the server challenge.

 The second step of the authentication involves calling loginWithCertificate with the
response to the server challenge and the temporary session ID placed in the SOAP
header.

 Responsys then authenticates these credentials, and returns a LoginResult object.
This object can be inspected to retrieve a new session token that is required for use
in all subsequent API calls.

 After successfully completing the loginWithCertificate call and retrieving the session
token, a client application needs to set this session token in the SOAP header for
subsequent calls as a means of authentication.

Session tokens expire automatically after two hours of inactivity. Client applications
that make infrequent login calls should make explicit logout calls to prevent the
accumulation of unnecessary open sessions. A limit is placed on the number of
concurrent API sessions that an account can initiate. It is important to properly
manage API sessions to avoid exceeding this limit. If the limit is reached, an error
message will be returned, stating that the allowed number of concurrent sessions has
been exceeded.

To authenticate using certificates:

1 Prepare a client challenge as a byte array.

» IMPORTANT The client should use the RSA algorithm for encryption and
decryption, because that is the algorithm used by the server.

  21

2 Call authenticateServer with an Oracle Responsys user name and the client challenge
and receive a server challenge, an encrypted response to the client challenge, and a
temporary session ID for this authentication process.

3 Validate the encrypted client challenge by decrypting with the server public key. Stop
the process if the server authenticity cannot be confirmed.

4 Prepare a response to the server challenge by encrypting the server challenge with the
client private key.

5 Call loginWithCertificate with the encrypted server challenge and the temporary
session ID placed in the SOAP header.

6 The Responsys server will authenticate the client by decrypting the server challenge
with the previously uploaded client public key.

7 Upon successful authentication, the Responsys server will respond with a LoginResult
object from which a valid web services session ID can be retrieved for use in all
subsequent API calls.
See Sample Code for Certificate Authentication (Java) on page 75 for sample Java client code for
certificate authentication.

AuthenticateServer

Syntax

ServerAuthResult = service.authenticateServer(string username, byte[] clientChallenge)

Usage

Use the authenticateServer call to authenticate the Interact server and initiate a
successful login to the Interact. The information returned from this API call can be
used to successfully log in to the Interact with the loginWithCertificate call.

A client application can establish an authenticated session in two steps.
1 First, the client application uses the authenticateServer call with a user name and client

challenge and then receives a server challenge, an encrypted response to the client
challenge, and a temporary session ID for this authentication step. The client
application confirms that the server is authentic and prepares a response to the server
challenge.

2 The second step of the authentication involves calling loginWithCertificate with the
response to the server challenge and the temporary session ID placed in the SOAP
header.
» Note A JSESSIONID cookie is also set on the client application with the response

from the authenticateServer call. This cookie must be persisted for use in
subsequent API calls in the session.

Request Arguments

Name Type Description

username string User name for the Oracle Responsys account of
interest.

22 

Response

The authenticateServer call returns a ServerAuthResult object, which has the following
properties:

LoginWithCertificate

Syntax

LoginResult = service.loginWithCertificate(byte[] encryptedServerChallenge)

Usage

Use the loginWithCertificate call with the authenticateServer call (described in the
previous section) to establish a login session by authenticating with certificates.

Request Arguments

clientChallenge byte[] Client application challenge of the server which is
used to confirm the authenticity of the server.

Name Type Description

authSessionId string Temporary session ID that should be placed
in the SOAP header of the subsequent
loginWithCertificate call.

encrytpedClientChallenge byte[] Response to the client challenge, represented
by encrypting the client challenge with the
server private key. Client applications should
validate server authenticity by decrypting
this value with the server public key
(available through the Oracle Responsys user
interface admin console).

serverChallenge byte[] Server challenge of client application
authenticity. This challenge should be
encrypted with the client private key and
submitted with the loginWithCertificate call to
authenticate the client application session.

Name Type Description

encryptedServerChallenge byte[] Encrypted value of the server challenge.
The server challenge is encrypted using the
client private key that corresponds to a
client public key certificate that was
uploaded via the Oracle Responsys admin
console as the means to authenticate
Interact session requests.

Name Type Description

  23

Response

This call returns a LoginResult object, which has the following property:

Name Type Description

sessionId string Unique Session ID associated with this session. Your client
application needs to set this value in the session header of
subsequent API calls.

24 

Folder Management API calls

The Folder Management API calls are:

CreateContentLibraryFolder

Syntax

HierarchyElement = service.createContentLibraryFolder (String folderName)

Usage

Use the create ContentLibraryFolder call to create a new empty folder in the Content
Library.

Request Arguments

Response

CreateFolder

Syntax

boolean = service.createFolder(string folderName)

Usage

Use the createFolder call to create a new empty folder in an Oracle Responsys
account. This call returns a boolean value that indicates the success of the folder
creation request.

Request Arguments

 CreateContentLibraryFolder  DoesContentLibraryFolderExist

 CreateFolder  ListContentLibraryFolders

 DeleteContentLibraryFolder  ListFolders

 DeleteFolder

Name Type Description

folderName string The name of the folder to create.

Name Type Description

result HierarchyElement The content library folder.

Name Type Description

folderName string Name of the folder to create.

  25

Response

DeleteContentLibraryFolder

Syntax

void service.deleteContentLibraryFolder (String folderName)

Usage

Use the deleteContentLibraryFolder call to delete a folder and its contents from the
Content Library.

Request Arguments

Response

DeleteFolder

Syntax

boolean = service.deleteFolder(string folderName)

Usage

Use the deleteFolder call to delete a folder and its contents from an Oracle Responsys
account.

Request Arguments

Response

Name Type Description

result boolean Success flag folder creation.

Name Type Description

folderName string The name of the folder to delete.

Name Type Description

void N/A Delete content library folder.

Name Type Description

folderName string Name of folder to delete.

Name Type Description

result boolean Success flag for deletion of folder.

26 

DoesContentLibraryFolderExist

Syntax

boolean = service.doesContentLibraryFolderExist (String path)

Usage

Use the doesContentLibraryFolderExist call to check whether a specific folder exists
in the Content Library.

Request Arguments

Response

ListContentLibraryFolders

Syntax

List<HierarchyElement> = service.listContentLibraryFolders(String startingPath, Boolean
showTree)

Usage

Use the listContentLibraryFolders call to retrieve a listing of all Content Library
folders.

Request Arguments

Response

Name Type Description

path string The name of the folder to check.

Name Type Description

result boolean True if the folder exists.

Name Type Description

startingPath string The starting parent folder.

showTree boolean True displays the full Content Library folder
structure.

If startingPath is specified, shows all children in the
tree, not only the starting path's immediate child
folders.

Name Type Description

result List<HierarchyElement> List of Content Library folders.

  27

ListFolders

Syntax

FolderResult[] = service.listFolders()

Usage

Use the listFolders call to retrieve a listing of all of the folders in an account.

Request Arguments

None

Response

The listFolders call returns an array of FolderResult objects. A FolderResult object has
a single property.

List Management API calls

The List Management API calls are:

MergeListMembers

Syntax

MergeResult[] = service.mergeListMembers(InteractObject list, RecordData recordData,
ListMergeRule mergeRule)

Usage

Use the mergeListMembers call to insert new members or update existing member
fields in a given List. Individual invocations of this API call are limited to 200 records.
If you need to process more than 200 records, you should place multiple invocations.

» Note Using the OR logical operator will result in an error message.

Request Arguments

Name Type Description

name string Folder name.

 MergeListMembers  DeleteListMembers

 MergeListMembersRIID  RetrieveListMembers

Name Type Description

list InteractObject List object.

recordData RecordData Array of RecordData objects that contain field and
record data.

28 

Response

The MergeResult object that is returned from this call has the following properties:

MergeListMembersRIID

Syntax

RecipientResult [] = mergeListMembersRIID(InteractObject list, RecordData recordData,
ListMergeRule mergeRule)

Usage

Use the mergeListMembersRIID call to insert new members or update existing
member fields in a given List. Individual invocations of this API call are limited to 200
records. If you need to process more than 200 records, you should place multiple
invocations.

» Note Using the OR logical operator will result in an error message.

Request Arguments

Response

The RecipientResult object that is returned from this call has the following properties:

mergeRule ListMergeRule Defines the merge rules for how to handle the record
data.

Name Type Description

insertCount long Number of records inserted.

updateCount long Number of records updated.

rejectedCount long Number of records rejected.

totalCount long Number of records processed.

errorMessage string Error message if applicable.

Name Type Description

list InteractObject List object.

recordData RecordData Array of RecordData objects that contain field and
record data.

mergeRule ListMergeRule Defines the merge rules for how to handle the
record data.

Name Type Description

recipientId long Identifier of the record.

Name Type Description

  29

DeleteListMembers

Syntax

DeleteResult[] = service.deleteListMembers(InteractObject list, QueryColumn
queryColumn, string[] idsToDelete)

Usage

Use the deleteListMembers call to delete members from a List by matching on RIID,
CUSTOMER_ID, EMAIL_ADDRESS, or MOBILE_NUMBER fields. Individual
invocations of this API call are limited to 200 records. If you need to process more
than 200 records, you should place multiple invocations.

Request Arguments

Response

The DeleteResult that is returned from this call has the following properties:

errorMessage string Error message if applicable.

Name Type Description

list InteractObject List object.

queryColumn QueryColumn One value from the QueryColumn list of RIID,
CUSTOMER_ID, EMAIL_ADDRESS, or
MOBILE_NUMBER.

Note: Unlike the system field name, there is NO trailing
underscore "_" in the QueryColumn name. For
example, if using the Responsys ID, specify "RIID"
for the queryColumn value, not the system field
name "RIID_" (with trailing underscore).

idsToDelete string[] Values for the specified QueryColumn to match
for deletion from the List.

Name Type Description

id string Identifier of the record that was deleted. The identifier
value corresponds to the value of the queryColumn that
was matched for the deleted record.

success boolean Flag indicating whether deletion request was
successfully processed.

errorMessage string Error message if applicable.

Name Type Description

30 

RetrieveListMembers

Syntax

RetrieveResult = service.retrieveListMembers(InteractObject list, QueryColumn
queryColumn, string[] fieldList, string[] idsToRetrieve)

Usage

Use the retrieveListMembers call to retrieve fields for individual List members.
Individual invocations of this API call are limited to 200 records. If you need to
process more than 200 records, you should place multiple invocations.

Request Arguments

Response

The RecordData object that is returned from this call has the following properties:

Name Type Description

List InteractObject List object.

queryColumn QueryColumn One value from the QueryColumn match
options: RIID, CUSTOMER_ID,
EMAIL_ADDRESS, or MOBILE_NUMBER.

Note: Unlike the system field name, there is NO trailing
underscore "_" in the QueryColumn name. For
example, if using the Responsys ID, specify "RIID"
for the queryColumn value, not the system field
name "RIID_" (with trailing underscore).

fieldList string[] Fields to retrieve from List member record.

idsToRetrieve string[] Values for the specified QueryColumn to match
for retrieval from the List.

Name Type Description

fieldNames string[] String array the names of fields returned.

records Record[] Record array of the record data returned. The order of the
field values returned for each Record is the same order as
the fieldNames array.

  31

Table Management API calls

The Table Management calls are:

CreateProfileExtensionTable

Syntax

boolean = service.createProfileExtensionTable(InteractObject PET, Field[] fields,
InteractObject list)

Usage

Use the CreateProfileExtensionTable call to create a profile extension table with a
user-defined schema for a specific profile list table.

Request Arguments

Response

CreateTable

Syntax

boolean = service.createTable(InteractObject table, Field[] fields)

 CreateProfileExtensionTable  MergeTableRecords

 CreateTable  MergeTableRecordsWithPK

 CreateTableWithPK  DeleteTableRecords

 DeleteProfileExtensionMembers  RetrieveTableRecords

 DeleteTable  RetrieveProfileExtensionRecords

 MergeIntoProfileExtension  TruncateTable

Name Type Description

PET InteractObject Profile Extension Table object.

fields Field [] Fields to create. You can also specify data extraction
keys via the fields array.

list InteractObject Profile list table to be used as parent of this profile
extension table.

Name Type Description

result boolean Success flag for profile extension table creation request.

32 

Usage

Use the createTable call to create a table with a user-defined schema. Tables can be
used in a variety of ways, ranging from use as a source of supplemental data to a List,
related to the List through data extraction key field(s), as a lookup table for generating
dynamic content in a campaign message, or as a form response table.

Request Arguments

Response

CreateTableWithPK

Syntax

boolean = service.createTableWithPK (InteractObject table, Field[] fields, String[]
primaryKeys)

Usage

Use this function to create a supplemental table with a user-defined schema and
designate a set of one or more fields as the table's primary key.

Request Arguments

Response

Name Type Description

table InteractObject Table object.

fields Field [] Fields to create. You can also specify data extraction
keys via the fields array.

Name Type Description

result boolean Success flag for table creation request.

Name Type Description

table InteractObject Table object.

fields Field[] Fields to create. You can also specify data extraction
keys via the fields array.

primaryKeys String[] An array containing the names of fields that define
the primary key of the table.

Name Type Description

result boolean Success flag for table creation request.

  33

DeleteProfileExtensionMembers

Syntax

DeleteResult[] = service.deleteProfileExtensionMembers (InteractObject listExt,
QueryColumn queryColumn, string[] idsToDelete)

Usage

Use the deleteProfileExtensionMembers call to delete members from a Profile
Extension Table by matching on RIID, CUSTOMER_ID, EMAIL_ADDRESS, or
MOBILE_NUMBER fields from the parent list. Individual invocations of this API call
are limited to 200 records. If you need to process more than 200 records, you should
place multiple invocations.

Request Arguments

Response

The DeleteResult that is returned from this call has the following properties:

Name Type Description

listExtension InteractObject Profile Extension object.

queryColumn QueryColumn One of the following values from the QueryColumn list:
RIID
CUSTOMER_ID
EMAIL_ADDRESS
MOBILE_NUMBER

Note: Unlike the system field name, there is NO trailing
underscore "_" in the QueryColumn name. For example,
if using the Responsys ID, specify "RIID" for the
queryColumn value, not the system field name "RIID_"
(with trailing underscore).

idsToDelete String[] Values for the specified QueryColumn to match.

Name Type Description

id String Identifier of the record that was deleted. The identifier
value corresponds to the value of the queryColumn that
was matched for the deleted record.

success boolean Flag indicating whether the deletion request was
successfully processed.

errorMessage String Error message, if applicable.

34 

DeleteTable

Syntax

boolean = service.deleteTable(InteractObject table)

Usage

Use the deleteTable call to delete a table from your account.

Request Arguments

Response

MergeIntoProfileExtension

Syntax

RecipientResult[] = service.mergeIntoProfileExtension(InteractObject profileExtension,
RecordData recordData, QueryColumn queryColumn, boolean insertOnNoMatch,
UpdateOnMatch updateOnMatch)

Usage

Use the MergeIntoProfileExtension call to insert or update records in a Profile
Extension Table. Individual invocations of this API call are limited to 200 records. If
you need to process more than 200 records, you should place multiple invocations.

Request Arguments

Name Type Description

table InteractObject Table object.

Name Type Description

result boolean Success flag for table deletion request.

Name Type Description

profileExtension InteractObject profileExtension contains two fields:
String folderName & String objectName.
The objectName in this case is the name of
the Profile Extension Table.

recordData RecordData Array of RecordData objects that contain
field and record data.

matchColumn QueryColumn Column for which a match attempt should
be attempted as part of the merge
operation.

insertOnNoMatch boolean Indicates what should be done for records
where a match is not found (true = insert /
false = no insert).

  35

Response

A RecipientResult object having the following properties is returned from this call:

MergeTableRecords

Syntax

MergeResult[] = service.mergeTableRecords(InteractObject table, RecordData records,
string[] matchColumnNames)

Usage

Use the mergeTableRecords call to insert or update records in a table. Individual
invocations of this API call are limited to 200 records. If you need to process more
than 200 records, you should place multiple invocations.

Request Arguments

updateOnMatch UpdateOnMatch Controls how the existing record should
be updated.

Name Type Description

recipientId long Identifier of the record.

errorMessage string Error message if applicable.

Name Type Description

table InteractObject Table object.

records RecordData RecordData object that contains field and
record data for the merge operation.

Note: For supplemental tables, fieldNames
specified in the RecordData object are case-
sensitive. They must match their case as
defined in the supplemental table.

matchColumnNames string[] Column for which a match attempt should
be attempted as part of the merge
operation. If there is a match for with an
existing record, that record will be
updated. If there is not a match, then a new
record is inserted. Currently only a single
match column can be used. So the length of
the matchColumnNames string array is
limited to one.

Name Type Description

36 

Response

A MergeResult object having the following properties is returned from this call:

MergeTableRecordsWithPK

Syntax

MergeResult[] = service.mergeTableRecordsWithPK (InteractObject table, RecordData
recordData, boolean insertOnNoMatch, UpdateOnMatch updateOnMatch)

Usage

Use this function to update or insert data into a supplemental table that has a primary
key.

Request Arguments

» Note This API call doesn't have a match column because the primary key of the
table is used as the match column. If a primary key is not defined for the
table, an error message is returned.

Name Type Description

insertCount long Number of records inserted.

updateCount long Number of records updated.

rejectedCount long Number of records rejected.

totalCount long Number of records processed.

errorMessage string Error message if applicable.

Name Type Description

table InteractObject Table object.

recordData RecordData Array of RecordData objects that
contain field and record data.

Note: For supplemental tables, fieldNames
specified in the RecordData object are
case-sensitive. They must match their case
as defined in the supplemental table.

insertOnNoMatch boolean Indicates what should be done for
records where a match is not found
(true = insert / false = no insert).

updateOnMatch UpdateOnMatch Controls how the existing record should
be updated.

  37

Response

A MergeResult object having the following properties is returned from this call:

DeleteTableRecords

Syntax

DeleteResult[] = service.deleteTableRecords(InteractObject table, string queryColumn,
string[] idsToDelete)

Usage

Use the deleteTableRecords call to delete records from a table. Individual invocations
of this API call are limited to 200 records. If you need to process more than 200
records, you should place multiple invocations.

Request Arguments

Response

The DeleteResult that is returned from this call has the following properties:

Name Type Description

insertCount long Number of records inserted.

updateCount long Number of records updated.

rejectedCount long Number of records rejected.

totalCount long Number of records processed.

errorMessage string Error message if applicable.

Name Type Description

table InteractObject Table object

queryColumn string Column for which a match attempt should be
attempted as part of the delete operation. If there
is a match for with an existing record, that record
will be deleted. If there is no match, then no
record will be deleted and the success flag of the
corresponding DeleteResult object will be set to
false.

idsToDelete string[] Values for the specified QueryColumn to match
for deletion from the table.

Name Type Description

id string Identifier of the record that was deleted. This identifier
corresponds to the queryColumn value of the record.

success boolean Flag indicating whether the deletion request was
successfully processed.

38 

RetrieveTableRecords

Syntax

RetrieveResult = service.retrieveTableRecords(InteractObject table, string queryColumn,
string[] fieldList, string[] idsToRetrieve)

Usage

Use the retrieveTableRecords call to retrieve fields for individual table records.
Individual invocations of this API call are limited to 200 records. If you need to
process more than 200 records, you should place multiple invocations.

Request Arguments

Response

The RecordData object that is returned from this call has the following properties:

RetrieveProfileExtensionRecords

Syntax

RetrieveResult = service.retrieveProfileExtensionRecords (InteractObject listExtension,
QueryColumn queryColumn, String[] fieldList, String[] idsToRetrieve)

Usage

Use the retrieveProfileExtensionRecords call to retrieve fields for individual table
records in a profile extension table (PET).

errorMessage string Error message, if applicable.

Name Type Description

table InteractObject Table object.

queryColumn string Column name that will be queried for the
idsToRetrieve values provided in this call. An
index should be placed on the column used for
retrieve queries.

fieldList string[] Fields to retrieve from table record.

idsToRetrieve string[] Values for the specified QueryColumn to match
for retrieval from the List.

Name Type Description

fieldnames string[] String array the names of fields returned.

Records Record[] Record array of the record data returned. The order of the
field values returned for each Record is the same order as
the fieldNames array.

Name Type Description

  39

Request Arguments

Response

The RecordData object that is returned from this call has the following properties:

TruncateTable

Syntax

boolean = service.truncateTable(InteractObject table)

Usage

Use the truncateTable call to remove all the records from a table.

Name Type Description

listExtension InteractObject Profile extension table object.

queryColumn QueryColumn Column name that will be queried for the
idsToRetrieve values provided in this call.

» Note Only the RIID column is supported at
this time.

fieldList string[] Fields to retrieve from table record.

idsToRetrieve string[] Values for the specified QueryColumn to be
matched when retrieving records from the table.

Name Type Description

fieldnames string[] String array the names of fields returned.

Records Record[] Record array of the record data returned. The order of the
field values returned for each Record is the same order as
the fieldNames array.

40 

Request Arguments

Response

Content Management API calls

The Content Management calls are:

CopyContentLibraryItem

Syntax

boolean = service.copyContentLibraryItem (String srcPath, String dstPath)

Usage

Use the copyContentLibraryItemcall to copy a Content Library item to a new
location.

Request Arguments

Response

Name Type Description

folderName string Name of folder containing table to truncate.

tableName string Name of table to truncate.

Name Type Description

result boolean Success flag for truncating a table.

 CopyContentLibraryItem  GetDocumentContent

 CreateContentLibraryItem  GetDocumentImages

 CreateDocument  MoveContentLibraryItem

 DeleteContentLibraryItem  SetDocumentContent

 DeleteDocument  SetDocumentImages

 GetContentLibraryItem  UpdateContentLibraryItem

Name Type Description

srcPath string Location from which to copy.

dstPath string Location to which to copy.

Name Type Description

result boolean True if the item was copied.

  41

CreateContentLibraryItem

Syntax

boolean = service.createContentLibraryItem (String folderName, String objectName,
ItemData itemData)

Usage

Use the createContentLibraryItem call to create an item in the Content Library.

Request Arguments

Response

CreateDocument

Syntax

boolean = service.createDocument(String folderName, String documentName, String
content, String charset)

Usage

Use the createDocument call to create new documents in an Oracle Responsys
account. If the document contains relative references to images that should be hosted
by Oracle Responsys, then the setDocumentImages call should be made to upload the
corresponding image files.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Name Type Description

folderName string Folder in which to create the item.

objectName string Name of the item to create.

itemData ItemData The files to upload.

Name Type Description

result boolean True if the item was created.

Name Type Description

folderName string Folder in which to create the document.

documentName string Name of the document to create.

content string Text content of the document
(including markup for HTML content).

charaset string Character set of document content.

42 

Response

DeleteContentLibraryItem

Syntax

boolean = service.deleteContentLibraryItem (String folderName, String objectName)

Usage

Use the deleteContentLibraryItem call to delete an item from the Content Library.

Request Arguments

Response

DeleteDocument

Syntax

boolean = service.deleteDocument(String folderName, String documentName)

Usage

Use the deleteDocument call to delete a document from an Oracle Responsys
account.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Name Type Description

result boolean Flag indicating success of create document request.

Name Type Description

folderName string Folder containing the item to delete.

objectName string Name of the item to delete.

Name Type Description

result boolean True if the item was deleted.

Name Type Description

folderName string Folder containing the document to delete.

documentName string Name of the document to delete.

  43

Response

GetContentLibraryItem

Syntax

ItemData = service.getContentLibraryItem (String folderName, String objectName)

Usage

Use the getContentLibraryItem call to retrieve the content of a Content Library item.

Request Arguments

Response

GetDocumentContent

Syntax

ContentResult = service.getDocumentContent(String folderName, String
documentName)

Usage

Use the getDocumentContent call to obtain the text/markup content of a document
object.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Name Type Description

Result boolean Flag indicating success of delete document request.

Name Type Description

folderName string Folder containing the item to retrieve.

objectName string Name of the item to retrieve.

Name Type Description

result ItemData The binary data.

Name Type Description

folderName string Folder containing the document.

documentName string Name of the document.

44 

Response

A ContentResult object is returned. This object has the following properties.

GetDocumentImages

Syntax

ImageData[] = service.getDocumentImages(String folderName, String documentName)

Usage

Use the getDocumentImages call to retrieve the image file content for a document
object.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Response

MoveContentLibraryItem

Syntax

boolean = service.moveContentLibraryItem (String srcPath, String dstPath)

Usage

Use the moveContentLibraryItem call to move a Content Libraray item to a new
location.

Name Type Description

Content string Text content of document.

Format ContentFormat Type of content: HTML or TEXT.

characterEncoding CharacterEncoding Character set of document content.

Name Type Description

folderName string Folder containing the document.

documentName string Name of the document.

Name Type Description

Result ImageData[] Array of ImageData objects corresponding to each
image file to be uploaded. The ImageData object has
a string property for the image name and a
base64binary representation of the image content.

  45

Request Arguments

Response

SetDocumentContent

Syntax

boolean = service.setDocumentContent(String folderName, String documentName,
String content)

Usage

Use the setDocumentContent call to change the text content of a document object.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Response

SetDocumentImages

Syntax

CommonResult = service.setDocumentImages(String folderName, String
documentName,ImageData[] imageData)

Name Type Description

srcPath string Location from which to move.

dstPath string Location to which to move.

Name Type Description

result boolean True if the item was moved.

Name Type Description

folderName string Folder containing the document.

documentName string Name of the document.

content string Text content to set for existing document.

Name Type Description

result boolean Flag indicating success of set content request.

46 

Usage

Use the setDocumentImages call to upload images files for a document.

For documents in the Content Library, a full Content Library folder path is required.

Request Arguments

Response

UpdateContentLibraryItem

Syntax

boolean = service.updateContentLibraryItem (String folderName, String objectName,
ItemData itemData)

Usage

Use the updateContentLibraryItem call to update a jpg, gif, png, pdf, tif, or swf item
in the Content Library.

Request Arguments

Response

Name Type Description

folderName string Folder containing the document.

documentName string Name of the document.

imageData ImageData[] Array of ImageData objects corresponding to
each image file to be uploaded. The ImageData
object has a string property for the image name
and a base64binary representation of the image
content.

Name Type Description

result boolean Flag indicating success of set images request.

Name Type Description

folderName string Folder contatining the item to update.

objectName string Name of the item to update.

itemData ItemData The data to update.

Name Type Description

result boolean True if the item was updated.

  47

Campaign Management API calls

The Campaign Management calls are:

GetLaunchStatus

Syntax

LaunchStatusResult[] = service.getLaunchStatus(long[] launchIds)

Usage

Use the getLaunchStatus call to retrieve launch information for one or more launch
identifiers.

Request Arguments

Response

An array of LaunchStatusResult objects is returned. The LaunchStatusResult object
has the following properties:

 GetLaunchStatus  MergeTriggerSMS

 LaunchCampaign  TriggerCustomEvent

 MergeTriggerEmail  TriggerCampaignMessage

 MergeTriggerSMS

Name Type Description

launchIds long[] An array of launch identifiers which may have been
retrieved and persisted by several possible previous API
calls in the client application.

Name Type Description

launchId long Launch identifier

launchState string Launch State:
 PENDING
 LAUNCHING
 USER_PAUSE
 USER_ABORT

 SYSTEM_PAUSE
 SYSTEM_ABORT
 DONE

launchType string Launch Type:
 PROOF  STANDARD

launchDate dateTime Timestamp for when launch was initiated.

campaign InteractObject Campaign object

48 

LaunchCampaign

Syntax

LaunchResult = service.launchCampaign(InteractObject campaign, ProofLaunchOptions
proofLaunchOptions, LaunchPreferences launchPreferences)

Usage

Use the launchCampaign to immediately initiate a campaign launch. A numeric
launch identifier is returned from this call and allows for the monitoring of the launch
status.

Request Arguments

Name Type Description

Campaign InteractObject Campaign object reference.

proofLaunch
Options

ProofLaunch
Options

For proof launches, specify several options as
properties of the ProofLaunchOptions object:
proofEmailAddress: comma separated email
address(es) to send proof launches to
proofLaunchType:
 LAUNCH_TO_ADDRESS
 LAUNCH_TO_PROOFLIST
 LAUNCH_TO_ADDRESS_USING_PROOFLIST

launch
Preferences

Launch
Preferences

LaunchPreference object properties include:
boolean enableLimit
int recipientLimit
boolean enableNthSampling
int samplingNthSelection
int samplingNthInterval
int samplingNthOffset
boolean enableProgressAlerts
string progressEmailAddresses
string progressChunk
progressChunk is limited to one of the following
values:
 CHUNK_10K
 CHUNK_50K
 CHUNK_100K
 CHUNK_500K
 CHUNK_1M

  49

Response

Returns a LaunchResult which contains the following properties:

MergeTriggerEmail

Syntax

TriggerResult[] = service.mergeTriggerEmail(RecordData recordData, ListMergeRule
mergeRule, InteractObject campaign, TriggerData[] triggertData)

Usage

Use the mergeTriggerEmail function to merge member(s) into the profile list and
subsequently trigger email message(s) to the merged member(s) all in a single call.
Responsys email campaigns that already exist can be sent to up to 200 members of a
profile list.

Request Arguments

Response

The MergeTriggerEmail call returns an array of TriggerResult objects. This object has
the following properties:

Name Type Description

launchId long Launch identifier.

Name Type Description

recordData RecordData Array of RecordData objects that contain field
and record data.

mergeRule ListMergeRule Defines the merge rules for how to handle the
record data.

campaign InteractObject Campaign name and folder.

triggerData TriggerData[] An array of TriggerData objects that consists of
an OptionalData object array.

Name Type Description

recipientId Long Oracle Responsys internal recipient ID (RIID_) for the
individual to whom the message was sent.

success Boolean Success flag for trigger message request.

errorMessage String NO_RECIPIENT_FOUND
MULTIPLE_RECIPIENTS_FOUND

50 

MergeTriggerSMS

Syntax

TriggerResult[] = service.mergeTriggeSMS(RecordData recordData, ListMergeRule
mergeRule, InteractObject campaign, TriggerData[] triggertData)

Usage

Use the mergeTriggerSMS function to merge member(s) into the profile list and
subsequently trigger SMS message(s) to the merged member(s) all in a single call.
Responsys SMS campaigns that already exist can be sent to up to 200 members of a
profile list.

Request Arguments

Response

The MergeTriggerSMS call returns an array of TriggerResult objects. This object has
the following properties:

Name Type Description

recordData RecordData Array of RecordData objects that contain field
and record data.

MOBILE_NUMBER is required and must be
specified in the E.164 format.

mergeRule ListMergeRule Defines the merge rules for how to handle the
record data.

campaign InteractObject Campaign name and folder.

NOTE: The Responsys user who creates the
campaign must use the campaign template
“Direct API Notification” and must activate it by
clicking the Activate button on the Summary
page of the SMS Campaign wizard. If the
Responsys user chooses a different template, such
as “Broadcast,” then the system returns an
“INVALID_CAMPAIGN” message.

triggerData TriggerData[] An array of TriggerData objects that consists of
an OptionalData object array.

Name Type Description

recipientId Long Oracle Responsys internal recipient ID (RIID_) for the
individual to whom the message was sent.

success Boolean Success flag for trigger message request.

errorMessage String NO_RECIPIENT_FOUND
MULTIPLE_RECIPIENTS_FOUND

  51

ScheduleCampaignLaunch

Syntax

boolean = service.scheduleCampaignLaunch(InteractObject campaign,
ProofLaunchOptions proofLaunchOptions, LaunchPreferences launchPreferences,
dateTime scheduleDate)

Usage

Use the scheduleLaunch call to schedule the launch of a campaign at some future
point in time.

Request Arguments

Name Type Description

campaign InteractObject Campaign object reference.

proofLaunch
Options

ProofLaunch
Options

Leave null for standard launches. For proof
launches, specify several options as properties of the
ProofLaunchOptions object:
proofEmailAddress: comma separated email
address(es) to send proof launches to
proofLaunchType:
LAUNCH_TO_ADDRESS
LAUNCH_TO_PROOFLIST
LAUNCH_TO_ADDRESS_USING_PROOFLIST

launch
Preferences

Launch
Preferences

LaunchPreference object properties include:
boolean enableLimit
int recipientLimit
boolean enableNthSampling
int samplingNthSelection
int samplingNthInterval
int samplingNthOffset
boolean enableProgressAlerts
string progressEmailAddresses
string progressChunk
progressChunk is limited to one of the following
values:
 CHUNK_10K
 CHUNK_50K
 CHUNK_100K
 CHUNK_500K
 CHUNK_1M

scheduleDate dateTime Date and time for launch.

52 

Response

TriggerCustomEvent

Syntax

TriggerResult[] = service.triggerCustomEvent(CustomEvent customEvent, RecipientData[]
recipientData)

Usage

Use the triggerCustomEvent call to trigger a Custom Event for a recipient. The Oracle
Responsys platform provides Custom Event listeners that will respond to a triggered
Custom Event in several possible ways depending on the specific definition and use
of Custom Events in your Oracle Responsys account. Some Custom Events provide
an entry point into one or more Programs. Other Custom Events can be used for
segmentation purposes. See the Oracle Responsys platform documentation for more
information on the use of Custom Events.

A single triggerCustomEvent request is limited to 200 recipients. If you need to
trigger a Custom Event for more than 200 recipients, then you should place multiple
triggerCustomEvent requests.

» Note Sending duplicate names in the recipientData would result in an error
message.

Request Arguments

Name Type Description

result boolean Flag for the success of the launch request.

Name Type Description

customEvent CustomEvent The CustomEvent to be triggered. The
CustomEvent eventName or eventId property
must be specified for this object.

  53

Response

The triggerCustomEvent call returns an array of TriggerResult objects. The
TriggerResult object has the following properties.

TriggerCampaignMessage

Syntax

TriggerResult[] = service.triggerCampaignMessage(InteractObject campaign,
RecipientData[] recipientData)

Usage

Use the triggerCampaignMessage call to send email messages to one or more
recipients. A single triggerCampaignMessage request is limited to 200 recipients. If
you need to trigger to a message to more than 200 recipients, then you should execute
multiple triggerCampaignMessage requests.

» Note Sending duplicate names in the recipientData would result in an error
message.

recipientData RecipientData[] An array of RecipientData objects that define the
recipients for whom a custom event should be
triggered. A RecipientData object consists of a
Recipient object and an OptionalData object
array.

At least one of the following List member
identifiers should be provided in the Recipient
object (recipientId, emailAddress, customerId, or
mobileNumber). If you specify more than one of
these values, we process them in this order—
recipientId, emailAddress, customerId, or
mobileNumber—and we take the first non-null
value. For example, if you specify emailAddress
and customerId, we only take the emailAddress
(unless there are no email addresses).

Name Type Description

recipientId long Oracle Responsys internal recipient ID (RIID_) for the
individual to whom the message was sent.

success boolean Success flag.

errorMessage string NO_RECIPIENT_FOUND
MULTIPLE_RECIPIENTS_FOUND

Name Type Description

54 

Request Arguments

Response

The triggerCampaignMessage call returns an array of TriggerResult objects. This
object has the following properties.

Name Type Description

campaign InteractObject Campaign name.

recipientData RecipientData[] An array of RecipientData objects that define the
recipients to whom a campaign message should
be sent. A RecipientData object consists of a
Recipient object and an OptionalData object
array.

NOTE: This call uses recipientData only to look
up a recipient in the list. This means that if you
want to change any data, for example, use a
specific email format, you must update the user
record before making this call.

At least one of the following List member
identifiers should be provided in the Recipient
object (recipientId, emailAddress, customerId, or
mobileNumber). If you specify more than one of
these values, we process them in this order—
recipientId, emailAddress, customerId, or
mobileNumber—and we take the first non-null
value. For example, if you specify emailAddress
and customerId, we only take the emailAddress
(unless there are no email addresses).

The Recipient object List property is optional for
this call since a valid campaign already has a
reference to an existing List. The array of
OptionalData objects define name/value pairs
that can be used for dynamic content in the
campaign message template.

Name Type Description

recipientId Long Oracle Responsys internal recipient ID (RIID_) for the
individual to whom the message was sent.

success Boolean Success flag for trigger message request.

errorMessage String NO_RECIPIENT_FOUND
MULTIPLE_RECIPIENTS_FOUND

  55

Interact Data Types

The Interact uses the standard data types defined below. These data types conform to
their specifications in the World Wide Web Consortium's publication “XML Schema
Part 2: Data Types” (available at http://www.w3.org/TR/xmlschema-2). Data types
are used as a standardized way to define, send, receive, and interpret basic data types
in the SOAP messages exchanged between client applications and the Interact.

Interact Objects

These are the Interact objects you can use.

Type Description

boolean Boolean fields have one of these values: true (or 1), or false (or 0).

string Character string data types contain text data. In some cases, strings are
enumerated; that is, the text data values are restricted to a specific set
of expected values.

int and long Fields of these types contain integers (long ranges from
9223372036854775807 to -9223372036854775808 and int ranges from
2147483647 to -2147483648.

dateTime Fields defined as dateTime data types handle date/time values
(timestamps). Regular dateTime fields are full timestamps with a
precision of one second.

 CharacterEncoding  LaunchResult  RecipientData

 ContentFormat  ListMergeRule  RecipientResult

 CustomEvent  LoginResult  Record

 DeleteResult  MatchOperator  RecordData

 EmailFormat  MergeResult  ServerAuthResult

 Field  OptionalData  TriggerData

 FolderResult  ProofLaunchOptions  TriggerResult

 ImageData  ProofLaunchType  UnsubscribeOption

 InteractObject  QueryColumn  UpdateOnMatch

 LaunchPreferences  Recipient

56 

CharacterEncoding

The CharacterEncoding is a string restricted to one of the values listed below.

ContentFormat

The ContentFormat is a string restricted to one of the values listed below.

CustomEvent

The CustomEvent object contains information needed for the triggerCustomEvent
call.

DeleteResult

The DeleteResult object represents the response from a delete request.

Type Values

string ISO_8859_1
windows_1257
ISO_8859_2
gb2312
big5
ISO_8859_7

SJIS
euc_kr
koi8_r
ISO_8859_9
UTF_8

Type Values

string HTML TEXT

Name Type Description

eventName string Name of the Custom Event.

eventId long Identifier for Custom Event. Either
eventName or eventId of the Custom
Event Type should be specified.

Name Type Description

Id string Identifier of the record that was deleted.

Success boolean Flag indicating whether the deletion request was
successfully processed.

errorMessage string Error message, if applicable.

  57

EmailFormat

The EmailFormat is a string restricted to one of the values listed below.

Field

The Field object represents a field (or column) in a List or Table.

FieldType

The FieldType is a string restricted to one of following values.

FolderResult

The Folder object has a single property that defines the name of a folder.

Type Values

String TEXT_FORMAT
HTML_FORMAT

MULTIPART_FORMAT
NO_FORMAT

Name Type Description

fieldName string Name of field.

fieldType FieldType Data type of field.

Custom boolean Flag indicating whether this represents a custom
field. This is a read-only variable that is used only
in the describeObjects API.

dataExtractionKey boolean Flag indicating whether this field is a data
extraction key.

Type Values

String STR500
STR4000
INTEGER

NUMBER
TIMESTAMP

 Name Type Description

Name string Folder name.

58 

ImageData

The imageData object represents an image file.

InteractObject

LaunchPreferences

The LaunchPreferences object defines the behavior of the launch.

Name Type Description

imageName string Name of image.

image base64binary base64binary representation of binary image content.

Name Type Description

folderName string Name of folder.

objectName string Name of object.

Name Type Description

enableLimit boolean Enable limit for launch.

recipientLimit int Limit launch to a certain number of recipients.

enableNthSampling int Enable Nth sampling.

samplingNthSelection int Selection for Nth sampling.

samplingNthInterval int Interval for Nth sampling.

samplingNthOffset int Offset for Nth sampling.

enableProgressAlerts boolean Enable launch progress alerts.

progressEmailAddress string Email address to sent progress alerts.

progressChunk string Send progress alerts after the launch of a given
number of recipients.

progressChunk is limited to one of the
following values:
 CHUNK_10K
 CHUNK_50K
 CHUNK_100K
 CHUNK_500K
 CHUNK_1M

  59

LaunchResult

The LaunchResult object contains information about a campaign launch.

ListMergeRule

The ListMergeRule object represents the rules by which incoming List records are
processed for merging into a List.

Name Type Description

launchId long Launch identifier.

Name Type Description

insertOnNoMatch boolean Indicates what should be done
for records where a match is
not found (true = insert / false
= no insert).

updateOnMatch UpdateOnMatch Controls how the existing
record should be updated.

matchColumnName1 string First match column for
determining whether an
insert or update should occur.

matchColumnName2 string Second match column for
determining whether an
insert or update should occur
(optional).

matchOperator MatchOperator Controls how the boolean
expression involving the
match columns is constructed
to determine a match between
the incoming records and
existing records.

optinValue string Value of incoming opt-in
status data that represents an
opt-in status. For example, 1
may represent an opt-in
status.

optoutValue string Value of incoming opt-out
status data that represents an
opt-out status. For example, 0
may represent an opt-out
status.

60 

defaultPermissionStatus enum This value must be specified
as either OPTIN or OPTOUT
and would be applied to all of
the records contained in the
API call. If this value is not
explicitly specified, then it is
set to OPTOUT.

htmlValue string Value of incoming preferred
email format data. For
example, H may represent a
preference for HTML
formatted email.

textValue string Value of incoming preferred
email format data. For
example, T may represent a
preference for Text formatted
email.

rejectRecordIfChannelEmpty string String containing comma-
separated channel codes that
if specified will result in
record rejection when the
channel address field is null.
Channel codes are 'E' (Email),
'M' (Mobile), 'P' (Postal
Code). For example 'E,M'
would indicate that a record
that has a null for Email or
Mobile Number value should
be rejected. This parameter
can also be set to null or to an
empty string, which will cause
the validation to not be
performed for any channel,
except if the
matchColumnName1
parameter is set to
EMAIL_ADDRESS or
MOBILE_NUMBER. When
matchColumnName1 is set to
EMAIL_ADDRESS or
MOBILE_NUMBER, then
the null or empty string
setting is effectively ignored
for that channel.

Name Type Description

  61

LoginResult

The LoginResult object has a single property that defines the session ID for a client
application session.

MatchOperator

The MatchOperator is a string restricted to one of the values listed below.

MergeResult

The MergeResult object represents the response from a merge request.

OptionalData

The OptionalData object contains name/value pair data that can be used in a variety
of ways ranging from optional campaign variables to Program enactment variables.

» Note To pass extended/accented characters in optionalData payload, they must
be escaped as Unicode characters. For example, the euro symbol € is
escaped as \u20AC, the yen symbol ¥ is escaped as \u00A5, an ü is escaped
as \u00FC, an é is escaped as \u00E9, and the like. Otherwise, you may
receive an INVALID_REQUEST_CONTENT error.

 Name Type Description

sessionId string Valid session ID for use in subsequent API calls. This
session ID should be placed in the SOAP header for
subsequent calls.

Type Values

string NONE AND

Name Type Description

insertCount long Number of records inserted.

updateCount long Number of records updated.

rejectedCount long Number of records rejected.

totalCount long Number of records processed.

errorMessage string Error message if applicable.

Name Type Description

Name string Name of variable.

Value string Value of variable.

62 

ProofLaunchOptions

The.ProofLaunchOptions object defines how a proof launch should be conducted.

ProofLaunchType

The ProofLaunchType is a string restricted to one of the values listed below:

QueryColumn

The QueryColumn is a string restricted to one of the values listed below. Note that
there are no trailing underscores used in these values (“RIID”, not “RIID_” as used in
the system field name)

Recipient

The Recipient object has the following properties. At least one of the Recipient
identifiers should be used to uniquely target a recipient: recipientId, customerId,
emailAddress, or mobileNumber.

Name Type Description

proofEmailAddress string String of comma-separated email
addresses.

proofLaunchType ProofLaunchType Object that defines the nature of the proof
launch.

Type Values

string LAUNCH_TO_ADDRESS
LAUNCH_TO_LIST
LAUNCH_TO_ADDRESS_USING_LIST

Type Values

string RIID
CUSTOMER_ID

EMAIL_ADDRESS
MOBILE_NUMBER

Name Type Description

listName string Name of list for recipient.

recipientId long Internal Oracle Responsys ID (RIID_) for
recipient.

customerId string Externally defined customer ID.

emailAddress string Email address.

mobileNumber string Mobile number.

emailFormat EmailFormat Format of message to deliver to the recipient
(optional).

  63

RecipientData

The RecipientData object has the following properties. It is used to represent a List
member and a number of name/value pair parameters needed for triggering messages
or custom events.

RecipientResult

The RecipientResult object has the following properties. It returns an array of
RecipientResult objects that each contain a recipientID and an errorMessage.

Record

The Record object represents a record of data from a List or Table.

RecordData

The RecordData object represents a number of records of data from a List or Table.

Name Type Description

recipient Recipient Identity of a List member.

optionalData OptionalData[] Optional name/value pair parameters associated
with this List member.

Note: To include extended/accented characters in the
payload, they must be escaped as Unicode characters.

Name Type Description

recipientId long Identifier of the record.

errorMessage string Error message if applicable.

Name Type Description

fieldValues string[] A string array representing the values of fields in a record.

Name Type Description

fieldNames string[] An array containing the field names in a record
of data.

mapTemplateName string[] Optional parameter to use an existing data
mapping to import data into a table.

records Record[] An array of Record objects which contain data
from a List or Table.

64 

ServerAuthResult

TriggerData

The TriggerData object defines an array of optional name/value pairs that can be used
for dynamic content in the campaign message.

TriggerResult

The TriggerResult object defines the results from a trigger request for a campaign
message or custom event.

Name Type Description

authSessionId string Temporary session ID that should be
placed in the SOAP header of the
subsequent loginWithCertificate call.

encryptedClientChallenge byte[] Response to the client challenge,
represented by encrypting the client
challenge with the server private key. Client
applications should validate server
authenticity by decrypting this value with
the server public key (available through the
Oracle Responsys user interface admin
console).

serverChallenge byte[] Server challenge of client application
authenticity. This challenge should be
encrypted with the client private key and
submitted with the loginWithCertificate
call to authenticate the client application
session.

Name Type Description

optionalData Optional
Data[]

Array of OptionalData objects define
name/value pairs that can be used for
dynamic content in the campaign message.

Note: To include extended/accented characters in
the payload, they must be escaped as Unicode
characters.

Name Type Description

recipientId long Oracle Responsys internal recipient ID (RIID_) for the
individual to whom the message was sent.

Success boolean Success flag.

errorMessage string NO_RECIPIENT_FOUND,
MULTIPLE_RECIPIENTS_FOUND

  65

UnsubscribeOption

The UnsubscribeOption is a string restricted to one of the values listed below.

UpdateOnMatch

The UpdateOnMatch is a string restricted to one of the values listed below.

Type Values

String NO_OPTOUT_BUTTON
OPTOUT_SINGLE_CLICK

OPTOUT_FORM

Type Values

String NO_UPDATE REPLACE_ALL

66 

Interact Result and Exception Codes

The Interact result and exception codes are divided into these categories.

The Campaign Management calls are:

Result Codes

General result codes

Merge and launch failure result codes

Login failure result codes

 General result codes  Campaign and launch exception codes

 Merge and launch failure result codes  TriggerCampaignMessage

 Login failure result codes  Trigger custom event exception codes

 Access exception codes  Create and retrieve Oracle Responsys object

exception codes

 Data exception codes  General exception codes

Code Description

SUCCESS Execution was successful.

FAILURE Execution failed.

Code Description

NO_RECIPIENT_FOUND No recipient with the specified parameters is
found.

MULTIPLE_RECIPIENTS_
FOUND

Multiple recipients with the specified parameters
were found.

RECIPIENT_STATUS_
UNDELIVERABLE

The requested recipient’s status is Undeliverable.

PROFILE_LIST_NOT_
FOUND

No profile list with the specified parameter was
found.

FOLDER_NOT_FOUND No folder with the specified parameter was found.

PROFILE_LIST_NOT_
FOUND_IN_FOLDER

No list in the folder with the specified parameters
was found.

Code Description

INVALID_PASSWORD The password is invalid.

USER_BLOCKED The user is blocked.

PASSWORD_EXPIRED The password expired.

LOGINS_DISABLED Logins are disabled for the user.

  67

Exception Codes

Access exception codes

INVALID_AUTH_OPTION An invalid authorization option.

CLIENT_CERTIFICATE_
NOT_FOUND

The client certificate was not found.

CLIENT_CERTIFICATE_
EXPIRED

The client certificate expired.

CLIENT_CERTIFICATE_
NOT_YET_VALID

The client certificate is not yet valid.

SERVER_CERTIFICATE_
NOT_FOUND

The sever certificate was not found.

SERVER_CERTIFICATE_
EXPIRED

The server certificate expired.

SERVER_CERTIFICATE_
NOT_YET_VALID

The server certificate is not yet valid.

PRIVATE_KEY_NOT_
FOUND

The private key was not found.

SERVER_CHALLENGES_
DO_NOT_MATCH

Server challenges do not match.

INACTIVE_ACCOUNT The account is inactive.

MAX_CONCURRENT_
SESSIONS_EXCEEDED

A new session cannot be opened because the
maximum number of allowed sessions is currently
open for the account.

MAX_LOGIN_FAILURES_
EXCEEDED

The maximum number of unsuccessful login
attempts was exceeded.

LOGIN_BLOCKED_
TEMPORARILY

Login for the user is temporarily blocked.

Code Description

API_DISABLED_FOR_
USER

The API is disabled for the user.

INSUFFICIENT_ACCESS The user does not have privileges for the call.

INVALID_USER_NAME The user name is invalid.

INVALID_PASSWORD The password is invalid.

INVALID_SESSION_ID The session ID is invalid.

INVALID_SOAP_HEADER The SOAP header is invalid.
PASSWORD_LOCKOUT The user’s password is locked.

Code Description

68 

Data exception codes

PASSWORD_EXPIRED The user’s password has expired.
API_LIMIT_EXCEEDED The request exceeded the maximum number of

requests allowed.
API_BLOCKED The <function_name> is currently not available to

this user.
OPERATION_NOT_
SUPPORTED

The requested operation is not supported.

INVALID_AUTHENTICATION
_OPTION

An invalid authentication option.

AUTHENTICATION_FAILED Authentication failed.
CLIENT_CERTIFICATE_
EXPIRED

The client certificate expired.

CLIENT_CERTIFICATE_NOT_
YET_VALID

The client certificate is not yet valid.

CLIENT_CERTIFICATE_NOT_
FOUND

The client certificate was not found.

SERVER_CERTIFICATE_
EXPIRED

The server certificate expired.

SERVER_CERTIFICATE_NOT_
YET_VALID

The server certificate is not yet valid.

SERVER_CERTIFICATE_NOT_
FOUND

The server certificate was not found.

SERVICE_UNAVAILABLE The requested service is unavailable.

Code Description

INVALID_NUMBER Invalid number format in a value.

INVALID_DATE Invalid date format in a value.

INVALID_PARAMETER General invalid parameter value.

INVALID_FIELD_NAME The specified field is invalid or does not exist.

INVALID_OBJECT The object is defined with invalid parameters/
values.

RECORD_LIMIT_
EXCEEDED

The requested number of records exceeds the
maximum record limit.

RECORD_NOT_FOUND The record was not found.

Code Description

  69

Campaign and launch exception codes

Trigger custom event exception codes

Code Description

CAMPAIGN_NOT_
FOUND

The specified campaign was not found.

Ensure that your folder name and campaign name
are correct, and that they follow correct case
sensitivity.

CAMPAIGN_ALREADY_
EXISTS

A campaign with the specified name already
exists.

RECIPIENT_LIMIT_
EXCEEDED

The allowable number of recipients is exceeded.

MAX_ATTACHMENT_
SIZE_EXCEEDED

The maximum attachment size is exceeded.

PROOF_LIST_NOT_
FOUND

The specified proof list was not found.

CAMPAIGN_LAUNCH_
IN_PROGRESS

A campaign launch is in progress.

CAMPAIGN_NOT_
LISTENING

The campaign is not active.

CAMPAIGN_LAUNCH_
NOT_SCHEDULED

A campaign launch is not scheduled.

CAMPAIGN_LAUNCH_
NOT_UNSCHEDULED

A campaign launch is not unscheduled.

CAMPAIGN_NOT_
APPROVED_FOR_
LAUNCH

The campaign is not approved for launch.

SCHEDULED_LAUNCH_
NOT_FOUND

The specified scheduled launch is not found.

CAMPAIGN_IS_INVALID The campaign is invalid.

MOBILE_CAMPAIGN_
DISABLED_FOR_USER

Mobile campaigns are disabled for the user.

Code Description

CUSTOM_EVENT_NOT_
FOUND

The specified Custom event was not found.

70 

Create and retrieve Oracle Responsys object exception codes

Code Description

FOLDER_NOT_FOUND The specified folder was not found.

FOLDER_ALREADY_
EXISTS

The specified folder already exists.

NO_OPEN_LAUNCHES_
FOR_THIS_ACCOUNT

No open launches exist for the account.

NO_LAUNCHES_FOR_
THIS_CAMPAIGN

No open launches exist for the specified campaign.

NO_CAMPAIGNS_IN_
THIS_FOLDER

No campaigns exist in the specified folder.

NO_OBJECTS_IN_THIS_
FOLDER

No objects exist in the specified folder.

LIST_NOT_FOUND The specified list was not found.

LIST_ALREADY_EXISTS The list with the same name already exists.

LINK_TABLE_NOT_
FOUND

The specified link table was not found.

LINK_TABLE_ALREADY_
EXISTS

The specified link table already exists.

TABLE_ALREADY_EXISTS The specified table already exists.

TABLE_NOT_FOUND The specified table was not found.

OBJECT_NOT_FOUND The specified object was not found.

OBJECT_ALREADY_
EXISTS

The specified object already exists.

MULTIPLE_OBJECTS_
FOUND

Multiple objects with the same name were found.

DOCUMENT_NOT_
FOUND

The specified document was not found.

DOCUMENT_ALREADY_
EXISTS

The specified document already exists.

IMAGES_NOT_FOUND The specified images was not found.

PROFILE_EXTENSION_
NOT_FOUND

The specified profile extension was not found.

  71

General exception codes

Gateway server error when payload exceeds the maximum allowed size

If your payload exceeds the maximum allowed size, the gateway server will terminate
the connection with the client application, and the client application will receive a
SocketException error. Ensure that your payload size is 10 MB or less. One way to
reduce the request payload size is by referencing HTML content instead of sending it
as part of the payload.

Code Description

UNEXPECTED_
EXCEPTION

An unexpected exception occurred.

UNRECOVERABLE_
EXCEPTION

HATM exception that means a failover is
required. You need to re-login and try the call
again.

72 

  73

Sample Code
» Tip If you copy samples out of this PDF document, examine the copy for the

following potential issues and fix them: Incorrect characters (for example,
“smart quotes”), hidden characters, and the document “footer” text
containing the title and page number when you copy across multiple pages.
We recommend using a text editor that has a “Show all characters” option, so
that you can more easily detect these issues.

Sample Code for Handling Exceeded Account Limits

The following sections provide sample code in Java, C#, and PHP for handling the
API_LIMIT_EXCEEDED error that is returned when the account limit for calling an
API function is exceeded.

» Note This code example is shown as an example of how to use our API. You
could follow a similar logic and use other Responsys API functions.

Sample Java code
private void listFolders() {
 try {
 if (!loggedIn) {
 if (!login()) {
 return;
 }
 }
 ListFolders listFolders = new ListFolders();
 ListFoldersResponse listFoldersResponse = stub.listFolders(listFolders, sessionHeader); // stub is

generated by JAX-WS based client

 FolderResult[] folders = listFoldersResponse.getResult();
 if (folders != null) {
 System.out.println("**************************************");
 System.out.println("List Folders Successful");
 System.out.println("Folders length = " + folders.length);
 for (FolderResult folder : folders) {
 System.out.println("Folder Name = " + folder.getName());
 }
 System.out.println("**************************************");
 }
 else {
 System.out.println("**************************************");
 System.out.println("List Folders Failed");
 System.out.println("**************************************");
 }
 }
 catch (UnexpectedErrorFault unexpectedEx) {
 System.out.println("unexpectedEx listFolders");
 System.out.println("Exception Code = " + unexpectedEx.getFaultMessage().getExceptionCode());
 System.out.println("Exception Msg = " +

unexpectedEx.getFaultMessage().getExceptionMessage());
 }
 catch (RemoteException remoteEx) {
 System.out.println("remoteEx listFolders");
 System.out.println("Exception Msg = " + remoteEx.getMessage());
 if (remoteEx instanceof AxisFault) {
 AxisFault axisFault = (AxisFault) remoteEx;
 System.out.println("Fault detail element = "+ axisFault.getFaultDetailElement().getText());
 }
 if ("API_LIMIT_EXCEEDED".equalsIgnoreCase(remoteEx.getMessage())) {
 retryDelay();

74 

 listFolders();
 }
 }
 }

 private void retryDelay() {
 int i = 0;
 while (i < 60) { //60 seconds delay
 try {
 System.out.print(". ");
 Thread.sleep(1000);
 i++;
 }
 catch (InterruptedException ex) {
 }
 }
 }

Sample C# code
private void listFolders() {
 try {
 if (!loggedIn) {
 if (!login()) {
 return;
 }
 }

 FolderResult[] folders = stub.listFolders(); // stub are generated by wsdl tool.
 if (folders != null) {
 Console.WriteLine("**************************************");
 Console.WriteLine("List Folders Successful");
 foreach (FolderResult folder in folders) {
 Console.WriteLine("Folder Name = " + folder.name);
 }
 Console.WriteLine("**************************************");
 } else {
 Console.WriteLine("**************************************");
 Console.WriteLine("List Folders Failed");
 Console.WriteLine("**************************************");
 }
 } catch (System.Web.Services.Protocols.SoapException e) {
 Console.WriteLine("SoapException in listFolders : " + e.Message);
 Console.WriteLine("SoapException in listFolders : " + e.Detail.InnerText);
 if ("API_LIMIT_EXCEEDED".Equals(e.Message)) {
 Console.WriteLine("The API Limit has Exceeded");
 Thread.Sleep(60000);//need to add using System.Threading;
 listFolders();
 }
 } catch (Exception e) {
 Console.WriteLine("Exception in listFolders : " + e.Message);
 }
 }

Sample PHP code
function mlistFolders($client) {
 try {
 $listFoldersResult = $client - > listFolders();
 print('<pre>');
 print_r($listFoldersResult);
 print('</pre>');
 } catch (SoapFault $err) {
 if ($err - > faultstring == 'ConnectFault') {
 print "
ConnectFault Error";
 print "
Exception Message Detail: ".$err - > detail - > ConnectFault - > exceptionMessage.
 "
";
 } else if ($err - > faultstring == 'API_LIMIT_EXCEEDED') {

  75

 print "
API LIMIT EXCEEDED";
 print "
Exception Message Detail: ".$err - > detail.
 "
";
 sleep(60); //60 secs sleep
 mlistFolders($client);
 } else {
 print "Other Exception Error: ".$err - > getMessage().
 "\n";
 }
 }
}

Sample Code for Certificate Authentication (Java)

The following code sample demonstrates client code for certificate authentication.
See LoginWithCertificate on page 22 for details about how the certificate authentication
process works.

private void loginUsingCertificate() {
 try {
 String endPointURL = "http://" + hostname + "/webservices/services/ResponsysWSService";
 System.out.println ("WEBSERVICES URL = " + endPointURL);
 stub = new ResponsysWSServiceStub(endPointURL);
 stub._getServiceClient().getOptions().setManageSession(true);

 String username = "apiusername"; // substitute with the API username

 AuthenticateServer authenticateServer = new AuthenticateServer();
 authenticateServer.setUsername(username);

 // Create a Random Number for client challenge.
 Random random = new Random();
 String clientChallengeStr = String.valueOf(random.nextLong());
 byte[] clientChallenge = clientChallengeStr.getBytes();
 authenticateServer.setClientChallenge(clientChallenge);
 System.out.println ("Client challenge created");

 /***/
 // Set timeout
 stub._getServiceClient().getOptions().setTimeOutInMilliSeconds(1000*60*60);
 AuthenticateServerResponse response = stub.authenticateServer(authenticateServer);
 ServerAuthResult serverAuth = response.getResult();
 String authSessionId = serverAuth.getAuthSessionId();
 byte[] encryptedClientChallenge = serverAuth.getEncryptedClientChallenge();
 byte[] serverChallenge = serverAuth.getServerChallenge();
 /***/

 // Validate the client challenge with Encrypted Client Challenge
 // Using server's public key.
 String serverCertName = "C:\\ResponsysServerCert.cer";
 File certFile = new File(serverCertName);
 if (!certFile.exists()) {
 System.out.println ("Server certificate doesn't exist in that location");
 return;
 }

 try {
 CertificateFactory certFactory = CertificateFactory.getInstance("X.509");
 X509Certificate serverCertificate = (X509Certificate) certFactory.generateCertificate(new

FileInputStream(certFile));

 Cipher decryptCipher = Cipher.getInstance("RSA");
 decryptCipher.init(Cipher.DECRYPT_MODE, serverCertificate.getPublicKey());
 byte[] decryptedClientChallenge = decryptCipher.doFinal(encryptedClientChallenge);

 // Compare the clientChallenge with decryptedClientChallenge.
 boolean serverValidated = Arrays.equals(clientChallenge, decryptedClientChallenge);

76 

 if (serverValidated) {
 System.out.println ("Server validation is success ... proceeding further to login to

webservices");
 } else {
 System.out.println ("Server validation failed");
 return;
 }
 } catch (CertificateException ex) {
 System.out.println ("CertificateException : " + ex.getMessage());
 return;
 } catch (NoSuchAlgorithmException ex) {
 System.out.println ("NoSuchAlgorithmException : " + ex.getMessage());
 return;
 } catch (NoSuchPaddingException ex) {
 System.out.println ("NoSuchPaddingException : " + ex.getMessage());
 return;
 } catch (InvalidKeyException ex) {
 System.out.println ("InvalidKeyException : " + ex.getMessage());
 return;
 } catch (BadPaddingException ex) {
 System.out.println ("BadPaddingException : " + ex.getMessage());
 return;
 } catch (IllegalBlockSizeException ex) {
 System.out.println ("IllegalBlockSizeException : " + ex.getMessage());
 return;
 } catch (FileNotFoundException ex) {
 System.out.println ("FileNotFoundException : " + ex.getMessage());
 return;
 }

 // Get the private key of the client certificate
 PrivateKey privateKey = getPrivateKeyForClientCertificate();
 if (privateKey == null) {
 System.out.println ("Couldn't get private key from the client certificate");
 return;
 }

 // Encrypt server challenge using client's private key
 // and invoke the loginWithCertificate method with
 // authSessionId in the header.
 try {
 Cipher encryptCipher = Cipher.getInstance("RSA");
 encryptCipher.init(Cipher.ENCRYPT_MODE, privateKey);
 byte[] encryptedServerChallenge = encryptCipher.doFinal(serverChallenge);

 /***/
 AuthSessionHeader authSessionHeader = new AuthSessionHeader();
 authSessionHeader.setAuthSessionId(authSessionId);
 LoginWithCertificate loginWithCertificate = new LoginWithCertificate();
 loginWithCertificate.setEncryptedServerChallenge(encryptedServerChallenge);
 LoginWithCertificateResponse loginResponse = stub.loginWithCertificate(loginWithCertificate,

authSessionHeader);
 LoginResult loginResult = loginResponse.getResult();
 String sessionId = loginResult.getSessionId();
 /***/

 System.out.println ("**************************************");
 System.out.println ("Login Result = " + (sessionId != null));
 System.out.println ("**************************************");
 if (sessionId != null) {
 sessionHeader = new SessionHeader();
 sessionHeader.setSessionId(sessionId);

 System.out.println ("Setting the Client Timeout to 1 hour");

 // Set timeout
 stub._getServiceClient().getOptions().setTimeOutInMilliSeconds(1000*60*60);
 loggedIn = true;
 }
 } catch (InvalidKeyException ex) {

  77

 System.out.println ("InvalidKeyException : " + ex.getMessage());
 return;
 } catch (NoSuchPaddingException ex) {
 System.out.println ("NoSuchPaddingException : " + ex.getMessage());
 return;
 } catch (NoSuchAlgorithmException ex) {
 System.out.println ("NoSuchAlgorithmException : " + ex.getMessage());
 return;
 } catch (IllegalBlockSizeException ex) {
 System.out.println ("IllegalBlockSizeException : " + ex.getMessage());
 return;
 } catch (BadPaddingException ex) {
 System.out.println ("BadPaddingException : " + ex.getMessage());
 return;
 }
 } catch (AccountFault accountEx) {
 System.out.println ("accountEx loginUsingCertificate");
 System.out.println ("Exception Code = " + accountEx.getFaultMessage().getExceptionCode());
 System.out.println ("Exception Msg = " + accountEx.getFaultMessage().getExceptionMessage());
 } catch (UnexpectedErrorFault unexpectedEx) {
 System.out.println ("unexpectedEx loginUsingCertificate");
 System.out.println ("Exception Code = " + unexpectedEx.getFaultMessage().getExceptionCode());
 System.out.println ("Exception Msg = " +

unexpectedEx.getFaultMessage().getExceptionMessage());
 } catch (RemoteException remoteEx) {
 System.out.println ("remoteEx loginUsingCertificate");
 System.out.println ("Exception Msg = " + remoteEx.getMessage());
 }
 }

 /**
 * Get the PrivateKey of the Client Certificate
 * @return
 */
 private PrivateKey getPrivateKeyForClientCertificate() {
 PrivateKey privateKey = null;
 try {
 String keyStoreName = "C:\\responsys\\ClientCert.cer";
 String keyAlias = "clientcert";
 String keyStorePass = "clientcert";
 char[] passPhrase = keyStorePass.toCharArray();

 KeyStore keyStore = KeyStore.getInstance("JKS");
 File certificateFile = new File(keyStoreName);
 if (!certificateFile.exists()) {
 return privateKey;
 }
 keyStore.load(new FileInputStream(certificateFile), passPhrase);

 KeyPair keyPair = getKeyPair(keyStore, keyAlias, passPhrase);
 if (keyPair != null) {
 privateKey = keyPair.getPrivate();
 }
 } catch (KeyStoreException ex) {
 } catch (IOException ex) {
 } catch (NoSuchAlgorithmException ex) {
 } catch (CertificateException ex) {
 }
 return privateKey;
 }

 /**
 * Get KeyPair from keystore for the given alias
 * @param keyStore
 * @param keyAlias
 * @param passPhrase
 * @return
 */
 private KeyPair getKeyPair(KeyStore keyStore, String keyAlias,
 char[] passPhrase) {

78 

 try {
 // Get private key
 Key key = keyStore.getKey(keyAlias, passPhrase);
 if (key instanceof PrivateKey) {
 // Get certificate of public key
 Certificate certificate = keyStore.getCertificate(keyAlias);

 // Get public key
 PublicKey publicKey = certificate.getPublicKey();

 // Return a key pair
 return new KeyPair (publicKey, (PrivateKey) key);
 }
 } catch (UnrecoverableKeyException e) {
 } catch (NoSuchAlgorithmException e) {
 } catch (KeyStoreException e) {
 } catch (Exception e) {
 }
 return null;
 }

	Contents
	Introducing the Oracle Responsys Interact API
	Oracle Responsys API functionality
	Oracle Responsys platform and data model overview
	Oracle Responsys Platform
	Oracle Responsys Object Data Model

	API Call Processing
	How Enactment Batching Affects Processing

	Access Controls
	Organizational access control
	Functional access control
	Login IP enforcement access control

	Getting started with the Oracle Responsys API

	Interact Calls, Types, Objects, and Result and Exception Codes
	Authenticate Using Username and Password (Login)
	Logout
	Authentication with Certificates (authenticateServer + loginWithCertificate)
	AuthenticateServer
	LoginWithCertificate
	CreateContentLibraryFolder
	CreateFolder
	DeleteContentLibraryFolder
	DeleteFolder
	DoesContentLibraryFolderExist
	ListContentLibraryFolders
	ListFolders
	List Management API calls
	MergeListMembers
	MergeListMembersRIID
	DeleteListMembers
	RetrieveListMembers

	Table Management API calls
	CreateProfileExtensionTable
	Response
	CreateTable
	CreateTableWithPK
	DeleteProfileExtensionMembers
	DeleteTable
	MergeIntoProfileExtension
	MergeTableRecords
	MergeTableRecordsWithPK
	DeleteTableRecords
	RetrieveTableRecords
	RetrieveProfileExtensionRecords
	TruncateTable

	Content Management API calls
	CopyContentLibraryItem
	CreateContentLibraryItem
	CreateDocument
	DeleteContentLibraryItem
	DeleteDocument
	GetContentLibraryItem
	GetDocumentContent
	GetDocumentImages
	MoveContentLibraryItem
	SetDocumentContent
	SetDocumentImages
	UpdateContentLibraryItem

	Campaign Management API calls
	GetLaunchStatus
	LaunchCampaign
	MergeTriggerEmail
	MergeTriggerSMS
	ScheduleCampaignLaunch
	TriggerCustomEvent
	TriggerCampaignMessage

	Interact Data Types
	Interact Objects
	CharacterEncoding
	ContentFormat
	CustomEvent
	DeleteResult
	EmailFormat
	Field
	FieldType
	FolderResult
	ImageData
	InteractObject
	LaunchPreferences
	LaunchResult
	ListMergeRule
	LoginResult
	MatchOperator
	MergeResult
	OptionalData
	ProofLaunchOptions
	ProofLaunchType
	QueryColumn
	Recipient
	RecipientData
	RecipientResult
	Record
	RecordData
	ServerAuthResult
	TriggerData
	TriggerResult
	UnsubscribeOption
	UpdateOnMatch
	Result Codes
	Exception Codes

	Sample Code
	Sample Code for Handling Exceeded Account Limits
	Sample Java code
	Sample C# code
	Sample PHP code

	Sample Code for Certificate Authentication (Java)

