

Responsys
Personalization
Language (RPL)
User Guide and Language
Reference

Copyright © 2018, Oracle and/or its affiliates. All rights reserved.
Last updated: 9/12/18

Page 1

Chapter 1. Introduction
Responsys Personalization Language (RPL) is the language used for generating text

output based on templates. RPL is designed to generate HTML and Text for email,

web and other uses.

Although RPL has many programming capabilities, it is not a full-blown

programming language like PHP or Java. It is implemented to work only from

within the Interact Suite. Other than that, you can accomplish many programming

tasks using this language.

The following diagram shows how RPL executes templates and produces output.

 Output:

 Hello Joe

Data in the data source:

- profile

 - firstname =

“Joe”

HTML in the template:

<html>

<body>

Hello

${profile.firstname}

</body>

Page 2

Oracle Responsys personalization in the past
For a long time, personalization in Interact was based on what is commonly known

as built-in functions. Built-in functions were developed through customer needs

over the years and are a Responsys proprietary language. This language is limited

as a programming language in its ability to do sophisticated personalization in an

efficient manner. Over time, the next generation of the language was envisioned

and it was decided to create a language more akin to a programming language to

expand the power of personalization capabilities of Interact.

When the Message Designer for Email is turned on for an account, existing

campaigns using the built-in functions will continue to work. You can create new

campaigns that leverage the Message Designer for Email and RPL.

Document conventions
Variable names, template fragments, etc. are written like this: variableName.

If something should be replaced with a value, it is written like this: Hello

yourName!.

New terms are written in italics.

Definitions of built-ins, directives, and methods are written like this:

Definition

Code examples are written like this:

Code example

Data model examples are written like this:

Data example

Output examples are written like this:

Output Example

Page 3

Chapter 2. Getting Started
This chapter provides an introduction to RPL. Subsequent chapters provide greater

detail. After you read this chapter, you will be able to write simple but useful RPL

templates.

About templates
A template is a text document that can produce HTML, text, and other formats. This

document is stored in the Content Library and can be edited, manipulated and

controlled using the Content Library, or by working in the Message Designer for

Email.

You can upload templates as files, and they will be stored in the Content Library.

You can also enter definitions for text generation using the Message Designer for

Email.

About output
Assume that you need a HTML message for an e-shop application, similar to this:

<html>
<head>
 <title>Welcome!</title>
</head>
<body>
 <h1>Welcome Joe!</h1>
 <p>Our latest product:
 green mouse!
</body>
</html>

Let's say that the user’s first name depends on who the message is sent to, as

defined in the profile list, and the latest product should come from a supplemental

table and thus can change at any time. In this situation, you can't just enter the

user’s first name and the URL and name of the latest product into the HTML. You

can't use static HTML.

Page 4

RPL's solution for this situation is to use a template instead of static HTML. The

template contains instructions to RPL (highlighted in the following example):

<html>
<head>
 <title>Welcome!</title>
</head>
<body>
 <h1>Welcome ${profile.firstName}!</h1>
 <p>Our latest product:
 ${latestProduct.name}!
</body>
</html>

The template is stored in the Content Library, usually like a static HTML page. But

when someone launches this page, RPL transforms the template on-the-fly to plain

HTML by replacing the ${...}-s with up-to-date content (e.g., replacing ${

profile.firstName} with the recipient’s name), and sends the result to the

recipient’s inbox. As a result, the recipient receives the HTML without RPL

instructions. The template stored in the Content Library does not change during this

process, so the transformation will happen again and again for each individual. This

ensures that the displayed information is always up-to-date.

About data retrieval
An important idea behind RPL is that presentation logic is separated from the data.

The template contains only presentation issues, that is, visual design and

formatting. It does not include instructions for finding out who the current recipient

is, or how to query the database to find out what the latest product is. RPL

determines what values to display by retrieving and processing the contents of

rows in the datasources defined for a message. The way these values are calculated

can change while the templates can remain the same, and the look of the email can

be changed without touching anything but the template. This separation is

especially useful when the template author and campaign manager are not the

same individual.

Page 5

The basic data utilization is defined in the campaigns and forms and needs no

additional programming. However, RPL includes advanced data processing

mechanisms that might be required for data operations. This section of the

document describes working with standard profile and profile extension tables.

Advanced functionality, such as working with supplemental tables, will be described

later in this document.

In addition to data from the profile related tables, RPL provides a way to add more

data. For example, you can assign additional values using the assign, global

and local constructs.

About the data model
This section describes data structures and data coming from campaign variables,

datasources, user defined data values, and data added by RPL constructs. Working

with data from your datasources will be explained later in this document.

All data that the template can use is organized in the data model. The data model is

a tree-like structure similar to folders and files on your computer. RPL uses the

template and the data model to generate output.

The data in the template used in the examples above can be represented in the data

model as:

 (root)
 |
 +- profile
 | |
 | +firstName = "Joe"
 |
 +- latestProduct
 |
 +- url = "products/greenmouse.html"
 |
 +- name = "green mouse" Compare this with what you saw in the
template earlier: ${firstName} and ${latestProduct.name}.

Page 6

As an analogy, the data model is similar to a computer file system: the root

and latestProduct correspond to folders and profile.firstName, url

and name correspond to files. Url and name are in the latestProduct directory.

The data model can be represented as the following tree structure:

(root)
 |
 +- mouse
 | |
 | +- size = "small"
 | |
 | +- price = 50
 |
 +- elephant
 | |
 | +- size = "large"
 | |
 | +- price = 5000
 |
 +- python
 | |
 | +- size = "medium"
 | |
 | +- price = 4999
 |
 +- test = "It is a test"

About values and types
A value is something that a variable can store. For example, in the following data

model:

(root)
 |
 +- user = "Big Joe"
 |
 +- today = Jul 6, 2007
 |
 +- todayHoliday = false
 |
 +- lotteryNumbers
 | |
 | +- (1st) = 20
 | |
 | +- (2st) = 14

Page 7

 | |
 | +- (3rd) = 42
 | |
 | +- (4th) = 8
 | |
 | +- (5th) = 15
 |
 +- cargo
 |
 +- name = "coal"
 |
 +- weight = 40

The value of the user variable is "Big Joe" (a string), the value of today is Jul 6,

2007 (a date), the value of todayHoliday is false (a boolean, i.e. yes/no). The

value of lotteryNumbers is the sequence that contains 20, 14, 42, 8, 15.

lotteryNumbers contains multiple values (for example, the value of the second

item is 14), but lotteryNumbers itself is a single value, the value of cargo is a

hash. A value need not be stored in a variable, for example we have the value 100

here:

<#if cargo.weight < 100>Light cargo</#if>

Temporary results of calculations are also values. 20 and 120 in the following

example are values. When this template is executed, it will print 120:

${cargo.weight / 2 + 100}

Combing the last two examples, as the result of dividing the two values, 40 (the

weight of the cargo) and 2, a new value 20 is created. Then 100 is added to it, so

the value 120 is created. Then 120 is printed (${...}), and the template execution

continues.

Each value is of a specific type. For example, the value of the user variable is of

type string, and the lotteryNumbers variable is of type sequence. The value type

is important because it determines to a large extent how and where you can use the

value.

Page 8

For example:

• ${user / 2} is an error, but ${cargo.weight / 2} is not and prints 20,
since division makes sense for a number, but not for a string

• Using dot like in cargo.name makes sense only if cargo is a hash.

• You can use <#list ...> only with sequences.

• The condition of <#if ...> must be a boolean.

A value can be of multiple types at the same time, although it's rarely utilized. For

example, in the data model below mouse is both a string and a hash:

(root)
 |
 +- mouse = "Jerri"
 |
 +- age = 12
 |
 +- color = "brown"

If you merge this template with the above data model:

${mouse} <#-- uses mouse as a string -->
${mouse.age} <#-- uses mouse as a hash -->
${mouse.color} <#-- uses mouse as a hash -->

the output will be:

Jerri
12
brown

Data model type
In the data model, the root is a value of type hash. When you write something like

user, it means that you want the "user" variable stored in the root hash. This is

similar to root.user, except that there is no variable called "root", so that would

not work. We call this root the root namespace.

Page 9

Note that in that our example, the data model, that is the root hash, contains further

hashes and sequences (lotteryNumbers and cargo). This is because a hash

contains other variables, and those variables have a value, which can be of any type,

including a hash or sequence.

Supported types
RPL supports the following types:

• Scalars:

o String

o Number

o Boolean

o Date

• Containers:

o Hash

o Sequence

o Collection

• Subroutines:

o Methods and functions

o User-defined directives

• Miscellaneous/seldom used:

o Node

About scalars
A variable that stores a single value (size, price, and test).

To use a scalar in a template, you specify its path from the directory, separated by a

period. For example, to access the price of a mouse, write mouse.price. When you

put the ${...} code around an expression like this (${mouse.price}, you are

instructing RPL to output the corresponding text based on the value of the scalar.

Page 10

These are the basic values of one of the following type:

String

Simple text.

Number

RPL does not distinguish between whole numbers and non-whole numbers. For

example, for example 3/2 will be always 1.5, not 1.

Note that "50" and the number 50 are different in RPL. The former is a string of

two characters, while the latter is a numerical value.

Boolean
A boolean value represents a logical true or false (yes or no). For example,

whether or not the visitor has logged in. Typically, you use booleans as the

condition of the if directive, for example: <#if loggedIn >...</#if> or

<#if price == 0>...</#if>; in the last case, the result of the price == 0 part

is a boolean value.

Date
 A date variable stores date/time related data. It has three variations:

• A date with day precision (often referred to simply as "date") as April 4,

2003

• Time of day (without the date), as 10:19:18 PM. Time is stored with

millisecond precision.

• Date-time (sometimes called "time stamp") as April 4, 2003 10:19:18 PM.

The time part is stored with millisecond precision.

Due to system limitation, RPL cannot always determine which parts of the date

are in use (i.e., if it is date-time, or a time of day, etc.). The solution for this

problem is discussed later in this chapter.

Page 11

It is possible to define date values directly in templates using the date, time

and datetime built-ins. These built-ins are described in “Chapter 5. Built-in

Reference”.

IMPORTANT: Bear in mind that RPL distinguishes strings from numbers and

booleans, so the string "150" and the number 150 are different.

About containers
Container variables hold other variables, referred to as sub-variables. RPL supports

the following container types:

Hash

A variable that acts as a directory (root, mouse, elephant, and python).

Hashes store other variables called sub-variables, by name (e.g., mouse

and size).

A hash associates a unique lookup name with each of its sub-variables. The name

is an unrestricted string. A hash does not define an order for the sub-variables in

it. The variables are accessed by name.

Note that since a value can have multiple types, it is possible for a value to be

both a hash and a sequence. In this case, the value supports index-based access

as well as access by lookup name. However, typically a container will be either a

hash or a sequence, not both.

As the value of the variables stored in hashes and sequences (and collections) can

be anything, it can be a hash or sequence (or collection) as well. This way you can

build arbitrarily deep structures.

The data-model (or its root) is a hash. It is also called the root namespace.

Sequence

Associates an integer number with each of its sub-variables. A sequence is

similar to a hash, but it stores sub-variables sequentially by index number.

Page 12

The first sub-variable is associated with 0, the second with 1, the third to 2, and

so on. These numbers are often called the indexes of the sub-variables. The sub-

variables are ordered. Sequences are usually dense, i.e., all indexes up to the

index of the last sub-variable have an associated sub-variable, but it's not strictly

necessary. The type of the sub-variable values need not be the same.

For example, in the following data model, animals and whatnot.fruits are

sequences:

 (root)
 |
 +- animals
 | |
 | +- (1st)
 | | |
 | | +- name = "mouse"
 | | |
 | | +- size = "small"
 | | |
 | | +- price = 50
 | |
 | +- (2nd)
 | | |
 | | +- name = "elephant"
 | | |
 | | +- size = "large"
 | | |
 | | +- price = 5000
 | |
 | +- (3rd)
 | |
 | +- name = "python"
 | |
 | +- size = "medium"
 | |
 | +- price = 4999
 |
 +- whatnot
 |
 +- fruits
 |
 +- (1st) = "orange"
 |
 +- (2nd) = "banana"

To access a sub-variable of a sequence, you use a numerical index in square

brackets. Indexes start from 0, thus the index of the first item is 0. To get the

Page 13

name of the first animal you write animals[0].name. To get the second item

in whatnot.fruits (which is the string "banana") you

write whatnot.fruits[1].

Note that since a value can have multiple types, it is possible for a value to be

both a hash and a sequence. In this case, the value supports index-based access

as well as access by lookup name. However, typically a container will be either a

hash or a sequence, not both.

Collection

A restricted sequence. You cannot access its size or retrieve its sub-variables by

index, but you can list them with the list directive.

About subroutines
Subroutines include methods, functions, and user-defined directives.

About methods and functions
Methods and functions are used to calculate a value, influenced by the parameters

you give to it.

The difference between methods and functions is that methods are typically

defined by the language and the data-model, and functions are defined in templates

using the function directive. Both methods and functions can be used in the same

way.

Methods/functions are first-class values, just like in functional programming

languages. This means that functions/methods can be the parameters or return

values of other functions/methods, you can assign them to variables, and so on.

RPL provides predefined methods as described in “Chapter 7. Method Reference”.

It is also possible to create methods and functions using the function directive.

Consider the provided method avg, which is placed in the root of the data model as

part of the language definition. This method can be used to calculate the average of

numbers.

Page 14

The usage of methods will be explained in detail in a later section, but the following

example illustrates methods:

The average of 3 and 5 is: ${avg(3, 5)}
The average of 6 and 10 and 20 is: ${avg(6, 10, 20)}
The average of the price of a python and an elephant is:
${avg(animals.python.price, animals.elephant.price)}

produces this output:

The average of 3 and 5 is: 4
The average of 6 and 10 and 20 is: 12
The average of the price of a python and an elephant is:
4999.5

About user-defined directives
A user-defined directive is a reusable template fragment which can be used as an

RPL tag. Creating user-defined directives is described later in this chapter.

User-defined directives (such as macros), are first-class values similar to

functions/methods.

For example, assume the value of a variable box is a user-defined directive that

prints an HTML message with a title bar and a message. You can use the box

variable in the template as shown in the following example:

<@box title="Attention!">
 Too much copy-pasting may lead to
 maintenance headaches.
</@box>

Using methods/functions versus user-defined directives
As a general rule, you should use a user-defined directive instead of a

function/method in the following cases:

• The output (the return value) is markup (HTML, XML, etc.). The main reason is

that the results of functions are subject to automatic XML escaping (due to

the nature of ${...}), while the output of user-defined directives are not (due

Page 15

to the nature of <@...>; its output is assumed to be markup, and hence

already escaped).

• The side-effect is important and not the return value, for example, a directive

whose purpose is to add an entry to the server log. In fact, a user-defined

directive cannot have a return value, but some type of feedback is still

possible by setting non-local variables.

• You need to perform flow control.

About miscellaneous types
Node variables represent a node in a tree structure, and are used mostly with XML

processing.

A node is similar to a sequence that stores other nodes, referred to as child nodes.

A node stores a reference to its container node, referred to as the parent node. The

node value can be of multiple types, for example both a node and a number. In such

cases, it can store a number as the "pay-load". In addition to the topological

information, a node can store meta data such as a node name, a node type (string),

and a node namespace (string). For example, if the node symbolizes an h1 element

in an XHTML document, then its name is h1, its node type is element, and its

namespace can be http://www.w3.org/1999/xhtml. The designer of the data model

determines what this meta data means and whether it is used. Working with

templates

Templates are programs you write in RPL. A template comprises the following:

Text Text is printed to the output as is.

Interpolation Produces a calculated value in the output. Interpolations are
delimited by ${ and }.

RPL tags Instructions to RPL and will not be printed to the output. You use
RPL tags to call directives. RPL tags are similar to HTML tags.

Comments Comments are ignored by RPL and are not written to the output.
RPL comments are similar to HTML comments, but are delimited
by <#-- and -->.

Page 16

In the following example, the template sections are highlighted so that you can

easily see them. Comments are highlighted in blue, interpolations are highlighted in

green, RPL tags are highlighted in yellow, and text is highlighted in gray. The [BR]’s

indicate line breaks, and HTML tags are not highlighted (RPL reads HTML as text

and does not interpret it in any way).

<html>[BR]
<head>[BR]
 <title>Welcome!</title>[BR]
</head>[BR]
<body>[BR]
 <#-- Greet the user by his/her name -->[BR]
 <h1>Welcome ${profile.user}!</h1>[BR]
 <p>We have these animals:[BR]

 <#list animals as being>
 ${being.name} for ${being.price} Euros
 </#list>

</body>[BR]
</html>

RPL distinguishes upper case and lower case letters. For example, ${name} is not

the same as ${Name} or ${NAME}.

Keep in mind the following rules:

• You can use interpolations only in text and in string literal expressions,

described later in this chapter.

• You cannot place an RPL tag inside another RPL tag or inside an

interpolation. For example, the following is incorrect:

<#-- Wrong code
<#if <#include 'foo'>='bar'>...</#if>

Page 17

• You can place comments inside RPL tags and interpolations. For example:

<h1>Welcome ${user <#-- The name of user -->}!</h1>[BR]
<p>We have these animals:[BR]
[BR]
<#list <#-- some comment... --> animals as <#-- again... -->
being>[BR]
...

Working with RPL tags
You use RPL tags to call directives. For example, the following code:

<#list animals as being>[BR]
 ${being.name} for ${being.price} Euros[BR]
 </#list>[BR]

calls the list directive.

There are two kind of RPL tags:

Start tag

<#directivename parameters>

End tag

</#directivename>

This is similar to HTML or XML syntax, except that the RPL tag name begins with #.

If the directive does not have any content between the start and end tags, you must

use the start tag with no end tag. For example, <#if something>...</#if>, but

just <#include something>.

There are two types of directives: predefined directives and user-defined directives.

User-defined directives begin with @, for example <@mydirective parameters>,

and predefined directives begin with #. One further difference is that if the directive

has no nested content, you must use a tag such as <@mydirective parameters />,

similarly to XML (e.g.). User-defined directives are described in more

detail later in this chapter.

Page 18

RPL tags must be properly nested. For example, the following code is incorrect

because the if directive is both inside and outside of the nested content of the

list directive:

<#list animals as being>
 ${being.name} for ${being.price} Euros
 <#if user == "Big Joe">
 (except for you)
</#list> <#-- WRONG! The "if" has to be closed first. -->
</#if>

Note that RPL does not care about the nesting of HTML tags because RPL reads

HTML as flat text and does not interpret it in any way.

If you try to use a non-existing directive (e.g., you mistype the directive name), RPL

will not process the template and produce an error message.

RPL ignores superfluous white space inside RPL tags. So you can write this:

<#list[BR]
 animals as[BR]
 being[BR]
>[BR]
${being.name} for ${being.price} Euros[BR]
</#list >

You may not, however, insert white space between the < or </ and the directive

name.

For a complete list and descriptions of predefined directives, see “Chapter 6.

Directive Reference”.

Page 19

The template at a glance
The simplest template is an HTML or plain text file. When the system emails a user,

RPL sends that HTML as is. However, to make the message to be more dynamic, you

can include instructions for RPL in the HTML:

Interpolations Interpolations contain instructions to convert an expression to text
and to insert that text into the output. An interpolation begins
with ${ and ends with }. Note that interpolations do not obtain a
value, they only execute an expression.

RPL tags RPL tags are a similar to HTML tags. The tags start with #. User-
defined RPL tags use @ instead of #.

RPL tags refer to directives. You can think of "RPL tag" and

"directive" as synonyms.

Comments Comments are similar to HTML comments, but they are delimited
by <#-- and -->. Anything between these delimiters is not written
to the output.

Everything in the template except interpolations, RPL tags, and comments is

considered static text, and is printed to the output as is (with the exception of rules

for space truncation, discussed later in this document).

For detailed information about working with templates, see “Working with

Templates” later in this chapter.

Page 20

Most commonly used directives
This quick overview describes the three most commonly used directives. For

descriptions of all RPL directives, see “Chapter 6. Directive Reference”.

if

With the if directive, you can conditionally skip a section of the template. For

example, assume that you want to greet the boss, Big Joe, differently from other

users:

<html>
<head>
 <title>Welcome!</title>
</head>
<body>
 <h1>
 Welcome ${profile.user}<#if profile.user == "Big Joe">, our
beloved leader</#if>!
 </h1>
 <p>Our latest product:
 ${latestProduct.name}!
</body>
</html>

The example above instructs RPL that the '', our beloved leader'' should be used

only if the value of the variable profile.user is equal to the string "Big Joe". In

general, things between the <#if condition> and </#if> tags are skipped if the

condition is false.

Let's look at the above example in detail:

== is an operator that tests whether the values at its left and right side are

equivalent. The results is a boolean value true or false. On the left side of == we

have referenced a variable with the syntax that should be already familiar; this will

be replaced with the value of the variable. In general, unquoted words inside

directives or interpolations are treated as references to variables. On the right side

of ==, we specified a literal string. Literal strings in templates must always be

enclosed in quotation marks.

Page 21

IMPORTANT: In the example, ${profile.user} is used outside of

the if directive, and profile.user inside of the if directive. ${user} is

needed since we are in the HTML context and the ${…}construct indicates the

beginning of RPL instructions. When inside the if statement, we are already

inside an RPL context; therefore, RPL will treat the code as instructions and

the ${…} is not needed.

Assuming the price of pythons is 0, the following example:

<#if animals.python.price == 0>
 Pythons are free today!
</#if>

produces this output:

Pythons are free today!

In this example, a number is specified directly. Note that the number is not enclosed

in quotes; if it was, RPL would misinterpret it as a string.

To check whether the values are not equivalent, use the != operator. For example,

if the price of pythons is not 0, the following code:

<#if animals.python.price != 0>
 Pythons are not free today!
</#if>

produces this output:

Pythons are not free today!

You can use the < operator to compare values. For example:

<#if animals.python.price < animals.elephant.price>
 Pythons are cheaper than elephants today.
</#if>

You can use the <#else> tag to specify what to do if the condition is false. For

example, the following code:

<#if animals.python.price < animals.elephant.price>

Page 22

 Pythons are cheaper than elephants today.
<#else>
 Pythons are not cheaper than elephants today.
</#if>

If the price of python is less than the price of elephant, the example will

print Pythons are cheaper than elephants today. Otherwise, it will

print Pythons are not cheaper than elephants today.

If a variable has a boolean value (true/false), you can use it directly as the condition

of if:

<#if animals.python.protected>
 Warning! Pythons are protected animals!
</#if>

list

The list directive is useful when you want to list something. For example, merging

this template with the data model we used earlier to demonstrate sequences:

<p>We have these animals:
<table border=1>
 <tr><th>Name<th>Price
 <#list animals as being>
 <tr><td>${being.name}<td>${being.price} Euros
 </#list>
</table>

produces this output:

<p>We have these animals:
<table border=1>
 <tr><th>Name<th>Price
 <tr><td>mouse<td>50 Euros
 <tr><td>elephant<td>5000 Euros
 <tr><td>python<td>4999 Euros
</table>

The generic format of the list directive is:

<#list sequence as loopVariable>repeatThis</#list>

Page 23

The repeatThis part will be repeated for each item in the sequence, one after the

other, starting from the first item. In all repetitions loopVariable will hold the

value of the current item. This variable exists only between the <#list

...> and </#list> tags.

As another example, we list the fruits of the example data model:

<p>And BTW we have these fruits:

<#list whatnot.fruits as fruit>
 ${fruit}
</#list>

The whatnot.fruits expression references a variable in the data model.

include

You can use the include directive to insert the content of another file into the

template.

For example, you have to show the same copyright notice on several pages. You

can create a file that contains only the copyright notice, and insert that file

anywhere you need the copyright notice.

The copyright file shown below is called copyright_footer.html and it is stored in

cms://contentlibrary/common:

<hr>
<i>
Copyright (c) 2000 Acmee Inc,

All Rights Reserved.
</i>

use the following code to include the copyright notice in your template:

<html>
<head>
 <title>Test page</title>
</head>
<body>
 <h1>Test page</h1>
 <p>Content...

Page 24

<#include "cms://contentlibrary/common/copyright_footer.html">
</body>
</html>

and the output will be:

<html>
<head>
 <title>Test page</title>
</head>
<body>
 <h1>Test page</h1>
 <p>Content...
<hr>
<i>
Copyright (c) 2000 Acmee Inc,

All Rights Reserved.
</i>
</body>
</html>

If you change the copyright_footer.htm , the new copyright notice will appear on all

pages produced with this template.

For more information about the include directive, see “Chapter 6. Directive

Reference”.

data

Use the data directive to obtain data from additional tables by querying the

database.

Usually, personalization data is automatically added to the template. However, data

from additional tables used for personalization is not automatically included, since

obtaining it requires additional criteria. Before using the data directive, you need

to set up datasources in the system by including them in the campaign. When you

include a datasource into a campaign, you need to give aliases for the datasource

and its columns. You also need to identify which columns are used as lookup keys

(i.e. the columns used to specify the criteria for the data to be returned). Interact is

declarative in this respect. RPL uses only the aliases, and performs a full check as

follows:

Page 25

• If a field is used as a lookup key in the filter section of the data directive,
RPL checks the definition of the campaign to ensure that the field was
declared as such. Failure to do that will result in an error.

• If a field is used as a returned field in the fields section, RPL checks the
definition of the campaign to ensure that the field was declared in the
campaign with the given alias.

The examples in this section assume that you have created the aliases.

Example

To obtain data, you specify a data element with its three parts:

the data specification, the filter specification, and the returned fields

specification as shown in the following example:

These items are on sale right now!
<table>
<tr><th>Item</th><th>Total</th></tr>
<#data orders as order>
 <#filter custid=profile.custId>
 <#fields orderId product_quantity unitPrice >
 <tr id=”sale${order.orderId}”>
 <td>${order.product}</td>
 <td>${order.unitPrice * order.quantity}</td>
 </tr>
</#data>
</table>

The sections in the example are as follows:

The data declaration section
(highlighted in blue in the
example)

Specifies the structural nature of the request for
data, including the datasource being used, the filter,
and the fields being returned.

The declaration of the
looping variable (shown in
purple in the example)

Specifies the namespace hash being created, with
the requested fields, as the source for each one of
the records returned from the inquiry. The looping
section can refer to this namespace to obtain the
required fields, as shown in the section highlighted
in yellow.

The looping section
(highlighted in yellow in the
example)

This section is repeated for each record obtained.

This section uses the namespace and the fields as

specified in the fields declaration section. These

Page 26

are interpolations (${…}, but they could also be used

in any other valid expression. The offer namespace

hash is updated once for each iteration, with the

data as present in each record from the given

datasource.

The following table shows a database table called SALES, with the fields by which

the table is indexed marked with an *.

ID* CUSTID* PRODUCT* QUANTITY UNIT_PRICE

1 0001 Paylesss Shoes – Size 13 1 25.99

2 0001 Gucci Sunglasses 2 229.99

3 0002 Coach Handbag 1 349.99

4 0003 Coach Handbag 2 349.99

5 0003 Giants Classic Cap 3 45.99

You can set up the datasources as follows:

Database/Field Alias Lookup

SALES database orders

ID field orderId No

CUSTID field custid No

PRODUCT field product Yes

QUANTITY field quantity No

UNIT_PRICE field unitPrice No

If the profile.custId is "0001", the result of the previous example will be:

<table>
<tr><th>Item</th><th>Total</th></tr>

Page 27

 <tr id=”sale1”>
 <td>Payless Shoes – Size 13</td>
 <td>25.99</td>
 </tr>
 <tr id=”sale1”>
 <td> Gucci Sunglasses </td>
 <td>459.98</td>
 </tr>
</table>

content

NOTE: To use the content directive, your account needs to be configured for its

use. Please request access from your account representative.

In most cases, you add the contents of the message directly as HTML in the

template. However, sometimes you need to create content dynamically, based on

conditions in the recipient record. For instance, you might want to insert products

based on location, or offers in nearby stores.

This type of content is usually defined by specific schemas that provide a structure

that breaks down the content into consumable pieces and meta data (e.g. product

name, description, images, price, size, etc.) The content directive is used for such

situations.

While the data directive is useful for content has a lot of variance, the content

directive is more suitable for content that repeats across multiple recipients. For

example, if you launch a campaign with a million recipients, the data directive

results in a million queries for the content. However, the content might have only

100 variations. The content directive is useful in this example as it automatically

caches the results, resulting in 100 queries. In addition, the content directive allows

for greater-than/less-than semantics useful for dates.

To use the content directive, the content must be loaded into Oracle Responsys in

supplemental tables. After the content is uploaded and available in the system, a

data source must be declared in the Campaign Workbook. You should declare the

datasource with a unique alias that will be used to refer to the content in

Page 28

the content directive. Each field that will be used in a filter query should also be

declared and aliased.

In addition to the efficiency on low variants, the content directive helps you with

image paths. If your assets are hosted in the Oracle Responsys Content Library and

you include the path to that asset in your content structure (with “/contentlibrary/”

as the root folder), Oracle Responsys will automatically replace the image path and

make the asset available on the content delivery network so it can be accessed

from the external internet at launch.

For example, the following database of events across the United States. The data

will be stored in a supplemental table called US_EVENTS.

EVENT_ID DESCRIPTION CATEGORY VENUE_
NAME

REGION DATE_
LOCAL

1 Eagles in
concert

CONCERT HP
Pavillion

Bay Area 4/10/16
0:00

2 Knicks vs.
Golden State

NBA Oracle
Arena

Bay Area 9/14/16
0:00

3 The Wizard
of Oz

THEATRE Eugene
O'Neill
Theatre

New York 5/30/16
0:00

4 Red Wings vs.
Canucks

NHL Rogers
Arena

Toronto 8/10/16
0:00

5 Lakers vs.
Golden State

NBA Oracle
Arena

Bay Area 5/5/16
0:00

6 Trailblazers vs.
Kings

NBA Sleep Train
Arena

Bay Area 6/17/16
0:00

7 Cardinals vs.
Giants

MLB AT&T Park Bay Area 6/1/16
18:00

8 Angels vs. As MLB Oracle
Coliseum

Bay Area 6/3/16
19:30

9 Cardinals vs.
Braves

MLB Busch
Stadium

Central 11/3/16
0:00

Page 29

And the datasource is declared as follows:

Database/Field Alias Lookup

US_EVENTS Events

DESCRIPTION DESCR

CATEGORY CATEGORY Yes

VENUE_NAME VENUE

REGION EVENT_REGION Yes

DATE_LOCAL DATE Yes

The content directive can then be used to retrieve content as follows:

<#assign today=.today>
<#assign next_week=dayadd(today,7)>
<table>
<tr><th>Description</th><th>Venue</th><th>Date</th></tr>
<#content Events as event>
 <#filter CATEGORY="MLB" && EVENT_REGION=PROFILE.REGION && DATE gte
today && DATE lt next_week>
<tr><td>${event.DESCR}</td><td>${event.VENUE}</td><td>${event.DATE}<
/td></tr>
</#content >
</table>

The result of the previous example produces at most 3 events in the user’s region.

NOTES: If paths are used in the content table with prefixes that begin with the

string /contentlibrary/, they will be translated to the externally available URL (CDN)

path.

Note the use of the special variable .today in the example. This produces the time

of today at midnight. If you use.now instead, the query will not be cached as each

invocation of .now results in a different date and time.

Page 30

As shown in the example, the content directive is composed of three parts:

The content declaration (highlighted in
blue in the example)

This section is defined by the <#content
directive and its options, and
the <#filter sub-directive. It defines
the data source to use and the filter to
run.

The declaration of the namespace for
the loop (shown in purple in the
example)

This declaration identifies the hash that
will be used to return the data from each
row of the content. Note that in addition
of the hash, two other fields are defined:

ns_has_next
Boolean value, defines if there are
more rows in the namespace.

ns_index
Numeric value, identifies the row
number for each content.

The name of these additional variables is
composed of the namespace (shown as
ns above) indicated in the <#content
directive (event in the example), with
the suffixes indicated.

In the example, the variables will
be event_has_next and
event_index.

The loop (highlighted in yellow in the
example).

This loop is executed once for every
row.

If the loop encounters a break directive,
the looping will end.

The example, based on the filter criteria, produces the following output:

Cardinals vs.
Giants

MLB AT&T Park Bay Area 6/1/16 18:00

Angels vs. As MLB Oracle
Coliseum

Bay Area 6/3/16
19:30

Page 31

<table>
<tr><th>Description</th><th>Venue</th><th>Date</th></tr>
<tr><td>Cardinals vs. Giants</td><td>AT&T Park</td><td>6/1/16
18:00:00</td></tr>
<tr><td>Angels vs. As</td><td>Oracle Coliseum</td><td>6/3/16
19:30:00</td></tr>
</table>

Using directives together
You can use directives as many times on a page as you want, and you can nest

directives similarly as you can nest HTML elements. For example, the following code

will list the animals and print the name of large animals in a bigger font:

<p>We have these animals:
<table border=1>
 <tr><th>Name<th>Price
 <#list animals as being>
 <tr>
 <td>
 <#if being.size == "large"></#if>
 ${being.name}
 <#if being.size == "large"></#if>
 <td>${being.price} Euros
 </#list>
</table>

Note that RPL does not interpret text outside RPL tags, interpolations and

comments. Therefore, it does not interpret the font tags in the example as badly

nested ones.

Handling missing variables
The data model often has variables that are optional (i.e., sometimes missing). RPL

does not support referring to missing variables unless you explicitly specify what to

do if a variable is missing.

This section describes the two most common ways of handling missing variables.

NOTE: RPL treats both non-existent variables and a variables with null values as

missing.

Page 32

Specifying a default value
When referring to a variable that might be missing, you can specify a default value.

To do this, follow the variable name with an exclamation mark (!) and the default

value.

In the following example, when user is missing, “Anonymous” will be used as the

value. When user is not missing, the default value is ignored:

<h1>Welcome ${profile.user!"Anonymous"}!</h1>

Please note that missing field names at the root namespace will result in empty

strings, and they will appear to have a value. For instance:

<h1>Welcome ${FIRRST_NAME!”Unknown”}!</h1>

(Notice the double ‘R’)

Will never result in Unknown since the variable is assumed to have a value.

Specifying a default value for sub-variables
To specify a default value for a sub-variable, follow the sub-variable name with a !

as shown in the following example:

<h1>Welcome ${user.firstname!"Anonymous"}!</h1>

Note that the above example is correct if only firstname is missing but user is

not. If user is missing as well, an error will occur that terminates template

processing. To avoid such errors, enclose both the top-level variable and the sub-

variable in parenthesis:

<h1>Welcome ${(user.firstname)!"Anonymous"}!</h1>

Testing for missing values
To find out whether a value is missing, follow the variable name with double

question marks (??).

Page 33

As shown in the following example, you can combine ?? with the if directive to

skip the greeting if the user variable is missing a value:

<#if profile.user??><h1>Welcome ${user}!</h1></#if>

Please note that in the prior examples, the use of profile.user will be missing

only if they were not aliased on the datasources in the campaign design. If they

were aliased, the result is that the variable is present. If want to check whether a

given value was a null or empry string, or a null in the case of numbers and dates,

you can use the ?isnull builtin (explained in detail later.) Briefly, ?isnull is

usually used in if directives. The following is an example, with the erroneous

FIRRST_NAME of previous examples:

<h1>Welcome <#if
FIRRST_NAME?isnull>Unknown<#else>${FIRRST_NAME}</#if>!</h1>

The builtin ?isnull is usually applied towards empty strings, and to numbers and

dates coming from the personalization record. You cannot create null dates or

numbers in RPL other than from the personalization record.

Important: Regarding variable accessing with multiple steps, such

as animals.python.price, writing animals.python.price!0 is correct only

if animals.python is never missing and only the last sub-variable, price, is

possibly missing (in which case here we assume it's 0). If animals or python is

missing, the template processing will stop with an "undefined variable" error. To

prevent this, you have to write (animals.python.price)!0. In that case the

expression will be 0 even if animals or python is missing. The same logic applies

to ??; animals.python.price?? versus (animals.python.price)??.

Testing for missing sub-variables
To test whether a value is missing in a sub-variable, follow the sub-variable name

with double question marks (??). For example:

<#if user.firstname??><h1>Welcome ${user}!</h1></#if>

Page 34

Note that the above example is correct if only the value of firstname is missing,

but not of user. If user is missing as well, an error will occur that terminates

template processing. To avoid such errors, enclose both the top-level variable and

the sub-variable in parenthesis:

<#if (user.firstname)??><h1>Welcome ${user}!</h1></#if>

Working with expressions
When you supply values for interpolations or directive parameters you can use

variables or more complex expressions. For example, if x is the number 8 and y is 5,

the value of (x + y)/2 resolves to the numerical value 6.5.

In interpolations, use ${expression} where expression gives the value you want

to insert into the output as text. So ${(5 + 8)/2} prints “6.5”.

In directives, use <#directivename expession>, for example <#if

expression>...</#if>.

Quick overview (cheat sheet)
If you already know RPL or are an experienced programmer, you can use this

section as a quick reference.

Specifying values directly

Type Example

String "Foo" or 'Foo' or "It's \"quoted\""
or r"C:\raw\string"

Number 123.45

Boolean true, false

Sequence ["foo", "bar", 123.45], 1..100

Hash {"name":"green mouse", "price":150}

Page 35

Retrieving variables

Type Example

Top-level variable user

Retrieving data from a
hash

user.name, user["name"]

Retrieving data from a
sequence

products[5]

Special variables main

String operations

Operation Example

Interpolation or
concatenation

"Hello ${user}!" (or "Inter" + "act")

Getting a character name[0]

Sequence operations

Operation Example

Concatenation users + ["guest"]

Sequence slice products[10..19] or products[5..]

Hash operations

Operation Example

Concatenation passwords + {"joe":"secret42"}

Numeric/Boolean expressions

Expression Type Example

Arithmetical calculations (x * 1.5 + 10) / 2 - y % 100

Comparison x == y, x != y, x < y, x > y, x >= y, x <= y, x < y,
...etc.

Page 36

Expression Type Example

Logical operations !registered && (firstVisit || fromEurope)

Built-ins name?upper_case

Method call repeat("What", 3)

Page 37

Missing value handler operators

Action Example

Default value name!"unknown" or (user.name)!"unknown"
or name! or (user.name)!

Missing value test name?? or (user.name)??

Specifying values directly
This section describes how to specify values directly instead of as a result of

calculations.

Specifying strings
To specify a string value directly, enclose the text in single or double quotation

marks, for example "some text" or 'some text'. The two forms are equivalent.

If the text contains the character used for the quoting (either " or ') or backslashes

(/), you have to precede that character with a backslash; this is called escaping. You

can type any other character, including line breaks, in the text directly. For example:

${"It's \"quoted\" and
this is a backslash: \\"}

${'It\'s "quoted" and
this is a backslash: \\'}

produces this output:

It's "quoted" and
this is a backslash: \

It's "quoted" and
this is a backslash: \

NOTE: Alternately, you can simply type the above text into the template without

using ${...}.

Page 38

The following table shows the list of all supported escape sequences. All other

usage of a backlash in string literals is an error and any attempt to use the template

will fail.

Escape sequence Meaning

\" Quotation mark (u0022)

\' Apostrophe (a.k.a. apostrophe-quote) (u0027)

\\ Back slash (u005C)

\n Line feed (u000A)

\r Carriage return (u000D)

\t Horizontal tabulation (a.k.a. tab) (u0009)

\b Backspace (u0008)

\f Form feed (u000C)

\l Less-than sign: <

\g Greater-than sign: >

\a Ampersand: &

\xCode Character given with its hexadecimal Unicode code (UCS
code)*

*The Code after the \x is 1 to 4 hexadecimal digits. For example this will put a

copyright sign into the string: "\xA9 1999-2001", "\x0A9 1999-2001", "\x00A9

1999-2001". When the character directly after the last hexadecimal digit can be

interpreted as hexadecimal digit, you must use all 4 digits.

Note that the character sequence ${ (and #{) has special meaning. It is used to

insert the value of expressions (typically, the value of variables, as in "Hello

${user}!"). If you want to print ${, you should use raw string literals as explained

below. You can also use the sequence \x0024 to replace the $ sign. For example,

the following produces the string ${ABC} in the output: "\x0024{ABC}”.

Page 39

About raw string literals
Raw string literals are a special kind of string literal. In raw string literals, the

backslash and ${ have no special meaning, they are considered plain characters. To

indicate that a string literal is a raw string literal, put an r directly before the

opening quotation mark. For example:

${r"${foo}"}
${r"C:\foo\bar"}

produces this output:

${foo}
C:\foo\bar

Specifying numbers
To specify a numerical value directly, type the number without quotation marks.

Use the dot as the decimal separator and do not use any grouping separator

symbols. You can use - or + to indicate the sign (+ is redundant). RPL does not

support scientific notation (so 1E3 is incorrect). In addition, you cannot omit the 0

before the decimal separator (so .5 is incorrect).

Examples of valid number literals are: 0.08, -5.013, 8, 008, 11, +11

Note that numerical literals such as 08, +8, 8.00 and 8 are equivalent as they all

symbolize the number eight. Thus, ${08}, ${+8}, ${8.00} and ${8} will all produce

the same output.

Specifying booleans
To specify a boolean value, write true or false without quotation marks.

Page 40

Specifying sequences

To specify a literal sequence, list the sub-variables separated by commas, and

enclose the entire list in square brackets ([]). For example:

<#list ["winter", "spring", "summer", "autumn"] as x>
${x}
</#list>

produces this output:

winter
spring
summer
autumn

The items in the list are expressions, so the following is correct:

[2 + 2, [1, 2, 3, 4], "whatnot"]

In the above example, the first sub-variable is the number 4, the second is another

sequence, and the third sub-variable is the string "whatnot".

You can define sequences that store a numerical range with start..end, where start

and end are expressions that resolve to numerical values. For example 2..5

(without the square brackets) is the same as [2, 3, 4, 5], but the former is

much more efficient as it occupies less memory and is faster. You can define

decreasing numerical ranges too, for example, 5..2. Furthermore, you can omit the

end, for example 5.., in which case the sequence will contain 5, 6, 7, 8, ...etc. up to

the infinity.

WARNING: Using the <#list> directive on infinite sequences can cause an infinite

loop that will cause the template execution not to terminate.

Page 41

Specifying hashes
To specify a hash in a template, list the key/value pairs separated by commas, and

enclose the list in curly brackets ({}). The key and value within a key/value pair are

separated by a colon. For example:

 {"name":"green mouse", "price":150}.

Note that both names and values are expressions. However, lookup names must be

strings.

Retrieving variables

Retrieving top-level variables
To access a top-level variable, use the variable name. For example, the

expression user will evaluate to the value of variable stored with name “user” in

the root. So the following example prints the value stored in that variable:

${user}

A top-level variable can be created in multiple ways. Its most important use is to

retrieve fields from a personalization record.

If there is no such top-level variable defined in the personalization record or

assigned with <#assign>, RPL will return an empty string.

In this expression, the variable name can contain only letters (including non-Latin

letters), digits (including non-Latin digits), underline (_), dollar sign ($), at sign (@)

and hash (#). Furthermore, the name must not start with digit.

Personalization fields and campaign variables appear as top level variables in RPL.

However, you can create additional higher level variables with the assign, local

and global directives.

Page 42

Retrieving data from a hash
If you have a hash as a result of an expression, you can get its sub-variable with a

dot and the name of the sub-variable. Assume that you have this data model:

(root)
 |
 +- book
 | |
 | +- title = "Breeding green mice"
 | |
 | +- author
 | |
 | +- name = "Julia Smith"
 | |
 | +- info = "Biologist, 1923-1985, Canada"
 |
 +- test = "title"

You can read the title with book.title, since the book expression will return a

hash. Applying this logic further, you can read the name of the author with this

expression: book.author.name.

Alternately, you can specify the sub-variable name with an

expression: book["title"]. You can specify any expression that evaluates to a

string in the square brackets, for example book[test].

The following examples are equivalent:

${book.author.name}
${book["author"].name}
${book.author.["name"]}
${book["author"]["name"]}

When you use the dot syntax, the same restrictions apply regarding the variable

name as with top-level variables (name can contain only letters, digits, _, $, @, etc.).

There are no such restrictions when you use the square bracket syntax, since the

name is the result of an arbitrary expression. Note that if the sub-variable name is *

(asterisk) or **, you do not have to use square bracket syntax.

Unlike top level variables, undefined variables within a hash do not return the empty

string. Rather, if an attempt is made at retrieving a variable that does not exist, an

Page 43

error will result and RPL will terminate further processing, resulting in a launch

failure. You can avoid susch failures with the use of the exclamation point operator

(!), the double question mark operator (??), or <#attempt> and <#recover>.

Retrieving data from a sequence
This is the same as for hashes, but you can use only the square bracket syntax, and

the expression in the brackets must evaluate to a number, not a string. For example,

to get the name of the first animal of the example data model,

use animals[0].name.

Retrieving special variables
Normally you do not need to use special variables.

Special variables are defined by the RPL. To access them, you use

the .variable_name syntax. Special variables are described in “Chapter 9. Special

Variables”.

String operations

Interpolation or concatenation
To insert the value of an expression into a string, you can use ${...} and #{...}

in string literals. ${...} behaves similarly as in text sections. For example, assuming

that user is “Big Joe”:

${"Hello ${user}!"}
${"${user}${user}${user}${user}"}

produces this output:

Hello Big Joe!
Big JoeBig JoeBig JoeBig Joe

Page 44

Alternatively, you can use the + operator to achieve the same result. This method is

called string concatenation. It is the preferred method. For example:

${"Hello " + user + "!"}
${user + user + user + user}

This will print the same as the example with the ${...}.

IMPORTANT: Interpolations work only in text sections (e.g. <h1>Hello

${name}!</h1>) and in string literals (e.g. <#include "/footer/${company}.html">).

A common mistake is using <#if ${isBig}>Wow!</#if>, which is syntactically

incorrect. Instead, write <#if isBig>Wow!</#if>. <#if

"${isBig}">Wow!</#if> is incorrect as well, since the parameter value will be a

string, and the if directive requires a boolean value, so it will cause a runtime error.

Getting a character
You can get a single character of a string at a given index in the same way as you

read the sub-variable of a sequence, e.g. user[0]. The result is a string whose

length is 1; RPL does not have a separate character type. As with sequence sub-

variables, the index must be a number that is at least 0 and less than the length of

the string. Otherwise, an error will terminate template processing.

Since the sequence sub-variable syntax and the character getter syntax clashes, you

can use the character syntax only if the variable is not a sequence as well, since in

that case the sequence behavior prevails. As a workaround, you can use the string

built-in, e.g. user?string[0].

For example, assuming that user is “Big Joe”:

${user[0]}
${user[2]}

produces this output (note that the index of the first character is 0):

B
g

Page 45

Sequence operations

Concatenation
You can concatenate sequences in the same way as strings, with +. For example:

<#list ["Joe", "Fred"] + ["Julia", "Kate"] as user>
- ${user}
</#list>

produces this output:

- Joe
- Fred
- Julia
- Kate

NOTE: Do not use sequence concatenation for many repeated concatenations, such

as for appending items to a sequence inside a loop. Use it for things such as <#list

users + admins as person>. Although concatenating sequences is fast and its speed

is independent of the size of the concatenated sequences, the resulting sequence

will always be a little slower to read then the original two sequences. This means

that the result of many repeated concatenations is a sequence that is slow to read.

Sequence slice
With [firstindex..lastindex] you can get a slice of a sequence,

where firstindex and lastindex are expressions that evaluate to number. For

example, if seq stores the sequence "a", "b", "c", "d", "e", "f" then the expression

seq[1..4] will evaluate to a sequence that contains "b", "c", "d", "e" (since the item

at index 1 is "b", and the item at index 4 is "e").

The lastindex can be omitted, in which case it defaults to the index of the last item

of the sequence. For example, if seq stores the sequence "a", "b", "c", "d", "e", "f"

again, then seq[3..] will evaluate to a sequence that contains "d", "e", "f".

An attempt to access a sub-variable past the last sub-variable or before the first

sub-variable of the sequence will cause an error and terminate template processing.

Page 46

Hash operations

Concatenation
You can concatenate hashes in the same way as strings, with +. If both hashes

contain the same key, the hash on the right-hand side of the + takes precedence.

Example:

<#assign ages = {"Joe":23, "Fred":25} + {"Joe":30, "Julia":18}>
- Joe is ${ages.Joe}
- Fred is ${ages.Fred}
- Julia is ${ages.Julia}

produces this output:

- Joe is 30
- Fred is 25
- Julia is 18

NOTE: Do not use hash concatenation for many repeated concatenations, such as

adding items to a hash inside a loop. It's the same as with the sequence

concatenation.

Arithmetical calculations
RPL supports the following arithmetic functions:

Addition: +

Subtraction: -

Multiplication: *

Division: /

Modulus (remainder): %

Operator precedence is defined in “Appendix B. Operator Precedence”.

Page 47

Example:

${100 - x * x}
${x / 2}
${12 % 10}

assuming that x is 5, the example produces this output:

75
2.5
2

Both operands must be expressions which evaluate to a numerical value. The

example below will cause an error, since "5" is a string and not the number 5:

${3 * "5"} <#-- WRONG! -->

There is an exception to the above rule. The + operator is used to concatenate

strings as well as numbers. As a result, if a string is on one side of + and a numerical

value on the other side, the numerical value will be converted to a string (using the

format appropriate for the language of the page) and then use the + as a string

concatenation operator. For example: ${3 + "5"} will output 35.

Generally, RPL does not convert strings to numbers.

If you want only the integer part of the result of a calculation, you can use the int

built-in. For example:

${(x/2)?int}
${1.1?int}
${1.999?int}
${-1.1?int}
${-1.999?int}

Assuming that x is 5, the example produces this output:

2
1
1
-1
-1

Page 48

Comparison
This section describes how to compare two values, using examples of

the if directive.

The usage of the if directive is: <#if expression>...</#if>,

where expression must evaluate to a boolean value; otherwise, an error will

terminate template processing. If the value of expression is true, the code between

the begin and end tags will be processed; otherwise it will be skipped.

To test two values for equality, use the = operator (or == as in Java or C).

To test two values for inequality, use the != operator. For example, assume that user

is “Big Joe”:

<#if user = "Big Joe">
 It is Big Joe
</#if>
<#if user != "Big Joe">
 It is not Big Joe
</#if>

The user = "Big Joe" expression evaluates to the boolean true, so the output

will be:

It is Big Joe

The expressions on both sides of the = or != must evaluate to a scalar. Furthermore,

the two scalars must be of same type (i.e. strings can only be compared to strings

and numbers can only be compared to numbers). Otherwise, an error will terminate

template processing. Note that RPL does exact comparison, so string comparisons

are case and white space sensitive. This means that "x", "x " and "X" are not equal

values.

For numerical and date values, you can also use <, <=, >= and >. You cannot use

these operators for strings.

Page 49

Example:

<#if x <= 12>
 x is less or equivalent to 12
</#if>

Keep in mind that RPL interprets > as the closing character of an RPL tag. For this

reason, you must enclose the expression in parentheses, for example <#if (x >

y)>. Alternately, you can use > and <, for example<#if x > y>. Note that

entity references such as > < are only supported in arithmetical comparisons,

they are not supported in other RPL tags. As another alternative, you can use lt

instead of <, lte instead of <=, gt instead of > and gte instead of >=.

Logical operations
RPL supports the following standard logical operators:

Logical or: ||

Logical and: &&

Logical not: !

These operators work only with boolean values. Otherwise, an error will terminate

template processing.

Example:

<#if x < 12 && color = "green">
 We have less than 12 things, and they are green.
</#if>
<#if !hot> <#-- here hot must be a boolean -->
 It's not hot.
</#if>

Page 50

About built-ins
Built-ins provide certain functionality that is always available. Typically, a built-in

provides a different version of a variable, or information about the variable in

question. The syntax for accessing a built-in is the same as for accessing a sub-

variable in a hash, except that you use the question mark instead of a dot. For

example, to get the upper case version of a string: user?upper_case.

The following section lists the most commonly used built-ins. You can find a

complete list of built-ins in “Chapter 5. Built-in Reference”.

Built-ins to use with strings

Built-in Name Description

html The string with all special HTML characters replaced by
entity references (E.g. < with <)

cap_first The string with the first letter converted to upper case

lower_case The lowercase version of the string

upper_case The uppercase version of the string

trim The string without leading and trailing white spaces

Built-ins to use with sequences

Built-in Name Description

size The number of elements in the sequence

Built-ins to use with numbers

Built-in Name Description

int The integer part of a number (e.g. -1.9?int is -1)

Page 51

Example:

${test?html}
${test?upper_case?html}

Assuming that test stores the string “Tom & Jerry’'', the output will be:

Tom & Jerry
TOM & JERRY

Note the test?upper_case?html. Since the result of test?upper_case is a

string, you can use the html built-in with it.

Another example:

${seasons?size}
${seasons[1]?cap_first} <#-- left side can by any expression -->
${"horse"?cap_first}

Assuming that seasons stores the sequence "winter", "spring", "summer",

"autumn", the output will be:

4
Spring
Horse

Calling methods
You call methods using a comma-separated list of expressions in parentheses.

These expressions are called parameters. The method call passes the parameters to

the method, which returns a result. The result is the value of the method call.

For example, assume the method called avg returns an average of its parameters, 3

and 5 in the following example:

${avg(3, 5)}

produces this output:

4

Page 52

Handling missing values
If you try to access a missing variable, an error will occur that terminates template

processing. To handle such cases, you can use two special operators: the default

value operator and the missing value test operator. These operators handles

missing variables, as well as cases when a method call does not return a value. The

missing variable can be top-level variable, hash sub-variable, or sequence sub-

variable.

NOTE: RPL treats null values as missing values. For example, if the value of a field

property is null, RPL treats it the same way as if that property did not exist. As a

result, a method call that returns null is treated as a missing variable.

Using the default value operator

unsafe_expr!default_expr
or
unsafe_expr!
or(unsafe_expr)!default_expr
or
(unsafe_expr)!

The default value operator ! allows you to specify a default value when the value is

missing.

Example:

${xml.animals.mouse!"No mouse."}

Assuming no variable called xml.animals.mouse exists, produces this output:

No mouse.

IMPORTANT: Undefined fields in the root namespace return an empty string. As

such, they will not return the default expression value.

Page 53

The default value can be any kind of expression, it does not have to be a string. For

example, you can write xml.hits!0 or xml.colors!["red", "green",

"blue"]. There is no restriction regarding the complexity of the expression that

specifies the default value, for example you can

write: cargo.weight!(item.weight * itemCount + 10).

WARINIG: If you have a composite expression after the !, such as 1 + x, always use

parentheses, for example ${x!(1 + y)} or ${(x!1) + y)}, depending on

which interpretation you meant. This is because the precedence of ! (when used as

the default value operator) is very low on the right of the expression. This means

that, for example, RPL interprets ${x!1 + y} as ${x!(1 + y)} when it should

mean ${(x!1) + y}.

If the default value is omitted, it will be an empty string, and an empty sequence,

and an empty hash at the same time. (This is possible because RPL allows multi-

type values.) This means that you cannot omit the default value if you want it to be

0 or false. For example:

(${xml.animals.mouse!})

produces this output:

 ()

WARNING: Due to syntactical ambiguities, <@something a=x! b=y /> will be

interpreted as <@something a=x!(b=y) />, that is, the b=y will be interpreted as

a comparison that gives the default value for x, rather than the specification of the

b parameter. To prevent this, write: <@something a=(x!) b=y />.

Page 54

Using the! operator with sub-variables
The following example:

product.color!"red"

Handles the case when the sub-variable color is missing, but not when the top-

level variable product is missing. That is, the product variable must exist,

otherwise template processing will terminate with an error. To avoid this situation,

enclose the variable name in parentheses as shown in the following example:

(product.color)!"red"

This will handle the case when product.color is missing. In this case, if product

is missing or product exists but it does not contain color, the result will be "red",

and no error will occur.

When enclosed in parentheses, any component of the expression may be undefined,

while without the parentheses only the last component of the expression may be

undefined.

You can use the default value operator with sequence sub-variables as well:

<#assign seq = ['a', 'b']>
${seq[0]!'-'}
${seq[1]!'-'}
${seq[2]!'-'}
${seq[3]!'-'}

produces this output:

a
b
-
-

NOTE: A negative sequence index (as seq[-1]!'-') will always cause an error.

Page 55

Using the missing value test operator

unsafe_expr??
or
(unsafe_expr)??

The missing value test operator ?? determines whether a value is missing and

returns either true or false.

For example:

<#if xml.animals.mouse??>
 Mouse found
<#else>
 No mouse found
</#if>

Assuming the variable mouse is not present, produces this output:

 No mouse found

For sub-variables, the rules are the same as with the default value operator: enclose

both the top-level and sub-variable in parentheses for

example (product.color)??.

Grouping expressions
You can use parentheses to group any expressions. Some examples:

 <#-- Output will be: -->
${3 * 2 + 2} <#-- 8 -->
${3 * (2 + 2)} <#-- 12 -->
${3 * ((2 + 2) * (1 / 2))} <#-- 6 -->
${"green " + "mouse"?upper_case} <#-- green MOUSE -->
${("green " + "mouse")?upper_case} <#-- GREEN MOUSE -->
<#if !(color = "red" || color = "green")>
 The color is nor red nor green
</#if>

Page 56

White space in expressions
RPL ignores superfluous white space in expressions. This means that the following

are all equivalent:

${x + ":" + book.title?upper_case}

${x+":"+book.title?upper_case}

${
 x
 + ":" + book . title
 ? upper_case
 }

Operator precedence
RPL operator precedence is similar to that of other programming languages, except

RPL defines additional operators which are unique to RPL.

For details about operator precedence, see “Appendix B. Operator Precedence”.

Working with interpolations
The format of interpolations is ${expression}, where expression can be any

kind of expression (e.g. ${100 + x}).

The interpolation is used to insert the value of the expression converted to a string.

Interpolations can be used only in two places: in text sections (e.g., <h1>Hello

${name}!</h1>) and in string literal expressions (e.g., <#include

"/footer/${company}.html">).

Page 57

WARNING: A common mistake is using <#if ${isBig}>Wow!</#if>, which is

syntactically incorrect. Instead, write <#if isBig>Wow!</#if>.

<#if "${isBig}">Wow!</#if> is incorrect as well, since the parameter value will

be a string, and the if directive requires a boolean value.

The result of the expression must be a string, number or date value. This is because

interpolations automatically convert only numbers and dates to strings. Other types

of values (such as booleans and sequences) must be converted to strings manually,

or an error will terminate template processing.

Inserting strings
If the interpolation is in a text section (i.e., not in a string literal expression), the

string that it will insert will be automatically escaped if an escape directive is in

effect.

We strongly recommend that you utilize this to prevent cross-site-scripting attacks

and badly formed HTML pages. Here's an example:

<#escape x as x?html>
 ...
 <p>Title: ${book.title}</p>
 <p>Description: <#noescape>${book.description}</#noescape></p>
 <h2>Comments:</h2>
 <#list comments as comment>
 <div class="comment">
 ${comment}
 </div>
 </#list>
 ...
</#escape>

This example shows that when generating HTML, you should put the entire template

inside the escape directive. Thus, if the book.title contains an &, it will be

replaced with & in the output so the page remains well-formed HTML. If a

comment contains tags such as <iframe> (or any other element), they will become

Page 58

to <iframe> and the like for other tags, rendering them harmless. If the data

model does contain HTML, you have to neutralize the enclosing escape with a

noescape. For example, if book.description in the above example is stored as

HTML in the database. Without the enclosing escape, the template would look like

the following:

...
 <p>Title: ${book.title?html}</p>
 <p>Description: ${book.description}</p>
 <h2>Comments:</h2>
 <#list comments as comment>
 <div class="comment">
 ${comment?html}
 </div>
 </#list>
 ...

This does the same as the earlier example, but here you may forget some ?html,

which is a security risk. In the earlier example, you may forget some noescape-s,

which gives bad output too, but does not pose a security risk.

Inserting numerical values
If the expression evaluates to a number, the numerical value will be converted to a

string according the default number format. This might include the maximum

number of decimals, grouping, and others. Usually, the system sets the default

number format, but you can set it using number_format setting. For more

information, see the setting directive in “Chapter 6. Directive Reference”. You can

also override the default number format for a single interpolation using the string

built-in.

The decimal separator and other symbols, such as the group separator, depend on

the current locale (language, country) that is also set by the system. For example,

this template:

${1.5}

produces output similar to this, if the current locale is English:

1.5

Page 59

but if the current locale is Hungarian, the example produces output similar to this

because Hungary uses comma as the decimal separator:

1,5

You can modify the formatting for a single interpolation with the string built-in.

Inserting date/time values
If the expression evaluates to a date, the numerical value will be transformed to text

according to the default format. Usually, the system sets the default format, but you

can change them using the date_format, time_format and datetime_format

settings in the setting directive. For more information, see the setting directive

in “Chapter 6. Directive Reference”.

You can override the default formatting for a single interpolation using the string

built-in.

WARNING: To display a date as text, RPL must be able to determine which parts of

the date are in use: only the date part (year, month, day), only the time part (hour,

minute, second, millisecond), or both. Due to technical limitations, it is not possible

to detect this automatically for some variables. If you cannot find out whether the

data model contains such variables, you must use the date, time and datetime

built-ins; otherwise, an error will terminate template processing.

Inserting boolean values
An attempt to print boolean values with interpolation causes an error and

terminates template processing. For example, this will cause an error: ${a == 2}.

However, you can convert booleans to strings with the ?string built-in. For

example, to print the value of the "married" variable (assuming it's a boolean),

write ${married?string("yes", "no")}.

Page 60

Conversion rules
The exact rules for converting an expression value to a string (which is then subject

to escaping) are shown below, in order:

1. If the value is a number, it is converted to a string in the format specified with
the number_format setting.

2. If the value is any type of date (time or date-time), it is converted to a string in
the format specified with the time_format, date_format,
or datetime_format setting, depending on whether the date information is
time-only, date-only, or a date-time. If the date type (date, time, or date-time)
cannot be detected, an error will occur.

3. If the value is a string, there is no conversion.

4. In all other cases, an error will terminate template processing.

Defining your own directives
You can define user-defined directives using the macro directive.

A macro is a template fragment associated with a variable. You can use that

variable in your template as a user-defined directive to help with repetitive tasks.

For example, the following code creates a macro variable that prints a big ``Hello

Joe!'':

<#macro greet>
 Hello Joe!
</#macro>

The macro directive does not print anything; it just creates the macro variable, in

this case, a variable called greet. Everything between <#macro greet>

and </#macro> (called macro definition body) will be executed when you use the

variable as a user-defined directive. You use user-defined directives by writing @

instead of # in the RPL tag and using the variable name as the directive name. Also,

the end tag for user-defined directives is mandatory. So you use greet like this:

<@greet></@greet>

Page 61

Since <anything></anything> is equivalent to <anything/>, you should use the

shorter form:

<@greet/>

Both examples produce this output:

 Hello Joe!

Note that since everything between <#macro ...> and </#macro> is a template

fragment, it can contain interpolations (${...}) and RPL tags (e.g. <#if ...>...</#if>).

Specifying parameters
Let's improve the greet macro so it can use any name. For this purpose, you can

use parameters. You define the parameters after the name of the macro in

the macro directive. Macro parameters are local variables. For more information

about local variables, see “Defining variables in the template”.

The following example defines one parameter for the greet macro, person:

<#macro greet person>
 Hello ${person}!
</#macro>

you can then use this macro as:

<@greet person="Fred"/> and <@greet person="Batman"/>

which is similar to HTML syntax. The example produces this output:

 Hello Fred!
 and Hello Batman!

The value of the macro parameter is accessible in the macro definition body as a

variable (person). As with predefined directives, the value of a parameter (the

right side of =) is an RPL expression. This means that the quotation marks around

"Fred" and "Batman" are required. <@greet person=Fred/> means that you use

the value of variable Fred for the person parameter, rather than the string "Fred".

Parameter values need not be a string, they can be a number, a boolean, a hash, a

Page 62

sequence, ...etc. In addition, you can use complex expressions on the left side of =

(e.g. someParam=(price + 50)*1.25).

User-defined directives can have multiple parameters. For example, to add a new

parameter color:

<#macro greet person color>
 Hello ${person}!
</#macro>

then you can use this macro as:

<@greet person="Fred" color="black"/>

The order of parameters is not important, so the following example and the

previous example are equivalent:

<@greet color="black" person="Fred"/>

When calling the macro, you can use only those parameters defined in the macro

directive and must specify a value for all parameters (in this case: person

and color). The following example produces an error:

<@greet person="Fred" color="black" background="green"/>

because the background parameter is not defined for the macro.

The following example also produces an error:

<@greet person="Fred"/>

because the value of color is not specified.

If a parameter contains the same value most of the time, you can specify that value

in the macro definition. To do this, define the parameter

as: param_name=usual_value. This way, when using the macro you do not have

to specify the parameter since its value is already provided. To use a different

value, specify that value when using the directive. For example, to use "black"

for color unless you specify a different value, define the parameter as:

Page 63

<#macro greet person color="black">
 Hello ${person}!
</#macro>

Now, you can use the macro as:

 <@greet person="Fred"/>

since it is equivalent to <@greet person="Fred" color="black"/> because the

value of color parameter is known. If color is "red", use the macro as:

 <@greet person="Fred" color="red"/>

NOTE: Per RPL expression rules, the expressions someParam=foo

and someParam="${foo}" are different. The first case uses the value of

variable foo as the value of the parameter. The second case uses a string literal

with an interpolation, so the value of the parameter will be a string -- in this case,

the value of foo converted to text -- regardless of the variable type. As another

example: someParam=3/4 and someParam="${3/4}" are different. The second

case converts ¾ to a string, so if the directive expects a numerical value

for someParam, an error will occur.

Nested content
User-defined directives can have nested content, similarly to predefined directives.

To do this, use the nested directive. For example, the following code creates a

macro that draws borders around its nested content:

<#macro border>
 <table border=4 cellspacing=0 cellpadding=4><tr><td>
 <#nested>
 </tr></td></table>
</#macro>

<#nested> executes the template fragment between its start and end tags. So the

following example:

<@border>The bordered text</@border>

Page 64

produces this output:

 <table border=4 cellspacing=0 cellpadding=4><tr><td>
 The bordered text
 </td></tr></table>

You can call the nested directive multiple times, for example:

<#macro do_thrice>
 <#nested>
 <#nested>
 <#nested>
</#macro>
<@do_thrice>
 Anything.
</@do_thrice>

produces this output:

 Anything.
 Anything.
 Anything.

Note that if you do not use the nested directive, the nested content will not be

executed. In the following example, nested content will be ignored, since the greet

macro does not use the nested directive:

<@greet person="Joe">
 Anything.
</@greet>

produces this output:

Hello Joe!

The nested content can be any valid RPL, including other user-defined directives.

For example:

<@border>

 <@do_thrice>
 <@greet person="Joe"/>
 </@do_thrice>

</@border>

Page 65

produces this output:

 <table border=4 cellspacing=0 cellpadding=4><tr><td>

 Hello Joe!

 Hello Joe!

 Hello Joe!

 </tr></td></table>

The local variables of a macro are not visible in the nested content. Because

the y, x, and count are the local variables of the macro and are not visible outside

of the macro definition, the following example:

<#macro repeat count>
 <#local y = "test">
 <#list 1..count as x>
 ${y} ${count}/${x}: <#nested>
 </#list>
</#macro>
<@repeat count=3>${y} ${x} ${count}</@repeat>

Outputs an empty string since these variables are consided to be undefined:

 test 3/1:
 test 3/2:
 test 3/3:

A different set of local variables is used for each macro call, so the following

example is correct:

<#macro test foo>${foo} (<#nested>) ${foo}</#macro>
<@test foo="A"><@test foo="B"><@test foo="C"/></@test></@test>

and produces this output:

A (B (C () C) B) A

Page 66

Using loop variables in macros
User-defined directives can have loop variables. For example, let's extend

the do_thrice directive of the earlier examples so it exposes the current repetition

number as a loop variable. The name of the loop variable is given when calling the

directive, while the value of the variables is set by the directive itself. For example:

<#macro do_thrice>
 <#nested 1>
 <#nested 2>
 <#nested 3>
</#macro>
<@do_thrice ; x> <#-- user-defined directive uses ";" instead of
"as" -->
 ${x} Anything.
</@do_thrice>

produces this output:

 1 Anything.
 2 Anything.
 3 Anything.

You pass the value of the loop variable for a loop (i.e. repetition of nested content)

as the parameter of nested directive. The name of the loop variable is specified in

the user-defined directive open tag (<@...>) after the parameters and a semicolon.

A macro can use more the one loop variable. The order of variables is significant. In

the following example, c, halfc, and last are loop variables:

<#macro repeat count>
 <#list 1..count as x>
 <#nested x, x/2, x==count>
 </#list>
</#macro>
<@repeat count=4 ; c, halfc, last>
 ${c}. ${halfc}<#if last> Last!</#if>
</@repeat>

produces this output:

 1. 0.5
 2. 1
 3. 1.5
 4. 2 Last!

Page 67

You can specify a different number of loop variables in the directive start tag (after

the semicolon) than with the nested directive. If you specify less loop variables

after the semicolon, the extra values in the nested directive will not be used, since

there is no loop variable to hold those values. For example, the following code is

correct:

<@repeat count=4 ; c, halfc, last>
 ${c}. ${halfc}<#if last> Last!</#if>
</@repeat>
<@repeat count=4 ; c, halfc>
 ${c}. ${halfc}
</@repeat>
<@repeat count=4>
 Just repeat it...
</@repeat>

If you specify more variables after the semicolon than with the nested directive,

the last few loop variables will not be created (i.e. will be undefined in the nested

content).

For more information, see “User-defined directive call” and “Macro directive”

sections.

NOTE: You can also define methods in RPL. For more information, see

the function directive.

You can use namespaces to organize and reuse commonly used macros. For more

information about namespaces, see “About namespaces” later in this chapter.

Page 68

Working with variables
 In addition to the predefined variables, you can specify your own hashes and

variables. In some cases, you do this by declaring your own variables, and in other

cases it happens as the implicit result of directives such as <#list> and <#data>.

Defining variables in the template
In addition to using variables defined in the data model, you can define variables in

the template for use only in that template. These temporary variables can be

created and replaced using RPL directives. Note that each template processing job

has its own private set of these variables that exist while the given page is being

rendered. This variable set is initially empty, and will be discarded when the

template processing job is finished.

You access variables defined in the template in the same way as variables in the

data model.

Template variables take precedence over data model variables with the same name.

This means that if a template variable and a data model variable have the same

name, the value of the template variable will be used. Note that the value of the

data model variable will not be overwritten. If you want to use the data model

variable instead of a template variable, use the .globals variable. For example,

assume the variable user in the data model has the value Big Joe:

<#assign user = "Joe Hider">
${user} <#-- prints: Joe Hider -->
${.globals.user} <#-- prints: Big Joe -->

You can define the following variables in a template:

Variable type Description

Global Accessible from everywhere in the template, and from the
templates inserted with include directive. You can create and
replace these variables with the assign or macro directives.

Local Can be set only inside a macro definition body, and are only
visible from there. A local variable exists only for the duration of

Page 69

Variable type Description

a macro call. You can create and replace local variables inside
macro definition bodies with the local directive.

Macro parameters are local variables.

Loop Created automatically by directives such as list and data.
These variables exist only between the start and end tags of the
directive.

The following example creates and replaces variables with the assign directive:

<#assign x = 1> <#-- create variable x -->
${x}
<#assign x = x + 3> <#-- replace variable x -->
${x}

produces this output:

1
4

Local variables overwrite global variables with the same name. Loop variables

overwrite local and global variables with the same name. For example:

<#assign x = "plain">
1. ${x} <#-- we see the plain var. here -->
<@test/>
6. ${x} <#-- the value of plain var. was not changed -->
<#list ["loop"] as x>
 7. ${x} <#-- now the loop var. hides the plain var. -->
 <#assign x = "plain2"> <#-- replace the plain var, hiding does
not mater here -->
 8. ${x} <#-- it still hides the plain var. -->
</#list>
9. ${x} <#-- the new value of plain var. -->

<#macro test>
 2. ${x} <#-- we still see the plain var. here -->
 <#local x = "local">
 3. ${x} <#-- now the local var. hides it -->
 <#list ["loop"] as x>
 4. ${x} <#-- now the loop var. hides the local var. -->
 </#list>
 5. ${x} <#-- now we see the local var. again -->
</#macro>

Page 70

produces this output:

1. plain
 2. plain
 3. local
 4. loop
 5. local
6. plain
 7. loop
 8. loop
9. plain2

An inner loop variable overwrites an outer loop variable:

<#list ["loop 1"] as x>
 ${x}
 <#list ["loop 2"] as x>
 ${x}
 <#list ["loop 3"] as x>
 ${x}
 </#list>
 ${x}
 </#list>
 ${x}
</#list>

produces this output:

 loop 1
 loop 2
 loop 3
 loop 2
 loop 1

Note that the value of a loop variable is set by the directive invocation that created

it (list in the example). This is the only way to change the value of a loop variable.

However, as shown in the above example, you can temporarily hide a loop variable

with another loop variable.

About predefined variables
Predefined variables are defined by the system, and are usually initialized from the

campaign definition and other internal values. Some of the more useful ones

are campaign.name and campaign.marketingprogram. For a complete list of

predefined variables, see the “About namespaces” section later in this chapter.

Page 71

About namespaces
The set of variables created in the template with the assign and macro directives

and the data from data sources is called a namespace. A namespace is a multi-

level structure that uses hashes to store values and other hashes.

Normally, you use only the main namespace. Multiple name spaces are used if you

are building a reusable collection of macros, functions and other variables (known

as a library). You should use a separate namespace for each library. This is to avoid

name clashes in cases when you have a big collection of macros that you use in

several projects or want to share with others. In such cases, it is impossible ensure

that the library does not have a macro (or other variable) with the same name as a

variable in the data model or in another library used in the template.

Creating a library
This section uses examples to illustrate how to create a library.

Assume you commonly need the variables copyright and mail. The following

example creates those variables:

<#macro copyright date>
 <p>Copyright (C) ${date} Julia Smith. All rights reserved.</p>
</#macro>

<#assign mail = "jsmith@acme.com">

These variables are stored in the file /contentlibrary/lib/my_test.htm , in

the same directory as the templates.

Assume you want to use this in content.htm. If you use <#include

"cms://contentlibrary/lib/my_test.htm"> in content.htm, it will create the

two variables in the main namespace. Instead, you want to create these variables in

a namespace that is used exclusively by the library. To do this, use the import

directive instead of the include directive. import is similar to include, but it will

create an empty namespace for /contentlibrary/lib/my_test.htm and

execute the macro there. The new namespace will include only the variables of the

Page 72

data model (since they are visible from everywhere), and the two variables from the

macro. import also creates a new hash variable in the namespace used by the

caller of import (in this case, content.htm , which uses the main namespace).

The hash variable provides content.htm access to the new namespace and its

variables.content.htm will look like the following example:

<#import "cms://contentlibrary/lib/my_test.htm" as my> <#-- the hash
called "my" will provide access to the namespace -->
<@my.copyright date="1999-2002"/>
${my.mail}

Note how the files accesses the variables in the namespace created

for /contentlibrary/lib/my_test.htm using the newly created hash my. The

above example will produce this output:

 <p>Copyright (C) 1999-2002 Julia Smith. All rights reserved.</p>
jsmith@acme.com

If you have a variable called mail or copyright in the main namespace, that would

not cause any confusion, since the two templates use separated namespaces. For

example, if you modify the copyright macro in /contentlibrary/lib/my_test.htm:

<#macro copyright date>
 <p>Copyright (C) ${date} Julia Smith. All rights reserved.

Email: ${mail}</p>
</#macro>

<#assign mail = "jsmith@acme.com">

and then replace content.htm with:

<#import "cms://contentlibrary/lib/my_test.htm" as my>
<#assign mail="fred@acme.com">
<@my.copyright date="1999-2002"/>
${my.mail}
${mail}

the output is:

 <p>Copyright (C) 1999-2002 Julia Smith. All rights reserved.

Email: jsmith@acme.com</p>
jsmith@acme.com
fred@acme.com

Page 73

This is because when you called the copyright macro, RPL temporarily switched

to the namespace that was created by the import directive for

/contentlibrary/lib/my_test.htm. Thus, the copyright macro always sees the mail

variable that exists there, and not the mail variable that exists in the main

namespace.

Writing the variables of imported namespaces
Occasionally, you might want to create or replace a variable in an imported

namespace. You can do this with the assign directive with the namespace

parameter. For example, the following code:

<#import "/lib/my_test.RPL" as my>
${my.mail}
<#assign mail="jsmith@other.com" in my>
${my.mail}

produces this output:

jsmith@acme.com
jsmith@other.com

Namespaces and the data model
The variables of the data model defined in the datasources and campaign variables

are visible from everywhere. For example, if you have a field/variable called user in

the data model, /contentlibrary/lib/my_test.htm will access that, exactly as

content.htm does:

<#macro copyright date>
 <p>Copyright (C) ${date} ${user}. All rights reserved.</p>
</#macro>

<#assign mail = "${user}@acme.com">

If user is “Fred”, the following example:

<#import "cms://contentlibrary/lib/my_test.htm" as my>
<@my.copyright date="1999-2002"/>
${my.mail}

Page 74

produces this output:

 <p>Copyright (C) 1999-2002 Fred. All rights reserved.</p>
Fred@acme.com

The variables in the namespace (the variables you create with assign

or macro directives) have precedence over the variables of the data model when

you are in that namespace. Thus, the content of the data model does not interfere

with the variables created by the library.

NOTE: In some unusual situations, you might need to create variables in the

template that are visible from all namespaces. Although you cannot change the

data model with templates, you can achieve this with the global directive. For

more information about the global directive, see “Chapter 6. Directive Reference”.

Namespace lifecycle
A namespace is identified by the path that was used with the import directive. If

you try to import multiple times with the same path, the directive will create the

namespace and run the template specified by the path only for the very first

invocation of import. The later imports with the same path will only create a hash

in the same namespace. For example, if content.htm is :

<#import "/contentlibrary/lib/my_test.htm" as my>
<#import "/contentlibrary/lib/my_test.htm" as foo>
<#import "/contentlibrary/lib/my_test.htm" as bar>
${my.mail}, ${foo.mail}, ${bar.mail}
<#assign mail="jsmith@other.com" in my>
${my.mail}, ${foo.mail}, ${bar.mail}

The output is this, since my, foo and bar provide access to the same namespace:

jsmith@acme.com, jsmith@acme.com, jsmith@acme.com
jsmith@other.com, jsmith@other.com, jsmith@other.com

Note that namespaces are not hierarchical, they exist independently of each other.

That is, if you import namespace N2 while in name space N1, N2 will not be inside

Page 75

N1. Instead, N1 gets a hash by which it can access N2. This is the same N2

namespace that you would access if you import N2 while in the main namespace.

Each template processing job has its own private set of namespaces. Each template

processing job exists only while the given page is being rendered.

NOTE: When namespaces are used during a launch, they are not preserved across

multiple recipients. Namespaces are recreated for each record.

Making a library available to others
You can share a library by making it available in the Content Library. To prevent

clashes with the names of libraries used by other authors, and to make it easy to

write libraries that import other published libraries, there is a de-facto standard that

specifies the format of library paths.

The standard is that the library must be available (importable) for templates and

other libraries with a path like this:

/contentlibrary/lib/your_library.htm

For example, if you develop a widget library, then the path of the RPL file to import

should be:

/contentlibrary/lib/ widget.htm

IMPORTANT: The path must not contain upper-case letters. To separate words, use

_, as in wml_form (not wmlForm).

These are “best-practice” recommendations. The system will allow other standards.

Page 76

Handling white space
The control of white space in a template is a problem that to some extent haunts

every template engine.

In the following example, we marked the components of the template with colors:

text, interpolation, RPL tag. With the [BR]-s represent the line breaks.

<p>List of users:[BR]
<#assign users = [{"name":"Joe", "hidden":false},[BR]
 {"name":"James Bond", "hidden":true},[BR]
 {"name":"Julia", "hidden":false}]>[BR]
[BR]
<#list users as user>[BR]
 <#if !user.hidden>[BR]
 ${user.name}[BR]
 </#if>[BR]
</#list>[BR]
[BR]
<p>That's all.

If RPL were to output all text as is, the output would be:

<p>List of users:[BR]
[BR]
[BR]
[BR]
 [BR]
 Joe[BR]
 [BR]
[BR]
 [BR]
[BR]
 [BR]
 Julia[BR]
 [BR]
[BR]
[BR]
<p>That's all.

This output contains a lot of unwanted spaces and line breaks.

To resolve this problem, RPL provides the tools described in this section.

Page 77

To ignore certain white space, you can use one of the following methods:

White space stripping

This method automatically ignores typical superfluous white space around RPL

tags. It can be enabled or disabled for each template. For more information, see

“Stripping white space” later in this section.

Trimmer directives

You can use the following trimmer directives: t, rt, lt, join. With these

directives, you can explicitly instruct RPL to ignore certain type of white space.

For more information, see “Chapter 6. Directive Reference”.

RPL parameter strip_text

This removes all top level text from the template. It is useful for templates that

contain only macro definitions and other directives that do not produce output.

This parameter removes the line breaks between the macro definitions and

between other top level directives to improve readability of the template.

To remove white space from output, you can use the compress and join

directives. For more information, see “Using the compress directive” later in this

section.

Stripping white space
If this feature is enabled for a template, the following types of white space are

automatically ignored:

Indentation white space, and trailing white space at the end of the line

Indentation and trailing white space, including line breaks, will be ignored in lines

that contains only RPL tags and/or RPL comments. For example, if a line contains

only an <#if ...>, then the indentation before the tag and the line break after the

tag will be stripped. However, if the line contains <#if ...>x, the white space in

that line will not be stripped, because the x is not an RPL tag. Note that white space

is stripped in a line that contains <#if ...><#list ...>, but not in a line that

Page 78

contains <#if ...> <#list ...>. This is because the white space between the

two RPL tags is embedded white space, not indentation or trailing white space.

White space between the macro, function, assign, global, local, rpl, and import

directives

With these directives, white space is stripped if there is only white space and/or

RPL comments between the directives. This means that you can put empty lines

between macro definitions and assignments as spacing for better readability,

without printing needless empty lines. For example, white space will be stripped in

the following template, except in the highlighted line:

<p>List of users:[BR]
<#assign users = [{"name":"Joe", "hidden":false},
 {"name":"James Bond", "hidden":true},
 {"name":"Julia", "hidden":false}]>
[BR]
<#list users as user>
 <#if !user.hidden>
 ${user.name}[BR]
 </#if>
</#list>
[BR]
<p>That's all.

produces this output:

<p>List of users:[BR]
[BR]
 Joe[BR]
 Julia[BR]
[BR]
<p>That's all.

Note that enabling white space stripping does not degrade the performance of

template execution because white space stripping is done during template loading.

You can enable or disable white space stripping for a template using

the rpl directive. If you do not specify this with the rpl directive, white space

stripping will be enabled.

You can enable or disable white space stripping for a single line using

the nt directive.

Page 79

Using the compress directive
The compress directive works on the generated output, not on the template. The

directive inspects the output and removes indentations, empty lines and repeated

spaces/tabs. For example:

<#compress>
<#assign users = [{"name":"Joe", "hidden":false},
 {"name":"James Bond", "hidden":true},
 {"name":"Julia", "hidden":false}]>
List of users:
<#list users as user>
 <#if !user.hidden>
 - ${user.name}
 </#if>
</#list>
That's all.
</#compress>

produces this output:

List of users:
- Joe
- Julia
That's all.

Note that compress works independently of white space stripping. So it is possible

that the white space of template is stripped, and later the produced output is

compressed.

By default, a user-defined directive called compress is available in the data model.

This is the same as the pre-defined directive, except that you may optionally set

the single_line parameter, which will remove all intervening line breaks. If you

replace <#compress>...</#compress> in the last example with <@compress

single_line=true>...</@compress>, you will get this output:

List of users: - Joe - Julia That's all.

For more information about the compress directive, see “Chapter 6. Directive

Reference”.

Page 80

Chapter 3. Working with Forms and Link Tracking
RPL can help you produce links to additional forms in the system and to track clicks

to either those forms or to other links.

About forms
Forms provide a way to capture information about your audience. They consist of

the form HTML and instructions about what should happen after a visitor submits

the form. For example, you can send a follow-up email after the form is submitted.

You can create forms in Responsys Interact using the Forms wizard accessed from

the Forms tab.

To support “view in browser” functionality, the system allows campaigns to be used

as forms as well. That is, a link can be generated to point to a campaign, and when a

recipient clicks the link, the campaign will be retrieved as a form.

You can also create external links that point to a URL outside of Interact. These are

usually links to your own web site or other sites.

You create form links using the form method.

Creating links in personalization
To code a link, use the HTML anchor tag.

The following example creates an external link to Google with a hard-coded query

string that searches for the word “golf”:

Search for Golf Clubs

Page 81

The following illustration shows how the link is generated.

Campaign
Launch

generate

click

email

google

1

2

3

The following example creates a link to a form:

Email Preferences

In this example, a link to the internal form processor is created when the

personalization occurs. This link is an encoded URL to the Interact form processor.

The following diagram illustrates this flow.

Campaign
Launch

generate

click

email

view in
browser

1

2

3

Forms
Processor

4

generate

Page 82

About link tables
A link table is a collection of links that allows you to track recipient links in a

campaign. Each link is defined with a name and a URL.

External links can be, and often are, coded inside the personalization template with

the anchor tag, as shown in the previous section. However, when you want to track

links, you can code these link URLs in a link table.

Consider the following example:

Link name: google search
Link URL: www.google.com?q=golf

This example defines a link in a link table to Google, with a predefined query.

Forms can also be coded in the personalization template or can be added as a link

in a link table. Consider the following example:

Link name: view in browser
Link URL: ${form(‘user preferences’)}

This link is added to the link table so that the user preferences link can be tracked.

To track clicks in RPL, you code your anchor tags with the clickthrough method

that will be described later.

For instance, to track a click for the Google search example, you could write:

Search

The previous examples show that, while the form method uses form names (or

campaign names), the clickthrough method uses link names.

Page 83

Passing parameters for forms
When either a form or external link is invoked, sometimes you need to pass data

that is known to the personalization. For instance, the customer identifier or as in

the previous example with Google, the query might be computed during

personalization. In this case, the link is produced with parameter replacement

syntax as shown in the following example. The example creates a link using the

users preferred sport, with the link naming it as a search for that topic:

Search for
${extensiontable.favoritesport?cap_first

If the user’s favorite sport is hockey, the example will produce this output:

Search for Hockey

You can use the same technique for links to an internal form. Consider the following

example:

<a href=”${form(‘user
preferences‘,“extensiontable.favoritesport”)}”>View Preferences

This form invocation formats and generates the URL that will point to the form

processor. The parameters are encoded in the resulting URL.

The field names in the form method are specified as string scalars. This indicates to

the form method that:

1. The value for the field extensiontable.favoritesport must be obtained
from the recipient record.

2. If the actual field name for extensiontable.favoritesport maps to the
database field FAVORITE_SPORT, a field named FAVORITE_SPORT is sent
with this value and made available to the form processor. With this
information, the form processor can personalize with the given name.

A variation of the above mentioned method of passing fields by name is to pass the

field name with the provided value. Consider the following example:

View
Preferences

Page 84

In this case, a field name is passed with an equals sign and the required value. This

name can be used in the form processor to retrieve the value of the field. You do

not need to specify the data source or column aliases since the field expected in the

form processor is known. This skips the step of retrieving the field name from the

record, but still sends the parameter to the form with the given field name.

You can use more complex expressions in the creation of links. For example, you

can use string concatenation expressions to compute the value:

<a href=”${form(‘user
preferences‘,’FAVORITE_SPORT=’+profile.sport)}”>View Preferences

Although the form method can be placed in the link table as part of the link URL, its

capabilities in a link URL are limited.

Note the use of apostrophes in the previous examples. This is a best practice when

using anchors, since the href for the anchor itself is enclosed in double quotes. This

will be important with implicit click tracking, described later in this chapter.

About click tracking
To track a link, the link is stored in a link table with a link name as described above.

On the live report, the link displays the number of clicks to the given link.

The following diagram illustrates the flow for tracking a link to an internal form.

Page 85

Campaign
Launch

generate

click

email

view offer

1

2

4

Forms
Processor

5

generate
3

Click
Processor

redirect

Tracking can be achieved by the means described below.

Explicit external link tracking
To explicitly track a link, you can add the following code to your personalization

template:

<a href=”${clickthrough(‘google search‘,
’extensiontable.favoritesport’)}”>Search for your favorite sport

This will produce a link to the click processor with the given link name encoded.

The click processor tracks the click. After a click is processed, the user is redirected

to the forms processor or to the final external link. In our example, the external link

will be reached.

In this case, the link would have been coded as:

Link name: google search
Link URL: www.google.com?q=${extensiontable.favoritesport}

Page 86

Note that the field name in the clickthrough method is passed as a string scalar.

Two things happen when this is done:

1. The clickthrough method knows that the value of the field
extensiontable.favoritesport needs to be obtained.

2. The URL to the click processor that will be created sends the value of the
field with the retrieved value.

Alternately, you can code the clickthrough method invocation with the actual

value of the field, in the same way as in the form method invocation described

above. Consider the following example:

<a href=”${clickthrough(‘google search‘,
’FAVORITE_SPORT=basketball’)}”>Search for basketball

In this case the field name is passed, plus an equals sign, plus the actual value. This

method avoids the retrieval of data from the user’s record, but preserves the

semantics of sending the field name as before. The field name can be any valid

string, including alias names. The click processor uses the given name to retrieve

the information.

Explicit internal form tracking
The following example illustrates how to track clicks to a form:

<a href=”${clickthrough(‘user info‘, ’profile.firstname‘,
’profile.lastname’)}

and the form link could be set up as:

Link name: user info
Link URL: ${form(‘user preferences‘,‘profile.firstname‘,
’profile.lastname’)}

Explicit link tracking with parameter analysis
In this mode, the links are coded with the clickthrough method as before, but

with only one parameter, the link name.

Page 87

When the system encounters the clickthrough method, it opens the link table,

obtains the URL, and determines the needed parameters from that link URL.

Consider the following example:

Link name: google search
Link URL: www.google.com?q=${extensiontable.favoritesport}

and the following anchor in the HTML template:

Search

Notice that the Link URL requires extensiontable.favoritesport, which is sent

from the clickthrough method call. By analyzing the link URL,

the clickthrough method will recognize that it needs to send this value.

You can specify parameters in LINK_URL using one of the following formats:

${datasourcealias.fieldalias}

Using this format, the proper data for datasourcealias.fieldalias will be

sent. You can use this format with either the form or clickthrough method.

form(‘formname’, ‘datasourcealias.fieldalias’, …)

You can use this format only with the form method.

Not that with this format, you must enclose the field reference in single quotes

(‘).

Implicit link tracking
You can also code click tracking without using the clickthrough method. This is

done so that the parameters sent by clickthrough and the destination link match

automatically.

In this way of tracking, the personalization processing examines the links inside the

anchor tags and tries to match the href with any link URL. The search is done

character by character, matching only identical strings. When the personalization

phase detects a match in this fashion, it internally creates an

implicit clickthrough method call. For example, if the personalization template is:

Page 88

Search
for your favorite sport

and the link table is:

Link name: google search
Link URL: www.google.com?q=${extensiontable.favoritesport}

RPL will internally code a clickthrough method call that will ensure that the

required parameters are sent (in this case, the extensiontable.favoritesport

field). It is important to note that the form method in the template will not be

executed since it is replaced by the clickthrough method. The form will be

computed only after the click is received.

Notice that in the above example, the URL in the anchor and the link URL are

identical.

This method works only with anchors. If the links are coded in a different fashion,

for instance with javascript, then the manual explicit clickthrough method is

required.

Implicit link tracking can be used with the form method as a link URL and the

anchor’s href. The URL and href must be identical. In this case, the form method will

be replaced with a clickthrough equivalent, and the form method will not be

executed during personalization of the message.

In the implicit link tracking, you must use single quotes. Since the href in the anchor

starts with a double quote, its end will be determined by the first double quote after

it. If the form method is coded as part of implicit click tracking, and the form

method has double quotes, the anchor end will be improperly recognized.

The following example is incorrect because of improper use of double quotes:

Link name: user preferences
Link URL: ${form("user preferences)}

If the above example is used with the following code in the template:

User preferences

Page 89

Both the link URL and the href appear to be identical. However, for implicit tracking

the href is assumed to be:

${form(

This is because the first double quotes inside of the form method will terminate the

anchor. As a result, the form will not be implicitly tracked.

Using tracking parameters
Sometimes it is not enough to use link tables, the clickthrough method, or

the form method. In some complex cases, you might want to perform advanced

operations on your own web page, with an eventual call to Oracle Responsys. One

such example is the use of advanced unsubscribe forms hosted at an external web

site.

Consider the following example:

You need to create a more complex form for subscriptions in a custom web

server. That form will update internal customer records in the customer’s

database. For reporting purposes, Oracle Responsys must be notified of any

final unsubscribes so that a campaign report shows the actual number of

unsubscribes with the campain.

In this case, it is important to let the Oracle Responsys server know of a unsubscribe

action associated with a campaign so that live reports and other reports attribute

that unsubscribe action to the campaign, as illustrated in the following diagram:

Page 90

Campaign
Launch

email

Advanced
Subscription

Unsubscribe
Processor

1

2

3

4

Customer
Records

Step 4 is performed from the unsubscribe web page when the unsubscribe action is

confirmed. In order to notify Oracle Responsys about an unsubscribe action, a pair

of parameters, called _ri_ and _ei_, are required in the web call. These parameters

should be present in the call of step 4 in the diagram. To use these parameters, both

parameters should come from the campaign launch, into the email, then into the

unsubscribe form, and finally to Oracle Responsys unsubscribe endpoint.

To create the _ri_ and _ei_ parameters, you use the tracking method. This

method returns the two parameters together as a single string that can be

concatenated with other string parameters of a URL. It follows the proper format

for URL formation.

Consider the following code:

<a href="http://www.example.com/unsubscribe?clientid=${CUSTOMER_ID_}
&tracking(campaign.name)}">Manage Your Subscriptions

This code can result in a link with the following content:

<a
href="http://www.example.com/unsubscribe?clientid=1587932&_ri_=X0Gzc
2X%3DWQrnHjFHQGmiM4zghSE9SX5lfzaAFJCysuksIfVXyjLNpLOfhKLX%3DtHmjpLxI
LllLjQgLlVXMtX%3DWQrnHjFHQGjzgJty3zdwgS5O2guP3S4DfnLUbn&_ei_=EmKw7b8
wc39AGbHzXbi74rGgqemwVKioX14uG1dUmC7rqFJzl6gjzORDrl6kNnVNY5xF3vZEy46
4L1JwOHe06UA_0Rg-_kshjTchpfTNpojsuBpN">Manage Your Subscriptions

Page 91

In this example, the tracking method produced the _ri_ and _ei_ parameters

that are sent to the unsubscribe form in www.example.com

You must now provide the form with a way to call Oracle Responsys on an

unsubscribe. This can be achieved by multiple link calling mechanisms in HTML,

including anchor tabs, forms, or javascript. More often, the call is embedded in an

image tag on the unsubscribe confirmation page as follows:

<img height="1" width="1"
SRC="http://rsp.rsys2.net/pub/optout/UnsubscribeOneStepConfirmAction
? _ri_=
X0Gzc2X%3DS%3ANkHzfLgH%3ASRWR%3AAWRS%3AAWRD%3ATCRU%3ASBAR%3AG%3AvVXM
tX%3DS%3ANkHzfLgH%3ASRWR%3AAWRS%3AAWRW%3ATCRS%3ASBAR%3Azg%3AaVXyjLNp
LOfhKLX%3DHIJKxjLkihgkPkQJhu&_ei_=&YES=Remove%20Me">

Note that the URL is composed of four sections:

1. The unsubscribe URL. This URL is provided to you as part of the account. In
this case, we are using http://rsp.rsys2.net as an example. Please refer to
your documentation to obtain this address.

2. The unsubscribe sub-address, given as
/pub/optout/UnsubscribeOneStepConfirmAction?

3. The _ri_ and _ei_ paratemers, as sent in the email
4. The required &YES=Remove%20Me that is part of the parameters needed by

the unsubscribe URL. This is always the same.

For more information, see the tracking method.

About internal form processing
This section describes the way forms are processed.

Campaign personalization
The campaign personalization occurs at the time that an email is sent. This is the

phase in which the form and clickthrough method invocations are executed.

At this stage, the fields are used by passing a string literal to the form

and clickthrough methods, and the fields are evaluated for both their name and

value.

Page 92

Internal form processor
The internal form processor receives requests to display a form and works in one of

the following ways:

• The form parameters are all provided in the URL in the personalization
template. In this mode, all data comes from the form link. In this case, the
options to the form method can be omitted as {}, or usedb can be set as
follows:

${form(‘formname‘, {‘usedb’:false}, parameter1, parameter2)}

The form parameters are all provided by accessing the user’s record when

personalization occurs. The form processor does not need to retrieve any

data as all the data is provided. This is the default, and is the faster of the two

ways.

• In other cases, the form method invocation should indicate that the form
processor must retrieve all data from the recipient record. In this case,
the form method cannot include any parameters. This is achieved by setting
the usedb option in the form parameter as follows:

${form(‘formname‘, {‘usedb’:true})}

In this case, no additional parameters are allowed, as all data is retrieved

from the personalization record inside the form processor.

Downtime form processor
When the system is down for maintenance, a downtime form processor displays a

predefined response for the given form, or a page indicating that the system is

down for maintenance.

Click processor
The click processor is different from the form processor in that it receives a link

name instead of to a form name. It is managed in a more compact way by using

internal identifiers. The click processor records a click to the given link, and

Page 93

redirects the request to the link’s destination URL, whether an internal form or an

external link.

When the click processor receives a request, two things happen:

1. A counter is incremented for the given link, and

2. The link URL is obtained and a redirect is issued to the destination URL.

To properly redirect, the click processor might personalize the link with the data it

received. For this reason, it is important to send all data that the link URL will

require.

The click processor can only personalize three types of code:

• Link URLs without personalization

• Link URLs with a form method in which the parameters are the names of the
fields sent by the clickthrough method

• Field values of the form ${datasourcealias.fieldalias}

Downtime clickthrough processor
When the system is down for maintenance, the click processor still records that a

click was performed for a given link, and attempts to redirect.

The redirection will succeed if the link URL has no replacements, or the link URL

has field replacements of the ${datasourcealias.fieldalias} type.

When the Link URL contains embedded ${form(…)}replacements, the downtime

click processor cannot redirect.

About form and clickthrough methods in campaigns
In Mobile SMS campaigns, the form and clickthrough methods return a

temporary shortened version of the link. The shortened URL is valid fo a short

period of time.

In email campaigns, these methods return a long URL.

Page 94

Chapter 4. XML Processing
This chapter describes how to use RPL to process XML documents.

This chapter includes a brief XML overview, but is intended for users who are

familiar with XML.

XML terminology
This chapter uses the XML terms and concepts used in the guide.

DOM

The DOM defines the logical structure of documents and the way a document is

accessed and manipulated.

The DOM presents an XML document as a tree structure.

Node

Everything in an XML document is a node. For example, the entire document is

the document node, and every element is an element node.

Root node

The topmost node of a tree. In the case of XML documents, it is always

the document node, and not the top-most element.

Parent node

An immediate ascendant of another node. The root node is the parent of all other

nodes in the document.

Child node

An immediate descendant of another node. Note that element attributes are not

generally considered child elements.

Page 95

About the XML document in this chapter
The examples in this chapter use the following XML document:

<book>
 <title>Test Book</title>
 <chapter>
 <title>Ch1</title>
 <para>p1.1</para>
 <para>p1.2</para>
 <para>p1.3</para>
 </chapter>
 <chapter>
 <title>Ch2</title>
 <para>p2.1</para>
 <para>p2.2</para>
 </chapter>
</book>

The node tree of this document is:

document
 |
 +- element book
 |
 +- text "\n "
 |
 +- element title
 | |
 | +- text "Test Book"
 |
 +- text "\n "
 |
 +- element chapter
 | |
 | +- text "\n "
 | |
 | +- element title
 | | |
 | | +- text "Ch1"
 | |
 | +- text "\n "
 | |
 | +- element para
 | | |
 | | +- text "p1.1"
 | |
 | +- text "\n "
 | |
 | +- element para

Page 96

 | | |
 | | +- text "p1.2"
 | |
 | +- text "\n "
 | |
 | +- element para
 | |
 | +- text "p1.3"
 |
 +- element
 |
 +- text "\n "
 |
 +- element title
 | |
 | +- text "Ch2"
 |
 +- text "\n "
 |
 +- element para
 | |
 | +- text "p2.1"
 |
 +- text "\n "
 |
 +- element para
 |
 +- text "p2.2"

Note that the "\n "-s are the line breaks (indicated here with \n, an escape

sequence used in RPL string literals) and the indentation spaces between the tags.

Putting the XML into the data model
If a string with the XML is provided in the example in a variable xml, you can

execute the following RPL code to create a node:

<#assign doc=parsexml(xml)>
…

This will create the data node doc.

Page 97

Alternately, you can enter the above XML in multiple lines and with concatenation

as:

<#assign doc=parsexml(
'<book>' +
' <title>Test Book</title>' +
' <chapter>' +
' <title>Ch1</title>' +
' <para>p1.1</para>' +
' <para>p1.2</para>' +
' <para>p1.3</para>' +
' </chapter>' +
' <chapter>' +
' <title>Ch2</title>' +
' <para>p2.1</para>' +
' <para>p2.2</para>' +
' </chapter>' +
'</book>')>

You can also store an XML file in the Content Library, then load it into the data

model as follows:

<#assign doc=parsexml(load("cms://contentlibrary/books/book.xml"))>
…

You can download content from an external site by loading the content from a web

server as follows:

<#assign
doc=parsexml(load("http://www.example.com/books/book.xml"))>
…

NOTE: To be able to download from http or https, your account must be enabled by

your Responsys representative.

In general, the source of the XML string can come from any variable. It is common

practice to enter XML as part of dynamic variables, but in some instances the XML

can come from database fields or from other string constants.

Page 98

You can provide the XML directly as field of your contact list, and load it as follows:

<#assign doc=parsexml(profile.purchases)>
…

We do not recommend this practice because it might increase the size of your

database if the record's XML becomes large.

Working with imperative XML processing
With imperative processing, you write RPL programs that walk the DOM tree to find

the different types of nodes. The nodes are used as RPL elements to obtain data.

This section uses the DOM tree of the example document and the variable doc

created in the previous example.

The examples in this section assume that you put the XML document into the data

model as the variable doc. The doc variable corresponds to the root of the DOM

tree, document. This section shows an example of how to use the doc variable.

Accessing elements by name
The following example prints the title of the book:

<h1>${doc.book.title}</h1>

and produces this output:

<h1>Test Book</h1>

Both doc and book can be used as hashes; you get their child nodes as sub-

variables. You describe the path by which you reach the target (element title) in the

DOM tree. You might notice that ${doc.book.title} seems to instruct RPL to

print the title element itself, but the example prints its child text node. This works

because elements are string variables as well as hash variables. The scalar value of

an element node is the string resulting from the concatenation of all its text child

nodes. However, trying to use an element as a scalar will cause an error if the

element has child elements. For example ${doc.book} will produce an error.

Page 99

The following example prints the titles of the two chapters:

<h2>${doc.book.chapter[0].title}</h2>
<h2>${doc.book.chapter[1].title}</h2>

Here, since book has 2 chapter element children, doc.book.chapter is a sequence

that stores the two element nodes. Thus, we can generalize the above example, so

that it works with any number of chapters:

<#list doc.book.chapter as ch>
 <h2>${ch.title}</h2>
</#list>

When you access an element as a hash sub-variable, it is always a sequence as well

as a hash and string. If the sequence contains only one item, then the variable also

acts as that item. So, returning to the first example, the following code will print the

book title as well:

<h1>${doc.book[0].title[0]}</h1>

If there is only one book element, and that a book has only one title, you can omit

the [0]. ${doc.book.chapter.title} will work as well if the book has only one

chapter. If the book has more than one chapter, the previous code will produce an

error. If the element book has no chapter child, then doc.book.chapter will be

a 0 length sequence, so the code with <#list ...> will work.

It is important to realize that if book has no chapters, then book.chapter is an

empty sequence, so doc.book.chapter?? will return true. To check whether a

child node exists, use doc.book.chapter[0]?? (or doc.book.chapter?size

== 0). You can use any missing value handler operator

(e.g. doc.book.author[0]!"Anonymous"), but make sure to include [0].

NOTE: The rule with sequences of size of one is a convenience feature of the XML

wrapper (implemented via multi-type RPL variables). It will not work with other

sequences.

Page 100

To finish the example, print all paragraphs of each chapter:

<h1>${doc.book.title}</h1>
<#list doc.book.chapter as ch>
 <h2>${ch.title}</h2>
 <#list ch.para as p>
 <p>${p}
 </#list>
</#list>

produces this output:

<h1>Test</h1>
 <h2>Ch1</h2>
 <p>p1.1
 <p>p1.2
 <p>p1.3
 <h2>Ch2</h2>
 <p>p2.1
 <p>p2.2

The above example can also be written as:

<#assign book = doc.book>
<h1>${book.title}</h1>
<#list book.chapter as ch>
 <h2>${ch.title}</h2>
 <#list ch.para as p>
 <p>${p}
 </#list>
</#list>

Finally, to illustrate general usage of the child selector mechanism, the following

example lists all paragraphs of the example XML document:

<#list doc.book.chapter.para as p>
 <p>${p}
</#list>

produces this output:

 <p>p1.1
 <p>p1.2
 <p>p1.3
 <p>p2.1
 <p>p2.2

Page 101

This example shows that hash sub-variables select the children of a sequence of

nodes (in the earlier examples, the sequence had one 1 item). In this case, the sub-

variable chapter returns a sequence of size 2 (since there are two chapters), and

then sub-variable para selects the para child nodes of all nodes in that sequence.

A negative consequence of this mechanism is that doc.anything.anytingElse

will evaluate to an empty sequence and will not produce an error.

Accessing attributes
In this section, the XML is the same as in the previous section, except that it uses

attributes for titles instead of elements:

<!-- THIS XML IS USED FOR THE "Accessing attributes" CHAPTER ONLY! -
->
<!-- Outside this chapter examples use the XML from earlier. -
->

<book title="Test">
 <chapter title="Ch1">
 <para>p1.1</para>
 <para>p1.2</para>
 <para>p1.3</para>
 </chapter>
 <chapter title="Ch2">
 <para>p2.1</para>
 <para>p2.2</para>
 </chapter>
</book>

You can access the attributes of an element in the same way as the child elements

of an element, except that you use an at sign (@) before the name of the attribute

as shown in the following example:

<#assign book = doc.book>
<h1>${book.@title}</h1>
<#list book.chapter as ch>
 <h2>${ch.@title}</h2>
 <#list ch.para as p>
 <p>${p}
 </#list>
</#list>

This will produce the same output as the previous example.

Page 102

Getting attributes follows the same logic as getting child elements, so the result

of ch.@title above is a sequence of size one. If there were no title attribute, the

result would be a sequence of size 0. Using built-ins here is tricky: to find out

whether foo has an attribute called bar, you must

write foo.@bar[0]??. (foo.@bar)?? is incorrect because it always returns true.

Similarly, if you want a default value for the bar attribute,

write foo.@bar[0]!"theDefaultValue".

As with child elements, you can select attributes of multiple nodes. For example,

the following code prints the titles of all chapters:

<#list doc.book.chapter.@title as t>
 ${t}
</#list>

Exploring the DOM tree
The following example enumerates all child nodes of the book element:

<#list doc.book?children as c>
- ${c?node_type} <#if c?node_type = 'element'>${c?node_name}</#if>
</#list>

produces this output:

- text
- element title
- text
- element chapter
- text
- element chapter
- text

?node_name returns the name of element for element nodes. For other node types,

it also returns something, but that's mainly useful for declarative XML processing,

which will be discussed later in this chapter.

If the book element had attributes, they would not appear in the above list. You can

get a list that contains all attributes of the element, with the sub-variable @@ of the

element variable. If you modify the first line of the XML to this:

Page 103

<book foo="Foo" bar="Bar" baaz="Baaz">

then the following example:

<#list doc.book.@@ as attr>
- ${attr?node_name} = ${attr}
</#list>

produces this output:

- baaz = Baaz
- bar = Bar
- foo = Foo

RPL provides a convenience sub-variable to list only the children of an element. For

example:

<#list doc.book.* as c>
- ${c?node_name}
</#list>

produces this output:

- title
- chapter
- chapter

To get the parent of an element, use the parent built-in as shown in the following

example:

<#assign e = doc.book.chapter[0].para[0]>
<#-- Now e is the first para of the first chapter -->
${e?node_name}
${e?parent?node_name}
${e?parent?parent?node_name}
${e?parent?parent?parent?node_name}

produces this output:

para
chapter
book
@document

The last line in the example reaches the root of the DOM tree, the document node.

This is not an element, therefore it appears differently in the output.

Page 104

To return to the document node, use the root built-in as shown in the following

example:

<#assign e = doc.book.chapter[0].para[0]>
${e?root?node_name}
${e?root.book.title}

produces this output:

@document
Test Book

For a complete list of built-ins you can use to navigate in the DOM tree, see

“Chapter 5, “Built-in Reference”.

Using XPath expressions
If a hash key used with a node variable cannot be interpreted otherwise (see the

next section for the precise definition), then it will be interpreted as an XPath

expression. For more information about XPath, please visit

http://www.w3.org/TR/xpath.

For example, to list the para elements of the chapter called Ch1:

<#list doc["book/chapter[title='Ch1']/para"] as p>
 <p>${p}
</#list>

produces this output:

 <p>p1.1
 <p>p1.2
 <p>p1.3

The rule for sequences of length one (explained in an earlier section) applies to

XPath results as well. That is, if the resulting sequence contains exactly one node, it

also acts as the node itself. For example, to print the first paragraph of chapter Ch1:

${doc["book/chapter[title='Ch1']/para[1]"]}

Page 105

The above example produces the same output as:

${doc["book/chapter[title='Ch1']/para[1]"][0]}

The context node of the XPath expression is the node (or sequence of nodes)

whose hash sub-variable is used to issue the XPath expression. Thus, the following

example produces the same output as the previous one:

${doc.book["chapter[title='Ch1']/para[1]"]}

Also note that XPath indexes sequence items from one. Thus, to select the first

chapter, the XPath expression is "/book/chapter[1]" as shown in the following

example:

<#assign currentTitle = "Ch1">
<#list doc["book/chapter[title=$currentTitle]/para"] as p>
...

Note that $currentTitle is an XPath expression, not an RPL interpolation, as it is

not enclosed in curly braces ({ }).

The result of some XPath expressions is not a node set, but a string, a number, or a

boolean. For those XPath expressions, the result is an RPL string, number, or

boolean variable, respectively. For example, the following code counts the total

number of para elements in the XML document, so the result is a number:

${x["count(//para)"]}

and the output is:

5

About XML namespaces
By default, when you write doc.book, RPL selects the element with the name book

that does not belong to any XML namespace (similarly to XPath). To select an

element inside an XML namespace, you must register a prefix and use that prefix.

For example, if the book element is in the XML

namespace http://example.com/ebook, you have to associate a prefix with it at

Page 106

the top of the template with the ns_prefixes parameter of the rpl directive as

shown in the following example:

<#rpl ns_prefixes={"e":"http://example.com/ebook"}>

Now, you can write expressions such as doc["e:book"]. Note that in this case, the

usage of square brackets ([]) is required.

As the value of ns_prefixes is a hash, you can register multiple prefixes as shown

in the following example:

<#rpl ns_prefixes={
 "e":"http://example.com/ebook",
 "f":"http://example.com/form",
 "vg":"http://example.com/vectorGraphics"}
>

The ns_prefixes parameter affects the entire RPL namespace. This means that

the prefixes you have registered in the main template will be visible in

all <#include ...>-d templates, but not in <#imported ...>-d templates

(often referred to as RPL libraries). An RPL library can register XML namespace

prefixes for its own use, without interfering with prefix registrations of the main

template and other libraries.

Note that you can set a default namespace for an input document. In this case, if

you do not use a prefix, as in doc.book, RPL selects the element that belongs to

the default namespace. You set the default namespace using the reserved prefix D,

for example:

<#rpl ns_prefixes={"D":"http://example.com/ebook"}>

Now, the expression doc.book will select the book element that belongs to the

XML namespace http://example.com/ebook.

Note that XPath does not support default namespaces. Thus, in XPath expressions,

element names without a prefix always apply to the elements that do not belong to

any XML namespace.

Page 107

However, to access elements in the default namespace, you can use the prefix D, for

example:

doc["D:book/D:chapter[title='Ch1']"]

Note that when you use a default namespace, you can select elements that do not

belong to any node namespace using the reserved prefix N, for example:

doc.book["N:foo"].

The above example does not work for XPath expressions. The equivalent for an

XPath expression is:

doc["D:book/foo"]

Escaping
In HTML, certain characters such as < and & are reserved. This means that to print

plain text in HTML output, you must use escaping as shown in the following

example:

<#escape x as x?html>
<#assign book = doc.book>
<h1>${book.title}</h1>
<#list book.chapter as ch>
 <h2>${ch.title}</h2>
 <#list ch.para as p>
 <p>${p}
 </#list>
</#list>
</#escape>

in the HTML output of the above example, the book title Romeo & Julia will be

printed correctly:

...
<h1>Romeo & Julia</h1>
...

Page 108

Formal description
Every variable that corresponds to a single node in the DOM tree is a multi-type

variable of type node and type hash. Thus, you can use the node built-ins with them.

Hash keys are interpreted as XPath expressions, with the exception of the special

keys shown in the table below. Some node variables have a string type as well, so

you can use them as string variables (they implement TemplateScalarModel).

Node type
(?node_type)

Node name
(?node_name)

String value (e.g.
<p>${node})

Special hash keys

"document" "@document" No string value. (Error
when you try to use it
as string.)

"elementName",
"prefix:elementName",
"*", "**", "@@markup",
"@@nested_markup",
"@@text"

"element" "name": the
name of the
element. This is
the local name
(i.e. name
without
namespace
prefix).

If it has no element
children, the text of all
text node children
concatenated
together. Error
otherwise, when you
try to use it as string.

"elementName",
"prefix:elementName",
"*", "**", "@attrName",
"@prefix:attrName",
"@@", "@*",
"@@start_tag",
"@@end_tag",
"@@attributes_marku
p", "@@markup",
"@@nested_markup",
"@@text",
"@@qname"

"text" "@text" The text itself. "@@markup",
"@@nested_markup",
"@@text"

"pi" "@pi$target" The part between the
target name and the
?>.

"@@markup",
"@@nested_markup",
"@@text"

"comment" "@comment" The text of the
comment, without the
delimiters <!-- and -->.

"@@markup",
"@@nested_markup",
"@@text"

"attribute" "name": the
name of the
attribute. This
is the local
name (i.e. name

The value of the
attribute.

"@@markup",
"@@nested_markup",
"@@text",
"@@qname"

Page 109

Node type
(?node_type)

Node name
(?node_name)

String value (e.g.
<p>${node})

Special hash keys

without
namespace
prefix).

"document_ty
pe"

"@document_t
ype$name":
name is the
name of the
document
element.

No string value. (Error
when you try to use it
as string.)

"@@markup",
"@@nested_markup",
"@@text"

NOTES:

• There is no CDATA type. CDATA nodes are transparently considered as
text nodes.

• Variables do not support ?keys and ?values.

• Element and attribute node names are local names, that is, they do not
contain the namespace prefix. The URI of the namespace to which a node
belongs can be queried with the ?node_namespace built-in.

• Variables are visible with XPath variable references
(e.g. doc["book/chapter[title=$currentTitle]"]).

Meaning of special hash keys:

"elementName", "prefix:elementName"

Returns the sequence of child nodes that are elements of elementName. The

selection is XML namespace-aware, unless the XML document was parsed with

an XML parser that was not namespace-aware. In XML namespace-aware mode,

names without a prefix (for example, elementName) select only elements that

do not belong to any XML namespace (unless you have registered a default XML

namespace), and names with a prefix (for example prefix:elementName)

select only elements that belong to the XML namespace denoted by the prefix.

You register prefixes and set the default XML namespace using

the ns_prefixes parameter of the rpl directive.

Page 110

"*"

Returns the sequence of all child element nodes. The sequence will contain the

elements in the document order, that is, in the order in which the first character

of the XML representation of each node occurs (after expansion of general

entities).

"**"

Returns the sequence of all descendant element nodes. The sequence will

contain the elements in the document order.

"@attName", "@prefix:attrName"

Returns the attribute attName of the element as a sequence of size one that

contains the attribute node, or as an empty sequence if the attribute does not

exist. To check whether an attribute exists, use foo.@attName[0]??,

not foo.@attName??. As with the special key "elementName", if the length of

the sequence is 1, then it also acts as its first sub-variable. If no prefix is used,

then it returns only the attribute that does not use XML namespace (even if you

have set a default XML namespace). If a prefix is used, it returns only the

attribute that belongs to the XML namespace associated with the prefix. The

registration of prefixes is done with the ns_prefixes parameter of the rpl

directive.

"@@" or "@*"

Returns the sequence of attribute nodes belonging to the parent element. This is

the same as XPath @*.

"@@qname"

Returns the fully qualified name of the element (such as e:book, in contrast to

the local name returned by ?node_name) . The prefix used is chosen based on

the prefix registered in the current namespace with the ns_prefixes

parameter of the rpl directive, and is not influenced by the prefix used in the

source XML document. If you have set a default XML namespace, the prefix D is

used for nodes that use that namespace. For nodes that do not belong to an

XML namespace, no prefix is used even if a default namespace is set. If there is

Page 111

no prefix registered for the namespace of the node, the result is a non-existent

variable (node.@@qname?? is false).

"@@markup"

Returns the full XML markup of a node, as a string. Full XML markup means that

it also contains the markup of the child nodes, and the markup of the children of

the child nodes, and so on. The markup is not necessary the same as the markup

in the source XML file, but it is semantically identical. Note that CDATA sections

will be converted to plain text. Also note that depending on how the original

XML document is enclosed with RPL, comment or processing instruction nodes

might be removed and will be missing from the output. The first outputted start

tag will contain xmlns:prefix attributes for each XML namespace used in the

outputted XML fragment, and those prefixes will be used in the outputted

element and attribute names. These prefixes will be the same as the prefixes

registered with the ns_prefixes parameter of the rpl directive (no prefix will

be used for D, as it will be registered as the default namespace with an xmlns

attribute). If no prefix was assigned for a XML namespace, an arbitrarily chosen

unused prefix will be used.

"@@nested_markup"

This is similar to @@markup, but it returns the XML markup of an element without

its opening and closing tags. For the document node, it returns the same

as @@markup. For other node types, it returns an empty string. Unlike

with @@markup, no xmlns:prefix attributes will be placed into the output. The

rules regarding the prefixes used in element and attribute names are the same as

for @@markup.

"@@text"

Returns the value of all text nodes that occur within the node (all descendant

text nodes, not only direct children), concatenated into a single string. If the

node has no text node children, the result is an empty string.

Page 112

"@@start_tag"

Returns the markup of the start tag of the element node. As with @@markup, the

output is the semantic equivalent of the original XML document. For XML

namespaces (xmlns:prefix attributes in the output, etc.), the rules are the same

as for "@@markup".

"@@end_tag"

Returns the markup of the end tag of the element node. As with @@markup, the

output is the semantic equivalent of the original XML document.

@@attributes_markup

Returns the markup of the attributes of the element node. As with @@markup,

the output is the semantic equivalent of the original XML document.

About node sequences
Many of the special hash keys described in the list above and XPath expressions

that result in node sets (see the XPath recommendation) return a sequence of

nodes.

If these sequences store only one sub-variable, they also act as the sub-variable. For

example, ${book.title[0]} is the same as ${book.title} if the book element

has only one title element.

Returning an empty node sequence is common. For example, if the element book

has no child element chapter, then book.chapter results in an empty node

sequence. Note that this means that an invalid element, for example book.chap will

also return an empty node sequence, and will produce an error.

Also, book.chaptre?? (note the typo) will return true because the empty

sequence exists, so you have to use book.chaptre[0]?? instead.

Page 113

Node sequences that store 0 or more than 1 node, also support the following hash

keys:

"elementName", "prefix:elementName"

"@attrName", "@prefix:attrName"

"@@markup", "@@nested_markup"

"@@text"

"*", "**"

"@@", "@*"

When you apply one of those special keys on a node sequence that contains more

than one or zero nodes, the special key is applied for each node in the same way as

for single nodes, and the result is concatenated to form the final result. The result is

concatenated in the order in which the nodes occur in the node sequence. The

nodes are concatenated based on the type of the result. For example, if the special

key would return a string for a single node, then the result for multiple nodes is a

single string; if the special key would return a sequence for a single node, then

result for multiple nodes is a single sequence. If you apply a special key to a

sequence with zero nodes, the string result is an empty string or an empty

sequence.

Note that you can use XPath expressions with node sequences.

Working with declarative XML processing
With declarative processing, you define how to handle the different types of nodes,

and RPL walks the DOM tree and calls the handlers you defined.

This approach is useful for complex XML schemas, where the same element can

occur as the child of many other elements. Examples of such schemas are XHTML

and XDocBook.

Page 114

With declarative approach, you use the recurse directive in most cases. This

directive gets a node variable as a parameter, and visits all its children nodes, one

after the other, starting with the first child. Visiting a node means that the directive

calls a user-defined directive (like a macro) that has the same name as the name of

the child node (?node_name). Then, that the user-defined directive handles the

node which is available as special variable .node. For example, the following code:

<#recurse doc>

<#macro book>
 I'm the book element handler, and the title is: ${.node.title}
</#macro>

produces this output:

I'm the book element handler, and the title is: Test Book

If you call recurse without a parameter, then it uses .node. This means that it

visits all children nodes of the node being handled. For example, the following

code:

<#recurse doc>

<#macro book>
 Book element with title ${.node.title}
 <#recurse>
 End book
</#macro>

<#macro title>
 Title element
</#macro>

<#macro chapter>
 Chapter element with title: ${.node.title}
</#macro>

produces this output:

Book element with title Test Book
Title element
Chapter element with title: Ch1
Chapter element with title: Ch2
End book

Page 115

The examples above show how to define handlers for element nodes, but not for

text nodes. Since the name of the handler is the same as the name of nodes it

handles, and the name of all text nodes is @text, you define the handler for text

nodes as shown in the following example:

<#macro @text>${.node?html}</#macro>

?html is necessary because you have to HTML-escape the text, since you generate

output of HTML format.

The following example shows a template that transforms the XML to complete

HTML:

<#recurse doc>

<#macro book>
 <html>
 <head>
 <title><#recurse .node.title></title>
 </head>
 <body>
 <h1><#recurse .node.title></h1>
 <#recurse>
 </body>
 </html>
</#macro>

<#macro chapter>
 <h2><#recurse .node.title></h2>
 <#recurse>
</#macro>

<#macro para>
 <p><#recurse>
</#macro>

<#macro title>
 <#--
 We have handled this element imperatively,
 so we do nothing here.
 -->
</#macro>

<#macro @text>${.node?html}</#macro>

Page 116

produce this output:

 <html>
 <head>
 <title>Test Book</title>
 </head>
 <body>
 <h1>Test Book</h1>

 <h2>Ch1</h2>

 <p>p1.1

 <p>p1.2

 <p>p1.3

 <h2>Ch2</h2>

 <p>p2.1

 <p>p2.2

 </body>
 </html>

Note that you can substantially reduce the amount of superfluous whitespace in the

output by using the trim directives such as <#t>.

The declarative approach works well with XML schemas where any element might

occur anywhere. For example, you need to changes text color to red in any element

such as a title or a paragraph. To do this, add a macro that creates an element

called mark as shown in the following example:

<#macro mark><#recurse></#macro>

Now, you can use <mark>...</mark> anywhere.

For certain XML schemas, declarative XML processing results in shorter and much

clearer RPL than imperative XML processing. It's up to you to decide which

approach to use; don't forget that you can mix the two approaches. For example,

you can use imperative approach in an element handler to process the contents of

that element.

Page 117

About default handlers
For some XML node types, RPL provides a default handler. This handler will handle

the node if you do not define a handler for the node (i.e. if there is no user-defined

directive available with the name identical to the node name). The following table

lists the node types that the default handler supports and describes how it handles

each node type:

Node type Default Handler Action

Text node Prints the text as it.

Note that in most cases, this approach does not work
well, because you should escape the text before sending
it to the output (with ?html, ?xml or ?rtf, etc.
depending on the output format).

Processing
instruction node

Calls a handler called @pi if you have created such user-
defined directive. Otherwise, ignores the node.

Comment node

Document type node

Ignores the node.

Document node Calls the recurse directive, that is visits all children of
the document node.

Element and attribute nodes are handled according to the usual XML-independent

mechanism. That is, @node_type will be called as the handler. If @node_type is not

defined, then an error terminates template processing. For element nodes, this

means that you must define a macro or another kind of user-defined directive

called @element to catch all element nodes. If you do not define an @element

handler, you must define a handler for all possible elements.

Attribute nodes are not visited by the recurse directive, so you do not need to

write handlers for them.

Visiting a single node
You can visit a single node instead of its children with the visit directive.

Page 118

About XML namespaces
The name of the handler user-defined directive must be the fully qualified name of

the element: prefix:elementName. The rules regarding the usage of prefixes is

the same as with imperative processing. For example, the user-defined book

directive handles only the book element that does not belong to any XML

namespace (unless you specified a default XML namespace). If the example, it uses

the XML namespace http://example.com/ebook:

<book xmlns="http://example.com/ebook">
...

The RPL will be:

<#rpl ns_prefixes={"e":"http://example.com/ebook"}>

<#recurse doc>

<#macro "e:book">
 <html>
 <head>
 <title><#recurse .node["e:title"]></title>
 </head>
 <body>
 <h1><#recurse .node["e:title"]></h1>
 <#recurse>
 </body>
 </html>
</#macro>

<#macro "e:chapter">
 <h2><#recurse .node["e:title"]></h2>
 <#recurse>
</#macro>

<#macro "e:para">
 <p><#recurse>
</#macro>

<#macro "e:title">
 <#--
 We have handled this element imperatively,
 so we do nothing here.
 -->
</#macro>

<#macro @text>${.node?html}</#macro>

Page 119

Alternately, you can define a default XML namespace, then use recurse and

the book macro as shown in the following example:

<#rpl ns_prefixes={"D":"http://example.com/ebook"}>

<#recurse doc>

<#macro book>
...

In this case, keep in mind that in XPath expressions, you must access the default

XML namespace with an explicit D:. This is because in XPath, names without a prefix

always refer to nodes with no XML namespace in XPath. Also note that as with

imperative XML processing, the name of handlers for elements that have no XML

namespace is N:elementName only if a default XML namespace is defined.

However, for nodes that are not of type element (such as text nodes), you never use

the N prefix in the handler name, because those nodes do not use XML namespaces.

For example, the handler for text nodes is always just @text.

For more detailed information, see the recurse and visit directives in “Chapter

6. Directive Reference”.

XSL transformation processing
We recommend that you use XSL if you are familiar with its concepts and/or when

more advanced processing is needed. Otherwise, imperative and declarative models

of RPL suffice for most cases.

XSL transformation is used to to transform XML data into either other XML formats,

HTML, or text.

XSL uses XPath as its matching engine, which is another standard in the industry.

XSL is, in its most basic form, a matching engine of XML patterns directed by XPath

selectors. For more information on XPath, visit http://www.w3.org/TR/xpath.

Page 120

XSL basics
XSL is written in XML format with use and support of namespaces. The style of

writing XSL is by entering xsl:template elements that match a given criteria (an

XML path, a condition for an XML path, etc.). The flow of code is directed

by xsl:apply-templates elements placed within templates, in a parent-child

manner. This is similar to the declarative XML processing where the xsl:template

is equivalent to <#macro…> elements, while xsl:apply-templates is somewhat

equivalent to <#recurse>. XSL is more powerful than the declarative model

because it allows recursion in which the path selection is defined in a more specific

way.

The XSL language supports xsl:for-each, xsl:choose and xsl:if as

programmatic constructs. These constructs resemble the <#list>, <#if>

and <#switch> directives. Note that XSL functionality are somewhat limited.

XSL processing in RPL
You use the xslt method for XSL processing. The xslt method receives two XML

nodes, which you need to previously initialize with parsexml, and perhaps load, as

described in the section “Putting the XML into the data model”. The first parameter

is the node of the XML to be transformed. The second parameter is the node of the

XSL transformation (which is, by definition, XML as well).

The following example assumes that the node doc has been initialized:

<#assign
transform=parsexml(load("cms://contentlibrary/transforms/transform.x
ml"))>
<#assign result=xslt(doc, transform)>
${result}

The following transform.xml:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="text" />

Page 121

 <xsl:template match="/">
 <xsl:value-of select="book/title"/>
 <xsl:apply-templates select="book/chapter" />
 </xsl:template>

 <xsl:template match="chapter">[<xsl:value-of
select="title"/>]</xsl:template>

</xsl:stylesheet>

produces this output:

Test Book[Ch1][Ch2]

The first template matches the root of the XML. That template first obtains the title

of the book, then applies further templates that match the chapters of the book.

Another template that matches the chapter extracts the title of the chapter.

Working with XML output
Sometimes you need to transform from one XML format into another XML format.

Consider the following example:

<#assign transform=parsexml(load("cms://transforms/transform.xml"))>
<#assign result=xslt(source, transform)>
${result}

with the following transform.xml:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:output method="xml" indent="yes" omit-xml-declaration="yes"/>

 <xsl:template match="/book">
 <publication>
 <xsl:attribute name="name"><xsl:value-of
select="title"/></xsl:attribute>
 <index>
 <xsl:apply-templates select="chapter" />
 </index>
 </publication>
 </xsl:template>

 <xsl:template match="chapter">
 <section><xsl:value-of select="title"/></section>
 <xsl:apply-templates select="para" />
 </xsl:template>

Page 122

 <xsl:template match="para">
 <section><xsl:value-of select="."/></section>
 </xsl:template>
</xsl:stylesheet>

produces this output:

<publication name="Test Book">
<index>
<section>Ch1</section>
<section>p1.1</section>
<section>p1.2</section>
<section>p1.3</section>
<section>Ch2</section>
<section>p2.1</section>
<section>p2.2</section>
</index>
</publication>

This example:

1. Matches the book at the root.

2. Encloses the output in a <publication> tag with an attribute called name with
the contents of the title element.

3. Looks for all chapters and places them inside an <index> tag.

4. Puts a <section> tag, with the contents of the chapter title into
the chapters template.

5. Rather than enclosing the children elements into another tag, the example
places them at the same level as the chapter, and thus simply selects
the para elements.

6. In the para template, creates a new <section> tag that encloses the value
of the paragraph by obtaining the value of the para element (using the
period syntax).

Note that the example RPL outputs the value of the result variable.

Page 123

To process this as a node instead, with the familiar RPL syntax, you can modify the

above example as follows:

<#assign
transform=parsexml(load("cms://transforms/booktransform.xml"))>
<#assign result=parsexml(xslt(source, transform))>
Publication Title: ${result.publication.@name}
<#list result.publication.index.section as sec>
${sec_index+1}. - ${sec}
</#list>

produces this output:

Publication Title: Test Book
1. - Ch1
2. - p1.1
3. - p1.2
4. - p1.3
5. - Ch2
6. - p2.1
7. - p2.2

This time, the resulting string is parsed XML with the parsexml method. After this,

we are free to use the imperative processing model on the resulting XML.

Including additional transformation templates
XSL supports an <xsl:include href="path"/> instruction to add extra

transformation templates as defined in an external file. For example, the following

file called root.xml:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">
 <xsl:output method="text"/>

 <xsl:include href="cms://transforms/included.xml"/>

</xsl:stylesheet>

Page 124

includes an additional file called included.xml, which contains the following code:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0">

 <xsl:template match="/book ">[<xsl:value-of
select="title"/>]</xsl:template>

</xsl:stylesheet>

This is similar to an RPL include directive. In this mode, the xsl:include

instruction allows full paths to cms://, http://, and https:// sources.

This case supports only full paths, unlike the RPL include directive which supports

both relative and absolute paths.

Page 125

Chapter 5. Built-in Reference
Built-ins are divided into the following categories:

• Built-ins for strings

• Built-ins for numbers

• Built-ins for dates

• Built-ins for booleans

• Built-ins for sequences

• Built-ins for hashes

• Built-ins for XML nodes

• Additional built-ins

Built-ins for strings

base64

expr?base64

The string encoded in base64 format. This can be useful in obfuscating personal

information to be used in a URL’s query string.

Base64 is an encoding scheme that represents binary data in an ASCII string format

by converting non-printable characters into printable characters. Base 64 strings

are usually 30% longer that their source (16 bits get converted to 24 bits).

Example:

“Person”?base64

produces this output:

UGVyc29u

Page 126

boolean

exp?boolean(true-string)
or
exp?boolean(true-string, false-string)

Converts the given expression string into its boolean counterpart.

If only true-string is given, any value that is not identical to it is considered false.

If both true-string and false-string are given, the string should match either

one, otherwise an error occurs.

This comparison is case-sensitive.

If the string is not in the appropriate format, an error terminates template

processing when you try to access this built-in.

Example:

<#if isVip?boolean(“true”)>
We love to offer you this great discount!
</#if>

If isVip is true, the output is:

We love to offer you this great discount!

If the value is anything other than true, the returned value is false.

If the strings are stored as “yes” and “no”, you can use the following example:

<#if isVip?boolean(“yes”, “no”)>
We love to offer you this great discount!
</#if>

In this last case, if the isVip value is neither “yes” nor “no”, an error occurs.

cap_first

exp?cap_first

The string with the very first word capitalized. For the exact meaning of “word”,

see “word_list built-in”.

Page 127

Example:

${" green mouse"?cap_first}
${"GreEN mouse"?cap_first}
${"- green mouse"?cap_first}

produces this output:

 Green mouse
GreEN mouse
- green mouse

In the case of - green mouse, the first word is -.

capitalize

exp?capitalize

The string with the first letter of each word capitalized. For the exact meaning of

“word”, see “word_list built-in”.

Example:

${" green mouse"?capitalize}
${"GreEN mouse"?capitalize}

produces this output:

 Green Mouse
Green Mouse

chop_linebreak

exp?chop_linebreak

If the string includes a line break, returns the string without the line break;

otherwise returns the unchanged string.

contains

exp?contains(string-expr)

Returns if the string specified as the parameter occurs in the string.

Page 128

Example:

<#if "piceous"?contains("ice")>It contains "ice"</#if>

produces this output:

It contains "ice"

date, time, datetime

exp?date
exp?time
exp?datetime

The string converted to a date value. We recommended including a parameter that

specifies the format.

Example:

<#assign test1 = "10/25/1995"?date("MM/dd/yyyy")>
<#assign test2 = "15:05:30"?time("HH:mm:ss")>
<#assign test3 = "1995-10-25 03:05 PM"?datetime("yyyy-MM-dd hh:mm
a")>
${test1}
${test2}
${test3}

produces output similar to the following, depending on the output locale and other

settings:

Oct 25, 1995
3:05:30 PM
Oct 25, 1995 3:05:00 PM

Note that the dates were converted back to string according to

the date_format, time_format, and datetime_format settings. For more

information about converting dates to strings, see “String built-in for dates, date

interpolations”. It does not matter what format you used when you converted the

strings to dates.

If you know what the default date/time/datetime format will be when the template

is processed, you do not have to use the format parameter.

Page 129

Page 130

Example:

<#assign test1 = "Oct 25, 1995"?date>
<#assign test2 = "3:05:30 PM"?time>
<#assign test3 = "Oct 25, 1995 03:05:00 PM"?datetime>
${test1}
${test2}
${test3}

If the string is not in the appropriate format, an error terminates template

processing when you try to access this built-in.

debug

string-exp?debug

Embeds debug information in a message.

If the environment.debug flag is on, the builtin returns the string provided. If

the environment.debug flag is off, the builtin returns an empty string.

The environment.debug flag is true only for test and preview launches, and when

the debug option was set in the Email Message Designer.

Example:

${(launch.type+’:’)?debug}Welcome to ShopCo

For a standard launch, regardless of the campaign debug flag setting, the example

produces the following output:

Welcome to ShopCo.

For a proof launch, if the debug flas is set to “on” in the campaign, the example

produces the following output:

proof:Welcome to ShopCo

For a preview launch, if the debug flag is set to “on” in the campaign, the example

produces output similar to the following:

Page 131

preview:Welcome to ShopCo

For more information, see environment.debug flag.

ends_with

exp?ends_with(string-expr)

Returns true if the string ends with the specified substring. For

example "redhead"?ends_with("head") and "head"?ends_with("head")

return boolean true.

eval

expr?eval

Evaluates the string in the expression. This built-in is similar to the exec built-in,

except that it does not allow directives and executes the string as an expression.

The result of the evaluation is of the proper type.

Example:

“1+2”?eval

produces this output:

3

exec

expr?exec

Uses the script specified in the expression and executes it like a template. This built-

in is similar to the eval built-in, except that it allows directives. Expressions must

be enclosed in ${}. The result of this built-in is always a string.

Example:

<#assign x=3>
${r”${x+2}”?exec?number + 4>

Page 132

produces this output:

9

The example first assign a variable x to the value of 3. It then uses a raw string so

that it can use ${…} without interpreting it. This is the script, in this case: ${x+2}.

The example then executes the script with the exec built-in. The result of this

execution is the string 5, since it is the result of the interpolation. The example then

converts the string to a number, and adds 4 to return 9.

groups

expr?groups[index]

Used only with the result of the matches built-in. For more information,

see matches built-in.

hex

expr?hex

Converts a string into a hex-encoded string. For each character in the string, a two

character representation of the byte in hexadecimal format is produced. This

doubles the number of characters needed to represent the originating string.

Example:

“a sample string”?hex

produces this output:

612073616D706C6520737472696E67

To convert a number to hex encoding as described in this section, perform a two-

step process as follows:

7371?string?hex

Page 133

produces this output:

37333731

Note that this built-in applies to strings, and this mechanism is called hex encoding,

as opposed to the hex representation of a number.

index_of

exp?index_of(string-expr)

Returns the index of the first occurrence of the specified substring within the string.

Example:

"abcabc"?index_of("bc")

Returns 1. This is because the index of the first character is 0.

You can also start the search from a specific index. For example:

"abcabc"?index_of("bc", 2)

Returns 4. There is no restriction on the numerical value of the second parameter. If

it is negative, it is treated as 0. If it is greater than the length of the string, it is

treated as equal to the length of this string. Decimal values are truncated to

integers. If the substring does not occur in the string (starting from the given index,

if you use the second parameter), the built-in returns -1.

html

exp?html

Replaces a string as HTML markup as shown below:

• < is replaced with <

• > is replaced with >

• & is replaced with &

• " is replaced with "

Page 134

Note that to insert an attribute value securely, you must quote the attribute value in

the HTML template with double quotation mark (") as shown in the following

example:

<input type=text name=user value="${user?html}">

In HTML pages, you should use this built-in for all interpolations. This can spare a lot

of typing and reduces the chance of mistakes using the escape directive.

interpret

exp?interpret

Interprets a string as an RPL template and returns a user-defined directive that -

when applied to any block - executes the template as if it was included at that

point. For example:

<#assign x=["a", "b", "c"]>
<#assign templateSource = r"<#list x as y>${y}</#list>">
<#-- Note: That r was needed so that the ${y} is not interpreted
above -->
<#assign inlineTemplate = templateSource?interpret>
<@inlineTemplate />

produces this output:

abc

inlineTemplate is a user-defined directive that, when executed, runs the

template that was generated on-the-fly using interpret.

You can also apply this built-in to a two-element sequence. In this case, the first

element of the sequence is the template source, and the second element is a name

for the inline template. This can be useful to give an explicit name to the inline

template for debugging purposes. For example, in the above template, you can

write the following:

<#assign inlineTemplate = [templateSource,
"myInlineTemplate"]?interpret>

Page 135

Note that giving the inline template a name has no immediate effect. It is useful

only as extra information if an error occurs.

isnull (when used with a string value)

exp?isnull

Returns true if the string is an empty string (“”), otherwise it returns false. When

dealing with database fields, NULL and empty string are equivalent. For this reason,

this built-in is useful for expressions representing database fields.

Example:

<#if ""?isnull>Empty String is NULL<#else>Empty String is NOT
NULL</#if>

poduces this output:

Empty String is NULL

j_string

exp?j_string

Escapes the string with the escaping rules of Java string literals, making it safe to

insert the value into a string literal. Note that the built-it does not add quotation

marks around the inserted value, you should use it inside a string literal.

All characters under UCS code point 0x20 are escaped. When the characters have

no dedicated escape sequence in Java (such as \n, \t, etc.), they will be replaced

with a UNICODE escape (\uXXXX).

Example:

<#assign beanName = 'The "foo" bean.'>
String BEAN_NAME = "${beanName?j_string}";

produces this output:

String BEAN_NAME = "The \"foo\" bean.";

Page 136

js_string

exp?js_string

Escapes the string with the escaping rules of JavaScript string literals, making it

safe to insert the value into a string literal. Note that the built-it does not add

quotation marks around the inserted value, you should use it inside a string literal.

Both the single quote (") and the double quote (') are escaped. In addition, the

built-in escapes > as \> (to avoid </script>).

All characters under UCS code point 0x20 are escaped. When the characters have

no dedicated escape sequence in JavaScript (such as \n, \t, etc.), they will be

replaced with a UNICODE escape (\uXXXX).

Example:

<#assign user = "Big Joe's \"right hand\"">
<script>
 alert("Welcome ${user?js_string}!");
</script>

produces this output:

<script>
 alert("Welcome Big Joe\'s \"right hand\"!");
</script>

json_string

exp?json_string

Escapes the string with the escaping rules of JSON language string literals, making

it safe to insert the value into a string literal. Note that the built-it does not add

quotation marks around the inserted value, you should use it inside a string literal.

The built-in does not escape ' characters, since JSON strings must be quoted

with ". However, the built-in does escape the slash (/)as \/ where they occur

directly after a < to avoid </script>. The built-in also escape the > characters as

Page 137

\u003E where they occur directly after]] to avoid exiting an XML CDATA

section.

All characters under UCS code point 0x20 are escaped. When the characters have

no dedicated escape sequence in JSON (such as \n, \t, etc.), they will be replaced

with a UNICODE escape (\uXXXX).

last_index_of

exp?last_index_of(string-expr)

Returns the index of the last (rightmost) occurrence of the first character of the

specified substring within a string.

Example:

"abcabc"?last_index_of("ab")

Returns 3.

You can specify the index from which to start the search.

Example:

"abcabc"?last_index_of("ab", 2)

Returns 0.

Note that the second parameter indicates the maximum index of the start of the

substring. There is no restriction on the numerical value of the second parameter. If

it is negative, it has the same effect as if it were zero, and if it is greater than the

length of this string, it has the same effect as if it were equal to the length of the

string. Decimal values are truncated to integers.

If the first parameter does not occur as a substring in the string (before the given

index, if you use the second parameter), the built-in returns -1.

left_pad

exp?left_pad(numeric-expr)

Page 138

or
exp?left_pad(numeric-expr, string-expr)

When used with one parameter, the built-in inserts spaces at the beginning of the

string until the string reaches the length specified by the parameter. For example:

[${""?left_pad(5)}]

inserts 5 spaces, making the string 5 characters long.

The following example:

[${"a"?left_pad(5)}]

inserts 4 spaces before the a, making the string 5 characters long.

If the string is already as long or longer than the specified number, the built-in does

nothing. For example:

[${"abcdefgh"?left_pad(5)}]

produces this output:

 [abcdefgh]

If you specify two parameters, the built-in inserts the characters specified by the

second parameter at the beginning of the string until the string reaches the length

specified by the first parameter.

The following example:

[${""?left_pad(5, "-")}]

inserts 5 dashes (-), making the string 5 characters long.

The following example:

[${"a"?left_pad(5, "-")}]

inserts 4 dashes before the a, making the string 5 characters long.

Page 139

If the string is already as long as or longer than the specified number, the built-in

does nothing. For example:

[${"abcde"?left_pad(5, "-")}]

produces this output:

 [abcde]

If the second parameter is longer than one character, the following example:

 [${""?left_pad(8, ".oO")}]

produces this output:

 [.oO.oO.o]

length

exp?length

The number of characters in the string.

matches

expr?matches(regex-string-expr)
expr?groups[index]

NOTE: Use this built-in only if you are familiar with regular expressions.

Determines whether the string matches the pattern exactly and returns the list of

matching sub-strings. The return value is a multi-type value:

• Boolean: true, if the string exactly matches the pattern; false otherwise.
For example, "fooo"?matches('fo*') is true, but "fooo
bar"?matches('fo*') is false.

• Sequence: the list of matched substrings of the string. Possibly a 0 length
sequence.

Page 140

Example:

<#if "fxo"?matches("f.?o")>Matches.<#else>Does not match.</#if>

<#assign res = "foo bar fyo"?matches("f.?o")>
<#if res>Matches.<#else>Does not match.</#if>
Matching sub-strings:
<#list res as m>
- ${m}
</#list>

produces this output:

Matches.

Does not match.
Matching sub-strings:
- foo
- fyo

If the regular expression contains groups (parentheses), you can access them with

the groups built-in. For example:

<#assign res = "aa/rx; ab/r;"?matches("(\\w[^/]+)/([^;]+);")>
<#list res as m>
- ${m} is ${m?groups[1]} per ${m?groups[2]}
</#list>

produces this output:

- aa/rx; is aa per rx
- ab/r; is ab per r

This built-in accepts an optional second parameter, flags. Note that it does not

support the flag f, and ignores the flag r. For more information, see “Common flags

for sting built-ins”.

number

expr?number

The string converted to numerical value. The number must be in the same format as

the numerical values specified directly in RPL: it must be in the locale-independent

Page 141

format, where the decimal separator is a dot. In addition, the built-in recognizes

scientific notation (e.g. "1.23E6", "1.5e-8").

If the string is not in the appropriate format, an error occurs that terminates

template processing when you try to access this built-in.

lower_case

exp?lower_case

The lower case version of the string.

Example:

"GrEeN MoUsE"?lower_case

produces this output:

"green mouse".

replace

expr?replace(string-exp-to-find, string exp-new-string)
expr?replace(string-exp-to-find, string exp-new-string, flag)

Replaces all occurrences of a substring with another string.

This built-in does not handle word boundaries.

Example:

${"this is a car acarus"?replace("car", "bulldozer")}

produces this output:

this is a bulldozer abulldozerus

The replacing occurs left-to-right. This means that the following example:

${"aaaaa"?replace("aaa", "X")}

produces this output:

Page 142

Xaa

If the first parameter is an empty string, all occurrences of the empty string are

replaced. For example:

 "foo"?replace("","|")

is replaced with:

 "|f|o|o|"

This built-in accepts an optional parameter, flags, as a third parameter. For more

information, see “Common flags for sting built-ins”.

right_pad

exp?left_pad(numeric-expr)
or
exp?left_pad(numeric-expression, string-expr)

Inserts a specified number of spaces or characters at the end of a string.

If you specify one parameter, the built-in inserts spaces at the end of the string

until the string reaches the length specified by the parameter. For example:

[${""?right_pad(5)}]

inserts 5 spaces, which makes the string 5 characters long.

This example:

[${"a"?right_pad(5)}]

inserts 4 spaces after the a, making the string 5 characters long.

If the string is already as long or longer than the specified number, the built-in does

nothing. For example, this code:

[${"abcdefgh"?right_pad(5)}]

produces this output:

 [abcdefgh]

Page 143

If you specify two parameters, the built-in inserts the characters specified by the

second parameter at the end of the string until the string reaches the length

specified by the first parameter.

The second parameter must be a string value, and must be at least one character

long.

Example:

[${""?right_pad(8, ".oO")}]

produces this output:

 [.oO.oO.o]

rtf

expr?rtf

The string as Rich text (RTF text). That is, the string with all:

• \ replaced with \\

• { replaced with \{

• } replaced with \}

split

expr?split(string-expr)

Splits a string into a sequence of strings.

The built-in assumes that the separator always occurs before a new item. For

example, this code:

<#list "some,,test,text,"?split(",") as x>
- "${x}"
</#list>

Page 144

produces this output:

- "some"
- ""
- "test"
- "text"
- ""

The built-in accepts an optional flags parameter, flags, as a second parameter. For

more information, see “Common flags for sting built-ins”.

Example:

<#list "someMOOtestMOOtext"?split("MOO") as x>
- ${x}
</#list>

produces this output:

- some
- test
- text

starts_with

expr?starts_with(string-expr)

Checks whether a string begins with the specified substring.

The built-in returns true if the string begins with the substring.

For example, both of the following return true:

 "redhead"?starts_with("red")
 "red"?starts_with("red")

skip

expr?skip
or
expr?skip(message-str)

A skip is the action of ignoring the current recipient during personalization. This

built-in checks whether the value of the field has a null or empty string value, and if

Page 145

it does, causes a skip. In a skip, the email is not sent to the current recipient. The

processing of the current record is stopped immediately and control returns to the

personalization engine.

Example:

Assume that the profile.firstname field in the database contain the value of ""

Hello ${profile.firstname?skip}

Thanks for your recent visit to our site.

Since the value of profile.firstname is empty, the current recipient record is

skipped. This is a short form of the skip directive. The previous example could also

be written as:

<#if profile.firstname == "">
 <#skip "String is empty">
</#if>
Hello ${profile.firstname}

Thanks for your recent visit to our site.

string (when used with a string value)

expr?string

Returns the string as is. The exception is that if the value is a multi-type value (e.g.

both a string and a sequence), the resulting value is a simple string, not a multi-

type value. This can be utilized to prevent the effects of multi-typing.

substring

exp?substring(from, toExclusive)
or
exp?substring(from)

Returns a substring of the string, starting with the character specified by the from

parameter and ending with the character before the toExclusive parameter.

Page 146

from must be a number that is at least 0 and less than or equal to toExclusive;

otherwise, an error occurs that terminates template processing.

toExclusive is the index of the character immediately after the last character to

retrieve. It must be a number that is at least 0 and less than or equal to the length

of the string; otherwise and error occurs that terminates template processing. If

the toExclusive is omitted, it defaults to the length of the string. If a parameter is

a number that is not an integer, only the integer part of the number is used.

Example:

- ${'abc'?substring(0)}
- ${'abc'?substring(1)}
- ${'abc'?substring(2)}
- ${'abc'?substring(3)}

- ${'abc'?substring(0, 0)}
- ${'abc'?substring(0, 1)}
- ${'abc'?substring(0, 2)}
- ${'abc'?substring(0, 3)}

- ${'abc'?substring(0, 1)}
- ${'abc'?substring(1, 2)}
- ${'abc'?substring(2, 3)}

produces this output:

- ab c
- bc
- c
-

-
- a
- ab
- abc

- a
- b
- c

Page 147

trim

expr?trim

The string without leading and trailing white space. For example:

 (${" green mouse "?trim})

produces this output:

 (green mouse)

uncap_first

exp?uncap_first

Un-capitalizes the first word of the string.

upper_case

expr?upper_case

Returns the upper case version of the string. For example:

"GrEeN MoUsE"?upper_case

produces this output:

"GREEN MOUSE".

url

expr?url

Returns the string after URL escaping. This means that all non-US-ASCII and

reserved URL characters are escaped with %XX. For example:

<#assign x = 'a/b c'>
${x?url}

Assuming that the charset used for escaping is an US-ASCII compatible charset, the

example produces this output:

Page 148

a%2Fb%20c

The built-in escapes all reserved URL characters (/, =, &, ...etc.), so this encoding

can be used for encoding query parameter values, for example:

Click here...

Note that in the above example, no HTML encoding (?htm) was needed, because

URL escaping escapes all reserved HTML characters. You should always quote the

attribute value with double quotes ("), never with single quotes (') because the

single quote is not escaped by URL escaping.

You must select a charset to be used for calculating the escaped parts (%XX). If

you do not select a charset, RPL uses a default charset. To set a charset, specify it in

the url_escaping_charset setting that can be set in template execution time.

For example:

<#--
 This will use the charset specified by the system
 before the template execution has started.
-->
foo

<#-- Use UTF-8 charset for URL escaping from now: -->
<#setting url_escaping_charset="UTF-8">

<#-- This will surely use UTF-8 charset -->
bar

In addition, you can specify a charset explicitly for a single URL escaping as a

parameter:

foo

If you do not specify the parameter, the built-in uses the charset specified as the

value of the url_escaping_charset setting as set by the system.

Page 149

word_list

expr?word_list

Returns a sequence that contains all words of the string in the order they appear in

the string.

Words are continual character sequences that contain any character except white

space. For example:

<#assign words = " a bcd, . 1-2-3"?word_list>
<#list words as word>[${word}]</#list>

produces this output:

 [a][bcd,][.][1-2-3]

xhtml

expr?xhtml

The string as XHTML text. That is, the string with all:

< is replaced with <

> is replaced with >

& is replaced with &

" is replaced with "

' is replaced with '

NOTE: The only difference between this built-in and the xml built-in is that

the xhtml built-in escapes ' as ' instead of as '. This is because some

older browsers do not interpret ' correctly.

Page 150

xml

expr?xml

The string as XML text. That is, the string with all:

< is replaced with <

> is replaced with >

& is replaced with &

" is replaced with "

' is replaced with '

Common flags
Many string built-ins accept an optional string parameter, called flag.

Each letter in the flag affects a certain aspect of built-in behaviour. For example, the

letter i means that the built-in should not differentiate between the lower and

upper-case variation of the same letter.

You may use the flags in any order.

Supported flags
The following table lists all supported flags:

Flag Description

i Case insensitive: do not differentiate the lower and upper-case
variation of the same letter.

f First only. That is, replace/find/etc. only the first occurrence of
something.

r The substring to find is a regular expression. RPL uses the variation of
regular expressions described below.

m Multi-line mode for regular expressions. In multi-line mode the
expressions ^ and $ match just after or just before, respectively, a line
terminator or the end of the string. By default these expressions only
match at the beginning and the end of the entire string. Note that ^ and

Page 151

Flag Description

$ do not match the line-break character itself.

s Enables dot-all mode for regular expressions (same as Perl single-line
mode). In dot-all mode, the expression . matches any character,
including a line terminator. By default, this expression does not match
line terminators.

c Permits whitespace and comments in regular expressions.

Example:

<#assign s = 'foo bAr baar'>
${s?replace('ba', 'XY')}
i: ${s?replace('ba', 'XY', 'i')}
if: ${s?replace('ba', 'XY', 'if')}
r: ${s?replace('ba*', 'XY', 'r')}
ri: ${s?replace('ba*', 'XY', 'ri')}
rif: ${s?replace('ba*', 'XY', 'rif')}

produces this output:

foo bAr XYar
i: foo XYr XYar
if: foo XYr baar
r: foo XYAr XYr
ri: foo XYr XYr
rif: foo XYr baar

Supported flags by built-in
The following table lists all built-ins that support flags and shows which flags each

one supports.

Built-in name
Flags

c f i m r s

replace Only with r Ye
s

Yes Only with
r

Yes Only with r

split Only with r No Yes Only with
r

Yes Only with r

match Yes No Yes Yes Ignore
d

Yes

Page 152

Built-ins for numbers

c

expr?c

Converts a number to a string which is independent of any locale and number

format settings of RPL.

This built-in is crucial because by default, numbers are converted to strings with the

locale-specific number formatting. When the number is not meant for users (for

example, for a database record ID used as the part of an URL, or as an invisible field

value in an HTML form), you must use this built-in to print the number (i.e., use

${x?c} instead of ${x}); otherwise the output might be incorrect, depending on the

current number formatting settings and locale, and the value of the number.

The built-in always uses the dot as decimal separator.

The built-in never uses any of the following:

• Grouping separators (such as 3,000,000)

• Exponential form (such as 5E20)

• Superfluous leading or trailing zeros (such as 03 or 1.0)

• Plus sign (for example +1)

The built-in prints at most 16 digits after the decimal dot, thus numbers whose

absolute value is less than 1E-16 will be shown as 0.

hex

expr?hex

Converts a number to its hexadecimal representation, without padding. To add

padding, convert the number to a string, then use the left_pad built-in for strings.

Page 153

Example:

<#assign x=32>
${x}
${x?hex}
0x${x?hex?string?left_pad(8, “0”)}

produces this output:

32
20
0x00000020

isnull (when used with a numerical value)

exp?isnull

Useful only for expressions representing fields from the database.

When a numeric field in the database is NULL, RPL internally converts it to a zero,

but temporarily retains the fact that this field came from a NULL value. This built-in

returns true if the number came from a NULL value, otherwise returns false. For

non-database fields, the built-in always returns false. When an operation that

involves a database field is performed (for instance adding a field to a number), the

result does not retain whether the value is NULL in the database.

The following example shows a field in the database that results in a NULL:

<#-- NULL is remembered -->
<#if profile.nullnumber?isnull>

profile.nullnumber is NULL
<#else>

profile.nullnumber is NOT NULL
</#if>

<#-- but zero is assumed, so zero plus one is one -->
${profile.nullnumber+1}

<#-- the result is no longer null -->
<#if (profile.nullnumber+0)?isnull>

profile.nullnumber+0 is NULL
<#else>

profile.nullnumber+0 is NOT NULL
</#if>

Page 154

produces this output:

profile.nullnumber is NULL
1
profile.nullnumber+0 is NOT NULL

round, floor, ceiling

expr?round
expr?floor
expr?ceiling

Converts a number to a whole number using the specified rounding rule:

round

Rounds to the nearest whole number. If the number ends with .5, then it rounds

up (i.e., towards positive infinity).

floor

Rounds the number down (i.e., towards negative infinity).

ceiling

Rounds the number up (i.e., towards positive infinity).

These built-ins are useful for pagination and similar operations. If you want to

display numbers in rounded form, use the string built-in or

the number_format setting.

Example:

<#assign testlist=[
 0, 1, -1, 0.5, 1.5, -0.5,
 -1.5, 0.25, -0.25, 1.75, -1.75]>
<#list testlist as result>
 ${result} ?floor=${result?floor} ?ceiling=${result?ceiling}
?round=${result?round}
</#list>

Page 155

produces this output:

 0 ?floor=0 ?ceiling=0 ?round=0
 1 ?floor=1 ?ceiling=1 ?round=1
 -1 ?floor=-1 ?ceiling=-1 ?round=-1
 0.5 ?floor=0 ?ceiling=1 ?round=1
 1.5 ?floor=1 ?ceiling=2 ?round=2
 -0.5 ?floor=-1 ?ceiling=0 ?round=0
 -1.5 ?floor=-2 ?ceiling=-1 ?round=-1
 0.25 ?floor=0 ?ceiling=1 ?round=0
 -0.25 ?floor=-1 ?ceiling=0 ?round=0
 1.75 ?floor=1 ?ceiling=2 ?round=2
 -1.75 ?floor=-2 ?ceiling=-1 ?round=-2

string (when used with a numerical value)

expr?string
expr?string(mask-expr)

Converts a number to a string.

This built-in uses the default format specified by the system. You can also specify a

number format explicitly.

RPL supports four predefined number formats: computer, currency, number, and

percent. The exact meaning of currency, number, and percent is locale-specific, and

is controlled by the Java platform installation rather than by RPL. The computer

format uses the same formatting as the c built-in. You can use these predefined

formats as shown in the following example:

<#assign x=42>
${x}
${x?string} <#-- the same as ${x} -->
${x?string.number}
${x?string.currency}
${x?string.percent}
${x?string.computer}

If your locale is US English, the example produces the following output:

42
42
42
$42.00

Page 156

4,200%
42

The output of the first three expressions is identical because the first two

expressions use the default format, which is "number" here. You can change this

default using a setting:

<#setting number_format="currency">
<#assign x=42>
${x}
${x?string} <#-- the same as ${x} -->
${x?string.number}
${x?string.currency}
${x?string.percent}

Because the default number format was set to "currency", the example now

produces this output:

$42.00
$42.00
42
$42.00
4,200%

In addition to the three predefined formats, you can use an arbitrary number format

patterns written in the standard decimal number format syntax as:

<#assign x = 1.234>
${x?string("0")}
${x?string("0.#")}
${x?string("0.##")}
${x?string("0.###")}
${x?string("0.####")}

${1?string("000.00")}
${12.1?string("000.00")}
${123.456?string("000.00")}

${1.2?string("0")}
${1.8?string("0")}
${1.5?string("0")} <-- 1.5, rounded towards even neighbor
${2.5?string("0")} <-- 2.5, rounded towards even neighbor

${12345?string("0.##E0")}

Page 157

produces this output:

1
1.2
1.23
1.234
1.234

001.00
012.10
123.46

1
2
2 <-- 1.5, rounded towards even neighbor
2 <-- 2.5, rounded towards even neighbor

1.23E4

Following the financial and statistics practice, RPL rounds according the “half-even”

rule. This means rounding towards the nearest ``neighbor'', unless both neighbors

are equidistant. If both neighbors are equidistant, RPL rounds to the even neighbor.

This rule is illustrated in the above example: 1.5 and 2.5 are both rounded to 2 is

even, but 1 and 3 are odds.

In addition to the standard decimal syntax patterns, you can

use ${aNumber?string("currency")} and similar formatting. This produces the

same result as ${aNumber?string.currency}, etc.

As with predefined formats, you can set the default number formatting in the

template. For example:

<#setting number_format="0.##">
${1.234}

produces this outputs:

1.23

Page 158

Note that the number formatting is locale sensitive. For example:

<#setting locale="en_US">
In US they write: ${12345678?string(",##0.00")}
<#setting locale="hu">
In Hungary they write: ${12345678?string(",##0.00")}

produces this output:

In US they write: 12,345,678.00
In Hungary they write: 12 345 678,00

Built-ins for dates

date, time, datetime (when used with a date value)

expr?date
expr?time
expr?datetime

You can use these built-ins to specify which parts of the date variable are in use:

date

Only the year, month and day parts are used.

time

Only the hour, minute, second and millisecond parts are used.

datetime

Both the date and the time parts are used.

Due to technical limitations, RPL cannot always determine which parts of the date

are in use. If RTL has to execute an operation where this information is needed, such

as displaying the date as text, but cannot determine which parts are in use, it will

produce an error that terminates template processing. In such cases, you have to

use these built-ins.

Page 159

The following example illustrates a potentially problematic variable, openingTime:

<#assign x = openingTime> <#-- no problem can occur here -->
${openingTime?time} <#-- without ?time it would fail -->
<#-- For the sake of better understanding, consider this: -->
<#assign openingTime = openingTime?time>
${openingTime} <#-- this will work now -->

Additionally, you might use these built-ins to truncate dates. For example:

Last updated: ${lastUpdated} <#-- assume that lastUpdated is a date-
time value -->
Last updated date: ${lastUpdated?date}
Last updated time: ${lastUpdated?time}

produces this output:

Last updated: 04/25/2003 08:00:54 PM
Last updated date: 04/25/2003
Last updated time: 08:00:54 PM

If the left side of the ? is a string, then these built-ins convert strings to date

variables.

isnull (when used with a date value)

exp?isnull

This built-in is useful only for expressions representing fields from the database.

When a date field in the database is NULL, RPL converts it to a date representing

January 1st, 1800 in the current time zone, but the fact that this field came from a

NULL value is temporarily retained. This built-in returns true if the date came from a

NULL value, otherwise returns false. For non-database fields, the built-in always

returns false. When an operation that involves a database field is performed (for

instance adding a day with dayadd) the result does not retain whether it came from

a NULL value from the database.

The default value for a NULL data field is January 1st, 1800 in the current timezone

of the template execution.

Page 160

Example:

The following field in the database results in a NULL:

<#-- NULL is remembered -->
<#if profile.nulldate?isnull>

profile.nulldate is NULL
<#else>

profile.nulldate is NOT NULL
</#if>

<#-- 1800-01-01 00:00:00 is the default-->
${dayadd(profile.nulldate,1)?string("yyyy-MM-dd HH:mm:ss")}

<#-- the result is no longer null -->
<#if dayadd(profile.nullnumber,0)?isnull>

profile.nulldate+0 is NULL
<#else>

profile.nulldate+0 is NOT NULL
</#if>

produces this output:

profile.nulldate is NULL
1800-01-02 00:00:00
profile.nulldate+0 is NOT NULL

iso_...

expr?iso…

Converts a date, time or date-time value to a string that follows ISO 8601

"extended" format. The name is constructed from the following words, in the order

shown, separated by a _:

1. iso (required)

Page 161

2. Either utc or local (required, except when used with parameters as described
below).

Specifies whether you want to print the date according to UTC or the current

time zone. The current time zone is determined by the time_zone RPL setting

and is normally configured by the system outside the templates. Note that the

current time zone can also be set in a template, for example <#setting

time_zone="America/New_York">.

Omitting utc or local

Instead of specifying utc or local, you can specify the time zone as a

parameter.

The parameter can also be a java.util.TimeZone object (which might be a return

value of a Java method), or might be in the data-model.

If RPL cannot interpret the time zone parameter, an error will occur that

terminates template processing.

3. Either h, m, or ms (optional)

The precision of the time part. When omitted, defaults to seconds (for example

12:30:18). h means hours precision (in this case 12), m means minutes precision (in

this case, 12:30), and ms means milliseconds precision (in this case, 12:30:18.25,

for 250 milliseconds). Note that when using ms, the milliseconds are displayed as

a fraction of a second and trailing zeroes are omitted. This means that if the

millisecond is 0, the millisecond will be omitted (for example, 12:30:18). The

fraction is always separated with a dot to follow the Web conventions and the

XML Schema date/time format.

4. nz (optional)

When present, the time zone offset , such as +02:00 or -04:30 or Z, will not be

displayed. Otherwise, the time zone offset will be displayed except for date-only

values (because dates with zone offset does not appear in ISO 8601:2004).

Page 162

Since ITL 2.3.19, the offset always contains the minutes for XML Schema

date/time format compliance. For example:

<#assign aDateTime = .now>
<#assign aDate = aDateTime?date>
<#assign aTime = aDateTime?time>

Basic formats:
${aDate?iso_utc}
${aTime?iso_utc}
${aDateTime?iso_utc}

Different accuracies:
${aTime?iso_utc_ms}
${aDateTime?iso_utc_m}

Local time zone:
${aDateTime?iso_local}

produces output similar to this, depending on current time and time zone:

Basic formats:
2011-05-16
21:32:13Z
2011-05-16T21:32:13Z

Different accuracies:
21:32:13.868Z
2011-05-16T21:32Z

Local time zone:
2011-05-16T23:32:13+02:00

The following example illustrates the use of the built-in with utc or local omitted:

<#assign aDateTime = .now>
${aDateTime?iso("UTC")}
${aDateTime?iso("GMT-02:30")}
${aDateTime?iso("Europe/Rome")}

The usual variations are supported:
${aDateTime?iso_m("GMT+02")}
${aDateTime?iso_m_nz("GMT+02")}
${aDateTime?iso_nz("GMT+02")}

Page 163

produces output similar to this, depending on current time and time zone:

2011-05-16T21:43:58Z
2011-05-16T19:13:58-02:30
2011-05-16T23:43:58+02:00

The usual variations are supported:
2011-05-16T23:43+02:00
2011-05-16T23:43
2011-05-16T23:43:58

long

expr?long

You can use this built-in with date, time and date-time values to get the number of

milliseconds since January 1, 1970, 00:00:00 GMT (also known as the unix epoch

date).

string (when used with a date value)

expr?string
expr?string.short
expr?string.medium
expr?string.long
expr?string.full
…
expr?string(mask-expr)

Converts a date to a string with the specified formatting.

Tip: You do need to use this built-in if you want to use the default format specified

by the date_format, time_format, and datetime_format settings. The format

can be one of the predefined formats, or you can specify the formatting pattern

explicitly.

The predefined formats are short, medium, long, and full. These formats define

how verbose the resulting text will be. For example, if the locale of the output is

U.S. English, and the time zone is the U.S. Pacific Time zone, the following example:

Page 164

${openingTime?string.short}
${openingTime?string.medium}
${openingTime?string.long}
${openingTime?string.full}

${nextDiscountDay?string.short}
${nextDiscountDay?string.medium}
${nextDiscountDay?string.long}
${nextDiscountDay?string.full}

${lastUpdated?string.short}
${lastUpdated?string.medium}
${lastUpdated?string.long}
${lastUpdated?string.full}

produces this output:

12:45 PM
12:45:09 PM
12:45:09 PM CEST
12:45:09 PM CEST

4/20/07
Apr 20, 2007
April 20, 2007
Friday, April 20, 2007

4/20/07 12:45 PM
Apr 20, 2007 12:45:09 PM
April 20, 2007 12:45:09 PM CEST
Friday, April 20, 2007 12:45:09 PM CEST

The exact meaning of short, medium, long, and full depends on the current locale

(language). Furthermore, it is specified by the Java platform implementation on

which you run RPL.

For dates that contain both a date and a time, you can specify the length of the

date and time parts independently, as shown in the following example:

${lastUpdated?string.short_long} <#-- short date, long time -->
${lastUpdated?string.medium_short} <#-- medium date, short time -->

produces this output:

4/8/03 9:24:44 PM PDT
Apr 8, 2003 9:24 PM

Page 165

Note that ?string.short is the same

as ?string.short_short, ?string.medium is the same

as ?string.medium_medium, etc.

WARNING: Due to technical limitations, in some cases RPL cannot determine

whether the variable stores only date (year, month, day), only time (hour, minute,

second, millisecond), or both. In such cases, RPL will stop with an error when you

write something similar to ${lastUpdated?string.short}

or ${lastUpdated}. To prevent such errors, we recommend that you always use

the ?date, ?time, and ?datetime built-ins, for

example: ${lastUpdated?datetime?string.short}.

Instead of using the predefined formats, you can specify the formatting pattern

explicitly with ?string(pattern_string). The pattern uses the Java date format

syntax explained in the “About the date format” section. For example:

${lastUpdated?string("yyyy-MM-dd HH:mm:ss zzzz")}
${lastUpdated?string("EEE, MMM d, ''yy")}
${lastUpdated?string("EEEE, MMMM dd, yyyy, hh:mm:ss a '('zzz')'")}

produces this output:

2003-04-08 21:24:44 Pacific Daylight Time
Tue, Apr 8, '03
Tuesday, April 08, 2003, 09:24:44 PM (PDT)

NOTE: With explicitly given patterns, you do not need to use ?date, ?time,

and ?datetime. This is because the pattern specifies which parts of the date to

show. However, note that you can show "noise" if you display parts that are not

stored in the variable. For example, ${openingTime?string("yyyy-MM-dd

hh:mm:ss a")}, where openingTime stores only time, will display 1970-01-01

09:24:44 PM.

The pattern string also can be "short", "medium", ..., "short_medium", ...etc. These

are the same as using the predefined formats with the dot

Page 166

syntax: someDate?string("short") and someDate?string.short are

equivalent.

Built-ins for booleans

string (when used with a boolean value)

expr?string
expr?string(true-expr, false-expr)

Converts a boolean to a string. You can use it in two ways:

foo?string

Converts the boolean to string using the default strings for representing true and

false values. By default, true is rendered as true and false is rendered as false.

To change these default strings, you can use the boolean_format setting. Note

that if the variable is a multi-type variable that is both boolean and string, the

string value of the variable is returned.

foo?string("yes", "no")

Returns the first parameter (here: "yes") if the boolean is true; otherwise the

second parameter (here: "no"). Note that the return value is always a string. If

the parameters are numbers, they are first converted to strings.

Built-ins for sequences

chunk

expr?chunk(number-expr)
expr?chunk(number-expr, string expr)

Splits a sequence into multiple sequences of the size given with the first parameter

to the built-in (for example, mySeq?chunk(3)). The result is the sequence of these

sequences. The last sequence might be shorter than the given size, unless the

second parameter is given (for example, mySeq?chunk(3, '-')), that is the item

used to make up the size of the last sequence to the given size.

Page 167

Page 168

For example:

<#assign seq = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j']>

<#list seq?chunk(4) as row>
 <#list row as cell>${cell} </#list>
</#list>

<#list seq?chunk(4, '-') as row>
 <#list row as cell>${cell} </#list>
</#list>

produces this output:

 a b c d
 e f g h
 i j

 a b c d
 e f g h
 i j - -

This built in is used mostly for outputting sequences in tabular/columnar format.

When used with HTML tables, the second parameter is often "\xA0" (that is the

code of the no-break space character, also known as nbsp), so the border of the

empty TDs will not be missing.

The first parameter must be a number that is at least 1. If the number is not an

integer, it will be rounded down to integer (i.e. both 3.1 and 3.9 will be rounded to

3). The second parameter can be of any type and value.

first

expr?first

Returns the first sub-variable of the sequence.

If the sequence is empty, an error occurs that terminates template processing.

Page 169

join

expr?join(separator-expr
or
expr?join(separator-expr, last-separator-expr)
or
expr?join(separator-expr, last-separator-expr, when-empty-expr)
or
expr?join(separator-expr, last-separator-expr, when-empty-expr,
after-last-expr)

Joins a sequence into a string by using a string separator. Optionally, you can

include an additional separator between the next-to-last and last elements, plus an

additional argument to use when the sequence has no elements, as well as a suffix

to add after the last element has been appended.

Example 1: Join a list with a separator:

${["a", "b", 1]?join(",")}

produces this output:

a,b,1

Note that the number one was forcibly transformed to a string.

Example 2: Join a list with two separators:

<#assign list=["red", "blue", "cyan"]>
The colors are ${list?join(", ", " and ")}

produces this output:

The colors are red, blue and cyan

Example 3: Join a list with separators and an optional empty string:

<#assign list=["red", "blue", "cyan"]>
The colors are ${list?join(", ", ", ", "empty")}
<#assign list=[]>
The colors are ${list?join(", ", ", ", "empty")}

Page 170

produces this output:

The colors are red, blue, cyan
The colors are empty

Example 4: Join a list with an optional empty string and an optional suffix

<#assign list=["red", "blue", "cyan"]>
The colors are ${list?join(", ", ", ", "empty", " - " +
list?size?string)}
<#assign list=[]>
The colors are ${list?join(", ", ", ", "empty", " - " +
list?size?string)}

produces this output:

The colors are red, blue, cyan - 3
The colors are empty

The optional suffix is appended only if the item had any elements, as in the first

assignment. The suffix is composed of a separator (" – ") plus the list size, in

string format. Note that the size is converted to a string to enable the

concatenation. Otherwise, RPL would have attempted to add a string with a

number, which would result in an error.

last

expr?last

Returns the last sub-variable of the sequence.

If the sequence is empty, an error occurs that terminates template processing.

reverse

expr?reverse

Returns the sequence in reversed order.

Page 171

seq_contains

expr?seq_contains(expr)

Determines whether the sequence contains the specified value.

The built- in has one parameter, the value to find.

NOTE: The seq_ prefix is required in the built-in name to differentiate it from

the contains built-in that searches a substring in a string (since a variable can be

both a string and a sequence on the same time).

Example:

<#assign x = ["red", 16, "blue", "cyan"]>
"blue": ${x?seq_contains("blue")?string("yes", "no")}
"yellow": ${x?seq_contains("yellow")?string("yes", "no")}
16: ${x?seq_contains(16)?string("yes", "no")}
"16": ${x?seq_contains("16")?string("yes", "no")}

produces this output:

"blue": yes
"yellow": no
16: yes
"16": no

To find the value, the built-in uses RPL's comparison rules (as if you were using

the == operator). The difference is that comparing two values of different types or

of types for which RPL does not support will not cause an error; instead, the values

will be evaluated as not equal. Thus, you can use this built-in to find only scalar

values (i.e. string, number, boolean or date/time values). For other types, the result

will always be false.

For fault tolerance, this built-in also works with collections.

Page 172

seq_index_of

exp?seq_index_of(expr)
exp?seq_index_of(expr, index-expr)

Returns the index of the first occurrence of a value in the sequence, or -1 if the

sequence does not contain the specified value. The value to find is specified as the

first parameter.

Optionally, you can specify the index where the searching should begin as a second

parameter. This might be useful if the same item can occur multiple times in the

same sequence. There is no restriction on the numerical value of the second

parameter: if the value is negative, it evaluates to zero; if it is greater than the

length of the sequence, it evaluates to the length of the sequence. Decimal values

will be truncated to integers.

To find the value, the built-in uses RPL's comparison rules (as if you were using ==

operator). The difference is that using this built-in, comparing two values of

different or unsupported types will not cause an error; instead, the values will be

evaluated as not equal. Thus, you can use it only to find scalar values (i.e. string,

number, boolean or date/time values). For other types of values, the result will

always be -1.

NOTE: seq_ prefix is required in the built-in name to differentiate it from

the index_of built-in that searches a substring in a string, since a variable can be

both a string and a sequence at the same time.

Example:

<#assign colors = ["red", "green", "blue"]>
${colors?seq_index_of("blue")}
${colors?seq_index_of("red")}
${colors?seq_index_of("purple")}

Page 173

produces this output:

2
0
-1

Example:

<#assign names = ["Joe", "Fred", "Joe", "Susan"]>
No 2nd param: ${names?seq_index_of("Joe")}
-2: ${names?seq_index_of("Joe", -2)}
-1: ${names?seq_index_of("Joe", -1)}
 0: ${names?seq_index_of("Joe", 0)}
 1: ${names?seq_index_of("Joe", 1)}
 2: ${names?seq_index_of("Joe", 2)}
 3: ${names?seq_index_of("Joe", 3)}
 4: ${names?seq_index_of("Joe", 4)}

produces this output:

No 2nd param: 0
-2: 0
-1: 0
 0: 0
 1: 2
 2: 2
 3: -1
 4: -1

seq_last_index_of

expr?seq_last_index_of(expr)
expr?seq_last_index_of(expr, index-expr)

Returns the index of the last occurrence of a value in the sequence, or -1 if the

sequence does not contain the specified value. This built-in is the same

as seq_index_of, except that it searches backward, starting from the last item of

the sequence.

Optionally, you can specify the index where the searching should begin as a second

parameter. This might be useful if the same item can occur multiple times in the

same sequence. There is no restriction on the numerical value of the second

parameter: if the value is negative, it evaluates to zero; if it is greater than the

Page 174

length of the sequence, it evaluates to the length of the sequence. Decimal values

will be truncated to integers.

NOTE: The seq_ prefix is required in the built-in name to differentiate it from

the last_index_of built-in that searches for a substring in a string (since a

variable can be both string and sequence at the same time).

 For example:

<#assign names = ["Joe", "Fred", "Joe", "Susan"]>
No 2nd param: ${names?seq_last_index_of("Joe")}
-2: ${names?seq_last_index_of("Joe", -2)}
-1: ${names?seq_last_index_of("Joe", -1)}
 0: ${names?seq_last_index_of("Joe", 0)}
 1: ${names?seq_last_index_of("Joe", 1)}
 2: ${names?seq_last_index_of("Joe", 2)}
 3: ${names?seq_last_index_of("Joe", 3)}
 4: ${names?seq_last_index_of("Joe", 4)}

produces this output:

No 2nd param: 2
-2: -1
-1: -1
 0: 0
 1: 0
 2: 2
 3: 2
 4: 2

size

expr?size

Returns the number of sub-variables in sequence as a numerical value. The highest

possible index in a sequence is s?size - 1 (since the index of the first sub-

variable is 0) assuming that the sequence has at least one sub-variable.

Page 175

sort

expr?sort

Returns the sequence sorted in ascending order.

To sort in descending order, use this built-in, then the reverse built in.

This built-in works only if all sub-variables are of the same type. If the sub-variables

are strings, it uses locale (language) specific lexical sorting (which is usually not

case sensitive).

Example:

<#assign ls = ["whale", "Barbara", "zeppelin", "aardvark",
"beetroot"]?sort>
<#list ls as i>${i} </#list>

produces this output with the US locale:

aardvark Barbara beetroot whale zeppelin

sort_by

expr?sort_by(key-expr)

Returns the sequence of hashes sorted by the given hash sub-variable in ascending

order.

To sort in descending order, use this built-in, then the reverse built in.

The rules are the same as with the sort built-in, except that the sub-variables of

the sequence must be hashes, and you must give the name of a hash sub-variable

that will determine the order.

Page 176

For example:

<#assign ls = [
 {"name":"whale", "weight":2000},
 {"name":"Barbara", "weight":53},
 {"name":"zeppelin", "weight":-200},
 {"name":"aardvark", "weight":30},
 {"name":"beetroot", "weight":0.3}
]>
Order by name:
<#list ls?sort_by("name") as i>
- ${i.name}: ${i.weight}
</#list>

Order by weight:
<#list ls?sort_by("weight") as i>
- ${i.name}: ${i.weight}
</#list>

produces this output with the US locale:

Order by name:
- aardvark: 30
- Barbara: 53
- beetroot: 0.3
- whale: 2000
- zeppelin: -200

Order by weight:
- zeppelin: -200
- beetroot: 0.3
- aardvark: 30
- Barbara: 53
- whale: 2000

If the sub-variable you want to use for the sorting is nested at a deeper level (that

is, if it is a sub-variable of a sub-variable), you can use a sequence as a parameter

that specifies the names of the sub-variables that lead down to the desired sub-

variable. For example:

<#assign members = [
 {"name": {"first": "Joe", "last": "Smith"}, "age": 40},
 {"name": {"first": "Fred", "last": "Crooger"}, "age": 35},
 {"name": {"first": "Amanda", "last": "Fox"}, "age": 25}]>
Sorted by name.last:
<#list members?sort_by(['name', 'last']) as m>
- ${m.name.last}, ${m.name.first}: ${m.age} years old
</#list>

Page 177

produces this output with the US locale:

Sorted by name.last:
- Crooger, Fred: 35 years old
- Fox, Amanda: 25 years old
- Smith, Joe: 40 years old

unique

Returns a new sequence where the elements are unique.

Built-ins for hashes

keys

expr?keys

Returns a sequence that contains all the lookup keys in the hash. Note that not all

hashes support this.

Example:

<#assign h = {"name":"mouse", "price":50}>
<#assign keys = h?keys>
<#list keys as key>${key} = ${h[key]}; </#list>

produces this output:

name = mouse; price = 50;

Because hashes do not define an order for their sub-variables in general, the order

in which key names are returned can be arbitrary. However, some hashes maintain a

meaningful order. For example, hashes created with the above {...} syntax preserve

the same order as specified by the sub-variables.

values

expr?values

Returns a sequence that contains all variables in the hash.

Page 178

Because hashes do not define an order for their sub-variables in general, the order

in which key names are returned can be arbitrary. However, some hashes maintain a

meaningful order. For example, hashes created with the above {...} syntax preserve

the same order as specified by the sub-variables.

Built-ins for XML nodes
Note that the variables returned by these built-ins are generated by the node

variable implementation with which the built-ins are used. This means that the

returned variables might have extra features in addition to what it stated here. For

example, with the XML DOM nodes, the sequence retuned by the children built-in

also can be used as hash and maybe as string, as described in the section about

XML processing.

ancestors

expr?ancestors

Returns a sequence that contains all the node's ancestors, starting with the

immediate parent and ending with the root node. The result of this built-in is also a

method, by which you can filter the result with the fully-qualified name of the node.

For example, use node?ancestors("section") to get the sequence of all

ancestors with name section.

children

expr?children

Returns a sequence that contains all the node's child nodes (i.e. immediate

descendant nodes).

XML: This is almost the same as special hash key *, except that it returns all nodes,

not only elements. This means that the possible children are element nodes, text

nodes, comment nodes, processing instruction nodes, etc. but not attribute nodes.

Attribute nodes are excluded from the sequence.

Page 179

parent

expr?parent

Returns the node’s immediate parent node. The root node has no parent node, so

for the root node, the expression node?parent?? evaluates to false.

XML: Note that the value returned by this built-in is also a sequence (same as the

result of XPath expression .., when you write someNode[".."]). Also note that for

attribute nodes, the built-in returns the element to which the attribute belongs,

despite the fact that attribute nodes are not counted as children of the element.

root

expr?root

Returns the root node of the tree to which this node belongs.

XML: According to W3C, the root of an XML document is not the topmost element

node. Rather, the document, which is the parent of the topmost element, is the root

node. For example, if you want to get the topmost element of the XML (the

“document element” not “document’) called foo, you have to

write someNode?root.foo. If you write someNode?root, you get the document

itself, not the document element.

node_name

expr?node_name

Returns the string used to determine which user-defined directive to invoke to

handle this node when it is visited. For more information, see the visit

and recurse directives.

XML: If the node is an element or attribute, the string will be the local (prefix free)

name of the element or attribute. Otherwise, the name usually starts with @

followed by the node type. Note that the node name is not the same as the node

name returned in the DOM API; the goal of RPL node names is to give the name of

the used-defined directive that will process the node.

Page 180

node_namespace
expr?node_namespace

Returns the namespace string of the node. RPL does not define the exact meaning

of the node namespace; it depends on what your node variables are modeling. It is

possible that a node does not have a node namespace defined. In this case, the

built-in should evaluate to an undefined variable (i.e. node?node_namespace?? is

false), so you cannot use the returned value.

XML: In the case of XML, the built-in returns the XML namespace URI (such as

"http://www.w3.org/1999/xhtml"). If an element or attribute node does not use an

XML namespace, this built-in evaluates to an empty string. For other XML nodes,

the built-in always returns an undefined variable.

node_type
expr?node_type

Returns a string that describes the node type. RPL does not define the meaning of a

node type; it depends on what your variables are modeling. It is possible that a

node does not support a node type. In this case, the built-in evaluates to an

undefined value, so you cannot use the returned value. However, you can check

whether a node supports the type property with node?node_type??.

 XML: The possible values are: "attribute", "text", "comment",

"document_fragment", "document", "document_type", "element", "entity",

"entity_reference", "notation", "pi". Note that a there is no "cdata" type, because

CDATA is considered a plain text node.

Page 181

Additional built-ins

is_...

expr?is_string
expr?is_number
expr?is_boolean
expr_is_datee
expr?is_hash
expr?is_hash_ex
expr?is_sequence
expr?is_directive
expr?is_node

These built-ins check the type of a variable and return true or false, depending on

the type.

The following table lists the is_... built-ins.

This built-in Returns true if the value is a ...

is_string string

is_number number

is_boolean boolean

is_date date (all types: date-only, time-only and date-time)

is_hash hash

is_hash_ex extended hash (i.e. supports ?keys and ?values)

is_sequence sequence

is_directive any kind of directive

is_node node

number_to_date, number_to_time, number_to_datetime

expr?number_to_date
expr?number_to_time
expr?number_to_datetime

Use these built-ins to convert a number (usually a Java long) to a date, time or

date-time, respectively. These built-ins work in the same way as java.util.Date(long)

Page 182

in Java. That is, the number is interpreted as the milliseconds passed since the

epoch. The number can be anything and of any type, as long as its value fits into a

long. If the number is not a whole number, it will be rounded to a whole number

using the half-up rule. This conversion is not automatic.

Example:

${1305575275540?number_to_datetime}
${1305575275540?number_to_date}
${1305575275540?number_to_time}

produces output similar to this, depending on the current locale and time zone:

May 16, 2011 3:47:55 PM
May 16, 2011
3:47:55 PM

About regular expressions
The following table provides a summary of regular expression constructs.

Construct Matches

Characters

x The character x

\\ The backslash character

\0n The character with octal value 0n (0 <= n <= 7)

\0nn The character with octal value 0nn (0 <= n <= 7)

\0mnn The character with octal value 0mnn (0 <= m <= 3, 0 <= n <=
7)

\xhh The character with hexadecimal value 0xhh

\uhhhh The character with hexadecimal value 0xhhhh

\t The tab character ('\u0009')

\n The newline (line feed) character ('\u000A')

\r The carriage-return character ('\u000D')

Page 183

\f The form-feed character ('\u000C')

\a The alert (bell) character ('\u0007')

\e The escape character ('\u001B')

\cx The control character corresponding to x

Character classes

[abc] a, b, or c (simple class)

[^abc] Any character except a, b, or c (negation)

[a-zA-Z] a through z or A through Z, inclusive (range)

[a-d[m-p]] a through d, or m through p: [a-dm-p] (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z, except for b and c: [ad-z] (subtraction)

[a-z&&[^m-p]] a through z, and not m through p: [a-lq-z](subtraction)

Predefined character classes

. Any character (may or may not match line terminators)

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

POSIX character classes (US-ASCII only)

\p{Lower} A lower-case alphabetic character: [a-z]

\p{Upper} An upper-case alphabetic character:[A-Z]

\p{ASCII} All ASCII:[\x00-\x7F]

\p{Alpha} An alphabetic character:[\p{Lower}\p{Upper}]

\p{Digit} A decimal digit: [0-9]

\p{Alnum} An alphanumeric character:[\p{Alpha}\p{Digit}]

Page 184

\p{Punct} Punctuation: One of !"#$%&'()*+,-./:;<=>?@[\]^_`{|}~

\p{Graph} A visible character: [\p{Alnum}\p{Punct}]

\p{Print} A printable character: [\p{Graph}\x20]

\p{Blank} A space or a tab: [\t]

\p{Cntrl} A control character: [\x00-\x1F\x7F]

\p{XDigit} A hexadecimal digit: [0-9a-fA-F]

\p{Space} A whitespace character: [\t\n\x0B\f\r]

Classes for Unicode blocks and categories

\p{InGreek} A character in the Greek block (simple block)

\p{Lu} An uppercase letter (simple category)

\p{Sc} A currency symbol

\P{InGreek} Any character except one in the Greek block (negation)

[\p{L}&&[^\p{Lu}]] Any letter except an uppercase letter (subtraction)

Boundary matchers

^ The beginning of a line

$ The end of a line

\b A word boundary

\B A non-word boundary

\A The beginning of the input

\G The end of the previous match

\Z The end of the input but for the final terminator, if any

\z The end of the input

Greedy quantifiers

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

Page 185

X{n,} X, at least n times

X{n,m} X, at least n but not more than m times

Reluctant quantifiers

X?? X, once or not at all

X*? X, zero or more times

X+? X, one or more times

X{n}? X, exactly n times

X{n,}? X, at least n times

X{n,m}? X, at least n but not more than m times

Possessive quantifiers

X?+ X, once or not at all

X*+ X, zero or more times

X++ X, one or more times

X{n}+ X, exactly n times

X{n,}+ X, at least n times

X{n,m}+ X, at least n but not more than m times

Logical operators

XY X followed by Y

X|Y Either X or Y

(X) X, as a capturing group

Back references

\n Whatever the nth capturing group matched

Quotation

\ Nothing, but quotes the following character

\Q Nothing, but quotes all characters until \E

\E Nothing, but ends quoting started by \Q

Page 186

Special constructs (non-capturing)

(?:X) X, as a non-capturing group

(?idmsux-idmsux) Nothing, but turns match flags i d m s u x on - off

(?idmsux-
idmsux:X)

X, as a non-capturing group with the given flags i d m s u x on
- off

(?=X) X, via zero-width positive lookahead

(?!X) X, via zero-width negative lookahead

(?<=X) X, via zero-width positive lookbehind

(?<!X) X, via zero-width negative lookbehind

(?>X) X, as an independent, non-capturing group

About the date format
Date and time formats are specified by the date and time pattern strings. Within the

date and time pattern strings, unquoted letters from 'A' to 'Z' and from 'a' to 'z' are

interpreted as pattern letters representing the components of a date or time string.

Text can be quoted using single quotes (') to avoid interpretation. "''" represents a

single quote. All other characters are not interpreted, they are simply copied into

the output string during formatting or matched against the input string during

parsing.

The following pattern letters are defined (all other characters from 'A' to 'Z' and

from 'a' to 'z' are reserved):

Letter Date or Time Component Presentation Examples

G Era designator Text AD

y Year Year 1996; 96

M Month in year Month July; Jul; 07

w Week in year Number 27

W Week in month Number 2

Page 187

Letter Date or Time Component Presentation Examples

D Day in year Number 189

d Day in month Number 10

F Day of week in month Number 2

E Day in week Text Tuesday; Tue

a Am/pm marker Text PM

H Hour in day (0-23) Number 0

k Hour in day (1-24) Number 24

K Hour in am/pm (0-11) Number 0

h Hour in am/pm (1-12) Number 12

m Minute in hour Number 30

s Second in minute Number 55

S Millisecond Number 978

z Time zone General time
zone

Pacific Standard Time;
PST; GMT-08:00

Z Time zone RFC 822 time
zone

-0800

Pattern letters are usually repeated, as their number determines the exact

presentation:

Text

For formatting, if the number of pattern letters is 4 or more, the full form is used.

Otherwise, a short or abbreviated form is used, if available. For parsing, both

forms are accepted, regardless of the number of pattern letters.

Number

For formatting, the number of pattern letters is the minimum number of digits,

and shorter numbers are zero-padded to this amount. For parsing, the number of

pattern letters is ignored unless it is needed to separate two adjacent fields.

Page 188

Year

If the formatter uses the Gregorian calendar, the following rules apply:

• For formatting, if the number of pattern letters is 2, the year is truncated
to 2 digits. Otherwise, it is interpreted as a number.

• For parsing, if the number of pattern letters is more than 2, the year is
interpreted literally, regardless of the number of digits. This means that
using the pattern "MM/dd/yyyy", "01/11/12" parses to Jan 11, 12 A.D.

• For parsing with the abbreviated year pattern ("y" or "yy"),
SimpleDateFormat must interpret the abbreviated year relative to some
century. It does this by adjusting dates to be within 80 years before and
20 years after the time the SimpleDateFormat instance is created. For
example, using a pattern of "MM/dd/yy" and a SimpleDateFormat
instance created on Jan 1, 1997, the string "01/11/12" is interpreted as Jan
11, 2012 while the string "05/04/64" is interpreted as May 4, 1964. During
parsing, only strings consisting of exactly two digits, as defined by
Character.isDigit(char), are parsed into the default century. Any other
numeric string is interpreted literally. This means that "01/02/3" or
"01/02/003" are parsed, using the same pattern, as Jan 2, 3 AD. Likewise,
"01/02/-3" is parsed as Jan 2, 4 BC.

Otherwise, calendar-system specific forms are applied. For both formatting

and parsing, if the number of pattern letters is 4 or more, a calendar specific

long form is used. Otherwise, a calendar specific short or abbreviated form is

used.

Month

If the number of pattern letters is 3 or more, the month is interpreted as text.

Otherwise, it is interpreted as a number.

Page 189

General time zone

Time zones are interpreted as text if they have names. For time zones

representing a GMT offset value, the following syntax is used:

 GMTOffsetTimeZone:

 GMT Sign Hours : Minutes

 Sign: one of

 + -

 Hours:

 Digit

 Digit Digit

 Minutes:

 Digit Digit

 Digit: one of

 0 1 2 3 4 5 6 7 8 9

Hours must be between 0 and 23, and minutes must be between 00 and 59.

The format is locale-independent and digits must be taken from the Basic

Latin block of the Unicode standard.

For parsing, RFC 822 time zones are also accepted.

RFC 822 time zone

For formatting, the RFC 822 4-digit time zone format is used:

 RFC822TimeZone:

 Sign TwoDigitHours Minutes

Page 190

TwoDigitHours:

 Digit Digit

TwoDigitHours must be between 00 and 23. Other definitions are the same as

for general time zones.

Examples:

The following examples show how date and time patterns are interpreted in the

U.S. locale. The given date and time are 2001-07-04 12:08:56 local time in the

U.S. Pacific Time time zone.

Date and Time Pattern Result

"yyyy.MM.dd G 'at'
HH:mm:ss z"

2001.07.04 AD at 12:08:56 PDT

"EEE, MMM d, ''yy" Wed, Jul 4, '01

"h:mm a" 12:08 PM

"hh 'o''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:08 PM, PDT

"yyyyy.MMMMM.dd GGG
hh:mm aaa"

02001.July.04 AD 12:08 PM

"EEE, d MMM yyyy
HH:mm:ss Z"

Wed, 4 Jul 2001 12:08:56 -0700

"yyMMddHHmmssZ" 010704120856-0700

"yyyy-MM-
dd'T'HH:mm:ss.SSSZ"

2001-07-04T12:08:56.235-0700

Page 191

Chapter 6. Directive Reference

assign

<#assign name=value>
or
<#assign name1=value1 name2=value2 ... nameN=valueN>
or
<#assign same as above... in namespacehash>
or
<#assign name>
 capture this
</#assign>
or
<#assign name in namespacehash>
 capture this
</#assign>

Parameter Description

name The name of the variable.
This is not an expression. However, it can be written
as a string literal. This can be useful if the variable
name contains reserved characters, for
example <#assign "foo-bar" = 1>. Note that
this string literal does not expand interpolations (as
"${foo}").

value The value to store. This is an expression.

namespacehash A hash that was created for a namespace (by
import). This is an expression.

Use this directive to create a new variable or replace an existing variable. Note that

you can create and replace only top-level variables (i.e. you cannot create/replace

some_hash.subvar, only some_hash).

Example: Create a variable called seasons that stores a sequence:

<#assign seasons = ["winter", "spring", "summer", "autumn"]>

Page 192

Example: Increment the numerical value stored in variable called test:

<#assign test = test + 1>

As a convenience feature, you can do more assignments with one assign tag. The

following example does the same as the two previous examples:

<#assign
 seasons = ["winter", "spring", "summer", "autumn"]
 test = test + 1
>

You can use this directive to create variables in namespaces. Normally, the directive

creates the variable in the current namespace. However, if you

use namespacehash, you can create/replace a variable in another namespace. For

example, the following code creates/replaces a variable called bgColor in the

namespace used for /contentlibrary/mylib.htm:

<#import "/contentlibrary/mylib.htm" as my>
<#assign bgColor="red" in my>

You can also use this directive to capture the output generated between its start

and end tags. That is, everything printed between the tags will not be shown on the

page, but will be stored in the variable. For example:

<#macro myMacro>foo</#macro>
<#assign x>
 <#list 1..3 as n>
 ${n} <@myMacro />
 </#list>
</#assign>
Number of words: ${x?word_list?size}
${x}

produces this output:

Number of words: 6
 1 foo
 2 foo
 3 foo

Page 193

IMPORTANT: Do not to use the following to insert variables into strings:

<#assign x>Hello ${user}!</#assign> <#-- BAD PRACTICE! -->

Instead, use:

<#assign x="Hello ${user}!">

attempt, recover

<#attempt>
 attempt block
<#recover>
 recover block
</#attempt>

Parameter Description

attempt block Template block with any content. This will be always executed,
but if an error occurs during execution, all output from this
block is rolled back, and the recover block will be executed.

recover block This parameter is required.

Template block with any content. This will be executed only if
an error occurs during the execution of the attempt block. You
can use the recover block, for example, to print an error
message.

attempt and recover can be nested into other attempt
blocks or recover blocks.

Use these directives to successfully output the page when execution of a part of the

page fails. If an error occurs during the execution of the attempt block, all output

from this block is rolled back, and the recover block is executed. If no error occurs

during the execution of the attempt block, the recover block is ignored.

Page 194

For example:

Primary content
<#attempt>
 Optional content: ${missinghash.thisMayFails}
<#recover>
 Ops! The optional content is not available.
</#attempt>
Primary content continued

if thisMayFails variable does not exist, the output is:

Primary content
 Ops! The optional content is not available.
Primary content continued

if thisMayFails variable exists and its value is 123, the output is:

Primary content
 Optional content: 123
Primary content continued

The attempt block is either printed in its entirety (if there is no error) or not at all (if

an error occurs). In other words, if an error occurs anywhere within the block, error-

free parts will not be printed. This is implemented with the aggressive buffering of

the output inside the attempt block. Not even the flush directive will send the

output to the client.

To prevent misinterpretation, do not use attempt/recover for handling undefined

variables (instead, use missing value handler operators). It can handle all types of

errors that occur when the block is executed except syntactical errors, which are

detected earlier. These directives are meant to enclose bigger template fragments,

where errors can occur at various points. For example, a section of your template

prints ads, but that is not the primary content of the page. In this case, you can put

the ad printing section in the attempt block so that the rest of the page will print if

an error occurs when printing ads.

A error message is available inside the recover block with the .error special

variable (references to special variable begin with a dot (for example: ${.error}).

Page 195

Errors occurring during template execution are always logged, even if they occur

inside the attempt block.

compress

<#compress>
 ...
</#compress>

This directive is useful for removing superfluous white space when you use a white

space-insensitive format (e.g. HTML or XML).

The directive captures the output generated between its start and end tags, and

reduces all unbroken white space sequences to a single white space character. If

the replaced sequence contains line breaks, the inserted character is a line break.

Otherwise, the inserted character a space. The very first and very last unbroken

white space sequences are removed.

Example:

<#assign x = " moo \n\n ">
(<#compress>
 1 2 3 4 5
 ${moo}
 test only

 I said, test only

</#compress>)

produces this output:

 (1 2 3 4 5
moo
test only
I said, test only)

Page 196

content, filter, break

<#content datasource as hash-name option=value-expr ...>
 <#filter key1 operator value-expr1 [&& key2 operator value-expr2]
...>
 ...
</#content>

Content

Parameter Description

datasource The name of the datasource alias, as defined in the
Campaign Workbook.

Not an expression.

Note that this is an alial of the datasource, not its
name.

hash-name The name of the structure that can be used in the
enumeration of records.

The hash name will be used to obtain the values for
each of the resulting values. It will also be used as a
prefix to the special variables that start with the
hash name and have a suffix of _index,
and _has_next.

option It can be:

limit=numeric-expression

Limits the number of records returned from the
execution of the expression. If the limit is greater
than the existing number of records, it is ignored.
The numeric expression is any expression that
returns a number, including any numeric constants.
Non-integer numbers get rounded off.

IMPORTANT: An account has a maximum allowable
number of rows (default is 20); providing a limit
bigger than that number produces an error.

Page 197

Filter

Parameter Description

key1, key2, … The alias names of the columns to be used to
perform the filter, as defined in the Datasources tab
of the Campaign Workbook.

Not an expression.

operator Either one of the following:

=, ==
Equals operation

gte
greater than or equals to

gt
greater than

lte, <=
less than or equals to

lt, <
less than

value-expr-1, value-expr-2, … The values to use to search for data.

Can be expressions according to the data type in
the datasource.

WARNING: Template execution will fail if the wrong
types are provided. Ask the campaign designer for
the proper types.

&&, & Represents the “and” operator.

Must be used between (key, operator, value) sets.

Page 198

This directive searches content in an optimized fashion, applying the supplied

predicates (expression set). The directive creates a hash, which is used in the body

of the directive to retrieve and output the content by field name. The hash name is

given in the content directive, while the predicates are given in the filter

directive.

Unlike the data directive, this directive is optimized to retrieve content only as

needed. For instance, if an audience of a million records is launched and there are

only a thousand variants of the content, Oracle Responsys internally caches and

keeps the data for future requests in an efficient manner. It also deals with images

in the content by changing paths so that the files can be accessible from the

Internet.

Two special loop variables are available inside the data loop:

hash-name_index
This is a numerical value that contains the index of the current item being
stepped over in the loop.

hash-name_has_next
Boolean value that tells if the current item the last in the datasource query or
not.

You can use the break instruction inside the loop body to exit the iteration. For

more information, see the list directive.

IMPORTANT: The results are not sorted in any order. If ordering is required, create

an in-memory list of hashes in the loop using RPL, and use the ?sort_by builtin.

Example:

<#assign today=.now>
<#assign oneweek=dayadd(today, 7)>
<#content Events as event limit=5>
 <#filter REGION_NAME=PROFILE.REGION && DATE gte today && DATE lt
oneweek>
 ${event.DESCR}-${event.CATEGORY}-${event.VENUE}-
${event.DATE?string("yyyyMMdd")}
</#content>

Page 199

produces output similar to this:

Eagles in concert-CONCERT-HP Pavillion-20161028
Knicks vs. Golden State-NBA-Oracle Arena-20161024
Lakers vs. Golden State-NBA-Oracle Arena-20161028
Trailblazers vs. Kings-NBA-Sleep Train Arena-20161030

Limiting the number of records

To limit the number of records, use the limit=x option in the content

declaration. The limit expression can be any numeric expression. See the example in

this section.

Two limits are configured in your account:

Default Limit

When the limit is not specified in the content directive, the default is 20. This

default limit can be configured by the account administrator.

Maximum Limit

To ensure efficiency, when the limit is specified, it cannot exceed this number of

results. The default limite is also. Entering a limit greater than the allowed

maximum produces an error.

Conditionally breaking out of the looping

It is possible to loop through the found records until all records are reached,

according to the filter and limit declarations. However, in some cases you

might want to stop the iteration by using the break directive. The break directive

is usually placed within an if construct.

Obtaining context information within the loop

In addition to the namespace variable, two other variables are also declared, to

give context about the execution of the loop: hash-name_has_next, and hash-

name_index.

In the above example, these new variables are event_has_next

and event_index.

Page 200

Handling images

If the content table contains strings that begin with the

sequence /contentlibrary/, they are automatically converted to a valid path for

the internet through the use of the Content Delivery Network (CDN). This way, you

can create content that is related to images in the Content Library. For example, the

image is created at the path

campaigns/campaign10242016/welcome1.jpg.

To properly convert the image to a CDN address during a launch, you must store

the file name in the content table as

/contentlibrary/campaigns/campaign10242016/welcome1.jpg.

With this mechanism. you can manage images stored in the Content Library using

meta data and paths in supplemental tables. Upload your images to the Content

Library, and fill the table with paths related to each specific piece of content.

You can also store and manage content other than images (e.g. PDFs) in this way.

data, filter, fields, break

<#data datasource as hash-name option=value-expr ...>
 <#filter key1=value-expr-1 key2=value-expr-2 ...>
 <#fields field-name1 field-name2 ...>
 ...
</#data>

Parameter Description

datasource The name of the datasource alias, as defined in the
Message Designer for Email. Not an expression.
Please note that this is not the name of the actual
datasource. Datasource aliases are defined in the
Message Designer for Email’s datasources tab.

hash-name The name of the structure that can be used in the
enumeration of records.

option One of the following values:

Page 201

Parameter Description

limit
A numeric expression

Limits the number of records returned from the
execution of the expression. If the limit is greater
than the existing number of records, it is ignored.
This option is invalid when using the singlekey
option. The numeric expression is any expression
that returns a number, including any numeric
constants. Non-integer numbers are rounded off.

singlekey
A boolean-expression

Specifies that only one row should be returned for
each key that matches the filter. This option is
restricted to the case when there is only one key.
This option does not allow limiting the number of
records returned (see the limit option above); it is
an error to specify both options at the same time.
The boolean expression is any expression that
results on true or false, including the
constants true and false.

Filter

Parameter Description

key1, key2, … The alias names of the columns to use for the filter,
as defined in the Datasources tab of Message
Designer for Email.

Not an expression.

value-expr-1, value-expr-2, … The values to use to look up the data.

The values can be expressions according to the data
type in the datasource.

If the data types are different from the ones in the
data source, template execution will fail. If you do
not know the value types in the data source, ask the
campaign designer for the proper types to use.

Fields

Parameter Description

Page 202

field-name1, field-name2, etc. The alias names of the fields to use.

These appear in the hash specified by hash-name
as hash values. The alias names are specified in the
Datasources section of the Message Designer for
Email.

This directive selects records from a given datasource with the given filter using the

specified fields. A new hash is created with the given fields. The records are filtered

as specified in the <#filter …> construct. The hash is created with

the <#fields…> construct.

There are two special loop variables available inside the data loop:

hash-name_index

This is a numerical value that contains the index of the current item being

stepped over in the loop.

hash-name_has_next

A boolean value that tells whether or not the current item the last in the

datasource query.

The break instruction can be used inside the loop body to exit the iteration. For

more information, see the list directive.

Select based on one value for one or multiple lookup fields

To use this option, specify multiple field/-value pairs in the filter specification. Each

value must be a scalar.

The data query performed has the AND semantics.

Example:

<#data events as event limit=10>
 <#filter category="NBA Tickets" region="NY">
 <#fields event_id description venue city state event_date>
Event:
- ${event.event_id}, ${event.description}, ${event.venue},
 ${event.city}, ${event.state} ${event.event_date}
</#data>

Page 203

produces output similar to this:

Event:
- 15, Knicks vs. Raptors, Madison Square Garden,
 New York, NY, 4/30/2013
Event:
- 16, Knicks vs. Clippers, Madison Square Garden,
 New York, NY, 5/1/2013

This option will look for records whose category is NBA Tickets and the region is

NY.

In this modality, you can also specify the limit option as shown. If there were more

records in the database table then the specified limit, the response would be limited

to the first 10 elements.

In addition to retrieving records with one value (AND semantics), it is possible to

specify multiple values for those fields.

This introduces a lower-level OR semantics to the selection of fields, for example:

<#data events as event limit=10>
 <#filter category=["NBA Tickets", "MLB Tickets"] region="NY">
 <#fields event_id description venue city state event_date>
Event:
- ${event.event_id}, ${event.description}, ${event.venue},
 ${event.city}, ${event.state} ${event.event_date}
</#data>

Notice that the category now has a sequence. The meaning of this expression is

"obtain the records whose category is either NBA Tickets or MLB Tickets, but whose

region has the value of NY." This would get tickets for the NBA or the MLB in the

NY region.

The limit option is also valid in this context. To use this option, specify a single

field in the filter specification and provide a sequence of scalars (or a single

value). All scalars must be of the same type and in accordance with the datasource

specification.

You can add the singlekey option with a value of true to the data directive.

The singlekey option only works with a single field.

Page 204

The data query performed has the OR semantics. The sequence provides the

possible values that the field can take. When a single value is provided, it has the

EQUALITY semantics.

IMPORTANT: The filter will return at most only one value for each key.

Example:

<#data events as event singlekey=true>
 <#filter category=["NBA Tickets", “MLB Tickets”, “NFL Tickets”]>
 <#fields category event_id description venue city state
event_date>
Event:
- ${event.category}, ${event.event_id}, ${event.description},
${event.venue}
 ${event.city}, ${event.state}, ${event.event_date}
</#data>

produces output similar to this:

Event:
- MLB Tickets, 1, Mets vs Cardinals, Shea Stadium,
 New York, NY, 5/25/2013
Event:
- NBA Tickets, 15, Knicks vs. Raptors, Madison Square Garden,
 New York, NY, 4/30/2013
Event:
- NFL Tickets, 12, Jets vs. Raiders, MetLife Stadium,
 New York, NY, 3/1/2013

If two records match, for example NBA Tickets, then only the first one is returned.

This behavior is specified with the addition of the singlekey option.

IMPORTANT: It is not currently possible to query multiple keys with multiple values

with th singlekey semantics.

Using the limit option will cause an error. Also, using a single value as opposed to

a sequence will return zero, or at most, one record.

This option is useful when you want to retrieve, for example, all the event types in

the NY region as shown in the following example:

Page 205

<#assign categories=[]>
<#data events as event singlekey=true>
 <#filter category=["NBA Tickets", "MLB Tickets", "NFL Tickets"]>
 <#fields category>
 ${event.category}
 <#assign categories=categories + [event.category]>
</#data>

<#list categories as category_name>

 <h3>${category_name}</h3>
 <#data events as event limit=5>
 <#filter category=${category_name}>
 <#fields description venue city state event_date>
 ${event.description} at ${event.venue} in
 ${event.city}, ${event.state} on ${event.event_date}
 </#data>
</#list>

Limiting the number of records

To get a maximum number of records, use the limit=x option in the data

declaration. This causes the number of records obtained be cut if there are more

records than the specified limit. The limit can be any numeric expression.

This option is not valid with the singlekey option.

Conditionally breaking out of the loop

It is possible to loop through the found records until all records are reached,

according to the filter and limit declarations. However, you can stop the

iteration by using the break directive, usually placed within an if construct.

Obtaining Context information within the loop.

In addition to the namespace variable, two other variables, hash_has_next

and hash_index are also declared, to give context about the execution of the loop.

In our example, these new variables are offer_has_next and offer_index.

Page 206

escape

<#escape identifier as expression>
 ...
 <#noescape>...</#noescape>
 ...
</#escape>

When you surround a part of the template with an escape directive, interpolations

(${...}) that occur inside the block are automatically combined with the escaping

expression. This is a convenience method for avoiding writing similar expressions

several times. It does not affect interpolations in string literals (as in <#assign x =

"Hello ${user}!">) or numerical interpolations (#{...}).

Example:

<#escape x as x?html>
 First name: ${firstName}
 Last name: ${lastName}
 Maiden name: ${maidenName}
</#escape>

is equivalent to:

 First name: ${firstName?html}
 Last name: ${lastName?html}
 Maiden name: ${maidenName?html}

Note that it is irrelevant what identifier you use in the directive: it serves as a formal

parameter to the escaping expression.

When calling macros or the include directive, it is important to understand

that escape affects only interpolations that occur between the <#escape ...>

and </#escape> tags in the template text. That is, it will not escape anything

before <#escape ...> or after </#escape> in the text, not even if it is called

from inside the escaped section. For example:

<#assign x = "<test>">
<#macro m1>
 m1: ${x}
</#macro>
<#escape x as x?html>
 <#macro m2>m2: ${x}</#macro>

Page 207

 ${x}
 <@m1/>
</#escape>
${x}
<@m2/>

produces this output:

 <test>
 m1: <test>
<test>
m2: <test>

The effect of the escape directive are applied at template parsing time rather than

at template processing time. This means that if you call a macro or include another

template from within an escape block, it will not affect the interpolations in the

macro/included template, since macro calls and template includes are evaluated at

template processing time. On the other hand, if you surround one or more macro

declarations (which are evaluated at template parsing time) with an escape block,

the interpolations in those macros will be combined with the escaping expression.

If you need to temporarily turn off escaping for one or two interpolations in an

escape block, you can close and later reopen the escape block, but then you have

to write the escaping expression twice. Instead, you can instead use the noescape

directive as shown in the following example:

<#escape x as x?html>
 User: ${user.Name}
 Text: ${user.Text}
 <#noescape>Title: ${user.title}</#noescape>
 ...
</#escape>

the above example is equivalent to:

 User: ${user.Name?html}
 Text: ${user.Text?html}
 Title: ${user.title}

You can nest escapes, although you should do it only in rare circumstances.

Therefore, you can write something like the following example:

Page 208

<#escape x as x?html>
 Customer Name: ${customerName}
 Items to ship:
 <#escape x as itemCodeToNameMap[x]>
 ${itemCode1}
 ${itemCode2}
 ${itemCode3}
 ${itemCode4}
 </#escape>
</#escape>

which is equivalent to:

 Customer Name: ${customerName?html}
 Items to ship:
 ${itemCodeToNameMap[itemCode1]?html}
 ${itemCodeToNameMap[itemCode2]?html}
 ${itemCodeToNameMap[itemCode3]?html}
 ${itemCodeToNameMap[itemCode4]?html}

When using the noescape directive in a nested escape block, it undoes only a

single level of escaping. Therefore, to completely turn off escaping in a two-level

deep escaped block, use two nested noescape directives.

fail

<#fail>
or
<#fail reason>

Parameter Description

reason Informative message about the reason for termination.
Expression evaluates to a string.

Stops the processing of the entire launch. After this directive executes, no other

instructions are executed.

A failed run appears in the Live Report as a launch failure.

Page 209

function, return

<#function name param1 param2 ... paramN>
 ...
 <#return returnValue>
 ...
</#function>

Parameter Description

name The name of method variable. Not an expression.

param1, param2,
...etc.

The name of the local variables store the parameter values (not
an expression), optionally followed by = and the default value
(an expression).

paramN The last parameter, can optionally include a trailing ellipsis (...),
which indicate that the macro takes a variable number of
parameters. Local variable paramN will be a sequence of the
extra parameters.

returnValue The expression that calculates the value of the method call.

Creates a method variable in the current namespace. This directive works in the

same way as the macro directive, except that the return directive must have a

parameter that specifies the return value of the method, and that attempts to write

to the output will be ignored. If the </#function> is reached (i.e. there was no

return returnValue), the return value of the method is an undefined variable.

You can use the return directive anywhere and any number of times between the

<#function ...> and </#function>.

Parameters without default values must precede parameters with default values

(paramName=defaultValue).

Example: Creating a method that calculates the average of two numbers:

<#function avg x y>
 <#return (x + y) / 2>
</#function>
${avg(10, 20)}

Page 210

produces this output:

15

Example: Creating a method that calculates the average of multiple numbers:

<#function avg nums...>
 <#local sum = 0>
 <#list nums as num>
 <#local sum = sum + num>
 </#list>
 <#if nums?size != 0>
 <#return sum / nums?size>
 </#if>
</#function>
${avg(10, 20)}
${avg(10, 20, 30, 40)}
${avg()!"N/A"}

produces this output:

15
25
N/A

global

<#global name=value>
or
<#global name1=value1 name2=value2 ... nameN=valueN>
or
<#global name>
 capture this
</#global>

Parameter Description

name The name of the variable. Not a expression. However,
it can be written as a string literal, which is useful if
the variable name contains reserved characters, for
example <#assign "foo-bar" = 1>.

Note that this string literal does not expand
interpolations (as "${foo}").

value The value to store. This is an expression.

Page 211

This directive is similar to assign, but the variable created will be visible in all

namespaces, and will not be inside any namespace as if you created or replaced a

variable of the data model. Hence, the variable is global. If a variable with the same

name already exists in the data model, it will be hidden by the variable created with

this directive. If a variable with the same name already exists in the current

namespace, it will hide the variable created with this directive.

For example, you create a variable with <#global x = 1> that is visible as x in all

namespaces, unless another variable called x hides it (for example a variable

created as <#assign x = 2>). In this case, you can use the special

variable .globals, as ${.globals.x}. Note that with .globals, you see all

globally accessible variables, including the variables of the data model.

if, else, elseif

<#if condition>
 ...
<#elseif condition2>
 ...
<#elseif condition3>
 ...
...
<#else>
 ...
</#if>

Parameter Description

condition, condition2, ...etc. Expression evaluates to a boolean value.

Use these directives to conditionally skip a section of the template. The conditions

must evaluate to a boolean value. Otherwise, an error occurs that terminates

template processing. The elseif(s) and else(s) must occur between the start and

end tags of if. if can contain any number of elseif(s) and, optionally, one else

at the end.

Page 212

Examples:

if with no elseif and no else:

<#if x == 1>
 x is 1
</#if>

if with no elseif and an else:

<#if x == 1>
 x is 1
<#else>
 x is not 1
</#if>

if with 2 elseif and no else:

<#if x == 1>
 x is 1
<#elseif x == 2>
 x is 2
<#elseif x == 3>
 x is 3
</#if>

if with 3 elseif and an else:

<#if x == 1>
 x is 1
<#elseif x == 2>
 x is 2
<#elseif x == 3>
 x is 3
<#elseif x == 4>
 x is 4
<#else>
 x is not 1 nor 2 nor 3 nor 4
</#if>

You can nest if directives, as shown in the following example:

<#if x == 1>
 x is 1
 <#if y == 1>
 and y is 1 too
 <#else>
 but y is not

Page 213

 </#if>
<#else>
 x is not 1
 <#if y < 0>
 and y is less than 0
 </#if>
</#if>

IMPORTANT: To test whether x is greater than 1, write either <#if (x > 1)>

or <#if x > 1>. Note that <#if x > 1> is incorrect, as RPL will interpret the

first > as the end of the tag.

list, break

<#list sequence as item>
 ...
</#list>

or

<#list sequence as item>
 ...
 <#break>
 ...
</#list>

Parameter Description

sequence Expressions evaluates to a sequence or collection.

item Name of the loop variable (not an expression).

Use this directive to process a section of the template for each variable of a

sequence. The code between the start and end tags will be processed for the first

sub-variable, then for the second sub-variable, etc. until it passes the last one. For

each such iteration, the loop variable will contain the current sub-variable.

Page 214

Two special loop variables are available inside the list loop:

item_index

This is a numerical value that contains the index of the current item being

stepped over in the loop.

item_has_next

A boolean value that specifies whether or not the current item the last in the

sequence.

Example:

<#assign seq = ["winter", "spring", "summer", "autumn"]>
<#list seq as x>
 ${x_index + 1}. ${x}<#if x_has_next>,</#if>
</#list>

produces this output:

 1. winter,
 2. spring,
 3. summer,
 4. autumn

You can use this directive to count between numbers, using a numerical range

sequence expression, for example:

<#assign x=3>
<#list 1..x as i>
 ${i}
</#list>

produces this output:

 1
 2
 3

Note that the above example will not work as you may expect if x is 0, as it will

print 0 and -1.

You can leave the list loop before it passes the last sub variable of the sequence

using the break directive. For example, to print only winter and spring:

Page 215

<#list seq as x>
 ${x}
 <#if x = "spring"><#break></#if>
</#list>

You can also use this directive to create a comma separated list manually. Note that

the join builtin can produce the same list with fewer lines. For example, if the

sequence animals contains [“giraffe”, “lion”, “eagle”], then:

<#assign readable=””>
<#list animals as animal>
 <#assign readable=readable+animal
 <#if animal_has_next>
 <#assign readable=readable + “, ”:
 <#else>
 <#assign readable=readable + “, and”>
 <#/if>
<#/list>

produces this output:

giraffe, lion, and tiger

The example above illustrates using the list directive. The same output can be

achieved with the join builtin as follows:

<#assign readable=animals?join(", ", ", and ")>

import

<#import path as hash>

Parameter Description

path The path of a template. This is an expression that evaluates to a
string.

hash The unquoted name of hash variable by which you can access the
namespace. Not an expression.

Page 216

Imports a library. The directive creates a new empty namespace, then executes the

template given with the path parameter in that namespace so the template

populates the namespace with variables (macros, functions, ...etc.). Then, the

directive makes the newly created namespace available to the caller with a hash

variable. The hash variable will be created as a plain variable in the namespace used

by the caller of import (as if you would create it with the assign directive), with

the name given with the hash parameter.

Calling import multiple times with the same path creates the namespace and runs

the template only for the first call. Subsequent calls will create a hash by which you

can access the same namespace.

The template is executed to populate the namespace with variables, not to write to

the output. Therefore, the output produced by the imported template will be

ignored (will not be inserted at the place of importing).

Example:

<#import "/contentlibrary/libs/mylib.htm" as my>

<@my.copyright date="1999-2002"/>

The path parameter can be a relative path such as "foo.htm" and "../foo.htm", or an

absolute path such as "/contentlibrary/foo.htm". Relative paths are relative to the

directory of the template that uses the directive.

NOTE: Always use the forward slash (/) to separate path components, never the

back slash (\). If you are loading templates from your local file system and it uses

backslashes, RPL will convert them automatically.

Similarly to the include directive, you can use acquisition and localized lookup for

resolving the path.

For information about namespaces, see “Chapter 8: Namespace Reference”.

Page 217

include

<#include path>
or
<#include path options>

Parameter Description

path The path of the file to include; an expression that evaluates to a string.

options One or more of the following:

encoding=encoding
Expression evaluates to a string

parse=parse
Expression evaluates to Boolean

cleanup=cleanup
Expression evaluates to Boolean

cleanupmode=cleanupmode
Expression evaluates to a string

For more information about these options, see “Supported Options”
further in this section.

You can use this directive to insert the RPL template file specified by the path

parameter into the template.

The output from the included template is inserted at the point where the include

tag occurs. The included file shares the variables with the including template,

similarly as if it was copy/pasted into it.

The include directive does not replace the content of the included file, it just

processes the included file each time RPL reaches the include directive during

template processing. For example, if you use include inside a listloop, you can

specify different file names in each cycle.

The path parameter can be a relative path such as "foo.htm" and "../foo.htm", or an

absolute path such as "cms://contentlibrary/foo.htm". Relative paths are relative to

the directory of the template that uses the import directive.

Page 218

NOTE: Always use the forward slash (/) to separate path components, never the

back slash (\).

Example:

If /common/copyright.htm contains:

Copyright 2001-2002 ${me}

All rights reserved.

then the following example:

<#assign me = "Juila Smith">
<h1>Some test</h1>
<p>Yeah.
<hr>
<#include "cms://contentlibrary/common/copyright.htm">

produces this output:

<h1>Some test</h1>
<p>Yeah.
<hr>
Copyright 2001-2002 Juila Smith
All rights reserved.

Supported options
parse

If true, the included file will be parsed as RPL. Otherwise, the file will be

considered as simple text. If you omit this option, the default is true.

encoding

The included file inherits the encoding (charset) of the including template,

unless you specify an encoding with this option. Encoding names are the same

as those supported by java.io.InputStreamReader (as of Java API 1.3: MIME-

preferred charset names from the IANA Charset Registry). Examples of valid

names: ISO-8859-2, UTF-8, Shift_JIS, Big5, EUC-KR, GB2312.

cleanup

In some cases, the contents of the included file is a complete HTML file, with

Page 219

HTML and body tags in it. Inserting such a file into the destination stream might

result in a file with double HTML and body tags. The effect of this double body

becomes apparent when the footers are inserted after personalization: the

footer might be placed right on top of the wrong closing body tag. http/https

included files are usually retrieved with contents in this way. The cleanup flag

allows the extraction of all content between the included file's body tags, thus

eliminating any extra HTML, head, or body tags. Note that an inclusion of a file

with no body tags will result in empty content. For this reason, use this flag only

when you are sure that the content contains a body tag.

cleanupmode

In some cases, the content of the included file does not contain an html <body>

tag. In such cases, if the cleanup parameter is set to true, it will return an

empty document by default. If you want to return either the original content or

empty content, use the cleanupmode parameter which can take either of two

values: "empty" or "original".

If cleanupmode is not specified, the default value is "empty".

If "empty" is specified, or no cleanupmode is specified, include returns an

empty document if the content does not have a <body> tag.

If "original" is specified, the original content is returned if the content does not

have a <body> tag.

Example:

<#include "cms://contentlibrary/common/navbar.html" parse=false
encoding="Shift_JIS" cleanup=true cleanupmode="original">

Using acquisition

Acquisition allows you to place commonly included files in a parent directory, and

place them in sub-directories as needed. The including template will then acquire

the template to include from the parent directory.

Page 220

To use acquisition, use an asterisk (*) to represent a directory and any of its parents.

For example, if the template is located in /contentlibrary/foo/bar/template.htm ,

this line:

<#include "*/footer.htm">

searches for the template in the following locations, in the order shown:

1. /contentlibrary/foo/bar/footer.htm
2. /contentlibrary/foo/footer.htm
3. /contentlibrary/footer.htm

Note that you can specify not only a template name to the right of the asterisk, but

a sub-path as well. For example, this line:

<#include "*/commons/footer.htm">

searches for the template in following locations, in the order shown:

1. /contentlibrary/foo/bar/commons/footer.htm
2. /contentlibrary/foo/commons/footer.htm
3. /contentlibrary/commons/footer.htm

Finally, * does not have to be the first element in the path, as shown in the following

example:

<#include "commons/*/footer.htm">

This searches for the template in following locations, in the order shown:

1. /contentlibrary/foo/bar/commons/footer.htm
2. /contentlibrary/foo/bar/footer.htm
3. /contentlibrary/foo/footer.htm
4. /contentlibrary/footer.htm

The path can include only one asterisk. Specifying more than one asterisk will result

in the template not being found.

Localized lookup

When a template is loaded, it is assigned a locale. A locale is a language and an

optional country or dialect identifier. A template is typically loaded by and the

locale is chosen based on the profile.

Page 221

When a template includes another template, it attempts to load a template with the

same locale. For example, your template was loaded with locale en_US, which

means U.S. English. When you include another template:

<include "footer.htm">

the engine will look for several templates, in the order shown:

1. footer_en_US.htm

2. footer_en.htm

3. footer.htm

When you use both acquisition and localized template lookup, the template with a

more specific locale in a parent directory takes precedence over template with a

less specific locale in a child directory. For example, if you use the following include

from /foo/bar/template.htm:

<#include "*/footer.htm">

RPL will look for these templates, in the order shown:

1. /foo/bar/footer_en_US.htm

2. /foo/footer_en_US.htm

3. /footer_en_US.htm

4. /foo/bar/footer_en.htm

5. /foo/footer_en.htm

6. /footer_en.htm

7. /foo/bar/footer.htm

8. /foo/footer.htm

9. /footer.htm

Loading from the Content Library

In most cases, the templates are stored in the Content Library. You can include

additional documents in other scenarios as described below.

Page 222

Using the full path referencing the document

In this case, specify your import as:

<#import “cms://full-content-library-path”>

The full content path is described using the root as /contentlibrary/ and thus the

previous example will look this:

<#import “cms://contentlibrary/sub-content-library-path”>

Using a document that includes a document in the same directory, a subdirectory,

or a directory right above it.

In this case, you can import the document specifying a root or the cms:// prefix.

RPL will ensure that the document is located using the path of the current template.

For example:

<#import “document2.htm”>
Or
<#import “subdir/document3.htm”>
Or
<#import “../siblingdir/document4.htm”>

The nomenclature for .. means one directory above the current directory.

Using a document including a document in an unspecified subdirectory

See the section of content acquisition above.

Loading from urls

To be able to download content from urls, your account must be enabled to

download from http and https.

In cases when content is stored content remotely, i.e. in a web server outside of the

system, use the http:// or https:// prefix and the full path name of the remote

template.

We recommend that you do not store content on your web site because it can open

your campaign to malicious attacks. In addition, you can cause a “denial-of-service”

attack to your web server by repeatedly requesting a template during a launch with

many records.

Page 223

To prevent malicious attacks, RPL tries to optimize access to remote sites by

following the commonly used HTTP/1.1 protocol. It is very important that the web

site is configured correctly to avoid repeated calls. You can optimize content

retrieval using either the expiration model or the validation model.

Expiration model

In the expiration model, content remains valid until a specified time. RPL will not

try to retrieve such content until the expiration time has been reached, keeping

the content available for personalization.

Validation model

The validation model works after prior content has been retrieved, the expiration

time is reached, or the expiration time has not been set. RPL will send the last

retrieval time (or the last modified date as specified by the web server), and the

web server can respond with new content or notify RPL that the current content

has not been modified. When using the validation model without expiration, the

same warnings apply regarding “denial-of-service”.

It is always recommended to ensure that the web server correctly sends the

expiration time. As a safeguard, when no expiration time is returned, the system will

assume one hour, which is appropriate for most launch scenarios. If one hour is not

sufficient for your needs, make sure that your web server sets the expiration to the

time you need.

In addition, when the web server does not send the last modified time, for

validation purposes, RPL will request the content to the remote repository with the

time that the last content was retrieved.

Note that for url-based content, it is often recommended to use the cleanup flag

to remove any html, head, or body tags from the source content, but only if the

content contains a proper body tag.

Page 224

join

<#join>
…
</join>
or
<#join separator-expression>
…
</#join>

Parameter Description

separator-expression A string expression that specifies the string to be placed
instead of new lines.

Strips new line from the output of the block that it encompasses. This is very useful

when dealing with blocks that result in text-only output, and proper formatting of

RPL is desired. It is very helpful in conjunction with the compress directive.

Example 1:

<#assign sequence=["a", "b", "c", "d", "e", "f"]>
<#join>
<#compress>
<#list sequence as item>
 ${item}
</#list>
</#compress>
</#join>

produces this output:

abcdef

Page 225

Example 2:

<#assign sequence=["a", "b", "c", "d", "e", "f"]>
<#join "-">
<#compress>
<#list sequence as item>
 ${item}
</#list>
</#compress>
</#join>

produces this output:

a-b-c-d-e-f

local

<#local name=value>
or
<#local name1=value1 name2=value2 ... nameN=valueN>
or
<#local name>
 capture this
</#local>

Parameter Description

name The name of the variable. This is not an expression.
However, you can write it as a string literal, which is
useful if the variable name contains reserved
characters, for example <#assign "foo-bar" =
1>. Note that this string literal does not expand
interpolations (as "${foo}").

Value The value to store. This is an expression.

This directive is similar to the assign directive, but it creates or replaces local

variables. This directive works only inside macro and function definitions.

Page 226

macro, nested, return

<#macro name param1 param2 ... paramN>
 ...
 <#nested loopvar1, loopvar2, ..., loopvarN>
 ...
 <#return>
 ...
</#macro>

Parameter Description

name The name of the macro variable. This is not an expression.
However, it can be written as a string literal, which is useful
if the macro name contains reserved characters, for
example <#macro "foo-bar">.

Note that this string literal does not expand interpolations
(as "${foo}").

param1, param2,
...etc.

The name of the local variables that store the parameter
values (not an expression), optionally followed by = and the
default value (an expression). The default value can be
another parameter, for example <#macro section title
label=title>.

paramN Optionally, the last parameter can include a trailing ellipsis
(...). The ellipsis indicate that the macro takes a variable
number of parameters. If called using named
parameters, paramN will be a hash containing all undeclared
key/value pairs passed to the macro. If called using
positional parameters, paramN will be a sequence of the
extra parameters.

loopvar1, loopvar2,
...etc.

Optional. The values of loop variables that the nested
directive should create for the nested content. These are
expressions.

Creates a macro variable in the current namespace. For more information about

macros, see “Defining Your Own Directives”.

A macro variable stores a template fragment (called macro definition body) that

can be used as user-defined directive. The variable also stores the name of allowed

parameters to the user-defined directive. When using the variable as a directive,

Page 227

you must give value for all parameters that do not have a default value. The default

value will be used only if you do not provide a value for the parameter when calling

the macro.

The return and nested directives are optional and can be used anywhere and any

number of times between the <#macro ...> and </#macro>.

Parameters without a default value must precede parameters with a default value

(paramName=defaultValue).

The variable will be created at the beginning of the template regardless of where

the macro directive is placed in the template. For example:

<#-- call the macro; the macro variable is already created: -->
<@test/>
...

<#-- create the macro variable: -->
<#macro test>
 Test text
</#macro>

However, if the macro definitions are inserted with the include directive, they will

not be available until RPL has executed the include directive.

Example: Macro without parameters:

<#macro test>
 Test text
</#macro>
<#-- call the macro: -->
<@test/>

produces this output:

 Test text

Example: Macro with parameters:

<#macro test foo bar baaz>
 Test text, and the params: ${foo}, ${bar}, ${baaz}
</#macro>
<#-- call the macro: -->
<@test foo="a" bar="b" baaz=5*5-2/>

Page 228

produces this output:

 Test text, and the params: a, b, 23

Example: Macro with parameters and default parameter values:

<#macro test foo bar="Bar" baaz=-1>
 Test text, and the params: ${foo}, ${bar}, ${baaz}
</#macro>
<@test foo="a" bar="b" baaz=5*5-2/>
<@test foo="a" bar="b"/>
<@test foo="a" baaz=5*5-2/>
<@test foo="a"/>

produces this output:

 Test text, and the params: a, b, 23
 Test text, and the params: a, b, -1
 Test text, and the params: a, Bar, 23
 Test text, and the params: a, Bar, -1

 Example: A more complex macro:

<#macro list title items>
 <p>${title?cap_first}:

 <#list items as x>
 ${x?cap_first}
 </#list>

</#macro>
<@list items=["mouse", "elephant", "python"] title="Animals"/>

produces this output:

 <p>Animals:

 Mouse
 Elephant
 Python

Page 229

Example: A macro with support for a variable number of named parameters:

<#macro img src extra...>
 <img src="/context${src?html}"
 <#list extra?keys as attr>
 ${attr}="${extra[attr]?html}"
 </#list>
 >
</#macro>
<@img src="/images/test.png" width=100 height=50 alt="Test"/>

produces this output:

 <img src="/context/images/test.png"
 alt="Test"
 height="50"
 width="100"
 >

nested

Executes the template fragment between the start and end tags of a user-defined

directive. The directive can contain anything that is valid in templates, such as

interpolations and directives.

This directive is executed in the context from where the macro is called, rather than

in the context of the macro definition body. Thus, for example, the local variable of

the macro does not appear in the nested part. If you do not call the nested

directive, the part between the start and end tags of the user-defined directive will

be ignored.

Example:

<#macro do_twice>
 1. <#nested>
 2. <#nested>
</#macro>
<@do_twice>something</@do_twice>

produces this output:

 1. something
 2. something

Page 230

 The nested directive can create loop variables for the nested content, for example:

<#macro do_thrice>
 <#nested 1>
 <#nested 2>
 <#nested 3>
</#macro>
<@do_thrice ; x>
 ${x} Anything.
</@do_thrice>

produces this output:

 1 Anything.
 2 Anything.
 3 Anything.

A more complex example:

<#macro repeat count>
 <#list 1..count as x>
 <#nested x, x/2, x==count>
 </#list>
</#macro>
<@repeat count=4 ; c, halfc, last>
 ${c}. ${halfc}<#if last> Last!</#if>
</@repeat>

produces this output:

 1. 0.5
 2. 1
 3. 1.5
 4. 2 Last!

return

Allows you to leave a macro or function definition body anywhere. For example:

<#macro test>
 Test text
 <#return>
 Will not be printed.
</#macro>
<@test/>

Page 231

produces this output:

 Test text

noparse

<#noparse>
 ...
</#noparse>

Prevents RPL from searching RPL tags, interpolations and other special sequences

within the body of this directive. For example:

<#noparse>
 <#list animals as being>
 <tr><td>${being.name}<td>${being.price} Euros
 </#list>
</#noparse>

produces this output:

 <#list animals as being>
 <tr><td>${being.name}<td>${being.price} Euros
 </#list>

Note that HTML readers such as web browsers might not render RPL properly. This

is caused by the fact that the HTML reader expects only HTML, and RPL is not

properly formed HTML. Specifically, it has been observed that the readers usually

omit closing RPL tags such as (</#list>).

To properly display RPL in an HTML reader, you can write the previous example as:

<#assign unparsed>
<#noparse>
 <#list animals as being>
 <tr><td>${being.name}<td>${being.price} Euros
 </#list>
</#noparse>
</#assign>
${unparsed?html}

This example uses assign to keep the output that will be displayed in a variable

called unparsed. It then encodes and outputs this variable as HTML.

Page 232

nt

<#nt>

Disables white space stripping in the line where it occurs. It also disables the effect

of other trim directives occurring in the same line (the effect of t, rt, lt).

rpl

<#rpl param1=value1 param2=value2 ... paramN=valueN>

Parameter Description

param1, param2,
...etc.

Name of the parameter. This is not an expression. See the
“Supported parameters” table below for valid parameters.

value1, value2,
...etc.

The value of the parameter. This must be a constant
expression (as true, or "ISO-8859-5", or {x:1, y:2}). It cannot
use variables.

Supported parameters

Parameter Description

encoding Specifies the encoding (charset) of the template in the template
file. This will be the encoding setting of the newly created
template, and not even the encoding parameter to
Configuration.getTemplate can override it.

Note however, that RPL will try to find and interpret the RPL
directive first with the automatically guessed encoding. After
that, if the RPL directive dictates something different, RPL will
re-read the template with the new encoding. This means that the
template must be valid RPL until the end of the RPL tag with the
encoding tried first. The valid values of this parameter are MIME-
preferred charset names from the IANA Charset Registry, such as
ISO-8859-5, UTF-8 or Shift_JIS.

strip_whitespace Enables or disables white space stripping. Valid values are true
and false, and strings "yes", "no", "true", "false"). When this
parameter is not specified, the default value is true.

strip_text When enabled, all top-level text in a template is removed when
the template is parsed. This does not affect text within macros,

Page 233

Parameter Description

directives, or interpolations. Valid values are true and false.
When this parameter is not specified, the default value is false.

ns_prefixes A hash that associates prefixes with node namespaces. For
example: {"e":"http://example.com/ebook",
"vg":"http://example.com/vektorGraphics"}.

This is used mostly with XML processing where the prefixes can
be used in XML queries, but it also influences the working of
the visit and recurse directives. There is a one-to-one
relation between prefixes and node namespaces. This means that
only one prefix can be registered for the same node namespace;
otherwise an error will occur.

Prefixes D and N are reserved. If you register prefix D, then in
addition to associating the node namespace with prefix D, you
are setting the default node namespace. You cannot register
prefix N because it is used to denote nodes with no node
namespace in certain places when prefix D is registered. For
more information, see “Chapter 4. XML Processing” and
the visit and recurse directives.

The effect of ns_prefixes is limited to a single RPL namespace,
namely, to the RPL namespace that was created for the
template. This also means that ns_prefixes is used only when
an RPL namespace is created for the template that contains it;
otherwise, this parameter has no effect. An RPL namespace is
created for a template when:

the template is the main template, that is, it is not invoked
as a result of an <#include ...>) OR

the template is invoked directly with <#import ...>.

Attributes A hash that associates arbitrary attributes (name/value pairs) to
the template. The values of the attributes can be of any type.

This directive provides information about the template for RPL and other tools, and

helps programs to automatically detect whether a text file is an RPL file.

IMPORTANT: This directive, if present, must be the very first thing in the template.

Any white space before this directive will be ignored.

Page 234

The settings given here have the highest precedence. This means that they will be

used for the template regardless of any other RPL configuration settings.

setting

<#setting name=value>

Parameter Description

name The name of the setting. This is not an expression.

value New value of the setting. This can be an expression.

Sets values that influence RPL behavior for further processing. The new value will

be present only in the template processing where it was set, and does not affect the

template itself. The initial value is set by the system.

Supported settings

Setting Description

locale The locale (language) of the output.

The locale can influence the presentation format of numbers,
dates, etc. The value is a string which consists of a language
code (lowercase two-letter ISO-639 code) plus an optional
county code (uppercase two-letter ISO-3166 code)
separated from the language code by an underscore. If you
specify the country, you can also specify an optional variant
code (not standardized) separated from the country by an
underscore. For example: en, en_US, en_US_MAC.

RPL will try to use the most specific available locale. This
means that if you specify en_US_MAC and MAC is unknown,
RPL will try en_US, then en, then the default locale of the
computer (which is set by the system).

number_format The number format to use to convert numbers to strings
when no explicit format is specified.

This can be one of predefined values: number (the default),
computer, currency, or percent. Additionally, you can
specify an arbitrary format pattern written in Java decimal
number format syntax. For more information about format
patterns, see the string built-in.

Page 235

Setting Description

boolean_format The comma-separated pair of strings to use for
representing true and false when converting booleans to
strings with no explicitly specified format. The default value
is "true,false".

date_format,
time_format,
datetime_format

The date/time format to use for converting dates to strings
when no explicit format is specified, for
example ${someDate}.

date_format affects the formatting of date-only dates (year,
month, day).

time_format affects the formatting of time-only dates
(hour,minute, second, millisecond).

datetime_format affects the formatting of date-time dates
(year, month, day, hour, minute, second, millisecond).

The possible values of the settings are similar to the
parameters of string built-in of dates, for example, "short",
"long_medium", "MM/dd/yyyy".

time_zone The name of the time zone to use for formatting times for
display.

This can be any value that is accepted by Java TimeZone
API. For example, "GMT", "GMT+2", "GMT-1:30", "CET",
"PST", "America/Los_Angeles".

By default, the system time zone is used.

url_escaping_charset The charset to use for URL escaping (e.g. for ${foo?url}) to
calculate the escaped (%XX) parts.

The framework that encloses RPL usually sets the charset, so
this setting is rarely used.

Example: Assuming that the initial locale of template is hu (Hungarian), the

following example:

${1.2}
<#setting locale="en_US">
${1.2}

produces this output, because Hungary uses the comma as their decimal separator:

1,2
1.2

Page 236

skip

<#skip>
or
<#skip reason>

Parameter Description

reason Informative message about the reason for termination.
Expression evaluates to string.

Stops the personalization of a record in an email campaign and, if possible,

continues with the next record. The directive will stop executing the record

immediately and return control to the personalization engine.

Skip calls are reported as skip events and are added to the events database. The

reason is provided in the event itself. For information about the event system, see

Interact Help and training materials.

switch, case, default, break

<#switch value>
 <#case refValue1>
 ...
 <#break>
 <#case refValue2>
 ...
 <#break>
 ...
 <#case refValueN>
 ...
 <#break>
 <#default>
 ...
</#switch>

Parameter Description

value,

refValue1, etc.:

Expressions that evaluate to scalars of the same type.

Page 237

IMPORTANT: We do not recommend using these directives, as they are error-prone

because of the fall-through behavior. Unless you want to exploit the fall-through

behavior, use elseif instead.

switch is used to choose a fragment of template depending on the value of an

expression. For example:

<#switch being.size>
 <#case "small">
 This will be processed if it is small
 <#break>
 <#case "medium">
 This will be processed if it is medium
 <#break>
 <#case "large">
 This will be processed if it is large
 <#break>
 <#default>
 This will be processed if it is neither
</#switch>

One or more <#case value> is required inside the switch and, optionally,

one <#default> after all case tags.

When RPL reaches a case where refValue equals the value, it processes that case

and continues processing the template. If there is no case directive with an

appropriate value, RPL continues processing at the default directive if that exists;

otherwise, it continues the processing after the end tag of switch. Note that when

RPL has chosen a case directive, it will continue processing until it reaches a break

directive. That is, it will not automatically leave the switch directive when it reaches

another case directive or the <#default> tag.

Page 238

Example:

<#switch x>
 <#case x = 1>
 1
 <#case x = 2>
 2
 <#default>
 d
</#switch>

if x is 1, the output will be 1 2 d; if x is 2 , the output will be 2 d; if x is 3, the output

will be d. The break tag instructs RPL to immediately skip past the switch end tag.

t, lt, rt

<#t>

<#lt>

<#rt>

<#nt>

These directives instruct RPL to ignore certain whitespace in the line of the tag:

t (trim)

Ignores all leading and trailing white space in this line

lt (left trim)

Ignores all leading white space in this line

rt (right trim)

Ignores all trailing white space in this line

Leading white space is all space and tab characters (and other characters that are

white space according to UNICODE, except line breaks) before the first non-white

space character of the line.

Trailing white space is all space and tab characters (and other characters that are

white space according to UNICODE, except line breaks) after the last non-white

space character of the line, and the line break at the end of the line.

Page 239

You can use these directives anywhere within the line.

These directives examine the template, not the output that the template generates

when you merge it with the data model. This means that white space removal

happens at parse time.

For example:

--
 1 <#t>
 2<#t>
 3<#lt>
 4
 5<#rt>
 6
--

produces this output:

--
1 23
 4
 5 6
--

user-defined directive

<@user_def_dir_exp param1=val1 param2=val2 ... paramN=valN/>
(Note the XML-style / before the >)
or if you need loop variables (more details...)
<@user_def_dir_exp param1=val1 param2=val2 ... paramN=valN ; lv1,
lv2, ..., lvN/>

Or the same as the above two but with end-tag (more details...):

<@user_def_dir_exp ...>
 ...
</@user_def_dir_exp>
or
<@user_def_dir_exp ...>
 ...
</@>

Or all above but with positional parameter passing (more
details...):

<@user val1, val2, ..., valN/>
...etc.

Page 240

Parameter Description

user_def_dir_exp Expression that evaluates to an user-defined directive
such as a macro that will be called.

param1, param2, ...etc. Parameter names. These are not expressions.

val1, val2, ...etc. Parameter values. These are expressions.

lv1, lv2, ...etc. Loop variable names. These are not expressions.

Calls a user-defined directive, for example a macro. The meaning of parameters and

the set of supported and required parameters depend on the directive.

The following rules apply to parameters:

• The call can have zero parameters.

• Parameters can be specified in any order, unless you use positional
parameter passing.

• Parameter names must be unique.

• Parameter names are case sensitive.

Example 1: Call the directive stored in the variable html_escape:

<@html_escape>
 a < b
 Romeo & Juliet
</@html_escape>

produces this output:

 a < b
 Romeo & Juliet

Page 241

Example 2: Call a macro with parameters:

<@list items=["mouse", "elephant", "python"] title="Animals"/>
...
<#macro list title items>
 <p>${title?cap_first}:

 <#list items as x>
 ${x?cap_first}
 </#list>

</#macro>

produces this output:

 <p>Animals:

 Mouse
 Elephant
 Python

End tag

You can omit the user_def_dir_exp in the end tag. That is, you can write </@>

instead of </@anything>. This rule is useful mostly when the user_def_dir_exp

expression is too complex, because you do not have to repeat the expression in the

end tag. Furthermore, if the expression contains anything except simple variable

names and dots, you are not allowed to repeat the expression. For example,

<@a_hash[a_method()]>...</@a_hash[a_method()]> is an error; you must write

<@a_hash[a_method()]>...</@>. But <@a_hash.foo>...</@a_hash.foo> is correct.

Loop variables

Some user-defined directives create loop variables, similarly to the list directive.

As with the predefined directives, the name of loop variables is given when you call

the directive, while the value of the variable is set by the directive itself. In the case

of user-defined directives, the name of loop variables is given after a semicolon. For

example:

<@myRepeatMacro count=4 ; x, last>
 ${x}. Something... <#if last> This was the last!</#if>
</@myRepeatMacro>

Page 242

Note that the number of loop variable created by the user-defined directive and the

number of loop variables specified after the semicolon does not need to match. For

example, if you are not interested if the repetition is the last one, you can simply

write:

<@myRepeatMacro count=4 ; x>
 ${x}. Something...
</@myRepeatMacro>

or:

<@myRepeatMacro count=4>
 Something...
</@myRepeatMacro>

Specifying more loop variables after the semicolon than the user-defined directive

creates does not cause an error. In this case, the extra loop variables will not be

created (i.e. those will be undefined in the nested content). Trying to use the

undefined loop variables, however, will cause error unless you use built-ins such

as ?default because you will be trying to access a non-existing variable.

Positional parameter passing

Positional parameter passing is currently supported only for macros.

Positional parameter passing (such as <@heading "Preface", 1/>) is a

shorthand form of named parameter passing (such as <@heading

title="Preface" level=1/>) where you omit the parameter name. Use

positional parameter passing if a user-defined directive has only one parameter, or

if it is easy to remember the order of parameters for a frequently used user-defined

directive. To use this form, you have to know the order in which the named

parameters are declared. For example, if a heading was created as <#macro

heading title level>..., then <@heading "Preface", 1/> is equivalent

to <@heading title="Preface" level=1/> or <@heading level=1

title="Preface"/>.

Page 243

visit, recurse, fallback

<#visit node using namespace>
or
<#visit node>
<#recurse node using namespace>
or
<#recurse node>
or
<#recurse using namespace>
or
<#recurse>
<#fallback>

Parameter Description

node Expression that evaluates to a node variable.

namespace A namespace or a sequence of namespaces.

A namespace can be given with the namespace hash
(known as the gate hash), or with a string literal that
stores the path of template that can be imported. Instead
of namespace hashes, you can use plain hashes as well.

The visit and recurse directives are used for the recursive processing of trees.

These are used mostly for processing XML.

visit

When you call <#visit node>, it looks for a user-defined directive (such as a

macro) to invoke that has the name deducted from the node's name

(node?node_name) and namespace (node?node_namespace).

Rules of name deduction

If the node does not support node namespaces (as text nodes in XML), then the

directive name is simply the name of the node (node?node_name). A node does not

support node namespaces if the getNodeNamespace method returns null.

If the node does support node namespaces (as element nodes in XML), then a prefix

deduced from the node namespace may be appended before the node name with a

Page 244

colon (:) used as separator, for example e:book. The prefix, if one is used, depends

on which prefixes have been registered with the ns_prefixes parameter of

the rpl directive in the RPL namespace where visit looks for the handler

directive. This namespace is not necessary the same as the RPL namespace where

visit was called from. If a default namespace was not registered with ns_prefixes,

no prefix is used for nodes that do not belong to any namespace. If default

namespace was registered with ns_prefixes, prefix N is used for nodes that do

not belong to any namespace, and no prefix is used for nodes that belong to the

default node namespace. Otherwise, in both case, the prefix associated to the node

namespace with the ns_prefixes is used. If a prefix is not associated to the node

namespace of the node, visit behaves as if no directive was found with the proper

name.

The node for which the user-defined directive was invoked is available for it as a

special variable .node. For example:

<#-- Assume that nodeWithNameX?node_name is "x" -->
<#visit nodeWithNameX>
Done.
<#macro x>
 Now I'm handling a node that has the name "x".
 Just to show how to access this node: this node has
${.node?children?size} children.
</#macro>

produces output similar to this:

 Now I'm handling a node that has the name "x".
 Just to show how to access this node: this node has 3 children.
Done.

If one or more namespaces is specified using the optional using clause, then visit

will look for the directives in those namespaces only, with the earlier specified

namespaces in the list getting priority. If no using clause is specified, the

namespace or sequence of namespaces specified with the using clause of the last

uncompleted visit call is reused. If there is no such pending visit call, then the

current namespace is used.

Page 245

For example, if you execute this template:

<#import "n1.htm" as n1>
<#import "n2.htm" as n2>

<#-- This will call n2.x (because there is no n1.x): -->
<#visit nodeWithNameX using [n1, n2]>

<#-- This will call the x of the current namespace: -->
<#visit nodeWithNameX>

<#macro x>
 Simply x
</#macro>

and this is n1.htm:

<#macro y>
 n1.y
</#macro>

and this is n2.htm:

<#macro x>
 n2.x
 <#-- This will call n1.y, because it inherits the "using [n1, n2]"
from the pending visit call: -->
 <#visit nodeWithNameY>
 <#-- This will call n2.y: -->
 <#visit nodeWithNameY using .namespace>
</#macro>
<#macro y>
 n2.y
</#macro>

then this will print:

 n2.x
 n1.y
 n2.y

 Simply x

If visit does not find a user-defined directive in either RPL namespaces with the

name identical to the name deduced with the rules described earlier, then it tries to

find an user-defined directive with name @node_type. If the node does not support

node type property (i.e. node?node_type returns undefined variable), then with

Page 246

name @default. For the lookup, it uses the same mechanism as was explained

earlier. If it still does not find an user-defined directive to handle the node,

then visit stops template processing with error. Some XML-specific node types

have special handling in this regard.

<#-- Assume that nodeWithNameX?node_name is "x" -->
<#visit nodeWithNameX>

<#-- Assume that nodeWithNameY?node_type is "foo" -->
<#visit nodeWithNameY>

<#macro x>
Handling node x
</#macro>

<#macro @foo>
There was no specific handler for node ${node?node_name}
</#macro>

produces this output:

Handling node x

There was no specific handler for node y

recurse

The <#recurse> directive visits all children nodes of the node (and not the node

itself). So, the following:

<#recurse someNode using someLib>

is equivalent to:

<#list someNode?children as child><#visit child using
someLib></#list>

However, target node is optional in the recurse directive. If the target node is

unspecified, it simply uses the .node. Thus, the instruction <#recurse> is equivalent

to:

<#list .node?children as child><#visit child></#list>

Page 247

Note for those familiar with XSLT: <#recurse> is analogous to the <xsl:apply-

templates/> instruction in XSLT.

fallback

The user-defined directive that handles the node may be searched in multiple RPL

namespaces. The fallback directive can be used in a user-defined directive that

was invoked to handle a node. It directs RPL to continue searching for the user-

defined directive in further namespaces (that is, in the name spaces that are after

the namespace of the currently invoked user-defined directive in the list of

namespaces). If a handler for the node is found then it is invoked;

otherwise fallback does nothing.

Typical usage of this to write a customization layer over a handler library that

sometimes passes the handling to the customized library:

<#import "docbook.htm" as docbook>

<#--
 We use the docbook library, but we override some handlers
 in this namespace.
-->
<#visit document using [.namespace, docbook]>

<#--
 Override the "programlisting" handler, but only in the case if
 its "role" attribute is "java"
-->
<#macro programlisting>
 <#if .node.@role[0]!"" == "java">
 <#-- Do something special here... -->
 ...
 <#else>
 <#-- Just use the original (overidden) handler -->
 <#fallback>
 </#if>
</#macro>

Page 248

Chapter 7. Method Reference

avg

avg(number1, number2, number3, …)
or
avg(numeric-list-expr)

Parameter Description

number1, number2, number3,
etc.

The numbers from which the average is
computed.

numeric-list-expr A sequence expression containing the
numbers to be averaged.

Computes the average of the given numbers.

Example:

<#assign list=[1,73,22]>
${avg(list)}
${avg(1,73,22)}

produces this output:

32
32

NOTE: If you do not provide the numbers or if the sequence is empty avg produces

an error, as the average is undefined. To catch that error, use <#attempt>

and <#recover>.

Page 249

bazaarvoiceauthstring

bazaarvoiceauthstring(key, query-string-expr)

Parameter Description

key A key/passphrase value that both the sending and
receiving party know.

query-string-expr The decoded and unencrypted query string.

Helps create links to the Bazaarvoice service.

To create a proper url, you need the base url and the key/passphrase. These will be

provided to you in a document that encrypts the required key and query

parameters.

Consult technical services for information about how to obtain these two elements,

and for further details on how to utilize the Bazaarvoice service.

clickthrough

clickthrough(linkname)
or
clickthrough(linkname, parameter1, parameter2, parameter3, …)

Parameter Description

linkname An expression that identifies the link in the link table

parameter1,
parameter2,
parameter3, …

Additional values to be used in the tracking of the link, in one
of the following formats:

“datasourcealias.columnalias”
For replacement of fields coming from the recipient
record.

“replacementname=value”
 For replacement of values coming from an expression.

See below for an explanation of these values.

Page 250

You can track clicks on links by first directing these links to a link tracking URL in

Interact. Interact will redirect the request to the final URL. For more information,

see “Chapter 3. Working with Forms and Link Tracking”.

In Mobile SMS campaigns, the clickthrough method returns a temporary

shortened version of the link. The shortened URL is valid fo a short period of time.

In email campaigns, this method returns a long URL.

Example:

Assume you want to track clicks to a link on the website http://www.example.com.

To achieve this, you first need to set up and edit a link table for your campaign as

follows:

LINK_NAME= Example

LINK_URL= http://www.example.com

This ensures that Interact is ready to track the link. Now, you need to point the

document anchor to the link tracking URL in Interact using the clickthrough

method.

The link in the user’s email will look different from the original link. When a user

clicks the link, clickthrough notifies Interact. Upon receiving the request, Interact

redirects the user’s browser to the original URL to get the content (in the example,

the page located at http://www.example.com).

Use the following construct to create the link to Interact:

Click Here

The clickthrough method creates a link that:

• Records the fact that a user clicked on it.

• Optionally, replaces fields in the link tracking table.

• Redirects the user to the link in the link table.

Page 251

Sending additional information from content in the recipient record

Sending additional information from the recipient record to the receiving link is

usually done on web sites that can receive parameters. For example, when a user

clicks a link, you want to provide offers customized to the user’s preferences. The

link might look similar to the following:

http://www.example.com/offers?cid=<the-id-of-the-recipient>

To do this:

1. Create a link in the link tracking table with the following information:

LINK_NAME=Offers

LINK_URL=http://www.example.com/offers?cid=${profile.customerid}

2. Construct the clickthrough method as follows:

Find
More Offers

Note the use of quotes around the field name. This instructs clickthrough to use

that field name to obtain the actual field name (in our example, this is

CUSTOMER_ID_0 and its value). Without quotes, clickthrough would look for

the field name in the profile.customerid field, an indirection form of

the clickthrough method. In general you can use string expressions to specify

the field name.

IMPORTANT: The field name resulting from the aliases used in clickthrough must

match the field name in the LINK_URL.

Sending additional information from values in the template

To use a specific value from an expression in the template in the replacement of

fields, set up the link table as follows:

LINK_NAME=Offers

LINK_URL=http://www.example.com/offers?cid=${RECOMMENDATION}

Page 252

In this example, the replacement field is a user defined name that you must match in

the clickthrough method, not a field in the database .

The following example illustrates how to recommend offers to the user based on

whether the user has a recommendation in his record: if the user has a

recommendation, use that recommendation; otherwise use the customer id.

The field with the recommendation is mapped as pet.recommendationid from a field

RECOMMENDATION_ID in a profile extension table.

To do this, set up the clickthrough method as follows:

<#if pet.recommendationid != 0>
 <#assign value=pet.recommendationid>
<#else>
 <#assign value=profile.customerid>
</#if>
Find
More Offers

The expression:

‘RECOMMENDATION=’ + value

means that the replacement name is “RECOMMENDATION” (matching the field

replacement in the LINK_URL). = indicates that the field has a value, and the value

follows the =. The result of the expression looks similar to:

RECOMMENDATION=43853.

Now, the link will have the fields replaced. In the example, the resulting URL will be:

http://www.example.com/offers?cid=43853.

Tracking links to internal Interact forms

This section describes how to redirect to a form served by Interact. In the example,

the form is called userpreferences.

Page 253

For this example, the link table is set up as:

LINK_NAME= Preferences

LINK_URL=${form(‘userpreferences’, {'usedb':true})}

The LINK_URL contains a form specification.

The template includes the following code:

User Preferences

This clickthrough method creates a link to the click processor as in other cases.

When the click is received, the form specification is executed and the user is

redirected to the specified form, userpreferences.

Form parameters and implicit tracking of links

Assume the following link table setup:

LINK_NAME= Preferences

LINK_URL=${form('userpreferences', {}, “OPTION”)}

This link loads the form userpreferences and sends the value of the OPTION

parameter to the form. To do this, the clickthrough method must send the

option to the form method as follows:

User
Preferences

The clickthrough method must send all required parameters in the form method,

otherwise an error will occur. For more information about sending parameters, see

“Explicit external link tracking”.

When the form method requires many parameters, keeping the clickthrough

invocations in sync with the form method can become quite complex. You can

simplify this by marking your personalization as requiring tracking, and then

copying the LINK_URL and pasting it in the anchor element as follows:

User
Preferences

Page 254

During personalization, the execution engine will recognize anchor tags and will

replace this code:

${form('userpreferences', {}, 'profile.useroption')}

with this code:

${clickthrough('Preferences', 'profile.useroption')}

This mechanism of copy/pasting is used to simplify the maintenance of parameter

matching. The form method is executed only during the click tracking process, it

will not be executed during personalization.

converttimezone

converttimezone(date-expr, from-timezone, to-timezone)

Parameter Description

date-expr The base date that used for time zone
conversion.

from-timezone The string identifying the assumed
timezone for the date expression.

to-timezone The string identifying the target
timezone for the conversion.

Converts a date to a target timezone. Dates do not assume a time zone.

Conversions from a time zone to a destination time zone need to specify both the

source and the destination time zones.

Due to technical limitations, RLP cannot always determine the date type. You can

use ?date or ?datetime to properly specify the type of date that is used.

When using ?datetime, or when the type is unknown, the timezone conversion will

include hours. When using a date-only expression, the origination time will not have

any time, but the result of the converttimezone invocation will include date and

Page 255

time. This resulting date-time will be adjusted according to the requested

destination timezone. When using a time-only field, the conversion will cause an

error. The following examples show the different variations.

Example:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${converttimezone(date, "America/Los_Angeles",
"Asia/Kolkata")?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-28 02:55:03

Example using a date-only expression:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${converttimezone(date, "America/Los_Angeles",
"Asia/Kolkata")?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-17 13:30:00

Note that parsing a date-only string ignores the time. The equivalent result date is

then 2012-12-27 00:00:00. After that, the time is moved 12:30 hours forward.

The following example produces an error:

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${converttimezone(date, "America/Los_Angeles",
"Asia/Kolkata")?string("yyyy-MM-dd HH:mm:ss")}

dayadd

dayadd(date-expr, days-expr)

Parameter Description

date-expr The base date from which the offset will be calculated.

days-expr The number of days to move forward or backwards.
For backward offsets, use a negative number.

Page 256

Adds or subtracts the number of days specified by days-expr to a base date

specified by date-expr. To subtract days, specify a negative number in days-

expr.

For example, adding 1.5 days is equivalent to adding one day and twelve hours.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime, ?date, and ?time to specify the date type.

Example: Advance one day forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${dayadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-28 13:25:03
2012-12-26 13:25:03

Example: Advance one day from a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-28 00:00:00

Example: Advance a time forward:

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${dayadd(date, 0.5)?string("HH:mm:ss")}

produces this output:

01:25:03

Page 257

decrypt

decrypt(code)
or
decrypt(code, key)

Parameter Description

code The code previously produced by a call to encrypt.

key The string that indicates the key that was used during
encryption. This parameter is optional, but should
match the key entered during encryption.

Decrypts text that was encrypted with the encrypt method.

Example:

${decrypt(encrypt("some text", "private-key"), "private-key")}

produces this output:

some text

emaildomain

emaildomain(email-expr)

Parameter Description

email-expr The email address.

A convenience method that extracts the string representing the domain from the

email address.

Example:

${emaildomain(“jamesbond@m5.com”)

Page 258

produces this output:

m5.com

encrypt

encrypt(text)
or
encrypt(text, key)

Parameter Description

text The expression or string constant for the text to
encrypt.

key The string that indicates the key used for encrypting. It
is optional. The key same should be given for the
equivalent decrypt method.

Encrypts the text that can only be decrypted by the equivalent decrypt method in

a form.

Example:

${encrypt("some text")}

produces a string of the form:

E9uV7kzJm13p9SsE_SvvG8s

For security reasons, the string shown in the output above represents possible

output for a text string, it is not the real encrypting of the given text string.

Page 259

exists

exists(path-string)

Parameter Description

path-string The string path for the content whose existence to
check.

This is the full path to a Content Library file (such as
html, text, or an image).

This method checks whether the content at the specified path exists in the Content

Library.

The method returns Boolean true if the file at the path-string exists.

The path parameter must be an absolute path, for example:

cms://contentlibrary/foo.htm

 If the path starts with the http:// or https:// prefix, the method assumes that

the content exists and returns true. Any other value will result in error.

NOTE: You must always use the forward slash (/) to separate path components, do

not use the backslash (\).

Example:

<#if exists("cms://contentlibrary/campaigns/promotion-2013-06-
27/promotion.htm")>
 The promotion file exists
<#else>
 The promotion file does not exist
<#/if>

The above example outputs the appropriate string whether or not the file exists at

the specified path.

Page 260

Example:

<#if exists("http://www.example.com/couponoftheday/assign"))>
 The coupon link exists
<#else>
 The coupon link does not exist
<#/if>

The above example outputs the string “The coupon link exists”.

facebookjoinus

facebookjoinus(link-name, link-url)

Parameter Description

link-name The name of the link to be used for Facebook link
tracking.

This is the name in the Link table.

The link name must be an expression without
commas.

A link name and target URL (LINK_URL) are required.

link-url The url of the link to be used as a Facebook
destination, usually the URL of a page.

This is the URL in the Link table.

A link name and target URL (LINK_URL) are required.

Creates a URL that points to a traceable link to a Facebook page.

Example:

<a href="${facebookjoinus('FollowUsFacebook',
'https://www.facebook.com/cocacola')}"><img
src="/interact/ui/styles/images/findusonfacebook.PNG">

Page 261

produces this output, with a link that tracks and opens the Coca Cola page in

Facebook:

Standard Images

The standard Facebook image is available in Interact via the image SRC path shown

in the following table. When you use this path, Interact automatically updates the

SRC path to the proper Akamai URL for the given Interact account.

Note that you must type these paths exactly as they appear in the table below

(uppercase file extension).

Image Path Image

/interact/ui/styles/images/findusinfacebook.png

Example:

<img
src="/interact/ui/styles/images/findusonfacebook.PNG">

facebooklike

facebooklike(button-type, link-name, button-verb, button-style,
description, thumbnail)

Parameter Description

button-type The type of like button:

0 = Like an email

1 = Like an offer

link-name The name of the link for tracking. If buttonType = 0, this
parameter preference is ignored.

This is the name of the link as configured in the Link
table.

The link name must be a string expression without

Page 262

Parameter Description

commas.

A link-name and target URL (LINK_URL) for the offer, in
the link table, is required when liking an offer.

button-verb The verb shown on the Like button:

0 = Like

1 = Recommend

The verb also appears in the individual's Facebook news
feed, for example:

Richard likes GiftCo's Sale.

John recommends GiftCo's Sale.

button-style The format of the Like button on the Like Landing Page:

0 = Standard
On one line, the Like button followed by a text string,
"X likes."

1 = Button Count
A horizontal presentation of the button and number
of Likes for the item.

2 = Box Count
Stacked presentation of the button and number of
Likes for the item.

description The string shown on the Like Landing Page. This should
be a tag line string of "what" is liked.

If buttonType = 0, this parameter is ignored

Dollar sign symbols must be escaped.

thumbnail The image used for the Like Landing Page.
Recommended size is 200x200 pixels.

Standard Facebook Images

The standard Facebook Like button and Facebook Recommend button images are

available in Interact via the image SRC paths shown in the following table. When

you use these paths, Interact automatically updates the SRC path to the proper

Akamai URL for your Interact account.

Note that you must type these paths exactly as they appear in the table below (all

lowercase).

Page 263

Image Path Image

/interact/ui/styles/images/likeonfacebook.png

Example:

<img
src="/interact/ui/styles/images/likeonfacebook.png">

/interact/ui/styles/images/recommendonfacebook.png

Example:

<img
src="/interact/ui/styles/images/recommendonfacebook.pn
g">

facebookshare

facebookshare(title, summary, image-url)

Parameter Description

title A string expression or constant that defines the title
that will appear in the Facebook share dialog.

summary A string expression or constant that defines the
description for the link that is being shared in the
Facebook dialog,

image-url The URL to an image that will appear in the Facebook
dialog. If you use an image from the Content library,
this image will be published and a link to the externally
published image will be used in its place. The
recommended image is the logo of your organization.

Creates a button that will give the user the ability to share a story on their

Facebook page about the message or part of a message they received. For

example, you can share stories about your organization, or stories about the

promotion, or a coupon in the current message.

Page 264

In addition to sharing the story, you can track two additional actions: when

someone clicks on the share icon in the message, and when someone clicks the

shared link on Facebook. To do this, you need to create two tracking entries in the

link table. The link table entries do not need to be added manually. Upon launch, the

system automatically adds and maintains the entries in the link table. The Link URLs

are computed for both of the tracking actions and might not be URLs that you can

easily recognize.

Example:

<a href=”${facebookshare(‘10% Offer Today’, ‘Today only. Take
advantage of this super-saving opportunity on selected items.’
,'/contentlibrary/media/logo.png')}”>Share in Facebook

produces this output:

Standard image

The standard image for sharing is available in Interact via the image SRC path

shown in the following table. When you use this path, Interact automatically

updates the SRC path to the proper Akamai URL for your Interact account.

Note that you must type these paths exactly as they appear in the table below

(uppercase file extension).

Page 265

Image Path Image

/interact/ui/styles/images/sharetofacebook.png

Example:

<img
src="/interact/ui/styles/images/sharetofacebook.PNG">

firstname

firstname(string-expr)

Parameter Description

string-expr The expression that contains the individual’s full
name. Valid formats are:

First Last

Last, First

First M. Last

Last, First M.

This convenience function obtains the first name on a small set of formats. If

additional formats are required, we recommend creating a new function in a library.

For more information , see function, return and import functions.

form

form(form-name)
or
form(form-name, options-hash)
or
form(form-name, parameter1, parameter2, parameter3, …)
or
form(form-name, options-hash, parameter1, parameter2, parameter3, …)

Page 266

Paragraph Description

form-name An expression that provides the name to be used as a form. The
form must exist either as a campaign or a form, since campaigns
can be used as forms as it is the case in the “view in browser” use
cases.

When the form method is used in a link URL in a link table, the
form name must be a string constant.

options-hash An optional hash with the following options:

'usedb':boolean-expression
Specifies whether the form function is requesting that the values
are retrieved from the database. The default is false. Setting this
value to true will read the record from the database, slowing
performance.

Example: {‘usedb’:true}

When usedb is set to true, the use of parameters will cause an
error since all data comes from the database.

'format':string-expression
An expression or a constant value that returns one of the
following values:

’H‘
For a link to the HTML version of the desired form, or

‘T’
For a link to the text-only version of the form. The default is to
use HTML document if one exists for the form, text otherwise.

When specifying the desired format, the forms processor checks
whether the requested format is available for that form. If the
format is not available, the forms processor return text in the
available format.

Example: {‘format’:’H’}

Specific usage examples are provided in examples below.

The hash is required only when you need options other than the
default one, or when you are passing parameters. You can also
use an empty hash (or {})].

parameter1,
parameter2,
parameter3, …

The parameters to append to the form for further value
resolution.

When usedb is false (the default), these are the values that will
be used in the target form.

When usedb is true, using any parameters will cause an error.

Page 267

Paragraph Description

The values can be in one of the following forms:

datasourcealias.columnalias
Reads the given field from the current record and sends its value
to the target form. The form will receive the field name of the
record.

fieldname=value
Sends the given value to the receiving form as specified. The form
will receive the field name of the record.

Provides a way to create links to other forms in the system. Forms are defined with

a name, and in general both forms and campaigns can be used in this way. For more

information, see “Working with Forms and Link Tracking”.

The form method invocation is usually linked to an HTML anchor tag (“<a href=”” …

>”.) It is flexible and allows for different ways to pass and retrieve information in

the linked form as explained in the following scenarios.

In Mobile SMS campaigns, the form method returns a temporary shortened version

of the link. The shortened URL is valid fo a short period of time. In email campaigns,

this method returns a long URL.

Loading a form with data from the database

The following example shows how to pass overriding values as parameters. The

example creates a link to a form called usersettings, requesting that the result be a

form in default format. It will read the current user record:

Unsubscribe

Loading a form with the specified parameters

The following example links to a landing page:

<a href=”${form(‘offer’, {}, ‘EMAIL_ADDRESS_=’ + profile.email),
‘MAX_AGE=55’}”>Offers

Assuming that profile.email is provided as an alias to EMAIL_ADRESS_ , this

form link provides an email parameter in the receiving form with the email address

of the current recipient.

Page 268

It is worth noting that the value is obtained from the alias, while the email address is

fully specified. These values are further concatenated for a string of the form:

EMAIL_ADDRESS_=john@example.com

The previous example can be simplified as follows:

<a href=”${form(‘offer’, {}, ‘profile.email’,
‘MAX_AGE=55’}>Offers

View form in a predefined format in a browser

The following example displays the current campaign in text format:

View as text

The example requests that the text version of the form be rendered. To request the

HTML version, specify H for the format parameter. If you do not specify the format,

the form will be rendered in the same format as the template being personalized.

IMPORTANT: When you specify an unavailable format, the available one is

returned.

houradd

houradd(date-expr, hours-expr)

Parameter Description

date-expr The base date from which the offset will be calculated.

hours-expr The number of hours to add or subtract. For backward
offsets, use a negative number.

Adds or subtracts the number of hours specified by hours-expr to a base date

specified by date-expr. To subtract hours, specify a negative number in days-

expr.

Page 269

For example, adding 1.5 hours is equivalent to adding one hour and thirty minutes.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime,?date, and ?time to specify the date type.

Example 1: Advance one hour forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${houradd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-27 14:25:03
2012-12-27 12:25:03

Example 2: Advance one hour on a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-27 00:00:00

Example 3: Advance a time forward:

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 0.5)?string("HH:mm:ss")}

produces this output:

13:55:03

load

load(url-string)
or
load(url-string, encoding)

Page 270

Parameter Description

url-string The string path for the content being provided. Must
be a full path to either a Content Library text file (such
as html, text only, or xml) or a path to an external http
or https resource.

encoding The encoding that was used to save the file. This value
must match the encoding of the file. Using an incorrect
value can result on either an error (for invalid
encodings) or incorrect output values when using
international characters.

Loads the string of a text file, which can be used to assign to a variable or for other

similar purposes. Refer to the XML Processing Guide for examples on how to use

this method to load XML content into a variable.

NOTE: To work with remote sites, you must have an account enabled for http, https

download.

IMPORTANT: This method does not process the content of the file being read as it

makes no assumption of the type of contents being read. For example, it will not try

to publish images, or encode clicks if the file being loaded was in html format.

Loading html content with additional <head>, <title>, and/or <body> tags might

cause undesirable results if the content of the file is outputted verbatim to the

resulting stream. This behavior allows you to load any text into the system.

Example: Output the contents of the html version of the promotion:

<#assign promotion=load("cms://contentlibrary/campaigns/promotion-
2013-06-27/promotion.htm")>
${promotion}

Example: Output the coupon code, assuming that the loaded xml contains a sub-

element called <number>:

<#assign
coupon=parsexml(load("http://www.example.com/couponoftheday/assign")
)>
${coupon.number}

Page 271

IMPORTANT: A request to a URL, as in the second example above, might fail

because of communications errors. For instance, RPL might fail to locate the remote

site through no fault of its own, the remote site might throw an error under load, or

the URL might return the proper content, but RPL fails to receive it because of a

communication failure over the wire. Such errors are common, therefore when using

load with remote URLs, it is imperative to use <#attempt> and <#recover> to

account for them. With this mechanism, the RPL script might be able to assign a

default content, skip, or take other action. Failure to use <#attempt>, <#recover>

night cause the launch to fail; that is, one communication error that is not recovered

will stop a launch of all records.

localtoutc

localtoutc(datetime)
or
localtoutc(date)

Parameter Description

datetime A value that contains both date and time.

The date and time are considered local as per
the time_zone setting on the template. For more
information, see the setting directive.

date A value that identifies the local date.

The date is interpreted as midnight on the given date.

Converts the datetime or date parameter from local time to UTC datetime, based

on the local time configured in the template.

Passing time-only variables will cause an error.

TIP: See utlocal for the inverse operation.

Page 272

Example with date:

<#setting time_zone="America/Los_Angeles">
<#assign local="2016-09-24"?date("yyyy-MM-dd")>
<#assign utc=localtoutc(local)>
${local?string("yyyy-MM—dd HH:mm:ss")}/${utc?string("yyyy-MM-dd
HH:mm:ss")}

produces this output:

2016-09-24 00:00:00/2016-09-24 07:00:00

Example with date-time:

<#setting time_zone="America/Los_Angeles">
<#assign local="2016-9-24 13:00:00"?datetime("yyyy-MM-dd HH:mm:ss")>
<#assign utc=localtoutc(local)>
${local?string("yyyy-MM-dd HH:mm:ss")}/${utc?string("yyyy-MM-dd
HH:mm:ss")}

produces this output:

2016-09-24 13:00:00/2016-09-24 20:00:00

max

max(number1, number2, number3, …)
or
max(numeric-list-expr)

Parameter Description

number1, number2, number3,
etc.

The numbers from which the maximum is
computed.

numeric-list-expr A sequence expression containing the
numbers to be compared.

Page 273

Determines which number is the greatest of the given numbers.

Example:

<#assign list=[1,73,22]>
${max(list)}
${max(1,73,22)}

produces this output:

73
73

NOTE: If you do not provide any numbers, or if the sequence is empty, this method

returns an error, as the maximum number is undefined. To catch this error,

use <#attempt> and <#recover>.

messagedigest

messagedigest(string-expr)
or
messagedigest(string-expr, algorithm)

Parameter Description

string-expr The string to which the algorithm will be
applied.

algorithm Either “MD5”, “SHA”, or “SHA-256”, “SHA-
384”, “SHA-512”. The default is “SHA”.

Generates a one-way digest by using two standard hashing algorithms. The hashing

algorithm converts a string to a unique signature that identifies the message.

You can use this method to deliver encrypted information anywhere in a campaign

or form. For example, you might use it to pass encrypted promotion codes in the

Page 274

query string of the link URL so that the destination web site can compare the code

to a list of authorized codes.

min

min(number1, number2, number3, …)
or
min(numeric-list-expr)

Parameter Description

number1, number2, number3,
etc.

The numbers from which the minimum is
computed.

numeric-list A sequence expression with the numbers to
be compared

Determines which of the given numbers is the smallest.

Example:

<#assign list=[1,73,22]>
${min(list)}
${min(1,73,22)}

produces this output:

1
1

NOTE: If you do not provide any numbers, or if the sequence is empty, this method

returns an error, as the minimum number is undefined. To catch this error,

use <#attempt> and <#recover>.

Page 275

minuteadd

minuteadd(date-expr, minutes-expr)

Parameter Description

date-expr The base date from which the offset will be
calculated.

minutes-expr The number of minutes to add or subtract.
For backward offsets, use a negative
number.

Adds or subtracts the number of minutes specified by minutes-expr to a base

date specified by date-expr. To subtract minutes, specify a negative number

in minutes-expr.

For example, adding 1.5 minutes is equivalent to adding one minute and thirty

seconds.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime, ?date, and ?time to specify the date type.

Example 1: Advance one minute forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${minuteadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${minuteadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-27 13:26:03
2012-12-27 13:24:03

Page 276

Example 2: Advance one second on a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output (losing the seconds):

2012-12-27 00:00:00

Example 3: Advance a time forward:

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("HH:mm:ss")}

produces this output:

13:26:03

monthadd

monthadd(date-expr, months-expr)

Parameter Description

date-expr The base date from which the offset will be
calculated.

months-expr The number of months to add or subtract.
For backward offsets, use a negative
number.

Adds or subtracts the number of months specified by months-expr to a base

date specified by date-expr. To subtract months, specify a negative number

in months-expr.

Page 277

You cannot use fractional numbers. Fractional numbers are rounded down. For

example, 1.5 becomes one, and -1.5 becomes -1. This means that specifying 1.5

months adds one month.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime, ?date, and ?time to specify the date type.

Example 1: Advance one month forward and back

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${monthadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${monthadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2013-01-27 13:25:03
2012-11-27 13:25:03

Example 2: Advance one week on a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${monthadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output (losing the time portion):

2013-12-27 00:00:00

nonce

nonce()
or
nonce(size-number)

Parameter Description

size-number A value that determines the string size of the
resulting nonce.

Must be between 1 and 128. The default size

Page 278

Parameter Description

if the parameter is omitted is 20. Numbers
beyond the allowable range result in an
error.

A random string of alphanumeric characters. Nonces are usually used in

communication protocols such as Oauth 1, to uniquely identify a request.

Requests with nonces are retryable, if the receiving service is keeping track of the

nonces, and thus can reject duplicates.

Example 1:

${nonce()}

produces output of of alphanumeric values. As described above, the output

changes with every invocation:

0aPojhKmkk2VlmNTUjfz

Example 2:

${nonce(10)}

produces output of of alphanumeric values. As described above, the output

changes with every invocation:

fJk4Ok7Yyz

nonemptyfields

nonemptyfields(field1, field2, field3, etc.)
or
nonemptyfields(sequence-expr)

Page 279

Parameter Description

field1, field2, field3, etc. The names of the fields to be examined.

sequence-expr A sequence or an expression that produces a sequence.
This is useful, for instance, for use with the
randomsubset method.

In some cases, the personalization record is set up so that some fields might be

empty. This is done so that only the fields that actually contain values are used.

This method allows you to create dynamic content by specifying a complete set of

potential values, but retrieving only the values appropriate for the current record.

To extract the field names, use the hash built-in ?keys. To extract only the values,

use the hash built-in ?values.

This method returns a hash with the proper field names and values associated with

it.

In the following example, the personalization record for Mary has values in the fields

Boots and Backpacks, with the values 2 pair and 1, respectively:

<#assign populated=nonemptyfields(“Hats”, “Shirts”, “Shorts”,
“Boots”, “Backpacks”, “Tents”)>
<#list populated?keys as fieldName>
 - ${fieldName} - ${populated[fieldName]}
</#list>

produces this output:

Boots - 2 pair
Backpacks – 1

As shown in the example, when you want to know the field names use the hash

built-in ?keys. To extract only the values, use the hash built-in ?values.

Page 280

parsejson

parsejson(string-exp)

Parameter Description

string-expr The text that contains JSON.

Converts a JSON string into sequences, hashes, and primitives.

Example 1:

${parsejson('[1,"hello",true]')?join(",")}

produces this output:

1,hello,true

Example 2:

<#assign o=parsejson("{'a':1, 'b':'Hello','c':[2,'world',false]}")>

${o['a']}-${o['b']}-${o['c']?join(",")}

produces this output:

1-Hello-2,world,false

NOTE: Parsing a string null ${parsejson("null")} prodces an error.

parsexml

parsexml(string-expr)

Parameter Description

string-expr The text that contains XML.

Converts a text string into a set of nodes.

Page 281

The following example assumes that xmlField contains an XML string:

<#assign doc=parsexml(xmlField)>

rand

rand(value)

Returns a random numeric value between 0 and the given number.

randomsubset

randomsubset(list-expr, on-empty-expr, max-size-expr)

Parameter Description

list-expr The list from which to get the random
subset.

on-empty-expr The default value to return if the list has
fewer elements than the maximum size
specified.

max-size-expr Is the maximum number of elements to

return. If the list contains a number of

elements that is less than these numbers, the

on-empty-expr will be used.

Returns a subset of list elements. The max-size-expr parameter specifies the

maximum number of elements to return.

Example:

<#assign fruits=[“bananas”, “oranges”, “apples”, “strawberries”,
“pears”>
<#list randomsubset(fruits, [], 3) as fruit>${fruit}</#list>
<#assign morefruits=[“bananas”, “oranges” >
<#list randomsubset(morefruits, fruits[0..2], 3) as
fruit>${fruit}</#list>
<#list randomsubset(fruits, fruits, 6) as fruit>${fruit}<#/list>

Page 282

produces this output:

oranges strawberries pears
bananas oranges apples
bananas oranges apples strawberries pears

secondadd

secondadd(date-expr, seconds-expr)

Parameter Description

date-expr The base date from which the offset will be
calculated.

seconds-expr The number of seconds to add or subtract.
For backward offsets, use a negative
number.

Adds or subtracts the number of seconds specified by seconds-expr to a base

date specified by date-expr. To subtract seconds, specify a negative number

in seconds-expr.

Example 1: Advance one second forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${secondadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${secondadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2012-12-27 13:25:04
2012-12-27 13:25:02

Example 2: Advance one second on a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output (losing the seconds):

2012-12-27 00:00:00

Page 283

Example 3: Advance a time forward:

<#assign date="2012-12-27 13:25:03"?time("yyyy-MM-dd HH:mm:ss")>
${houradd(date, 1)?string("HH:mm:ss")}

produces this output:

13:25:04

shorturl

shorturl(link-url)

Parameter Description

link-url The URL to be shortened.

Attempts to shorten a given URL. A short URL is a smaller temporary representation

of the provided URL. These short URLs are guaranteed to be valid for a short time

frame after which they expire.

Currently only SMS campaigns return a shortened URL that allows you to keep the

resulting message within the size limits of the SMS protocol. For email campaigns,

this method does not shorten the URL and returns the same URL as provided.

Example:

${shorturl('http://www.google.com?q=sports+equipment')}

tracking

tracking(campaign-name)
or
tracking(campaign-name, parameter1, parameter2, parameter3, …)

Parameter Description

campaign-name An expression that identifies the campaign to be
tracked.

Page 284

Parameter Description

parameter1, parameter2,
parameter3,…

Additional values to use in the tracking of the
campaign:

• “datasourcealias.columnalias”—used for
replacing fields from the recipient record using
aliased fields

• “FIELD_NAME” —used for replacing fields
coming from the recipient record using the
field name directly

• “replacementname=value” —used for replacing
values coming from an expression

For descriptions of these values, see the method
description below.

Returns a string with parameters representing the campaign, recipient, additional

parameters, and other information needed for communication with Oracle

Responsys from any system.

The string is formatted as:

ri=ENCODEDDATA&_ei_=ENCODEDDATA

The encoded data is kept in a form required for Oracle Responsys communications.

This information is particularly useful when creating links from external subscription

forms to the Oracle Responsys unsubscribe servlet endpoint. For more information,

see “Using tracking parameters”.

To communicate back to Oracle Responsys, both parameters must be retruned from

an external system in one of the ways described below.

Creating a tracking string without additional parameters

The following example creates a set of parameters for the current campaign. This is

useful for external unsubscribe form usage. This link will allow an external form to

be called with unsubscription information that can be used to track unsubscriptions

in Oracle Responsys.

Page 285

<a
href="http://www.example.com/unsubscribe?${tracking(campaign.name)}"
>Unsubscribe

Creating a tracking string with additional parameters

Assuming that profile.email is provided as an alias to EMAIL_ADRESS_, the

following tracking string provides an email parameter plus a parameter called

MAX_AGE.

<a href="http://www.example.com/external?${tracking(campaign.name,
‘EMAIL_ADDRESS_=’ + profile.email), ‘MAX_AGE=55’}”>Weekly Add

twitterjoinus

twitterjoinus(link-name, link-url)

Parameter Description

link-name The name of the link to be used for Twitter link
tracking.

This is the name in the Link table.

The link name must be an expression without
commas.

A link name and target URL (LINK_URL) are required.

link-url The url of the link to be used as a Twitter destination.
Usually the URL of a Twitter username, or a link to a
search for a hash.

This is the URL in the Link table.

A link name and target URL (LINK_URL) are required.

Creates a URL that points to a traceable link to a Twitter user or hash.

Example:

<a href="${twitterjoinus('FollowUsTwitter',
'https://twitter.com/search?q=%23electricyty&src=hash')}"><img
src="/interact/ui/styles/images/findusontwitter.png">

Page 286

produces this output, with a link that will track and open the search for the

indicated #electricity hash:

Standard Images

The standard Follow on Twitter image is available in Interact via the image SRC

path shown in the following table. When you use this path, Interact automatically

updates the SRC path to the proper Akamai URL for the given Interact account.

Note that you must type this path exactly as it appears in the table below

(uppercase file extension).

Image Path Image

/interact/ui/styles/images/findusintwitter.png

Example:

<img
src="/interact/ui/styles/images/findusontwitter.PNG">

twitterpost

twitterpost(text)

Parameter Description

text A string expression or constant that defines the proposed
text of the tweet that will appear in the Twitter post dialog.
It should not be longer than 106 characters, since a URL is
added to the message. The added URL will not exceed 34
characters. This means that the text and the link will not
exceed the Twitter maximum of 140 characters.

Page 287

Creates a button that will enable the user to post a tweet in their Twitter feed about

the message or part of a message they received. For example, you can tweet about

your current campaign or a specific event.

In addition to posting the story, you can track two additional actions: when

someone clicks on the post button, and when someone clicks the shared link in

Twitter. To do this, you need to create two tracking entries in the link table. The link

table entries do not need to be added manually. Upon launch, the system

automatically adds and maintains the entries in the link table. The Link URLs are

computed for both of the tracking actions and might not be URLs that you can

easily recognize.

Example:

Post to
Twitter

produces this output:

Standard image

The standard image for posting to Twitter is available in Interact via the image SRC

path shown in the following table. When you use this path, Interact automatically

updates the SRC path to the proper Akamai URL for the given Interact account.

Note that you must type this path exactly as it appears in the table below

(uppercase file extension).

Page 288

Image Path Image

/interact/ui/styles/images/sharetotwitter.png

Example:

<img
src="/interact/ui/styles/images/sharetotwitter.PNG">

utctolocal

utctolocal(datetime)
or
utctolocal(date)

Parameter Description

datetime A value that contains both date and time.

The date and time is considered as being in
UTC.

date A value that identifies a UTC date.

The date is interpreted as midnight on the
given date.

Converts the datetime or date parameter from UTC time to the local datetime

configured in the template.

Passing time-only variables will cause an error.

TIP: See localtoutc for the inverse operation.

Example with a date:

<#setting time_zone="America/Los_Angeles">
<#assign utc="2016-09-24"?date("yyyy-MM-dd")>
<#assign local=utctolocal(utc)>

Page 289

${local?string("yyyy-MM-dd HH:mm:ss")}/${utc?string("yyyy-MM-dd
HH:mm:ss")}

produces this output:

2016-09-23 17:00:00/2016-09-24 00:00:00

Example with date-time:

<#setting time_zone="America/Los_Angeles">
<#assign utc="2016-09-24 13:00:00"?datetime("yyyy-MM-dd HH:mm:ss")>
<#assign local=utctolocal(utc)>
${local?string("yyyy-MM-dd HH:mm:ss")}/${utc?string("yyyy-MM-dd
HH:mm:ss")}

produces this output:

2016-09-24 06:00:00/2016-09-24 13:00:00

weekadd

weekadd(date-expr, weeks-expr)

Parameter Description

date-expr The base date from which the offset will be
calculated.

weeks-expr The number of weeks to add or subtract.
For backward offsets, use a negative
number.

Adds or subtracts the number of weeks specified by weeks-expr to a base date

specified by date-expr. To subtract weeks, specify a negative number in weeks-

expr.

You cannot use fractional numbers. Fractional numbers are rounded down. For

example, 1.5 becomes one, and -1.5 becomes -1. This means that specifying 1.5

weeks adds one month.

Page 290

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime, ?date, and ?time to specify the date type.

Example 1: Advance one week forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${weekadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${weekadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2013-01-03 13:25:03
2012-12-20 13:25:03

Example 2: Advance one week on a date without time:

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${weekadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output (losing the time portion):

2013-01-03 00:00:00

xslt

xslt(source-node, transform-node)

Parameter Description

source-node A node that identifies the xml to be transformed. The node
must be the root of the xml document, otherwise an error
occurs.

transform-node A node that identifies the xslt transformation to be applied
to the source node.

Allows the advanced transformation of XML by using the standard XSL1.0 language.

Page 291

XSL is an industry standard transformation language used to convert XML into one

of the following:

• Plain text

• XML

• HTML

Use XSL only if you are familiar with its concepts.

The result of this method is a string scalar. If the transformation output

specified xml as the output, and you need further access by using nodes, you might

need to apply parsexml again on this result.

Example:

<#assign source=
 parsexml('<books><book name="Hamlet"/><book
name="Ulyses"/></books>')>
<#assign transform=parsexml(
'<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">' +
 '<xsl:output method="text"/>' +

 '<xsl:template match="/books/book">' +
 '[<xsl:value-of select="@name"/>]' +
 '</xsl:template>' +
'</xsl:stylesheet>')>
<#assign result=xslt(source, transform)>
${result}

produces this output:

[War and Peace][Ulyses]

The above example hardcodes the XML and the transformation directly as RPL

strings, which is not best practice. As best practice, store these externally and load

them from either the Content Library or remotely from an http/https source. The

following example illustrates this practice. In addition, the example assumes that

the transformation in sales-transform.xml produces XML and the sales information

is processed in a loop:

<#assign source=parsexml(load("cms://contentlibrary/xmls/sales-info-
2013-06-26.xml"))>

Page 292

<#assign
transform=parsexml(load("cms://contentlibrary/transforms/sales-
transform.xml"))>
<#assign sales=parsexml(xslt(source, transform))>
<#list sales as sale>
 ${sale.date} - ${sale.category} - ${sale.discount}
</#list>

yearadd

yearadd(date-expr, years-expr)

Parameter Description

date-expr The base date from which the offset will be calculated.

years-expr The number of years to add or subtract. For backward
offsets, use a negative number.

Adds or subtracts the number of years specified by years-expr to a base date

specified by date-expr. To subtract years, specify a negative number in years-

expr.

You cannot use fractional numbers. Fractional numbers are rounded down. For

example, 1.5 becomes one, and -1.5 becomes -1. This means that specifying 1.5 years

adds one year.

NOTE: Due technical limitations, RPL cannot always determine the type of date it

receives (date only, time only, or both). For this reason, you should use the string

built-ins ?datetime, ?date, and ?time to specify the date type.

Example 1: Advance one year forward and back:

<#assign date="2012-12-27 13:25:03"?datetime("yyyy-MM-dd HH:mm:ss")>
${yearadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}
${yearadd(date, -1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output:

2013-12-27 13:25:03
2011-12-27 13:25:03

Page 293

Example 2: Advance one year on a date without time

<#assign date="2012-12-27 13:25:03"?date("yyyy-MM-dd HH:mm:ss")>
${yearadd(date, 1)?string("yyyy-MM-dd HH:mm:ss")}

produces this output (losing the time portion)

2013-12-27 00:00:00

Page 294

Chapter 8. Namespace Reference

Campaign

The campaign variables are defined in the campaign definition.

The following table shows all campaign variables.

Variable Description

campaign.id The unique identifier of the campaign.

campaign.name The name of the campaign.

campaign.marketingprogram The specified marketing program in the campaign
definition.

campaign.marketingstrategy The specified marketing strategy in the campaign
definition.

campaign.externalcode The specified external campaign code as defined in
the campaign.

Datasource Hashes

Datasource namespaces, or hashes, contain the fields that are defined in the

datasources user interface. The datasource appears as a top level hash, and its

fields appear under that hash. Both the hash and its fields use the respective aliases

for registration into the namespace.

For example, if you declared a namespace to provide email (from

EMAIL_ADDRESS_) with the alias profile, you can specify the following

interpolation:

${profile.email}

The above example obtains the EMAIL_ADDRESS_ of the individual record.

Page 295

Environment

Variable Description

environment.permissionpolicylink A link to the URL describing the permission
policy link.

environment.unsubscribelink The URL to the unsubscribe link for the current
account.

environment.poweredbyurl The URL to the image representing the
Responsys “powered-by” logo.

environment.responsyslinkurl The link to the URL for Responsys.

environment.unsubscribemailbox The mailbox used to unsubscribe the current
recipient.

environment.implicitresponselink The image tracking pixel for autosense-enabled
and tractable messages.

environment.accountdisplayname The name of the account.

environment.debug You can set the debugging flag for a campaign
in the Email Message Designer. This variable
reflects the flag setting.

To prevent debug information from being sent
in standard launches, this flag will be true only
for launches of type “preview” and “proof”.

Use this flag in <#if> directives to enter
information you want to see in test launches and
previews.

environment.confirmbuiltin Generates a link which, upon clicking, will mark
the recipient as opted in.

Use this variable with the opt-in form flow
where:

• The user enters their email in a form.

• An email is sent with the opt-in
confirmation (where this namespace
entry is coded.)

• Upon clicking the link, the customer is
confirmed as opted in, the email
permission reason is set
to FR:Confirmed, and promotional
emails can now be sent.

Page 296

Launch

Launch contains the following elements:

Variable Description

launch.id Defines the current unique identifier of the given
launch.

launch.type Describes the launch type.

The value is one of the following:

standard

proof

preview

Message

Message describes attributes of the message campaign.

Variable Description

message.format Defines the format being used to personalize the
current message. It can be:

“H”=HTML the format

“T”=text format.

NOTE: In some situations, two personalization datasources provide a field with the

same name but different values. RPL uses only the first value, as per order in which

the datasources were specified. Trying to access the second value using a Special

Variables Reference.

RPL defines a set of special variables RPL. To access these variables, use

the .variable_name syntax, for example, .version.

The following table lists all supported special variables.

Variable Description

Page 297

Variable Description

.data_model A hash that you can use to access the data model
directly. That is, variables created with the global
directive are not visible here.

.error This variable is accessible in the body of the recover
directive, where it stores the error message from which
you are recovering.

.fields This variable is a hash whose keys are the field names
and whose values are the field values.

For more information, see “About Fields and Field
Types”.

.field_types This variable is a hash whose keys are the field names
and whose values are the readable data types of the
fields.

For more information, see “About Fields and Field
Types”.

.globals A hash that you can use to access the globally accessible
variables (the data model variables and the variables
created with global directive). Note that variables
created with assign or macro are not global, thus they
never hide the variables when you use globals.

.lang Returns the language part of the current value of the
locale setting. For example if .locale is en_US,
then .lang is en.

.locale Returns the current value of the locale setting. This is a
string, for example en_US. For more information about
locale strings, see the setting directive.

.locals A hash that you can use to access local variables (the
variables created with the local directive, and the
parameters of macro).

.main A hash that you can use to access the main namespace.
Note that global variables such as the variables of data
model are not visible through this hash.

.namespace A hash that you can use to access the current
namespace. Note that global variables such as the
variables of data model are not visible through this hash.

.node The node you are currently processing with the visitor
pattern (i.e. with the visit, recurse, ...etc. directives).

Page 298

Variable Description

.now Returns the current date-time. Usage examples: "Page
generated: ${.now}", "Today is
${.now?date}", "The current time is
${.now?time}".

.output_encoding Returns the name of the current output charset. This
special variable does not exist if the framework that
encapsulates RPL does not specify the output charset for
RPL.

.template_name The name of the current template.

.today Returns the current date as of midnight of the current

day. This is sensitive to the time zone of the processing

environment. Unlike .now?date, .today returns a date-

time, not a string representation of the date as per

formatting settings.

.url_escaping_charset If exists, stores the name of the charset used for URL
escaping. If this variable does not exist, it means that the
charset to use for URL encoding has not been specified.
In this case, the url built-in uses the charset specified by
the output_encoding special variable for URL
encoding.

.vars Expression .vars.foo returns the same variable as
expression foo. This is useful when you have to use
square bracket syntax, since that works only for hash
sub-variables and requires an artificial parent hash. For
example, to read a top-level variable that has a name
that would confuse RPL, you can write .vars["A
confusing name!"]. Or, to access a top-level variable
with dynamic name given with variable varName you
can write .vars[varName]. Note that the hash returned
by .vars does not support ?keys and ?values.

About Fields and Field Types
The underlying data model is provided by multiple data sources. One of those data

sources is the recipient record. The recipient record is the set of fields and values

coming from the personalization datasources, including the profile list, PETs, etc.

Page 299

RPL provides a way to reach the personalization record by utilizing the .fields

and .field_types special variables. You can use these to see a summary of the

fields when the debug flag is on, as shown in the following example.

<#if environment.debug>
 <table cellspacing="0" cellpadding="0" border="1">
 <tr><th>FIELD</th><th>VALUE</th><th>TYPE</th></tr>
 <#list .fields?keys?sort as fieldname>
 <tr>
 <td>${fieldname}</td>
 <td>${.fields[fieldname]}</td>
 <td>#{.field_types[fieldname]}</td></tr>
 </#list>
 </table>
</#if>

Notice that .fields and .field_types are preceded by a period.

Page 300

Appendix A. Reserved Names in RPL
The following table lists RPL keywords. If you use these as top-level variables, you

must use the square-bracket syntax (as .vars["in"]).

Keyword Description

true Boolean true

false Boolean false'

gt Comparison operator “greater than”

gte Comparison operator “greater than or
equal to”

lt Comparison operator “less than”

lte Comparison operator “less than or
equal to”

as Used by several directives

in Used by several directives

using Used by several directives

Page 301

Appendix B. Operator Precedence
The following table shows the precedence assigned to operators. The operators in

this table are listed in precedence order: the higher in the table an operator

appears, the higher its precedence. Operators with higher precedence are

evaluated before operators with lower precedence. Operators on the same line

have equal precedence. When binary operators (operators with two “parameters”,

as + and -) of equal precedence appear next to each other, they are evaluated in

left-to-right order.

Operator group Operators

Highest precedence
operators

[subvarName] [subStringRange] . ? (methodParams)
expr! expr??

Unary prefix operators +expr -expr !expr

Multiplicative * / %

Additive + -

Relational < > <= >= (and quivalents: gt, lt, etc.)

Equality == != (and equivalents: =)

logical AND &&

logical OR ||

numerical range ..

Note that RPL precedence rules are the same as those in C, Java, or JavaScript, with

support for additional RPL operators that do not exist in those languages.

Page 302

Appendix C. Identifiers
Identifiers are the names of variables as used in the namespace. These identifiers

must follow a predefined format as described in this section.

Variable names
A variable name is defined as letter (letter | digit)*

This means that a variable can begin with a letter, followed by multiple letters or

digits.

Letters can be any of the following: A-Z, a-z, _, $, @. Numbers must be 0-9.

Example:

<#assign total_price_1 = unit_price_1 * quantity_1>

Variables with the same name but different case are considered different variables.

For example, the following variables are different:

<#assign variable = Variable>

Page 303

Appendix D. Glossary
Comment

Content that will not be included in the output. ITL comments are similar to HTML

comments. ITL comments begin with <#-- and end with -->. Everything between

these tags will be excluded from the output.

Directive

Instructions to ITL used in templates. Directives begin with <# or <@.

Hash

A variable that acts as a container for other variables (known as sub-variables).

Sub-variables of a hash are accessed by name.

Interpolation

An instruction to convert an expression to text and to insert that text into the

output. An interpolation begins with ${ and ends with }. Note that interpolations do

not obtain a value, they only execute an expression.

Method

Calculates something based on given parameters and returns the result.

Namespace

A set of available directives, methods, ITL built-ins, and additional

structures/properties that you can use.

Scalar

A variable that stores a single value. A scalar is of a specific type: string, number,

date/time, or boolean.

Sequence

A structure that stores sub-variables sequentially. Sub-variables in a sequence are

accessed using a numerical index.

	Chapter 1. Introduction
	Oracle Responsys personalization in the past

	Document conventions
	Chapter 2. Getting Started
	About templates
	About output
	About data retrieval
	About the data model
	About values and types
	Data model type
	Supported types
	About scalars
	Number
	Boolean
	Date

	About containers
	About subroutines
	About methods and functions
	About user-defined directives
	Using methods/functions versus user-defined directives
	About miscellaneous types

	Working with RPL tags

	The template at a glance
	Most commonly used directives
	if
	list
	include
	data
	content
	Using directives together

	Handling missing variables
	Specifying a default value
	Specifying a default value for sub-variables

	Testing for missing values
	Testing for missing sub-variables

	Working with expressions
	Quick overview (cheat sheet)
	Specifying values directly
	Retrieving variables
	String operations
	Sequence operations
	Hash operations
	Numeric/Boolean expressions
	Missing value handler operators

	Specifying values directly
	Specifying strings
	About raw string literals

	Specifying numbers
	Specifying booleans
	Specifying hashes

	Retrieving variables
	Retrieving top-level variables
	Retrieving data from a hash
	Retrieving data from a sequence
	Retrieving special variables

	String operations
	Interpolation or concatenation
	Getting a character

	Sequence operations
	Concatenation
	Sequence slice

	Hash operations
	Concatenation

	Arithmetical calculations
	Comparison
	Logical operations

	About built-ins
	Built-ins to use with strings
	Built-ins to use with sequences
	Built-ins to use with numbers

	Calling methods
	Handling missing values
	Using the default value operator
	Using the! operator with sub-variables

	Using the missing value test operator

	Grouping expressions
	White space in expressions
	Operator precedence
	Working with interpolations
	Inserting strings
	Inserting numerical values
	Inserting date/time values
	Inserting boolean values
	Conversion rules

	Defining your own directives
	Specifying parameters
	Nested content
	Using loop variables in macros

	Working with variables
	Defining variables in the template
	About predefined variables

	About namespaces
	Creating a library
	Writing the variables of imported namespaces
	Namespaces and the data model
	Namespace lifecycle
	Making a library available to others

	Handling white space
	Stripping white space
	Using the compress directive

	Chapter 3. Working with Forms and Link Tracking
	About forms
	Creating links in personalization
	About link tables
	Passing parameters for forms
	About click tracking
	Explicit external link tracking
	Explicit internal form tracking
	Explicit link tracking with parameter analysis
	Implicit link tracking
	Using tracking parameters

	About internal form processing
	Campaign personalization
	Internal form processor
	Downtime form processor
	Click processor
	Downtime clickthrough processor
	About form and clickthrough methods in campaigns

	Chapter 4. XML Processing
	XML terminology
	About the XML document in this chapter
	Putting the XML into the data model

	Working with imperative XML processing
	Accessing elements by name
	Accessing attributes
	Exploring the DOM tree
	Using XPath expressions
	About XML namespaces
	Escaping
	Formal description
	About node sequences

	Working with declarative XML processing
	About default handlers
	Visiting a single node
	About XML namespaces

	XSL transformation processing
	XSL basics
	XSL processing in RPL
	Working with XML output
	Including additional transformation templates

	Chapter 5. Built-in Reference
	Built-ins for strings
	base64
	boolean
	cap_first
	capitalize
	chop_linebreak
	contains
	date, time, datetime
	debug
	ends_with
	eval
	exec
	groups
	hex
	index_of
	html
	interpret
	isnull (when used with a string value)
	j_string
	js_string
	json_string
	last_index_of
	left_pad
	length
	matches
	number
	lower_case
	replace
	right_pad
	rtf
	split
	starts_with
	skip
	string (when used with a string value)
	substring
	trim
	uncap_first
	upper_case
	url
	word_list
	xhtml
	xml
	Common flags
	Supported flags
	Supported flags by built-in

	Built-ins for numbers
	c
	hex
	isnull (when used with a numerical value)
	round, floor, ceiling
	string (when used with a numerical value)

	Built-ins for dates
	date, time, datetime (when used with a date value)
	isnull (when used with a date value)
	iso_...
	long
	string (when used with a date value)

	Built-ins for booleans
	string (when used with a boolean value)

	Built-ins for sequences
	chunk
	first
	join
	last
	reverse
	seq_contains
	seq_index_of
	seq_last_index_of
	size
	sort
	sort_by
	unique

	Built-ins for hashes
	keys
	values

	Built-ins for XML nodes
	ancestors
	children
	parent
	root
	node_name
	node_namespace
	node_type

	Additional built-ins
	is_...
	number_to_date, number_to_time, number_to_datetime

	About regular expressions
	About the date format
	Chapter 6. Directive Reference
	assign
	attempt, recover
	compress
	content, filter, break
	data, filter, fields, break
	escape
	fail
	function, return
	global
	if, else, elseif
	list, break
	import
	include
	Supported options
	join
	local
	macro, nested, return
	nested
	return
	noparse
	nt
	rpl
	setting
	skip
	switch, case, default, break
	t, lt, rt
	user-defined directive
	visit, recurse, fallback
	recurse

	Chapter 7. Method Reference
	avg
	bazaarvoiceauthstring
	clickthrough
	converttimezone
	dayadd
	decrypt
	emaildomain
	encrypt
	exists
	facebookjoinus
	facebooklike
	facebookshare
	firstname
	form
	houradd
	load
	localtoutc
	max
	messagedigest
	min
	minuteadd
	monthadd
	nonce
	nonemptyfields
	parsejson
	parsexml
	rand
	randomsubset
	secondadd
	shorturl
	tracking
	Creating a tracking string without additional parameters
	Creating a tracking string with additional parameters

	twitterjoinus
	twitterpost
	Standard image

	utctolocal
	weekadd
	xslt
	yearadd

	Chapter 8. Namespace Reference
	Campaign
	Datasource Hashes
	Environment
	Launch
	Message
	About Fields and Field Types

	Appendix A. Reserved Names in RPL
	Appendix B. Operator Precedence
	Appendix C. Identifiers
	Variable names

	Appendix D. Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

