Oracle® Cloud
Data Augmentation Scripts Reference Guide

Preview
(G47686-01
December 2025

ORACLE"

Oracle Cloud Data Augmentation Scripts Reference Guide, Preview
G47686-01

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Shahana Mitra

Contributing Authors: Padma Rao

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation,” or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

Preface

Audience i
Related Documentation i

Conventions i
1 Overview of Data Augmentation Scripts

Custom Data Pipelines 1
Introduction to Data Augmentation Scripts 1
Basic Elements of Data Augmentation Scripts 1
Data Augmentation Scripts Code Structure 2
Schema 3
Building Blocks of Schema Creation 3

About Data Population 4
Rowsource 5
Column Referencing 6
Column Mapping 7
Column Manipulation 9

Table Types 13
Export Specifications 14
Supported Files 15
Data Augmentation Scripts Program Files 15
Source Definition Files 16
Parameter Definition Files 16
Module File 16
Function Files 17
Conf File 17
Query Files 18
Additional Features 18
DefaultRow 18
Time Dimensions 19
Inline Dataset 22
Advanced Data Augmentation Scripts Features 23
Incremental 23

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page i of iii

Set Operation 27

AGGREGATION ONLY Dataset 28
Transposition Table Definition 30
Pivot 30
Unpivot 33
Delete Handling 34
TRACKDELETES (Default Behavior) 34
DELETESOURCE 35
THEN DELETE 36
2 Create Custom Data Pipelines
About Creating Custom Data Pipelines 1
Prerequisites for Creating a Custom Data Pipeline 2
Create a Connection for Data Augmentation Scripts 2
Set Up Pipeline Parameters for Data Augmentation Scripts 5
Create Augmentation for Data Augmentation Scripts 6
Create a Data Augmentation Scripts Application 8
A Data Augmentation Scripts Application Development Details
= Syntax Notations
C Comments and Escape Sequences
D File Types and Data Types
E Program Structure
IMPORT Statement E-1
INCLUDE E-5
ALIAS E-6
PARAMETER E-7
Statement E-7
Generic Dataset Definition E-8
Export Specification E-8
Table Type E-8
Code Block E-9
Column Mapping Assignment E-12

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page ii of iii

Default Row Specification E-13
Aggregate Specification E-13
Primary Key Specification E-14

Delete Specification and Soft Delete E-14
Incremental Refresh Directive E-15

Code Block Load - Full and Incremental Load Instructions E-15

FROM - Compact Format E-16
AGGREGATIONONLY E-17
Deletions E-19
Schema Definition E-23
Transposition Table Definition E-26
User Defined Functions (UDFs) or Macros E-34

F Expressions

Value Returned Expressions F-1
Case Expressions F-2
Function Expressions F-3
Aggregate Functions F-3
Datatype Functions F-5
General Functions F-11

User Defined Functions Call F-12
Window Functions F-12
Boolean Returned Expressions F-14

G Column Groups, Indexes, and Partitions

COLUMNGROUPS G-1
INDEXES G-2
PARTITIONS G-3

H VIEW QUERY

| Table and Column Prefixes

J Keyboard Shortcuts for Data Augmentation Scripts

Index

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page iii of iii

ORACLE’

Preface

Learn how to get started with Data Augmentation Scripts (DAS).
Topics

e Audience

* Related Documentation

e Conventions

Audience

Data Augmentation Scripts Reference Guide is for data engineers, administrators, technical
support, product managers, and business analysts, who manage data refresh, augmentation,
transformation, and pipeline management within the Oracle NetSuite Analytics Warehouse
platform.

- Data Engineers design, implement, and monitor data pipelines, and manage data
extraction, transformation and loading.

« Administrators configure and maintain the Oracle NetSuite Analytics Warehouse
platform, schedule data pipelines, refresh data, and manage system integrations.

e Customer Support Engineers help customers and partners set up and use Oracle
NetSuite Analytics Warehouse.

* Product Managers and Business Analysts create product prototypes.

Related Documentation

These related Oracle resources provide more information.

e Oracle Cloud http://cloud. oracl e.com

» Getting Started with Oracle Cloud

 Managing and Monitoring Oracle Cloud

e Get Started with Oracle NetSuite Analytics Warehouse
e Getting Started with Oracle Analytics Cloud
e Visualizing Data and Building Reports in Oracle Analytics Cloud

e Preparing Data in Oracle Analytics Cloud

Conventions

The following text conventions are used in this document.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page i of ii

http://cloud.oracle.com
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/index.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/mmocs/index.html

ORACLE’

Preface
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.
italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.
nonospace Monospace type indicates commands within a paragraph, URLSs, code in

examples, text that appears on the screen, or text that you enter.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page ii of ii

Overview of Data Augmentation Scripts

From the Oracle NetSuite Analytics Warehouse Administrator Console, you can build
organization-specific or industry-specific data pipelines programmatically with custom logic
using Data Augmentation Scripts.

Topics:

e Introduction to Data Augmentation Scripts

e Supported Files
e Additional Features

* Advanced Data Augmentation Scripts Features

Custom Data Pipelines

Data Augmentation Scripts (DAS) is a declarative ETL language designed to help you build
custom data pipelines from the Oracle NetSuite Analytics Warehouse Administrator Console.

Data Augmentation Scripts (DAS) enables you to ingest data from various sources, such as
Oracle Fusion Cloud Applications or Salesforce. You can combine and transform that data,

load it into your data warehouse as new tables, and use that data to extend existing entities
with supplementary information.

Introduction to Data Augmentation Scripts

Let's explore Data Augmentation Scripts (DAS) and what you need to know to get started.

Topics:

« Basic Elements of Data Augmentation Scripts

« Data Augmentation Scripts Code Structure

Basic Elements of Data Augmentation Scripts

Data Augmentation Scripts (DAS) simplifies the process of extracting, creating, transforming,
and managing datasets.

Overview of Data Flow

This diagram illustrates the fundamental data flow, showing how data progresses from the
source to the target dataset.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 1 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts

\ 4
Source Source table datasetl dataset2
@ _ = —
{user selects source) (predefined schema) (schema inferred {Sch'?ma inherited from
from source table) derived/source table)

) Dataset Visibility: W N
Load Type: |
=ac ype; * Public »

Full Load 3
Private

* Periodic Refresh J)
(internal table not used for reporting)

Key Components of Data Flow
The key components of the dataset are:

e Source Data: The point of origin for all data processing.

- Datasetl: The primary dataset created directly from the source. The schema is inferred
from the source.

- Dataset2: The secondary dataset that can be derived from Datasetl or created directly
from the source (shown as a dotted line).

e Load Type: The refresh type for both tables using the full load or periodic refresh options.

- Dataset Visibility: The visibility of the dataset, which can be public (for reporting
purposes) or private (for internal processing only).

@® Note

e Although you can use the terms dataset and table interchangeably, in the context
of Data Augmentation Scripts syntax a dataset or a table is referred to as a
dataset.

e You have the ability to override the schema.

Create the Connection Prerequisite

To use the source data, connect to the Data Augmentation Scripts data files from the Oracle
NetSuite Analytics Warehouse Administrator Console.

See Create a Connection for Data Augmentation Scripts.

Data Augmentation Scripts Code Structure

Data Augmentation Scripts promotes a clean, modular, and declarative approach to building
datasets.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 2 of 37

ORACLE’

Chapter 1

Introduction to Data Augmentation Scripts

The structure of a Data Augmentation Scripts program mirrors the data flow diagram shown in
Basic Elements of Data Augmentation Scripts, organizing your logic into statements and code

blocks. Each code block denotes a definition and a transformation block for the target dataset.

Schema

A schema defines the structure and constraints of a target dataset.

Building Blocks of Schema Creation

The foundation of a data scripting program begins with either the source table or the data
warehouse tables in a module.

Source: Existing data structures with predefined schemas.

Module: Organized grouping of warehouse tables that assist in analyzing one or more
related business processes.

Import Source or Warehouse Tables

Run these commands to import the source table and module.

| MPORT SOURCE SALES

/1 lnport a source table

| MPORT MODULE [FA GL, FA AP|

of

nmodul es

/1 Inmport a single or list

Source tables are read-only definitions that serve as foundational building blocks for data
transformations. Modules can be imported and their underlying tables can be used directly in

the

code.

Dataset Definitions

Datasets are the primary constructs in Data Augmentation Scripts. There are two ways to
define data sets: Data sets can inherit their schema directly from a source table or a derived

table.
CUSTOMERS
Column Name Datatype
CUST_ID
CUST_NAME VARCHAR2

NUMBER (Primary Key) : §

EMAIL

VARCHAR2

AGE

NUMBER

CUSTOMERS_D

GAMING_CUSTOMER_D

Column Name
CUST_ID
CUST_NAME

EMAIL

Datatype

NUMBER (Primary Koy)
VARCHAR2

VYARCHARZ

=

Column Name
CUST_ID
CUST_NAME
EMAIL

Datatype
NUMBER (Primary Key)

VARCHAR2

VARCHAR2

AGE

NUMBER

AGE

NUMBER

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS;
CUSTOMERS[CUST_I D ;
CUSTOVERS] CUST_NAME] ;
CUSTOMERS] EMAI L] ;
CUSTOMERS[AGH] ;
PRI MARYKEY[CUST_I D] ;

TH'S
TH'S
TH'S
TH'S

END
DEFI NE DATASET GAM NG_CUSTOVER D

RONSOURCE CUSTOMVERS_D WHERE CUSTOMERS_D. AGE BETVEEN 13 AND 35;

THI'S = CUSTOVERS_D{ CUST I D] ;

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 3 of 37

ORACLE

Chapter 1
Introduction to Data Augmentation Scripts

THI'S = CUSTOVERS_Df CUST NAME] ;
THI'S = CUSTOVERS Df EMAI L] ;
THI'S = CUSTOVERS D] AGE] ;

PRI MARYKEY[CUST_I D) ;
END

These are the key characteristics of a dataset directly inheriting the schema:
e Automatically inherits and preserves the source table’s schema
e Eliminates the need for any explicit column definitions .
You can also rewrite the code as:
| MPORT SOURCE CUSTQOMERS
DEFI NE DATASET CUSTOVERS D FROM CUSTOMERS[CUST | D, CUST_NAME, EMAI L, AGE] END
DEFI NE DATASET GAM NG_CUSTOMER D
ROASOURCE CUSTOMERS D WHERE CUSTOMERS D. AGE BETVEEN 13 AND 35;
TH'S = CUSTOVERS D[CUST_I D, CUST_NAME, EMAI L, AGE] ;

PRI MARYKEY[CUST_I D) ;
END

An error is displayed if a column that's not present in the corresponding table is referenced.
Example: The following code references the column GENDER that's not in the CUSTOVERS table.
TH' S = CUSTOMERS_D[CUST_I D, CUST_NAME, EMAI L, GENDER] ;

An error that GENDER is not present in the table CUSTOVERS is displayed.

You can also define dataset schemas using the Custom Schema Definition feature.

DEFI NE SCHEMA DW PROJECT_D_SCHEMA
[

PRQJECT | D NUVBER(38, 0) PRI MARYKEY,
PRQJECT NUMBER VARCHAR?(32) ,
START_DATE DATE NOT NULL,

COVPLETI ON_DATE DATE

]
END
DEFI NE DATASET DW PRQJECT D

SCHEMA DW PROJECT D_SCHEMA;

ROWSOURCE PRQJECTS;

THI S[PROJECT I D] = PRQJECTS[PROJECT | D, PRQJECT NUMBER| ;
END

For more information about the data types that Data Augmentation Scripts supports, see Data
Types.

About Data Population

Data population refers to the process of filling target tables with data derived from a source,
where specific source columns are referenced and mapped to target columns, often applying

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 4 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts

column manipulation to ensure the data is correctly structured and meets business
requirements during the transformation or migration process.
Topics:
* Rowsource
e Column Referencing
e Column Mapping
e Column Manipulation

Rowsource
ROASCURCE defines the initial data before any transformations are performed.
You can consider ROWSOURCE as an input from a single table, multiple table joins or unions, and
filter conditions, that you can further refine to produce the final dataset.
ROWSOURCE with a single dataset
In its most basic form, ROABOURCE points directly to a single table:

Source Table Dataset 1

—t

rowsource

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOVERS_D
RONSOURCE CUSTOVERS;
TH S = CUSTOMERS;
END

In this example, the RONSOURCE stores all the records from the CUSTOMERS table.
You can rewrite this code example in the most compact form as shown:

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOMERS D FROM CUSTOMERS END

ROWSOURCE with multiple datasets

ROANSQURCE becomes more powerful when complex operations, such as joins, are performed.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 5 of 37

ORACLE’

Dataset 1

Dataset 2

Chapter 1
Introduction to Data Augmentation Scripts

join resultset

rowsource

optional filter conditions

| MPORT SOURCE [CUSTOMERS, COUNTR! ES]

DEFI NE DATASET CUSTOMERS D
ROASOURCE CUSTOVERS;
TH' S = CUSTOMERS;

END

DEFI NE DATASET GAM NG_CUSTOMER _C
ROWSOURCE CUSTOMERS_D I NNER JO N COUNTRI ES ON (CUSTOMVERS_D. COUNTRY_I D =
COUNTRI ES. COUNTRY_| D) WHERE CUSTOMERS_D. CUST_YEAR OF_BI RTH > 1983;
TH' S = CUSTOMERS_D;
TH' S = COUNTRI ES[COUNTRY_NAME, COUNTRY_REG ON, COUNTRY_SUBREG Q] ;
PRI MARYKEY[CUST_I D) ;

END

In this example, the ROANSCURCE for creating the target dataset GAM NG_CUSTOMER_C is created
using the COUNTRI ES source, CUSTOVERS D dataset, and CUST_YEAR OF BI RTHffilter.

Column Referencing

Column referencing is the process of identifying and accessing specific columns from a data
source or table.

You can reference a column in three ways:

e table_nane. col um_nane
In this example, the traditional SQL convention of referencing a column is followed
(CUSTOVERS. CUST _I D).

e tabl e_nane[col um_nane]
Data Augmentation Scripts supports a list of columns so a single column can also be
referred to as CUSTOMERS[CUST_ID].

e THS. col um_nane
The keyword THIS refers to the current target table.

THI S[1D, FIRST_NAME, LAST_NAME] = CUSTOVERS] CUST I D, FI RST_NANE, LAST NAME] ;
THI S[FULL_NAME] = CONCAT WS(‘* ', TH'S. FI RST_NAME, THI S. LAST_NAME, THIS.1D) -
DATATYPE VARCHAR2(18):

‘

/llnstead of repeating the concat_ws logic
TH SINEW I D] =

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 6 of 37

ORACLE

Chapter 1
Introduction to Data Augmentation Scripts

UPPER(CONCAT W(* ', TH'S. FI RST_NAME, THI S. LAST_NAME, THIS. 1 D)) ;

/Iwe can refer the FULL_NAME using TH'S
TH SINEW I D] = UPPER(THI S. FULL_NAME) ;

Column Mapping

Column mapping is the process of deriving the schema of the target dataset from the source
dataset, enabling you to select all columns, select some columns, or exclude columns from the
source dataset, based on the needs of the business user.

You can choose to:

e Select all columns

e Select some columns

e Exclude columns

Select all columns

If you select all the columns from the source table or derived dataset, the column properties of
the source dataset are inherited by the target dataset. The target dataset contains all the
columns from the source or derived dataset with no modifications to the schema.

CUSTOMERS
CUST_ID{pk) | CUST_FIRST_NAME | CUST_LAST_NAME CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MARITAL_STATUS | CUST_CITY COUNTRY_ID
NUMBER VARCHARZ2(38) VARCHARZ2(38) CHAR NUMBER VARCHAR2(38) VARCHAR2(38) NUMBER
CUSTO I\&SD
CUST_ID{pk) | CUST_FIRST_NAME | CUST_LAST_NAME CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MARITAL_STATUS | CUST_CITY COUNTRY_ID
NUMBER VARCHARZ2(38) VARCHARZ2(38) CHAR NUMBER VARCHAR2(38) VARCHAR2(38) NUMBER

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOVERS_D
RONSOURCE CUSTOMERS;
TH S = CUSTOMERS;
END

In this example, these eight columns from the source table CUSTOVERS are in the target table
CUSTOVERS D with no modifications to their properties:

< QUSTID
« CUST_FIRST _NAME

. CUST_LAST NAME

. CUST_GENDER

« CUST_YEAR OF BIRTH
« CUST_MARI TAL_STATUS

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 7 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts

< CUST.OTY
« COUNTRY_ID

You can also simplify the code in the following way:

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOVERS_D FROM CUSTOVERS END

Select some columns

You can choose to bring in a subset of columns from the schema of the source or derived

dataset.
CUSTOMERS
CUST ID[ok] | CUST_FIRST NAME | CUST_LAST NAME | CUST GENDER | CUST_YEAR OF BIRTH | CUST_MARITAL STATUS | CUST CITY COUNTRY_ID
NUMBER VARCHAR2(38) VARCHAR2(38) CHAR NUMBER VARCHAR2(38) VARCHAR2{38) NUMBER
CUSTOMERS_D
CUST_IDf-k) | CUST_FIRST_NAME | CUST_LAST NAME | CUST_YEAR OF BIRTH | COUNTRY ID | CUST_MARITAL_STATUS
MUMBER | WARCHARZ(38) | WARCHAR2(38) | NUMBER | wumeer | VARCHAR2(38)

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS;
THI'S = CUSTOVERS] CUST I D, CUST_FI RST_NAME, CUST_LAST_NAME,
CUST_YEAR OF_BI RTH, COUNTRY_| D, CUST_MARI TAL_STATUS] ;
END

In this example, only these selected columns from the source table CUSTOVERS form the
schema in the target dataset CUSTOVERS _D:

< QUSTID
. CUST_FIRST _NAME

. CUST_LAST_NAME

. CUST_YEAR OF_BIRTH
« COUNTRY_ID

« CUST_MARI TAL_STATUS

You can also simplify the code in the following way:

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOMERS D FROM CUSTOVERS[CUST | D, CUST_FI RST_NAME,
CUST_LAST_NAME, CUST_YEAR OF BI RTH, COUNTRY_I D, CUST_MARI TAL_STATUS] END

Exclude columns

If you want to exclude certain columns from the source table or derived dataset, you can use
the EXCLUDE keyword. The remaining columns remain in the target dataset.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 8 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts
CUSTOMERS
CUST_ID{pk) CUST_FIRST_NAME CUST_LAST_NAME CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MARITAL_STATUS CUST_CITY COUNTRY_ID
NUMBER VARCHAR2(38) VARCHAR2(38) CHAR NUMBER VARCHAR2(38) VARCHAR2(38) NUMBER

®

&3

CUSTOMERS_D

CUST_ID{pk)

CUST_FIRST_NAME

CUST_LAST_NAME

CUST_YEAR_OF_BIRTH

CUST_CITY

COUNTRY_ID

NUMBER

VARCHAR2(38)

VARCHAR2(38)

NUMBER

VARCHAR2(38)

NUMBER

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOVERS_D
RONSOURCE CUSTOMERS;
TH S = CUSTOVERS EXCLUDE [CUST_GENDER, CUST_MARI TAL_STATUS] ;

END

You can also simplify the code in the following way:

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOMERS D FROM CUSTOMERS EXCLUDE
[CUST_GENDER, CUST_MARI TAL_STATUS] END

Column Manipulation

Column manipulation involves applying operations, such as renaming and transformations, to

the values of one or more columns to prepare or modify data during processing.

You can manipulate columns in the following ways:

¢ Rename columns

¢ Transform Column Data

Rename Columns

You can rename columns during the dataset definition without altering the underlying source

data.

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

CUSTOMERS
CUST_ID{pk) | CUST_FIRST_NAME | CUST_LAST_NAME | CUST_GENDER | CUST_YEAR_OF_BIRTH | CUST_MARITAL_STATUS | CUST_CITY COUNTRY_ID
MNUMBER VARCHARZ(38) WARCHARZ(38) CHAR NUMBER VARCHARZ(38) VARCHARZ(38) NUMBER
CUSTOMERS_D
1Dk} FIRST_MAME LAST_NAME
NUMBER VARCHARZ(38) VARCHARZ2({38)

December 3, 2025
Page 9 of 37

ORACLE’

Chapter 1
Introduction to Data Augmentation Scripts

Example:

| MPORT SOURCE CUSTOMERS

DEFI NE DATASET CUSTOMERS_D
ROASOURCE CUSTOVERS;

/I col umm renani ng
TH S[1 D, FI RST_NAME, LAST_NAME] =
CUSTOVERS[CUST _I D, CUST_FI RST_NAME, CUST_LAST_NAME] ;
END

In this example, you create the columns | D,FI RST_NAME,LAST NAME in the target table
CUSTOVERS_D with the same values and column properties as CUST_| D,
CUST_FI RST_NAME,CUST_LAST_NAME from the source table CUSTOVERS.

Transform Column Data
You can transform column data in the following ways:
e Assign Static Column Values

e Apply Functions
e Create User-Defined Functions

* Specify the Data Type

Assign Static Column Values

You can directly assign fixed literal values to one or more columns. The values must be from
these following types: NUMBER, VARCHAR2, DATE, Ti nest anp.

CUSTOMERS
CUST_IDfok) | CUST_FIRST_MAME | CUST_LAST_NAME | CUST_GENDER | CUST_YEAR_OF BIRTH | CUST_MARITAL_STATUS | CUST_CITY COUNTRY_ID
NUMBER VARCHARZ(38) WVARCHAR2(38) CHAR MNUMBER WARCHAR2(38) VARCHARZ(38) NUMBER
X] L} CUSTOMERS_D
10pk) FIRST_MAME LAST_MAME CUST_CLASS_ID CUST_DESC CUST_CLASS
MNUMBER VARCHARZ(38) VARCHARZ{3E| NUMBER MARCHARZ{38) WARCHARZ{3E|
1001 Bob Marley 999 MEW CUSTOMER MEW CUSTOMER
| |
\ /
|
newly created columns
Example:

DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS WHERE CUSTOMERS. CUST JOI NI NG DATE = * 2025/ 02/ 24’ ;
THI S[1 D, FI RST_NANE, LAST_NAVE] =

CUSTOVERS] CUST_| D, CUST_FI RST_NAME, CUST_LAST_NAME] ;

THI S[CUST_CLASS_I D] = 999; //NUMVBER
THI S[CUST_DESC, CUST_CLASS] = ' NEW CUSTOMER ; // VARCHAR2(38)
END

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 10 of 37

ORACLE

Chapter 1
Introduction to Data Augmentation Scripts

In this example, you've assigned the column CUST_CLASS | D to hold the static numeric value
999 and columns CUST_DESC,CUST_CLASS to hold the var char 2 value NEW CUSTOVER.

Apply Functions

Data Augmentation Scripts supports a wide range of generic functions for data manipulation.
When you apply one or more functions on the right-hand side (RHS) of a column mapping, the
resulting data populates the target column. Data Augmentation Scripts allows this, provided
that the data returned by the functions matches the expected format, such as a scalar, list, or
specific datatype.

CUSTOMERS

CUST_ID{p¥)

CUST_FIRST_NAME

CUST_LAST_NAME | CUST_GENDER | CUST_YEAR_OF BIRTH | CUST_MARITAL_STATUS | CUST_CITY COUNTRY_ID

MNUMBER

VARCHARZ{38)

VARCHARZ{38) CHAR MUMBER WARCHAR2{3E)} VARCHARZ{38) NUMBER

!

CUSTOMERS_D

LAST_MNAME

WVARCHARZ|{38)
Marley

FULL_MAME
WVARCHARZ{38)
Bob Marley

oK) FIRST_NAME
MUMEBER WARCHAR2{38)
1001 Bob

4——— newly created column

Example:

DEFI NE DATASET CUSTOMERS_D
ROWSOURCE CUSTOMERS;
THI S[| D, FI RST_NAME, LAST NAVE] =
CUSTOVERS[CUST_| D, CUST_FI RST_NAME, CUST_LAST NAME] ;
THI S[FULL_NAVE] = CONCAT W§(' ',
CUSTOVERS. CUST_FI RST_NAME, CUSTOVERS. CUST_LAST_NAME) ;
END

In this example, you apply the CONCAT_W6 function on the columns CUST_FI RST_NAME and
CUST_LAST_NAME to create the column FULL_NAME.

Create User-Defined Functions

You can create reusable user-defined functions (UDFs) that encapsulate specific logic, which
you can then apply to a single column or across multiple columns in your dataset.

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 11 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts
CUSTOMERS
CUST_ID(pk) | CUST_FIRST_NAME | CUST_LAST_NAME | CUST_GENDER | CUST_YEAR_OF_BIRTH | CUST_MARITAL_STATUS COUNTRY_ID
NUMBER VARCHAR2(38) VARCHAR2(38) CHAR NUMBER VARCHAR2(38) VARCHAR2(38) NUMBER
1001 Bob Marley M 1890 NA 2321
CUSTOMERS_D
ID(pk) FIRST_NAME LAST_NAME CUST_DESC CUST_CLASS
NUMBER VARCHAHKSB) VARCHARHSB) VARCHAR2(38) VARCHAR2(38)
1001 Bob Marley NIEW CUSTOMER NEW CUSTOIM ER

|

newly created columns

There are two ways you can use a user-defined function:

« Define the function within the main Data Augmentation Scripts program.
Example:

DEFI NE FUNCTI ON CUSTOVERTYPE(col)
CASE WHEN col > 2025/ 02/ 24’
END;
END
DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS;
THI S[| D, FI RST_NAME, LAST NAVE] =
CUSTOVERS] CUST_| D, CUST_FI RST_NAME, CUST_LAST_NAME] ;
THI S[CUST_DESC, CUST_CLASS] = CUSTOMERTYPE(X) FOR X IN
CUSTOVERS[CUST_JOI NI NG_DATE, CUST_EFF_FROM
- DATATYPE VARCHAR?;

THEN * NEW CUSTOMER ELSE ‘ OLD CUSTOVER

END
« Define the function in a . f unc file within the project directory, which you can then use

within the main Data Augmentation Scripts program with the | NCLUDE keyword.
Example:

main DAS program

my function.func\
>
INCLUDE FUNCTION ‘my_ function.func’

DEFINE FUNCTION CUSTOMERTYPE (col) DEFINE DATASET CUSTOMERS D

ROWSOURCE CUSTOMERS;
THIS[ID, FIRST_NAME,LAST_NAME] = CUSTOMERS [CUST_ID,CUST_FIRST NAME,
CUST_LAST NAME] ;
THIS[CUST DESC,CUST CLASS] = CUSTOMERTYPE (x) FOR x IN
CUSTOMERS [CUST_JOINING_DATE,CUST EFF FROM] -DATATYPE VARCHAR2 (38);
END

CASE WHEN col > ‘24/02/2025’
THEN ‘NEW CUSTOMER’
ELSE ‘OLD CUSTOMER’ END;

END

Specify the Data Type

Data Augmentation Scripts can infer the data type. You must include a datatype specification (-
DATATYPE) for the new column when the datatype can't be inferred or needs to be intentionally
overridden.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 12 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts

* Create a new column and assign a datatype value.

DEFI NE DATASET MY_SALES

ROASOURCE SALES;

TH S[PROD_VERSI ON] = 101 - DATATYPE NUMBER;
END

This example creates a column PROD_VERSI ON of the datatype NUVBER.

e Create a new column when the datatype can't be inferred.

DEFI NE DATASET MY_SALES
ROWSOURCE SALES;
THI S[I NFO] =CONCAT(SALES. PROD NAME, ' - ',
CAST(SALES. SALES_AMI AS VARCHAR2(28))) - DATATYPE
VARCHAR2(50) ;
END

In this example, you perform the CONCAT function on columns with two different data types:
PROD_NAME (VARCHAR2(38)) and SALES_AMT (NUMBER). You explicitly define the resulting
column | NFO as datatype VARCHAR2(50) .

* Create a new column and override the datatype.

DEFI NE DATASET MY_SALES

ROWSOURCE SALES;

THI S[TOTAL_SALES] = SUM SALES. SALE_AMOUNT) - DATATYPE NUVBER(10, 2);
END

In this example, the SALE_AMOUNT column is of datatype NUMBER(10) , but you specify that
the TOTAL_SALES value is stored with a specific precision as NUMBER(10, 2) .

Table Types

You define table types primarily to manage data changes appropriately, based on the business
needs, and to keep the source data and target data warehouse in sync for accurate insights.

Data Augmentation Scripts supports these two main types of tables for refreshing data:

* Updated tables: Adds new records and updates modified data in the target table.
Key characteristics of updated tables:

— Default table type, if you don't specify one.
— Retains deleted records in the Autonomous Data Warehouse.

— Useful for managing large datasets that require current data and want to retain deleted
data.

* Versioned tables: Truncates the target table during each incremental run and reinserts all
the data from the source dataset.
The key characteristic of versioned tables is that it's useful for smaller datasets that require
current data but don't need to retain deleted data.

For detailed information on data refresh, see Incremental.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 13 of 37

ORACLE Chapter 1
Introduction to Data Augmentation Scripts

Export Specifications

Oracle NetSuite Analytics Warehouse uses the Autonomous Data Warehouse as its default
data warehouse. Using export specification, Data Augmentation Scripts provides a way to
control the visibility of the datasets in Autonomous Data Warehouse.

Export specification is essential in ensuring that only the necessary datasets are exposed to
the Autonomous Data Warehouse. Limiting access to certain data or functionality enables you
to protect critical parts of the system from unintended use or modification, reducing the risk of
errors or security vulnerabilities. This separation helps maintain system integrity, enhances
modularity, and makes it easier to manage, test, and update the code over time without
disrupting the broader system.

Data Augmentation Scripts provides the following export specifications:

* PRIVATE: Typically used for creating stage or intermediate tables. These tables aren't
exported to the Autonomous Data Warehouse.
A PRIVATE VERSIONED dataset stores data temporarily for preprocessing or
transformation before updating a permanent dataset.

DEFI NE PRI VATE VERSI ONED DATASET TEMP_DAI LY SALES
ROAMSQURCE SALES;
/1 Tenporary cal cul ations
THI S[PRODUCT _I D]
TH S[SALES AMOUNT]
TH S[DI SCOUNTED_SALES]
0.10);

SALES. PROD | D,
SALES. SALES AMOUNT;
THI S[SALES_AMOUNT] - (THI S[SALES_AMOUNT] *

END

DEFI NE VERS| ONED DATASET DW MONTHLY_ SALES
ROASOURCE TEMP_DAI LY_SALES;

/'l Aggregate tenporary data into a permanent dataset

TH S[PRODUCT I D] = TEMP_DAI LY _SALES. PRODUCT | D

TH S[TOTAL_SALES] = SUM TEMP_DAI LY_SALES. DI SCOUNTED SALES);
GROUPBY[PRODUCT I D ;
PRI MARYKEY[PRODUCT I D] ;

END

The TEMP_DAI LY_SALES dataset performs temporary calculations on SALES, where
PRODUCT_I Disn't unique. This dataset has no primary key and is still allowed. No Primary
Key declaration is required. It's then used in DW MONTHLY _SALES to aggregate the data into
a permanent dataset with a PRI MARYKEY on PRODUCT I D.

- PROTECTED: Typically used for internal housekeeping or backing up a VIEW dataset.
These datasets are exported to the Oracle Autonomous Data Warehouse, but they aren't
visible to end users.

e PUBLIC: Default export specification for a dataset. These datasets are exported in the
Autonomous Data Warehouse and are visible to business users for building insights.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 14 of 37

ORACLE’

Chapter 1
Supported Files

Supported Files

Data Augmentation Scripts supports a modular file system, enabling you to create multiple file
types, such as .param .f unc, multiple Data Augmentation Scripts program files (.hr f), and so
on.

You can include these files in the Data Augmentation Scripts program by using the | NCLUDE
keyword.

Example:

[lutility is a .func file with naning convention utility.func
| NCLUDE FUNCTION “utility.func”

/1 ConfigParamis a .paramfile with naming convention ConfigParam param
| NCLUDE PARAMETER “ Confi gParam paranf

These files serve distinct purposes, as explained in the following topics:

 Data Augmentation Scripts Program Files

* Source Definition Files

* Parameter Definition Files

Module File

e Function Files

ConfFile
* Query Files

Data Augmentation Scripts Program Files

A Data Augmentation Scripts program file is a file that contains the extract, transform and load
logic for the Data Augmentation Scripts program.

Data Augmentation Scripts files have an . hrf extension.

You can create multiple . hrf files, as shown in this example:

my_customers_d.hrf —__

main.hrf

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS D
ROWSOURCE CUSTOMERS;
THIS = CUSTOMERS:;

END

—

INCLUDE HRF “my_customers_d.hrf”

DEFINE DATASET CUSTOMERS INFO

ROWSQURCE CUSTOMERS_D;

THIS

END

= CUSTOMERS D;

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 15 of 37

ORACLE Chapter 1
Supported Files

Source Definition Files

A source definition file is a file that contains one or more source definitions.
Source definition files have an . src extension.
You can create multiple . src files.

To create a source definition file, you can specify the source type and primary key, as shown in
this example:

| MPORT UPDATEABLE SOURCE CHANNELS W TH PRI MARYKEY[CHANNEL_| D]
| MPORT VERSI ONED SOURCE CUSTOMERS W TH PRI MARYKEY[CUSTOMER I D]
FI LTEREDBY(CUST_VALID = 'D') AS CUST

UPDATEABLE is the default when the Last Updat ed Date (LUD) is in the source table.

Parameter Definition Files

A parameter definition file is a file that contains one or more parameter definitions.
Parameter definition files have a . par amextension.
You can create multiple . par amfiles.

Parameter input values act as configurable constants that influence the logic of the Data
Augmentation Scripts program. They provide flexibility by enabling you to adjust key values
without changing the main logic of the program, as shown in this example:

DEFI NE PARAMETER PARAM SEGMVENT_A CHAR, VARCHAR2(20), "Segment A" END
DEFI NE PARAMETER PARAM SEGMVENT_B CHAR, VARCHAR2(20), "Segment B" END

DEFI NE PRI VATE DATASET SALES SEGVENT F
ROWSOURCE SO,

TH'S = SO. CUST_I D;

THI S[TOTAL_AMI_SOLD] = SUM SO AMOUNT_SOLD) ;
GROUPBY[CUST_I D] ;

END

DEFI NE DATASET CUSTOVERS_SALES_SEGVENT F
ROWSOURCE CUST | NNER JOI N SALES SEGVENT F ON (CUST. CUST_ID = SSEG CUST_ID);
TH'S = CUST;
THI S[SALES_SEGMVENT] = CASE WHEN SSEG TOTAL_AMI_SOLD > 10000
THEN PARANETER[PARAM SEGVENT A CHAR|
ELSE PARAVETER] PARAM SEGVENT B_CHAR]

END;
PRI MARYKEY[CUST_I D) ;
END
Module File
A module file is a single read-only file that contains the Data Augmentation Scripts application
definition.

The module file has a . nbd extension.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 16 of 37

ORACLE

Chapter 1
Supported Files

This file is auto-generated when you create a Data Augmentation Scripts application.

Example:

MODULE TI ME
SOURCETYPE FUSI ON
NAVESPACE TI ME_
PREFI X DW FA X_

All the target datasets generated by the Data Augmentation Scripts program contain the prefix
DW X, where source is x. Example: If source is Fusion, then the source is Fusion applications,
and the prefix is DWW FA X .

Function Files

Conf File

A function file is a file that contains a list of user-defined functions.
Function files have a . f unc extension.
You can create multiple . f unc files.

Example:

DEFI NE FUNCTI ON dat eTol nt (col) | NT(DATE_FORMAT(col , ' yyyyMvid')) END

For more information, see Create User-Defined Functions.

A . conf fileis a single ADW conf file that contains constructs such as indexes, column groups,
and partitions for PROTECTED and PUBLIC datasets.

You can use . conf files to improve performance of reporting queries in the database.
The file has a . conf extension.

A . conf file contains:

e Column groups: A set of columns in a single dataset that's treated as a single unit for
guery performance.
Example:

COLUMNGROUPS

[
CREATE COLUWMNGROUP COL_SALES1 ON SALES[CUST_ID, SALE_ID];
CREATE COLUWMNGROUP COL_CUSTOMER ON CUSTOMER] CUST_I D, CUST_NAME] ;

]

* Indexes: A quick lookup of data in a column or columns of a table using B-Tree indexing.
Example:

| NDEXES

[
CREATE NON-UNI QUE | NDEX city_index ON CUST_D[CUST_CI TY, COUNTRY_ID];
CREATE UNI QUE | NDEX uni que_city_indx ON CUST D[CUST I D,

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 17 of 37

ORACLE’

Query Files

Chapter 1
Additional Features

CUST_FI RST_NAME] ;
]

< Partitions: A partition allows tables, indexes, and index-organized tables to be subdivided
into smaller pieces for managing and accessing them at a finer level of granularity. A table
can have only one partition.
Example:

PARTI TI ONS

[
/1 LIST

CREATE LI ST PARTI TI ON ON PRODUCT_SALES[PROD_CATEGORY] ;

A query file is a file that contains view definitions using SQL language, as an alternative to the
standard dataset definition approach: DEFI NE VI EW DATASET.

Query files have a . qry extension.
You can create multiple . gry files.

Example: To perform a channel s. qry, enter:

SELECT

CHANNELS_D. CHANNEL _CLASS, CHANNELS_D. CHANNEL_CLASS | D, CHANNELS_D. CHANNEL_DESC,
CHANNELS_D. CHANNEL _| D, TRUNC(SYSDATE) AS CURDATE

FROM DW LOCCDE_X_APP_CHANNELS D CHANNELS_D

Additional Features

DefaultRow

Let's look at these additional features that Data Augmentation Scripts supports.
Topics:

* DefaultRow

e Time Dimensions

e |nline Dataset

You can define a default or fallback row in a dataset by using the DEFAULTROWfeature when a
foreign key is missing or invalid.

Defining a default or fallback row serves as a catch-all during joins, aggregations, and data
quality checks.

| MPORT SOURCE CHANNELS
DEFI NE DATASET CHANNELS D

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 18 of 37

ORACLE

Chapter 1
Additional Features

ROASOURCE CHANNELS;
TH'S = CHANNELS[CHANNEL_| D, CHANNEL_DESC, CHANNEL_CLASS, CHANNEL_CLASS | D ;
DEFAULTROW
[
THI S CHANNEL _I D, CHANNEL_CLASS |1 0] = 999;
THI S[CHANNEL _DESC, CHANNEL_CLASS] = ' NO CHANNEL';

]
END

In this example, a synthetic row with the constant values of 999 for the columns
CHANNEL _| D, CHANNEL_CLASS_I D, and “NO CHANNEL" for the columns
CHANNEL _DESC, CHANNEL_CLASS is inserted using DEFAULTROW

Time Dimensions

Data Augmentation Scripts provides built-in time dimensions for you to extract information or
directly incorporate these dimensions.

You can use these built-in time dimensions by importing the system module which contains
dimensions, such as Day, Week, Month, Quarter, and Year.

Example:

| MPORT MODULE SYSTEM

DEFI NE DATASET MY_DAY FROM DW APPS_DAY_D END

The Data Dimension Language (DDL) of the ready-to-use system time dimensions are shown
in the following sections:

- DW_APPS DAY D

- DW_APPS WEEK D

« DW_APPS MONTH D

e DW_APPS QUARTER_D
- DW_APPS YEAR D

DW_APPS_DAY_D
The following table shows the data available for the DW_APPS_DAY_D time dimension:

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 19 of 37

ORACLE"

Chapter 1

Additional Features

Name | Label | DataType | Primary Key |
CALENDAR DATE | Calendar date. | DATE |
CAL DAY ID | Date in YYYYMMDD format. | NUMBER | Y
CAL_HALF_NUMBER | Calendar half-year of this day. Possible values are 1 and 2. | NUMBER |
CAL_MONTH_CCDE | Calendar month period. For example, 197%/12. | VARCHARZ |
CRL_MONTH_END_DATE | End date of the month. | DATE |
CAL MONTH_END DATE_ID | Last day of month in YYYYMMDD format. | NUMBER |
CAL_MONTH_ID | Month identifier in YYYYQMM format. For example, 1979412, | NUMBER |
CAL_MONTH_LOCALE NAME | Calendar month name of this day. Possible values are January, February | VARCHARZ |
CAL MONTH NUMBER | Calendar month of this day. Possible values are 1 through 12. | NUMEBER |
CAL_MONTH_ START DATE | Start date of the month, | DATE |
CAL MONTH START DATE ID | First day of month in YYYYMMDD format. | NUMBER |
CAL_QUARTER_CODE | Calendar quarter period. For example, 1979 Q4. | VARCHARZ |
CAL QUARTER END DATE | End date of the quarter. | DATE |
CAL QUARTER END DATE ID | Last day of quarter in YYYYMMDD format. | NUMBER I
CAL_QUARTER_ID | Quarter identifier in YYYYQ format. For example, 19794. | NUMBER |
CAL_QUARTER NUMBER | Calendar quarter of this day. Possible values are 1, 2, 3, and 4. | NUMBER |
CAL_QUARTER_START_DATE | Start date of the quarter. | DATE |
CAL_QUARTER_START_DATE_ID | First day of quarter in YYYYMMDD format. | NUMBER |
CAL_TRIMESTER_NUMBER | Calendar trimester of this day. Possible values are 1, 2 and 3. | NUMBER |
CAL_WEEK_CODE | Calendar week period. For example, 19%73% Week53. | VARCHARZ |
CAL_WEEK_END DATE | End date of the week. | DATE |
CAL_WEEK_END DATE_ID | Last day of week in YYYYMMDD format. | NUMBER I
CAL WEEK_ID | Week identifier in YYYYW format. For example, 197948, | NUMEBER |
CAL WEEK NUMBER | Calendar week identifier. Possible values are 1 through 53. | NUMBER |
CAL WEEK START DATE | Start date of the week. | DATE |
CAL WEEK START DATE_ID | First day of week in YYYYMMDD format. | NUMBER |
CAL_YEAR CODE | Calendar Year period. For example, 1979 | VARCHARZ |
CAL_YEAR END DATE | End date of the year. | DATE I
CAL_YEAR_END_DATE_ID | Last day of year in YYYYMMDD format. | NUMBER |
CAL_YEAR_ID | Year identifier in YYYY format. For example, 1979. | NUMBER |
CAL_YERR START_DATE | Start date of the year. | DATE |
CAL_YEAR START DATE_ID | First day of year in YYYYMMDD format. | NUMBER |
DAY AGO DATE | Previcus day's date. | DATE |
DAY AGO_ID | Previous date in YYYYMMDD format. | NUMBER |
DAY CODE | Name of the day. Possible values are S5UN, MON, and so on. | VARCHARZ |
DAY LOCALE NAME | Full Name of the day. Possible values are Sunday, Monday..etc | VARCHARZ |
DAY OF MONTH | Day of the month. Possible values are 1 through 31. | NUMBER I
DAY OF WEEK | Day of the week. Possible walues are 1 through 7. | NUMBER |
DAY OF YEAR | Day of the year. Possible values are 1 through 366. | NUMBER |
FIRST DAY CAL MONTH FLAG | Indicates that this day is the first day of the calendar month. | VARCHARZ |
FIRST DAY CAL QTR FLAG | Indicates that this day is the first day of the calendar quarter. | VARCHARZ |
FIRST_DAY CAL WEEK FLAG | Indicates that this day is the first day of the calendar week. | VARCHARZ |
FIRST DAY CAL YEAR FLAG | Indicates that this day is the first day of the calendar year. | VARCHARZ |
JULIAN_DAY NUMBER | Date in Julian format. | NUMBER |
LAST_DAY CAL_MONTH_FLAG | Indicates that this day is the last day of the calendar month. | VARCHARZ |
LAST_DAY CAL_QTR_FLAG | Indicates that this day is the last day of the calendar guarter. | VARCHARZ |
LAST_DAY CAL_WEEK_FLAG | Indicates that this day is the last day of the calendar week. | VARCHARZ |
LAST DAY CAL YEAR FLAG | Indicates that this day is the last day of the calendar year. | VARCHARZ |

DW_APPS_WEEK D

The following table shows the data available for the DW_APPS_WEEK_D time dimension:

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 20 of 37

ORACLE" Chapter 1

Additional Features

Name	Label	DataType	Primary Key
CAL_WEEEK_CODE	Calendar week period Name. For example, 1979 Week533.	VARCHARZ	
CAL WEEK END DATE	End date of the week.	DATE	
CAL_WEEK_END DATE ID	Last day of week in YYYYMMDD format.	NUMBER	
CAL WEEK ID	Week identifier in YYYYW format. For example, 187949,	NUMBER	X
CAL_WEEK_NUMEER	Calendar week identifier. Possible values are 1 through 53	NUMBER	
CAL_WEEK_START_DATE	Start date of the week.	DATE	
CAL WEEK_START DATE ID	First day of week in YYYYMMDD format.	NUMBER	
CAL_YEAR CODE	Calendar year period Name. For example, 19789	VARCHARZ	
CAL YEAR END DATE	End date of the year.	DATE	
CAL_YEAR END DATE ID	Last day of year in YYYYMMDD format.	NUMBER	
CAL YEAR ID	Year identifier in YYYY format. For example, 1979.	NUMBER	
CAL_YEAR START_ DATE	Start date of the year.	DATE	
CAL_YEAR START DATE_ID	First day of year in YYYYMMDD format.	NUMBER	
FIRST _WEEK_CAL YEAR FLAG	Indicates that this week is the first week of calendar year.	VARCHARZ	
LAST_WEEK_CAL YEAR FLAG	Indicates that this week is the last week of calendar year.	VARCHARZ	

DW_APPS_MONTH_D

The following table shows the data available for the DW_APPS_MONTH_D time dimension:

| Name | Label | DataType | Primary Key |
| CAL_HALF NUMBER | Calendar half-year of this day. Possible values are 1 and 2. | NUMBER | |
| CAL_MONTH_CODE | Calendar month period. For example, 1979/12. | VARCHARZ | I
| CAL_MONTH END_DATE | End date of the month. | DATE | I
| CAL MONTH END DATE ID | Last day of month in YYYYMMDD format. | NUMBER | I
| CAL_MONTH_ID | Month identifier in YYYYOMM format. For example, 1379412 | NUMBER | A I
| CAL MONTH LOCALE NAME | Calendar month name of this day. Peossible values are January, February | VARCHARZ |]
| CAL_MONTH_NUMBER | Calendar month of this day. Possible values are 1 through 12. | NUMBER |]
CAL_MONTH_START_DATE	Start date of the month.	DATE	
CAL_MONTH_START_DATE_ID	First day of month in YYYYMMDD format.	NUMBER	
CAL_QUARTER_CODE	Calendar guarter period. For example, Q4 in 1979 Q4.	VARCHARZ	
CAL_QUARTER_END_DATE	End date of the gquarter.	DATE	I
CAL_QUARTER_END_DATE_ID	Last day of quarter in YYYYMMDD format.	NUMBER	
CAL_QUARTER ID	Quarter identifier in ¥YYYYQ format. For example, 19794.	NUMBER]
CAL_QUARTER_NUMBER	Calendar quarter of this day. Possible values are 1, 2, 3, and 4.	NUMBER	I
CAL_QUARTER_START DATE	Start date of the quarter.	DATE	
CAL QUARTER START DATE ID	First day of quarter in YYYYMMDD format.	NUMBER]
CAL_TRIMESTER_NUMBER	Calendar trimester of this day. Possible values are 1, 2 and 3.	NUMBER	
CAL_YEAR_CODE	Calendar year period. For example, 1979	VARCHARZ	I
CAL_YEAR END_ DATE	End date of the year.	DATE	I
CAL_YEAR_END DATE_ID	Last day of year in YYYYMMDD format.	NUMBER	
CAL_YEAR_ID	Year identifier in YYYY format. For example, 1979.	NUMBER	I
CAL_YEAR_START DATE	Start date of the year.	DATE	I
CAL_YEAR_START DATE_ID	First day of year in YYYYMMDD format.	NUMBER	
FIRST_MONTH_CAL_QTR_FLAG	Indicates that this month is the first month of calendar quarter.	VARCHARZ	
FIRST MONTH CAL YEAR FLAG	Indicates that this month is the first month of calendar year.	VARCHARZ]
LAST MONTH _CAL QTR FLAG	Indicates that this month is the last month of calendar quarter.	VARCHAR2	
LAST_MONTH_CAL_YEAR_FLAG	Indicates that this month is the last month of calendar year.	VARCHARZ	

DW_APPS QUARTER_D

The following table shows the data available for the DW_APPS_QUARTER_D time dimension:

Data Augmentation Scripts Reference Guide

December 3, 2025
Page 21 of 37

G47686-01
Copyright © 2025, Oracle and/or its affiliates.

ORACLE’

Chapter 1

Additional Features

| CAL HALF NUMBER
| CAL_QUARTER_CODE

| CAL_QUARTER_END DATE

| CAL_QUARTER_END_DATE_ID

| CAL_QUARTER_ID

| CAL_QUARTER NUMBER

| CAL QUARTER START DATE

| CAL_QUARTER_START DATE_ID

| CAL_YEAR_CODE

| CAL_YEAR_END_DATE

| CAL_YEAR_END DATE_ID

| CAL YEAR ID

| CAL YEAR START DATE

| CAL_YEAR_START_DATE_ID

| FIRST_QUARTER_CAL YEAR FLAG
| LAST_QUARTER_CAL_YEAR_FLAG

| Label
Calendar half-year of this quarter. Possible values are 1 and
Calendar quarter period. For example, 1979 Q4.
End date of the quarter,
Last day of quarter in YYYYMMDD format.

Quarter identifier in YYYYQ format. For example, 19%794.
Calendar quarter. Possible wvalues are 1, 2, 3, and
Start date of the quarter.

First day of guarter in YYYYMMDD format.

Calendar year period.
End date of the year.
Last day of year in YYYYMMDD format.

Year identifier in YYYY format. For example, 1978%.

For example, 187

Start date of the year.
First day of year in YYYYMMDD format

Indicates that this quarter is the first quarter of calendar year.
Indicates that this quarter is the last guarter of calendar year.

| NUMBER

| VARCHAR2
| DATE

| NUMBER

| NUMBER

| NUMBER

| DATE

| NUMBER

| VARCHAR2
| DATE

| NUMBER

| NUMBER

| DATE

| NUMBER

| VARCHARZ
| VARCHAR2

DW_APPS_YEAR D

The following table shows the data available for the DW_APPS_YEAR_D time dimension:

DataType |

Primary Key |

| CAL_YEAR CODE
| CAL_YEAR_END_DATE

| CAL_YEAR_END_DATE_ID

| CAL_YEAR_ID

| CAL_YEAR START DATE

| CAL_YEAR_START_DATE_ID

Calendar year period. For example, 197
End date of the year.

Last day of year in YYYYMMDD format.
Year identifier in YYYY format.
Start date of the year.

First day of year in YYYYMMDD format.

For example, 1979

VARCHARZ
DATE
NUMBER
NUMBER
DATE
NUMBER

Inline Dataset

You can use an inline dataset to embed a static table of hard-coded values directly in your
Data Augmentation Scripts program without having to import a source or warehouse table.

The INLINE table type requires instructions for the table structure and a set of records as input.
The table is then generated and loaded with the provided data.

Example:

DEFI NE | NLI NE DATASET MYl NLI NEDATA
ROWSCURCE | NTABLE([PROMO_CATEGORY_| D: NUMBER, PROVO_CATEGCRY: VARCHAR2(128)]
VALUES

([2 ,' NO PROMOTI ON'],
[3.,'TV],

[4 ,'ad news']

)

)

PRI MARYKEY [PROMO_CATEGORY_I D) ;

END

DEFI NE DATASET PROMOTI ON_CATEGCRY_D
ROASOURCE Myl NLI NEDATA,
THI'S = MYI NLI NEDATA,

END

The output is shown in the PROMOTION_CATEGORY_D table:

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025

Page 22 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

PROMO_CATEGORY_ID (NUMBER) PK PROMO_CATEGORY (VARCHAR2)
2 NO_PROMOTION

3 TV

4 ad news

Advanced Data Augmentation Scripts Features

Data Augmentation Scripts offers advanced features for data transformations.

Topics:
e Incremental

e Set Operation
« AGGREGATION ONLY Dataset

e Transposition Table Definition

* Delete Handling

Incremental

The Data Warehouse must continuously be in sync as the source data changes over time.
The UPDATEABLE and VERSIONED table types provide options for refreshing data.

When you run the first ETL job for a data application with UPDATEABLE or VERSIONED table
types, the data in the source system or staging area and the target data warehouse are the
same.

For subsequent data refreshes, there are two ways you can keep data in sync between the
source system and target data warehouse:

* Full Refresh: Copies all the data from the source system to the data warehouse.

* Incremental Refresh: Processes only the data that was newly added or modified since the
last load from the source system to the data warehouse. Incremental refreshes are
preferred because they enable faster and more efficient updates with minimal impact on
system resources.

The following diagram illustrates how data changes are handled for VERSIONED and
UPDATEABLE table types:

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 23 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

Insert New Records,

Updatable Update Changed Records

Target Table Type? Publish dataset

Truncate Target Table,
Insert Records

Versioned

Table Type with Source Dataset

* VERSIONED: The system extracts all the data from the source table.

The data in the mirror copy is truncated and loaded again from the source system. Deleted
records aren't retained in the data warehouse.

Example:

| MPORT VERSI ONED SOURCE SALES

All data from SALES is extracted.

 UPDATEABLE: The system extracts only the changed records from the source, and
updates only the changed data in the mirror copy of the extracted data.
Deleted records are retained in the data warehouse.

Example:

| MPORT UPDATEABLE SOURCE SALES W TH LUD[LAST_UPDATE_DATE]

Only the changed records from SALES are extracted.

@® Note

Deleted records need additional handling because they are no longer in the
source and can't be included in the extracted data.

Table Type with Target Dataset

* VERSIONED: The system extracts all the data from the source table.
Deleted records aren't retained in the data warehouse.

Data Augmentation Scripts Reference Guide

G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 24 of 37

ORACLE

Chapter 1
Advanced Data Augmentation Scripts Features

Example:

| MPORT VERSI ONED SOURCE SALES

DEFI NE VERSI ONED DATASET DW SALES_FACT FROM SALES END

The SALES dataset is fully refreshed even if some records don't have any updates.

Source table type: VERSIONED
Target table type: VERSIONED

IRD not allowed

IMPORT VERSIONED SOURCE SALES sales oducts
re
IMPORT VERSIONED SQURCE PRODUCTS P "
DEFINE VERSIONED D.
ROWSOURCE SA

PASET DW_SALES_F
INNER JOIN PRODUCTS on SALES.PROD ID = PRODUCTS.PROD_ID; Canonical Representation: sales [><] products

THIS SALES;
THIS = PRODUCTS EXCLUDE [PROD_ID];

PRIMARYKEY [SALE_ID];
END

UPDATEABLE
The incremental refresh directive (IRD) identifies which dataset drives changes for the
insert or update selection. When you assign a source as the change-driving dataset:

— ETL processes consider all change records in the driving source and their matching
records in other sources.

— If a non-driving source has changes that do not have matching changes in the driving
source, the process ignores these changes during the incremental refresh.

You must specify the IRD for any dataset that uses two or more sources.

When defining a target dataset in the Data Augmentation Scripts application, you must
decide its incremental data refresh behavior.

If the table type is UPDATEABLE, you have to nominate the input tables that are driving
the changes using the incremental refresh directive (IRD) of REFRESH ON CHANGES in
the target dataset.

| MPORT UPDATEABLE SOURCE SALES
DEFI NE UPDATEABLE DATASET DW SALES FACT FROM SALES END

New and updated records in SALES are updated in the target dataset DW SALES FACT.

This directive within the DEFINE DATASET block handles the complexity of change
detection and updating of the target datasets. You don't have to write boilerplate code to
detect changes and deal with complex logic for updating target datasets.

The directive also provides predictability in the incremental refresh behavior:

— When only one input table is used to create an UPDATEABLE dataset, the
<incremental-refresh-directive> and the change driving input table are inferred.
In the following diagram, the two lines of code illustrate how to create the dataset and
define its incremental refresh behavior.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 25 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

IMPORT UPDATEABLE SOURCE SALES
DEFINE UPDATERBLE DATASET DW_SALES F
ROWSOQURCE SALES; sales
THIS = SALES;
REFRESH ON CHANGES IN [SALES];
END

IMPORT SOURCE SALES
DEFINE DATASET DW_SALES F FROM SALES END

Canonical Representation: A sales

In this example, only the changed records from Sales are brought in.

— When multiple input tables are used to create an UPDATEABLE dataset, you must
explicitly specify which input tables are the change driving tables in the <incremental-
refresh-directive>.

Changed records from the driving tables identify the delta and then considers only the
corresponding matching records from the non-driving tables. Changes in the non-
driving tables by themselves are ignored.

Source table type: UPDATEABLE
Target table type: UPDATEABLE

IRD: Only on one of the input tables

IMPORT SOURCE SALES WITH l.UD[L.AST_UPDAI}‘]_BATE:
IMPORT SOURCE PRODUCTS WITH LUD[LAST_UPDATE_DATE] sales products

DEFINE DATASET DW_SALES F
ROWSOURCE SALES INNER JOIN PRODUCTS on SALES.PROD_ID = PRODUCTS.PROD_ID;
Canonical Representation: A sales [><] products
= SALES;
= PRODUCTS EXCLUDE [PROD_ID];

PRIMARYKEY [SALE_1D]:

REFRESH ON CHANGES IN [SALES];
END

In this example, Sales is the change-driving table. Only the changed (A) records from
Sales are joined with Products.

Source table type: UPDATEABLE
Target table type: UPDATEABLE

IRD: On all of the input tables

IMPORT SOURCE SALES WITH AST_UPDATE_DATE] sales products

IMPORT SOURCE PRODUCTS WITH L [LAST_UPDATE_DATE]

DEFINE DATASET DW_SALES_F
ROWSOURCE SALES INNER JOIN PRODUCTS on SALES.PROD_ID = PRODUCTS.PROD_ID;

Canonical Representation: sales [><] products I
IA sales Il Aproducts

THIS = S
THIS = PRODUCTS EXCLUDE [PROD_ID];
PRIMARYKEY [SALE_ID];

i ON CHANGES IN [SALES, PRODUCTS]):

END

In this example, Sales and Products are both change-driving tables. The changed (A)
records from both tables are brought in.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 26 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

Source table type: UPDATEABLE
Target table type: UPDATEABLE

IRD: On few of the input tables

IMPORT SOURCE SALES WITH L ST_UPDATE_DATE] products
IMPORT SOURCE PRODUCTS WITH UD[LAST UPDATE DATE]

IMPORT SOURCE FROMOTIONS WITH LUD[LAST_UPDATE_DATE] sales

DEFINE DATASET DW_SALES_F promotions

ROWSOURCE SALES INNER JOIN PRODUCTS ON SALES.PROD_ID = PRODUCTS.PROD_ID
INNER JOIN PROMOTIONS ON SALES.PROMO_ID = PROMOTIONS,PROMO ID:

THIS
THIS

THIS =

Canonical Representation: Ens [><] products | <] promation
A sales Il Aproducts

UDE [PROD_ID];

TIO! CLUDE [PROMO_ID];

PRIMARYKEY [SALE_ID]:

REFRESH ON CHANGES IN [SALES, PRODUCTS]:
END

In this example, changed (A) records from both change-driving tables Sales and
Products are joined with the non-change driving table Promotions.

The following table summarizes the behavior of source and target table types for
UPDATEABLE and VERSIONED refreshes:

SOURCE TARGET DESCRIPTION TYPICAL
TYPE TYPE USAGE
UPDATEABLE UPDATEABLE This is the most common and default combination. Transactional
« New records are inserted and changed records are updated in the target dataset. Eﬁ:::;:ns
+ The records that got deleted in the source system are retained in the data ;
— that should
retain deleted
records
VERSIONED VERSIONED « Target table is truncated. Transactional
« All data from the source table is inserted in the target dataset. or aggregate
IRD not allowed i) .
+ The records that got deleted in the source system are not retained in the data tables that
warehouse. should not
contain deleted
records

Set Operation

A SET dataset forms when you combine two or more input datasets through a set operation.
You can also use it as a source for another dataset.

In the following image, a set operation combines customer records from the US_SRC and EU_SRC
tables to create a single ALL_CUSTOMERS table that contains customers from both the US and
EU sources:

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 27 of 37

ORACLE’

Chapter 1

Advanced Data Augmentation Scripts Features

US_SRC

CUST_ID

REGION

101
102

Example:

| MPORT SOURCE CUSTOMERS FI LTEREDBY (REG ON = 'US') AS US_SRC
| MPORT SOURCE CUSTOMERS FI LTEREDBY (REGON = "EU) AS EU SRC

DEFI NE DATASET ALL_CUSTOMERS

) (: ™)
EU_SRC
CUST_ID NAME REGION
201 Emma EU
202 Carlos EU
v, L =
UNION }

!

ALL_CUSTOMERS

CUST_ID NAME REGION
101 John us
102 Lisa us
201 Emma EU
202 Carlos EU

ROABOURCE UNI ON[US_CUSTOMERS, EU_CUSTOMVERS] ;

TH S = US_CUSTOMVERS;
PRI MARYKEY[CUST_I D] ;

END

AGGREGATION ONLY Dataset

AGGREGATI ONONLY datasets are tables that contain summarized data in a single row.

The following rules are for creating AGGREGATI ONONLY datasets:

* The dataset must always be VERSI ONED and have only one row.

e All column assignments must use aggregate functions.

e No Primary Key declaration is required.

e The dataset is treated as a regular dataset and not as aggregation-only dataset if GROUPBY

is specified.

Follow these rules for using AGGREGATI ONONLY datasets as input in ROASOQURCE:
e Only CRCSS- JA Nis allowed with AGGREGATI ONONLY tables in ROASCURCE.
e If a dataset is created using only an AGGREGATIONONLY dataset in ROWSOURCE, then

the derived table must also be marked as AGGREGATI ONO\LY dataset.

e SET operations aren't supported directly on AGGREGATI ONONLY datasets.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 28 of 37

ORACLE

e REFRESH ON CHANGES | N aren't allowed on AGGREGATI ONONLY tables.

Example:

| MPORT SOURCE SALES

/1 Single colum assignnent

DEFI NE AGGREGATI ONONLY DATASET DW SALES AGG
ROASCURCE SALES;

THI S[AVG_SALES AMT] = AVG(SALES[AMOUNT_SOLD]) ;
END

/1 Miltiple colum assignnents
DEFI NE AGGREGATI ONONLY DATASET DW SALES AGGL
ROWSOURCE SALES;

THI S[AVG_SALES_AMI] = AVG(SALES[AMOUNT_SOLD]) ;
THI S[SUM SALES_AMT]
THI S[M N_SALES_AMT]
THI S[MAX_SALES_AMT]

END

SUM SALES[AMOUNT_SOLD]) ;
M N(SALES[AVOUNT_SOLD]) ;
MAX(SALES[AVOUNT_SOLD]) ;

/1 Derived from anot her AGGREGATI ONONLY dat aset
DEFI NE AGGREGATI ONONLY DATASET DW SALES AG&2
ROASOURCE DW SALES AGR;

THI'S = DW SALES AG® [AVG SALES AMT] ;;

END

The following output is derived:

Output:

Input Source table:

Chapter 1

Advanced Data Augmentation Scripts Features

SALES
SALE_ID PRODUCT AMOUNT_SOLD
1001 Laptop 1200.0
1002 Monitor 350.0
1003 Mouse 25.0
1004 Keyboard 75.0

Target tables:

DW_SALES_AGG

AVG_SALES_AMT

412.5

DW_SALES_AGG1

AVG_SALES_AMT

SUM_SALES_ AMT | MIN_SALES_ AMT

MAX SALES_AMT

412.5

1650.0 25.0

1200.0

DW SALES_AGR is the same as DW SALES_AGGL.

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025

Page 29 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

Transposition Table Definition

You use the transposition table definition to restructure datasets by rotating rows into columns
(PIVOT) or columns into rows (UNPIVOT).

Topics:
e Pivot
* Unpivot

Pivot

Pivoting transforms data by converting rows into columns, enabling you to compare values
side-by-side, spot trends efficiently, and gain clear insights across categories such as months
and channels.

Example: You can create a versioned dataset SALES F using the following command:

| MPORT SOURCE SALES

DEFI NE VERSI ONED DATASET SALES_F

ROWSOURCE SALES;

THI'S = SALES[PROD | D, CHANNEL_| Dj;

THI S[TIME_I D] = DATE_FORMAT(SALES. TINE_ID,' MM);
THI S[AVOUNT_SOLD] = SUM SALES. AMOUNT_SOLD) ;
GROUPBY [PROD | D, CHANNEL_ID, TI ME_I D] ;

PRI MARYKEY[PROD_| D, CHANNEL_| D, TIME_I D] ;

END

The output of SALES F is as follows:

PROD_ID CHANNEL_ID TIME_ID AMOUNT_SOLD
1 Online Jan 500
1 InStore Jan 150
1 InStore Mar 700
2 Online Jan 200
2 InStore Feb 120
2 InStore Mar 300

Single-Column Partitioned Pivot

You can use partitioning in pivot operations to group data by specific attributes, keeping each
category, such as product or channel, distinct within the transformed dataset.

If you don't specify partition, all the columns in ROWSOURCE are included for partitioning,
except those that you use in transpositions.

Example:

DEFI NE VERS| ONED DATASET PRODUCT MONTHLY REVENUE
ROABOURCE SALES F;

PI VOT
(

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 30 of 37

ORACLE

Chapter 1
Advanced Data Augmentation Scripts Features

[¥ e SPECI FY PARTI TI ON === == smemmcmmmcmeecceeae *]
W TH N SALES F[PROD 1 D] ;

R LR EE R SPECI FY TRANSPOSI TIONS - ------mmmmmmiamm s *|
/] Either provide target colum nanmes on LHS for each of the nonth val ues
or if unspecified, it will auto-generate and map col ums Jan, Feb, Mar

TH S§[Jan_Sal es, Feb_Sal es, Mar _Sal es] = SUM SALES F. AMOUNT_SOLD) FOR
SALES F.TIME_ID IN('Jan',"' Feb',' Mar');
);

/1 Optional. If not specified, PK will be assigned.
PRI MARYKEY [PROD_I D];
END

In this example, the segment W THI N SALES F[PROD | D, CHANNEL | D] partitions the data by
Product | Dand Channel |D. The column mapping TH S[Jan_Sal es, Feb_Sal es, Mar_Sal es]
creates target columns for the months January, February, and March. The output creates
separate columns for sales in January, February, and March.

The output from pivoting the PRODUCT_MONTHLY_REVENUE dataset is shown:

Product Monthly Revenue

- 550 320 ?00 | I I I I I

Jan_Sales Feb_Sales Mar_Sales

Multi-Column Partitioned Pivot

You can use multi-column partitioning in pivot operations to group data by multiple attributes,
providing users with a more detailed view of the dataset. This method enables analyst users to
compare across dimensions, such as product and channel, helping them uncover deeper
insights and patterns.

By partitioning on both Product and Channel , you can enable analysts to track unique revenue
contributions for each combination.

Example:

DEFI NE VERSI ONED DATASET PRODUCT_BY_CHANNEL_MONTHLY_REVENUE
ROASOURCE SALES F;
Pl vOT

[¥ e SPECI FY PARTI TI ON « ==« - cermmmmmcemceeaee %]
W THI N SALES_F[PROD | D, CHANNEL | Dj

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 31 of 37

ORACLE’

Chapter 1
Advanced Data Augmentation Scripts Features

A LR SPECI FY TRANSPOSI TIONS ----------mcmmmmaaam ot */
TH S[Jan_Sal es, Feb_Sal es, Mar_Sal es] = SUM SALES F. AMOUNT_SOLD) FOR
SALES F.TIMEID IN ('Jan', 'Feb', 'Mr');

);

PRI MARYKEY [PROD | D, CHANNEL I D) ;

END

In this example, the segment W THI N SALES F[PROD | D, CHANNEL | D] partitions the data as
composite key in multiple columns, Product ID and Channel ID. The column mapping

TH S[Jan_Sal es, Feb_Sal es, Mar _Sal es] creates target columns for each of the listed
transposed values. The output generates separate columns for sales in January, February, and
March by PROD | D and CHANNEL | D.

== Online nStore

| PROD_ID | CHANNEL ID | Jan Sales | Feb Sales | Mar Sales |

_ Online 500 200 0
- InStore 150 120 700
“ Online 0 0 800
_ InStore 550 450 0

Jan_Sales Feb_Sales Mar_Sales

Multi-Dimensional Partitioned Pivot

You can use multi-dimensional partitioning in pivot operations to generate columns based on
multiple attributes while aggregating a specific value. This pivot operation reorganizes the data
to show the aggregated sales amounts for each category combination, such as Ti me and
Channel .

Example:

DEFI NE VERS| ONED DATASET PRODUCT BY CHANNEL MONTHLY REVENUE 2
ROASCURCE SALES F;
PI VOT

[* e SPECI FY PARTI TI ON ==« === s e mmemmmmeceae o x|
W THI N SALES_F[PROD_I D] ;

[e SPECI FY TRANSPCOSI TIONS ---------nmmmmma - - */

/1 Sal es per nonth

TH S[Jan_Sal es, Feb_Sales, Mar_Sal es] = SUM SALES F. AMOUNT _SOLD) FOR
SALES F.TIME ID IN ('Jan', 'Feb', 'Mr');

/] Sales per month + channel (multi dinensions)

TH S = [SUM SALES F. AVOUNT _SOLD) - COLPREFI X 'Ant'] FOR (SALES_F. CHANNEL | D,
SALES F.TIME ID)IN ((' Online',"'Jan'),

("Online' ,"Feb"),('Online' ,"Mar'),('InStore',"Jan"),('InStore',"' Feb'),
("InStore', " Mar));

);

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 32 of 37

ORACLE Chapter 1

Advanced Data Augmentation Scripts Features

/1 Other transformations allowed after PIVOT section and only using the
col ums generated in PIVOT section

TH S[Jan_Inst_Online_Diff] TH S. Ant _InStore_Jan - TH S. Ant _Online_Jan;

TH S[Feb_Inst_Online Diff] TH S. Amt_InStore_Feb - THI S. Ant _Onli ne_Feb;

TH S[Feb_Inst_Online_Diff] TH'S. Ant _InStore_Mar - TH S. Ant _Onli ne_Mar;

PRI MARYKEY [PROD_I D ;
END

In this example, the output for the dataset PRODUCT_BY CHANNEL MONTHLY REVENUE 2 is as
follows:

000 | s || e A or o | .o k.50 ot |~
— 550 450 0 0 0 800
— - 5 150 120 700 500 200 0

NE_IAN SUM_AMT_ONLINE_FEB

SUM_AMT_INSTORE_IAN SUM_AMT_INSTORE_ FEB SUM_AMT_INSTORE_MAR SUM_AMT_DNLI SUM_AMT_ONLINE_MAR

Unpivot

You can use the UNPI VOT operator to transform columns back into rows, enabling business
users to analyze the data in detail.

UNPI VOT helps your users to explore each attribute, provides greater flexibly, and reveals
patterns and changes over time.

Example: You can UNPI VOT Jan_Sal es, Feb_Sal es, and Mar _Sal es into the AMOUNT_SOLD
column.

| PROD_ID | CHANNEL_ID | Jan_Sales | Feb_Sales | Mar_Sales |

ll II
A
| PROD_ID | CHANNEL_ID | TIME_ID | AMDUNT_SOLD |

DEFI NE VERSI ONED DATASET SALES F2[
RONSOURCE MY_SALES;
UNPI VOT | NCLUDE NULLS

(
W TH N MY_SALES[PRCD_| D, CHANNEL_I D ;

Data Augmentation Scripts Reference Guide

G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 33 of 37

ORACLE Chapter 1
Advanced Data Augmentation Scripts Features

/* Target Columms TIME ID, AMOUNT _SOLD are specified on LHS.

The correspondi ng display val ues for PRODUCT colum are specified in
the LHS. Pairs on LHS map to colums on RHS, in sequence /*
THS[(TIMEID: 'Jan', AMOUNT SOLD), (TIME ID : 'Feb', AMOUNT SOLD),
(TIME_ID : "Mar', AMOUNT SOLD)]=MY_SALES[Jan_Sal es, Feb_Sal es, Mar _Sal es];
);

PRI MARYKEY [PROD_ID, CHANNEL ID, TIME D
END

The output of the versioned SALES F2 dataset table is as follows:

PROD_ID CHANNEL_ID TIME_ID AMOUNT_SOLD
3 Online Jan 500

3 InStore Jan 150

4 Online Jan 0

4 InStore Jan 550

3 Online Feb 2000

Delete Handling

In a data warehouse, the decision to retain or delete records from the data warehouse
depends on the specific use cases and business requirements.

You can delete source data as it continually updates with new records. Deletions can be:

* Hard Delete: Permanently deletes records from data warehouse datasets, through
propagation or explicit application.

* Soft Delete: Marks records as deleted without physically removing them from the dataset.

You can handle deletions by using the TRACKDELETES, DELETESCURCE, and THEN DELETE
directives, which are designed to manage both hard and soft deletes during data import and
processing.

The following topics describe how you can apply deletions:
e TRACKDELETES (Default Behavior)

e DELETESOURCE

e THENDELETE

For more information about delete handling, see Deletions.

TRACKDELETES (Default Behavior)

You can use the TRACKDELETES directive to ensure that deletions are automatically tracked and
handled during data extraction or import. It doesn't require separate deletion logs or manual
intervention.

Hard Delete

When records are deleted in the source system, the TRACKDELETES directive ensures that these
deleted records are automatically excluded during data import or processing.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Page 34 of 37

ORACLE

Chapter 1
Advanced Data Augmentation Scripts Features

Example:

| MPORT SOURCE PRCDUCTS W TH TRACKDELETES AS PRCD_BASE
| MPORT SOURCE AS SALES

DEFI NE DATASET PROD DI M
ROASOURCE PROD_BASE ;
TH'S = PROD_BASE;

END

DEFI NE DATASET PROD_REPLENI SH

ROWSOURCE PROD DI M | NNER JOI N SALES ON (PROD DI M PROD | D = SALES. PROD | D) ;
TH'S = PROD_DI M PROD_NAVE, PROD I D];

THI S[REPLENI SH_FLG = CASE WHEN SUM SALES. QUANTI TY_SOLD) > 5 THEN 1 ELSE 0
END;

GROUPBY[PROD_NAME, PROD | D ;

PRI MARYKEY[PROD_I D] ;

REFRESH ON CHANGES I N [PROD DIM SALES];

END

In this example, TRACKDELETES ensures that discontinued products are reflected in the
PROD_DI Mdataset without requiring deleted records to be handled separately.

Soft Delete

The deletion operation is applied during the extraction of data. The DELETETYPE[SOFT] flag is
used to mark the deleted records, and the extraction process identifies which records need to
be flagged. If you don't specify a flag name, the default flag | SDELETED is used.

| MPORT SOURCE CUSTOMERS DELETETYPE[SOFT] W TH PRI MARYKEY[CUST_I D] TRACKDELETES

DEFI NE UPDATEABLE DATASET CUSTOMERS_SD D FROM CUSTOVERS END

In this example, soft delete is initiated during the import of the CUSTOMERS dataset. The records
identified by TRACKDELETES are flagged as deleted using the default | SDELETED column.

You can specify a custom flag name in the DELETETYPE directive:

| MPORT SOURCE SALES DELETETYPE[SOFT[| STRANDELETED]] TRACKDELETES[| Nl THDELETE]]

DEFI NE UPDATEABLE DATASET CUSTOMERS SD_D FROM CUSTOVERS END

DELETESOURCE

You can use the DELETESOURCE directive to remove records from datasets based on a matching
condition, ensuring that records marked for deletion in the source system are excluded from
the data processing job.

The DELETESOURCE directive deletes records during dataset transformations, based on a source
dataset that tracks deletions.

Hard Delete

The DELETESOURCE directive specifies the deletion of records from a dataset based on a
matching condition. You apply the directive within the dataset definition to handle the removal

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 35 of 37

ORACLE

Chapter 1
Advanced Data Augmentation Scripts Features

of records that have been flagged for deletion in a source system. When DELETESOURCE is
used, it directly impacts the dataset by ensuring that records marked for deletion are excluded
from the dataset. This method requires specifying a subtrahend (deletion set) dataset, which
contains the records to be removed. The matching condition is used to correlate records from
the deletion set with those in the target dataset.

| MPORT SOURCE SALES LOG FI LTEREDBY (ACTION = 'D') AS SALES DEL;
| MPORT SOURCE SALES;

DEFI NE DATASET SALES F

ROASOURCE SALES;

TH' S = SALES;
DELETESCURCE SALES DEL [SALES | D] MATCHI NG [SALES | D) ;
END;

In this example, the DELETESOURCE directive removes records from the SALES dataset based on
matching SALES | D values from the SALES DEL dataset, which tracks deletions from the source
system.

Soft Delete

The DELETETYPE[SOFT] flag marks records as deleted and the DELETESOURCE directive identifies
the source dataset containing the records to be deleted.

| MPORT SOURCE SALESDEL
| MPORT SOURCE SALES

DEFI NE UPDATEABLE DATASET SALES F

ROABOURCE SALES;

TH'S = SALES;

DELETETYPE[SOFT[SALESDELETED] | ;

DELETESOURCE SALESDEL[SALES | D] MATCH NG [SALES | D] ;
END

In this example, the DELETESOURCE directive deletes records from SALES that match the
SALES | Dvalues in the SALESDEL dataset. The DELETETYPE[SOFT[SALESDELETED] | flag marks
the deleted records, but they aren't physically removed from the dataset.

THEN DELETE

You can specify the THEN DELETE directive at the source reference level in the | MPORT SCURCE
statement, rather than within dataset definitions.

By specifying the delete operation at the source level, you apply the delete operations earlier in
the data pipeline, directly at the source level, ensuring that deletions are processed as soon as
the source data is imported.

Hard Delete

You apply the THEN DELETE directive to the source reference in the import statement. It ensures
that records marked for deletion in the source dataset are excluded during the import process.

| MPORT SOURCE SALES LOG FI LTEREDBY (ACTION = 'D) AS SALES DEL;
| MPORT SOURCE SALES THEN DELETE SALES DEL [SALES | D] MATCH NG [SALES ID|;

In this example, deletions are applied immediately when the SALES dataset is imported, based
on the SALES DEL dataset, which contains the records marked for deletion.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 36 of 37

ORACLE

Chapter 1
Advanced Data Augmentation Scripts Features

Soft Delete

You apply the THEN DELETE deletion logic after the data has been imported. The soft delete
process executes, based on a list of records that you provide in the THEN DELETE directive. This
method allows for the deletion to be handled separately from the import process, while still
ensuring that deleted records are flagged in the dataset.

| MPORT SOURCE SALESDEL

| MPORT SOURCE SALES DELETETYPE[SOFT] THEN DELETE [SALESDEL[SALES | D] MATCH NG
[SALES 1 D]]

DEFI NE DATASET SALES_SD F FROM SALES END

In this example, the SALESDEL dataset, which contains deletion records, is used in conjunction
with the THEN DELETE directive. Records from SALES that match the IDs in SALESDEL are flagged
as deleted, based on the DELETETYPE[SOFT] directive

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 37 of 37

Create Custom Data Pipelines

From the Oracle NetSuite Analytics Warehouse Administrator Console, you can build
organization-specific or industry-specific data pipelines programmatically with Data
Augmentation Scripts (DAS) custom logic.

@® Note

Data Augmentation Scripts (DAS) is a preview feature.
e For more information, see Preview Features.

« Administrators can enable Preview Features. See Make Preview Features
Available.

Topics:

« About Creating Custom Data Pipelines

¢ Prerequisites for Creating a Custom Data Pipeline

¢ Create a Connection for Data Augmentation Scripts

« Set Up Pipeline Parameters for Data Augmentation Scripts

¢ Create Augmentation for Data Augmentation Scripts

¢ Create a Data Augmentation Scripts Application

« Data Augmentation Scripts Application Development Details

About Creating Custom Data Pipelines

You can build custom data pipelines with logic that brings source data to meet your business
requirements using the functionality in the Data Augmentation Scripts (DAS) application.

You can bring data from different sources such as Oracle Fusion Cloud Applications or
Salesforce, join the different data together, bring the data as another table in the warehouse,
and extend an entity using the additional data.

While creating the custom application, in the Data Augmentation Scripts (DAS) dialog, the
application name you provide serves as an identifier that allows you to easily find and edit it
later on. The application ID that you provide functions as a namespace, differentiating the
tables into separate groupings.

Within each application, you see the Source folder that contains mai n. hrf and nai n. nod files.
The mai n. nod file is read-only and provides information regarding the module's name, source
type, and prefix. The mai n. hrf file contains the main logic for the data pipeline. You can add
additional logic in the Code, Function, and Parameter types of files by right-clicking nai n. hr f
and selecting New.

In your code, there is no need to explicitly reference the prefix or application ID because the
code execution process automatically applies them. After you have added the code for your

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 1 of 11

ORACLE’

Chapter 2
Prerequisites for Creating a Custom Data Pipeline

custom logic, you must build to compile the custom data pipeline, verify that the syntax
functions correctly, and to ensure that the source and related metadata is mapped properly.
After a successful build, your code is ready to be deployed. The build step produces the
mapping logic, target table structure, and loading directives based on the source metadata You
must successfully build before deploying the application.

Deploy: The deploy step initiates the actual execution of Extract, Process, and Load
phases into the data warehouse. This is the initial full load of this application.

Verify (optional): After deployment, you can verify the creation and loading of the tables. If
you want to further examine the data, you can execute additional SELECT statements as
needed.

Update: To edit an existing Data Augmentation Scripts (DAS) application source, open any
of the files, such as mai n. hr f , and make the necessary changes.

There is no limit to the number of times that you can edit an existing Data Augmentation
Scripts (DAS) data file. After making changes each time, compile or build the files to validate
the syntax. After the syntax is validated, deploy the application to refresh the source data in the
warehouse.

You can load subsequent data manually using the Refresh option or load periodically based on
the configuration settings.

Prerequisites for Creating a Custom Data Pipeline

Prior to creating a custom data pipeline for Data Augmentation Scripts (DAS), ensure that you
create a connection to the data source.

1.

Create a connection to the source that you want to use in your Data Augmentation Scripts
(DAS) application. See Create a Connection for Data Augmentation Scripts.

After creating the connection, to complete the registration of the data, on the Manage
Connections page, select the Actions menu for the Data Augmentation Scripts
connection, and then select Refresh Metadata.

@® Note

You can't create augmentations using a specific source unless you perform a
metadata extract.

On the Data Configuration page, in Data Source, select the source for which you created
a connection and set up the Data Augmentation Scripts pipeline parameters. See Set Up
Pipeline Parameters for Data Augmentation Scripts.

Create an augmentation because prior to creating a custom Data Augmentation Scripts
(DAS) application, you must have at least one existing augmentation. See Create
Augmentation for Data Augmentation Scripts.

Create your custom Data Augmentation Scripts (DAS) application. See Create a Data
Augmentation Scripts Application

Create a Connection for Data Augmentation Scripts

As a functional administrator, create a connection to create a data source to the data
warehouse.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 2 of 11

ORACLE Chapter 2
Create a Connection for Data Augmentation Scripts

1. In Oracle NetSuite Analytics Warehouse Console, click Data Configuration under
Application Administration.

2. On the Data Configuration page, click Manage Connections under Configurations.
3. On the Manage Connections page, click Create and then click Connection.
4. In Create Connection:

a. For Usage Type, select Data Extraction.
b. For Select Connection Type, select LoCode Data Files.

These are your sample Data Augmentation data files to help you get started. You can
select a different connection to extract data for the data warehouse.

Create Connection

4

Usage Type Data Extraction Filter Connection Types Q ‘

Select Connection Type

—_

OE OJD OJD TA 00

MongoDB Oracle Oracle JDBC 2 Oracle JDBC 3 TALEO Oracle OTM
Enterprise Data
Management
Cloud

E
B

SQL Q QB

LCD ASQ

LoCode Data Azure SQL SQL Server MySQL On- MySQL Cloud QuickBooks
Files Prem Online

SN SH GA

EPM Financial EPM Profitability EPM Planning Snowflake Shopify Google Analytics
Close and and Cost and Budgeting
Consolidation Management Data Export
Data Export Data Export

SA

Oracle EPM - Oracle EPM - Salesforce AWS S3 Azure SFTP

Cancel }

5. In Create Connection:
a. (Optional) Enter a Notification Email to receive natifications.

b. Enter a Sample Data Set. Example: Sal es- Sanpl e.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 3 of 11

ORACLE Chapter 2
Create a Connection for Data Augmentation Scripts

The source data files provide sample data sets, such as Sales, Customers, that you
can use for Data Augmentation Scripts (DAS).

c. Enable Refresh Metadata to ensure that the metadata is refreshed when you save the
connection.

You can later refresh the metadata from the Actions menu on the Manage Connections
page, if required.

® Note

You can't create augmentations for the Data Augmentation Scripts (DAS)
application unless you perform a metadata extract.

d. Click Save.

« Create Connection

LCD
LoCode Data Files

Usage Type Data Extraction
Connection Name LoCode Data Files

* Connectivity Type Standard

Notification Email | Enter Notification Email |

* Sample Data Set [Sales—SLampIe]

Refresh Metadata ()

‘ Cancel ‘ ‘ Paste from clipboard H Upload File or Drop Above ‘

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 4 of 11

ORACLE Chapter 2
Set Up Pipeline Parameters for Data Augmentation Scripts

After the connection is created, you can view the source data files under Connections on
the Manage Connections page.

< & Fusion > Manage Connections Do @
Connections Extract Configurations Activity ‘ Filter Connections Q ‘

Name ¢ Connectivity Type & Usage Type Created ¢ Updated C

LoCode Data Files Standard Data Extraction Nov 3, 2025 10:23:55 AM PST Nov 3, 2025 10:23:55 AM PST

After your connection is created, you can create a custom data pipeline with Data
Augmentation Scripts (DAS). See Create a Data Augmentation Scripts Application.

Set Up Pipeline Parameters for Data Augmentation Scripts

Set up pipeline parameters before proceeding to work with the Data Augmentation Scripts
(DAS) application.

For more information, see Set Up the Pipeline Parameters.
1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, select LoCode Data Files for Data Source, then click
Pipeline Settings under Configurations.

< B Data Configuration

Data Source ‘ LoCode Data Files v ‘

Create and manage data pipelines to load data from your source applications.

Configurations

it & b4

Pipeline Settings Custom Data Configurations Data Share
& off 1C2
Data Augmentation Data Build Tool (dbt) Manage Connections

4. On the Pipelines Settings page:
a. Ensure that Data Pipeline Status is Enabled.
b. (Optional) Select an Interval for Data Refresh Schedule.

c. Select a Date Type. Enter a date if you select Absolute.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 5 of 11

ORACLE Chapter 2
Create Augmentation for Data Augmentation Scripts

< 1it LoCode Data Files > Pipeline Settings Lo E
Pipeline Parameters Frequent Data Refresh
Data Pipeline Cancel ‘

Data Pipeline Status (@) Enabled

Last Refresh Date Not Available

Estimated Refresh Completion Base Datasets @)
Not Available

Data Refresh Schedule

Interval None v

Initial Extract Date

Date Type @® Absolute QO Relative

| Nov 3,2025 ez

5. Click Save.

Create Augmentation for Data Augmentation Scripts

Create an augmentation prior to creating the Data Augmentation Scripts (DAS) application.

You must have at least one existing data augmentation before you set up the Data
Augmentation Scripts (DAS) application. See Augment Your Data.

1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, select Data Augmentation Scripts Data Files for Data
Source, then click Data Augmentation under Configurations.

« 8 Data Configuration

Data Source ‘ LoCode Data Files v ‘

Create and manage data pipelines to load data from your source applications.

Configurations

it & b4

Pipeline Settings Custom Data Configurations Data Share
& off 1Ca
Data Augmentation Data Build Tool (dbt) Manage Connections

4. On the Data Augmentation page, select the Augmentation, click Create and then select
Augmentation.

The dimension data augmentation is for the Data Augmentation source, CUSTOVERS.
Depending on your source, you can select another dimension for data augmentation.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 6 of 11

ORACLE Chapter 2
Create Augmentation for Data Augmentation Scripts

< & LoCode Data Files > Data Augmentation D Y]
‘ Create ¥
Filter Augmentations Q Q Augmentation
Dimension Alias
O Augmentation Name ~ Description ¢ Warehouse Table ¢ Type ¢ Pipeline Status ¢ Semantic Model Status ¢
) CUSTOMERS customers DW_LOCODE_X_CUSTOMERS Dimension 16)

5. Inthe Data Augmentation wizard, add a new dimension:
See Create Dimension Augmentation Type
a. For Augmentation Type, select Dimension.
b. For Source Dataset Type, select Supplemental Data.
c. For Source Table Type, select System Provided.
d. For Source Table, select CUSTOMERS.

< B LoCode Data Files > Data Augmentation

‘ Cancel ‘ o @ @ @ ‘ Next —>‘

Source Selection Attribute Selection Column Options Schedule and Save

Select a pillar and a source table to add a data augmentation to the warehouse.

Augmentation Type | Dimension v
Source Dataset Type | Supplemental Data v ‘
Source Table Type | System Provided v ‘
Source Table | CUSTOMERS v |

Versioned Dataset [J @

6. Click Next.
7. For Attribute Selection, select the attributes for the source table.

8. Select the default Column Options.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 7 of 11

ORACLE Chapter 2
Create a Data Augmentation Scripts Application

< BB LoCode Data Files > Data Augmentation 20 &)
‘ Cancel H € Back ‘ o (] (] o

Source Selection Attribute Selection Column Options Schedule and Save

Save and schedule your data augmentation.

* Source Table

* Name | CUSTOMERS \

* Description ‘ Enter augmentation description ‘

* Table Suffix | CUSTOMERS \

* Table Name

Subject Areas | Select the subject areas ‘

Schedule () Save without running (you can schedule later)
QO Run Immediately

® Schedule for later

Time | 11/4/2025,1200AM [@

Time Zone America/Los_Angeles

9. Continue to Schedule and Save.
10. Click Finish.

The CUSTOMERS Data Augmentation (DA) initiates. Wait a few minutes for the
augmentation to complete. The Pipeline Status updates to Activation Complete.

Create a Data Augmentation Scripts Application

Create a Data Augmentation Scripts (DAS) application to use your custom logic to bring data
from the source to your application data files.

1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, under Configurations, click Custom Data
Configurations.

4. On the Custom Data Configurations page, click Create, and then select DA Scripts.

< & Fusion > Custom Data Configurations = 2
Benchmark
Name ID Version Deployed Version Updated Date v Updated B Latest Action Latest

5. Inthe Data Augmentation Scripts (DAS) dialog, enter an ID in Application ID, name in
Application Name, and then click Create.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 8 of 11

ORACLE Chapter 2

Create a Data Augmentation Scripts Application

Data Augmentation Scripts (DAS)

Script-based Data Augmentations for extracting, transforming, and modeling data
from multiple sources.

* Application ID [|]

* Application Name | ‘

coc |

6. On the DA Scripts page, in the left menu, click Source.
7. Under Source, select main.hrf, and in the editor, enter the logic to bring data.

In the following example, you create a data augmentation script for CUST_D using the
sample Data Augmentation Scripts source files.

[+l

Project

[

v 3 cust
v 7 source
main.hrf
main.mod

To build your dataset, you can reference data from your sources into the data warehouse
using the | MPORT command.

See IMPORT Statement.

Data Augmentation Scripts Reference Guide
G47686-01

December 3, 2025
Copyright © 2025, Oracle and/or its affiliates.

Page 9 of 11

ORACLE Chapter 2
Create a Data Augmentation Scripts Application

Project B €] main.hrf X main.mod X
1
v 3 cust 5 :
3
hd B‘ Source 4
5 IMPORT SOURCE CUSTOMERS
main.hrf o) DEFINE DATASET CUST_DIM FROM CUSTOMERS END
main.mod

8. Right-click the Source folder, select New and then select the type of file you want to create.

Project B [[] main.hrf X main.mod X
1
v B3 cust S et
z Ek
v B SoL : > Code
ew @ RCE CUSTOMERS
m Function ASET CUST_DIM FROM CUSTOMERS END
: m Download Parameter
Query
Conf

| Terminal Logs Messages

See Supported Files.
9. Click Save and Exit.
10. Click Build and then select Build project.

The project compiles and validates your syntax and to ensure that the source metadata are
mapped properly.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Page 10 of 11

ORACLE’

Chapter 2
Create a Data Augmentation Scripts Application

Cancel I Save and Exit I File ¥ I Build ¥~ l

Project T [mainhrf X main.mod X
1
~ B cust 5
3
v E Source 4
5 IMPORT SOURCE CUSTOMERS
main.hrf 6 DEFINE DATASET CUST_DIM FROM CUSTOMERS END
| main.mod
Logs Messages

| Terminal

| October 3@th 2025

11:26:45 AM PDT
11:26:47 AM PDT
11:26:52 AM PDT
11: 55 AM PDT
11:26:55 AM PDT
11:26:55 AM PDT
11:26:55 AM PDT
11: 55 AM PDT
11:26:56 AM PDT
11:26:58 AM PDT

Initiating Build

Uploading necessary resources for syntax validation

Necessary resources has been copied for syntax validation

Successfully validated the syntax.

Getting source table metadata

Getting subject areas

Copied all necessary subject areas S
Fetching source table metadata for CUSTOMERS

Copied functional areas entities file

Copied all necessary source tables

11. Click the Actions icon next to the DAS Scripts application you created, and then click
Publish.

This initiates the deployment and execution of Extract, Process, and Load phases into the
data warehouse.

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 11 of 11

Data Augmentation Scripts Application
Development Details

Use these features, syntax, and other functions of Data Augmentation Scripts to build your
application.

Topics:

e Syntax Notations

e Comments and Escape Sequences

* File Types and Data Types

Program Structure
e Expressions

e Column Groups, Indexes, and Patrtitions

* VIEW QUERY

e Table and Column Prefixes

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix A-1 of A-1

Syntax Notations

The following table lists the syntax notations and their corresponding meaning:

Symbols Meaning

M Indicates is defined as.

| Indicates alternatives. Separate alternatives using
vertical bars. Example: @ | b means for a or b.

{rulel | rule2} Insert alternatives within curly parenthesis in
complex production rules.

[rule] Indicate options by using square brackets.
Example: [a] stands for an optional a value.

Indicates repetition. Example: a...means rule a can
be repeated multiple times.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix B-1 of B-1

Comments and Escape Sequences

Comments help to keep your code readable and organized, while escape sequences enable
handling special characters.

¢ Comments

e Escape Sequences

Comments
Comments include explanations or notes about the code.

Comments can be either:

¢ Single-line comments:
Single-line comments have a double forward slash //.

Example:

/] Exanple of a valid single |ine coment.

e Multi-line or block comments:
Multi-line or block comments have / * (start of a block comment) and */ (end of a block
comment),

Example:
/* Exanple of a

val id bl ock comment
x|

Escape Sequences

Escape sequence are special characters, such as new lines, tabs, or quotation marks, that you
can't directly enter into a string. They start with a backslash \ followed by a character.

Examples:

* \n:newline

« \t:tab

e \r: carriage return
e \':single quote

e \":double quote

e \b: backspace

o \f:form feed

e \v:vertical tab

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix C-1 of C-1

File Types and Data Types

The Data Augmentation Scripts application supports these documented file types and data
types.

Review these file types and data types that Data Augmentation Scripts supports.

« File Types
 Data Types

File Types

You can create files in their respective folders for different purposes. You can create these
types of files:

e .param: The .par amfile (Parameter defiition file). contains one or more parameter
definitions. Data Augmentation Scripts creates this file in the Parameter folder under the
project root directory.

For details on parameter definitions, see PARAMETER.

« .mod: This is a read-only file. The . nod file contains the Data Augmentation Scripts
application definition. Data Augmentation Scripts creates this file in the Source folder under
the project root directory.

Syntax

modul e_definition ::= MODULE nodul e_name
SCURCETYPE source_type

NAMESPACE nanespace

PREFI X prefix

Example of a mai n. nod file:

MODULE TI NE
SOURCETYPE FUSI ON
NAVESPACE TI ME_
PREFI X DW FA X_

< .hrf: The .hrf file contains the Data Augmentation Scripts program. The application
creates this file is in the Source folder under the project root directory.
Example of cust oners_d. hrf file:

| MPORT SOURCE CUSTOVERS
DEFI NE DATASET CUSTOVERS_D
RONSOURCE CUSTOVERS;
TH S = CUSTOMERS;
END

e .func: The. func file consists of user-defined function definitions. Data Augmentation
Scripts creates this file in the Function folder under the project root directory.
For more details, see User Defined Functions (UDFs) or Macros.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix D-1 of D-2

ORACLE’

Appendix D

* .gry: Use the . gry file to create a view using the query that's written in the file. Data
Augmentation Scripts creates this file in the Query folder under the project root directory.
For more details, see Query Files.

« .conf: To improve the performance of reporting queries in the database, you can specify
constructs such as indexes, column groups, and partitions in this file. Data Augmentation
Scripts creates this file in the Conf folder under the project root directory.
For more details, see Column Groups, Indexes, and Partitions.

Data Types

The Data Augmentation Scripts application functionality supports these data types:

Table D-1 Data Augmentation Scripts Supported Data Types

Data Type Declaration Value Example
NUMBER(precision, scale NUMBER 3
optional)optional NUMBER (28,2) 28

-28
LARGEINT LARGEINT 5000

75000
BIGDECIMAL(precision, scale) BIGDECIMAL(28,2) 3.14

1.00
DATE 'yyyy-MM-dd' DATE '1843-03-02' ‘1843-03-02'
or or "1843-03-02"

DATE "yyyy-MM-dd"

DATE "1843-03-02"

TIMESTAMP'yyyy-MM-dd
HH:mm:ss.SSSS'

or

TIMESTAMP "yyyy-MM-dd
HH:mm:ss.SSSS"

TIMESTAMP '1843-03-02
04:28:59'
or

TIMESTAMP "1843-03-02
04:28:59"

1843-03-02 04:28:59'

"1843-03-02 04:28:59"

VARCHAR2(unsigned_integer)

VARCHAR2(38)

"Hello"

"Hello World”
‘Hello World’
“Hello World 101"

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix D-2 of D-2

Program Structure

A program is essentially a set of code in the Data Augmentation Scripts application that
consists of specific elements.

The structure of a program includes the following elements:

e IMPORT
« INCLUDE
 ALIAS

« PARAMETER
e STATEMENT

Syntax

program::={ application_source definition
| inport_definition
| include_definition
| alias_definition
| paraneter_definition
| list_variable_assignnent
| statement

For application source definition details, see Table and Column Prefixes.

IMPORT Statement

You can use the IMPORT statement to load objects, such as modules, entities, or source
tables into the current application, which you can then use as a source to build the pipeline.

Syntax

inport_definition ::= | MPORT
{
MODULE {modul e_artifact | nodule_artifact |ist}
| ENTITY {extended_item| extended_ itemlist}
| source_definition

}

Instructions for importing modules and entities, source definitions, optional attributes, filters,
and aliases are in the following sections.

Import Modules and Entities

modul e_artifact ::= modul e_nanme
modul e_artifact _list ::="'[" nodule_nane [, module_name] ... ']’

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-1 of E-35

ORACLE

Appendix E
IMPORT Statement

extended item::= entity_name
extended_itemlist ::="["' entity_name [, entity_nane] ... ']’

This code defines the modules or entities to import.

® Note

To use a data warehouse table or dataset from another module, you must first import
the corresponding module.

Example:

| MPORT MODULE [FA GL, FA AP|
| MPORT ENTITY Item

Use a terminal to check the available modules, entities, and their definition.

Source Definition

The following code defines a source with optional attributes, filters, aliases, and delete
specifications:

source_definition ::= [source_type] SOURCE
{

source_reference_list

| source_reference [soft_del ete_spec]
[override_list]

[then_del ete_specification]

[WTH source_attribute]

[FILTEREDBY ' (' bool ean_returned_expression ")"]

([AS filtered_source_nane] |
[TABLEPREFI X' ['string']']) [COLPREFIX ["string']']

}

Source Type

source_type ::= VERSI ONED | UPDATEABLE | ENTI TYCHANGETRACKI NG

The default for sour ce_t ype is UPDATEABLE.

Source types are:

* VERSIONED: During each incremental run, Data Augmentation Scripts extracts all data
from the source and fully refreshes.
Deleted records aren't retained in the data warehouse. When the SOURCE is of type
VERSI ONED and you specify Last Updat e Dat e (LUD) , then Data Augmentation Scripts
ignores it.

e« UPDATEABLE: During each incremental load, Data Augmentation Scripts extracts new
and changed records from the source.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-2 of E-35

ORACLE

Appendix E
IMPORT Statement

Unchanged and deleted records are retained in the staging area. When the Last Updat e
Dat e (LUD) isn't part of IMPORT SOURCE definition, Data Augmentation Scripts extracts
all records from the source system and updates the data in the staging area.

« ENTITYCHANGETRACKING: During each incremental load, Data Augmentation Scripts
extracts new and changed records based on their natural key from the source system.

Source Reference

source_reference list ::="[" source reference [, source reference] ... ']'
source_reference ::= source_name

Data Type Override

Override_list ::= OVERRIDE '[" colum_nane - DATATYPE data_type [, col unm_nane
- DATATYPE data_type]..."]"

You can convert the source column data types.

Example:

OVERRI DE [creat eddat e - DATATYPE TI MESTAMP , anount - DATATYPE NUMBER(20, 2)]

Base Delete Specification

then_del ete_specification ::= THEN DELETE "[" del ete_source [,
del ete _source] ... "]"

del ete_source ::= table_name colum_|ist MATCHI NG col um_li st
Example:

THEN DELETE [DEL_SALES [SALES | D] MATCH NG [SALES | D]]

For more details about base deletions, see Deletions.

Soft Delete Specification

soft _del ete_spec ::= DELETETYPE '[' SOFT [create_soft_delete_colum] ']";
create_soft _delete _colum ::= col um_nane
Example:

| MPORT SOURCE SALES DELETETYPE] SOFT] THEN DELETE [SALESDEL [SALES I D]
MATCHI NG [SALES I D]]

@® Note

You can use soft _del ete_spec with t hen_del ete_specification or
track _del et es_dat aset .

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-3 of E-35

ORACLE

Appendix E
IMPORT Statement

For more details about soft delete, see Deletions.

Source Attributes

source_attribute ::= [primary_key spec]
[ied _key spec]
[entity_id spec]
[lud_key spec] [track_del etes_dataset])
[stability_period]

You can use these source attributes:

e primary_key spec ::= PRI MARYKEY col um_li st : Defines the primary key.

 ied _key spec ::= | ED colum_Iist: Defines the initial extract date column.

e lud_key_spec ::
columns.

LUD { colum_list | "[' NULL ']" } Defines the last update date

@® Note

If you define an incremental key in the source metadata, Data Augmentation
Scripts automatically uses it as the Last Update Date (LUD). To override this
behavior, use LUD[NULL] .

e entity id spec ::= ENTITYID col um_l i st Defines natural keys. You must define,
ENTI TYI D with sour ce_t ype ENTI TYCHANGETRACKI NG.
e track_deletes_dataset ::= TRACKDELETES [IN'[' identifier "]"]

stability_period ::= STABILITYPERIOD '[' nunber _of _days ,
tracki ng_date_colum ']’
nunber _of _days ::= unsigned_i nt eger
tracki ng_date_col um ::= col um_nane
For more details about Stability Period and Base Data Delete Dataset, see Deletions.

Column List

colum_list ::="[" colum_nane [, colum_nanme] ... ']'
Use this code to list columns for key specifications.

Alias Name

filtered source_nane ::= alias_name

Table and Column Prefix
Use TABLEPREFI X and COLPREFI X for defining table and column prefixes.

For details, see Table and Column Prefixes.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-4 of E-35

ORACLE Appendix E
INCLUDE

Examples

Example 1

| MPORT SOURCE fiscal Cal endar W TH PRI MARYKEY [fiscal year] FILTEREDBY
('fiscal _year D
2020') AS Recent Fiscal Years

Example 2: VERSIONED source

| MPORT VERSI ONED SOURCE PRODUCT W TH PRI MARYKEY[PRCD_I D)

Example 3: ENTITYCHANGETRACKING source

| MPORT ENTI TYCHANGETRACKI NG SOURCE Busi nessUnit OVERRIDE [CreationDate -
DATATYPE TI MESTAMP ,
Legal Entityld - DATATYPE VARCHAR2(20)]

W TH PRI MARYKEY [Busi nessUnitld, StartDate, EndDate] |ED[CreationDate] LUD
[Last Updat eDat e]
ENTI TYI O] Busi nessUni t | d]

FI LTEREDBY(Status="A" OR Status='U) AS BUnit

INCLUDE

Use the INCLUDE definition to include the supported file types in the current application.

For more details on supported files and their usage, see File Types and Data Types.

Syntax

include definition ::= INCLUDE {HRF | FUNCTION | PARAMETER } file_reference

Example

| NCLUDE PARAMETER "const ant. par ant
[NCLUDE FUNCTI ON "coal esceUDF. f unc"

| NCLUDE HRF "di nension. hrf"

@® Note

You don't need to use the | NCLUDE definition for . conf and . gry files because you can
directly use them in the code within . hrf files.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-5 of E-35

ORACLE

ALIAS

Appendix E
ALIAS

You create an alias for a table to make referencing it in your code simpler and more concise.
Using an alias enables you to streamlines queries and improves readability, especially in
complex statements.

Syntax

alias_definition ::= ALIAS table_source_type table_nane AS table_alias
tabl e_source_type ::= {EXTERNAL | FACTORY | LOCAL}

Example

ALI'AS LOCAL CUSTOMERS_D AS CUST

Table Source Types
Table source types include:

* LOCAL: You define local aliases on the datasets in the same Data Augmentation Scripts
application.
Example:

DEFI NE DATASET CHANNELS_D FROM CHANNELS END
ALI'AS LOCAL CHANNELS D AS CHAN

< EXTERNAL: You define external aliases on the imported source tables.
Example:

| MPORT SOURCE CUSTOMERS
ALl AS EXTERNAL CUSTOVERS AS CUST

« FACTORY: You define factory aliases on tables in the other modules.
Example:

| MPORT MODULE FA_GL
ALI'AS FACTORY DW LEDGER D AS LEDGER

In this example, DW LEDGER D is a warehouse table in the module FA_GL

@® Note

e If multiple tables share the same name across different table source types (LOCAL,
FACTCRY, EXTERNAL) and you define an alias without specifying
tabl e_source_t ype, Data Augmentation Scripts assigns the alias to the table
based on the preference order: LOCAL > FACTORY > EXTERNAL. This means
the alias is first created for a LOCAL dataset, followed by a FACTORY table, and
then an EXTERNAL source.

» After you define an alias, you must use the alias in the code instead of the actual
table name.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-6 of E-35

ORACLE Appendix E
PARAMETER

PARAMETER

You define a parameter as a named variable with a specific data type and, optionally, a default
value for use within queries. Parameters enable you to pass dynamic values into your queries
efficiently.

Syntax

paraneter_definition ::= DEFI NE PARAMETER par aneter _nane ,
data_type ,default_val ue END

Example

DEFI NE PARAMETER NOVALUE_NUMBER, NUMBER(38, 0) , - 99999 END
DEFI NE PARAMVETER VAR ETL_FALSEVALUE, VARCHAR2(16) , "F" END
DEFI NE PARAMETER VAR ETL_NOVALUE CHAR NAME, VARCHAR2(32),"~No Val ue~" END

You can store parameters in separate files, which you can then use in the Data Augmentation
Scripts code with the INCLUDE command or reference the PARAMETER definition in the
transformation code itself.

For more details, see File Types and Data Types.

@® Note

e Use unique parameter names. You can't define parameters with the same names
as those that are already existing system parameters.

* You can directly use factory Parameters in the Data Augmentation Scripts
application. You can check the list of available factory parameters from the
terminal.

Statement

A statement defines a unit of execution that establishes macros, schemas, tables or datasets,
or list variables. Use statements to organize and control distinct functional components within
your code.

Syntax

statenent ::= macro_declaration

generic_table_definition
l'ist_variabl e_assi gnment
schema_definition

di sabl e_del ete_propagati on

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-7 of E-35

ORACLE

Appendix E
Statement

Generic Dataset Definition

The Data Augmentation Scripts dataset is a structured collection of data that you gather,
process, or transform to use as an input or building block for creating other datasets in the
Autonomous Data Warehouse.

Dataset Definition

A dataset definition has the following characteristics:

» Defines the data structures and properties.

« Defines the inputs (sources or datasets) through transformations.
* Specifies how it should be made available in the data warehouse.

* Includes instructions for data loading, refreshing, and deletion.

Syntax

generic_table definition ::= DEFINE [export _specification] [table_type]
DATASET t abl e_nane
{ code_block | code bl ock |oad |
fromclause }
END

Export Specification

Table Type

Export specification defines the accessibility of the dataset, determining whether it is restricted,
controlled, or available.

By default, the export specification is PUBLIC.

Export specifications are:
* PRIVATE: Accessible only within the coding scope, and not materialized in target.

- PROTECTED: Accessible within a controlled scope, such as used to create VIEW or for
debugging, but not publicly accessible.

e PUBLIC: Accessible in the target data warehouse.

Syntax

export _specification ::= PRIVATE | PROTECTED | PUBLIC

Table Type defines the dataset's update capability, versioning, change tracking, storage
method, and persistence.

The default update is UPDATABLE, which updates as deltas.

Syntax

tabl e type ::= UPDATEABLE | VERSI ONED | ENTI TYCHANGETRACKING | INLINE | VI EW
AGGREGATI ONONLY

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-8 of E-35

ORACLE

Code Block

Appendix E
Statement

The table types are:

 UPDATEABLE: Handles modifications (insert and update) as deltas. For delete, refer to
Delete Handling

* VERSIONED: Maintains the latest version of data changes.

« ENTITYCHANGETRACKING: Tracks changes at the entity level for auditing or
synchronization. (Internal)

* INLINE: Provides structure and data in the definition. See Inline Dataset.

* VIEW: Represents a read only, computed dataset derived from other datasets. See VIEW
Dataset.

* AGGREGATIONONLY: Contains only summarized data in a single row. See
AGGREGATION ONLY Dataset.

Example: In the following code, the versioned dataset CUSTOVER DI Mis refreshed entirely with
each source load and available in the target data warehouse:

DEFI NE PUBLI C VERSI ONED DATASET CUSTOVER DI M FROM CUSTOMERS END

VIEW Dataset

Example:

| MPORT SOURCE PRODUCTS
DEFI NE DATASET PROD DI M

ROASOURCE PROD DI M

TH' S = PRODUCTS;
END
DEFI NE VI EW DATASET CURRENT_PRODUCT D

RONSOURCE PROD DI M WHERE DATEDI FF(PRCD DI M PROD_EFF_TO , DATE '2020-01-01")
> 0;

TH'S = PROD DI M
END

@ Note

* View is always accessible as PUBLIC. For this reason, you can't specify
export _type as PRI VATE or PROTECTED.

* You can input only data sets, not sources.
* You're not required to enter the primary key.
* You can also define views using SQL. See VIEW QUERY .

Code Block defines data sources, structures, and relationships, as well as instructions for data
loading, refreshing, and deletion.

Syntax

code_block ::= [builtin_schema_statenent | tenplate_schema_statenment]
rowsource_specification [col unm_mappi ng_assi gnnent]. ..

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-9 of E-35

ORACLE

Appendix E
Statement
[default _row specification]
[aggregate specification]
[primary_key specification]
[entity id specification]
[incremental _refresh_directive]
[delete_specification]...
Schema Statements
Example:
builtin_schema_statement | tenplate_schenma_statement
For details about schema statements, refer to Schema Definition.
Row Source Specification
Syntax
rowsource_specification ::= ROAMOURCE { table source | dataset_source |
inline_source }
tabl e_source ::= rowsource_expression
rowsource_expression ::= table reference join_condition...
[rowfiltering_conditional]
join_condition ::= {join_type table reference ONjoin_expr | join_type _cross
tabl e_reference }
join_type ::={ INNER| LEFT QUTER | RIGHT OQUTER | FULL QUTER } JON
join_type cross ::= CROSS JON
join_expr ::= bool ean_returned_expression
row filtering_conditional ::= WHERE bool ean_ret urned_expression
dataset _source ::={ UNTON | UNITON-ALL } table reference_list
table reference list ::="'[' table reference [, table reference]... ']'
table reference ::=table name | table_ alias
inline_source ::= INTABLE '(' colum_and_type inline value ')’
colum_and type ::="[' colum_name : data type [, colum_nane :
data type]... ']'
inline_value ::= VALUES '(' row_expression [, row expression]... ')’
row expression ::="'[' constant_value [, constant_value]... "]’

Example: Inner Join

| MPORT SOURCE CUSTOMERS
| MPORT SOURCE COUNTRI ES

DEFI NE VERSI ONED DATASET GAM NG_CUSTOMER_REACHED G
ROASCURCE CUSTOMERS | NNER JO N COUNTRIES ON (CUSTOVERS. COUNTRY_I D =

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-10 of E-35

ORACLE

Appendix E
Statement

COUNTR! ES. COUNTRY_| D) ;
THI'S = COUNTRI ES[COUNTRY_REG ON, COUNTRY_SUBREGI O] ;
TH'S = CUSTOMVERS;
PRI MARYKEY[CUST I D ;

END

Set Operations

A set operation works with two or more datasets and combines them into a single result set as
a RONSOURCE.

* You're required to specify column-mapping to define the structure of the resulting table.

* You need to explicitly specify a primary key if you want one, because there's no default
primary key.

Example: UNION

| MPORT SOURCE PRODUCTS

DEFI NE DATASET PRODUCTS_D FROM

PRODUCTS] PROD_| D, PROD_NAVE, PROD_EFF_FROM PROD_EFF_TO, PROD VALI D] END
DEFI NE PRI VATE DATASET PC_PRODUCTS TMWP

ROWSOURCE PRODUCTS WHERE

PRODUCTS. PROD_CATEGORY = ' Har dware' AND PRODUCTS. PROD_SUBCATEGORY LI KE
' UPCs' ;

TH'S =

PRODUCTS] PROD_| D, PROD_NANE, PROD_CATEGORY_DESC, PROD LI ST_PRI CE, PROD_M N_PRI CE] ;
THS[PRORITY] = 2;

END

DEFI NE PRI VATE DATASET CONSOLE_PRODUCTS_TMP

ROWSOURCE PRODUCTS WHERE PRODUCTS. PROD_SUBCATEGORY_DESC LI KE ' %Gane% AND
PRODUCTS. PROD_VALID = ' A';

TH'S =

PRODUCTS] PROD_| D, PROD_NANE, PROD_CATEGORY_DESC, PROD LI ST_PRI CE, PROD_M N_PRI CE] ;
THS[PRIORITY] = 1;

END

DEFI NE DATASET ENTERTAI NVENT_PRODUCTS_C
ROWSOURCE UNI ON[PC_PRODUCTS_TMP, CONSOLE_PRODUCTS_TVP] ;
TH'S = PC_PRODUCTS_TNP;
PRI MARYKEY[PROD_I D] ;

END

INLINE Data Set

An inline table defines both its structure and its data, including a predefined set of records,
directly within the table definition. Use inline tables to embed small datasets in your code
without relying on external sources.

Example:

DEFI NE | NLI NE DATASET MYl NLI NEDATA
ROWSOURCE | NTABLE(|
PROMD_CATEGORY_| D: VARCHAR2(128) ,
PROMD_CATEGORY: VARCHAR2(60) ,
PROMD_DI SCOUNT_RATE: Bl GDECI MAL(38, 12)]

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-11 of E-35

ORACLE

Appendix E
Statement

VALUES
([1,"No Promotion', 0],
[2,'Television',11.5],
[3,'Internet', 15.4])
);
PRI MARYKEY[PROMO_CATEGORY_I O ;
END

® Note

You could directly insert numeric values into a VARCHAR2 column with or without
enclosing them in quotes.

Column Mapping Assignment

Assign column mapping for column selections, properties, and transformations.

You can omit column mapping when there's only one input (in ROASOURCE) and all input
columns are selected.

Syntax

col um_nappi ng_assignnent ::= THIS[colum_list] '=" { table_nane
|

val ue_returned_expression }

['-' DATATYPE
data_type]

['-' { INTERNAL |
VAR ABLE }] ;

See Value Returned Expressions.

¢ INTERNAL: A column with restricted access, hidden from users, that you can mainly use
for debugging purposes.

« VARIABLE: A transient data holder within the dataset, that you can use for intermediate
transformations because it's not included in the final output.

Example:

| MPORT SOURCE CUSTOVERS

DEFI NE DATASET CUSTOMERS D COL

ROWSOURCE CUSTOMERS;

THI S[FROM_EFFECTI VE_DATE, TO_EFFECTI VE_DATE] =

CUSTOVERS[CUST_EFF_FROM CUST_EFF TQ|;

THI S[CUST_MARI TAL_STATUS] = COALESCE

(CUSTOMERS. CUST_MARI TAL_STATUS, ' UNKNOWN) - | NTERNAL:

THS =

CUSTOVERS[CUST_| D, CUST_FI RST_NAME, CUST_LAST_NANE, CUST_Cl TY, COUNTRY_| D] ;
THI S[CUST_FULL_NAME] = CONCAT W& (' ',
THI'S. CUST_FI RST_NANE, THI S. CUST_LAST_NAME) ;

THI S[Bl RTHYEAR] = CUSTOVERS| CUST_YEAR OF BI RTH - VARI ABLE;

THI S[VOTED AGE_FLAG = CASE WHEN THI'S. Bl RTHYEAR > 2018 THEN 'Y' ELSE 'N END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-12 of E-35

ORACLE

Appendix E
Statement

- DATATYPE VARCHAR2(1);
END

You can omit column mapping when there's only one input (in ROAMBOURCE) and all input
columns are selected.

Example: The following is an example of omitting column mapping:

| MPORT SOURCE CUSTOMERS

//TH'S = CUSTOVERS is onmitted
DEFI NE DATASET CUSTOMERS_DO
ROWBOURCE CUSTOVERS;,

END

Default Row Specification

Default row specification requires you to define a predefined record, ensuring there is always a
default entry in the table and maintaining schema integrity.

Syntax:
defaul t _row specification ::= DEFAULTROW defaul t _col umm_li st ;
default_colum_list ::="[" (TH § <colum_list>] '=" (PARAMETER '['

<par amet er _nane> ']"' |
<constant value>);)+ ']"

Example:

| MPORT SOURCE CUSTQOMERS
/* not listed colums are assigned NULL */
DEFI NE DATASET CUSTOVERS_DEFAULT
ROASOURCE CUSTOMERS;

TH' S = CUSTOMERS;

DEFAULTROW

[THHS[CUST_ID = -99999;

THI S[CUST_FI RST_NAME] = ' Unknown' ;
]

PRI MARYKEY[CUST_I D) ;

END

If you omit a column's default value, it defaults to NULL.

Aggregate Specification

Aggregate specification denotes a list of gr oup_by columns when aggregation is part of the
transformation.

Syntax:

aggregate_specification ::= GROUPBY colum_list ;

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-13 of E-35

ORACLE Appendix E
Statement

Example:

| MPORT SOURCE CUSTOMERS
| MPORT SOURCE COUNTRI ES

DEFI NE VERS| ONED DATASET GAM NG_CUSTOVER REACHED G

ROWSOURCE CUSTOMERS | NNER JOI N COUNTRI ES ON (CUSTOVERS. COUNTRY_I D =
COUNTRI ES. COUNTRY_| D)

THI'S = COUNTRI ES] COUNTRY_REG ON, COUNTRY_SUBREGI O] ;

THI S[REACHED_VOLUME] = COUNT(CUSTOMVERS. CUST I D);

GROUPBY[COUNTRY_REG ON, COUNTRY_SUBREGI O] ;

PRI MARYKEY[COUNTRY_REG ON, COUNTRY_SUBREG ON] ;
END

Primary Key Specification
The primary key is optional and inferred from the input when there's only a single input. For

PRI VATE VERSI ONED datasets, which do not require PRI MARYKEY, you must explicitly define a
primary key for a multi-input dataset.

Syntax:

primary_key_specification ::= PRI MARYKEY colum_list ;

entity id specification ::= ENTITYID colum_list ; (internal)
colum_list ::="[" colum_name [, colum_nanme].."]"
Example:

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOMERS_D
ROWSOURCE CUSTOMERS;

TH'S = CUSTOMVERS;

PRI MARYKEY[CUST_I D] ;

END

Delete Specification and Soft Delete

This specification defines the driven dataset and matching key for deleting the target table.

Syntax:

delete specification ::= [soft _delete spec] del etesource_specification

soft _del ete_spec ::= DELETETYPE '[' SOFT [create_soft_delete_colum] ']";
create_soft _delete colum ::= col um_nane

del et esource_specification ::= DELETESOURCE tabl e_name colum_|ist MATCH NG
colum_list;

Example:

| MPORT SOURCE CUSTOVER_DELETE_LOG

| MPORT SOURCE CUSTOVERS

DEFI NE DATASET CUSTOVERS_D
RONSOURCE CUSTOVER _HD,

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix E-14 of E-35

ORACLE

Appendix E
Statement

TH S = CUSTOVER_HD;

DELETESOURCE CUSTOMER DELETE_LOG CUST | D] MATCHI NG [CUST I D] ;
END

You've defined the dataset CUSTOMER DELETE LOGto identify and delete the matched records in
the dataset CUSTOMVERS_D.

Incremental Refresh Directive

This directive defines how a dataset refreshes with the UPDATEABLE table type, using the last
updated date (LUD) from the source table.

The incremental refresh directive identifies the incremental input for changes and is crucial for
optimizing refresh efficiency in multi-input datasets.

Syntax:

incremental _refresh_directive ::= REFRESH ON { CHANGES| UPSERTS| DELETES} I N
table reference |ist ;

table_reference_list ::="[" table_reference [, <table_reference]..']’
table reference ::=table_name | table_alias

The incremental refresh directives are as follows:

* CHANGES: Supports both upserts (updates) and deletes.
* UPSERTS: Supports only upserts (updates); no deletes.
 DELETES: Supports only deletes.

Example:

| MPORT SOURCE SALES
| MPORT SOURCE PRODUCTS
DEFI NE UPDATEABLE DATASET SALES FACT QJ
ROWSOURCE SALES | NNER JOI N PRODUCTS ON SALES. PROD_ D = PRODUCTS. PROD_I D;
TH S = SALES;
THI S[PROD_NAME] = PRODUCTS. PROD_NAME;
PRI MARYKEY [CUST_I D, PRCD_| D, PROVD | D, CHANNEL | D, TI ME_I D] ;
REFRESH ON CHANGES | N [SALES];
END

See Incremental.

Code Block Load - Full and Incremental Load Instructions

When the full load transformation logic is separate from subsequent loads, the dataset
definition has separate instructions for each load type.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-15 of E-35

ORACLE Appendix E
Statement

® Note
* You're required to enter the full Load block.
* Without an Incremental Load block, the dataset stops refreshing after the full load.

* The VI EWor | NLI NE table types don't support code_bl ock_| oad.

Syntax:

code_bl ock_load ::= ON FULL LCAD
rowsour ce_specification
[col um_mappi ng_assi gnment] . . .
[| NCREMENTAL LQAD
rowsour ce_specification
[col utm_mappi ng_assi gnment] . . .
]
ENDLOAD
defaul t _row specification]
aggregate_specification]
primary_key specification]
entity_id_specification]
incremental _refresh_directive]
del ete_specification ...

f— — — — — —

Example:

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOVERS D FULL
ON FULL LOAD
ROASOURCE CUSTOMERS WHERE CUSTOMERS. CUST_VALID = 'A';
| NCREMENTAL LOAD
ROASOURCE CUSTOVMVERS;
ENDLCAD
END

FROM - Compact Format

FROMis a compact form for dataset definition instruction that you can use to specify sources
and select input columns.

While RONSQURCE offers more flexibility for generating transformation input, you can use FROMto
simply list the instructions in the same line.

Syntax:

fromclause ::= FROM[table_source_type] { table_nane | table_nane
colum_list | table_name EXCLUDE col um_list }

colum_list ::="[" colum_nane ['," colum_name].."']"

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix E-16 of E-35

ORACLE

Appendix E
Statement

Example:

| MPORT SOURCE CUSTOMERS

DEFI NE DATASET CUSTOVERS_ D FROM CUSTOVERS

[CUST_I D, CUST_FI RST_NAME, CUST_LAST_NAME, CUST_CI TY, CUST_YEAR_OF_BI RTH, COUNTRY_|
D END

AGGREGATIONONLY

AGGREGATIONONLY is a table type in dataset definitions, designed to store only aggregated
data.

It ensures that the dataset contains a single row of summarized values rather than raw
transactional records. Each column must use an aggregation function, such as SUM or AVG, to
derive its values.

Key Features

* No Primary Key Required : Aggregation-only datasets contain a single row of
summarized data, eliminating the need for a primary key.

 Mandatory Aggregation: Columns in these datasets must use aggregation functions
(Example SUM) , AVH)).

* No Group-By Allowed: If GROUPBY is specified, the dataset is treated as a regular dataset
instead of aggregation-only.

Example

DEFI NE AGGREGATI ONONLY DATASET SALES AGG
ROWSOURCE SALES WHERE SALES. QUANTI TY_SOLD > 10 ;
THI S[AVG_SALES AMI] = AVG(SALES[AMOUNT_SOLD]) ;

END

Multiple Aggregated Metrics
An aggregation-only dataset can store multiple metrics, such as Average, Sum, and Min.

Example:

DEFI NE AGGREGATI ONONLY DATASET SALES AGGL
ROABOURCE SALES WHERE SALES. QUANTI TY_SOLD > 10;
THI S[AVG_SALES AMI] = AVG(SALES[AVOUNT_SOLD]) ;
THI S[SUM SALES AMI] = SUM SALES[AVOUNT_SOLD]) ;
THI S[M N_SALES AMI] = M N({ SALES[AVOUNT_SOLD]) ;
THI S[MAX_SALES AMI] = MAX(SALES[AMOUNT_SOLD)])
END

1

Full and Incremental Loads in Aggregation-Only Datasets

Aggregation-only datasets support code-block-load (both full loads and incremental loads).
See Code Block Load - Full and Incremental Load Instructions .

Example:

DEFI NE AGGREGATI ONONLY DATASET SALES_AG®
ON FULL LOAD

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-17 of E-35

ORACLE

Appendix E
Statement

ROABOURCE SALES WHERE SALES. QUANTI TY_SOLD > 20;
THI S[AVG_SALES AMI] = AVG(SALES[AVMOUNT_SOLD]);
THI S[SUM SALES AMI] = SUM SALES[AMOUNT_SOLD]) ;
THI S[M N_SALES AMI] = M N SALES[AVMOUNT_SOLD]) ;
THI S[MAX_SALES AMI] = MAX(SALES[AVMOUNT_SOLD]) ;
| NCREMENTAL LOAD
ROABOURCE SALES WHERE SALES. QUANTI TY_SOLD > 10;
THI S[AVG_SALES AMI] = AVG(SALES[AVMOUNT_SOLD]);
THI S[SUM SALES AMT] = SUM SALES[AMOUNT SOLD]);
THI S[M N_SALES AMI] = M N SALES[AVMOUNT_SOLD]) ;
THI S[MAX_SALES AMI] = MAX(SALES[AVMOUNT_SOLD]) ;
ENDLOAD

END

In this example:

* Full Load uses SALES with QUANTITY_SOLD > 20, where all the records are truncated
and reloaded.

* Incremental Load uses SALES, with QUANTITY_SOLD > 10.

Derived Aggregation-Only Datasets

To simplify calculations, you can derive aggregation-only datasets from other aggregation-only
datasets.

Example:

DEFI NE AGCREGATI ONONLY DATASET SALES_AGG3
RONSOURCE SALES_AGZ;

TH'S = SALES AGX. AVG_SALES AM;

END

@ Note

* You must mark a dataset that;s created exclusively from an aggregation-only
source as AGCREGATI ONONLY.

e CROSS JOIN is the only join type allowed with aggregation-only inputs.

e« The Refresh On Changes directive is not allowed on aggregation-only dataset.

Joining Aggregation-Only Datasets with Transactional Data
You can combine aggregation-only datasets with transactional data using CRCSS JO N.

Example:

DEFI NE DATASET SALES AGH
ROWSOURCE SALES CROSS JOI N SALES_AGG DERI VED WHERE SALES. QUANTI TY_SOLD > 10;
THI S = SALES_AGG DERI VED;

TH S = SALES;

PRI MARYKEY[PROD | D, CHANNEL_| D, CUST_I D, TI ME_I D, PROVD 1 D) ;
REFRESH ON CHANGES | N[SALES] ;

END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-18 of E-35

ORACLE Appendix E
Statement

® Note
* CROSS JOIN is the only join type allowed with aggregation-only inputs.

« The Refresh On Changes directive is not allowed on aggregation-only dataset.

Deletions

You apply deletions during subsequent loads to reflect removals from the source (tracked or
audited) or to clean up as explicitly instructed.

Deletion propagation includes:

* Implicit Propagation: Deletions flow through the lineage to downstream datasets.
« Explicit Prevention: Deletions are restricted from propagating.

Topics include:

e Track Upstream Removals

e Hard Deletions
e Soft Deletions

e Propagation Control

e Choose the Best Deletion Strategy

Track Upstream Removals

TRACKDELETES: Automatically detects removals by comparing the current dataset with the
original upstream copy.

Syntax:
See IMPORT Statement.

You can track removals in:

* The imported source itself (the default behavior).

* A named track set, that's tracked separately with a uniqgue name.
Example:

| MPORT SOURCE SALES W TH TRACKDELETES

| MPORT SOURCE SALES W TH TRACKDELETES | N [SALESREMOVALS] AS SALES DEL1 //
Named Track Set

@® Note

If the upstream system already tracks or audits deletions, you can leverage that audit
to improve performance and reduce the cost of comparing and tracking.

Hard Deletions

You can permanently delete records from data warehouse datasets through propagation or
explicit application.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix E-19 of E-35

ORACLE

Appendix E
Statement

You can apply deletions:

With Tracked Imported Source (default behavior): TRACKDELETES
Example: Propagate automatically in SALES F:

| MPORT SOURCE SALES W TH TRACKDELETES
DEFI NE DATASET SALES F FROM SALES END

Using a Named Tracked Set
You can apply this to both the imported source and the dataset by using:

Then Delete: Explicit directive that you can apply to an Imported Source in IMPORT
SOURCE statement.
See IMPORT Statement.

Example:

| MPORT SOURCE DEL_SALES //del ete records

/1 Clean up SALES with DEL_SALES

| MPORT SOURCE SALES THEN DELETE [DEL_SALES [SALES | D] MATCHI NG
[SALES I D]

/1 Delete for keys in DEL_SALES are automatically propagated to
NET_SALES F
DEFI NE DATASET NET_SALES F FROM SALES END

Delete Source: Explicit deletion that you can apply to a dataset in the Dataset
Definition.
The delete set (substraend) can be a delete named track set or can be any dataset.

Syntax: See Generic Dataset Definition.

@ Note
DELETESOURCE overrides all propagation for that dataset.

Example: Subtraend from TRACKDELETES:

| MPORT SOURCE SALES W TH TRACKDELETES | N [REMOVALS]
DEFI NE DATASET SALES F

RONSCURCE SALES;

TH' S = SALES;

DELETESOURCE REMOVALS [SALES | D] MATCHI NG [SALES_I D
END

Example: Subtraend from imported source, using DELETESOURCE in the dataset:

| MPORT SOURCE SALES_REMOWVALS //Audited from upstream no tracking
| MPORT SOURCE SALES
DEFI NE DATASET SALES F

ROWSOURCE SALES;

TH S = SALES;

DELETESOURCE SALES_REMOVALS [SALES | D] NMATCHI NG [SALES |D];
END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-20 of E-35

ORACLE

Appendix E
Statement

Soft Deletions

Instead of being physically removed, Data Augmentation Scripts flags removal records as
deleted. The flag name defaults to | SDELETED if you don't specify otherwise.

@® Note

* You must filter out soft-deleted records when necessary from queries and
downstream datasets.

» Soft deletes retain data but require efficient query filtering to maintain system
efficiency.

Syntax: See IMPORT Statement.

Similar to hard deletes, soft deletes utilize TRACKDELETE, THEN DELETE, and DELETESQURCE.

TRACKDELETE and Soft Delete
The following are examples of soft delete on importing.

Example: flag name not specified (defaulted) with TRACKDELETES.

| MPORT SOURCE CUSTOMVERS DELETETYPE[SOFT] W TH PRI MARYKEY[CUST_I D]
TRACKDELETES
DEFI NE UPDATEABLE DATASET CUSTOMERS SD_D FROM CUSTOVERS END

Example: flag name provided

| MPORT SOURCE SALES DELETETYPE[SOFT[| STRANDELETED]] TRACKDELETES[IN
[THDELETE]]
DEFI NE UPDATEABLE DATASET CUSTOMERS_SD D FROM CUSTOVERS END

THEN DELETE and Soft Delete
Example: Soft delete on importing, using other imported data.

| MPORT SOURCE SALESDEL
| MPORT SOURCE SALES DELETETYPE] SOFT] THEN DELETE [SALESDEL [SALES I D]
MATCHI NG [SALES I D]]

DEFI NE DATASET SALES SD _F FROM SALES END

DELETESOURCE and Soft Delete
Syntax: See Generic Dataset Definition.

Example: Soft delete on dataset.

| MPORT SOURCE SALESDEL
| MPORT SOURCE SALES
DEFI NE UPDATEABLE DATASET SALES F

ROABOURCE SALES;

TH'S = SALES;

DELETETYPE] SOFT[SALESDELETED] |

DELETESOURCE SALESDEL[SALE_| D] MATCH NG [SALE I D];
END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-21 of E-35

ORACLE

Appendix E
Statement

Propagation Control

Propagation control consists of:

DISABLE DELETEPROPAGATION
You can use disable DELETEPROPAGATI ON to prevent deletions from cascading to
downstream datasets.

— Default Behavior: By default, Data Augmentation Scripts applies removals to
downstream datasets, unless you define propagation.

— Disabled Propagation: Data Augmentation Scripts doesn't propagate deletions
automatically, but still applies explicit deletions that use DELETESCURCE.

Syntax:

di sabl e_del ete_propagation ::= D SABLE DELETEPROPAGATI ON FOR { ALL
DATASETS | DATASETS '[' table_nane ']' }

Example: Disable delete propagation for all datasets.

DI SABLE DELETEPROPAGATI ON FOR ALL DATASETS

Example: Disable delete propagation for a product dimension dataset.

Dl SABLE DELETEPROPAGATI ON FOR DATASETS[PRODUCTS_D]

REFRESH ON DELETES
You can controls how deletions impact the dataset.

Syntax: See Generic Dataset Definition.

Example: In the following example, for incremental runs, only Sales deletes are
considered.

| MPORT SOURCE SALES W TH TRACKDELETES
| MPORT SOURCE PRODUCTS
DEFI NE DATASET SALES F

ROWSOURCE PRODUCTS | NNER JOI N SALES ON SALES. PROD | D =
PRODUCTS. PROD_| D;

TH S = SALES;

REFRESH ON DELETES | N| SALES] :

REFRESH ON UPSERTS | N[PRODUCTS]
END

STABILITYPERIOD

You can restrict processing data changes within a defined timeframe (or sliding window)
since the previous load. You can apply the restriction to either the record’s Initial Extract
Date (IED) or Last Updated Date (LUD) of upstream data.

Syntax: See IMPORT Statement.

The following is the change tracking behavior based on Last Updated Date (LUD):

— If you haven't identified a LUD for the source, only changes to records created in the
last n days at extract time are tracked.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-22 of E-35

ORACLE Appendix E
Statement

— If you've identified a LUD defined for the source, both changes since the last extract
and changes to records created in the last n days at extract time are tracked.

The following example specifies the Initial Extract Date- (IED) but not a Last Updated Date
(LUD) :

| MPORT SOURCE CUSTOMERS W TH | ED [CUST_EFF_FROM STABI LI TYPER OO 30,
CUST_EFF_FROM TRACKDELETES
DEFI NE DATASET CUSTOMERS D
ROASOURCE CUSTOVERS;
TH' S = CUSTOMERS;
END

The example code specifies that only changes (including deletions) in SALES from the last
30 days be processed through propagation in each load.

@® Note

Even when you don't explicitly define the Last Updated Date (LUD) column in an
IMPORT definition, if an incremental key is defined in the source metadata, Data
Augmentation Scripts automatically uses it as the Last Updated Date (LUD). To
override this behavior, you can use LUD[NULL].

The following example ignores the Last Updated Date (LUD):

| MPORT SOURCE CUSTOMERS W TH | ED [CUST_EFF_FROM LUD{nul |]
STABI LI TYPERI OD{ 30, CUST_EFF_FROM TRACKDELETES

Choose the Best Deletion Strategy

The following table maps a deletion scenario with the corresponding recommended deletion

method:

Scenario Recommended Deletion Method

Data must be completely removed. Hard delete (THEN DELETE, DELETESOURCE,
TRACKDELETES)

Need to retain deleted records for historical Soft delete (I SDELETED flag)

tracking.

Source system doesn't track deletions. TRACKDELETES

Deletions must be explicitly provided by a named =~ DELETESOURCE

dataset.

Avoid cascading deletions in downstream datasets. DI SABLE DELETEPROPAGATI ON

Optimize performance by applying necessary THEN DELETE

deletions on imported sources

Schema Definition

Schema Definition provides control over dataset structures while maintaining flexibility.

Schema definitions have the following characteristics:

* Allows predefined or overridden data types and formats for datasets.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-23 of E-35

ORACLE

Appendix E
Statement

» Provides uniformity across multiple datasets while permitting necessary adjustments.

« Enables you to define a schema separately as a template or embedded within a dataset as
an inline statement.

* Allows you to reference by name within a dataset when you've a schema defined
separately.

« Becomes part of a code block when you've embedded it. See Code Block.
Syntax

For information on schema statements (t enpl at e_schena_st at ement or
bui I tin_schema_st at enent) in the dataset definition code_bl ock, see Generic Dataset
Definition.

Schema Definition Rules

* Column data types are mandatory; PRI MARYKEY is optional.
« By default, all columns are nullable unless you explicitly specify otherwise.

e If you don't define PRI MARYKEY in the schema, it must be provided by the source dataset.

Conflict Resolution
* Primary Key

— When you define PRI MARYKEY in both the schema and the dataset, the dataset value
takes precedence.

— For datasets with row source joins, you can omit PRI MARYKEY from the dataset if you've
already specified it in the schema.

« Data Type

— When you define a column's data type in both the schema and the dataset, the data
type that you provide in the dataset overrides the dataset in the schema.

Column Mismatch Handling

When a column is present in either the schema or the dataset but not in both, its inclusion and
properties are determined as follows:

« Extra Columns in the Dataset: If a column appears in the dataset but not in the schema,
its properties are derived from the source.

* Extra Schema Columns: If you define a column in the schema but don't map it in the
dataset, it's ignored unless it's part of the primary key. If so, a warning is issued.

Schema Template Definition

You can use DEFI NE SCHEMA, the dataset definition code block, to define a schema separately
from a dataset definition, refer to it, and apply it to any dataset.

Syntax:

schema_definition ::= DEFINE SCHEMA schema_namne
1 []
colum_nanme data_type
[PRIMARYKEY] [nullable flag]
[,colum_name data_type
[PRRMARYKEY | [nullable flag]] ...

3

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-24 of E-35

ORACLE Appendix E
Statement

END
schema_nanme ::= identifier
tenpl at e_schenma_statement ::= SCHEMA schema_nane ; //used in Dataset
Definition

Example of a dataset defined with the t enpl at e_schena_st at enent :

| MPORT SOURCE CUSTOMERS
DEFI NE SCHEMA CUSTOVERS D SCHEMA
[
CUST_| D NUMBER(38, 0) PRI MARYKEY,
CUST_LAST_NAME VARCHAR2(32),
CUST_CI TY_I D NUMBER(38, 0),
CUST_VALI D VARCHAR2(32),
CUST_EFF_FROM DATE NOT NULL,
CUST_EFF_TO DATE
]
END
//Usage in Dataset Definition
DEFI NE DATASET CUSTOMERS D
SCHEMA CUSTOMERS_D SCHEMA;
ROASQURCE CUSTQOMERS;
TH' S = CUSTOMERS;
END

Inline Schema Definition

Within the dataset definition code block, you can define a schema directly within a dataset
definition, applying it only to that specific dataset.

Syntax:

builtin_schema_statement ::= SCHEMA
] [1
col um_narme
data_type [PRIMARYKEY] [nullable_flag]
[, colum_name
data_type [PRIMARYKEY] [nullable flag]] ...

1

Example of a dataset defined with the bui | tin_schema_st at ement :

DEFI NE DATASET | NS_CUSTOMERS_D
SCHEMA
[
CUST_ID NUMBER(38, 0) PRI MARYKEY,
CUST_LAST_NAME. VARCHAR2(32),
CUST_CITY_ID NUMBER(38, 0) ,

CUST_VALI D VARCHAR2(32) ,
CUST EFF_FROM DATE NOT NULL,
CUST_EFF_TO DATE

1

RONSOURCE CUSTOMERS;

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-25 of E-35

ORACLE

Appendix E
Statement

TH' S = CUSTOMERS;
END

Code Block Load and Schema Definition

When you separate the full load code from the incremental load within a dataset definition, the
inline schema is defined at the beginning of the code_bl ock_| oad.

Example of a code_bl ock_| oad defined with t enpl at e_schema_st at ement :

DEFI NE DATASET FL_CUSTOMERS D
SCHEMA CUSTOVERS_D_SCHEMA:
ON FULL LOAD
ROASOURCE CUSTOMERS WHERE CUSTOVERS. CUST VALID = ‘A’ ;
TH'S = CUSTOMVERS;
| NCREMENTAL LQAD
ROASOURCE CUSTOMERS;
TH'S = CUSTOMVERS;
ENDLOAD
END

Example of a code_bl ock_| oad defined with bui | ti n_schema_st at enent :

DEFI NE VERSI ONED DATASET | NSCH_FL_CUSTOMVERS_CF
SCHEMA
[
CUST_ID NUVBER(38,0) PRI MARYKEY,
CUST_LAST NAME VARCHAR2(32),
CUST CITY_ID NUVBER(38, 0) ,

CUST_VALI D VARCHAR2(32)
CUST_EFF_FROM DATE NOT NULL,
CUST_EFF_TO DATE

l;

ON FULL LOAD

ROASOURCE CUSTOMERS WHERE CUSTOMERS. CUST_VALID = 'A’;
TH' S = CUSTOMERS;
| NCREMENTAL LOAD
ROASOURCE CUSTOMERS;
TH' S = CUSTOMERS;
ENDLCAD
END

Transposition Table Definition

You can use a Transposition Table Definition to restructure datasets by rotating rows into
columns (PIVOT) or columns into rows (UNPIVOT).

Syntax

transposition_table definition ::= DEFINE [export _specification]
[transposition_table type] DATASET tabl e nane

{ transposition_code_bl ock |
pi vot _code_bl ock_l oad | unpivot_code_bl ock_I oad }

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-26 of E-35

ORACLE’

Appendix E

Statement
END
transposition_table type ::= VERSI ONED
For more information, see Export Specification.
Common Elements
transposi tion_rowsource_specification ::= ROMOURCE
{ transposition_table source | inline_source };
transposition_table source ::=table reference [row filtering_conditional]

segnent ::= WTH N table_nane [EXCLUDE] col um_Iist;

Transposition Code Block

The transposition code block contains either a PIVOT or UNPIVOT block, which determines
how the data is transformed.

transposi tion_code_bl ock ::= pivot_code_block | unpivot_code_bl ock
See:

e Unpivot Definition

Pivot Definition

pi vot _code_bl ock ::=
transposi tion_rowsource_specification
pi vot _section
[colum_nmappi ng_assi gnnent]...
[primary_key specification]

@ Note

You're allowed to only map columns for columns generated from PIVOT section.

pi vot _section ::= PIVOT

' (l
[segment]
pi vot _transposition...
I)l
pivot _transposition ::= THIS[colum_list] "= { pivot_function_list |

pivot scalar_list }

FOR { tabl e_nane.col um_nane I N
constant _val ue_expression | table_colum_tuple IN
constant _val ue_t upl e_expression }

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-27 of E-35

ORACLE

Appendix E
Statement

pivot function list ::="[" aggregate function [colum_prefix] [,

aggregate_function [colum_prefix]] ... ']’

pivot _scalar _list ::="[" colum_nane [colum_prefix] [, colum_name

[colum_prefix] 1 ... "]

colum_prefix ::="-" COLPREFI X string

table colum_tuple ::="(" table_name.colum_nane [,

tabl e_nanme. col um_nane] ... ')’

constant _val ue_expression ::="("' constant_value [, constant_value] ... ")

constant _val ue_tuple_expression ::="(' constant_value tuple |

constant _value_tuple] ... ")

constant _value tuple ::="'(' constant_value, constant_value [

constant _value] ... ')’

® Note

» If a WTHI N statement is skipped, all the columns that aren't used in transpositions
will be used to partition (group) the data.

* Within the PI VOT call, transpositions could be aggregated or scalar. If you use
aggregation, then all transposition statements must have aggregation.

e If column names on the left side aren't explicitly mentioned, - COLPREFI X property
is mandatory for aggregation-based transpositions and optional for scalar
transpositions.

* ROWSOURCE can't contain joins or unions but it can contain filters.

e Other transformations (except aggregations) are allowed after the Pl VOT block and
only by using the columns from PI VOT section.

e No GROUP BY is allowed in the dataset.

» Primary key is optional. If optional, the within clause columns are considered as
primary key. Primary key can be specified, especially for excluding functionally-
dependent columns.

Examples

Calculate average income for each month using country and city.

DEFI NE VERSI ONED DATASET DW C TY_PI VOT
ROASOURCE CI T ES;

PI VOT
([¥ e SPECI FY PARTI TI ON
__________________________ *
WTHI N C TI ES[COUNTRg, CITY, CTY_CODE];
[¥ e SPECI FY TRANSPCS! TI ONS
....................... * |

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-28 of E-35

ORACLE Appendix E
Statement

/1 Provide target colum nanes on LHS for each of the nonth val ues
TH S[AV_INC JAN, AV INC FEB, AV_INC MAR] = AVQ CI TI ES. | NCOVE) FOR
CITIES. MONTH IN (' Jan', 'Feb', 'Mar');
);

PRI MARYKEY [COUNTRY, CITY];
END

Calculate total population and average population for each year using country and city.

DEFI NE VERSI ONED DATASET DW.CI TY_PI VOT
ROASOURCE ClI Tl ES;

PI vOT

(
W TH N CI TI ES[COUNTRY, CITY, Cl TY_CODH];

/1 Target colum names are generated using - COLPREFI X property. The
YEAR val ues are suffixed to - COLPREFI X using underscore().
THI'S = [SUM CI TI ES. POPULATI ON) - COLPREFI X ' SUM POP',
AVG Cl TI ES. POPULATI ON) - COLPREFI X ' AVG_POP']
FOR CITIES. YEAR IN (2000, 2010, 2020);

/1l E.g. CGenerated col ums SUM POP_2000, AVG POP_2000,
SUM_POP_2010
);

THI S[SUM_CHANGE_2010_2020] = THI'S. SUM_PCP_2000/ THI S. SUM POP_2010;

PRI MARYKEY [COUNTRY, CITY];
END

Calculate total population for each (year, month) combination using country and city.

DEFI NE VERSI ONED DATASET DW.CI TY_PI VOT
ROWSCURCE CI Tl ES;

Pl VOT

(
WTH N CI TI ES[COUNTRY, CITY, C TY_CODE];

[/ Multiple colum conbinations.
TH'S = SUM CI Tl ES. POPULATI ON) - COLPREFI X ' SUM_POP
FOR (CI TIES. YEAR, CITIES. MONTH) I N (

(2000, ' Jan'),
(2000, Feb'), (2000,' Mar'),
(2010, " Feb'),
(2010, Mar'),
(2020, " Jan'),

(2020, ' Feb'), (2020," Mar')
)

/1 Colum name exanpl es: SUM POP_2000_JAN, SUM POP_2000_FEB
E

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-29 of E-35

ORACLE Appendix E
Statement

PRI MARYKEY [COUNTRY, CITY];
END

Non-aggregation pivot

DEFI NE VERSI ONED DATASET DW CUSTOVERS_PI VOT
ROASOURCE CUSTOVERS;

PI vOT

(
W THI N CUSTOVERS[1 D ;

/1 For non-aggregation pivot, -COLPREFI X is optional.
/!l Inthis case, use the values fromIN clause as col utm nanes.
TH' S = CUSTOMERS. Attri buteVal ue FOR CUSTOVERS. Attribute IN
("FirstNane', 'LastNane', 'DOB');
K

PRI MARYKEY [1D];
END

Combine all PIVOTs in a dataset

DEFI NE VERSI ONED DATASET DW.CI TY_PI VOT
ROWSCURCE CI Tl ES;

[% e SPECI FY PARTI TI ON
__________________________ *

W THI N CI TI ES[COUNTRY, CITY, CI TY_CODE];

/1 or WTH N ALL;

A R EEE T LT SPECI FY TRANSPGCSI Tl ONS
_______________________ *|

/] Provide target colum nanes on LHS for each of the nonth val ues

THI S{AV_INC_JAN, AV_INC_FEB, AV_INC MAR] = AVE CI TIES. | NCOVE) FOR
CITIES. MONTH IN (' Jan', 'Feb', '"Mar');

TH'S = [SUMC TIES. POPULATI ON) - COLPREFI X ' SUM POP',
AVG(Cl TI ES. POPULATI ON) - COLPREFI X ' AVG POP'] FOR CI TIES. YEAR I N (2000, 2010,
2020) ;

{1/ Multiple colum conbinations
TH'S = [SUM CI Tl ES. POPULATI ON) - COLPREFI X ' SUM POP']
FOR (CI TIES. YEAR, CITIES. MONTH) I N (

(2000, ' Jan'),
(2000, Feb'), (2000,' Mar'),

(2010, ' Feb'),
(2010, Mar'),

(2020, " Jan'),

(2020, ' Feb'), (2020,' Mar')
)
)

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-30 of E-35

ORACLE Appendix E
Statement
TH S[SUM CHANGE 2010 _2020] = THI S. SUM POP_2000/ TH S. SUM PCP_2010;
PRI MARYKEY [COUNTRY, CITY];

END
Unpivot Definition
unpi vot _code_bl ock ::= transposition_rowsource_specification

unpi vot _section

[col um_nmappi ng_assi gnnent]

primry _key specification

@ Note
You're allowed to assign columns only for columns generated from the UNPIVOT
section.
unpi vot _section ::= UNPIVOT [| NCLUDE NULLS]
1 (l
[segment]
unpi vot _transposition ...
DA

unpi vot _transposition ::= TH S colum_tuple list '=" table name colum_list ;
colum_tuple list ::="[" colum_tuple [, colum_tuple]... ']'
colum_tuple ::="(" colum_key value [, colum_key value]... , identifier
1)I
colum_key value ::=identifier ':' constant _val ue

@® Note

The W THI N statement is optional. If it's skipped, all remaining columns that aren't
used in transpositions must be used in partition.

NULL values are excluded by default. You can include them by explicitly using
| NCLUDE NULLS.

Aggregation isn't allowed in the UNPI VOT block.

ROASOURCE can't contain joins or unions but it can contain filters. Other
transformations (except aggregations) are allowed after the UNPI VOT section and
only by using the columns from the UNPI VOT section.

No GROUP BY is allowed in the dataset.

Primary key is mandatory and must include the columns from the W THI N
statement (it can exclude functionally dependent columns) and the key column
from the UNPI VOT assignment.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-31 of E-35

ORACLE

Appendix E
Statement

Examples

Show product and sales amount as (name, value) pairs using id and fiscal year.

DEFI NE VERSI ONED DATASET DW SALES UNPI VOT
ROWSCURCE SALES;

UNPI VOT | NCLUDE NULLS // Nulls can be included/excluded. Exclude, by
defaul t

(
W TH N SALES[I D, FI SCAL_YEAR];

/] Target Col utms SALES AMI and PRODUCT are specified on LHS

/1 The correspondi ng display values for PRODUCT col um are specified
inthe LHS as wel |

/] Pairs on LHS map to colums on RHS, in sequence

THI S[(PRCDUCT: ' A", SALES AMI), (PRODUCT : 'B', SALES AMI)] =
SALES[PROD_A AMI, PRCD_B_AMI];

)

PRI MARYKEY [I D, FI SCAL_YEAR, PRODUCT];
END

Show product, sales amount, sales quantity using ID and fiscal year.

DEFI NE VERSI ONED DATASET DW SALES_UNPI VOT
ROASOURCE SALES;

UNPI VOT | NCLUDE NULLS
(
W THI N SALES[I D, FISCAL_YEAR;
TH S[(PRODUCT : 'A', SALES AMI), (PRODUCT :'B', SALES AMI),
(PRODUCT : 'A', SALES QTY), (PRODUCT : 'B', SALES QTY)]
= SALES[PRCD A AMI, PROD B AMT, PROD A QTY, PROD B QTY];
E

THI S[SALES RATI(Q = TH S. SALES_AMI/ THI S. SALES_QTY;

PRI MARYKEY [I D, FI SCAL_YEAR, PRODUCT] ;
END

Show year, month and population using country and city.

DEFI NE VERSI ONED DATASET DW SALES_UNPI VOT
ROASOURCE SALES;
UNPI VOT

(
W TH N SALES[COUNTRY, CITY, CI TY_CODE];

THI S[(YEAR : 2000, MONTH : 'Jan', POPULATION), (YEAR : 2000, MONTH :
'Feb', POPULATI ON), (YEAR : 2000, MONTH : 'Mar', POPULATION)] =
SALES[SUM PCP_2000_JAN, SUM POP_2000_FEB, SUM PCP_2000_MAR] :

E

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-32 of E-35

ORACLE

Appendix E
Statement

PRI MARYKEY [COUNTRY, CITY, YEAR MONTH;
END

Block Load Definitions

Use block load for different load logic for full and incremental.

Pivot Load

pivot code block load ::="ON FULL LOAD

transposition_rowsource_specification

pi vot _section

[col um_nappi ng_assignnment |...

[
" | NCREMENTAL LOAD
transposition_rowsource_specification
pi vot _section
[col um_nappi ng_assi gnnent |...

]

" ENDLOAD

[primary_key specification]

Example of Pivot Code block load:

DEFI NE VERS| ONED DATASET DW Cl TY_PI VOT
ON FULL LOAD
ROWSOURCE Cl TI ES:;
PI VOT
(
W THI N CI TI ES[COUNTRY, CITY, C TY_CODE];
TH S[AV_INC_JAN, AV_INC FEB, AV_INC_ MAR] = AVG Cl TIES. | NCOVE) FOR
CITIES. MONTH IN ('Jan', 'Feb', 'Mar');
)s

| NCREMENTAL LOAD
ROABOURCE Cl TI ES_COUNTI ES:;
Pl VOT
(
W TH N CI TI ES_COUNTI ES[COUNTRY, CI TY, CI TY_CODE];
TH S[AV_INC_JAN, AV_INC FEB, AV INC MAR =
AVG(Cl TI ES_COUNTI ES. | NCOVE) FOR CI TI ES_COUNTI ES. MONTH I N (' Jan', ' Feb',
"Mar');
):
ENDLOA

PRI MARYKEY [COUNTRY, CITY];
END

Unpivot Load

unpi vot _code_bl ock_load ::="ON FULL LOAD
transposi tion_rowsource_specification

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-33 of E-35

ORACLE Appendix E
Statement

unpi vot _section
[colum_nappi ng_assignnent]...

[
' | NCREMENTAL LOAD

transposition_rowsource_specification
unpi vot _section
[colum_nappi ng_assignnent]...

]
" ENDLOAD

prinmary_key_specification

User Defined Functions (UDFs) or Macros

User-Defined Functions (UDFs) or macros in Data Augmentation Scripts enable you to create
custom functions, which complement the built-in functions provided by Data Augmentation
Scripts.

Syntax

macro_decl aration ::= DEFINE FUNCTI ON macro_nane ' ('
formal _paraneter[,fornmal _paranmeter]... ')’

val ue_returned_expression
END

Example 1: The following UDF changes the date column format to yyyyMd:

DEFI NE FUNCTI ON f or mat Dat e(col)
DATE_FORMAT(col , 'yyyymvid')
END

Example 2: The following UDF demonstrates the usage of multiple input parameters:

DEFI NE FUNCTI ON get CurrencyRat e(currency, currencyRate)
CASE WHEN currency = $VAR PARAM GLOBAL_CURRENCY$ THEN 1 ELSE currencyRate END
END

Using a UDF

To use UDFs in Data Augmentation Scripts, you must first define the function and then call the
defined function.

You can define UDFs in two ways:

« Externally: You can define UDFs in the . f unc file and then call in the current locode
application by including the . f unc file using the i ncl ude_definition.

* Internally: You can define UDFs within the locode program itself
You can call UDFs in the following ways:
e UDF call on single column:

macro_call ::= macro_nane '(' { table_nane.colum_nane | table-name
[colum_name] | TH S.colum_name | THI'S [col um_nane] } ")°

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-34 of E-35

ORACLE Appendix E

Statement
e UDF call on a list of columns:
macro-call ::= macro_nane '(' variable _name ')' FOR variable_name IN table-
nane [EXCLUDE] '[' colum_nane [, colum_nange].."]"
@ Note

e Data Augmentation Scripts supports a UDF call on a list of columns for single
parameter UDF functions.

e The EXCLUDE option in UDF allows you to exclude specific elements of a dataset
when applying the UDF.

Examples

* UDF defined externally
You first define UDF in the nyFuncti ons. f unc file within the Data Augmentation Scripts
Project directory, and it's later used in the mai n. hrf file.

myFuncti ons. func:

DEFI NE FUNCTI ON t oVc(col)
CAST(col AS VARCHAR2(400))
END

mai n. hrf:

I NCLUDE FUNCTI ON "nyFuncti ons. f unc"

DEFI NE VERSI ONED DATASET CUSTOVERS_D
ROWSOURCE CUSTOMERS WHERE CUSTOMERS. CUST | D=1;
THI'S = CUSTOMVERS;
THI S[CUST_POSTAL_CODE_STRING = t oVc(CUSTOVERS. CUST_POSTAL_CODE) ;
PRI MARYKEY[CUST I D ;
END

* UDF defined internally
You can define UDFs within the Data Augmentation Scripts program in the . hrf itself.

DEFI NE FUNCTI ON t oVc(col)
CAST(col AS VARCHAR2(400))
END

DEFI NE VERSI ONED DATASET CUSTOMVERS D
ROWSOURCE CUSTOMERS WHERE CUSTOMERS. CUST | D=1;
THI'S = CUSTOMVERS;
THI S[CUST_PCSTAL_CODE_STRING = t 0Vc(CUSTOVERS. CUST_POSTAL_CODE) ;
PRI MARYKEY[CUST I D) ;
END

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix E-35 of E-35

Expressions

An expression is a combination of one or more values, parameters, and functions that evaluate
to a value or to a boolean result (Example: True or False).

Syntax
expression_list ::="[" expression [, expression]..']"
expression ::= value_returned_expression | bool ean_returned_expression | ' ('

expression ')’

@ Note

"(' <expression ')' implies nested functions. Example: MAX(AVE sal ary))

Example

MAX(AVG(CUSTOVERS. CUST CREDI T_LIM T))

Value Returned Expressions

A value returned expression is an expression that evaluates to a specific value. For example, a
function that calculates the sum of two numbers may return the sum of those numbers as a
value. You can then use this value in other parts of the program.

Value-Returned Expression List: A comma-separated list of value-returned expressions.

val ue_returned_expression_list ::= value_returned_expression
[,val ue_returned_expression]...

Value-Returned Expression

val ue_returned_expression ::=term| value_returned expression {'+'|'-'} term
term::= factor | term{'*"|'/"'} factor

factor ::=1['+ | '-'] primry

primary ::= colum_reference

constant _val ue
PARAMETER '[' paraneter _nane ']’
case_expr
function_expression

| '("value_returned expression ')’
colum _reference ::={ TH S| table nane }.colum_name // E.g.: CUST.CUST ID,

THI S. AMT
(Refer to a previously defined colum within the same target dataset)
| table name [EXCLUDE] colum_list // E g.:

sal es[amount, quantity, prod_id],

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-1 of F-15

ORACLE

Appendix F
Value Returned Expressions

sal es[amount] , sal es EXCLUDE [anount, quantity, prod_id]
constant _value ::=[-] number | identifier | date | timestamp | string| NULL

Example

| MPORT SOURCE CUSTOMERS
DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS;

THI'S = CUSTOVERS] CUST I D] ;

/1 value_returned_expression - use of function CONCAT WS with
col um_reference

THI S[CUST_FULL_NAME] = CONCAT_WS(' ',

CUSTOMERS. CUST_FI RST_NAME, CUSTOMERS. CUST_LAST_NAME) ;

END

Case Expressions

Case expressions allow you to add conditional logic by using either a simple-case or searched-
case structure.

Syntax
case_expr ::= sinple_case_expression | searched _case_expression
si mpl e_case_expression ::= CASE i nput_expression
(WHEN when_expression THEN result_expression)...
[ELSE el se_result_expression]
END
sear ched_case_expression ::= CASE

(WHEN bool ean_expressi on THEN
result_expression)
[ELSE el se result_expression]

END
i nput _expression ;:= expression
when_expressi on ::= expression
result_expression ::= value_returned_expression
el se_result_expression ::= val ue_returned_expression
bool ean_expression ::= bool ean_returned_expression

« Use a simple CASE expression when you want to evaluate a single expression against
multiple potential values.

» Use a searched CASE expression when you need to evaluate multiple, independent
boolean expressions to determine the result.

Example 1: Simple Case Expression

CASE CUSTOMERS. CUST_VALI D
VWHEN '|' THEN 'Inactive' WHEN 'A" THEN ' Acti ve'
ELSE ' Unknown'

END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-2 of F-15

ORACLE

Appendix F
Value Returned Expressions

In this example, if the CUST_VALI D column has a value of |, it returns | nacti ve. If the value is A,
it returns Act i ve. If neither condition is met, it returns Unknown.

Example 2: Searched Case Expression

CASE
WHEN CUSTOMERS. CUST_YEAR OF_BI RTH <= 1973 THEN ' Segnent A
WHEN CUSTOMERS. CUST_YEAR OF_BI RTH >1973 THEN ' Segnent B
END

In this example, if CUST_YEAR _OF Bl RTHis less than or equal to 1973, it assigns Segnment A.
Otherwise, it assigns Segnent B.

CASE WHEN | SNULL(CUSTOVERS. CUST_VALI D) THEN ' Unknown' ELSE ' Known' END

In this example, if CUST_VALI Dis NULL, it returns Unknown. Otherwise, it returns Known.

Function Expressions

A function expression represents any valid function that you can use within the framework.

Syntax

function_expression ::= general _function | aggregate_function |
wi ndow_function | macro_call| datatype_function

Function expressions include:
* General Functions: Standard functions used for various computations or transformations.

* Aggregate Functions: Functions that perform calculations over groups of rows (Example:
SUM AVG).

e Window Functions: Functions that compute values over a range of rows within a partition
(Example: RON NUMBER, RANK).

e Macro Calls: Calls to user-defined macros applied to columns or parameters.

- Datatype Functions: Functions specific to certain data types (Example: casting or type-
specific operations).

Aggregate Functions

An aggregate function performs an operation on sets of values and returns a single result.
Syntax
An aggregate function can be any one of the following:

e AVG'(' value_returned_expression ')': Calculates the mean of the values.
Input: A numeric expression

Example:

AVGE SALES. AMOUNT_SCLD)

e COUNT'(*)" : Counts all the rows, including those with null values.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-3 of F-15

ORACLE

Appendix F
Value Returned Expressions

Input: None.

Example:
COUNT(*)

COUNT'(" value_returned_expression_list ')": Counts the rows where the input
expression is non-null.
Input: A numeric or other type of expression.

Example:

COUNT(SALES. CUST_I D)

COUNT'(" DISTINCT value_returned_expression_list ')': Counts the unique, non-null
values in the input expression.
Input: A numeric or categorical expression.

Example:

COUNT(DI STI NCT SALES. CUST_I D)
MAX'(* value_returned_expression ')': Returns the maximum value in the input.
Input: A numeric or comparable expression.

Example:

MAX(SALES. AMOUNT_SOLD)
MIN'(" value_returned_expression ')': Returns the minimum value in the input.
Input: A numeric or comparable expression.

Example:

M N(SALES. AMOUNT_SCLD)
SUM'(’ value_returned_expression ')": Calculates the total sum of the values in the input.
Input: A numeric expression.

Example:
SUM SALES. AMOUNT_SOLD)

FIRST'(' value_returned_expression [, nulls_option] *)": Returns the first value in a
group. Optionally ignores null values.
Input: A numeric or comparable expression, and an optional null handling option.

Example:

FI RST(SALES. AMOUNT_SOLD, | GNORE NULLS)

LAST'(' value_returned_expression [, nulls_option] ')': Returns the last value in a
group. Optionally ignores null values.
Input: A numeric or comparable expression, and an optional null handling option.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-4 of F-15

ORACLE

Appendix F
Value Returned Expressions

Example:

LAST(SALES. AMOUNT_SOLD)
nulls _option ::= [IGNORE | RESPECT] NULLS

Datatype Functions

Datatype functions include operations on specific data types.

Syntax

datatype_function ::= string_function | numeric_function | date_function |

You can use these functions in the following ways:

Cast and Convert Function: For datatype transformations.
Date Function: For date/time operations.
Numeric Function: For numeric calculations.

String Function: For string manipulation.

Cast and Convert Functions

Cast and convert functions transform data between different types.

Cast and convert functions include:

TO_DATE'(' value_returned_expression [, format_mask] ')' : Converts a string to a date
using the specified f or mat _nask.
Inputs: A string (VARCHAR2) and an optional format mask.

Example:
TO _DATE("' 2024-01- 03", " yyyy- Mt dd')

TO_TIMESTAMP'(' value_returned_expression [, format_mask] ')’ : Converts a string to
a timestamp using the specified f or mat _nmask.
Inputs: A string (VARCHAR2) and an optional format mask.

Example:

TO_TI MESTAMP(' 2024- 01- 03 01: 01: 01',' yyyy- M#dd HH mmss')

CAST'(' value_returned_expression AS data_type ')’ : Converts the expression to the
specified data type.
Inputs: Any compatible data types.

Example:

CAST(CUSTOVERS. CUST_YEAR_OF_BI RTH AS VARCHAR2(20))

The following table shows the CAST compatibility between six datatypes: VARCHAR?,
NUMBER, Bl GDECI MAL, LARGEI NT, DATE, and Tl MESTAMP. The table cells indicate whether the
CAST between the source and target datatypes is allowed (Yes) or not (No).

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-5 of F-15

ORACLE Appendix F
Value Returned Expressions

Source/ VARCHAR2 NUMBER BIGDECIMA LARGEINT DATE TIMESTAM
Target L P
VARCHAR2 Yes Yes Yes Yes Yes Yes
NUMBER Yes Yes Yes Yes No No
BIGDECIMA Yes Yes Yes Yes No No

L

LARGEINT Yes Yes Yes Yes No No

DATE Yes No No No Yes Yes
TIMESTAMP Yes No No No Yes Yes

e INT'(" value_returned_expression ')' : Converts an expression to an integer..
Inputs: Exact numeric types. Example: NUMBER, LARGE! NT, DOUBLE, Bl GDECI MAL.

Example:

INT('12.12") // function output will be 12
* BIGINT'(" value_returned_expression ')’ : Converts an expression to a large integer.
Inputs: Exact numeric types. Example: NUMBER, LARGEI NT, DOUBLE, Bl GDECI MAL.

Example:

Bl G NT(' 1234567890. 1234567890") // function output will be 1234567890

Date Functions

Date functions perform operations and calculations on date and time values.
Date functions include:

- ADD_MONTHS'(' start_date, num_months ')’ :Returns the date that is num nont hs after
start _date.
Inputs: A date and an integer.

Example:
ADD_MONTHS(CUSTQOVERS. CUST_EFF_FROM 1)

 LAST_DAY'(' value_returned_expression ')': Returns the last day of the month for the
given date.
Inputs: An expression that evaluates to a date.

Example:
LAST_DAY(CUSTOMERS. CUST_EFF_FROM

e MONTHS_BETWEEN'(' end_date, start_date [, roundOff] ')": Returns the number of
months between.
Inputs: Two expressions that evaluate to a date or timestamp and an optional BOOLEAN
expression. The result is rounded to 8 digits unless roundO f =f al se.

Example:

MONTHS_BETWEEN(CUSTOVERS. CUST_EFF_FROM CUSTOMERS. CUST_EFF_TO)

* NEXT_DAY'(' value_returned_expression, day_of week ')': Returns the first date after
the expression that matches the specified day_of _week.

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix F-6 of F-15

ORACLE

Appendix F
Value Returned Expressions

Inputs: A date and a string for the day of the week (Example: SU, SUN, SUNDAY).

Example:
NEXT_DAY(CUSTOMVERS. CUST_EFF_FROM ' TUESDAY')

TRUNC'(' value_returned_expression, fmt ')": Truncates the date to the unit specified by
the format f nt .
Inputs: A date and a format string (Example: year, yyyy, yy, non, nont h, nm.

Example:

TRUNC(CUSTOMERS. CUST_EFF_FROM ' YYYY")

DATE_TRUNC'(' fmt, value_returned_expression ')': Truncates the timestamp to the unit
specified by the format f nt .

Inputs: A timestamp and a format string (Example: YEAR, YYYY, YY, MON, MONTH, MV DAY, DD,
HOUR, M NUTE, SECOND, VEEK, QUARTER).

Example:

DATE_TRUNC(' YEAR , CUSTOVERS. CUST_EFF_FROV)

DATE_SUB'(' start_date, integer ')': Returns the date obtained by subtracting the integer
from the given date.
Inputs: An expression of date type and an integer.

Example:
DATE_SUB(CUSTOMERS. CUST_EFF_FROM 10)

DATEDIFF'(' end_date, start_date ')": Returns the number of days between start_dat e
and end_dat e.
Inputs: Two dates.

Example:

DATED! FF(CUSTOVERS. CUST_EFF_FROM CUSTOMERS. CUST_EFF_TO)

DATE_ADD'(' date, integer ')": Returns the date obtained by adding the integer to the
given date.
Inputs: A date and an integer.

Example:

DATE_ADD(CUSTOMVERS. CUST_EFF_FROM 10)

DATE_FORMAT'(' timestamp, fmt ')": Converts the timestamp to a value of string in the
format specified by the date format f nt .
Inputs: A timestamp and a format string. (Example: yyyy- Mt dd,yyyy.)

Example:
DATE_FORMAT(CUSTOVERS. CUST_EFF_FROM ' yyyy')

CURRENT_DATE '(")": Returns the current date.
CURRENT_TIMESTAMP '(")": Returns the current timestamp.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-7 of F-15

ORACLE Appendix F
Value Returned Expressions

* FROM_UNIXTIME' (' value_returned_expression [, fmt] ')": Converts UNIX time to
timestamp.
Inputs: An integer expression representing UNIX time and an optional format string
expression with a valid format.

Example:

FROM_UNI XTI ME(10033743070)

* UNIX_TIMESTAMP' (* value_returned_expression [, fmt] ')': Returns UNIX time.
Inputs: A date or timestamp, and an optional format string expression with a valid format
(when the first input is of type string and not conformed to the default date or timestamp
format).

Example:

UNI X_TI MESTAMP(' 2023- 04- 04 00: 00: 01', 'yyyy-M#dd HH: nm ss')

Numeric Functions
Numeric functions perform calculations on numeric values.

Usage Example: Use of ROUND

DEFI NE DATASET CUSTOVERS D
ROWSOURCE CUSTOMERS;
THI S[CUST _| D =CUSTOVERS. CUST I D;
THI S[CUST_CREDI T_LIM T] = ROUND(CUSTOMERS. CUST CREDIT_LIM T, 2);
PRI MARYKEY[CUST_I D] ;
END

Numeric functions include the following:

« ABS'(' value_returned_expression ')': Returns the absolute value of the numeric input.
Inputs: A numeric expression.

Example: ABS(- 123)

°* ROUND'(' value_returned_expression, humber ‘)": Rounds the numeric input to the
specified decimal places using HALF UP rounding. Default is 0.
Inputs: A numeric expression and the number of decimal places.

Example: ROUND(- 123. 1111, 2)

e SIGN'(" value_returned_expression ')': Returns -1.0, 0.0, or 1.0 if the input is negative,
Zero, or positive, respectively.
Inputs: A numeric expression.

Example: SI G\(- 123)

e CEIL'(' value_returned_expression ')": Returns the smallest integer greater than or equal
to the input.
Inputs: A numeric expression.

Example: CEI L(123. 1111)

* EXP'(' value_returned_expression ')': Returns the exponential raised to the power of the
numeric input.
Inputs: A numeric expression.

Example: EXP(2)

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-8 of F-15

ORACLE

String Functions

Appendix F
Value Returned Expressions

FLOOR'(' value_returned_expression ')": Returns the largest integer less than or equal
to the input.
Inputs: A numeric expression.

Example: FLOOR(123. 1111)

LN'(* value_returned_expression ')": Returns the natural logarithm of the numeric input.
Inputs: A numeric expression.

Example: LN(2)

LOG'(' base, value_returned_expression ')": Returns the logarithm of the input with the
specified base.
Inputs: A numeric base and a numeric expression.

Example: LOH 2, 4)

MOD'(’ value_returned_expression, value_returned_expression ')": Returns the
remainder after dividing the first input by the second.
Inputs: Two numeric expressions.

Example: MO 9, 5)

SQRT'(' value_returned_expression ')': Returns the square root of the numeric input.
Inputs: A numeric expression.

Example: SQRT(9)

SIN'(* value_returned_expression ')": Returns the sine of the numeric input (in radians).
Inputs: A numeric expression.
Example: SI N(1. 5708)

COS'(* value_returned_expression ')": Returns the cosine of the numeric input (in
radians).
Inputs: A numeric expression.

Example: COS(1. 5708)

TAN'(' value_returned_expression ')': Returns the tangent of the numeric input (in
radians).
Inputs: A numeric expression.

Example: TAN(1. 5708)

POWER'(' value_returned_expression, value_returned_expression ')": Raises the first
input to the power of the second input.
Inputs: Two numeric expressions.

Example: POAER(4, 3)

You can perform various character manipulations using string functions.

String functions include:

CHAR'(' value_returned_expression ')": Converts a numeric value between 0 and 255 to
the character value corresponding to the ASCII code. If the input numeric value is greater
than 255, the function uses number % 256 to wrap.

Inputs: An integral numeric expression.

Example: CHAR(35)

CONCAT_WS'(' sep, value_returned_expression_list ')": Joins multiple strings using a
specified separator.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-9 of F-15

ORACLE

Appendix F
Value Returned Expressions

Inputs: A string.
Example: CONCAT_W5(' ', CUSTOVERS. CUST_FI RST_NAME, CUSTOVERS. CUST_LAST_NAME)

LOWER'(' value_returned_expression ')': Converts all characters of the string to
lowercase.
Inputs: A string expression.

Example: LONER(CUSTOVERS] CUST_FI RST_NAME])

SUBSTR'(' value_returned_expression, pos [, len] ')": Extracts a substring starting at
position and length.
Inputs: A string, starting position (pos) and length (len).

Example: SUBSTR(CUSTOVERS] CUST FI RST_NAME] , 1, 4)

REGEXP_EXTRACT'(' value_returned_expression, regexp , idx ')': Returns the
substring in the input that matches the regular expression group at idx.
Inputs: A string, a regular expression and a group index integer value.

Example: REGEXP_EXTRACT(" 100- 200", "(d+)", 1)

CONCAT'(' value_returned_expression_list ')': Combines multiple strings into a single
string.
Inputs: String expressions.

Example: CONCAT(CUSTOVERS. CUST_FI RST_NANME, CUSTOVERS. CUST_LAST_NAME)

TRIM'(* value_returned_expression ')': Removes leading and trailing spaces from a
string.
Inputs: A string expression.

Example: TRl M CUSTOVERS. CUST_FI RST_NAME)

UPPER'(' value_returned_expression ')': Converts all characters of the string to
uppercase.
Inputs: A string expression.

Example: UPPER(CUSTOVERS] CUST_FI RST_NAME])

INSTR'(" str, substr *)": Returns the index of the first occurrence of substr in str (1-based).
Inputs: A string and the substring to search for.

Example: | NSTR(CUSTOMERS] CUST_FI RST_NAME] , " Al ex")

ASCII'(" value_returned_expression ')': Returns the ASCII numeric value of the first
character in the string.
Inputs: A string expression.

Example: ASCI | (" Al ex")

LEFT'(" str, len ')": Returns the leftmost length (len) characters from the string (str).
Returns an empty string if len <= 0.
Inputs: A string (str) and a numeric length.

Example: LEFT(CUSTOVERS] CUST_FI RST_NAME] , 2)

REPLACE!'(' str, search[, replace] ')'": Replaces all occurrences of search from the string
(str) with replace (the default is an empty string).
Inputs: A string, search term, and optional replacement string.

Example: REPLACE(CUSTOVERS] CUST_VALI D], "1","*")

RIGHT'(" str, len ')": Returns the rightmost length (len) characters from the string (str).
Returns an empty string if len <= 0.
Inputs: A string (str) and a numeric length.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-10 of F-15

ORACLE

Appendix F
Value Returned Expressions

Example: R GHT(CUSTOVERS[CUST_FI RST_NAME] , 2)

SPACE'(' value_returned_expression ')": Returns a string of spaces with length equal to
the numeric value.
Inputs: An integer expression.

Example: SPACE(3)

LENGTH(' value_returned_expression ')": Returns a humber representing the total
number of characters in the input string, including spaces.
Inputs: An integer expression.

Example: LENGTH(CUSTOVERS] CUST_FI RST_NAME])

HASH(' value_returned_expression_list ')": Returns a number for hash value of the
arguments.
Inputs: Any expression or expressions list.

Example: HASH(CUSTOVERS. CUST_FI RST_NAME, CUSTOVERS. CUST_LAST_NAME)

General Functions

A general function performs operations on data around NULL value handling and comparisons.

General functions include the following:

NVL '(" exprl, expr2 ')": Returns expr2 if exprl is null, otherwise returns exprl.
Inputs: Two expressions, where exprl can be null.

Example: NVL(PROVOTI ONS. PROVMD_COST, 0)

NVL2 '(* exprl, expr2, expr3 ')': Returns expr2 if exprl is not null, otherwise returns
expr3.
Inputs: Three expressions.

Example: NVL2(PROMOTI ONS. PROVO NAME, 'Eligible', '"Not Eligible')

DECODE '(' value_returned_expression, search, result [, search, result] ... [, default]
')": Compares an expression to a list of search values and returns the corresponding result
or a default value.

Inputs:

val ue_returned_expression ::= expression

search ::= expression //An expression that matches the type of

val ue_returned_expression

result ::= expression //An expression that shares a |l east conmmon type with
default_result and the other result expressions

default _result ::= expressionn //An optional expression that shares a

| east common type with result

Example: DECODE(PROVOTI ONS. PROVD NAME, ' NO PROMOTION # , 1, ' NO PROMOTI ON
2, 0)

COALESCE '(' value_returned_expression_list ')": Returns the first non-null value in the
list of expressions, otherwise, returns null.
Inputs: Two or more expressions.

Example: COALESCE(PROMOTI ONS. PROMO_CATEGORY, PROMOTI ONS. PROMO_SUBCATEGORY,
" Unknown')

NULLIF ‘(" value_returned_expression, value_returned_expression ')": Returns null if
exprl equals expr2; otherwise, returns exprl.

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-11 of F-15

ORACLE

Appendix F
Value Returned Expressions

Inputs: Two expressions for comparison.
Example: NULLI F(PROMOTI ONS. PROMO_CATEGORY, PROMOTI ONS. PROMO_SUBCATEGORY)

GREATEST '(' value_returned_expression_list ')": Returns the largest value among the
provided arguments.
Inputs: Two or more comparable expressions.

Example: GREATEST(1, 4,6, 7, nul |)

LEAST ‘(' value_returned_expression_list ')": Returns the smallest value among the
provided arguments.
Inputs: Two or more comparable expressions.

Example: LEAST(1, 4,6, 7, nul)

IFNULL ‘(" expression, expression ')': Returns col2 if coll is null, or coll otherwise.
Inputs: Two expressions for comparison.

Example: | FNULL(PROMOTI ONS. PROMO_CATEGORY, PROMOTI ONS. PROMO_SUBCATEGCRY)

User Defined Functions Call

To use user defined functions in Data Augmentation Scripts, you must first define the function
and then call the defined function.

For more information, see User Defined Functions (UDFs) or Macros.

Window Functions

A window function combines aggregate, ranking, or analytic functions with an over-clause for
windowed calculations.

Syntax

wi ndow function ::= aggregate function over_clause | ranking function
over_clause | analytic_function over_clause

Window functions include:

aggregat e_functi on: For supported aggregate functions, see Aggregate Functions
Example: AVG SALES. AMOUNT _SOLD) OVER (PARTI TI ON BY SALES. CUST_I D)

ranki ng_functi on: Performs ranking operations within a partitioned result set.
Syntax: ranki ng_function::= ROVNUMBER (' ')'| RANK' (' ')'| DENSE RANK' (' ')' |
PERCENT_RANK (" ')'

— ROW.NUMBER() : Assigns a unique number to each row in the result set.
— RANK() : Assigns a rank to each row, with gaps for ties.

— DENSE_RANK() : Assigns a rank to each row, without gaps for ties.

— PERCENT_RANK() : Calculates the relative rank of a row as a percentage

Example: ROV NUMBER() OVER (PARTI TI ON BY SALES. CUST_I D CRDER BY
SALES. AMOUNT_SOLD DESC NULLS LAST)

anal ytic_function: Retrieves values from the previous or next rows in a result set that's
based on a specified ordering.

Syntax: anal ytic_function::= {LAG | LEAD} '('value_returned_expression[,

of fset[, default]]")"

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-12 of F-15

ORACLE

Appendix F
Value Returned Expressions

of fset::= val ue_returned_expression

defaul t:: = val ue_returned_expression

— LA): Returns the value of a previous row based on the offset.

— LEAD() : Returns the value of a subsequent row based on the offset.

— of fset: Value should be an integer when present. The nhumber of rows back from the
current row from which to obtain a value. If not specified, the default is 1.

— defaul t: Default value that's used for a null value.

Example: LAG SALES. AVOUNT_SOLD, 1, 0) OVER (PARTI TI ON BY SALES. CUST | D ORDER
BY SALES. AMOUNT SOLD DESC)

over _cl ause: Specifies the partitioning, ordering, and frame for window functions.
Syntax:

over_clause::= OVER ' ('
[frame_clause |")'
partition_by clause::= PARTITI ON BY val ue_returned_expression_|ist

order _by clause ::= ORDER BY val ue_returned_expression [ASC| DESC] [NULLS
FI RST| LAST)]

[partition_by clause] [order_by clause]

(, value_returned_expression [ASC| DESC|
[NULLS(FI RST| LAST)]) ...

frame_clause::= (ROAS | RANGE) (frame_start | frane_between)

frame_bet ween::= BETWEEN frane_start AND frame_end

frame-start::= UNBOUNDED PRECEDI NG | unsigned_i nteger PRECEDING | CURRENT
ROW

frame_end: : = UNBOUNDED FOLLOWN NG | unsigned_i nteger FOLLONNG | CURRENT
ROW

— partition_by_cl ause: Groups rows using PARTITION BY expression.
— order_by cl ause: Orders rows using ORDER BY expression.

* Optionally, specifies whether to sort the rows in ascending or descending order.
Syntax: [ASC | DESC]

* Optionally, specifies whether NULL values are returned before or after non-NULL
values.
Syntax: NULLS [FIRST | LAST]

— frane_cl ause: Defines the window frame.
— frane-start andfrane_end:
* UNBOUNDED PRECEDI NG: Starts from the first row.
* unsi gned_i nt eger PRECEDI NG Starts n rows before the current row.
* CURRENT ROW Includes only the current row.
* UNBOUNDED FOLLOW NG: Extends to the last row.
* unsi gned_i nteger FOLLOW NG Ends n rows after the current row.
Example:

SUM SALES. AVOUNT_SOLD) OVER (PARTI TI ON BY SALES. CUST | D ORDER BY
SALES. TI ME_I D ASC ROAS UNBOUNDED PRECEDI NG AND CURRENT ROW

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-13 of F-15

ORACLE Appendix F
Boolean Returned Expressions

Boolean Returned Expressions

Boolean returned expressions evaluate to TRUE or FALSE based on logical conditions.

Boolean returned expressions include:

* value_returned_expression { ">=" | "<=" | ">" | <" | ">" | =" }
value_returned_expression: Compares two expressions using operators (>=, <=, >, <, <>,

Example:
CUSTOVERS. CUST_YEAR _OF_BI RTH >= 2000

e expression [NOT] BETWEEN value returned expression AND
value_returned_expression: Checks if the value of the expression falls within the
specified range.

Example:

CUSTOMERS. CUST_CREDI T_LIM T BETWEEN 50000 AND 100000

« match_expression [NOT] LIKE pattern: Matches a string match expression against a
specified pattern with the following valid wildcard characters (% _, [],["]).
— match_expression: A string that's evaluated against a pattern.

— pattern: A string specifying the pattern for matching with valid wildcard characters: %

INNE

Example:
CUSTOMERS. FI RST_NAME LI KE ' J%'

e expression IS [NOT] NULL: Checks if the expression is (or is not) NULL.
Example:

CUSTOMERS. CUST_ENMAIL |'S NOT NULL

e ISNULL "(" expression ")": Returns as True if the expression is Nul | , or is Fal se
otherwise.
Example:

| SNULL(CUSTOMERS. CUST_VALI D)

e NOT boolean_returned_expression: Negates a boolean expression.
Example:

NOT CUSTOMERS. CUST_YEAR OF BI RTH >= 2000
e boolean_returned_expression AND boolean_returned_expression: Combines
conditions using the logical AND.

Example:

CUSTOMERS. CUST_YEAR _OF_BI RTH >= 2000 AND CUSTOMERS. CUST_EMAIL |'S NOT NULL

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-14 of F-15

ORACLE

Appendix F
Boolean Returned Expressions

boolean_returned_expression OR boolean_returned_expression:Combines conditions
using the logical OR.

Example:

CUSTOMERS. CUST_YEAR OF BI RTH >= 2000 OR CUSTOMERS. CUST_EMAIL IS NOT NULL
expression [NOT] IN in_expr: Checks if the value of the expression exists (or doesn't

exist) in the list of i n_expr values (value returned expression list).
Example:

CUSTOVERS. CUST_VALID IN ("A, "1")

"("boolean_returned_expression®)": Groups expressions for logical evaluation.
Example:

(CUSTOVERS. CUST_YEAR_OF_BI RTH >= 2000 AND CUSTOMERS. CUST_EMAIL |'S NOT NULL)

Usage Example

DEFI NE VERSI ONED DATASET CUSTOVERS_D

/l'use of bool ean_returned_expression
ROAMSOURCE CUSTOMERS WHERE CUSTOVMERS. CUST_YEAR OF BIRTH IS NOT NULL AND

CUSTOMVERS. CUST_SRC_ID IS NULL;

TH' S = CUSTOMERS;
PRI MARYKEY[CUST_I D) ;

END

Data Augmentation Scripts Reference Guide

G47686-01

December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix F-15 of F-15

Column Groups, Indexes, and Partitions

To improve the performance of reporting queries in the database, you can specify constructs
such as column groups, indexes, and partitions (only for PROTECTED and PUBLIC datasets).

You specify column groups, indexes, and partitions in the ADW conf file in a Data Augmentation
Scripts application. Specifying these constructs is optional.

See:
e COLUMNGROUPS
« |INDEXES

* PARTITIONS

COLUMNGROUPS

A column group is a set of columns that are treated as a single unit for query performance.

Column groups work only when the extended statistics feature is enabled in the target data
warehouse. By gathering statistics on a column group, the optimizer can more accurately
estimate cardinality when a query groups these columns together.

® Note
* For a dataset, a column can belong to multiple column groups.
» Different column groups with the same columns in same orders aren't allowed.

» Different column groups with the same columns in different orders are allowed.

Syntax

col utm_group_bl ock ::= COLUWNGROUPS '[' col unm_group_statenent ... ']’
col um_group_statement ::= CREATE COLUWMNGROUP identifier ON table name
colum_list ;

Example

COLUVNGROUPS
[

CREATE COLUWVNGROUP FAW DW SALES ON DW SALES]| CUST_ID, SALE ID|;

CREATE COLUWNGROUP FAW DW SALES2 ON DW SALES[SALE_I D, CUST_ID|;
CREATE COLUWNGROUP FAW DW CUSTOMER ON DW CUSTOVER] CUST | D, CUST_NAME] ;

]

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix G-1 of G-3

ORACLE Appendix G
INDEXES

INDEXES

Indexes enable you to a quickly look up data in table columns.

By default, local unique BTREE indexes are created based on the primary key for each
PROTECTED or PUBLIC dataset.

Additionally, there are instances when:
e There are unnecessary columns in the primary key.

e The few columns on which queries can be beneficial are missing from indexing (outside
the primary keys) .

To overcome these issues, you can provide instructions to create non-primary key indexes.

® Note
Column groups:
e Support BTREE index.

« Don't allow different indexes of the same type with the same columns in same
orders.

» Allow different indexes of different types with the same columns.

» Allow different indexes with the same columns in different orders.

Syntax

i ndex_bl ock ::= | NDEXES
1 [l
{ pk_index_statement |
ski p_pk_i ndex_stat enent |
create_index_statement }
[create_index_statement | ...

1

pk_i ndex_statement ::= CREATE | NDEX ON PRI MARYKEY FOR ALL DATASETS [EXCEPT
table list] ;

ski p_pk_i ndex_statement ::= SKI P CREATE | NDEX ON PRI MARYKEY FOR ALL DATASETS
[EXCEPT table list] ;

create_index_statement ::= CREATE [index_type] unique_spec [scope_spec]

I NDEX i dentifier ON table name colum_|ist ;

table list ::="[' table _nane (, table _nane) ']'

i ndex_type ::= BTREE

uni que_spec ::= UNITQUE | NONUNI QUE

scope_spec ::= LOCAL | GLOBAL /ldefault LOCAL
Example

| NDEXES

[
SKI P CREATE | NDEX ON PRI MARYKEY FOR ALL DATASETS EXCEPT [PROMOTI ON D) ;

CREATE NON- UNI QUE | NDEX city_i ndex ON CUST_DOf CUST_CI TY, COUNTRY_ID;

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix G-2 of G-3

ORACLE Appendix G
PARTITIONS

CREATE UNI QUE GLOBAL | NDEX UN_I NDEX ON CUST D[CUST I D, CUST_FI RST_NAME] ;
]

PARTITIONS

Partitioning allows subdividing tables, indexes, and index-organized tables into smaller pieces.

Partitions enable you to manage and access these database objects at a finer level of
granularity.

Syntax

partition_block ::= PARTITIONS '['" { list_partition | range partition }... "]’
list partition ::= CREATE LI ST PARTITION ON table nane '[' colum_name ']';
range_partition ::= CREATE RANGE PARTITION ON table name '[' col um_nane ']’

| NTERVALPERI QD ' [' period_value ']"

[NTERVALVALUE '[" integer ']']

period value ::= “YEAR' | “QUARTER' | “MONTH' | “DAY" | “CUSTOM;

@® Note

e You must use | NTERVALVALUE only with period_type DAY and CUSTOM When used
with CUSTOM it signifies an interval in months.

* For range patrtitioning, col uim_nane must be of datatype DATE or TI MESTAMP.

* Atable can have only one partition.

Example

PARTI TI ONS
[
Il LIST
CREATE LI ST PARTI TI ON ON PRODUCT_SALES[PROD_CATEGORY] ;

Il RANGE
CREATE RANGE PARTI TI ON ON PROMO_SALES[PROMO DATE] | NTERVALPERI OD] " DAY"]
| NTERVALVALUE[15] ;

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix G-3 of G-3

VIEW QUERY

View query enables you to define views using query language and create views using the
dataset definition syntax.

In Data Augmentation Scripts, you create a query file with the .qry extension (Example:
<nane>. qry). This file include the queries to create the views in files.

For Autonomous Data Warehouse, this is similar to the select syntax in Oracle.

Syntax

raw_vi ew dataset ::= DEFI NE RAWI EW DATASET dat aset _nane [raw vi ew_type]
vi ew_specification END

raw view type ::= RAWI EWIYPE = 'string'

String should be a valid DB name e.g., ORACLE. Default is ORACLE. (Note:
Currently only ORACLE is supported.)

view specification ::= RAWBQL = CETSQ' (' """ query _file_name'"" ")";

@® Note

* Write valid syntax. Data Augmentation Scripts doesn't parse the queries in the
query file for invalid syntax.

» Use full names and fully qualified prefixes for the local tables in the view query
because input tables used in queries can be local datasets.

* View query must not end with ' ; ' .

Example

Write the view query: channels.qry:

SELECT

CHANNELS_D. CHANNEL _CLASS, CHANNELS_D. CHANNEL_CLASS | D, CHANNELS_D. CHANNEL_DESC, C
HANNELS D. CHANNEL _| D, TRUNC(SYSDATE) AS CURDATE

FROM DW LOCCDE_X_APP_CHANNELS D CHANNELS_D

Reference the query file in code file (.hrf) main.hrf :

DEFI NE DATASET CHANNEL_VRAW/I EW
RAW/I EWTYPE = ORACLE;

RAWSQL = CGETSQL("channel s.qry");
END

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix H-1 of H-1

Table and Column Prefixes

You can define table and column prefixes for instances when in some source applications, the
table and column names can begin with special characters that Data Augmentation Scripts
doesn't support for IMPORT.

By defining the table and column prefix, you have the option of providing prefixes for tables
and column names. You can then use the prefixed object names in subsequent code.

Define prefixes at any one of these two levels:

* Application level prefix for tables and columns

* Table level prefixes for tables and columns

@ Note

* You must start prefixes with an alphabet. Other characters in the prefix don't have
to be alphabets.

* Keywords not allowed as prefix.
* Precede TABLEPREFI X with COLPREFI X when you provide both.

e Use the prefix names when you reference prefixed columns and tables in
datasets.

e Table-level prefixes override application-level prefixes when you provide both
prefixes.

e Alias takes precedence over application level prefixes when you define both
application-level table prefix and import as Alias.

Application level prefix for tables and columns

To ensure that all the tables and columns in the application have the same prefix, you can
specify prefixes at the application level.

Syntax

application_source definition ::= APPLI CATI ON SOURCE (COLPREFI X' ['<string>']"
| TABLEPREFI X ['<string>1')]

Example

APPLI CATI ON SOURCE TABLEPREFI X["CPQ'] COLPREFI X[" CPQ']

| MPORT SOURCE _TRANSACTI ON_HEADER //Interpret as | MPORT SOURCE
_TRANSACTI ON_HEADER AS CPQ_TRANSACTI ON_HEADER

/1 \hen referencing prefixed tables in dataset, ensure CPQ prefix is used by
t he devel oper

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Appendix I-1 of I-2

ORACLE
Appendix |

DEFI NE DATASET DW THEADER F FROM CPQ_TRANSACTI ON_HEADER END

DEFI NE DATASET DW THEADER F1

ROWSOURCE CPQ_TRANSACTI ON_HEADER,

TH'S = TRANSACTI ON_HEADER EXCLUDE [CPQ COL1]; // \hen referencing prefixed
colums in dataset, ensure CPQ prefix is used by the devel oper

TH' S = TRANSACTI ON_HEADER] CPQ COL2?] ;

THI S[SALES] = TRANSACTI ON_HEADER] CPQ COL3];
END

Table level prefixes for tables and columns

You can specify prefixes at the table and column levels.

Syntax

Check COLPREFI X and TABLEPREFI X in the sour ce_def i ni ti on syntax.

Example

| MPORT SOURCE _TRANSACTI ON_HEADER COLPREFI X[" AA"] TABLEPREFI X[" AA"]
DEFI NE DATASET DW THEADER F

ROWSOURCE AA TRANSACTI ON_HEADER;

TH'S = AA TRANSACTI ON_HEADER[AA_COL1, AA COL2, AA COL3] ;

PRI MARYKEY[AA_COL1] ;

END

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025
Copyright © 2025, Oracle and/or its affiliates. Appendix I-2 of I-2

Keyboard Shortcuts for Data Augmentation

Scripts

You can use these keyboard shortcuts to perform actions in Data Augmentation Scripts.

Task

Keyboard Shortcut

Save the active file.

Ctrl+S (Windows)
Command+S (Mac)

Save all files.

Ctrl+Shift+S (Windows)
Command+Shift+S (Mac)

Expand the file structure.

Ctrl+B (Windows)
Command+B (Mac)

Toggle the console.

Ctrl+' (Windows)
Command+' (Mac)

Compile the project.

Ctrl+Shift+B (Windows)
Command+Shift+B (Mac)

Build the project.

F5

Data Augmentation Scripts Reference Guide

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix J-1 of J-1

Glossary

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Glossary-1 of Glossary-1

Index

Data Augmentation Scripts Reference Guide
G47686-01 December 3, 2025

Copyright © 2025, Oracle and/or its affiliates. Index-1 of Index-1

	Contents
	Preface
	Audience
	Related Documentation
	Conventions

	1 Overview of Data Augmentation Scripts
	Custom Data Pipelines
	Introduction to Data Augmentation Scripts
	Basic Elements of Data Augmentation Scripts
	Data Augmentation Scripts Code Structure
	Schema
	Building Blocks of Schema Creation

	About Data Population
	Rowsource
	Column Referencing
	Column Mapping
	Column Manipulation

	Table Types
	Export Specifications

	Supported Files
	Data Augmentation Scripts Program Files
	Source Definition Files
	Parameter Definition Files
	Module File
	Function Files
	Conf File
	Query Files

	Additional Features
	DefaultRow
	Time Dimensions
	Inline Dataset

	Advanced Data Augmentation Scripts Features
	Incremental
	Set Operation
	AGGREGATION ONLY Dataset
	Transposition Table Definition
	Pivot
	Unpivot

	Delete Handling
	TRACKDELETES (Default Behavior)
	DELETESOURCE
	THEN DELETE

	2 Create Custom Data Pipelines
	About Creating Custom Data Pipelines
	Prerequisites for Creating a Custom Data Pipeline
	Create a Connection for Data Augmentation Scripts
	Set Up Pipeline Parameters for Data Augmentation Scripts
	Create Augmentation for Data Augmentation Scripts
	Create a Data Augmentation Scripts Application

	A Data Augmentation Scripts Application Development Details
	B Syntax Notations
	C Comments and Escape Sequences
	D File Types and Data Types
	E Program Structure
	IMPORT Statement
	INCLUDE
	ALIAS
	PARAMETER
	Statement
	Generic Dataset Definition
	Export Specification
	Table Type
	Code Block
	Column Mapping Assignment
	Default Row Specification
	Aggregate Specification
	Primary Key Specification
	Delete Specification and Soft Delete
	Incremental Refresh Directive
	Code Block Load - Full and Incremental Load Instructions
	FROM - Compact Format
	AGGREGATIONONLY
	Deletions

	Schema Definition
	Transposition Table Definition
	User Defined Functions (UDFs) or Macros

	F Expressions
	Value Returned Expressions
	Case Expressions
	Function Expressions
	Aggregate Functions
	Datatype Functions
	Cast and Convert Functions
	Date Functions
	Numeric Functions
	String Functions

	General Functions
	User Defined Functions Call
	Window Functions

	Boolean Returned Expressions

	G Column Groups, Indexes, and Partitions
	COLUMNGROUPS
	INDEXES
	PARTITIONS

	H VIEW QUERY
	I Table and Column Prefixes
	J Keyboard Shortcuts for Data Augmentation Scripts
	Glossary
	Index

