
Oracle® Cloud
Data Augmentation Scripts Reference Guide

Preview
G47686-01
December 2025

Oracle Cloud Data Augmentation Scripts Reference Guide, Preview

G47686-01

Copyright © 2025, Oracle and/or its affiliates.

Primary Author: Shahana Mitra

Contributing Authors: Padma Rao

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed, or activated on delivered hardware, and modifications of such programs) and Oracle
computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial
computer software," "commercial computer software documentation," or "limited rights data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle
programs (including any operating system, integrated software, any programs embedded, installed, or activated on
delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract. The terms
governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications that may create a risk of
personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all
appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its
affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used
under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo
are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open
Group.

This software or hardware and documentation may provide access to or information about content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services unless otherwise set forth in an
applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for any loss,
costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth
in an applicable agreement between you and Oracle.

Contents

 Preface

Audience i

Related Documentation i

Conventions i

1 Overview of Data Augmentation Scripts

Custom Data Pipelines 1

Introduction to Data Augmentation Scripts 1

Basic Elements of Data Augmentation Scripts 1

Data Augmentation Scripts Code Structure 2

Schema 3

Building Blocks of Schema Creation 3

About Data Population 4

Rowsource 5

Column Referencing 6

Column Mapping 7

Column Manipulation 9

Table Types 13

Export Specifications 14

Supported Files 15

Data Augmentation Scripts Program Files 15

Source Definition Files 16

Parameter Definition Files 16

Module File 16

Function Files 17

Conf File 17

Query Files 18

Additional Features 18

DefaultRow 18

Time Dimensions 19

Inline Dataset 22

Advanced Data Augmentation Scripts Features 23

Incremental 23

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page i of iii

Set Operation 27

AGGREGATION ONLY Dataset 28

Transposition Table Definition 30

Pivot 30

Unpivot 33

Delete Handling 34

TRACKDELETES (Default Behavior) 34

DELETESOURCE 35

THEN DELETE 36

2 Create Custom Data Pipelines

About Creating Custom Data Pipelines 1

Prerequisites for Creating a Custom Data Pipeline 2

Create a Connection for Data Augmentation Scripts 2

Set Up Pipeline Parameters for Data Augmentation Scripts 5

Create Augmentation for Data Augmentation Scripts 6

Create a Data Augmentation Scripts Application 8

A Data Augmentation Scripts Application Development Details

B Syntax Notations

C Comments and Escape Sequences

D File Types and Data Types

E Program Structure

IMPORT Statement E-1

INCLUDE E-5

ALIAS E-6

PARAMETER E-7

Statement E-7

Generic Dataset Definition E-8

Export Specification E-8

Table Type E-8

Code Block E-9

Column Mapping Assignment E-12

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page ii of iii

Default Row Specification E-13

Aggregate Specification E-13

Primary Key Specification E-14

Delete Specification and Soft Delete E-14

Incremental Refresh Directive E-15

Code Block Load - Full and Incremental Load Instructions E-15

FROM - Compact Format E-16

AGGREGATIONONLY E-17

Deletions E-19

Schema Definition E-23

Transposition Table Definition E-26

User Defined Functions (UDFs) or Macros E-34

F Expressions

Value Returned Expressions F-1

Case Expressions F-2

Function Expressions F-3

Aggregate Functions F-3

Datatype Functions F-5

General Functions F-11

User Defined Functions Call F-12

Window Functions F-12

Boolean Returned Expressions F-14

G Column Groups, Indexes, and Partitions

COLUMNGROUPS G-1

INDEXES G-2

PARTITIONS G-3

H VIEW QUERY

I Table and Column Prefixes

J Keyboard Shortcuts for Data Augmentation Scripts

Index

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page iii of iii

Preface

Learn how to get started with Data Augmentation Scripts (DAS).

Topics

• Audience

• Related Documentation

• Conventions

Audience
Data Augmentation Scripts Reference Guide is for data engineers, administrators, technical
support, product managers, and business analysts, who manage data refresh, augmentation,
transformation, and pipeline management within the Oracle NetSuite Analytics Warehouse
platform.

• Data Engineers design, implement, and monitor data pipelines, and manage data
extraction, transformation and loading.

• Administrators configure and maintain the Oracle NetSuite Analytics Warehouse
platform, schedule data pipelines, refresh data, and manage system integrations.

• Customer Support Engineers help customers and partners set up and use Oracle
NetSuite Analytics Warehouse.

• Product Managers and Business Analysts create product prototypes.

Related Documentation
These related Oracle resources provide more information.

• Oracle Cloud http://cloud.oracle.com

• Getting Started with Oracle Cloud

• Managing and Monitoring Oracle Cloud

• Get Started with Oracle NetSuite Analytics Warehouse

• Getting Started with Oracle Analytics Cloud

• Visualizing Data and Building Reports in Oracle Analytics Cloud

• Preparing Data in Oracle Analytics Cloud

Conventions
The following text conventions are used in this document.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page i of ii

http://cloud.oracle.com
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/csgsg/index.html
https://docs.oracle.com/en/cloud/get-started/subscriptions-cloud/mmocs/index.html

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page ii of ii

1
Overview of Data Augmentation Scripts

From the Oracle NetSuite Analytics Warehouse Administrator Console, you can build
organization-specific or industry-specific data pipelines programmatically with custom logic
using Data Augmentation Scripts.

Topics:

• Introduction to Data Augmentation Scripts

• Supported Files

• Additional Features

• Advanced Data Augmentation Scripts Features

Custom Data Pipelines
Data Augmentation Scripts (DAS) is a declarative ETL language designed to help you build
custom data pipelines from the Oracle NetSuite Analytics Warehouse Administrator Console.

Data Augmentation Scripts (DAS) enables you to ingest data from various sources, such as
Oracle Fusion Cloud Applications or Salesforce. You can combine and transform that data,
load it into your data warehouse as new tables, and use that data to extend existing entities
with supplementary information.

Introduction to Data Augmentation Scripts
Let’s explore Data Augmentation Scripts (DAS) and what you need to know to get started.

Topics:

• Basic Elements of Data Augmentation Scripts

• Data Augmentation Scripts Code Structure

Basic Elements of Data Augmentation Scripts
Data Augmentation Scripts (DAS) simplifies the process of extracting, creating, transforming,
and managing datasets.

Overview of Data Flow

This diagram illustrates the fundamental data flow, showing how data progresses from the
source to the target dataset.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 1 of 37

Key Components of Data Flow

The key components of the dataset are:

• Source Data: The point of origin for all data processing.

• Dataset1: The primary dataset created directly from the source. The schema is inferred
from the source.

• Dataset2: The secondary dataset that can be derived from Dataset1 or created directly
from the source (shown as a dotted line).

• Load Type: The refresh type for both tables using the full load or periodic refresh options.

• Dataset Visibility: The visibility of the dataset, which can be public (for reporting
purposes) or private (for internal processing only).

Note

• Although you can use the terms dataset and table interchangeably, in the context
of Data Augmentation Scripts syntax a dataset or a table is referred to as a
dataset.

• You have the ability to override the schema.

Create the Connection Prerequisite

To use the source data, connect to the Data Augmentation Scripts data files from the Oracle
NetSuite Analytics Warehouse Administrator Console.

See Create a Connection for Data Augmentation Scripts.

Data Augmentation Scripts Code Structure
Data Augmentation Scripts promotes a clean, modular, and declarative approach to building
datasets.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 2 of 37

The structure of a Data Augmentation Scripts program mirrors the data flow diagram shown in
Basic Elements of Data Augmentation Scripts, organizing your logic into statements and code
blocks. Each code block denotes a definition and a transformation block for the target dataset.

Schema
A schema defines the structure and constraints of a target dataset.

Building Blocks of Schema Creation
The foundation of a data scripting program begins with either the source table or the data
warehouse tables in a module.

• Source: Existing data structures with predefined schemas.

• Module: Organized grouping of warehouse tables that assist in analyzing one or more
related business processes.

Import Source or Warehouse Tables

Run these commands to import the source table and module.

IMPORT SOURCE SALES // Import a source table
IMPORT MODULE [FA_GL, FA_AP] // Import a single or list
of modules

Source tables are read-only definitions that serve as foundational building blocks for data
transformations. Modules can be imported and their underlying tables can be used directly in
the code.

Dataset Definitions

Datasets are the primary constructs in Data Augmentation Scripts. There are two ways to
define data sets: Data sets can inherit their schema directly from a source table or a derived
table.

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS[CUST_ID];
 THIS = CUSTOMERS[CUST_NAME];
 THIS = CUSTOMERS[EMAIL];
 THIS = CUSTOMERS[AGE];
 PRIMARYKEY[CUST_ID];
 END
 DEFINE DATASET GAMING_CUSTOMER_D
 ROWSOURCE CUSTOMERS_D WHERE CUSTOMERS_D.AGE BETWEEN 13 AND 35;
 THIS = CUSTOMERS_D[CUST_ID];

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 3 of 37

 THIS = CUSTOMERS_D[CUST_NAME];
 THIS = CUSTOMERS_D[EMAIL];
 THIS = CUSTOMERS_D[AGE];
 PRIMARYKEY[CUST_ID];
 END

These are the key characteristics of a dataset directly inheriting the schema:

• Automatically inherits and preserves the source table’s schema

• Eliminates the need for any explicit column definitions .

You can also rewrite the code as:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS[CUST_ID,CUST_NAME,EMAIL,AGE] END
DEFINE DATASET GAMING_CUSTOMER_D
 ROWSOURCE CUSTOMERS_D WHERE CUSTOMERS_D.AGE BETWEEN 13 AND 35;
 THIS = CUSTOMERS_D[CUST_ID,CUST_NAME,EMAIL,AGE];
 PRIMARYKEY[CUST_ID];
END

An error is displayed if a column that's not present in the corresponding table is referenced.

Example: The following code references the column GENDER that's not in the CUSTOMERS table.

THIS = CUSTOMERS_D[CUST_ID,CUST_NAME,EMAIL,GENDER];

An error that GENDER is not present in the table CUSTOMERS is displayed.

You can also define dataset schemas using the Custom Schema Definition feature.

DEFINE SCHEMA DW_PROJECT_D_SCHEMA
[
 PROJECT_ID NUMBER(38,0) PRIMARYKEY,
 PROJECT_NUMBER VARCHAR2(32),
 START_DATE DATE NOT NULL,
 COMPLETION_DATE DATE
]
END
DEFINE DATASET DW_PROJECT_D
 SCHEMA DW_PROJECT_D_SCHEMA;
 ROWSOURCE PROJECTS;
 THIS[PROJECT_ID] = PROJECTS[PROJECT_ID, PROJECT_NUMBER];
END

For more information about the data types that Data Augmentation Scripts supports, see Data
Types.

About Data Population
Data population refers to the process of filling target tables with data derived from a source,
where specific source columns are referenced and mapped to target columns, often applying

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 4 of 37

column manipulation to ensure the data is correctly structured and meets business
requirements during the transformation or migration process.

Topics:

• Rowsource

• Column Referencing

• Column Mapping

• Column Manipulation

Rowsource
ROWSOURCE defines the initial data before any transformations are performed.

You can consider ROWSOURCE as an input from a single table, multiple table joins or unions, and
filter conditions, that you can further refine to produce the final dataset.

ROWSOURCE with a single dataset

In its most basic form, ROWSOURCE points directly to a single table:

IMPORT SOURCE CUSTOMERS
 DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END

In this example, the ROWSOURCE stores all the records from the CUSTOMERS table.

You can rewrite this code example in the most compact form as shown:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS END

ROWSOURCE with multiple datasets

ROWSOURCE becomes more powerful when complex operations, such as joins, are performed.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 5 of 37

IMPORT SOURCE [CUSTOMERS,COUNTRIES]
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END
DEFINE DATASET GAMING_CUSTOMER_C
 ROWSOURCE CUSTOMERS_D INNER JOIN COUNTRIES ON (CUSTOMERS_D.COUNTRY_ID =
 COUNTRIES.COUNTRY_ID) WHERE CUSTOMERS_D.CUST_YEAR_OF_BIRTH > 1983;
 THIS = CUSTOMERS_D;
 THIS = COUNTRIES[COUNTRY_NAME,COUNTRY_REGION,COUNTRY_SUBREGION];
 PRIMARYKEY[CUST_ID];
END

In this example, the ROWSOURCE for creating the target dataset GAMING_CUSTOMER_C is created
using the COUNTRIES source, CUSTOMERS_D dataset, and CUST_YEAR_OF_BIRTH filter.

Column Referencing
Column referencing is the process of identifying and accessing specific columns from a data
source or table.

You can reference a column in three ways:

• table_name.column_name
In this example, the traditional SQL convention of referencing a column is followed
(CUSTOMERS.CUST_ID).

• table_name[column_name]
Data Augmentation Scripts supports a list of columns so a single column can also be
referred to as CUSTOMERS[CUST_ID].

• THIS.column_name
The keyword THIS refers to the current target table.

THIS[ID, FIRST_NAME,LAST_NAME] = CUSTOMERS[CUST_ID,FIRST_NAME,LAST_NAME];
THIS[FULL_NAME] = CONCAT_WS(‘_’,THIS.FIRST_NAME,THIS.LAST_NAME,THIS.ID) -
DATATYPE VARCHAR2(18);

//Instead of repeating the concat_ws logic
THIS[NEW_ID] =

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 6 of 37

UPPER(CONCAT_WS(‘_’,THIS.FIRST_NAME,THIS.LAST_NAME,THIS.ID));

//we can refer the FULL_NAME using THIS
THIS[NEW_ID] = UPPER(THIS.FULL_NAME);

Column Mapping
Column mapping is the process of deriving the schema of the target dataset from the source
dataset, enabling you to select all columns, select some columns, or exclude columns from the
source dataset, based on the needs of the business user.

You can choose to:

• Select all columns

• Select some columns

• Exclude columns

Select all columns

If you select all the columns from the source table or derived dataset, the column properties of
the source dataset are inherited by the target dataset. The target dataset contains all the
columns from the source or derived dataset with no modifications to the schema.

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END

In this example, these eight columns from the source table CUSTOMERS are in the target table
CUSTOMERS_D with no modifications to their properties:

• CUST_ID

• CUST_FIRST_NAME

• CUST_LAST_NAME

• CUST_GENDER

• CUST_YEAR_OF_BIRTH

• CUST_MARITAL_STATUS

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 7 of 37

• CUST_CITY

• COUNTRY_ID

You can also simplify the code in the following way:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS END

Select some columns

You can choose to bring in a subset of columns from the schema of the source or derived
dataset.

IMPORT SOURCE CUSTOMERS
 DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME,
 CUST_YEAR_OF_BIRTH,COUNTRY_ID,CUST_MARITAL_STATUS];
 END

In this example, only these selected columns from the source table CUSTOMERS form the
schema in the target dataset CUSTOMERS_D:

• CUST_ID

• CUST_FIRST_NAME

• CUST_LAST_NAME

• CUST_YEAR_OF_BIRTH

• COUNTRY_ID

• CUST_MARITAL_STATUS

You can also simplify the code in the following way:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS[CUST_ID,CUST_FIRST_NAME,
CUST_LAST_NAME,CUST_YEAR_OF_BIRTH,COUNTRY_ID, CUST_MARITAL_STATUS] END

Exclude columns

If you want to exclude certain columns from the source table or derived dataset, you can use
the EXCLUDE keyword. The remaining columns remain in the target dataset.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 8 of 37

IMPORT SOURCE CUSTOMERS
 DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS EXCLUDE [CUST_GENDER,CUST_MARITAL_STATUS];
 END

You can also simplify the code in the following way:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS EXCLUDE
[CUST_GENDER,CUST_MARITAL_STATUS] END

Column Manipulation
Column manipulation involves applying operations, such as renaming and transformations, to
the values of one or more columns to prepare or modify data during processing.

You can manipulate columns in the following ways:

• Rename columns

• Transform Column Data

Rename Columns

You can rename columns during the dataset definition without altering the underlying source
data.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 9 of 37

Example:

IMPORT SOURCE CUSTOMERS

 DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;

 //column renaming
 THIS[ID,FIRST_NAME,LAST_NAME] =
CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME];
 END

In this example, you create the columns ID,FIRST_NAME,LAST_NAME in the target table
CUSTOMERS_D with the same values and column properties as CUST_ID,
CUST_FIRST_NAME,CUST_LAST_NAME from the source table CUSTOMERS.

Transform Column Data

You can transform column data in the following ways:

• Assign Static Column Values

• Apply Functions

• Create User-Defined Functions

• Specify the Data Type

Assign Static Column Values

You can directly assign fixed literal values to one or more columns. The values must be from
these following types: NUMBER, VARCHAR2, DATE, Timestamp.

Example:

DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_JOINING_DATE = ‘2025/02/24’;
 THIS[ID,FIRST_NAME,LAST_NAME]=
CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME];
 THIS[CUST_CLASS_ID] = 999; //NUMBER
 THIS[CUST_DESC,CUST_CLASS] = 'NEW CUSTOMER'; //VARCHAR2(38)
END

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 10 of 37

In this example, you've assigned the column CUST_CLASS_ID to hold the static numeric value
999 and columns CUST_DESC,CUST_CLASS to hold the varchar2 value NEW CUSTOMER.

Apply Functions

Data Augmentation Scripts supports a wide range of generic functions for data manipulation.
When you apply one or more functions on the right-hand side (RHS) of a column mapping, the
resulting data populates the target column. Data Augmentation Scripts allows this, provided
that the data returned by the functions matches the expected format, such as a scalar, list, or
specific datatype.

Example:

DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS[ID,FIRST_NAME,LAST_NAME] =
CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME];
 THIS[FULL_NAME] = CONCAT_WS(' ',
CUSTOMERS.CUST_FIRST_NAME,CUSTOMERS.CUST_LAST_NAME);
 END

In this example, you apply the CONCAT_WS function on the columns CUST_FIRST_NAME and
CUST_LAST_NAME to create the column FULL_NAME.

Create User-Defined Functions

You can create reusable user-defined functions (UDFs) that encapsulate specific logic, which
you can then apply to a single column or across multiple columns in your dataset.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 11 of 37

There are two ways you can use a user-defined function:

• Define the function within the main Data Augmentation Scripts program.
Example:

DEFINE FUNCTION CUSTOMERTYPE(col)
 CASE WHEN col > ‘2025/02/24’ THEN ‘NEW CUSTOMER’ ELSE ‘OLD CUSTOMER’
END;
 END
 DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS[ID,FIRST_NAME,LAST_NAME] =
CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME];
 THIS[CUST_DESC,CUST_CLASS] = CUSTOMERTYPE(x) FOR x IN
CUSTOMERS[CUST_JOINING_DATE,CUST_EFF_FROM]
 -DATATYPE VARCHAR2;
 END

• Define the function in a .func file within the project directory, which you can then use
within the main Data Augmentation Scripts program with the INCLUDE keyword.
Example:

Specify the Data Type

Data Augmentation Scripts can infer the data type. You must include a datatype specification (-
DATATYPE) for the new column when the datatype can't be inferred or needs to be intentionally
overridden.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 12 of 37

• Create a new column and assign a datatype value.

DEFINE DATASET MY_SALES
 ROWSOURCE SALES;
 THIS[PROD_VERSION] = 101 -DATATYPE NUMBER;
END

This example creates a column PROD_VERSION of the datatype NUMBER.

• Create a new column when the datatype can't be inferred.

DEFINE DATASET MY_SALES
 ROWSOURCE SALES;
 THIS[INFO] =CONCAT(SALES.PROD_NAME, ' - ',
 CAST(SALES.SALES_AMT AS VARCHAR2(28))) -DATATYPE
VARCHAR2(50);
END

In this example, you perform the CONCAT function on columns with two different data types:
PROD_NAME (VARCHAR2(38)) and SALES_AMT (NUMBER). You explicitly define the resulting
column INFO as datatype VARCHAR2(50).

• Create a new column and override the datatype.

DEFINE DATASET MY_SALES
 ROWSOURCE SALES;
 THIS[TOTAL_SALES] = SUM(SALES.SALE_AMOUNT) -DATATYPE NUMBER(10,2);
END

In this example, the SALE_AMOUNT column is of datatype NUMBER(10), but you specify that
the TOTAL_SALES value is stored with a specific precision as NUMBER(10,2).

Table Types
You define table types primarily to manage data changes appropriately, based on the business
needs, and to keep the source data and target data warehouse in sync for accurate insights.

Data Augmentation Scripts supports these two main types of tables for refreshing data:

• Updated tables: Adds new records and updates modified data in the target table.
Key characteristics of updated tables:

– Default table type, if you don't specify one.

– Retains deleted records in the Autonomous Data Warehouse.

– Useful for managing large datasets that require current data and want to retain deleted
data.

• Versioned tables: Truncates the target table during each incremental run and reinserts all
the data from the source dataset.
The key characteristic of versioned tables is that it's useful for smaller datasets that require
current data but don't need to retain deleted data.

For detailed information on data refresh, see Incremental.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 13 of 37

Export Specifications
Oracle NetSuite Analytics Warehouse uses the Autonomous Data Warehouse as its default
data warehouse. Using export specification, Data Augmentation Scripts provides a way to
control the visibility of the datasets in Autonomous Data Warehouse.

Export specification is essential in ensuring that only the necessary datasets are exposed to
the Autonomous Data Warehouse. Limiting access to certain data or functionality enables you
to protect critical parts of the system from unintended use or modification, reducing the risk of
errors or security vulnerabilities. This separation helps maintain system integrity, enhances
modularity, and makes it easier to manage, test, and update the code over time without
disrupting the broader system.

Data Augmentation Scripts provides the following export specifications:

• PRIVATE: Typically used for creating stage or intermediate tables. These tables aren't
exported to the Autonomous Data Warehouse.
A PRIVATE VERSIONED dataset stores data temporarily for preprocessing or
transformation before updating a permanent dataset.

DEFINE PRIVATE VERSIONED DATASET TEMP_DAILY_SALES
 ROWSOURCE SALES;
 // Temporary calculations
 THIS[PRODUCT_ID] = SALES.PROD_ID;
 THIS[SALES_AMOUNT] = SALES.SALES_AMOUNT;
 THIS[DISCOUNTED_SALES] = THIS[SALES_AMOUNT] - (THIS[SALES_AMOUNT]*
0.10);

END

DEFINE VERSIONED DATASET DW_MONTHLY_SALES
 ROWSOURCE TEMP_DAILY_SALES;

 // Aggregate temporary data into a permanent dataset
 THIS[PRODUCT_ID] = TEMP_DAILY_SALES.PRODUCT_ID;
 THIS[TOTAL_SALES] = SUM(TEMP_DAILY_SALES.DISCOUNTED_SALES);
 GROUPBY[PRODUCT_ID];
 PRIMARYKEY[PRODUCT_ID];

END

The TEMP_DAILY_SALES dataset performs temporary calculations on SALES, where
PRODUCT_ID isn't unique. This dataset has no primary key and is still allowed. No Primary
Key declaration is required. It's then used in DW_MONTHLY_SALES to aggregate the data into
a permanent dataset with a PRIMARYKEY on PRODUCT_ID.

• PROTECTED: Typically used for internal housekeeping or backing up a VIEW dataset.
These datasets are exported to the Oracle Autonomous Data Warehouse, but they aren't
visible to end users.

• PUBLIC: Default export specification for a dataset. These datasets are exported in the
Autonomous Data Warehouse and are visible to business users for building insights.

Chapter 1
Introduction to Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 14 of 37

Supported Files
Data Augmentation Scripts supports a modular file system, enabling you to create multiple file
types, such as .param, .func, multiple Data Augmentation Scripts program files (.hrf), and so
on.

You can include these files in the Data Augmentation Scripts program by using the INCLUDE
keyword.

Example:

//utility is a .func file with naming convention utility.func
 INCLUDE FUNCTION “utility.func”

 // ConfigParam is a .param file with naming convention ConfigParam.param
 INCLUDE PARAMETER “ConfigParam.param”

These files serve distinct purposes, as explained in the following topics:

• Data Augmentation Scripts Program Files

• Source Definition Files

• Parameter Definition Files

• Module File

• Function Files

• Conf File

• Query Files

Data Augmentation Scripts Program Files
A Data Augmentation Scripts program file is a file that contains the extract, transform and load
logic for the Data Augmentation Scripts program.

Data Augmentation Scripts files have an .hrf extension.

You can create multiple .hrf files, as shown in this example:

Chapter 1
Supported Files

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 15 of 37

Source Definition Files
A source definition file is a file that contains one or more source definitions.

Source definition files have an .src extension.

You can create multiple .src files.

To create a source definition file, you can specify the source type and primary key, as shown in
this example:

IMPORT UPDATEABLE SOURCE CHANNELS WITH PRIMARYKEY[CHANNEL_ID]
IMPORT VERSIONED SOURCE CUSTOMERS WITH PRIMARYKEY[CUSTOMER_ID]
FILTEREDBY(CUST_VALID = 'D') AS CUST

UPDATEABLE is the default when the Last Updated Date (LUD) is in the source table.

Parameter Definition Files
A parameter definition file is a file that contains one or more parameter definitions.

Parameter definition files have a .param extension.

You can create multiple .param files.

Parameter input values act as configurable constants that influence the logic of the Data
Augmentation Scripts program. They provide flexibility by enabling you to adjust key values
without changing the main logic of the program, as shown in this example:

DEFINE PARAMETER PARAM_SEGMENT_A_CHAR, VARCHAR2(20), "Segment A" END
DEFINE PARAMETER PARAM_SEGMENT_B_CHAR, VARCHAR2(20), "Segment B" END

DEFINE PRIVATE DATASET SALES_SEGMENT_F
 ROWSOURCE SO;
 THIS = SO.CUST_ID;
 THIS[TOTAL_AMT_SOLD] = SUM(SO.AMOUNT_SOLD) ;
 GROUPBY[CUST_ID];
END

DEFINE DATASET CUSTOMERS_SALES_SEGMENT_F
ROWSOURCE CUST INNER JOIN SALES_SEGMENT_F ON (CUST.CUST_ID = SSEG.CUST_ID);
THIS = CUST;
THIS[SALES_SEGMENT] = CASE WHEN SSEG.TOTAL_AMT_SOLD > 10000
 THEN PARAMETER[PARAM_SEGMENT_A_CHAR]
 ELSE PARAMETER[PARAM_SEGMENT_B_CHAR]
 END;
PRIMARYKEY[CUST_ID];
END

Module File
A module file is a single read-only file that contains the Data Augmentation Scripts application
definition.

The module file has a .mod extension.

Chapter 1
Supported Files

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 16 of 37

This file is auto-generated when you create a Data Augmentation Scripts application.

Example:

MODULE TIME
SOURCETYPE FUSION
NAMESPACE TIME_
PREFIX DW_FA_X_

All the target datasets generated by the Data Augmentation Scripts program contain the prefix
DW_X, where source is x. Example: If source is Fusion, then the source is Fusion applications,
and the prefix is DW_FA_X_.

Function Files
A function file is a file that contains a list of user-defined functions.

Function files have a .func extension.

You can create multiple .func files.

Example:

DEFINE FUNCTION dateToInt(col) INT(DATE_FORMAT(col,'yyyyMMdd')) END

For more information, see Create User-Defined Functions.

Conf File
A .conf file is a single ADW.conf file that contains constructs such as indexes, column groups,
and partitions for PROTECTED and PUBLIC datasets.

You can use .conf files to improve performance of reporting queries in the database.

The file has a .conf extension.

A .conf file contains:

• Column groups: A set of columns in a single dataset that's treated as a single unit for
query performance.
Example:

COLUMNGROUPS
[
 CREATE COLUMNGROUP COL_SALES1 ON SALES[CUST_ID, SALE_ID];
 CREATE COLUMNGROUP COL_CUSTOMER ON CUSTOMER[CUST_ID, CUST_NAME];
]

• Indexes: A quick lookup of data in a column or columns of a table using B-Tree indexing.
Example:

INDEXES
[
 CREATE NON-UNIQUE INDEX city_index ON CUST_D[CUST_CITY, COUNTRY_ID];
 CREATE UNIQUE INDEX unique_city_indx ON CUST_D[CUST_ID,

Chapter 1
Supported Files

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 17 of 37

CUST_FIRST_NAME];
]

• Partitions: A partition allows tables, indexes, and index-organized tables to be subdivided
into smaller pieces for managing and accessing them at a finer level of granularity. A table
can have only one partition.
Example:

PARTITIONS
[
 // LIST
 CREATE LIST PARTITION ON PRODUCT_SALES[PROD_CATEGORY];
]

Query Files
A query file is a file that contains view definitions using SQL language, as an alternative to the
standard dataset definition approach: DEFINE VIEW DATASET.

Query files have a .qry extension.

You can create multiple .qry files.

Example: To perform a channels.qry, enter:

SELECT

CHANNELS_D.CHANNEL_CLASS,CHANNELS_D.CHANNEL_CLASS_ID,CHANNELS_D.CHANNEL_DESC,

CHANNELS_D.CHANNEL_ID,TRUNC(SYSDATE) AS CURDATE

FROM DW_LOCODE_X_APP_CHANNELS_D CHANNELS_D

Additional Features
Let's look at these additional features that Data Augmentation Scripts supports.

Topics:

• DefaultRow

• Time Dimensions

• Inline Dataset

DefaultRow
You can define a default or fallback row in a dataset by using the DEFAULTROW feature when a
foreign key is missing or invalid.

Defining a default or fallback row serves as a catch-all during joins, aggregations, and data
quality checks.

IMPORT SOURCE CHANNELS
DEFINE DATASET CHANNELS_D

Chapter 1
Additional Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 18 of 37

 ROWSOURCE CHANNELS;
 THIS = CHANNELS[CHANNEL_ID, CHANNEL_DESC, CHANNEL_CLASS,CHANNEL_CLASS_ID];
 DEFAULTROW
 [
 THIS[CHANNEL_ID,CHANNEL_CLASS_ID] = 999;
 THIS[CHANNEL_DESC,CHANNEL_CLASS] = 'NO CHANNEL';
]
END

In this example, a synthetic row with the constant values of 999 for the columns
CHANNEL_ID,CHANNEL_CLASS_ID, and “NO CHANNEL” for the columns
CHANNEL_DESC,CHANNEL_CLASS is inserted using DEFAULTROW.

Time Dimensions
Data Augmentation Scripts provides built-in time dimensions for you to extract information or
directly incorporate these dimensions.

You can use these built-in time dimensions by importing the system module which contains
dimensions, such as Day, Week, Month, Quarter, and Year.

Example:

IMPORT MODULE SYSTEM

DEFINE DATASET MY_DAY FROM DW_APPS_DAY_D END

The Data Dimension Language (DDL) of the ready-to-use system time dimensions are shown
in the following sections:

• DW_APPS_DAY_D

• DW_APPS_WEEK_D

• DW_APPS_MONTH_D

• DW_APPS_QUARTER_D

• DW_APPS_YEAR_D

DW_APPS_DAY_D

The following table shows the data available for the DW_APPS_DAY_D time dimension:

Chapter 1
Additional Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 19 of 37

DW_APPS_WEEK_D

The following table shows the data available for the DW_APPS_WEEK_D time dimension:

Chapter 1
Additional Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 20 of 37

DW_APPS_MONTH_D

The following table shows the data available for the DW_APPS_MONTH_D time dimension:

DW_APPS_QUARTER_D

The following table shows the data available for the DW_APPS_QUARTER_D time dimension:

Chapter 1
Additional Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 21 of 37

DW_APPS_YEAR_D

The following table shows the data available for the DW_APPS_YEAR_D time dimension:

Inline Dataset
You can use an inline dataset to embed a static table of hard-coded values directly in your
Data Augmentation Scripts program without having to import a source or warehouse table.

The INLINE table type requires instructions for the table structure and a set of records as input.
The table is then generated and loaded with the provided data.

Example:

DEFINE INLINE DATASET MYINLINEDATA
 ROWSOURCE INTABLE([PROMO_CATEGORY_ID:NUMBER,PROMO_CATEGORY:VARCHAR2(128)]
 VALUES
 ([2 ,'NO PROMOTION'],
 [3 ,'TV'],
 [4 ,'ad news']
)
);
 PRIMARYKEY [PROMO_CATEGORY_ID];
 END

 DEFINE DATASET PROMOTION_CATEGORY_D
 ROWSOURCE MYINLINEDATA;
 THIS = MYINLINEDATA;
 END

The output is shown in the PROMOTION_CATEGORY_D table:

Chapter 1
Additional Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 22 of 37

PROMO_CATEGORY_ID (NUMBER) PK PROMO_CATEGORY (VARCHAR2)

2 NO_PROMOTION

3 TV

4 ad news

Advanced Data Augmentation Scripts Features
Data Augmentation Scripts offers advanced features for data transformations.

Topics:

• Incremental

• Set Operation

• AGGREGATION ONLY Dataset

• Transposition Table Definition

• Delete Handling

Incremental
The Data Warehouse must continuously be in sync as the source data changes over time.

The UPDATEABLE and VERSIONED table types provide options for refreshing data.

When you run the first ETL job for a data application with UPDATEABLE or VERSIONED table
types, the data in the source system or staging area and the target data warehouse are the
same.

For subsequent data refreshes, there are two ways you can keep data in sync between the
source system and target data warehouse:

• Full Refresh: Copies all the data from the source system to the data warehouse.

• Incremental Refresh: Processes only the data that was newly added or modified since the
last load from the source system to the data warehouse. Incremental refreshes are
preferred because they enable faster and more efficient updates with minimal impact on
system resources.

The following diagram illustrates how data changes are handled for VERSIONED and
UPDATEABLE table types:

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 23 of 37

Table Type with Source Dataset

• VERSIONED: The system extracts all the data from the source table.
The data in the mirror copy is truncated and loaded again from the source system. Deleted
records aren't retained in the data warehouse.

Example:

IMPORT VERSIONED SOURCE SALES

All data from SALES is extracted.

• UPDATEABLE: The system extracts only the changed records from the source, and
updates only the changed data in the mirror copy of the extracted data.
Deleted records are retained in the data warehouse.

Example:

IMPORT UPDATEABLE SOURCE SALES WITH LUD[LAST_UPDATE_DATE]

Only the changed records from SALES are extracted.

Note

Deleted records need additional handling because they are no longer in the
source and can't be included in the extracted data.

Table Type with Target Dataset

• VERSIONED: The system extracts all the data from the source table.
Deleted records aren't retained in the data warehouse.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 24 of 37

Example:

IMPORT VERSIONED SOURCE SALES

DEFINE VERSIONED DATASET DW_SALES_FACT FROM SALES END

The SALES dataset is fully refreshed even if some records don't have any updates.

• UPDATEABLE
The incremental refresh directive (IRD) identifies which dataset drives changes for the
insert or update selection. When you assign a source as the change-driving dataset:

– ETL processes consider all change records in the driving source and their matching
records in other sources.

– If a non-driving source has changes that do not have matching changes in the driving
source, the process ignores these changes during the incremental refresh.

You must specify the IRD for any dataset that uses two or more sources.

When defining a target dataset in the Data Augmentation Scripts application, you must
decide its incremental data refresh behavior.

If the table type is UPDATEABLE, you have to nominate the input tables that are driving
the changes using the incremental refresh directive (IRD) of REFRESH ON CHANGES in
the target dataset.

IMPORT UPDATEABLE SOURCE SALES
DEFINE UPDATEABLE DATASET DW_SALES_FACT FROM SALES END

New and updated records in SALES are updated in the target dataset DW_SALES_FACT.

This directive within the DEFINE DATASET block handles the complexity of change
detection and updating of the target datasets. You don't have to write boilerplate code to
detect changes and deal with complex logic for updating target datasets.

The directive also provides predictability in the incremental refresh behavior:

– When only one input table is used to create an UPDATEABLE dataset, the
<incremental-refresh-directive> and the change driving input table are inferred.
In the following diagram, the two lines of code illustrate how to create the dataset and
define its incremental refresh behavior.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 25 of 37

In this example, only the changed records from Sales are brought in.

– When multiple input tables are used to create an UPDATEABLE dataset, you must
explicitly specify which input tables are the change driving tables in the <incremental-
refresh-directive>.
Changed records from the driving tables identify the delta and then considers only the
corresponding matching records from the non-driving tables. Changes in the non-
driving tables by themselves are ignored.

In this example, Sales is the change-driving table. Only the changed (△) records from
Sales are joined with Products.

–

In this example, Sales and Products are both change-driving tables. The changed (△)
records from both tables are brought in.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 26 of 37

–

In this example, changed (△) records from both change-driving tables Sales and
Products are joined with the non-change driving table Promotions.

The following table summarizes the behavior of source and target table types for
UPDATEABLE and VERSIONED refreshes:

Set Operation
A SET dataset forms when you combine two or more input datasets through a set operation.
You can also use it as a source for another dataset.

In the following image, a set operation combines customer records from the US_SRC and EU_SRC
tables to create a single ALL_CUSTOMERS table that contains customers from both the US and
EU sources:

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 27 of 37

Example:

IMPORT SOURCE CUSTOMERS FILTEREDBY (REGION = 'US') AS US_SRC
IMPORT SOURCE CUSTOMERS FILTEREDBY (REGION = 'EU') AS EU_SRC

DEFINE DATASET ALL_CUSTOMERS
 ROWSOURCE UNION[US_CUSTOMERS, EU_CUSTOMERS];
 THIS = US_CUSTOMERS;
 PRIMARYKEY[CUST_ID];
END

AGGREGATION ONLY Dataset
AGGREGATIONONLY datasets are tables that contain summarized data in a single row.

The following rules are for creating AGGREGATIONONLY datasets:

• The dataset must always be VERSIONED and have only one row.

• All column assignments must use aggregate functions.

• No Primary Key declaration is required.

• The dataset is treated as a regular dataset and not as aggregation-only dataset if GROUPBY
is specified.

Follow these rules for using AGGREGATIONONLY datasets as input in ROWSOURCE:

• Only CROSS-JOIN is allowed with AGGREGATIONONLY tables in ROWSOURCE.

• If a dataset is created using only an AGGREGATIONONLY dataset in ROWSOURCE, then
the derived table must also be marked as AGGREGATIONONLY dataset.

• SET operations aren't supported directly on AGGREGATIONONLY datasets.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 28 of 37

• REFRESH ON CHANGES IN aren't allowed on AGGREGATIONONLY tables.

Example:

IMPORT SOURCE SALES

// Single column assignment
DEFINE AGGREGATIONONLY DATASET DW_SALES_AGG
 ROWSOURCE SALES;
 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);
END

// Multiple column assignments
DEFINE AGGREGATIONONLY DATASET DW_SALES_AGG1
 ROWSOURCE SALES;

 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);

 THIS[SUM_SALES_AMT] = SUM(SALES[AMOUNT_SOLD]);
 THIS[MIN_SALES_AMT] = MIN(SALES[AMOUNT_SOLD]);
 THIS[MAX_SALES_AMT] = MAX(SALES[AMOUNT_SOLD]);
END

// Derived from another AGGREGATIONONLY dataset
DEFINE AGGREGATIONONLY DATASET DW_SALES_AGG2
 ROWSOURCE DW_SALES_AGG2;
 THIS = DW_SALES_AGG2 [AVG_SALES_AMT];;
END

The following output is derived:

DW_SALES_AGG2 is the same as DW_SALES_AGG1.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 29 of 37

Transposition Table Definition
You use the transposition table definition to restructure datasets by rotating rows into columns
(PIVOT) or columns into rows (UNPIVOT).

Topics:

• Pivot

• Unpivot

Pivot
Pivoting transforms data by converting rows into columns, enabling you to compare values
side-by-side, spot trends efficiently, and gain clear insights across categories such as months
and channels.

Example: You can create a versioned dataset SALES_F using the following command:

IMPORT SOURCE SALES
DEFINE VERSIONED DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES[PROD_ID, CHANNEL_ID];
 THIS[TIME_ID] = DATE_FORMAT(SALES.TIME_ID,'MMM');
 THIS[AMOUNT_SOLD] = SUM(SALES.AMOUNT_SOLD);
 GROUPBY [PROD_ID, CHANNEL_ID,TIME_ID];
 PRIMARYKEY[PROD_ID, CHANNEL_ID,TIME_ID];
END

The output of SALES_F is as follows:

PROD_ID CHANNEL_ID TIME_ID AMOUNT_SOLD

1 Online Jan 500

1 InStore Jan 150

1 InStore Mar 700

2 Online Jan 200

2 InStore Feb 120

2 InStore Mar 300

Single-Column Partitioned Pivot

You can use partitioning in pivot operations to group data by specific attributes, keeping each
category, such as product or channel, distinct within the transformed dataset.

If you don't specify partition, all the columns in ROWSOURCE are included for partitioning,
except those that you use in transpositions.

Example:

DEFINE VERSIONED DATASET PRODUCT_MONTHLY_REVENUE
 ROWSOURCE SALES_F;

 PIVOT
 (

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 30 of 37

 /* ------------------- SPECIFY PARTITION -------------------------- */

 WITHIN SALES_F[PROD_ID];

 /* --------------------SPECIFY TRANSPOSITIONS ---------------------- */
 // Either provide target column names on LHS for each of the month values
or if unspecified, it will auto-generate and map columns Jan,Feb,Mar

 THIS[Jan_Sales,Feb_Sales,Mar_Sales]= SUM(SALES_F.AMOUNT_SOLD) FOR
 SALES_F.TIME_ID IN('Jan','Feb','Mar');
);

 // Optional. If not specified, PK will be assigned.
 PRIMARYKEY [PROD_ID];
END

In this example, the segment WITHIN SALES_F[PROD_ID,CHANNEL_ID] partitions the data by
Product ID and Channel ID. The column mapping THIS[Jan_Sales, Feb_Sales, Mar_Sales]
creates target columns for the months January, February, and March. The output creates
separate columns for sales in January, February, and March.

The output from pivoting the PRODUCT_MONTHLY_REVENUE dataset is shown:

Multi-Column Partitioned Pivot

You can use multi-column partitioning in pivot operations to group data by multiple attributes,
providing users with a more detailed view of the dataset. This method enables analyst users to
compare across dimensions, such as product and channel, helping them uncover deeper
insights and patterns.

By partitioning on both Product and Channel, you can enable analysts to track unique revenue
contributions for each combination.

Example:

DEFINE VERSIONED DATASET PRODUCT_BY_CHANNEL_MONTHLY_REVENUE
ROWSOURCE SALES_F;
 PIVOT
 (
/* ------------------------- SPECIFY PARTITION -------------------------- */
 WITHIN SALES_F[PROD_ID, CHANNEL_ID];

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 31 of 37

/* ------------------------SPECIFY TRANSPOSITIONS ----------------------- */
 THIS[Jan_Sales, Feb_Sales, Mar_Sales] = SUM(SALES_F.AMOUNT_SOLD) FOR
 SALES_F.TIME_ID IN ('Jan', 'Feb', 'Mar');
);
 PRIMARYKEY [PROD_ID,CHANNEL_ID];
END

In this example, the segment WITHIN SALES_F[PROD_ID,CHANNEL_ID] partitions the data as
composite key in multiple columns, Product ID and Channel ID. The column mapping
THIS[Jan_Sales,Feb_Sales,Mar_Sales] creates target columns for each of the listed
transposed values. The output generates separate columns for sales in January, February, and
March by PROD_ID and CHANNEL_ID.

Multi-Dimensional Partitioned Pivot

You can use multi-dimensional partitioning in pivot operations to generate columns based on
multiple attributes while aggregating a specific value. This pivot operation reorganizes the data
to show the aggregated sales amounts for each category combination, such as Time and
Channel.

Example:

DEFINE VERSIONED DATASET PRODUCT_BY_CHANNEL_MONTHLY_REVENUE_2
 ROWSOURCE SALES_F;
 PIVOT
 (
 /* ------------------ SPECIFY PARTITION -------------------------- */
 WITHIN SALES_F[PROD_ID];

 /* --------------------SPECIFY TRANSPOSITIONS ------------------- */
 //Sales per month
 THIS[Jan_Sales, Feb_Sales, Mar_Sales] = SUM(SALES_F.AMOUNT_SOLD) FOR
 SALES_F.TIME_ID IN ('Jan', 'Feb', 'Mar');
 // Sales per month + channel (multi dimensions)
 THIS = [SUM(SALES_F.AMOUNT_SOLD) -COLPREFIX 'Amt'] FOR (SALES_F.CHANNEL_ID,
 SALES_F.TIME_ID)IN (('Online','Jan'),
 ('Online','Feb'),('Online','Mar'),('InStore','Jan'),('InStore','Feb'),
 ('InStore','Mar));
);

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 32 of 37

// Other transformations allowed after PIVOT section and only using the
 columns generated in PIVOT section
THIS[Jan_Inst_Online_Diff] = THIS.Amt_InStore_Jan - THIS.Amt_Online_Jan;
THIS[Feb_Inst_Online_Diff] = THIS.Amt_InStore_Feb - THIS.Amt_Online_Feb;
THIS[Feb_Inst_Online_Diff] = THIS.Amt_InStore_Mar - THIS.Amt_Online_Mar;

 PRIMARYKEY [PROD_ID];
END

In this example, the output for the dataset PRODUCT_BY_CHANNEL_MONTHLY_REVENUE_2 is as
follows:

Unpivot
You can use the UNPIVOT operator to transform columns back into rows, enabling business
users to analyze the data in detail.

UNPIVOT helps your users to explore each attribute, provides greater flexibly, and reveals
patterns and changes over time.

Example: You can UNPIVOT Jan_Sales, Feb_Sales, and Mar_Sales into the AMOUNT_SOLD
column.

DEFINE VERSIONED DATASET SALES_F2[
 ROWSOURCE MY_SALES;
 UNPIVOT INCLUDE NULLS
 (
 WITHIN MY_SALES[PROD_ID, CHANNEL_ID];

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 33 of 37

 /* Target Columns TIME_ID, AMOUNT_SOLD are specified on LHS.
 The corresponding display values for PRODUCT column are specified in
 the LHS. Pairs on LHS map to columns on RHS, in sequence /*
 THIS[(TIME_ID : 'Jan', AMOUNT_SOLD),(TIME_ID : 'Feb', AMOUNT_SOLD),
 (TIME_ID : 'Mar', AMOUNT_SOLD)]=MY_SALES[Jan_Sales,Feb_Sales,Mar_Sales];
);

 PRIMARYKEY [PROD_ID, CHANNEL_ID, TIME_D];
END

The output of the versioned SALES_F2 dataset table is as follows:

PROD_ID CHANNEL_ID TIME_ID AMOUNT_SOLD

3 Online Jan 500

3 InStore Jan 150

4 Online Jan 0

4 InStore Jan 550

3 Online Feb 2000

Delete Handling
In a data warehouse, the decision to retain or delete records from the data warehouse
depends on the specific use cases and business requirements.

You can delete source data as it continually updates with new records. Deletions can be:

• Hard Delete: Permanently deletes records from data warehouse datasets, through
propagation or explicit application.

• Soft Delete: Marks records as deleted without physically removing them from the dataset.

You can handle deletions by using the TRACKDELETES, DELETESOURCE, and THEN DELETE
directives, which are designed to manage both hard and soft deletes during data import and
processing.

The following topics describe how you can apply deletions:

• TRACKDELETES (Default Behavior)

• DELETESOURCE

• THEN DELETE

For more information about delete handling, see Deletions.

TRACKDELETES (Default Behavior)
You can use the TRACKDELETES directive to ensure that deletions are automatically tracked and
handled during data extraction or import. It doesn't require separate deletion logs or manual
intervention.

Hard Delete

When records are deleted in the source system, the TRACKDELETES directive ensures that these
deleted records are automatically excluded during data import or processing.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 34 of 37

Example:

IMPORT SOURCE PRODUCTS WITH TRACKDELETES AS PROD_BASE
IMPORT SOURCE AS SALES

DEFINE DATASET PROD_DIM
 ROWSOURCE PROD_BASE ;
 THIS = PROD_BASE;
END

DEFINE DATASET PROD_REPLENISH
 ROWSOURCE PROD_DIM INNER JOIN SALES ON (PROD_DIM.PROD_ID = SALES.PROD_ID);
 THIS = PROD_DIM[PROD_NAME, PROD_ID];
 THIS[REPLENISH_FLG] = CASE WHEN SUM(SALES.QUANTITY_SOLD) > 5 THEN 1 ELSE 0
END;
 GROUPBY[PROD_NAME, PROD_ID];
 PRIMARYKEY[PROD_ID];
 REFRESH ON CHANGES IN [PROD_DIM, SALES];
END

In this example, TRACKDELETES ensures that discontinued products are reflected in the
PROD_DIM dataset without requiring deleted records to be handled separately.

Soft Delete

The deletion operation is applied during the extraction of data. The DELETETYPE[SOFT] flag is
used to mark the deleted records, and the extraction process identifies which records need to
be flagged. If you don't specify a flag name, the default flag ISDELETED is used.

IMPORT SOURCE CUSTOMERS DELETETYPE[SOFT] WITH PRIMARYKEY[CUST_ID] TRACKDELETES

DEFINE UPDATEABLE DATASET CUSTOMERS_SD_D FROM CUSTOMERS END

In this example, soft delete is initiated during the import of the CUSTOMERS dataset. The records
identified by TRACKDELETES are flagged as deleted using the default ISDELETED column.

You can specify a custom flag name in the DELETETYPE directive:

IMPORT SOURCE SALES DELETETYPE[SOFT[ISTRANDELETED]] TRACKDELETES[IN[THDELETE]]

DEFINE UPDATEABLE DATASET CUSTOMERS_SD_D FROM CUSTOMERS END

DELETESOURCE
You can use the DELETESOURCE directive to remove records from datasets based on a matching
condition, ensuring that records marked for deletion in the source system are excluded from
the data processing job.

The DELETESOURCE directive deletes records during dataset transformations, based on a source
dataset that tracks deletions.

Hard Delete

The DELETESOURCE directive specifies the deletion of records from a dataset based on a
matching condition. You apply the directive within the dataset definition to handle the removal

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 35 of 37

of records that have been flagged for deletion in a source system. When DELETESOURCE is
used, it directly impacts the dataset by ensuring that records marked for deletion are excluded
from the dataset. This method requires specifying a subtrahend (deletion set) dataset, which
contains the records to be removed. The matching condition is used to correlate records from
the deletion set with those in the target dataset.

IMPORT SOURCE SALES_LOG FILTEREDBY (ACTION = 'D') AS SALES_DEL;
IMPORT SOURCE SALES;
DEFINE DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES;
 DELETESOURCE SALES_DEL [SALES_ID] MATCHING [SALES_ID];
END;

In this example, the DELETESOURCE directive removes records from the SALES dataset based on
matching SALES_ID values from the SALES_DEL dataset, which tracks deletions from the source
system.

Soft Delete

The DELETETYPE[SOFT] flag marks records as deleted and the DELETESOURCE directive identifies
the source dataset containing the records to be deleted.

IMPORT SOURCE SALESDEL
IMPORT SOURCE SALES
DEFINE UPDATEABLE DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES;
 DELETETYPE[SOFT[SALESDELETED]];
 DELETESOURCE SALESDEL[SALES_ID] MATCHING [SALES_ID];
END

In this example, the DELETESOURCE directive deletes records from SALES that match the
SALES_ID values in the SALESDEL dataset. The DELETETYPE[SOFT[SALESDELETED]] flag marks
the deleted records, but they aren't physically removed from the dataset.

THEN DELETE
You can specify the THEN DELETE directive at the source reference level in the IMPORT SOURCE
statement, rather than within dataset definitions.

By specifying the delete operation at the source level, you apply the delete operations earlier in
the data pipeline, directly at the source level, ensuring that deletions are processed as soon as
the source data is imported.

Hard Delete

You apply the THEN DELETE directive to the source reference in the import statement. It ensures
that records marked for deletion in the source dataset are excluded during the import process.

IMPORT SOURCE SALES_LOG FILTEREDBY (ACTION = 'D') AS SALES_DEL;
IMPORT SOURCE SALES THEN DELETE SALES_DEL [SALES_ID] MATCHING [SALES_ID];

In this example, deletions are applied immediately when the SALES dataset is imported, based
on the SALES_DEL dataset, which contains the records marked for deletion.

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 36 of 37

Soft Delete

You apply the THEN DELETE deletion logic after the data has been imported. The soft delete
process executes, based on a list of records that you provide in the THEN DELETE directive. This
method allows for the deletion to be handled separately from the import process, while still
ensuring that deleted records are flagged in the dataset.

IMPORT SOURCE SALESDEL
IMPORT SOURCE SALES DELETETYPE[SOFT] THEN DELETE [SALESDEL[SALES_ID] MATCHING
[SALES_ID]]
DEFINE DATASET SALES_SD_F FROM SALES END

In this example, the SALESDEL dataset, which contains deletion records, is used in conjunction
with the THEN DELETE directive. Records from SALES that match the IDs in SALESDEL are flagged
as deleted, based on the DELETETYPE[SOFT] directive

Chapter 1
Advanced Data Augmentation Scripts Features

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 37 of 37

2
Create Custom Data Pipelines

From the Oracle NetSuite Analytics Warehouse Administrator Console, you can build
organization-specific or industry-specific data pipelines programmatically with Data
Augmentation Scripts (DAS) custom logic.

Note

Data Augmentation Scripts (DAS) is a preview feature.

• For more information, see Preview Features.

• Administrators can enable Preview Features. See Make Preview Features
Available.

Topics:

• About Creating Custom Data Pipelines

• Prerequisites for Creating a Custom Data Pipeline

• Create a Connection for Data Augmentation Scripts

• Set Up Pipeline Parameters for Data Augmentation Scripts

• Create Augmentation for Data Augmentation Scripts

• Create a Data Augmentation Scripts Application

• Data Augmentation Scripts Application Development Details

About Creating Custom Data Pipelines
You can build custom data pipelines with logic that brings source data to meet your business
requirements using the functionality in the Data Augmentation Scripts (DAS) application.

You can bring data from different sources such as Oracle Fusion Cloud Applications or
Salesforce, join the different data together, bring the data as another table in the warehouse,
and extend an entity using the additional data.

While creating the custom application, in the Data Augmentation Scripts (DAS) dialog, the
application name you provide serves as an identifier that allows you to easily find and edit it
later on. The application ID that you provide functions as a namespace, differentiating the
tables into separate groupings.

Within each application, you see the Source folder that contains main.hrf and main.mod files.
The main.mod file is read-only and provides information regarding the module's name, source
type, and prefix. The main.hrf file contains the main logic for the data pipeline. You can add
additional logic in the Code, Function, and Parameter types of files by right-clicking main.hrf
and selecting New.

In your code, there is no need to explicitly reference the prefix or application ID because the
code execution process automatically applies them. After you have added the code for your

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 1 of 11

custom logic, you must build to compile the custom data pipeline, verify that the syntax
functions correctly, and to ensure that the source and related metadata is mapped properly.
After a successful build, your code is ready to be deployed. The build step produces the
mapping logic, target table structure, and loading directives based on the source metadata You
must successfully build before deploying the application.

• Deploy: The deploy step initiates the actual execution of Extract, Process, and Load
phases into the data warehouse. This is the initial full load of this application.

• Verify (optional): After deployment, you can verify the creation and loading of the tables. If
you want to further examine the data, you can execute additional SELECT statements as
needed.

• Update: To edit an existing Data Augmentation Scripts (DAS) application source, open any
of the files, such as main.hrf, and make the necessary changes.

There is no limit to the number of times that you can edit an existing Data Augmentation
Scripts (DAS) data file. After making changes each time, compile or build the files to validate
the syntax. After the syntax is validated, deploy the application to refresh the source data in the
warehouse.

You can load subsequent data manually using the Refresh option or load periodically based on
the configuration settings.

Prerequisites for Creating a Custom Data Pipeline
Prior to creating a custom data pipeline for Data Augmentation Scripts (DAS), ensure that you
create a connection to the data source.

1. Create a connection to the source that you want to use in your Data Augmentation Scripts
(DAS) application. See Create a Connection for Data Augmentation Scripts.

2. After creating the connection, to complete the registration of the data, on the Manage
Connections page, select the Actions menu for the Data Augmentation Scripts
connection, and then select Refresh Metadata.

Note

You can’t create augmentations using a specific source unless you perform a
metadata extract.

3. On the Data Configuration page, in Data Source, select the source for which you created
a connection and set up the Data Augmentation Scripts pipeline parameters. See Set Up
Pipeline Parameters for Data Augmentation Scripts.

4. Create an augmentation because prior to creating a custom Data Augmentation Scripts
(DAS) application, you must have at least one existing augmentation. See Create
Augmentation for Data Augmentation Scripts.

5. Create your custom Data Augmentation Scripts (DAS) application. See Create a Data
Augmentation Scripts Application

Create a Connection for Data Augmentation Scripts
As a functional administrator, create a connection to create a data source to the data
warehouse.

Chapter 2
Prerequisites for Creating a Custom Data Pipeline

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 2 of 11

1. In Oracle NetSuite Analytics Warehouse Console, click Data Configuration under
Application Administration.

2. On the Data Configuration page, click Manage Connections under Configurations.

3. On the Manage Connections page, click Create and then click Connection.

4. In Create Connection:

a. For Usage Type, select Data Extraction.

b. For Select Connection Type, select LoCode Data Files.

These are your sample Data Augmentation data files to help you get started. You can
select a different connection to extract data for the data warehouse.

5. In Create Connection:

a. (Optional) Enter a Notification Email to receive notifications.

b. Enter a Sample Data Set. Example: Sales-Sample.

Chapter 2
Create a Connection for Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 3 of 11

The source data files provide sample data sets, such as Sales, Customers, that you
can use for Data Augmentation Scripts (DAS).

c. Enable Refresh Metadata to ensure that the metadata is refreshed when you save the
connection.

You can later refresh the metadata from the Actions menu on the Manage Connections
page, if required.

Note

You can’t create augmentations for the Data Augmentation Scripts (DAS)
application unless you perform a metadata extract.

d. Click Save.

Chapter 2
Create a Connection for Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 4 of 11

After the connection is created, you can view the source data files under Connections on
the Manage Connections page.

After your connection is created, you can create a custom data pipeline with Data
Augmentation Scripts (DAS). See Create a Data Augmentation Scripts Application.

Set Up Pipeline Parameters for Data Augmentation Scripts
Set up pipeline parameters before proceeding to work with the Data Augmentation Scripts
(DAS) application.

For more information, see Set Up the Pipeline Parameters.

1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, select LoCode Data Files for Data Source, then click
Pipeline Settings under Configurations.

4. On the Pipelines Settings page:

a. Ensure that Data Pipeline Status is Enabled.

b. (Optional) Select an Interval for Data Refresh Schedule.

c. Select a Date Type. Enter a date if you select Absolute.

Chapter 2
Set Up Pipeline Parameters for Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 5 of 11

5. Click Save.

Create Augmentation for Data Augmentation Scripts
Create an augmentation prior to creating the Data Augmentation Scripts (DAS) application.

You must have at least one existing data augmentation before you set up the Data
Augmentation Scripts (DAS) application. See Augment Your Data.

1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, select Data Augmentation Scripts Data Files for Data
Source, then click Data Augmentation under Configurations.

4. On the Data Augmentation page, select the Augmentation, click Create and then select
Augmentation.

The dimension data augmentation is for the Data Augmentation source, CUSTOMERS.
Depending on your source, you can select another dimension for data augmentation.

Chapter 2
Create Augmentation for Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 6 of 11

5. In the Data Augmentation wizard, add a new dimension:

See Create Dimension Augmentation Type

a. For Augmentation Type, select Dimension.

b. For Source Dataset Type, select Supplemental Data.

c. For Source Table Type, select System Provided.

d. For Source Table, select CUSTOMERS.

6. Click Next.

7. For Attribute Selection, select the attributes for the source table.

8. Select the default Column Options.

Chapter 2
Create Augmentation for Data Augmentation Scripts

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 7 of 11

9. Continue to Schedule and Save.

10. Click Finish.

The CUSTOMERS Data Augmentation (DA) initiates. Wait a few minutes for the
augmentation to complete. The Pipeline Status updates to Activation Complete.

Create a Data Augmentation Scripts Application
Create a Data Augmentation Scripts (DAS) application to use your custom logic to bring data
from the source to your application data files.

1. Sign in to your service.

2. In Oracle NetSuite Analytics Warehouse, Console, click Data Configuration under
Application Administration.

3. On the Data Configuration page, under Configurations, click Custom Data
Configurations.

4. On the Custom Data Configurations page, click Create, and then select DA Scripts.

5. In the Data Augmentation Scripts (DAS) dialog, enter an ID in Application ID, name in
Application Name, and then click Create.

Chapter 2
Create a Data Augmentation Scripts Application

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 8 of 11

6. On the DA Scripts page, in the left menu, click Source.

7. Under Source, select main.hrf, and in the editor, enter the logic to bring data.

In the following example, you create a data augmentation script for CUST_D using the
sample Data Augmentation Scripts source files.

To build your dataset, you can reference data from your sources into the data warehouse
using the IMPORT command.

See IMPORT Statement.

Chapter 2
Create a Data Augmentation Scripts Application

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 9 of 11

8. Right-click the Source folder, select New and then select the type of file you want to create.

See Supported Files.

9. Click Save and Exit.

10. Click Build and then select Build project.

The project compiles and validates your syntax and to ensure that the source metadata are
mapped properly.

Chapter 2
Create a Data Augmentation Scripts Application

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 10 of 11

11. Click the Actions icon next to the DAS Scripts application you created, and then click
Publish.

This initiates the deployment and execution of Extract, Process, and Load phases into the
data warehouse.

Chapter 2
Create a Data Augmentation Scripts Application

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Page 11 of 11

A
Data Augmentation Scripts Application
Development Details

Use these features, syntax, and other functions of Data Augmentation Scripts to build your
application.

Topics:

• Syntax Notations

• Comments and Escape Sequences

• File Types and Data Types

• Program Structure

• Expressions

• Column Groups, Indexes, and Partitions

• VIEW QUERY

• Table and Column Prefixes

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix A-1 of A-1

B
Syntax Notations

The following table lists the syntax notations and their corresponding meaning:

Symbols Meaning

::= Indicates is defined as.

| Indicates alternatives. Separate alternatives using
vertical bars. Example: a | b means for a or b.

{rule1 | rule2} Insert alternatives within curly parenthesis in
complex production rules.

[rule] Indicate options by using square brackets.
Example: [a] stands for an optional a value.

… Indicates repetition. Example: a… means rule a can
be repeated multiple times.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix B-1 of B-1

C
Comments and Escape Sequences

Comments help to keep your code readable and organized, while escape sequences enable
handling special characters.

• Comments

• Escape Sequences

Comments

Comments include explanations or notes about the code.

Comments can be either:

• Single-line comments:
Single-line comments have a double forward slash //.

Example:

// Example of a valid single line comment.

• Multi-line or block comments:
Multi-line or block comments have /* (start of a block comment) and */ (end of a block
comment),

Example:

/* Example of a
valid block comment
*/

Escape Sequences

Escape sequence are special characters, such as new lines, tabs, or quotation marks, that you
can't directly enter into a string. They start with a backslash \ followed by a character.

Examples:

• \n: newline

• \t: tab

• \r: carriage return

• \': single quote

• \": double quote

• \b: backspace

• \f: form feed

• \v: vertical tab

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix C-1 of C-1

D
File Types and Data Types

The Data Augmentation Scripts application supports these documented file types and data
types.

Review these file types and data types that Data Augmentation Scripts supports.

• File Types

• Data Types

File Types

You can create files in their respective folders for different purposes. You can create these
types of files:

• .param: The .param file (Parameter defiition file). contains one or more parameter
definitions. Data Augmentation Scripts creates this file in the Parameter folder under the
project root directory.
For details on parameter definitions, see PARAMETER.

• .mod: This is a read-only file. The .mod file contains the Data Augmentation Scripts
application definition. Data Augmentation Scripts creates this file in the Source folder under
the project root directory.
Syntax

module_definition ::= MODULE module_name
SOURCETYPE source_type
NAMESPACE namespace
PREFIX prefix

Example of a main.mod file:

MODULE TIME
SOURCETYPE FUSION
NAMESPACE TIME_
PREFIX DW_FA_X_

• .hrf: The .hrf file contains the Data Augmentation Scripts program. The application
creates this file is in the Source folder under the project root directory.
Example of customers_d.hrf file:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END

• .func : The .func file consists of user-defined function definitions. Data Augmentation
Scripts creates this file in the Function folder under the project root directory.
For more details, see User Defined Functions (UDFs) or Macros.

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix D-1 of D-2

• .qry: Use the .qry file to create a view using the query that's written in the file. Data
Augmentation Scripts creates this file in the Query folder under the project root directory.
For more details, see Query Files.

• .conf: To improve the performance of reporting queries in the database, you can specify
constructs such as indexes, column groups, and partitions in this file. Data Augmentation
Scripts creates this file in the Conf folder under the project root directory.
For more details, see Column Groups, Indexes, and Partitions.

Data Types

The Data Augmentation Scripts application functionality supports these data types:

Table D-1 Data Augmentation Scripts Supported Data Types

Data Type Declaration Value Example

NUMBER(precision, scale
optional)optional

NUMBER

NUMBER (28,2)

3

28

-28

LARGEINT LARGEINT 5000

75000

BIGDECIMAL(precision, scale) BIGDECIMAL(28,2) 3.14

1.00

DATE 'yyyy-MM-dd'

or

DATE "yyyy-MM-dd"

DATE '1843-03-02'

or

DATE "1843-03-02"

‘1843-03-02'

"1843-03-02"

TIMESTAMP'yyyy-MM-dd
HH:mm:ss.SSSS'

or

TIMESTAMP "yyyy-MM-dd
HH:mm:ss.SSSS"

TIMESTAMP '1843-03-02
04:28:59'

or

TIMESTAMP "1843-03-02
04:28:59"

‘1843-03-02 04:28:59'

"1843-03-02 04:28:59"

VARCHAR2(unsigned_integer) VARCHAR2(38) "Hello"

"Hello World”

‘Hello World’

“Hello World 101”

Appendix D

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix D-2 of D-2

E
Program Structure

A program is essentially a set of code in the Data Augmentation Scripts application that
consists of specific elements.

The structure of a program includes the following elements:

• IMPORT

• INCLUDE

• ALIAS

• PARAMETER

• STATEMENT

Syntax

program ::= { application_source_definition
 | import_definition
 | include_definition
 | alias_definition
 | parameter_definition
 | list_variable_assignment
 | statement
 } ...

For application source definition details, see Table and Column Prefixes.

IMPORT Statement
You can use the IMPORT statement to load objects, such as modules, entities, or source
tables into the current application, which you can then use as a source to build the pipeline.

Syntax

import_definition ::= IMPORT
 {
 MODULE {module_artifact | module_artifact_list}
 | ENTITY {extended_item | extended_item_list}
 | source_definition
 }

Instructions for importing modules and entities, source definitions, optional attributes, filters,
and aliases are in the following sections.

Import Modules and Entities

module_artifact ::= module_name
module_artifact_list ::= '[' module_name [, module_name] ... ']'

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-1 of E-35

extended_item ::= entity_name
extended_item_list ::= '[' entity_name [, entity_name] ... ']'

This code defines the modules or entities to import.

Note

To use a data warehouse table or dataset from another module, you must first import
the corresponding module.

Example:

IMPORT MODULE [FA_GL, FA_AP]
IMPORT ENTITY Item

Use a terminal to check the available modules, entities, and their definition.

Source Definition

The following code defines a source with optional attributes, filters, aliases, and delete
specifications:

source_definition ::= [source_type] SOURCE
 {
 source_reference_list
 | source_reference [soft_delete_spec]
[override_list]
 [then_delete_specification]
 [WITH source_attribute]
 [FILTEREDBY '(' boolean_returned_expression ')']
 ([AS filtered_source_name] |
[TABLEPREFIX'['string']']) [COLPREFIX'['string']']
 }

Source Type

source_type ::= VERSIONED | UPDATEABLE | ENTITYCHANGETRACKING

The default for source_type is UPDATEABLE.

Source types are:

• VERSIONED: During each incremental run, Data Augmentation Scripts extracts all data
from the source and fully refreshes.
Deleted records aren't retained in the data warehouse. When the SOURCE is of type
VERSIONED and you specify Last Update Date (LUD) , then Data Augmentation Scripts
ignores it.

• UPDATEABLE: During each incremental load, Data Augmentation Scripts extracts new
and changed records from the source.

Appendix E
IMPORT Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-2 of E-35

Unchanged and deleted records are retained in the staging area. When the Last Update
Date (LUD) isn't part of IMPORT SOURCE definition, Data Augmentation Scripts extracts
all records from the source system and updates the data in the staging area.

• ENTITYCHANGETRACKING: During each incremental load, Data Augmentation Scripts
extracts new and changed records based on their natural key from the source system.

Source Reference

source_reference_list ::= '[' source_reference [, source_reference] ... ']'
source_reference ::= source_name

Data Type Override

Override_list ::= OVERRIDE '[' column_name -DATATYPE data_type [, column_name
-DATATYPE data_type]… ']'

You can convert the source column data types.

Example:

OVERRIDE [createddate -DATATYPE TIMESTAMP , amount -DATATYPE NUMBER(20,2)]

Base Delete Specification

then_delete_specification ::= THEN DELETE "[" delete_source [,
delete_source] ... "]"
delete_source ::= table_name column_list MATCHING column_list

Example:

THEN DELETE [DEL_SALES [SALES_ID] MATCHING [SALES_ID]]

For more details about base deletions, see Deletions.

Soft Delete Specification

soft_delete_spec ::= DELETETYPE '[' SOFT [create_soft_delete_column] ']';
create_soft_delete_column ::= column_name

Example:

IMPORT SOURCE SALES DELETETYPE[SOFT] THEN DELETE [SALESDEL [SALES_ID]
MATCHING [SALES_ID]]

Note

You can use soft_delete_spec with then_delete_specification or
track_deletes_dataset.

Appendix E
IMPORT Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-3 of E-35

For more details about soft delete, see Deletions.

Source Attributes

source_attribute ::= [primary_key_spec]
 [ied_key_spec]
 [entity_id_spec]
 [lud_key_spec] [track_deletes_dataset])
 [stability_period]

You can use these source attributes:

• primary_key_spec ::= PRIMARYKEY column_list: Defines the primary key.

• ied_key_spec ::= IED column_list: Defines the initial extract date column.

• lud_key_spec ::= LUD { column_list | '[' NULL ']' } Defines the last update date
columns.

Note

If you define an incremental key in the source metadata, Data Augmentation
Scripts automatically uses it as the Last Update Date (LUD). To override this
behavior, use LUD[NULL].

• entity_id_spec ::= ENTITYID column_list Defines natural keys. You must define,
ENTITYID with source_type ENTITYCHANGETRACKING.

• track_deletes_dataset ::= TRACKDELETES [IN '[' identifier ']']

stability_period ::= STABILITYPERIOD '[' number_of_days ,
tracking_date_column ']'
number_of_days ::= unsigned_integer
tracking_date_column ::= column_name

For more details about Stability Period and Base Data Delete Dataset, see Deletions.

Column List

column_list ::= '[' column_name [, column_name] ... ']'

Use this code to list columns for key specifications.

Alias Name

filtered_source_name ::= alias_name

Table and Column Prefix

Use TABLEPREFIX and COLPREFIX for defining table and column prefixes.

For details, see Table and Column Prefixes.

Appendix E
IMPORT Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-4 of E-35

Examples

Example 1

IMPORT SOURCE fiscalCalendar WITH PRIMARYKEY [fiscal_year] FILTEREDBY
('fiscal_year D
2020') AS RecentFiscalYears

Example 2: VERSIONED source

IMPORT VERSIONED SOURCE PRODUCT WITH PRIMARYKEY[PROD_ID]

Example 3: ENTITYCHANGETRACKING source

IMPORT ENTITYCHANGETRACKING SOURCE BusinessUnit OVERRIDE [CreationDate -
DATATYPE TIMESTAMP ,
LegalEntityId -DATATYPE VARCHAR2(20)]

WITH PRIMARYKEY [BusinessUnitId,StartDate,EndDate] IED[CreationDate] LUD
[LastUpdateDate]
ENTITYID[BusinessUnitId]

FILTEREDBY(Status='A' OR Status='U') AS BUnit

INCLUDE
Use the INCLUDE definition to include the supported file types in the current application.

For more details on supported files and their usage, see File Types and Data Types.

Syntax

 include_definition ::= INCLUDE {HRF | FUNCTION | PARAMETER } file_reference

Example

INCLUDE PARAMETER "constant.param"

INCLUDE FUNCTION "coalesceUDF.func"

INCLUDE HRF "dimension.hrf"

Note

You don't need to use the INCLUDE definition for .conf and .qry files because you can
directly use them in the code within .hrf files.

Appendix E
INCLUDE

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-5 of E-35

ALIAS
You create an alias for a table to make referencing it in your code simpler and more concise.
Using an alias enables you to streamlines queries and improves readability, especially in
complex statements.

Syntax

alias_definition ::= ALIAS table_source_type table_name AS table_alias
table_source_type ::= {EXTERNAL | FACTORY | LOCAL}

Example

ALIAS LOCAL CUSTOMERS_D AS CUST

Table Source Types

Table source types include:

• LOCAL: You define local aliases on the datasets in the same Data Augmentation Scripts
application.
Example:

DEFINE DATASET CHANNELS_D FROM CHANNELS END
ALIAS LOCAL CHANNELS_D AS CHAN

• EXTERNAL: You define external aliases on the imported source tables.
Example:

IMPORT SOURCE CUSTOMERS
ALIAS EXTERNAL CUSTOMERS AS CUST

• FACTORY: You define factory aliases on tables in the other modules.
Example:

IMPORT MODULE FA_GL
ALIAS FACTORY DW_LEDGER_D AS LEDGER

In this example, DW_LEDGER_D is a warehouse table in the module FA_GL

Note

• If multiple tables share the same name across different table source types (LOCAL,
FACTORY, EXTERNAL) and you define an alias without specifying
table_source_type, Data Augmentation Scripts assigns the alias to the table
based on the preference order: LOCAL > FACTORY > EXTERNAL. This means
the alias is first created for a LOCAL dataset, followed by a FACTORY table, and
then an EXTERNAL source.

• After you define an alias, you must use the alias in the code instead of the actual
table name.

Appendix E
ALIAS

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-6 of E-35

PARAMETER
You define a parameter as a named variable with a specific data type and, optionally, a default
value for use within queries. Parameters enable you to pass dynamic values into your queries
efficiently.

Syntax

parameter_definition ::= DEFINE PARAMETER parameter_name ,
data_type ,default_value END

Example

DEFINE PARAMETER NOVALUE_NUMBER,NUMBER(38,0),-99999 END
DEFINE PARAMETER VAR_ETL_FALSEVALUE,VARCHAR2(16),"F" END
DEFINE PARAMETER VAR_ETL_NOVALUE_CHAR_NAME,VARCHAR2(32),"~No Value~" END

You can store parameters in separate files, which you can then use in the Data Augmentation
Scripts code with the INCLUDE command or reference the PARAMETER definition in the
transformation code itself.

For more details, see File Types and Data Types.

Note

• Use unique parameter names. You can't define parameters with the same names
as those that are already existing system parameters.

• You can directly use factory Parameters in the Data Augmentation Scripts
application. You can check the list of available factory parameters from the
terminal.

Statement
A statement defines a unit of execution that establishes macros, schemas, tables or datasets,
or list variables. Use statements to organize and control distinct functional components within
your code.

Syntax

statement ::= macro_declaration
 | generic_table_definition
 | list_variable_assignment
 | schema_definition
 | disable_delete_propagation

Appendix E
PARAMETER

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-7 of E-35

Generic Dataset Definition
The Data Augmentation Scripts dataset is a structured collection of data that you gather,
process, or transform to use as an input or building block for creating other datasets in the
Autonomous Data Warehouse.

Dataset Definition

A dataset definition has the following characteristics:

• Defines the data structures and properties.

• Defines the inputs (sources or datasets) through transformations.

• Specifies how it should be made available in the data warehouse.

• Includes instructions for data loading, refreshing, and deletion.

Syntax

generic_table_definition ::= DEFINE [export_specification] [table_type]
DATASET table_name
 { code_block | code_block_load |
from_clause }
 END

Export Specification
Export specification defines the accessibility of the dataset, determining whether it is restricted,
controlled, or available.

By default, the export specification is PUBLIC.

Export specifications are:

• PRIVATE: Accessible only within the coding scope, and not materialized in target.

• PROTECTED: Accessible within a controlled scope, such as used to create VIEW or for
debugging, but not publicly accessible.

• PUBLIC: Accessible in the target data warehouse.

Syntax

export_specification ::= PRIVATE | PROTECTED | PUBLIC

Table Type
Table Type defines the dataset's update capability, versioning, change tracking, storage
method, and persistence.

The default update is UPDATABLE, which updates as deltas.

Syntax

table_type ::= UPDATEABLE | VERSIONED | ENTITYCHANGETRACKING | INLINE | VIEW|
AGGREGATIONONLY

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-8 of E-35

The table types are:

• UPDATEABLE: Handles modifications (insert and update) as deltas. For delete, refer to
Delete Handling

• VERSIONED: Maintains the latest version of data changes.

• ENTITYCHANGETRACKING: Tracks changes at the entity level for auditing or
synchronization. (Internal)

• INLINE: Provides structure and data in the definition. See Inline Dataset.

• VIEW: Represents a read only, computed dataset derived from other datasets. See VIEW
Dataset.

• AGGREGATIONONLY: Contains only summarized data in a single row. See
AGGREGATION ONLY Dataset.

Example: In the following code, the versioned dataset CUSTOMER_DIM is refreshed entirely with
each source load and available in the target data warehouse:

DEFINE PUBLIC VERSIONED DATASET CUSTOMER_DIM FROM CUSTOMERS END

VIEW Dataset

Example:

IMPORT SOURCE PRODUCTS
DEFINE DATASET PROD_DIM
 ROWSOURCE PROD_DIM;
 THIS = PRODUCTS;
END
DEFINE VIEW DATASET CURRENT_PRODUCT_D
 ROWSOURCE PROD_DIM WHERE DATEDIFF(PROD_DIM.PROD_EFF_TO , DATE '2020-01-01')
> 0;
 THIS = PROD_DIM;
END

Note

• View is always accessible as PUBLIC. For this reason, you can't specify
export_type as PRIVATE or PROTECTED.

• You can input only data sets, not sources.

• You're not required to enter the primary key.

• You can also define views using SQL. See VIEW QUERY .

Code Block
Code Block defines data sources, structures, and relationships, as well as instructions for data
loading, refreshing, and deletion.

Syntax

code_block ::= [builtin_schema_statement | template_schema_statement]
 rowsource_specification [column_mapping_assignment]...

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-9 of E-35

 [default_row_specification]
 [aggregate_specification]
 [primary_key_specification]
 [entity_id_specification]
 [incremental_refresh_directive]
 [delete_specification]...

Schema Statements

Example:

builtin_schema_statement | template_schema_statement

For details about schema statements, refer to Schema Definition.

Row Source Specification

Syntax

rowsource_specification ::= ROWSOURCE { table_source | dataset_source |
inline_source }

table_source ::= rowsource_expression

rowsource_expression ::= table_reference join_condition...
[row_filtering_conditional]

join_condition ::= {join_type table_reference ON join_expr | join_type_cross
table_reference }

join_type ::= { INNER | LEFT OUTER | RIGHT OUTER | FULL OUTER } JOIN
join_type_cross ::= CROSS JOIN

join_expr ::= boolean_returned_expression

row_filtering_conditional ::= WHERE boolean_returned_expression

dataset_source ::= { UNION | UNION-ALL } table_reference_list
table_reference_list ::= '[' table_reference [, table_reference]... ']'
table_reference ::= table_name | table_alias

inline_source ::= INTABLE '(' column_and_type inline_value ')'
column_and_type ::= '[' column_name : data_type [, column_name :
data_type]... ']'

inline_value ::= VALUES '(' row_expression [, row_expression]... ')'
row_expression ::= '[' constant_value [, constant_value]... ']’

Example: Inner Join

IMPORT SOURCE CUSTOMERS
IMPORT SOURCE COUNTRIES

DEFINE VERSIONED DATASET GAMING_CUSTOMER_REACHED_G
 ROWSOURCE CUSTOMERS INNER JOIN COUNTRIES ON (CUSTOMERS.COUNTRY_ID =

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-10 of E-35

COUNTRIES.COUNTRY_ID);
 THIS = COUNTRIES[COUNTRY_REGION,COUNTRY_SUBREGION];
 THIS = CUSTOMERS;
 PRIMARYKEY[CUST_ID];
END

Set Operations

A set operation works with two or more datasets and combines them into a single result set as
a ROWSOURCE.

• You're required to specify column-mapping to define the structure of the resulting table.

• You need to explicitly specify a primary key if you want one, because there's no default
primary key.

Example: UNION

IMPORT SOURCE PRODUCTS
DEFINE DATASET PRODUCTS_D FROM
PRODUCTS[PROD_ID,PROD_NAME,PROD_EFF_FROM,PROD_EFF_TO,PROD_VALID] END
DEFINE PRIVATE DATASET PC_PRODUCTS_TMP
 ROWSOURCE PRODUCTS WHERE
 PRODUCTS.PROD_CATEGORY = 'Hardware' AND PRODUCTS.PROD_SUBCATEGORY LIKE
'%PCs';
 THIS =
PRODUCTS[PROD_ID,PROD_NAME,PROD_CATEGORY_DESC,PROD_LIST_PRICE,PROD_MIN_PRICE];
 THIS[PRIORITY] = 2;
END

DEFINE PRIVATE DATASET CONSOLE_PRODUCTS_TMP
 ROWSOURCE PRODUCTS WHERE PRODUCTS.PROD_SUBCATEGORY_DESC LIKE '%Game%' AND
PRODUCTS.PROD_VALID = 'A';
 THIS =
PRODUCTS[PROD_ID,PROD_NAME,PROD_CATEGORY_DESC,PROD_LIST_PRICE,PROD_MIN_PRICE];
 THIS[PRIORITY] = 1;
END

DEFINE DATASET ENTERTAINMENT_PRODUCTS_C
 ROWSOURCE UNION[PC_PRODUCTS_TMP,CONSOLE_PRODUCTS_TMP];
 THIS = PC_PRODUCTS_TMP;
 PRIMARYKEY[PROD_ID];
END

INLINE Data Set

An inline table defines both its structure and its data, including a predefined set of records,
directly within the table definition. Use inline tables to embed small datasets in your code
without relying on external sources.

Example:

DEFINE INLINE DATASET MYINLINEDATA
 ROWSOURCE INTABLE([
 PROMO_CATEGORY_ID:VARCHAR2(128),
 PROMO_CATEGORY:VARCHAR2(60),
 PROMO_DISCOUNT_RATE:BIGDECIMAL(38, 12)]

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-11 of E-35

 VALUES
 ([1 ,'No Promotion',0],
 [2 ,'Television',11.5],
 [3 ,'Internet', 15.4])
);
PRIMARYKEY[PROMO_CATEGORY_ID];
END

Note

You could directly insert numeric values into a VARCHAR2 column with or without
enclosing them in quotes.

Column Mapping Assignment
Assign column mapping for column selections, properties, and transformations.

You can omit column mapping when there's only one input (in ROWSOURCE) and all input
columns are selected.

Syntax

column_mapping_assignment ::= THIS [column_list] '=' { table_name
 |
value_returned_expression }
 ['-' DATATYPE
data_type]
 ['-' { INTERNAL |
VARIABLE }] ;

See Value Returned Expressions.

• INTERNAL: A column with restricted access, hidden from users, that you can mainly use
for debugging purposes.

• VARIABLE: A transient data holder within the dataset, that you can use for intermediate
transformations because it's not included in the final output.

Example:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D_COL
 ROWSOURCE CUSTOMERS;
 THIS[FROM_EFFECTIVE_DATE,TO_EFFECTIVE_DATE] =
CUSTOMERS[CUST_EFF_FROM,CUST_EFF_TO];
 THIS[CUST_MARITAL_STATUS] = COALESCE
(CUSTOMERS.CUST_MARITAL_STATUS,'UNKNOWN') -INTERNAL;
 THIS =
CUSTOMERS[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME,CUST_CITY,COUNTRY_ID];
 THIS[CUST_FULL_NAME] = CONCAT_WS (' ',
THIS.CUST_FIRST_NAME,THIS.CUST_LAST_NAME);
 THIS[BIRTHYEAR] = CUSTOMERS[CUST_YEAR_OF_BIRTH] -VARIABLE;
 THIS[VOTED_AGE_FLAG] = CASE WHEN THIS.BIRTHYEAR > 2018 THEN 'Y' ELSE 'N' END

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-12 of E-35

-DATATYPE VARCHAR2(1);
END

You can omit column mapping when there's only one input (in ROWSOURCE) and all input
columns are selected.

Example: The following is an example of omitting column mapping:

IMPORT SOURCE CUSTOMERS
//THIS = CUSTOMERS is omitted
DEFINE DATASET CUSTOMERS_DO
 ROWSOURCE CUSTOMERS;
END

Default Row Specification
Default row specification requires you to define a predefined record, ensuring there is always a
default entry in the table and maintaining schema integrity.

Syntax:

default_row_specification ::= DEFAULTROW default_column_list ;
default_column_list ::= '[' (THIS[<column_list>] '=' (PARAMETER '['
<parameter_name> ']' |
<constant_value>);)+ ']'

Example:

IMPORT SOURCE CUSTOMERS
/* not listed columns are assigned NULL */
DEFINE DATASET CUSTOMERS_DEFAULT
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
 DEFAULTROW
 [THIS[CUST_ID] = -99999;
 THIS[CUST_FIRST_NAME] = 'Unknown';
]
 PRIMARYKEY[CUST_ID];
END

If you omit a column's default value, it defaults to NULL.

Aggregate Specification
Aggregate specification denotes a list of group_by columns when aggregation is part of the
transformation.

Syntax:

aggregate_specification ::= GROUPBY column_list ;

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-13 of E-35

Example:

IMPORT SOURCE CUSTOMERS
IMPORT SOURCE COUNTRIES

DEFINE VERSIONED DATASET GAMING_CUSTOMER_REACHED_G
 ROWSOURCE CUSTOMERS INNER JOIN COUNTRIES ON (CUSTOMERS.COUNTRY_ID =
COUNTRIES.COUNTRY_ID)
 THIS = COUNTRIES[COUNTRY_REGION,COUNTRY_SUBREGION];
 THIS[REACHED_VOLUME] = COUNT(CUSTOMERS.CUST_ID);
 GROUPBY[COUNTRY_REGION,COUNTRY_SUBREGION];
 PRIMARYKEY[COUNTRY_REGION,COUNTRY_SUBREGION];
END

Primary Key Specification
The primary key is optional and inferred from the input when there's only a single input. For
PRIVATE VERSIONED datasets, which do not require PRIMARYKEY, you must explicitly define a
primary key for a multi-input dataset.

Syntax:

primary_key_specification ::= PRIMARYKEY column_list ;
entity_id_specification ::= ENTITYID column_list ; (internal)
column_list ::= '[' column_name [, column_name]… ']'

Example:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
 PRIMARYKEY[CUST_ID];
END

Delete Specification and Soft Delete
This specification defines the driven dataset and matching key for deleting the target table.

Syntax:

delete_specification ::= [soft_delete_spec] deletesource_specification
soft_delete_spec ::= DELETETYPE '[' SOFT [create_soft_delete_column] ']';
create_soft_delete_column ::= column_name
deletesource_specification ::= DELETESOURCE table_name column_list MATCHING
column_list;

Example:

IMPORT SOURCE CUSTOMER_DELETE_LOG
IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMER_HD;

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-14 of E-35

 THIS = CUSTOMER_HD;

 DELETESOURCE CUSTOMER_DELETE_LOG[CUST_ID] MATCHING [CUST_ID];
END

You've defined the dataset CUSTOMER_DELETE_LOG to identify and delete the matched records in
the dataset CUSTOMERS_D.

Incremental Refresh Directive
This directive defines how a dataset refreshes with the UPDATEABLE table type, using the last
updated date (LUD) from the source table.

The incremental refresh directive identifies the incremental input for changes and is crucial for
optimizing refresh efficiency in multi-input datasets.

Syntax:

incremental_refresh_directive ::= REFRESH ON {CHANGES|UPSERTS|DELETES} IN
table_reference_list ;
table_reference_list ::= '[' table_reference [, <table_reference]… ']'
table_reference ::= table_name | table_alias

The incremental refresh directives are as follows:

• CHANGES: Supports both upserts (updates) and deletes.

• UPSERTS: Supports only upserts (updates); no deletes.

• DELETES: Supports only deletes.

Example:

IMPORT SOURCE SALES
IMPORT SOURCE PRODUCTS
DEFINE UPDATEABLE DATASET SALES_FACT_OJ
 ROWSOURCE SALES INNER JOIN PRODUCTS ON SALES.PROD_ID = PRODUCTS.PROD_ID;
 THIS = SALES;
 THIS[PROD_NAME] = PRODUCTS.PROD_NAME;
 PRIMARYKEY [CUST_ID,PROD_ID,PROMO_ID,CHANNEL_ID,TIME_ID];
 REFRESH ON CHANGES IN [SALES];
END

See Incremental.

Code Block Load - Full and Incremental Load Instructions
When the full load transformation logic is separate from subsequent loads, the dataset
definition has separate instructions for each load type.

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-15 of E-35

Note

• You're required to enter the full Load block.

• Without an Incremental Load block, the dataset stops refreshing after the full load.

• The VIEW or INLINE table types don't support code_block_load.

Syntax:

code_block_load ::= ON FULL LOAD
 rowsource_specification
 [column_mapping_assignment]...
 [INCREMENTAL LOAD
 rowsource_specification
 [column_mapping_assignment]...
]
 ENDLOAD
 [default_row_specification]
 [aggregate_specification]
 [primary_key_specification]
 [entity_id_specification]
 [incremental_refresh_directive]
 [delete_specification]...

Example:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D_FULL
 ON FULL LOAD
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_VALID = 'A';
 INCREMENTAL LOAD
 ROWSOURCE CUSTOMERS;
 ENDLOAD
END

FROM - Compact Format
FROM is a compact form for dataset definition instruction that you can use to specify sources
and select input columns.

While ROWSOURCE offers more flexibility for generating transformation input, you can use FROM to
simply list the instructions in the same line.

Syntax:

from_clause ::= FROM [table_source_type] { table_name | table_name
column_list | table_name EXCLUDE column_list }
column_list ::= '[' column_name [',' column_name]… ']'

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-16 of E-35

Example:

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D FROM CUSTOMERS
[CUST_ID,CUST_FIRST_NAME,CUST_LAST_NAME,CUST_CITY,CUST_YEAR_OF_BIRTH,COUNTRY_I
D] END

AGGREGATIONONLY
AGGREGATIONONLY is a table type in dataset definitions, designed to store only aggregated
data.

It ensures that the dataset contains a single row of summarized values rather than raw
transactional records. Each column must use an aggregation function, such as SUM or AVG, to
derive its values.

Key Features

• No Primary Key Required : Aggregation-only datasets contain a single row of
summarized data, eliminating the need for a primary key.

• Mandatory Aggregation: Columns in these datasets must use aggregation functions
(Example SUM(), AVG()).

• No Group-By Allowed: If GROUPBY is specified, the dataset is treated as a regular dataset
instead of aggregation-only.

Example

DEFINE AGGREGATIONONLY DATASET SALES_AGG
 ROWSOURCE SALES WHERE SALES.QUANTITY_SOLD > 10 ;
 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);
END

Multiple Aggregated Metrics

An aggregation-only dataset can store multiple metrics, such as Average, Sum, and Min.

Example:

DEFINE AGGREGATIONONLY DATASET SALES_AGG1
 ROWSOURCE SALES WHERE SALES.QUANTITY_SOLD > 10;
 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);
 THIS[SUM_SALES_AMT] = SUM(SALES[AMOUNT_SOLD]);
 THIS[MIN_SALES_AMT] = MIN(SALES[AMOUNT_SOLD]);
 THIS[MAX_SALES_AMT] = MAX(SALES[AMOUNT_SOLD]);
END

Full and Incremental Loads in Aggregation-Only Datasets

Aggregation-only datasets support code-block-load (both full loads and incremental loads).
See Code Block Load - Full and Incremental Load Instructions .

Example:

DEFINE AGGREGATIONONLY DATASET SALES_AGG2
 ON FULL LOAD

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-17 of E-35

 ROWSOURCE SALES WHERE SALES.QUANTITY_SOLD > 20;
 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);
 THIS[SUM_SALES_AMT] = SUM(SALES[AMOUNT_SOLD]);
 THIS[MIN_SALES_AMT] = MIN(SALES[AMOUNT_SOLD]);
 THIS[MAX_SALES_AMT] = MAX(SALES[AMOUNT_SOLD]);
 INCREMENTAL LOAD
 ROWSOURCE SALES WHERE SALES.QUANTITY_SOLD > 10;
 THIS[AVG_SALES_AMT] = AVG(SALES[AMOUNT_SOLD]);
 THIS[SUM_SALES_AMT] = SUM(SALES[AMOUNT_SOLD]);
 THIS[MIN_SALES_AMT] = MIN(SALES[AMOUNT_SOLD]);
 THIS[MAX_SALES_AMT] = MAX(SALES[AMOUNT_SOLD]);
 ENDLOAD
END

In this example:

• Full Load uses SALES with QUANTITY_SOLD > 20, where all the records are truncated
and reloaded.

• Incremental Load uses SALES, with QUANTITY_SOLD > 10.

Derived Aggregation-Only Datasets

To simplify calculations, you can derive aggregation-only datasets from other aggregation-only
datasets.

Example:

DEFINE AGGREGATIONONLY DATASET SALES_AGG3
 ROWSOURCE SALES_AGG2;
 THIS = SALES_AGG2.AVG_SALES_AMT;
END

Note

• You must mark a dataset that;s created exclusively from an aggregation-only
source as AGGREGATIONONLY.

• CROSS JOIN is the only join type allowed with aggregation-only inputs.

• The Refresh On Changes directive is not allowed on aggregation-only dataset.

Joining Aggregation-Only Datasets with Transactional Data

You can combine aggregation-only datasets with transactional data using CROSS JOIN.

Example:

DEFINE DATASET SALES_AGG4
 ROWSOURCE SALES CROSS JOIN SALES_AGG_DERIVED WHERE SALES.QUANTITY_SOLD > 10;
 THIS = SALES_AGG_DERIVED;
 THIS = SALES;
 PRIMARYKEY[PROD_ID,CHANNEL_ID,CUST_ID,TIME_ID,PROMO_ID];
 REFRESH ON CHANGES IN[SALES];
END

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-18 of E-35

Note

• CROSS JOIN is the only join type allowed with aggregation-only inputs.

• The Refresh On Changes directive is not allowed on aggregation-only dataset.

Deletions
You apply deletions during subsequent loads to reflect removals from the source (tracked or
audited) or to clean up as explicitly instructed.

Deletion propagation includes:

• Implicit Propagation: Deletions flow through the lineage to downstream datasets.

• Explicit Prevention: Deletions are restricted from propagating.

Topics include:

• Track Upstream Removals

• Hard Deletions

• Soft Deletions

• Propagation Control

• Choose the Best Deletion Strategy

Track Upstream Removals

TRACKDELETES: Automatically detects removals by comparing the current dataset with the
original upstream copy.

Syntax:

See IMPORT Statement.

You can track removals in:

• The imported source itself (the default behavior).

• A named track set, that's tracked separately with a unique name.

Example:

IMPORT SOURCE SALES WITH TRACKDELETES
IMPORT SOURCE SALES WITH TRACKDELETES IN [SALESREMOVALS] AS SALES_DEL1 //
Named Track Set

Note

If the upstream system already tracks or audits deletions, you can leverage that audit
to improve performance and reduce the cost of comparing and tracking.

Hard Deletions

You can permanently delete records from data warehouse datasets through propagation or
explicit application.

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-19 of E-35

You can apply deletions:

• With Tracked Imported Source (default behavior): TRACKDELETES
Example: Propagate automatically in SALES_F :

IMPORT SOURCE SALES WITH TRACKDELETES
DEFINE DATASET SALES_F FROM SALES END

• Using a Named Tracked Set
You can apply this to both the imported source and the dataset by using:

– Then Delete: Explicit directive that you can apply to an Imported Source in IMPORT
SOURCE statement.
See IMPORT Statement.

Example:

IMPORT SOURCE DEL_SALES //delete records
//Clean up SALES with DEL_SALES
IMPORT SOURCE SALES THEN DELETE [DEL_SALES [SALES_ID] MATCHING
[SALES_ID]]

// Delete for keys in DEL_SALES are automatically propagated to
NET_SALES_F
DEFINE DATASET NET_SALES_F FROM SALES END

– Delete Source: Explicit deletion that you can apply to a dataset in the Dataset
Definition.
The delete set (substraend) can be a delete named track set or can be any dataset.

Syntax: See Generic Dataset Definition.

Note

DELETESOURCE overrides all propagation for that dataset.

Example: Subtraend from TRACKDELETES:

IMPORT SOURCE SALES WITH TRACKDELETES IN [REMOVALS]
DEFINE DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES;
 DELETESOURCE REMOVALS [SALES_ID] MATCHING [SALES_ID]
END

Example: Subtraend from imported source, using DELETESOURCE in the dataset:

IMPORT SOURCE SALES_REMOVALS //Audited from upstream, no tracking
IMPORT SOURCE SALES
DEFINE DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES;
 DELETESOURCE SALES_REMOVALS [SALES_ID] MATCHING [SALES_ID];
END

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-20 of E-35

Soft Deletions

Instead of being physically removed, Data Augmentation Scripts flags removal records as
deleted. The flag name defaults to ISDELETED if you don't specify otherwise.

Note

• You must filter out soft-deleted records when necessary from queries and
downstream datasets.

• Soft deletes retain data but require efficient query filtering to maintain system
efficiency.

Syntax: See IMPORT Statement.

Similar to hard deletes, soft deletes utilize TRACKDELETE, THEN DELETE, and DELETESOURCE.

• TRACKDELETE and Soft Delete
The following are examples of soft delete on importing.

Example: flag name not specified (defaulted) with TRACKDELETES.

IMPORT SOURCE CUSTOMERS DELETETYPE[SOFT] WITH PRIMARYKEY[CUST_ID]
TRACKDELETES
DEFINE UPDATEABLE DATASET CUSTOMERS_SD_D FROM CUSTOMERS END

Example: flag name provided

IMPORT SOURCE SALES DELETETYPE[SOFT[ISTRANDELETED]] TRACKDELETES[IN
[THDELETE]]
DEFINE UPDATEABLE DATASET CUSTOMERS_SD_D FROM CUSTOMERS END

• THEN DELETE and Soft Delete
Example: Soft delete on importing, using other imported data.

IMPORT SOURCE SALESDEL
IMPORT SOURCE SALES DELETETYPE[SOFT] THEN DELETE [SALESDEL [SALES_ID]
MATCHING [SALES_ID]]
DEFINE DATASET SALES_SD_F FROM SALES END

• DELETESOURCE and Soft Delete
Syntax: See Generic Dataset Definition.

Example: Soft delete on dataset.

IMPORT SOURCE SALESDEL
IMPORT SOURCE SALES
DEFINE UPDATEABLE DATASET SALES_F
 ROWSOURCE SALES;
 THIS = SALES;
 DELETETYPE[SOFT[SALESDELETED]];
 DELETESOURCE SALESDEL[SALE_ID] MATCHING [SALE_ID];
END

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-21 of E-35

Propagation Control

Propagation control consists of:

• DISABLE DELETEPROPAGATION
You can use disable DELETEPROPAGATION to prevent deletions from cascading to
downstream datasets.

– Default Behavior: By default, Data Augmentation Scripts applies removals to
downstream datasets, unless you define propagation.

– Disabled Propagation: Data Augmentation Scripts doesn't propagate deletions
automatically, but still applies explicit deletions that use DELETESOURCE.

Syntax:

disable_delete_propagation ::= DISABLE DELETEPROPAGATION FOR { ALL
DATASETS | DATASETS '[' table_name ']' }

Example: Disable delete propagation for all datasets.

DISABLE DELETEPROPAGATION FOR ALL DATASETS

Example: Disable delete propagation for a product dimension dataset.

DISABLE DELETEPROPAGATION FOR DATASETS[PRODUCTS_D]

• REFRESH ON DELETES
You can controls how deletions impact the dataset.

Syntax: See Generic Dataset Definition.

Example: In the following example, for incremental runs, only Sales deletes are
considered.

IMPORT SOURCE SALES WITH TRACKDELETES
IMPORT SOURCE PRODUCTS
DEFINE DATASET SALES_F
 ROWSOURCE PRODUCTS INNER JOIN SALES ON SALES.PROD_ID =
PRODUCTS.PROD_ID;
 THIS = SALES;
 REFRESH ON DELETES IN[SALES];
 REFRESH ON UPSERTS IN[PRODUCTS]
END

• STABILITYPERIOD
You can restrict processing data changes within a defined timeframe (or sliding window)
since the previous load. You can apply the restriction to either the record’s Initial Extract
Date (IED) or Last Updated Date (LUD) of upstream data.

Syntax: See IMPORT Statement.

The following is the change tracking behavior based on Last Updated Date (LUD):

– If you haven't identified a LUD for the source, only changes to records created in the
last n days at extract time are tracked.

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-22 of E-35

– If you've identified a LUD defined for the source, both changes since the last extract
and changes to records created in the last n days at extract time are tracked.

The following example specifies the Initial Extract Date- (IED) but not a Last Updated Date
(LUD) :

IMPORT SOURCE CUSTOMERS WITH IED [CUST_EFF_FROM] STABILITYPERIOD[30,
CUST_EFF_FROM] TRACKDELETES
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END

The example code specifies that only changes (including deletions) in SALES from the last
30 days be processed through propagation in each load.

Note

Even when you don't explicitly define the Last Updated Date (LUD) column in an
IMPORT definition, if an incremental key is defined in the source metadata, Data
Augmentation Scripts automatically uses it as the Last Updated Date (LUD). To
override this behavior, you can use LUD[NULL].

The following example ignores the Last Updated Date (LUD):

IMPORT SOURCE CUSTOMERS WITH IED [CUST_EFF_FROM] LUD[null]
STABILITYPERIOD[30, CUST_EFF_FROM] TRACKDELETES

Choose the Best Deletion Strategy

The following table maps a deletion scenario with the corresponding recommended deletion
method:

Scenario Recommended Deletion Method

Data must be completely removed. Hard delete (THEN DELETE, DELETESOURCE,
TRACKDELETES)

Need to retain deleted records for historical
tracking.

Soft delete (ISDELETED flag)

Source system doesn't track deletions. TRACKDELETES

Deletions must be explicitly provided by a named
dataset.

DELETESOURCE

Avoid cascading deletions in downstream datasets. DISABLE DELETEPROPAGATION

Optimize performance by applying necessary
deletions on imported sources

THEN DELETE

Schema Definition
Schema Definition provides control over dataset structures while maintaining flexibility.

Schema definitions have the following characteristics:

• Allows predefined or overridden data types and formats for datasets.

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-23 of E-35

• Provides uniformity across multiple datasets while permitting necessary adjustments.

• Enables you to define a schema separately as a template or embedded within a dataset as
an inline statement.

• Allows you to reference by name within a dataset when you've a schema defined
separately.

• Becomes part of a code block when you've embedded it. See Code Block.

Syntax

For information on schema statements (template_schema_statement or
builtin_schema_statement) in the dataset definition code_block, see Generic Dataset
Definition.

Schema Definition Rules

• Column data types are mandatory; PRIMARYKEY is optional.

• By default, all columns are nullable unless you explicitly specify otherwise.

• If you don't define PRIMARYKEY in the schema, it must be provided by the source dataset.

Conflict Resolution

• Primary Key

– When you define PRIMARYKEY in both the schema and the dataset, the dataset value
takes precedence.

– For datasets with row source joins, you can omit PRIMARYKEY from the dataset if you've
already specified it in the schema.

• Data Type

– When you define a column's data type in both the schema and the dataset, the data
type that you provide in the dataset overrides the dataset in the schema.

Column Mismatch Handling

When a column is present in either the schema or the dataset but not in both, its inclusion and
properties are determined as follows:

• Extra Columns in the Dataset: If a column appears in the dataset but not in the schema,
its properties are derived from the source.

• Extra Schema Columns: If you define a column in the schema but don't map it in the
dataset, it's ignored unless it's part of the primary key. If so, a warning is issued.

Schema Template Definition

You can use DEFINE SCHEMA, the dataset definition code block, to define a schema separately
from a dataset definition, refer to it, and apply it to any dataset.

Syntax:

schema_definition ::= DEFINE SCHEMA schema_name
 '['
 column_name data_type
[PRIMARYKEY] [nullable_flag]
 [,column_name data_type
[PRIMARYKEY] [nullable_flag]] ...
 ']'

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-24 of E-35

 END
schema_name ::= identifier
template_schema_statement ::= SCHEMA schema_name ; //used in Dataset
Definition

Example of a dataset defined with the template_schema_statement:

IMPORT SOURCE CUSTOMERS
DEFINE SCHEMA CUSTOMERS_D_SCHEMA
 [
 CUST_ID NUMBER(38,0) PRIMARYKEY,
 CUST_LAST_NAME VARCHAR2(32),
 CUST_CITY_ID NUMBER(38,0),
 CUST_VALID VARCHAR2(32),
 CUST_EFF_FROM DATE NOT NULL,
 CUST_EFF_TO DATE
]
END
//Usage in Dataset Definition
DEFINE DATASET CUSTOMERS_D
 SCHEMA CUSTOMERS_D_SCHEMA;
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
END

Inline Schema Definition

Within the dataset definition code block, you can define a schema directly within a dataset
definition, applying it only to that specific dataset.

Syntax:

builtin_schema_statement ::= SCHEMA
 '['
 column_name
data_type [PRIMARYKEY] [nullable_flag]
 [,column_name
data_type [PRIMARYKEY] [nullable_flag]] ...
 ']' ;

Example of a dataset defined with the builtin_schema_statement:

DEFINE DATASET INS_CUSTOMERS_D
 SCHEMA
 [
 CUST_ID NUMBER(38,0) PRIMARYKEY,
 CUST_LAST_NAME. VARCHAR2(32),
 CUST_CITY_ID NUMBER(38,0),
 CUST_VALID VARCHAR2(32),
 CUST_EFF_FROM DATE NOT NULL,
 CUST_EFF_TO DATE
];

 ROWSOURCE CUSTOMERS;

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-25 of E-35

 THIS = CUSTOMERS;
END

Code Block Load and Schema Definition

When you separate the full load code from the incremental load within a dataset definition, the
inline schema is defined at the beginning of the code_block_load.

Example of a code_block_load defined with template_schema_statement:

DEFINE DATASET FL_CUSTOMERS_D
 SCHEMA CUSTOMERS_D_SCHEMA;
 ON FULL LOAD
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_VALID = ‘A’;
 THIS = CUSTOMERS;
 INCREMENTAL LOAD
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
 ENDLOAD
END

Example of a code_block_load defined with builtin_schema_statement:

DEFINE VERSIONED DATASET INSCH_FL_CUSTOMERS_CF
 SCHEMA
 [
 CUST_ID NUMBER(38,0) PRIMARYKEY,
 CUST_LAST_NAME VARCHAR2(32),
 CUST_CITY_ID NUMBER(38,0),
 CUST_VALID VARCHAR2(32),
 CUST_EFF_FROM DATE NOT NULL,
 CUST_EFF_TO DATE
];
 ON FULL LOAD
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_VALID = ‘A’;
 THIS = CUSTOMERS;
 INCREMENTAL LOAD
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS;
 ENDLOAD
END

Transposition Table Definition
You can use a Transposition Table Definition to restructure datasets by rotating rows into
columns (PIVOT) or columns into rows (UNPIVOT).

Syntax

transposition_table_definition ::= DEFINE [export_specification]
[transposition_table_type] DATASET table_name
 { transposition_code_block |
pivot_code_block_load | unpivot_code_block_load }

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-26 of E-35

 END

transposition_table_type ::= VERSIONED

For more information, see Export Specification.

Common Elements

transposition_rowsource_specification ::= ROWSOURCE
{ transposition_table_source | inline_source };

transposition_table_source ::= table_reference [row_filtering_conditional]

segment ::= WITHIN table_name [EXCLUDE] column_list;

Transposition Code Block

The transposition code block contains either a PIVOT or UNPIVOT block, which determines
how the data is transformed.

transposition_code_block ::= pivot_code_block | unpivot_code_block

See:

• Pivot Definition

• Unpivot Definition

Pivot Definition

pivot_code_block ::=
 transposition_rowsource_specification
 pivot_section
 [column_mapping_assignment]...
 [primary_key_specification]

Note

You're allowed to only map columns for columns generated from PIVOT section.

pivot_section ::= PIVOT
 '('
 [segment]
 pivot_transposition...
 ')'

pivot_transposition ::= THIS [column_list] '=' { pivot_function_list |
pivot_scalar_list }
 FOR { table_name.column_name IN
constant_value_expression | table_column_tuple IN
constant_value_tuple_expression }

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-27 of E-35

pivot_function_list ::= '[' aggregate_function [column_prefix] [,
aggregate_function [column_prefix]] ... ']'

pivot_scalar_list ::= '[' column_name [column_prefix] [, column_name
[column_prefix]] ... ']'
column_prefix ::= '-' COLPREFIX string

table_column_tuple ::= '(' table_name.column_name [,
table_name.column_name] ... ')'

constant_value_expression ::= '(' constant_value [, constant_value] ... ')'

constant_value_tuple_expression ::= '(' constant_value_tuple [,
constant_value_tuple] ... ')'
constant_value_tuple ::= '(' constant_value, constant_value [,
constant_value] ... ')'

Note

• If a WITHIN statement is skipped, all the columns that aren't used in transpositions
will be used to partition (group) the data.

• Within the PIVOT call, transpositions could be aggregated or scalar. If you use
aggregation, then all transposition statements must have aggregation.

• If column names on the left side aren't explicitly mentioned, -COLPREFIX property
is mandatory for aggregation-based transpositions and optional for scalar
transpositions.

• ROWSOURCE can't contain joins or unions but it can contain filters.

• Other transformations (except aggregations) are allowed after the PIVOT block and
only by using the columns from PIVOT section.

• No GROUP BY is allowed in the dataset.

• Primary key is optional. If optional, the within clause columns are considered as
primary key. Primary key can be specified, especially for excluding functionally-
dependent columns.

Examples

Calculate average income for each month using country and city.

DEFINE VERSIONED DATASET DW_CITY_PIVOT
 ROWSOURCE CITIES;

 PIVOT
 (
 /* ------------------------- SPECIFY PARTITION
-------------------------- */
 WITHIN CITIES[COUNTRY, CITY, CITY_CODE];

 /* ------------------------SPECIFY TRANSPOSITIONS
----------------------- */

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-28 of E-35

 // Provide target column names on LHS for each of the month values
 THIS[AV_INC_JAN, AV_INC_FEB, AV_INC_MAR] = AVG(CITIES.INCOME) FOR
CITIES.MONTH IN ('Jan', 'Feb', 'Mar');
);

 PRIMARYKEY [COUNTRY, CITY];
END

Calculate total population and average population for each year using country and city.

DEFINE VERSIONED DATASET DW_CITY_PIVOT
 ROWSOURCE CITIES;

 PIVOT
 (
 WITHIN CITIES[COUNTRY, CITY, CITY_CODE];

 // Target column names are generated using -COLPREFIX property. The
YEAR values are suffixed to -COLPREFIX using underscore(_).
 THIS = [SUM(CITIES.POPULATION) -COLPREFIX 'SUM_POP',
AVG(CITIES.POPULATION) -COLPREFIX 'AVG_POP']
 FOR CITIES.YEAR IN (2000, 2010, 2020);

 // E.g. Generated columns SUM_POP_2000, AVG_POP_2000,
SUM_POP_2010 , ...
);

 THIS[SUM_CHANGE_2010_2020] = THIS.SUM_POP_2000/THIS.SUM_POP_2010;

 PRIMARYKEY [COUNTRY, CITY];
END

Calculate total population for each (year, month) combination using country and city.

DEFINE VERSIONED DATASET DW_CITY_PIVOT
 ROWSOURCE CITIES;

 PIVOT
 (
 WITHIN CITIES[COUNTRY, CITY, CITY_CODE];

 // Multiple column combinations.
 THIS = SUM(CITIES.POPULATION) -COLPREFIX 'SUM_POP'
 FOR (CITIES.YEAR, CITIES.MONTH) IN (
 (2000,'Jan'),
(2000,'Feb'), (2000,'Mar'),
 (2010,'Feb'),
(2010,'Mar'),
 (2020,'Jan'),
(2020,'Feb'), (2020,'Mar')
);

 // Column name examples: SUM_POP_2000_JAN, SUM_POP_2000_FEB
);

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-29 of E-35

 PRIMARYKEY [COUNTRY, CITY];
END

Non-aggregation pivot

DEFINE VERSIONED DATASET DW_CUSTOMERS_PIVOT
 ROWSOURCE CUSTOMERS;

 PIVOT
 (
 WITHIN CUSTOMERS[ID];

 // For non-aggregation pivot, -COLPREFIX is optional.
 // In this case, use the values from IN clause as column names.
 THIS = CUSTOMERS.AttributeValue FOR CUSTOMERS.Attribute IN
('FirstName', 'LastName', 'DOB');
);

 PRIMARYKEY [ID];
END

Combine all PIVOTs in a dataset

DEFINE VERSIONED DATASET DW_CITY_PIVOT
 ROWSOURCE CITIES;

 PIVOT
 (
 /* ------------------------- SPECIFY PARTITION
-------------------------- */
 WITHIN CITIES[COUNTRY, CITY, CITY_CODE];
 // or WITHIN ALL;

 /* ------------------------SPECIFY TRANSPOSITIONS
----------------------- */
 // Provide target column names on LHS for each of the month values
 THIS[AV_INC_JAN, AV_INC_FEB, AV_INC_MAR] = AVG(CITIES.INCOME) FOR
CITIES.MONTH IN ('Jan', 'Feb', 'Mar');

 THIS = [SUM(CITIES.POPULATION) -COLPREFIX 'SUM_POP',
AVG(CITIES.POPULATION) -COLPREFIX 'AVG_POP'] FOR CITIES.YEAR IN (2000, 2010,
2020);

 // Multiple column combinations
 THIS = [SUM(CITIES.POPULATION) -COLPREFIX 'SUM_POP']
 FOR (CITIES.YEAR, CITIES.MONTH) IN (
 (2000,'Jan'),
(2000,'Feb'), (2000,'Mar'),
 (2010,'Feb'),
(2010,'Mar'),
 (2020,'Jan'),
(2020,'Feb'), (2020,'Mar')
);
);

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-30 of E-35

 THIS[SUM_CHANGE_2010_2020] = THIS.SUM_POP_2000/THIS.SUM_POP_2010;

 PRIMARYKEY [COUNTRY, CITY];
END

Unpivot Definition

unpivot_code_block ::= transposition_rowsource_specification
 unpivot_section
 [column_mapping_assignment] ...
 primary_key_specification

Note

You're allowed to assign columns only for columns generated from the UNPIVOT
section.

unpivot_section ::= UNPIVOT [INCLUDE NULLS]
 '('
 [segment]
 unpivot_transposition ...
 ')';

unpivot_transposition ::= THIS column_tuple_list '=' table_name column_list ;
column_tuple_list ::= '[' column_tuple [, column_tuple]... ']'
column_tuple ::= '(' column_key_value [, column_key_value]... , identifier
')'
column_key_value ::= identifier ':' constant_value

Note

• The WITHIN statement is optional. If it's skipped, all remaining columns that aren't
used in transpositions must be used in partition.

• NULL values are excluded by default. You can include them by explicitly using
INCLUDE NULLS.

• Aggregation isn't allowed in the UNPIVOT block.

• ROWSOURCE can't contain joins or unions but it can contain filters. Other
transformations (except aggregations) are allowed after the UNPIVOT section and
only by using the columns from the UNPIVOT section.

• No GROUP BY is allowed in the dataset.

• Primary key is mandatory and must include the columns from the WITHIN
statement (it can exclude functionally dependent columns) and the key column
from the UNPIVOT assignment.

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-31 of E-35

Examples

Show product and sales amount as (name, value) pairs using id and fiscal year.

DEFINE VERSIONED DATASET DW_SALES_UNPIVOT
 ROWSOURCE SALES;

 UNPIVOT INCLUDE NULLS // Nulls can be included/excluded. Exclude, by
default
 (
 WITHIN SALES[ID, FISCAL_YEAR];

 // Target Columns SALES_AMT and PRODUCT are specified on LHS
 // The corresponding display values for PRODUCT column are specified
in the LHS as well
 // Pairs on LHS map to columns on RHS, in sequence
 THIS[(PRODUCT: 'A', SALES_AMT), (PRODUCT : 'B', SALES_AMT)] =
SALES[PROD_A_AMT, PROD_B_AMT];

);

 PRIMARYKEY [ID, FISCAL_YEAR, PRODUCT];
END

Show product, sales amount, sales quantity using ID and fiscal year.

DEFINE VERSIONED DATASET DW_SALES_UNPIVOT
 ROWSOURCE SALES;

 UNPIVOT INCLUDE NULLS
 (
 WITHIN SALES[ID, FISCAL_YEAR];
 THIS[(PRODUCT : 'A', SALES_AMT), (PRODUCT :'B', SALES_AMT),
(PRODUCT : 'A', SALES_QTY), (PRODUCT : 'B', SALES_QTY)]
 = SALES[PROD_A_AMT, PROD_B_AMT, PROD_A_QTY, PROD_B_QTY];
);

 THIS[SALES_RATIO] = THIS.SALES_AMT/THIS.SALES_QTY;

 PRIMARYKEY [ID, FISCAL_YEAR,PRODUCT];
END

Show year, month and population using country and city.

DEFINE VERSIONED DATASET DW_SALES_UNPIVOT
 ROWSOURCE SALES;
 UNPIVOT
 (
 WITHIN SALES[COUNTRY, CITY, CITY_CODE];

 THIS[(YEAR : 2000, MONTH : 'Jan', POPULATION), (YEAR : 2000, MONTH :
'Feb', POPULATION), (YEAR : 2000, MONTH : 'Mar', POPULATION)] =
SALES[SUM_POP_2000_JAN, SUM_POP_2000_FEB, SUM_POP_2000_MAR];
);

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-32 of E-35

 PRIMARYKEY [COUNTRY, CITY, YEAR, MONTH];
END

Block Load Definitions

Use block load for different load logic for full and incremental.

Pivot Load

pivot_code_block_load ::= 'ON FULL LOAD'
 transposition_rowsource_specification
 pivot_section
 [column_mapping_assignment]...
 [
 'INCREMENTAL LOAD'
 transposition_rowsource_specification
 pivot_section
 [column_mapping_assignment]...
]
 'ENDLOAD'
 [primary_key_specification]

Example of Pivot Code block load:

DEFINE VERSIONED DATASET DW_CITY_PIVOT
 ON FULL LOAD
 ROWSOURCE CITIES;
 PIVOT
 (
 WITHIN CITIES[COUNTRY, CITY, CITY_CODE];
 THIS[AV_INC_JAN, AV_INC_FEB, AV_INC_MAR] = AVG(CITIES.INCOME) FOR
CITIES.MONTH IN ('Jan', 'Feb', 'Mar');
);

 INCREMENTAL LOAD
 ROWSOURCE CITIES_COUNTIES;
 PIVOT
 (
 WITHIN CITIES_COUNTIES[COUNTRY, CITY, CITY_CODE];
 THIS[AV_INC_JAN, AV_INC_FEB, AV_INC_MAR] =
AVG(CITIES_COUNTIES.INCOME) FOR CITIES_COUNTIES.MONTH IN ('Jan', 'Feb',
'Mar');
);
 ENDLOAD

 PRIMARYKEY [COUNTRY, CITY];
END

Unpivot Load

unpivot_code_block_load ::= 'ON FULL LOAD'
 transposition_rowsource_specification

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-33 of E-35

 unpivot_section
 [column_mapping_assignment]...
 [
 'INCREMENTAL LOAD'
 transposition_rowsource_specification
 unpivot_section
 [column_mapping_assignment]...
]
 'ENDLOAD'
 primary_key_specification

User Defined Functions (UDFs) or Macros
User-Defined Functions (UDFs) or macros in Data Augmentation Scripts enable you to create
custom functions, which complement the built-in functions provided by Data Augmentation
Scripts.

Syntax

macro_declaration ::= DEFINE FUNCTION macro_name '('
formal_parameter[,formal_parameter]... ')'

value_returned_expression
 END

Example 1: The following UDF changes the date column format to yyyyMMdd:

DEFINE FUNCTION formatDate(col)
 DATE_FORMAT(col, 'yyyyMMdd')
END

Example 2: The following UDF demonstrates the usage of multiple input parameters:

DEFINE FUNCTION getCurrencyRate(currency, currencyRate)
 CASE WHEN currency = $VAR_PARAM_GLOBAL_CURRENCY$ THEN 1 ELSE currencyRate END
END

Using a UDF

To use UDFs in Data Augmentation Scripts, you must first define the function and then call the
defined function.

You can define UDFs in two ways:

• Externally: You can define UDFs in the .func file and then call in the current locode
application by including the .func file using the include_definition.

• Internally: You can define UDFs within the locode program itself

You can call UDFs in the following ways:

• UDF call on single column:

 macro_call ::= macro_name '(' { table_name.column_name | table-name
[column_name] | THIS.column_name | THIS [column_name] } ')'

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-34 of E-35

• UDF call on a list of columns:

macro-call ::= macro_name '(' variable_name ')' FOR variable_name IN table-
name [EXCLUDE] '[' column_name [, column_name]… ']'

Note

• Data Augmentation Scripts supports a UDF call on a list of columns for single
parameter UDF functions.

• The EXCLUDE option in UDF allows you to exclude specific elements of a dataset
when applying the UDF.

Examples

• UDF defined externally
You first define UDF in the myFunctions.func file within the Data Augmentation Scripts
Project directory, and it's later used in the main.hrf file.

myFunctions.func:

DEFINE FUNCTION toVc(col)
 CAST(col AS VARCHAR2(400))
END

main.hrf:

INCLUDE FUNCTION "myFunctions.func"

DEFINE VERSIONED DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_ID=1;
 THIS = CUSTOMERS;
 THIS[CUST_POSTAL_CODE_STRING] = toVc(CUSTOMERS.CUST_POSTAL_CODE);
 PRIMARYKEY[CUST_ID];
END

• UDF defined internally
You can define UDFs within the Data Augmentation Scripts program in the .hrf itself.

DEFINE FUNCTION toVc(col)
 CAST(col AS VARCHAR2(400))
END

DEFINE VERSIONED DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_ID=1;
 THIS = CUSTOMERS;
 THIS[CUST_POSTAL_CODE_STRING] = toVc(CUSTOMERS.CUST_POSTAL_CODE);
 PRIMARYKEY[CUST_ID];
END

Appendix E
Statement

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix E-35 of E-35

F
Expressions

An expression is a combination of one or more values, parameters, and functions that evaluate
to a value or to a boolean result (Example: True or False).

Syntax

expression_list ::= '[' expression [, expression]… ']'
expression ::= value_returned_expression | boolean_returned_expression | '('
expression ')'

Note

'(' <expression ')' implies nested functions. Example: MAX(AVG(salary))

Example

MAX(AVG(CUSTOMERS.CUST_CREDIT_LIMIT))

Value Returned Expressions
A value returned expression is an expression that evaluates to a specific value. For example, a
function that calculates the sum of two numbers may return the sum of those numbers as a
value. You can then use this value in other parts of the program.

Value-Returned Expression List: A comma-separated list of value-returned expressions.

value_returned_expression_list ::= value_returned_expression
[,value_returned_expression]...

Value-Returned Expression

value_returned_expression ::= term | value_returned_expression {'+'|'-'} term
term ::= factor | term {'*'|'/'} factor
factor ::= ['+' | '-'] primary
primary ::= column_reference
 | constant_value
 | PARAMETER '[' parameter_name ']'
 | case_expr
 | function_expression
 | '('value_returned_expression ')'
column_reference ::= { THIS | table_name }.column_name // E.g.: CUST.CUST_ID,
 THIS.AMT
(Refer to a previously defined column within the same target dataset)
 | table_name [EXCLUDE] column_list // E.g.:
sales[amount, quantity, prod_id],

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-1 of F-15

sales[amount] , sales EXCLUDE [amount, quantity, prod_id]
constant_value ::= [-] number | identifier | date | timestamp | string| NULL

Example

IMPORT SOURCE CUSTOMERS
DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS = CUSTOMERS[CUST_ID];

 // value_returned_expression - use of function CONCAT_WS with
column_reference
 THIS[CUST_FULL_NAME] = CONCAT_WS(' ',
CUSTOMERS.CUST_FIRST_NAME,CUSTOMERS.CUST_LAST_NAME);
END

Case Expressions
Case expressions allow you to add conditional logic by using either a simple-case or searched-
case structure.

Syntax

case_expr ::= simple_case_expression | searched_case_expression
simple_case_expression ::= CASE input_expression
 (WHEN when_expression THEN result_expression)...
 [ELSE else_result_expression]
 END

searched_case_expression ::= CASE
 (WHEN boolean_expression THEN
result_expression) ...
 [ELSE else_result_expression]
 END
input_expression ::= expression
when_expression ::= expression
result_expression ::= value_returned_expression
else_result_expression ::= value_returned_expression
boolean_expression ::= boolean_returned_expression

• Use a simple CASE expression when you want to evaluate a single expression against
multiple potential values.

• Use a searched CASE expression when you need to evaluate multiple, independent
boolean expressions to determine the result.

Example 1: Simple Case Expression

CASE CUSTOMERS.CUST_VALID
 WHEN 'I' THEN 'Inactive' WHEN 'A' THEN 'Active'
 ELSE 'Unknown'
END

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-2 of F-15

In this example, if the CUST_VALID column has a value of I, it returns Inactive. If the value is A,
it returns Active. If neither condition is met, it returns Unknown.

Example 2: Searched Case Expression

CASE
 WHEN CUSTOMERS.CUST_YEAR_OF_BIRTH <= 1973 THEN 'Segment A'
 WHEN CUSTOMERS.CUST_YEAR_OF_BIRTH >1973 THEN 'Segment B'
END

In this example, if CUST_YEAR_OF_BIRTH is less than or equal to 1973, it assigns Segment A.
Otherwise, it assigns Segment B.

CASE WHEN ISNULL(CUSTOMERS.CUST_VALID) THEN 'Unknown' ELSE 'Known' END

In this example, if CUST_VALID is NULL, it returns Unknown. Otherwise, it returns Known.

Function Expressions
A function expression represents any valid function that you can use within the framework.

Syntax

function_expression ::= general_function | aggregate_function |
window_function | macro_call| datatype_function

Function expressions include:

• General Functions: Standard functions used for various computations or transformations.

• Aggregate Functions: Functions that perform calculations over groups of rows (Example:
SUM, AVG).

• Window Functions: Functions that compute values over a range of rows within a partition
(Example: ROW_NUMBER, RANK).

• Macro Calls: Calls to user-defined macros applied to columns or parameters.

• Datatype Functions: Functions specific to certain data types (Example: casting or type-
specific operations).

Aggregate Functions
An aggregate function performs an operation on sets of values and returns a single result.

Syntax

An aggregate function can be any one of the following:

• AVG'(' value_returned_expression ')': Calculates the mean of the values.
Input: A numeric expression

Example:

AVG(SALES.AMOUNT_SOLD)

• COUNT'(*)' : Counts all the rows, including those with null values.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-3 of F-15

Input: None.

Example:

COUNT(*)

• COUNT'(' value_returned_expression_list ')': Counts the rows where the input
expression is non-null.
Input: A numeric or other type of expression.

Example:

COUNT(SALES.CUST_ID)

• COUNT'(' DISTINCT value_returned_expression_list ')': Counts the unique, non-null
values in the input expression.
Input: A numeric or categorical expression.

Example:

COUNT(DISTINCT SALES.CUST_ID)

• MAX'(' value_returned_expression ')': Returns the maximum value in the input.
Input: A numeric or comparable expression.

Example:

MAX(SALES.AMOUNT_SOLD)

• MIN'(' value_returned_expression ')': Returns the minimum value in the input.
Input: A numeric or comparable expression.

Example:

MIN(SALES.AMOUNT_SOLD)

• SUM'(' value_returned_expression ')': Calculates the total sum of the values in the input.
Input: A numeric expression.

Example:

SUM(SALES.AMOUNT_SOLD)

• FIRST'(' value_returned_expression [, nulls_option] ')': Returns the first value in a
group. Optionally ignores null values.
Input: A numeric or comparable expression, and an optional null handling option.

Example:

FIRST(SALES.AMOUNT_SOLD,IGNORE NULLS)

• LAST'(' value_returned_expression [, nulls_option] ')': Returns the last value in a
group. Optionally ignores null values.
Input: A numeric or comparable expression, and an optional null handling option.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-4 of F-15

Example:

LAST(SALES.AMOUNT_SOLD)
nulls_option ::= [IGNORE | RESPECT] NULLS

Datatype Functions
Datatype functions include operations on specific data types.

Syntax

datatype_function ::= string_function | numeric_function | date_function |

You can use these functions in the following ways:

• Cast and Convert Function: For datatype transformations.

• Date Function: For date/time operations.

• Numeric Function: For numeric calculations.

• String Function: For string manipulation.

Cast and Convert Functions
Cast and convert functions transform data between different types.

Cast and convert functions include:

• TO_DATE'(' value_returned_expression [, format_mask] ')' : Converts a string to a date
using the specified format_mask.
Inputs: A string (VARCHAR2) and an optional format mask.

Example:

TO_DATE('2024-01-03','yyyy-MM-dd')

• TO_TIMESTAMP'(' value_returned_expression [, format_mask] ')' : Converts a string to
a timestamp using the specified format_mask.
Inputs: A string (VARCHAR2) and an optional format mask.

Example:

TO_TIMESTAMP('2024-01-03 01:01:01','yyyy-MM-dd HH:mm:ss')

• CAST'(' value_returned_expression AS data_type ')' : Converts the expression to the
specified data type.
Inputs: Any compatible data types.

Example:

CAST(CUSTOMERS.CUST_YEAR_OF_BIRTH AS VARCHAR2(20))

The following table shows the CAST compatibility between six datatypes: VARCHAR2,
NUMBER, BIGDECIMAL, LARGEINT, DATE, and TIMESTAMP. The table cells indicate whether the
CAST between the source and target datatypes is allowed (Yes) or not (No).

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-5 of F-15

Source/
Target

VARCHAR2 NUMBER BIGDECIMA
L

LARGEINT DATE TIMESTAM
P

VARCHAR2 Yes Yes Yes Yes Yes Yes

NUMBER Yes Yes Yes Yes No No

BIGDECIMA
L

Yes Yes Yes Yes No No

LARGEINT Yes Yes Yes Yes No No

DATE Yes No No No Yes Yes

TIMESTAMP Yes No No No Yes Yes

• INT'(' value_returned_expression ')' : Converts an expression to an integer..
Inputs: Exact numeric types. Example: NUMBER, LARGEINT, DOUBLE, BIGDECIMAL.

Example:

INT('12.12') // function output will be 12

• BIGINT'(' value_returned_expression ')' : Converts an expression to a large integer.
Inputs: Exact numeric types. Example: NUMBER, LARGEINT, DOUBLE, BIGDECIMAL.

Example:

BIGINT('1234567890.1234567890') // function output will be 1234567890

Date Functions
Date functions perform operations and calculations on date and time values.

Date functions include:

• ADD_MONTHS'(' start_date, num_months ')' :Returns the date that is num_months after
start_date.
Inputs: A date and an integer.

Example:

ADD_MONTHS(CUSTOMERS.CUST_EFF_FROM,1)

• LAST_DAY'(' value_returned_expression ')': Returns the last day of the month for the
given date.
Inputs: An expression that evaluates to a date.

Example:

LAST_DAY(CUSTOMERS.CUST_EFF_FROM)

• MONTHS_BETWEEN'(' end_date, start_date [, roundOff] ')': Returns the number of
months between.
Inputs: Two expressions that evaluate to a date or timestamp and an optional BOOLEAN
expression. The result is rounded to 8 digits unless roundOff=false.

Example:

MONTHS_BETWEEN(CUSTOMERS.CUST_EFF_FROM,CUSTOMERS.CUST_EFF_TO)

• NEXT_DAY'(' value_returned_expression, day_of_week ')': Returns the first date after
the expression that matches the specified day_of_week.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-6 of F-15

Inputs: A date and a string for the day of the week (Example: SU, SUN, SUNDAY).

Example:

NEXT_DAY(CUSTOMERS.CUST_EFF_FROM,'TUESDAY')

• TRUNC'(' value_returned_expression, fmt ')': Truncates the date to the unit specified by
the format fmt.
Inputs: A date and a format string (Example: year, yyyy, yy, mon, month, mm).

Example:

TRUNC(CUSTOMERS.CUST_EFF_FROM,'YYYY')

• DATE_TRUNC'(' fmt, value_returned_expression ')': Truncates the timestamp to the unit
specified by the format fmt.
Inputs: A timestamp and a format string (Example: YEAR, YYYY, YY, MON, MONTH, MM, DAY, DD,
HOUR, MINUTE, SECOND, WEEK, QUARTER).

Example:

DATE_TRUNC('YEAR',CUSTOMERS.CUST_EFF_FROM)

• DATE_SUB'(' start_date, integer ')': Returns the date obtained by subtracting the integer
from the given date.
Inputs: An expression of date type and an integer.

Example:

DATE_SUB(CUSTOMERS.CUST_EFF_FROM,10)

• DATEDIFF'(' end_date, start_date ')': Returns the number of days between start_date
and end_date.
Inputs: Two dates.

Example:

DATEDIFF(CUSTOMERS.CUST_EFF_FROM,CUSTOMERS.CUST_EFF_TO)

• DATE_ADD'(' date, integer ')': Returns the date obtained by adding the integer to the
given date.
Inputs: A date and an integer.

Example:

DATE_ADD(CUSTOMERS.CUST_EFF_FROM,10)

• DATE_FORMAT'(' timestamp, fmt ')': Converts the timestamp to a value of string in the
format specified by the date format fmt.
Inputs: A timestamp and a format string. (Example: yyyy-MM-dd,yyyy.)

Example:

DATE_FORMAT(CUSTOMERS.CUST_EFF_FROM,'yyyy')

• CURRENT_DATE '('')': Returns the current date.

• CURRENT_TIMESTAMP '('')': Returns the current timestamp.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-7 of F-15

• FROM_UNIXTIME' (' value_returned_expression [, fmt] ')': Converts UNIX time to
timestamp.
Inputs: An integer expression representing UNIX time and an optional format string
expression with a valid format.

Example:

FROM_UNIXTIME(10033743070)

• UNIX_TIMESTAMP' (' value_returned_expression [, fmt] ')': Returns UNIX time.
Inputs: A date or timestamp, and an optional format string expression with a valid format
(when the first input is of type string and not conformed to the default date or timestamp
format).

Example:

UNIX_TIMESTAMP('2023-04-04 00:00:01', 'yyyy-MM-dd HH:mm:ss')

Numeric Functions
Numeric functions perform calculations on numeric values.

Usage Example: Use of ROUND

DEFINE DATASET CUSTOMERS_D
 ROWSOURCE CUSTOMERS;
 THIS[CUST_ID]=CUSTOMERS.CUST_ID;
 THIS[CUST_CREDIT_LIMIT] = ROUND(CUSTOMERS.CUST_CREDIT_LIMIT,2);
 PRIMARYKEY[CUST_ID];
END

Numeric functions include the following:

• ABS'(' value_returned_expression ')': Returns the absolute value of the numeric input.
Inputs: A numeric expression.

Example: ABS(-123)

• ROUND'(' value_returned_expression, number ')': Rounds the numeric input to the
specified decimal places using HALF UP rounding. Default is 0.
Inputs: A numeric expression and the number of decimal places.

Example: ROUND(-123.1111,2)

• SIGN'(' value_returned_expression ')': Returns -1.0, 0.0, or 1.0 if the input is negative,
zero, or positive, respectively.
Inputs: A numeric expression.

Example: SIGN(-123)

• CEIL'(' value_returned_expression ')': Returns the smallest integer greater than or equal
to the input.
Inputs: A numeric expression.

Example: CEIL(123.1111)

• EXP'(' value_returned_expression ')': Returns the exponential raised to the power of the
numeric input.
Inputs: A numeric expression.

Example: EXP(2)

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-8 of F-15

• FLOOR'(' value_returned_expression ')': Returns the largest integer less than or equal
to the input.
Inputs: A numeric expression.

Example: FLOOR(123.1111)

• LN'(' value_returned_expression ')': Returns the natural logarithm of the numeric input.
Inputs: A numeric expression.

Example: LN(2)

• LOG'(' base, value_returned_expression ')': Returns the logarithm of the input with the
specified base.
Inputs: A numeric base and a numeric expression.

Example: LOG(2,4)

• MOD'(' value_returned_expression, value_returned_expression ')': Returns the
remainder after dividing the first input by the second.
Inputs: Two numeric expressions.

Example: MOD(9,5)

• SQRT'(' value_returned_expression ')': Returns the square root of the numeric input.
Inputs: A numeric expression.

Example: SQRT(9)

• SIN'(' value_returned_expression ')': Returns the sine of the numeric input (in radians).
Inputs: A numeric expression.

Example: SIN(1.5708)

• COS'(' value_returned_expression ')': Returns the cosine of the numeric input (in
radians).
Inputs: A numeric expression.

Example: COS(1.5708)

• TAN'(' value_returned_expression ')': Returns the tangent of the numeric input (in
radians).
Inputs: A numeric expression.

Example: TAN(1.5708)

• POWER'(' value_returned_expression, value_returned_expression ')': Raises the first
input to the power of the second input.
Inputs: Two numeric expressions.

Example: POWER(4,3)

String Functions
You can perform various character manipulations using string functions.

String functions include:

• CHAR'(' value_returned_expression ')': Converts a numeric value between 0 and 255 to
the character value corresponding to the ASCII code. If the input numeric value is greater
than 255, the function uses number % 256 to wrap.
Inputs: An integral numeric expression.

Example: CHAR(35)

• CONCAT_WS'(' sep , value_returned_expression_list ')': Joins multiple strings using a
specified separator.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-9 of F-15

Inputs: A string.

Example: CONCAT_WS(' ',CUSTOMERS.CUST_FIRST_NAME,CUSTOMERS.CUST_LAST_NAME)

• LOWER'(' value_returned_expression ')': Converts all characters of the string to
lowercase.
Inputs: A string expression.

Example: LOWER(CUSTOMERS[CUST_FIRST_NAME])

• SUBSTR'(' value_returned_expression, pos [, len] ')': Extracts a substring starting at
position and length.
Inputs: A string, starting position (pos) and length (len).

Example: SUBSTR(CUSTOMERS[CUST_FIRST_NAME],1,4)

• REGEXP_EXTRACT'(' value_returned_expression, regexp , idx ')': Returns the
substring in the input that matches the regular expression group at idx.
Inputs: A string, a regular expression and a group index integer value.

Example: REGEXP_EXTRACT("100-200", "(d+)",1)

• CONCAT'(' value_returned_expression_list ')': Combines multiple strings into a single
string.
Inputs: String expressions.

Example: CONCAT(CUSTOMERS.CUST_FIRST_NAME,CUSTOMERS.CUST_LAST_NAME)

• TRIM'(' value_returned_expression ')': Removes leading and trailing spaces from a
string.
Inputs: A string expression.

Example: TRIM(CUSTOMERS.CUST_FIRST_NAME)

• UPPER'(' value_returned_expression ')': Converts all characters of the string to
uppercase.
Inputs: A string expression.

Example: UPPER(CUSTOMERS[CUST_FIRST_NAME])

• INSTR'(' str, substr ')': Returns the index of the first occurrence of substr in str (1-based).
Inputs: A string and the substring to search for.

Example: INSTR(CUSTOMERS[CUST_FIRST_NAME],"Alex")

• ASCII'(' value_returned_expression ')': Returns the ASCII numeric value of the first
character in the string.
Inputs: A string expression.

Example: ASCII("Alex")

• LEFT'(' str, len ')': Returns the leftmost length (len) characters from the string (str).
Returns an empty string if len <= 0.
Inputs: A string (str) and a numeric length.

Example: LEFT(CUSTOMERS[CUST_FIRST_NAME],2)

• REPLACE'(' str, search[, replace] ')': Replaces all occurrences of search from the string
(str) with replace (the default is an empty string).
Inputs: A string, search term, and optional replacement string.

Example: REPLACE(CUSTOMERS[CUST_VALID],"I","*")

• RIGHT'(' str, len ')': Returns the rightmost length (len) characters from the string (str).
Returns an empty string if len <= 0.
Inputs: A string (str) and a numeric length.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-10 of F-15

Example: RIGHT(CUSTOMERS[CUST_FIRST_NAME],2)

• SPACE'(' value_returned_expression ')': Returns a string of spaces with length equal to
the numeric value.
Inputs: An integer expression.

Example: SPACE(3)

• LENGTH(' value_returned_expression ')': Returns a number representing the total
number of characters in the input string, including spaces.
Inputs: An integer expression.

Example: LENGTH(CUSTOMERS[CUST_FIRST_NAME])

• HASH(' value_returned_expression_list ')': Returns a number for hash value of the
arguments.
Inputs: Any expression or expressions list.

Example: HASH(CUSTOMERS.CUST_FIRST_NAME,CUSTOMERS.CUST_LAST_NAME)

General Functions
A general function performs operations on data around NULL value handling and comparisons.

General functions include the following:

• NVL '(' expr1, expr2 ')': Returns expr2 if expr1 is null, otherwise returns expr1.
Inputs: Two expressions, where expr1 can be null.

Example: NVL(PROMOTIONS.PROMO_COST, 0)

• NVL2 '(' expr1, expr2, expr3 ')': Returns expr2 if expr1 is not null, otherwise returns
expr3.
Inputs: Three expressions.

Example: NVL2(PROMOTIONS.PROMO_NAME, 'Eligible', 'Not Eligible')

• DECODE '(' value_returned_expression, search, result [, search, result] ... [, default]
')': Compares an expression to a list of search values and returns the corresponding result
or a default value.
Inputs:

value_returned_expression ::= expression
search ::= expression //An expression that matches the type of
value_returned_expression
result ::= expression //An expression that shares a least common type with
default_result and the other result expressions
default_result ::= expressionn //An optional expression that shares a
least common type with result

Example: DECODE(PROMOTIONS.PROMO_NAME, ' NO PROMOTION #', 1, ' NO PROMOTION',
2, 0)

• COALESCE '(' value_returned_expression_list ')': Returns the first non-null value in the
list of expressions, otherwise, returns null.
Inputs: Two or more expressions.

Example: COALESCE(PROMOTIONS.PROMO_CATEGORY, PROMOTIONS.PROMO_SUBCATEGORY,
'Unknown')

• NULLIF '(' value_returned_expression, value_returned_expression ')': Returns null if
expr1 equals expr2; otherwise, returns expr1.

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-11 of F-15

Inputs: Two expressions for comparison.

Example: NULLIF(PROMOTIONS.PROMO_CATEGORY, PROMOTIONS.PROMO_SUBCATEGORY)

• GREATEST '(' value_returned_expression_list ')': Returns the largest value among the
provided arguments.
Inputs: Two or more comparable expressions.

Example: GREATEST(1,4,6,7,null)

• LEAST '(' value_returned_expression_list ')': Returns the smallest value among the
provided arguments.
Inputs: Two or more comparable expressions.

Example: LEAST(1,4,6,7,null)

• IFNULL '(' expression, expression ')': Returns col2 if col1 is null, or col1 otherwise.
Inputs: Two expressions for comparison.

Example: IFNULL(PROMOTIONS.PROMO_CATEGORY, PROMOTIONS.PROMO_SUBCATEGORY)

User Defined Functions Call
To use user defined functions in Data Augmentation Scripts, you must first define the function
and then call the defined function.

For more information, see User Defined Functions (UDFs) or Macros.

Window Functions
A window function combines aggregate, ranking, or analytic functions with an over-clause for
windowed calculations.

Syntax

window_function ::= aggregate_function over_clause | ranking_function
over_clause | analytic_function over_clause

Window functions include:

• aggregate_function: For supported aggregate functions, see Aggregate Functions
Example: AVG(SALES.AMOUNT_SOLD) OVER (PARTITION BY SALES.CUST_ID)

• ranking_function: Performs ranking operations within a partitioned result set.
Syntax: ranking_function::= ROW_NUMBER'(' ')'| RANK'(' ')'| DENSE_RANK'(' ')' |
PERCENT_RANK'(' ')'

– ROW_NUMBER(): Assigns a unique number to each row in the result set.

– RANK(): Assigns a rank to each row, with gaps for ties.

– DENSE_RANK(): Assigns a rank to each row, without gaps for ties.

– PERCENT_RANK(): Calculates the relative rank of a row as a percentage

Example: ROW_NUMBER() OVER (PARTITION BY SALES.CUST_ID ORDER BY
SALES.AMOUNT_SOLD DESC NULLS LAST)

• analytic_function: Retrieves values from the previous or next rows in a result set that's
based on a specified ordering.
Syntax: analytic_function::= {LAG | LEAD} '('value_returned_expression[,
offset[, default]]')'

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-12 of F-15

offset::= value_returned_expression

default::= value_returned_expression

– LAG(): Returns the value of a previous row based on the offset.

– LEAD(): Returns the value of a subsequent row based on the offset.

– offset: Value should be an integer when present. The number of rows back from the
current row from which to obtain a value. If not specified, the default is 1.

– default: Default value that's used for a null value.

Example: LAG(SALES.AMOUNT_SOLD, 1, 0) OVER (PARTITION BY SALES.CUST_ID ORDER
BY SALES.AMOUNT_SOLD DESC)

• over_clause: Specifies the partitioning, ordering, and frame for window functions.
Syntax:

over_clause::= OVER '(' [partition_by_clause] [order_by_clause]
[frame_clause]')'
partition_by_clause::= PARTITION BY value_returned_expression_list
order_by_clause ::= ORDER BY value_returned_expression [ASC|DESC] [NULLS
FIRST|LAST)]
 (, value_returned_expression [ASC|DESC]
[NULLS(FIRST|LAST)])…

frame_clause::= (ROWS | RANGE) (frame_start | frame_between)
frame_between::= BETWEEN frame_start AND frame_end
frame-start::= UNBOUNDED PRECEDING | unsigned_integer PRECEDING | CURRENT
ROW
frame_end::= UNBOUNDED FOLLOWING | unsigned_integer FOLLOWING | CURRENT
ROW

– partition_by_clause: Groups rows using PARTITION BY expression.

– order_by_clause: Orders rows using ORDER BY expression.

* Optionally, specifies whether to sort the rows in ascending or descending order.
Syntax: [ASC | DESC]

* Optionally, specifies whether NULL values are returned before or after non-NULL
values.
Syntax: NULLS [FIRST | LAST]

– frame_clause: Defines the window frame.

– frame-start and frame_end:

* UNBOUNDED PRECEDING: Starts from the first row.

* unsigned_integer PRECEDING: Starts n rows before the current row.

* CURRENT ROW: Includes only the current row.

* UNBOUNDED FOLLOWING: Extends to the last row.

* unsigned_integer FOLLOWING: Ends n rows after the current row.

Example:

SUM(SALES.AMOUNT_SOLD) OVER (PARTITION BY SALES.CUST_ID ORDER BY
SALES.TIME_ID ASC ROWS UNBOUNDED PRECEDING AND CURRENT ROW)

Appendix F
Value Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-13 of F-15

Boolean Returned Expressions
Boolean returned expressions evaluate to TRUE or FALSE based on logical conditions.

Boolean returned expressions include:

• value_returned_expression { '>=' | '<=' | '>' | '<' | '<>' | '=' }
value_returned_expression: Compares two expressions using operators (>=, <=, >, <, <>,
=).
Example:

CUSTOMERS.CUST_YEAR_OF_BIRTH >= 2000

• expression [NOT] BETWEEN value_returned_expression AND
value_returned_expression: Checks if the value of the expression falls within the
specified range.
Example:

CUSTOMERS.CUST_CREDIT_LIMIT BETWEEN 50000 AND 100000

• match_expression [NOT] LIKE pattern: Matches a string match expression against a
specified pattern with the following valid wildcard characters (%, _, [], [^]).

– match_expression: A string that's evaluated against a pattern.

– pattern: A string specifying the pattern for matching with valid wildcard characters: %,
_, [], [^].

Example:

CUSTOMERS.FIRST_NAME LIKE 'J%n'

• expression IS [NOT] NULL: Checks if the expression is (or is not) NULL.
Example:

CUSTOMERS.CUST_EMAIL IS NOT NULL

• ISNULL '(' expression ')': Returns as True if the expression is Null, or is False
otherwise.
Example:

ISNULL(CUSTOMERS.CUST_VALID)

• NOT boolean_returned_expression: Negates a boolean expression.
Example:

NOT CUSTOMERS.CUST_YEAR_OF_BIRTH >= 2000

• boolean_returned_expression AND boolean_returned_expression: Combines
conditions using the logical AND.
Example:

CUSTOMERS.CUST_YEAR_OF_BIRTH >= 2000 AND CUSTOMERS.CUST_EMAIL IS NOT NULL

Appendix F
Boolean Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-14 of F-15

• boolean_returned_expression OR boolean_returned_expression:Combines conditions
using the logical OR.
Example:

CUSTOMERS.CUST_YEAR_OF_BIRTH >= 2000 OR CUSTOMERS.CUST_EMAIL IS NOT NULL

• expression [NOT] IN in_expr: Checks if the value of the expression exists (or doesn't
exist) in the list of in_expr values (value returned expression list).
Example:

CUSTOMERS.CUST_VALID IN ('A', 'I')

• '('boolean_returned_expression')': Groups expressions for logical evaluation.
Example:

(CUSTOMERS.CUST_YEAR_OF_BIRTH >= 2000 AND CUSTOMERS.CUST_EMAIL IS NOT NULL)

Usage Example

DEFINE VERSIONED DATASET CUSTOMERS_D
 //use of boolean_returned_expression
 ROWSOURCE CUSTOMERS WHERE CUSTOMERS.CUST_YEAR_OF_BIRTH IS NOT NULL AND
CUSTOMERS.CUST_SRC_ID IS NULL;
 THIS = CUSTOMERS;
 PRIMARYKEY[CUST_ID];
END

Appendix F
Boolean Returned Expressions

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix F-15 of F-15

G
Column Groups, Indexes, and Partitions

To improve the performance of reporting queries in the database, you can specify constructs
such as column groups, indexes, and partitions (only for PROTECTED and PUBLIC datasets).

You specify column groups, indexes, and partitions in the ADW.conf file in a Data Augmentation
Scripts application. Specifying these constructs is optional.

See:

• COLUMNGROUPS

• INDEXES

• PARTITIONS

COLUMNGROUPS
A column group is a set of columns that are treated as a single unit for query performance.

Column groups work only when the extended statistics feature is enabled in the target data
warehouse. By gathering statistics on a column group, the optimizer can more accurately
estimate cardinality when a query groups these columns together.

Note

• For a dataset, a column can belong to multiple column groups.

• Different column groups with the same columns in same orders aren't allowed.

• Different column groups with the same columns in different orders are allowed.

Syntax

column_group_block ::= COLUMNGROUPS '[' column_group_statement ... ']'
column_group_statement ::= CREATE COLUMNGROUP identifier ON table_name
column_list ;

Example

COLUMNGROUPS
[
CREATE COLUMNGROUP FAW_DW_SALES ON DW_SALES[CUST_ID, SALE_ID];
CREATE COLUMNGROUP FAW_DW_SALES2 ON DW_SALES[SALE_ID, CUST_ID];
CREATE COLUMNGROUP FAW_DW_CUSTOMER ON DW_CUSTOMER[CUST_ID, CUST_NAME];
]

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix G-1 of G-3

INDEXES
Indexes enable you to a quickly look up data in table columns.

By default, local unique BTREE indexes are created based on the primary key for each
PROTECTED or PUBLIC dataset.

Additionally, there are instances when:

• There are unnecessary columns in the primary key.

• The few columns on which queries can be beneficial are missing from indexing (outside
the primary keys) .

To overcome these issues, you can provide instructions to create non-primary key indexes.

Note

Column groups:

• Support BTREE index.

• Don't allow different indexes of the same type with the same columns in same
orders.

• Allow different indexes of different types with the same columns.

• Allow different indexes with the same columns in different orders.

Syntax

index_block ::= INDEXES
 '['
 { pk_index_statement |
skip_pk_index_statement |
 create_index_statement }
[create_index_statement] ...
 ']';
pk_index_statement ::= CREATE INDEX ON PRIMARYKEY FOR ALL DATASETS [EXCEPT
table_list] ;
skip_pk_index_statement ::= SKIP CREATE INDEX ON PRIMARYKEY FOR ALL DATASETS
[EXCEPT table_list] ;
create_index_statement ::= CREATE [index_type] unique_spec [scope_spec]
INDEX identifier ON table_name column_list ;
table_list ::= '[' table_name (, table_name) ']'
index_type ::= BTREE
unique_spec ::= UNIQUE | NONUNIQUE
scope_spec ::= LOCAL | GLOBAL //default LOCAL

Example

INDEXES
[
 SKIP CREATE INDEX ON PRIMARYKEY FOR ALL DATASETS EXCEPT [PROMOTION_D];
 CREATE NON-UNIQUE INDEX city_index ON CUST_D[CUST_CITY, COUNTRY_ID];

Appendix G
INDEXES

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix G-2 of G-3

 CREATE UNIQUE GLOBAL INDEX UN_INDEX ON CUST_D[CUST_ID, CUST_FIRST_NAME];
]

PARTITIONS
Partitioning allows subdividing tables, indexes, and index-organized tables into smaller pieces.

Partitions enable you to manage and access these database objects at a finer level of
granularity.

Syntax

partition_block ::= PARTITIONS '[' { list_partition | range_partition }... ']'
list_partition ::= CREATE LIST PARTITION ON table_name '[' column_name ']';
range_partition ::= CREATE RANGE PARTITION ON table_name '[' column_name ']'
 INTERVALPERIOD '[' period_value ']'
 [INTERVALVALUE '[' integer ']']
 ;
period_value ::= “YEAR” | “QUARTER” | “MONTH” | “DAY” | “CUSTOM”;

Note

• You must use INTERVALVALUE only with period_type DAY and CUSTOM. When used
with CUSTOM, it signifies an interval in months.

• For range partitioning, column_name must be of datatype DATE or TIMESTAMP.

• A table can have only one partition.

Example

PARTITIONS
[
 // LIST
 CREATE LIST PARTITION ON PRODUCT_SALES[PROD_CATEGORY];

 // RANGE
 CREATE RANGE PARTITION ON PROMO_SALES[PROMO_DATE] INTERVALPERIOD["DAY"]
 INTERVALVALUE[15];
]

Appendix G
PARTITIONS

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix G-3 of G-3

H
VIEW QUERY

View query enables you to define views using query language and create views using the
dataset definition syntax.

In Data Augmentation Scripts, you create a query file with the .qry extension (Example:
<name>.qry). This file include the queries to create the views in files.

For Autonomous Data Warehouse, this is similar to the select syntax in Oracle.

Syntax

raw_view_dataset ::= DEFINE RAWVIEW DATASET dataset_name [raw_view_type]
view_specification END
raw_view_type ::= RAWVIEWTYPE = 'string'
String should be a valid DB name e.g., ORACLE. Default is ORACLE. (Note:
Currently only ORACLE is supported.)
view_specification ::= RAWSQL = GETSQL'(' '"' query_file_name'"' ')';

Note

• Write valid syntax. Data Augmentation Scripts doesn't parse the queries in the
query file for invalid syntax.

• Use full names and fully qualified prefixes for the local tables in the view query
because input tables used in queries can be local datasets.

• View query must not end with ';'.

Example

Write the view query: channels.qry:

SELECT
CHANNELS_D.CHANNEL_CLASS,CHANNELS_D.CHANNEL_CLASS_ID,CHANNELS_D.CHANNEL_DESC,C
HANNELS_D.CHANNEL_ID,TRUNC(SYSDATE) AS CURDATE
FROM DW_LOCODE_X_APP_CHANNELS_D CHANNELS_D

Reference the query file in code file (.hrf) main.hrf :

DEFINE DATASET CHANNEL_VRAWVIEW
RAWVIEWTYPE = ORACLE;
RAWSQL = GETSQL("channels.qry");
END

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix H-1 of H-1

I
Table and Column Prefixes

You can define table and column prefixes for instances when in some source applications, the
table and column names can begin with special characters that Data Augmentation Scripts
doesn't support for IMPORT.

By defining the table and column prefix, you have the option of providing prefixes for tables
and column names. You can then use the prefixed object names in subsequent code.

Define prefixes at any one of these two levels:

• Application level prefix for tables and columns

• Table level prefixes for tables and columns

Note

• You must start prefixes with an alphabet. Other characters in the prefix don't have
to be alphabets.

• Keywords not allowed as prefix.

• Precede TABLEPREFIX with COLPREFIX when you provide both.

• Use the prefix names when you reference prefixed columns and tables in
datasets.

• Table-level prefixes override application-level prefixes when you provide both
prefixes.

• Alias takes precedence over application level prefixes when you define both
application-level table prefix and import as Alias.

Application level prefix for tables and columns

To ensure that all the tables and columns in the application have the same prefix, you can
specify prefixes at the application level.

Syntax

application_source_definition ::= APPLICATION SOURCE (COLPREFIX'['<string>']'
| TABLEPREFIX'['<string>']')]

Example

APPLICATION SOURCE TABLEPREFIX["CPQ"] COLPREFIX["CPQ"]

IMPORT SOURCE _TRANSACTION_HEADER //Interpret as IMPORT SOURCE
_TRANSACTION_HEADER AS CPQ_TRANSACTION_HEADER

// When referencing prefixed tables in dataset, ensure CPQ prefix is used by
the developer

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix I-1 of I-2

DEFINE DATASET DW_THEADER_F FROM CPQ_TRANSACTION_HEADER END

DEFINE DATASET DW_THEADER_F1
 ROWSOURCE CPQ_TRANSACTION_HEADER;
 THIS = TRANSACTION_HEADER EXCLUDE [CPQ_COL1]; // When referencing prefixed
columns in dataset, ensure CPQ prefix is used by the developer
 THIS = TRANSACTION_HEADER[CPQ_COL2];
 THIS[SALES] = TRANSACTION_HEADER[CPQ_COL3];
END

Table level prefixes for tables and columns

You can specify prefixes at the table and column levels.

Syntax

Check COLPREFIX and TABLEPREFIX in the source_definition syntax.

Example

IMPORT SOURCE _TRANSACTION_HEADER COLPREFIX["AA"] TABLEPREFIX["AA"]
DEFINE DATASET DW_THEADER_F
 ROWSOURCE AA_TRANSACTION_HEADER;
 THIS = AA_TRANSACTION_HEADER[AA_COL1,AA_COL2,AA_COL3];
 PRIMARYKEY[AA_COL1];
END

Appendix I

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix I-2 of I-2

J
Keyboard Shortcuts for Data Augmentation
Scripts

You can use these keyboard shortcuts to perform actions in Data Augmentation Scripts.

Task Keyboard Shortcut

Save the active file. Ctrl+S (Windows)
Command+S (Mac)

Save all files. Ctrl+Shift+S (Windows)
Command+Shift+S (Mac)

Expand the file structure. Ctrl+B (Windows)
Command+B (Mac)

Toggle the console. Ctrl+' (Windows)
Command+' (Mac)

Compile the project. Ctrl+Shift+B (Windows)
Command+Shift+B (Mac)

Build the project. F5

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Appendix J-1 of J-1

Glossary

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Glossary-1 of Glossary-1

Index

Data Augmentation Scripts Reference Guide
G47686-01
Copyright © 2025, Oracle and/or its affiliates.

December 3, 2025
Index-1 of Index-1

	Contents
	Preface
	Audience
	Related Documentation
	Conventions

	1 Overview of Data Augmentation Scripts
	Custom Data Pipelines
	Introduction to Data Augmentation Scripts
	Basic Elements of Data Augmentation Scripts
	Data Augmentation Scripts Code Structure
	Schema
	Building Blocks of Schema Creation

	About Data Population
	Rowsource
	Column Referencing
	Column Mapping
	Column Manipulation

	Table Types
	Export Specifications

	Supported Files
	Data Augmentation Scripts Program Files
	Source Definition Files
	Parameter Definition Files
	Module File
	Function Files
	Conf File
	Query Files

	Additional Features
	DefaultRow
	Time Dimensions
	Inline Dataset

	Advanced Data Augmentation Scripts Features
	Incremental
	Set Operation
	AGGREGATION ONLY Dataset
	Transposition Table Definition
	Pivot
	Unpivot

	Delete Handling
	TRACKDELETES (Default Behavior)
	DELETESOURCE
	THEN DELETE

	2 Create Custom Data Pipelines
	About Creating Custom Data Pipelines
	Prerequisites for Creating a Custom Data Pipeline
	Create a Connection for Data Augmentation Scripts
	Set Up Pipeline Parameters for Data Augmentation Scripts
	Create Augmentation for Data Augmentation Scripts
	Create a Data Augmentation Scripts Application

	A Data Augmentation Scripts Application Development Details
	B Syntax Notations
	C Comments and Escape Sequences
	D File Types and Data Types
	E Program Structure
	IMPORT Statement
	INCLUDE
	ALIAS
	PARAMETER
	Statement
	Generic Dataset Definition
	Export Specification
	Table Type
	Code Block
	Column Mapping Assignment
	Default Row Specification
	Aggregate Specification
	Primary Key Specification
	Delete Specification and Soft Delete
	Incremental Refresh Directive
	Code Block Load - Full and Incremental Load Instructions
	FROM - Compact Format
	AGGREGATIONONLY
	Deletions

	Schema Definition
	Transposition Table Definition
	User Defined Functions (UDFs) or Macros

	F Expressions
	Value Returned Expressions
	Case Expressions
	Function Expressions
	Aggregate Functions
	Datatype Functions
	Cast and Convert Functions
	Date Functions
	Numeric Functions
	String Functions

	General Functions
	User Defined Functions Call
	Window Functions

	Boolean Returned Expressions

	G Column Groups, Indexes, and Partitions
	COLUMNGROUPS
	INDEXES
	PARTITIONS

	H VIEW QUERY
	I Table and Column Prefixes
	J Keyboard Shortcuts for Data Augmentation Scripts
	Glossary
	Index

