
Oracle Fusion
Cloud SCM

Modeling Configurations for SCM

24A

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

24A

F88783-01

Copyright © 2011, 2024, Oracle and/or its affiliates.

Author: carl casey

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related documentation that is delivered to the
U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed, or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction,
duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any
operating system, integrated software, any programs embedded, installed, or activated on delivered hardware, and modifications of such programs),
ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the
applicable contract. The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable contract for such services.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Contents

Get Help .. i

1 Overview 1
Configurator Models ... 1

Create and Maintain Configurator Models ... 8

2 Snapshots 17
Snapshots ... 17

Import Items Into Configurator Models ... 19

Refresh Your Snapshot .. 21

3 Workspaces 27
Manage Your Workspace .. 27

Release Your Workspace ... 31

Manage Your Workspace Dates .. 38

Work on the Same Participant in Different Workspaces ... 40

Manage Workspace Versions .. 42

Remove Your Model From Production .. 45

4 Structures 49
Overview .. 49

Set Up Features and Attributes .. 50

Manage Structures ... 67

Use Spreadsheets to Manage Supplemental Structures ... 73

5 Rules 85
Overview of Model Rules ... 85

Rule Principles .. 85

Create Statement Rules .. 98

CDL Reference ... 106

Extension Rules ... 129

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

FAQ for Model Rules ... 144

6 User Interfaces 147
Overview of Model User Interfaces .. 147

User Interfaces for Configurator Models .. 148

The Default User Interface ... 149

Generated User Interfaces .. 149

How You Synchronize UIs with Structure .. 151

Multichannel User Interfaces ... 152

Templates, Pages, and Navigation Styles .. 153

How You Modify User Interfaces .. 160

How You Modify UI Elements .. 164

The UI Expression Language ... 168

How You Use Images for Selections .. 170

How You Visualize Configurations ... 171

FAQ for Model User Interfaces .. 174

7 Connectors 175
Overview of Connectors .. 175

When To Use Connectors ... 175

How You Create Connectors .. 176

How You Use Connectors ... 178

Connectors in Action ... 182

How You Filter Connectable Items ... 184

How You Integrate Connectors ... 186

What's the difference between a connector and a model reference .. 188

8 Test 191
Overview of Testing Your Model ... 191

Test Models Interactively ... 191

Get Rule Explanations When You Test Your Model .. 194

Guidelines for Testing Your Model ... 198

Manage Your Validations ... 206

Test the Model ... 212

9 Integrate 217
How You Integrate with Other Applications ... 217

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Pricing with Configurator ... 224

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Get Help

Get Help
There are a number of ways to learn more about your product and interact with Oracle and other users.

Get Help in the Applications
Use help icons to access help in the application. If you don't see any help icons on your page, click your user image
or name in the global header and select Show Help Icons.

Get Support
You can get support at My Oracle Support. For accessible support, visit Oracle Accessibility Learning and Support.

Get Training
Increase your knowledge of Oracle Cloud by taking courses at Oracle University.

Join Our Community
Use Cloud Customer Connect to get information from industry experts at Oracle and in the partner community. You
can join forums to connect with other customers, post questions, suggest ideas for product enhancements, and watch
events.

Learn About Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program. Videos included in
this guide are provided as a media alternative for text-based topics also available in this guide.

Share Your Feedback
We welcome your feedback about Oracle Applications user assistance. If you need clarification, find an error, or just
want to tell us what you found helpful, we'd like to hear from you.

You can email your feedback to oracle_fusion_applications_help_ww_grp@oracle.com.

Thanks for helping us improve our user assistance!

i

https://support.oracle.com/portal/
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
https://www.oracle.com/education/
https://cloudcustomerconnect.oracle.com/pages/home
https://community.oracle.com/customerconnect/categories/idealab-guidelines
https://www.oracle.com/corporate/accessibility/
mailto:oracle_fusion_applications_help_ww_grp@oracle.com

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Get Help

ii

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

1 Overview

Configurator Models
A configurator model is a hierarchical representation of an item that you import from the Product Information
Management work area into the Configurator Models work area. You set up a configurator model to help your users
configure the item in your host application.

A model in the Product Information Management work area has all the structures and attributes that are part of the
model, including components that aren't optional.

A configurator model in the Configurator Models work area has only the structure for the optional components of the
model that you import from Product Information Management. It also has the attributes that are part of that optional
structure. A configurator model can also have supplemental structures, rules, and user interfaces that you create in
Configurator.

For example, assume you create a Car configurator model, and you add a user interface to it that helps you select the
exterior color, interior color, engine, wheels, seats, radio, and so on.

1

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

Here's what you can do.

1. Set up a basic model in the Product Information Management work area.

For details, see Overview of Configure-to-Order.
2. Import your model into the Configurator Models work area, then use the Configurator Models work area to add

a supplemental structure, rules, and user interfaces to the model.

◦ Add a supplemental structure and rules to help simplify life for your users when they configure the item.

◦ Use predefined templates to help you create the user interface that your host application displays.
Include images, stylized text, various controls for configurable options, and so on.

◦ Rapid prototype the user interface to make sure it works as you expect it to, then release the model into
your production environment.

2

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20070059

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

3. Use the Configurator user interface in your host application to configure the item so it meets your customer's
unique requirements.

Configurator comes predefined with an integration to these host applications:

◦ Oracle Order Management so you can configure an item in a sales order

◦ Configure, Price, and Quote Cloud (CPQ) so you can configure an item in a quote in a sales channel

Supplemental Structure
An item that you import from Product Information Management already has a structure, but it might not be the
structure that your customer needs, so you can supplement it.

A supplemental structure is a structure that you add to your configurator model after you import the item from the
Product Information Management work area into the Configurator Models work area. Use a supplemental structure to:

• Add choices and structure to your model.

• Provide guided questions to help your end-users easily configure the item.

• Use rules to reduce the number of options that the user has to choose in the host application, and to make sure
that the choices will work.

Assume you have a model named zCZ_CAR4DRSDN in Product Information Management. Buying a new car can
be a daunting process because there are so many options to choose from, such as 20 different exterior colors, 10
different interior colors, 4 types of wheels, 6 different types of seats, 2 different radios, and so on. You can import the
zCZ_CAR4DRSDN model into Configurator.

3

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

What the Numbers Mean

1. The car already has a hierarchical structure in Product Information Management where you organize these
options into option classes. For example, the Seat option class contains six different types of seats, such as
Manual Driver Seat, Manual Passenger Seat, 8-Way Power Driver Seat, and so on.

4 Door Sedan
 Interior Options
 Seats
 Manual Driver Seat
 Manual Passenger Seat
 8-Way Power Driver Seat
 . . .
 Mechanical Options
 Exterior Options

4

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

2. You import the zCZ_CAR4DRSDN model into the Configurator Models work area. The import creates the exact
same structure in Configurator that you have in Product Information Management (PIM). We refer to this as a
PIM structure.

3. Each model in Configurator has a root node. In this example, the root node is zCZ_CAR4DRSDN. You can add a
supplemental structure to the root node.

To simplify life for your users, you can add a supplemental structure named Trim Packages, then add options to
it, such as Basic Package, Luxury Package, and so on.

4 Door Sedan
 Trim Packages
 BP - Basic Package
 LP - Luxury Package
 GLP - Grand Luxury Package
 SP - Sports Package
 Interior Options
 Mechanical Options
 Exterior Options

Your user can select the package they want at run time.

Rules
You can use the Trim Packages supplemental structure to ask a question and store an answer, but the answer doesn't
tell Configurator what items and options to select in reply to the question. Instead, you use a rule to do that.

Assume the Trim Packages structure asks your customer an important question.

• What are you looking for in your car: price, comfort, or performance?

You can create rules that specify the model's behavior in the host application. For example:

• If the customer wants comfort and selects the LP - Luxury Package, then automatically select the 8-Way Power
Driver Seat option for the seat type, select the Leather option for the seat trim, select the Surround Sound
Radio option for the radio, select the Stainless Steel option for the tires, and so on.

The supplemental structure and the rules work together to simplify the configuration and make life easier for your end-
users, and for your customers. Rules also help to validate the configuration so it meets your business requirements.

You use the Constraint Definition Language (CDL) in a rules editor to create each rule. For details, see Overview of Model
Rules.

User Interfaces
You can use user interface templates that come predefined with Configurator to help you create the user interface that
Configurator displays in the host application.

• The host application uses templates from the configurator model to dynamically create the user interface at run
time.

• Templates determine how the interface looks and behaves, and they allow the end-user to interact with and
configure the item.

• You can use a WYSIWYG editor in the Configurator Models work area to modify and test the user interface
before you deploy it to your production environment.

5

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

• Create more than one user interface for each model. For example, you might need different interfaces for
various host applications, languages, geographic areas, and so on.

• Create rules that determine whether to display or hide each element in the user interface according to choices
that your user makes, which simplifies and improves the experience.

Assume you sell a model named CN92777 - Custom Desktop, and Order Management is the host application.

The Order Entry Specialist is an end-user who uses the Order Management work area to create a sales order. The Order
Entry Specialist creates a sales order, searches for the CN92777 item on the catalog line, then clicks Configure and Add.

• This example uses the predefined control template, layout template, and shell template.

• Order Management embeds the Configurator user interface directly on the Create Order page of the Order
Management work area, and the Order Entry Specialist uses it to configure the item.

6

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

• The CN92777 has configurable options that the user can set, such as memory, casing, the processor, and the
operating system.

• The Order Entry Specialist finishes the configuration and Order Management adds the item as an order line.

• The user clicks Submit, then Order Management uses a validation service to make sure the user selected all
the required options, and that the configuration will work. For example, if one of the options is to choose the
operating system, then the validation makes sure the configured item includes an operating system because a
computer doesn't work without one.

For details, see Overview of Model User Interfaces.

Pricing
Configurator integrates with Oracle Pricing to display accurate pricing details in the host application.

• Pricing uses the pricing segment and pricing strategy on the sales order to price the configured item.

• Configurator displays prices and totals for the item in the user interface and on the configuration Review page.

• You use the Pricing Administration work area to set up pricing for a configured item.

Learn how to set up pricing. For details, see Overview of Oracle Pricing.

Who Manages a Configurator Model
You do tasks in the Configurator Models work area to create and maintain your models.

Who You Are What You Do Why You Do This How You Do It

Product Expert

Maintain the item in the Product
Information Management work
area.

Use product data that's current and
valid when you create the model.

• Models

Product Configurator Manager

Bring product data from the
Product Information Management
work area into the Configurator
Models work area.

Prepare the model so you can
implement the configuration
behavior that you need.

Use a workspace so you can
experiment with and test different
ways to model your item.

• Snapshots

• Workspaces

• Draft Models

• Model Designer

• Rules Programmer

• UI Designer

Add business logic to the
selections that your user makes for
the configuration.

• Add supplemental structures
so your users can do more
complex configurations in the
host application.

• Add rules to control how your
users configure the item.

• Add user interfaces to display
the model in the most
effective way.

• Supplemental structure

• Configurator rules

• User interfaces

• Product Release Strategist Make the model available in your
production environment.

Put the latest version of your
model into production so your
users can use it configure the item.

• Workspaces

• Release process

7

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20068550

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

Who You Are What You Do Why You Do This How You Do It

• Product Life Cycle Strategist Maintain the model.

Keep up with or get ahead of
changes in your product line as it
evolves.

• Versions

More Resources
The book you're reading now has a lot of the detail that you need to create and maintain configurator models, but you
can get more to meet your specific needs.

• Get the latest details from Configurator Forum.

• Go to List of Customer Connect Training Replays, then view the presentations. Here are some presentations you
might find useful.

◦ Manage Supplemental Structure using spreadsheets

◦ Building Compelling User Experiences using Cloud Configurator

◦ Using Statement Rules within the Configurator Cloud

◦ Best Practices and Lessons: Implementation Part 1

◦ Oracle Business Analytics Reporting Overview for SCM

◦ Tips and Tricks for Extending Oracle Applications, Part 1

◦ Configurator Cloud Blank Screen Demo

◦ Configuring Products and Services Together with Connectors

• Get more:

◦ Configurator Modeling Walk Through (Doc ID 2303991.1)

◦ Oracle CPQ Cloud and Configurator Cloud Integration

◦ Use Transactional Attributes with Configurator Extensions

Related Topics
• Snapshots

• Manage Your Workspace

• Overview of Supplementing Your Model

• Overview of Model Rules

• Overview of Model User Interfaces

• Overview of Oracle Pricing

Create and Maintain Configurator Models
You use the Configurator Models work area to create and maintain your configurator model.

8

https://cloudcustomerconnect.oracle.com/resources/8ff48b6562/summary
https://cloudcustomerconnect.oracle.com/posts/eb8e88eacb
https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=123092997159696&id=2303991.1
https://cloudcustomerconnect.oracle.com/posts/5310af070e
https://www.youtube.com/watch?v=7HptkpicOBM
https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20068550

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

Assume you create a model named zCZ_CAR4DRSDN in the Product Information Management work area, and Oracle
Order Management is your host application. The end-user can use the model to configure the item when adding it to an
order line in a sales order.

What the Numbers Mean

Here's what you do.

1. Import. Import a snapshot of the zCZ_CAR4DRSDN from the Product Information Management work area into
the Configurator Models work area.

◦ Configurator uses the snapshot to automatically create a configurator model for you.

◦ If you change anything on the zCZ_CAR4DRSDN in Product Information Management after you import it,
then you refresh the snapshot. You don't import the item again.

9

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

2. Add. Create a workspace and add the zCZ_CAR4DRSDN to it.
3. Design. Use the workspace as a kind of sandbox where you can experiment, modify, and test the model. The

workspace includes a draft of the model where you can add a supplemental structure, rules, and user interfaces
to meet your specific needs.

4. Release. Release the workspace to create a new, numbered version of the configurator model and publish it
into your host application in a production environment.

◦ The released model includes the supplemental structure, rules, and user interfaces that you added to the
model.

◦ The model goes into effect according to the start date that you specify on the workspace.

◦ Users in the host application interact with the model to configure the item. The Configurator makes sure
the configuration that the user configures is valid.

Summary of the Setup

Here's a high-level summary of the setup that you do to create and maintain a configurator model.

1. Import your model.
2. Create a workspace.
3. Design your configurator model.
4. Release your workspace into production.
5. Maintain your configurator model.

CAUTION: This topic provides a summary. It doesn't include all the stepwise details and other information that you
need to create a configurator model. Make sure you read the other chapters of this book when you set up your model.

1. Import Your Model
Import your model into the Configurator Models work area.

1. Sign into Oracle Applications with the privileges from the Product Configurator Manager job role so you can use
the Configurator Models work area.
This topic uses predefined job roles. You must create your own job roles, depending on your security
requirements. For details, see Privileges That You Need to Implement Order Management.

2. Go to the Configurator Models work area.
3. On the Overview page, click Tasks > Manage Snapshots.
4. On the Manage Snapshots page, click Actions > Import Model Item.
5. In the Search and Select dialog, search for your item.

Attribute Value

Item

zCZ_CAR4DRSDN

Note

◦ The User Item Type attribute on the item in Product Information Management must specify an ATO
(assemble-to-order) or PTO (pick-to-order) model. If it doesn't, then the the Search and Select dialog
won't display it in the search results.

◦ The item in Product Information Management must have a structure, and it must be the primary
structure. If not, you can still click Submit, but the scheduled process will fail with errors.

10

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20043841

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

◦ You can import an item only one time. If you already imported the item and attempt to import it again,
it won't show up when you search for it. The dialog won't display items that you already imported into a
snapshot. So, if you make changes to the item in Product Information Management, then refresh your
snapshot instead of trying to import it again.

◦ The import only imports optional children. If a child isn't optional, that means the child is required.
The import will still import the parent but your configurator model won't have the required child in the
Configurator Models work area.

You can create child components and make them optional. For details, see these topics.

- Create Your Configuration Model
- Determine Whether a Component is Optional

◦ Click Advanced > Add Fields to display more attributes that you can use to refine your search.

6. Click Submit.

Configurator starts a scheduled process, then displays a message. For example:

The Import Product Model Item process was submitted with request ID 53718. After the process completes,

the related snapshots appear in the search results.

The scheduled process imports the item and creates a snapshot of the item's data.

The request ID identifies the scheduled process.
7. Go to the Scheduled Processes work area and monitor the Import Product Model Item scheduled process until

its status is Succeeded. Click Refresh, if necessary.
8. Go back to the Configurator Models work area, then search for the new snapshot on the Manage Snapshots

page.

Attribute Value

Name

zCZ_CAR4DRSDN

Note

◦ The search results will include the item that you imported in a new snapshot.

◦ If at some earlier time you imported another model that has the same children that you just imported,
then the Configurator might or might not refresh them.

Have You Modified the Children in
Product Information Management
Since You Imported Them?

The Current Import Will

No

Not refresh each child.

Yes

Refresh each child that you modified.

Configurator will set the status of the snapshots that contain the refreshed children to
Modified.

11

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=u30231007

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

Have You Modified the Children in
Product Information Management
Since You Imported Them?

The Current Import Will

Note

◦ If the item doesn't show up in your search, then go to the Scheduled Processes work area and look for
your process, such as 53718. Verify that the Status for the process equals Succeeded.

◦ The scheduled process also creates a configurator model from the snapshot. You can search for the new
model on the Manage Models page. You use the new model as the baseline for any drafts, modifications,
or versions that you create.

Configurator creates a baseline version of the zCZ_CAR4DRSDN item. Configurator needs to use this baseline to help
manage your model, so you can't modify the baseline. Instead, you add the baseline as a participant to a workspace,
then modify the participant to meet your needs.

2. Create a Workspace
Create a workspace that you can use to modify and test your configurator model.

1. Click Tasks > Manage Workspaces.
2. On the Manage Workspaces page, click Actions > Create.
3. In the Create Workspace dialog, set the values, then click Save and Close.

Attribute Value

Name

zCZ_CAR4DRSDN

Effective Start Date

Set a date that happens in the future. You can't use a date that has already occurred.

Any change that you make to any object in the workspace will go into effect on the date that
you set. You can change the effective start date anytime up until you release the workspace.

Note

◦ Use the workspace to modify your configurator models, as necessary.

◦ You can add models to the workspace and edit them, as necessary.

◦ The workspace uses the In Development status to indicate a workspace that you're editing but haven't
released.

4. In the Search Results, click zCZ_CAR4DRSDN.
5. On the Workspace page, in the Workspace Participants area, click Actions > Select and Add > Model.

A workspace participant is any object that you add to the workspace.

12

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

6. In the Select and Add dialog, search for the name of the item that you created in the Product Information
Management work area.

Attribute Value

Name

zCZ_CAR4DRSDN

The participant that you add becomes a draft for the next version of the configurator model that you will use in
your production environment.

7. Click Apply > OK.

3. Design Your Configurator Model
You can add supplemental structures, rules, and user interfaces to your model. You edit a draft of the model in a
workspace.

• In the Workspace Participants area, in the Name column, click zCZ_CAR4DRSDN.

The work area displays the Edit Configurator Model page. Examine the layout of this page. Notice that you can
access the structures, rules, and user interfaces.

• Use the Structure tab to supplement the structure that you imported from Product Information Management.

• Use the Rules tab to add conditional logic that determines how your users can configure the item.

• Use the User Interfaces tab to create a user interface that meets your item's and your users' specific
requirements.

• Click Test Model to test the behavior of your draft at any time while you're editing it. This feature uses the test
parameters that you specify to open a test session in the Test Model tab.

Consider a model that represents a car.

Part of the Model Description

Structure

A set of options that model the question: "What kind of driving do you plan to do?"

• Local trips

• Highway commuting

• Off-road camping

Note that this kind of question is an option feature, and the response that your user provides is an
option.

Rule

A set of rules that helps your user select the kind of driving that their customer does, then choose the
engine, suspension, and tires that most effectively supports that kind of driving.

User interface

A user interface that displays the name and photo of each engine, suspension, or tire package that the
rules select.

13

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

4. Release Your Workspace Into Production
You must release the workspace that contains your draft so Configurator can put the modifications that you made in the
workspace into production. The draft modifications take effect in your production environment when the effective start
date of the workspace happens.

1. Finish editing your model on the Edit Configurator Model page, then click Test Model.

CAUTION: You must test your model before you release the workspace. Your modifications might have far-
ranging effects, you will have to undo the release of the model to fix any errors, and you can undo a release
only on a workspace that goes into effect in the future. Use the test to validate that your model works as
you expect it to. If possible, have some of your users use your model and incorporate their feedback into the
model's design before you release it.

2. Finish editing your model on the Edit Configurator Model page, then click Save and Close.
3. Make sure that the effective start date of the workspace is correct. You can change the date right up until you

release the workspace.
4. On the Workspace page, click Release.

A scheduled process creates a new version of the model. The Manage Models page displays the new version
and the version number. It increments the version number each time you create a new version.

Your production environment uses the new version. The new version also becomes the baseline for any new
draft modifications that you make of the model.

Maintain Your Configurator Model
You can update a configurator model after you release it.

What You Need to Do How You Do It

Add new functionality to your model.

1. Create a new workspace on the Manage Workspaces page, then add the model to it as a new
draft.

2. In the new workspace, add structures, rules, and user interfaces. Test the model and release the
workspace.

Reflect changes that you make to the
model in the Product Information
Management work area.

1. Use the Manage Snapshots page to refresh your snapshots, then make sure that they're in the
Modified status.

2. Open the workspace for the item.
3. Add each of your modified snapshots to the workspace as a participant.
4. On the Workspace page, in the Workspace Participants area, click the row that contains your

model, then click Actions > Add Updated Item Snapshots for Models.
The Configurator Models work area will:

• Incorporate any changes that you have made to the item in Product Information Management.

• Add these changes as a modified snapshot to the workspace.

• Update the structure of the model so it reflects the new changes.

• Create a new version of the model when you release the workspace.

14

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

Determine Whether a Component is Optional
Assume you need to determine whether the Manual Driver Seat item is optional in the 4 Door Sedan model.

1. Sign into Oracle Applications. Make sure you have the privileges that you need to manage items.
2. Go to the Product Information Management work area, then click Tasks > Manage Items.
3. Search for, then open the 4 Door Sedan item for editing.
4. On the Edit Item page, click Structures.
5. In the Item Structures area, in the Name column, click Primary.
6. On the Edit Item Structure page, click View, then enable the Component Order Management option.
7. The Manual Drive Seat item is in the CARINTOPT (Car Interior Options) hierarchy, so expand CARINTOPT.
8. The Manual Drive Seat item is in the CARINTSTS (Car Interior Seats) hierarchy, so expand CARINTSTS.
9. Click the row that contains CARINTSTS01 (Manual Driver Seat), then click Actions > Edit.

10. In the Edit Components dialog, examine the Optional attribute. If it contains a check mark, then Manual Driver
Seat is optional, and you can import it into the Configurator.

Related Topics
• Work on the Same Participant in Different Workspaces

• How You Create Statement Rules

• Configurator Models

15

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 1
Overview

16

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

2 Snapshots

Snapshots
A snapshot is a read-only copy of data that you import from the Product Information Management work area into the
Configurator Models work area. It provides a picture of the item, item class, and value set that exists at a point in time.

Consider an example.

17

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

Note

• You use the Import Model Item action on the Manage Snapshots page the first time that you import your model
from Product Information Management into Configurator.

• You use the Refresh action to bring changes that you've made to your items, item classes, and value sets in
Product Information Management into Configurator.

• You can have only one copy of the item that you import in a snapshot. You can't import the same item into the
snapshot again, or into another snapshot.

A snapshot has attributes that it imports from Product Information Management.

Attribute Description

Name

Name or number that identifies the item.

Description

Description of the item.

Organization

Organization that manages the item.

Structure Item Type

Type of item:

• Model

• Option Class

• Standard Item

A snapshot also has attributes that Configurator sets when you import the item into a snapshot.

Attribute Description

Status

Values are:

• Released. A snapshot that the host application uses. It is available in your production
environment.

• Modified. Configurator sets this value when you do Actions > Refresh. It indicates that there's
a refresh and it has changes. If you refresh but there aren't any changes, or if the refresh fails,
 then the status stays at Released. The host application doesn't see these modifications until you
release the snapshot.

Snapshot Type

Values are:

• Item

• Item Class

• Value Set

A snapshot also has attributes that Configurator sets when you refresh the item in a snapshot.

18

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

Attribute Description

Last Refreshed By

User who most recently refreshed the snapshot.

Last Refresh Date

Date when the refresh most recently updated any part of the snapshot.

Last Released By

User who most recently released the workspace that contains the snapshot.

Last Release Date

Date when the release most recently updated any part of the snapshot.

Snapshots and Versions
You use a snapshot with a configurator model, but a snapshot doesn't have a version because you can't modify a
snapshot. You do modify the configurator model, so only the model has a version.

• Configurator releases version 0 of the model the first time you import that model from Product Information
Management.

• Configurator also releases version 0 of any other referenced models that are in the model's structure.

• Version 0 also references all parts of the model, such as option classes, standard items, item classes, value sets,
and so on.

Import Items Into Configurator Models
You import an item from the Product Information Management work area into the Configurator Models work area.

The item that you import must be a model. You can tell because the Structure Item Type attribute for the item equals
Model in Product Information Management. For details, see Configurator Models.

Results After You Import
Configurator copies some of the attributes of the model and the model's children that you import and stores them in a
snapshot.

Item Attributes Child Attributes

• Description

• Item Type

• Primary UOM Code

• Indivisible Flag

• Organization

• Serial Generation

• Track in Installed Base

• Minimum Quantity

• Maximum Quantity

• Default Quantity

• Optional Children Are Mutually Exclusive

• Required When Parent Is Selected

• Start Date

• End date

• Sequence Number

19

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

Item Attributes Child Attributes

• Instantiation Type

• Show in Sales

Note

• A model is a type of item, so the Item Attributes column contains the model's attributes and attributes on the
model's child items.

• The Child Attributes column contains attributes for items that are children of a model or an option class.

• Some attributes in Product Information Management don't affect the snapshot. If you modify the value of an
attribute in Product Information Management, and if the attribute that you modify isn't part of the import, then
your modification doesn't affect the snapshot.

• The import sets the name of the snapshot to the name of the item that you import, and the description of the
snapshot to the description of the item that you import.

• If a snapshot of the item's item class doesn't already exist, then the import imports the item class.

• If a snapshot of the parent of this item class doesn't already exist, then the import imports the parent item
class.

• A referenced model is a model that another model references. If the model that you import references another
model, then the snapshot will also include the referenced model. For example, assume the parent Car model's
hierarchy in Product Information Management references a child model named Engine Assembly. The Engine
Assembly is a referenced model in the Car model.

Transactional Attributes
If your item in Product Information Management has a transactional attribute, then the transactional attribute for your
item is part of the item's item class in Product Information Management.

• The import implicitly imports your item classes and the value sets that your transactional attribute references
when you import an item from Product Information Management into Configurator.

• The import creates a snapshot of each value set that's associated with each transactional attribute that's part of
the item's item class.

• The value set that you use with the transactional attribute in Product Information Management determines the
values that the host application displays. To set the value of a transactional attribute in the host application,
the end-user selects an edit control on the item, then selects or enters a value in a dialog for the transactional
attribute.

There are some restrictions when you use a transactional attribute with Configurator.

• You can use a transactional attribute only with an Independent, Subset, or Format Only value set. You can't use
a transactional attribute with a Dependent, Table, or View Object value set.

• Your set up for a transactional attribute in the hierarchy of the item class in Product Information Management
work area can constrain the transactional attribute, but it must not relax an inherited definition. This rule also
applies to any modification that you make to a child item class in the hierarchy.

20

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

User Defined Attributes
User defined is a bit of a misnomer. Usually, when we say user, we mean end user who does transactions in the
host application, such as an Order Entry Specialist who creates a sales order. But here, user defined means you, an
administrator who creates an attribute in Product Information Management.

The snapshot only includes the user defined attributes that you specify when you use the Manage Item page in Product
Information Management.

If you need to import a user-defined attribute on a different item, you can associate an attribute group in different item
classes that:

• Currently have values

• You create at the item level

For details, see User-Defined Item Attributes and Attribute Groups.

Related Topics
• Work on the Same Participant in Different Workspaces

Refresh Your Snapshot
Refresh your snapshot to keep your configurator model in the Configurator Models work area synchronized with
updates that you make in the Product Information Management work area, such as on the item, the item's item class, or
the item's value sets.

Guidelines
• If you import an item, and then update the model in Product Information Management, then you must do

a refresh to get the update into Configurator. Don't try to reimport the item. If you try to reimport, then the
import won't include the modifications that you made in Product Information Management.

• If you modify the item, item class, or value set, then Configurator sets the snapshot's status to Modified when
you do the refresh, indicating that you might need to update the configurator model that uses the snapshot.

• Import only imports children that you specify as optional in the Product Information Management work area.
If a child isn't optional, then the import won't import it, and you won't see the child in the Configurator Models
work area.

• You can only modify a configurator model that's a draft and that you lock for editing. If you can't edit the model,
the it's probably a released version, or it's a draft version but someone else is editing the draft.

• You must add the modified snapshot to each workspace that contains a draft of your model. You can then
update and test your model, release the workspace into production, and Configurator will update the snapshot
status from Modified to Released. The modifications that you make in Product Information Management go
into production only after you release the modified snapshot.

• A configurator model in Configurator doesn't have all the same objects that a model in Product Information
Management has. A configurator model in the Configurator Models work area has only the optional
components' structure of the model that you import from Product Information Management. It also has the
attributes that are part of that optional structure. A configurator model can also have supplemental structures,
extension rules, and user interfaces that you create in Configurator.

21

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20032573

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

Try It
1. Go to the Configurator Models work area.
2. On the Overview page, click Tasks > Manage Snapshots.
3. Search for your snapshot.

You can refresh a snapshot for:

◦ An item that's a model, option class, or standard item

◦ Item class

◦ Value set

4. Click Actions, then click the type of refresh.

Type of Refresh Description

Refresh

Brings all the updates that you have made on the item in Product Information Management
into the snapshot in the Configurator Models work area.

The refresh will update:

◦ Each attribute that you modified since you originally imported the attribute into
Configurator.

◦ The item structure's children, including a model's child items, and an option class' child
options. The refresh doesn't update a child item's snapshots. It updates only the attributes
of the children that are part of the item's snapshot.

◦ The same attributes that you originally imported for child items or options.

◦ Any items that you added to the item's structure in Product Information Management.

◦ Any item class, value set, standard item, model item, or option class that you modified and
that's part of the snapshot.

Refresh Including Descendant Structure

Same as for Refresh, but the refresh will also include structures that are children of the model in
Product Information Management, such as an option class under an option class.

This type of refresh applies only for an item's snapshot. It doesn't refresh child models that the
parent references.

Refresh Including Descendant Structure
and Referenced Structure

Same as for Refresh, but the refresh will also include all structures that are children of a
referenced structure, such as a referenced model.

A scheduled process starts and displays a message.

The refresh snapshot process was submitted with request ID 71901. After the process completes, snapshots
 appear in the search results with updated status.

The scheduled process refreshes the snapshot.
5. Click View > Columns, then add a check mark to the Last Refresh Date option.
6. Search for your item again in the search area to update the page.
7. Examine the Last Refresh Date option and verify that the date has happened in the last few minutes.

22

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

Note that Last Refresh Date reports time according to your user preferences.
8. Verify that the refresh was successful. Go to the Scheduled Processes work area and look for your process, such

as 71901. Verify that the Status for the process equals Succeeded. The process name is Refresh Snapshot.

Update Your Descendants
Consider an example.

1. You create an item named AS54888 in Product Information Management as a pick-to-order model. The
AS54888 is a desktop computer.

2. You import the AS54888 from Product Information Management into the Configurator Models work area in a
snapshot named AS54888 Snapshot, creating a configurator model named AS54888.

3. You do some design work on the AS54888 model in Configurator, then release it into production.
4. You have a marketing campaign that's introducing a new, hot selling feature. New software designed

specifically for virtual reality. AS54888 already has an option class named Software that allows users in your
host application to choose their own software packages. You can use it to add the new feature. So, you go to
the Product Information Management work area, then add the new Virtual Environments item to the Software
option class in the AS54888 model.

But now the AS54888 snapshot in Configurator is no longer synchronized with the AS54888 item in Product
Information Management. The AS54888 snapshot in Configurator doesn't have the Virtual Environments item,
and your users can't choose Virtual Environments as an option in the host application. They're stuck in a two
dimensional world.

Here's how you can fix that.

1. Go to the Configurator Models work area.
2. On the Overview page, click Tasks > Manage Snapshots.
3. On the Manage Snapshots page, search for your snapshot.

Attribute Value

Name

AS54888 Snapshot

4. Click Actions > Refresh Including Descendant Structure.

This action refreshes the model and all of the model's descendants. It finds all of the changes that you made to
the model and to the model's children.

◦ In this example, it finds that you changed the snapshot for the Software option class.

◦ As an alternative, you can search for the Software option class, and refresh it instead of the refreshing the
entire model.

◦ This action only refreshes models and structures that the model contains. It doesn't refresh models and
structures that the model references.

5. Verify the refresh. Verify that:

◦ The refresh finished successfully. Examine the scheduled process, if necessary.

◦ The Status attribute of the snapshot for the Software option class is Modified.

◦ The Software option class contains the new Virtual Environments item.

23

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

6. Add the snapshot for the Software option class to a new workspace that contains a draft of the AS54888
configurator model.

Adding the snapshot will add the latest data from Product Information Management to the AS54888
configurator model, including the Virtual Environments item.

7. Revise the AS54888 model in Configurator to pick up your design changes, as necessary.

For example, redesign the user interface, revise the supplemental structure, add rules, and so on.
8. Test your AS54888 configurator model.
9. Release the workspace into production, then verify that you can choose Virtual Environments as an option for

the Software option class in your host environment.

Did you Modify the Structure's Item Type?
You can't change the item's type in Product Information Management after you import it into the Configurator Models
work area. If you change the type and then attempt to refresh the snapshot, the update will fail or you will encounter
unexpected behavior when you view or test the model in Configurator. You might also encounter problems when you
release the model to production.

Assume your Virtual Environments software has been out for a few years now and has matured into two different
market segments, one for homes and one for gardens. You now have two different types of virtual environments to sell
to these segments, so you need to create an option class for Virtual Environments and add two options to it:

• Virtual Homes

• Virtual Gardens

Assume

1. You have a model in Product Information Management named AS54888, AS54888 contains the Virtual
Environments item, and the Structure Item Type attribute for Virtual Environments is Standard Item.

2. You import AS54888 into Configurator in a snapshot.
3. You change the Structure Item Type attribute from Standard Item to Option Class for Virtual Environments in

Product Information Management.
4. You refresh the snapshot for Virtual Environments, but the refresh fails.

To fix this problem:

1. End date the Virtual Environments item that has the Structure Item Type set to Standard Item.

You can also delete it from the structure, but only if you didn't set up the model to create sales orders.
2. Create a new option class named Virtual Environment, and make sure it has the item type that you need, in this

case, Option Class.

You can't use a name that already exists in Product Information Management regardless of whether the name is
for an item or for an option class. To avoid a conflict, change your name slightly, such as Virtual Environment.

3. Add the Virtual Environments option class to AS54888's structure.
4. Add your child options to the Virtual Environment option class:

◦ Virtual Homes

◦ Virtual Gardens

5. Go to the Configurator Models work area, then:

◦ Refresh the model.

24

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

◦ Update the model's descendants. For details, see the Update Your Descendants section earlier in this
topic.

6. Test your revised configurator model and release it.
7. Go to your host application, add the AS54888 to an order line, verify that the AS54888 has a Virtual

Environments option class, and that you can set Virtual Environments to Virtual Homes or to Virtual Gardens.

Troubleshoot

Trouble Shoot

I can't see whether my snapshot data is up
to date.

Go to the Edit Configurator Model page or the View Configurator Model page. In the Structure
Hierarchy area, click the node that you're interested in, then examine the Snapshot Status attribute.

• Released. The snapshot is up to date.

• Updates in Workspace. There are updates in the workspace but these updates aren't in the model,
 and the snapshot is in the model's workspace.

• Updates Not in Workspace. There are updates in the workspace but these updates aren't in the
model, and the snapshot isn't in the model's workspace.

If the snapshot isn't up to date, then go to the Workspace page, then click Actions > Add Updated Item
Snapshots for Models.

25

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 2
Snapshots

26

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

3 Workspaces

Manage Your Workspace
A workspace is a kind of sandbox that you can use in the Configurator Models work area to modify and test your
configurator model.

• Use a workspace to create a new version of your configurator model and to control how and when you release it
into your production environment.

• Add a snapshot to your workspace when you have changes in the snapshot that you want to release or that you
need to add to the model that you're working on.

• Create a draft model, which is a configurator model that has modifications that you've done in the workspace.

• Use the Manage Model page to add a supplemental structure, rules, or user interfaces to the model, then use
Manage Workspaces to create a draft version of a model.

• Use the workspace's Effective Start Date attribute to specify when each change that you make to a draft model
goes into effect.

• Release the workspace into your production environment.

Note

• You must import the model, then add it to the workspace before you can modify it.

• You create a draft of the model when you add it to the workspace.

• You can modify the draft model.

• You can only modify a model when its a draft in the workspace.

• If you remove a draft model from the workspace, then you lose all the changes you've made to the draft and
you can't recover them.

• You can't delete a workspace after you create it.

Assume you import an item named zCZ_CAR4DRSDN from the Product Information Management work area into the
Configurator Models work area. Here's what Configurator does the first time that you import it.

• Creates a new workspace and appends the name of the workspace with Model Creation Workspace. For example,
if the item's name is zCZ_CAR4DRSDN, then Configurator sets the name of the 0.0 version of this workspace to
zCZ_CAR4DRSDN Model Creation Workspace. You can't edit this workspace.

• Creates a new snapshot named zCZ_CAR4DRSDN, and adds the zCZ_CAR4DRSDN model to the
zCZ_CAR4DRSDN snapshot.

• Releases all parts of the zCZ_CAR4DRSDN model, including option classes, standard items, child models, item
classes, and value sets.

• Sets the status of the snapshot to Released.

• Adds the zCZ_CAR4DRSDN snapshot to zCZ_CAR4DRSDN (V1) Model Creation Workspace.

• Sets the status of the workspace to Released.

Create Your Workspace and Add Participants
Create a workspace then add participants to it. A participant is any object that you add to a workspace.

27

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Type of Participant Description

Model

You can add a configurator model from a list of the items that you already imported into a snapshot.

• You can add a child model when you add the parent model, or at some later time.

• If you only need to test changes that you make to a value set, item class, item snapshot, rule, or
user interface, then you still need to add your model to a workspace so you can test your changes
in the context of the model.

Item Snapshot

If you add a new item in an option class, then you can refresh its snapshot, add that snapshot to the
workspace, then test your work to make sure your host application displays the new item.

Item Class Snapshot

An item gets transactional attributes from its class. If you add a transactional attribute to the item's
class in Product Information Management, then you can refresh the item class' snapshot, add that
snapshot to your workspace, then test your work to make sure your host application displays the
transactional attribute.

Value Set Snapshot

Your transactional attribute might use a value set. For example, the Color value set might have Red,
 Blue, and Green. If you add a new color such as Magenta to the value set in Product Information
Management, then you can refresh the Color snapshot, add that snapshot to your workspace, then test
your work to make sure your host application displays Magenta as a choice.

Update Snapshots in Your Workspace
You can update the snapshots that you have in your workspace so that they remain synchronized with changes that you
make to the item in Product Information Management.

28

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Try it.

1. Manage the snapshot.

◦ Import the zCZ_CAR4DRSDN model from Product Information Management into a snapshot in
Configurator.

◦ Click Tasks > Manage Snapshots.

◦ On the Manage Snapshots page, search for your snapshot.

29

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

2. Manage the workspace.

◦ Click Tasks > Manage Workspaces.

◦ On the Manage Workspaces page, do one of:

What do You Need to Do? Description

Add a New Model

Click Actions > Select and Add > Models.

In the dialog that displays, make sure the Include Updated Item Snapshots for Models
option contains a check mark.

Update a Model

Click the row that has the participant you need to update, then click Actions > Add
Updated Item Snapshots for Models.

Workspace Status
Examine the Status attribute on the Workspace page.

Workspace Status Description

In Development

You created the workspace but haven't released it.

Released

You released the workspace into production.

In Development - Release Failed

Go to the Scheduled Processes work area, examine the log files for the Release Workspace scheduled
process, then take corrective action.

If you can't fix the problem, create a service request for Oracle Support. Include the process ID of the
Release Workspace process that failed in the service request.

You can't manually change the workspace status.

What if More Than One Person Uses My Workspace?
You might have more than one person working in a workspace at the same time. You can lock and unlock each
participant to make sure you don't overwrite each other's changes.

Try it.

1. Go to the Configurator Models work area.
2. Click Tasks > Manage Workspaces.
3. On the Manage Workspaces page, search for, then open your workspace.
4. On the Workspace page, in the Workspace Participants list, click the row that has the participant you want to

lock, then click Lock.

30

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=u30231008

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Note

• Configurator automatically locks the participant when you add it to the workspace.

• Lock each participant before you edit it.

• Locking prevents someone from changing a draft in the same workspace, but it doesn't prevent someone from
changing a draft of the same object in a different workspace.

• Click Unlock to unlock the participant.

• You can't lock a workspace.

Develop Models Together as a Group
You can edit and test different drafts of your models together as a group.

• Create a new workspace and add the models that you want to modify.

• Test the runtime behavior of these models as a group.

• Use the same effective start date to release them as a group.

Related Topics
• Manage Your Workspace Dates

• Work on the Same Participant in Different Workspaces

• Release Your Workspace

• Manage Workspace Versions

Release Your Workspace
Release your workspace so you can get your draft from the Configurator Models work area into a production
environment, such as Oracle Order Management.

Try it.

1. Go to the Configurator Models work area, then open your workspace.
2. Simulate your release to make sure the workspace doesn't have any errors.

We recommend that you simulate the release before you actually do the release. Here's how:

◦ On the Workspace page, click Release > Generate Prerelease Report.

The report simulates the release without actually releasing the workspace. You can create a report at any
time to test your workspace, even if you aren't planning to release right away.

◦ In the dialog that displays, note the process ID's value, such as 493400.

◦ Go to the Scheduled Processes work area, then monitor the status of the process until it says Succeeded.

Attribute ParameterValueCode

Name Workspace Prerelease Report

31

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Attribute ParameterValueCode

Process ID

493400

Status

Succeeded

◦ In the search results, click the row that has your process.

◦ In the Log and Output area, click the link next to Attachment, then examine the log file.

◦ If the process never gets to Succeeded or if it fails, then examine your setup.
- Make sure the end date for each participant, transactional attribute in the item's class, or value in a

value set happens before the workspace's end date.
- Verify the status of all configurator rules that the workspace uses for the model.

3. Go to the Configurator Models work area, open your workspace, then notice the values.

Attribute Value

Prerelease Report Process ID

493400

It's the ID of the most recent report that you created.

Status

Contains one of:

◦ Generating Prerelease Report. The scheduled process is currently running and creating
the report.

◦ In Development. The scheduled process is done running.

4. If all looks good, click Release.

What Happens When I Release?
Here's what Configurator does when you release your workspace.

• Updates the workspace status from In Development to Released.

• Puts any modifications that you have made to participants into production according to the workspace's
effective start date.

• Changes each model that's a participant from a draft to a new version, and sets a new version number for the
model.
Note that you can no longer edit drafts of these participants in this workspace, but you can test a released
model in a released workspace.

• Removes all draft participants that you haven't modified from the workspace.

• Writes an impact analysis to the log for the scheduled process that does the release. If there's a problem, you
can view suggestions in the log for how to fix it.

32

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Configurator also recompiles each rule that the release affects, including rules in models that aren't in the released
workspace. If you make a change in a workspace and release it, and if the change causes a rule to become invalid, then
the result depends on whether the model that you release is already in production or is still a draft:

• In production. Configurator prevents the release. You must add the model to the workspace and fix the rules.

• A draft. Configurator does the release, and adds an entry in the log of the Release Workspace scheduled
process that identifies the rule that you need to fix.

Note

• You can't modify a workspace's effective start date after you release it, so make sure you release your changes
immediately before you need them in production.

• The release includes all participants that exist in the workspace. You can't release only some of the participants
in a workspace.

• You can't modify a participant after you release a workspace.

Manage Releases Across Workspaces
Consider an example where you have three workspaces, all of them have the same zCZ_CAR4DRSDN model as a
participant, and the model is in draft status in all workspaces.

33

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=u30231008

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

What the Numbers Mean

Number You Set The Effective Start Date
in Workspace A To

You Release it On Configurator Puts the Model Into
Production On

1 6/1/22 5/15/22 6/1/22

2 7/1/22 6/15/22 7/1/22

3 8/1/22 6/15/22 8/1/22

34

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Note

• Notice how versions of the model move from draft to production after you release the workspace.

• You can release a workspace before its effective start date, but the model doesn't go into production until after
the effective start date.

• You can release different workspaces that contain the same model on the same date as long as the effective
start dates of these workspaces aren't the same. If you do this, then you must release the workspace that has
the effective start date that happens first, and then release the workspace that has the effective start date that
happens later.

Releasing an updated model might affect other models that also have the model but that aren't part of the workspace
that you release. Assume you release workspace A. If you haven't released workspace B, and if the model's effective
start date in workspace B happens after the model's effective start date in workspace A, then Configurator will apply
whatever changes that you made to the model in A to the model in B.

Don't Release Your Workspace Until It's Ready
You can set your workspace's effective start date to any date in the future, but we recommend that you release it into
production as close to the effective start date as possible. You can't release changes to workspace participants and you
can't release future changes until after the effective start date happens.

Assume today is January 1, you release your workspace, and the effective start for the workspace is February 1. This
means you released changes that don't go into effect until February 1, and you can't reverse these changes until after
February 1. You're stuck with them for a whole month, even though you might need to change them in the interim. To
help avoid this problem, Configurator comes predefined to prevent you from releasing a workspace more than 1 day
before its effective start date.

But you can modify this behavior to meet your needs. In this example, you set up a parameter to tell Configurator not to
release your workspaces until 2 days before the effective start date.

1. Make sure you have the privileges that you need to administer Order Management.
2. Go to the Setup and Maintenance work area, then select the Order Management offering.
3. Search for the Manage Pricing Parameters task, but don't open it.
4. Download your setup data.

◦ In the search results, in the row that has Manage Pricing Parameters in the Task column, click the icon in
the Actions column, then click Export to CSV File > Create New.

◦ On the Export Setup Data to CSV File page, click Submit.

◦ On the Setup page, in the search results, in the row that has Manage Pricing Parameters in the Task
column, click the icon in the Actions column, then click Actions > Export to CSV File > View All.

◦ On the Export Setup Data to CSV File History page, look at the date to determine the row that has your
export, make sure the Status for that row is Completed Successfully, then click Actions > Download >
CSV File Package on that row.

◦ In the dialog that displays, save the file to your computer.

This file contains the setup parameters. For this example, assume the file name is Manage Pricing
Parameters_20210909_093224_303.zip.

◦ On the Export Setup Data to CSV File History page, click Done.

5. Modify the parameter.

◦ Use a compression utility, such as WinZip, to extract the file that you downloaded.

35

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

◦ Open the ORA_QP_PRICING_PARAMETER_VALUE.csv file.

◦ Delete all the rows in the file except for the row that has QP_WS_RELEASE_THRESHOLD in the
ORA_QP_PRICING_PARAMETER.ParameterCode column.

◦ Set the value.

ORA_QP_PRICING_
PARAMETER.ParameterCode

ParameterValueCode

QP_WS_RELEASE_THRESHOLD

2

The default value for the parameter is 1, which means 1 day.

You can set it to any decimal value that's greater than zero.

◦ Save the ORA_QP_PRICING_PARAMETER_VALUE.csv file, then add it to the .zip file that you downloaded,
replacing the original ORA_QP_PRICING_PARAMETER_VALUE.csv file.

6. Upload the file.

◦ Go back to the Setup page in the Setup and Maintenance work area.
In the search results, in the row that has Manage Pricing Parameters in the Task column, click the icon in
the Actions column, then click Import from CSV File > Create New.

◦ On the Import Setup Data from CSV File page, click Browse, select Manage Pricing
Parameters_20210909_093224_303.zip, then click Submit.

◦ In the search results, in the row that has Manage Pricing Parameters in the Task column, click the icon in
the Actions column, then click Import from CSV File > View All.

◦ On the Import Setup Data from CSV File History page, make sure the Status attribute contains Completed
Successfully. If it doesn't, wait a few minutes, then click Refresh until it does.

7. Test your work.

◦ Open a workspace that has an effective start date that happens more than two days after today.

◦ Click Release.

◦ Verify that Configurator doesn't allow you to release the workspace but instead displays a message,
similar to:
You can't release the workspace because its effective start date happens after the latest allowed
 release date of 01/1/2022 12:00:00 PM.

For details, see Updating the Workspace Release Threshold for Oracle Configurator Cloud (Doc ID 2471288.1) on My
Oracle Support.

Specify What Versions to Update
If you have a snapshot that participates in a rule in different versions of a model, then you can use the
ORA_QP_RULE_RECOMP_DAYS_PAST parameter to specify which earlier versions of those rules you want to use when
you release changes to the snapshot.

ORA_QP_RULE_RECOMP_DAYS_PAST specifies the number of days to look into the past, starting from when you
release the snapshot.

36

https://support.oracle.com/epmos/faces/DocumentDisplay?_afrLoop=45607789877745&id=2471288.1

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Some of the changes that you make to a snapshot are always in effect and might prevent rules in earlier versions from
working correctly. If the rules don't work correctly, then you might not be able to release the modified snapshot.

Changing a component's minimum or maximum value or deleting an item are examples of a change that Configurator
assumes is always in effect.

Configurator can update rules in your model's earlier versions when you release the modified snapshot that participates
in those rules.

If you make a change in your snapshot, and if that change affects your model's behavior in an earlier version, then
updating the earlier version will help to make sure your model behaves as you expect it to across versions.

Guidelines

• To specify ORA_QP_RULE_RECOMP_DAYS_PAST, do the same procedure that you do in the Don't Release Your
Workspace Until Its Ready subtopic, except modify the ORA_QP_RULE_RECOMP_DAYS_PAST parameter.

• ORA_QP_RULE_RECOMP_DAYS_PAST specifies the number of days in the past to update earlier versions up
until your snapshot's release date.

• Specify the number of days before today. If releasing the snapshot affects the rule's version, and if that version
is older than the value that you specify in ORA_QP_RULE_RECOMP_DAYS_PAST, then Configurator won't
update that version.

• ORA_QP_RULE_RECOMP_DAYS_PAST comes predefined with a default value of 10,000, which means that
Configurator will update all prior versions when you release your snapshot.

• If you don't need to validate any sales orders that are older than the current date, then set
ORA_QP_RULE_RECOMP_DAYS_PAST to 0. Configurator won't update rules in prior versions when you release
your snapshot.

• If you attempt to release a snapshot but it fails with an indication that a rule in an earlier version is failing,
and if you don't need to validate runtime configurations on sales orders that you already submitted, then we
recommend you set ORA_QP_RULE_RECOMP_DAYS_PAST to 0. Configurator will ignore all earlier versions.

• Configurator updates your rules when you release the snapshot.

Consider the Configuration Effective Date Parameter

If the value of the Configuration Effective Date parameter is:

• Current Date. We recommend that you set ORA_QP_RULE_RECOMP_DAYS_PAST to 0. Configurator will ignore
all of your model's earlier versions, it will only update versions that are in effect on the current date or in the
future.

• Any value that isn't Current Date. You must consider how far back into history you want the snapshot
changes to affect your rule's behavior. We recommend that you use the default value of 10,000 days for
ORA_QP_RULE_RECOMP_DAYS_PAST, or set it to 0.

For details about Configuration Effective Date, see Manage Your Validations.

Remove a Model from Production
You can remove a model from production. See Remove Your Model From Production.

Related Topics
• Work on the Same Participant in Different Workspaces

• Manage Your Workspace Dates

37

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Manage Your Workspace Dates
Use these guidelines to help manage dates in a workspace.

The workspace's effective start date determines when the modifications that you make on your model go into
production. If you change the effective start date to a later date, and if you release a new latest version of the model
before the new effective start date happens, then your draft model will have a different baseline than it did when you
added it to the workspace.

Keep Your Dates Synchronized
Make sure you keep the effective start dates that you use in the Configurator Models work area synchronized with
the effective start dates that you set for your model, option classes, and components in the Product Information
Management work area.

If you add a snapshot that's already in effect to a workspace, then the workspace goes into effect as soon as you release
it, regardless of the effective start date that you assign to the workspace. Consider an example.

38

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Note

• You set the workspace's effective date to tomorrow.

• You add a new option class named Interior Options to the model in Product Information Management. The
class includes Standard, Deluxe and Sporty so your users can choose the interior trim style.

• You set the effective date on the Interior Options option class in Product Information Management so it goes
into effect today.

• You refresh the interior option's snapshot and add it to the workspace, but then encounter a message.

One or more participants have changes that take effect before the current date and time. This workspace
 will become effective immediately upon release.

39

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

• You release the workspace and it goes into production today even though the workspace's effective date is
tomorrow. That's because Configurator uses the effective dates from Product Information Management.

Here's another example.

• You have a snapshot in the workspace, the snapshot includes the Interior Options option class, and you set the
effective start date on the snapshot to June 15.

• Your workspace also contains another snapshot that includes the Mechanical Options option class, and it has
an effective start date of May 15.

• You release the workspace on or before June 10, for example, June 1.

• Your users can't choose the interior options because the Interior Options option class isn't available until
June 15, but they can set the mechanical options because Configurator releases the workspace immediately
according to the effective start date of the Mechanical Options option class, not the effective start date of the
workspace.

Related Topics
• Work on the Same Participant in Different Workspaces

• Release Your Workspace

Work on the Same Participant in Different Workspaces
You can work on the same participant in different workspaces at the same time.

For example:

• Two different developers need to work on different parts of a configuration model at the same time.

• You like to use the same participant in more than one workspace to test out different sets of structures, rules,
and user interfaces that meet the needs of different market segments, different sets of customers, and so on.

Consider an example where two different developers need to work on the same configuration model at the same time.
Atsuko uses workspace 1, and Valerie uses workspace 2.

40

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Here's how it works.

1. Monday. Atsuko imports the 4 Door Sedan model from the Product Information Management work area for the
first time.

The import creates version 0 the model, creates Atsuko's workspace, adds the model to Atsuko's workspace,
then immediately releases Atsuko's workspace. Version 0 is an exact copy of the model that Product
Information Management has. Atsuko can't modify version 0, but instead modifies version 1 of the model in
Atsuko's workspace. Atsuko specializes in the user experience, and starts using workspace 1 to design the user
interface that customers will use to configure the 4 Door Sedan.

2. Tuesday. Valerie creates workspace 2, then adds version 0 of the 4 Door Sedan model to workspace 2.

Valerie is a software engineer and starts adding the rules that the model needs to implement the user interface
that Atsuko is creating.

41

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

3. Wednesday. Atsuko finishes designing the user interface and releases version 1 of the 4 Door Sedan model.

Configurator automatically updates the model in Valerie's workspace from version 0 to version 1.
4. Thursday. Valerie uses the rules from Atsuko's workspace to implement the user interface that Atsuko created.

This feature helps to make sure that Valerie is using Atsuko's latest work, and avoids having to manually update
the workspaces to keep them synchronized.

Valerie releases version 2, and Configurator updates the model in both workspaces from version 2 to version 3.
5. Friday. Atsuko tests the user interface and makes sure that the interface and rules are working together

correctly. Hopefully they do, then Atsuko releases version 3 of the model into production.

Effective Start Date
Make sure the effective start date in your workspaces aren't the same.

Assume you add the 4 Door Sedan model as a participant x to Atsuko's workspace. If you add participant x to Valerie's
workspace, then Configurator displays a message that tells you another workspace already has participant x. If Atsuko's
workspace has the same effective start date as Valerie's workspace, then you can't add participant x to Valerie's
workspace because it would cause a conflict when both drafts go into effect. You must change the effective start date
for Atsuko's workspace. Alternatively, change the effective start date for Valerie's workspace, then add x to Valerie's
workspace.

Related Topics
• Manage Your Workspace Dates

Manage Workspace Versions
A configurator model's version is its definition that exists at a specific point in time. If you release a workspace that
includes a draft of the model into production, then Configurator creates a new version of the model and increments the
model's version number.

42

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

What the Numbers Mean

Assume you need to import and work on the zCZ_CAR4DRSDN model.

1. You import the zCZ_CAR4DRSDN from Product Information Management for the first time into a snapshot.
2. The import automatically creates version 0 (zero) of the zCZ_CAR4DRSDN model in the Configurator Models

work area.
3. You create a new workspace named 4 Door Sedan and add the zCZ_CAR4DRSDN model to your new

workspace.

From this point forward, you make changes to different versions of the model in the workspace. You can't
modify version 0.

43

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

4. You use the Edit Configurator Model page to revise the model and save your changes. You click Release
on the Workspace page, Configurator releases version 1 of the model, then updates the version of the
zCZ_CAR4DRSDN model to version 2.

5. You repeat step 4, except now you're working on version 2, Configurator releases version 2, then updates the
model to version 3.

6. You repeat step 4, except now you're working on version 3, Configurator releases version 3, then updates the
model to version 4.

This sequence continues every time you release the model.
Note

• The model remains in Draft status while its a participant in a workspace that's in the In Development status.

• Each version of the model includes the item structure and item attributes that you set up for the item in the
Product Information Management work area. It also includes the supplemental structure, configurator rules,
and user interfaces that you set up in the Configurator Models work area.

• The version doesn't contain the same data that a copy of the model contains. A version contains only the
changes that you make to the draft model since the last time you released the model.

• The changes that you make to the draft are in effect only in your workspace until you release it and when the
draft becomes a released version in your production environment. Your draft doesn't become a version until
you release it to production.

• The model is the only type of participant that Configurator versions.

Version Zero
Version 0 (zero) is the baseline version. It is an exact copy of the model that you import from Product Information
Management. You can't modify version zero, and any change that you make to any higher version won't affect version
zero, but you can view version zero and create a new version from version 0. You can use the baseline version to help
you manage and troubleshoot your model. If necessary, you can always redo your development work starting over at
the baseline version.

Assume you import the zCZ_CAR4DRSDN model into a snapshot, create workspace A, import the zCZ_CAR4DRSDN
into it as a snapshot, then release workspace A. zCZ_CAR4DRSDN in workspace A is the baseline version. Next,
you create workspace B, and add the zCZ_CAR4DRSDN to workspace B. At this point, you're working on a draft of
zCZ_CAR4DRSDN in workspace B, and this draft uses the baseline version as a starting point.

Configurator tracks each change that you make in workspace B to the zCZ_CAR4DRSDN as a change on top of the
baseline. Your production environment won't have any of the changes that you make in the draft zCZ_CAR4DRSDN until
you release workspace B.

Version Number
Configurator numbers each version that it creates. It increments the version number on each release of the model, and
each version is unique for that model. If you release a workspace that has more than one model, then it increments the
version for each model independently of the other models. Use the Manage Models page to search for and view any
version of a model, including released and draft versions.

Latest Version
Configurator creates a new version of each model that participates in the workspace when you release the workspace.

The latest version of a participant is the version that has the latest effective start date. Its the version that occurs most
recently in the version's history.

44

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

The latest version isn't necessarily the most recently released version because the release date of a version is different
from and doesn't depend on the version's effective start date.

The latest version becomes the baseline version for each draft of each model in each workspace that you haven't
released, and that also has an effective start date that happens after the latest version. If the effective start date on your
draft model happens before the effective start date of the latest version, then the draft won't use the latest version as
the baseline. If you want to use the latest version as the baseline, you must change the effective start date of the draft
workspace so it happens after the effective start date of the latest version.

Versions for Referenced Models
Configurator versions a referenced model in the same way that it versions a model that isn't referenced.

The scheduled process that you use to release a model automatically examines how the release might affect models
that are already in production. Make sure you examine the process log file for any conflicts that the process finds during
the release.

Related Topics
• Work on the Same Participant in Different Workspaces

• Release Your Workspace

• Manage Your Workspace Dates

Remove Your Model From Production
You can remove the latest version of your model from production.

You can also do another release to pick up any changes that you need to make. Configurator puts the changes that
you've made to participants in the workspace into production, and creates a new version that become the baseline for
the next draft. You can use this baseline as a starting point, make your changes, and do another release.

You can't make any changes to the participants or attributes of the workspace after you release it, including the effective
start date.

Let's say you release a model into production but then realize it has some errors that you need to correct. Here's how
that works.

1. You release model RBG-538 from workspace A into production. The model is at version 2.0. Version 2.0 doesn't
have any errors that you need to fix.

2. You update the model, then release it with an effective start date that happens on the first day of next month.
This new model is version 3.0.

3. The next day, but before the model's effective start date, you notice that you have an error in version 3.0.
4. You use the Unrelease Model Participants scheduled process to remove RBG-538 from production. Here's what

the scheduled process does.

◦ Removes version 3.0 from production, and places version 2.0 into production.

◦ Creates a new workspace, B.

◦ Adds version 3.0 to workspace B, and sets the status for B to Draft.

◦ version 3.0 in workspace B contains the supplemental structure that you added or modified, rules that
you created or modified, and user interfaces that you created or modified.

45

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=u30231009

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

◦ Sets the effective start date of workspace B to one minute later than the effective start date of workspace
A.

5. You fix the error on version 3 of the RBG-538 model in workspace B.
6. You test and verify your changes, then release version 3 of RBG-538 into production.

Note

• You can repeat the unrelease of a model, one version at a time, to get back to an earlier release version.

• If you have any other drafts of the RBG-538 model, then Configurator updates them so they use the 2.0 version,
not the 3.0. as their baseline. This applies until release version 3.0 into production.

• You can only remove a model from production. You can't remove parts of a model, such as only the
supplemental structure.

The version of the model that you remove from production must have an effective start date that happens in
the future.

• You can use the Configurator Models work area or REST API to remove the model from production.

Use the Configurator Models Work Area
Assume you need to remove the RBG-538 model from production.

1. Open the workspace that has the RBG-538.

The workplace status must be Released. If it isn't, then you can't use the Unrelease Models action.
2. Select the RBG-538 model, then click Unrelease Models.
3. Configurator starts the Unrelease Model Participants scheduled process.
4. In the dialog that displays, enter a name and description for the new workspace where Configurator will save

the model RBG-538.

Note the process ID of the scheduled process. Assumme its 67589.
5. Go to the Scheduled Process work area, then examine the log of the Unrelease Model Participants process that

has the 67589 ID. Monitor the process and examine the log file, as necessary.

Use REST API
1. Get the name of the workspace.

◦ Go to the Configurator Models work area.

◦ On the Overview page, copy the value in the Name attribute of the workspace that contains the RBG-538
model to your clipboard.

For this example, assume the workspace name is RBG-538-Fall-2020.
2. Identify the released workspace that contains the RBG-538 model.

◦ Use the configuratorWorkspaces REST resource and the ByNameOrDescriptionFinder finder to get the
workspace ID. For example:

https://yourServerName:yourPort/fscmRestApi/resources/11.13.18.05/configuratorWorkspaces?
finder=ByNameOrDescriptionFinder;name=RBG-538 Fall-2020%

where

◦ name contains the name of your workspace, such as name=RBG-538 Fall-2020.

46

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

Assume you get this REST response.

{
 "items" : [{
 "WorkspaceId": 300100176467904,
 "Name": "RBG-538 Fall-2020",
 "Description": "RBG-538 early rollout for Fall 2020",
 "EffectiveStartDate": "2020-12-01T00:02:00+00:00",
 "StatusCode": "DEVELOPMENT",
 "Status": "In development",
 "ReleaseProcessId": null,
 "PrereleaseReportProcessId": null,
 "CreationDate": "2019-04-20T00:51:58+00:00",
 "CreatedBy": "PRODUCT_CONFIGURATOR_MANAGER",
 "LastUpdateDate": "2020-10-02T00:52:07.211+00:00",
 "LastUpdatedBy": "PRODUCT_CONFIGURATOR_MANAGER"
 }, {
 ...
 }],
 ...
}

where

◦ WorkspaceId contains the value you seek, such as "WorkspaceId": 300100176467904.

3. Identify the modelParticipants resource in the configuratorWorkspaces resource to identify your model. For
example:

https://yourServerName:yourPort/fscmRestApi/resources/11.13.18.05/
configuratorWorkspaces/300100176467904/child/modelParticipants

where

◦ 300100176467904 is the ID that identifies the workspace in your first REST response.

Here's the REST API response. It includes the participant IDs of the models that are in the workspace.

"items": [
 {
 "ParticipantId": 300100217170232,
 "Name": "Model Name ",
...

This example has only one model.
4. Run the Unrelease Model Participants scheduled process.

◦ Use the unrelease action of the configuratorWorkspaces resource. You will POST the input payload that
contains the parameters that you use to run the process. For example:

curl -X POST \
 https://yourServerName:yourPort/fscmRestApi/resources/11.13.18.05/
configuratorWorkspaces/300100176467904/action/unrelease \
 -H 'Authorization: Basic cHJvZF9jb25maWd1cmF0b3JfbWdyOldlbGNvbWUx' \
 -H 'Content-Type: application/vnd.oracle.adf.action+json' \
 -H 'REST-Framework-Version: 7' \
 -d '
 { "targetWorkspaceName": "RBG-538 rework",
 "targetWorkspaceDescription": "Correction of errors in RBG-538 fall 2020",

47

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 3
Workspaces

 "participants": [300100217170232]}'

where

◦ targetWorkspaceName specifies the name of the new workspace that will contain the RBG-538 model that
you remove from production.

◦ targetWorkspaceDescription specifies the description that you want to use for the new workspace.

◦ participants specifies the ID that identifies the RBG-538 model.

Here's the response payload.

{
 "result": 145218
}

It includes 145218, which is the process ID of the Unrelease Model Participants scheduled process.
5. Go to the Scheduled Process work area, then examine the log of the Unrelease Model Participants process that

has the 145218 ID. Monitor the process and examine the log file, as necessary.

Here's an example log.

The unrelease operation from the workspace RBG-538 Fall-2020 completed with warnings.
The workspace RBG-538 rework was created, with participants added from the workspace RBG-538 Fall-2020.
The model participant RBG-538-A-4011 was added from the workspace RBG-538 Fall-2020.
The following workspace participants have warnings:
 Configurator Model Name: RBG-538-A-4011
 The model RBG-538-A-4011 has one or more drafts in other workspaces.

For more examples and details, see the Unrelease Changes to a Released Model use case in REST API for Oracle Supply
Chain Management Cloud.

Related Topics
• Release Your Workspace

• Manage Workspace Versions

48

https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FASRP
https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FASRP

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

4 Structures

Overview

Overview of Supplementing Your Model
Use a supplemental structure to improve your user's experience, such as adding guided selling questions.

PIM Structure
Use a supplemental structure to improve your user's experience, such as adding guided selling questions.

A PIM (Product Information Management) structure is a structure that you use in your configurator model where you
import the structure from Product Information Management. Consider these points when you use a PIM structure.

• The Primary structure of a model that you create in the Product Information Management work area
determines the structure for your configurator model.

• The structure can include model items, option classes, and standard items.

• Configurator duplicates the item's structure from Product Information Management into Configurator when
you import the item.

• The item in Product Information Management is a PTO or ATO model, and it's the root of the structure.

Get details about how to import a PIM structure. See Create and Maintain Configurator Models.

Some Reasons to Use Supplemental Structures

• You need to modify an attribute on the item. You can't use Configurator to modify attributes on the items that
are in the PIM structure that you import. For example, you can't modify the name or description of an item,
attributes on the option class, such as minimum, maximum, or quantity, or user-defined attributes.

• You need to include a required component. The snapshot doesn't include required components. If you specify
that a component item in the structure is required in the Product Information Management work area, then the
import doesn't import it. Your configurator model won't include these components.

• You need to add or remove a child item. You can't add or remove a child item from a configurator model.
Instead, you must modify the structure in Product Information Management, then import or refresh your
snapshot.

You can use a supplemental structure to meet these needs while maintaining the PIM structure that you import.

Supplemental Structure
You import your model from Product Information Management into Configurator, then supplement it in Configurator to
meet your specific needs.

A PIM structure that you import can include:

• Model items

• Option classes

49

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• Standard items

• Transactional attributes

But these might not meet your needs. Here's what you can add as a supplemental structure in Configurator:

• Option features and options

• Integer features

• Decimal features

• Boolean features

• Text features

• Connectors

Use a supplemental structure when you need to add:

• More choices to your configured item than what you can have on a PIM structure.

• Questions that help your user configure the item at run time.

• Questions that your rules can use to reduce the number of option features at run time.

• Temporary storage for details about your rules.

A complex item, such as a car, might have a lot of options that your customers can choose. Some options might be
compatible with each other, while others aren't. You can use a supplemental structure to reduce the number of items
that you display at run time.

You can use a supplemental structure only with the configurator model where you add it. For example, you can't add
supplemental structure y to model x, and then add structure y to model z. You must recreate structure y on model z.

Related Topics
• Add a Supplemental Structure

• Chunk Your Large Option Classes

• Option Features

• Integer and Decimal Features

• Boolean Features

Set Up Features and Attributes

Option Features
Use an option feature to allow your users to choose one or more options from a list of predefined options. For example,
an option feature named Color might have the options Red, Green, and Blue.

Here are some of the things you can do with an option feature.

• Include a multiple choice question.

• Control how many choices for each question.

• Specify whether to include a quantity according to the option that the user chooses.

50

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• Allow your user to select more than one option for the same option feature. For example, select Red and Green.

• Create a configurator rule that automatically selects the option according to other values that your user sets.

Example
Assume you import a PIM (Product Information Management) model named zCZ_CAR4DRSDN into Configurator.
You sell the car in four different trim packages, but the PIM model doesn't have these packages, so you use an option
feature to add them.

Try it.

1. Open the workspace that has your model.
2. In the Structure Hierarchy area, click the zCZ_CAR4DRSDN root node.
3. Click Actions > Create > Option Feature.

51

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

4. In the dialog that displays, set the values.

Attribute Value

Name Trim Packages

Minimum Selections 1

Specify the minimum number of options in this option feature that your user can select at one
time.

Maximum Selections 1

Specify the maximum number of options in this option feature that your user can select at one
time.

Enable Option Quantities No

Set this attribute to Yes to allow your user to enter a quantity for each option. If you set Enable
Option Quantities to Yes, then you must also set the Maximum Quantity per Option attribute.

5. Click OK, then notice that the Structure Hierarchy area now includes the Trim Packages option feature.
6. In the Structure Hierarchy area, click Trim Packages, then click Actions > Create > Option.
7. In the dialog that displays, enter the value, then click Apply and Create Another.

Attribute Value

Name BP - Basic Package

8. Repeat step 6 for the other options.

◦ LP - Luxury Package

◦ GLP - Grand Luxury Package

◦ SP - Sports Package

9. Click Save, click Test Model, then click OK in the dialog that displays.

52

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

10. On the Test Model page, verify that the user interface displays your new option feature, and that you can select
each option.

Some More Example Usages

Description Description

You can select only one option for the
entire option feature, and the options
must be mutually exclusive.

Set Minimum Selections to 1.

Set Maximum Selections to 1.

53

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Description Description

Set Option Quantities to No.

If you set Minimum Selections to 1, then the user must select at least one option.

You have an option feature named Car
Keys, they come in red, green, or blue, but
all keys must be red, green, or blue.

You sell up to 10 copies of the key for each
car.

The user must select at least one key.

Create an option feature named Car Keys.

Set Minimum Selections to 1.

Set Maximum Selections to 1.

Set Option Quantities to Yes.

Set Maximum Quantity per Option to 10.

Add these options to Car Keys: Red, Green, Blue.

You have an option feature named Car
Keys, they come in red, green, or blue, and
you want to allow your customer to specify
the number of keys that they want for each
color. For example:

• 3 red keys and 3 blue keys

• 2 red keys, 2 green keys, and 2 blue
keys

You sell up to 10 copies of the key for each
car.

Create an option feature named Car Keys.

Set Minimum Selections to 1.

Set Maximum Selections to 3.

Set Option Quantities to Yes.

Set Maximum Quantity per Option to 10.

Add these options to Car Keys: Red, Green, Blue.

You sell a laptop computer. As an
incentive, you allow the customer to
choose from 0 to 3 free applications.

Create an option feature named Free Applications.

Set Minimum Selections to 0.

Set Maximum Selections to 3.

Set Option Quantities to No.

Add these options to Free Applications:

• Digital Art

• Video Editing

• Music Editing

• Website Development

• Travel Guide

54

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Sort Your Options
Configurator displays your options in the runtime user interface in the same sequence that you created them in
Configurator, by default. You can sequence them differently, and Configurator will apply your sort at runtime.

Assume you want to display your options in this sequence:

• SP - Sports Package

• LP - Luxury Package

• GLP - Grand Luxury Package

• BP - Basic Package

Try it.

1. On the Test Model page, click Finish.
2. On the Edit Configurator Model page, click your Trim Packages option feature.
3. In the Details area, click UI Presentation, then set the Option Sort Order attribute to one of these values.

◦ As Displayed in the Structure Hierarchy

◦ Ascending by Name

◦ Ascending by Description

◦ Descending by Name

◦ Descending by Description

For this example, set it to Descending by Name.
If you select Ascending by Description or Descending by Description, then you must also add a description to
each of your options.

Related Topics
• Chunk Your Large Option Classes

• Integer and Decimal Features

• Boolean Features

Integer and Decimal Features
Use an integer or decimal feature to allow your users to enter an integer or a decimal number when configuring the
item.

Here's what you can do.

• Enter a whole number for the minimum value and the maximum value for an integer feature. Each value can be
a positive or negative number. Your minimum must be less than the maximum.

• Enter a whole number or a decimal value for the minimum value and the maximum value for a decimal feature.
Enter a positive number or a negative number. Your minimum must be less than the maximum.

• Enter an integer value in a decimal feature.

• If you to enter a decimal value in an integer feature, then Configurator rounds the value that you enter to the
nearest integer and displays an error message.

55

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• Use a configurator rule to set the value of an integer or a decimal feature.

• Refer to the value of another integer or a decimal feature in your configurator rule.

• Use an integer or decimal feature as an input to or an output from a calculation. For example, with a calculation
that you do in a rule. Assume you have integer features x, y, and z, and have this rule:

x + y = z

If the user enters 5 in x and 5 in y, then z will contain 10.

• Set up a constraint in your configurator rule to limit the range of values that Configurator displays at run time
for an integer or decimal feature.

Example
Assume you import a PIM model named zCZ_CAR4DRSDN into Configurator. The model has an option class named
Interior Accessories, and it has floor mats and carpet. You can add an integer feature that allows your user to enter a
value of 0 to 4 for floor mats, and a decimal feature that allows the user to specify the carpet's pile depth with a value of
0.25 to 0.75.

Try it.

1. Open the workspace that has your model.
2. In the Structure Hierarchy area, click the zCZ_CAR4DRSDN root node.
3. Click Actions > Create > Integer Feature.
4. In the dialog that displays, set the values, then click OK.

Attribute Value

Name Floor Mats

Minimum 0

Maximum 4

Domain Ordering System Default

5. In the Structure Hierarchy area, click the zCZ_CAR4DRSDN root node.
6. Click Actions > Create > Decimal Feature.
7. In the dialog that displays, set the values, then click OK.

Attribute Value

Name Carpet Depth

Minimum 0.25

Maximum 0.75

Domain Ordering System Default

56

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

8. Click Test Model, the notice your new features.

9. Verify that you can enter only a whole number with a value of 0 to 4 in the Floor Mats integer feature.
10. Verify that you can enter a decimal number that's in the range of 0.25 to 0.75 in the Carpet Depth feature.

Domain Order
Use domain order to specify the values that Configurator uses to finish a user's configuration for an integer feature or
decimal feature.

A domain is the entire set of values that an attribute can contain. A range is a set of values within the domain.

Assume you need to configure a window. Different types of windows and different types of wall surfaces require
different tolerances for their rough openings, so you have a range of rough opening dimensions throughout your house.

57

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

You need to calculate the maximum width for each window. You can use domain ordering with a decimal feature in
increasing minimum or decreasing maximum to calculate the actual dimensions of the widow for each opening.

Here are the values that you can use.

Domain Order Description

System Default Configurator uses its own default method to determine the value. Use System Default to optimize run
time performance. Use it when you don't need to specify the value.

Binary Search, Increasing Minimum Configurator does several binary searches to split the domain until it finds a single value, or until it
doesn't find any value.

Configurator examines the upper half of the domain first.

Binary Search, Decreasing Maximum Same as Binary Search, Increasing Minimum, except Configurator examines the lower half of the
domain first.

Here are the values that you can use only for an integer feature.

Domain Order Description

Linear Search, Minimum to Maximum Configurator uses a value that it finds in the specified domain in increasing order, beginning with the
value that you specify for the feature in the Minimum attribute.

Linear Search, Maximum to Minimum Configurator uses a value that it finds in the specified domain in decreasing order, beginning with the
value that you specify for the feature in the Maximum attribute.

Related Topics
• Chunk Your Large Option Classes

• Option Features

• Boolean Features

Boolean Features
Use a Boolean feature to allow your user to select a true or false value.

• For example, ask your user whether they want tinted windows when they configure a car.

• Configurator displays a Boolean feature at run time as a check box.

• The value for a Boolean feature can be true (contains a check mark), false (doesn't contain a check mark), or
empty.

• You can use a configurator rule to set the default value for a Boolean feature.

58

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Example
Assume you import a PIM model named zCZ_CAR4DRSDN into Configurator. You need to add a Boolean feature that
allows your user to say whether they want tinted windows.

Try it.

1. Open the workspace that has your model.
2. In the Structure Hierarchy area, click the zCZ_CAR4DRSDN root node.
3. Click Actions > Create > Boolean Feature.
4. In the dialog that displays, set the values, then click OK.

Attribute Value

Name Tinted Windows

Domain Ordering Prefer True

59

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

5. Click Test Model, then verify that the Test Model page displays your Tinted Windows feature as a check box.

The value for the Boolean feature doesn't contain a check mark, by default. To display a checkmark, you must
write a rule that results in Configurator setting the Boolean feature to true.

Domain Order
Use the Domain Ordering attribute to specify how Configurator sets the default value at run time for a Boolean feature.

Here are the values that you can use for a Boolean feature.

60

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Domain Ordering Description

Prefer False Configurator sets the Boolean feature to False, by default.

If another rule prevents Configurator from setting it to False, then Configurator will set it to True.

For example, a negates rule for the Boolean feature might prevent Configurator from setting it to True
or to False.

Prefer True Configurator sets the Boolean feature to True, by default.

If another rule prevents Configurator from setting it to True, then Configurator will set it to False.

Related Topics
• Chunk Your Large Option Classes

• Option Features

• Integer and Decimal Features

Text Features
Use a text feature to allow your user to enter text.

• For example, enter a name, address, or other details.

• Enter any alphanumeric value.

Configurator also uses a text feature to store a calculated value.

Example
Try it.

1. Open the workspace that has your model.
2. In the Structure Hierarchy area, click the zCZ_CAR4DRSDN root node.
3. Click Actions > Create > Text Feature.
4. In the dialog that displays, set the values, then click OK.

Attribute Value

Name Monogram

Maximum Length 6

The maximum length is 32,000 characters.

This is not equivalent to 32 KB, which equals 32,768 bytes. There is no relationship between
Kilobytes and the maximum length of a text feature.

61

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

5. Click Test Model, then verify that the Test Model page displays your Monogram text feature, and that you can
enter no more than six characters.

Rules
You can use a configurator rule to set the value for a text feature.

Attribute Value

Type of Rule Description

Default Rule Use a default rule to set the default value that Configurator displays for a text element.

Configurator applies the default rule at runtime when the user manually selects an option and enters a
value.

Configurator can also apply a default rule when it starts the configuration at runtime.

A text feature doesn't have a range of values that you assign through minimum and maximum values,
 so you can't use Domain Ordering to set the default value. If your text feature must have a value, then
you can use a default rule to set it.

Constraint Rule Use a constraint rule to set the value for a text feature when the user manually selects another option
and sets a value for that option.

For example, if the user sets Boolean feature x to True, then the constraint rule sets the value for text
feature y to value z.

Extension Rule Use an extension rule to set the value for a text feature according to your specific needs.

Use the Value()method in your rule to get the value from a text feature.

If you use a rule to compare values between text features, and if these values might change, then you can only test for
equality. Comparisons are case-sensitive. You must use one of these:

• Equals()function

• NotEquals()function

• = (equals) operator

• < (less than) operator

• > (greater than) operator

Here's an example rule that sets the default value of the Last Name text feature to Enter your last name here. You must
set the rule's class to Default.

'UserLogin'.'Last Name'.Value() = "Enter your last name here."

Here's an example rule that compares the values that your user enters in the Email Address text feature to the value that
the user enters in the Confirm Email Address text feature. If the values in these two features are equal, then the rule sets
the Success option under the Addresses Match option feature.

Equals('UserLogin'.'Email Address'.Value() , 'UserLogin'.'Confirm Email Address'.Value()) // See if the
 values in the UserLogin text feature and the Confirm Email Address text feature are equal. If so, then the
 condition is true.
 REQUIRES

62

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

'UserLogin'.'Do addresses match?'.'Success. Addresses Match.'.State() // If condition is true, then set the
 Success feature option to Addresses Match.

Here's another example rule. If the user selects the Success option, then the rule sets the value of the Address Check
Result text feature to We accept your address.

'UserLogin'.'Do addresses match?'.'Success. Addresses match.'.State() // Success option is selected.
 REQUIRES
'UserLogin'.'Address Check Result'.Value() = "We accept your address." // Set the value of the Address Check
 Result text feature.

Use Text Features as Navigation Aids
You can use a text feature as a navigation aid when you have a large configuration that displays more than page at run
time. You can display text on each page that helps your user track where they are in the flow. You can then use the text
feature in a rule to populate text elements that don't depend on the model's structure. You can conditionally display text
at runtime. For example, display details in the text element that describe the options the user has selected.

Related Topics
• Chunk Your Large Option Classes

• Integer and Decimal Features

• Boolean Features

Supplemental Attributes
Use a supplemental attribute to simplify the decisions that your user makes to configure an item. Use it to narrow down
the options that your user has to choose from.

Assume you sell a car, and choosing the engine that your customer needs is one of the most important choices your
user can make, but it involves technical knowledge that the user might not have. Instead of asking the user what size
engine they want, you can add a Primary Vehicle Usage option feature to your model that asks how they plan to use
the car. You then add a supplemental attribute such as Fuel Economy to each option in the option feature, and set the
attribute's value to help determine what engine your customer needs.

Option Feature for Primary Vehicle Usage

Option Value of the Fuel Economy Supplemental Attribute

Office Commuting High

Family Driving Medium

Off Road Low

Ride Sharing High

For example, if you're using the car to commute to and from your office, you don't need a lot of power but you probably
are concerned with economy. If you do a lot of off road driving, you're more concerned with power instead of economy.

Assume your model also has an Engine Type feature, so you add the Fuel Economy supplemental attribute to each
option and set the attribute's value.

63

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Engine Value of the Fuel Economy Supplemental Attribute

2.0L, 259 horsepower Medium

2.4L, 179 horsepower High

3.6L 300 horsepower Low

Engines that have a lower horsepower generally get better fuel economy.

But that's only part of the puzzle. How will you use this information to narrow the next question, which is to choose the
engine?

You can create a rule that compares the fuel economies of the Primary Vehicle Usage and the Engine Type. Here's the
pseudocode.

If the fuel economy that the user selects for the Primary Vehicle Usage meets the
fuel economy of the Engine Type, then display the engine type as an option. Don't display any
engine types that don't meet the Primary Vehicle Usage's fuel economy.

Consider a demonstration. Go to learning.oracle.com, search for, then open the Add Supplemental Attributes to Simplify
the Guided Selling Process presentation. View the demonstration that starts at 1:51.

Note

• You can add a supplemental attribute only on the feature of a configurator model, such as an option feature.

• You can't add the same supplemental attribute to the same feature more than one time.

• You can add a supplemental attribute to a:

◦ Supplemental structure only in the Configurator Models work area

◦ PIM structure only through ADF Desktop Integration (ADFDI)

• A value set determines the values that you can use for a supplemental attribute. The value set for the values of
the supplemental attribute must exist before you add the supplemental attribute.

Value Sets
Your supplemental attribute must have a value set. Here's how you can identify the value sets that you can use with
your supplemental attribute.

1. Go to the Setup and Maintenance work area, then click Tasks > Search.
2. Search for, then open the Manage Value Sets task.
3. On the Manage Value Sets page, set the value, then click Search.

Attribute Value

Module Product Model

4. Examine the search results. Your supplemental attribute can reference any value set in the results.

If you don't see the value set that you need, then click Actions > Create and create a new one. Make sure you
set the Module attribute for your new data set to Product Model. Note that you can use only the Format Only
validation type for a value set that you use with a supplemental attribute.

64

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Add a Supplemental Attribute to Your Model
1. Go to the Configurator Models work area, then open the workspace that has your model.
2. In the Structure Hierarchy area, click the Engine Type option feature.
3. In the Details area, click Supplemental Attributes, click Add, then set the values.

Attribute Value

Name Select the attribute that you need to add.

If the list doesn't have the value that you need, click Create to create a new one. See the Create
a New Supplemental Attribute subtopic below for details.

Value You must set a value that's compatible with the attribute's data type. For example, if the Data
Type attribute on the line says Number, then you must set the Value to a number.

If your attribute has predefined values, then select it. For example, assume you have a Color
attribute, you have a data set for the Color attribute, and the data set contains the values Silver,
 Blue, and Gold. You can set the Value attribute to any one of these colors.

Description

Value Set

Data Type

Configurator automatically populates these attributes when you set the Name attribute. You
can't change them, but they do help you to understand you can use the attribute that you're
adding.

Create a New Supplemental Attribute

1. Click the down arrow in the Name attribute, then click Create.
2. In the dialog that displays, set the values.

Attribute Value

Name Enter a unique value.

Value Set Select the value set that you need to use with your new supplemental attribute.

Default Value Select a default value from the value set, if it has one. Configurator will apply this default value
each time it uses this supplemental attribute anywhere in your model.

If you don't set a value, then Configurator won't use any default value when it uses this
supplemental attribute. Instead, the supplemental attribute will be empty.

65

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Create Your Rule
The Configurator Model work area automatically creates some of the code for you when you create the statement
rule, such as the node path and the attribute name, but you might need to add to this code or code it yourself in some
situations to meet your specific requirements. You can write the rule in the Constraint Definition Language (CDL) or in
an extension rule that you write in the Groovy language.

Here's the format that you use in CDL.

COMPATIBLE
&X OF 'nodePath1'.'featureName1',
&Y OF 'nodePath2'.'featureName2'
WHERE
&X.suppAttrs["supAttrName1"]=&Y.suppAttrs["supAttrName2"];

where

• The &X OF line identifies the node and feature that your user uses to specify their preference.

• The &Y OF line identifies the node and feature that you use to identify options that meet the user's preference.

• The WHERE clause filters the results so they contain only the options from the Y line that meet the requirements
from the X line.

• The X.suppAttrs line identifies the supplemental attributes that you're comparing between featureName1 and
featureName2.

For example:

COMPATIBLE
&X OF 'zCZ_CAR4DRSDN'.'Primary Vehicle Usage?',
&Y OF 'zCZ_CAR4DRSDN'.'zCZCARMECHOPT'.'zCZCARENGINE'.'zCZ_CARENGCAP'
WHERE
&X.suppAttrs["Fuel Economy"]=&Y.suppAttrs["Fuel Economy"];

where

• zCZ_CAR4DRSDN is the root node of the configurator model.

• Primary Vehicle Usage? Is the name of a feature on the root node.

• 'zCZCARMECHOPT'.'zCZCARENGINE' is the node path to the zCZ_CARENGCAP feature.

• Fuel Economy is the name of the supplemental attribute that you're comparing between the Primary Vehicle
Usage feature and the zCZ_CARENGCAP feature.

User Interfaces
You can use a supplemental attribute to modify the default label for some elements in the user interface.

Use the suppAttrs['suppAttrName'] method in a user interface expression.

where

• suppAttrName specifies the name of the supplemental attribute

For example, display the value of the color supplemental attribute:

#{amn.suppAttrs['color']}

66

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Related Topics
• Overview of Using Spreadsheets to Manage Supplemental Structures

• Chunk Your Large Option Classes

Transactional Attributes
You can specify whether to display a transactional attribute.

If your model item is part of an item class that includes a transactional attribute, then:

• The snapshot includes the item class and the value set.

• The model tree displays the transactional attribute below the node that has the imported item.

• The details pane for the transactional attribute displays the item class that provides the definition of the
transactional attribute, the value set that provides the run time values for the transactional attribute, and the
format details for the transactional attribute.

You specify the item class when you create an item in the Product Information Management work area. If you enable the
Hidden attribute for a transactional attribute on the Edit Item Class page in the Setup and Maintenance work area, then
the host application doesn't display the transactional attributes that are part of that item class. However, the Review
page in the host application does display them even if you enable the Hidden attribute.

Your host application usually sends transactional attributes to a downstream application. For example, Order
Management Cloud is a host application, and it uses a transactional attribute to send shipping details to Oracle
Shipping. Your users might not need to see and use this attribute. You can display or not display it on the Review page.

1. Go to the Configurator Models work area.
2. Click Tasks > Manage Models.
3. On the Manage Models page, search for and open your model.
4. On the Edit Configurator Model page, click User Interfaces, then enable or disable the Display Hidden

Transactional Attributes on the Review Page option.
For details, see Manage Transactional Attributes.

Manage Structures

Add a Supplemental Structure
You can add a supplemental structure to your configurator model.

1. Import your PIM (Product Information Management model, add it to a workspace, then open the configurator
model for editing. For details about how to import a PIM structure, see Create and Maintain Configurator
Models. Configurator uses your login ID to automatically lock the model. You can edit only a locked model.

2. Click Tasks > Manage Models.
3. On the Manage Models page, search for your model, then click a draft or a version.
4. On the Edit Configurator Model page, expand Structure Hierarchy, then notice that the tree has one root and

more than one branch.

67

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20031897

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

5. A supplement structure has different features. Add one now:
◦ On the Edit Configurator Model page, in the Structure Hierarchy area, click the root.

◦ You can add a supplemental structure only on the root of an item structure.

◦ Click Actions > Create.

◦ Select the type of feature that you need, depending on the kind of data that you will model in this
structure.

If You Will Model.Then Click

A list of options Option Feature

Option

Integer values Integer Feature

Decimal values Decimal Feature

True or false values Boolean Feature

Plain text values Text Feature

◦ Notice that the Configurator adds a branch for your new feature to the tree.

◦ In the dialog that displays, enter your details.

◦ In the Details area, modify the feature's attributes, as necessary.
6. Repeat step 3 to add more features, as necessary.
7. Click Save.
8. As an option, click Test Model to test your changes.

Related Topics
• Chunk Your Large Option Classes

• Manage Transactional Attributes

Chunk Your Large Option Classes
If an option class has more than 25 options, then Configurator uses the Item Selection Table with Header template to
display items from the option class, by default. You can use it to help avoid a performance problem that might occur
when Configurator attempts to display an option class that has too many options.

This template allows your users to:

• Display your items in a scrolling table. The table loads items while you scroll it instead of loading all items into
the table the first time you open it.

• Use the Query By Example control to filter the items that Configurator displays in the table.

• Use a wild card in Query By Example to filter the items.

If this template doesn't meet your needs, then you can set up Configurator so it uses a different template.

68

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20031897

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

You can also use a feature, such as an option feature, to separate a large option class into chunks, avoid the
performance problem, and improve your user experience.

Assume you have an option class named Seat that contains thousands of options for different types of seats. You notice
that you can chunk the options into categories:

• Seat Width

• Seat Height

• Seat Thickness

• Back Width

• Back Height

• Back Thickness

• Cording

• Color

• Fabric Type

• Foam Type

• Reclining Style

• Automatic

• Heat Styles

• Monogram

Here's how you can implement that.

1. Create an option feature named Seat Width. For details, see Option Features.
2. Add options to Seat Width, such as 14 inch, 16 inch, 17 inch, and so on.
3. Create the next option feature, such as Seat Height, then add its options.
4. Continue creating features for all of the categories. Use different types of features, as necessary. For example,

the Monogram feature includes text, so use a text feature for it.
5. Select the summary on the Overview tab. This will modify the model's user interface so it displays all of the

option classes and options, and a bread crumb trail so the user can see all the options they've selected.
6. Create a statement or extension rule that uses your user's response at run time as an input to each option

feature, and then processes the input to select the desired seat. Here's an example statement rule.
'Chair'.'Cushion Width' > 30 AND 'Chair'.'Cushion Width' <= 50
REQUIRES
'Chair'.'Seat Cushion OC'.'MEDIUM_SEAT_CUSHION';

In pseudocode:

If the chair's width is between 30 inches and 50 inches, then select MEDIUM_SEAT_CUSHION.

Related Topics
• Add a Supplemental Structure

• Option Features

• Integer and Decimal Features

• Text Features

69

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Use Node Properties to Affect Runtime Behavior and Results
Each node on a configurator model has properties. You can use them to affect the choices and results that Configurator
displays at runtime.

You can use these values for a variety of purposes, such as in a configurator rule that has a system attribute, or in a
display condition, which is a condition that affects the values that each user interface displays.

The values of some properties are available only at run time. For example, the value of the Quantity property is available
only after the user selects an item.

Here's a summary of the properties that are available for each type of node. For example, an Option Class is a type of
node. Yes means the property is available. No means it isn't.

Property Option
Class

Option
Feature

Option Standard
Item

Boolean
Feature

Decimal
Feature

Integer
Feature

Model
(Single
Instance)

Model
(Multiple
Instances)

ChangedByAutocomplete

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DefinitionMaxQuantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

DefinitionMaxSelected

Yes

Yes

No

No

No

No

No

No

No

DefinitionMaxValue

No

No

No

No

No

Yes

Yes

No

No

DefinitionMinQuantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

DefinitionMinSelected

Yes

Yes

No

No

No

No

No

No

No

DefinitionMinValue

No

No

No

No

No

Yes

Yes

No

No

Description

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DetailedSelectionState

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

DisplayName

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DisplayNamePath

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Excluded

No

No

No

No

Yes

No

No

No

No

HasChildren

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

HasTransAttrs Yes Yes Yes Yes Yes Yes Yes Yes Yes

70

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Property Option
Class

Option
Feature

Option Standard
Item

Boolean
Feature

Decimal
Feature

Integer
Feature

Model
(Single
Instance)

Model
(Multiple
Instances)

InErrorMode

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

InputRequired

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

InputRequiredInSubtree

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

IsBound

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

IsBoundQuantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

IsMinSelectionSatisfied

Yes

Yes

No

No

No

No

No

No

No

LogicState

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

MaxQuantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

MaxSelected

No

Yes

No

No

No

No

No

No

No

MaxValue

No

No

No

No

No

Yes

Yes

No

No

MinQuantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

MinSelected

No

Yes

No

No

No

No

No

No

No

MinValue

No

No

No

No

No

Yes

Yes

No

No

Name

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Proposed

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Quantity

Yes

No

Yes

Yes

No

No

No

Yes

Yes

Selected

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

SelectedCount

Yes

Yes

No

No

No

No

No

No

No

SelectionState

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Valid Yes Yes Yes Yes Yes Yes Yes Yes Yes

71

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Property Option
Class

Option
Feature

Option Standard
Item

Boolean
Feature

Decimal
Feature

Integer
Feature

Model
(Single
Instance)

Model
(Multiple
Instances)

Value

No

No

No

No

No

Yes

Yes

No

No

Reduce Start Times When You Have Large Option Classes
Enable a placeholder item for an option class, and Oracle Configurator will replace the optional items in the option class
with a single placeholder item.

Using a placeholder reduces the amount of time it takes Configurator to start when your configurator model has large
option classes.

Also, if the model doesn't have any user-defined attributes or supplemental attributes, then Configurator won't attempt
to load them into memory at run time.

Assume you already have a model item named zCZ_CAR4DRSDN, the model item contains an option class component
named zCZ_CARINTOPT, and you want to reduce the overall start time for the model.

Try it.

1. Get the privileges that you need to edit items in the Product Information Management work area.
2. Go to the Product Information Management work area.
3. On the Product Information Management page, click Tasks > Manage Items.
4. On the Manage Items page, search for the zCZ_CAR4DRSDN item.
5. In the search results, click your item.
6. On the Edit Item page, click Structures, then click Primary.
7. On the Item Structure page, click View, then make sure the Component Order Management option contains a

checkmark.
8. Select the row that has zCZ_CARINTOPT in the Item attribute, then click Actions > Edit.
9. On the Edit Components dialog, set the value, then click OK.

Attribute Value

Use Placeholder Contains a checkmark.

10. On the Edit Item Structure page, click Done.

Manage Attribute Values for an Option Class That You Have Enabled as Placeholder
If the Use Placeholder option contains a check mark on the option class, then Configurator won't apply some of the
constraints that you specify for the components that are in that option class. It won't apply constraints that you specify
for the item in Product Information Management for these attributes:

• Decimal Flag

• Default Quantity

• Minimum Quantity

72

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• Maximum Quantity

Note

• If you enable this placeholder for more than one instance of the same option class in your model structure, then
all the instances of this option class must have the same value for each of these attributes.

• This feature uses values from the option class for these attributes, so all items that are in the option class will
use values from the option class at runtime regardless of each item's definition for these attributes.

• If you enable the placeholder, and then disable it, then you must change the value for each of these attribute
for the option class and for all the items that are in the option class so that the values are consistent with each
other.

• To avoid inconsistent behavior, you must make sure that the definition of each instance of the same option
class in your model structure is the same.

Guidelines
• We recommend that you use the fully qualified path for the item in your order import.

• Each item in your option class must be a standard item. Your option class must not include another option class
and it must not reference another configurator model.

If the maximum quantity for your option class is greater than one, and if you:

• Enable the placeholder. Configurator doesn't create a new page for the option class at runtime.

• Don't enable the placeholder. Configurator creates a new page for the option class at runtime.

Use Spreadsheets to Manage Supplemental Structures

Overview of Using Spreadsheets to Manage Supplemental
Structures
Search and download configurator data from Configurator, then manage it in a spreadsheet in Microsoft Excel.

You can use Application Development Framework Desktop Integration (ADFDI) to manage your supplemental structure,
such as updating a large set of data or to move data between your test environment and your production environment.

73

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

How it works:

1. Download a spreadsheet from the Configurator models work area.
2. Use the ADFDI command ribbon in the worksheet to search, download, create, read, update, and delete

configurator data in Excel.
3. Upload your changes to the Oracle server.

The server displays your changes in the Configurator models work area.

You can use Excel to manage:

• Option features and their options

• Boolean features

• Decimal features

74

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• Integer features

• Text features

Here's a description of some of the work that you can do.

Worksheet What You Can Do

Option feature and its options • Create an option feature and its options.

• Add a new option to an option feature that already exists.

• Delete an option from an option feature that already exists.

• Update an option feature's attributes.

• Update an option's description.

• Create, update, or delete more than one option feature and its options in a single model, or across
more than one model.

Snapshot • Manage the dates that determine when the attribute values are in effect for each snapshot.

Supplemental attribute • Create or update a supplemental attribute and its values.

• Associate a supplemental attribute and its values with an option feature's options.

• Remove a supplemental attribute and its values.

• Remove the association that a supplemental attribute and its values have with an option feature's
options.

Example
Here's an example that includes part of the data for a configurator model.

75

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

You can't modify the rows that contain data from Product Information Management (PIM), such as Interior Options. You
can modify data that you added in Configurator, such as the description for the Trim Package.

Related Topics
• Add a Supplemental Structure

• Chunk Your Large Option Classes

• Supplemental Attributes

• Use Application Development Framework Desktop Integration to Manage Rules

76

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Use Spreadsheets to Manage Your Supplemental Structures
Get the details that you need so you can use a spreadsheet to manage your supplemental structure.

Summary of the Setup

1. Install ADF Desktop.
2. Download your spreadsheet.
3. Manage your model.
4. Migrate your data.

Install ADF Desktop
1. Close all instances of Microsoft Excel on your local computer.
2. Sign into Oracle Applications. Sign in with the same user and password that you use when you sign in to use the

Configurator Models work area. You might need to sign in each time you connect through ADFDI.
3. Go to the Home page, then under Tools, click Download Desktop Integration.
4. In the status bar at the bottom of your browser, allow the download, then wait for the adfdi-excel-

addininstaller.exe file to finish downloading.
5. Open adfdi-excel-addin-installer.exe on your local computer.
6. In the ADF Desktop Integration Installer dialog, click Developer Options.
7. In the Developer Options dialog, click Enabled, click Install, wait for the installation to finish, then click Close.
8. Open the Control Panel on your local computer, click Programs and Features, then verify the list that displays

includes your new installation.

For example, make sure it displays Oracle ADF 11g Desktop Integration Add-In for Excel.
9. Open Excel, then, in Microsoft Office Customization Installer, click Install.

10. Click File > Add-Ins, then verify that the Add-Ins submenu contains ADF Desktop Integration.

In some Excel versions, you might need to enable the add-in. For details about installing add-ins, see the
documentation for Microsoft Excel.

11. Close Excel.

Download Your Spreadsheet
For this example, assume you need to manage a model named zCZ_CAR4DRSDN.

1. Make sure each model that you want to manage meets these requirements:

◦ Is in Draft status.

◦ Contains at least one participant in a workspace that isn't released, and at least one of these workspaces
is in the In Development status.

◦ Another user hasn't locked the model.

77

https://www.microsoft.com

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

2. Download a spreadsheet.

There are different ways to do this.

What You Want Manage a Supplemental
Structure

Manage Option
Features for More Than
One Model

Manage Supplemental
Attributes and
Snapshots

Manage Rules

An Empty Spreadsheet Go to the Manage
Models page, then click
Actions > Download
Spreadsheet for
Managing Model
Structure.

Go to the Manage
Models page, then click
Actions > Download
Spreadsheet for
Managing Cross-Model
Structure.

Go to the Manage
Snapshots page,
 then click Actions
Download Spreadsheet
for Managing Item
Snapshots.

Not Available

A Spreadsheet That I Can
Search

Click Tasks > Manage
Model Structure.

Click Tasks > Manage
Cross-Model Structure.

Click Tasks > Manage
Item Snapshot
Attributes.

Click Tasks > Manage
Rules.

For this example, click Tasks > Manage Model Structure.
3. In the dialog that displays, save the file to your desired location.
4. Use Microsoft Excel to open the file that you just saved.
5. In Excel, in the Connect dialog, click Yes.

You use this dialog to connect to the server that hosts your Oracle application.
6. In the Login dialog, enter your user name and password, then click Sign In.

Sign in with the same user and password that you use to access the Configurator Models work area.

Here are the file names that you can download.

• ManageModelNodes.xlsx

• ManageCrossModelOptionFeature.xlsx.

• ManageItemSnapshotSupplAttrValAssoc.xlsx

• ManageStatementRules.xlsx

You can also manage rules. See Use Application Development Framework Desktop Integration to Manage Rules.

Manage Your Model
1. Examine the menu bar at the top of the page, and notice that Excel has a new tab named Manage

Supplemental Structure, and that the tab includes commands that you use with ADFDI, such as Login, Logout,
and Search.

2. Click Search on the ADFDI command ribbon.
3. In the Search Models dialog, enter zCZ_CAR4DRSDN, then click Search.
4. In the search results, click the row that has your model, then click OK.

Notice that ADFDI populates the spreadsheet with your model's details.
5. Insert the new rows or cell values that accomplish your update.
6. Click Create or Update on the ADFDIcommand bar.

78

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

7. Go to the Configurator Models work area and confirm that the upload uploaded your changes.

Migrate Your Data
You can migrate data between environments.

Assume you need to migrate your rules from model x in your test environment to model y in your production
environment.

1. Sign into your test environment, search for model x, then download the rules from model x.
2. Sign into your production environment, then make sure the production environment has all the workspaces

and models that you reference in the rules that you are migrating.
3. Search for model y, then download the rules from model y.
4. Copy the data from model x's spreadsheet. Make sure you only copy cells that you can update.
5. Paste your data into model y's spreadsheet.
6. Click Create or Update to upload your data to production.

Guidelines for Using Spreadsheets to Manage Your Supplemental
Structures
Use these guidelines to help you when you use a spreadsheet to manage your supplemental structure.

• Download the worksheet only one time. For subsequent uses, open the xls file directly on your local computer.

• Save and move the xls file to any location on your laptop, or copy it to another computer.

• To make sure the data in the worksheet is up to date with the data on the server, refresh the search each time
after the worksheet finishes processing your action.

• If you must process more than 10,000 records, then separate data into batches of 10,000 records or less for
each batch.

• Each workbook contains address details, such as the URL, so it can connect to a specific environment. If you
use more than one development environment, then don't use the same workbook in these environments.
Instead, download a separate workbook into each environment.

• Don't open more than one workbook at the same time. For example, if you must manage a model structure
and a snapshot, then open the workbook for the model structure, modify the model structure, and close
the workbook. Then open the workbook for your snapshot. Opening more than one workbook might cause
problems in the cache, clipboard, and other areas.

• Be aware of session time out settings. For example, if your session times out after 15 minutes and you're
still working in the workbook, you might not be able interact with the server. Commands to the server won't
respond. Close the workbook, open the workbook, and sign in.

• Keep your Application Development Framework Desktop Integration (ADFDI) plug-in up to date. The workbook
usually informs you when an update is available.

• If Excel prompts you to save the file, then don't save changes in the spreadsheet because this data might
become old compared to the data on the server. Instead, download data from the server immediately before
each action.

• Don't use CTRL+S, and don't use Save in the File menu in Excel.

• You can't use the Undo command in Excel to undo changes while in Connected mode.

79

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

• You can't select a row and then click Delete to delete it while in Connected mode. Instead, use the Delete
command on the Application Development Framework Desktop Integration ribbon.

• Don't use the Clear or Clear All command in Excel. Instead, use the Clear All Data command on the Application
Development Framework Desktop Integration ribbon.

• You must use Microsoft Excel. You can't use any other spreadsheet application.

Use the Spreadsheets
• Each spreadsheet has a different set of columns. Make sure you enter the correct value for each column.

• A column that has a grey background means you can't edit it. Its read only.

• A column that has a white background means you can edit it.

• Examine the Changed column to see what you've modified. It displays a value in each row that you modify.

• A single asterisk (*) in a column means you must enter a value in that column.

• A double asterisk (**) in a column means you might need to enter a value in that column, depending on values
that you set in other columns.

• If you want to copy data from a row, make sure you don't copy the value from the Key column. The Key must be
unique.

• You can rearrange, resize, or hide columns to meet your preferences.

• Don't delete any column. Don't copy and paste any column. If you delete a column, or copy and paste a column,
then you might encounter an error.

• To create a new record, add data to an empty row. Add values to attributes that display with a white background
or a grey background when you create a new record.

• If the Status cell of a row contains Insert Failed, click No when you're prompted whether to discard the pending
changes from your update, then examine the Status Viewer to get details about the failure.

Here's a summary of the elements that you can use.

Spreadsheet Element Description

Login

Logout

Sign into or sign out of a session with the Oracle server.

Clear All Data Click Clear All Data at the end of each session to clear data from the spreadsheet. This action helps to
make sure the spreadsheet is up to date with data on the server during the next session.

Edit Options This value references the server address. You can modify it to use the spreadsheet with a different
server. In most situations, don't modify the value in the Edit Options dialog. Instead, use a different
spreadsheet for each server.

Search Search data on the Oracle server.

Create or Update Upload data that you created or updated in the Oracle spreadsheet. You upload to the Oracle server.

Delete Select one or more data rows in the spreadsheet, then click Delete to delete them from the server. This
action happens immediately while in Connected mode and you can't undo it.

Status Viewer View messages that describe the result of your actions. For example, if the Status Viewer displays No
error, then your action was successful.

80

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Spreadsheet Element Description

If an error happens, for example you don't include a required attribute, then the Status Viewer displays
an error message.

Changed Column Displays an icon that indicates you modified a value in the row but haven't yet uploaded your
modification to the server.

Flagged Column Double-click in the Flagged column to delete the row. The Flagged column displays an icon that
indicates you plan to delete the row but haven't yet uploaded your deletion to the server. Click Delete
in the ribbon to upload your deletion.

Status Column Displays the status of your action, such as Row Inserted Successfully, Update Failed, or Insert Failed.

Scan the Status column after each action to make sure the server successfully processed your request.
If the Status is empty after a request or displays Row Updated Successfully, then the update was
successful.

If an error happens, then the Status column displays a summary of the error. Use the Status Viewer to
view error details.

Key Column Displays a value that uniquely identifies the record. You can't modify this value. Make sure you don't
select it when you copy a row. You can hide the Key column.

Use Connected Mode or Deferred Mode
The spreadsheet works in Connected mode or Deferred mode, but these modes are transparent to you. You don't need
to take an action to use one or the other. For example, if you download data to the spreadsheet from the server, edit
a row, then upload the edit, then the spreadsheet works in Connected mode. It maintains an active connection to the
server.

An active connection doesn't exist in Deferred mode. For example, assume you open your spreadsheet but don't
connect to the server. You intentionally cancel out of the sign in dialog that displays. Instead, you copy data into the
Oracle spreadsheet from some other source, such as your own spreadsheet file. You sign into the server and are now in
Connected mode. You click Create or Update to upload your changes.

Use Your Own Spreadsheet
You can maintain your own spreadsheet that has your data, then copy and paste that data into the Oracle spreadsheet.

• Make sure that your own spreadsheet has the same columns and that they're in the same sequence that the
Oracle spreadsheet uses.

• Make sure you copy only data rows.

• Don't overwrite header rows in the Oracle worksheet.

Use the ManageCrossModelOptionFeature.xlsx File
You must set the Node Type to OPTION_FEATURE or OPTION.

Use these sections in the worksheet:

Section Description

Manage Cross-Model Option Feature. Create and manage your option features.

81

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Section Description

Supplemental Attributes Enter data in this section to create an association between a supplemental attribute that already exists
and an option feature that you manage in the Manage Cross-Model Option Feature section.

Status and Error Messages Get a status update and view error messages.

Troubleshoot

• If an error happens, then the Status column displays a summary of the error status. Use it to read the summary.

• Use the Status Viewer to read the error message.

• If an error happens, then the spreadsheet displays the Download dialog. Notice the text Do you want to discard
the pending changes?. Click a value.

◦ Yes. Discard the change that causes the error. The server doesn't update data and the spreadsheet
doesn't display details about the error.

◦ No. The server doesn't update data, but the spreadsheet does display details about the error in the Status
column and in the Status Viewer.

• Use the Search command to restore the values in your spreadsheet after you encounter an error.

Here are some more troubleshooting details.

Trouble Shoot

You receive a message.

Unable to execute the command
Create or Update while a cell is
in edit mode.

Step out of the cell you're editing, then retry the update.

You receive a message.

Maximum: cannot convert the
input value to the expected data
type (BigDecimal).

Some messages in the Status Viewer
includes details.

• A prefix that identifies the attribute
name. In this example, the error
happens in the Maximum attribute.

• A parenthetical that suggests
a correction. In this example,
(BigDecimal) is the parenthetical, and
it suggests that you use BigDecimal
as the data type value for the
Maximum attribute.

Make sure the value in the Maximum attribute contains a BigDecimal data type.

You receive a message.

Required property
UniqueAttribute missing.

Make sure each required attribute contains a value.

82

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

Trouble Shoot

You receive a message.

View row with key Oracle x is
not found.

Refresh your data. You might encounter this error if you perform an action, don't refresh your data,
 then do another action. For example, assume you.

1. Download data to the Manage Model Structure worksheet.
2. Download data to the Manage Pricing Charges worksheet.
3. Make, then upload a change on the Manage Rules worksheet.
4. Navigate back to the Manage Model Structure worksheet but don't refresh your data.
5. Make, then upload a change on the Manage Model Structure worksheet.

To fix this problem, refresh your data after you navigate back to the Manage Model Structure
worksheet, then make and upload your changes.

83

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 4
Structures

84

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

5 Rules

Overview of Model Rules
This chapter covers model rules. Rules define the behavior of the model during configuration.

• Rules enable you to make the configuration process simpler for end users by guiding them through complex
choices.

• Rules ensure that only valid choices are made, preventing delays and disruptions in downstream processing.

• You create rules by entering statements in the Constraint Definition Language (CDL) in the rules editor.

• The class of a rule indicates how the rule is to be enforced during the configuration process.

• The type of a rule is classified by the operator or operation employed in the rule.

You access model rules in the following ways.

• Configurator Models work area > tasks panel tab > Manage Models page > Search > Versions > click a
Draft or Version > Configurator Model or Edit Configurator Model page > Rules tab
The Edit Configurator Model page enables you to create and edit the structure, rules, and user interfaces of a
configurator model. If the model is locked by another user, then you can only view the model.

• Configurator Models work area > tasks panel tab > Manage Workspaces page > Workspace page > click
Name of participating model > Configurator Model or Edit Configurator Model page > Rules tab

Related Topics
• Configurator Rules

• How You Create Statement Rules

• The Constraint Definition Language

Rule Principles

Configurator Rules
The Configurator constraint engine acts on a configurator model, according to configurator rules, to produce valid
configurations.

Typical uses for configurator rules are to:

• Set default choices or values for model nodes

• Automatically select options based on another choice by end user

• Prevent users from selecting invalid combinations

85

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

• Control how many instances of a model can be created at run time

• Calculate and set the values for numeric options

A valid configuration is like a solution to a problem consisting of variables in the configurator model. Rules constrain
how the problem is solved.

• Variables have a defined domain and a run time range of values.

• Variables must be bound to a value.

• Variables can require input.

• Configurator can automatically try to solve the problem, using a feature called autocompletion.

Rules are defined in the the Configurator Models work area as statement rules, written in the Constraint Definition
Language (CDL).

Rules can be disabled. Invalid rules in participating models should be disabled or deleted before releasing a workspace.
When testing a model, invalid rules are ignored.

Implicit rules are imported from the Product Information Management work area. An example of an implicit rule is
an option class defined with options that are mutually exclusive. Similar rule behavior is also implicit in supplemental
structure, such as minimum and maximum selections in an option feature.

Configurator rules that you create for a model are part of the definition of that model, like supplemental structure and
user interfaces. Configurator rules can't be shared with other models.

Each rule has a class, which indicates how the rule is to be enforced during the configuration process. The rule classes
are:

• Constraint

• Default

• Search Decision

Each rule has a type, which is a classification based on the operator or operation employed in the rule. The rule types
are:

• Logic

• Numeric comparison

• Numeric accumulator

• Attribute-based compatibility

Rules, which produce valid model configurations, are different from run time user interface conditions, which can
display or enable elements in a user interface, depending on the value of an attribute. User interface conditions don't
affect the selections in a configuration.

Related Topics
• Rule Classes

• Logic Rules

• Accumulator Rules

• Compatibility Rules

86

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Rule Classes
A rule's class determines when and how it's applied at run time, not its run time behavior.

The rule classes available in configurator rules are described in the following table.

Rule Class Description

Constraint

A rule with a class of Constraint must always be true.

See the fuller description in the information about Constraints.

Default

A rule with a class of Default is like a less strict constraint. The constraint engine will try to make the
rule true but if that's not possible the rule will be ignored.

A Default rule gives you some control over the sequence of rule evaluation

Some operators can't be used in Default rules.

See the fuller description in the information about Defaults.

Search Decision

Like Default, but but applied during the process of finishing a configuration (the autocompletion
process).

See the fuller description in the information about Search Decisions.

Choosing Rule Classes
When defining a rule in the Configurator Models work area, you must assign the rule to a Rule Class. Configurator refers
to a rule's Rule Class when an end user is manually configuring a product and when the autocompletion process is
running.

A rule's Rule Class determines the following at run time:

• The rule's general behavior

• Whether the rule is mandatory (meaning that it must always be True in the configuration)

• At what point in the configuration session the rule is applied (Defaults and Search Decisions only)

Caution: New Defaults and Search Decisions appear at the end of their respective sequence, and changing an existing
rule's Rule Class from Default or Search Decision to Constraint may adversely affect a well-defined sequence. Therefore,
be sure to review and unit test the sequence of Defaults and Search Decisions after modifying a rule's Rule Class.

Constraints
Constraints are applied at run time while an end user manually selects options and enters values during a configuration
session.

87

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Constraints must always be true in the context of a configuration. For example, when the end user makes a selection
that violates a Constraint at run time, Configurator displays a contradiction message informing the user that the
previous action can't be applied.

A Constraint may be expressed as a logical expression, a numeric comparison, or a compatibility expression.

Unlike Defaults and Search Decisions, you can't specify the order in which you want Configurator to consider
Constraints at run time.

Relational operators can be the primary operator within a Constraint. Consider the following examples that use the
equals (=) and greater-than (>) relational operators:

x = y + (q*z)
a > b

In these simplified expressions of rules, the left-hand side of the expression can propagate (or "push") numeric
information to the right-hand side. In the constraint engine, the right-hand side of the expression can also propagate
("push back") to the left-hand side. The ability to define such Constraints allows rules to be bidirectional, meaning that
they can propagate in both directions.

Defaults
Like Constraints, Defaults are also applied at run time while an end user manually selects options and enters values
during a configuration session. However, unlike Constraints, Defaults are:

• Flexible, and they don't lead to a contradiction at run time when, for example, the end user deselects an option
that was selected by the rule.

• Applied at run time, on the initialization of the configuration, before the user makes any selections, in the order
specified in the rule definition. Defaults act like initial selections that can be overridden as the user proceeds
through a configuration.

A Default can fail due to a conflict with one of the end user's inputs or the propagation of a Constraint. You can specify
the order in which Defaults propagate.

You can use Defaults to guide end users toward a preferred solution by defining several contradictory rules that will be
processed in the order you specify at run time.

For example, a manufacturer of laptop computers prefers that their customers purchase the lightweight version of a
laptop instead of the heavier model, and the Deluxe carrying case rather than the Basic version. To guide buyers toward
purchasing the lightweight laptop with the Deluxe case, without preventing them from selecting alternative options, the
manufacturer defines the following rules and sequence:

1. Laptop 900 Implies 900-LTW
2. Laptop 900 Implies Deluxe Case
3. Laptop 900-HVW Implies Deluxe Case

With these rules in place, the lightweight version of the laptop (900-LTW) and the Deluxe Case will be selected by
default when the end user selects the Laptop 900 model. If the end user then selects the heavier model (the 900-HVW),
the Deluxe Case will still be selected.

Many constraints can be defined as a Default. For example, your Model contains a Numeric Feature called Weight which
has a range (domain) of 1000 - 5000. You prefer a solution in which the value of this item is less than or equal to 3000,
so you defined the following Statement Rule and assign a Rule Class of Default:

Weight <= 3000

88

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

When this rule propagates at run time, the range for the Weight item is reduced and appears as follows in the run time
UI:

Range: 1000 to 3000

If the user makes some selections that result in a Weight outside this range, the default is retracted (overridden) without
consequence.

Rules classified as Defaults may be expressed as assignment functions.

Search Decisions
Rules that you classify as Search Decisions are applied:

• During the autocompletion process

• After all user selections, Constraints, and Defaults have been applied and propagated

• Before the application of the constraint engine's inherent Search Decisions

• In the order that you specify in the rule definition

Rules classified as Search Decisions may be expressed as assignment functions, logical expressions, or numeric
comparisons.

Specifying a Sequence for Defaults and Search Decisions
At run time, the autocompletion process applies rules classified as Defaults and Search Decisions according to the
sequence that you specify in the rule definition. When you define a rule and classify it as either a Default or Search
Decision, Configurator assigns a default sequence number which places the rule at the end of its respective list. For
example, you have five existing rules with the "Defaults" Rule Class. When you create a new rule and specify a Rule Class
of Defaults, the new rule appears at the end of the list of Defaults rules, and its sequence number is 6.

If you want a rule to appear earlier in its respective sequence, click either Reorder Defaults or Reorder Search Decisions
in the Rules area of the Edit Model page..

Note: At run time, any rules that have cross-model or cross-instance participants won't necessarily be applied in their
specified sequence relative to the other rules defined in the Model. The order of a set of such rules that apply to the
same scope (combination of Models or instances) will remain as defined relative to one another, but as a group they will
be applied after instantiation of the scope (all the rule's participants) and application of all the rules of that class defined
within the various instances of the scope.

To modify the order in which Defaults or Search Decisions are applied at run time:

1. On the Rules tab of the Configurator Models work area, click Reorder Default Rules or Reorder Search
Decision Rules.

2. Click one of the arrow controls to move the selected rule up or down in the sequence.
3. Review the updated sequence.
4. If you're satisfied with the changes, click Save.

Related Topics
• Configurator Rules

• Logic Rules

• Accumulator Rules

• Compatibility Rules

89

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Logic Rules
Logic rules are a rule type that enforces a relationship. Logic rules enable you to express constraints among elements
of your model in terms of logical relationships. For example, selecting Option A may require that Options B and C be
included in the configuration.

When defining a Logic Rule, you specify the rule's behavior by using the CONSTRAIN keyword with one of the following
logic relations:

• Requires

• Negates

• Implies

• Excludes

The following sections describe each type of relation and present tables illustrating their behavior. In each table, the
arrows point to the logic state the option has after an end user selects it.The arrows indicate the direction in which the
rule propagates.

Notice that a rule can propagate from Operand A to Operand B of the relation, or from Operand B to Operand A. Notice
also that for some values and some logic relations the rule doesn't propagate; therefore logic state of the option on the
other side of the rule doesn't change.

Note: The terms "true" and "false" are used here to indicate only whether an option is included or excluded from the
configuration.

Requires
Logic rules that use the Requires relation "push both ways," which means that selecting an option on one side of the
rule has the same effect on the option on the other side of the rule. See the following examples for details. The following
figure shows the effect of the Requires relation.

• If the end user selects an option on one side of the rule, the option on the other side of the rule is also selected.
The same is true when the end user deselects an option. In other words, both options must be either included
in the configuration, or excluded from the configuration.

90

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Negates
The Negates relation is similar to the Requires relation, in that it also "pushes both ways." However, the Negates
relation prevents an option from being selected when an option on the other side of the rule is selected. In other words,
selecting one option prevents the other option from being included in the configuration. The following figure shows the
effect of the Negates relation.

• If the end user selects Option A, it becomes true and Option B is set to false.

• If the end user then deselects Option A, it becomes false and Option B becomes true. In other words, Option B
is selected

• If the end user selects Option B first, it becomes true and Option A becomes false.

• If the end user then deselects Option B, Option A becomes true.

Implies
The following figure shows the effect of the Implies relation.

• If the end user selects Option A it becomes true and Option B is also selected. In other words, Option B's logic
state becomes true.

• Deselecting Option A causes Option A to become false and the state of Option B is unknown. In other words,
Option B is available for selection.

• If the end user selects Option B first, it becomes true and Option A is unknown.

• If the end user deselects Option B, both Option B and A become false.

91

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Excludes
The following figure shows the effect of the Excludes relation.

• If the end user selects Option A, it becomes true and Option B becomes false. In other words, Option B is
excluded from the configuration. If the end user tries to select Option B, Configurator displays a contradiction
message.

• If the end user deselects Option A, Option A becomes false and Option B becomes Unknown. In other words,
Option B is available for selection.

• If the end user selects Option B first, Option A becomes false.

• If the end user deselects Option B, then Option A becomes Unknown.

Related Topics
• Configurator Rules

• Rule Classes

• Accumulator Rules

• Compatibility Rules

• CDL Constraint Statements and the CONSTRAIN Keyword

Logic States and Rule Variables
During a configuration session, the configurator engine attempts to narrow the possible domain of valid values for
nodes of a model. You define the outer bounds of the domain by defining nodes to have a minimum and maximum
value.

A variable that has neither been selected nor excluded from a configuration at run time has a logic state of Unbound.
A variable is unbound when its domain is open, which means that either a value hasn't been assigned or the set of its
members hasn't been finalized. Variables may be unbound because the end user hasn't yet made a selection, entered a
value, or run Finish and Review (autocompletion).

At run time, the value of the SelectionState and DetailedSelectionState system attributes is Selectable for options that
are neither selected nor excluded from a configuration.

Options may also be excluded from a configuration by Defaults or Search Decisions, or by autocompletion.

92

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Configurator Rules

• Rule Classes

• Logic Rules

• Accumulator Rules

• Compatibility Rules

How You Use Attributes in Model Rules
When defining a rule, you select model nodes that will participate in the rule. You can also use attributes associated with
model nodes in your rule definition.

Use the syntax provided in the following table to refer to types of node attributes and obtain their values. In the Syntax
column, <nodePath> represents the node path to a node, and <attrName> represents the name of an attribute of that
node.

Attribute Type Syntax Examples

User-defined attributes

<nodePath>.userAttrs["<attrGroupName>.<attrName>"]

If a model node has user-defined attributes,
you can insert them in rule definition text from
the Item tab of the Attributes pane of the rule
editor. Select an attribute and click the Insert
into Rule Text button.

The values of user-defined attributes are static
at run time, since the values are part of the
model definition.

'Home Theater System'.'Speaker
 System'.userAttrs["PhysicalAttributes.Color"]

Supplemental attributes

<nodePath>.suppAttrs["<attrName>"]

If a model node has supplemental attributes,
 you can insert them in rule definition text from
the Supplemental tab of the Attributes pane of
the rule editor. Select an attribute and click the
Insert into Rule Text button.

The values of supplemental attributes are static
at run time, since the values are part of the
model definition.

'Home Theater System'.'Speaker
 System'.suppAttrs["color"]

Transactional attributes

<nodePath>.transAttrs["<attrName>"]

If a model node has a transactional attribute,
 you can insert them in rule definition text from
the Structure pane of the rule editor. Select a
transactional attribute from the structure tree
and click the Insert into Rule Text button.

The values of transactional attributes are
dynamic at run time, since the values are

ADD 'Custom
 Window'.'Frame'.transAttrs["Linear
 Length"]/5
TO 'Custom
 Window'.'Frame'.'Track'.Quantity()

93

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Attribute Type Syntax Examples

determined during a configuration session by
user action or model rules.

The example divides the linear length of a
window by 5 (5 feet in length for material)
and adds it to the number of standard tracks
needed.

Configurator system attributes, such as:

• Name

• Value

• Quantity

• State

• Options

• SelectedCount

<nodePath>.<attrName>()

You can insert system attributes in rule
definition text from the System tab of the
Structure pane of the rule editor. Select an
attribute and click the Insert into Rule Text
button.

'Home Theater System'.'Speaker
 System'.'5.1'.Quantity()

When using transactional attributes in rule expressions, observe the following:

• To refer to a specific attribute value, you can't reference it with a path-style notation, as if it were a child of the
attribute. You must reference it as a literal in a conditional expression, such as:

(x) EXCLUDES (y.transAttrs["BaseWeight"] < 10)

• You can't use the Configurator system attribute Selection() on a TIA, even if it has an enumerated value set
that's displayed at run time. like an option feature. Option features do support Selection()

• You can map a constraint over all occurrences of a particular TIA within a set of nodes. Use expression syntax
such as the following example, which constrains against the selection or entry of the value 1 for the TIA Weight
when the node X has a value of 1.

(x = 1)EXCLUDES OC.Selection().transAttrs["Weight"] = 1

Related Topics
• Configurator Rules

• Rule Classes

• Logic Rules

• Accumulator Rules

• Compatibility Rules

Accumulator Rules
Accumulator Rules are a rule type that enables end-user selections to add to or subtract from a value from a variable at
run time.

For example, when the end user selects the 512 MB RAM option you want to add 512 to a Total called Total RAM
Selected.

94

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Background
Accumulator Rules can only have a Rule Class of Constraint. They can't be classified as Defaults or Search Decisions.

Numeric rules express constraints between parts of a Model in terms of numeric relationships. Use Numeric rules to
enable end-user selections to contribute to or consume from a numeric feature or option quantity.

If you create a statement rule with a Rule Class of either Defaults or Search Decision, and the rule's text defines an
Accumulator rule (meaning that it uses either the Add or Subtract operators), then Configurator displays a message
similar to this message when you validate the rule: The rules of the rule class <RULE_CLASS> may not contain the
accumulator operators <ADDTO> or <SUBTRACTFROM>.

It is important to understand that Accumulator Rules don't simply add or subtract a quantity from a variable. All rules
of this type defined against the same target node can be considered terms in a constraint against that node. This
is because all addition and subtract expressions in a Model become a single constraint on the target node. In other
words, the target node equals the sum of all addition expressions defined against it in the Model minus the sum of the
SubtractFrom expressions.

Additionally, if the target node is involved in any other constraints, the equality constraint generated by its addition and
subtraction expressions must be satisfied along with all the others. As with all other constraints, the equality constraint
is bidirectional, so it can "push back" on the values of the participants on the left-hand-side of the rule.

Keep the following in mind when using Accumulator Rules:

• If the Model contains more than one accumulator rule that adds to or subtract from the same target node, and
that node exists in a referenced Model, generating logic creates a single constraint that equates the target to a
sum of all the terms expressed in the individual rules in that model.

If addition or subtraction rules are defined against a given target within more than one parent model in a
reference model hierarchy, each of the generated equality constraints must be satisfied individually. In other
words, the addition and subtraction terms are not accumulated across more than one referencing model.

• When a numeric rule compares two decimal values, they may be interpreted as not being equal even when
they're, due to their representation by the Java double data type. The decimal tolerance value (also referred
to as epsilon value) is set to 0.000000001 (scale of 9), which will then be used by the configurator engine
to convert the decimal comparison to a mathematical equation for evaluation.For example, the expression
a=b could be converted to Abs(a-b) <= epsilon. This would give an accurate result as long as the scale is less
than or equal to the number of decimal digits specified in the epsilon (the decimal tolerance value, which is
0.000000001).

Procedure
To create an Accumulator Rule::

1. Create a Rule of type Statement Rule.
2. Enter the text of the Statement Rule, using the addition or subtraction operator according to the following

syntax:

ADD n TO x

or

SUBTRACT n FROM x

Where n is a number and x is a numeric feature.

95

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Configurator Rules

• Rule Classes

• Logic Rules

• Compatibility Rules

• CDL Accumulator Statements and the ADD or SUBTRACT Keywords

Compatibility Rules
Compatibility rules test the compatibility between the children of option classes.

Background
Compatibility rules define which items are allowed in a configuration when other items are selected. A compatibility rule
tests the compatibility between the children of one or more option classes (which are typically standard items, but may
also include other option classes).

Compatibility rules can only have a rule class of Constraint. They can't be classified as Defaults or Search Decisions.

Compatibility rules describe the conditions for compatibility across a set of options from the participant features. In
other words, if a selection is made from each participant feature and those selections don't satisfy the compatibility
criterion, there is a contradiction. A compatibility rule can't constrain selections from only a subset of the participant
features.

When defining any type of compatibility rule, Configurator doesn't allow more than one of the rule's participants to
have a Maximum Selections value that's greater than 1. If the Maximum Selections value of one of the rule participant's
changes after the rule is created, Configurator displays an error when you compile the model.

Example
Use the COMPATIBLE...OF keyword to define a compatibility rule.

COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.userAttrs["Paints_AG.Stain"] = &tint.userAttrs["Paints_AG.Stain"];

Related Topics
• Configurator Rules

• Rule Classes

• Logic Rules

• Accumulator Rules

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

96

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Consider Integer Values and Decimal Values in Configurator Rules

Consider how your configurator rule uses integer values and decimal values.

You must make sure that the result of multiplying integer values in your rule doesn't exceed Java's integer limit.
Constraint Definition Language (CDL) uses Java's Double data type to store a decimal value. Double has a much higher
limit than Java's Integer data type. In some cases, a rule that you create in CDL might result in a value that exceeds the
integer's limit.

The result of a mathematical operation in a configurator rule depends on each operand's data type. If each of your
operands are an integer, and if the value after the operator is a constant integer, or if it references an attribute that
contains an integer value, then the result will be an integer.

Scenario
Consider a scenario.

IntegerFeature (min = 0, max = 2,147,483,647)
DecimalFeature (min = 0, max = 999,999,999,999,999)

Assume you have this logic in your rule.

IntegerFeature * 400,000 = DecimalFeature

You might assume that you can specify any value for IntegerFeature as long as that value remains in IntegerFeature's
range, and then store the result of your multiplication in DecimalFeature.

However, IntegerFeature and the constant value of 400,000 are each an integer, 400,000 is after the operator, so the
result of the multiplication must be an integer, not a decimal, and it must not exceed IntegerFeature's maximum value.
At runtime, if the user sets IntegerFeature to a value that exceeds 5,368, you'll have an error.

Runtime Math Result

5,368 multiplied by 400,000 equals 2,147,
200,000.

2,147,200,000 is less than IntegerFeature's 2,147,483,647 maximum, so you're good to go.

5,369 multiplied by 400,000 equals 2,147,
600,000.

2,147,600,000 exceeds IntegerFeature's 2,147,483,647 maximum, so you'll have an error.

Solutions
Convert an Operand to a Decimal

For example, change 400,000 to 400,000.0:

IntegerFeature * 400,000.0 = DecimalFeature

Another way is to multiply one of the operands by a very small value, such as 1.00000001. Multiplying by a small value
will have a negligible affect on the result, but will help to avoid the problem. For example:

IntegerFeature * 1.00000001

97

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Use a Decimal Feature or Supplemental Attribute

If you can't use a simple constant or a decimal value after the operator, then consider using a decimal feature instead of
an integer feature.

If you can't use a decimal feature, then use a supplemental attribute that contains an integer instead of using the
constant value. For example:

IntegerFeature * m1.suppAttrs["IntegerAttribute"] = DecimalFeature

Here are some other alternatives:

Code Description

(IntegerFeature * SQRT(1)) *
m1.suppAttrs["IntegerAttribute"] =
DecimalFeature

The SQRT function will return a decimal.

(IntegerFeature * 1.00000001)) *
m1.suppAttrs["IntegerAttribute"]
=DecimalFeature

The 1.00000001 constant is a decimal.

Change the Sequence of Your Operands

If the solutions that we describe above don't work for you, then you can change the sequence of your operands. The
problem happens only when the value after the operator is static, so you can move that value to before the operator:

m1.suppAttrs["IntegerAttribute"] * IntegerFeature = DecimalFeature

Here's a more complex example:

Add &x.Quantity() * &x.suppAttrs["IntegerAttribute"] To DecimalFeature FOR
ALL &x IN {OptionClass.Options()}

You can rewrite it to avoid the problem:

Add (&x.Quantity() * SQRT(1)) * &x.suppAttrs["IntegerAttribute"] To
DecimalFeature FOR ALL &x IN {OptionClass.Options()}

Or, rewrite it this way:

Add &x.suppAttrs["IntegerAttribute"] * &x.Quantity() To DecimalFeature FOR
ALL &x IN {OptionClass.Options()}

The problem happens only when you multiply integer operands and the result overflows into a decimal. If the overflow
doesn’t happen, then the sequence that you use for the operands doesn’t matter.

Create Statement Rules

How You Create Statement Rules
Statement rules are the type of rule you use to build configuration constraints between elements of a model.

98

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Creating a Statement Rule
To create a statement rule, you use the rule editor in the Configurator Models work area.

The following table presents the actions required to create statement rules, and the reason for each action.

Action Reason

1. On the Rules tab of the Edit Configurator
Model page, create a statement rule by
selecting Create > Statement Rule from
the Actions menu.

Configurator rules are created as statement rules.

The new rule appears in the Rules pane. You can create rule folders there to keep your rules organized.

You can create several statement rules and work on them concurrently. A statement rule can contain
multiple statements.

2. In the Create Statement Rule dialog
box, type in a name, and an optional
description, and select a rule class.

The rule class governs how the rule is used during configuration. You can change the rule class later.

3. Enter the text of the rule in the text pane
below the button bar in the Definition
region.

Statement rules must be written in the Constraint Definition Language (CDL).

3a. Use the menus to insert CDL
syntactical elements into the rule text.

Using the menus guarantees that you will insert only valid syntactical elements. However, you must
validate the statement rule to guarantee that it's syntactically valid as a whole, and test the rule in the
model to determine whether it performs as expected.

3b. Use the Structure pane to reference
model structure nodes.

Your CDL statements contain many references to nodes of the model structure. To insert a syntactically
correct reference to a node, search for and select it in the Structure pane, then click the Insert into
Rule Text button on the toolbar, or chose that action from the context menu on the node.

4. Use the Validate button to validate the
rule text.

The Validate button checks the validity of the syntax of your CDL statements, and checks the
references in the rule text to model structure. If the rule is invalid or has an error, that's indicated in the
Status indicator for the rule on its Details region.

You can leave a rule in Invalid status if necessary. Invalid rules are ignored when testing the model.

5. Check the Status indicator

The Status indicator shows whether the rule has been modified, and whether it's valid or has an error.
Error messages provide details about any problems with the rule.

6. Save the rule.

To test a rule, you must compile it, with the Save and Compile action. The Test Model action compiles
the run for you.

If you're unable to create a valid rule, you can click Save to save the rule text in its current state, to work
on later. The invalid rule will be ignored when testing.

Testing a Configurator Rule
To verify that the behavior of a configurator rule is what you expect, test the model.

To test a configurator rule:

1. Click the Test Model button. You don't have to be on the Rules tab of the model to test rules.

99

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

2. In the Test Model dialog box, ensure that you select a user interface that includes nodes of the model that
are affected by the rule behavior that you intend to test, in the User Interface field. By default, the previously
tested UI is selected.

3. Make selections among the configuration options, emulating both the likely and also the possible choices
made by an end user. Navigate through the pages of the UI, and observe how your own selections affect other
selections that are made by the rule you're defining.

Related Topics
• The Statement Rule Editor

• Configurator Rules

• The Constraint Definition Language

The Statement Rule Editor
You use the statement rule editor to create statement rules.

Features of the Statement Rule Editor
The statement rule editor provides features that assist you in efficiently creating statement rules.

The statement rule editor is part of the Rules tab of the Edit Configurator Model page.

The Rules tab also provides

• The Rules pane, which gives you access to the rules you define, displayed in a tree control. The status of rules
that are modified or have errors is indicated by icons.

You can create rule folders in the tree, to organize your rules.

The Actions menu contains actions that let you reorder Default and Search Decision rules.

• The Structure pane, which enables you to insert syntactically correct references to a node directly into the rule
text, by selecting the node and clicking the Insert into Rule Text button.

The following table summarizes the features and benefits of the rule editor.

Feature Benefit

Enabled check box

You can disable a rule while you work on its definition, or if you don't want its behavior affecting the
model.

Status

The status values are:

• Modified: The rule text was edited, or some attribute of the rule was changed since the last time it
was compiled.

• Error: An error prevented the rule from being compiled and executed, or the rule has a syntax
error.

• Valid: The rule is valid, and can be compiled and tested.

100

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Feature Benefit

End Date

The read-only End Date field displays the date when the rule becomes invalid because one of the
participants in the rule was end-dated.

Definition region

This region of the editor page groups the controls for modifying the rule.

Rule Class selection

Enables you to change the rule class that you selected when creating the rule.

If the class is a Default or Search Decision, a Reorder button is enabled so that you can change the
sequence in which your defaults or search decisions are executed.

Validate button

Checks the validity of the syntax of your rule text.

Text pane

You enter the CDL rule text of your statement rule here. Basic text editing is provided. The toolbar
above the text pane provides insertion menus and text buttons that enable you to enter valid CDL code
without using the keyboard.

Insertion menus

A set of menus enables you to insert valid CDL syntactical elements directly into the rule text. The
menus are:

• Keywords: Major CDL keywords around which statements are built.

• Logic Operators: The operators for defining logic rules.

• Functions: a set of cascading menus for entering functions that are grouped by categories:

◦ Logic

◦ Arithmetic

◦ Trigonometric

◦ Set

◦ String

The menus are tear-off style, so you can tear an often-used menu off the toolbar and leave it
positioned over the editor page for convenient access while you work.

Text buttons

A set of buttons enables you to insert valid CDL syntactical elements directly into the rule text by
clicking. The groups of buttons provide:

• Characters for delimiting statements

• Comparison operators

• Boolean operators

• Mathematical operators

Related Topics
• How You Create Statement Rules

• Configurator Rules

• The Constraint Definition Language

101

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Use Application Development Framework Desktop Integration to
Manage Rules
You can use ADF Desktop Integration with Microsoft Excel (ADFdi) to maintain a common set of rules across multiple
models and environments.

Download rule definition data to a spreadsheet connected to your development environment, optionally modifying the
definitions, and uploading the definitions to the same or another model or environment.

Rule Management Summary
You can perform the following operations when managing configurator rules:

Search

To manage rules for a draft model, search for the model by its name, across workspaces, or by the
name of the workspace that contains the model.

Create

To create a rule for the model you searched for, download its rule data to an using an Application
Development Framework Desktop Integration (ADFDI) enabled spreadsheet, add details for the rule,
 then upload the rule data.

Update

To update an existing rule for the model you searched for, download its rule data to an ADFDI-enabled
spreadsheet, make changes to certain details for the rule, then upload the rule data.

Management Procedure
The following procedure applies to both updating or supplementing existing rules, and to replicating rules in another
environment.

Before using this feature, you must have downloaded and installed the latest version of ADF Desktop Integration with
Microsoft Excel, by selecting Download Desktop Integration from your Home page.

The models containing the rules to be managed must be in Draft status and must be participants in an unreleased
workspace (a workspace with the status of In Development).

To create or modify rules using ADFDI:

1. From the File-Based Data Management section of the task drawer panel, click the Manage Rules task.
2. When prompted, open the Excel spreadsheet.
3. When prompted, sign in with the credentials that you use for the Configurator Models work area. You may need

to sign in each time you make the ADFDI connection.

The spreadsheet for managing rules opens automatically in Microsoft Excel. The spreadsheet includes controls
for working with ADFDI functions, on a worksheet ribbon tab named Manage Rules.

4. Click the Search button on the ADFDI tab. Enter selection criteria for the models whose rules you want to
manage. You can restrict the search by model or workspace name, or both.

When your search completes, select the model whose rules you want to manage and click OK. The spreadsheet
becomes populated with a row for each rule currently existing in the model.

102

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Optionally, you can log out of your ADFDI connection, to work offline, by clicking a button on the ADFDI tab.
5. If you want to modify the downloaded rules, you can edit existing values for the rules, or insert new rows to

create new rules or cell values that accomplish your update, using the columns of the spreadsheet as described
in the following table. The columns whose values can be updated correspond to fields on the Rules tab of the
Edit Configurator Model page.

Don't replicate data in an existing row by copying and pasting the entire row, because the generated read-only
value in the Key column must be unique. Only replicate cells that can be updated, which are displayed without
shading.

Column Can Be Updated? Description

Changed

No

Indicates that a row was changed or entered
since the last download or upload.

Flagged

No

Reserved for future use.

Status

No

Displays the results of the validation of the
row data that's performed on each upload.
Values include:

◦ Update failed

◦ Insert failed

◦ Row inserted successfully

Model

Yes

Name of the existing model containing the
rule.

You can't create a new model this way.

Workspace

Yes

Name of the existing workspace containing
the model draft that contains the rule.

You can't create a new workspace this way.

Name

Yes

Name of the rule.

Entering a new name creates a new rule in
the specified model, workspace, and folder.
You can't change the name of an existing
rule this way.

You can't use a rule name that already exists
in another draft of the model.

103

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Column Can Be Updated? Description

Description

Yes

Description of the rule. You can change the
description as desired.

Folder Path

Yes

Name and path of the folder containing the
rule. Entering a new folder name creates a
new folder under the top-level Rules folder
for the model. To create or use subfolders,
use the following notation: subfolder/
sub-subfolder/...

Type

Yes

Type of the rule. Only Statement Rules are
supported.

Rule Class

Yes

The current rule class of the rule. To change,
 the class, select one of:

◦ Constraint

◦ Default

◦ Search Decision

Rule Text

Yes

The CDL text that defines the rule.

The rule text is validated when you upload
it, following all the rules that apply to rules
in the Configurator Models work area. It's
possible to upload invalid rule text, but it will
cause the status of the uploaded rule to be
Error.

Ensure that node names are enclosed with
single quotation marks, so that nodes can
be located correctly when the rule text is
parsed. If a rule begins with a node name,
 add an additional single quotation mark
before it, to accommodate the behavior of
Microsoft Excel.

Enabled

Yes

Whether the rule is enabled or not. Select
Yes or No.

Rule Status

No

Displays the results of the validation of the
rule text that's performed on each upload.
Values are:

104

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Column Can Be Updated? Description

◦ Modified

◦ Valid

◦ Error

End Date

No

The date this rule becomes invalid due to
end dating of participants.

Error Message

No

Error message generated when validating
the rule during upload. The messages are
the same as those generated by validation
in the Configurator Models work area.

Key

No

Unique key value used by ADFDI to
associate spreadsheet rows with rules.

A marker appears in the Changed column of the spreadsheet in each row that you modify. This marker
indicates which rows will be uploaded to the model.

Tip: You can maintain a separate offline spreadsheet containing the data to be used for updates, then copy
and paste that data into the ADFDI connected spreadsheets that you download.

6. Click the ADFDI Create or Update button, which submits the update using your current ADFDI connection.

The upload process updates the rule definitions based on the changes you made in the downloaded ADFDI
spreadsheet. After every upload, each row in the spreadsheet is subjected to two-step validation:

a. The data in the spreadsheet row is validated by ADFDI. The results are displayed in the Status column.
b. The rule text is validated by Configurator. The results are displayed in the Rule Status column.

7. Examine the messages in the Status and Error Message columns of the spreadsheet for information on the
update, or possible errors.

If the Status cell of a row contains Insert failed, click No when you're prompted whether to discard the pending
changes from your update, and examine click the Status Viewer button to examine details about the failure.

To see the effect of your rule updates, you might have to close the affected Rules page, if it's open, and reopen it to
refresh the display.

Migrating Rules
You can migrate rules from one instance of the Configurator Models work area to another instance, in a way similar to
creating or updating rules in a single instance.

For example, assume that you want to migrate rules from a Test instance to a Production instance. To migrate rules:

1. Sign into Test, search for the model containing the rules, and download the rules from that model.

105

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

2. Copy the downloaded rule data from the spreadsheet for Test. Only copy the cells that allow updating. You can
modify the rules, as long as you follow the restrictions described here about which data can be changed.

Tip: You can set aside a backup of the copied rule data by pasting it in a separate spreadsheet that's not
connected by ADFDI.

3. Sign into Production, search for the model that will receive the rules, and download the rules from that model.
The workspaces and models referenced in your copied rule definitions must exist in Production.

4. Copy the rule data that came from Test, and paste it into the spreadsheet connected to Production, in the
columns that are eligible for updating.

5. Click the ADFDI Create or Update button, to upload the rule data to the model in Production.

Related Topics
• Configurator Rules

• How You Create Statement Rules

• How You Write Extension Rule Text

• Overview of Using Spreadsheets to Manage Supplemental Structures

CDL Reference

The Constraint Definition Language
The Constraint Definition Language (CDL) enables you to define configurator rules and the constraining relationships
among items in configurator models, by entering them as text.

Overview of the Constraint Definition Language (CDL)
The Constraint Definition Language (CDL) is a modeling language. CDL enables you to define configurator rules, the
constraining relationships among items in configurator models, by entering them as text. A rule defined in CDL is an
input string of characters that's stored in the CZ schema of the Oracle Applications database, validated by a parser,
translated into executable code by a compiler, and interpreted at run time by Configurator.

You use CDL to define a Statement Rule in the Configurator Models work area by entering the rule's definition as text.
Because you use CDL to define them, Statement Rules can express complex constraining relationships.

Relationships Expressed in CDL
Using CDL, you can define the following relationships:

• Logical

• Numeric

• Compatibility

• Comparison

106

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Anatomy of a Configurator Rule Written in CDL

• CDL Statements

• CDL Syntax Details

• CDL Expressions

• CDL Functions

Anatomy of a Configurator Rule Written in CDL
This topic provides an overview of how the syntax, semantics, and lexical structure of a rule written in CDL relate to one
another.

This section contains the following:

• Rule Definition

• Rule Statements

• Data Types

Rule Definition
A configurator rule has a name, associated model, rule text, other attributes such as rule class. The rule definition is
written in CDL and consists of one or more individual statements that express the intent of the rule, along with optional
comments.

When creating a Statement Rule in the Configurator Models work area, you enter the name and other attributes in input
or selection fields and the rule definition in the text box provided for that purpose.

Rule Statements
Statements define the rule's intent, such as to add a value of 10 to Integer Feature X when Option A is selected.

Multiple statements in a rule definition must be separated from one another with semi-colons (;). CDL supports two
kinds of statements: Explicit and Iterator.

CDL statements are parsed as tokens. Everything in CDL is a token, except white space characters and comments.

Statements consist of one or more clauses. Clauses consist of keywords and one or more expressions. Keywords are
predefined tokens that determine CDL syntax and embody the semantics of the language. CONSTRAIN, COMPATIBLE,
REQUIRES, IMPLIES, LIKE, NOT, and others are all examples of keywords.

An expression is the part of a statement that contains an operator and the operands involved in a rule operation.
An operator is a predefined keyword, function, or character that involves the operands in logical, functional, or
mathematical operations. REQUIRES and the plus sign (+) are examples of operators. An operand can be an expression,
a literal, or an identifier. The literal or identifier operand can be present in the rule as a singleton or as a collection.
Model nodes that are referred to in a rule are called rule participants.

Literals are tokens of a specific data type, such as Numeric, Boolean (True or False), or Text. The specific values of
literals are equivalent to the notion of constants.

107

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

An identifier is a token that identifies model objects or formal parameters. When an identifier identifies a model object
it, refers to a model node or attribute and the sequence of letters and digits starts with a letter. These kinds of identifiers
are called references. When an identifier is a formal parameter, it identifies a local variable and is used in an iterator
statement. Formal parameters are prefixed with an ampersand (&).

For greater readability and to convey meaning such as the order of operations, CDL supports separators. Separators
are tokens that maintain the structure of the rule by establishing boundaries between tokens, grouping them based on
some syntactic criteria. Separators are single characters such as the semi-colon between statements or the parentheses
around an expression.

More information about these statements and the CDL elements they contain is described with CDL Statements.

Data Types
Following are valid data types when defining a rule in CDL:

• INTEGER

• DECIMAL

• BOOLEAN

• TEXT

• Node types

Under certain circumstances, a data type of a variable isn't compatible with the type expected as an argument. The
Configurator parser doesn't support explicit conversion or casting between the data types. The parser performs implicit
conversion between compatible types. See the following table for details.

If a rule definition has the wrong data types, the parser returns a type mismatch error message. Invalid Collection shows
a collection whose data types can't be implicitly converted to be compatible.

The following table shows which data type each source data type implicitly converts.

Source data type (or collection of the
same type)

Implicitly converts to (or collection of the same type)

INTEGER

DECIMAL

NODE of type Standard Item, Option Class,
 Model, Option Feature, Option, or Boolean
Feature

BOOLEAN

INTEGER

DECIMAL

Node type

NODE of type Integer Feature

INTEGER

DECIMAL

NODE of type Decimal Feature

DECIMAL

Unless specified otherwise, all references to matching types assume the implicit data type conversions.

108

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Although TEXT is included as a data type here, it can only be used in a static context. You can't use a TEXT literal,
reference, or expression in the actual body of a CONSTRAIN, ADD, or SUBTRACT expression. The Configurator compiler
validates this condition when you compile the model.

Related Topics
• CDL Statements

• CDL Syntax Details

• CDL Expressions

• CDL Functions

• CDL Operators

CDL Statements
A rule definition written in CDL consists of one or more statements that define the rule's intent.

The two kinds of statements are:

• Explicit statements

• Iterator statements

The difference between explicit and iterator statements is in the types of participants involved.

Explicit Statements
Explicit statements express relationships among explicitly identified participants and restrict execution of the rule to
those participants and the model containing those participants.

In an explicit statement, you must identify each node and attribute that participates in the rule by specifying its location
in the model structure. An explicit statement applies to a specific model, thus all participants of an explicit statement are
explicitly stated in the rule definition.

CDL supports several kinds of explicit statements, which are identified by the keywords CONSTRAIN, COMPATIBLE,
ADD...TO, and SUBTRACT...FROM.

The following example shows such an explicit statement consisting of a single expression of the logical IMPLIES
relation.

CONSTRAIN a IMPLIES b;
CONSTRAIN (a+b) * c > 10 NEGATES d;

Iterator Statements
Iterators are query-like statements that iterate, or repeat, over elements such as constants, model references, or
expressions of these. Iterators express relations among participants that are model node elements of a collection,
or participants that are identified by their attributes, and allow the rule to be applied to options of option features,
or children of option classes, that have the same attributes. Iterators allow you to use the attributes of model nodes
to specify the participants of constraints or contributions. This is especially useful for maintaining persistent sets
of constraints when the model structure or its attributes change frequently. Iterators can also be used to express
relationships between combinations of participants, such as with compatibility rules.

109

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Iterator statements can use local variables that are bound to one or more iterators over collections. This is a way of
expressing more than one constraint or contribution in a single implicit form. During compilation, a single iterator
statement explodes into one or more constraints or contributions.

The available iterators that make a rule statement an iterator statement are:

• FOR ALL....IN

• WHERE

Multiple Iterators in One Statement
The syntax of the FOR ALL clause allows for multiple iterators. The statement can be exploded to a Cartesian product of
two or more collections.

The example below produces a Cartesian product as the rule iterates over all the items of the Tint option class in
the Glass child model and over all the items of the Color option class in the Frame child model of a Window model.
Whenever the Stain user-defined attribute in an item of the Color option class equals the Stain user-defined attribute
in an item of the Tint option class, the selected color pushes the corresponding stain to TRUE. So, for example, when
&color.userAttrs["Paints_AG.Stain"] and &tint.userAttrs["Paints_AG.Stain"] both equal Clear, selecting the White
option causes the Clear option to be selected.

Example: Multiple Iterators in One CONSTRAIN Statement

COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.userAttrs["Paints_AG.Stain"] = &tint.userAttrs["Paints_AG.Stain"];

The difference between this and a compatibility rule is that this code selects participants without over-constraining
them, while a compatibility test deselects participants that don't pass the test.

In the following example, the numeric value of feature a contributes to feature b for all the options of a and b when the
value of their user-defined attribute UDA2 is equal.

Multiple Iterators in One ADD...TO Statement

ADD &var1 TO &var2
FOR ALL &var1 IN {OptionsOf(a)}, &var2 IN {OptionsOf(b)}
WHERE &var1.userAttrs["UDA2"] = &var2.userAttrs["UDA2"];

Related Topics
• The Constraint Definition Language

• Anatomy of a Configurator Rule Written in CDL

• CDL Syntax Details

• CDL Expressions

CDL Syntax Details
Miscellaneous syntactical elements of CDL are described here.

110

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

CDL Syntactical Elements
The following table lists miscellaneous syntactical elements of CDL.

Element Description

Comments

Comments are included in rule definitions at your discretion to explain the rule.

Comments aren't tokens and therefore ignored by the Configurator parser.

White space

White space, which includes spaces, line feeds, and carriage returns, format the input for better
readability.

The white space category of elements aren't tokens and therefore ignored by the Configurator parser.

Case Sensitivity

Keywords aren't case sensitive. Keyword operators aren't case sensitive. Model object identifiers are
case sensitive. Formal parameters are case sensitive and can't be in quotes. The constants E and PI as
well as the scientific E aren't case sensitive. The keywords TRUE and FALSE aren't case sensitive. Text
literals are case sensitive. All keywords, constant literals, and so on aren't case sensitive.

Quotation Marks

Model structure node names that contain white space, or text that would be interpreted by the parser
as keywords or operators, must be enclosed in single quotation marks.

Syntax Notation
The following table describes the valid statement syntax notation for CDL. The table lists the available symbols and
provides a description of each. This notation is used for CDL examples and in the syntax reference.

Symbol Description

-- or //

A double hyphen or double slash begins a single line comment that extends to the end of the line.

/* */

A slash asterisk and an asterisk slash delimits a comment that spans multiple lines.

&lower case

Lower case prefixed by the ampersand sign is used for names of formal parameters and iterator local
variables.

UPPER CASE

Upper case is used for keywords and names of predefined variables or formal parameters.

Mixed Case

Mixed case is used for names of user-defined Model nodes, names of user-defined rules.

;

A semi-colon indicates the end of one statement and the beginning of the next.

In the examples for CDL, an implied carriage return happens at the end of each line, unless otherwise noted. You must
press the Enter key at the end of a line of input. The following table lists the typographic and symbol conventions used
in this book, such as ellipses, bold face, italics.

111

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Convention Meaning

.

.

.

Vertical ellipsis points in an example mean that information not directly related to the example has
been omitted.

...

Horizontal ellipsis points in statements or commands mean that parts of the statement or command
not directly related to the example or relevant to the discussion have been omitted.

boldface text

Boldface type in text indicates a new term, a term defined in the glossary, specific keys, and labels of
user interface objects. Boldface type also indicates a menu, command, or option, especially within
procedures

[]

Brackets enclose optional clauses from which you can select one or none.

>

The left bracket alone represents the MS DOS prompt.

$

The dollar sign represents the DIGITAL Command Language prompt in Windows and the Bourne shell
prompt in Digital UNIX.

%

The per cent sign alone represents the UNIX prompt.

name()

In text other than code examples, the names of programming language methods and functions are
shown with trailing parentheses. The parentheses are always shown as empty. For the actual argument
or parameter list, see the reference documentation. This convention isn't used in code examples.

Terminology
The following table defines the terms used here.

Term Description

Cartesian product

A set of tuples that's constructed from two or more given sets and comprises all permutations of single
elements from each set such that the first element of the tuple is from the first set and the second is
from the second set, and so on.

clause

A segment of a rule statement consisting of a keyword and expression.

collection

A set of multiple operands within parentheses and separated by commas.

compiler

The part of Configurator that first parses rule definitions and then generates code that's executable at
run time.

explicit statement

Explicit statements express relations among explicitly identified participants and restrict execution of
the rule to those participants and the Model containing those participants.

expression

A subset of the statement that contains operators and operands

112

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Term Description

formal identifier

A variable that's defined in the scope of an iterator statement to represent an iterating identifier.

iterator statement

Iterators are query-like statements that iterate, or repeat, over one or multiple relations or constraints.

non-terminal

The kind of symbols used in the notation for presenting CDL grammar that represent the names of
grammar rules.

parser

A component of the Configurator compiler that analyzes the syntactic and semantic correctness of
statements used in rule definitions.

relationship

A type of constraint expressed in a single statement or clause. A relationship can be equivalent to
a simple rule. A Statement Rule expresses one or more relationship types but isn't itself a type of
relationship.

signature

The distinct combination of a function's attributes, such as name, number of parameters, type of
parameters, return type, mutability, and so on.

singleton

A single operand that isn't within a collection.

statement

The entire sentence that expresses the rule's intent. A CDL rule definition can consist of multiple
statements, each consisting of clauses containing expressions, and separated by semi-colons.

terminal

The kind of symbols used in the notation for presenting CDL grammar that represent the names,
 characters, or literal strings of tokens.

token

The result of translating characters into recognizable lexical meaning. All text strings in the input
stream to the parser, except white space characters and comments, are tokens.

unicode

A 16-bit character encoding scheme allowing characters from Western European, Eastern European,
Cyrillic, Greek, Arabic, Hebrew, Chinese, Japanese, Korean, Thai, Urdu, Hindi and all other major world
languages, to be encoded in a single character set.

Separators
Separators are characters that serve as syntactic filling between the keywords and the expressions. Their goal is to
maintain the structure of the token stream by introducing boundaries between the tokens and by grouping the tokens
through some syntactic criteria.

The following table lists the separators that are valid in CDL.

Separator Description

(

The open parenthesis indicates the beginning of function arguments or the beginning of an
expression.

) The close parenthesis indicates the end of function arguments or the end of an expression.

113

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Separator Description

,

The comma separates arguments or collection elements.

;

The semi-colon separates statements.

.

The dot character separates identifiers in compound references.

Related Topics
• CDL Statements

• CDL Syntax Details

• CDL Expressions

• CDL Functions

• CDL Operators

CDL Expressions
An expression is usually part of (or sometimes all of) a CDL statement. It has two operands that are connected by an
operator, or functions and their arguments.

Examples
The following example shows a simple mathematical expression where the two operands are 2 and frame.border, and
the operator is * (multiplication).

2 * frame.border

The following example shows a simple mathematical expression used as the second operand in another expression,
where the first operand is window.frame.width and the operator is - (subtraction).

window.frame.width - 2 * frame.border

For an example of CDL rules using these expressions, consider a Window Model. If you want to calculate the size of the
glass to be put into a window frame where the glass is inserted in the frame 1/2 inch at each side, and the frame border
is 1 inch, you might write the two accumulator rules in the following example.

ADD window.frame.width - 2 * frame.border + 2 * 0.5 TO glass.width;
ADD window.frame.height - 2 * frame.border + 2 * 0.5 TO glass.height;

Following are some additional examples of expressions.

The following expressions result in a BOOLEAN value:

a > b
a AND b
(a + b) * c > 10
a.prop LIKE "%abc%"

114

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

The following expressions result in a INTEGER or DECIMAL value:

a + b
((a + b) * c)^10

Related Topics
• Anatomy of a Configurator Rule Written in CDL

• CDL Statements

• CDL Syntax Details

• CDL Functions

• CDL Operators

CDL Functions
In addition to operators, expressions can contain functions, which may take arguments and return results that can be
used in the rest of the expression. All standard mathematical functions are implemented in CDL.

The result of each function can participate as an operand of another operator or function as long as the return type of
the former matches with the argument type of the latter.

Functions perform operations on their arguments and return values which are used in evaluating the entire statement.
Functions must have their arguments enclosed in parentheses and separated by commas if there is more than one
argument. Function arguments can be expressions.

For example, both of the following operations have the correct syntax for the Round function, provided that Feature-1
and Feature-2 are numeric Features:

Round (13.4)
Round (Feature-1 / Feature-2)

CDL supports the following functions:

• Arithmetic

• Trigonometric

• Logical

• Set

• Text

• Hierarchy or Compound

Arithmetic Functions
The following table lists the arithmetic functions that are available in CDL. The term infinity is defined as a number
without bounds. It can be either positive or negative.

Function Description

Abs(x)

Takes a single number as an argument and returns the positive value (0 to +infinity). The domain range
is -infinity to +infinity. Returns the positive value of x. Abs(-12345.6) results in 12345.6

115

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Function Description

AggregateSum(x)

Can be used in a Constraint, Default, or Search Decision, but only as a sub-expression.

Round(x)

Takes a single decimal number as an argument and returns the nearest integer. If the A side of a
numeric rule is a decimal number, contributing to an imported bill of materials that accepts decimal
quantities, then the Round(x) function is unavailable. The reason that the Round(x) function is
unavailable is that the contributed value doesn't need to be rounded as the B side accepts decimal
quantities. This function is available when the bill of materials item accepts only integer values.

RoundDownToNearest(x,y)

This is a binary function. x is a number between -infinity and +infinity, y is a number greater
than 0 and less than +infinity. A number is returned between -infinity and +infinity. The first
argument is rounded to the nearest smaller multiple of the second argument. For example,
RoundDownToNearest(433,75) returns 375.

RoundToNearest(x,y)

This is a binary function. x is a number between -infinity and +infinity, y is a number greater than 0
and less than +infinity. A number is returned between -infinity and +infinity. RoundToNearest(433,10)
returns 430.

RoundUpToNearest(x,y)

This is a binary function. The number x is between -infinity and +infinity, and the number y
is greater than 0 and less than +infinity. A number is returned between -infinity and +infinity.
The first argument is rounded up to the nearest multiple of the second argument. For example,
RoundUpToNearest(34.1,0.125) returns 34.125.

Ceiling(x)

Takes a single decimal number as an argument and returns the next higher integer. For example,
ceiling(4.3) returns 5, and ceiling(-4.3) returns -4.

Floor(x)

Takes a single decimal number as an argument and returns the next lower integer. For example,
floor(4.3) returns 4, and floor(-4.3) returns -5.

Log(x)

Takes a single number greater than 0 and less than +infinity and returns a number between -infinity
and +infinity. Returns the logarithmic value of x. An error happens if x=0.

Log10(x)

Takes a single number greater than 0 and less than +infinity and returns a number between -infinity
and +infinity. Returns the base 10 logarithm of x. An error happens if x=0.

Min(x,y,z...)

Returns the smallest of its numeric arguments.

Max(x,y,z...)

Returns the largest of its numeric arguments.

Mod(x,y)

This is a binary function. Returns the remainder of x/y where x and y are numbers between -infinity
and +infinity. If y is 0, then division by 0 is treated as an error. If x=y, then the result is 0. For example,
Mod(7,5) returns 2.

Exp(x)

Returns e raised to the x power. Takes a single number between -infinity and +infinity and returns a
value between 0 and +infinity.

Pow(x,y)

This is a binary function. Returns the result of x raised to the power of y. The number x is between -
infinity and +infinity. The integer y is between -infinity and +infinity and the returned result is between
-infinity and +infinity. If y=0, then the result is 1. For example, Pow(6,2) returns 36.

116

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Function Description

Sqrt(x)

Sqrt(x) returns the square root of x. Takes a single number between 0 and +infinity and returns a value
between 0 and +infinity. An input of -x results in an error.

Truncate(x)

Truncate(x) takes a single decimal number x and truncates it, removing all digits after the decimal
point. For example, truncate(4.15678) returns 4.

Trigonometric Functions
The following table lists the trigonometric functions that are available in CDL.

Function Description

Sin(x)

Takes a single number x between -infinity and +infinity and returns a value between -1 and +1.

ASin(x)

Takes a single number between -1 and +1 and returns a value between -pi/2 and +pi/2. ASin(x) returns
the arc sine of x. An input outside the range between -1 and +1 results in an error.

Sinh(x)

Returns the hyperbolic sine of x in radians. Takes a single number between -infinity and +infinity and
returns a value between -1 and +infinity. An error is returned when the result exceeds the double. For
example, sinh(-99) is valid but sinh(999) results in an error.

Cos(x)

Takes a single number between -infinity and +infinity and returns a value between -1 and +1. Returns
the cosine of x.

ACos(x)

Takes a single number between -1 and +1 and returns a value between 0 and pi. ACos(x) returns the arc
cosine of x. An input outside the range between -1 and +1 results in an error.

Cosh(x)

Takes a single number between -infinity and +infinity and returns a value between -infinity and
+infinity. Returns the hyperbolic cosine of x in radians. An error is returned if x exceeds the maximum
value of a double: cosh(-200) is valid whereas cosh(-2000) results in an error.

Tan(x)

Takes a single number x between -infinity and +infinity and returns a value between -infinity and
+infinity.

ATan(x)

Takes a single number between -infinity and +infinity and returns a value between -pi/2 and +pi/2.
ATan(x) returns the arc tangent of x.

Tanh(x)

Returns the hyperbolic tangent of x. Takes a single number x between -infinity and +infinity and
returns a value between -1 and +1.

Logical Functions
The following table lists the logical functions that are available in CDL.

117

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Function Description

AllTrue

A logical AND expression. Accepts one or more logical values or expressions. Returns true if all of the
arguments are true, or false if any argument is false. Otherwise, the value of AllTrue is unknown.

AnyTrue

A logical OR expression. Accepts one or more logical values or expressions. Returns true if any of the
arguments are true, or false if all arguments are false. Otherwise, the value of AnyTrue is unknown.

Not

Accepts a single logical value or expression. Returns True if the argument is False or unknown. If the
argument is True, the value is unknown.

Text Functions
The following table lists the text functions that are available in CDL.

Note: As with any TEXT data type, don't use a text function in the body of a CONSTRAIN or accumulator statement
unless it evaluates to a constant string. The compiler validates this condition.

Text functions can only be used in static context; for example the WHERE clause of iterators.

Function Description

Contains

Compares two operands of text literals and returns true if the first contains the second.

Matches

Compares two operands of text literals and returns true if they match.

BeginsWith

Compares two operands of text literals and returns true if the first begins with the characters of the
second.

EndsWith

Compares two operands of text literals and returns true if the first ends with the character(s) of the
second.

Equals

Compares two operands of text literals and returns true if the first equals the second.

NotEquals

Compares two operands of text literals and returns true if the first doesn't equal the second

Hierarchy or Compound Functions

The following table lists the compound function that's available in CDL.

Function Description

OptionsOf

Takes Option Class or Feature as an argument and returns its Options.

118

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Anatomy of a Configurator Rule Written in CDL

• CDL Statements

• CDL Syntax Details

• CDL Expressions

• CDL Operators

CDL Operators
Operators are predefined tokens consisting of Unicode characters to be used as the expression operators among the
expression operands. An operator specifies the operation to be performed at run time between the operands.

This section includes the following:

• Operators Supported By CDL

• Operator Results

• Operator Precedence

• LIKE and NOT LIKE Operators

• Text Concatenation Operator

• COLLECT Operator

Operators Supported By CDL

The following table lists the predefined operators supported by CDL.

Operator Type Operators Description

Logical

AND

AND requires two operands and returns true if
both are true.

Logical

OR

OR requires two operands and returns true if
either is true.

Logical

NOT

NOT requires one operand and returns its
opposite value: false if the operand is true, true
if the operand is false.

Logical

REQUIRES

REQUIRES requires two operands.

Logical

IMPLIES

IMPLIES requires two operands. or details.

Logical

EXCLUDES

EXCLUDES requires two operands.

Logical NEGATES NEGATES requires two operands.

119

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Operator Type Operators Description

Logical and Comparison

LIKE

LIKE requires two text literal operands and
returns true if they match. See LIKE and NOT
LIKE Operators for restrictions.

Logical and Comparison

NOT LIKE

LIKE requires two text literal operands and
returns true if they match. See LIKE and NOT
LIKE Operators for restrictions.

Logical, Arithmetic, and Comparison

=

Equals requires two operands and returns true
if both are the same.

Logical, Arithmetic, and Comparison

>

Greater than requires two operands and returns
true if the first is greater than the second.

Logical, Arithmetic, and Comparison

<

Less than requires two operands and returns
true if the first is less than the second.

Logical, Arithmetic, and Comparison

<>

Not equal requires two operands and returns
true if they're different.

Logical, Arithmetic, and Comparison

<=

Less than or equal to requires two operands
and returns true if the first operand is less than
or equal to the second.

Logical, Arithmetic, and Comparison

>=

Greater than or equal requires two operands
and returns "true" if the first operand is greater
than or equal to the second.

Arithmetic

*

Performs arithmetic multiplication on numeric
operands.

Arithmetic

/

Performs arithmetic division on numeric
operands.

Arithmetic

-

Performs arithmetic subtraction on numeric
operands.

Arithmetic

+

Performs arithmetic addition on numeric
operands.

Arithmetic

^

Performs arithmetic exponential on numeric
operands.

Arithmetic

%

Performs arithmetic modulo on numeric
operands.

120

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Operator Type Operators Description

Text

+

Performs a concatenation of text strings. See
Text Concatenation Operator for restrictions.

Other

Assign(node)

Used only in Defaults and Search Decisions to
force a node to be bound at a particular point in
the specified sequence. If the Domain Ordering
setting is specified in the node's details page,
 binding happens according to this setting.
Otherwise, the constraint engine's implicit
binding method for this operator type is used.

Other

IncMin()

Used only in Defaults and Search Decisions.
Similar to ASSIGN, but this operator overrides
any explicit or implicit domain ordering
method for binding the node and attempts a
binding using a binary search with increasing
minimum. This operator is valid for integers
and decimals, including items and options with
quantity. Applies to the node's default system
attribute when a system attribute isn't explicitly
referenced (for example, State, Quantity, or
Value). When used with items, you can specify
the RelativeQuantity attribute as an alternative.

Other

()

,

.

-

Parentheses () are used to group sub-
expressions.

Comma (,) is used to separate function
arguments.

Dot (.) is used for referencing objects in the
Model tree structure.

Unary minus (-) is used to make positive values
negative and negative values positive.

Operator Results
The result of each expression operator can participate as an operand of another operator as long as the return type of
the former matches with the argument type of the latter.

The following table lists the basic return data types of each type of operator.

Mapping of Operators and Data Types

Operators Data Type

Arithmetic

INTEGER

DECIMAL

Logical

BOOLEAN

121

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Operators Data Type

Comparison

BOOLEAN

Operator Precedence
Operators are processed in the order given in the following table. Operators with equal precedence are evaluated left to
right.

The following table lists the precedence of expression operators in CDL. The columns are Operator, Precedence
(direction), and Description.

Precedence of Operators

Operator Precedence (direction) Description

()

1 (right)

Parenthesis

.

2 (right)

Navigation

^

3 (right)

Arithmetic power

Unary +, - NOT

4

Unary plus and minus, Not

*, /, %

5 (left)

Arithmetic multiplication and division

Binary +, -

6 (left)

Arithmetic plus and minus, text concatenation

<, >, =, <=, >=, <> LIKE, NOT LIKE

7 (left)

Comparison operators

AND

8 (left)

Logical AND

OR

9 (left)

Logical OR

DEFAULTS, EXCLUDES, NEGATES,
 IMPLIES, REQUIRES

10 (left)

Logic operators

LIKE and NOT LIKE Operators
Although LIKE and NOT LIKE are included as text relational operators, they can only be used in static context; for
example, the WHERE clause of iterators. As with any TEXT data type, you can't use LIKE and NOT LIKE with run time
participants unless it evaluates to a constant string. Configurator validates this condition when you compile the model.

LIKE Expression Resulting in a BOOLEAN Value

a.attr.Value() LIKE "%eig%"

122

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

A TRUE result is returned if the text of a.attr contains the characters 'eig', such as a.attr ='weight' or 'eight'. FALSE is
returned if the text of a.attr='rein'. .

In the following example, selecting option A and B implies that options within C are selected when the value of their
associated user-defined attribute is "A1B1".

Constrain Alltrue('A','B') implies &C
for all &C in {optionsof('C')}
where &C.userAttrs["Selections.AB Compatibility"] like "A1B1"

In the example below, selecting option A and B implies that options within C are selected when the value of their
associated user-defined attribute is something other than "A1B1".

Constrain Alltrue('A','B') implies &C
for all &C in {optionsof('C')}
where not (&C.userAttrs["Selections.AB Compatibility"] like "A1B1")

For a list of comparison operators, see Operators Supported By CDL.

Text Concatenation Operator
Although + is included as a text concatenation operator, it can only be used in static context; for example, the WHERE
clause of iterators. As with any TEXT data type, you can't use text concatenation in the actual body of a constrain or
contributor statement unless it evaluates to a constant string. Configurator validates this condition when you compile
the model.

COLLECT Operator
The COLLECT keyword is used to build a collection and provide it to an operator that takes a collection as an argument.
For example, instead of AnyTrue(x, y, z) you can write AnyTrue(COLLECT &c FOR ALL &c IN {x,y,z}).

Related Topics
• CDL Statements

• CDL Syntax Details

• CDL Expressions

• CDL Functions

• CDL Iterator Statements and the COLLECT Operator

CDL Attribute Compatibility Rules
The COMPATIBLE...OF keyword supports compatibility statements.

COMPATIBLE...OF Keyword
The COMPATIBLE keyword is used at the beginning of a compatibility statement that defines compatibility based on
user-defined attribute values common to standard items of different option classes..

Example
In the following example, the rule iterates over all the items of the Tint option class in the Glass child model and over
all the items of the Color option class in the Frame child model of a Window model. A color and tint are compatible

123

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

whenever the Stain user-defined attribute in an item of the Color option class equals the Stain user-defined attribute in
an item of the Tint option class.

COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.userAttrs["Paints_AG.Stain"] = &tint.userAttrs["Paints_AG.Stain"];

Related Topics
• Compatibility Rules

• CDL Expressions

• CDL Functions

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

CDL Iterator Statements and the FOR ALL...IN and WHERE
Keywords
The FOR ALL, IN, and WHERE keywords support iterator statements.

FOR ALL and IN Keywords
The FOR ALL and IN keywords begin the two clauses of an iterator statement. The IN keyword specifies the source of
iteration.

Note: The IN clause can contain only literal collections or collections of model nodes, such as OptionsOf. There's no
specification of instances, so all instances of a given Model use the same iteration.

WHERE Keyword
The WHERE keyword begins a clause of an iterator statement that acts as a filter to eliminate iterations that don't match
with the WHERE criteria

In the example FOR ALL IN and WHERE Clause using Node Attributes, the result is only as many contributions to option d
as there are children in the criteria specified in the WHERE clause.

Note: The conditional expression in the WHERE clause must be static. When using the COLLECT operation in a WHERE
and an IN clause, the operands must be static.

Note: Configurator evaluates compatibility rules from the top down, and gives no priority or precedence to an
expression based on its use of the AND or OR operator. In other words, the first relation you enter is evaluated, followed
by the second, and so on.

Examples
In the following example, the result is 3 contributions to option d.

ADD &var TO d
FOR ALL &var IN {a, b, c};

124

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

In the following example, the result is as many contributions to numeric feature d as there are children in option class a,
whose user-defined attribute UDA3 is less than 5. This example also shows a collection enclosed in braces (see Collection
Literals).

Example: FOR ALL IN and WHERE Clause using Node Attributes

ADD &var.userAttrs["AG_name.NumAttr"]+ 10 TO d
FOR ALL &var IN {OptionsOf(a)}
WHERE &var.userAttrs["AG_name.UDA3"] < 5;

In both examples, a single statement explodes into one or more constraints or contributions without explicitly repeating
each one. In both examples, the iterator variable can also participate in the left hand side of the accumulator statement.

Related Topics
• CDL Statements

• CDL Iterator Statements and the COLLECT Operator

• CDL Constraint Statements and the CONSTRAIN Keyword

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

• CDL Accumulator Statements and the ADD or SUBTRACT Keywords

CDL Iterator Statements and the COLLECT Operator
The COLLECT operator supports iterator statements.

This section includes the following:

• Syntax for the operator COLLECT

• How an iterator can use the COLLECT operator to specify the domain of the collection that's passed to an
aggregation function.

• Using the DISTINCT keyword to collect distinct values from an attribute

COLLECT Operator
Aggregation functions such as Min(...), Max(...), Sum(...), and AnyTrue(...) accept a collection of values as an operand. An
iterator can use the COLLECT operator to specify the domain of the collection that's passed to the aggregation function.
In many cases FOR ALL serves that purpose. The following example shows a single contribution of the maximum value
of the collection of children of option feature a using a COLLECT operator and a FOR ALL iterator.

COLLECT Operator, Single Contribution

ADD Max({COLLECT &var FOR ALL &var IN {OptionsOf(a)}}) TO d;

The previous example has the same result as the following example:

ADD Max &var TO d
FOR ALL &var IN {OptionsOf(a)} ;

The COLLECT operator is necessary when limiting an aggregate. The following example shows a rule where the
iteration of the FOR ALL and WHERE clauses result in an error for every element of the collection {Option11, Option32,
OptionsOf(Feature1)} that doesn't contain the user-defined attribute UDA1

CONSTRAIN &varA IMPLIES model.optionClass.item
FOR ALL &varA IN {Option11, Option32, OptionsOf(optionFeature1)}

125

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

WHERE &varA.userAttrs["UDA1"] = 5;

The following example uses COLLECT, which prevents the error.

COLLECT Operator Contributions

CONSTRAIN &varA IMPLIES model.optionClass.item
FOR ALL &varA IN {Option11, Option32, {COLLECT &varB
 FOR ALL &varB IN OptionsOf(optionFeature2)
WHERE &varB.userAttrs["UDA1"] = 5}};

COLLECT can be used in any context that expects a collection. The COLLECT operator can be used along with a
complex expression and a WHERE clause for filtering out elements of the source domain of the collection.

Since COLLECT is an operator that returns a collection, it can also be used inside of a collection literal, as long as the
collection literal has a valid inferred data type. The Configurator compiler flattens the collection literal during logic
generation, which allows collections to be concatenated. See Collection Literals for details.

The COLLECT operator can have only one iterator, because the return type is a collection of singletons. CDL doesn't
support using a Cartesian product with the COLLECT operator.

The COLLECT operator can't put dynamic variables in the IN and WHERE clauses, as this may result in a collection that's
unknown at compile time.

The COLLECT operator can use the DISTINCT keyword to collect distinct values from a user-defined attribute, as shown
in the following example , which prevents the selection of options having different values for the user-defined attribute
Shape from the option class optionClass3. optionClass3 has zero Minimum Quantity and no limit on Maximum Quantity.

COLLECT Operator with DISTINCT

AnyTrue({COLLECT &opt1
 FOR ALL &opt1 IN {'optionClass3'.Options()}
 WHERE &opt1.userAttrs["Physical.Shape"] = &shape})
EXCLUDES
AnyTrue({COLLECT &opt2
 FOR ALL &opt2 IN {'optionClass3'.Options()}
 WHERE &opt2.userAttrs["Physical.Shape"] <> &shape})
FOR ALL &shape IN
 {COLLECT DISTINCT &node.userAttrs["Physical.Shape"]
 FOR ALL &node IN 'optionClass3'.Options()}

Related Topics
• CDL Statements

• CDL Iterator Statements and the COLLECT Operator

• CDL Constraint Statements and the CONSTRAIN Keyword

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

• CDL Accumulator Statements and the ADD or SUBTRACT Keywords

CDL Constraint Statements and the CONSTRAIN Keyword
The CONSTRAIN keyword is used at the beginning of a constraint statement.

A constraint statement uses an expression to express constraining relationships. You can omit the CONSTRAIN keyword
from a constraint statement.

126

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Each constraint statement must contain one and only one of the following keyword operators:

• REQUIRES

• NEGATES

• IMPLIES

• EXCLUDES

For a description of these constraints, see the topic on Logic Rules.

Examples
The following examples show constraint statements with and without the CONSTRAIN keyword.

Constraint statements with the CONSTRAIN keyword

CONSTRAIN a IMPLIES b;
CONSTRAIN (a+b) * c > 10 NEGATES d;

Constraint statements without the CONSTRAIN keyword

a IMPLIES b;
(a + b) * c > 10 NEGATES d;

The following example expresses that if one Option of Feature F1 is selected, then by default select all the rest of the
Options.

Constraint Statement with the FOR ALL...IN Iterator

CONSTRAIN F1 DEFAULTS &var1
FOR ALL &var1 IN F1.Options();

Related Topics
• Logic Rules

• CDL Statements

• CDL Iterator Statements and the COLLECT Operator

• CDL Constraint Statements and the CONSTRAIN Keyword

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

The COMPATIBLE keyword is used at the beginning of a compatibility statement that defines compatibility based on
user-defined attribute values common to standard items of different option classes.

A Compatibility statement requires the keyword COMPATIBLE and two or more identifiers. The syntax of
COMPATIBLE...OF is essentially the same as that of FOR ALL....IN. For each formal identifier in the COMPATIBLE
clause, there must be a matching identifier in the OF clause. The conditional expression determining the set of desired
combinations is in the WHERE clause.

The CDL of a compatibility rule must include at least two iterators.

127

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Example
In the following example, the rule iterates over all the items of the Tint option class in the Glass child model and over
all the items of the Color option class in the Frame child model of a Window model. A color and tint are compatible
whenever the Stain user-defined attribute in an item of the Color option class equals the Stain user-defined attribute in
an item of the Tint option class.

COMPATIBLE
&color OF Frame.Color,
&tint OF Glass.Tint
WHERE &color.userAttrs["Paints_AG.Stain"] = &tint.userAttrs["Paints_AG.Stain"];

Related Topics
• Compatibility Rules

• CDL Statements

• CDL Iterator Statements and the COLLECT Operator

• CDL Constraint Statements and the CONSTRAIN Keyword

• CDL Accumulator Statements and the ADD or SUBTRACT Keywords

CDL Accumulator Statements and the ADD or SUBTRACT
Keywords
Unlike constraint statements, accumulator statements contain numeric expressions. In an accumulator statement, the
ADD and TO keywords are required.

Example
You use ADD ... TO in an accumulator rule.

ADD a TO b;
ADD (a + b) * c TO d;

ADD ...TO with Decimal Operands and Option Classes or Collections
Plan carefully when writing rules with decimal operands and option classes, or collections. The following table explains
what action should be taken when A accumulates to B and B is either an option class with multiple options, or B is a
collection. The columns are If, AND, and Then.

If AND Then

A resolves to a decimal

Option 1 and Option 2 are both integers

Use the Round() function on A

A resolves to a decimal

Option 1 and Option 2 are both decimals

No further action is needed on A

A resolves to a decimal

Option 1 is decimal and Option 2 is integer

Use Round() function on A to meet the most
limiting restriction - Option 2 an integer.

128

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

If AND Then

A is an integer

Option 1 and Option 2 are both integers

No further action is needed on A

Related Topics
• CDL Statements

• CDL Iterator Statements and the FOR ALL...IN and WHERE Keywords

• CDL Iterator Statements and the COLLECT Operator

• CDL Constraint Statements and the CONSTRAIN Keyword

• CDL Compatibility Statements and the COMPATIBLE ...OF Keyword

Extension Rules

Overview of Extension Rules
Extension rules extend the functionality of configurator rules, through code that you write yourself.

This section provides information on the following:

• The structure and elements of extension rules

• The configuration events that trigger the execution of extension rules

• The procedure for creating extension rules

• The basics of writing the your own code in extension rules

• A detailed example of creating an extension rule

Related Topics
• Extension Rules

• Configurator Events

• How You Create Extension Rules

• How You Write Extension Rule Text

• Create an Extension Rule

Extension Rules
Extension rules extend the functionality of a configurator model with code that you write using established interfaces,
to support business requirements that may not be available through statement rules.

• An extension rule is bound to one or more predefined events that can happen during a configuration session.
Example: A change in the value of a decimal feature node.

129

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

• An extension rule is associated with a base node. The base node is the model node on which the rule is
listening for the events bound to the rule. Listening for events means detecting the occurrence of events.
Example: The specific decimal feature node whose value changed.

• The behavior of an extension rule is defined by its rule text, which is a valid script in the Groovy scripting
language. Simple example: A function defined in Groovy calculates the effect of applying a different discounts
to the list price of an item, in order to arrive at the sale price.

CAUTION: This simplified example is for instructional purposes only. The pricing information displayed in
Configurator at run time is normally provided by integration with Oracle Pricing.

• In order to call a specific Groovy function defined in the script, the function is bound to the occurrence of an
event, in an event binding. Example: The invocation of the discounting function is bound to a change in the
value of the decimal node whose changed value is the new discount to apply.

• To provide flexibility, a bound event can be listened for inside a specified event binding scope. Example: a
change in node value is listened for only on the base node of the rule.

• If the bound function has arguments, then each argument must be bound to the source of a value for the
argument, in an argument binding. Example: The discounting function has arguments for the list price and the
discount; the list price argument is bound to the model node in which an end user enters the list price, and the
discount argument is bound to the model node in which an end user enters the discount.

• If the base node can have multiple instances, then an instantiation scope must be specified, to determine, when
the rule is invoked, whether a separate instance of the rule is created for each instance of the base node, or a
single instance of the rule is created for the whole set of instances of the base node.

Related Topics
• Configurator Events

• How You Create Extension Rules

• How You Write Extension Rule Text

• Create an Extension Rule

Configurator Events
An event is an identifiable action or condition that happens in a model during a run time configuration session, such a
change in the value of a node. Events have names, such as postValueChange.

Event Binding
Event binding connects a method in an extension rule to a configurator event. An extension rule must have at least one
event binding.

At run time, Configurator detects and reacts to configurator events using objects called listeners, which are registered
to listen for (meaning detect) the occurrence of specified events. You don't explicitly specify listeners when you use
extension rules. When you create an event binding for an extension rule, Configurator registers the appropriate listener
for the specified event.

If an event happens during a run time configuration session, and there are bindings for that event with that scope in any
extension rules in the model, then Configurator runs all the bound methods for that event.

130

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

The events that you can bind to a extension rule are predefined for Configurator, and are described elsewhere in this
topic. When you define an extension rule, you select one of these events as part of the binding of a method in your
extension rule text.

Event Binding Scope
Event binding scope is the scope in which the configurator event in an event binding is evaluated. An event binding
always has a binding scope.

When defining an event binding, you bind events within a certain scope. This event binding scope tells listeners that are
registered for the event where in the run time model tree to listen for an occurrence of that event. The following table
describes the scopes for event binding.

Event Binding Scope Effect

Base Node

The extension rule is executed only for the base node.

Event Descriptions
An extension rule must always be bound to one of the following predefined events.

Event Description

postConfigInit

Event dispatched immediately after initializing a new or restored configuration session. You can use
this event to set values in your model as soon as an end user starts configuring the model.

postConfigSave

Event dispatched immediately after a configuration is saved. You can use this event to set the values in
your model whenever an end user saves changes to the configuration of the model.

postValueChange

Event dispatched immediately after the value of a node is changed. You can use this event to set the
values in your model whenever an end user changes the value or selection of the node associated to
the event explicitly or by rules.

preAutoComplete

Event dispatched immediately before the autocompletion process runs. The autocompletion process
is triggered by clicking Finish or Finish and Review in the configurator UI, at run time. You can use
this event to set the values in your model before an end user reviews the configuration, or saves the
configuration and finishes the configuration session.

Related Topics
• Extension Rules

• How You Create Extension Rules

• How You Write Extension Rule Text

• Create an Extension Rule

131

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

How You Create Extension Rules
You can extend the functionality of your configurator model by creating extension rules, which use code that you write
in the Groovy scripting language.

The essential tasks in creating an extension rule are:

• Creating the rule and assigning a base node

• If necessary, selecting an instantiation scope

• Entering rule text

• Adding event bindings

• If necessary, adding argument bindings

• Validating the rule and testing it

Prerequisites
The following things are required when defining an extension rule.

• The model node that's to be the base node for the extension rule must already exist.

Note: If the model node is an item type that might be end dated, then the extension rule will become invalid
upon the end date of the item. The end date of the extension rule is displayed in the End Date field of the
Details region of the Rules tab of the Edit Configurator Model page.

Creating Extension Rules and Assigning the Base Node

1. On the Rules tab of the Edit Configurator Model page, select Create Extension Rule from the Rules toolbar.
2. Enter a name and optional description for the extension rule.
3. Open the model tree in the Structure pane, and select the model node that's to be the base node of the

extension rule.

You can associate an extension rule with any type of node, within the model containing the rule.
4. Right-click the model node and select Set as Base Node from the context menu. The fully-qualified node name

path of the model node is inserted in the Base Node field.

You can also enter the node path directly as plain text, in the Base Node field Any node names that contain
spaces must be delimited with single quotation marks. You can copy a node path from the Path field on the
Details region of the Structure tab for the model .If the node's name is unique within the model, then you can
type the node name (but not description) directly into the Base Node field. When you save the model, the full
node path will be added for you.

5. If the base node can have multiple instances, then the Instantiation Scope control is enabled. The default
selection is Instance.

132

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Entering the Rule Text
The rule text defines the behavior of the extension rule.

1. Enter the text of a valid Groovy script into the Rule Text field. Click Save to save the rule text and the rest of the
rule definition.

Tip: You can save the rule as you work on the rule text, even if it's not complete or correct.

2. To ensure that the extension rule, and the rule text, are valid, click Validate, at any point during the definition.

Adding Event Bindings
Add at least one event binding to the rule.

1. In the Event Bindings table, click Create
2. In the new row for the event binding, from the Event list, select the event to bind.
3. From the Event Scope list, select the event scope in which the event is to be evaluated.
4. From the Class list, select the class that contains the method that you're binding to the event.

If no classes are defined in the script, select ScriptClass, which contains globally-defined methods.

Tip: Click Validate to refresh the Class and Method lists after any changes to the script to add classes or
methods. If you haven't yet clicked Validate, then the lists will be empty.

5. From the Method list, select the method that you're binding to the event.

If no methods are explicitly defined in the script, select run(), which executes globally-defined methods.

You can create multiple event bindings for an extension rule. The sequence in which you create them isn't significant for
the execution of the rule.

Adding Argument Bindings
When you select a method with arguments for the event binding, the Argument Bindings table is automatically
populated with a row for each argument. The Name column for each argument contains the read-only name of the
argument, copied from the method definition in the rule text.

1. Select a row in the Argument Bindings table.
2. From the Specification column for each argument, select the specification for how the method obtains the

argument value.
3. If you select a specification of Literal, then enter a numeric or string value, without quotation marks.
4. If you select a specification of Model Node, then open the model tree in the Structure pane, and select the

model node that provides the value for the argument. Then right-click the node and select Set as Argument
Value. If the node's name is unique within the model, then you can type the node name (but not description)
directly into the Model Node field. When you save the model, the full node path will be added for you.

5. Repeat the argument binding for each argument in the Argument Bindings table.
6. Click Validate, to validate both the rule text and the rest of the rule.
7. Click Save, Save and Compile, or Save and Close.

Validating Extension Rules
You can ensure that the entire extension rule (both rule text and bindings) is valid, by clicking Validate, at any time
during the definition. (In contrast, the Validate button for statement rules only validates the rule text.)

133

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

You can validate the rule at any point while you're defining it. Some of the requirements that are commonly reported by
validation are the following

• An extension rule must have a base node.

• The rule text can't be empty.

• An extension rule must have at least one event binding.

• If your Groovy method bound to the event has arguments, you must bind the arguments.

• Groovy annotations aren't allowed.

• Your Groovy script must be syntactically correct. Any Groovy syntax and programming errors are reported.

• If you change your script in a way that makes existing event bindings invalid, then the invalid events are marked
with an error icon. For example, changing the name of a method invalidates any even bindings using that
method. A rule with invalid bindings becomes invalid and is ignored when testing the model

Related Topics
• Extension Rules

• Configurator Events

• How You Write Extension Rule Text

• The Extension Rule Text Editor

• Create an Extension Rule

The Extension Rule Text Editor
The Rule Text section of an the Details region for an extension rule provides the following features for working with rule
text.

• Undo and redo of text edits

• Line numbering

• The Find control with Next and Previous buttons

• The Find and Replace dialog box, opened by clicking the Find and Replace control

• The Go to Line control, activated by clicking the Jump to line control

• The rule text pane, expanded and restored by clicking the Maximize control. While the text pane is expanded,
any validation errors are displayed in a region below the text pane.

• The Collapse Pane slider, to hide the rule text pane

• Colorization of keywords, literals, and comments

• Colorized matching of brackets and parentheses (green if closed, red if not closed)

• Automatic indenting of new lines

134

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Extension Rules

• Configurator Events

• How You Create Extension Rules

• How You Write Extension Rule Text

• Create an Extension Rule

How You Write Extension Rule Text
The scripts that can be used as rule text for extension rules are written in the Groovy scripting language, and use
interfaces that access configurator model objects.

The Groovy Scripting Language
The Groovy language provides a convenient means of writing scripts for extension rules.

Groovy is object-oriented and dynamically compiled. It can be used as a scripting language for the Java platform.
Groovy is widely described elsewhere, at http://groovy-lang.org, and other public sources.

For writing extension rule scripts, some relevant features of Groovy are:

• Many base Java packages are automatically imported, so that you don't have to import them in your scripts.

• You can declare variables with the def keyword, without having to declare their type.

• You can define methods and variables outside a class. They're considered as global within the script. Global
definitions are executed within the built-in class ScriptClass, and executed under the built-in method run().

• Some advantages to placing methods and variables in classes are:

◦ You can use encapsulation and inheritance.

◦ You can build complex logic, as in Java.

◦ Organizing methods in classes makes it easier to select them from the Class and Method lists when
adding event bindings.

Advantages to not placing methods and variables in classes include:

◦ If you don't use classes, you can write code and test your code more quickly, simply adding and running
code bound to the global class ScriptClass and the global method run().

Accessing Important Configurator Objects
Certain objects in the Configurator runtime core package provide access to the objects most commonly needed during
a configuration session.

When an extension rule runs, the Configurator framework automatically initializes an object that represents the event
specified by the event binding of the rule. This object is an instance of the interface ICXEvent named cxEvent.

135

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

The following table presents the objects most commonly needed during a configuration session. For each object, the
table provides:

• A short description of the object

• The Java interface containing methods to access that object

• A short example of code that creates an instance of the object

• A short example of code that uses an instance of the object

Object Entity Accessed Interface Used Example of Creating the
Object

Example of Using the
Object

Configurator event

The event specified by an
event binding in the rule.

ICXEvent

No code needed. The
object cxEvent is created
automatically when the rule
runs.

Get the current
configuration associated
with the event that
triggered the rule.

IConfiguration
config =
cxEvent.getConfiguration()

Base node of rule

The base node associated
with the rule.

ICXEvent

Get the base node of the
rule triggered by a bound
event.

def baseNode =
cxEvent.getBaseNode()

Test whether the base node
of the rule is selected by the
end user.

if
(baseNode.isSelected()) ...

Configuration

The active configuration
during a session.

IConfiguration

Get the configuration
affected by the rule
triggered by a bound event.

IConfiguration
config =
cxEvent.getConfiguration()

Get the root node of the
item-based model currently
being configured.

def root =
config.getRootBomModel()

Root node of model

The root node of the model
being configured.

IBomModelInstance

Get the root node of the
item-based model currently
being configured.

IBomModelInstance
root =
config.getRootBomModel()

Get a child node of the
current model, using its
item name to search the
model tree, starting from its
root node.

def childItem =
root.getChildByName("CM85010")

Interacting with Model Node Values
You can get, and set, the values and states of model nodes using the interfaces described here.

The following table presents the objects that represent the types of nodes in a configurator model. For each object, the
table provides:

• The Java interface containing methods to access that object

• The prototype of a method for getting the current value or state of the object.

136

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

• The prototype of a method for setting a new value or state for the object.

• Note that Groovy can derive data types when they're used at run time, so it's not strictly necessary to declare
return types in your script. However, it's a good practice to understand the objects and interfaces involved in
your model interactions.

The interfaces of the Configurator API also provide many other interfaces and methods for other types of interactions
with node objects. This table provides an introduction to methods that are useful for common operations. For details,
see the Java API Reference for Oracle Fusion Configurator.

Object Interface Get Value Set Value

Integer feature

IIntegerFeature

int getValue()

void setIntValue(int
value)

Decimal feature

IDecimalFeature

double getValue()

void
setDecimalValue(double
value)

Option of option feature

IOptionFeature

IOption
getSelectedOption()

void select()

Boolean feature

IBooleanFeature

boolean isSelected()

void toggle()

Other Model Interactions
You can perform a variety of important interactions with model nodes using the interfaces described here.

• Getting and Setting Logic States

• Accessing properties

• Access to options

• Overriding contradictions

• Handling logical contradictions

• Handling exceptions

Reference Documentation for Available Classes
The package containing the classes for interacting with configurator is oracle.apps.scm.configurator.runtime.core.

The reference documentation for the interfaces in that package that you use in writing extension rule scripts is the Java
API Reference for Oracle Fusion Configurator.

Some members of supported classes and interfaces aren't supported for use in extension rules, and their use will cause
an error upon compilation. Unsupported members are omitted from the API reference documentation. If your script
refers to a class or member that's not available for use in extension rules, a validation message identifies the invalid
reference.

137

https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FACJR
https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FACJR
https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FACJR

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Related Topics
• Extension Rules

• Configurator Events

• How You Create Extension Rules

• The Extension Rule Text Editor

• Create an Extension Rule

Create an Extension Rule
In this example, you define an extension rule that calculates the effect of applying different discounts to the list price of
an item, in order to arrive at the sale price.

The formula used in this example to calculate the discount is simple, but you can use this technique to construct more
complex extension rule functionality, through the script in your rule text.

The tasks in this example are:

1. Define supplemental features for list price, discount, and sale price.
2. Create an extension rule, with the discount feature node as the base node.
3. Write a Groovy script that defines a discounting function and applies it to the supplemental features.
4. Define event and argument bindings for the function.
5. Test the rule.

CAUTION: This simplified example is for instructional purposes only. The pricing information displayed in
Configurator at run time is normally provided by integration with Oracle Pricing.

Defining Supplemental Features
The supplemental features are used for the end user inputs for list price and discount, and the calculated output of the
sale price.

1. On the Overview page of the Configurator Models work area, select Create from the Actions menu, to create a
new workspace. Set the Effective Start Date to tomorrow's date.

2. Open the workspace. On the Workspace page, select Select and Add Models from the Actions menu.
3. On the Select and Add: Models page, search for a model, select it, then click OK, to add it to the workspace.

Ignore any warning about drafts in other workspaces.
4. On the Workspace page, click the model's name to open it for editing.
5. On the Edit Configurator Model page, select the root node of the model, and select Create Decimal Feature

from the Actions menu.
6. Create the following decimal features, as shown in these tables.

Field Value

Name

List Price

Minimum 20,000

138

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Field Value

Maximum

60.000

Field Value

Name

Discount

Minimum

0

Maximum

10

Field Value

Name

Sale Price

Minimum

0

Maximum

100.000

7. Click Save.

Creating the Extension Rule
The extension rule will apply the discount to the list price, and put the result in the sale price.

1. On the Rules tab of the Edit Configurator Model page, select Create Extension Rule from the Rules toolbar.
2. Enter a Name for the extension rule, such as Apply Discount.
3. In the Structure palette, expand the model tree, select the node Discount, then right-click and select Set as

Base Node from the context menu.
4. Click Save.

Writing the Rule Text
The behavior of the extension rule is defined in the script entered in the Rule Text field, which is written in the Groovy
scripting language.

1. In the Rule Text field, enter the following script.

// Import the needed Configurator interfaces
import oracle.apps.scm.configurator.runtime.core.IConfiguration
import oracle.apps.scm.configurator.runtime.core.IBomModelInstance

139

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

import oracle.apps.scm.configurator.runtime.core.IDecimalFeature

// Define the discounting function.
def applyDiscount (p_listPrice, p_discount) {

// Get values of nodes from arguments.
 double listPrice = ((IDecimalFeature)p_listPrice).getValue()
 double discount = ((IDecimalFeature)p_discount).getValue()
 double salePrice = 0

// Calculate the price.
 salePrice = listPrice - (listPrice * (discount / 100))

// Get the node whose value will be set.
 IConfiguration config = cxEvent.getConfiguration()
 IBomModelInstance root = config.getRootBomModel()
 IDecimalFeature salePriceNode = root.getChildByName("Sale Price")

// Set the value.
 ((IDecimalFeature)salePriceNode).setDecimalValue(salePrice)
}

2. Click Save.
3. Click Validate.
4. You should receive the error message The rule is invalid. The extension rule must have at least one event

binding defined.

Defining the Event Binding
To make the script execute, you must bind it to a configurator event. So now you add an event binding to the rule.

1. In the Event Bindings table, click Create
2. In the new row for the event binding, from the Event list, select postValueChange.
3. From the Event Scope list, select Base node.
4. From the Class list, select ScriptClass.
5. From the Method list, select applyDiscount. The arguments p_listPrice and p_discount are displayed with the

function name.
6. Click Save.

Defining the Argument Bindings
When you selected the applyDiscount method in the Event Bindings table, the Argument Bindings table should have
automatically appeared, populated with a row for each argument

1. In the Argument Bindings table, select the row for the argument named p_listPrice.
2. From the Specification column for that row, select Model node.
3. Expand the model tree in the Structure pane, and select the node List Price, then right-click the node and

select Set as Argument Value.
4. Click Validate.
5. You should receive the error message The rule is invalid. The node referenced in the argument p_discount

bound to the event postValueChange was not found.

6. Repeat the preceding argument binding steps for the argument p_discount and the node Discount.
7. Click Validate.
8. You should receive the information message No errors were detected.
9. Click Save and Compile.

10. You should receive the confirmation message Model compilation has completed without errors..

140

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

Testing the Model
Test the model to verify the functionality of the extension rule.

1. On the top of the Edit Configurator Model page, select Test Model.
2. In the Test Model dialog box, ensure that User Interface is set to Default, then click OK.
3. On the Test Model page, fields for the three decimal features that you added should appear, in the sequence

that you created them:

◦ List Price

◦ Discount

◦ Sale Price

4. In the List Price field, enter the value 30,000. Notice that you can only enter values between the minimum and
maximum that you defined when you created the decimal feature.

5. In the Discount field, enter the value 5. Notice again that the allowable values are between the minimum and
maximum that you defined.

6. When you press Enter in the Discount field, or tab out of it, notice that the value of the Sale Price field changes,
from empty to 28500.

7. Enter a different value in the Discount field, and notice the changes in the Sale price field. This change happens
because you bound the execution of the extension rule to changes in the value of Discount.

8. Enter a different value in the List Price field, and notice that there is no change in the Sale price, because there
is no binding in the rule to changes in the value of List Price.

9. Click Finish to end the test session.

Related Topics
• Extension Rules

• Configurator Events

• How You Create Extension Rules

• How You Write Extension Rule Text

• The Extension Rule Text Editor

How You Obtain External Information Using Extension Rules
You can call an external service from within an extension rule.

This is useful when you need to consult an external source to assist in the proper configuration of a model. It is often
more efficient to obtain data (such as product specifications or government regulations) from an external source than to
attempt to maintain it in your model.

In order to call an external service from an extension rule, you must:

• Register a web service connection to be used by a service call

• Define an extension rule in which the script calls the service using that connection

Registering the Web Service Connection
In order for Configurator to access an external web service, you must register a connection for it.

141

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

To define a web service connection:

1. In the Setup and Maintenance work area, select Search from the task panel. Search for and select the task
Manage External Service Details for Extensions.

2. In the Web Service Details table, select Add Row from the Actions menu.
3. From the Target System list, select a registered trading community partner application or Oracle Application.
4. In the Connector Name field, enter the name that you will use to refer to the service, in your extension rule.

such as AxelWS.
5. In the Connector URL field, enter the URL to the external web service, such as http://axel04.com:7011/

services/AxelServicesPort.
6. From the Invocation Mode list, select Synchronous service, which is the mode supported.
7. Optionally enter other service information that may be required for calling the web service, such as User Name

and Password.
8. Select Save and Close.

Defining the Extension Rule
In order for Configurator to call an external web service, you must define an extension rule that uses a particular API to
call the service and specify the desired operation.

1. Navigate to the Configurator Models work area.
2. In a workspace, add your model and open it for editing.
3. On the Rules tab of the Edit Configurator Model page, select Create Extension Rule from the Actions menu.
4. In the Structure pane, select a base node for the rule, such as the root node of the model.
5. In the Rule Text pane, enter a valid Groovy script that calls the external service. A sample script is provided in

this topic.
6. When defining the event binding for the rule, select when you want the service to be called:

◦ To call the service when the configuration session begins, select postConfigInit.

◦ To call the service when the associated model node value is changed, select postValueChange.

7. For the example script provided, the event binding must have a Class of ScriptClass and a Method of
getCpuHw(String region).

8. The argument binding for the argument region must be a value that can be interpreted by the web service.

Calling an External Service
The example script provided here demonstrates the essential points of calling an external web service in an extension
rule script.

Important points to remember:

• It is essential to import the classes SoapServiceResponse and SoapServiceRequest. The need for other imports is
determined by the desired behavior of your script.

• When constructing the payload string, this example uses the namespace http://services.axel and the service
method cpuHw. Assume that these are defined in the web service that you registered.

• You must use the method invokeSoapService() from the configuration object to call the service, and pass it
the connector name that you registered and the payload string that you constructed. In this example, the
connector name is AxelWS.

• Some external SOAP services can only be invoked using SOAP 1.1 specs. They don't work via SOAP 1.2, possibly
because WSDL is only SOAP 1.1 compatible. In order to get around this issue, add the following HTTP headers
when invoking such services from an extension rule:

142

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

◦ Content-Type: text/xml

◦ SOAPAction: executeWebCX

Here is an example of how these HTTP headers can be set in an extension rule:

SOAPMessage message = request.getSoapMessage();
message.getMimeHeaders().addHeader("Content-Type", "text/xml; charset=utf-8");
message.getMimeHeaders().addHeader("SOAPAction", "executeWebCX");

If these HTTP headers aren't set then a SOAP 1.1 call fails.

This example script constructs a SOAP message for a web service that tries to select some items:

import oracle.apps.scm.configurator.runtime.core.IRuntimeNode;
import oracle.apps.scm.configurator.runtime.core.ServiceException;
import oracle.apps.scm.configurator.runtime.core.SoapServiceRequest;
import oracle.apps.scm.configurator.runtime.core.SoapServiceRequest.SOAP_PROTOCOL_TYPE;
import oracle.apps.scm.configurator.runtime.core.SoapServiceResponse;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPElement;
import javax.xml.soap.SOAPBodyElement;
import javax.xml.namespace.QName;
import org.w3c.dom.Document;
import org.w3c.dom.Element;

public class WebCXmin implements Serializable {
 public WebCXmin() { }

 public String callWebService(IRuntimeNode node) {
 SoapServiceRequest request = new SoapServiceRequest(node.getConfiguration());
 SOAPMessage message = request.getSoapMessage();

 // create XML payload here
 QName bodyName = new QName("ws", "executeWebCX");
 SOAPBodyElement bodyElement = request.getSoapBody().addBodyElement(bodyName);
 bodyElement.addNamespaceDeclaration("ws", "http://services.axel/");
 bodyElement.setPrefix("ws");

 QName className = new QName("className");
 SOAPElement classes = bodyElement.addChildElement(className);
 classes.addTextNode("axel.ce.ws.webcx.DSPrimeTestCX");

 QName name = new QName("params");
 SOAPElement params = bodyElement.addChildElement(name);

 QName entry = new QName("entry");
 SOAPElement entries = params.addChildElement(entry);

 QName key = new QName("key");
 SOAPElement keys = entries.addChildElement(key);
 keys.addTextNode("json");

 QName value = new QName("value");
 SOAPElement values = entries.addChildElement(value);
 values.addTextNode("{\"qty\": 2, \"children\": [], \"type\": \"MI\", \"state\": [\"UTRU\", \"SELD\", \"USLD
\"]}");

 message.getMimeHeaders().addHeader("Content-Type", "text/xml; charset=utf-8");
 message.getMimeHeaders().addHeader("SOAPAction", "executeWebCX");

 SoapServiceResponse response;

143

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

 try {
 // Invoke the external web service that was registered in the Setup and Maintenance work area
 response = node.getConfiguration().invokeSoapService("AxelWS", request);
 } catch (ServiceException e1) {
 throw new Exception(" msg=" + e1.getMessage());
 }

 def base = node;
 def tf = base.getChildByName("TextFeature");
 Document doc = response.getSoapBody().extractContentAsDocument();
 Element root = doc.getDocumentElement();
 tf.textValue = "SOAP Body node: "+root.getFirstChild().getTextContent();

 }
}

Related Topics
• How You Create Extension Rules

• How You Write Extension Rule Text

• Create an Extension Rule

• Configurator Events

FAQ for Model Rules

What happens if I change the names of supplemental structure
nodes that are rule participants?
When you compile the model, any rules that reference those renamed nodes become invalid.

• A warning message identifies the affected rules.

• The warning message identifies the node names that were used when the rules were defined, but which no
longer have those names..

• The Status field of the invalid rules changes from Valid to Error.

• If you update a rule to use the new node name, the rule becomes valid again.

Related Topics
• The Constraint Definition Language

Why can I test, but not release, a model containing invalid rules?
You can test a model containing invalid rules, because the testing phase of model development enables you to make
those rules valid. But you can't release a model containing invalid rules, because invalid rules prevent users from
creating valid configurations.

144

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

If you don't make an invalid rule valid, you can still release the model if you disable that rule.

Related Topics
• The Constraint Definition Language

145

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 5
Rules

146

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

6 User Interfaces

Overview of Model User Interfaces
This chapter covers model user interfaces. User interfaces present a configurator model to the end user for interaction.
A model can have a variety of user interfaces to fit different usages.

• UIs are composed of templates that represent UI items, and template maps that connect the templates to nodes
in the model. At run time they are dynamically rendered together to present a user interface that accurately
represents the model structure.

• A model can have a variety of user interfaces, to fit different usages.

• If no user-defined UI has been created for a model, a default UI is presented.

• You can generate UIs for a model, based on its structure, then further modify them, using the What You See Is
What You Get (WYSIWYG) page editor that shows live model data as it will appear at run time. When generating
a UI, you can select from a predefined set of navigation styles.

• Some changes to the original product model are automatically reflected in its configurator model UIs, but
certain changes must be explicitly performed.

• You can control the presence of items in the UI with display conditions.

• You can set applicability parameters that allow a model to use multiple UIs, each targeted to a different sales
channel.

You access user interfaces in the following ways.

• Configurator Models work area > tasks panel tab > Manage Models page > Search > Versions > click a
Draft or Version > Configurator Model or Edit Configurator Model page > User Interfaces tab

The Edit Configurator Model page enables you to create and edit the structure, rules, and user interfaces of a
configurator model. If the model is locked by another user, then you can only view the model.

• Configurator Models work area > tasks panel tab > Manage Workspaces page > Workspace page > click
Name of participating model > Configurator Model or Edit Configurator Model page > User Interfaces tab

Related Topics
• User Interfaces for Configurator Models

• The Default User Interface

• Generated User Interfaces

• Multichannel User Interfaces

• How You Modify User Interfaces

147

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

User Interfaces for Configurator Models
The user interface (UI) of a configurator model is what the end user sees and interacts with to configure the product
represented by the model.

• UIs let users select options of the model by presenting controls based on the model structure.

• UIs can be dynamically generated at run time, or explicitly generated and saved. Explicitly generated UIs can be
modified to suit your requirements.

• A configurator model can have multiple UIs, applied to suit varying styles of end user interaction.

• UIs that you create for a model are part of the definition of that model version, like supplemental structure and
configurator rules. UIs can't be shared with other models. The use of UI templates enables you to provide a
consistent user experience among your models.

• Each UI uses one of a set of predefined navigation styles to enhance the end user experience.

• UIs can be integrated with the UI of a hosting application.

• UIs consist of:

◦ UI metadata that represents the model structure in terms of pages, regions, and items, and inter-page
navigation..

◦ UI templates that contain the visual content for the UI.

◦ UI template maps that map model node types to UI templates

◦
These elements are exposed in explicitly generated and saved UIs, allowing modification. They aren't exposed
in dynamically generated UIs, including the default UI.

UI Templates
Configurator user interfaces consist of a set of templates, which are dynamically rendered at run time.

The following templates are the building blocks of user interfaces

• The shell template for a UI keeps together all the other regions or parts of the UI and provides the navigation
and actions for the UI.

• The layout templates for a UI determine the visual layout (such as a form or stack) of the control templates or
elements within a layout region. Each UI can have one or more layout templates per page.

• Control templates represent UI items and allow user interaction, such as selection or input.

• Message and utility templates provide UI elements for specialized parts of a page. You can't modify these
templates.

UI Template Maps
UI template maps govern the overall behavior and appearance of UIs.

When you create a user interface, you select a UI template map, which determines how the UI is constructed. UI
template maps maintain the mapping between types of model nodes (such as standard items, option classes, reference

148

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

models, and supplemental-structure features) and the control templates that allow users to interact with the nodes.
Examples of such mapping are as follows:

• If an option class is defined as having mutually exclusive options (meaning that only one option at a time can
be selected), it's mapped to a radio button group control template.

• If an option class isn't mutually exclusive, it's mapped to a check box group control template.

• A required child model is mapped to an item selection control template.

UI template maps group control templates into UI pages that represent major components of a configurator model, such
as option classes. UI template maps also determine the navigation style between pages.

Related Topics
• The Default User Interface

• Generated User Interfaces

• How You Modify User Interfaces

• Multichannel User Interfaces

The Default User Interface
If you don't define any of your own UIs for a configurator model, the model uses a default UI at run time.

• The default UI is created dynamically at run time if no generated UI is specified, using UI templates and UI
template maps

• The default UI reflects any model changes, and doesn't need to be refreshed.

• The Single Page Navigation UI template map governs the default UI. This choice is predefined. You can't select
a different UI to be the default UI.

• The default UI is also used for a configurable product model for which no configurator model was created.

• There's only a single default UI in use at a time. The same default UI is used for all configurator models that
need one at run time.

Related Topics
• User Interfaces for Configurator Models

• Generated User Interfaces

• How You Modify User Interfaces

• Multichannel User Interfaces

Generated User Interfaces
You can create a user interface for a configurator model by generating it, which is an action that automatically builds a
UI based on the model structure.

149

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Use one of a set of templates that determine the appearance and interactive behavior of the UI.

• Generating a UI is an optional part of model definition. If you don't generate any UIs for your model, then the
default UI is used at run time.

• When you generate a UI, you select a UI template map that imparts a distinct look and feel to the UI, including
navigation style. After you create the UI, you can't change the UI template map that it uses.

• When you generate a UI for a model that includes referenced models, then UIs are generated for any referenced
models that don't already have their own UIs.

• You can suppress a particular model structure node from appearing in UIs that you generate by deselecting the
Display in user interface check box on the UI Presentation tab of the Details region for that node. This setting
doesn't suppress the node in existing UIs.

Generating a User Interface
Generated UIs are created on the User Interfaces tab of the Edit Model page of the Configurator Models work area.

1. On the Edit Configurator Model page, navigate to the User Interfaces tab.
2. Select Create from the Actions menu.
3. In the Create User Interface dialog box, enter a name for the new UI, and select a UI template map.

Predefined UI template maps are provided for each of the navigation styles, in two versions for each style:

◦ Template map with ordinary selection controls.

◦ Template map with enhanced selection controls, which show more detail about the state of the selected
items. For example, an icon indicates whether an item was selected by the end user or by a rule.

◦ The UI template map named Single Page Navigation for Test UI with Enhanced Selection Controls is used
when you test the behavior of a model with the Test Model operation. This template should never be
selected for a UI that's intended for run time use with end users.

4. Click the Save and Close button.
5. A new UI is now generated automatically, following the selected template map that associates the structure of

your configurator model with UI elements.
6. Select the new UI in the User Interfaces list. On the Overview tab for the UI, you can edit the name and

description. You can also select the applications and languages for which your user interface is applicable.
7. Optionally, to verify that the behavior of the generated UI is what you expect, test the model, using the Test

Model button.
8. If you made further changes to the UI, click Save, to save them.

Testing a User Interface
To verify that the behavior of a generated UI is what you expect, test the model.

To test a user interface:

1. Click the Test Model button. You don't have to be on the User Interfaces tab for the model.
2. In the Test Model dialog box, ensure that you select the new generated user interface that you intend to test, in

the User Interface field. The selected UI isn't necessarily the UI that you're editing. By default, the previously
tested UI is selected.

3. Make selections among the configuration options, and navigate through the pages of the UI. Observe how the
UI functions in presenting configuration choices.

150

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

When testing a user interface, consider the following criteria.

• How effective is the navigation style (which is associated with the UI template map you chose) in reaching all
parts of the model in the way that the end user expects for the product?

• Does the generated set and sequence of UI pages (which is determined by the UI template map and the model
structure) enable the end user to locate and configure the most important elements of the model easily and
efficiently?

• Do the generated headings and captions (which are derived from the node descriptions in the model structure)
guide the end user in understanding what's to be configured?

• Are the default UI controls (which are generated by control templates) appropriate to interacting with items?

If any of these elements of the generated user interface are insufficient for your purpose, consider modifying the
generated UI.

Related Topics
• User Interfaces for Configurator Models

• How You Synchronize UIs with Structure

• The Default User Interface

• How You Modify User Interfaces

• Multichannel User Interfaces

How You Synchronize UIs with Structure
The changes to product item structure in the Product Information Management work area must be reflected in user
interfaces for the affected snapshots and models.

When a product item changes, you refresh snapshots for that item. These changes can affect the item-based structure
of any corresponding configurator models created from those snapshots, and consequently affect any user interfaces
created for those models.

To account for model changes, you must create a new workspace and add the affected model and the updated
snapshots to that workspace. UIs aren't automatically refreshed to synchronize with all model structure changes. The
following list explains what you need to know, or to do, to keep your UIs current with the product changes in the Product
Information Management work area .

• When a UI is initially generated, it includes by default all the nodes in the model. If model nodes have been
deleted, or have become ineffective (meaning that they represent items that are end-dated as of run time),
they're automatically filtered out of your UI without further action by you. They aren't displayed at run time, and
display conditions using such nodes are ignored.

• If new option classes, model references, or individual items are added to the existing model and should be
visible in the UI, then you must add them individually to the existing UI.

However, the existing UI continues to work without any changes for the following additions:

◦ New items that are added to an existing option class.

◦ New options that are added to an existing option feature.

151

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

◦ New transactional attributes that are added to an existing item (excepting the model item itself).

• If the product changes from a snapshot refresh involve changes such as instantiation type, or minimum and
maximum quantities, then existing UIs will continue to function, but may not provide the best user experience,
and may allow the creation of invalid configurations, or prevent the creation of certain configurations that
would be valid.

• If the configuration behavior for a node changes, then you might have to change the type of control template
that renders the node in the UI. For example, if an option class that originally had mutually exclusive options
now allows multiple selections, then you might want to change the control template for the node's page item
from a radio button group to a check box group.

• If supplemental structure nodes have been reordered in the model structure, then you must reorder them in the
existing UI, if they're explicitly displayed in the UI. The option nodes of an option feature aren't affected.

Related Topics
• User Interfaces for Configurator Models

• The Default User Interface

• Generated User Interfaces

• How You Modify User Interfaces

• Multichannel User Interfaces

Multichannel User Interfaces
Applicability parameters allow a model to use multiple UIs, each targeted to a different channel of use.

Applicability helps you present the UI that's most appropriate to the context.

• You may need to configure the same model in multiple host applications, each having different UI
requirements.

◦ Host application A is used by self-service customers with elementary knowledge of your product line.
You might need to present a simplified UI for Product X that guides the user through each step of the
configuration, and hides some product details that might be confusing.

◦ Host application B is used by sales fulfillment staff who are very familiar with your product line. You
might need to present a full-featured UI for Product X that exposes every option, in a layout that enables
users to reach those options most efficiently.

• You may need to present the same product to the same type of audience, but in different countries.
Consequently you need to present the UI in multiple languages.

To provide for such multiple requirements, you can set the applicability parameters for a UI.

Setting Applicability Parameters
On the Overview tab for the UI, you can select the applications and languages for which your user interface is applicable.

1. Edit your configurator model and navigate to the Overview subtab of the User Interfaces tab.

152

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

2. Under Applicability, select a parameter:

◦ Applications sets the applications that the UI will be used for. For example, if you select Order
Management, then the UI will be presented when Configurator is invoked by Oracle Order Management.

◦ Languages sets the languages that the UI will be used for.For example, if you select Korean and
American English, then the UI will be presented when Configurator is invoked by applications using one
of those languages.

3. The default setting for each parameter is All, meaning that the UI is available at run time to all channels.
4. Select the Selected setting. The Select button becomes enabled.

By default, the currently selected parameter is None. If you leave the setting as None, then the UI will not be
available at run time to any of that parameter's options. If no UIs are available, then the default UI is used.

5. Click the Select button. The selection dialog box for the parameter presents a list of available options, from
which you select one or more to determine the applicability of the UI.

6. If more than one UI has the same applicability parameter settings, then the sequence of UIs in the table on the
User Interfaces tab determines which UI will be used at run time.

To change the sequence in the table of UIs, select a UI then select one of the Move commands on the Actions
menu.

Related Topics
• User Interfaces for Configurator Models

• The Default User Interface

• Generated User Interfaces

• How You Modify User Interfaces

Templates, Pages, and Navigation Styles
User interfaces are composed of pages on which UI elements mapped to model structure are placed. The UI pages are
associated with model nodes, and the navigation between pages is part of the mapping.

UI template maps determine the navigation style between the UI pages that represent major components of a
configurator model. You see a template map when creating a UI. The available navigation styles are:

• Single Page Navigation

• Dynamic Tree Navigation

• Step by Step Navigation

Each template map is available in alternate variants:

• Template map with ordinary selection controls.

• Template map with enhanced selection controls, which show more detail about the state of the selected items.
For example, an icon indicates whether an item was selected by the end user or by a rule.

You can't change the choice of template map after creating a user interface. If you need to use a different template map,
you must create a new UI using that map.

153

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Note: Don't use the Single Page Navigation for Test UI with Enhanced Selection Controls template on UIs intended for
end users. That template is designed for use only with the Test Model operation.

Single Page Navigation
The Single Page navigation style collects all the configurable options of a model onto a single page. If a model has
reference models, the user can drill down into the UI for the reference model by clicking the Configure control on the
reference to the reference model.

The UI-level actions that the end user can select on this page are:

• Finish: The configurator engine finishes the configuration, which means that the engine automatically
completes the remaining selections that are required for a valid configuration of the model. After the
configuration is finished, the configuration session ends, the configuration data is returned to the host
application, and the user is returned to the previous location in the host application.

• Finish and Review: The configurator engine finishes the configuration, then navigates the user to the Review
page, where the user's selections are displayed for review and possible further configuration.

• Save for Later: Saves the configuration in the exact state left by the user. The configurator engine doesn't
finish the configuration, and the saved configuration may be invalid.

• Cancel: Warns the end user about losing any selections made, and returns to the host application without
saving any configuration data.

If a model is being configured in a host application, and no corresponding configurator model with a UI exists yet, the
Single Page UI is displayed for the end user to configure the model.

Dynamic Tree Navigation
The Dynamic Tree navigation style allows end users to navigate to a specific UI page by using the tree links that are
displayed in the left pane. When the UI is created, each of these tree links is created as a page.

There's no tree link available to navigate to reference models, but the user can drill down into the UI for the reference
model by clicking the Configure control on the reference to the reference model.

This navigation style provides the same UI-level actions as the Single Page style.

Step by Step Navigation
The Step by Step navigation style allows end users to navigate to a specific step by using a series of linked UI train stops
that are displayed at the top of the page. When the UI is created, each of these tree links is created as a page.

There's no train stop available to navigate to a reference model, but the user can drill down into the UI for the reference
model by clicking the Configure control on the reference to the reference model

This navigation style provides the same UI-level actions as the Single Page style. In addition to those actions, there are
two additional buttons, Back and Next, which are available to enable navigation to the previous or the next step.

Running Summary
To assist a sales end user in maintaining a comprehensive picture of a complex configuration, you can add a running
summary pane to each of the navigation style templates.

154

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

The running summary templates enable you to display cumulative sales information for all the items in the current
configuration that can be selected and ordered.

Tip: The items listed in the running summary change as you make selections in the model, so including a running
summary is a good way to check the behavior of your model when testing it. You can always remove the running
summary later, if you want.

The following running summary templates are available:

• Running Summary with Item Description, and Amount

• Running Summary with Item Description, Quantity and Amount

• Running Summary with Item Name, Quantity and Amount

• Running Summary with Quantity and Item Description

The summary also includes the total configured net price, excluding charges such as tax and shipping.

To add a running summary to one of your own user interfaces:

1. On the User Interfaces tab of the Edit Configurator Model page, select one of your UIs.
2. On the Overview subtab, select a template from the Running Summary Template list.
3. When the UI is tested, the running summary appears on the right side of the page. The items in the summary

are updated as you make selections in your configuration.

Instance Management Table
The configuration of multiple instances of a model can be complex and confusing to the end user. You can use the
Instance Management Table template in model user interfaces to provide easier configuration of multiple instances at
run time.

The Instance Management Table template is only applicable to model nodes that can have multiple instances. Multiple
instances are specified prior to model import, in the Product Information Management work area. Such nodes display
the Instantiability setting as Multiple instances on the Details pane of the model's Structure tab. When you create
a user interface, any model nodes that can have multiple instances are rendered by default in the new UI using the
Instance Management Table template. You can also create UI page items using the template by adding instantiable
nodes from the model tree in the Structure pane.

The following variants of the template are available. You can change the variant by editing the page item for the
template in the WYSIWYG pane.

• Default (Instance Management Table from UI Template Map)

• Instance Management Table

• Instance Management Table with Facets

At run time, an instantiable node rendered with the Instance Management Table template is initially displayed as
a caption and an Add button. When the end user clicks Add, an instance of the node is created, and the instance
management table is updated, adding a row that enables the end user to manage the newly created instance. The
columns of the instance management table are described in the following table.

155

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Table Heading Instance Behavior

Name

The default name of the instance of the node, which can be edited by the end user. Each instance is
identified by adding a sequence number. Example: [1] [2] [3] Instance numbers remain
associated with the instances for which they're created. Example: If the user creates instances [1] [2]
[3] and deletes instance [2], then the next new instance added is numbered [4], although there are
three instances at that moment.

Quantity

The number of instances of the item that will be managed together from that row of the table.
Example: If the Quantity is 4, then 4 instances can be configured identically, deleted together, or
duplicated together. The number of instances that can be entered in this field at that moment is
displayed as tip text when you click in it. Note that the total quantity for all the instances in the table
is governed by the Minimum Quantity and Maximum Quantity of the associated instantiable model
node. Example: if the Maximum Quantity is 8, and there are four instances, and the user enters a
quantity of 5 for one instance, then the other three instances are each assigned a quantity of 1.

Configure

The edit control to configure the instance. The configuration that you perform on this instance is
applied identically to all of the number of instances in Quantity.

Delete

The edit control to delete the instance. Instance numbers of deleted instances aren't reused.

Duplicate

The edit control to duplicate the instance. The new duplicate instance keeps the instance number of its
original, and prefixes the instance name with Copy of. Additional duplicates are prefixed with Copy 2
of and so on. Since the instance number of the original is retained in its duplicates, but each duplicate
is counted as an instance, a new instance added with the Add button is assigned an instance number
that reflects the current total number of instances. Example: If the user creates instance [1] and
makes three duplicates of it, then the next new instance added is [5], since there are four instances at
that moment of addition. The control is disabled for all instances when the Maximum Quantity of the
associated instantiable model node has been reached.

Item Selection Table
In item-based models, some option classes might contain hundreds or even thousands of options. Loading that many
options in a UI control can affect the responsiveness and usability of the model. Configurator handles this situation by
providing the Item Selection Table UI template.

• When a default user interface is needed, Configurator uses the Item Selection Table with Header template
instead of a check box control template for option classes with more than 25 options.

• When you generate a new user interface, Configurator uses the Item Selection Table by default for option
classes with more than 25 options. A single-select or multi-select version of the template is used, as appropriate
to the option class. You can modify your generated UI to use other templates.

• The Item Selection Table template is available in versions with or without header, standard or enhanced, and
single-select or multi-select.

• A query-by-example control is included in the template to enable the end user to search for options.

Predefined Templates
This table lists the UI templates that are predefined for use in your user interfaces.

156

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Template Name Description

Boolean Feature Control

Check box that indicates logic state of the associated node.

Boolean Feature Control with Facets

Check box that indicates logic state of the associated node with facets.

Check Box Group

Check box group for a set of options.

Check Box Group with Facets

Check box group for a set of options with facets.

Check Box Group with Quantity

Check box group with quantity fields for a set of options.

Check Box Group with Quantity and Facets

Check box group with quantity fields for a set of options and two facets.

Choice List

A drop-down list for selecting a single item. Applicable to option classes and option features.

Choice List with Facets

A drop-down list for selecting a single item with facets. Applicable to option classes and option
features.

Compact Stack Layout

Renders the UI items of an associated UI region vertically with no spacers between them.

Enhanced Boolean Feature Control

Check box that indicates logic state of the associated node; indicates detailed selection state.

Enhanced Check Box Group

Check box group for a set of options; indicates detailed selection state.

Enhanced Check Box Group with Quantity

Check box group with quantity fields for a set of options; indicates detailed selection state.

Enhanced Item Selection Control

Check box for selecting standard items; indicates detailed selection state.

Enhanced Item Selection Control in Form
Layout

Check box wrapped in a form layout for selecting standard items; indicates detailed selection state.

Enhanced Item Selection Control with
Quantity

Check box with a quantity field for selecting standard items; indicates detailed selection state.

Enhanced Item Selection Control with
Quantity in Form Layout

Check box with a quantity field wrapped in a form layout for selecting standard items; indicates
detailed selection state.

Enhanced Item Selection Table with
Header, Multi-Select

Table with header for selecting or configuring multiple items, showing quantity, description, and
detailed selection state.

Enhanced Item Selection Table with
Header, Single-Select

Table with header for selecting or configuring a single item, showing quantity, description, pricing, and
detailed selection state.

Enhanced Item Selection Table, Multi-
Select

Table for selecting or configuring multiple items, showing quantity, description, pricing, and detailed
selection state.

157

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Template Name Description

Enhanced Item Selection Table, Single-
Select

Table for selecting or configuring a single item, showing quantity, description, pricing, and detailed
selection state.

Enhanced Item Single-Instance Control

Check box and a button to configure a single instance for an instantiable component or child model;
indicates detailed selection state.

Enhanced Item Single-Instance Control in
Form Layout

Check box and a button wrapped in a form layout to configure a single instance for an instantiable
component or child model; indicates detailed selection state.

Enhanced Radio Button Group

Radio button group for a set of options; indicates detailed selection state.

Enhanced Radio Button Group with
Quantity

Radio button group with quantity fields for a set of options; indicates detailed selection state.

Enhanced Summary Region

The Enhanced Summary Region UI element displays all orderable options that are selected during a
configuration session in a table.

Flow Layout

Renders the UI items of an associated UI region in a start to end flow layout.

Form Layout

Renders the items of the associated UI region in a form layout

Form Layout for Page

Renders the items of the associated page in a form layout

Form Layout with Quantity

Renders the items of the associated UI Region in a form layout and contains a numeric field bound to
the Quantity attribute of the associated model node.

Item Instance Management Table

Table for adding, deleting, and configuring instances, and entering quantities for an instantiable child
model.

Item Instance Management Table with
Facets

Table for adding, deleting, and configuring instances, and entering quantities for an instantiable child
model and facets.

Item Selection Control

Check box for selecting standard items.

Item Selection Control in Form Layout

Check box wrapped ina form layout for selecting standard items.

Item Selection Control with Quantity

Check box with a quantity field for selecting standard items.

Item Selection Control with Quantity in
Form Layout

Check box with a quantity field wrapped in a form layout for selecting standard items.

Item Selection Table with Header, Multi-
Select

Table with header for selecting or configuring multiple items, showing quantity, description, and
pricing

158

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Template Name Description

Item Selection Table with Header, Single-
Select

Table with header for selecting or configuring a single item, showing quantity, description, and pricing.

Item Selection Table, Multi-Select

Table for selecting or configuring multiple items, showing quantity, description, and pricing.

Item Selection Table, Single-Select

Table for selecting or configuring a single item, showing quantity, description, and pricing.

Item Single-Instance Control

Check box and a button to configure a single instance for an instantiable component or child model.

Item Single-Instance Control in Form
Layout

Check box and a button wrapped in a form layout to configure a single instance for an instantiable
component or child model.

Radio Button Group

Radio button group for a set of options.

Radio Button Group with Facets

Radio button group for a set of options with facets.

Radio Button Group with Quantity

Radio button group with quantity fields for a set of options.

Radio Button Group with Quantity and
Facets

Radio button group with quantity fields for a set of options and two facets.

Running Summary with Item Description
and Amount

The Running Summary Region UI element displays all orderable options that are selected during a
configuration session in a table showing Item Description and Amount.

Running Summary with Item Description,
 Quantity and Amount

The Running Summary Region UI element displays all orderable options that are selected during a
configuration session in a table showing Item Description, Quantity and Amount.

Running Summary with Item Name,
 Quantity and Amount

The Running Summary Region UI element displays all orderable options that are selected during a
configuration session in a table showing Item Name, Quantity and Amount.

Running Summary with Quantity and Item
Description

The Running Summary Region UI element displays all orderable options that are selected during a
configuration session in a table showing Quantity and Item Description.

Section Header

Renders the items of the associated UI region in a stack inside a panel header

Section Header with Quantity

Renders the items of the associated UI region in a stack inside a panel header and contains a numeric
field bound to the Quantity attribute of the associated model node.

Selectable Image Group

Renders the set of options as a group of selectable images

Selectable Image Group with Header

Renders the set of options as a group of selectable images with header

Spacer

Renders a spacer between UI elements on a page.

159

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Template Name Description

Stack Layout

Renders the items of the associated UI region in a stack layout, one below the other.

Stack Layout for Page

Renders the items of the associated page in a stack layout, one below the other.

Choice List for Transactional Attributes

A drop-down list for selecting a transactional item attribute.

Layout Area for Transactional Attributes

Form layout area for a transactional attribute.

Related Topics
• User Interfaces for Configurator Models

• How You Modify UI Elements

• The Default User Interface

• Generated User Interfaces

• How You Use Images for Selections

How You Modify User Interfaces
After you generate a UI for a model, you can modify it to better suit the needs of your application.

On the Overview tab of a UI's details you can see which UI template map it uses, and set its applicability parameters. On
the Design tab, a WYSIWYG editor enables you to view and manipulate the elements in a UI.

To modify a UI, you can:

• Change the location of generated UI items

• Add model nodes to the UI

• Add basic UI elements that enhance the appearance of the UI

• Control the visibility of UI elements

Using the WYSIWYG Editor
The Design tab provides the Pages pane for controlling the pages in the UI, the Resource pane for adding model
Structure nodes or basic UI elements, and the WYSIWYG editor region where you can interactively see the results of
your modifications for the page selected in the Pages pane. The labels of the model-related items in the WYSIWYG
region reflect the Description values for the nodes in the model itself.

Each UI item has a hidden edit control bar, indicated by a chevron icon. Click the chevron to select a UI item for editing
and open the edit control bar.

• Click the pencil icon to edit the properties of the page item.

• Click the X icon to delete the page item from the UI page.

160

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

• Click the arrow icons to move the item up or down on the page.

The properties of UI items vary, depending on the type of the item. Commonly-used properties include:

• The internal Name of the item, which isn't displayed at run time.

• The Associated Model Node that the UI item represents. The name is read-only. Click the information icon for
details about the node.

• The Template option for selecting a control template for the UI item.

• The Page Caption that's displayed for the item at run time.

• The Run Time Conditions option for defining a display condition on the UI item.

Changing The Location Of Generated UI Items
The default location of page items in a UI is determined by the UI template map you selected when you created the UI.
You can change the default location.

You can make the following changes in the location of page items:

• Move the items up or down on the page by clicking the arrow icons on the edit control bar.

• You can't cut and paste page items to move them. Instead, delete the item from its original page and add it to a
different page.

• In a Step By Step or Dynamic Tree UI, you can add new pages from the Pages pane, then add new nodes to the
page from the Structure pane. When you select the node and click the Add as Page Item action, the new page
item is added just below the item that's currently selected in the WYSIWYG pane.

• To change the order of UI pages, select the page in the Pages pane, then click the arrow icons on the toolbar.

• To delete UI pages, select the page in the Pages pane, then click the X icon on the toolbar. First be sure that
the page doesn't contain any page items that you want to retain in your UI, though you can add them back
elsewhere later.

• To change the generated title for a UI page, select the page with its edit control, or in the Pages pane, and
change the Page Caption in the Edit Page dialog box.

Adding Model Nodes to the UI
You can modify the set of UI pages and UI page items that represent your configurator model, which are created when
you create a generated UI.

In a generated UI, UI items reflect item-based model structure:

• UI pages are generated for each item-based option class that's an immediate child of the model root. Since
supplemental-structure features must be created on the root node of model structure, those features are
generated on the root page of the UI, but you can place them on other pages instead.

• UI page items are generated for each item-based standard item or supplemental-structure feature.

• UI control templates provide controls in the UI for end-user interaction with model nodes.

You can't move a page item from one page to another in a single operation. Instead, you delete it from its original page
and add it to the other page. In the case of page items that are model nodes, you must add them from the Structure tab
in the Resources pane. To add a page element for a model node:

1. Select the location to add the new page item. The page item will be added below the currently selected page
element.(If the currently selected UI element is a layout region, then the new page item is added as the last item

161

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

in the layout region.) Consider the size and location of the page element when selecting it, and the effect on the
placement of the added page item.

You select a page element by clicking the chevron icon for its edit control. A contextual label tells you what kind
of page element is associated with the edit control.

2. In the model structure tree in the Structure tab in the Resources pane, select the node that you want to add to
the page. You may want to view the tree by Description, to ease locating the desired model node.

3. From the context menu, or the Add to Page menu, select an available action to add the node to the page.

◦ Add as Page Item adds the node as an page item, which enables you to select a different control
template and display condition.

◦ Add as Header Region adds the node as a header region, which displays the node name as a section
header, and enables you to set the control template and display condition for the region. You may want to
add the node as a page item under the section header, or add other nodes or UI elements.

◦ Add as Layout Region adds the node as a layout region, which enables you to set the control template
and display condition for the region. You may want to select a form or stack layout for the region.

You can't change the display name of the node, or its children, because those names reflect the Description text
of the nodes in the model itself.

Note: You can designate those nodes in your model that must have a value or selection before the autocompletion
process can run (which is triggered by clicking Finish or Finish and Review at run time). If you select the Prerequisite
for autocomplete check box on the UI Presentation tab of the node details, in the Structure view of the Edit
Configurator Model page, then an asterisk appears next to the node in the UI when the required value is missing. This
indicator appears in any UI, and isn't modifiable as part of a UI, since it's part of the structure and rules of the model,
rather than its UI.

Adding Basic UI Elements
In addition to model-dependent elements that are automatically inserted into a generated UI, you can add basic UI
elements that are independent of model structure to enhance the appearance or usability of the UI for end users.

To add a page element for a model node:

1. Select the location to add the new UI element. The element will be added below the currently selected page
element.

2. From the list in the UI Elements tab in the Resources pane, select the UI element that you want to add to the
page.

3. From the context menu, or the UI Elements toolbar, click Add to Page.
4. In the Add dialog for the added element, enter the desired properties in the Contents group.

◦ For a Text element, enter:

- Text: Text to be displayed.
- Inline Style: CSS expression. Example:

font-family:Arial,sans-serif;font-weight:bold;font-style:italic;color:#cc33cc;font-size:24pt

- Style Class CSS class selector. The style sheet must be accessible to the UI at run time. Example:

background-yellow

◦ For an Image element, enter:

162

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

- Image: Image file, to be uploaded to Configurator environment.
- Alt Text: Provides accessibility text for images.
- Inline Style: CSS expression. Example:

position:relative;top:10px;left:-200px

◦ For a Spacer element, enter:

- Width: Width of the spacer, in pixels. Do not add px to the number.
- Height: Height of the spacer, in pixels. Do not add px to the number.
- Inline Style: CSS expression. Example:

position:relative;left:-150px;background-color:gray

◦ For an IFrame element, enter:

- URL: URL of an accessible internal or external web site, with optional URL parameters that
generate output displayed inside the frame. Example:

https://www.mysite.com:1000/perform?taskID=12345678

An IFrame element must be placed in its own layout region in the user interface.

If the URL is outside the current domain, then you must use Cross-Origin Resource Sharing (CORS)
to enable a client application running in one domain to retrieve resources from another domain,
using HTTP requests. See the related topic about CORS for details.

- Width: Width of the IFrame, in pixels. Do not add px to the number.
- Height: Height of the IFrame, in pixels. Do not add px to the number.
- Inline Style: CSS expression.

5. You can change the default associated model node for a basic UI element by clicking the Search and Select
control on the Associated Model Node field, and selecting a node that's accessible relative to the UI page.
Changing the associated model node enables you to affect basic UI elements based on values or events in other
parts of the model. Examples include:

◦ You can use the value entered for a text feature during a configuration session as part of the value for
the URL parameter of an IFrame basic element. Set the text feature as the associated model node of the
IFrame, then use the UI expression #{amn.value} to access the value of that node. Example:

https://www.mysite.com:1000/perform?taskID=#{amn.value}

◦ You can use selection of a value for an option class or option feature during a configuration session to
conditionally control the whether an Image basic element appears or not. Set the option feature as the
associated model node of the Image, then set the display condition for the Image to be TRUE when the
option feature is bound to a value by the occurrence of a selection. Example:

- Object: Associated model node
- Attribute: IsBound
- Value: Equals TRUE

163

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Limitations on Modifying UIs
There are limitations to how you can modify a UI.

• You can't change the UI template map that you selected when creating the UI. Therefore you can't change the
navigation style for the UI.

• You can't change the Associated Model Node for a UI item that directly represents a model node. Therefore you
can't change the node represented by a particular UI item. But you can change the UI control template selected
for the UI item, thus changing its appearance.

• If the model has child referenced models, you can't explicitly specify which of child model's UIs will be used at
run time. The child model's UI will be selected based on its applicability parameters.

• You can't modify the configuration summary page.

Related Topics
• User Interfaces for Configurator Models

• Generated User Interfaces

• How You Modify UI Elements

• CORS

How You Modify UI Elements
After you generate a UI for a model, you can modify individual UI elements in it, to better suit the needs of your
application.

Controlling the Visibility of UI Elements
There are several ways to control which elements of a UI appear, and under which conditions.

The most flexible way to control the visibility of UI elements is by using display conditions, which apply to all elements in
a UI except pages.

To set a display condition:

1. Select an element of the UI, and click its edit control to open its properties dialog box.
2. Under Run Time Conditions, change the value of the Displayed control from Always to Conditionally.
3. Now the Condition group of options is provided. You define the display condition for the element by selecting

options which specify that some attribute of some object in the model has a specified value. When the specified
attribute has that value, then the UI element you're defining is displayed at run time, or when you test the
model.

4. Select the Object whose value will trigger the display condition. The default object is the associated model
node for the UI element itself. If you select Other model node, then a search control is provided for selecting
that node. If you select Configuration session, then the Attribute option lists attributes of the configuration
session as a whole at run time, rather than attributes of a model node.

5. Select the Attribute whose value will determine whether the display condition is triggered.
6. Select whether the run time Value for the selected attribute Equals or Does not equal the value that you select

in the last option of the display condition.

164

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20054292

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

As an example, assume that you want the UI to display the message You picked red. when the end user selects the
option Red for an option feature named Color. You would:

1. Add a Text element to the UI, positioned near the Color feature.
2. Edit the properties of the Text element and enter You picked red. in the Text field.
3. Select Conditionally for Displayed.
4. Select the object Other model node, then search for and select the supplemental node Red under the option

feature Color.
5. Select the attribute SelectionState.
6. Select the operator Equals and the attribute value Selected.
7. Click Test Model. Navigate to the option feature Color, and select Red. The message You picked red. appears.

The same message would appear to the end user at run time.

There are also other ways of preventing model nodes from appearing in a UI:

• You can suppress a particular structure node for a model from appearing in any new UIs by deselecting the
Display in user interface check box on the UI Presentation tab of the structure details pane for that node. This
won't affect UIs that you have generated before you change this setting, but will affect all UIs that you generate
after changing it.

• You can minimize the number of choices presented to the end user in a UI at run time by selecting the Hide
excluded items in run time Configurator check box on the details overview section of the User Interfaces tab
when editing the model. This setting is independent of model structure, and only affects the particular UI in
which you set it. At run time, if options or items are excluded from selection by configurator rules, then they're
not displayed in the UI.

Modifying UI Element Captions
You can use the UI expression language to override the default item display name of a given UI item, replacing it with a
combination of static text and all associated model node attributes, with the exception of DisplayName.

The following table provides an example of the effect of using the UI expression language.

Element of UI caption Example

Associated model node in model structure

Name: CARWHEELS

Description: Wheels

Default display name in UI

Wheels

UI expression

Item Name: #{amn.name} - Item Description: #{amn.description}

Modified display name at run time

Item Name: CARWHEELS - Item Description: Wheels

165

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

To override the default display name of a UI element:

1. Select the UI element.
You can modify the following UI elements:

◦ Page Caption of a Page element

◦ Header Region Caption of a Header Region element

◦ Page Item Caption of a Page Item element

◦ List Item Caption of a List Item element, which can be part of a Page Item

Note: When you override the default display name of UI caption elements, then the node property
DisplayName isn't available for the associated model node.

2. Click the Edit control for UI element.
3. In the Edit dialog box, enter a UI expression for the caption of the UI element.
4. Click OK in the Edit dialog, save the UI, and click Test Model.
5. In the test UI, the caption appears with the overriding expression text.

Using UI Facets
You can add basic UI text elements in the UI facets of the header of certain UI page items, to augment the information
presented to the end user at run time.

A UI facet is an area in the UI item into which you can place additional UI items related to the associated model node
for the UI item, or reachable from the associated model node. The following configurator model node types have UI
templates that include UI facets:

• Option classes

• Option features

• Boolean features

Templates with facets are available for the following UI page items:

• Boolean Feature with Facets

• Check Box group with Facets

• Check Box group with Quantity and Facets

• Choice List with Facets

• Item Instance Management Table with Facets

• Radio Button Group with Facets

• Radio Button Group with Quantity and Facets

A template with facets contains layout regions arranged in the following default relationship:

Header: template with facets
Messages facet: Compact Stack Layout template containing:
 Basic UI text elements (in vertical sequence)
Information facet: Flow Layout template containing:
 Basic UI text elements (in horizontal sequence)
Items or options of the associated model node

The layout regions can be changed if they're not suited for the desired behavior.

166

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Example showing two text elements stacked in the messages facet and four text elements in a flow in the information
facet:

System Memory
 Memory mixing requires firmware version: XXYY123
 Your selection of DIMMs exceeds the maximum of: 64
 Memory (GB) Included: 0 | Minimum Required: 64 | Maximum Allowed: 2048 | Total Configured: 2608
 [0] A8V234 Four 8 GB DIMM
 [0] A8V567 Four 16 GB DIMM
 [0] A8V890 Four 32 GB DIMM
 [18] A8V999 Four 64 GB DIMM

To use UI facets for a page item:

1. Select and edit a page item for an associated model node that can use facets.
2. Apply one of the templates that includes facets. After you click OK, the facets are added to the page item.
3. Select the first layout region under the header, which is the messages facet. This region's template is Compact

Stack Layout. Don't change the template.
4. From the list in the UI Elements tab in the Resources pane, select the Text element, then, from the context

menu or the UI Elements toolbar, click Add to Page.
5. Edit the basic Text element that you inserted into the facet. Add static text in the Text field to provide messages

about configuring the associated model node to the end user.
6. You can use the UI expression language to dynamically display information about the associated model

node, or nodes reachable from the associated model node. You must use expression language attributes that
correspond to the node types for which you can use UI templates with facets.

For example, assume that the associated model node is an option feature with Minimum Selections of 2
and Maximum Selections of 5, and you enter the following three expressions in Text field of three basic text
elements in the messages facet:

Number of options you selected: #{amn.selectedCount}
Maximum number of selections allowed: #{amn.maxSelected}
Minimum number of options selected?: #{ amn.minSelectionSatisfied}

When you test the model and select one option, the following text is displayed in the facets:

Number of options you selected: 1
Maximum number of selections allowed: 5
Minimum number of options selected?: false

7. Select the second layout region under the header, which is the information facet. This region's template is Flow
Layout. Don't change the template.

8. Repeat the steps described for the messages facet, to add static or dynamic text in basic Text elements in the
information facet.

9. Save your changes to the UI, and click Test Model.

CAUTION: If you add UI items to facets, then later change the page item's template to a template without facets, then
the facets will be removed, and all the UI items that you added to the facets will be lost.

Related Topics
• User Interfaces for Configurator Models

• The UI Expression Language

• Use Node Properties to Affect Runtime Behavior and Results

167

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

The UI Expression Language
You can use the UI expression language to dynamically create values for text parameters of basic UI elements based on
the associated model node attributes of any basic element UI item.

UI Expression Language Syntax
Expressions in the UI expression language consist of a reserved keyword, which refers to an associated model node,
qualified with a name that refers to an attribute of the model node.

An example of using the expression language is:

The node named #{amn.name} has a maximum quantity of #{amn.maxQuantity}.

• All expressions start with #{ and end with }.

• The keyword amn establishes a reference to the associated model node for a UI basic element.

• Expressions are case-sensitive, including the keyword amn.

• The keyword amn is always qualified by a reference to an attribute of the associated model node, following this
form:

#{amn.referenceName}

• References must be to a valid attribute of the associated model node. Valid attributes are enumerated in
the user assistance for configurator model node properties. References to attributes that don't apply to the
associated model node generate errors when attempt to use them in expressions.

• UI expression attribute references are formed by putting the initial letter of the attribute name into lower case.
The prefixes Is and Has are omitted from expression references.

The following table summarizes attribute references in the UI expression language.

UI Expression Language Reference Refers To Example Expression

name The name of the associated model node.

#{amn.name}

description The description of the associated model node.

#{amn.description}

quantity The quantity of the associated model node.

#{amn.quantity}

boundQuantity Attributes named like IsBoundQuantity

#{amn.boundQuantity}

hasChildren Attributes named like HasChildren

#{amn.hasChildren}

value The value of a transactional attribute, if the
associated model node is an attribute under the
root model node.

#{amn.value}

168

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

UI Expression Language Reference Refers To Example Expression

suppAttrs['<suppAttrName>'] The value of the named supplemental attribute.

#{amn.suppAttrs['color']}

userAttrs['<UDAttrGroup>.<UDAttrName>']The value of the named user-defined attribute.

#{amn.userAttrs['PhysicalAttributes.Color']}

Restrictions on the UI Expression Language
The following restrictions apply to UI expression language expressions.

• Expressions are case-sensitive.

• Expression attribute references must be to attributes that are valid for the associated model node. This
validation is also applied if you change the associated model node for an element.

• The expression language can be used with all model node system, user and supplemental attributes, but only
for the text parameters of basic UI elements. The basic UI elements are: Text, Image, Spacer, and IFrame. The
text parameters are: Text, Inline Style, Style Class and URL.

• References to elements of a collection or list aren't valid. Example of invalid reference: #{amn.children[0].name}.

• References to transactional item attributes are only valid when the associated model node of a basic UI element
is a transactional attribute under the root node of the model. Valid reference expression: #{amn.value}.

• If an attribute value of the associated model node isn't available at run time, the displayed value is blank. If an
expression can't be evaluate at run time because an attribute value isn't available, the displayed value is N/A.

Uses for the UI Expression Language
Uses for the expression language include the following:

• Creating a Text basic UI element in a user interface page to dynamically display the minimum and maximum
values of its associated model node. Example:

Min: #{amn.minValue}
Max: #{amn.maxValue}

• Creating an IFrame basic UI element where the IFrame's URL is dynamically augmented to provide query
parameters. Example:

https://www.mysite.com:1000/perform?taskID=#{amn.value}

• Storing a central set of Cascading Style Sheets (CSS) in a model node's supplemental attribute and using the
expression language to generically refer to the CSS from a basic UI element's Inline Style attribute. Example:

#{amn.suppAttr['InlineStyle']}

Related Topics
• User Interfaces for Configurator Models

• How You Modify UI Elements

• Use Node Properties to Affect Runtime Behavior and Results

169

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

How You Use Images for Selections
You can represent items with images in place of their names, in the run time UI, enabling the end user to make simpler
and more intuitive selections.

Adding Images to Items
To enable selectable item images, you must first provide the images to the desired items. The images should reflect the
possible selection states of the item: available for selection, selected, or excluded.

You can add selectable images to the following types of model nodes:

• Standard items of an item-based options class

• Options of a supplemental option feature

To add selectable images to an item:

1. In a workspace, open the model draft containing the item.
2. On the Structure tab of the Edit Configurator Model page, select the node to which you want to add selectable

images.
3. Select the UI Presentation tab of the Details region
4. Under Item Selection Images, there are controls for adding the images for the Primary (available but

unselected), Selected, and Excluded states of the node.
5. Click the icon in the Primary field to add an image.

You can't add Selected or Excluded images without having a Primary image.
6. Use the Add Image dialog box to locate and add the Primary image file for the node.
7. Use the same procedure to add images for the Selected and Excluded images.
8. Repeat the addition process for the other nodes of the option class or option feature, where desired.

You can remove the Selected or Excluded images as desired. If you remove the Primary image, then the other images
are automatically removed. You can change an image at any time.

Adding Selectable Images in UIs
To display selectable images to users at run time, you must add them to a user interface.

To add selectable images to a UI:

1. On the User Interfaces tab of the Edit Configurator Model page, create a new UI, or select the existing UI, on
which you want to display selectable images.

2. In the WYSIWYG editor on the Design subtab, select the edit control bar for the page item representing the
option class or option feature that you provided selectable images for.

3. Click the control for editing properties of the page item
4. Open the list in the Template field, and search for one of these templates:

◦ Selectable Image Group

◦ Selectable Image Group with Header

170

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

5. In the Edit Page Item dialog box for the template that you selected, set the values for desired properties in the
Contents group.

◦ Images Per Row is the number of item images displayed at run time in a horizontal row on the UI page.

◦ Inline Style is an optional CSS style expression applied at run time to the entire Selectable Image Group
template.

◦ Option Inline Style is an optional CSS style expression applied at run time to each selectable image.

6. Save your model changes and click Test Model.
7. In the test UI, the images displayed for the options of the option class or option feature depend on the selection

state of the options:

◦ The Primary image is displayed if the option is available, and not selected or excluded.

◦ The Selected image is displayed if the option is selected by a rule or user selection.

◦ The Excluded image is displayed if the option is excluded by a rule.

8. If any images are missing from the Item Selection Images of the Structure view, then the following
substitutions are made at run time:

◦ If the Primary image for an item is missing, then a graphic placeholder icon is displayed.

◦ If the Selected image is missing, and the item is selected, then the Primary image is displayed, enclosed
by a rectangle.

◦ If the Excluded image is missing, and the item is excluded, then the Primary image is displayed, in
dimmed shading.

9. If your UI uses the Selectable Image Group with Header template, then the Description of the option class or
option feature and the Description of the selected option are displayed together as a header for the group of
option images.

Related Topics
• User Interfaces for Configurator Models

• The Default User Interface

• Generated User Interfaces

• Multichannel User Interfaces

How You Visualize Configurations
You can define user interface elements that enable end users to visualize how an object changes visibly in reaction to
actions they take during a configuration session.

To provide visualization of objects in a configurator model:

• Design the visualization model

• Add an IFrame element and enable it to receive model node changes

• Communicate model node changes to the external visualization tool

171

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

Design the Visualization Model
Visualization requires that you provide a model in some external 2D or 3D visualization tool. This visualization model
should correspond to all or part of the configurator model for the product that your end users are configuring.

Since many parts of a configurator model can change while users are configuring a product, it's important to determine
the scope of the model node changes needed to support the visualization. If a visualization only supports a component
of a model, then the scope of the model node changes should be reduced to that component only and not the entire
model.

Add an IFrame Element and Enable It To Receive Model Node Changes
Visualization takes place within an inline frame of a user interface. You create the inline frame with an IFrame basic UI
element. By default, an inline frame displays an accessible internal or external web site. To visualize configured objects,
you enable the IFrame element to receive model node changes.

Consult the related topic about modifying user interfaces for more details on adding an IFrame basic UI element. For
adding visualization, there are a few special things to do:

1. Select the location to add the IFrame element. It will be added below the currently selected page element.
2. From the list in the UI Elements tab in the Resources pane, select the IFrame element and click Add to Page.
3. In the Add IFrame dialog box, select the associated model node for the IFrame. Select carefully, because the

scope of the node controls which model node changes are passed to the IFrame.
4. Select Receives model node changes.
5. Select the scope from which changes to the model should be communicated to the IFrame: Associated Model

Node and Subtree or Associated Model Node.
6. In the URL field of the Contents group, enter the URL and parameters for the external visualization site that

you're integrating with. For example:

https://myserver.com/viewer.html?scs=model_data/mountainbike_blue.scs

Remember that If the URL is outside the current domain, then you must use Cross-Origin Resource Sharing
(CORS).

7. Enter other desired properties in the Contents group.

Tip: If a user interface has multiple UI pages, you can add an IFrame to each page, so that the end user can keep the
visualized object in view throughout the configuration session. Depending on your use case, you could determine
whether to display different components of your model on different UI pages, or the entire model on every page.

Model Node Changes That Are Passed to the IFrame
When end users select items or enter values for items in the IFrame's associated model node or subtree, Configurator
passes the changes in the values of certain attributes to the IFrame, as JSON payloads of standard name-value pairs.
When these model node change payloads are received by the IFrame, the values are passed to the external visualization
tool identified by the IFrame's URL. Be aware that no information is passed back from the IFrame to the configurator
model.

These static attributes are passed to the IFrame for every associated model node or subtree node:

• NodeType

• DisplayNamePath

172

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

• HasTransactionalAttributesFlag (only for node types imported from the Product Information Management work
area)

It's useful to know which attributes are passed to the IFrame, and from there to the external visualization tool, because
these attributes can be used in the JavaScript code that matches configurator model nodes with visualization model
nodes, as shown in the code fragment provided here.

The NodeType determines which dynamic attributes are passed to the IFrame:

NodeType SelectionState Quantity InstanceCount Value

OPTION_CLASS_ITEM

Yes

Yes

No

No

STANDARD_ITEM

Yes

Yes

No

No

MODEL_ITEM

Yes

Yes

No

No

ROOT_MODEL_ITEM

Yes

Yes

No

No

COMPONENT_PORT

No

No

Yes

No

Communicate Model Node Changes to the External Visualization Tool
Configurator communicates model node changes in standard JSON payloads of name-value pairs to the IFrame,
internally using the JavaScript method window.postMessage(). These payload messages must be interpreted by the
visualization tool to properly display model node changes in the visualization IFrame.

For example, assume that a configurator model of a bicycle includes an option class and standard items with these
display names:

Mechanical Options.Brakes
 Basic Alloy Bicycle Brake Set
 Dual Compound Side Pull Bicycle Brake Set
 Delux Cantilever Brake System

In the HTML file used by the visualization tool (which you specified in the URL field of the IFrame) you might write the
following JavaScript statements to match the display names of the configurator model nodes with the corresponding
nodes of a visualization model that you have built. The sample code below sets the color of a node of the visualization
model when the matching configurator model node is selected by the end user in a configuration session.

...
if (displayNamePath.startsWith("Mechanical Options.Brakes")) {
 if (selectionState === "SELECTED") {
 if (displayNamePath.includes("Basic Alloy Bicycle Brake Set")) {
 var color = new Communicator.Color('255','255', '255');
 model.setNodesFaceColor([18, 19, 20, 21], color);
 } else if (displayNamePath.includes("Dual Compound Side Pull Bicycle Brake Set")) {
 var color = new Communicator.Color('100','100', '0');
 model.setNodesFaceColor([18, 19, 20, 21], color);
 } else if (displayNamePath.includes("Delux Cantilever Brake System")) {
 var color = new Communicator.Color('200','100', '100');
 model.setNodesFaceColor([18, 19, 20, 21], color);
 }
 } else if (displayNamePath === "Mechanical Options.Brakes" && selectionState === "SELECTABLE") {

173

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 6
User Interfaces

 model.unsetNodesFaceColor([18, 19, 20, 21]);
 }
 }
...

Related Topics
• Add a Supplemental Structure

• How You Modify User Interfaces

• CORS

FAQ for Model User Interfaces

How can I rename a page caption?
By default, a UI page has a heading derived from the Description of the associated model node.

To change the heading displayed at run time, edit the page, on the Design subtab of the User Interfaces tab for the
model. Select the page, in the Pages pane, and click the Edit control in the toolbar. In the Edit Page dialog box, change
the default text that was generated for the heading, in the Page Caption field. The new page caption will be displayed at
run time, and when you test the model.

Keep in mind that UI pages aren't tightly connected to the model. You can add, delete, and reorder pages without
affecting the model structure. Similarly, you can change the page captions that are generated from node names in the
model, because you aren't changing the model structure. However, UI page items are tightly connected to the model,
and you can't change their page captions in by editing a UI. To change the captions of item-based nodes, you would
have to change their Description values in the Product Information Management work area and refresh the snapshots
that include them. To change the captions of supplemental structure nodes, you can change their Name values in the
structure details of the model.

Related Topics
• User Interfaces for Configurator Models

• How You Modify User Interfaces

174

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20054292

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

7 Connectors

Overview of Connectors
Connectors are a type of supplemental structure that you can add to a configurator model.

• Connectors provide the basis for making connections from a model to related items outside that model. Use a
connector when the configuration of a product requires you to include an item that isn't part of the product's
structure.

• For example, when configuring the model for a computer, you might also want to add a warranty as part of
the order, although warranty items aren't part of the computer model. A connector provides the means for
including the warranty in the configuration.

• You define a connector in a model's structure, with a target that's an item class. Before defining the connector,
you must import the items in that item class.

• The connections are created at runtime, as part of the configuration of a model. The items associated with the
target item class are connectable to the model, through the connector.

When To Use Connectors
Products are often configured from items in a bill of materials that are related by specific rules to create a defined,
limited model structure.

But if you need to configure products that depend on items that aren't part of a single model's structure, you might
want to use connectors.

Here are examples of models for which you might use connectors to include separate but related items in a
configuration of the model:

Configurator Model Related Item Connected to Model Conditions for Connection

Network server

Warranties

Exclude warranties for 12 months. Allow only
warranties for 18 or 24 months.

Network server

On-site installation service

Automatically added as a related item on a
quote or order.

Desktop computer

Cables

No restrictions.

Car

Trailer

Can optionally add only one trailer to a car.

Car

Warranties

Can add up to four warranties.

175

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Here are some user stories where connectors could be the best solution:

User story 1
Create a quote or order for a configured item with separate related items. You're configuring a network server and have
selected the required components of the configuration. Certain components that you have selected exclude warranties
of 12 months, and only 18 or 24-month warranties are allowed. You should be able to select the available warranties
from within the Configurator user interface. On completing the configuration, you should see the network server and
the warranties that you selected as related quote or order lines. Also note that these warranties aren't modeled in the
Product Development work area as part of the configured item's component structure.

User story 2
Modify a quote or order for a configured item with separate related items. You have an existing quote or order for
which you're re-configuring a network server and have changed the selected components of the configuration. Certain
components that you have selected now require an on-site installation service. The on-site installation service should
automatically be added as a related item to the quote or order and you should be able to select additional available
services from within the Configurator user interface. On completing the configuration, you should see the modified
network server and the new on-site installation service as a separate but related line in the quote or order. Also note
that these services aren't modeled in the Product Development work area as part of the configured item's component
structure.

User story 3
Validate a quote or order on or before submission. You have an existing quote or order which includes a configured
network server with an on-site installation service line item and you have removed the on-site installation service line
item. Certain components that you had previously selected for the network server require an on-site installation service.
Before you submit the quote or order, you select an action to verify it one last time. You will then be notified that an on-
site installation service is required and it will be added back to the quote or order as a separate line item. (Note that this
validation might also happen automatically when the quote or order is submitted.)

How You Create Connectors
You create connectors in a way that's mostly similar to creating other supplemental structure. But before you create a
connector you must import the item class and item that a connector depends on.

Import Items Associated with an Item Class
Because a connector has an item class as a target, you must import the items from the intended target item class before
you can create the connector to that target. If your item class includes an item class hierarchy for your related items,
then you can import all the items in the hierarchy as well, to enable connections to them.

To import items associated with an item class:

1. Identify the item class associated with the items that you want to connect to your model.
2. On the Manage Snapshots page of the Configurator Models work area, select Import Items Associated with an

Item Class from the Actions menu.
3. In the Import Item Snapshots dialog box, select the Organization that the items belong to and the Item Class of

the related items that you want to connect to.

176

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Note: To be connectable, an item must have the attribute Order Management Indivisible set to Yes.

4. By default, only the items in the selected item class itself will be imported. If you also want to connect to all of
the items associated with all of the child item classes of the selected item class, select Include items associated
with child item classes. You can also select a particular child item class to import by itself.

5. Click Submit. A scheduled process is submitted. Make note of the scheduled process request ID.
6. In the Scheduled Processes work area, examine the log file for the Import Items Associated with an Item Class

process. The log file contains the names of the items imported from the item class you chose. If they haven't
been previously imported, then the process imports:

◦ The specified item class itself

◦ All standard items that are associated with the specified item class

◦ If Include items associated with child item classes is selected, then all of the child item classes, and all of
their associated items

After the import, you can query the imported items and item classes on the Manage Snapshots page.

Note: Each import is limited to a batch of 5000 item snapshots. If that batch size is exceeded, the import
process status is set to Warning. Continue to run the Import Items Associated with an Item Class action, with
the same parameters, until all your items are imported. Check the list of imported items in the log file of the
scheduled process to determine when you're finished. A list less with than 5000 items means there are no
more items left to import.

7. You can refresh the item class snapshots in the usual way, to reflect item changes to existing items, or addition
of new items associated to the item class, in the Product Information Management work area.

Create Connectors on Models
You add connectors to model structure, similar to the way that you add other supplemental structure. To enable the
addition of related items to a mode at runtime, you add connectors to model structure.

1. If you haven't already done so, import all the items associated with the intended target item class.
2. In a workspace that you have locked, open a model for editing.
3. On the Edit Configurator Model page, select the root node of the model. Select Create > Connector. You can

only create connectors on the root node.
4. In the Create Connector dialog box, you select a value for the Target of the specified Target Type. Search for and

select the target item class. The search list contains all the item class snapshots that have been imported into
the Configurator Models work area.

After a connector is defined, all imported items associated with the target item class become items that are
connectable to the model at runtime.

CAUTION: Targeting an item class or item class hierarchy containing a very large number of items can
result in significant impacts to performance. If you target the Root Item Class, you can't select Include items
associated with child item classes.

5. Enter values for Minimum Connections and Maximum Connections, to determine the number of instances of
this connection that may be added at runtime. These fields represent the minimum and maximum number of
actual related items which can be added to a configuration.

6. Enter values for Minimum Quantity and Maximum Quantity, to determine the sum quantity of connected items
that may be added at runtime through this connector. These fields represent the minimum and maximum sum
quantity of all the related items added at runtime to a configuration.

177

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=u30231006

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

7. After you create a connector, you can modify the minimum and maximum connections and quantities, but you
can't change the target.

8. There's currently no representation of connectors in a user interface. The UI Presentation setting is reserved for
future use.

9. After you create the connector, it appears in the model tree, at root level. The connections that can now be
made in a runtime configuration session are between related items and the model as a whole.

Related Topics
• Import Items Into Configurator Models

• Refresh Your Snapshot

• Snapshots

How You Use Connectors
You use the connectors that you created in your model structure to make connections, during a runtime configuration
session, with items outside the structure of your model.

In this example, users who are ordering a car may want to also order a trailer to use with the car.

Here are the entities used in this example, and the roles they play in adding a trailer to an order for a car:

Entity Role

Configurator model

The car being ordered. The example model is:

CAR4DRSDN - 4 Door Sedan

Item class

The class of orderable trailers, created in the Product Information Management work area. The
example item class is:

Trailers - Trailers

Standard items

The set of orderable trailers, created as items of the Trailers item class, in the Product Information
Management work area. The example set of standard items is:

2WHL_BSTL_TRLR_CRT - 2 Wheel Black Steel Trailer Cart

4WHL_BSTL_TRLR_CRT - 4 Wheel Black Steel Trailer Cart

CO_TRLR - Carry-On Trailer

HDHM_CARGO_TRLR - Heavy Duty Hitch Mount Cargo Carrier

WM_UTIL_TRLR - Wire Mesh Utility Trailer with Ramp Gate

Snapshots

The snapshots are the copies of the item class and its standard items, with the same names, imported
into the Configurator Models work area.

Connector

The connector provides the basis for connecting the car model to the standard items in the Trailers
item class. The example connector is:

178

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Entity Role

Trailer Connector

Option feature and options

In the absence of UI templates for connected items, the option feature and its options represent the
imported item class and its items.

The example option feature has the same name as the item class: Trailers

The options have the same names as the items, such as: HDHM_CARGO_TRLR

Text feature

The text feature holds the name of the option feature's option that the user selects at runtime, and
represents the connected item. The example text feature is:

Selected Trailer Item

Statement rule

Sets the value of the text feature to be the name of the option feature option (representing the
connected item) selected at runtime. The example statement rule is:

Updated Selected Trailer Item

Extension rule

Adds a connectable item to the configuration, using the name of the selected option feature option to
connect to the corresponding standard item. The example extension rule is:

Add Trailer

The steps to put these elements of the example together are:

1. Import the snapshots.
2. Create the supplemental structure.
3. Create the statement rule.
4. Create the connector.
5. Create the extension rule.
6. Test the model.

Import the Snapshots
On the Manage Snapshots page of the Configurator Models work area, select Import Items Associated with an Item
Class from the Actions menu.

The data shown in this example is hypothetical, for demonstration purposes.

• Search for and select the item class: Trailers.

• Don't select the Include items associated with child item classes option. so that the import contains only the
items associated with the Trailers item class, and not from its child item classes.

The resulting imported standard items include:

• HDHM_CARGO_TRLR - Heavy Duty Hitch Mount Cargo Carrier

• WM_UTIL_TRLR - Wire Mesh Utility Trailer with Ramp Gate

• And so on

179

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Create the Supplemental Structure
Since there's currently no predefined user interface support for connectors, you can represent the Trailer item class as
an option feature, and the associated items as its options. You can modify the default user interface for the options as
desired, for instance by using selectable images for the options. At runtime, the end user can select these options in the
user interface and an extension rule adds the actual related items to the running summary.

In the CAR4DRSDN model, create an option feature and its options, with these settings:

• Name: Trailers. For clarity, this is the same name as the item class.

• Minimum Selections: 0

• Maximum Selections: 1

• Create an option that matches the name of each of the standard items in the Trailers item class, such as
HDHM_CARGO_TRLR. You can use ADFdi integration to create the options, if there are a large number of them.

In the CAR4DRSDN model, create a text feature with these settings:

• Name: Selected Trailer Item

• Maximum Length: 100 (or whatever is long enough to accommodate the names of your standard items).

Create the Statement Rule
In the CAR4DRSDN model, create a statement rule, with these settings:

• Name: Updated Selected Trailer Item

• Rule Class: Constraint

• In the Rule Text, create a series of REQUIRES statements, one for each option of the Trailers option feature.

◦ On the left-hand side of the rule, insert an option of the Trailers option feature.

◦ On the right-hand side of the rule, insert the text feature, Selected Trailer Item, and assign the name of
the Trailers option as its value.

The CDL statements in the Rule Text field should look like this:

Copy'CAR4DRSDN'.'Trailers'.'HDHM_CARGO_TRLR' REQUIRES 'CAR4DRSDN'.'Selected Trailer Item' =
 "HDHM_CARGO_TRLR";
'CAR4DRSDN'.'Trailers'.'CO_TRLR' REQUIRES 'CAR4DRSDN'.'Selected Trailer Item' = "CO_TRLR";
'CAR4DRSDN'.'Trailers'.'WM_UTIL_TRLR' REQUIRES 'CAR4DRSDN'.'Selected Trailer Item' = "WM_UTIL_TRLR";
'CAR4DRSDN'.'Trailers'.'2WHL_BSTL_TRLR_CRT' REQUIRES 'CAR4DRSDN'.'Selected Trailer Item' =
 "2WHL_BSTL_TRLR_CRT";
'CAR4DRSDN'.'Trailers'.'4WHL_BSTL_TRLR_CRT' REQUIRES 'CAR4DRSDN'.'Selected Trailer Item' =
 "4WHL_BSTL_TRLR_CRT";

When the end user at runtime selects an option of the Trailers option feature (such as 'HDHM_CARGO_TRLR'), the
rule sets the value of the text feature Selected Trailer Item to the name of the trailer standard item (which would be
"HDHM_CARGO_TRLR"). This name is used to create a connector instance that specifies that standard item.

The rule code shown in the example is designed primarily for clarity.

Create the Connector
In the CAR4DRSDN model, create a connector under the root node, with these settings:

180

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Field Value

Name

Trailer Connector

Target Type

Item Class

Target

Trailers

Minimum Connections

0

Maximum Connections

1

Minimum Quantities

1

Maximum Quantities

1

The characteristics defined in the connector node govern the behavior of the items related through the connector at
runtime:

• The target type governs which set of related items are connectable to the model. For a connector whose target
type is item class, the set of related items is the set of items associated with that item class.

• The minimum and maximum connections govern how many different standard items from the target item class
can be added to this configuration. In this example, that means how many different trailers can be added to the
configuration of the car. Because you only want to allow one trailer per car, you set Maximum Connections to 1.
To make the addition of a trailer to the configuration optional, you set Minimum Connections to zero.

• The minimum and maximum quantities govern the sum of all the quantities of standard items in the target
item class.

• In this example, that means how many total trailers can be added to the configuration of the car. Again,
because you only want to allow one trailer per car, you set both Minimum Quantities and Maximum Quantities
to 1

Create the Extension Rule
In the CAR4DRSDN model, create an extension rule, with these settings:

Field Value

Name

Add Trailer

Base Node

The text feature Selected Trailer Item.

The statement rule sets the value of this feature to the name of the standard item that's selected at
runtime.

Instantiation Scope

Instance

181

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Field Value

Rule Text

Enter the Groovy code sample that follows this table. You can reuse this code for other connectors, with
the substitution of your connector name for the name in this example.

Event

postValueChange

Event Scope

Base node

Class

ScriptClass

Method

run()

Enter this Groovy code in the Rule Text field:

Copyconfig = cxEvent.configuration
root = config.getRootBomModel()
baseNode = cxEvent.baseNode;
// Retrieve the connector definition from the root model
connPort = root.getChildByName("Trailer Connector");
// Check to see if the connector has any connector instances
if (connPort.getInstanceCount() == 0) {
 // If not then add an instance
 instance = connPort.addInstance();
}
// Retrieve the connector instance
instance = connPort.getInstances().get(0)
// Set its quantity to 1
instance.quantity = 1;
// If the connector instance has an existing connected item defined, then remove it
instance.unsetType();
// Set the connector instance to the new connected item
instance.setType(instance.getAvailableLeafType(baseNode.getTextValue()));

The following statement locates the connector you created, by its name:

CopyconnPort = root.getChildByName("Trailer Connector");

When adapting this example to your own scenario, replace the name of the example connector node (Trailer Connector)
with your own connector node name.

The following statement sets the type of the new connector instance, by using the name of the option corresponding to
an imported standard item snapshot (in other words, to the standard item):

Copyinstance.setType(instance.getAvailableLeafType(baseNode.getTextValue()));

Related Topics
• Create an Extension Rule

Connectors in Action
Connectors provide behavior that's distinct from other configurator model entities.

182

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Runtime Configuration Sessions
Connectors affect how you interact with models during a configuration session.

• The extension rules that you define can drive the runtime selection of related items that belong to an item
class. You can implement business logic in your rules to select the items. Otherwise, you would have to add
the related items to the item structure underlying your models, which would be onerous to build and maintain,
considering that related items are commonly related to multiple models.

• During a configuration session, any related items that you add to the configuration through connectors and
rules are added as lines in the running summary pane of the user interface. The name and quantity of each
related item is displayed. User interface templates for connected items aren't available, so you can't add
connected items to your UI modifications.

• When you select to save a configuration during a session, and later restore the configuration in a new session,
connected items are included. Host applications can also save and restore configurations including connected
items.

• Be aware that items with decimal or fractional quantities can't be used with connectors. This is governed by the
attribute Order Management Indivisible in the the Product Information Management work area.

Connections and Quantities
It's helpful to understand some of the design background when you're using connectors.

• Connector nodes are definitions for what are, in effect, typed runtime instances of the connector entity. The
name of the connector node becomes the name of the connector instance type. The characteristics defined in
the connector node govern the behavior of that connector type's instances at runtime:

• The item class that's named as the target of the connector provides scope for validating the item being
connected to. The item class name is used to provide the model with the items it can connect to at runtime, and
only those items. The available items from that item class can be limited and become unavailable for selection,
depending on your rules governing the availability of these items.

• The minimum and maximum connections govern how many instances of the connector type can be
instantiated during the configuration of the model. In functional terms, those values govern the minimum
and maximum number of different standard items from the target item class can be added to a configuration.
In the example used elsewhere in this chapter, that means how many different trailers can be added to the
configuration of the car.

• The minimum and maximum quantities govern the sum of all the quantities of related items. In the example of
the car and trailer, that means how many total trailers can be added to the configuration of the car.

Here's an example of the relationship between connections and quantities. Assume that your model represents a family
calling plan for cell phone service. A connector targets the item class for cell phone models, in which items are different
phones. You would define the minimum and maximum connections and quantities to govern how the phones can be
added as related items to the configuration of the plan model.

The plan allows, per family: Your connector definition specifies:

Up to 3 different phone models, from
among:

xPhone

Solar

Minimum Connections = 1

Maximum Connections = 3

183

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

The plan allows, per family: Your connector definition specifies:

Pixie

Up to 4 total phones

Minimum Quantity = 1

Maximum Quantity = 4

These different combinations would all be allowed by your connector definition:

xPhone Solar Pixie Total Quantity

2

1

1

4 (Maximum Quantity)

4

0

0

4 (Maximum Quantity)

2

0

1

3

1

0

0

1 (Minimum Quantity)

How You Filter Connectable Items
The target item class for a connector might contain thousands of items, which could strongly affect performance when
loading the connector's set of connectable items at runtime. You can define a filtered set of connectable items for a
connector to reduce that performance effect.

Define the Set of Connectable Items
To define a set of connectable items for a connector:

1. On the Structure tab of the Edit Configurator Model page, select a connector.
2. In the Details region of the connector, select the Connectable Items tab.

◦ The items in this table comprise a subset of the full set of items associated to the connector's target item
class. At runtime, these items will be the only ones connectable to your model.

◦ If you don't add any items to this table, then at runtime the full set of items associated with the
connector's target item class will be considered connectable items.

3. Click Select and Add. In the Select and Add: Connectable Items dialog box, search for items associated to the
connector's target item class. You can search on the Name, Description, or Item Status of the items.

4. Select the items to add, then click Apply to continue adding as many items as needed without closing the
dialog, or click OK to close the dialog and add the selected items.

5. Save the model.

184

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Select the Connectable Items at Runtime
You can use an extension rule to select the connectable items that you defined. Here's a simple example of one way that
you can automatically select connectable items.

1. Define a connector with these values:

◦ The Name is MyConnector.

◦ The target item class of your choice.

◦ The Minimum Connections and Minimum Quantities are 1 or more.

◦ The Maximum Connections and Maximum Quantities are equal to or greater than the number of items
selected on the Connectable Items tab of your connector.

2. Define an extension rule with these settings:

◦ The Base Node is set to the root node of the model.

◦ This event binding:

Field Value

Event

postConfigInit

Event Scope

Global

Class

ScriptClass

Method

run()

◦ The following rule text, substituting the name of the first item in your set of connectable items for
FIRST_ITEM_NAME. The rule loops through the set of connectable items, beginning with the first one:

Copyimport oracle.apps.scm.configurator.runtime.core.IConnectorNodeType;

def baseNode = cxEvent.baseNode;
def connPort = baseNode.getChildByName("MyConnector"); // The name of your connector.
def instance = connPort.getInstances().get(0);
def inst;

for (Object type : instance.definitionLeafTypes)
{
// Add all the items in the set of connectable items, starting with the first one.
 if(type.id == "FIRST_ITEM_NAME") { // The name of the first item in your connectable set.
 instance.setType((IConnectorNodeType)type);
 instance.quantity = 1;
 } else {
 inst = connPort.addInstance();
 inst.setType((IConnectorNodeType)type);
 inst.quantity = 1;
 }
}

3. Optionally, create a user interface that includes one of the running summary templates.

185

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

4. Save and Compile the model.
5. Click Test Model. If you added the running summary, select the user interface you created that includes it.
6. When the Test Model user interface appears, the items in your set of connectable items are automatically

selected by the extension rule when the new configuration is initialized. The items in your set of connectable
items appear in:

◦ The running summary, if you included that template in a UI that you created.

◦ The Review page, if you click Finish and Review. All connected items appear there by default, regardless
of whether you added a running summary.

How You Integrate Connectors
You can return configuration selections and items related by connectors to hosting applications.

REST Resources
You can use the connectedItems REST resource to return the connected items from a specified configuration. The
connectedItems resource is a child of the configurations resource.

• A hosting application can call Configurator REST services to retrieve connected items as independent lines.

• Connected items can be retrieved through the configurations resource for integration purposes in other
applications, such as a quoting or Order Management.

• You can retrieve an individual connected item's runtime attributes, such as item number, unit of measure or
quantity ordered.

Example
The following sample URL uses the connectedItems child resource of the configurations resource to obtain an output
payload containing all of the connected items included in the specified configuration. In this example, there are two
connected items in the configuration.

Copyhttps://vision.com/fscmRestApi/resources/11.13.18.05/configurations/300100185429818_300100185429819/child/

connectedItemsThese are the objects of our main interest in the output payload:

Example value Object name Description

300100185429818

ConfigHeaderId

Configuration header ID.

300100185429819

ConfigRevisionId

Configuration revision ID.

300100185429818_300100185429819

ConfigurationId

ID of the configuration, composed of the
configuration header ID and the configuration
revision ID. You pass this to the resource to
return the connected items.

First example connected item

-

-

186

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

Example value Object name Description

300100185429862

ConnectedItemId

Connected item ID of the first connected item.

300100181203985

InventoryItemId

ID of the first connected item.

7YR_PTRAIN_WARR

InventoryItemNumber

Item name of the first connected item.

Second example connected item

-

-

300100185429864

ConnectedItemId

Connected item ID of the second connected
item.

300100181204014

InventoryItemId

ID of the second connected item.

WM_UTIL_TRLR

InventoryItemNumber

Item name of the second connected item.

Here is the JSON output payload returned for the connected items:

Copy{
 "items": [
 {
 "ConfigHeaderId": 300100185429818,
 "ConfigRevisionId": 300100185429819,
 "ConnectedItemId": 300100185429862,
 "ParentConfigLineId": 300100185429821,
 "InventoryItemId": 300100181203985,
 "InventoryItemNumber": "7YR_PTRAIN_WARR",
 "InventoryOrganizationId": 204,
 "InventoryOrganizationCode": "V1",
 "UomCode": "Ea",
 "InventoryItemType": 4,
 "Quantity": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819/child/connectedItems/300100185429862",
 "name": "connectedItems",
 "kind": "item"
 },
 {
 "rel": "canonical",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819/child/connectedItems/300100185429862",
 "name": "connectedItems",
 "kind": "item"
 },
 {
 "rel": "parent",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819",
 "name": "configurations",
 "kind": "item"
 }
]
 },

187

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

 {
 "ConfigHeaderId": 300100185429818,
 "ConfigRevisionId": 300100185429819,
 "ConnectedItemId": 300100185429864,
 "ParentConfigLineId": 300100185429821,
 "InventoryItemId": 300100181204014,
 "InventoryItemNumber": "WM_UTIL_TRLR",
 "InventoryOrganizationId": 204,
 "InventoryOrganizationCode": "V1",
 "UomCode": "Ea",
 "InventoryItemType": 4,
 "Quantity": 1,
 "links": [
 {
 "rel": "self",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819/child/connectedItems/300100185429864",
 "name": "connectedItems",
 "kind": "item"
 },
 {
 "rel": "canonical",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819/child/connectedItems/300100185429864",
 "name": "connectedItems",
 "kind": "item"
 },
 {
 "rel": "parent",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819",
 "name": "configurations",
 "kind": "item"
 }
]
 }
],
 "count": 2,
 "hasMore": false,
 "limit": 25,
 "offset": 0,
 "links": [
 {
 "rel": "self",
 "href": "https://vision.com:443/fscmRestApi/resources/11.13.18.05/
configurations/300100185429818_300100185429819/child/connectedItems",
 "name": "connectedItems",
 "kind": "collection"
 }
]
}

Related Topics

What's the difference between a connector and a model
reference
Model references and connectors both extend the structure of configurator models, but are different entities.

188

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

A model reference is a hierarchical link to a child model.

• A model reference is part of the bill of material for the configured product, and appears as the same order line
in Order Management. On the other hand, connected related items are outside the bill of material, and can
appear as separate lines in a quote or order. Connected related items can be individually fulfilled, and shipped
apart from the configured product.

• A model reference is defined in the Configurator Models work area by importing a snapshot of a hierarchical
model item structure that was created in the Product Information Management work area and contains child
models, which become referenced models to the parent model.

• During a runtime configuration session, you can navigate the hierarchical model item structure to configure
each distinct referenced model. The child models appear on the configuration summary page, if configured.

A connector is a non-hierarchical relationship to an item that exists outside of the model item structure.

• A connector is defined in the Configurator Models work area, as an element of configurator model
supplemental structure. The relationship to the related item is established through the item's item class.

• During a runtime configuration session, you can select the related item to be included in the configuration
of the bill of materials, although the item isn't part of the model. The related items appear in the running
summary pane, but not on the configuration summary page.

• References are to models, and connectors are to items, not models.

189

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 7
Connectors

190

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

8 Test

Overview of Testing Your Model
This chapter covers testing of configurator models.

You can test configurator models using the methods listed in the following table.

Method Description

Interactively

Whenever viewing or editing a model in the Configurator Models work area, you can launch a
simulated configuration session that uses the structure, rules, and user interfaces that you have
defined for the model.

Test Service

Using the Configurator Runtime Model Test service, a SOAP web service, you can run Configurator in
a non-interactive mode. The service takes as input a payload that creates the configuration, performs
one or more configuration operations on the components of the model and closes the configuration.
All of these operations are performed without any end user interaction.

Related Topics
• Test Models Interactively

• Guidelines for Testing Your Model

• Test the Model

Test Models Interactively
You can test a configurator model interactively, at any time during its development cycle, to ensure that its structure,
behavior, and appearance are as you intend.

You can test the following aspects of a configurator model, as shown on the Configurator Model details page for viewing
or editing a model:

• The structure of the model, as shown on the Structure tab, with any supplemental structure that you have
added.

• The configurator rules that you have defined for the model, as shown on the Rules tab.

• Any user interfaces that you have defined for the model, as shown on the User Interfaces tab.

The aspects are all active together during a test session, subject to any test parameters that you apply, or any
restrictions that are part of the model, such as:

• Items that are ineffective based on the test session date

191

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

• Rules that are disabled or invalid

Test Parameters
In the Test Model dialog box, you can set the test parameters described in the following table.

Test Parameter Meaning

Root Model

The model being viewed or edited. Read-only.

Version

Read-only.

Session Effective Date

The date and time to use in the test session for considering effectivity. The session effective date must
be on or after the Effective Start Date of the workspace that the model is a participant of. Required.

User Interface

If user interfaces have been defined for the model, the UI to use for the test session, or the default UI.
Optional.

Root Quantity

The quantity of the root model to use for the test session, which affects the relative quantity of child
items in the configuration. Required.

Enable pricing

Enables the calculation and display of prices during a test session. If you enable pricing, then you must
select a pricing strategy that includes pricing rules for this model, in the Pricing Strategy field. Names
of pricing strategies are suggested in the field as you enter part of their name.

Generate trace file

Enables the generation of a trace file. If you enable trace file generation, then you will be prompted to
save the file at the end of the test session.

Test a Model
Follow these steps to interactively test a model. The test parameters are described separately.

1. Open a configurator model for editing or viewing.

You must open a specific model. The model can be either locked or unlocked. If the model is not locked by the
user who is testing it, that user must first unlock it. The model status can be either Draft or Released. You can
be using either the Structure, Rules, or User Interfaces tab; the same test session tests all those aspects of the
model. If you're editing the model, you will be prompted to save any model changes.

2. On the Configurator Model details page, click Test Model.
3. In the Test Model dialog box, enter values for the test parameters. When you click OK, the configurator runtime

test UI opens in a new dynamic tab of the work area window.
4. Interact with the configurator runtime test UI, as if you were an end user. The contents and appearance of the

test UI reflect the test parameters that you entered for this test session.

During the test session, you can navigate UI pages, select options and enter field values, and provide values for
transactional attributes. You can configure referenced models by clicking the Configure control, configuring the
model, then returning to the root model.

192

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

5. When you're finished with your testing, click one of the action buttons to complete the test session. The
available actions are similar to, but distinct from, the actions available to the end user in the configurator
runtime end user UI.

◦ Finish: The configurator engine finishes the configuration, which means that the configurator engine
uses the autocompletion process to automatically complete the remaining selections that are required
for a valid configuration of the model. A valid configuration is determined by the attributes defined for
the item structure in the Product Information Management work area, and by the configurator rules
defined in the Configurator Models work area. After the configuration is finished, the test session ends,
and you're returned to the Configurator Model details page.

◦ Finish and Review: The configurator engine finishes the configuration, then navigates to the Review
page, where your selections are displayed for review and possible further configuration by clicking Back.
Clicking OK returns to the Configurator Model details page.

◦ Save for Later: Saves the configuration in the exact state that you left it. The configurator engine doesn't
finish the configuration, and the saved configuration may be invalid.
You can assign a name to the configuration as you save it, and later restore the configuration for further
testing.

◦ Cancel: Warns you about losing any selections made, and exits the test session, returning to the
Configurator Model details page.

In all of these session actions, no configuration data is returned to any host application, since there is no host
application for a test session.

6. If you enabled the generation of a trace file, then, when you're exiting the test session, a message confirms
that the trace file was generated and is available for download. You can open the file or download it for later
examination. When you close the confirmation dialog box, the test session ends.

7. Return to viewing or editing the tested model, on the Configurator Model details page.

Trace Files
You can select the Generate trace file option in the Test Model dialog box to produce a trace file that can be provided to
Oracle Support.

Issues that surface while testing models that have large sets of complex rules can sometimes be difficult and time-
consuming to diagnose. If you generate a trace file for a runtime test session, the file helps Oracle Support, working
jointly with you and Oracle product development, to diagnose the issues and resolve the problem, using constraint
technology analysis and other tools and techniques.

The trace file is named after the model being tested, and is in XML format.

Review Test Configurations
You can review the interim configuration results of a test session before leaving the session.

If you select the Finish and Review action during a test session, then you're navigated to the Review page after the
configurator engine finishes the configuration. On that page, your selections are displayed for review.

• The orderable model items that have been configured during the session are displayed in a hierarchical tree
that can be expanded and collapsed. Values entered for transactional item attributes are displayed in the tree,
but values for user-defined attributes aren't displayed.
Supplemental structure nodes aren't included on the Review page, since they aren't orderable, and would not
be returned to a host application after a session.

• For each configured item, the page displays the following values:

193

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

◦ Quantity: The quantity of the item included in the configuration, either by your selection or because of
the action of configurator rules.

◦ Unit Quantity: The quantity of the item included in the configuration for each included unit of the item's
parent item.

◦ UOM: The unit of measure for the quantity of the configured item.

◦ Your Price: The price of the item as determined by the applied pricing strategy. Pricing must be enabled
for the test session.

◦ Amount: The amount of Your Price multiplied by the amount of Quantity. Pricing must be enabled for the
test session.

When you're finished reviewing, click one of the following action buttons:

• Back: You're returned to the runtime test UI for possible further configuration.

• OK: The test session ends, and you're returned to the Configurator Model details page.

• Cancel: Warns you about losing any selections made, and exits the test session, returning to the Configurator
Model details page.

Restore Saved Configurations During Model Testing
You can test the latest configuration for an item against previously saved configurations, to understand what changed.
This ability to review changes in configurations helps you ensure the accuracy over time of your item structure and your
configurator model definition.

When testing models, you can:

• Save configurations during model testing

When you click Save for Later during a configuration session, you can enter a name and optional description
for the configuration. You can also record the system-generated configuration header and revision IDs, which
you can later use to search for this configuration

You can establish a naming strategy for saving configurations, to ease searching among them.

• Test model changes with previously saved configurations

When you start a test session, you can select Restore a configuration in the Test Model dialog box, then select
the configuration to restore from the Configuration Name list. You can search for a configuration by its header
ID or revision ID by clicking the Search link in the list.

If you modified the model after the previous test session, you can compare how the modified model behaves
against one of your saved configurations.

Get Rule Explanations When You Test Your Model
Get details about how your rule affects runtime behavior when you test it in the Configurator Modeling work area.

This feature diagnoses the factors that affect your model's runtime behavior. If it finds a conflict, then Configurator
displays a dialog that describes your actions and the rules or constraints that caused the conflict. The dialog also

194

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

describes why your rule selected or excluded an option in the configuration. Use these details to help you efficiently test
and deploy your configurator rules.

• Help troubleshoot unexpected runtime behavior for your configurator rule.

• Quickly identify the rule that's selecting or excluding components in your model.

• Help troubleshoot a large number of statement rules.

• Analyze the runtime behavior of a complex rule in your model.

• Reduce the time it takes to debug your rule.

• Examine your model's constraints, such as the minimum and maximum value for each constraint.

This feature also:

• Checks to see whether your rule selects the parent node.

• Checks to see whether your rule allows the user to select more than the maximum quantity for a model during
a runtime configuration session.

You can use rule explanations only with the templates that you use for option classes and features. You can't use it with
other objects.

Try It
1. Make sure you have the Test Configurator Model (CZ_TEST_MODEL_PRIV) privilege.
2. Go to the Configurator Models work area.
3. Create a template map with these values.

Attribute Value

Name Enter any text. For this example, enter My Test Template.

UI Template Map Select Single Page Navigation for Test UI with Enhanced Selection Controls.

You must use this template. Don't use any other template.

For details, see Generated User Interfaces.
4. Test your model.

◦ Click Tasks > Manage Models.

◦ On the Manage Models page, search for and open your model.

◦ Click Test Model, then set these values in the Test Model dialog.

Attribute Value

User Interface My Test Template

Enable Rule Explanations Contains a check mark.

For details about this dialog, see Option Features.

195

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

5. Click OK.
6. Configurator will test your model. It will display visual cues for your items, such as an exclusion or automatic

selection. You enabled rule explanations, so you will see an Explain. . . link next to each item that has a
runtime change, such as a user selection, system selection or exclusion, or a quantity change.

7. Click any Explain. . . link to get a rule explanation.

Example
Assume you set up this model.

Audio System
 Receiver Option Class
 Stereo Receiver
 2.1 Receiver
 DVD Option Class
 Std DVD Player
 Bluray Player

You create a rule:

Use the Bluray Player only with a 2.1 Receiver

You then test your model.

196

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

During the test, select 2.1 Receiver and select Bluray Player, click Explain. . . next to 2.1 Receiver, then examine the
details in the Information dialog.

Information
The item 2.1 Receiver is currently selected.
Here's why:
These actions were taken:
Selection of item Blueray Player (zCZ-DS12)
These rules were involved:
Rule: Bluray player needs a 2.1 sounds system; Model: zCZ-AS100

The Information dialog identifies the rule that configurator applied and why it applied that rule.

At run time, select Stereo Receiver and select Bluray Player, then examine the details in the Warning dialog that
configurator displays.

197

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Warning
The item 2.1 Receiver is currently required.
Continuing will undo these previous actions:
Selection of item Blueray Player
Here's why:
These rules were involved:
Rule: Bluray player needs a 2.1 sounds system; Model: zCZ-AS100

The Warning dialog tells you what item is required, what will happen if you continue, identifies the rule that configurator
applied, and why it applied that rule.

Guidelines for Testing Your Model
To efficiently test a large number of models, you can use the Configurator Runtime Model Test service to execute model
tests without requiring user input.

The Configurator Runtime Model Test service is implemented as a SOAP web service based on a request and response
payload structure. In this service model, a calling application provides an input test model XML payload to the testModel
public synchronized method of the Configurator Runtime Model Test service, then after executing the requests, the
service returns a corresponding result XML payload which the calling application can introspect for the result of the
requests.

Features of the test service include:

• Calling applications can launch the Configurator Runtime Model Test service using any SOAP client. The SSL
port is enabled by default for this web service, because it's an external service and will be the default transport
for interacting with the web service in the cloud.

• Calling applications can submit model test service requests to the synchronized method testModel in a
serialized fashion, one request at a time.

• The Configurator Runtime Model Test service can be used in concert with other services or embedded within
other applications or services.

The Configurator Runtime Model Test service's input and output payloads use a SOAP XML structure.

The Configurator Runtime Model Test service has been implemented as an autonomous service and doesn't require any
other external data model entities. The service WSDL can be retrieved using the following URL format:

https://<hostname>:<port>/fscmRestApi/ConfiguratorRuntimeService?wsdl

This service supports only one synchronized method, testModel, which has a specific request and response payload
structure.

The testModel method requires a request input payload which includes the necessary information to:

• Start or restore a configuration

• Perform operations on that configuration

• Query the configuration for attributes

• Save and request a configuration summary

The testModel method subsequently returns a response output payload which includes:

• The result of the overall test

• Each individual operation requests

198

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

• Query requests

• Configuration summary requests

Test Model Request Structure
The following code example shows a test model request in SOAP XML:

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <ns1:testModel xmlns:ns1="http://xmlns.oracle.com/apps/scm/configurator/runtimeService/types/">
 <ns1:request xmlns:ns2="http://xmlns.oracle.com/apps/scm/configurator/runtimeService/">
 <ns2:TestId>1</ns2:TestId>
 <ns2:TestName>test</ns2:TestName>
 <ns2:TestDescription>Test1</ns2:TestDescription>
 <ns2:InitializationParameters>
 <ns2:TestId>1</ns2:TestId>
 <ns2:ParameterId>1</ns2:ParameterId>
 <ns2:CallingApplicationCode>CZ</ns2:CallingApplicationCode>
 <ns2:Header>
 <![CDATA[
 <header>
 <HeaderId>1000</HeaderId>
 </header>
]] >
 </ns2:Header>
 <ns2:Line>
 <![CDATA[
 <line>
 <LineId>-22222</LineId>
 <InventoryItemNumber>zCZ-CN82441</InventoryItemNumber>
 <InventoryOrganizationCode>V1</InventoryOrganizationCode>
 <UnitQuantity>1.0</UnitQuantity>
 <UomCode>Ea</UomCode>
 </line>
]] >
 </ns2:Line>
 <ns2:CustomParameters>
 <![CDATA[
 <param>
 <WorkspaceName>My Workspace</WorkspaceName>
 <SnapshotBasedModel>true</SnapshotBasedModel>
 </param>
]] >
 </ns2:CustomParameters>
 </ns2:InitializationParameters>
 <ns2:OperationRequest>
 <ns2:OperationId>1</ns2:OperationId>
 <ns2:NodePath>zCZ-OC12100.zCZ-CM12240</ns2:NodePath>
 <ns2:Operation>Select</ns2:Operation>
 <ns2:SequenceNumber>1</ns2:SequenceNumber>
 <ns2:testId>1</ns2:testId>
 <ns2:NodeValue>1</ns2:NodeValue>
 </ns2:OperationRequest>
 <ns2:QueryRequest>
 <ns2:QueryId>1</ns2:QueryId>
 <ns2:NodePath>zCZ-OC12100.zCZ-CM12240</ns2:NodePath>
 <ns2:SequenceNumber>2</ns2:SequenceNumber>
 <ns2:testId>1</ns2:testId>
 <ns2:NodeProperty>
 <ns2:PropertyId>1</ns2:PropertyId>
 <ns2:PropertyName>Selected</ns2:PropertyName>
 <ns2:QueryId>1</ns2:QueryId>
 </ns2:NodeProperty>
 </ns2:QueryRequest>

199

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

 <ns2:ConfigSummaryRequest>
 <ns2:SummaryId>1</ns2:SummaryId>
 <ns2:TestId>1</ns2:TestId>
 <ns2:OutputMode></ns2:OutputMode>
 <ns2:SequenceNumber>3</ns2:SequenceNumber>
 </ns2:ConfigSummaryRequest>
 </ns1:request>
 </ns1:testModel>
 </soap:Body>
</soap:Envelope>

The basic structure of a test model request includes the elements described in the following table:

Element of the testModel Request Description

TestId

The unique identifier for the current test.

The same test ID is also used in other elements of the test request to connect them with a given test..

TestName

A short name for this test

TestDescription

An optional description for this test

InitializationParameters

Includes all the information necessary to start a configuration session

OperationRequest

One or more operations to be performed during this test

QueryRequest

One or more queries to be performed after an operation request has been performed

ConfigSummaryRequest

The configuration summary which includes all the orderable items for the configuration

InitializationParameters
InitializationParameters is an XML element that models an attribute of the test model request.

InitializationParameters is a required attribute that includes the necessary information to start or restore a configuration
session. The following table lists the initialization parameters, both necessary and optional, to start a configuration.

Field name in InitializationParameters Description

TestId

The unique identifier for the current test.

ParameterId

A unique identifier provided by the service to refer to this initialization parameters set

CallingApplicationCode

Indicates the calling application launching the Configurator session. This is used to determine the
user interface to use for the session. This code is registered in the Manage Trading Community Source
Systems in the case of external non-Oracle system or the FND Application short name (code) for Oracle
Applications. Note: For CPQ there is already a seeded TCA data with application code as ORA_BM_CPQ

200

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Field name in InitializationParameters Description

Line

An XML document representing a line to be configured. See the following section for additional
information

Header

(Optional) Represents a quote or order header that contains the Line. This XML document is optional
and when present Configurator passes the header information to other services like Oracle Pricing for
pricing integration within a configuration session

CustomParameters

(Optional) A XML document consisting of additional information to Configurator for use within
Configurator Extensions rules

The XML document Line represents a line to be configured. It contains, at a minimum, the information in the following
list.

• LineId: Unique identifier for the line being configured

• InventoryItemNumber: Item number of the product or service model item to configure

• InventoryOrganizationCode: Item validation organization code of the product or service model item. This is
typically the organization from which items are imported or referenced from external applications.

• UnitQuantity: Quantity of the item being configured

• UomCode: Unit of measure for the item being configured

• ConfigHeaderId: Identifier for the configuration, passed only during reconfiguration, or a session for restoring
and validating

• ConfigRevisionId: Identifier for the configuration, passed only during reconfiguration/restore and validation
session

• RequestOn (Optional): Date and time used to load the model definition for the configuration session

OperationRequest
OperationRequest is an XML element that models an attribute of the test model request.

After a configuration has started, you can perform a series of operations using the test service, similar to the operations
that an end user can perform when configuring the model using a runtime user interface. A test model request can have
one or more operation requests. These operations can range from toggling a Boolean feature, to setting the quantity of
a standard item, to adding an instance of a referenced model and configuring it.

The following table lists the attributes of an OperationRequest.

Field name in OperationRequest Description

TestId

The unique identifier for the current test.

OperationId

A unique identifier for the operation request

NodePath

The fully qualified path to the node on which the operation will act on

201

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Field name in OperationRequest Description

Operation

The name of the operation, such as. Select, Toggle, SetValue, or SetQuantity. See the following table for
valid operations.

SequenceNumber

The sequence number to be used during the execution to prioritize this request

NodeValue

The value to be applied to the node for this test.

The following table lists the operations that you can perform within an OperationRequest, and the node types that you
can perform the operations on.

Valid Operations for OperationRequest Node Type

Select, Toggle, SetQuantity

Option Class, Option Feature, Standard Item, or Option

Toggle

Boolean Feature

SetValue

Text Feature, Integer Feature, Decimal Feature, or Transactional Attribute (All types)

AddInstance, AddInstanceWithQuanity,
 AddInstanceWithQuanityAndName,
 RenameInstance, CopyInstance,
 DeleteInstance, SetQuanity,
 SetContextPath

Model Node Reference

The operations that can be performed at the configuration level include those in the following list.

• AutoComplete: Performs an autocompletion operation on the configuration, to include all the adjustments
needed to make the configuration valid.

• UndoAutoComplete: Reverts the autocompletion operation.

• AdjustConfiguration: Puts the configuration into adjust mode after autocompletion, allowing changes to the
automatically completed selections.

• Save: Saves the configuration and produces a header and revision ID.

• Finish: Finishes the configuration, by saving and closing it.

QueryRequest
QueryRequest is an XML element that models an attribute of the test model request.

In order to determine the result of an operation request, you can perform a series of query requests to introspect the
node on which the operation request acted, or any other node in the model hierarchy that was changed as a result. For
example, if you toggle a Boolean feature using an operation request and subsequently a rule causes a standard item to
be selected, then you can add a query request to retrieve the state of that standard item.

The following table lists the fields in a QueryRequest.

202

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Field Name in QueryRequest Description

TestId

The unique identifier for the current test.

QueryRequestId

A unique identifier for the query request in the test

NodePath

The fully qualified path to the node on which the query operation will act

SequenceNumber

The sequence number to be used during the execution to prioritize this request

NodeProperty

The property of the node returned in the result payload. See the following table for additional
information.

Each query request can include one or many node properties to be retrieved. These node properties can be of either
scalar type, such as a string or number value, or a collection or list type, in which the result of the query request will
return a list of values. For example, in order to determine the selection state of a standard item, the node property
named Selected can be requested through a NodeProperty, as illustrated in the following example.

<ns2:NodeProperty>
<ns2:PropertyId>1</ns2:PropertyId>
<ns2:PropertyName>Selected</ns2:PropertyName>
 <ns2:QueryId>1</ns2:QueryId>
</ns2:NodeProperty>

The following table lists the fields in a NodeProperty request.

Field Name in NodeProperty Description

PropertyId

A unique identifier for the property in the request

PropertyName

The name of the node property to be evaluated. Refer to the list of node properties for the properties
supported for each node type.

QueryId

A unique identifier for the query request

CollectionProperty

A list of property requests if the named property being evaluated is a list or a collection type (such
as AvailableChildren, SelectedChildren, or SelectableChildren). See the following description of
CollectionProperty for additional information

Similar to the way that you select node properties, you request the scalar properties of a list or collection node property
type, by adding the property name to the CollectionProperty element's list of properties, as illustrated in the following
example.

<ns2:NodeProperty>
 <ns2:PropertyId>1</ns2:PropertyId>
 <ns2:PropertyName>SelectedChildren</ns2:PropertyName>
 <ns2:QueryId>1</ns2:QueryId>
 <ns2:CollectionProperty>
 <ns2:PropertyId>1</ns2:propertyId>
 <ns2:CollectionPropertyId>1</ns2:CollectionPropertyId>

203

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

 <ns2:PropertyName>Name</ns2:PropertyName>
 </ns2:CollectionProperty>
 <ns2:CollectionProperty>
 <ns2:PropertyId>1</ns2:propertyId>
 <ns2:CollectionPropertyId>2</ns2:CollectionPropertyId>
 <ns2:PropertyName>Description</ns2:PropertyName>
 </ns2:CollectionProperty>
</ns2:NodeProperty>

The following table lists the elements that identify a CollectionProperty.

Field Name in CollectionProperty Description

PropertyId

The unique identifier for the property name of the collection node property to be evaluated.

PropertyName

A property name from the collection node property to be evaluated

CollectionPropertyId

A unique identifier for the collection node property

ConfigSummaryRequest
ConfigSummaryRequest is an XML element that models an attribute of the test model request.

A test model request can include an optional request to retrieve the configuration summary. The configuration
summary can be either brief or full, as controlled by the output mode.

The following table lists the fields of the ConfigSummaryRequest element.

Field Name in ConfigSummaryRequest Description

TestId

The unique identifier for the current test.

SummaryId

A unique identifier for the summary request

OutputMode

The configuration summary output mode. The allowed values are:

• Brief: Include only configuration-level information such as the validity of the configuration, and
the header ID and revision ID of the configuration object.

• Full (the default): Include the brief output and also all of the orderable items in the configuration.

SequenceNumber

The sequence number to be used during the execution to prioritize this request

Test Model Response Structure
The model test response payload structure directly corresponds to the test model request payload. For every operation
or query request there is a corresponding operation or query result that can be correlated to its request counterpart
using the unique operation or query ID.

204

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

The test model response includes test level information such as the overall test status and any failure messages that
prevented the configuration from starting. This level of information is also available at each operation or query result,
which allows for introspection of the results at a much more granular level.

The following code example shows a test model response in SOAP XML:

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsa="http://www.w3.org/2005/08/addressing">
 <env:Header>
...
</env:Header>
<env:Body xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="Body-WCk1o7Bv0d7m0fziDdW7lQ22">
 <ns0:testModelResponse xmlns:ns0="http://xmlns.oracle.com/apps/scm/configurator/runtimeService/types/">
 <ns1:result xmlns:ns0="http://xmlns.oracle.com/apps/scm/configurator/runtimeService/"
 xmlns:ns1="http://xmlns.oracle.com/apps/scm/configurator/runtimeService/types/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:type="ns0:TestModelResponse">
 <ns0:TestId>1</ns0:TestId>
 <ns0:TestName>test</ns0:TestName>
 <ns0:TestDescription>Test1</ns0:TestDescription>
 <ns0:TestStatus>SUCCESS</ns0:TestStatus>
 <ns0:TestFailureMessage xsi:nil="true"/>
 <ns0:OperationResult>
 <ns0:OperationId>1</ns0:OperationId>
 <ns0:NodePath>zCZ-OC12100.zCZ-CM12240</ns0:NodePath>
 <ns0:Operation>Select</ns0:Operation>
 <ns0:SequenceNumber>1</ns0:SequenceNumber>
 <ns0:NodeValue>1</ns0:NodeValue>
 <ns0:OperationStatus>SUCCESS</ns0:OperationStatus>
 <ns0:OperationFailureMessage xsi:nil="true"/>
 <ns0:TestId>1</ns0:TestId>
 <ns0:ContextPath xsi:nil="true"/>
 </ns0:OperationResult>
 <ns0:QueryResult>
 <ns0:QueryId>1</ns0:QueryId>
 <ns0:NodePath>zCZ-OC12100.zCZ-CM12240</ns0:NodePath>
 <ns0:QueryResultStatus>SUCCESS</ns0:QueryResultStatus>
 <ns0:QueryResultFailureMessage xsi:nil="true"/>
 <ns0:TestId>1</ns0:TestId>
 <ns0:SequenceNumber>2</ns0:SequenceNumber>
 <ns0:ContextPath xsi:nil="true"/>
 <ns0:NodeProperty>
 <ns0:PropertyId>1</ns0:PropertyId>
 <ns0:PropertyName>Selected</ns0:PropertyName>
 <ns0:PropertyValue>true</ns0:PropertyValue>
 <ns0:QueryId>1</ns0:QueryId>
 <ns0:PropertyResultStatus>SUCCESS</ns0:PropertyResultStatus>
 <ns0:PropertyResultFailureMessage xsi:nil="true"/>
 </ns0:NodeProperty>
 </ns0:QueryResult>
 <ns0:ConfigSummaryResult xmlns:ns1="http://xmlns.oracle.com/adf/svc/types/">
 <ns0:SummaryId>1</ns0:SummaryId>
 <ns0:TestId>1</ns0:TestId>
 <ns0:ConfigHeaderId xsi:nil="true"/>
 <ns0:ConfigRevisionId xsi:nil="true"/>
 <ns0:ValidConfigurationFlag>false</ns0:ValidConfigurationFlag>
 <ns0:SequenceNumber>3</ns0:SequenceNumber>
 <ns0:RequestOn>2016-12-30</ns0:RequestOn>
 <ns0:ConfigLine>
 <ns0:LineId>1</ns0:LineId>
 <ns0:ParentLineId xsi:nil="true"/>
 <ns0:InventoryItemId>300100017155319</ns0:InventoryItemId>
 <ns0:InventoryOrganizationId>204</ns0:InventoryOrganizationId>
 <ns0:InventoryItemType>1</ns0:InventoryItemType>

205

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

 <ns0:LineQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:LineQuantity>
 <ns0:UOMCode>Ea</ns0:UOMCode>
 <ns0:ConfiguratorPath>300100017155319</ns0:ConfiguratorPath>
 <ns0:SummaryId>1</ns0:SummaryId>
 <ns0:InventoryItemNumber>zCZ-CN82441</ns0:InventoryItemNumber>
 <ns0:InventoryOrganizationCode>V1</ns0:InventoryOrganizationCode>
 <ns0:UnitQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:UnitQuantity>
 </ns0:ConfigLine>
 <ns0:ConfigLine>
 <ns0:LineId>2</ns0:LineId>
 <ns0:ParentLineId>1</ns0:ParentLineId>
 <ns0:InventoryItemId>300100017233297</ns0:InventoryItemId>
 <ns0:InventoryOrganizationId>204</ns0:InventoryOrganizationId>
 <ns0:InventoryItemType>2</ns0:InventoryItemType>
 <ns0:LineQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:LineQuantity>
 <ns0:UOMCode>Ea</ns0:UOMCode>
 <ns0:ConfiguratorPath>300100017155319.300100017233297</ns0:ConfiguratorPath>
 <ns0:SummaryId>1</ns0:SummaryId>
 <ns0:InventoryItemNumber>zCZ-OC12100</ns0:InventoryItemNumber>
 <ns0:InventoryOrganizationCode>V1</ns0:InventoryOrganizationCode>
 <ns0:UnitQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:UnitQuantity>
 </ns0:ConfigLine>
 <ns0:ConfigLine>
 <ns0:LineId>3</ns0:LineId>
 <ns0:ParentLineId>2</ns0:ParentLineId>
 <ns0:InventoryItemId>300100017232813</ns0:InventoryItemId>
 <ns0:InventoryOrganizationId>204</ns0:InventoryOrganizationId>
 <ns0:InventoryItemType>4</ns0:InventoryItemType>
 <ns0:LineQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:LineQuantity>
 <ns0:UOMCode>Ea</ns0:UOMCode>
 <ns0:ConfiguratorPath>300100017155319.300100017233297.300100017232813</ns0:ConfiguratorPath>
 <ns0:SummaryId>1</ns0:SummaryId>
 <ns0:InventoryItemNumber>zCZ-CM12240</ns0:InventoryItemNumber>
 <ns0:InventoryOrganizationCode>V1</ns0:InventoryOrganizationCode>
 <ns0:UnitQuantity xmlns:tns="http://xmlns.oracle.com/adf/svc/errors/"
 unitCode="Ea">1</ns0:UnitQuantity>
 </ns0:ConfigLine>
 </ns0:ConfigSummaryResult>
 </ns1:result>
 </ns0:testModelResponse>
 </env:Body>
</env:Envelope>

Related Topics
• Test the Model

• Use Node Properties to Affect Runtime Behavior and Results

• Add a Supplemental Structure

• Chunk Your Large Option Classes

Manage Your Validations
Manage how and when Configurator validates your configurator model.

206

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Configurator might need to validate your model when you import, create, revise, or submit a sales order that contains a
configured item in Oracle Order Management, or when Order Management explicitly requests a validation.

Sometimes you might not need to validate the model. Assume you create a draft sales order that has a configured item,
Configurator validates the configuration, but you don't submit the order because your customer isn't ready to commit
to the purchase, isn't sure what configuration they need, needs more time to mull over the purchase, and so on. Several
weeks later you revise the order with the customer's latest changes, and then submit the order. Configurator already
validated the configuration on the draft order, so it can quickly examine what's different in the configuration on the
submitted order to determine whether it can skip validation.

If you sell lots of configured items, or large complex configured items, then you can skip validation under specific
conditions to realize performance improvements and make your deployment more efficient.

Skip Validation
Specify whether to skip validation for a model.

1. Open your model for editing in a workspace that you haven't released.
2. On the Edit Configurator Model page, click Structure, select the model's root node, then click Preferences.
3. Make sure the Skip Validation When It's Not Required option contains a check mark.
4. Save the model and release the workspace.

If you don't enable Skip Validation When It's Not Required, then configurator will validate your runtime configuration
regardless of whether or not you have made any changes to your model that affect the runtime configuration.

Regardless of whether you enable the option, you might need to specify the Configuration Effective Date, which leads
us to. . .

Specify the Configuration Effective Date
You can use the Configuration Effective Date parameter to identify the version that you want to validate.

You might have different versions of your model, and you might set each version's start and end dates differently.
Assume you have:

• Version 1, in effect June 1 to June 10.

• Version 2, in effect June 11 to June 15.

• Version 3, in effect June 16 to June 30.

Configurator compares the version that you submit to the version that exists according to the Configuration Effective
Date parameter.

Try It

1. Go to the Setup and Maintenance work area, then go to the Manage Order Management Parameters task:

◦ Offering: Order Management

◦ Functional Area: Orders

◦ Task: Manage Order Management Parameters

207

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

2. Set the value for the Configuration Effective Date parameter.

Value Description

Configuration Date

Use the version that's in effect on the date that you add the order line and configure the item
on the line.

Assume you create an order line, add the Stove to the line and configure the stove on June 1.
The configuration date is June 1.

In our example, Configurator will use Version 1 because Version 1 is in effect on June 1. If you
configure the stove on June 11, then Configurator will use Version 2.

Ordered Date Use the version that's in effect on the ordered date.
Order Management sets the Ordered Date to the date when you create the order, by default, but
you can manually change it before you submit the order.

For example, if the Ordered Date attribute on the order header contains June 16, then use the
version that's in effect on June 16. In our example, that's Version 3.

Current Date

Use the version that's in effect on the current date. For example, if the current date is June 1,
 2023, then use the version that's in effect on June 1, 2023.

The current date is the date that you submit the order to fulfillment.

Assume you create an order on June 1, save it as a draft but don't submit it until June 10. The
ordered date is June 1 and the current date is June 10. In our example, if you set the parameter
to Current Date, then Configurator won't validate the model because it already validated Version
1 on June 1 and Version 1 is still in effect.

If you don't set the parameter to any value, then Order Management uses the current date, by
default.

Requested Date Use the version that's in effect on the requested date. For example, if the Requested Date
attribute on the order line contains July 14, then use the snapshot that's in effect on July 14. In
our example, that's Version 2.

For most deployments, we recommend that you set the Configuration Effective Date parameter to Current Date because
that's the date that you submit the order. The configuration that's on the order line when you submit usually includes
the configuration you need because it typically includes any changes that you might have made to the configuration to
reflect your customer's current requirements.

You might have some specific requirements to use another value. For example, Requested Date is the date the customer
wants to receive item. If you plan to modify your model between the time you configure it and the time you actually
deliver it, and you want to apply that modification before you deliver it, then you could use Requested Date.

For details, see Manage Order Management Parameters.

208

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20051812

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Changes That Affect Validation
Configurator looks at the changes that you make on each version, then compares them to the version it already
validated. It uses the Configuration Effective Date parameter to determine which version to look at.

Assume:

• You set Configuration Effective Date to Current Date.

• You update the Maximum Quantity attribute on a component that's part of your model, and you specify when
the change goes into effect on the model.

• You revise the sales order in Order Management.

If:

Change on Attribute Value Goes Into
Effect

Will Configurator Validate?

On or before the current date.

Yes

After the current date.

No

Example
Assume your model has this hierarchy.

Stove
 Oven
 10K BTU Gas Burner
 20K BTU Gas Burner
 Stovetop
 10K BTU Gas Burner
 20K BTU Gas Burner

Assume:

• You find through market research that customers want to have up to four 10K BTU Gas Burners on the stove top
instead of only three, so you modify the Maximum Quantity attribute on the 10K BTU Gas Burner from 3 to 4,
and you set the Maximum Quantity's Start Date so your new quantity goes into effect on June 15. The new start
date gives you enough time to increase supply for the 10K burners and provides time for your factory to adjust
to the new workflow they'll use to add another burner.

• You create sales order 56497 on June 1, so the Ordered Date is June 1. You add an order line for a refrigerator
and save the order as a draft because the customer says they might want to add the stove in a day or two.

• You create a new order line on June 2, and the Stove on the line, configure the stove, and save the order as a
draft. So, the Configuration Date is June 2.

• The Requested Date on the order line is June 20.

• You don't submit the order until June 10, so the Current Date is June 10.

Configurator might or might not validate when you submit the order depending on how you set the Configuration
Effective Date parameter.

209

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Set Configuration Effective Date
Parameter To. . .

Validate?

Configuration Date

The Configuration Date is June 2 but the Maximum Quantity's start date doesn't happen until June 15,
 so there's no need to validate your change. Configurator can use the current version, and it already
validated that version when you created the draft order.

Customers can add no more than three 10K burners on the stove top.

Current Date

The Current Date is June 10 but the Maximum Quantity's start date doesn't happen until June 15,
 so there's no need to validate your change. Configurator can use the current version, and it already
validated that version when you created the draft order.

Customers can add no more than three 10K burners on the stove top.

Ordered Date The Ordered Date is June 1 but the Maximum Quantity's start date doesn't happen until June 15, so
there's no need to validate your change.
Customers can add no more than three 10K burners on the stove top.

Requested Date The Requested Date is June 20, the Maximum Quantity's start date happens on June 15 which is before
the requested date, so the configuration needs to consider your modified quantity. Configurator will
validate your change.
Customers can add up to four 10K burners on the stove top.

The Maximum Quantity attribute Configurator Will

After the Requested Date on the sales
order.

Skip the validation.

Before the Requested Date on the sales
order.

Validate the configuration.

Skip Validation for Models That You Don't Import from Product
Information Management
Configurator examines different attributes to determine if it can skip validation depending on whether you import your
model from the Product Information Management work area into the Configurator Models work area or create it directly
in the Configurator Models work area.

If you don't import your model from Product Information Management, but instead create it in the Configurator Models
work area, then Configurator can skip validation when:

• You haven't changed the model.

• You haven't changed any of the attributes on the model's child components.

Configurator examines these attributes on the model to see if you modified them:

• Order Management Indivisible

210

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

• Structure Item Type

Configurator also examines these attributes on the model's child components to see if you modified them:

• Quantity

• Minimum Quantity

• Maximum Quantity

• Optional

• Mutually Exclusive Options

• Instantiability. The value can be Multiple Instances, Optional Single Instance, or Requires Single Instance.

For details about some of these attributes, see Valid Component Attributes and Structure Types.

Configurator also determines whether you end dated any of the model's child components or removed any component
from the model.

Skip Validation for Models That You Import from Product Information
Management
If you import a model into the Configurator Models work area as a snapshot from the Product Information Management
work area, and if you modify and release the snapshot, then Configurator:

• Examines the changes that you released to determine whether your updates affect the model's item structure,
rules, or user interface.

• Determines whether you updated and released any snapshots for the model's child items.

If Configurator finds that you made changes that affect the snapshot, then it won't skip validation. Instead, it will
validate your changes.

Guidelines for Not Skipping Validation
Make sure you don't skip validation when:

• The effective date on the configuration's run time instance happens on or after the effective date of the
configuration's most recent revision, and before you create, import, or submit the sales order, or when Order
Management explicitly requests a validation. If you change the ordered date or the requested date on the sales
order after Configurator initially created or validated the configuration, then you must validate the run time
configuration.

• You release an item class or a value set in you snapshot after you initially create or validate the configuration
and before you create, import, revise, or submit the sales order.

• Your model contains an extension rule that calls an external application and that call modifies the
configuration. See Extension Rules.

• The configuration involves a transactional attribute. See Transactional Attributes.

If any of these situations apply to your model, then make sure the Skip Validation When It's Not Required option doesn't
contain a check mark.

Related Topics
• Item Order Management Specifications

211

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20031827
https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20031726

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

Test the Model
Calling applications can launch the Configurator Runtime Model Test service using any SOAP client. The instructions
here describe the process for creating a web service proxy and data control to run the service within the context of a
jUnit test case for Oracle JDeveloper.

The required process is:

1. Create a web service proxy.
2. Create a web service data control.
3. Create a jUnit.

The details for these steps follow.

Creating a Web Service Proxy
The first step is to create a web service proxy using the Oracle JDeveloper Web Service Proxy wizard. Using a web
service's WSDL, this wizard creates all the necessary Java objects for the serialization and deserialization of the request
and response payloads and calling the web service.

To create a web service proxy:

1. Create a generic application and project in Oracle JDeveloper.
2. Select the project in your application and click File > New.
3. Search for the Web Service Proxy project technology, select it and click OK.
4. Click Next on the wizard's overview page.
5. Leave the Client Style as JAX-WS Style and click Next.
6. Enter the URL to the Web Services Description Language (WSDL) endpoint on the host where the Configurator

Runtime Test Model service is deployed (in a cloud deployment this would be on the HTTPS port) then click
Next.

7. On the Specify Default Mapping Options step, deselect the Generate As Async option (because asynchronous
invocation isn't supported) and click Next twice, to navigate through the steps related to port endpoints
without changing the options

8. On the Asynchronous Methods step, be sure to select the Don't generate any asynchronous methods option,
then click Next.

9. On the Policy step, wait for the list of policies to be populated. Select oracle/
wss11_username_token_with_message_protection_client_policy from the list. Click Next.

10. On the Defined Handlers step, click Next. Finally, click Finish.
11. The wizard creates all the necessary Java objects needed for constructing the request and response payloads

needed to interact with the web service. See the description of creating a jUnit for an example of how these
objects can be used.

Creating a Web Service Data Control
A web service data control is an effective way to create a connection using the connection factory object in order to
interact with a web service. A data control encapsulates the security policies, credentials and the data model needed
when calling the service. With a properly prepared data control, all that's required for a client to call the web service is to
retrieve a service connection using its Java Naming and Directory Interface (JNDI) name. See the description of creating
a jUnit for an example of how to call a web service using the service connection factory.

212

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

To create a web service data control:

1. Create and select a project where the web service data controls will be created, then click File New.
2. Search for the Web Service Data Control project technology, select it, then click OK.
3. Enter a name for the data source, which will later be used as the JNDI name for looking up this web service

connection. Provide the URL to the WSDL endpoint on the host where the Configurator Runtime Test Model
service is deployed (in a cloud deployment this would be on the HTTPS port) then click Next.

4. On the Data Control Operations step, select and move the testModel operation from the Available operations
list to the Selected operations list. Click Next.

5. On the Response Format step, click Next.
6. On the Endpoint Authentication step, select ConfiguratorRuntimeServiceSoapHttpPort, then enter the user

name and password for the web service. Click Next.
7. Click Finish. The web service data control wizard creates all the type XML files and adds a connection reference

in the connections.xml file of the calling application.

Creating a jUnit
There are many ways to call a web service. Here, the vehicle described for calling the Configurator Runtime Model Test
service is a jUnit. jUnits are an effective way to perform repeatable tests for this service. Also, Oracle JDeveloper has full
support for the Apache jUnit 4 framework.

To build a simple jUnit in Oracle JDeveloper,

1. Select an existing project, or create a new project, in your application where you want to create the jUnit.

Note: Ensure that the web service proxy and web service data control projects that you previously created
are in this project's library path. It's essential that your jUnit have access to the object in those projects.

2. Search for and select the Test Case project technology. Click OK.
3. In the Class Under Test list, select <None>. Click Next.
4. Enter a name and package for the jUnit. Select the standard jUnit setup and tear-down methods to be

generated. Click Next to continue.
5. Click Finish. The test case wizard creates the jUnit Java class in your project.
6. The content of the jUnit should be similar to the following code example.

package oracle.apps.scm.cz;
import org.junit.After;
import org.junit.AfterClass;
import static org.junit.Assert.*;
import org.junit.Before;
import org.junit.BeforeClass;

public class MyServiceTest {
 public MyServiceTest() {
 }

 @Before
 public void setUp() throws Exception {
 }

 @After
 public void tearDown() throws Exception {
 }

 @BeforeClass
 public static void setUpBeforeClass() throws Exception {

213

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

 }

 @AfterClass
 public static void tearDownAfterClass() throws Exception {
 }
}

7. Add a test method to the jUnit that's similar to the following code example.

@Test
public void testMyTest() {
 ConfiguratorRuntimeService_Service configuratorRuntimeService_Service;
 // Insert the name of the file that includes the model test request XML
 File testModelFile = new File("filename.xml");

 TestModelResponse response = null;
 try {
 // 1. Lookup the web service connection using its JNDI name
 Context ctxnew = ADFContext.getCurrent().getConnectionsContext();
 WebServiceConnection wsc =
 (WebServiceConnection)ctxnew.lookup("WebServiceJNDIName");

 // 2. Get a reference to the web service port
 configuratorRuntimeService_Service =
 new ConfiguratorRuntimeService_Service();
 ConfiguratorRuntimeService configuratorRuntimeService =
 wsc.getJaxWSPort(ConfiguratorRuntimeService.class);

 // 3. Create a test model request using JAXB
 JAXBContext jaxbContext = JAXBContext.newInstance(TestModel.class);
 Unmarshaller jaxbUnmarshaller = jaxbContext.createUnmarshaller();
 TestModel testModel =
 (TestModel)jaxbUnmarshaller.unmarshal(testModelFile);

 // 4. Call the web service method
 TestModelResponse testModelResponse = new TestModelResponse();
 testModelResponse =
 configuratorRuntimeService.testModel(testModel);

 } catch (Exception e) {
 Assert.fail(e.getMessage());
 }

 // 5. Introspect the response object as needed
 JAXBElement<String> status = response.getResult().getTestStatus();
 if (!"SUCCESS".equalsIgnoreCase(status.getValue()))
 Assert.fail(response.getResult().getTestFailureMessage().getValue());

}

8. Be sure to provide the relative path to the model test request XML file and the correct JNDI name to look up
the web service connection. The JNDI name is the name you provided when you created the web service data
control.

9. Run the Java class as a jUnit within Oracle JDeveloper.

Developer Testing Recommendations
The Configurator Runtime Model Test service is an autonomous SOAP-based web service; it can be called from any
SOAP client.

Because the Configurator Runtime Model Test service is deployed as an external service in the cloud environment, the
exposed port will be enabled for SSL (Secure Sockets Layer) by default. We strongly recommend that you build and test
client applications using the SSL port.

214

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

To ensure that the initial SSL handshake between the Java client application (such as jUnit) and the web service is
established, you must import the SSL certificate where the Configurator Runtime Model Test service is hosted into the
local Java key store where the Java client application is running.

To ensure that the proper SSL certificate for the Configurator Runtime Model Test service is available during the client-
server SSL handshake, perform the following steps:

1. Access the Configurator Runtime Model Test service on the SSL port from a standard browser. For an example
using Firefox:

a. Select Tools > Options > Security
b. Click View Certificate.

2. Export the server SSL certificate as a certificate in the PEM (Privacy-Enhanced Mail) security format.

a. On the Details tab of the Certificate Viewer dialog box, click Export.
b. Save the PEM file to a desired location.

 my_server_com.PEM

3. Using the Java keytool utility, import the certificate file to the local Java keystore where the Java client
application is running.

keytool -import -trustcacerts
 -file my_server_com.PEM
 -keystore $JAVA_HOME/lib/DemoTrust.jks

Related Topics
• Guidelines for Testing Your Model

• Use Node Properties to Affect Runtime Behavior and Results

215

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 8
Test

216

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

9 Integrate

How You Integrate with Other Applications
You can integrate Configurator with an application, such as quoting or order capture, to provide an interactive
configuration experience for configuring products and services.

Configurator is agnostic about the technology stack of an external application and implements a standards-based
approach for a seamless UI integration experience. The integration approach leverages Representational State Transfer
(REST) APIs for creating the intent to configure a complex item and for retrieving the final configuration, and an entry
point URL for launching the configurator runtime UI, either within an IFrame or within a browser window. REST isn't
a technology, but rather a client-server architectural style in which participants perform actions on data-oriented
resources.

Integration Architecture
Integration to launch Configurator from an external application and return after a configuration session consists of the
elements described in the following table.

Integration Element Purpose

REST resources

Provide data-oriented services for:

• Creating an intent to start a configuration session

• Retrieving configuration details, such as lines, line attributes and messages

• Performing custom configuration actions.

External application data model entities

Provide data from the host application that's needed by Configurator to establish integration, such as a
unique identifier for a configuration header.

Public entry point URL

Provides the entry point for launching a configurator user interface session.

REST input and output payloads

Carry the specific inputs to and outputs from a a configuration session.

Integration tasks

Actions required to complete an integration.

REST Resources

217

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

External applications can leverage these Configurator REST resources to interact with configurations

• Initialization Parameters: External applications must use this resource to specify the intent to configure a
product or service interactively by passing an input payload which provides details that the configurator uses at
run time to start a configuration session.

At a minimum the following information must be posted to this REST resource:

◦ CallingApplicationCode: The application code registered in the Manage Trading Community Source
Systems task in the case of external non Oracle applications or the FND Application short name (code) for
Oracle applications.

◦ Line: A JavaScript Object Notation (JSON) document serialized in string format. For each field, a name-
value pair corresponds to the sales context line entity definition.

The Initialization Parameters resource is used to load the appropriate model and user interface to launch an
interactive configuration session.

The Initialization Parameters resource can be used only once to launch Configurator, then the resource is
marked as expired and can't be reused. The purpose of this restriction is to prevent attacks such as distributed
denial of service.

• Configurations: External applications must use this resource to retrieve the details of a configuration, using the
configuration identifiers that are returned by Configurator after finishing a configuration session.

The Configurations resource consists of one root entity and encompasses three child entities:

◦ ConfigurationLines: a collection resource that describes all the lines in a configuration.

◦ ConfigurationLineAttributes: a collection resource that describes all the transactional attribute lines in a
configuration.

◦ ConfigurationMessages: a collection resource that describes one or more messages added in a
configuration.

The Configurations resource by default filters out option class lines when returning configuration results. An
external application can request the full result by specifying the OuptutMode query parameter value as full.

• The Configurations resource supports the following custom actions that can be performed on a configuration:

◦ copy: Copy a configuration mirroring the copy action on a quote/order line.

◦ validate: Validate a configuration before submitting a quote or order to Oracle Order Management for
fulfillment to eliminate quote or order errors before submission.

See the REST API for Oracle Supply Chain Management Cloud guide for full details on:

• Descriptions of parameters and query examples for the Initialization Parameters and Configurations REST
endpoints

• Examples of use cases for the custom actions

Note: The REST API for Oracle Supply Chain Management Cloud guide is the comprehensive reference for working
with SCM REST resources, and includes information on getting started with REST APIs.

218

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

External Application Data Model Entities
To persist configuration-related information, all external applications integrating with Configurator must add the
following attributes in their entity that represents a configuration line.

Attribute Purpose

ConfigHeaderId

Configurator-generated unique identifier for a configuration header

ConfigRevisionId

Configurator-generated unique identifier for a revision of a configuration

ConfiguratorPath

Configurator-generated runtime inventory ID path to an item for a configuration line

The combination of ConfigHeaderId and ConfigRevisionId uniquely identifies a configuration. The identification
attributes must be passed to Configurator during reconfiguration flows, and to Oracle Order Management when
submitting a quote or order for fulfillment.

In addition to the attributes that identify a configuration, external applications can add the following attributes in their
configuration line entity, to synchronize with existing quote or order lines during a reconfiguration session, instead of
deleting and recreating the quote or order lines. This information is retrieved using the Configurations resource when
you expand the child resources.

Attribute Purpose

ConfigLineId

Configurator-generated unique identifier for a configuration line

ParentConfigLineId

Configurator-generated unique identifier to indicate the parent configuration line from a child line

ConfigLineAttributeId

Configurator-generated unique identifier for a configuration line attribute representing a transactional
attribute associated to an Item.

Public UI Entry Point URL
Configurator provides a public entry point URL to launch the configurator runtime UI, either within an IFrame or within a
browser window.

The URL entry point to launch the configurator runtime UI is publicly available, and secured to provide access to an
authenticated user. The entry point expects the following URL parameters:

• ParameterId: An initialization parameter resource identifier generated by the Initialization Parameters REST
API while creating the intent to configure, which identifies a set of initialization parameter attribute-value
pairs. If this parameter value isn't specified or is invalid then an error dialog will be displayed to the user and
configurator will redirect to the ReturnUrl.

• ReturnUrl: A fully qualified URL of the host application to return to after finishing a configuration session. An
HTTP 400 error code will be returned if this parameter value isn't passed.

The entry point URL syntax is:

219

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

<protocol>://<host>:<port>/fscmUI/faces/ConfigLaunch.jspx

Example:

https://acme.cloud.enterprise.com/fscmUI/faces/ConfigLaunch.jspx?ParameterId=123456&ReturnUrl=https://
acme.cloud.quote.com/context/processResults.jsp

In the case of an error either during or while starting a configuration session, Configurator navigates to the ReturnUrl
with an ExitStatus of error. The host application can perform a REST GET operation on the Initialization Parameters
resource, with the ParameterId passed as part of the ReturnUrl, to obtain the full error message details.

Integration Tasks
To prepare to call the runtime configurator from a host application, and to prepare and process input and output
payloads, follow these high-level steps.

1. Register the external application:

Go to the Setup and Maintenance work area, then go to the task:

◦ Offering: Product Management

◦ Functional Area: Product Spoke Systems

◦ Task: Manage Trading Community Source Systems

For details, see Product Spoke Systems.

Then create or register your external application as a source system.

When an application is registered, you can define applicability parameters for modified user interfaces, in
the Configurator Models work area, so that those user interfaces are displayed when the application calls
Configurator.

2. Enable the allowed origins white list:

This step is required if launching the runtime configurator in an IFrame. By default, Oracle Applications will not
render contents in an IFrame except when called from the same origin. You can use a configurable white list
mechanism to specify the list of allowed external origins that can render contents in an IFrame. You control the
allowed origins by setting the profile option ORACLE.ADF.VIEW.ALLOWED_ORIGINS, using the Manage Administrator
Profile Values task in the Setup and Maintenance work area.

This step isn't required for launching the runtime configurator in a browser window.

220

https://www.oracle.com/pls/topic/lookup?ctx=fa24a&id=s20029628

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

3. Call the runtime configurator UI, in an IFrame or browser window, using the public entry point URL:

The public entry point URI is /fscmUI/faces/ConfigLaunch.jspx. The URL parameters ParameterId and ReturnUrl
are required.

The following steps are required for calling the runtime configurator.

a. Prepare an initialization payload.

Prepare a REST payload using the JSON format.

Example, showing the minimum required payload:

{ "CallingApplicationCode":"CZ",
 "Line":"{\"InventoryItemNumber\":\"AS100\",\"RequestOn\":\"2017-01-22T09:09:28-0700\",
\"InventoryOrganizationCode\":\"V1\"}"
}

b. Post the payload to the Initialization Parameters resource.

Send the payload to the Initialization Parameters REST resource using the POST operation, using the
following URI

/fscmRestApi/resources/latest/initializationParameters

You can replace latest with the string that specifies the desired installed release of Oracle Supply Chain
Management, such as 11.13.18.02.The string latest is a synonym for the latest installed release.

Example, using the cURL command-line tool:

curl ' https://acme.cloud.enterprise.com:7000/fscmRestApi/resources/latest/
initializationParameters' \
-i \
-X POST \
-H "Content-Type:application/json" \
-u myuserid:mypass \
-d '{ "CallingApplicationCode":"CZ",
 "Line":"{\"InventoryItemNumber\":\"AS100\",\"RequestOn\":\"2017-01-22T09:09:28-0700\",
\"InventoryOrganizationCode\":\"V1\"}"}'

For the payload request shown in the example, the response from the Initialization Parameter resource is
like the following:

{
 "ParameterId": 300100116074154,
 "CallingApplicationCode": "CZ",
 "Header": null,
 "Line": "{\"UnitQuantity\":1,\"InventoryItemNumber\":\"AS100\",\"RequestOn\":
\"2018-01-11T09:09:28-0700\",\"InventoryOrganizationCode\":\"V1\",\"InventoryOrganizationId\":204,
\"InventoryItemId\":300100016171847}",
 "CustomParameters": null,
 "ManualPriceAdjustments": null,
 "PageTitlePrefix": null,
 "ExpiredFlag": false,
 "ErrorMessageText": null,

221

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

 "TerminalActionCaption": null,
 "ValidationCannotAlterFlag": true,
 "ValidationFailFastFlag": true,
 "links": [
 {
 "rel": "self",
 "href": "<a target="_blank" href="https://node001.my.srvr.com:7021/fscmRestApi/resources/
latest/initializationParameters/300100116074154",">https://node001.my.srvr.com:7021/fscmRestApi/
resources/latest/initializationParameters/300100116074154",
 "name": "initializationParameters",
 "kind": "item"
 },
 {
 "rel": "canonical",
 "href": "<a target="_blank" href="https://node001.my.srvr.com:7021/fscmRestApi/resources/
latest/initializationParameters/300100116074154",">https://node001.my.srvr.com:7021/fscmRestApi/
resources/latest/initializationParameters/300100116074154",
 "name": "initializationParameters",
 "kind": "item"
 }
]
}

c. Extract the ParameterId.

The external application must process the response payload from the POST operation to obtain
the parameter identifier ParameterId generated by the Initialization Parameters REST resourcewhen
initializing the configuration. The value from the example is:

"ParameterId": 300100116074154

d. Call the public entry point URL.

The value obtained for ParameterId is passed as a URL parameter value when calling the public entry
point ConfigLaunch.jspx. The resulting example URL, which launches the runtime Configurator user
interface in a session that configures the products specified in the initialization payload, is like:

https://acme.cloud.enterprise.com/fscmUI/faces/ConfigLaunch.jspx?
ParameterId=300100089663945&ReturnUrl=https://acme.cloud.quote.com/context/processResults.jsp

4. The end user interactive configuration session happens at this point.

The end user can complete an interactive configuration session and exit the configurator by using one of the
following actions, by clicking the corresponding button in the runtime configurator user interface:

◦ Cancel: The end user can simply cancel the configuration session. A warning dialog is displayed to the
end user about losing the changes made to configuration. An exit status of cancel is specified in the
ReturnUrl parameter to indicate to the host application that there no changes to process upon return.

◦ Save for Later: The end user decides to save the configuration to finish it at a later point in time. An exit
status of save is specified in the ReturnUrl parameter to indicate to the host application that there are
changes to the configuration. The host application can use the configuration identifiers (ConfigHeaderId
with ConfigRevisionId) to retrieve the configuration details.

◦ Finish or Finish and Review: The end user completes the configuration, by implicitly running the
autocompletion process, and returns to the host application. An exit status of save is specified in the
ReturnUrl parameter to indicate to the host application that there are changes to the configuration. The
host application can use the configuration identifiers (ConfigHeaderId with ConfigRevisionId) to retrieve
the configuration details.

222

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

5. Process the configuration results:

When the end user completes an interactive configuration session and exits, Configurator navigates to the
ReturnUrl that was provided when launching the configuration session, and appends the configuration
identifiers and exit status as URL parameter values. The external application must use the URL parameter
values to determine the exit status and take the necessary action to navigate to its appropriate page.

◦ The ExitStatus parameter indicates the exit method. Possible values are save, cancel and error.

◦ When the exit status is save, the following configuration identifiers are included:

- ConfigHeaderId: Identifier for the configuration.
- ConfigRevisionId: Identifier for the configuration revision.

When used together, the combination of ConfigHeaderId and ConfigRevisionId uniquely identify a
configuration. Example:

q=ConfigHeaderId=300100112392208;ConfigRevisionId=300100112392209

◦ If the ExitStatus is save, then the external application must obtain the configuration results by passing
URL parameter values to the Configurations REST resource. The URI for the Configurations REST
resource is:

/fscmRestApi/resources/latest/configurations

The required URL parameters are:

q=ConfigHeaderId=000;ConfigRevisionId=000

Example URL that queries the Configurations REST resource for a specified configuration and returns
all its configuration lines, including option class lines (OutputMode=full), and transactional attribute lines
(expand=ConfigurationLines,ConfigurationLineAttributes):

https://acme.cloud.enterprise.com:7000/fscmRestApi/resources/latest/configurations?
q=ConfigHeaderId=300100112392208;ConfigRevisionId=300100112392209;OutputMode=full&expand=ConfigurationLines,ConfigurationLineAttributes&onlyData=true

This REST resource produces a JSON document in the following structure for one configuration:

Configuration
 ConfigurationLines (collection)
 ConfigurationLine [0...n]
 ConfigurationLineAttributes (collection)
 ConfigurationLineAttribute [0...n]
 ConfigurationMessages (collection)
 ConfigurationMessage [0...n]

The external application must process the JSON document to create quote or order lines from it.
6. Reconfiguration flow.

An external application can perform a reconfiguration of an existing configuration by following the same
integration steps as for a new configuration, but must include the configuration identifiers and configurator
path information for the root line in the initialization parameters payload. Example, showing the minimum
required payload:

{
 "CallingApplicationCode":"ABC_CPQ",

223

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

 "Line": "{\"InventoryItemNumber\":\"AS100\", \"InventoryOrganizationCode\":\"V1\",\"RequestOn\":
\"2016-04-07 13:00:00\"}",
\"ConfigHeaderId\":300100112392208, \"ConfigRevisionId\":300100112392209, \"ConfiguratorPath\":
\"987654321\"}
}

Based on the exit status, an external application can obtain the configuration results using the configuration
identifiers. Instead of deleting and recreating quote or order lines, an external application can use the
configuration line identifiers to synchronize the existing lines. The important point to note is that Configurator
returns the same line identifiers for reconfiguration flows as for new configuration flows. However, the lines in
the configuration aren't ordered, and you can't provide a sorting order.

For details and examples, go to REST API for Oracle Supply Chain Management Cloud, then expand:

• Order Management > Configuration Initialization Parameters

• Order Management > Configurations

• Use Cases > Configurator

Pricing with Configurator
You can display the prices for standard items and connected items in your user interface. Pricing is performed within
Configurator using Oracle Pricing.

When item prices are displayed during a configuration session, the prices for items or services appear in the running
summary pane on the configuration summary page, and with the items themselves. Connected items and services are
displayed as root-level lines in the configuration summary. The price for the connected items and services is included in
the total net price for the configuration.

The requirements for using pricing with Configurator are:

• You are running Configurator with a host application that passes customer information to Configurator, such as
Oracle Order Management or Oracle Configure, Price, and Quote.

• Your items are on a price list, managed in the Pricing Administration work area.

Price lists define the amount for each item. Pricing strategies assemble price lists to be used when pricing
is applied at runtime. A pricing strategy ensures that the correct prices are calculated for a given customer
(for instance, for discounts). Pricing strategies are dynamic and differ between customers. When you test a
configurator model, the customer information isn't available, so in the Test Model dialog box you can explicitly
specify which pricing strategy to use for the test session, which determines which price lists are in effect.

• The pricing of price-listed items in Configurator is on by default. You can set the Pricing in Configurator setup
parameter to turn pricing off (and back on) in Configurator.

To control whether the prices for items are displayed in Configurator:

1. In the Setup and Maintenance work area, use the Manage Order Management Parameters task:

◦ Offering: Order Management

◦ Functional Area: Orders

◦ Task: Manage Order Management Parameters

2. Select the parameter Pricing in Configurator.

224

https://docs.oracle.com/pls/topic/lookup?ctx=fa-latest&id=FASRP

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

3. Select a value for the parameter:

◦ Always: (Default). Configurator always calls pricing. Prices appear for all configuration nodes that can be
priced.

◦ Never: Configurator never calls pricing. No prices appear while configuring a product.

Related Topics
• Test Models Interactively

225

Oracle Fusion Cloud SCM
Modeling Configurations for SCM

Chapter 9
Integrate

226

	Modeling Configurations for SCM
	Get Help
	Overview
	Configurator Models
	Create and Maintain Configurator Models

	Snapshots
	Snapshots
	Import Items Into Configurator Models
	Refresh Your Snapshot

	Workspaces
	Manage Your Workspace
	Release Your Workspace
	Manage Your Workspace Dates
	Work on the Same Participant in Different Workspaces
	Manage Workspace Versions
	Remove Your Model From Production

	Structures
	Overview
	Overview of Supplementing Your Model

	Set Up Features and Attributes
	Option Features
	Integer and Decimal Features
	Boolean Features
	Text Features
	Supplemental Attributes
	Transactional Attributes

	Manage Structures
	Add a Supplemental Structure
	Chunk Your Large Option Classes
	Use Node Properties to Affect Runtime Behavior and Results
	Reduce Start Times When You Have Large Option Classes

	Use Spreadsheets to Manage Supplemental Structures
	Overview of Using Spreadsheets to Manage Supplemental Structures
	Use Spreadsheets to Manage Your Supplemental Structures
	Guidelines for Using Spreadsheets to Manage Your Supplemental Structures

	Rules
	Overview of Model Rules
	Rule Principles
	Configurator Rules
	Rule Classes
	Logic Rules
	Logic States and Rule Variables
	How You Use Attributes in Model Rules
	Accumulator Rules
	Compatibility Rules
	Consider Integer Values and Decimal Values in Configurator Rules

	Create Statement Rules
	How You Create Statement Rules
	The Statement Rule Editor
	Use Application Development Framework Desktop Integration to Manage Rules

	CDL Reference
	The Constraint Definition Language
	Anatomy of a Configurator Rule Written in CDL
	CDL Statements
	CDL Syntax Details
	CDL Expressions
	CDL Functions
	CDL Operators
	CDL Attribute Compatibility Rules
	CDL Iterator Statements and the FOR ALL...IN and WHERE Keywords
	CDL Iterator Statements and the COLLECT Operator
	CDL Constraint Statements and the CONSTRAIN Keyword
	CDL Compatibility Statements and the COMPATIBLE ...OF Keyword
	CDL Accumulator Statements and the ADD or SUBTRACT Keywords

	Extension Rules
	Overview of Extension Rules
	Extension Rules
	Configurator Events
	How You Create Extension Rules
	The Extension Rule Text Editor
	How You Write Extension Rule Text
	Create an Extension Rule
	How You Obtain External Information Using Extension Rules

	FAQ for Model Rules
	What happens if I change the names of supplemental structure nodes that are rule participants?
	Why can I test, but not release, a model containing invalid rules?

	User Interfaces
	Overview of Model User Interfaces
	User Interfaces for Configurator Models
	The Default User Interface
	Generated User Interfaces
	How You Synchronize UIs with Structure
	Multichannel User Interfaces
	Templates, Pages, and Navigation Styles
	How You Modify User Interfaces
	How You Modify UI Elements
	The UI Expression Language
	How You Use Images for Selections
	How You Visualize Configurations
	FAQ for Model User Interfaces
	How can I rename a page caption?

	Connectors
	Overview of Connectors
	When To Use Connectors
	How You Create Connectors
	How You Use Connectors
	Connectors in Action
	How You Filter Connectable Items
	How You Integrate Connectors
	What's the difference between a connector and a model reference

	Test
	Overview of Testing Your Model
	Test Models Interactively
	Get Rule Explanations When You Test Your Model
	Guidelines for Testing Your Model
	Manage Your Validations
	Test the Model

	Integrate
	How You Integrate with Other Applications
	Pricing with Configurator

