
Talent Acquisition
Cloud

Using Web Services

19D

Talent Acquisition Cloud
Using Web Services

19D

F23286-01

Copyright © 2019, Oracle and/or its aliates. All rights reserved

Authors: OTAC Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permied in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you nd any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition
Regulation and agency-specic supplemental regulations. As such, use, duplication, disclosure, modication, and adaptation of the programs,
including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license
terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its aliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle Corporation and/or its aliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or
registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks
of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its aliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its aliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are ctitious, and are not intended to identify any real companies currently or previously in existence.

Talent Acquisition Cloud
Using Web Services

Contents

Preface .. i

1 Geing Started 1
Taleo Web Services API ... 1

Quick Start ... 6

Standard Type Basics .. 9

API Call Basics ... 21

Security and the API .. 22

2 API Reference 25
Data Model .. 25

Selection Query Language ... 25

3 Appendix 27
Web Service Limits ... 27

Version 7.5 Namespace Limitations ... 28

Export Query Performance Throles .. 30

Compatibility .. 31

Talent Acquisition Cloud
Using Web Services

Talent Acquisition Cloud
Using Web Services

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To nd guides for Oracle Applications, go to the Oracle Help Center at hp://docs.oracle.com/.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Contacting Oracle

Access to Oracle Support
Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides! You can send an e-mail to:
talent_acquisition_doc_feedback_ww_grp@oracle.com.

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
mailto:talent_acquisition_doc_feedback_ww_grp@oracle.com.

Talent Acquisition Cloud
Using Web Services

Preface

ii

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

1 Geing Started

Taleo Web Services API
Taleo provides programming access to your organization's information using a simple, powerful, and secure application
programming interface, the Taleo Web Services API (the API).

To use this document, you should have a basic familiarity with software development, Web services, and the Taleo user
interface. Knowledge of the Taleo Connect Client is not required, but would greatly help to understand and visualize the
Data Model made available through the API.

The API consists of a set of callable methods, and some API endpoints. The documentation is divided in two parts:

• The rst part (this document) describes the purposes of the API, its Standard Compliance, and how to use it
using common Development Platforms. It further describes basics about Web Services Calls and Standard Taleo
Data Types, and covers Error Handling, Security and Limits applying to any Web service of the API.

• The second part consists of several documents, referred to as Taleo data dictionaries. Each data dictionary
applies to one specic Taleo product and lists a set of callable methods specically made available for that
Product. A data dictionary further describes the Data Model applying to the associated Product, making
reference to its Entities, Fields and Relations.

Integrate and Extend Taleo Solutions
Speed and agility are the keys to success in the highly competitive market for top talent. Integration between your talent
management solution and your extended network of service providers is critical for streamlined processes and high
quality hires.

The Taleo Web Services API allows you to integrate and extend Taleo Solutions using the language and platform of your
choice:

• Integrate Taleo with your organization: The API enables seamless transfer between Taleo Enterprise, data
warehouses, backend human resources information system (HRIS), and nancial systems such as Oracle,
PeopleSoft, JD Edwards, SAP, Lawson, and others.

• Extend Taleo Solutions: The API helps you to extend your talent management processes to external partners,
eliminating manual steps in your process, costly process delays and errors, and the headaches of typical
integration projects.

Standard Compliance
The API is implemented to comply with the following specications:

Standard Name Website

Simple Object Access Protocol (SOAP) 1.1 hp://www.w3.org/TR/2000/NOTE-SOAP-20000508

Web Service Description Language (WSDL)
1.1

hp://www.w3.org/TR/2001/NOTE-wsdl-20010315

1

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Standard Name Website

Hypertext Transfer Protocol (HTTP) 1.1 hp://www.w3.org/Protocols/rfc2616/rfc2616.html

WS-I Basic Prole 1.1 hp://www.ws-i.org/Proles/BasicProle-1.0-2004-04-16.html

Web Services Security 1.1 hp://www.oasis-open.org/commiees/download.php/16790/wss-v1.1-spec-os-
SOAPMessageSecurity.pdf

There are many dierent styles of SOAP messages; the two most common today are rpc/encoded and document/
literal. The API only supports the document/literal style, as rpc/encoded style is not endorsed by WS-I Basic Prole 1.1
and was removed in the SOAP 1.2 specications. Technically, using the document/literal style means that a SOAP Body
of a Web service request will be a complex message document that must conform to a specic XML schema (included in
the WSDL of the Web service).

Development Platforms
The API has already been successfully tested against the following Development Platforms:

• AXIS2 v1.3 using XmlBeans and ADB Data Binding

• XFire 1.2.6 using XmlBeans Data Binding

If your Platform is not listed above, this means it has not yet been tested. Assuming this one is compliant with our
supported Standard Compliance, you should be able to access and use the API successfully.

API Support Policy
Taleo recommends that your new client applications use the most recent version of the WSDL le to fully exploit the
benets of richer features and greater eciency. When a new version is released, use the following steps in the Quick
Start to update your WSDL:

• Regenerate the WSDL le (see Step 3: Generate or Obtain the Web Services WSDL Files)

• Import it into your environment (see Step 4: Import the WSDL File Into Your Development Platform)

Backward Compatibility

Taleo strives to make backward compatibility easy when using the API. Each Taleo product is associated to a data
dictionary, dening its product specic API. Each data dictionary is bound to a specic mapping version. Backward
compatibility support diers between minor versions (i.e. 7.5 SP1, 7.5 SP2) and major versions (7.0, 7.5, 10 and later).

We maintain support for each minor version of a product. We also maintain support for the last major version preceding
the current version. The API is backward compatible in that an application created to work with a given data dictionary
mapping version will work with that same mapping version in future minor versions and the next future major version
of the product.

Taleo does not guarantee that an application wrien against one API version will work with future API versions. Changes
in method signatures and data representations are often required as we continue to enhance the API. However, we
strive to keep the API consistent from version to version with minimal, if any changes, required to port applications to
newer API versions.

For example, an application wrien using the Taleo Recruiting 7.5 API shipped with the Taleo Enterprise Edition 7.5
release will continue to work with all future minor versions (i.e. Taleo Enterprise Edition 7.5 SP1), and with the next major

2

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

version of the product (i.e. Taleo Enterprise 10 and later), using that same API. However, the same application may not
work with later versions of the product (i.e. Taleo Enterprise 10) without modications to the application, using the latest
available product API (i.e. Taleo Enterprise 10 and later).

API End of Life

Taleo is commied to supporting each API version for a minimum of two (2) major versions from the version of rst
release. In order to mature and improve the quality and performance of the API, versions that were introduced more
than one major version before the current version may cease to be supported.

For example, in the gure above, a major version is released, with a given version 1 of a service layer (Web Service API).
A new major version is released, and the service layer also releases a new version. The former version is now supported,
but deprecated. Then, a new major version is released, but no new service layer version is released. Support for version
1 of the service layer ends, and now only one version is supported. Then, a new major version is released, with a new
service layer version. The version 2 is still supported, but deprecated.

Taleo Web Services Namespaces
Various namespaces are used inside a Taleo Web Service WSDL and SOAP document. These namespaces dene specic
parts of the document and are also used for versioning purposes. Taleo Web Services can be dened into two categories
of services: import and export services.

Taleo 10 and Later Namespaces

Namespace Description

hp://www.taleo.com/ws/integration/
toolkit/[version]

The integration toolkit namespace.

This namespace is used to dene elements related to the integration toolkit framework.

The integration toolkit framework is where the Taleo component web service infrastructure resides.

It is used in the denition of elements such as the WebServiceFault.

3

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Namespace Description

hp://www.taleo.com/ws/[productCode]
[nsVersion]/[service]

The service namespace.

This namespace is used to dene elements related to the web service itself.

It is used in the denition of elements such as the operation parameters data types. It is the link
between the service and the Taleo data model.

Its name is composed of the product code (i.e. tee for Taleo Enterprise, so for SmartOrg, etc.) followed
by the namespace version (i.e. 2009/01) and the service name (i.e. for the DepartmentService, it will be
department).

Example:

WebService: DepartmentService

Namespace:

hp://www.taleo.com/ws/tee800/2009/01/department

hp://www.taleo.com/ws/[productCode]
[nsVersion]/import

The product import data model.

This namespace is used to dene elements related to the integration data model used to dene all the
entities that can be used in import services. It is used in the denition of elements such as the User, the
Candidate, the Requisition and all the other Taleo entities.

Its name is composed of the product code (i.e.: tee for Taleo Enterprise, so for SmartOrg, etc.) followed
by the namespace version (i.e. 2009/01) and the import string.

Example:

Namespace:

hp://www.taleo.com/ws/tee800/2009/01/import

hp://www.taleo.com/ws/[productCode]
[nsVersion]

The product export data model.

This namespace is used to dene elements related to the integration data model used to dene all the
entities that can be used in export services.

It is used in the denition of elements such as the User, the Candidate, the Requisition and all the other
Taleo entities.

Its name is composed of the product code (i.e.: tee for Taleo Enterprise, so for SmartOrg, etc.) followed
by the namespace version (i.e. 2009/01). For technical reasons, this namespace is not ended by the
export string (as opposed to the import one).

Example:

Namespace:

hp://www.taleo.com/ws/tee800/2009/01

Version 7.5 Namespaces

4

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Namespace Description

hp://www.taleo.com/ws/integration/
toolkit/[version]

The integration toolkit namespace.

This namespace is used to dene elements related to the integration toolkit framework.

This is the Taleo component where the web service infrastructure resides.

It is used in the denition of elements such as the WebServiceFault.

hp://www.taleo.com/ws/[productCode]
[nsVersion]

The product import and export data model.

This namespace is used to dene elements related to the integration data model used to dene all the
entities that can be used in import and export services.

It is used in the denition of elements such as the User, the Candidate, the Requisition and all the other
Taleo entities.

Its name is composed of the product code (i.e.: art for Active Recruiting Technology, so for SmartOrg,
 etc.) followed by the namespace version (i.e. 2006/12).

Example:

Namespace:

hp://www.taleo.com/ws/art750/2006/12

Namespace Limitations

The namespace strategy has evolved between Taleo 7.5 and Taleo 10 versions. The 7.5 version is missing some concepts
to really make each piece of information independent of each other. This will be described in greater detailed in the
Taleo 7.5 Namespaces section.

Using Web Services
For each specic Taleo product, a list of WSDL les is available. Any number of commercial or open source tools
can then be used to create clients that access these services. The soapUI project (www.soapui.org) oers a free
open source no-frills yet complete user interface to create and test web service calls. Other commercial solutions
oer more advanced features: XML Spy (www.altova.com), Stylus Studio (www.stylusstudio.com) and oXygen
(www.oxygenxml.com). In order to embed web service calls within an application, the Apache Web Service Axis2
project (ws.apache.org/axis2) oers a WSDL2Java tool that generates the proper source code for a Java based project.
Microsoft .NET also oers a web service toolkit for its development framework. The Quick Start section provides a step
by step procedure using these toolkits.

Multiple books and articles are available that describe in detail how to interact with the web services, SOAP, and WSDL
standards. Some interesting starting points are:

• hp://www.w3.org/2002/ws (standards and links)

• hp://java.sun.com/webservices (Sun's Java web services portal)

• hp://msdn.microsoft.com/webservices (Microsoft's .NET web services portal)

Using SOAPUI with Taleo WSDL

There are constraints that SOAPUI users must be aware of when using Taleo WSDL to generate a test suite and/or a test
request.

5

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

When creating a new WSDL project and adding a Taleo WSDL, DO NOT "Create default requests for all operations".

When creating a new test request, DO NOT "Create optional elements in schema."

Many Taleo operations use entity type parameters that are composed of base type entities. These base type entities can
be specialized, and sometimes must be, to pass the correct data. To correctly support that characteristic, each base type
in the WSDL is composed of a list of elements from all its specialized types. For detailed information about how to work
with base types, refer to section Operations On Parameters With Base Type Elements.

Quick Start
You will need a User Account with "Web Service" permissions to be able to access and use the API. If you do not have
such an account, contact your System Administrator to request one.

The following steps will create a sample application in your development environment:

Step 1: Obtain and Activate a Taleo User Account
To access the API you need to have an activated Taleo User Account. While developing, staging, and testing your
application, we strongly recommend to use a dedicated testing or staging application to test your application against
sample data instead of your organization's live data. This is especially true for applications that will be inserting,
updating, or deleting data (as opposed to simply reading data). Your System Administrator will provide you with a login
username and password for your product environment.

Step 2: Obtain the Web Services WSDL Files
To access the API, you need the Web Service Description Language (WSDL) les corresponding to the Web Services.
A WSDL le denes a Web service that is available to you. Your development platform uses this WSDL to generate an
API to access the Web service it denes. Each Web service available through the Taleo product is dened by a dedicated
WSDL le. You can either obtain the WSDL les from your Customer Representative or you can generate them yourself

6

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

if you have access to the WSDL download page in the Taleo product user interface. For more information about WSDL,
see hp://www.w3.org/TR/wsdl.

To obtain the WSDL File for Your Organization

The WSDL le is dynamically generated based on which Taleo product (i.e. Taleo Enterprise) you download. The
generated WSDL denes all API calls, objects (including standard and common objects), and elds that are available for
API access for your organization.

To generate the WSDL le for your organization:

• Log in to your account using the URL specied in the data dictionary corresponding to your Taleo product.

• You should see a list of Web services available for this product. If the Web service you are looking for is not in
the list, you may not have enough privileges to access it, you may be using the wrong URL for the Product, or
you are searching for a deprecated Web service that has been removed or replaced by another one since the
last major version.

• Right-click the Web service name to display your browser's save options, and save the WSDL to a local directory.

Note: If a new version of the data dictionary (Product API) is released, you will need to regenerate the WSDL
le in order to access the newest call and type denitions.

Step 3: Import the WSDL Files Into Your Development Platform
Once you have the WSDL le, you need to import it into your development platform so that your development
environment can generate the necessary objects for use in building client Web service applications in that environment.
This section provides sample instructions for Apache Axis and Microsoft Visual Studio. For instructions about other
development platforms, see your platform’s product documentation.

Instructions for Java Environments (Apache Axis)

Java environments access the API through Java objects that serve as proxies for their server-side counterparts. Before
using the API, you must rst generate these objects from your Web service's WSDL le. If you are using more than one
Web service in your application, you must generate these objects from each WSDL le.

Each SOAP Java client has its own tool for this process. For Apache Axis2, use the WSDL2Java utility.

Note: Before you run WSDL2Java, you must have Axis2 installed on your system.

The basic syntax for WSDL2Java from the Axis2 InstallPath/bin is:

wsdl2java.bat -uri pathToWsdl/WsdlFilename -d xmlbeans -ns2p namespaceURL=javaPackageName

The -d species the Databinding framework; here xmlbeans (hp://xmlbeans.apache.org) is used. The -ns2p species
a comma separated list of namespaces and packages where the given package will be used in the place of the auto
generated package for the relevant namespace. For more information, see the WSDL2Java documentation.

Taleo strongly recommends to always specify a dierent target package name for each WSDL le (or Web service)
because dierent WSDL les may refer to the same data type name although using dierent data type denition.
Specifying dierent Java package names will prevent Java class name collisions when more than one Taleo Web service
is used within the same application.

7

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

For example, if the Axis JAR les are installed in C:\axis2-1_3, and the WSDL is named CandidateService.wsdl and is
stored in C:\mywsdls, and you want to map the Web service mapping version http://www.taleo.com/ws/art750/2006/12 to
a specic com.taleo.art750.candidate package, you would invoke:

C:\axis2-1.3\bin\wsdl2java.bat -uri C:\mywsdls\CandidateService.wsdl -d xmlbeans -ns2p http://
www.taleo.com/ws/art750/2006/12=com.taleo.art750.candidate,http://www.taleo.com/ws/integration/
toolkit/2005/07=com.taleo.itk

This command will generate a set of folders and Java source code les in the same directory in which it was run. After
these les are compiled, they can be included in your Java programs for use in creating client applications.

For most Java development environments, you can use wizard-based tools for this process instead of the command
line. For more information about using WSDL2Java, see hp://ws.apache.org/axis/java/reference.html

Instructions for Microsoft Visual Studio

Visual Studio languages access the API through objects that serve as proxies for their server-side counterparts. Before
using the API, you must rst generate these objects from your Web service's WSDL le. If you are using more than one
Web service in your application, you must generate these objects from each WSDL le.

Visual Studio provides two approaches for importing a WSDL le and generating an XML Web service client: an IDE-
based approach and a command line approach.

Note: Before you begin, you must create a new application or open an existing application in Visual Studio.
In addition, you need to have generated the WSDL le(s), as described in Step 3: Generate or Obtain the Web
Services WSDL Files.

A Visual Studio XML Web service client is any component or application that references and uses an XML Web service.
This does not necessarily need to be a client-based application. In fact, in many cases, your XML Web service clients
might be other Web applications, such as Web Forms or even other XML Web services. When accessing XML Web
services in managed code, a proxy class and the .NET Framework handle all of the infrastructure coding.

To access an XML Web service from managed code:

1. Add a Web reference to your project for the XML Web service that you want to access. The Web reference
creates a proxy class with methods that serve as proxies for each exposed method of the XML Web service.

2. Add the namespace for the Web reference.
3. Create an instance of the proxy class and then access the methods of that class as you would the methods of

any other class.

To add a Web reference:

1. On the Project menu, choose Add Web Reference.
2. In the URL box of the Add Web Reference dialog box, type the URL to obtain the service description of the XML

Web service you want to access, such as: file:///c:\WSDLFiles\CandidateService.wsdl or https://hostname/
servlets/soap?ServiceName=CandidateService&wsdl.

3. Click Go to retrieve information about the XML Web service.
4. In the Web reference name box, rename the Web reference, such as taleo.candidatesvc, which is the namespace

you will use for this Web reference.
5. Click Add Reference to add a Web reference for the target XML Web service. For more information, see the topic

"Adding and Removing Web References" in the Visual Studio documentation.
6. Visual Studio retrieves the service description and generates a proxy class to interface between your application

and the XML Web service.

To import other Web services in your application, follow the same procedure described above for each WSDL le.

8

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

For a walk through of sample code that uses the WSDL generated stub, refer to the Appendix WebServices Client
Sample Code section.

Standard Type Basics
Generally speaking, a data dictionary is the complete reference for the data model and services of a given Taleo
Product. The data model consists of entities with elds and relations between other entities. Entities represent the
information stored in the application. The services expose callable methods that allow you to access the data model
entities from a client application.

To allow you to query, add, update, or delete data, all entity elds and relations are mapped into Taleo specic
datatypes, hereafter called Standard Types.

The API exposes two categories of services: export and import services. Taleo products expose one single export
service, called FindService: this one uses Export Standard Types to allow you to query data. All other services use
Import Standard Types to allow you to add, edit, or delete data. As opposed to the export service, which is available for
all products, import services are specic to each product: Please refer to the data dictionary of each Taleo product for an
exhaustive list of its available Web services.

Import Standard Types
The following sections describes the standard types used by Web services that can add, edit, or delete data, as opposed
to the Export service that can only query data.

The rst section describes the mapping between Entity elds, as described in the Taleo product data dictionary and the
Standard Types used by the API.

The next sections describe each of these standard types, providing usage samples using XML (SOAP messages). The
code snippets presented here are partial only, and aim to demonstrate the usage of each standard type.

Entity Fields Denition vs. Import Standard Types Mapping

Each Entity Field is dened in the data dictionary (Field Details section) with the following import-relevant aributes:

• Create: The eld can be set when not yet already set.

• Update: The eld can be updated when already set.

• Search: The eld can be set or updated using a lookup query (specifying a search value).

• Multilingual: The eld can be set to multiple value, one per language.

The API considers all eld values as String, no maer the type specied in the data model, and uses dierent Import
Standard Types to handle the eld aributes:

Import Standard Type
(used to build import requests)

Aributes

String Create

Update

SearchableStringField Create

9

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Import Standard Type
(used to build import requests)

Aributes

Update

Search

SearchableSearchOnlyField Search

SearchableMultilingualStringField Create

Update

Search

Multilingual

SearchableMultilingualSearchOnlyField Search

Multilingual

If neither create, update, and search are checked for a given entity eld in the data dictionary, the eld cannot be
imported or updated. If only search is checked, the eld is either mapped to a SearchableMultilingualSearchOnlyField
if the eld is multilingual, or to a SearchableSearchOnlyField otherwise. This means the eld is available for lookup
but cannot be set to a non-existing value (you have to lookup the value to set it to the entity eld). If create or update
are checked but not search, then you can set a new value (or update one if update is checked), but cannot use an
existing value (no lookup available). In this case, no maer the eld type, the eld is mapped to a simple String (cannot
be multilingual). Finally, if create or update are checked, and search is also checked, the eld is either mapped to a
SearchableMultilingualStringField if the eld is multilingual, or a SearchableStringField otherwise.

String

This type is a standard xs:string eld, as specied in the Schema W3C reference (hp://www.w3.org/TR/
xmlschema-2/#string).

It is used when no lookup is available for the eld. This means you will not be able to use this eld to search for a specic
entity, and seing a value to this eld will replace any existing value for the eld, if any was previously set.

Sample #1: Set a Candidate prex

The Entity Candidate contains a Field Prefix that corresponds to a String eld.

XML

<Candidate>
 <Prefix>Mr</Prefix>
</Candidate>

SearchableStringField

10

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

This type is a Taleo object that allows to search for a specic value and optionally to replace it with another value. It
holds three search criteria and the new value to set:

• searchType: The value can be "none" (do not use search feature), "search" (search for the searchValue aribute
value but do not try to replace the value) or "searchAndValue", (search and replace the value with the eld
value).

• searchValue: The value of the eld to search for.

• searchTarget: The value can be "." (entity to edit is the one containing the eld), ".." (entity to edit is the parent
of the one containing the eld), "../.." (entity to edit is the grandparent of the one containing the eld), etc.

• stringValue: The value of the eld (eld will be edited with this value).

Sample #1: Create a candidate and set LastName and FirstName

The Candidate entity contains the LastName and FirstName elds that both correspond to SearchableStringFields. The
following example will create a candidate and set the candidate's email address, rstname, and lastname.

XML

<Candidate>
 <EmailAddress>jsmith@abc.com</EmailAddress>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
</Candidate>

Sample #2: Update LastName of existing candidate, searching by candidate's EmailAddress

The Candidate entity contains the EmailAddress and LastName elds that both correspond to SearchableStringFields. The
following example will look for the candidate based on the e-mail address and update the candidate's lastname (leaving
the candidate's email address and rstname as-is).

XML

<Candidate>
 <EmailAddress searchType="search" searchValue="jsmith@abc.com"/>
 <LastName>Brown</LastName>
</Candidate>

Sample #3: Update EmailAddress of existing candidate, searching by candidate's email address

In certain cases, the value used to determine the entity may also have to be updated; the syntax of the instruction would
then be as follows (compare with previous samples):

XML

<Candidate>
 <EmailAddress searchType="searchAndValue" searchValue="jsmith@abc.com">jbrown@abc.com</EmailAddress>
</Candidate>

Sample #4: Create a candidate and have that candidate apply on a specic requisition

When importing entities, most relations are lookups and the related entity is only linked to the main entity. This is the
case for the Applications relation of the Candidate entity or the Requisition relation of the PreselectionApplication.
To determine the related entity, we re-use the same search aributes, but in a dierent context. The following sample
describes how to specify that John Smith applied on a specic Job Requisition (here Req001).

XML

11

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

<Candidate>
 <EmailAddress>jsmith@abc.com</EmailAddress>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 <Applications>
 <PreselectionApplication>
 <Requisition>
 <Requisition>
 <ContestNumber searchType="search" searchValue="Req001"/>
 </Requisition>
 </Requisition>
 </PreselectionApplication>
 </Applications>
</Candidate>

Sample #5: Update the application of a candidate having applied on a specic requisition

If we now want to set the date of entry for John Smith for the "Req001" job, we need to update the proper Application
entity. To do so, we must nd it among all his other possible applications. Since there is no identier in the Application
entity itself, we must use the Requisition ContestNumber eld to nd the application. This is possible by specifying a
searchTarget among the search aributes.

XML

<Candidate>
 <EmailAddress>jsmith@abc.com</EmailAddress>
 <FirstName>John</FirstName>
 <LastName>Smith</LastName>
 <Applications>
 <PreselectionApplication>
 <DateOfEntry>2006-06-01T14:15:00-04:00</DateOfEntry>
 <Requisition>
 <Requisition>
 <ContestNumber searchType="search" searchValue="Req001" searchTarget=".."/>
 </Requisition>
 </Requisition>
 </PreselectionApplication>
 </Applications>
</Candidate>

SearchableSearchOnlyField

This type is almost identical to the SearchableStringField, with the exception that you cannot update the value of the
eld being searched. The only allowed searchType value is therefore "search".

Sample #1: Update a candidate and set the US dollar as default currency for this candidate

The Candidate entity contains the Currency relation, whose referenced object contains a ISO4217Code eld that
corresponds to a SearchableSearchOnlyField. The following example will dene the US dollar (whose ISO-4217 code is
840) as the default currency used by John Smith.

XML

<Candidate>
 <EmailAddress searchType="search" searchValue="jsmith@abc.com"/>
 <Currency>
 <ISO4217Code searchType="search" searchValue="840"/>
 </Currency>
</Candidate>

SearchableMultilingualStringField

12

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

This type is a Taleo object very similar to the SearchableStringField type, but that further allows multilingual values.
Multilingual values are provided individually by locale, each in a dedicated value object.

Sample #1: Set the current job title for a candidate

The Candidate entity contains a CurrentJob relation, whose referenced object contains a CurrentJobJobTitle eld that
corresponds to a SearchableMultilingualStringField. The following example will dene software developer John Smith's
current job title in dierent languages (English, French and German).

XML

<Candidate>
 <EmailAddress searchType="search" searchValue="jsmith@abc.com"/>
 <CurrentJob>
 <CurrentJob>
 <CurrentJobJobTitle>
 <value locale="en">Software Developer</value>
 <value locale="fr">Développeur logiciel</value>
 <value locale="de">Software-Entwickler</value>
 </CurrentJobJobTitle>
 </CurrentJob>
 </CurrentJob>
</Candidate>

Sample #2: Mark an application state for a candidate as new

The Candidate entity contains an Applications relation, whose referenced object itself contains an ApplicationState
relation, whose referenced object contains a Description eld that corresponds to a SearchableMultilingualStringField.
The following example will link the "new" application state to the preselection application of the candidate instead of
creating any new application state object, by using a lookup on the English description value.

XML

<Candidate>
 <EmailAddress searchType="search" searchValue="jsmith@abc.com"/>
 <Applications>
 <PreselectionApplication>
 <ApplicationState>
 <ApplicationState>
 <Description>
 <value searchType="search" searchValue="New" locale="en" />
 </Description>
 </ApplicationState>
 </ApplicationState>
 </PreselectionApplication>
 </Applications>
</Candidate>

SearchableMultilingualSearchOnlyField

This type is a Taleo object very similar to the SearchableSearchOnlyField type, but that further allows multilingual
values. Multilingual values are provided individually by locale, each in a dedicated value object.

Sample #1: Set the current currency symbol for a candidate

The Candidate entity contains a Currency relation, whose referenced object contains a Symbol eld that corresponds to a
SearchableMultilingualSearchOnlyField. The following example will set the currency to be used for the candidate to the
US dollar.

XML

13

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

<Candidate>
 <Currency>
 <Currency>
 <Symbol>
 <Value locale="en" searchType="search" searchValue="$" />
 </Symbol>
 </Currency>
 </Currency>
</Candidate>

Operations On Parameters With Base Type Elements

The Taleo data model is composed of base and specialized elements. They dene a logical hierarchical representation of
the Taleo entities. A concrete example of this is:

In this example, you have an operation that requires a MeetingAendee entity as a parameter. This entity is composed
of an Aendee entity. The Aendee entity is an abstraction of the meeting expected participants. The three possible
types of aendees are CandidateAendee, UnregistredAendee and UserAendee. The Taleo WSDL is constructed to
support the passage of one of these three entities as the MeetingAendee parameter instead of the Aendee.

Sample #1: Using the requisition merge operation with an entity that is using UDF

XML

<merge xmlns="http://www.taleo.com/ws/art750/2006/12">
 <requisition>
 <ContestNumber searchValue="INT-REQ-SRC-122354" searchTarget="." searchType="searchAndValue">INT-REQ-
SRC-122354</ContestNumber>
 <JobInformation>
 <JobInformation>
 <UDFs>
 <UDF name="TST_5f22_5f00_5f30">
 <UDSElement>
 <Description>
 <value searchValue="Cost Center 2.10" locale="en" searchTarget="." searchType="searchAndValue">Cost Center
 2.10</value>
 </Description>
 </UDSElement>
 </UDF>
 </UDFs>
 </JobInformation>
 </JobInformation>
 </requisition>
</merge>

14

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Export Standard Types
The following sections describe the standard types used by the FindService Web service that allows client applications
to query data.

The rst section provides an overview of Selection Query language (SQ-XML) that allows to build ecient data queries
against the Taleo data model. For a complete reference of this language, refer to the Selection Query Language, SQ-
XML section.

The next section describes the mapping between Entity elds, as described in the Taleo product data dictionary, and
the standard types used by the API. As opposed to the standard import types, you will use these types to handle the
response to queries sent to the FindService Web service.

The last sections describe each of these standard types, providing usage samples using XML (SOAP messages). The
code snippets presented here are partial only and aim to demonstrate the usage of each Standard Type.

Building Export Queries Using Selection Query (SQ-XML)

Use the Selection Query language (SQ-XML) to construct simple but powerful queries for the sqxmlquery parameter in
the ndEntities and ndPartialEntities calls of the FindService. Similar to the SELECT command in SQL, SQ-XML allows
you to specify the source object (such as Account), a list of elds to retrieve, and conditions for selecting rows in the
source object.

A meta model diers mainly from a relational data model in terms of the relationships created between its entities. As
such, the Selection Query language diers from the SQL language mainly in the same manner. Since ultimately the
Selection Query engine will translate all SQ-XML expressions into SQL statements to be executed against the physical
model, Selection Query expressions are really very close to their SQL counterparts. Resources accustomed to creating
SQL extraction scripts should easily grasp the workings of the Selection Query format. For SQL neophytes, the SQ-
XML oers a simpler alternative for working with extraction instructions. This section will present the "equivalent"
SQL statement of the described SQ-XML documents. Please note that this is done ONLY for reference purposes. In
almost all cases, the application entities and elds do NOT have the same name as the underlying physical elements. We
purposely use the application model terms to clearly distinguish between examples and the SQL statements that would
be actually generated by the export service.

Note: This section does not document the export service itself because this is already documented in the
Data Model of your Taleo product.

Overview

Building an export instruction is much more involved than in the case of the import feature. This section presents a
simple example using the Recruiting 7.5 data model. The export instruction basically needs to specify what type of
entity is exported, which entities are to be selected, and what elds are to be extracted. Assuming we want to extract all
requisitions that are currently open and posted in Taleo Enterprise Edition 7.5 product, the instruction would look like
the following:

<ns:query alias="Find Open and Posted Requisitions" projectedClass="Requisition">
 <ns:projections>
 <ns:projection>
 <ns:field path="ContestNumber"/>
 </ns:projection>
 <ns:projection>
 <ns:field path="JobInformation,Title"/>
 </ns:projection>
 </ns:projections>
 <ns:filterings>
 <ns:filtering>
 <ns:includedIn>

15

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

 <ns:field path="State,Number"/>
 <ns:list>
 <ns:long>3<!--state=open--></ns:long>
 <ns:long>13<!--state=posted--></ns:long>
 </ns:list>
 </ns:includedIn>
 </ns:filtering>
 </ns:filterings>
 <ns:sortings>
 <ns:sorting>
 <ns:field path="ContestNumber"/>
 </ns:sorting>
 </ns:sortings>
</ns:query>

The next sections cover the 4 most important parts of a SQ-XML query:

• Basics—The entity type to be extracted

• Projections—The elds to be extracted

• Filterings—The conditions applying to the query (reducing the scope of entities to be extracted)

• Sortings—The order which to sort the extracted results

Basics

An SQ-XML document typically starts with a query element. There are two required aributes to the query element:
projectedClass and alias. The former represents the base entity from which the extraction will be built. The laer is a
unique name throughout the expression that identies the query.

A basic query starts like this:

<query alias="BasicQuery" projectedClass="User"/>

SQL Equivalent: FROM User

Projections

The rst main elements of a query are the projections that represent what information is to be extracted for the selected
entities. The projection elements can be dened as any value understood by the Selection Query language. The
simplest case is to use a eld of the projected class.

<query alias="SimpleProjection" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 </projections>
</query>

SQL Equivalent: SELECT UserName FROM User

It is possible to assign an alias to a projection; this serves two purposes. First, when a function is used, the Selection
Query cannot deduce a default alias. Hence, it is required to explicitly specify one. Second, when sub queries are
involved, sometimes aliases are required to distinguish projections. This is because the default alias is the entity eld
name; so if both the main query and a sub-query project the Email eld, then one of them will need an alias.

<query alias="ProjectionWithAlias" projectedClass="User">
 <projections>
 <projection alias="Login">
 <field path="UserName"/>

16

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

 </projection>
 </projections>
</query>

SQL Equivalent: SELECT UserName AS Login FROM User

The real strength of the Selection Query language comes from the application model relations. When such relations
exist for the target data, then projecting it becomes straightforward. For example, by selecting the Department relation
of the User entity (which is one-to-one according to the schema), you can access all of the Department entity elds.
When the path expression only species the relation, then it is the entity key that is projected.

<query alias="ProjectionWithRelations" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 <projection>
 <field path="Department"/>
 </projection>
 <projection>
 <field path="Department,Name"/>
 </projection>
 </projections>
</query>

SQL Equivalent: SELECT UserName, DepartmentNo, Department.Name FROM User, Department WHERE
User.DepartmentNo=Department.No

When navigating a relation, you also have access to all the relations of the related entity. In the example below, since the
Recruiter relation of the Department entity points to a User entity, then all the elds of that entity are again available.

<query alias="ProjectionWithDeepRelations" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 <projection>
 <field path="Department,Recruiter,UserName"/>
 </projection>
 </projections>
</query>

SQL Equivalent: SELECT UserName, Recruiter.UserName FROM User, Department, Recruiter WHERE
User.DepartmentNo=Department.No AND Department.RecruiterNo = Recruiter.No

Filtering elements

The next query element includes the lters that represent what entities are to be selected.

The ltering elements are grouped in sequence within the lterings element, although the sequence itself is not
relevant. The various ltering elements are implicitly linked by an AND logical operator. The ltering elements can be
dened as any lter understood by the Selection Query language; these are either logical operators or actual conditions.
The simplest case is to use a standard equality condition. The equal is a binary operator and as such accepts two value
child elements. One simple possibility is to use a eld and a xed value. We saw elds in the projection sections; the
xed values are of the normal types: numeric, string, etc.

<query alias="EqualityFilter" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>

17

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

 </projection>
 </projections>
 <filterings>
 <filtering>
 <equal>
 <field path="FirstName"/>
 <string>John</string>
 </equal>
 </filtering>
 </filterings>
</query>

SQL Equivalent: SELECT UserName FROM User WHERE FirstName='John'

In the previous example, the SQ-XML is slightly more complex than the SQL equivalent. However, once again, the power
of the expression language resides in the application model relations that allow a simple modication to lter on other
relationships such as the Department name.

<query alias="RelationFilter" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 </projections>
 <filterings>
 <filtering>
 <equal>
 <field path="Department,Name"/>
 <string>Finance</string>
 </equal>
 </filtering>
 </filterings>
</query>

SQL Equivalent: SELECT UserName FROM User, Department WHERE User.DepartmentNo = Department.No AND
Department.Name='Finance'

Applying a single logical condition can be done directly with the proper element.

<query alias="AndFilter" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 </projections>
 <filterings>
 <filtering>
 <and>
 <equal>
 <field path="FirstName"/>
 <string>John</string>
 </equal>
 <equal>
 <field path="LastName"/>
 <string>Doe</string>
 </equal>
 </and>
 </filtering>
 </filterings>
</query>

SQL Equivalent: SELECT UserName FROM User WHERE FirstName='John' AND LastName = 'Doe'

18

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

However, applying several logical conditions must be done in an embedded manner, as most logical operator elements
are binary (that is, accept only two child elements).

<query alias="MultipleAndFilters" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 </projections>
 <filterings>
 <filtering>
 <and>
 <and>
 <equal>
 <field path="FirstName"/>
 <string>John</string>
 </equal>
 <equal>
 <field path="LastName"/>
 <string>Doe</string>
 </equal>
 </and>
 <equal>
 <field path="MiddleInitial"/>
 <string>R</string>
 </equal>
 </and>
 </filtering>
 </filterings>
</query>

SQL Equivalent: SELECT UserName FROM User WHERE FirstName='John' AND LastName='Doe' AND MiddleInitial='R'

Sorting elements

The last main query element is the sorting instructions that represent in what order the selected entities will be shown.

The sorting elements are grouped in sequence within the sortings element. The sequence determines what sorting
instructions are applied rst. The sorting elements accept any value as child elements, but the main usage is with elds
of the projected entity. The sorting elements also accept an ascending aribute that determines the orientation of the
particular ordering. Just like in SQL, this aribute defaults to true.

<query alias="Sorting" projectedClass="User">
 <projections>
 <projection>
 <field path="UserName"/>
 </projection>
 </projections>
 <sortings>
 <sorting>
 <field path="LastName"/>
 </sorting>
 <sorting ascending="false">
 <field path="FirstName"/>
 </sorting>
 </sortings>
</query>

SQL Equivalent: SELECT UserName FROM User ORDER BY LastName ASC, FirstName DESC

Entity Fields vs. Standard Types Mapping

19

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Each Entity Field is annotated in the data dictionary (Field Details section) with the following aributes:

• Export: The eld can be exported.

• Multilingual: The eld can be set to multiple values, one per language.

The API considers all eld values as String, no maer the type specied in the data model, and use dierent Export
Standard Types to handle the eld aributes:

Export Standard Type
(used to handle export responses)

Aributes

String Export

MultilingualStringField Export

Multilingual

If the checkbox for export is cleared for a given entity eld in the data dictionary, this means the eld cannot be
exported. If the eld can be exported, the eld is either mapped to a MultilingualStringField if the eld is multilingual, or
to a String otherwise, no maer the eld type (i.e. Boolean, Integer, Float, DateTime).

String

This type is a standard xs:string eld, as specied in the Schema W3C reference (hp://www.w3.org/TR/
xmlschema-2/#string). Because the API considers any eld type as a String, you may be required to cast the received
value to the proper type in your code (see sample).

Sample #1: Retrieve the requisition identier of an exported Requisition

The Entity Requisition contains the Field ContestNumber and HasBeenApproved that both correspond to a String eld.
This sample focuses on the result handling (we assume the export query was successfully executed by the Web service).
It reads the rst exported requisition contest number (requisition identier) and whether this one was approved or not.

XML

<ns1:findPartialEntitiesResponse xmlns:ns1="http://www.taleo.com/ws/integration/toolkit/2005/07">
 <Entities pageIndex="1" pageCount="1" pagingSize="200" entityCount="1"
 xmlns:e="http://www.taleo.com/ws/art750/2006/12"
 xmlns="http://www.taleo.com/ws/integration/toolkit/2005/07">
 <e:Entity xsi:type="e:Requisition">
 <e:ContestNumber>Req001</e:ContestNumber>
 <e:HasBeenApproved>false</e:HasBeenApproved>
 </e:Entity>
 </Entities>
</ns1:findPartialEntitiesResponse>

MultilingualStringField

This type is a Taleo object very similar to the String type, but further allows to retrieve multilingual exported values.
Multilingual values are provided individually by locale, each in a dedicated value object.

Sample #1: Retrieve the current job title of a Candidate

The Candidate entity contains a CurrentJob relation, whose referenced object contains a CurrentJobJobTitle eld that
corresponds to a MultilingualStringField. This sample focuses on the results handling (we assume the export query

20

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

was successfully executed by the Web service). It reads the current job from the rst exported Candidate number and
outputs the job title for all available languages (here English, French, and German).

XML

<ns1:findPartialEntitiesResponse xmlns:ns1="http://www.taleo.com/ws/integration/toolkit/2005/07">
 <Entities pageIndex="1" pageCount="1" pagingSize="200" entityCount="1"
 xmlns:e="http://www.taleo.com/ws/art750/2006/12"
 xmlns="http://www.taleo.com/ws/integration/toolkit/2005/07">
 <e:Entity xsi:type="e:Candidate">
 <e:CurrentJob>
 <e:CurrentJob>
 <e:CurrentJobJobTitle>
 <e:value locale="en">Software Developer</e:value>
 <e:value locale="fr">Developeur logiciel</e:value>
 <e:value locale="de">Software-Entwickler</e:value>
 </e:CurrentJobJobTitle>
 </e:CurrentJob>
 </e:CurrentJob>
 </e:Entity>
 </Entities>
</ns1:findPartialEntitiesResponse>

API Call Basics
API calls represent specic operations that your client applications can invoke at runtime to perform tasks, for example:

• Query data in your organization

• Add, update, and delete data

Characteristics of API Calls
All API calls are:

• Service Requests and Responses: Your client application prepares and submits a service request to the Taleo
Web service via the API, the Taleo Web service processes the request and returns a response, and the client
application handles the response.

• Synchronous: Once the API call is invoked, your client application waits until it receives a response from the
service.

• Commied Automatically: An application transaction is created for every operation that writes to a Taleo object.
If the operation completes successfully, this transaction is automatically commied. If an error occurs while
performing the operation, the transaction is automatically rolled back. For example, if a client application
aempts to create a new candidate that includes one application, and the application creation fails, neither the
candidate nor the application will be created and an error will be returned to the client application.

API Usage Limits and Metering
To protect the Taleo systems and your organization's data reliability, security, and scalability, the API is subject to
dierent usage limits and metering. The limits documented in the following sections are subject to change in future
releases. A more detailed documentation of the Taleo web service usage limits and metering is available on demand.
Contact your Customer Representative to request this document.

21

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

Global Usage Metering

Taleo may monitor every API call for metering, accounting, or troubleshooting purposes.

Global Usage Limits

The following limits apply for any incoming Web service request:

• Maximum of 20 concurrent Web service calls per JVM: If a client application invokes a Web service while 20
Web services are running, access will be denied to that Web service and a fault message is returned to the client
application.

• Maximum of 25,000 Web service calls per day: The counter begins at the rst API call and is reset at midnight
every day.

Export Usage Limits

The export service is generic and, as opposed to other Web services that only handle one entity at a time, can be used
to export a large amount of entities. Therefore, the following additional limits apply for export requests only:

• Maximum of 200 records per export call: If your request produces more than 200 records, you may consider
using Taleo Connect Client (hp://www.taleo.com/solutions/connect.php), which uses an asynchronous
processing for large, time- and resource-consuming integration requests. Alternatively, if a synchronous
invocation is required, you must use the pagination mechanism of the export Web service.

• Maximum of 250,000 export records per day: The counter begins at the rst export API call and is reset at
midnight every day.

• Maximum response size of 2048 Kilobytes (2 MB) per export call: If an API call produces a response that
exceeds this size, the request is aborted and a fault message is returned to the client application. By the nature
of Web service synchronous calls, a request should not produce a response larger than this size: in most cases,
this is due to an incorrect request, for example, with invalid or missing request lterings.

• Maximum of 90 seconds per export call: If an API call takes longer than 90 seconds to complete, the request is
aborted and a fault message is returned to the client application. Consider spliing the complex export request
into several smaller and simpler ones. Additionally, validate the export complexity and if needed, add additional
lterings that could reduce the request execution time.

Security and the API
Client applications that access your organization's Taleo data are subject to the same security protections that are used
in the Taleo user interface.

Basic HTTP Authentication
Basic HTTP authentication is mandatory to access Taleo Web services. The user who logs in to Taleo Web services
will benet from its permission set when calling services. Make sure this authentication mode is only used with a SSL
(HTTP/S) connection.

Since Taleo Enterprise build 13A.5, the HTTPS protocol must be used to reach the webService "soap page" or "wsdl
page". The HTTP protocol will now result in a 401 error.

22

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

For example:

• soap page: hps://[ZONENAME]/[PRODUCT]/soap

• wsdl page: hps://[ZONENAME]/[PRODUCT]/soap?ServiceName=IntegrationManagementService&wsdl

23

Talent Acquisition Cloud
Using Web Services

Chapter 1
Geing Started

24

Talent Acquisition Cloud
Using Web Services

Chapter 2
API Reference

2 API Reference

Data Model
The API lets you integrate and extend several Taleo Products. For each product, a data dictionary documents each
entity, relations, and services exposed by the product. Because the list of Taleo Products supporting the API will grow
over time, the data dictionary documents are not part of this document but can be downloaded separately. If you do not
have access to these documents, contact your Customer Representative.

Selection Query Language
Selection Query (or short, SQ-XML) is a proprietary language based on XML that allows you to query data and export
entities (elds, relations, etc) exposed in the Data Model of the product(s) used by your organization. The FindService
Web service uses this XML syntax and is exposed by all Taleo products. The Building Export Queries using Selection
Query (SQ-XML) section of this document provides an overview of that syntax. A complete documentation of the
SQ-XML can be downloaded separately. If you do not have access to these documents, contact your Customer
Representative.

The SQ-XML schema is part of the FindService WSDL File and documents each element and aribute that is part of
the schema (see Step 4: Import the WSDL File Into Your Development Platform for detailed instructions). If your SOAP
Development Platform or XML Editor supports WSDL and XSD auto-completion, you can get each element and aribute
of the Schema associated to the SQ-XML online-documented. Commercial solutions like XML Spy (www.altova.com),
Stylus Studio (www.stylusstudio.com) or oXygen (www.oxygenxml.com) provide such an auto-completion feature.

25

Talent Acquisition Cloud
Using Web Services

Chapter 2
API Reference

26

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

3 Appendix

Web Service Limits
The following web service limits apply to all web services by default.

Since Default Value Comment Behavior

7.5 SP2 20 The maximum number of integration threads allowed
by JVM.

The Web Service policy manager ensures that no more
than x web service calls runs simultaneously. When
the maximum number of running web service call is
reached, any new web service call will be rejected with
an error message.

7.5 SP2 -1 (no minimum) The minimum export rate that is tolerated by the
integration toolkit.

This seing enables the integration toolkit to stop the
processing of an export if the current data export rate
is too low. The data export rate indicates the number
of entities exported in an hour.

When serializing export results (after each entity or
after each CSV report row), check the export rate. If the
export rate is lower than the allowed export rate, the
export is cancelled.

7.5 SP2 200 The maximum number of records that can be returned
by an export request sent to the integration export
service. If a request would return more results, an error
is returned instead.

The maximum number of records is check before
serializing results.

7.5 SP2 2048000 (2 MB) The maximum size (in bytes) of the response
generated by an export request sent to the integration
export service. If the service notices that the response
size is larger than this value, an error is returned
instead.

When serializing export results (after each entity or
after each CSV report row), check the export size. If
export size is greater than the allowed size, the export
is cancelled.

7.5 SP2 90 (1 minute 30
sec)

The maximum time in seconds permied for an export
request. This seing enables the integration toolkit
to stop an export request if it takes more than the
specied amount of time.

When serializing export results (after each entity or
after each CSV report row), check the elapsed time
of the export. If the elapsed time is greater than the
maximum export time, the export is cancelled.

7.5 SP2 25000

Corresponds to an
average of 17 calls/
minute

The maximum number of web service calls that can be
invoked daily.

The maximum is checked before invoking the service.
If the daily invocation maximum is already reached, the
service is not invoked and an error is returned to the
user.

7.5 SP2 250000

Corresponds to
an average of 10
exported entities/
call for 17 calls/
minute (more/
call if less calls/
minute)

The maximum number of records that can be exported
daily.

The maximum is checked before extracting data.
E.g.: If the limit is 250 000 records per day and there
is already 200 000 exported records for the current
day, an extract returning 50 001 records will not run
because this would exceed the daily limit.

27

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

Since Default Value Comment Behavior

Always N/A Certain WSDLs may contain two types where the only
dierence in their names is that one is all in small-
case leers and the other contains upper-case leers.
This peculiarity is a limiting factor for the Visual Basic
language as it is not case sensitive.

When a customer tries to use this type of WSDL to
generate a stub in Visual Basic, the generated class will
not compile since two dierent classes will have the
same name.

Version 7.5 Namespace Limitations
You must be aware of the following limitations generated by the way that the namespaces are used in Version 7.5
WSDLs. (Note that these limitations have been xed in Taleo 10 SP1 and later).

Normally, in Java, these limitations can be worked around by assigning the dierent usages of a namespace to dierent
packages and then eliminate any possible collision in the Java code. But with the XML Bean data binding, this solution is
not possible. Here is an extract from the XML Bean documentation:

"Note: XMLBeans doesn't support using two or more sets of java classes (in dierent packages) mapped to schema
types/elements that have the same names and target namespaces, using all in the same class loader. Depending on
the direction you are using for the java classes to schema types mapping, some features might not work correctly.
This is because even though the package names for the java classes are dierent, the schema location for the schema
metadata (.xsb les) is the same and contains the corresponding implementing java class, so the JVM will always pick
up the rst on the classpath. This can be avoided if multiple class loaders are used."

Here is a list of know limitations that are caused by this XML Bean limitation:

Namespace Usage Case #1
The same integration toolkit namespace is used for two dierent contents.

The import services are using the integration toolkit namespace to specify a dierent content that the export ones.

Known Limitation

The impact is that it might not be possible to use an import service and an export service in the same java program.

Namespace Usage Case #2
The import service parameters denitions are put in the data model namespace.

For example, the Department service create operation takes a tns:createRequest message in parameter that points to a
create element dened in the data model:

<wsdl:message name="createRequest">
 <wsdl:part name="parameters" element="tns:create"/>
</wsdl:message>

In the data model, it points to a Department entity.

<xsd:element name="create">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="department" type="tns:Department"/>
 </xsd:sequence>

28

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

 </xsd:complexType>
</xsd:element>

And if we take the same example but with the Position service:

The Position service create operation takes a tns:createRequest message in parameter that points to a create element
dened in the data model:

<wsdl:message name="createRequest">
 <wsdl:part name="parameters" element="tns:create"/>
</wsdl:message>

In the data model, it points to a Position entity.

<xsd:element name="create">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="position" type="tns:Position"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

Known Limitation

The impact is that it might not be possible to use two dierent import services in the same java program.

Namespace Usage Case #3
The export service parameters denitions are put in the integration toolkit namespace.

For example, in the FindService, the ndPartialEntities operation response is a ndPartialEntitiesResponse element that
points to a ndPartialEntitiesResponse element dened in the integration toolkit namespace:

<wsdl:message name="findPartialEntitiesResponse">
 <wsdl:part name="parameters"
 element="tns:findPartialEntitiesResponse"/>
</wsdl:message>

This element points to the Entities one that is also dene in the integration toolkit namespace:

<xsd:element name="findPartialEntitiesResponse">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element maxOccurs="1" minOccurs="1" name="Entities"
 nillable="true" type="tns:Entities"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

And nally the Entities element points to the Entity element dene in the data model:

<xsd:complexType name="Entities">
 <xsd:sequence>
 <xsd:element maxOccurs="unbounded" minOccurs="0" ref="ns1:Entity"/>
 </xsd:sequence>
</xsd:complexType>

Known Limitation

29

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

The impact is that it is not possible to use the FindService with two dierent data model in the same Java program
because the Entities element dened in the ITK point to a Entity element that is dened in the data model namespace.
Since the Entity element can be dened in multiple data model, the Java program will not be able to determine which
one to use.

This will be the case when a nd must be done in the art product and another one in the SmartOrg product.

Another case is when a FindService is use to search in two dierent version of the same product. An example of this is a
search done in SmartOrg 7.5 and then done in SmartOrg 10.

Namespace Usage Case #4
The data model dene in an import service is dierent than the one dene in an export service but they are both using
the same namespace.

Therefore the denition of an entity for an import service might be dierent that the one for an export service. For
example, the denition of a candidate entity in import is dierent than the one in an export.

Known Limitation

In Java, it is not possible to cast the nd service result to the correct object if the import service is imported before the
export one.

Export Query Performance Throles
The following export query performance throles apply to the EXPORT web service only.

Since Default Value Comment Behavior

7.5 SP2 5 The maximum depth of relations that can be specied in an
export query (max.relation.deepness)

7.5 SP2 -1 The maximum number of relations that can be specied in an
export query (max.relation.count)

7.5 SP2 1 The maximum number of subqueries that can be specied in
an export query (max.subquery.count)

7.5 SP2 5 The maximum number of elds that can be specied to lter
an export query (max.ltering.eld.count)

7.5 SP2 5 The maximum number of elds that can be specied to group
elds in an export query (max.grouping.eld.count)

A grouping eld represents a value used to group query results.
In SQL, it will be pushed into the GROUP BY clause.

7.5 SP2 5 The maximum number of elds that can be specied to join
other queries in an export query (max.jointing.eld.count)

A joint eld represents a lter used to join a parent and a sub-
query. In SQL, the lter will be pushed into the WHERE clause
of the parent query.

All performance throles are
checked before extracting the data.

30

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

Since Default Value Comment Behavior

7.5 SP2 1 The maximum number of levels for sub-queries that can be
specied in an export query (max.subquery.level.count).

7.5 SP2 100 The maximum number of elds that can be projected in an
export query (max.projection.eld.count)

A projection eld represents a value returned by a query. In
SQL, it will be pushed into the SELECT clause.

Compatibility
Taleo Connect Client compatibility with Taleo products is guaranteed one version up, when the same reference model is
used. When the reference model used to create an integration point changes, compatibility is not guaranteed.

Architecture
Taleo Connect Client (TCC) communicates with Taleo Connect Server (TCS) that is embedded in every Taleo product.
TCS uses internal reference models that describe each Taleo product entity available for integration. The reference
models are related to the version of the business engine; the business engine contains sets of business rules that
integration must follow. The reference models are not automatically compatible with each other. Taleo products are
enhanced and modied from one version to the next. The business rules change to comply with the enhancements and
modications.

For information on the integration reference model changes for each release, refer to the following Notes.

• See: Taleo Enterprise - Taleo Integration Release Notes (MOS under Release Notes, Maintenance Packs, Express
Packs, and Incidents Resolved History)

Example
An integration point built with reference model 11 X for a version 11.X product will continue to function after the product
is upgraded to version 12 X, as long as the reference model remains unchanged. In this case, compatibility is guaranteed.

Product and model compatibility

31

Talent Acquisition Cloud
Using Web Services

Chapter 3
Appendix

If the reference model is modied, to take advantage of a new eld for example, then compatibility is not guaranteed.
In this case, the integration points must be re-tested and modied if necessary. A modication to a business rule may
aect integration in a minimal way. Testing is required.

Note: Integrations built using the 7.5 reference model are expected to cease to be formally supported mid
to late 2014, though formal communication will be made 12 months in advance of full compatibility support
stopping. It is recommended in preparation to upgrade integration scripts currently on 7.5 to the latest data
model version appropriate for your zone’s version or at least begin the planning activities associated with this
upgrade, subsequent testing and deployment.

The Recruiting/Professional and SmartOrg models have changed considerably from 7.5 upwards and it is recommended
referencing the following guides for further information.

• See: Taleo Integration Migration Guide (MOS under Release Notes, Maintenance Packs, Express Packs, and
Incidents Resolved History)

• See: Product Data dictionaries (MOS under Release Notes, Maintenance Packs, Express Packs, and Incidents
Resolved History)

32

	Using Web Services
	Preface
	Getting Started
	Taleo Web Services API
	Quick Start
	Standard Type Basics
	API Call Basics
	Security and the API

	API Reference
	Data Model
	Selection Query Language

	Appendix
	Web Service Limits
	Version 7.5 Namespace Limitations
	Export Query Performance Throttles
	Compatibility

