Oracle Warehouse
Management Cloud

REST API Guide

Release 20D

Oracle Warehouse Management Cloud
REST API Guide

Release 20D
Part Number: F34580-04
Copyright © 2020, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or commercial computer software documentation pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Governments use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit My Oracle Support
or visit Accessible Oracle Support if you are hearing impaired.

Oracle Warehouse Management Cloud

REST API Guide

Contents

Preface

ORACLE

1 Overview 1
End User License Agreement 1
Restful Web Services 1
HTTP Requests 1
Data Input Methodology 3
HTTP Response 7
Status Codes 7
Response Formats 8
Response Data Encoding 9
Response Data Formats 9
Entity Module 13
Supported Entities 13
Entity Metadata 13
Input Data Types 13
Resource Result Set Filtering 15
Resource Representations (GET) 20
Resource Existence and Modification (HEAD) 24
Creating a Resource (POST) 26
Updating a Resource (PATCH) 29
Entity Operations (GET/POST) 42

A Supported Entity Operations 45
Describe Entity 45
Location 45
Inventory 52
[tem 55

Oracle Warehouse Management Cloud

REST API Guide

Putaway 56
Pick-Pack 60
Trailer 66
Load 69
Container 73
Task 78
IBLPN 79
OBLPN 84
Pallet 90
Replenishment 93
Sales Order Header 95
Print Q7
Report 102
Company Parameter 102
Facility Parameter 103
SQL Selection (Rule Tree) 103

ORACLE

Oracle Warehouse Management Cloud Preface
REST API Guide

Preface

Oracle® Warehouse Management Cloud REST API Guide, Release 20D
Part No. F34580-04

This guide describes in detail how to configure and use Oracle Warehouse Management (WMS) Cloud. All functionality
unless specifically noted is available in Oracle Warehouse Management Enterprise Edition Cloud. Please direct any
functionality questions to My Oracle Support.

Change History

Date Document Revision Summary of Changes
12/14/20 -04 Added updates to Composite Create API.
10/21/2020 -03 In Get Inventory History API, replaced company_code with company_id__code and

replaced facility_code with facility_id__code. Added updates to Pick Confirm API.

9/22/2020 -02 Updates for 20D. Added Directed Putaway Location, Serial Number Tracked Items in
Update Active Inventory, To be Counted flag fields for Patch Location, and Locate LPN/
Pallet. Added container, iblpn, and oblpn to Updating a Resource (PATCH.) Added Date/
Time Values and Time Zones to Entity Module, Input Data Types topic.

6/26/2020 -01 Updates for 20C. Added Delink Serial Numbers, Get Inventory History, and Get Next Pick
APIs to Supported Entity Operations.

Using Applications

Additional Resources

- Community: Use Oracle Cloud Customer Connect to get information from experts at Oracle, the partner
community, and other users.

- Guides and Videos: Go to the Oracle Help Center to find guides and videos.

- Training: Take courses on Oracle Cloud from Oracle University.

Conventions

The following table explains the text conventions used in this guide.

Convention Meaning

boldface Boldface type indicates user interface elements, navigation paths, or values you enter or select.

ORACLE

http://support.oracle.com
https://appsconnect.custhelp.com/
http://docs.oracle.com/
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=906

Oracle Warehouse Management Cloud Preface
REST API Guide

Convention Meaning
monospace Monospace type indicates file, folder, and directory names, code examples, commands, and URLs.
> Greater than symbol separates elements in a navigation path.

Contacting Oracle

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For
information, visit My Oracle Support or visit Accessible Oracle Support if you are hearing impaired.

ORACLE

https://support.oracle.com/portal/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Oracle Warehouse Management Cloud Chapter 1

REST API Guide Overview

1 Overview

End User License Agreement

This guide is intended for REST API software developers with customers or system implementors. While the content
includes a reasonable overview of REST concepts, the assumption is that the audience understands REST, HTTP
communication, response codes, and related topics.

Restful Web Services

Representational State Transfer (REST) is a web standards-based architecture utilizing the HTTP protocol for data
communication. RESTful web services are a light weight, scalable, and maintainable way to allow web-based system-to-
system communication, irrespective of the respective application platforms (interoperability).

RESTful web services use HTTP methods in combination with a Universal Resource Identifier (URI) to implement the
REST architecture. For reference, a URL is a type of URI. This combination allows consumers to interact with application
data via a set of controlled, stateless, and idempotent methods.

OCWMS has had REST API’s prior to update 18C, however they were not designed to provide fine grained access. These
legacy API's continue to be available. Once all the functionality provided by these API's are incorporated into the newer
APIs, the legacy ones will be retired with sufficient notice. The new APIs also adhere to RESTful practices better and
simplify some of the data encoding requirements.

HTTP Requests

RESTful web services are built on top of the HTTP protocol, which carries some important implications. First, each
request is stateless. This means that each request is independent of any other requests and the request itself must
contain all relevant data to fulfill the request. Second, certain types of requests should be idempotent; making identical
requests should yield the same result on the server. This is a safety measure that also provides consistency. For
example, when reading data the same request should always yield the same result assuming the resource’s state on the
server has not changed between requests.

HTTP Methods

The APIs may utilize the following five HTTP methods in order to provide users with Create-Read-Update-Delete (CRUD)
functionality. Note that not all APIs support all methods.

GET
Return a read-only representation of the selected resource(s) in the response body.

HEAD

ORACLE

Oracle Warehouse Management Cloud Chapter 1

REST API Guide Overview

Read-only check for resource existence and/or modification. Does not return a response body.
POST

Create resources or submit data to be processed by a resource operation.

PATCH

Modify existing resource(s).

DELETE

Remove/deactivate existing resource.

URI Format

The Igfapi URI structure is broken down into several components.

In general, Igfapi URIs following the following schema:

https://ooooe.wms.ocsoraclecloud. com/myenv/wms/lgfapi/v10/entity
L

Ih I il ii I | I.I.II i I |

protocol domain e \gfapi S
environment version
lgfapi module

The first portion of the URI (protocol, domain, environment, and app) is consistent with the URL of the environment’s Ul
accessed via a web browser. The remaining pieces after “Igfapi” are specific to the Igfapi and designate the version and
path to any child modules and/or resources.

Versioning

Lgfapi requires a version number in all URIs. The format is “v#’, starting with “v9” as the first release. New versions are
created only for major releases of the OCMWS application, not for minor versions. For example, the release of OCWMS
9.0.0 included the Igfapi v9 release, but there will not be a new Igfapi version number with the release of OCWMS 9.0.1.
However, the APIs will continue to be updated with new features and improvements along with the minor releases of
OCWMS.

The purpose of version control is to give customers some ability to remain on their current integrations until they can
complete any changes required to handle the newest Igfapi version. It is strongly encouraged that all customers use
the latest version of Igfapi. Version control is a tool to assist with upgrades and testing, it is not meant to be used in
production for extended periods of time. The previous versions of Igfapi will unavoidably become out of sync with
newer versions of OCWMS, and eventually will no longer be compatible. Oracle will not make changes to previous
versions of Igfapi in order to maintain expired functionality or compatibility. Therefore, it is always in the best interest
to use the latest version. New API versions are planned approximately once a year. Older API versions will be supported
approximately one year after a newer one is released.

Igfapi Modules

Lgfapi contains modules that can be utilized by customers. These are groupings of functionality that may have their

own formats and requirements. For example, Igfapi’s “entity” module is designed to allow customers to examine and
interact with OCWMS business resources from outside the application.

ORACLE

Oracle Warehouse Management Cloud Chapter 1

REST API Guide Overview

Resource Path

The final component to the URI is the resource path. This may take many different forms depending on the HTTP
method and any module-specific requirements.

Optional Trailing Slashes

A trailing slash at the end of and Igfapi URIs is optional and does not affect functionality.

Login and Authentication

Since each HTTP request is stateless, every request requires information to authenticate the user.
Lgfapi supports several types of user authentication:

BasicAuth - Classic username and password.

- OAuth2 - A token based authorization framework.

Application Permissions

Making a request to Igfapi not only requires user authorization, but also one or more of the CRUD application-level
permission to access the supported HTTP methods. These are configurable in the user’s group-level permissions.

- “lgfapi_read_access” - GET, HEAD
- “lgfapi_create_access” - POST

Note: this access is also required in order to run resource operations.

- “lgfapi_update_access” — PATCH
- “lgfapi_delete_access” — DELETE

It's recommended to create dedicated user(s) with appropriate Igfapi permissions and different facility/company
eligibility to protect the integrity of your data. For instance, it is safe to give users read access but may not be
appropriate to grant them permission to create or modify data.

The legacy API permission, “can_run_ws_stage_interface”, has been replaced by the new permission,
“lgfapi_update_access”. This permission now applies to both Igfapi and the legacy APIs. For legacy API’s, this is the
singular permission required to access all APlIs. For Igfapi, this is one of several new permissions used to control user
access.

Data Input Methodology

Lgfapi allows for transmission of data in one of two ways, based on the HTTP method being used.

ORACLE

Oracle Warehouse Management Cloud Chapter 1

REST API Guide Overview

GET/HEAD

These read-only HTTP methods allow the user to pass additional information about the request in the URI. This data is
sent as key-value pairs and starts with a question mark (“?”) at the end of the main URI. This section of the URI is known
as the “query string”. Each key-value pair is known as a “parameter”. It is used to provide additional information to the
resource. Parameters are delimited by an equals sign (“="), and multiple parameters are delimited by an ampersand
(“&™). The order of the parameters does not matter.

URL Encoding

In general, URIs only allow ASCII values, however there are specific cases like with internationalized domain names

(IDN) where non-ASClI characters may be used in the domain name. For the purposes of communicating data using
query string parameters in Igfapi, you cannot directly send non-ASCII (unsafe) characters. Also, some characters like
spaces, “=", and “&” have a specific meaning when sent in the query string section of the URI and are reserved. In order
to handle unsafe characters and to distinguish between data and reserved characters that have special meaningin a
URI, the URI must be “URL Encoded”. This encoding replaces non-ACIl and reserved characters parameter data with
ASClII equivalents. This is also known as “Percent Encoding” since each unsafe character is replaced with a value starting
with percent sign (“%”). All parameter values should be URL encoded to ensure correct transmission.

For example, the query string: “foo=Mariana” is URL encoded as “foo= %20Ma%C3%B1ana”. A URI cannot have a space
so that is encoded to the value “%20". The Spanish letter “ii” is not a valid ASCII value and is encoded as “%C3%B1".
Once the data reaches the server, it is decoded back to the original characters. The key portion of each parameter is
determined by the application and therefore will never contain unsafe characters.

See https://www.w3schools.com/tags/ref_urlencode.asp for more information.

It is possible to repeat the same parameter within the query string. However, Igfapi will only observe the final occurrence
of the parameter in order to obtain a value. For example, given the query string “?’code=A&code=B”", the interpreted
value of the “code” parameter will be “B”. The “A” value is discarded. There is no use case for transmitting repeated
parameters as the desired result is achieved through other module-specific query string mechanisms.

POST

A POST request is used to pass data to the server similar to pressing a “Submit” button on a web page to submit form
data to the server. In the context of Igfapi, when making a POST request, the user is passing data to either create a
resource or invoke a resource operation, such as cancelling an order. Unlike GET and HEAD requests, POST allows for
text data to be passed in the free-form body of the request. Request body data must be in a supported format (JSON or
XML) and follow the required structure of the API being invoked.

Content-Type HTTP Header

This HTTP header is required when using a method like POST, PATCH, and DELETE that allow transmitting data in the
body of the request. It describes the data format so it can be correctly parsed server-side. Lgfapi supports JSON and
XML input and therefore requires one of the two content-type values:

- application/json
- application/xml

The Content-Type “application/x-www-form-urlencoded” is not supported in Igfapi, but is still required for legacy
OCWMS APIs.

ORACLE

https://www.w3schools.com/tags/ref_urlencode.asp

Oracle Warehouse Management Cloud Chapter 1

REST API Guide Overview

Content Encoding

By default, Igfapi will use UTF-8 to decode the request body as this handles the majority of characters for languages
supported in OCWMS. However, for situations where customers choose to use a different encoding, it can be specified
in the Content-Type header’s optional “charset” parameter:

Content-Type: application/json; charset=latin-1

Lgfapi will use the provided charset to decode the request body data. It is up to the customer to ensure that their data
is properly encoded using the desired charset before transmission to Igfapi. Failure to do so may result in incorrect
characters or an inability to process the request.

It is also important to note that this only applies to the encoding of the request body and does not apply to the encoding
used in any response body data from Igfapi.

Request Body Data - Repeated Keys

Lgfapi does not restrict users from repeating data in the request body for a single request. Rather, it will use only the
final occurrence in the body when processing the request.

For example, if one were to send a request with the key “code” multiple times in the same request body:

{

“ ” “w_n
code : A,

u ” u_mn

code : B

}

The value used to process the request will be “B”. “A” is ignored and is never used. There is no Igfapi use case for
needing to pass repeating data in the same request.

Request Body List Formatting

JSON and XML data follow language standards except for the case of lists of items in XML. This is a unique concern for
XML since there is no standard methodology for how to handle lists whereas JSON supports lists by default.

XML Lists

Alist of items in XML is represented by the wrapper tag, followed by a wrapper for each item’s value with the special
tag name “list-item”. For example, representing a list of serial numbers under the wrapper “serial_nbr_list”, in JSON is
represent as:

{

“serial_nbr_list" | “sn1” ,

The equivalent XML list would be represented as the following. Note the use of “list-item” for each entry in the list to
allow for correct parsing.

ORACLE

Oracle Warehouse Management Cloud

Chapter 1

REST API Guide Overview
<serial nbr list>
<list-item>SN1</list-item>
<list-item>SN2</list-item>
</serial nbr list>
6

ORACLE

Oracle Warehouse Management Cloud Chapter 2

REST API Guide HTTP Response

2 HTTP Response

Status Codes

Every valid HTTP request receives a response that is comprised of three main components:

- A 3-digit response status code that gives information about the success or failure of the request, the returned
content, and other information specific to the request.

(2) The response header(s), which vary by request. These headers contain metadata information about the request, the
response, the response data, and/or attributes of the server.

(3) The response body where free-form text information can be returned to the requester in either JSON (default)
or XML format and in a standard defined by the application. This is where application-specific data pertaining to
representation, success, and errors is returned to the requester.

Comprehensive list of HTTP status codes: https://www.w3.org/Protocols/rfc2616 /rfc2616-sec10.html

Lgfapi uses many of the available HTTP response status codes to convey success or failure of the request back to the
user. All response status codes fall into 1 of 4 categories:

1xx — Informational
2xx — Success

3xx — Redirection
4xx — Failure

The following is a list of commonly used response status codes for Igfapi:

Status Code Status Message HTTP Method Description

200 Ok HEAD, GET, POST GET - The request was successful.
HEAD - The resource exists.
POST - Resource exists and/or has
been modified.

201 Created POST Resource successfully created.

204 No Content POST The request was successful, but

no content is being returned in the
response body.

304 Not Modified HEAD The resource has not been updated
since the target date-time.

400 Bad Request HEAD, GET, POST Invalid data or request structure.

401 Unauthorized HEAD, GET, POST Invalid login credentials.

403 Forbidden HEAD, GET, POST User lacks permission.

ORACLE

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Oracle Warehouse Management Cloud Chapter 2

REST API Guide HTTP Response
Status Code Status Message HTTP Method Description
404 Not Found HEAD, GET, POST The resource does not exist.
405 Method Not Allowed - HTTP method is not supported for

the requested resource.

409 Conflict HEAD, GET, POST Record Changed - The resource
was modified by a concurrent
operation before the request could
be fulfilled. Try again.

500 Server Error HEAD, GET, POST An unhandled error occurred or
the application was unable to
formulate a valid response. Please

contact support and provide any
returned error information.

Response Formats

Lgfapi supports JSON (default) and XML formats for data returned in the body of the response. This applies to all HTTP
methods that return a response body.

The requester is able to specify the response format in several ways:

1. Making a request without specifying the response format will result in the default JSON format.
2. Using the reserved “format” query string parameter in the URI when making a request.

You can set the format to XML by adding “format=xml” to the query string portion of the request (the key-value pair
data after the “?”). This is in addition to any other query string parameters also in the URI:

.../resource/?format=json

.../resource/?format=xml

Note - “format” is one of the few query string parameters you can use with HTTP methods like POST, which typically
require all data to be in the body of the request.

- Using the file-extension dot-notation in the URI when making a request.

Very similar to the example above, you can also request the format using dot notation like you would when giving a file
the extension “.xml” or “.json™:

.../resource/.json
.../resource.xml (optional trailing slash)
This can also be combined with a query string:

.../resource/ .xml?keyl=valuel &tkey2=value2

ORACLE

Oracle Warehouse Management Cloud Chapter 2

REST API Guide HTTP Response

Response Data Encoding

When a response body is returned, the raw JSON or XML data will always be encoded using UTF-8. There is no way
to configure or specify the response body’s encoding. This is done to ensure that the response content can always be
correctly rendered. A request body using a different encoding is allowed because the requester is able to control the
contents being sent to Igfapi. However, the output data may contain characters outside of the encoding used for the
request, if for example a consistent character set has not been used throughout the application. UTF-8 covers the full
change of characters supported by OCWMS and is therefore the default, and generally preferred, encoding.

Response Data Formats

In general, the HTTP response body can take on any number of different formats and styles. For Igfapi, several
dedicated conventions have been adopted to give uniformity and consistency to the handling of both successful and
erroneous requests.

Error Response

A standardized error format is returned in the body of the response whenever there is an error while fulfilling the
request. This is accompanied by the response status code, which provides additional insight.

The standard error response is comprised of 4 components:

Reference — A unique string used as reference for the request and error. This should be provided in support
requests to help more quickly identify the information pertaining to the request in question.

- Code - A generic classification pertaining to the error message.
Message — An error message related to the code.

Details — Optional. Either a list or key-value map (dictionary) of more detailed information pertaining to the
error(s). For example, this may give a more detailed list of error messages or could be a map of field name(s) to
error(s).

Example JSON Error Response Body:

{

"reference": "25b414f0-7ald-4£f35-ac3c-0ec9886cf37a", "code":
"VALIDATION_ERROR",

"message": "Invalid input.", "details": {

"reason_code": "Invalid Reason code"

}
}

Example XML Error Response Body:

ORACLE

Oracle Warehouse Management Cloud Chapter 2
REST API Guide HTTP Response
<?xml version="1.0" encoding="utf-8"?>

<error>

<reference>25b414£f0-7ald-4£35-ac3c-0ec9886cf37a</reference>

<code>VALIDATION ERROR</code>

<message>Invalid input.</message>

<details>

<reason_code>Invalid Reason code</reason_code>

</details>

</error>

Unhandled Errors

It is possible that the application is unable to convey the nature of the problem back to the requester. In these scenarios,
the server will respond with a 500 (“Server Error”) status code and an accompanying message.

Resource Representations

Representations are by default paginated unless a specific resource is being requested. Pagination allows the response
data to be served in chunks (pages) to keep payload sizes manageable.

Pagination

A paginated result set is returned when multiple representations may exist in the result set that exceed a preset size.
This breaks the result set into chunks (pages), each with its own page number. The page size is determined by the
requesting user’s configuration of the field “Rows per Page”. This is the same field used to set the number of results per
Ul page returned. It has an allowed range of 10 to 125 results per page.

Pagination Mode

Two modes of pagination are supported that offer different advantages and disadvantages depending on the user
requirements. The default mode is “paged”, but users may specify the type of pagination by using the “page_mode”
query string parameter in the URI. The two types are “paged” and “sequenced”.

Mode: Paged

This is the default mode for result sets (.../resource/?page_mode=paged). This will break the data into chunks (pages)
and return one page per request. This will additionally return metadata such as the total count of results and the total
number of pages.

Each page of the result set is given a pagination header:

result_count — The total number of results across all pages.
page_count — The total number of pages.
page_nbr — The current page number.

next_page — Hyperlink to the next page (if available).

10
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

- previous_page — Hyperlink to the previous page (if available).

- results — The result set list for the page.

A specific page number for a paginated result set is requested in the URI's query string using the parameter “page”.
For example, to request the data for page 3 of a result set, one would add ... /resource/?page=3. You will also see these
automatically added in the hyperlinks generated for “next_page” and “previous_page”.

An example of a paginated JSON response:
{

"result_count": 1,

"page_count": 1,

"page nbr": 1, "next page": null, "previous_page": null,

[

{

"id": 0,

}

An example of a paginated XML response:
<?xml version="1.0" encoding="utf-8"?>
<entity name>
<result_count>1l</result_count>
<page_count>1</page_count>
<page_nbr>1</page nbr>
<next_page></next_page>
<previous_page></previous_page>
<results>

<list-item>

<id>0</id>

</list-item>

</results>

</entity_ name>

ORACLE

"results":

Chapter 2
HTTP Response

1

Oracle Warehouse Management Cloud Chapter 2

REST API Guide HTTP Response

Mode: Sequenced

The sequenced mode (.../resource/?page_mode=sequenced) is similar to the Paged mode, except for a few important
details. This mode is recommended for system to system integration where superfluous information and intuitive/
human-readable values are not necessary.

Each page of the result set is given a header that conveys extra information to the user and makes it easier to navigate
between pages:

- next_page — Hyperlink to the next page (if available).
- previous_page — Hyperlink to the previous page (if available).

- results — The result set list for the page.

First, you'll notice that the pagination header does not have the total result count or total page count. This is because
sequenced pagination doesn’t know either of these values, and doesn’t want to. Instead, each page is generated on the
fly in an effort to improve performance, which means less work than paged mode where the total counts are fetched up
front. Determining total count can be expensive when you have a large result set.

With sequenced, you also sacrifice some human readability and functionality as the “page” query string parameter
is replaced by a system-generated “cursor” as well as the hyperlinks will not be as intuitive to understand. Since in
this mode the total result set is not known, only what’s rendered per page, there is no way to report the total number
of pages or label each with a specific page number. A cursor identifier is generated for each page instead of a page
number:

.../resource/?cursor=cD0xNDAw&page mode=sequenced

Non-Paginated Responses

There are a few scenarios where a request will return data in the body of the response for a specific object, so
pagination is not needed.

The first is for a GET retrieve style request where the “id” value of the resource is known and is requested in the URI (.../
resource/{id}/).

The second is when creating a single resource using a POST request. The response will be a non-paginated
representation for only the new resource.

12
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

5 Entity Module

Supported Entities

The lIgfapi entity module is used to access and modify OCWMS application data. It exposes specific methodologies for
identifying subsets of data and obtaining their representations as well as allowing for the creation of certain resources.
The entities supported and corresponding functionality will continue to be expanded through subsequent releases.

The entity module has a documenting feature that can be accessed via a GET request to the top-level (root) URL (.../
1gfapi/v10/entity/). This will return a sorted list of supported entities for the given Igfapi version and an accompanying
base URL.

Each entity represents an object or combination of objects within OCWMS that is accessible via Igfapi. However, not
all entities support all HTTP methods. Furthermore, these entities may share characteristics with their respective
counterparts in other areas of the OCWMS application, but as a whole should be considered independent of other
application functionality.

Entity Metadata

It is possible to obtain additional information for each entity by making a GET request to the “describe” entity
operation (.../1gfapi/v10/entity/{entity name}/describe/). This will return metadata that can be used to further your
understanding of the entity. See “Entity Operations” section for more details.

Input Data Types

Lgfapi supports user input depending on the HTTP method:

- GET/HEAD
o Query string parameters

POST
o Request body data
- The format must be JSON or XML
o The “format” query sting parameter alone is supported to specify the desired format for the response.

Although the input formats may be type ambiguous, the input value is cast to the appropriate type as defined in
the entity’s field metadata. Some fields have naming conventions that are outlined below. The following types are
supported for user input:

String/Text
Query String: ../?field=abc123

JSON: {“field”: “abcl23”}

13
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

XML: <field>abcl1234</field>

Integer

Query String: ../?field=123
JSON: {“field”: 123}

XML: <field>123</field>
Numeric/Decimal

Query String: ../?field=1.234
JSON: {“field”: "1.234"}

XML: <field>1.234</field>

Special Note about JSON Decimal Values

When sending decimal values in a JSON request, it is recommended to send them wrapped in double quotes like a

string value, as seen in the example above. This will prevent against any loss of precision as part of the lgfapi request.

Boolean

Except for a few specific cases, all True/False Boolean field names end with “_flg”.

The input value for all formats should be either “true” or “false”.

Query String: ../?field flg=true

JSON: {“field fl1g”: true}

XML: <field flg>true</field flg>

Temporal (Date/Time)

All date, time, and date-time fields require the iso-8601 format: YYYY-mm-ddTHH:MM:SS. ffffff
Note that the microsecond component “f” is optional. Using January 30th, 2018 at 6:30pm as an example:
Date

Field names for date-only fields typically end with “_date”.

Query String: ../?field date=2018-01-30

JSON: {“field date”: “2018-01-30"}

XML: <field date>2018-01-30</field date>

Time

Field names for time-only fields typically end with “_time”.

Query String: ../?field time=18:30:00

JSON: {“field time”: “18:30:00"}

XML: <field time>18:30:00</field time>

ORACLE

14

Oracle Warehouse Management Cloud Chapter 3
REST API Guide Entity Module
Date-time

Field names for date-time fields typically end with “_ts”.

All Date-time objects are assumed to be in the time zone of the user’s facility context. In other words, it should be the
date/time you would expect to see if viewed by the user in the Ul.

Query String: ../?field_ts=2018-01-30T18:30:00
JSON: {“field ts”: “2018-01-3030T18:30:00"}}

XML: <field ts>2018-01-3030T18:30:00</field_ts>

Date/Time Values and Time Zones

I Note: Field names for date-time fields typically end with “_ts”.

It is a recommended best practice to always pass time zone aware date-time values that include the time zone offset
component so that there is no ambiguity. The following examples show the time zone specified as UTC (+00:00):

+ Query String: field ts=2018-01-30T18:30:00+00:00
« JSON: {“field ts”: “2018-01-3030T18:30:00+00:00"}

+ XML: <field ts>2018-01-3030T18:30:00+00:00</field ts>

However, if a time zone naive date-time value is received by Igfapi, it is assumed to be in the time zone of the user’s
default facility. In other words, it would be the date/time you expect to see if viewed by the user in the Ul for their
default facility.

« Query String: field ts=2018-01-30T18:30:00

« JSON: {“field ts”: “2018-01-3030T18:30:00"}

+ XML:<field ts>2018-01-3030T18:30:00</field_ts>

Relational

Relational fields are when one resource has a link to another resource. These fields always end in “_id” and by default,
are integer values. They are unique when filtering, in that you can use the double-underscore (“__") notation to
reference a related resource’s fields, or even nested related resources. This is covered in more detail in the Resource
Result Set Filtering section.

Query String: ../?field id=1
JSON: {“field id”: 1}

XML: <field_id>l</field_id>

Resource Result Set Filtering

Lgfapi offers the ability to apply filters to GET and HEAD requests in order to narrow down the final result set. This is
done by adding query string filter parameters to the URI. Furthermore, Igfapi supports several built-in lookup functions
to assist in common filtering tasks.

15
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

It is important to note that all entity data is automatically filtered by the user’s eligible facilities and companies. This
prevents users from being able to access and/or change data outside of their assigned scope that same way that data is
isolated in the Ul or RF features. The difference with Igfapi is that users may access data from multiple eligible facilities
and companies in a single request. In the Ul and RF, this typically requires manually changing the user’s context.

The most basic format for a filter uses simply the exact operator (“="): ../?field=value
This can be chained to apply multiple filters: ../?fieldl=valuelsfield2=value2

Lgfapi uses double underscore (“__") notation in order to join multiple fields or functions in the query string filters.
The double underscore is used to distinguish the field names when filtering on a related resource’s attributes or when
applying a lookup function.

Applying a lookup function: ../?field lookup=value
Filtering on a related resource: ../?relation_id _related field=value

Applying a lookup function on a related resource: ../?relation_id__related field _lookup=value

Supported Lookup Functions

wxn
1

The following lookup functions are provided by Igfapi. Note that any match function with a corresponding “i” function
means that function is case-insensitive. For example, “exact” is used to match exactly on a value, as does “iexact”
except that the latter ignores upper/lower case.

Arithmetic Lookups
gt — Greater than

Example: Filtering sales order detail(s) for only those with an ordered quantity.

../order_dtl/?ord gty gt=0

- gte — Greater than or equal to
Example: Filtering sales order detail(s) for only those with an ordered quantity.

./order_dtl/?ord gty gte=1

+ It-Lessthan
Example: Filtering sales order detail(s) for only those with ordered quantity below 10.
./order_dtl/?ord gty 1t=10

- Ite — Less than or equal to

Example: Filtering sales order detail(s) for those with ordered quantity at or below 10.

../order dtl/?ord gty 1lte=10

Text Match Lookups

- contains/icontains — Text contains substring

Example: Filtering sales order(s) for orders with “FOO” in the order_nbr field.

16
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

.../order_hdr/ ?order_nbr contains=FOO
Example: Same as previous example, but ignore case.

../order_hdr/?order nbr__icontains=FO0

- exact/iexact — Text exactly matches
Example: Match sales order(s) exactly on the order number.
../order_hdr/?order nbr__exact=ORDER001l

Note: “Exact” is not typically needed. The above filter condition does not require the exact lookup since this is
automatically implied by the exact operator (“=").

The query string can be simplified to:
../order_hdr/?order_ nbr=ORDER001
“iexact”, on the other hand, is a useful tool when you need to do an exact match, but ignore letter casing:

../order hdr/?order nbr _iexact=OrDeR001

- startwith/istartswith — Text starts with
Example: Filtering sales order(s) for only those whose order_nbr starts with “ORD”:
../order_hdr/?order_nbr__startswith=ORD

- endswith/iendswith — Text ends with

Example: Filtering sales order(s) for only those whose order_nbr ends with “001”:

../order_hdr/?order nbr__endswith=001

Temporal (Date/Time) Lookups

The following temporal functions may only be used on date, time, and/or date-time data. Consider the “order_hdr”
entity’s “order_shipped_ts” date-time field with a value “2018-09-17T20:30:59":

- year — Match on a date’s year (date or date-time).

../order_hdr/?order_shipped ts__year=2018

- month — Match on a date’s month (date or date-time).

../order_hdr/?order_shipped ts_ month=09

- week_day — Match on a date’s day of the week (date or date-time).
Takes an integer value representing the day of week from 1(Sunday) to 7 (Saturday).

../order_hdr/?order_shipped ts__ week day=2

- day - Match on a date’s day (date or date-time).

17
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

.../Jorder_hdr/?order_shipped_ts__day=17

- hour — Match on a date’s hour (time or date-time).

Assumes a 24-hour clock.

.../Jorder_hdr/?order_shipped_ts__hour=20

- minute — Match on the time’s minutes (time or date-time).
../order_hdr/?order_shipped_ts_ minute=30

You can also apply other lookup and arithmetic functions to temporal fields:

- Date Range

For example, if we have a date-time field where we want to search for resources that have a value within a range, it is
possible to chain two temporal filters together to search within a set date range:

../order hdr/?order_shipped ts_gte=2018-09-01T00:00:00&order shipped ts_1t=2018-10-01T00:00:00
Or, it is possible to use the “range” lookup function:
../order_hdr/?order_shipped ts__ range=2018-09-01T00:00:00,2018-10-01T00:00:00

However, since in this example we don’t have any specific time data, this could have also been accomplished more
easily using the “month” lookup:

../order_hdr/?order_shipped ts__month=09
There may be multiple different ways to arrive at the same result when filtering. It is always desirable to be as specific as
possible to minimize the result set and improve efficiency.
Additional Lookups
- isnull — Boolean; Is the field’s value null?
This lookup is used to test if a field is null. This is a useful lookup as it can be used on any type of field to test for null.
Example: Filtering sales order(s) for only those where the shipped timestamp is null:
./order_hdr/?order_shipped ts__isnull=true

This is important because it allows you to make this test for any field type. If, for example, you tried to filter on the field’s
value directly (../order_hdr/?order_shipped_ts=null), you would receive an error that “null” is not a valid date. Since the
field is of type date-time, it is expecting a temporal value and is interpreting “null” as the input.

- in—Filter by values in a list

This lookup function allows for filtering by a group of values. These values may be a mix of different types, but the
type(s) should be consistent with the type of the field being filtered. The input is a comma-delimited list with no spaces
between entries in the list.

Example: Filter order_hdr by specific status id values:
../order_hdr/?status_id_ in=10,30,90
Or, it can be applied for filtering on a specific set of sales order numbers:

18
ORACLE

Oracle Warehouse Management Cloud Chapter 3
REST API Guide Entity Module
../order_hdr/?order_ nbr__in=ORDER001,O0RDER002,ORDER003

It is also possible to use an “in” lookup with a single value to effectively function the same as an exact operator (“=").
The two following examples are equivalent in that they will return the same result set:

../order_hdr/?order_ nbr=ORDER001
../order hdr/?order nbr__in=ORDER001l

The difference is that an “in” lookup in inherently slower because of the way the filter is built and applied when filtering
the data. If you have a single value to match on, it is recommended to use “=" instead of “in”.

- range - Filter for resources with value within an inclusive range.

Numeric range
../order hdr/?status_id__range=10,90
Date range

../order_hdr/?order_shipped ts_ range=2018-09-01T00:00:00,2018-10-01T00:00:00

Relational Resource Filtering

It is possible to filter on any related field for the given entity. All related field names end with “_id” and are integers by
default.

For example, the simplest and fastest performing related resource filter is to search directly on the resource’s id. An “id”
is the unique value assigned to every resource. Using the “order_hdr” field, “facility_id”, we could filter specifically for
order belong to the facility with id “1":

../order_hdr/?facility id=1

Adding the “company_id” field is a very common thing to do, in order to filter resources by facility and company
(assuming the company’s id is also “17):

../order_hdr/?facility id=l&company_ id=1

But what if we wanted to filter by the value of a field belonging to the related resource. For example, what if we knew
the facility and company codes, but didn’t yet know their respective “id” values. It is possible to filter on the related
resource’s fields using double-underscore (“__") notation.

Assuming facility with id=1 has a code “FAC1” and company with id=1has a code “COM1":
../order_hdr/?facility id code=FACl&company id code=COM1

This is not as efficient as using just the “id” of the related resources since Igfapi will need to do an additional lookup for
each related resource to filter on their respective “code” fields. It is recommended to cache client-side the “id” values of
commonly used, static entities (like facility and company) in order to improve performance in high-throughput systems.

It is also possible to filter multiple levels deep with related resources. For example, in order to filter on the order’s
facility’s parent company, we could further chain the facility field, “parent_company_id”, as it is a related resource of
“facility_id” and of entity type “company”:

../order_hdr/?facility id parent company_id=1
Again, you can also search on a related field:

../order hdr/?facility id parent_company_ id_code=COM1

19
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

This is a handy and powerful tool for looking up resource sets based on related data. However, it is important to
remember that as the relational filter depth increases, the performance may decrease as well since there is more work to
be done to lookup related resource(s). Client-side caching and other performance methodologies are discussed in their
own section.

Chaining Multiple Filters

It is possible to chain multiple filters on the same field. Each condition is just another key-value pair where the field is
consistent. For example, if we wanted to filter the order_hdr entity to return those whose order_nbr starts with “ABC”
and additionally contains the word “TEST”, we would write it as:

../order hdr/?order nbr startswith=ABC&order nbr contains=TEST

It is possible to chain together any number of different field and lookup combinations to arrive at your desired result set.
However, it is important to note that the more filters applied, the more the performance may degrade. Therefore, it is
always preferred to be as specific as possible when using filtering.

Resource Representations (GET)

Within the Igfapi entity module, JSON or XML resource representation(s) of entity(s) may be obtained through a GET
request. A GET request is made for a specific entity in the format:

../1gfapi/v10/entity/{entity name}/

By default, each request is filtered by the requesting user’s eligible facility(s) and company(s). It is possible to add
additional filter conditions in the URI query string in order to arrive at the data required. If, after filtering, no data is
found, a 404 — Not Found error will be returned in the standard Igfapi response.

Furthermore, there are two conventions for how to request resource representation(s) — “list” and “retrieve”. For the
following examples, the “company” entity will be used.

List

Alist request is used to fetch one or more object representations of an entity. The result set is based on the default
facility/company context filters and any optional filter parameters provided in the URI. The default results set is
comprised of all resources for the given entity that are eligible to the requesting user. Since the result set may be of an
arbitrarily size, a paginated data set is always returned.

The representation for all eligible objects can be requested by not providing the query string portion of the URI:
../1gfapi/v10/company/

Query string filter parameters may optionally be used to further narrow down the data set. For example, to filter
additionally by company code “ABC”, we would add the following:

../1gfapi/v10/company/?code=ABC

20
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

Retrieve

A retrieve request is used to fetch a single resource by its integer “id” value. This is the most performant way to get a
representation for a single resource where the “id” is known. The result set is not paginated. The “id” value is specified
in the URI after the entity name:

../1gfapi/v10/company/{id}/

For example, if we had previously looked up the company with code “ABC” and found its “id” value to be 1, we could
retrieve its representation in the future by making a GET request to the URI:

../1gfapi/v10/company/1/

Note that since the lookup is for a specific resource, no filters are allowed in the query string. It is permitted to pass
in allowed non-filter reserved parameters like “format” and “fields”. However, any pagination related query string
parameters like “page_mode” are not supported since the returned representation is not paginated.

I Note: . /1gfapi/v10/company/?id=1 is still considered a “list” style request and is paginated.

Last-Modified HTTP Header

If the requested resource exists and the data is temporally tracked, the Last-Modified HTTP header will be returned.
This is the date-time that the resource was last updated. It is in is0-8601 format in the requesting user’s time zone.
This can be cached client-side and used in conjunction with HEAD requests as an efficient way to check for resource
modification.

Resource Representation Data Conventions

For both list and retrieve GET requests, the “format” query string parameter can be passed in order to convey the
desired response format as “json” (default) or “xml”.

Hyperlink-Related Resource Representations

All resources use hyperlinked representations for related resource fields. These are the fields whose name ends

with “_id". They represent another entity resource that can generate its own representation using the hyperlink
provided. Lgfapi uses hyperlinked relationships to allow for users to crawl to the intended data sets. This allows for the
preservation of RESTful principals as well as to keep the data interchange sizes manageable.

All related field representations contain three pieces of information:

1. “id”" - The integer id value of the related resource
2. “key” — A string identifier for the related resource
3. “url” - A crawl-able retrieve style hyperlink to the related resource

o Both “id” and “key” are always provided. However, the value for “url” may be blank if the related resource
it not one of the supported entities. In this case, it is not possible to build a hyperlink to the resource as it
does not support generating its own representations.

21
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module
For example, when getting a representation for the “company” entity where the company is of type Regular, the related
field “company_type_id” would be represented like the following JSON string:

{

“company_type_id”: {

“id”: 1,

“key”: “R”,

“url”: “https://../wms/lgfapi/v10/entity/company_ type/1”

2

Or, if the desired format is XML:

<company>

<company_type_id>

<id>1</id>

<key>R</key>
<url>https://.../wms/lgfapi/v10/entity/company_ type/1</url>

</company_type_ id>

</company>

The only exception for the related field representation format is for status_id related fields. These fields are always
represented as only the related resource’s integer “id” value. It is possible to get a representation for any status-based
entity by making a retrieve request. The only difference is that due to the volume of status fields on various entities, the
integer value is used to reduce payload size.

For example, the “order_hdr” entity has the related field “status_id” for the entity “order_status”. It is represented on the
“order_hdr” as just the “id” value:

“status_id”: 10,

22
ORACLE

Oracle Warehouse Management Cloud Chapter 3
REST API Guide Entity Module
However, it is possible to get a representation of the status by making the request:

GET https://.../wms/lgfapi/v10/order_ status/10

Important

There are many related resource fields that are optional. If there is no linked resource, the field’s value will be “null” if
using JSON or an empty tag if using XML. For more information, reference the entity’s field metadata for the “required”
attribute.

Related Data Sets

The related resources previously discussed all link to a single resource. However, it is possible that the current resource
has a list many other linked resources of the same type. A good example is a sales order header that has one or more
child details. As a convenience and additionally for guidance/performance reasons, many entity representations have
additional hyperlinked relations to these data sets. These field names always end in “_set”.

Continuing the sales order header example, the order details set could be represented as the following in an order_hdr
retrieve representation. Assume there are two detail line items and the “id” value of the order_hdr entity is “123".

GET https://.../wms/lgfapi/v10/entity/order hdr/123
{

“id”: 123,

"order_ dtl_set": {
"result_count™: 2,
"url": "https://.../wms/lgfapi/v10/entity/order dtl/?order_id=123"

}

It's important to note that unlike the “_id” related resources which have a retrieve style hyperlink to the specific resource,
“_set” related representations use list style with query string filters in order to return a paginated list of 1to n resource
representations. Also, instead of giving the “id” and “key”, the related count is returned.

If no related resources are found for the set, the value will be “null” for JSON representations and an empty tag for XML.

Field Selection

GET requests for the Igfapi entities support the “fields” query string parameters. It takes a comma-delimited list of field
names for the entity and returns only those fields in the representation.

For example, to return only the “id” and “code” for all eligible companies using a list style request with no filters:

23
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

GET https://.../wms/lgfapi/v10/entity/company?fields=id,code

The “fields” parameter can be combined with filter parameters and other parameters with special meaning, like
“format”. Here is a more complex example if one wanted to search for all eligible companies of type regular and return
only the “id” and “company” for each company entity found, in XML format:

GET https://.../wms/lgfapi/v10/entity/company?fields=id,code&format=xmlé&company type id=1
This can also be applied to retrieve style request for a specific resource:
GET https://.../wms/lgfapi/v10/entity/company/1?fields=id, code

This is an important tool when performance is of concern. If it is known ahead of time that only specific field values are
required, narrowing the returned data set using the “fields” parameter can greatly reduce the overall payload size and
remove the need for unnecessary field and/or relation lookups.

Ordering

By default, no ordering is applied to list style GET requests that can return O or more representations. This is done for
performance considerations as applying ordering to any request may degrade performance, especially in the case of
larger data sets.

It is possible to specify an order-by clause for list style requests using the “ordering” query string parameter. It accepts a
comma-delimited list of field names by ordering priority.

For example, one could request all eligible companies and order by the type and then the code:

GET https://.../wms/lgfapi/v10/entity/company/?ordering=company type id,code

uou

By default, fields are ordering ascending. To order by descending value, add a dash (“-“) before the field name in the
ordering list. This can be applied to order first by company type ascending and then company code descending:

GET https://.../wms/lgfapi/v10/entity/company/?ordering=company type id,-code

Just like any other query string parameter, it may be chained with other parameters and filters.

Resource Existence and Modification (HEAD)

HTTP requests for Igfapi entities using the HEAD method are an efficient way to determine if a resource or list of
resource(s) exists. Additionally, it is possible to determine if a specific resource has been modified since a target date-
time. The HEAD method does not return any data in the body of the response. The only data returned is the response
status code and any HTTP headers. Because HEAD requests do not have to know specifics about each resource and
build a representation (like in a GET request), minimum data is transmitted and the server-side determinations can be
optimized.

HEAD requests accept both retrieve and list style URI that same as a GET request. This can be used to check for the
existence of a specific resource or filter for the existence of potentially many resources in a list.

24
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

“If-Modified-Since” HTTP Request Header

Entity HEAD requests allow for the requester to optionally pass the “If-Modified-Since” HTTP header in the request.
This is only permitted for retrieve style requests when querying for a specific resource by id in the URL. The header’s
value is the target date-time in iso-8601 format in the appropriate time zone. When provided, the value will be
compared to the resource’s last modification time to determine if it has been modified since the header’s date-time. If
the resource exists, and it has been modified, a 200 - Ok status code is returned. If it exists but has not been modified, a
304 - Not Modified status code is returned.

Not that if the entity does not support mod time tracking, the header is ignored and a 200 - Ok response code is
returned meaning only that the resource exists.

The “If-Modified-Since” request header is typically used in conjunction with the “Last-Modified” response header that
is returned with every retrieve style GET request for those entities that track mod timestamps. For example, a common
scenario might start with a retrieve style GET request being made for a resource. The value of the “Last-Modified”
response header is saved client-side for that resource. Sometime later, the client wants to check if the resource has been
updated. A HEAD request can be made to determine if the resource has been modified since the original GET request
by passing the last mod timestamp in the “If-Modified-Since” request header.

In scenarios where the updated resource representation is not needed, a HEAD request is much more efficient than

a GET request. Or, it may be used to determine if a more expensive GET request is subsequently called to fetch the
updated resource representation. It is also common to use HEAD request modification checks as a trigger mechanism
for down-steam operations.

Response Statuses

The HTTP response status will be one of the following and vary depending on the outcome and if checking for existence
or existence and modification of one or more resources. Note that this is not the full list of all possible response
statuses. Rather, the following statuses are directly tied to this HTTP method'’s functionality within Igfapi. For example,
one can still receive a 401 status code if not providing valid user authentication credentials.

- 200 - Ok

When checking for only existence, a 200 status code response means that the resource(s) exist. When additionally
checking for modification, this status code confirms that the specific resource exists and has been modified.

- 304 - Not Modified

Only applicable when checking for modification of a specific resource using the 'lf-Modified-Since' header. This status
means that the resource exists but has not been modified since the input target date-time.

- 400 - Bad Request

For HEAD requests, it is possible to receive this status when using the 'lf-Modified-Since' header with an invalid date-
time value or format. This may also be returned if other invalid data is found, such as invalid query sting filters.

- 404 - Not Found

No resource(s) were found based on the input provided. This may mean that either the resource(s) do not exist, or they
do exist but the requesting user is not eligible for any of the resources.

For example, use a retrieve style request to check for the existence of a company entity with id=1:

HEAD https://.../wms/lgfapi/v10/entity/company/1

25
ORACLE

Oracle Warehouse Management Cloud Chapter 3
REST API Guide Entity Module
Or, it can be applied to a list style request with filters:

HEAD https://.../wms/lgfapi/v10/entity/company?code=ABC

Creating a Resource (POST)

Lgfapi allows for the creating and linking of a limited number of entity resources using an HTTP POST request. The
new resource’s initial data set is passed in the body of the request, in the structure and formats outlined below. The
requesting user must have the “lgfapi_create_access” permission. Also, the requesting user must be eligible for the
facility/company context of the data being created.

Example request to create an IBLPN:

POST ../wms/lgfapi/v10/entity/iblpn/

Input Data

Data passed in the body of any POST request to the entity module requires the follow structure and data conventions.

Data Structure

Data is input in the request body in one of two sections:

Fields - Initial field data. The “fields” section is used to pass in the initial field data required by the entity.
Optional fields have a default and should be omitted from the “fields” data if you with the default to be applied.
Lgfapi will attempt to use any data passed in the request body over the field default.

- Options — Additional/miscellaneous data. The “options” section is used to pass in extraneous data not directly
required by the entity. A common example is the need to pass in a reason code when creating certain entities
for the purposes of tracking against writing inventory history records.

JSON Example
“fields”: {

“string field”: “ABC”,
“decimal field”: 1.234
2

“options”: {

“reason_code: “RC”
b

}
XML Example

26
ORACLE

Oracle Warehouse Management Cloud Chapter 3
REST API Guide Entity Module
<request>

<fields>

<string_ field>ABC</string field>

<decimal field>1.234</decimal field>

</fields>

<options>

<reason_code>RC</reason_code>

</options>

</request>

Dates/Times

Temporal data must be iso-8601 format.

Related Resources

Relational fields (denoted by a field name ending in “_id”) require the integer “id” value of the target resource. This can
be obtained by making a GET request to the corresponding entity with appropriate filters.

Assuming that you already know the corresponding fields each have an “id” value of 1; when creating a new resource
with the required related fields “facility_id” and “company_id”, the JSON POST request body is modeled as:

“fields”: {
“facility id”: 1,
“company id”: 1

If a related field is optional and not required as part of the initial resource creation, the field should be omitted to apply
the default value.

Response Statuses

A non-paginated representation of the new resource will be returned in the body of the HTTP response in the desired
format.

200 - 0Ok

27
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

A lookup was done and it was determined that the resource already exists. No new resource was created. Instead, the
body of the response contains a representation of the existing resource. This is only applicable to certain entities.

« 201 - Created
The resource was successfully created.
- 400 - Bad Request

The request was invalid. This could be due to data validation failures, permission errors, or other missing requirements
of the operation.

Validations

Field and object-level validations are applied before the new resource is created. Any errors will be returned the
response body in the standard format. All related resources must be within the facility/company context of the resource
being created. Meaning, users cannot link the new resource to any resources outside of its facility and /or company.

For example, it is not possible to link an IBLPN to a pallet where the pallet is for a different facility or company than the
IBLPN.

Nested Related Objects

Some entities, such as “inventory”, allow for the creation and association of some related objects within the request
to create the inventory object. This allows for the creation of multiple related objects using a single API call instead of
multiple requests.

The currently supported related objects are “batch_number” and “inventory_attribute”. Instead of passing in the “id”
value of the related objects as the field definition’s value, you may alternatively insert a nested object representation.
If the nested object does not exist, it will be created. If it does exist, no creation for that object takes place but in both
cases it will be associated to the inventory object being created.

For example, when making a POST request to create an inventory object, it is valid to associate an existing batch using
its “id” value:

{

“batch_number_id”: 1,

It is also possible to send a nested representation of the batch object which will functionally act as “get or create”. The
nested object must still pass all of the same validations as if it were being created independently and its “id” value
passed in:

“batch_number_id”: ({
“batch_nbr”: “BATCH001”,
“item id”: 1,

28
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

“expiry date”: “2019-01-01"

2

Supported Entities

- inventory_attribute

o Functions as get-or-create based on the provided attributes for the given facility and company
combination.

- batch_number
o Function as get-or-create based on the batch number for the given facility and company combination.

- iblpn
o Creates an inbound container with no inventory.

- inventory
o Creates inventory in either an iblpn or an active location.
o Requires “reason_code” option for inventory history tracking.
o Success results in inventory history adjustment(s) being generated.

o Supports nested “batch_number” and “inventory_attribute” object creation.

- inventory_lock

Create an inventory lock that can applied to containers and locations.

Updating a Resource (PATCH)

Lgfapi allows you to update specific fields on a limited number of entity resources using an HTTP PATCH request.

Only the desired changes are to be passed in the body of the request using the “fields” section (very similar to a create
resource (POST) request). The requesting user must have the “Igfapi_update_access” permission and must be eligible
for the facility/company context of the data being modified. Successful modification will additionally update the object’s
“mod_ts” and “mod_user” fields.

The entities and fields that may be modified are limited at this time, with a few exceptions, to custom (“cust”) fields,
where supported. These fields are for “pass through” data that generally has no functional significance.

Updates are restricted to a single object per request and the “id” of the target object is required as part of the resource
URL.

The following is an example URL to update a sales order:

PATCH ../wms/lgfapi/v10/entity/order hdr/123/

29
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

Input Data

Data passed in the body of any PATCH request to the entity module requires the following structure and data
conventions.

Fields —Field data with target value for update.

The “fields” section is used to pass in the fields to update and the desired value. Any omitted fields will be unchanged.
JSON example of updating the values of multiple “cust” fields:

{

“fields”: {

“cust field 1”: “A”,

“cust decimal 2: 1.234

}

}

Response Statuses

A non-paginated representation of the updated resource will be returned in the body of the HTTP response in the
desired format.

. 200 -0k
The resource was successfully updated.

- 400 - Bad Request

The request was invalid. This could be due to data validation failures, permission errors, or other missing or incomplete
requirements.

IB Shipment

Field Type Description
cust_date_1 Date
cust_date_2 Date
cust_date_3 Date
cust_date_4 Date
cust_date_5 Date

30
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module
Field Type Description
cust_decimal_1 Decimal
cust_decimal_2 Decimal
cust_decimal_3 Decimal
cust_decimal_4 Decimal
cust_decimal_5 Decimal
cust_field_1 String
cust_field_2 String
cust_field_3 String
cust_field_4 String
cust_field_5 String
cust_long_text_1 String
cust_long_text_2 String
cust_long_text_3 String
cust_number_1 Integer
cust_number_2 Integer
cust_number_3 Integer
cust_number_4 Integer
cust_number_5 Integer
cust_short_text_1 String
cust_short_text_2 String
cust_short_text_3 String
cust_short_text_4 String
cust_short_text_5 String
cust_short_text_6 String
cust_short_text_7 String
cust_short_text_8 String
cust_short_text_9 String

31

ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module
Field Type Description
cust_short_text_10 String
cust_short_text_11 String
cust_short_text_12 String

IB Shipment Detail

Field Type Description
cust_date_1 Date
cust_date_2 Date
cust_date_3 Date
cust_date_4 Date
cust_date_5 Date
cust_decimal_1 Decimal
cust_decimal_2 Decimal
cust_decimal_3 Decimal
cust_decimal_4 Decimal
cust_decimal_5 Decimal
cust_field_1 String
cust_field_2 String
cust_field_3 String
cust_field_4 String
cust_field_5 String
cust_long_text_1 String
cust_long_text_2 String
cust_long_text_3 String
cust_number_1 Integer

32
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Field

cust_number_2
cust_number_3
cust_number_4
cust_number_5
cust_short_text_1
cust_short_text_2
cust_short_text_3
cust_short_text_4
cust_short_text_5
cust_short_text_6
cust_short_text_7
cust_short_text_8
cust_short_text_9
cust_short_text_10
cust_short_text_11

cust_short_text_12

ltem Characteristics

Field

cust_attr_1

cust_attr_2

ORACLE

Type

Integer
Integer
Integer
Integer
String
String
String
String
String
String
String
String
String
String
String

String

Type

String

String

Description

Description

Chapter 3
Entity Module

33

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

Load

Field Type Description
cust_field_1 String
cust_field_2 String
cust_field_3 String
cust_field_4 String
cust_field_5 String
cust_field_6 String
cust_field_7 String
cust_field_8 String
cust_field_9 String
cust_field_10 String
Location
Field Type Description
cust_field_1 String
cust_field_2 String
cust_field_3 String
cust_field_4 String
cust_field_5 String
to_be_counted_flg boolean - true
- false
to_be_counted_ts date and time All Date-time objects are assumed to be in the

time zone of the user's facility context.

JSON: {"field_ts": "2018-01-30T18:30:00"}}

34
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Field

Order Header

Field

cust_date_1
cust_date_2
cust_date_3
cust_date_4
cust_date_5
cust_decimal_1
cust_decimal_2
cust_decimal_3
cust_decimal_4
cust_decimal_5
cust_field_1
cust_field_2
cust_field_3
cust_field_4
cust_field_5
cust_long_text_1
cust_long_text_2
cust_long_text_3
cust_number_1

cust_number_2

ORACLE

Type

Type

Date
Date
Date
Date
Date
Decimal
Decimal
Decimal
Decimal
Decimal
String
String
String
String
String
String
String
String
Integer

Integer

Chapter 3
Entity Module

Description

XML: <field_ts>2018-01-30T18:30:00</
field_ts>

Description

35

Oracle Warehouse Management Cloud

REST API Guide

Field

cust_number_3
cust_number_4
cust_number_5
cust_short_text_1
cust_short_text_2
cust_short_text_3
cust_short_text_4
cust_short_text_5
cust_short_text_6
cust_short_text_7
cust_short_text_8
cust_short_text_9
cust_short_text_10
cust_short_text_11
cust_short_text_12

externally_planned_load_flg

stop_ship_flag

ORACLE

Type

Integer
Integer
Integer
String
String
String
String
String
String
String
String
String
String
String
String

Boolean

Boolean

Chapter 3
Entity Module

Description

Only valid if the order is less than Shipped
status.

When updating the flag to false, any
externally_planned_load_nbr values set
on the corresponding order details will be
removed.

Update the stop_ship_flag on the order
header if API call made is successful.

Allowed order statuses for setting the
stop_ship_flag to true: Created, Partially
Allocated, Allocated, In-Picking, Picked, In-
Packing, Packed, Loaded. If order status is
shipped or cancelled, then respond with
error.

If order status is shipped or cancelled,
then respond with error, other statuses
should be ok.

36

Oracle Warehouse Management Cloud

REST API Guide

Order Detail

Field

cust_date_1
cust_date_2
cust_date_3
cust_date_4
cust_date_5
cust_decimal_1
cust_decimal_2
cust_decimal_3
cust_decimal_4
cust_decimal_5
cust_field_1
cust_field_2
cust_field_3
cust_field_4
cust_field_5
cust_long_text_1
cust_long_text_2
cust_long_text_3
cust_number_1
cust_number_2
cust_number_3
cust_number_4
cust_number_5

cust_short_text_1

ORACLE

Type

Date
Date
Date
Date
Date
Decimal
Decimal
Decimal
Decimal
Decimal
String
String
String
String
String
String
String
String
Integer
Integer
Integer
Integer
Integer

String

Description

Chapter 3
Entity Module

37

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module
Field Type Description
cust_short_text_2 String
cust_short_text_3 String
cust_short_text_4 String
cust_short_text_5 String
cust_short_text_6 String
cust_short_text_7 String
cust_short_text_8 String
cust_short_text_9 String
cust_short_text_10 String
cust_short_text_11 String
cust_short_text_12 String

Purchase Order Header

Field Type Description
cust_field_1 String
cust_field_2 String
cust_field_3 String
cust_field_4 String
cust_field_5 String

Purchase Order Detail

Field Type Description

cust_field_1 String

38
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Field

cust_field_2
cust_field_3
cust_field_4
cust_field_5

stop_recv_flg

Work Order Header

Field

cust_field_1
cust_field_2
cust_field_3
cust_field_4

cust_field_5

Work Order Kit

Field

cust_field_1
cust_field_2
cust_field_3
cust_field_4

cust_field_5

ORACLE

Type

String
String
String
String

boolean

Type

String
String
String
String

String

Type

String
String
String
String

String

Description

Description

Description

Chapter 3
Entity Module

39

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

Pallet

In order to provide the key to identify the Pallet and update the Weight and Volume fields. a PATCH verb for the Pallet
entity is available.

PATCH .../wms/lgfapi/entity/pallet/id/

where id = id of the pallet, which can be obtained using GET method
The following is a JSON sample of the request body:
{

"fields":

{

"lpn_type_id": "123",

"length": "45",

"width": "50.8",

"height": "70",

"actual weight": "180"

}

}

You can update the following fields using the patch method:

Field Type Description
lpn_type_id String
length String
width String
height String
actual_weight String

Container, IBLPN, and OBLPN

The legacy API, “update_oblpn_dims”, has been deprecated in place of PATCH requests on three Igfapi entities:
container, iblpn, and oblpn. This functionality provides a mechanism to update the container’s dimensional and weight

40
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module
fields. The functionality is the same for each entity. The only difference being that the “container” entity may be used to
update both IBLPN and OBLPN'’s. The other two entities are restricted to acting on only their given container type.

URL examples:

PATCH .../entity/container/{id}
PATCH .../entity/iblpn/{id}
PATCH .../entity/oblpn/{id}

Supported Fields
- length

- width
height

- weight

+ volume

Supported Options

- calc_volume_flg
o Boolean (Default = False)

o When true, the container’s volume will be calculated from the length, width, and height.
o If the volume is explicitly provided in the “volume” field, this flag is ignored.

Additional Functionality

Updating the container’s weight and dimension fields may trigger some additional updates:

- actual_weight_flg
o This container flag will be set to true if the weight is updated.

- lpn_type_id
o Container value will be removed if any of length, width, or height is updated.

Request Body Example 1

Explicitly update all dim and weight values.
{

"fields": {

"length": “1.23”,

"width": “2.24”,

"height": “3.407,

"weight": “19.25”,

“volume”: “9.37”

A1
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

}

Request Body Example 2

Update only some dim values and request container’s volume be recalculated.
{

"fields": {

"length": “1.23”,

"width": “2.24"

},

"options": {

"calc_volume flg": true

}

}

Special Note about JSON Decimal Values

When sending decimal values in a JSON request, it is recommended to send them wrapped in double quotes like a
string value, as seen in the example above. This will prevent against any loss of precision as part of the Igfapi request.

Entity Operations (GET/POST)

Many entities offer specialized operations in order to assist users in more complicated, or performance intensive
operations. These operations can act on one or more resources and may affect entities beyond the one(s) targeted in
the request. The URLs may follow a “list” or “retrieve” styles:

Format for an entity operation URL evocable for a specific resource by “id”:
../wms/1gfapi/v10/entity/{entity name}/{id}/{operation_name}/

Format for a “bulk” entity operation URL evocable for potentially multiple resources:
../wms/1lgfapi/v10/entity/{entity name}/{operation name}/

Entity operations are invoked in the same manner as previously discussed for GET and POST requests. Each operation
has its own URL tied to the entity. Entity operations that use a GET request are still for obtaining a representation in the
response body and do not modify data. Entity operations that use POST requests trigger an action or series of actions
on the entity that can change resource state.

Response Status

Entity operations follow the response statuses previously discussed for GET and POST request, with one addition:

. 204 - No Content

42
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

This HTTP response status is returned when the request was successfully fulfilled, but there is no additional content to
return to the requester. Users should interpret this as success and expect the response body to be empty.

Bulk Operations

Entities may also support “bulk” operation that allow the same operation to be run on one or more resources within a
single request. There are several key differences and additional options that apply to bulk operations.

Parameter Data Filtering

Since bulk operations are capable of acting on one or more objects in a single request, the request body’s “parameter”
data is required. This data is a series of one or more filter conditions that will be applied to identify the target list of
objects. Each operation may have its own allowed set of filter conditions that can be applied. This may include allowing
users to filter on related objects and using complex lookups such as “in” by the same double underscore (“__") notation
as in a GET request’s filters.

Note: all data is still automatically filtered by the user’s eligible facilities and companies and that the user is not
permitted to run bulk operations on objects outside their allowed scope.

In general, all bulk operations allow for the filtering of objects by “id”. For example, a JSON request body’s parameters
section for filtering on multiple object id’s would be:

{
“paramters”: {
“id__in”: [1, 2, 3]

Filtering on facility code and company code could be achieved by doing the following (assuming the entity and
operation allow it):

“parameters”: {
“facility id__code”: “FACl”,
“company_id_code”: “COMLl”

The maximum number of objects that may be acted upon in a single request is dictated by the requesting user’s “Rows
per Page” attribute. This is configurable per user but also applies in other areas of the application such as how many
objects are returned per page in an Igfapi GET request, or in the Ul when refreshing a page’s data grid.

43
ORACLE

Oracle Warehouse Management Cloud Chapter 3

REST API Guide Entity Module

Commit Frequency

All bulk operations are provided this additional “options” integer input parameter (default = 0). This parameter allows
the requester to dictate at what frequency the changes are applied to each resource or group of resources being
processed.

The default value of 0 specifies that no updates are committed unless all resources are processed successfully (all or
nothing). All changes are rolled back on the first error, and only the first error is reported back to the user using the
stand response.

A value of 1indicates that the changes should be committed per resource successfully processed. Any error will only
cause a failure and roll back of changes for the specific resource that failed. All errors will be accumulated and returned
in the standardized bulk response format (see below).

Although a value > 1is permitted, it is not advised that customers use this unless instructed to do so by support. This is
typically only used for more advanced or larger data processing scenarios and for certain performance considerations.

Response Status and Content

When the commit frequency is O, the bulk operations will give the standard error response format as previously
documented, if any error is found. However, a different response status and standardized format is provided on total
success or when the commit frequency value is > 0:

A 200 - OK response is returned for bulk operations along with a standardized bulk response having the following
attributes:
record_count — Total number of resources processed in the request.
- success_count — Number of successfully processed resources.
- failure_count — Number of unsuccessfully processed resources.

- details — A nested dictionary (key/value map) that provides additional details for any resources that failed
during the processing of the operation.

o The key to identify each resource and it’s failure is by default the resource’s unique “id” value. However, a
different identifying key may be returned per operation, as documented.

o If no details are provided, the value will be null.

The following is a JISON example where 2 objects were processed, but one (having id=123) failed:
{

“record_count”: 2,

“success_count”: 1,

“failure count”: 1,

“details”: {

123: “Invalid status.”

}

}

44
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

4 Supported Entity Operations

Describe Entity

GET ../wms/lgfapi/v10/entity/{entity name}/describe/

The describe operation is unique in that it is common and can be used on any entity. It returns a formatted

representation of the entity’s metadata including any filterable “parameters” and all field definitions. This is the primary

tool for obtaining details about a specific entity.

Response components:
parameters — A list of fields that can be used for filtering of the entity.

- fields - Field definitions and metadata for the entity.
o type - The field data type

o allow_blank - String fields only. Is an empty string value permitted?

o max_length — String fields only. Max string length permitted.

o required — Does the field require data.

o default - If the fields is not required, the default value when no value is provided.

Location

These topics give descriptions for APIs that complete actions related to location in the Warehouse.

Related Topics
« Update Active Inventory

Update Active Inventory

The update_active_inventory API allows you to adjust the inventory quantity in an active location for a specific item.
Only a single location and item may be updated per request.

Note: This is a new API meant to replace the existing legacy update_active_inventory "API. The legacy API will
eventually be retired so no further enhancements will be made to it. New functionality will instead be added to this
API as part of the Igfapi suite.

Regardless of the method used to identify the location, the following input is valid:

Category Name Type Required Description

options item_barcode String @ Item identifier.

ORACLE

45

Oracle Warehouse Management Cloud

REST API Guide

Category Name Type
options item_code String
options item_alternate_code String
options adjustment_qty Numeric
options actual_qty Numeric
options batch_nbr String
options expiry_date Date
options invn_attr_X String
options reason_code String
options transaction_ref_nbr String
options locn_capacity_check_flg Boolean
options company_id Integer
options company_code String

Chapter 4
Supported Entity Operations

Required Description

C Item identifier.

c Item identifier.

@ Non-zero adjustment
quantity.

C Non-negative final quantity.

N Batch tied to target
inventory.

N Expiration date tied to
target inventory.

N Attributes A-O tied to the
inventory.

Y Recorded on inventory
history.

N Recorded on inventory
history.

N Validate locations max units

and volume?
N ltem’s company.

N Item’s company’s code.

Only one of item_barcode; item_code; or item_alternate_code “is allowed.

Only one of actual_gty ‘or adjustment_qty is allowed.

If positive change in quantity:

o The provided batch_nbr ‘will be created if it does not exist.

Only one of company_id ‘or company_code “is allowed.

o Although not required by the API, the company context may be necessary if there is ambiguity when
identifying the item to adjust. This is common in 3PL scenarios where the same identifying information
may be present for different items across companies for which the user is eligible.

Location Lookup by ID

POST

.../entity/location/{id}/update_active_ inventory/

The caller knows the unique id ‘value of the active location, which is added to the request URL. No additional
parameters “data is required from the request body.

Location Lookup by Filters

POST

ORACLE

.../entity/location/update_active_inventory/

46

Oracle Warehouse Management Cloud

REST API Guide

Chapter 4
Supported Entity Operations

Category Name Type Required Description
parameters barcode String Y Location’s barcode.
parameters facility_id Integer N Location’s facility.

- Only a single location may be updated per request.
o The __in’lookup is not supported for barcode"

- TYacility_id "supports string lookup by tode "using the double-underscore notation:
o facility_id__code

Example Request Body:
{

"parameters": {

"facility id code": "FAC-1",
"barcode": "LOCN1"

}I

"options": {

"item barcode": "ITEM1234",

"adjustment qty": -10,
"batch nbr": "BATCH1234",

"expiry date":
"invn_attr_a":
"invn_attr b":
"reason_code":

"transaction_ref nbr":
"company code":

"2020-01-02",
nan

wp

"RCH,

"TX123457890",
llcoM_ 1 "

}
}

Serial Number Tracked Items
This API also accepts serial numbers to cater to serial number tracked items or SKUs.

For positive adjustments, the serial numbers sent can be:
- New serial numbers (or)
- Serial numbers existing in the warehouse that are delinked and not associated with any other inventory

For negative adjustments, the serial numbers sent should be the ones that are already present in the location where
inventory is being updated.

The following is an example request for serial number adjustments:

{

"parameters": {

"facility id code":

}l

"options": {

"item barcode":
"invn_attr_a":

ORACLE

"FAC-1", "barcode": "LOCN1"

"ITEM1234", "adjustment qty": -3, "batch nbr": "BATCH1234",
vAN,

47

Oracle Warehouse Management Cloud

REST API Guide

"invn_attr b": "B",

"reason_code": "RC", "transaction ref nbr":

[

"SrlNbrl", "SrlNbr2", "SrlNbr3"

Locate LPN or Pallet

Chapter 4
Supported Entity Operations

"TX123457890", "serial nbr list":

The Locate LPN/Pallet API allows you to locate an LPN/ Pallet to its respective destination location.
You can locate an Inbound or Outbound LPN to its respective destination using the following POST requests:

Inbound LPN

POST .../entity/iblpn/{id}/locate/

POST .../entity/iblpn/bulk_locate/

Outbound LPN

POST .../entity/oblpn/{id}/locate/

POST .../entity/oblpn/bulk_ locate/

Example requests for Locate IBLPN and OBLPN:

POST .../entity/iblpn/bulk locate/

{

"parameters": {

"id__in": [1, 2, 3]

)I

"options": {

"location_barcode": "R1-R2-RB1-R11",
"depalletize_on_putaway": false

}

}

POST .../entity/oblpn/bulk locate/

{

"parameters": {

"container nbr in": ["LPNPTW0102"]
}l

"options": {

"location barcode": "R1-R2-RB1-R11",
"depalletize on_putaway": false

}

ORACLE

48

Oracle Warehouse Management Cloud

REST API Guide

}

You can locate a Pallet to its respective destination using the following POST requests:

Pallet

POST .../entity/pallet/{id}/locate/

POST .../entity/pallet/bulk_locate/

Example Request for Locate Pallet:
POST .../entity/pallet/bulk locate/

{

"parameters": {
"id__in": [1, 2, 3]
}I

"options": {

"location barcode": "R1-R2-RB1-R11",
"depalletize_ on_putaway": false

}
}

Chapter 4

Supported Entity Operations

The following validations should be performed while locating the LPN/ Pallet and the system should return an error

message.

Validations

Inbound LPN is not present in the
System

IBLPN in "In Receiving",
"Consumed" & "Cancelled" Status

IBLPN in Allocated Status &
Company Parameter "ALLOW_
MOVING_OF_ALLOCATED_LPNS"
is setto No

Inbound Pallet or Outbound Pallet
is not present in the System

Inbound/ Outbound Pallet with
status other than In facility

OBLPN in Status Other than In
Packing/ In Picking/ Packed/
Picked

On Locating IBLPN/OBLPN which

is having lock code with "Prevent
Putaway " flag enabled.

ORACLE

For LPN For Pallet
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Error Response

"LPN not found" .

"LPN is not in valid status"

"Locating Allocated LPN is
restricted"

"Pallet not found".

"Pallet is not in valid status"

"OBLPN is not in valid status"

"Cannot locate LPN, having lock
code %Lock Code% which prevents
putaway"

49

Oracle Warehouse Management Cloud

REST API Guide

Location Validation

Location passed in the API if location is not

present in the facility

When location doesn't have enough
capacity based on (Units/weight/Volume)

When location is permanent not matching
with the SKU present in the LPN

When location with Multi SKU flag
disabled & Incoming LPN is Multi SKU LPN

When location is marked with Restrict
Batch, If the incoming SKU with Batch
Number is not matching with the SKU
+Batch number combination present in
the location.

When location is marked with Restrict
Inventory Attribute, If the incoming

SKU with Inventory Attribute value is

not matching with the SKU +Inventory
Attribute value combination present in the
location.

When location is marked with "Prevent
Putaway Flag"

When location passed is other than QC
location for IBLPN with "Quality Check"
Status

When location passed is other than Drop
or staging location for an OBLPN or
Outbound pallet

When drop location passed is configured
for IB sorting with criteria value defined,
if the Incoming LPN/Pallet breaks the
criteria value

When drop location passed is configured
for OB sorting with criteria value defined,

if the Incoming LPN/Pallet breaks the
criteria value

Parameters

Name Required

facility_id
facility_id__code
company_id

company_id_code

ORACLE

Chapter 4

Supported Entity Operations

Error Response

"Location not in current facility"

"Location doesn't have enough capacity for %Parameter due to which capacity check failed%"

"Cannot locate, Location is dedicated for SKU %SKU dedicated for location%"

"Cannot locate, Location is not allowed for multi SKU"

"Cannot locate, Location prevents different inventory Batch combination for a SKU. "

"Cannot locate, Location prevents different inventory attribute combination for a SKU. "

"Cannot locate, Location is Locked"

"Cannot locate to other than QC location"

"Cannot locate to %location type of given location%"

"

"Cannot locate, Drop location criteria value is not matching

"

"Cannot locate, Drop location criteria value is not matching

Type Default Description

Integer Facility context by id.
String Facility context by code.
Integer Company context by id.
String Company context by code.

50

Oracle Warehouse Management Cloud

REST API Guide

Name Required

container_nbr

Request Options Parameters

Name Required

location_barcode X

depalletize_on_putaway

Location Size Type

POST .../entity/location_size_ type

This operation is used to add single or multiple location size types.

Type

String

Integer

Type

String

Boolean

Default

Default

False

Chapter 4

Supported Entity Operations

Description

The allowed parameter
filter conditions are
"container_nbr" and

s

"container_nbr__in
The allowed parameter

filter conditions are "id" and
"id__in":

Description

If you have a new facility and you want to copy the same location size type from your current facility, you can first GET
the list by querying the location_size_type entity, then POST the applicable data to this operation for the target facility.

Example body request

{

"fields": {
"company_ id": 1,
"size type": "TEST SIZE 001",

"description": "Test Size 001"

}
}

ORACLE

51

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Inventory

Link Serial Numbers

POST ../wms/lgfapi/v10/entity/inventory/{id}/link_serial nbrs/

This operation is used to link one or more serial numbers to a single inventory record. The “id” value of the target
inventory record is required in the URL.

Category Parameter Type Required Default Description

options serial_nbr_list Array of Strings X Alist of serial number
strings to be linked to
the target inventory
record.

Bulk Update Inventory Attributes

POST ../wms/lgfapi/v10/entity/inventory/bulk update_inventory attributes/

This operation is used to update the inventory attributes of one or more inventory objects. Inventory in a Received or
Located IBLPN and inventory in an active location may be modified. Inventory history adjustment records will be written
for each inventory record successfully modified.

The attributes individually are not necessarily required, but in total at least one attribute must be provided to indicate
a change. Additionally, an attribute value may or may not be required as dictated by other configuration such as the
corresponding item’s attribute requirements or the location allowing mixing of attributes. Furthermore, the inventory
cannot be or have been allocated.

An empty string is a valid value to indicate removing the value from the corresponding attribute. Any attribute that is
omitted from the request data will retain its current value.

The “parameters” section of the request body is required in addition to the “options” section outlined below. Only the
“id” parameter filter is valid. It may be used as “id__in" with an array of values.

Category Parameter Type Required Default Description

options invn_attr_a String @ Target attribute value.
options invn_attr_b String C Target attribute value.
options invn_attr_c String c Target attribute value.
options invn_attr_d String @ Target attribute value.
options invn_attr_e String C Target attribute value.
options invn_attr_f String @ Target attribute value.
options invn_attr_g String C Target attribute value.

52
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Category Parameter Type Required Default Description

options invn_attr_h String C Target attribute value.
options invn_attr_i String C Target attribute value.
options invn_attr_j String @ Target attribute value.
options invn_attr_k String C Target attribute value.
options invn_attr_l String @ Target attribute value.
options invn_attr_m String C Target attribute value.
options invn_attr_n String C Target attribute value.
options invn_attr_o String @ Target attribute value.
options commit_frequency Integer 1 0 = Roll back on first

error.

1= Commit per object.

Delink Serial Numbers

The Delink Serial Numbers API allows users to delink a list of serial numbers from an existing inventory in order for the
system to write appropriate serial number records.

Note: Every serial number that is delinked from the targeted inventory should have corresponding serial Number
History records. The Serial Number History Ul should display the serial number with delinked action codes for IBLPN,
OBLPN, and Active inventories.

You can delink a serial number using the following POST request:
POST .../{version}/entity/inventory/{id}/delink serial nbrs/
Additional details for this APl include:

- The delinking is successful for IBLPN and OBLPNs when the 'SERIAL_NUMBER_TRACKING_LEVEL' company
parameter is set to 2.

- The delinking is successful for only OBLPNs when the 'SERIAL_NUMBER_TRACKING_LEVEL' company
parameter is setto 1.

- The delink process is successful if the targeted inventory is non-decimal tracked.
- The system returns an error message if the targeted inventory is not linked with any serial number.

- The delink process is unsuccessful if the inventory associated with any LPN is either in Consumed, Shipped,
Delivered, Cancelled, or Lost status.

- The corresponding serial number history for delinking is recorded in the SerialNbrHistoryView Ul screen for
serial numbers that are delinked from IBLPNs/OBLPNs/Active inventories.

Sample Data format JSON
{
"options" : {
"serial nbr list": [
llSNlll ,

53
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"SN2",
"SN3"
1

}

}

XML

<request>

<options>
<serial nbr list>
<list-item>SN1</list-item>
<list-item>SN2</list-item>
<list-item>SN3</list-item>
</serial nbr list>
</options>

</request>

Get Inventory History

The Inventory History API allows you to query inventory histories for default Companies and Facilities configured for
the user. Previously, inventory history was not supported or exposed as an entity in Igfapi. Now, users can fetch the
inventory history as an entity since it has been exposed to the Igfapi.

You can get inventory history details with paginated results using the following GET request:
GET...... /entity/inventory history

To fetch non-paginated result by specific 'ID'":

GET...... /entity/inventory history/{id}

To fetch paginated result by query string parameters:

GET...... /entity/inventory history?keyl=valuelskey2=value2

To check for object existence or modification:

HEAD .../entity/inventory history?keyl=valuel&key2=value2
HEAD .../entity/inventory history/{id}

Query String Parameters

Since inventory history is a large table, to avoid performance issues, certain combinations of query string fields are
required when querying using query parameters. One of the following combinations must be used (in addition to any
other field):

- company_id__code, facility_id__code, group_nbr

- company_id__code, facility_id__code, history_activity_id, status_id

- company_id__code, facility_id__code, history_activity_id, item_code

- company_id__code, facility_id__code, history_activity_id, item_alternate_code

- company_id__code, facility_id__code, history_activity_id, container_nbr

54
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

ltem

These topics give descriptions for APIs that complete actions related to items in the Warehouse.

Related Topics
« Image Upload

Image Upload

The image_upload API allows you to update an image either by Item ID or Item by Filter.

Assumptions
- Only one item may be updated per request.

- An error will be returned if no items are found.

- An error will be returned if more than one item is found.

Item by ID

POST .../entity/item/{id}/image_upload/

Item by Filters

POST .../entity/item/image_upload/

Supported Item Filter Attributes
The "parameters" section of the request body supports item filters when using this URL style.
- company_id (Required)
o This additionally allows filtering on company code: "company_id_code"
- barcode
- part_a
- part_b
.+ part_c
- part_d
- part_e
. part_f

- item_alternate_code

Example Request Body Parameters
{

"parameters": {
"company id code": "COM1",
"barcode": "ABC123"

55
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Request Image Data

Regardless of which URL is used, the image data is passed in the request body's "options" section in the "image_data"
key. Data is required to be base64 encoded.

Example Request body options:
{

"options": {

"image data": "ABC1l23"
}

}

ltem Image

Currently the full representation of item GET does not include the item image (‘image_data') since that can be large.
However if a request specifies the fields query string parameter and the 'image_data' field is specified, we will return
the field and value.

This will return the id and image data for one or more items.

GET .../entity/item/?fields=id,image data

This will return the id and image data for a specific item.

GET .../entity/item/{id}/?fields=id,image_data

The 'fields “parameter may still be combined with other filters per normal functionality:

GET .../entity/item/?fields=id,image_data&barcode=ITEM123s. ..

Putaway

These topics give descriptions for APIs that complete actions related to putaway in the Warehouse.

Related Topics
- Putaway Priority

 Directed Putaway Location
- Putaway Type Calculation Rule

Putaway Priority

This operation allows you to determine the order in which Putaway Types are triggered for putaway.

POST .../entity/putaway priority

56
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

If you have a new facility and you want to copy the same Putaway Priority rules from your current facility, you can first
GET the list by querying the putaway_priority entity, then POST the applicable data to this operation for the target
facility.

Example body request:

{

"fields": {

"facility id": 1,
"priority": 1,
"putaway_ type id": 256860,
"putaway method id": 1,
"putaway search mode_ id": 0,
"locn_type id": 3,
"locn_size_type_id": 0,
"replenishment zone_id": 35995,
"consider_ fefo_flg": false,
"radius": 1,

"radial increment": 1

}
}

Directed Putaway Location

The Directed Putaway Location APl now allows you to determine the putaway location for a given Inbound LPN or
Pallet via a POST request, so that you can locate the LPN/Pallet to its respective destination.

You can determine the putaway location for an IBLPN using the following POST request:

POST .../entity/iblpn/directed putaway location/

Parameters
Name Required Type Default Description
facility_id Integer Facility context by id.
facility_id__code String Facility context by code.

57
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
Name Required Type Default Description
company_id Integer Company context by id.
company_id_code String Company context by code.
container_nbr X String

You can determine the putaway location for a pallet using the following POST request:

POST .../entity/pallet/directed putaway location/

NOTE: Oracle WMS Cloud will check the putaway type associated with the IBLPN/ Pallet and check the respective
putaway method priority configured for the putaway type. The system then determines the putaway location honoring
the putaway method priority rule.

Parameters
Name Required Type Default Description
facility_id Integer Facility context by id.
facility_id__code String Facility context by code.
company_id Integer Company context by id.
company_id_code String Company context by code.
pallet_nbr X String

Request Options Parameters

Name Required Type Default Description
recalculate_putaway_type_ Boolean False

flg

validate_critical_ Boolean False

dimensions_flg

Example Request

POST .../entity/iblpn/directed putaway location/
{

"parameters": {

"container nbr": "LPNPTW0102"

}I

"options": {

"recalculate putaway type flg": false,
"validate_critical_dimensions_flg": false

}

}

POST .../entity/pallet/directed putaway location/

58
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

{

"parameters": {

"pallet nbr": "LPNPTW0102"
}I

"options": {

"recalculate putaway type flg": false

}
}

Putaway Type

POST .../entity/putaway_type

This operation is used to add single or multiple putaway type.

Chapter 4
Supported Entity Operations

If you have a new facility and you want to copy the same putaway type from your current facility, you can first GET the
list by querying the putaway_type entity, then POST the applicable data to this operation for the target facility.

Example body request:

{

"fields": {

"company_id": 1,

"pa_type": "TEST_PA 001",
"description": "Test PA 001",

"pallet position_required flg": false,

"depalletize on_putaway flg": false

}
}

Putaway Type Calculation Rule

POST .../entity/putaway_type_ calc_rule

This operation is used to add single or multiple putaway type cal rules.

If you have a new facility and you want to copy the same putaway type cal rule from your current facility, you can first
GET the list by querying the putaway_type_cal entity, then POST the applicable data to this operation for the target

facility.
Example body request:

{

"fields": {

ORACLE

59

Oracle Warehouse Management Cloud Chapter 4
REST API Guide Supported Entity Operations
"facility id": 1,

"company id": 1,

"description": "TEST-001",

"priority": 1,

"final putaway type id": 256860,

"sql_ selection_id": 76886,

"enabled flg": true

}

}

Pick-Pack

These topics give descriptions for APIs that complete actions related to picking and packing in the Warehouse.

Related Topics
 Pick Confirm

e Close LPN
« Wave Complete

Pick Confirm

The Pick Confirm API allows you to perform cubed or non cubed picking. Also:
- The Pick Confirm API supports picking of multiple allocations in a single payload.
If one or more Pick updates fail we report an error only for the first failed Pick.
If the First Pick fails, then the rest of the Picks in the payload does not get Picked.

Note: This is a new APl meant to replace the existing legacy pick_confirm“API. The legacy API will eventually be
retired so no further enhancements will be made to it. New functionality will instead be added to this API as part of
the Igfapi suite.

This API supports features of the legacy APl including the following new parameters:

mhe_mode_flg - true/false; default true
- async_flg - true/false; default true
- short_flg - true/false; default false
Replaces using the legacy "action_code" = "SHORT".

Pick Confirm API can be called using the following POST request:

POST ..lgfapi/v10/pick_pack/pick_confirm/

60
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Request Parameters

Pick List

These represent the parameters required for a single pick/short:

Name

facility_id
facility_id__code
company_id
company_id___code
wave_nbr

order_nbr
item_alternate_code

item_barcode

qty
batch_nbr
uom_qty

allocation_uom

reason_code
pick_location
from_container_nbr
to_container_nbr
update_inventory_on_
short_flg

close_container_status

short_on_close_flg

mhe_system_code

short_flg

ORACLE

Required

Type Default

Integer

String

Integer

String

String

String

String

String

Number 0
String

Number

String

String
String
String

String

Boolean False

String "packed"

Boolean False

String

Boolean False

Chapter 4

Supported Entity Operations

Description

Facility context by id.
Facility context by code.
Company context by id.
Company context by code.
Associated wave.
Associated sales order.
Item identifier.

Item identifier.

Quantity to be acted upon.
Inventory batch/lot.

Filter on Case or Pack
quantity when searching
for allocations.

"UNITS", "PACKS", or
"CASES".

Reason for short.
From location.
From container.

LPN inventory is packed
into. Not required for short.

Also short source inventory
on pick short?

Final OBLPN status:
"picked" or "packed".

Should any remaining
unpacked quantity
shorted?

MHE system.

Is this a short?

61

Oracle Warehouse Management Cloud Chapte
REST API Guide Supported Entity Operatio
Validations
- Facility must be in user's eligible facilities and not be ambiguous.
- Possible if there is a Store and a DC with the same code.
- Company must be in user's eligible companies.
- If facility or company context is not included in the input parameters, user defaults are used.
- User cannot pass both "facility_id" and "facility_id__code" in the same request.
- User cannot pass both "company_id" and "company_id_code" in the same request.
- "mhe_system_code" is required if "mhe_mode_flg" is True.
- Only one of "item_alternate_code" or "item_barcode" is allowed.
- Only one of "pick_location" or "from_container_nbr" is allowed.
- "to_container_nbr" is required for "pick" operation, but is not required for "short".
Request-Level Flags
Name Required Type Default Description
mhe_mode_flg Boolean True When true, enforce that
"mhe_system_code" is
provided.
async_flg Boolean True Run API asynchronously?
The following is an example JSON request:
{
"mhe mode_ flg": false, "async_flg": false,
"pick_list": [{
"facility idcode": "FAC", "company_ id": 1, "wave_nbr": "WAVEOOl", "order nbr": "ORDEROO1l",
"item barcode": "ITEM1234", "qty": 10,
"from container nbr": "IBLPN0OOO1l",
"to_container nbr": "OBLPN000l", "short flg": false
]
}
The following is an example XML request:
<request>
<mhe mode_flg>false</mhe_mode flg>
<async_flg>false</async_flg>
<pick_list>
<list-item>

ORACLE

r4
ns

62

Oracle Warehouse Management Cloud Chapter 4
REST API Guide Supported Entity Operations
<facility idcode>FAC</facility idcode>

<company_id>1</company_id>

<wave nbr>WAVE00l</wave_ nbr>

<order nbr>ORDER001</order nbr>

<item barcode>ITEM1234</item barcode>

<qty>10</qty>

Close LPN

The close_lpn API allows you to close an LPN during picking/packing. This API replaces the legacy pick confirm API
when the action code is closed. While performing pick and pack operations (either non cubed active picking or cubed
picking), the Close action code indicates to WMS that the Outbound LPN being picked needs to be closed.

Note: This is a new APl meant to replace the existing legacy close_lpn API. The legacy API will eventually be retired
so no further enhancements will be made to it. New functionality will instead be added to this API as part of the Igfapi
suite.

This API supports features of the legacy API including the following new parameter:

- async_flg - true/false; default true

Close LPN API can be called using the following POST request:
POST ..lgfapi/v10/pick_pack/close_lpn/

Request Parameters
The following table provides details about the query string parameters:

Name Required Type Default Description

facility_id Integer Facility context by id.
facility_id__code String Facility context by code.
company_id Integer Company context by id.
company_id_code String Company context by code.
to_container_nbr X String To OBLPN.
close_container_status String "packed" Final OBLPN status:

"picked" or "packed".

short_on_close_flg Boolean False Should any remaining
unpacked quantity
shorted?

63
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
Name Required Type Default Description
update_inventory_on_ Boolean False Also short source inventory
short_flg on pick short?
reason_code String Reason for short.
async_flg Boolean True Run API asynchronously?

The following is an example JSON request:
{
"facility idcode": "FAC",

"company id": 1, "to_container nbr": "OBLPNOOl", "close container status":
"picked", "short_on_close_ flg": true, "async_flg": true

Wave Complete

The Wave Complete API replaces the legacy APl when the action code is Complete. This is an indicator to inform WMS
that all picks are completed for that wave, and there are no more picks outstanding.

Note: This is a new APl meant to replace the existing legacy close_lpn APIl. The legacy API will eventually be retired
so no further enhancements will be made to it. New functionality will instead be added to this API as part of the Igfapi
suite.

This API supports features of the legacy APl including the following new parameter:

- async_flg - true/false; default true
o When false:

- Instead of submitting a celery task at the end for later processing, it should be immediately
processed and a response returned.

- On success, return a 204 - "No Content" HTTP response status with no response body.
- When true: Return HTTP response status 202 - "Accepted" with no response body.
o Signals that we received the request and it was successfully submitted for processing.

The Wave Complete API can be called using the following POST request:

POST ..lgfapi/v10/pick_pack/wave complete/

The following table provides details about the query string parameters:

Name Required Type Default Description

facility_id Integer Facility context by id.

64
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
Name Required Type Default Description
facility_id__code String Facility context by code.
company_id Integer Company context by id.
company_id___code String Company context by code.
wave_nbr X String Associated wave.
update_inventory_on_ Boolean False Also short source inventory
short_flg on pick short?
close_container_status String "packed" Final OBLPN status:

"picked" or "packed".

reason_code String Reason for short.
mhe_system_code String MHE system.
async_flg Boolean True Run API asynchronously?

The following is an example JSON request JSON:
{
"facility id code": "FAC",
"company id": 1,
"wave nbr": "WAVEOO1l",

"update inventory on_ short flg": true,
"async_flg" true

Get Next Pick

The Get Next Pick REST API allows you to pick inventory based on the location pick sequence during picking from the
Oracle WMS Cloud Mobile App or an external system using WMS APIs. This API follows the same underlying logic used
in the text based Mobile RF picking transaction.

Note: The Oracle WMS Cloud Mobile App is one example of where this API will be leveraged. However, this APl can be
used in other scenarios.

The Get Next Pick API should give one pick from allocation records based on the location pick sequence when there are
multiple allocation records that exist for a given Order/OBLPN.

The following is a sample GET request for Get Next Pick:

° GET .../entity/allocation/get_next pick

Sample request for get next pick based on OBLPN:

° GET .../entity/allocation/get_next pick?container nbr=

Sample request for get next pick based on Order Number:

° GET .../entity/allocation/get_next pick?order nbr=

65
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Get Reponse:
- Get next pick should give information associated with the inventory that is getting picked including:

o Order Number : Order number against which the inventory is getting picked
o Destination Facility: For Store Order Destination facility associated with the order
o Customer Name: For Customer Order Customer name associated with the order
o IBLPN: IBLPN number from which the inventory that needs to picked
o OBLPN: OBLPN number in which the respective inventory is getting picked
o Location: Location from which the inventory is getting picked (Active/ Reserve)
o Item Code : Respective Item Code
o Item Alternate Code: Respective Alternate Item Code
o Inventory Attributes (A-O) : Attributes associated with the inventory.
o Batch Number: Batch number associated with the inventory.
o Expiry Date: Expiry date associated with the inventory.

o Quantity : Pending quantity that needs to be picked for respective allocation record (Allocated Qty -
Packed Qty)

Trailer

These topics give descriptions for APIs that complete actions related to trailers and the Warehouse.

Related Topics
- First Available

- locate_to_yard
« remove_from_yard

First Available

The first_available API allows you to identify yard locations with available capacity. After fetching this API, you will

get the first yard location with capacity based on the yard location putaway sequence. If the putaway sequence is not
configured, the fetch will display according to the yard location pick sequence. After you get the location, you can use
the locate to yard API to update the trailer location to the yard.

|dentify yard location by capacity:

GET
.../entity/location/yard/first_available

Request
The following are the Query String Filters for this API:

66
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
Name Required Type Default Description
facility_id String Facility context by id.
facility_id__code String Facility context by code.

- Only one of "facility_id" or "facility_id__code" is allowed per request.

- If no additional context is provided, the user's default facility/company will be used.
Example Requests

GET .../entity/location/yard/first_available?facility id=1

The following is an example GET request for facility ID:

GET .../entity/location/yard/first_available?facility id=1

The following is an example GET request for facility ID code:

GET .../entity/location/yard/first available?facility id code=STRAJBO1l

locate_to_vyard

The locate_to_yard API allows the caller to update a trailer’s location to or within the yard.

Regardless of the method used to identify the trailer, the following input is valid:

Category Name Type Required Description

options location_barcode String Y Barcode of yard location.

Trailer Lookup by ID

POST .../entity/trailer/{id}/locate_to_yard/

The caller knows the unique id ‘value of the trailer, which is added to the request URL. No additional parameters data is
required from the request body.

Example Request Body:

{

"options": {
"location_barcode": "LOCN-1"
}

}

Trailer Lookup by Filters

67
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Chapter 4
Supported Entity Operations

POST .../entity/trailer/locate_to_yard/
Category Name Type Required Description
parameters trailer_nbr String Y Trailer number to be
moved.
parameters company_id Integer N Trailer's company.

- Only a single trailer may be moved per request.
o The __in’lookup is not supported for trailer_nbr"

- company_id ‘additionally supports string lookup by tode "using the double-underscore notation:
o company_id_code

Example Request Body:
{
"options": {
"location barcode": "LOCN-1"
} 4
"parameters": {
"facility id": 1,
"company id code": "COM-1",
"trailer nbr": "TRLR-1"
}
}

remove_from_yard

The remove_from_yard API allows the caller to release a trailer from its current yard location.
Trailer Lookup by ID

POST .../entity/trailer/{id}/remove_from yard/

The caller knows the unique id ‘value of the trailer, which is added to the request URL. No additional parameters ‘data is
required from the request body.

Trailer Lookup by Filters

POST .../entity/trailer/remove_ from yard/

Category Name Type Required Description

Trailer number to be
removed.

parameters trailer_nbr String Y

68
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
Category Name Type Required Description
parameters facility_id Integer N Trailer's facility.
parameters company_id Integer N Trailer's company.

-+ Only a single trailer may be moved per request.
o The __in’lookup is not supported for trailer_nbr"

- facility_id ‘and company_id "both additionally support string lookup by tode "using the double-underscore
notation:

o facility_id__code

o company_id_code
Example Request Body:
{
"parameters": {
"facility id": 1,
"company id code": "COM-1",
"trailer nbr": "TRLR-1"

}
}

Load

These topics give descriptions for APIs that complete actions related to Loads in the Warehouse.

Related Topics
» Check_In

« Check_Out
- Ship Load

Check_In

The check_in API allows the caller to check-in an inbound or outbound load to a dock door.

Regardless of the method used to identify the load, the following input is valid:

Category Name Type Required Description

options dock_nbr String Y Dock door for check-in.

Load Lookup by ID

POST .../entity/load/{id}/check_in/

69
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

The caller knows the unique id ‘value of the trailer, which is added to the request URL. No additional parameters ‘data is
required from the request body.

Example Request Body:

{

"options": {
"dock_nbr": "DOCK-1"
}

}

Load Lookup by Filters

POST .../entity/load/check_in/

Category Name Type Required Description
parameters load_nbr String Y Load for check-in.
parameters facility_id Integer N Load'’s facility.
parameters company_id Integer N Load’s company.

- Only a single load may be moved per request.
o The __in lookup is not supported for load_nbr"

- Tacility_id ‘and tompany_id “both additionally support string lookup by code ‘using the double-underscore
notation:

o facility_id__code
o company_id_code

Example Request Body:
{
"parameters": {
"facility id code": "FAC-1",
"company_ id code": "COM-1",
"load nbr": "LOAD-1"
} ’
"options": {
"dock_nbr": "DOCK-1"
}
}

Check Out

The check_out API allows the caller to check-out an inbound or outbound load from a dock door.
Load Lookup by ID

POST .../entity/load/{id}/check_out/

70
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Chapter 4

Supported Entity Operations

The caller knows the unique id ‘value of the trailer, which is added to the request URL. No additional parameters data is
required from the request body.

Load Lookup by Filters

Category

parameters
parameters

parameters

POST

Name
load_nbr
facility_id

company_id

.../entity/load/check_out/

Type Required
String Y
Integer N
Integer N

- Only a single load may be moved per request.
o The __in’lookup is not supported for load_nbr"

Description

Load for check-in.
Load'’s facility.

Load’s company.

- Tacility_id ‘and tompany_id “both additionally support string lookup by code ‘using the double-underscore

notation:

o facility_id__code

o company_id_code

Example Request Body:

{

"parameters":

"facility id code": "FAC-1",

"company id code":

"coM-1",

"load nbr": "LOAD-1"

}
}

Ship Load

The Ship Load API allows you to ship a load by uploading the load via ID or filter.

Category

parameters
parameters
parameters
parameters

parameters

ORACLE

Name

load_nbr
facility_id
facility_id__code
company_id

company_id_code

Required Type

X string
Integer
string
Integer

string

Description

Load for shipping
Facility context by id
Facility context by code
Company context by id

Company context by code

7

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Load Lookup by ID

POST

./entity/load/{id}/ship/

No additional parameters ‘data in the request body is required.

Load Lookup by Filters

POST

./entity/load/ship/

Example Request Body:

{

"parameters": {
"facility id code": "FAC-1",
"company id code": "COM-1",
"load nbr": "LOAD-1"

}
}

This APl includes the following features:

- Supports the ship load transaction for a load that is in the Loaded/ Loading Started /Checked Out status.
- An error is displayed if the load is in a "Cancelled"”, "Ship Load In Progress", or "Shipped" status.

- The shipload transaction can be performed either by providing the id or code for the company/facility along

with the load number.

- A Ship Load confirmation file is generated after the load is shipped.

Once aload is shipped via the Ship Load API, the following applies to Inventory
History Transaction (IHT) records:

Inventory history IHT -3 '3 - Container Shipped' is written with respect to each container present on the load.

For shipped loads with OBLPNs associated with asset inventory history, IHT- 58 '58 - Asset Shipped' is written
with respect to each OBLPN associated with an asset.

Inventory history IHT- 60 '60 - Load Shipped File' is written for the outbound Load shipped.

The Ship Load API supports the following validations:

Ship Load API supports Order type with "Single Order on multiple Loads":

If "Single Order on multiple Loads" is set to "Do not Allow" in the order type, the system displays the error
message: "Load has Order/s marked to Prevent one order on different loads with Error."

- When an order is in Packed status but only some of the packed OBLPNs are loaded.
- When an order is in Packed status but some OBLPNs are loaded to different loads.

For OBLPNs with pending audit if the Company parameter "ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING" is set
to no.

Company Parameter REQD_FIELDS_FOR_SHIPPING is defined:

- When the required fields configured for the parameter 'REQD_FIELDS_FOR_SHIPPING ' are not defined for the

targeted load.

72

ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

- When one of the container item on the load is serial number tracked and the number of serial numbers
allocated do not match with the count of serial numbers present in the container.

Serial Number Validations

- If company parameter ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING = False and company parameter
SERIAL_NUMBER_TRACKING_LEVEL is1or 2

If company parameter SERIAL_NUMBER_TRACKING_LEVEL is O or Non serial tracked items exist and company
parameter ALLOW_LOAD_SHIP_WITH_AUDIT_PENDING = False

« This API will not show you any warning message like the Ul or RF, and it will proceed with the Ship Load
transaction.

- The Ship Load API does not generate multiple outbound files.

Container

These topics give descriptions for APIs that complete actions related to containers in the Warehouse.

The “iblpn” and “oblpn” entities are derived from the “container” entity and have access to all of the following entity
operations, in addition to their own.

Related Topics
« Get Sales Orders

» Lock Container

» Bulk Lock Container
» Unlock Container

- Palletize Container

Get Sales Orders

GET ../wms/lgfapi/v10/entity/container/{id}/orders/

Returns a paginated representation of “order_hdr” entities for all sales order(s) allocated against the inbound or
outbound container.

Lock Container

POST ../wms/lgfapi/v10/entity/container/{id}/lock/

Apply one or more inventory locks to the target inbound or outbound container.

Category Parameter Type Required Default Description
options lock_code_list Array of Strings X Inventory lock code(s)
to be applied.

73
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Bulk Lock Container

POST ../wms/lgfapi/v10/entity/container/bulk_lock/
Apply one or more inventory locks to one or more inbound or outbound container(s).

The “parameters” section of the request body is required in addition to the “options” section outlined below. Only the
“id” parameter filter is valid. It may be used as “id__in" with an array of values.

Category Parameter Type Required Default Description

options lock_code_list Array of Strings X Inventory lock(s) to be
applied.

options commit_frequency Integer 1 0 = Roll back on first

error.

1= Commit per object.

Unlock Container

POST ../wms/lgfapi/v10/entity/container/{id}/unlock/

Remove one or more inventory locks to the target inbound or outbound container.

Category Parameter Type Required Description
options lock_code_list Array of Strings X Inventory lock code(s) to be
removed.

Bulk Unlock Container

POST ../wms/lgfapi/v10/entity/container/bulk _unlock/

Remove one or more inventory locks from one or more inbound or outbound container(s).

The “parameters” section of the request body is required in addition to the “options” section outlined below. Only the
“id” parameter filter is valid. It may be used as “id__in" with an array of values.

74
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Category Parameter Type
options lock_code_list Array of Strings
options commit_frequency Integer

Palletize Container

POST .../entity/container/{id}/palletize/

Allows you to palletize an Inbound or Outbound LPN.

Required

X

Chapter 4
Supported Entity Operations

Default Description

Inventory lock(s) to be
removed.

1 0 = Roll back on first
error.

1= Commit per object.

The “parameters” section of the request body is required in addition to the “options” section outlined below. Only the
“id” parameter filter is valid. It may be used as “id__in" with an array of values.

Category Name

parameters Container_nbr

parameters Facility_id

Parameters Company_id
Example

{

"parameters": {
"facility id": 1,
"company id": 1,
"container nbr": "LPN-1"
}

}

Required

X

- Both facility_id "and company_id ‘also support filtering on code “as well.

Category Name
parameters Facility_id
Parameters Company_id

{

"parameters": {
"facility id code": "FAC-1",
"company id code": "COM-1",
"container nbr": "OBLPN-1"

ORACLE

Required

Type Description

String IB or OB LPN to be linked.
“_in” lookup is not
supported.

Integer Container’s facility

Integer Container’s company

Type Description

string Container’s facility

string Container’s company

75

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Functional Request Data

Category Name Required Type Default Description

options pallet_nbr X string Pallet number to be
used for palletizing IB
or OBLPN's.

options pallet_position string Position of Inbound
or OBLPN during
palletization.

options allow_mix_pa_types_ boolean False whether to allow

flg mixing of LPN's with

different PA types on a
single pallet.

options allow_mix_dest_shipto string valid values to be
passed are

- Validate Ship To

- Validate
Destination

- Validate Ship To
and Destination

- Ignore Ship To
and Destination

{

"options": {

"pallet nbr": "PLTO01",

"pallet position": "01",

"allow mix pa types_ flg": false

"allow mix dest_shipto": Ignore Ship To and Destination
}

}

Depalletize Inbound / Outbound LPN

Allows you to depalletize an Inbound or Outbound LPN so you do not have to use RF guns for performing
depalletization in automated guided facilities.

|dentify container by ID:

POST .../entity/container/{id}/depalletize/

- The specific inbound or outbound LPN's id value is known and is provided in the URL.

- No additional parameters ‘data in the request body is required.

76
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

|dentify container by Filters

POST .../entity/container/depalletize/

- lgfapi provides mechanism to determine the container entity to be dissociated with pallet.

- The parameters ‘section of the request body will allow for the users to identify the specific OBLPN

Category Name Required Type Description
parameters Container_nbr X String IB or OB LPN to be linked.
“_in” lookup is not
supported.
parameters Facility_id Integer Container’s facility
Parameters Company_id Integer Container’s company
parameters type String Container’s type “I” or “O".
{
"parameters": {
"facility id": 1,
"company id": 1,
"container nbr":
"LPNOO1",
n type n : lloll
}
}
- Both facility_id ‘and company_id "also support filtering on ctode “as well.
Category Name Required Type Description
parameters facility_id_code string Container’s facility
Parameters company_id_code string Container’s company

{
"parameters": {

"facility id_code":
"FAC-1",

77
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"company id code":
"COM-1",

"container nbr":
"LPNOO1",

" type n. ngn
}

}

Task

These topics give descriptions for APIs that complete actions related to tasks in the Warehouse.

Related Topics
« Next Task

Next Task

The next_task API allows you to determine the next task via an APl operation.

You can search for the next task using the following GET request:

GET .../entity/task/next_task

The following table provides details about the query string parameters:

Name Required Type Default Description

facility_id Integer Facility context by id.
facility_id__code String Facility context by code.
location_barcode String User's current location.
task_type String Required task type.
ordering_rule String Order tasks by rule name.

Facility ID/Facility Code
- If a value isn't provided, the user's default facility context will be used.
- Task look up is done relative to the user's facility and eligible company contexts.

Location Barcode
- If provided, search for task within the same location area (if available) and/or pick sequence (if available).

78
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Task Type
- If provided, search for task only of the given type.
Ordering Rule

- If provided, order the found tasks by the corresponding field(s) and return the top result.

- The value accepted by the APl is that of the Task Ordering Rule's description.

The following is an example GET request using location barcode:

GET .../entity/task/next task?location_barcode=MY LOCN BRCD&task type=MY TASK TYPE&ordering rule=MY RULE

IBLPN

These topics give descriptions for APIs that complete actions related to IBLPNs in the Warehouse.

The “iblpn” entity is derived from the “container” entity and therefore also has access to all of its entity operations, in
addition to the following:

Related Topics
» Direct Consume

- Modify Item Quantity

Direct Consume

POST ../wms/lgfapi/v10/entity/iblpn/{id}/direct_consume/

Category Parameter Type Required Default Description

options reason_code String X Used for inventory
history tracking.

Consume a Received or Located IBLPN and update its inventory to zero. This will write IBLPN consumed inventory
history records.

direct_consume

The options "parameters, transaction_ref_nbr, may now be passed in the request body. This parameters will be added
to any CNTR_CONSUMED inventory history records created as part of the API's execution. The inventory history field
ref_code_3 will now be set as “TRN". The value of ref_value_3 will be that of transaction_ref_nbr or an empty string.

Category Name Type Required Description
options transaction_ref_nbr String N Max length of 250
characters.

79
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Example Request Body:
{
"options": {
"reason_code": "IT",
"transaction_ref nbr": "TX12345"
}
}

Modify Item Quantity

The IBLPN modify_item_qty API allows the caller to adjust item inventory in a “Received” or “Located” IBLPN. You can
only update a single IBLPN and item per request.

Regardless of the method used to identify the IBLPN, the following input is valid:

Category Name Type Required Description

options item_barcode String C Item identifier.

options item_alternate_code String @ Item identifier.

options adjustment_qty Numeric Y Non-zero adjustment
quantity.

options batch_nbr String N Batch tied to target
inventory.

options expiry_date Date N Expiration date tied to
target inventory.

options invn_attr_X String N Attributes A-O tied to the
inventory.

options reason_code String Y Recorded on inventory
history.

options transaction_ref_nbr String N Recorded on inventory
history.

- Only one of item_barcode “or item_alternate_code “is allowed.

- IBLPN inventory matching is restrictive and does not support wildcard searches:
o If no batch_nbr is provided, only match IBLPN inventory without a batch.

o If no expriy_date “is provided, only match IBLPN inventory without expiration.

o If no invn_attr_X value is provided for A-O, it will be treated as blank.

IBLPN Lookup by ID

POST .../entity/iblpn/{id}/modify item qty/

Caller knows the unique id “value of the IBLPN, which is added to the request URL. No additional parameters ‘data is
required from the request body.

80
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

IBLPN Lookup by Filters

POST .../entity/iblpn/modify item qty/

Category Name Type Required Description
parameters container_nbr String Y IBLPN to be adjusted.
parameters facility_id Integer N IBLPN'’s facility.
parameters company_id Integer N IBLPN’s company.

« Only a single IBLPN may be moved per request.
o The __in’lookup is not supported for container_nbr:

- TYacility_id ‘and company_id "both additionally support string lookup by tode "using the double-underscore
notation:

o facility_id__code

o company_id_code

Example Request Body:
{

"parameters": {
"facility id code": "FAC-1",
"company id ": 2,

"container nbr": "IBLPN1234"
}l

"options": {

"item barcode": "ITEM1234",
"adjustment_qty": -10,
"batch_nbr": "BATCH1234",
"expiry date": "2020-01-02",

"invn_attr_a": "A",
"invn_attr b": "B",
"reason_code": "RC",

"transaction_ref nbr": "TX123457890"
}
}

Composite Create

POST ../wms/lgfapi/v10/entity/iblpn/composite create/

This operation allows for the creation of a Received or Located IBLPN along with one or more inventory records in a
single request. Furthermore, it allows for the creating and/or association of the inventory’s corresponding batch and
inventory attribute, where applicable. This API follows all of the same validations and extended actions, such as writing
inventory history, as the standalone create (POST) APIs for each entity, but brings them together in a single API.

Furthermore, this API takes advantage of allowing for the input of nested data, such as batch and inventory attribute,
which will allow for those objects to be created or retrieved if they already exist. The use of the related objects “id” value
is still permitted as well. All objects must have the same facility and company context as the IBLPN being created, and
must still pass all standard user eligibility validations.

81
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Chapter 4

Supported Entity Operations

Note: Currently for Composite Create IBLPN, you have to make multiple API calls to create an IBLPN with

serial number tracked items. The first API call is to create the IBLPN and inventory (posT ../entity/iblpn/
composite_create/). The second API call is to link any serial numbers to the respective inventory records (posT ../
entity/inventory/{id}/link_serial nbrs/.) In the upcoming 21A release, WMS is expanding support for sending
serial number information in the IBLPN composite_create API itself. Once this feature is added, an error will be
returned if the appropriate serial number information is not provided for any serial number tracked items. This change
will avoid the requirement of making multiple API calls to complete the linking. Customers using composite_create for
serial number tracked items should ensure that serial number information is shared in the composite create itself.

This API also has unique data structure requirements that mimic those of the individual entity’s create (POST) field
inputs. It also allows for the definition of a global context where “facility_id” and “company_id” may be defined at the
top level of the data and inherited by each object, if not defined on the object.

Category Parameter
fields facility_id
fields company_id
fields iblpn

fields inventory
options reason_code

Type

Integer

Integer

Dictionary

Array

String

Required Default

c

Description

“id” value of Facility.
Not required if defined
on the IBLPN or per
object.

“id” value of Company.
Not required if defined
on the IBLPN or per
object.

Field value definitions
for the IBLPN being
created. These are

the same as if using

a standalone POST
request for creating an
IBLPN.

Alist of one or more
inventory objects to be
created and associated
with the given IBLPN.

Used for inventory
history tracking.

The following is an example of JSON request data where the facility/company context is defined at the top level and
using the “id” values of “batch_number_id” and “invn_attr_id” to associate those objects that already exist. The defined
top-level facility and company will be applied to the iblpn and inventory objects being created. The existing batch and

inventory attribute objects being associated to the inventory must be of the same context.

Note: even though “inventory” does not have a “company_id” field, the company is determined from the associated
item’s company and must also pass validations.

ORACLE

82

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"fields": {

"facility id": 1,
"company id": 1,
"iblpn": {

"container nbr": "IBLPN000OO1",
"status_id": 30,
"curr_ location_id": 28536
}l

"inventory": [

{

"item id": 1,
"curr_qty": 1.2345,
"batch number id": 1,
"invn_attr_id": 1

}

1

}l

"options": {
"reason_code": "IT"

}

}

The following is an example of JSON request data where the facility/company context is defined per object and using
the “id” values of “batch_number_id” and “invn_attr_id” to associate those objects that already exist. Also demonstrates
creating multiple inventory records for different item/batch/attribute combinations in a single IBLPN:

{

"fields": {

"iblpn": {

"facility id": 1,
"company id": 1,
"container nbr": "IBLPN000002",
"status_id": 10

},

"inventory": [

{

"facility id": 1,
"item id": 1,
"curr_qty": 1.2345,
"batch number id": 1,
"invn_attr_id": 1

}I

{

"facility id": 1,
"item id": 2,
"curr_qgty": 10,
"batch number id": 2,
"invn_attr_id": 2

}

1

}I

"options": {
"reason_code": "IT"

}

}

The following is an example of JSON request data where the facility/company context is defined at the top level and
the “id” values of “batch_number_id” and “invn_attr_id” have been replaced with nested objects to create and associate
those objects, which may or may not already exist:

{

"fields": {
"facility id": 1,
"company_ id": 1,

83
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"iblpn": {

"container nbr": "IBLPN000003",
"status_id": 10

}I

"inventory": [

{

"item_id": 3,

"curr _qty": 1,

"batch number id": {
“batch_nbr”: “BATCH001”,
“item_id”: 3,

“expiry data”: “2019-01-01"
}I

"invn_attr_id": {
“invn_attr_a”: “A”,
“invn_attr b”: “B”,
“invn_attr_c”: “C”

}

}

1

}I

"options": {
"reason_code": "IT"

}

}

OBLPN

The “oblpn” entity is derived from the “container” entity and therefore also has access to all of its entity operations, in
addition to the following.

mark_delivered

POST ../wms/lgfapi/v10/entity/oblpn/{id}/mark_delivered/

Updates a Shipped OBLPN to Delivered status and writes container delivered inventory history.

create_from_iblpn

The OBLPN create_from_iblpn API allows you to create an OBLPN in Outbound Ready status and allocate inventory
from a designated IBLPN in a single request. Additionally allows the caller to trigger packing of the OBLPN.

POST .../entity/oblpn/create from iblpn/

Assumptions

1. All allocation data must have the same facility and company context as the OBLPN.
o Allocations may be for multiple sales orders from multiple IBLPNs for different items as long as the
facility/company context is consistent with the created OBLPN.

84
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

2. Sales order status will be recalculated on success.
3. IBLPN status will be recalculated on success.
4. Inventory history is only written if the OBLPN is packed.

Request Body Data

The request body data utilizes the 3 categories in the following ways:

1. fields - The initial data required to create the OBLPN.
2. parameters - List of data defining allocations.
3. options - Additional functional data.

OBLPN Fields Data

The OBLPN's initial data is defined in the Fields “section of the request under the oblpn “key. This is similar to the
request body data requirements when creating an LPN directly through the entity’s create mechanism.

Supported fields:
Name Type Required Description
facility_id Integer Y OBLPN's facility.
company_id Integer Y OBLPN’s company.
container_nbr String Y OBLPN'’s container number.
curr_location_id Integer N OBLPN’s location.
lpn_type_id Integer N Associated LPN Type.
length Numeric N OBLPN’s length dimension.
width Numeric N OBLPN’s width dimension.
height Numeric N OBLPN's height dimension.

- If providing 1pn_type_id - length, width’ and height “are not valid.

Example Request Body:
"fields": {
"oblpn": {
"facility id": 1,
"company id": 1,
"container nbr": "OBLPN-1",
"lpn_type id": 5
}
}

Allocation Parameters Data

Allocation data is defined in the parameters “section of the request in the allocations “key. The data is a list of objects,
each linking one sales order detail to one IBLPN for the given inventory and quantity. An order detail or IBLPN may be
referenced across multiple allocation definitions within the same request. Each of the following allocation scenarios is
supported:

85
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

- Single order detail from single IBLPN.

- Single order detail from multiple IBLPNs.

- Multiple order details from single IBLPN.

- Multiple order details from multiple IBLPNs.

Category Name Type Required Description

allocations order_nbr String Y Sales order identifier.

allocations iblpn_nbr String Y IBLPN identifier.

allocations qty Numeric Y Non-zero quantity to
allocate.

allocations order_dtl Object Y Nested object identifying

the sales order detail.

- Sales order status must be less than “Packed”.

- IBLPN status must be “Received”, “Located”, or “Partially Allocated” and have the necessary available
unallocated quantity.

The nested order_dtl ‘object requires one of two definitions in order to identify the sales order detail.

|dentify Sales Order Detail by Sequence Number

If the order detail’'s unique sequence number is known to the user, this may be provided in the request and is the only
piece of data necessary to identify the correct detail for the given sales order number.

Category Name Type Required Description

order_dtl seq_nbr Integer @ Sales order detail’s unique
sequence number.

Example Request Body:

"parameters": {

"allocations": [

{

"order nbr": "ORDER-1",
"order dtl": {

"seq nbr": 1

} 4

"iblpn nbr": "IBLPN-1",
llqtyll . 1

}

)

}

86
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

|dentify Sales Order Detail by Attributes

Chapter 4

Supported Entity Operations

The sales order detail may also be identified by its attributes. At least one of the following pieces of information is
required. If more than one order detail is identified, an error will be returned. Additionally, this is a restrictive search in

that any omitted data will not be treated as a wildcard.

- If no batch_nbr is provided, only match order detail(s) without a batch.

- If no invn_attr_X value is provided for A-O, it will be treated as blank.

Category Name Type Required
order_dtl item_barcode String @
order_dtl item_alternate_code String @
order_dtl batch_nbr String N
order_dtl invn_attr_X String N
Example Request Body:

"parameters": {

"allocations": [

{

"order nbr": "ORDER-2",

"order dtl": {

"item barcode": "ITEM2",

"batch nbr": "BATCH-1",

"invn_attr_a": "A",

"invn_attr b": "B"

} 4

"iblpn nbr": "IBLPN-2",
llqtyll : 2

}

1

}

Additional Options Data

Functional request data in the options “section:

Category Name Type Required

options pack_flg Boolean N

- OBLPN will be routed regardless of the pack_flg value.

- If pack_flg = True:
o OBLPN will be updated to “Packed” status.

o The created allocations will be completed.
o The sales order detail(s) will be updated.

o OBLPN's final weight and volume will be calculated.

ORACLE

Description

Item identifier.
[tem identifier.
Batch identifier.

Attributes A-O tied to the
order detail.

Description

Pack the OBLPN? (Default =
False)

87

Oracle Warehouse Management Cloud

REST API Guide

o Inventory history will be written.

Example Request Body:

"options": {
"pack_flg": true
}

Full Request Body Example:

Chapter 4
Supported Entity Operations

The following example would create a packed OBLPN allocated from two different IBLPNs for the same order.

{

"fields": {

"oblpn": {

"facility id": 1,

"company id": 1,
"container nbr": "OBLPN-1"
}

}l

"parameters": {

"allocations": [

{

"order nbr": "ORDER-1",
"order dtl": {

"seq nbr": 1

}I
"iblpn nbr": "IBLEN-1",

"gqty": 2

}I

{

"order nbr": "ORDER-1",
"order dtl": {

"item barcode": "ITEM-1",
"batch nbr": "BATCH-1",
"invn_attr_a": "A",
"invn_attr o": "O"

}l

"iblpn nbr": "IBLPN-2",
"gqty": 5.52

}

1

}I

"options": {
"pack_flg": true

}

}

Link OBLPN with asset

POST ../wms/lgfapi/v10/entity/oblpn/{id}/link_asset
links asset (reusable tote) to oblpn.

Assumptions

- Only one OBLPN may be linked to one asset per request.

- OBLPN must be within user's eligible facilities/companies.

ORACLE

88

Oracle Warehouse Management Cloud

REST API Guide

Request Body Data

The request body data utilizes the 3 categories in the following ways:

1. parameters - allows user to identify the specific oblpn

2. options - Additional functional data.

Parameters

Category

Parameters

Parameters

Parameters

Name

container_nbr

facility_id

company_id

Example Request Body:

{

"parameters": {
"facility id": 1,
"company id": 1,
"container nbr":
}

}

"OBLPN-1"

Type Required
String Y

Integer

Integer

Note: Both facility id and company id also support filtering on “code”.

Additional Options Data

Functional request data in the options “section:

Category

options

options

Options

options

{

"options": {

Name

asset_nbr
asset_seal_nbr
replace_container_nbr_

with_asset_flg

validate_lpn_type_flg

"asset nbr": "ASSET-01",

"asset _seal nbr":

"SEAL-001",
"replace container nbr with asset flg":

"validate lpn type flg": true

}

ORACLE

Type Required

String Y

String

boolean

boolean

true

Chapter 4

Supported Entity Operations

Description

OBLPN to be linked. "__in"
lookup is not supported

Container's facility.

Container's company.

Description

Asset to be linked. May be
created as part of this API.

Optionally tracked seal
number.

Rename OBLPN to match
asset upon linking?

Validate the LPN type of the

OBLPN with the LPN type
of the asset

89

Oracle Warehouse Management Cloud Chapter 4
REST API Guide Supported Entity Operations

If the Asset already exists in the system, then it will be made "In Use" status and update the Asset OBLPN field
with the corresponding OBLPN, Destination field with the OBLPN destination of the linked OBLPN and Seal Nbr
field with corresponding seal nbr passed in the API

If Original OBLPN is renamed while interfacing (i.e. when "replace_container_nbr_with_asset"= true), system will
update the following:
o Populate OBLPN field with the Asset Nbr,

o Destination field with the OBLPN destination
o Seal Nbr field with corresponding seal nbr passed in the API

- OBLPN type in the Asset table will not get updated with the OBLPN type of the OBLPN

If the Asset interfaced is new, then a new record is created in the Asset Ul with the status "In Use" with
corresponding OBLPN, Seal and destination.

If the Original OBLPN is renamed with Asset nbr while interfacing (i.e. when
"replace_container_nbr_with_asset"= true), system updates the OBLPN field with the Asset Nbr, Destination
field with the Original OBLPN's destination and Seal Nbr field with corresponding seal nbr passed in the
interface

If the OBLPN is already linked to an asset and another Asset Nbr is passed in the interface for linking with
OBLPN, the original asset number needs to be updated back to status "In-warehouse" while the new asset
number is updated back to status "In-use".

In case if the OBLPN is already linked to an asset/seal and another seal nbr is passed in the API, then update
the seal nbr field with the corresponding seal.

If the Asset interfaced in the APl is new to the system, then a new record is created in the Asset table
- The fields "asset_nbr" and "asset_seal_nbr" is updated with corresponding data in the oblpn.

If Original OBLPN is replaced with Asset Nbr while interfacing (i.e. when "replace_container_nbr_with_asset"=
true), system should update the Container table as mentioned below:
o LPN Nbr is updated with the Asset Nbr

o Asset Nbr and Asset Seal Nbr is updated with the corresponding value passed in the API
o OBLPN Type field is not updated with the OBLPN type of the Asset
o "Ref OBLPN Nbr" field is updated with original OBLPN Nbr
- The following Inventory History records are created:
o IHT 57 - Asset Received - This record is not written if the Asset interfaced in the API is new to the system
o IHT 31- OB Container Modified is written if the OBLPN is renamed with Asset Nbr while linking.

Pallet

These topics give descriptions for APIs that complete actions related to Pallets in the Warehouse.

Related Topics
e SortLPN

« Sort LPN Close Pallet

90
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

Sort LPN

Chapter 4

Supported Entity Operations

The Sort LPN API allows you to sort an LPN to a Pallet in a sort location mimicking what the RF Inbound Sorting process
does. The RF modules include: RF Sort LPN, and RF Inbound Sort Location.

You can sort an LPN to a pallet in a sort location with the following POST request:

POST

.../entity/pallet/sort_lpn/

The following table provides details about the Input Parameters/Filters used to identify the target pallet:

Name

facility_id
facility_id__code
company_id
company_id___code

pallet_nbr

Required

X

Type

integer
string
integer
string

string

- The pallet will be created if it doesn't exist.

Default

Description

Facility context by id.
Facility context by code.
Company context by id.
Company context by code.

Target sort pallet.

- The requesting user's default facility/company context will be assumed if overrides are not provided.

Functional Options

Name

container_nbr
sort_zone
sort_location_barcode

sort_to_inventory

allow_received_status_flg

allow_picked_status_flg

- Default valid LPN statuses:

- Located
- Allocated
- Packed

Required

Type

string
string
string

string

boolean

boolean

The following is an example body for Sort LPN to Pallet:

ORACLE

Default

"pallet-call-directed-
putaway"

False

False

Description

LPN being sorted to pallet.
Destination sort zone.
Destination sort location.
Sort method.

Allow sorting of IBLPN in
Received status.

Allow sorting of OBLPNs in
Picked status.

91

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations
{
"parameters": {
"facility id": 1,
"company id code": "FOO",

"pallet nbr": "PALLET001"

}I

"options": {

"container nbr": "LPNOO1",

"sort_ zone": "ZONEO1l",

"sort location barcode": "BRCDOO1l",
"sort_to_inventory": "pallet-call-directed-putaway"
}

}

Response Status

« 204 - No content
- Operation successfully completed.
- 400 - Validation error

- 500 - Internal server error

Sort LPN Close Pallet

The Sort LPN/Close Pallet APl is used as part of the inbound sorting process which groups LPNs to pallets in sort
locations. This APl mimics the RF IB Sort LPN module which calls the Sort LPN Close IB Pallet back end entry point with
parameters.

You can Sort LPNs and Close Pallet with the following POST requests:

POST .../entity/pallet/close_inbound sorting/

POST .../entity/pallet/{id}/close_inbound sorting/

The following table provides details about the Input Parameters/Filters used to identify the target pallet:

Name Required Type Default Description

facility_id integer Facility context by id.
facility_id__code string Facility context by code.
company_id integer Company context by id.
company_id___code string Company context by code.
pallet_nbr X string Target sort pallet.

- The pallet will be created if it doesn't exist.

- The requesting user's default facility/company context will be assumed if overrides are not provided.

92
ORACLE

Oracle Warehouse Management Cloud

REST API Guide

The following table details the functional options:

Name Required Type Default
create_replen_task_flg boolean True
task_type_description string

Default valid LPN statuses:

+ Located
- Allocated
- Packed
The following is an example body for Create Replenishment Task Flag:

{

"parameters": {

"facility id": 1,
"company id code": "FOO",
"pallet nbr": "PALLET001"

b,

"options": {

"create replen_task flg": true,
"task_type_description": "My Task Type"
}

}

Response
Response Status:

« 204 - No content
o Operation successfully completed.

- 400 - Validation error

- 500 - Internal server error

Replenishment

Chapter 4
Supported Entity Operations

Description

Generate a replenishment
task on close?

Required type description
for generated replen task.
Valid when create_replen_
task_flg = True.

These topics give descriptions for APIs that complete actions related to Replenishment in the Warehouse.

Related Topics
« Replenish to Active

ORACLE

93

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Replenish to Active

The replenish_to_active API allows you to complete an open replenishment task for an active location.

You can replenish to active with the following POST request:
POST .../lgfapi/v10/replenishment/replenish_ to_active/

Parameters
The following table provides details about the Input Parameters/Filters:

Name Required Type Default Description

facility_id integer Facility context by id.
facility_id__code string Facility context by code.
company_id integer Company context by id.
company_id___code string Company context by code.

- Used if the replenishment is in a context other than the requesting user's default.
- The requesting user's default facility/company context will be assumed if values are not provided.
- Either "facility_id" or "facility_id__code" may be used, but not both.

- Either "company_id" or "company_id___code" may be used, but not both.

The following table details the functional options:

Name Required Type Default Description

task_id C integer "id" of task to be
completed.

task_id__task_nbr C string Business key for task to be
completed.

replen_location_id @ integer "id" of active location to be
replenished.

replen_location_id__ C string Barcode of active location

barcode to be replenished

qty decimal Allocation Qty Quantity to replenish.

- Either "task_id" or "task_id__task_nbr" is required.
- Either "replen_location_id" or "replen_location_id__barcode" is required.

- If 'qty'is not provided, the full allocation quantity of the associated allocation will be used.

94
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

o If 'qty'is provided, it must be greater than O.

The following is an example body for Replenish Location ID Barcode:

{

"facility id" 1,

"company id code": "COMPANY",
"task_id": 1,

"replen location_id barcode": "LOCN1"

}

Replenishment Zone

POST .../entity/replenishment zone
This operation is used to add one or more replenishment zones.

If you have a new facility and you want to copy the same replenishment zones from your current facility, you can first
GET the list by querying the replenishment_zone entity, then POST the applicable data to this operation for the target
facility.

Example Body Request
{

"fields": {

"facility id": 1,

"code": "TEST Rz 001",
"description": "Test RZ 001"

}
}

Sales Order Header

These topics give descriptions for APIs that complete actions related to Sales Orders in the Warehouse.

Related Topics
« Get IBLPN(s)

» GET OBLPN(s)
« Bulk Lock
« Bulk Unlock

Get IBLPN(s)

GET ../wms/lgfapi/v10/entity/order hdr/{id}/iblpns/

Returns a paginated representation of all IBLPN(s) allocated to the sales order.

95
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

GET OBLPN(s)

GET ../wms/lgfapi/v10/entity/order_ hdr/{id}/oblpns/

Returns a paginated representation of all OBLPN(s) allocated to the sales order.

Bulk Lock

POST ../wms/lgfapi/v10/entity/order hdr/bulk_lock/
This operation is used to apply, and optionally create, an order lock to one or more orders.

The number of orders that can be modified by this operation in a single requests is configured by the value of the
requesting user’s “Rows per Page” attribute.

The “parameters” section of the request body is required in addition to the “options” section outlined below. One
or more parameters are used to determine the order(s) for which the operation will be applied. The allowed filter
parameters are:

- id'
- 'order_nbr'
- 'facility_id'

- 'company_id'

- 'erp_source_hdr_ref'

- 'erp_source_system_ref'

- 'orderdtl__erp_source_line_ref'

- 'orderdtl__erp_source_shipment_ref'

- 'orderdtl__ship_request_line'

Category Parameter Type Required Default Value Description

options lock_code String X Order lock to be
applied.

options lock_description String Value of lock_code Description of order

lock. Only used when
creating a new order
lock.

options comments String Additional info for the
order’s applied lock.

options allow_allocate_flg Boolean False Order lock attribute.
Only used when
creating a new order
lock.

options autocreate_lock_flg Boolean False When true, the order
lock will be created in

96
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Category Parameter Type Required Default Value Description
addition to be applied,
if it does not already
exist.

options commit_frequency Integer 0 0 = Roll back on first
error.

1= Commit per object.

Bulk Unlock

POST ../wms/lgfapi/v10/entity/order_hdr/bulk_unlock/
This operation is used to remove an order lock from one or more orders.

The “parameters” section of the request body is required in addition to the “options” section outlined below. One
or more parameters are used to determine the order(s) for which the operation will be applied. The allowed filter
parameters are:

. lidl
- 'order_nbr'
- ‘'facility_id'

- 'company_id'

- 'erp_source_hdr_ref'

- 'erp_source_system_ref'

- 'orderdtl__erp_source_line_ref'

- 'orderdtl__erp_source_shipment_ref'
- 'orderdtl__ship_request_line'

Category Parameter Type Required Default Value Description

options lock_code String X Order lock to be
removed.

options commit_frequency Integer 0 0 = Roll back on
first error.

1= Commit per
object.

Print

These topics give descriptions for APIs that complete actions related to Printing in the Warehouse.

97
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Related Topics
« Print Shipping Label

« Print LPN Label
« Print Pallet Label

Print Shipping Label

GET. ../wms/lgfapi/v10/print/label/shipping/?label designer code=foo
Returns the ZPL representation of the label

POST .../wms/lgfapi/v10/print/label/shipping

Submits the label for printing

The “parameters” section of the request body is required in addition to the “options” section outlined below. One or
more parameters are used to determine the order(s) for which the operation will be applied.

Category Name Type Required GET Request POST Request Comments
options label_designer_ string X X X Label designer
code template to be

printed

options printer_name string X Default's to
cwuser.default_
label_printer.

options label_count integer X Number of labels

to print. Must be
greater than O.
Default = 1.

API Filters

Functions like a bulk operation for identifying one or more IBLPN(s) to be printed: id Including "in" lookup

- facility_id
- company_id
- container_nbr

+ Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/shipping/?
label designer code=foo&facility id code=FAClé&company id code=COMlé&container nbr=IBLPN1

Example Request Body for POST

{
"parameters": {
"facility id code": "FAC1l",

98
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"company id code": "COM1",
"container nbr": "IBLPN1"

}I

"options": {

"label designer code": "label 1",
"printer name": "PRINTER1",
"label count": 1

}

}

Response Body Data

On success, a 200 - OK status is returned.

The standardized bulk response body is returned. This will have aggregate information for all IBLPN(s) processed as well
as the counts and any details.

For a GET request, the ZPL data bill be base64 encoded in the "data" section.
{

"record count": 2,

"success_count": 1,

"failure count": 1,

"data": {

"IBLPN 1": "VGhpcyBpcyBaUEwgY29kZQ=="
}I

"details": {

"IBLPN 2": "Some error message."

}

}

Print LPN Label

GET.../wms/lgfapi/v10/print/label/ib_container/?label_designer_code=foo
Returns the ZPL representation of the label.

POST .../wms/lgfapi/v10/print/label/ib container

Submits the label for printing.The “parameters” section of the request body is required in addition to the “options”
section outlined below. One or more parameters are used to determine the order(s) for which the operation will be
applied.

Category Name Type Required GET Request POST Request Comments

options label_designer_code string X X X Label designer template to be
printed

options printer_name string X Default's to cwuser.default_
label_printer.

options label_count integer X Number of labels to print.
Must be greater than O.
Default = 1.

99
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

API Filters
- Functions like a bulk operation for identifying one or more IBLPN(s) to be printed:
o]d
- Including "in" lookup
o facility_id

o company_id

o container_nbr
- Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/ib_container/?
label designer code=foo&facility id code=FAClé&company id_ code=COMlé&container nbr=LPN1

Example Request Body for POST
{
"parameters": {
"facility id code": "FAC1l",
"company id code": "COM1",
"container nbr": "OBLPN1"
} 4
"options": {
"label designer code": "label 1",
"printer name": "PRINTER1"
}
}

Response Body Data

On success, a 200 - OK status is returned
For a GET request, the ZPL data bill be base64 encoded in the "data" section.
{

"record count": 2,

"success_count": 1,

"failure count": 1,

"data": {

"IBLPN 1": "VGhpcyBpcyBaUEwgY29kzZQ=="
}I

"details": {

"IBLPN 2": "Some error message."

}

}

Print Pallet Label

GET.../wms/lgfapi/v10/print/label/pallet/?label designer code=foo
Returns the ZPL representation of the label
POST .../wms/lgfapi/v10/print/label/pallet

Submits the label for printing

100
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

The “parameters” section of the request body is required in addition to the “options” section outlined below. One or
more parameters are used to determine the order(s) for which the operation will be applied.

Category Name Type Required GET Request POST Request Comments
options label_designer_ string X X X Label designer
code template to be

printed

options printer_name string X Default's to
cwuser.default_
label_printer.

options label_count integer X Number of labels

to print. Must be
greater than O.
Default = 1.
API Filters
« Functions like a bulk operation for identifying one or more IBLPN(s) to be printed:
o id
- Including "in" lookup
o facility_id
o company_id
o container_nbr
- Including "in" lookup

Example Query String for GET

GET.../wms/lgfapi/v10/print/label/pallet/?
label designer code=foo&facility id code=FAClé&company id code=COMlépallet nbr=palletl

Example Request Body for POST
{

"parameters": {
"facility id_code": "FAC1l",
"company id code": "COM1",

"pallet nbr": "palletl"

b,

"options": {

"label designer code": "label 1",
"printer name": "PRINTER1"

}

}

Response Body Data

On success, a 200 - OK status is returned
For a GET request, the ZPL data bill be base64 encoded in the "data" section.
{

"success_count": 1,

"failure count":0,

"data": {

"OBLPN_1": "VGhpcyBpcyBaUEwgY29kzQ=="
}

101
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

Report

These topics give descriptions for APIs that complete actions related to Reporting in the Warehouse.

Related Topics
« Custom Inventory Summary

Custom Inventory Summary

Allows you to execute the custom inventory summary report for only a single item per request. This request returns the
result set as a file attached to the response.

If output format is pipe-delimited, use the following:
GET.../report/custom inventory summary/?facility id code=FACl&company id code=COMlé&item code=ITEM1
If output format is XML use the following:

GET.../report/custom_inventory summary.xml?

item_code=<item code>&company id=<company id>&facility id=<facility id>

The “parameters” section of the request body is required in

Parameter Type Required Default Description
facility_id integer @ Required facility context.
facility_id__code string @ Required facility context.
company_id integer C Required company context.
company_id_code string C Required company context.
item_code string X Specific item for the report.
write_header_line_flg boolean False Include the header line with
field names?

- Either Yacility_id or Yacility_id__code ‘is required
- Either company_id ‘or company_id_code 'is required

Company Parameter

POST .../entity/company parm

This operation is used to add single or multiple company parameters.

102
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

If you have a new facility and you want to copy the same Company Parameters from your current facility, you can first
GET the list by querying the company_parm entity, then POST the applicable data to this operation for the target facility.

Example Body Request
{
"fields": {
"company id": 1,
"parm_key": "TEST_ PARM 001",
"parm_value": "test"
}
}

Facility Parameter

POST .../entity/facility parm

This operation is used to add single or multiple facility parameters.

If you have a new facility and you want to copy the same facility parameters from your current facility, you can first GET
the list by querying the facility_parm entity, then POST the applicable data to this operation for the target facility.

Example Body Request
{

"fields": {

"facility id": 1,
"prog_key": "FACILITY PARM",
"parm key": "TEST PARM 001",
"parm_value": "test"

}

}

SQL Selection (Rule Tree)

POST .../entity/sql_selection

This entity is unique in that the API will allow the user to create the entire rule tree in a single request instead of needing
the create and link each parent/child object individually (it can still be done this way if the user chooses to do so). This
is accomplished using the children 'list field. This is an abstract field that does not exists on the object itself, but rather
defines the parent_id ‘link, which will be handled by the APl automatically.

To illustrate a complex example, the following request body could be used to create this rule structure as seen from the
ul:

Example Body Request

{
"fields": {
"facility id": 1,

103
ORACLE

Oracle Warehouse Management Cloud Chapter 4

REST API Guide Supported Entity Operations

"sql_operator_id": 2,
"children": [

{

"column name_id": 107,
"sql_operator_id": 5,
"column value": "B"

} 4

{

"sql_operator_id": 1,
"children": [

{

"column_name id": 1379,
"sql_operator_id": 7,
"column value": "100"
} r

{

"column name id": 35,
"sql_operator_id": 7,
"column value": "50"

ettt iad

104
ORACLE

	Oracle Warehouse Management Cloud REST API Guide
	Preface
	Overview
	End User License Agreement
	Restful Web Services
	HTTP Requests
	HTTP Methods
	URI Format
	Login and Authentication
	Application Permissions

	Data Input Methodology
	GET/HEAD
	POST

	HTTP Response
	Status Codes
	Response Formats
	Response Data Encoding
	Response Data Formats
	Error Response
	Resource Representations

	Entity Module
	Supported Entities
	Entity Metadata
	Input Data Types
	Resource Result Set Filtering
	Supported Lookup Functions

	Resource Representations (GET)
	List
	Retrieve
	Resource Representation Data Conventions
	Hyperlink-Related Resource Representations
	Related Data Sets
	Field Selection
	Ordering

	Resource Existence and Modification (HEAD)
	“If-Modified-Since” HTTP Request Header
	Response Statuses

	Creating a Resource (POST)
	Input Data
	Data Structure
	Related Resources
	Response Statuses
	Validations
	Nested Related Objects
	Supported Entities

	Updating a Resource (PATCH)
	Input Data
	Response Statuses
	IB Shipment
	IB Shipment Detail
	Item Characteristics
	Load
	Location
	Order Header
	Order Detail
	Purchase Order Header
	Purchase Order Detail
	Work Order Header
	Work Order Kit
	Pallet
	Container, IBLPN, and OBLPN

	Entity Operations (GET/POST)
	Response Status
	Bulk Operations

	Supported Entity Operations
	Describe Entity
	Location
	Update Active Inventory
	Locate LPN or Pallet
	Location Size Type

	Inventory
	Delink Serial Numbers
	Get Inventory History

	Item
	Image Upload
	Item Image

	Putaway
	Putaway Priority
	Directed Putaway Location
	Putaway Type
	Putaway Type Calculation Rule

	Pick-Pack
	Pick Confirm
	Close LPN
	Wave Complete
	Get Next Pick

	Trailer
	First Available
	locate_to_yard
	remove_from_yard

	Load
	Check_In
	Check_Out
	Ship Load

	Container
	Get Sales Orders
	Lock Container
	Bulk Lock Container
	Unlock Container
	Bulk Unlock Container
	Palletize Container
	Depalletize Inbound / Outbound LPN

	Task
	Next Task

	IBLPN
	Direct Consume
	Modify Item Quantity
	Composite Create

	OBLPN
	mark_delivered
	create_from_iblpn
	Link OBLPN with asset

	Pallet
	Sort LPN
	Sort LPN Close Pallet

	Replenishment
	Replenish to Active
	Replenishment Zone

	Sales Order Header
	Get IBLPN(s)
	GET OBLPN(s)
	Bulk Lock
	Bulk Unlock

	Print
	Print Shipping Label
	Print LPN Label
	Print Pallet Label

	Report
	Custom Inventory Summary

	Company Parameter
	Facility Parameter
	SQL Selection (Rule Tree)

