Contents

Preface

<table>
<thead>
<tr>
<th>Audience</th>
<th>vi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventions</td>
<td>vi</td>
</tr>
<tr>
<td>Documentation Accessibility</td>
<td>vi</td>
</tr>
<tr>
<td>Related Resources</td>
<td>vii</td>
</tr>
</tbody>
</table>

1 What's New in Oracle Machine Learning on Autonomous Database

2 Get Started with Oracle Machine Learning Notebooks

<table>
<thead>
<tr>
<th>About Oracle Machine Learning Notebooks</th>
<th>2-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Machine Learning Notebooks Home Page</td>
<td>2-2</td>
</tr>
<tr>
<td>Get Started with Oracle Machine Learning Notebooks</td>
<td>2-3</td>
</tr>
<tr>
<td>Access Oracle Machine Learning Notebooks</td>
<td>2-4</td>
</tr>
<tr>
<td>Typical Workflow For Using Notebooks</td>
<td>2-5</td>
</tr>
</tbody>
</table>

3 Get Started with Project and Workspaces

<table>
<thead>
<tr>
<th>Create Projects</th>
<th>3-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create and Manage Workspaces and Projects</td>
<td>3-4</td>
</tr>
<tr>
<td>Grant Workspace Permissions</td>
<td>3-7</td>
</tr>
<tr>
<td>Typical Workspace Permission Types</td>
<td>3-9</td>
</tr>
</tbody>
</table>

4 Get Started with Notebooks for Data Analysis and Data Visualization

<table>
<thead>
<tr>
<th>About Oracle Machine Learning for Python</th>
<th>4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Oracle Machine Learning for R</td>
<td>4-2</td>
</tr>
<tr>
<td>About Notebooks</td>
<td>4-5</td>
</tr>
<tr>
<td>Create a Notebook</td>
<td>4-6</td>
</tr>
<tr>
<td>Run a Notebook with Python Interpreter</td>
<td>4-7</td>
</tr>
<tr>
<td>Run a Notebook with R Interpreter</td>
<td>4-11</td>
</tr>
</tbody>
</table>
Run a Notebook with SQL Interpreter 4-12
Edit Your Notebook 4-14
 Call the Markdown Interpreter and Generate Static html from Markdown Plain Text 4-17
 Export a Notebook 4-20
 Import a Notebook 4-22
 Create Check Box Forms in Notebooks 4-22
 Create Select Forms in Notebooks 4-23
 Create Text Input Forms in Notebooks 4-24
Version a Notebook 4-25
Save Notebooks as Templates 4-26
Set Output Format in Notebooks 4-26
 Output Formats Supported by SET SQLFORMAT Command 4-27
Use the Scratchpad 4-28
About Interpreter Bindings and Notebooks 4-34
 Set Interpreter Bindings for Notebooks 4-35
 Change Interpreter Bindings for Specific Paragraphs in a Notebook 4-36
 Verify Interpreter Bindings 4-39
Collaborate in Oracle Machine Learning 4-40

5 Use Templates to Collaborate with Users 5-1
 Use the Personal Templates 5-2
 Create Notebooks from Templates 5-2
 Share Notebook Templates 5-2
 Edit Notebook Templates Settings 5-2
 Use the Shared Templates 5-3
 Create Notebooks from Templates 5-3
 Edit Notebook Templates Settings 5-4
 Use the Example Templates 5-4
 Create a Notebook from the Example Templates 5-5
 Example Templates 5-5

6 Get Started with Jobs 6-1
 About Jobs 6-1
 Create Jobs to Schedule Notebooks 6-2
 View Job Logs 6-4

7 Administer Oracle Machine Learning 7-2
 Typical Workflow for Managing Oracle Machine Learning 7-2
 Manage OML Users 7-3
Preface

This document describes how to use Oracle Machine Learning and provides references to related documentation.

• Audience
 This document is intended for data scientists, developers, and business users.

• Conventions

• Documentation Accessibility

• Related Resources
 For more information, see these related resources.

Audience

This document is intended for data scientists, developers, and business users.

Conventions

The following text conventions are used in this document.

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td><code>monospace</code></td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>

Documentation Accessibility

For information about Oracle’s commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.
Related Resources

For more information, see these related resources.

- *Getting Started with Oracle Cloud*
- *Accessibility Guide for Oracle Cloud Services*
What's New in Oracle Machine Learning on Autonomous Database

Provides a summary of the latest enhancements and features for Oracle Machine Learning Notebooks on Oracle Autonomous Database.

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for cross-region Autonomous Data Guard</td>
<td>Oracle Machine Learning Notebooks provides cross-region Autonomous Data Guard support in newly provisioned and migrated databases.</td>
</tr>
</tbody>
</table>
Table 1-1 (Cont.) New Features

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
</table>
| Oracle Machine Learning repository migrated from shared database to each respective Oracle Autonomous Database instance. | The Oracle Machine Learning (OML) repository has been migrated from shared database to each respective Oracle Autonomous Database instance. The migration of the Oracle Machine Learning repository ensures:
 • That all OML objects such as tables, jobs, stored procedures, and metadata are moved to the appropriate Oracle Autonomous Database instance.
 • Provides support for Refreshable Clones, which enables cloning of the Oracle Machine Learning metadata as well. |

Note:

The migration of the Oracle Machine Learning (OML) repository is expected to be completed over a period of 30 days. In case you are not able to view the expected behavior after you clone your Oracle Autonomous Database, check again in a few days. Otherwise, you may contact Oracle Support for more information.

The OML repository version is mentioned in About in the `<user>` drop-down list on the top right corner of your Oracle Machine Learning Notebooks page. If the version is `1.0.0.0.0`, it indicates that the OML metadata is still in the shared database. If the version is `22.x`, it indicates that the OML repository has been migrated to your Oracle Autonomous Database instance.
Table 1-1 (Cont.) New Features

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Machine Learning Notebooks supported on all Oracle Autonomous Database clones</td>
<td>Oracle Machine Learning Notebooks is supported on all types of Oracle Autonomous Database clones, including:</td>
</tr>
<tr>
<td></td>
<td>• Full Clone: a new database is created with the data in the source database and metadata.</td>
</tr>
<tr>
<td></td>
<td>• Refreshable Clone: a read-only full clone is created that can be easily refreshed with the data from the source database</td>
</tr>
<tr>
<td></td>
<td>• Metadata Clone: a new database is created that includes all of the source database schema metadata, but not the source database data.</td>
</tr>
</tbody>
</table>

Note:

For a metadata clone, the Example Template notebooks are not supported.
Get Started with Oracle Machine Learning Notebooks

This section discusses how to get started with Oracle Machine Learning Notebooks, and use Apache Zeppelin-based machine learning notebooks where you can perform data exploration and data visualization, data preparation and machine learning.

- **About Oracle Machine Learning Notebooks**
 Oracle Machine Learning Notebooks is an Apache Zeppelin-based collaborative web-based interface that supports notebook creation, scheduled run, and versioning. You can document work using Markdown and run SQL and Python code for data exploration, visualization, and preparation, and machine learning model building, evaluation, and deployment.

- **Oracle Machine Learning Notebooks Home Page**
 The Oracle Machine Learning Notebooks home page is the default landing page when you log in to Oracle Machine Learning Notebooks. The home page provides you quick links to important interfaces, and the log of your high-level recent activities.

- **Get Started with Oracle Machine Learning Notebooks**
 Here is how you can get started with Oracle Machine Learning Notebooks.

- **Access Oracle Machine Learning Notebooks**
 You can access Oracle Machine Learning Notebooks from Autonomous Database.

- **Typical Workflow For Using Notebooks**
 To begin with Oracle Machine Learning Notebooks, refer to the tasks listed in the table as a guide.

Related Topics
- Algorithms

About Oracle Machine Learning Notebooks

Oracle Machine Learning Notebooks is an Apache Zeppelin-based collaborative web-based interface that supports notebook creation, scheduled run, and versioning. You can document work using Markdown and run SQL and Python code for data exploration, visualization, and preparation, and machine learning model building, evaluation, and deployment.

Key features of Oracle Machine Learning Notebooks:
- Allows collaboration among data scientists, business and data analysts, application and dashboard developers, Database Administrators, and IT professionals
- Leverages the scalability and performance of Oracle Autonomous Database Platform
- Supports scheduling notebooks as jobs for one-off and recurring running of notebooks
- Enables versioning of notebooks
- Supports interpreters for SQL, PL/SQL, Python, and Markdown
Oracle Machine Learning Notebooks Home Page

The Oracle Machine Learning Notebooks home page is the default landing page when you log in to Oracle Machine Learning Notebooks. The home page provides you quick links to important interfaces, and the log of your high-level recent activities.

Figure 2-1 Oracle Machine Learning Notebooks Home Page

In the home page, you can access:

- The How Do I help links to:
 - Get Started
 - Use AutoML
 - Deploy Models
 - Create Notebooks
 - Create Jobs
 - Manage Permissions
 - Try It
- The Quick Actions links to:
 - AutoML
 - Models
 - Scratchpad
 - Notebooks
 - Jobs
 - Examples
- The log of your Recent Activities.
- The application navigation by clicking ☰ on the top left corner of the home page.
• The options to select and create new projects, access recent projects, manage workspace, and set workspace permissions by clicking on the top right corner of the home page.
• The Recent Notebooks on the right pane of the home page.

Related Topics
• Notebooks
 The Notebooks page lists all the notebooks associated with the selected project. You can create, edit, and run your notebooks here.
• Jobs
 Jobs allow you to schedule the running of notebooks. In the Jobs page, you can create jobs, duplicate jobs, start and stop jobs, delete jobs, and monitor job status by viewing job logs, which are read-only notebooks.
• Examples
 The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

Get Started with Oracle Machine Learning Notebooks

Here is how you can get started with Oracle Machine Learning Notebooks.

1. Request access to Oracle Machine Learning Notebooks. Contact your Service Administrator to provide access to your Oracle Machine Learning Notebooks account.
2. Access the Oracle Machine Learning Notebooks account by using your credentials. In case you forget your password, then request the Administrator to reset it.

Note:
Once you receive your new password, you must change it immediately. Refer to the Oracle Machine Learning password policy for more information.

3. Once you log in for the first time, a workspace and project will be created for you. You can start creating your notebook and assign it to the default project and workspace. You can also create your own project and workspace.

Note:
If you are using Oracle Cloud Free Tier, then you have to provision an Oracle Autonomous Database. For more information, see Provision Autonomous Database.

Related Topics
• OML Notebooks Interactive Tour
• About Oracle Machine Learning Password Policy
 All Oracle Machine Learning users must follow the password policy to create a strong and secured password.
Access Oracle Machine Learning Notebooks

You can access Oracle Machine Learning **Notebooks** from Autonomous Database.

To access Oracle Machine Learning Notebooks from the Autonomous Database:

1. Select your Autonomous Database instance and on the Autonomous Database details page click **Database Actions**.

2. On the Database Actions page, go to the **Development** section and click **Oracle Machine Learning**. The Oracle Machine Learning sign in page opens.

3. On the Oracle Machine Learning sign in page, enter your username and password.

4. Click **Sign In**.

This opens the Oracle Machine Learning user application.

- **About Oracle Machine Learning Password Policy**
 All Oracle Machine Learning users must follow the password policy to create a strong and secured password.
About Oracle Machine Learning Password Policy

All Oracle Machine Learning users must follow the password policy to create a strong and secured password.

When changing or modifying your Oracle Machine Learning password, ensure that you follow these conditions:

- The password must be between 12 and 30 characters long. It must include at least one uppercase letter, one lowercase letter, and one numeric character.
- The password cannot contain the username.
- The password cannot be one of the last 4 passwords used for the same username.
- The password cannot contain the double quote ("), character.
- The password must not be the same password that is set less than 24 hours ago.

Typical Workflow For Using Notebooks

To begin with Oracle Machine Learning Notebooks, refer to the tasks listed in the table as a guide.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create workspaces</td>
<td>Create Projects and Workspaces</td>
</tr>
<tr>
<td>Create projects</td>
<td>Create Projects and Workspaces</td>
</tr>
<tr>
<td>Create notebooks</td>
<td>Create a Notebook</td>
</tr>
<tr>
<td>Run a Notebook with Python Interpreter</td>
<td>Run a Notebook with Python Interpreter</td>
</tr>
<tr>
<td>Use the Scratchpad</td>
<td>Use the Scratchpad</td>
</tr>
<tr>
<td>Create jobs to schedule notebooks</td>
<td>Create Jobs to Schedule Notebook</td>
</tr>
</tbody>
</table>

Related Topics
- **Grant Workspace Permissions**
 You can collaborate with other users in Oracle Machine Learning by granting permissions to access your workspace. Your workspace contains your projects and notebooks.
Get Started with Project and Workspaces

A project is a container for storing your notebooks and other objects such as dashboards and so on. A workspace is a virtual space where your projects reside, and multiple users with the appropriate permission type can work on different projects.

- **Create Projects**
 A project is a container for your notebooks, and a workspace is a container for your projects. While you may own many projects, other workspaces and projects may be shared with you.

- **Create and Manage Workspaces and Projects**
 You can create and manage new projects and workspaces, provide access to your workspace, manage permissions for users, and edit and delete workspace.

- **Grant Workspace Permissions**
 You can collaborate with other users in Oracle Machine Learning by granting permissions to access your workspace. Your workspace contains your projects and notebooks.

Create Projects

A project is a container for your notebooks, and a workspace is a container for your projects. While you may own many projects, other workspaces and projects may be shared with you.

The initial workspace and the default project is created by the Oracle Machine Learning service automatically when you log in to Oracle Machine Learning for the first time. To create a new project:

1. On the top right corner of Oracle Machine Learning home page, click the project drop-down list. The project name and the workspace, in which the project resides, are displayed here. In this screenshot, the project name is `OMLUSER`, and the workspace name is also `OMLUSER`. If a default project exists, then the default project name is displayed here.

 Note:
 The last project that you have worked on is stored in the browser cache and is the default project. If you clear the cache, then no default exists and you must select a project.

You can create projects in two ways:
• Use the **New Project** option: Click the down arrow next to the **Project** field and then click **New Project**. The Create Project dialog opens.

• Use the **Create** option on the Workspaces page: Click the down arrow next to the **Project** field and click **Manage Workspace**. On the Manage Workspace page, under the **Projects in Workspace** section, click **Create**. The Create Project dialog opens.

2. In the **Create Project** dialog, enter the following:
Figure 3-1 Create Project dialog

Create Project

Name

Project A

Comment

Workspace:

OMLUSER Workspace

3. Click OK.

The project Project A is created and is assigned to the default workspace. In this example, the default workspace is OMLUSER.

Related Topics

- Create and Manage Workspaces and Projects
 You can create and manage new projects and workspaces, provide access to your workspace, manage permissions for users, and edit and delete workspace.
Create and Manage Workspaces and Projects

You can create and manage new projects and workspaces, provide access to your workspace, manage permissions for users, and edit and delete workspace.

The Workspaces page comprises two sections, one for workspaces and the other for projects.

Create and Manage Workspace

To create and manage workspaces:

1. On the top right corner of your home page, click the down arrow next to the Project field, and click Manage Workspaces. The Workspaces page opens.
2. On the Workspaces page, you can create and manage workspaces and projects. To create and manage workspaces:

- On the upper section for workspace, click **Create** to create new workspace. In the Create Workspace dialog, enter a name for the workspace and click **OK**.
- Click **Edit** to edit the selected workspace. In the Edit Workspace dialog, you can edit the workspace name, and click **OK**.
- Click **Delete** to delete the selected workspace. Click **OK** to confirm the deletion of the selected workspace.
- Click **Permissions** to grant permissions to the selected users to access the workspace. In the Workspace Permission dialog, you can also delete users and modify their permissions.

Create and Manage Projects

You can create and manage projects in the Projects in Workspaces section on the Workspaces page.

- To create and manage projects:
1. On the upper section for workspace, click on the workspace in which you want to create the project.

2. On the lower section for projects, click **Create** to create a new project. The Create Project dialog opens. Enter a project name, enter comments if any, and click **OK**. Note that the Workspace field displays the workspace that you selected on the upper section.

3. Click on the project that you want to modify. The following options are enabled.
 - Click **Edit** to change the project name.
 - Click **Delete** to delete the selected project from the workspace.
 - Click **Move** to move the selected project to another workspace.
Grant Workspace Permissions

You can collaborate with other users in Oracle Machine Learning by granting permissions to access your workspace. Your workspace contains your projects and notebooks.

By granting different types of permissions such as Manager, Developer, and Viewer, you can allow another user to view your workspace and perform different tasks in your projects and notebooks such as edit, create, update, delete, run, view notebooks and so on. For more information about the permission types, see About Workspace Permission Types.

⚠️ Caution:
If you grant the permission type Manager or Developer, then the user can also drop tables, create tables, and run any scripts at any time on your account. The user with Viewer permission type can only view your notebooks, and is not authorized to run or make any changes to your notebooks.

To grant permission to another user:

1. On the top right corner of Oracle Machine Learning home page, click the project and workspace drop-down list and select Workspace Permission.
 The Permissions dialog box opens.
2. In the Permissions dialog box, select a user from the Username drop-down list.
3. In the **Permissions** drop-down list, select the permission type you want to grant to the selected user.
 - **Manager**
 - **Developer**
 - **Viewer**

4. Click **Add**.
The selected user is granted the assigned permission. The user name is displayed in the Permissions dialog box, along with the permission type.

5. Click **OK**. This completes the task of granting permission to a user. To delete a user and the associated permission, select the user and click **Delete**.

- **About Workspace Permission Types**
 Oracle Machine Learning allows three types of permissions. Depending on the permission type, you can allow the user to view or perform different tasks in your workspace, projects, and notebooks.

About Workspace Permission Types

Oracle Machine Learning allows three types of permissions. Depending on the permission type, you can allow the user to view or perform different tasks in your workspace, projects, and notebooks.

The permissions are privileges granted to shared objects through workspace. Here, operations that are allowed on shared objects, for example notebooks, are discussed. For instance, the user to whom the Developer permission is granted can only view scheduled jobs on shared notebooks; he cannot run these jobs. However, the user with Developer permission can always view and run scheduled jobs on notebooks that are created by him. The three types of permissions are listed in the following table along with the actions that are allowed.

<table>
<thead>
<tr>
<th>Permission Types</th>
<th>Actions based on permission</th>
</tr>
</thead>
</table>
| Manager | • **Project:** Create, update, view and delete.
 • **Workspace:** View only.
 • **Notebooks:** Create, update, duplicate, run, export, import, and delete.
 • **Jobs:** Schedule and run jobs. |
| Developer | • **Project:** View only.
 • **Workspace:** View only.
 • **Notebooks:** Create, update, run, duplicate, import, export, and delete notebooks.
 • **Jobs:** View and run jobs of shared notebooks only. |
| Viewer | • **Project:** View only.
 • **Workspace:** View only.
 • **Notebooks:** View only.
 • **Jobs:** View jobs and job runs of shared notebooks only. |

Note:

A user with Developer permission can update, run, duplicate, import, export, and delete only those notebooks that were created by the user.

Note:

A user with Developer permission cannot create jobs for notebooks that are shared.
For tasks that can be performed by an Administrator, see: Oracle Machine Learning Administration Tasks
Get Started with Notebooks for Data Analysis and Data Visualization

Oracle Machine Learning Notebooks is based on Apache Zeppelin technology. You can write code, text, create visualizations, and perform data analytics including machine learning. Notebooks work with interpreters in the back-end. In Oracle Machine Learning, notebooks are available in a project, where you can create, edit, delete, and even save notebooks as templates.

- **About Oracle Machine Learning for Python**
 Oracle Machine Learning for Python (OML4Py) is a component of Oracle Autonomous Database, which includes Oracle Autonomous Data Warehouse (ADW), Oracle Autonomous Transaction Processing (ATP), and Oracle Autonomous JSON Database (AJD). By using Oracle Machine Learning Notebooks, you can run Python functions on data for data exploration and preparation while leveraging Oracle Database as a high-performance computing environment. Oracle Machine Learning Notebooks is available through Autonomous Data Warehouse (ADW), Autonomous Transaction Processing (ATP) and Autonomous JSON Database (AJD) services.

- **About Oracle Machine Learning for R**
 Oracle Machine Learning for R (OML4R) is a component of the Oracle Machine Learning family of products, which integrates R with Oracle Autonomous Database.

- **About Notebooks**
 The Notebooks page lists all the notebooks associated with the selected project. You can create, edit, and run your notebooks here.

- **Use the Scratchpad**
 The Scratchpad provides you convenient one-click access to a notebook for running SQL statements, PL/SQL scripts, and Python scripts that can be renamed. The Scratchpad is available on the Oracle Machine Learning Notebooks home page.

- **About Interpreter Bindings and Notebooks**
 An interpreter is a plug-in that allows you to use a specific data processing language backend.

- **Collaborate in Oracle Machine Learning**
 Two or more users can collaborate and share Oracle Machine Learning notebooks with other users.

About Oracle Machine Learning for Python

Oracle Machine Learning for Python (OML4Py) is a component of Oracle Autonomous Database, which includes Oracle Autonomous Data Warehouse (ADW), Oracle Autonomous Transaction Processing (ATP), and Oracle Autonomous JSON Database (AJD). By using Oracle Machine Learning Notebooks, you can run Python functions on data for data exploration and preparation while leveraging Oracle Database as a high-performance computing environment. Oracle Machine Learning Notebooks is available through Autonomous Data Warehouse (ADW), Autonomous Transaction Processing (ATP) and Autonomous JSON Database (AJD) services.
Oracle Machine Learning for Python (OML4Py) makes the open source Python scripting language and environment ready for the enterprise and big data. Designed for problems involving both large and small volumes of data, Oracle Machine Learning for Python integrates Python with Oracle Autonomous Database, including its powerful in-database machine learning algorithms, and enables deployment of Python code.

Use Oracle Machine Learning for Python to:

- Perform data exploration, data analysis, and machine learning using Python leveraging Oracle Database as a high performance compute engine
- Build and evaluate machine learning models and score data using those models from an integrated Python API using in-database algorithms
- Deploy user-defined Python functions through a REST interface with data-parallel and task-parallel processing

The Python interpreter uses Python 3.8.5 to process Python scripts in Oracle Machine Learning Notebooks. To use the interpreter, specify the `%python` directive at the beginning of the paragraph. The Python interpreter supports the following Python modules:

- cx_Oracle 7.3.0
- cycler 0.10.0
- joblib 0.14.0
- kiwisolver 1.1.0
- matplotlib 3.1.2
- numpy 1.18.1
- pandas 0.25.3
- pyparsing 2.4.0
- python-dateutil 2.8.1
- pytz 2019.3
- scikit_learn 0.22.1
- scipy 1.4.1
- six 1.13.0

Related Topics
- About Oracle Machine Learning for Python

About Oracle Machine Learning for R

Oracle Machine Learning for R (OML4R) is a component of the Oracle Machine Learning family of products, which integrates R with Oracle Autonomous Database.

Oracle Machine Learning for R makes the open source R scripting language and environment ready for enterprise and big data. It is designed for problems involving for both large and small data volumes. OML4R allows users to run R commands and scripts for statistical, machine learning, and perform visualization analyses on database tables and views using R syntax.
Oracle Machine Learning for R is available in Oracle Machine Learning Notebooks, currently available through Oracle Autonomous Database, including Autonomous Data Warehouse, Autonomous Transaction Processing, and Autonomous JSON Database. Oracle Machine Learning for R Embedded R Execution functionality can be deployed through SQL and REST APIs on Autonomous Database.

Use Oracle Machine Learning for R to:

- Perform data exploration and data preparation while seamlessly leveraging Oracle Database as a high-performance computing environment.
- Run user-defined R functions on database spawned and controlled R engines, with system-supported data-parallel and task-parallel capabilities.
- Access and use powerful in-database machine learning algorithms from R language.

To use the R interpreter, specify the `%r` directive at the beginning of the paragraph. The following R packages are installed to support Oracle Machine Learning for R.

Supported Oracle Machine Learning for R Proprietary R Packages

The supported Oracle Machine Learning for R proprietary R packages are:

- ORE_1.5.1
- OREbase_1.5.1
- OREcommon_1.5.1
- OREdm_1.5.1
- OREdplyr_1.5.1
- OREeda_1.5.1
- OREembed_1.5.1
- OREgraphics_1.5.1
- OREmodels_1.5.1
- OREpredict_1.5.1
-OREstats_1.5.1
- ORExml_1.5.1

Supported Open Source R Modules

The following open source R packages are supported by Oracle Machine Learning for R:

- R-4.0.5
- Cairo_1.5-15
- ROracle_1.4-1: DBI_1.1-2
- arules_1.7-3
- png_0.1-7
- randomForest_4.6-14
- statmod_1.4-36
Oracle Machine Learning for R Interpreter Requirements

The R interpreter requires the following open source R packages:

- Rkernel 1.3:
 - base64enc 0.1-3
 - cli 3.3.0
 - crayon 1.5.1
 - digest 0.6.29
 - ellipsis 0.3.2
 - evaluate 0.15
 - fansi 1.0.3
 - fastmap 1.1.0
 - glue 1.6.2
 - htmltools 0.5.2
 - IRdisplay 1.1
 - jsonlite 1.8.0
About Notebooks

The Notebooks page lists all the notebooks associated with the selected project. You can create, edit, and run your notebooks here.

You can perform the following tasks in the Notebooks page:

- To create a new notebook, select a project and click **Create**.
- To edit a notebook, select the notebook and click **Edit**. You can edit the notebook name, and add comments in the Edit Notebook dialog box.
- To create a copy of a notebook, select the notebook and click **Duplicate**. The duplicate copy of the selected notebook is created, and listed in the Notebooks page with the suffix _1 in the notebook name.
- To save a notebook as a template, select the notebook and click **Save as Template**. You can save the template in **Personal** or **Shared** under Templates.
- To delete a notebook, select it and click **Delete**.
- To import a notebook as **.json** files, click **Import**. Select the project and workspace in which to import the notebook.
- To create versions of a notebook, select it and click **Version**. You can experiment with your notebook by creating versions of it, and revert to an older version by clicking **Revert Version**.
- To open a notebook and run it, click the notebook. The notebook opens in the edit mode.
Create a Notebook

A notebook is a web-based interface for data analysis, data discovery, data visualization and collaboration.

Whenever you create a notebook, it has an interpreter settings specification. The notebook contains an internal list of bindings that determines the order of the interpreter bindings. A notebook comprises paragraphs which is a notebook component where you can write SQL statements, run PL/SQL scripts, and run Python commands. A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the text. This information is sent to the interpreter to be executed. In the output section, the results of the interpreter are provided.

To create a notebook:

1. In the Oracle Machine Learning home page, click Notebooks. The Notebooks page opens.

2. In the Notebooks page, click Create.
 The Create Notebook window appears.

Run a Notebook with Python Interpreter

To run Python commands in a notebook, you must first connect to the Python interpreter. To use OML4Py, you must import the oml module.

Run a Notebook with R Interpreter

To run R functions in an Oracle Machine Learning notebook, you must first connect to the R interpreter.

Run a Notebook with SQL Interpreter

A notebook can contain many paragraphs which is a notebook component where you can write SQL statements, run PL/SQL scripts, and run Python commands. You can run one or all the paragraphs in a notebook.

Edit Your Notebook

Upon creating a notebook, it opens automatically, presenting you with a single paragraph using the default %sql interpreter. You can change the interpreter by explicitly specifying one of %script, %python, %sql, %r or %md

Version a Notebook

You can version or create a backup a notebook, experiment on it, and revert to the original notebook, if required.

Save Notebooks as Templates

You can save an existing notebook as a template in Personal or in Shared.

Set Output Format in Notebooks

Oracle Machine Learning Notebooks allow you to preformat query output in notebooks.

Related Topics

• About Interpreter Bindings and Notebooks
 An interpreter is a plug-in that allows you to use a specific data processing language backend.

Create a Notebook

A notebook is a web-based interface for data analysis, data discovery, data visualization and collaboration.

Whenever you create a notebook, it has an interpreter settings specification. The notebook contains an internal list of bindings that determines the order of the interpreter bindings. A notebook comprises paragraphs which is a notebook component where you can write SQL statements, run PL/SQL scripts, and run Python commands. A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the text. This information is sent to the interpreter to be executed. In the output section, the results of the interpreter are provided.

To create a notebook:

1. In the Oracle Machine Learning home page, click Notebooks. The Notebooks page opens.

2. In the Notebooks page, click Create.
 The Create Notebook window appears.
3. In the **Name** field, provide a name for the notebook.
4. In the **Comments** field, enter comments, if any.
5. Click **OK**.

Your notebook is created and it opens in the notebook editor. You can now use it to run SQL statements, run PL/SQL scripts, and run Python commands. To do so, specify any one of the following directives in the input section of the paragraph:

- `%sql` - To call the SQL interpreter and run SQL statements
- `%script` - To call PL/SQL interpreter and run PL/SQL scripts
- `%md` - To call the Markdown interpreter and generate static html from Markdown plain text
- `%python` - To call the Python interpreter and run Python scripts
- `%r` - To call the R interpreter and run R scripts.

Run a Notebook with Python Interpreter

To run Python commands in a notebook, you must first connect to the Python interpreter. To use OML4Py, you must import the `oml` module.

In an Oracle Machine Learning notebook, you can add multiple paragraphs, and each paragraph can be connected to different interpreters such as SQL or Python. This example shows you how to:

- Connect to a Python interpreter to run Python commands in a notebook
- Import the Python modules - `oml`, `matplotlib`, and `numpy`
- Check if the `oml` module is connected to the Oracle Database

Note:

`z` is a reserved keyword and must not be used as a variable in `%python` paragraphs in Oracle Machine Learning Notebooks.

Assumption: The example assumes that you have created a new notebook named **Py Note**.

1. Open the Py Note notebook and click the interpreter bindings icon. View the available interpreter bindings.
2. To connect to the Python interpreter, type `%python`

 You are now ready to run Python scripts in your notebook.
3. To use OML4Py module, you must import the `oml` module. Type the following Python command to import the `oml` module, and the click run icon. Alternatively, you can press Shift+Enter keys to run the notebook.

   ```python
   import oml
   ```
4. To verify if the `oml` module is connected to the Database, type:

   ```python
   oml.isconnected()
   ```
Once your notebook is connected, the command returns `TRUE`. The notebook is now connected to the Python interpreter, and you are ready to run python commands in your notebook.

Example to demonstrate the use of the Python modules - `matplotlib` and `numpy`, and use random data to plot two histograms.

5. Type the following commands to import the modules:

   ```python
   %python
   import oml
   oml.isconnected()
   ```

 Took 13 sec. Last updated by TEST at April 09 2020, 11:46:14 AM.

   ```python
   %python
   ```

 Once your notebook is connected, the command returns `TRUE`. The notebook is now connected to the Python interpreter, and you are ready to run python commands in your notebook.

 Example to demonstrate the use of the Python modules - `matplotlib` and `numpy`, and use random data to plot two histograms.

 6. Type the following commands to compute and render the data in two histograms.

   ```python
   list1 = np.random.rand(10)*2.1
   list2 = np.random.rand(10)*3.0
   ```
In this example, the commands import two Python module to compute and render the data in two histograms list1 and list2.

7. Click Run.
The output section of the paragraph which contains a charting component displays the results in two histograms - list1 and list2, as shown in the screenshot.
Run a Notebook with R Interpreter

To run R functions in an Oracle Machine Learning notebook, you must first connect to the R interpreter.

An Oracle Machine Learning notebook supports multiple languages. For this, you must create a notebook with some paragraphs to run SQL queries, and other paragraphs to run R and Python scripts. To run a notebook in different scripting languages, you must first connect the notebook paragraphs with the respective interpreters such as R, Python, or SQL. This example shows how to:

- Connect to the R interpreter to run R commands in a notebook.
- Verify the connection to Oracle Autonomous Database, and
- Load the ORE libraries

1. To connect to the R interpreter, type the following directive at the beginning of the notebook paragraph, and press Enter:

   ```r
   %r
   ```

 To know more about interpreters, see About Interpreter Bindings and Notebooks and Change Interpreter Bindings for Specific Paragraphs in a Notebook.

2. To verify the database connection, type the following command and press Enter:

   ```r
   ore.is.connected()
   ```

 Once your notebook is connected, the command returns `TRUE`, as shown in the screenshot here. The notebook is now connected to the R interpreter, and you are ready to run R commands in your notebook.

 Figure 4-1 Test Database Connection

3. To import R Libraries, run the following commands:

   ```r
   library(ORE)
   library(OREdplyr)
   ```

 Once the packages are loaded successfully, the list of ORE packages are displayed as shown in the screenshot here. Scroll down to view the entire list.
Run a Notebook with SQL Interpreter

A notebook can contain many paragraphs which is a notebook component where you can write SQL statements, run PL/SQL scripts, and run Python commands. You can run one or all the paragraphs in a notebook.

A paragraph has an input section and an output section. In the input section, specify the interpreter to run along with the text. This information is sent to the interpreter to be run. In the output section, the results of the interpreter are provided.

You can use the following directives in a notebook paragraph:

- `%python` - Supports Python scripts. Type `%python` at the beginning of the paragraph to connect to the Python interpreter.
- `%sql` - Supports standard SQL statements. In `%sql` the results of a `SELECT` statement are directly displayed in a Zeppelin table viewer, with access to other visualization options. Use the options in the chart settings to perform groupings, summation, and other operations.
- `%script` - Supports both SQL statements and PL/SQL. In `%script`, the results of a `SELECT` statement are provided as text string output.
- `%md` - Supports Markdown markup language.

Note:

To run a **Group By** on all your data, then it is recommended to use SQL scripts to do the grouping in the database, and return the summary information for charting in the notebook. Grouping at the notebook level works well for small sets of data. If you pull too much data to the notebook, you may encounter issues due to insufficient memory. You can set the row limit for your notebook by using the option **Render Row Limit** in the Connections Group page.
To fetch and visualize data in a notebook:

1. In the Notebook page, click the notebook that you want to run. The notebook opens in edit mode.

2. Type `%SQL` to call the SQL interpreter, and press Enter. Your notebook is now ready to run SQL statements.

3. Type the SQL statement to fetch data from an Oracle Database. For example, type `SELECT * FROM TABLENAME` and click . Alternatively, press Shift+Enter keys to run the notebook.

 ![Note:](image)

 Notebooks must be opened as a regular user, that is, a non-administrator user. The **Run** notebook option is not available to the Administrator.

 This fetches the data in the notebook.

4. The data is displayed in the output of the paragraph. The results of the interpreter appear in the output section. The output section of the paragraph comprises a charting component that displays the results in graphical output. The chart interface allows you to interact with the output in the notebook paragraph. You have the option to run and edit single a paragraph or all paragraphs in a notebook.

 For Table Options, click **settings** and select:
 - **useFilter**: To enable filter for columns.
 - **showPagination**: To enable pagination for enhanced navigation.
 - **showAggregationFooter**: To enable a footer to display aggregated values.

 You can also sort the columns by clicking the down arrow next to the column name.
To visualize the tabular data, click the respective icons for each of the graphical representation, as shown here:

- Click **[]** to represent the data in a Bar Chart.
- Click **[]** to represent the data in a Pie Chart.
- Click **[]** to represent the data in an Area Chart.
- Click **[]** to represent the data in a Line Chart.
- Click **[]** to represent the data in a Scatter Chart.

Related Topics

- **Edit Oracle Database Interpreter Connection**
 When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

- **Edit Oracle Database Interpreter Connection**
 When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

Edit Your Notebook

Upon creating a notebook, it opens automatically, presenting you with a single paragraph using the default `%sql` interpreter. You can change the interpreter by explicitly specifying one of `%script`, `%python`, `%sql`, `%r` or `%md

Set the context with a project with which your notebook is associated.

You can edit an existing notebook in your project. To edit an existing notebook:

1. In Oracle Machine Learning home page, select the project in which your notebook is available.
2. Go to the Oracle Machine Learning navigator, and select **Notebooks**. Alternatively, you can click the **Notebooks** quick link in the home page.
 In the right pane, all notebooks that are available in the project are listed.
3. Click the notebook that you want to open and edit.
The selected notebook opens in edit mode.

4. In the edit mode, you can use the Oracle Machine Learning notebooks toolbar options to run code in paragraphs, for configuration settings, and display options.

Figure 4-3 Notebook toolbar

You can perform the following tasks:

- Write code to fetch data
- Click ![run button] to run one or all paragraphs in the notebook.
• Click to hide all codes from all the paragraphs in the notebook. Click it again to display the codes.

• Click to hide all outputs from all the paragraphs in the notebook. Click it again to view the outputs.

• Click to remove all outputs from all the paragraphs in the notebook. To view the output, click the run icon again.

• Click to delete all the paragraphs in the notebook.

• Click to export the notebook.

• Click to search any information in the codes present in the notebook.

• Click to view the list of keyboard shortcuts.

• Click to set the order for interpreter bindings for the notebook.

• Click to select one of the three notebook display options.
 – Click default to view the codes, output, and metadata in all paragraphs in the notebook.
 – Click Simple to view only the code and output in all paragraphs in the notebook. In this view, the notebook toolbar and all edit options are hidden. You must hover your mouse to view the edit options.
 – Click Report to view only the output in all paragraphs in the notebook.

• Click to access paragraph specific edit options such as clear output, remove paragraph, adjust width, font size, run all paragraphs above or below the selected paragraph and so on.

• Add dynamic forms such as the Text Input form, Select form, Check box form for easy selection of inputs and easy filtering of data in your notebook. Oracle Machine Learning supports the following Apache Zeppelin dynamic forms:
 – Text Input form — Allows you to create a simple form for text input.
 – Select form — Allows you to create a form containing a range of values that the user can select.
 – Check Box form — Allows you to insert check boxes for multiple selection of inputs.
Note:
The Apache Zeppelin dynamic forms are supported only on SQL interpreter notebooks.

5. Once you have finished editing the notebook, click **Back**.
 This takes you back to the Notebook page.
 - **Call the Markdown Interpreter and Generate Static html from Markdown Plain Text**
 Use the Markdown interpreter and generate static html from Markdown plain text.
 - **Export a Notebook**
 You can export a notebook in Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.
 - **Import a Notebook**
 You can import notebooks across Pluggable Databases (PDBs) into your workspace. You can also import Jupyter notebooks into Oracle Machine Learning.
 - **Create Check Box Forms in Notebooks**
 The Check Box Form supports multiple selection of inputs in a paragraph. The inputs are available as check box options in the notebook.
 - **Create Select Forms in Notebooks**
 The Select Form allows you to select input values from a list of values, and dynamically retrieve the selected values as defined in the paragraph.
 - **Create Text Input Forms in Notebooks**
 The Text Input form allows you to dynamically retrieve values as defined in the notebook.

Call the Markdown Interpreter and Generate Static html from Markdown Plain Text

Use the Markdown interpreter and generate static html from Markdown plain text.

To call the Markdown interpreter and generate static html from Markdown plain text:

1. In your notebook, type `%md` and press Enter.
2. Type "Hello World!" and click Run. The static html text is generated, as seen in the screenshot below.

```
%md
"Hello World"
```

"Hello World"

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:24:53 PM.

3. You can format the text in bold. To display the text in bold, write the same text inside two asterisks pair and click Run.
4. To display the text in italics, write the same text inside an asterisk pair or underscore pair as shown in the screenshot, and click Run.

```
%md
**Hello World!**

Hello World!
```

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:04:59 PM.

```
%md
_*Hello World!*_

Hello World!
```

Took 2 secs. Last updated by OMLUSER at September 08 2021, 12:04:45 PM.

```
%md
_Hello World!_

Hello World!
```

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:05:13 PM.

5. To display the text in a bulleted list, prefix *(asterisk)* to the text, as shown in the screenshot below:
6. To display the text in heading1, heading 2 and heading 2, prefix # (hash) to the text and click Run. For H1, H2, and H3, you must prefix one, two, and three hashes respectively.

```%md
* Hello World
* We welcome you

- Hello World
- We welcome you

Hello World!
Hello World!
Hello World!
```

Took 0 secs. Last updated by OMLUSER at September 08 2021, 12:12:49 PM.
Export a Notebook

You can export a notebook in Zeppelin format (.json) file and in Jupyter format (.ipynb), and later import them in to the same or a different environment.

To export a notebook:

1. In the Notebooks page, select the notebooks that you want to export. You have the option to export one or more or all the notebooks.

2. On the top panel of the notebook editor, click Export and then click any one of the following options:
Notebooks

- **Notebooks to Export** - To export notebooks, click:
 - **All** - To export all the notebooks.
 - **Selected** - To export the selected notebooks.
- **Format** - Select the format in which you want to export your notebook:
 - **Zeppelin** - Exports the notebook as a .json (JavaScript Object Notation) file.
 - **Jupyter** - Exports the notebook as a .ipynb file.

The exported notebooks are saved either as .json files or .ipynb files in a zipped folder.
Related Topics

- About Interpreter Bindings and Notebooks
 An interpreter is a plug-in that allows you to use a specific data processing language backend.

Import a Notebook

You can import notebooks across Pluggable Databases (PDBs) into your workspace. You can also import Jupyter notebooks into Oracle Machine Learning.

Oracle Machine Learning supports the import of both Zeppelin (.json) and Jupyter (.ipynb) notebooks.

Note:
Starting in Oracle Database 20c, “database” refers specifically to the data files of a multitenant container database (CDB), pluggable database (PDB), or application container.

To import a notebook:
1. In Oracle Machine Learning home page, click Notebooks.
2. In the Notebooks page, click Import.
 This opens the File Upload dialog. Browse and select the notebook that you want to import.

Note:
You must have the notebook saved as a .json file to import it. You can import notebooks exported from non-Oracle Apache Zeppelin environments, but only paragraphs types that are supported may be run.

3. In the File Upload dialog, browse and select the .json file and click Open.
 This imports the notebook file into your workspace.
4. Click the imported notebook to open it. In the notebook page, click the gear icon to view the interpreter bindings.

Related Topics

- About Interpreter Bindings and Notebooks
 An interpreter is a plug-in that allows you to use a specific data processing language backend.
- Database and Instance

Create Check Box Forms in Notebooks

The Check Box Form supports multiple selection of inputs in a paragraph. The inputs are available as check box options in the notebook.

To create a Check Box Form:
1. Open the notebook in which you want to add the Check Box Form.

2. In a SQL statement, define the Check Box form by using the syntax:
 \[\{ \text{checkbox:formName=defaultValue1|defaultValue2...,option1|option2...} \} \]

 For example, run the SQL statement:
 \[
 \text{SELECT } \{ \text{checkbox:whichcolumn=OWNER|OBJECT_TYPE, OWNER|OBJECT_NAME|OBJECT_TYPE|CREATED|STATUS} \} \text{ FROM ALL_OBJECTS WHERE OBJECT_TYPE IN ('VIEW', 'TABLE', 'INDEX', 'SYNONYM');}
 \]

 In this example,
 - The Check Box form is \textbf{WhichColumn}
 - The multiple selection options available in the check boxes are \textbf{OWNER}, \textbf{OBJECT_NAME}, \textbf{OBJECT_TYPE}, \textbf{CREATED}, and \textbf{STATUS}
 - The fields \textbf{OWNER} and \textbf{OBJECT_TYPE} are defined as default
 - The table name is \textbf{ALL_OBJECTS}
 - The columns that are configured for display are \textbf{OWNER}, \textbf{OBJECT_NAME}, \textbf{OBJECT_TYPE}, \textbf{CREATED}, and \textbf{STATUS}

3. Run the notebook. The Check Box form called \textbf{WhichForm} is available in the notebook, as shown in the screenshot.

4. Create Select Forms in Notebooks

 The Select Form allows you to select input values from a list of values, and dynamically retrieve the selected values as defined in the paragraph.

 To create a Select form:
 1. Open the notebook in which you want to add the text input form.
 2. In a SQL statement, define the Select form by using the syntax:
 \[\{ \text{formName=defaultValue,option1|option2...} \} \]

 For example, run the SQL statement:
 \[
 \text{SELECT * FROM ALL_OBJECTS WHERE OBJECT_TYPE = '}${OBJ=INDEX,INDEX|TABLE|VIEW|SYNONYM}';}
 \]
In this example,

- The form name is `obj`
- The list of available values are `INDEX, TABLE, VIEW, SYNONYM`.
- The table name is `ALL_OBJECTS`
- The column name is `OBJECT_TYPE`

Select any values from the drop-down list in the `obj` form. The selected value will be retrieved in the `OBJECT_TYPE` column in the `ALL_OBJECTS` table.

Create Text Input Forms in Notebooks

The Text Input form allows you to dynamically retrieve values as defined in the notebook.

To create a Text Input form:

1. Open the notebook in which you want to add the Text Input form.
2. In a SQL statement, define the Text Input form by using the syntax:
   ```sql
   ${formName}
   ```
 For example, run the SQL statement:
   ```sql
   SELECT * FROM ALL_OBJECTS WHERE OBJECT_TYPE = '${OBJ}';
   ```
 In this example,
 - The form name is `obj`
 - The table name is `ALL_OBJECTS`
 - The column name is `OBJECT_TYPE`

Here, the text form `obj` is created for the column `OBJECT_TYPE` in the table `ALL_OBJECTS`. You can enter different values in the form field `obj` and run the notebook to retrieve the corresponding values in the column `OBJECT_TYPE`.

3. Run the paragraph. The notebook now displays the text input form field `obj`, as shown in the screenshot. You can enter values in the `obj` field, and run the notebook to retrieve the corresponding values for the column `OBJECT_TYPE` in the table `ALL_OBJECTS`.

 - If you enter `TABLE` in the `obj` field, and run the notebook, then the notebook retrieves `TABLE` in the column `OBJECT_TYPE`, as shown in the screenshot.

 - If you enter `VIEW` in the `obj` form field and run the notebook, then the notebook retrieves the value `VIEW` in the column `OBJECT_TYPE`, as shown in the screenshot.
You can also assign default values in the form by using the syntax:

```sql
${formName=defaultValue}
```

To assign a default value to the Text Input form, modify the SQL statement to:

```sql
SELECT * FROM ALL_OBJECTS WHERE OBJECT_TYPE = '${obj=TABLE}'
```

Here, the default value assigned to the form is `TABLE`. Once you run the paragraph, the default value `TABLE` will be retrieved in the column `OBJECT_TYPE`, as shown in the screenshot.

Version a Notebook

You can version or create a backup a notebook, experiment on it, and revert to the original notebook, if required.

To version a notebook:

1. In the Notebooks page, select the notebook that you want to version and click **Version**. The Versions page opens.
2. In the Versions page for the selected notebook, click **+ Version**. The Create Versions dialog box opens.
3. In the Create Versions dialog box, enter comments for the specific version of your notebook, and click **OK**.
4. The versioned notebook is now listed in the Versions page. You can perform the following tasks:
 - Click **Revert Version** to restore the older version of your notebook.
 - Click **Delete** to delete the selected version of your notebook.
 - Click **New Notebook** to create a new notebook from the selected notebook version.
Save Notebooks as Templates

You can save an existing notebook as a template in Personal or in Shared.

To save a notebook as a template:

1. In the Notebooks page, select the notebook that you want to save as template and click **Save as Template**.
 The Save as Template dialog box opens.
2. In the **Name** field, enter a name for the notebook template.
3. In the **Comments** field, enter comments, if any.
4. In the **Tags** field, enter tags for the template.
5. In Save To, select:
 - **Personal**: If you want to save this notebook template to Personal such that only your account can view or use this notebook.
 - **Shared**: If you want to save and share this notebook template such that other users can view and create notebooks from this template that they can run and edit.

Set Output Format in Notebooks

Oracle Machine Learning Notebooks allow you to preformat query output in notebooks.

To preformat query output, you must use the command **SET SQLFORMAT** as follows:

1. Open a notebook in Oracle Machine Learning.
2. Type the command:
 %script
 SET SQLFORMAT format_option
 For example, if you want the output in ansiconsole format, then type the command followed by the SQL query as:
 SET SQLFORMAT ansiconsole;
 SELECT * FROM HR.EMPLOYEES;
 Here, the output format is **ansiconsole**, and the table name is **HR.EMPLOYEES**.

 Note:
 This formatting is available for the Script interpreter. Therefore, you must add the prefix %script as shown in this example.

 - **Output Formats Supported by SET SQLFORMAT Command**
 By using the **SET SQLFORMAT** command, you can generate the query output in a variety for formats.
Output Formats Supported by SET SQLFORMAT Command

By using the SET SQLFORMAT command, you can generate the query output in a variety for formats.

Note:
These output formats are available for the Script interpreter. Therefore, you must include the prefix %script.

The available output formats are:

- **CSV** — The CSV format produces standard comma-separated variable output, with string values enclosed in double quotes. The syntax is:

  ```
  %script
  SET SQLFORMAT CSV
  ```

- **HTML** — The HTML format produces the HTML for a responsive table. The content of the table changes dynamically to match the search string entered in the text field. The syntax is:

  ```
  %script
  SET SQLFORMAT HTML
  ```

- **XML** — The XML format produces a tag based XML document. All data is presented as CDATA tags. The syntax is:

  ```
  %script
  SET SQLFORMAT XML
  ```

- **JSON** — The JSON format produces a JSON document containing the definitions of the columns along with the data that it contains. The syntax is:

  ```
  %script
  SET SQLFORMAT JSON
  ```

- **ANSICONSOLE** — The ANSICONSOLE format resizes the columns to the width of the data to save space. It also underlines the columns, instead of separate line of output. The syntax is:

  ```
  %script
  SET SQLFORMAT ANSICONSOLE
  ```

- **INSERT** — The INSERT format produces the INSERT statements that could be used to recreate the rows in a table. The syntax is:

  ```
  %script
  SET SQLFORMAT INSERT
  ```

- **LOADER** — The LOADER format produces pipe delimited output with string values enclosed in double quotes. The column names are not included in the output. The syntax is:

  ```
  %script
  ```
• FIXED — The FIXED format produces fixed width columns with all data enclosed in double-quotes. The syntax is:

```sql
SET SQLFORMAT FIXED
```

• DEFAULT — The DEFAULT option clears all previous SQLFORMAT settings, and returns to the default output. The syntax is:

```sql
SET SQLFORMAT DEFAULT
```

Use the Scratchpad

The Scratchpad provides you convenient one-click access to a notebook for running SQL statements, PL/SQL scripts, and Python scripts that can be renamed. The Scratchpad is available on the Oracle Machine Learning Notebooks home page.

Use the Scratchpad

The Scratchpad provides you convenient one-click access to a notebook for running SQL statements, PL/SQL scripts, and Python scripts that can be renamed. The Scratchpad is available on the Oracle Machine Learning Notebooks home page.

Note:

The Scratchpad is a regular notebook that is prepopulated with four paragraphs - %sql, %script, , %python and %r.
After you run your scripts, the Scratchpad is automatically saved as a notebook by the default name **Scratchpad** in the Notebooks page. You can access it later in the Notebooks page. You can run all the paragraphs together or one paragraph at a time.

1. To open and use the scratchpad, click **Scratchpad** on the Oracle Machine Learning Notebooks home page under **Quick Actions**. The Scratchpad opens. The Scratchpad has three paragraphs each with the following directives:
 - `%sql` - Allows you to run SQL statements.
 - `%script` - Allows you to run PL/SQL scripts.
 - `%python` - Allows you to run Python scripts.
 - `%r` - Allows you to run R scripts.

 Figure 4-4 Scratchpad

2. To run SQL script:
 a. Go to the paragraph with the `%sql` invocation.
 b. Type the following command and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

```
SELECT * FROM SH.SALES;
```

In this example, the SQL statement fetches all of the data about product sales from the table SALES. Here, SH is the schema name, and SALES is the table name. Oracle Machine Learning fetches the relevant data from the database and displays it in a tabular format.
3. To run PL/SQL script:
 a. Go to the paragraph with the `@script` invocation.
 b. Enter the following PL/SQL script and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

   ```plsql
   CREATE TABLE small_table
   (
   NAME VARCHAR(200),
   ID1 INTEGER,
   ID2 VARCHAR(200),
   ID3 VARCHAR(200),
   ID4 VARCHAR(200),
   TEXT VARCHAR(200)
   );
   
   BEGIN
   FOR i IN 1..100 LOOP
   INSERT INTO small_table VALUES ('Name_'||i,
   i,'ID2_'||i,'ID3_'||i,'ID4_'||i,'TEXT_'||i);
   END LOOP;
   COMMIT;
   END;
   
   The PL/SQL script successfully creates the table SMALL_TABLE. The PL/SQL script in this example contains two parts:
   • The first part of the script contains the SQL statement `CREATE TABLE` to create a table named `small_table`. It defines the table name, table column, data types, and size. In this example, the column names are NAME, ID1, ID2, ID3, ID4, and TEXT.
   • The second part of the script begins with the keyword `BEGIN`. It inserts 100 rows in to the table `small_table`.  
   ```
Note:

When using the `CREATE` statement with a primary key, it fails and displays the error message Insufficient privileges. This error occurs due to lockdown profiles in the database. If you encounter this error, contact your database administrator or the designated security administrator to grant the required privileges.

Figure 4-6 PL/SQL Script in Scratchpad

4. To run python script:
 a. To use OML4Py, you must first import the `oml` module. `oml` is the OML4Py module that allows you to manipulate Oracle Database objects such as tables and views, call user-defined Python functions using embedded execution, and use the database machine learning algorithms. Go to the paragraph with `%python` directive. To import the `oml` module, type the following command and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

   ```python
   import oml
   ```

 b. To check if the `oml` module is connected to Oracle Database, type `oml.isconnected()` and click the Run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

   ```python
   oml.isconnected()
   ```

 c. You are now ready to run your Python script. Type the following Python code and click the run icon. Alternatively, you can press Shift+Enter keys to run the paragraph.

   ```python
   import matplotlib.pyplot as plt
   import numpy as np
   list1 = np.random.rand(10)*2.1
   ```
list2 = np.random.rand(10)*3.0

plt.subplot(1,2,1) # 1 line, 2 rows, index nr 1 (first position in subplot)
plt.hist(list1)
plt.subplot(1, 2, 2) # 1 line, 2 rows, index nr 2 (second position in subplot)
plt.hist(list2)
plt.show()

In this example, the commands import two python packages to compute and render the data in two histograms for list1 and list2. The Python packages are:

- Matplotlib - Python package to render graphs.
- Numpy - Python package for computations.
The two graphs for \texttt{list1} and \texttt{list 2} are generated by the python engine, as shown in the screenshot here.

5. After you have created and run your scripts in the Scratchpad, the Scratchpad is automatically saved as a notebook by the name default name \texttt{Scratchpad} in the Notebooks page. You can edit the name of the notebook and save it with the new name by clicking \texttt{Edit}.
About Interpreter Bindings and Notebooks

An interpreter is a plug-in that allows you to use a specific data processing language backend.

For the Zeppelin Notebooks in Oracle Machine Learning, you use the sql, pl/sql, python and r interpreters within an Oracle Database interpreter group, and the md (MarkDown) interpreter for plain text formatting syntax so that it can be converted to HTML.

Notebooks contain an internal list of bindings that define the order of the interpreter bindings in an interpreter group. The default order of interpreter bindings in the Oracle Database interpreter group is:

- **Low** - Provides the least level of resources for in-database operations, typically serial (non-parallel) execution. It supports the maximum number of concurrent in-database operations by multiple users. The interpreter with low priority is listed at the top of the interpreter list, and hence, is the default.

- **Medium** - Provides a fixed number of CPUs to execute in-database operations in parallel, where possible. It supports a limited number of concurrent users, typically 1.25 times the number of CPUs allocated to the pluggable database.

- **High** - Provides the highest level of CPUs to execute in-database operations in parallel, up to the number of CPUs allocated to the pluggable database. It offers the highest performance, but supports the minimum number of concurrent in-database operations, typically 3.

With respect to interpreter bindings, you can perform the following tasks:

- **Bind and unbind interpreters:** If you do not bind any specific interpreter to your notebook, then you get the error message:

 Not supported interpreter <name of interpreter>

- **Set and re-order interpreter bindings.** You may want to set and re-order interpreter bindings if you want to use a specific interpreter for a specific paragraph in a notebook. In that case, you have to select the specific interpreter for that paragraph.

- **Change the interpreter binding for any specific paragraph in a notebook**

You must note the interpreter binding order in the following scenarios:

- **Notebook creation:** When you create a notebook, the notebook inherits the initial interpreter binding order, which is low (default), medium, high.

- **Notebook import:** When importing a notebook, the notebook inherits the defined interpreter bindings. However, after you import a notebook, ensure to check the order of the interpreter bindings and that the required interpreters are selected.

- **Notebook export:** When exporting a notebook, the notebook inherits the defined interpreter bindings.

- **Notebook creation from templates:** When you create a notebook from templates, the notebook inherits the default order of interpreter bindings.

Set Interpreter Bindings for Notebooks
You must bind a notebook to an interpreter to fetch data from the database or any data source. A default set of interpreter bindings is available.
- **Change Interpreter Bindings for Specific Paragraphs in a Notebook**
 The interpreter binding order that is set for a notebook applies to all the paragraphs in that notebook. However, you can override the interpreter binding for SQL and PL/SQL interpreters for any specific paragraph in the notebook.

- **Verify Interpreter Bindings**
 After setting and changing the order of interpreter bindings, you can verify the interpreter bindings whether you are using SQL or Python interpreter or both in a given notebook. You use a SQL statement to view and verify the interpreter binding information about your notebook.

Set Interpreter Bindings for Notebooks

You must bind a notebook to an interpreter to fetch data from the database or any data source. A default set of interpreter bindings is available.

You can set the order of interpreter bindings if you have more than one set available. To set the order of interpreter bindings:

1. In the Notebook page, click the notebook for which you want to set the interpreter bindings.

 The notebook opens in edit mode.

2. Click the gear icon at the top panel.

 The Settings pane opens listing the interpreter bindings for the notebook.

3. Drag and drop the interpreters to reorder the interpreter bindings. The first interpreter on the list is the default. The order of interpreter bindings is:

 - **Low (Default):** Provides the least level of resources for in-database operations, typically serial (non-parallel) execution. It supports the maximum number of concurrent in-database operations by multiple users. The interpreter with low priority is listed at the top of the interpreter list, and hence, is the default.

 - **Medium:** Provides a fixed number of CPUs to execute in-database operations in parallel, where possible. It supports a limited number of concurrent users, typically 1.25 times the number of CPUs allocated to the pluggable database.

 - **High:** Provides the highest level of CPUs to run in-database operations in parallel, up to the number of CPUs allocated to the pluggable database. It offers the highest performance, but supports the minimum number of concurrent in-database operations, typically 3.

 This is the initial binding order of the interpreters. You can change the order of the interpreter bindings.

4. Click **Save**.

Related Topics

- Managing Concurrency and Priorites
- Predefined Database Service Names for Autonomous Data Warehouse
Change Interpreter Bindings for Specific Paragraphs in a Notebook

The interpreter binding order that is set for a notebook applies to all the paragraphs in that notebook. However, you can override the interpreter binding for SQL and PL/SQL interpreters for any specific paragraph in the notebook.

Note:
Do not override Python paragraph interpreter bindings as they will not share the same Python engine backend.

To change the interpreter binding for a specific paragraph in a notebook:

1. Open the notebook and click the gear icon to view the interpreter bindings and its order.

In this example, all the three SQL interpreters are bound to the notebook, and the interpreter with low resource allocation `adwp_cwp_dwp_low %sql` is the default, as it is the first interpreter on the list. The Markdown interpreter is not bound to the notebook.

Note:
The names of the interpreters are in the format `databasename_low`, `databasename_medium` and `databasename_high` which is the same as the interpreter binding order name.

In this example, the interpreter names are:

- `adwp_low % sql(default), %script, %python, %r`
- `adwp_medium % sql(default), %script, %python, %r`
- `adwp_high % sql(default), %script, %python, %r`
- `md %md(default)`
The first Python interpreter in the list is used to run all Python paragraphs in the notebook. For example, if the low binding is selected, then all Python paragraphs are run using the low binding Python interpreter. All the other paragraphs with SQL and Script interpreter bindings are run using the low database name service, that is, adwp_low. If any Python scripts run queries against the database, then those queries are run using the low database name service, that is, adwp_low in this example.

2. To change the interpreter bindings order for a particular paragraph in the notebook:
 - Scroll down to the paragraph for which you want to change the interpreter
 - Call the interpreter with the specific binding
 - Run the paragraph

For example, call the interpreter with medium resource allocation by typing `%adwp_medium` for the first paragraph in the notebook, and run the paragraph. In this example, adwp is the database name.
Notice that the first paragraph runs without any error after changing the interpreter binding. The second paragraph in this notebook has the default binding.

3. Validate the interpreter binding for first paragraph of this notebook by typing the SQL statement:

```
SELECT SYS_CONTEXT ('USERENV', 'SERVICE_NAME')
FROM DUAL;
```

The SQL statement returns the following information about the interpreter with medium binding:
In this example, with reference to the screenshot:

- **LGKFDTOOBOQK48I** is the tenant name
- **CWDP** is the database name
- **medium** is the service name
- **adwc.oraclecloud.com** is the domain

Note:

For the rest of the paragraphs in this notebook, the interpreter binding is the default. You may validate the bindings for each paragraph by running step 3.

This completes the task of changing the interpreter binding for a particular paragraph in the notebook. The rest of the paragraphs in the notebook have the default binding for the interpreter.

Verify Interpreter Bindings

After setting and changing the order of interpreter bindings, you can verify the interpreter bindings whether you are using SQL or Python interpreter or both in a given notebook. You use a SQL statement to view and verify the interpreter binding information about your notebook.

For Python notebooks, the interpreter binding is used for all python paragraphs.
Note:
For Python notebooks, do not override the interpreter binding at the paragraph level.

To verify the interpreter binding of notebooks:
1. Open the notebook for which you want to check the interpreter binding.
2. Run the following SQL statement:

```sql
SELECT SYS_CONTEXT ('USERENV', 'SERVICE_NAME') FROM DUAL;
```

The SQL statement provides the name of the service to which a given session is connected.
3. Click Run.

The SQL statement returns the information about the interpreter, the order of the binding, and the service name. The result is displayed in the following format: `tenantname__databasename__servicename.domain`. Here:
- `HDY7RUSKGDMPHN2` is the tenant name
- `PDB1` is the database name
- `low` is the interpreter binding order
- `adwc.oraclecloud.com` is the domain name

Collaborate in Oracle Machine Learning

Two or more users can collaborate and share Oracle Machine Learning notebooks with other users.

You can collaborate by:
- Granting Access to Workspace of Another User
- Using the Export Option
• Using Oracle Machine Learning Notebooks Templates

Collaborating in Oracle Machine Learning
Use Templates to Collaborate with Users

By using the Oracle Machine Learning Notebooks templates, you can collaborate with other users by sharing your work, publishing your work as reports, and by creating notebooks from templates. You can store your notebooks as templates, share notebooks, and provide sample templates to other users.

Note:
You can also collaborate with other Oracle Machine Learning Notebooks users by providing access to your workspace. The authenticated user can then access the projects in your workspace, and access your notebooks. The access level depends on the permission type granted - Manager, Developer, or Viewer. For more information about collaboration among users, see How to collaborate in Oracle Machine Learning Notebooks.

• Use the Personal Templates
Personal Templates lists the notebook templates that you have created.

• Use the Shared Templates
In the Shared Templates, you can share notebook templates with all authenticated users the notebook templates you create from existing notebooks available in Templates.

• Use the Example Templates
The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

Use the Personal Templates

Personal Templates lists the notebook templates that you have created.

You can perform the following tasks:
• View selected templates in read-only mode.
• Create new notebooks from selected templates.
• Edit selected templates.
• Share selected notebook templates in Shared Templates.
• Delete selected notebook templates.
• Create Notebooks from Templates
You can create new notebooks from an existing template, and store them in Personal Templates for later use.
• Share Notebook Templates
You can share templates from Personal Templates. You can also share templates for editing.
• **Edit Notebook Templates Settings**
 You can modify the settings of an existing notebook template in Personal Templates.

Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

You must select a notebook template.

To create a new notebook from a template:

1. In the Personal Templates page, select the template based on which you want to create the notebook, and click **New Notebook**.
 The Create Notebook dialog box opens.
2. In the **Name** field, provide a name for the notebook.
3. In the **Comments** field, enter comments, if any.
4. In the **Project** field, select the project in which you want to save your notebook.
5. In the **Connection** field, the default connection is selected.
6. Click **OK**.
 The notebook is created, and is available in the Notebooks page.

Share Notebook Templates

You can share templates from Personal Templates. You can also share templates for editing.

To share a template:

1. Select the notebook template in Personal Templates and click **Share**.
 The Save to Shared Templates dialog box opens.
2. In the **Name** field, enter a new name for the template.
3. In the **Comments** field, provide comments, if any.
4. In the **Tags** field, enter tags separated by commas. To enable easy searching, use descriptive tags.
5. Click **OK**.
 Once the template is successfully created and shared, a message appears stating that the template is created in Shared.

Edit Notebook Templates Settings

You can modify the settings of an existing notebook template in Personal Templates.

To edit notebook template settings:

1. Select the notebook template in Personal Templates and click **Edit Settings**.
 The Edit Template dialog box opens.
2. In the **Name** field, edit the name, as applicable.
3. In the **Comments** field, edit the comments, if any.

4. In the **Tags** field, edit the tags, as applicable.

5. Click **OK**.

Use the Shared Templates

In the Shared Templates, you can share notebook templates with all authenticated users the notebook templates you create from existing notebooks available in Templates.

The Shared Templates page tracks notebook templates when you perform the following:

- Like templates
- Create notebooks from templates
- View templates

The Shared Templates page displays the following information about the templates:

- Template name
- Description
- Number of likes
- Number of creations
- Number of static views

You can perform the following tasks:

- Create templates by clicking **New Notebook**
- Edit template settings by clicking **Edit Settings**
- Delete any selected template by clicking **Delete**
- Search templates by Name, Tag, Author
- Sort templates by Name, Date, Author, Liked, Viewed, Used
- View templates by clicking **Show Liked Only** or **Show My Items Only**
- **Create Notebooks from Templates**
 You can create new notebooks from an existing template, and store them in Personal Templates for later use.

- **Edit Notebook Templates Settings**
 You can modify the settings of an existing notebook template in Personal Templates.

Create Notebooks from Templates

You can create new notebooks from an existing template, and store them in Personal Templates for later use.

You must select a notebook template.

To create a new notebook from a template:

1. In the Personal Templates page, select the template based on which you want to create the notebook, and click **New Notebook**.

 The Create Notebook dialog box opens.
2. In the **Name** field, provide a name for the notebook.
3. In the **Comments** field, enter comments, if any.
4. In the **Project** field, select the project in which you want to save your notebook.
5. In the **Connection** field, the default connection is selected.
6. Click **OK**.

The notebook is created, and is available in the Notebooks page.

Edit Notebook Templates Settings

You can modify the settings of an existing notebook template in Personal Templates.

To edit notebook template settings:
1. Select the notebook template in Personal Templates and click **Edit Settings**.
 The Edit Template dialog box opens.
2. In the **Name** field, edit the name, as applicable.
3. In the **Comments** field, edit the comments, if any.
4. In the **Tags** field, edit the tags, as applicable.
5. Click **OK**.

Use the Example Templates

The Example Templates page lists the pre-populated Oracle Machine Learning notebook templates. You can view and use these templates to create your notebooks.

The Example Templates page displays the following information about the templates:

- Template name
- Description
- Number of likes. Click **Likes** to mark it as liked.
- Number of static views
- Number of uses

You cannot alter any templates in the Example Templates page. The search options are:

- Search templates by Name, Tag, Author
- Sort templates by Name, Date, Author, Liked, Viewed, Used
- View templates that are liked by clicking **Show Liked only**
- **Create a Notebook from the Example Templates**
In Oracle Machine Learning Example Templates, you can create a notebook from the available templates.

- **Example Templates**
Oracle Machine Learning Notebooks provide you notebook example templates that are based on different machine learning algorithms and languages such as Python, R, and SQL. The example templates are processed in Oracle Autonomous Database.
Create a Notebook from the Example Templates

In Oracle Machine Learning Example Templates, you can create a notebook from the available templates.

To create a notebook:

1. In the Example Templates page, select the template based on which you want to create a notebook.

2. Click **New Notebook**.

 The Create Notebook dialog box opens.

3. In the **Create Notebook** window, the name of the selected template appears. In the **Name** field, you can change the notebook name.

4. In the **Comment** field, if any comment is available for the template, then it is displayed. You can edit the comment.

5. In the **Project** field, click the edit icon.

6. Select the project in which you want to save the notebook.

7. In the **Connection** field, the default connection is selected.

8. Click **OK**.

 The notebook is created and is available in the Notebooks page.

Example Templates

Oracle Machine Learning Notebooks provide you notebook example templates that are based on different machine learning algorithms and languages such as Python, R, and SQL. The example templates are processed in Oracle Autonomous Database.
You can create your notebook based on any of these example templates:

Oracle Machine Learning for R Example Templates

You can create your own editable and runnable Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for R example template notebooks:

Figure 5-1 Oracle Machine Learning for R Example Templates

- **OML4R-1: Introduction**: Use this notebook to understand how to:
 - Load the ORE Library
 - Create database tables
 - Use the transparency layer
 - Rank attributes for predictive value using the in-database attribute importance algorithm
 - Build predictive models, and
 - Score data using these models

- **OML4R-2: Data Selection and Manipulation**: Use this notebook to understand the features of the transparency layer involving data selection and manipulation.

- **OML4R-3: Datastore and Script Repository**: Use this notebook to understand the datastore and script repository features of OML4R.

- **OML4R-4: Embedded R Execution**: Use this notebook to understand OML4R Embedded R Execution. First, a linear model is built in R directly, then a user-defined R function is created to build the linear model, the function is then saved to the script repository, and the data is scored in parallel using R engines spawned by the Oracle Autonomous Database environment. The notebook also demonstrates how to call these scripts using the SQL interface and REST API for R with Embedded R Execution.

Note:

To use the SQL API for Embedded R Execution, a user-defined R function must reside in the OML4R script repository, and an Oracle Machine Learning (OML) cloud account USERNAME, PASSWORD, and URL must be provided to obtain an authentication token.
• **OML4R Anomaly Detection Support Vector Machine (SVM):** Use this notebook to build a One-Class SVM model and then use it to flag unusual or suspicious records.

• **OML4R Association Rules Apriori:** Use this notebook to build association rules models using the A Priori algorithm with data from the SH schema (SH.SALES). All computation occurs inside Oracle Autonomous Database.

• **OML4R Attribute Importance Minimum Description Length (MDL):** Use this notebook to compute Attribute Importance, which uses the Minimum Description Length algorithm, on the SH schema data. All functionality runs inside Oracle Autonomous Database. Oracle Machine Learning supports Attribute Importance to identify key factors such as attributes, predictors, variables that have the most influence on a target attribute.

• **OML4R Classification Generalized Linear Model (GLM):** Use this notebook to predict customers most likely to be positive responders to an Affinity Card loyalty program. This notebook builds and applies a classification generalized linear model using the Sales History (SH) schema data. All processing occurs inside Oracle Autonomous Database.

• **OML4R Classification Naive Bayes (NB):** Use this notebook to predict customers most likely to be positive responders to an Affinity Card loyalty program. This notebook builds and applies a classification decision tree model using the Sales History (SH) schema data. All processing occurs inside Oracle Autonomous Database.

• **OML4R Classification Random Forest (RF):** Use this notebook to use the Random Forest algorithm for classification in OML4R, and predict customers most likely to be positive responders to an Affinity Card loyalty program.

• **OML4R Classification Modeling to Predict Target Customers using Support Vector Machine (SVM):** Use this notebook to use the Classification modeling to predict Target Customers using Support Vector Machine Model.

• **OML4R Clustering - Identifying Customer Segments using Expectation Maximization Clustering:** Use this notebook to understand how to identify natural clusters of customers using the CUSTOMERS data set from the SH schema using the unsupervised learning Expectation Maximization (EM) algorithm. The data exploration, preparation, and machine learning run inside Oracle Autonomous Database.

• **OML4R Clustering - Identifying Customer Segments using K-Means Clustering:** Use this notebook to understand how to identify natural clusters of customers using the CUSTOMERS data set from the SH schema using the unsupervised learning K-Means (KM) algorithm. The data exploration, preparation, and machine learning run inside Oracle Autonomous Database.

• **OML4R Clustering - Orthogonal Partitioning Clustering (OC):** Use this notebook to understand how to identify natural clusters of customers using the CUSTOMERS data set from the SH schema using the unsupervised learning k-Means algorithm. The data exploration, preparation, and machine learning runs inside Oracle Autonomous Database.

• **OML4R Data Cleaning Outlier:** Use this notebook understand and to exclude records with outliers using OML4R.

• **OML4R Data Cleaning - Recode Synonymous Values:** Use this notebook to recode synonymous value using OML4R.

• **OML4R Data set Creation:** Use this notebook to load the sample data sets MTCARS and IRIS and to import them into your Oracle Autonomous Database instance using the `ore.create()` function.
The following example template notebooks prefixed with an asterisk (*), use the CUSTOMER_INSURANCE_LTV data set. This data set is generated by the OML Run-me-first notebook. Hence, you must run the OML Run-me-first notebook that is available under the Examples Templates.

- **OML4R Data Cleaning Missing Data**: Use this notebook to perform missing value replacement using OML4R.
- **OML4R Data Cleaning Duplicate Removal**: Use this notebook to remove duplicate records using OML4R.
- **OML4R Data Transformation Binning**: Use this notebook to bin numerical columns using OML4R.
- **OML4R Data Transformation Categorical Record**: Use this notebook to recode a categorical string variable to a numeric variable and string-to-string recoding using OML4R.
- **OML4R Data Transformation: Normalization and Scaling**: Use this notebook to normalize and scale data using OML4R.
- **OML4R Data Transformation: One-Hot Encoding**: Use this notebook to perform one-hot encoding using OML4R.
- **OML4R Feature Selection - Supervised Algorithm**: Use this notebook to perform feature selection using in-database supervised algorithms using OML4R. This notebook demonstrates how to build a Random Forest model to predict whether the customer would buy insurance or not, and then use Feature Importance to perform feature selection.
- **OML4R Feature Selection Using Summary Statistics**: Use this notebook to perform feature selection using summary statistics using OML4R. This notebook demonstrates how to use OML4R to select features based on number of distinct values, null values, proportion of constant values.
- **OML4R Feature Engineering Aggregation**: Use this notebook to perform aggregation for min, max, mean, and count using OML4R. This template uses the SALES table present in the SH schema, and shows how to create features by aggregating the amount sold for each customer and product pair.
- **OML4R Feature Extraction Explicit Semantic Analysis (ESA) Wiki Model**: This notebook uses the use the Wikipedia Model as an example. Use this notebook to use the Oracle Machine Learning for R function ore.odmESA to extract text-based features from a corpus of documents and performs document similarity comparisons. All processing occurs inside Oracle Autonomous Database.

Note:
The pre-built Wikipedia model must be installed in your Autonomous Database instance to run this notebook.

- **OML4R Data Transformation Date Data types**: Use this notebook to perform various operations on date and time data using database table proxy objects using Oracle Machine Learning for R.
• **OML4R Feature Extraction Singular Value Decomposition (SVD):** Use this notebook to use the in-database SVD for feature extraction. This notebook uses the Oracle Machine Learning for R function `ore.odmSVD` to create a model that uses the Singular Value Decomposition (SVD) algorithm for feature extraction.

• **OML4R Partitioned Model Support Vector Machine (SVM):** Use this notebook to build an SVM model to predict the number of years a customer resides at their residence but partitioned on customer gender. The model is then used to predict the target, then predict the target with prediction details.

• **OML4R Regression Generalized Linear Model (GLM):** Use this notebook to understand how to predict numerical values using multiple regression. This notebook uses the Generalized Linear Model algorithm.

• **OML4R Regression Neural Network (NN):** Use this notebook to understand how to predict numerical values using multiple regression. This notebook uses the Neural Network algorithm.

• **OML4R Regression Support Vector Machine (SVM):** Use this notebook to understand how to predict numerical values using multiple regression. This notebook uses the Support Vector Machine algorithm.

• **OML4R REST API:** Use this notebook to understand how to use the OML4R REST API to call user-defined R functions, and to list those available in the R script repository.

Note:

To run a script, it must reside in the R script repository. An Oracle Machine Learning cloud service account user name and password must be provided for authentication.

• **OML4R Statistical Function:** Use this notebook to understand and use various statistical functions. The notebook uses data from the SH schema through the OML4R transparency layer.

• **OML4R Text Mining Support Vector Machine (SVM):** Use this notebook to understand how to use unstructured text data to build machine learning models, leverage Oracle Text, use Oracle Machine Learning in-database algorithms predictive features, and extract features from text columns. This notebook builds a Support Vector Machine (SVM) model to predict customers that are most likely to be positive responders to an Affinity Card loyalty program. The data comes from a text column that contains user generated comments.

Oracle Machine Learning for Python Example Templates

You can create your Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for Python example templates:
Oracle Machine Learning for Python Example Templates

<table>
<thead>
<tr>
<th>Example Templates</th>
</tr>
</thead>
<tbody>
<tr>
<td>My First Notebook</td>
</tr>
<tr>
<td>OML4Py -0- Tour</td>
</tr>
<tr>
<td>OML4Py -1- Introduction</td>
</tr>
<tr>
<td>OML4Py -2- Data Selection and Manipulation</td>
</tr>
<tr>
<td>OML4Py -3- Datastores</td>
</tr>
<tr>
<td>OML4Py -4- Embedded Python Execution</td>
</tr>
<tr>
<td>OML4Py -5- AutoML</td>
</tr>
</tbody>
</table>

Note:

The following example template notebooks prefixed with an asterisk (*), use the `CUSTOMER_INSURANCE_LTV_PY` data set. This data set has duplicated values artificially generated by `OML4SQL Noise` notebook. Hence, you must run the `OML4SQL Noise` first before running the notebook.
• **OML4Py Data Cleaning Duplicates Removal**: Use this notebook to understand how to remove duplicate records using OML4Py. This notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

• **OML4Py Data Cleaning Missing Data**: Use this notebook to understand how to fill in missing values using OML4Py. This notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

• **OML4Py Data Cleaning Recode Synonymous Values**: Use this notebook to understand how to recode synonymous value using OML4Py. This notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

• **OML4Py Data Cleaning Outlier Removal**: Use this notebook to understand how to clean data to remove outliers. This notebook uses the CUSTOMER_INSURANCE_LTV data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance. In the data set CUSTOMER_INSURANCE_LTV, the focus is on numerical values and removal of records with values in the top and bottom 5%.

• **OML4Py Data Transformation Binning**: Use this notebook to understand how to bin a numerical column and visualize the distribution.

• **OML4Py Data Transformation Categorical - Convert Categorical Variables to Numeric Variables**: Use this notebook to understand how to convert categorical variables to numeric variables using OML4Py. The notebooks demonstrates how to convert a categorical variable with each distinct level/value coded to an integer data type.

• **OML4Py Data Transformation Normalization and Scaling**: Use this notebook to understand how to normalize and scale data using z-score (mean and standard deviation), min max scaling, and log scaling.

Note:

When building or applying a model using in-database Oracle Machine Learning algorithms, automatic data preparation will normalize data automatically as needed, by specific algorithms.

• **OML4Py Data Transformation One Hot Encoding**: Use this notebook to understand how to perform one hot encoding using OML4Py. Machine learning algorithms cannot work with categorical data directly. Categorical data must be converted to numbers. This notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

Note:

If you plan to use the in-database algorithms, one hot encoding is automatically applied for those algorithms requiring it. The in-database algorithms automatically explode the categorical columns and fit the model on the prepared data internally.

• **OML4Py Anomaly Detection**: Use this notebook to detect anomalous records, customers or transactions in your data. This template uses the unsupervised learning
algorithm 1-Class Support Vector Machine. The notebook template builds a 1-Class Support Vector Machine (SVM) model.

- **OML4Py Association Rules:** Use this notebook for market basket analysis of your data, or to detect co-occurring items, failures or events in your data. This template uses the apriori Association Rules model using the SH schema data (SH.SALES).

- **OML4Py Attribute Importance:** Use this notebook to identify key attributes that have maximum influence over the target attribute. The target attribute in the build data of a supervised model is the attribute that you want to predict. The template builds an Attribute Importance model using the SH schema data.

- **OML4Py Classification:** Use this notebook for predicting customer behavior and similar predictions. The template builds and applies the classification algorithm Decision Tree to build a Classification model based on the relationships between the predictor values and the target values. The template uses the SH schema data.

- **OML4Py Clustering:** Use this notebook to identify natural clusters in your data. The notebook template uses the unsupervised learning k-Means algorithm on the SH schema data.

- **OML4Py Data Transformation:** Use this notebook to convert categorical variables to numeric variables using OML4Py. This template shows how to convert a categorical variable with each distinct level/value coded to an integer data type.

- **OML4Py Data Set Creation:** Use this notebook to create data set from sklearn package to OML data frame using OML4Py.

- **OML4Py Feature Engineering Aggregation:** Use this notebook template to fill in missing values using OML4Py. This notebook uses the SH schema SALES table, which contains transaction records for each customer and products purchased. Features are created by aggregating the amount sold for each customer and product pair.

- **OML4Py Feature Selection Supervised Algorithm Based:** Use this notebook to perform feature selection using in-database supervised algorithms using OML4Py.

- **OML4Py Feature Selection Summary Statistics:** Use this notebook template to perform feature selection using summary statistics using OML4Py. The notebook shows how to use OML4Py to select features based on number of distinct values, null values, proportion of constant values. The data set used here CUSTOMER_INSURANCE_LTV_PY has null values generated by the OML4SQL Noise notebook artificially. You must first run the OML4SQL Noise notebook before running the OML4Py Feature Selection Summary Statistics notebook.

- **OML4Py Partitioned Model:** Use this notebook to build partitioned models. This notebook builds an SVM model to predict the number of years a customer resides at their residence but partitioned on customer gender. It uses the model to predict the target, and then predict the target with prediction details. Oracle Machine Learning enables automatically building of an ensemble model comprised of multiple sub-models, one for each data partition. Sub-models exist and are used as one model, which results in simplified scoring using the top-level model only. The proper sub-model is chosen by the system based on partition values in the row of data to be scored. Partitioned models achieve potentially better accuracy through multiple targeted models.

- **OML4Py REST API:** Use this notebook to call Embedded Python Execution. OML4Py contains a REST API to run user-defined Python functions saved in the script repository. The REST API is used when separation between the client and
the Database server is beneficial. Use the OML4Py REST API to build, train, deploy, and manage scripts.

Note:
To run a script, it must reside in the OML4Py script repository. An Oracle Machine Learning cloud service account user name and password must be provided for authentication.

- **OML4Py Regression Modeling to Predict Numerical Values:** Use this notebook to predict numerical values using multiple regression.
- **OML4Py Statistical Functions:** Use this notebook to use various statistical functions. The statistical functions use data from the SH schema through the OML4Py transparency layer.
- **OML4Py Text Mining:** Use this notebook to build models using Text Mining capability in Oracle Machine Learning. In this notebook, an SVM model is built to predict customers most likely to be positive responders to an Affinity Card loyalty program. The data comes with a text column that contains user generated comments. With a few additional specifications, the algorithm automatically uses the text column and builds the model on both the structured data and unstructured text.

Oracle Machine Learning for SQL Example Templates

You can create your Oracle Machine Learning notebooks based on any of these Oracle Machine Learning for SQL example templates:

Figure 5-3 Oracle Machine Learning for SQL Example Templates

- **OML4SQL Anomaly Detection:** Use this notebook to detect unusual or rare occurrences. Oracle Machine Learning supports anomaly detection to identify rare or unusual records (customers, transactions, etc.) in the data using the semi-supervised learning algorithm One-Class Support Vector Machine. This notebook builds a 1Class-SVM model and then uses it to flag unusual or suspicious records. The entire machine learning methodology runs inside Oracle Autonomous Database.
- **OML4SQL Association Rules:** Use this notebook to apply Association Rules machine learning technique, also known as Market Basket Analysis to discover co-occurring items, states that lead to failures, or non-obvious events. This notebook builds associations.
rules models using the A Priori algorithm with the `SH.SALES` data from the `SH` schema. All computation occurs inside Oracle Autonomous Database.

- **OML4SQL Attribute Importance - Identify Key Factors**: Use this notebook to identify key factors, also known as attributes, predictors, variables that have the most influence on a target attribute. This notebook builds an Attribute Importance model, which uses the Minimum Description Length algorithm, using the `SH` schema data. All functionality runs inside Oracle Autonomous Database.

- **OML4SQL Classification - Predicting Target Customers**: Use this notebook to predict customers that are most likely to be positive responders to an Affinity Card loyalty program. This notebook builds and applies classification decision tree models using the `SH` schema data. All processing occurs inside Oracle Autonomous Database.

- **OML4SQL Clustering - Identifying Customer Segments**: Use this notebook to identify natural clusters of customers. Oracle Machine Learning supports clustering using several algorithms, including k-Means, O-Cluster, and Expectation Maximization. This notebook uses the CUSTOMERS data set from the `SH` schema using the unsupervised learning k-Means algorithm. The data exploration, preparation, and machine learning runs inside Oracle Autonomous Database.

- **OML4SQL Data Cleaning - Removing Duplicates**: Use this notebook to remove duplicate records using Oracle SQL. The notebook uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance. The data set `CUSTOMER_INSURANCE_LTV_SQL` has duplicate values generated by the OML4SQL Noise notebook.

 Note:
 You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning notebook.

- **OML4SQL Data Cleaning - Missing Data**: Use this template to replace missing values using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. The data set `CUSTOMER_INSURANCE_LTV_SQL` has missing values artificially generated by the OML4SQL Noise notebook. You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning notebook.

 Note:
 When building or applying a model using in-database Oracle Machine Learning algorithms, this operation may not be needed separately if automatic data preparation is enabled. Automatic data preparation automatically replaces missing values of numerical attributes with the mean and missing values of categorical attributes with the mode.

- **OML4SQL Data Cleaning Outlier Removal**: Use this notebook to remove outliers using Oracle SQL and the DBMS_DATA_MINING_TRANSFORM package. The notebook uses the customer insurance lifetime value data set, which contains customer financial information, lifetime value, and whether or not the customer bought insurance. In the data set `CUSTOMER_INSURANCE_LTV`, it focuses on numeric values and removes records with values in the top and bottom 5%.
• **OML4SQL Data Cleaning Recode Synonymous Values**: Use this notebook to recode synonymous value of a column using Oracle SQL. The notebook uses the customer insurance lifetime value data set, which contains customer financial information, lifetime value, and whether or not the customer bought insurance. The data set `CUSTOMER_INSURANCE_LTV_SQL` has recoded values generated by the OML4SQL Noise notebook. You must first run the OML4SQL Noise notebook before running the OML4SQL Data Cleaning - Recode Synonymous Values notebook.

• **OML4SQL Data Transformation Binning**: Use this notebook to bin numeric columns using Oracle SQL and the `DBMS_DATA_MINING_TRANSFORM` package. This notebook shows how to bin a numerical column and visualize the distribution.

• **OML4SQL Data Transformation Categorical**: Use this notebook to convert a categorical variable to a numeric variable using Oracle SQL. The notebook shows how to convert a categorical variable with each distinct level/value coded to an integer, and how to create an indicator variable based on a simple predicate.

• **OML4SQL Data Transformation Normalization and Scale**: Use this notebook to normalize and scale data using Oracle SQL and the `DBMS_DATA_MINING_TRANSFORM` package. The notebook shows how to normalize data using using z-score (mean and standard deviation), min max scaling, and log scaling. When building or applying a model using in-database Oracle Machine Learning algorithms, automatic data preparation normalizes data automatically, as needed, by specific algorithms.

• **OML4SQL Dimensionality Reduction - Non-negative Matrix Factorization**: Use this notebook to perform dimensionality reduction using the in-database non-negative matrix factorization algorithm. This notebook shows how to convert a table with many columns to a reduced feature set. Non-negative Matrix Factorization produces non-negative coefficients.

• **OML4SQL Dimensionality Reduction - Singular Value Decomposition**: Use this notebook to perform dimensionality reduction using the in-database singular value decomposition (SVD) algorithm.

• **OML4SQL: Exporting Serialized Models**: Use this notebook to export serialized models to Oracle Cloud Object Storage. This notebook creates Oracle Machine Learning regression and classification models and exports the models in a serialized format so that they can be scored using the Oracle Machine Learning (OML) Services REST API. OML Services provides REST API endpoints hosted on Oracle Autonomous Database. These endpoints enable the storing of Oracle Machine Learning models along with its metadata and create scoring endpoints for the model. The REST API for OML Services supports both Oracle Machine Learning models and ONNX format models, and enables cognitive text functionality.

• **OML4SQL Feature Engineering Aggregation and Time**: Use this notebook to generate aggregated features and also extract date and time features using Oracle SQL. The notebook also shows how to extract date and time features from the field `TIME_ID`.

• **OML4SQL Feature Selection Algorithm Based**: Use this notebook to perform feature selection using in-database supervised algorithms. The notebook first builds a random forest model to predict if the customer will buy insurance, then it uses Feature Importance values for feature selection. It then build a decision tree model for the same classification task, and obtains split nodes. For the top splitting nodes with highest support, features associated with those nodes are selected.

• **OML4SQL Feature Selection Unsupervised Attribute Importance**: Use this notebook to perform feature selection using the in-database unsupervised algorithm Expectation Maximization (EM). This notebook illustrates using the `CREATE_MODEL` function, which
leverages the settings table in contrast to the `CREATE_MODEL2` function used in other notebooks.

- **OML4SQL Feature Selection Using Summary Statistics:** Use this notebook to perform feature selection using summary statistics using Oracle SQL. The data set `CUSTOMER_INSURANCE_LTV_SQL` has null values generated by OML4SQL Noise notebook artificially. You must first run the OML4SQL Noise notebook before running the OML4SQL Feature Selection Using Summary Statistics.

- **OML4SQL Noise:** Use this notebook to replace normal values by null values, and to add duplicated rows. In this notebook, the data set used by the Data Preparation notebooks is prepared, in particular those for data cleaning and feature selection. It uses the customer insurance lifetime value data set which contains customer financial information, lifetime value, and whether or not the customer bought insurance.

 Note:

 Run the OML4SQL Noise notebook before the Data Preparation notebooks.

- **OML4SQL Partitioned Model:** Use this notebook to build partitioned models. Partitioned models achieve potentially better accuracy through multiple targeted models. The notebook builds an SVM model to predict the number of years a customer resides at their residence but partitioned on customer gender. The model is then used to predict the target first, and then to predict the target with prediction details.

- **OML4SQL Text Mining:** Use this notebook to build models using text mining capability. Oracle Machine Learning handles both structured data and unstructured text data. By leveraging Oracle Text, Oracle Machine Learning in-database algorithms automatically extracts predictive features from the text column. This notebook builds an SVM model to predict customers most likely to be positive responders to an Affinity Card loyalty program. The data comes with a text column that contains user generated comments. With a few additional specifications, the algorithm automatically uses the text column and builds the model on both the structured data and unstructured text.

- **OML4SQL Regression:** Use this notebook to predict numerical values. This template uses multiple regression algorithms such as Generalized Linear Models (GLM).

- **OML4SQL Statistical Function:** Use this notebook for descriptive and comparative statistical functions. The notebook template uses `SH` schema data.

- **OML4SQL Time Series:** Use this notebook to build time series models on your time series data for forecasting. This notebook is based on the Exponential Smoothing Algorithm. The sales forecasting example in this notebook is based on the `SH.SALES` data. All computations are done inside Oracle Autonomous Database.
Get Started with Jobs

Jobs allow you to schedule the running of notebooks. In the Jobs page, you can create jobs, duplicate jobs, start and stop jobs, delete jobs, and monitor job status by viewing job logs, which are read-only notebooks.

- **About Jobs**
 The Jobs page lists all the jobs created, along with the job name, notebook, owner of the job, last start date, next run date, status, and schedule.

- **Create Jobs to Schedule Notebooks**
 You can create jobs to schedule your notebook with preferred scheduling settings.

- **View Job Logs**
 You can view the historical logs of any particular job in the Job Log interface.

About Jobs

The Jobs page lists all the jobs created, along with the job name, notebook, owner of the job, last start date, next run date, status, and schedule.

You can perform the following tasks:

Figure 6-1 Jobs
Create Jobs to Schedule Notebooks

You can create jobs to schedule your notebook with preferred scheduling settings.

To create jobs, enter the following details in the Create Jobs dialog box:

1. In the Jobs page, click Create. The Create Jobs dialog box opens.
2. In the **Name** field, enter a name for the job. The number of characters in the job name must not exceed 128 bytes.

3. In the **Notebook** field, click the search icon to select a notebook to create a job.

4. In the **Start Date** field, click the date-time editor to set the date and time for your job to commence. Based on the selected date and time, the next run date is computed.

5. Optionally, in the **Repeat** section, select:
 - **Frequency**: To set the repeat settings and frequency. You can set the frequency in minutes, hours, days, week, and month.
 - **Custom**: To customize the job settings.

6. Optionally, in **Advanced Settings**, select one or more of the following options:
• **Maximum Number of Runs:** To specify the maximum number of times the job must run before it is stopped. When the job reaches the maximum run limit, it will stop.

• **Maximum Failures Allowed:** To specify the maximum number of times a job can fail on consecutive scheduled runs. When the maximum number of failures is reached, the next run date column in the Jobs UI will show an empty value to indicate the job is no longer scheduled to run. The Status column may show the status as Failed.

• **Timeout in Minutes:** To specify the maximum amount of time a job should be allowed to run.

7. Click **OK**.

View Job Logs

You can view the historical logs of any particular job in the Job Log interface.

You can view a log in the read-only Notebook. To view job logs:

1. To view the history of a job, select the job and click **View**.

2. To delete a particular job log, select it and click **Delete**.
Administer Oracle Machine Learning

Oracle Machine Learning is managed at the system level and at the application level by an administrator.

- Administrator — Creates and manages Oracle Machine Learning user accounts, manages compute resources, connection groups, and notebook sessions. The Administrator also reassigns user workspace.

Note:
The Administrator is not authorized to run notebooks. The Administrator can only read notebooks.

- Developer — This is the default user role that allows you to create and run notebooks, run SQL Statements, create SQL scripts, run Python scripts, create jobs to schedule and run notebooks, use example template notebooks, create and run AutoML experiments,
and deploy models.

• Typical Workflow for Managing Oracle Machine Learning
 To manage Oracle Machine Learning and other administrative tasks, refer to the tasks listed in the table as a guide.

• Manage OML Users
 An administrator manages new user account and user credentials creation for Oracle Machine Learning in the User Management interface.

• About User Data
 In the User Data page in Oracle Machine Learning, you can view existing user data, reassign, and delete it.

• About Compute Resource
 The term Compute Resource refers to services such as a database, or any other backend service to which an interpreter connects.

• Get Started with Connection Groups
 A connection group, also known as a Zeppelin interpreter set, is a collection of database connections.

• Get Started with Notebook Sessions
 The Notebook Sessions page provides you an overview of your notebooks, and allows you to manage notebook sessions from your workspace or in workspaces where you have collaboration rights.

Typical Workflow for Managing Oracle Machine Learning

To manage Oracle Machine Learning and other administrative tasks, refer to the tasks listed in the table as a guide.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Oracle Machine Learning Interface</th>
<th>More Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>User account and password creation</td>
<td>Oracle Machine Learning User Management interface</td>
<td>Create Users for Oracle Machine Learning</td>
</tr>
<tr>
<td>Connection Groups — View and Reset</td>
<td>Oracle Machine Learning</td>
<td>Work with Connection Groups</td>
</tr>
<tr>
<td>Compute Resource — View</td>
<td>Oracle Machine Learning</td>
<td>About Compute Resource</td>
</tr>
</tbody>
</table>
Manage OML Users

An administrator manages new user account and user credentials creation for Oracle Machine Learning in the User Management interface.

- **Create User**
 An administrator creates a new user account and user credentials for Oracle Machine Learning in the User Management interface.

- **Add Existing Database User Account to Oracle Machine Learning**
 An administrator adds an existing database user account for Oracle Machine Learning in the User Management interface.

Create User

An administrator creates a new user account and user credentials for Oracle Machine Learning in the User Management interface.

Note:
You must have the administrator role to access the Oracle Machine Learning User Management interface.

To create a user account:

1. Select an Autonomous Data Warehouse instance and on the details page click **Service Console**.
2. On the Service Console click **Administration**.
3. Click **Manage OML Users** to open the Oracle Machine Learning User Administration page.
4. Click **Create** on the Oracle Machine Learning User Administration page.
5. In the **Username** field, enter a username for the account. Using the username, the user will log in to an Oracle Machine Learning instance.

6. Enter a name in the **First Name** field.

7. Enter a name in the **Last Name** field.

8. In the **Email Address** field, enter the email ID of the user.

9. Select the option **Generate password and email account details to user. User will be required to reset the password on first sign in.** to auto generate a temporary password and send an email with the account credentials to the user.

 If you select this option, you need not enter values in the **Password** and **Confirm Password** fields; the fields are grayed out.

10. In the **Password** field, enter a password for the user, if you choose to create a password for the user.

 This option is disabled if you select the **Generate password...** option to auto generate a temporary password for the user.

11. In the **Confirm Password** field, enter a password to confirm the value that you entered in the **Password** field.

 By doing so, you create the password for the user. The user can change the password when first logging in.

12. Click **Create**.

 This creates a new database user and grants the required privileges to use Oracle Machine Learning.

Note:

With a new database user, an administrator needs to issue grant commands on the database to grant table access to the new user for the tables associated with the user's Oracle Machine Learning notebooks.
Add Existing Database User Account to Oracle Machine Learning

An administrator adds an existing database user account for Oracle Machine Learning in the User Management interface.

Note:
You must have the administrator role to access the Oracle Machine Learning User Management interface.

To add an existing database user account:

1. Select an Autonomous Database instance, and on the details page click Service Console.
2. On the Service Console, click Administration.
3. Click Manage OML Users to add Oracle Machine Learning users.
4. Click Show All Users to display the existing database users.

Note:
Initially, the Role field shows the role None for existing database users. After adding a user the role Developer is assigned to the user.

5. Select a user. To select a user select a name in the User Name column. For example, select ANALYST1.
 Selecting the user shows the Oracle Machine Learning Edit User page.
6. Enter a name in the First Name field. (Optional)
7. Enter the last name of the user in the Last Name field. (Optional)
8. In the Email Address field, enter the email ID of the user.
 Making any change on this page adds the existing database user with the required privileges as a Oracle Machine Learning user.
9. Click **Save**.

This grants the required privileges to use the Oracle Machine Learning application. In Oracle Machine Learning this user can then access any tables the user has privileges to access in the database.

About User Data

In the User Data page in Oracle Machine Learning, you can view existing user data, reassign, and delete it.

The User Data page lists details of the Oracle Machine Learning user such as the name, role, comments, last updated date. You can perform the following tasks:

- **Delete User Data:** To delete a user, select the user to delete and click **Delete User Data**.
- **Reassign:** To reassign workspace and templates from one user to another.

Reassign

The **Reassign** option allows you to reassign workspaces, along with templates, from one user to another.

To reassign workspaces:

1. On the User Data page, select the user from whom you want to reassign workspace and click **Reassign**.

 The Reassign page opens.

2. In the **Target User** field, select the user to whom you want to reassign workspace.

3. Select **All Templates** if you want to reassign all the templates associated with the user selected in the User Data page.

4. Select:
 - **Reassign all workspaces:** To reassign all the workspaces associated with the selected user.
 - **Select workspaces to reassign:** To reassign particular workspaces associated with the selected user.

5. Click **Reassign**.

After the templates and workspaces are reassigned successfully, a notification message is displayed on the User Data page with the number of templates and workspaces reassigned.

About Compute Resource

The term Compute Resource refers to services such as a database, or any other backend service to which an interpreter connects.
The Compute Resources page displays the list of compute resources along with the name of each resource, its type, comments, and last updated details. To view details of each Compute Resource, click the Compute Resource name. The connection details are displayed in the Oracle Resources page.

- **Oracle Resource**
 The Oracle Resource page displays the details of the selected compute resource on the Compute Resources page. You can configure the memory settings (in Gigabytes) for the Python interpreter for the selected compute resource.

Note:
You must have the Administrator role to access the Compute Resources page.

Note:
You must have Administrator privilege to configure the memory settings.

Oracle Resource

The Oracle Resource page displays the details of the selected compute resource on the Compute Resources page. You can configure the memory settings (in Gigabytes) for the Python interpreter for the selected compute resource.

Figure 7-1 Oracle Resource

![Oracle Resource](image-url)

To manage memory settings for the Python interpreter:
1. **Name**: Displays the name of the selected resource.

2. **Comment**: Displays comment, if any.

3. **Memory**: You can configure memory settings (in Gigabytes) for Python interpreters in this field.
 - For the resource `databasename_high`, the memory settings (in Gigabytes) must be between 8 and 16
 - For the resource `databasename_medium`, the memory settings (in Gigabytes) must be between 4 and 8
 - For the resource `databasename_low`, the memory settings (in Gigabytes) must be between 2 and 4

 Note:
 The Memory setting is applicable only for the Python interpreter.

4. **Connection Type**: Displays the database connection of the resource.

5. **Network Alias**: Displays the alias of the network connection.
 - **Resource Services and Notebooks**
 This topic lists the number of notebooks that you can run concurrently per PDB for each Resource service.

Resource Services and Notebooks

This topic lists the number of notebooks that you can run concurrently per PDB for each Resource service.

The Resource Services and Number of Notebooks table lists the Compute Resources assigned for running of Python scripts at different Resource Service levels - High, Medium and Low. The High level is assigned the maximum number of Compute Resources to run the Python script, which could result in faster running of the scripts. The Low level is assigned the least number of Resource Services, which results in slower running of the scripts.

Table 7-1 Resource Services and Number of Notebooks

<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Up to 8 OCPUs</td>
<td>8 GB (up to 16 GB)</td>
<td>Up to 3</td>
</tr>
</tbody>
</table>
Table 7-1 (Cont.) Resource Services and Number of Notebooks

<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>Up to 4 (OCPUs)</td>
<td>4 GB (up to 8 GB)</td>
<td>Up to max (1.25 \times \text{number of OCPUs})</td>
</tr>
</tbody>
</table>

\[\text{Note:} \text{ The number of concurrent notebooks is calculated.} \]
Table 7-1 (Cont.) Resource Services and Number of Notebooks

<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tested by the formula: 25 × (number of OCPUs) provisioned for
<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 7-1 (Cont.) Resource Services and Number of Notebooks

<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: If a PDB is provisioned with 4 OCPUs, then the maximum number of concurrent notebooks is limited.
<table>
<thead>
<tr>
<th>Resource Service</th>
<th>OCPUs (Oracle CPUs)</th>
<th>Memory</th>
<th>Number of Concurrent Notebooks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1</td>
<td>2 GB (up to 4 GB)</td>
<td>Up to 100</td>
</tr>
</tbody>
</table>
Get Started with Connection Groups

A connection group, also known as a Zeppelin interpreter set, is a collection of database connections.

- **About Connection Groups**
 In the Connection Group page, a user with Administrator role can manage your connections that constitute the connection group.

- **About Global Connection Group**
 The Global Connection Group is created automatically when a new database is provisioned.

- **Edit Oracle Database Interpreter Connection**
 When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

About Connection Groups

In the Connection Group page, a user with Administrator role can manage your connections that constitute the connection group.

You can **Edit**, and **Stop** one or more connections that are listed under a connection group in this page.

![Note:](Note.png)

Only an Administrator user can manage connection groups.

The following information about the connections are available:

- Name: This is the name of the interpreter.
- Default: A check mark indicates whether the connection is the default connection or not.
- Scope: Indicates the scope of the connection.
- Comment: Displays any comment related to the interpreter.
- Owner: Displays the name of the user who created the connection.
- Last Updated: Indicates the date and time when the connection was last updated.

You can perform the following tasks:

- **Edit**: To edit the interpreter connection, select the connection and click **Edit**.
- **Stop**: To stop the interpreter connection, select the connection and click **Stop**.
- **Refresh**: Click the **Refresh** button in the following conditions:
 - If you rename the Pluggable Database (PDB).
 - If you do a Wallet rotation. Wallet rotation invalidates the current wallet. Hence, a new Wallet is needed for the database connection.
About Global Connection Group

The Global Connection Group is created automatically when a new database is provisioned.

The Global Connection Group comprises the following:

- **Compute Resource definition** — A Compute Resource is associated with the Pluggable Database (PDB). After a new PDB is provisioned, a Compute Resource is added for the PDB. A tenant may provision more than one PDB, and for each PDB a Compute Resource is added. The settings in the Compute Resource are relevant to its own PDB. The Compute Resource is associated to an Oracle Wallet. The Oracle wallet contains the credentials to connect to the user PDB.

 Note:
 The Compute Resource definition can be edited by the Administrator only.

- **Connection Group definition** — The Global Connection Group comprises a single connection of type Global. Only one Global Connection Group for each Compute Resource is allowed per PDB. No password is required for this connection as it uses the Wallet containing the credentials for the PDB. The Wallet is associated to the Compute Resource.

 Note:
 A Global Connection Group can be edited by the Administrator only.

Reset: To reset the interpreter connection, click the connection group name. The connection group opens in a separate page, listing all the interpreter connections in the group. Select the connection you want to reset and click **Reset**. When you click **Reset**, then all connections supported by the interpreter are closed, and all notebooks using that connection are cancelled.

 Note:
 The **Reset** option is available only to the Administrator.

Edit Oracle Database Interpreter Connection

When defining an Oracle Database interpreter connection, a reference to a compute resource is created. This reference contains all connection-related information about the interpreter.

Compute Resources for an Oracle Database interpreter is defined by your service. You can edit the following:
1. **Name:** You can edit the name of the interpreter editor here. This is useful if you have several definitions of the same interpreter type in the same interpreter set. By specifying a name, you can turn on or turn off the specific binding to a notebook.

2. **Type:** This is a non-editable field. It indicates the connection type.

3. **Binding Mode:** This is a non-editable field. It defines the behavior of the interpreter instance in memory, and how the resources are shared. By default, the Binding Mode of the Global Connection Group is set to Scoped. It ensures that each notebook creates a new interpreter instance in the same interpreter process.

4. **Row Render Limit:** This determines the number of rows to be displayed in the paragraph results when fetching a data structure that can be presented as a table or graph using the Zeppelin built-in plotting service. You must consider the browser capabilities when modifying this setting. The default limit is 1000.

 Note: Zeppelin plotting service works with data that is fetched previously to the client-side for a snapper UI.

5. **Comments:** Enter any information related to the interpreter not exceeding 1000 characters.

 Note: You must have Administrator role to edit this field.

6. In the Compute Resource section, the **Resources** field indicates the priority of the compute resource. This is a non-editable field.

7. In the Database section, you can specify additional settings related to PL/SQL DBMS output. Select **Enabled** to allow the PL/SQL interpreter to display the messages sent to the DBMS_OUTPUT in the paragraph results.

8. Click **Save**.

Get Started with Notebook Sessions

The Notebook Sessions page provides you an overview of your notebooks, and allows you to manage notebook sessions from your workspace or in workspaces where you have collaboration rights.

In the Notebook Sessions page, you unload and cancel notebook sessions. You can perform the following tasks:

- **Stop:** Select the notebook that is running, and click **Stop**. This stops the selected notebook in the server.
• **Unload**: Select the notebook that is loaded, and click **Unload**. This removes the selected notebook from memory on the server.

The Notebook Sessions page displays the following information about your notebooks:

• **Notebook**: The name of the notebook.
• **Project**: The project in which the notebook resides.
• **Workspace**: The workspace in which the project is available.
• **Connection**: The connection name.
• **Owner**: The owner of the notebook.
• **Status**: The statuses of a notebook are:
 - **Loaded**: Indicates that the notebook is loaded but not tied to the websocket or running.
 - **Active**: Indicates that the notebook is tied to the websocket but is not running.
 - **Running**: Indicates that the notebook paragraph is queued to run or is running.